Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

April 14, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Petition No. 1494 – Cellco Partnership d/b/a Verizon Wireless, 24 Townhouse Road, Durham, Connecticut

Dear Attorney Bachman:

As you are aware, on April 5, 2022, Cellco Partnership d/b/a Verizon Wireless ("Cellco") filed responses to Siting Council Interrogatories regarding the above-referenced Petition. Interrogatory No. 8 requested a structural analysis for the proposed wood pole Cellco intends to install. After filing its responses, Cellco determined that the structural analysis submitted was based on a prior RFDS and did not include the most recent antenna upgrades planned for this facility.

As a supplement to Cellco's Response to Interrogatory No. 8, attached is the updated RFDS, new antenna data sheet for the XGU-MB-134 antenna and structural analysis dated April 8, 2022, confirming that the proposed wood pole could support Cellco's proposed updated antenna loading.

Please feel free to contact me if you have any questions or need any additional information.

Sincerely,

Kenneth C. Baldwin

KCB/kmd Enclosure

EAST > North East > New England > New England West > DURHAM FAIR 2 CT

Cheiban, Ziad - ziad.cheiban@verizonwireless.com - 11/15/2021 20:0:45

Project Details	Location Information
FUZE Project ID: 2054637	
Project Name: Capacity MACRO	
Project Alt Name: DURHAM FAIR 2 CT	
Project Type: Initial Build	Ś
Modification Type:	ĭ
Designed Sector Carrier 4G: 18	
Designed Sector Carrier 5G: N/A	
Additional Sector Carrier 4G: N/A	Sil
Additional Sector Carrier 5G: N/A	Stre
FP Solution Type & Tech Type: MCR;4G_700,4G_850,4G_AWS,4G_CBRS,4G_PCS	
Carrier Aggregation: false	
MPT Id: 103356	
eCIP-0: false	
Suffix: Rev3_2021-11-15	

	Site ID: 616825617	E-NodeB ID: 064226,0064226	PSLC: 470849	Switch Name: Eugene	Tower Owner:	Tower Type: Pole Non-Utility	Site Type: MACRO	Site Sub Type: CRAN	Street Address: 24 Townhouse Rd	City: Durham	State: CT	Zip Code: 06422	County: Middlesex	Latitude: 41.46853056 / 41° 28' 6.71" N	Longitude: -72.68202222 / 72° 40' 55.28" W	
ocation information				Sv	To			Sit	Stre							

New build RFDS Project Scope: Rev3_2021-11-15: Changed from AWS/PCS MMU to RRHs. Added low band. Changed azimuths to 0, 120, 240. Rev2_2021-09-15: Changed to 3 sectors. Added C-Band and CBRS Rev1_2021-04-06: Initial

Antenna Summary

Added																
200	850	1900	AWS	CBRS	L-Sub6 Make		Model	Centerline	Centerline Tip Height Azimuth	Azimuth	RET	4xRx	Inst. Type Quantity	Quantity	Item ID	
					5G	Samsung	MT6407-77A	37	38.5	0(0001) 120(0002) 240(0003)	false	false	PHYSICAL	ю		
ᄩ	11	Ë	11			JMA	XGU-MB-134	30	30.6	0(01) 120(02) 240(03)	false	false	PHYSICAL	ю		
				5		SAMSUNG	XXDWMM-12.5-65-8T	34	34.5	0(19) 120(20) 240(21)	false	true	PHYSICAL	ю		
Removed	þa															
200	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Centerline	Centerline Tip Height Azimuth	Azimuth	RET	4xRx	Inst. Type Quantity	Quantity	Item ID	
									No d	No data available.						
Retained	ğ															
200	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Centerline	Centerline Tip Height Azimuth	Azimuth	RET	4xRx	Inst. Type Quantity	Quantity	Item ID	
									No di	No data available.						

Added: 9 Removed: 0 Retained: 0

Equipment Summary

Added														
Equipment Type	Location	200	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Cable Size	Install Type		Item ID
OVP Box	Tower							N/A	6 OVP			PHYSICAL	-	
Coaxial Cables	Tower							N/A	7/8" Coax	45'		PHYSICAL	12	
Hybrid Cable	Tower							N/A	LI 6x12			PHYSICAL	1	
RRU	Tower					3		Samsung	CBRS RRH - RT4401-48A			PHYSICAL	м	SLS- BR0542EAEX
RRU	Tower						5G	Samsung	MT6407-77A			PHYSICAL	e	
Diplexer	Ground (Outdoor)							Commscope	CBC61923T-DS-43			PHYSICAL	9	
Coaxial Cables	Ground (Outdoor)							N/A	1/2" Coax	- - -	Jumper	PHYSICAL	36	
OVP Box	Ground (Outdoor)							N/A	6 OVP			PHYSICAL	-	
RRU	Ground (Outdoor)			11	11			Samsung	RF4439d-25A			PHYSICAL	ю	
RRU	Ground (Outdoor)	35	11					Samsung	RF4440d-13A			PHYSICAL	ю	
Removed														
Equipment Type	Location	200	850	1900	AWS	CBRS	L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Cable Size	Install Type	Quantity	Item ID
									No data available.	ilable.				
Retained														
Equipment Type	Location	200	850	1900	AWS	CBRS	L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Cable Size	Install Type	Quantity	Item ID
									No data available.	ilable.				

Service Info

19 20		25 750	AWAYY 2-85-8T-C XYDWMAYY 7-85-8T-C	Hoo cane at a case	BKS_FORT_3550_8UI BKS_	SAMSUNG SAMSUNG SAMSUNG SAMSUNG	DE DE	 D D	000	3,00	0.11	15.35 15.35 15.35	55343 55343 55343		70	42.12 42.12 42.12			pullame 2	2dilloung	CDN3 NNH - N1440I-40A	4,4			ATOLL API ATOLL API ATOLL API		2000		120	064226	EFT-BEAM-LB XGU-MB-134 750MHZ L EFT-BEAM-LB XGU-MB-134 7	AMI AMI	30	3		0	30.6 30.6	31.68			10	285.1 285.1 285.1			Samsund	Q VC POWARA	KF4440G-L3A	2,2 2,2 2,2		11508209 11508210 11508210	IN TOTAL	AIOLL API
Cars s_5 eHz Sector	Azimuth	Cell / Florde R.D.	Antonna Model			Antenna Make	Antenna Centerline(Ft)	Mechanical Down-Ilit(Deg.)	Electrical Down-Tilt	The Holoth		Regulatory Power	DLEARFCN	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Channel Bandwidth(MHZ)	Total ERP (W)	ТМА Маке	TMA Model	BBIIMaka	PARTY OFFICE	ianow out	Number of Tx, Rx Lines	Position	Transmitter Id	Source	TT - 1 100 VC		Sector	Azimuth	Cell / ENode B ID	Antenna Model	Antenna Make	Antenna Centerline(Et)		Mechanical Down- Lift(Deg.)	Electrical Down-Tilt	Tip Height	Regulatory Power	DLEARFCN	1 1100 111 1 1 1 1 1 1 1	Channel Bandwidth(MHz)	Total ERP (W)	TMA Make	TMA Model	BBU Make	DDII Madel	ISPON OUT	Number of 1x, Kx Lines	Position	Transmitter Id		

BEC MILE ITE		0000	
		2000	:
Sector	5	02	03
Azimuth	0	120	240
Cell / ENode B ID	064226	064226	064226
Antenna Model	XGU-MB-134_850MHZ_L EFT-BEAM-LB XGU-MB-134_850MHZ_L EFT-BEAM-LB XGU-MB-134_850MHZ_L EFT-BEAM-LB	3U-MB-134_850MHZ_L EFT-BEAM-LB)	XGU-MB-134_850MHZ_L EFT-BEAM-LB
Antenna Make	JMA	JMA	JMA
Antenna Centerline(Ft)	30	30	30
Mechanical Down-Tilt(Deg.)	0	0	0
Electrical Down-Tilt	0	0	0
Tip Height	30.6	30.6	30.6
Regulatory Power	76.17	76.17	76.17
DLEARFCN	2450	2450	2450
Channel Bandwidth(MHz)	10	10	10
Total ERP (W)	342.77	342.77	342.77
ТМА Маке			
TMA Model			
RRU Make	Samsung	Samsung	Samsung
RRU Model	RF4440d-13A	RF4440d-13A	RF4440d-13A
Number of TX, RX Lines	2,2	2,2	2,2
Position			
Transmitter Id	11508303	11508304	11508305
Source	ATOLL_API	ATOLL_API	ATOLL_API
1900 MHz LTE		0000	
Sortor	5	00	03
Asimith	5 <	90	340
TANAMA DIA	355790	021	900730
A CALL FINANCIA II DE CALL FINANCIA MANAGE DE LA	VC11 MP 134 1000M17 1517 DEAM	U04226	VC: 1845 124 10008417 157
Anteima Model	AGU-MB-134 INDUMNAZ LEFT-BEAM- AGU-MB-134 INDUMNAZ LEFT-BEAM- AGU-MB-134 INDUMNAZ LEFT-BEAM-	GU-MB-134_19U0MHZ_LEFI-BEAM-	AGU-MB-134_1900MHZ_LEF1-BEAM-
Anthonyo Moles	EMA	S W	IN A MI
Artenna Cortectine Ft	Yiali 30	30	AMI
Mechanical Down-Titchney	3 0	3 =	3 0
Electrical Down-Tilt	0	0	0
Tip Height	30.6	30.6	30.6
Regulatory Power	65.43	65.43	65.43
DLEARFON	1050	1050	1050
Channel Bandwidth(MHz)	10	10	10
Total ERP (W)	358.92	358.92	358.92
ТМА Маке			
TMA Model			
RRU Make	Samsung	Samsung	Samsung
RRU Model	RF4439d-25A	RF4439d-25A	RF4439d-25A
Number of Tx, Rx Lines	2,2	2,2	2,2
Position			
Transmitter Id	10129437	10129438	10129439
Source	ATOLL_API	ATOLL_API	ATOLL_API

2300 MHz LTE		0005	
Sector	Ю	05	03
Azimuth	C	120	240
Cell/Enode BID	064226	064226	064226
Antenna Model	XGU-MB-134_2100MHZ_LEFT-BEAM-	XGU-MB-134_2100MHZ_LEFT-BEAM- XGU-MB-134_2100MHZ_LEFT-BEAM- XGU-MB-134_2100MHZ_LEFT-BEAM-	XGU-MB-134_2100MHZ_LEFT-BEAM-
	HB	RB.	HB
Antenna Make	AMI	AMI	JMA
Antenna Centerline(Ft)	30	30	30
Mechanical Down-Tilt(Deg.)	0	0	0
Electrical Down-Tilt	0	0	0
Tp Height	30.6	30.6	30.6
Regulatory Power	35.05	35.05	35.05
DLEARFCN	2050	2050	2050
Channel Bandwidth(MHz)	20	20	20
Total ERP (W)	384.59	384.59	384.59
Than Make			
PAN MAN	Samsling	Samsung	Samsing
BRU Mode	RF4439d-25A	RF4439d-25A	RF4439d-25A
Number of Tx. Bx Lines	2.2	2.2	2.2
Position	414	414	411
Transmitter Id	10129342	10129343	10129344
Source	ATOLL_API	ATOLL_API	ATOLL_API
nl-Sub6		0002	
Sector	0001	0005	0003
Azimuth	C	120	240
Cell / ENode B ID	0064226	0064226	0064226
Antenna Model	MT6407-77A	MT6407-77A	MT6407-77A
Antenna Make	Samsung	Samsung	Samsung
Antenna Centerline(Ft)	37	37	37
Mechanical Down-Tilt(Deg.)	0	0	0
Electrical Down-Tilt	9	9	9
Tip Height	38.5	38.5	38.5
Regulatory Power	1175.32	1175.32	1175.32
DLEARFCN	648672	648672	648672
Channel Bandwidth(MHz)	09	09	09
Total ERP (W)	20417.38	20417.38	20417.38
TMA Make			
TMA Model			
RRU Make	Samsung	Samsung	Samsung
RRU Model	MT6407-77A	MT6407-77A	MT6407-77A
Number of Tx, Rx Lines	2,2	2,2	2,2
Position			
Transmitter Id	10479699	10479700	10479701
Source	ATOLL API	ATOLL API	ATOLL API

Service Comments

Callsigns Per Antenna

	Hz											
	39 GHz											
	31 GHz											
	28 GHz											
	2100								WQGA906 WQGB276	WQGA906 WQGB276		
					KNLH251 WPOJ730			KNLH251 WPOJ730	> >	> >		
	1900				WW			WP				
	850	KNKA404					KNKA404					KNKA404
Callsigns	200					WQJQ689						
Beamwidth Regulatory Callsigns		76.17	1175.32	1175.32	65.43	31.68	76.17	65.43	35.05	35.05	1175.32	76.17
Beamwidth		31.25	100	100	39.5	35.25	31.25	39.5	31.5	31.5	100	31.25
l Gain		9.6	23.35	23.35	8.0	83	96	8.0	10.1	10.1	23.35	9.6
Mechanical Gain		0	0	0	0	0	0	0	0	0	0	0
Tip Height Azimuth (TI Electrical	1	0	9	9	0	0	0	0	0	0	9	0
Azimuth (0	240	0	240	0	120	0	240	0	120	240
Tip Height		30.6	38.5	38.5	30.6	30.6	30.6	30.6	30.6	30.6	38.5	30.6
Ant CL Height AGL		30	37	37	30	30	30	30	30	30	37	30
Antenna Ma Antenna Mc Ant CL		XGU- MB- 134_850MF 30 BEAM- LB	MT6407- 77A	MT6407- 77A	XGU- MB- 134_1900M 30 BEAM- HB	XGU- MB- 134_750MF 30 BEAM- LB	XGU- MB- 134_850MF 30 BEAM- LB	XGU- MB- 134_1900M 30 BEAM- HB	XGU- MB- 134_2100M 30 BEAM- HB	XGU- MB- 134_2100M 30 BEAM- HB	MT6407- 77A	XGU- MB- 134_850MF 30 BEAM- LB
Antenna Ma		ЛМА	Samsung	Samsung	JMA	JMA	JMA	JMA	JMA	JMA	Samsung	JMA
Sector		Б	00003	0001	03	ъ	05	5	03	٥	0002	03

					WQGA906 WQGB276	
KNLH251 WPOJ730						
		WQJQ689				WQJQ689
65.43	15.35	31.68	15.35	15.35	35.05	31.68
39.5	64.7	35.25	64.7	64.7	31.5	35.25
8.6	10.448	80	10.448	10.448	10.1	8.
0	0	0	0	0	0	0
0	œ	0	00	œ	0	٥
120	0	240	120	240	120	120
30.6	34.5	30.6	34.5	34.5	30.6	30.6
30	34	30	34	34	30	30
XGU- MB- 134_1900M 30 BEAM- HB	XXDWMM- 12.5-65- 8T- CBRS_Port	XGU- MB- 134_750MF 30 BEAM- LB	XXDWMM- 12.5-65- 8T- CBRS_Port	XXDWMM- 12.5-65- 8T- CBRS_Port	XGU- MB- 134_2100M 30 BEAM- HB	XGU- MB- 134_Y50MI- 30 BEAM- LB
JMA	SAMSUNG	JMA	SAMSUNG	SAMSUNG	JMA	JMA
05	19	03	20	23	02	05

Callsigns

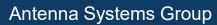
Approved for Insvc	Yes	Yes	Yes	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Action	added	added	added	added	added	added	added	added	added	added					
i Status	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
POPs/Sq Mi Status	448.62	448,62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62
Threshold (W)	1000	400	1640	1640		1640	1640	1640	1640	1640					
Regulatory Power	31.68	76.17	65.43	65.43	15.35	35.05	1175.32	1175.32	1175.32	35.05					
Freq Range 4	000-000	891.500	000'-000'	000'-000'	UNLICENSE	000'-000'	000000	000000	000'-000'	000'-000'	.000-000	000-000	.000-000	.000-000	.000-000
Freq Range 3	000-000	845.000-	000-000	000-000	UNLICENSE	000'-000'	000-000	.000000	000-000	000'-000'	.000000	.000-000	.000-000	.000-000	.000-000
Freq Range 2	776.000-	869.000-	1975.000- 1982.500	1970.000- 1975.000	UNLICENSE	2110.000-	000-000	000-000	000-000	2120.000-	27700.000- 27925.000	28150.000- 28350.000	.000-000	.000-000	.000-000
Freq Range 1	746.000- 757.000	824.000-	1895.000- 1902.500	1890.000- 1895.000	UNLICENSE	1710.000-	3700.000- 3720.000	3720.000- 3740.000	3740.000- 3760.000	1720.000-	27500.000 27600.000	27925.000- 28050.000	37600.000	38500.000	37700.000. 37800.000
Total MHZ	22.000	25.000	15,000	10.000	UNLICENSE	20.000	20.000	20.000	20.000	20.000	325.000	325.000	100.000	100.000	100.000
Wholly	Yes	Yes	Yes	Yes	UNLICENSE UNLICENSE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Licensee	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	UNLICENSE	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Straight Path Spectrum, LLC	Straight Path Spectrum, LLC	Straight Path Spectrum, LLC
County	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex
State	CT	b	cī	CJ	cī	נז	ь	cī	t)	CJ	СТ	CT	CT	CI	CT
Block	O	۷	v	F.	UNLICENSE UNLICENSE	۷	A1	A2	A3	Œ	5	7	M1	M10	M2
Market Number	REA001	CMA032	BTA184	BTA184	UNLICENSE	CMA032	PEA001	PEA001	PEA001	BEA010	BTA184	BTA184	PEA001	PEA001	PEA001
Radio Code	WU	מ	CW	CW	3.5 GHz	AW	PM	PM	ЬМ	ΑW	3	3	Э	3	n
Market	Northeast	Hartford- New Britain- Bristol, CT	Hartford, CT	Hartford, CT	CBRS_CALL UNLICENSE 3.5 GHZ	Hartford- New Britain- Bristol, CT	New York, NY	New York, NY	New York, NY	New York-No. New Jer Long Island, NY-NJ- CT-PA- MA-	Hartford, CT	Hartford, CT	New York, NY	New York, NY	New York, NY
Callsign	мојо689	KNKA404	WPOJ730	KNLH251	CBRS_CALL	WQGB276	WRNE581	WRNE582	WRNE583	WQGA906	WRBA710	WRBA711	WRHD609	WRHD610	WRHD611

UU PEAOO1 M3 CT Middlesex UU PEAOO1 M4 CT Middlesex UU PEAOO1 M5 CT Middlesex UU PEAOO1 M6 CT Middlesex UU PEAOO1 M8 CT Middlesex PM PEAOO1 M9 CT Middlesex PM PEAOO1 M9 CT Middlesex PM PEAOO1 A4 CT Middlesex PM PEAOO1 A5 CT Middlesex PM PEAOO1 B1 CT Middlesex PM PEAOO1 B2 CT Middlesex PM PEAOO1 B3 CT Middlesex PM PEAOO1 B3 CT Middlesex													
House, May May Educori May Cit Maddesse Secritical May Cit Maddesse May May	Yes	Yes	Yes	Yes	Yes	Yes	Yes	°,	No	No	No	No	No
Inva. Inv. Inv. <t< th=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td>N/A</td><td></td><td></td><td></td><td></td><td></td></t<>								N/A					
New York, NY VI U.D. PELOD1 M.S. CT Middlesses Spectrum, Visa TO.D.D0 37900.000 (000-000) ADD-000 (00	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
New York, NY OLD, NY OL	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62	448.62
Now, Now, NW Us PEAOOT MS CT Middlesex Spectrum, Ves Yes 100.000 37900.000 000000 0									1640	1640	1640	1640	1640
Now, Now, NW Us PEAOOT MS CT Middlesex Spectrum, Ves Yes 100.000 37900.000 000000 0													
New Machine Land UL PEADOT Middlesex Straight Land Yes 100.000 37900.000 .000000 Novik MY UL PEADOT Middlesex Path Bank Land Yes 100.000 37900.000 .000000 York MY UL PEADOT Mid S CT Middlesex Path Bank Land Yes 100.000 37900.000 .000000 York MY UL PEADOT Mid S CT Middlesex Path Bank Land Yes 100.000 38900.000 .000000 York MY UL PEADOT MT CT Middlesex Path Bank Land Yes 100.000 38900.000 .000000 New MY UL PEADOT MT CT Middlesex Path Bank Land Yes 100.000 38900.000 .000000 New MY UL PEADOT MT CT Middlesex Path Mid	.000-000	.000-000	.000-000	.000-000	.000000	.000-000	.000-000	.000000	.000000	.000000	.000000	.000000	.000-000
New, Nork, NY York, NY YO	.000-000	.000000	.000000	.000000	.000000	.000000	000-000	.000000	.000000	.000-000	.000000	.000000	.000-000
New York, NY Vork, NY Vor			.000000						.000000	.000-000	.000000	.000000	000-000
New Nork, NY Ork, NY Or	37800.000	37900.000	38000.000	38200.000	38200.000	38300.000	38400.000	38600.000	3760.000- 3780.000	3780.000-	3800.000-	3820.000- 3840.000	3840.000-
New Nork, NY Ord, NY Nork, NY NY Nork, NY N	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	20.000	20.000	20.000	20.000	20.000
New York, NY Wew York, NY Wew York, NY York, NY Wew York, NY York, NY Wew York, NY	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
New York, NY York, NY UU PEAOO1 M3 CT New York, NY York, NY York, NY York, NY York, NY UU PEAOO1 M6 CT New York, NY York, NY York, NY UU PEAOO1 M8 CT New York, NY York, NY York, NY UU PEAOO1 M9 CT New York, NY PM PEAOO1 A4 CT New York, NY PM PEAOO1 A5 CT New York, NY PM PEAOO1 B1 CT New York, NY PM PEAOO1 B2 CT York, NY PM PEAOO1 B3 CT York, NY PM PEAOO1 B3 CT	Straight Path Spectrum, LLC	Straight Path Spectrum, LLC	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership						
New York, NY UU PEAOO1 M3 New York, NY UU PEAOO1 M5 New York, NY UU PEAOO1 M6 New York, NY UU PEAOO1 M8 New York, NY UU PEAOO1 M9 New York, NY UU PEAOO1 M9 New York, NY UU PEAOO1 M9 New York, NY DW PEAOO1 A4 New York, NY PM PEAOO1 A5 New York, NY PM PEAOO1 B1 New York, NY PM PEAOO1 B1 New York, NY PM PEAOO1 B3 New York, NY PM PEAOO1 B3	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex
New York, NY UU PEAOO1 New York, NY PM PEAOO1 New York, NY PM PEAOO1 York, NY PM PEAOO1 New York, NY PM PEAOO1 New York, NY PM PEAOO1 York, NY PM PEAOO1 York, NY PM PEAOO1	LJ CI	CI	CI	CI	CI	CI	cī	CT	CT	СТ	CT	CT	CT
New York, NY UU York, NY Wew York, NY PM York, NY New York, NY	M3	4W	M5	M6	M7	M8	6W	ž	A4	A5	20	B2	B3
New York, NY York, NY York, NY York, NY York, NY New	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001
	3	3	3	3	3	3	3	3	PM	PM	PM	PM	PM
WRHD613 WRHD616 WRHD616 WRHD619 WRHD619 WRNE588	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY
	WRHD612	WRHD613	WRHD614	WRHD615	WRHD616	WRHD617	WRHD618	WRHD619	WRNE584	WRNE585	WRNE586	WRNE587	WRNE588

Antenna Systems Group

X-pol Dual Band Antenna, 698–960/1695–2700 MHz Split Beam 34° Horizontal Pattern

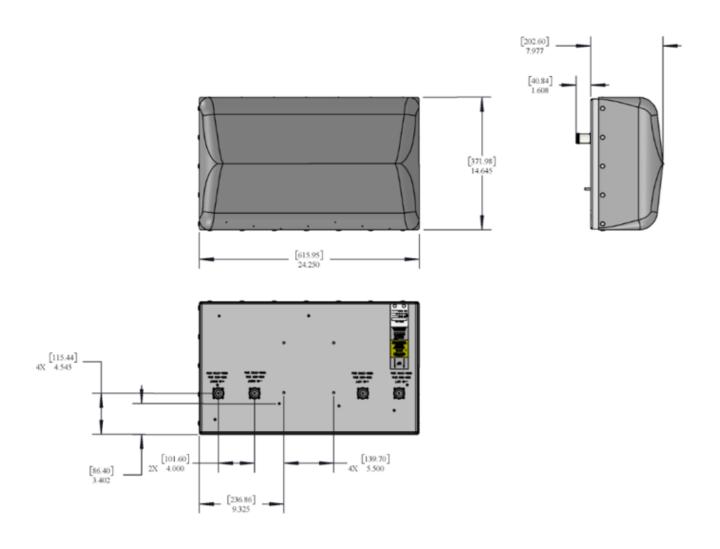
- Split beam, 2-sector MIMO Stadium Antenna reduces sector overlap
- Separate housing and reflector construction optimizes RF performance while maximizing mechanical strength
- Good passive intermodulation (PIM) performance reduces harmful interference
- Perfect for stadium/arena /special event coverage
- Includes flexible stadium bracket
- Suitable for WCS/LTE/CDMA/UMTS/GSM/WiMAX (Neutral Host)
- Optional internal diplexers reduce external cabling and improve aesthetics


Includes integrated diplexers

Reduces mainline cables

Eliminates external tower devices

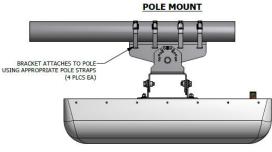
Electrical specifications						
Frequency band, MHz	698-824	824-960	1695- 1920	1920- 2200	2200- 2360	2360- 2700
Horizontal beamwidth, 3 dB points	36°	30°	40°	36°	31°	29°
Gain, dBi	9.2	10.6	10.7	10.5	11.2	11.7
Vertical beamwidth, 3dB points	65°	56°	65°	66°	57°	53°
Front-to-back at 180°, dB	>	20		>	28	
Polarization	+/-	-45°		+/-	45°	
Electrical downtilt	C)°		0	0	
VSWR / return loss, dB, maximum	1.5:	1/14		1.5:	1/14	
Isolation between ports, dB, minimum	2	25		2	5	
Intermodulation (2 x 20 W), IM3, dBc, maximum	-1	.53		-1	53	
Impedance, ohms	5	50		5	0	
Maximum power per connector, CW (W)	250 @ 8	800 MHz		125 @ 1	900 MHz	

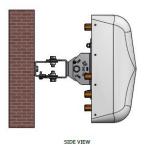

Mechanical specifications	Mechanical specifications						
Dimensions, length/width/depth	14.6/24.3/7.1 in (372.0/616.0/180.6 mm)						
Connector (quantity) type	(4 or 8) 7-16 DIN Female						
Connector torque	220-265 lbf·in (23-30 Nm)						
Connector location	Back						
Antenna weight	15.0 lb (6.8 kg)						
Bracket weight	5.0 lb (2.3 kg)						
Standard bracket kit	P/N 919050 (Included)						
Mechanical down tilt range	+/- 35° Lateral & +/- 55° Vertical						
Radome material	High Strength Luran, UV Stabilized, ASTM D1925						
Wind survival	120 mph (193 km/h)						
Front wind load @ 100 mph	59.4 lbf (264.3 N) @100 mph						
Equivalent flat plate @ 100 mph	1.18 sq ft (c=2) @ 100 mph						

Order information	
Model	Description
XGU-MB-134-I	X-Pol dual band, 0° electrical downtilt with four (4) DIN connectors, w/ internal duplexers
919055	Optional inverted mounting kit for 4.0-10.0 in. OD pole.
91900313	Optional bracket kit for extended horizontal and vertical tilt ranges.

Antenna Systems Group

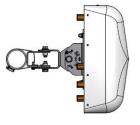
Mechanical Outline Drawing, XGU-MB-134-I (diplexed)


Antenna Systems Group



Examples of standard stadium bracket kit 919050 installation

Note: For mounting details, refer to installation drawing, P/N 919050, on the JMA website Antenna Matrix.



PLAN VIEW

Note: If the bracket is used in applications that provide additional tilt to the antenna (e.g. slanted poles, upside down hanging, etc.), different weep holes may be required. Please consult our weep hole guide at imawireless.com/support.

PLAN VIEW

SIDE VIEW

Report Date: April 8, 2022

Client: On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 Attn: David Weinpahl, P.E.

(201) 456-4624

dweinpahl@onaireng.com

Structure: Proposed 38.5-ft Monopole

Site Name: Durham Fair 2 CT Site Address: 24 Townhouse Rd.

City, County, State: Durham, Middlesex County, CT

Latitude, Longitude: 41.468380, -72.682021

PJF Project: A42920-0009.001.7805

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the tower stress level

Analysis Criteria:

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Proposed Appurtenance Loads:

The structure was analyzed with the proposed loading configuration shown in Table 1 of this report.

Summary of Analysis Results:

Proposed Structure: Pass – 89.2% Proposed Foundation: Pass – 93.2%

The proposed wood pole and its foundation referenced in this report shall be installed in accordance with the recommendations listed within this report for the determined available structural capacity to be effective.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and On Air Engineering, LLC. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

Nathan C. Miller

Nathan C. Miller, P.E. Project Engineer should nmiller@pauliford.com

04/11/2022

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Table 4 - Tower Component Stresses vs. Capacity

4.1) Recommendations

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a proposed 38.5 ft Wood Monopole tower.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 120 mph

Exposure Category:CTopographic Factor:1Ice Thickness:1 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
37.0	37.0	1	pole mounts	Mount Collar	12	7/8	
37.0 37.0		3	samsung	MT6407-77A	12	170	
		3	pole mounts	2.5" OD x 12' Mount Pipe			
34.0 34.0	34.0	34.0	3	samsung	CBRS RT4401-48A		
		3	samsung	XXDWMM-12.5-65-8T-RRH w/ RT4401-48A w/ mount pipe			
30.0	30.0	1	pole mounts	Mount Collar			
30.0	30.0	3	jma wireless	XGU-MB-134 w/ Pipe Mount			
27.0	27.0	1	raycap	RHSDC-6627-PF-48	1	1-5/8	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
RFDS	Verizon Wireless, 11/15/2021	FUZE: 2054637	On Air
Zoning Drawings	On Air Engineering, LLC, 12/29/2019	Durham Fair 2 CT	Engineering, LLC
Mount Analysis	Paul J. Ford and Company, 12/15/2021	A42920-0009.002.7190	PJF

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) At the time of analysis, a site-specific geotechnical report was not available. See the recommendations section for further information.
- 4) The wood structure was analyzed in tnxTower for obtaining the reactions at critical elevations in the structure. This analysis should be considered as an approximation of the pole behavior since the pole is wood and tnxTower is intended for steel poles.
- 5) The new pole wood species is assumed to be Southern Pine with an allowable bending stress (Fb) of 1950psi, but alternatives that meet or exceed this allowable bending stress would be acceptable.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Section No.	Elevation (ft)	Description	% Capacity	Pass / Fail
L1	38.5 - 35	Round Wooden Pole	2.4	Pass
L2	35 - 30	Round Wooden Pole	14.7	Pass
L3	30 - 25	Round Wooden Pole	30.4	Pass
L4	25 - 20	Round Wooden Pole	45.1	Pass
L5	20 - 15	Round Wooden Pole	58.3	Pass
L6	15 - 10	Round Wooden Pole	70.1	Pass
L7	10 - 5	Round Wooden Pole	80.6	Pass
L8	5 - 0	Round Wooden Pole	89.2	Pass
			Summary	
		Pole (L8)	89.2	Pass
		Rating =	89.2	Pass

Table 4 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Base Foundation (Structure)	0	93.2	Pass
1	Base Foundation (Soil Interaction)	0	81.1	Pass

Structure Rating (max from all components) =	93.2%
--	-------

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. In order for the results of this analysis to be considered valid, the following must be completed:

- Geotechnical observation and testing to confirm the site soil values meet or exceed the values assumed as part of this design.
- Coax shall be flush mounted to the pole as shown in Appendix B- Base Level Drawing.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- Paul J. Ford and Company has not made a field inspection to verify the monopole dimensions or the antenna/coax loading. If the existing conditions are not as represented on these sketches, we should be contacted immediately to reevaluate any conclusions stated in this report.
- 2) No allowance was made for any damaged, missing, or rusted material. The analysis of this monopole assumes that no physical deterioration has occurred in any of the structural components of the monopole and that all the structural members have the same load carrying capacity as the day the monopole was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing monopole. The structural analysis provided by Paul J. Ford and Company verifies the adequacy of the main structural members of the monopole. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate, connection detail, etc.
- 4) The structural integrity of the existing tower foundation can only be verified if exact foundation sizes and soil conditions are known. Paul J. Ford and Company will not accept any responsibility for the adequacy of the existing foundations unless the foundation sizes and a soils report are provided.
- 5) The monopole has been analyzed according to the minimum basic design wind velocity recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-H. If the owner or local or state agencies require a higher design wind velocity, Paul J. Ford and Company should be made aware of this requirement.

APPENDIX A TNXTOWER OUTPUT

Section	8	7	9	ß	4	က	2	-
Length (ft)	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	3.5000
Number of Sides	-	-	-	-	-	-	-	-
Thickness (in)	8.2450	7.9500	7.6600	7.3700	7.0800	6.7850	6.4950	6.2050
Top Dia (in)	15.9000	15.3200	14.7400	14.1600	13.5700	12.9900	12.4100	12.0000
Bot Dia (in)	16.4900	15.9000	15.3200	14.7400	14.1600	13.5700	12.9900	12.4100
Grade				Southern Pine	Pine			
Weight (K) 1.9	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.1
	0.0 ft	5.0 ft	10.0 ft	15.0 ft	20.0 ft	25.0 ft	30.0 ft	38.5 ft 35.0 ft
TORQUE 0 kip-ft REACTIONS - 120 mph WIND	AXIAL 4 K SHEAR A K MOMENT 4 K	AXIAL 6 K SHEAR 1 K TORQUE 0 kip-ft 50 mph WIND - 1.0000 in ICE	ALL REACTIONS ARE FACTORED				1. Towe 2. Towe 3. Towe 4. Towe incre 5. Defle 6. Towe 7. Topo	GRAE Southern F

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
Southern Pine	3 ksi	4 ksi			

TOWER DESIGN NOTES

- ver is located in Middlesex County, Connecticut.
 ver designed for Exposure C to the TIA-222-H Standard.
 ver designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
 ver is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to
 rease in thickness with height.

- lections are based upon a 60 mph wind. /er Risk Category II. ographic Category 1 with Crest Height of 0.0000 ft

Paul J. Ford & Company 250 East Broad Street, Suite 600 Columbus, OH 43215 Phone: 614.221.6679 FAX:

ob: 38.5' Wood Monopo	le	Durham F	air 2	2 C
Project: 42920-0009				
^{Client:} On Air Engineering, LLC	Dra	^{ıwn by:} tdehnke	App'd:	
Code: TIA-222-H	Dat	e: 04/08/22	Scale:	NTS
Path:			Dwg N	о. Е-

Tower Input Data

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Middlesex County, Connecticut. Tower base elevation above sea level: 187.5600 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.0000 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56.00 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1.05.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends

SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction
 Always Use Sub-Critical Flow
 Use Top Mounted Sockets
 Pole Without Linear Attachments
 Pole With Shroud Or No Appurtenances
 Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	38.5000-35.0000	3.5000	0.00	Round	12.0000	12.4100	6.2050		Southern Pine (3 ksi)
L2	35.0000-30.0000	5.0000	0.00	Round	12.4100	12.9900	6.4950		Southern Pine (3 ksi)
L3	30.0000-25.0000	5.0000	0.00	Round	12.9900	13.5700	6.7850		Southern Pine (3 ksi)
L4	25.0000-20.0000	5.0000	0.00	Round	13.5700	14.1600	7.0800		Southern Pine (3 ksi)
L5	20.0000-15.0000	5.0000	0.00	Round	14.1600	14.7400	7.3700		Southern Pine (3 ksi)
L6	15.0000-10.0000	5.0000	0.00	Round	14.7400	15.3200	7.6600		Southern Pine (3 ksi)
L7	10.0000-5.0000	5.0000	0.00	Round	15.3200	15.9000	7.9500		Southern Pine (3 ksi)
L8	5.0000-0.0000	5.0000		Round	15.9000	16.4900	8.2450		Southern Pine (3 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	12.0000	112.9653	1017.8746	3.0018	6.0000	169.6458	2035.7493	56.4489	0.0000	0
	12.4100	120.9577	1164.2789	3.1025	6.2050	187.6356	2328.5578	60.4427	0.0000	0
L2	12.4100	120.6935	1164.2733	3.1059	6.2050	187.6347	2328.5467	60.3107	0.0000	0
	12.9900	132.5282	1397.6760	3.2475	6.4950	215.1926	2795.3520	66.2245	0.0000	0
L3	12.9900	132.2640	1397.6704	3.2507	6.4950	215.1918	2795.3409	66.0925	0.0000	0
	13.5700	144.6271	1664.5210	3.3925	6.7850	245.3237	3329.0421	72.2704	0.0000	0
L4	13.5700	144.3537	1664.5151	3.3957	6.7850	245.3228	3329.0302	72.1338	0.0000	0
	14.1600	157.4767	1973.4354	3.5400	7.0800	278.7338	3946.8708	78.6914	0.0000	0
L5	14.1600	157.2125	1973.4298	3.5430	7.0800	278.7330	3946.8597	78.5593	0.0000	0
	14.7400	170.6416	2317.1803	3.6850	7.3700	314.4071	4634.3607	85.2699	0.0000	0
L6	14.7400	170.3774	2317.1748	3.6879	7.3700	314.4063	4634.3495	85.1378	0.0000	0
	15.3200	184.3348	2703.9892	3.8300	7.6600	353.0012	5407.9785	92.1124	0.0000	0
L7	15.3200	184.0706	2703.9837	3.8327	7.6600	353.0005	5407.9674	91.9804	0.0000	0
	15.9000	198.5565	3137.3170	3.9750	7.9500	394.6311	6274.6339	99.2190	0.0000	0
L8	15.9000	198.2831	3137.3110	3.9777	7.9500	394.6303	6274.6220	99.0824	0.0000	0
	16.4900	213.5655	3629.5478	4.1225	8.2450	440.2120	7259.0956	106.7190	0.0000	0

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		klf
		Calculation						in	in	
LDF5-50A (7/8" foam)	С	No	Surface Ar	37.0000 -	12	6	0.000	1.0900		0.00
			(CaAa)	0.0000			0.000			
LDF7-50A (1 5/8"	С	No	Surface Ar	37.0000 -	1	1	0.000	0.0000		0.00
foam)			(CaAa)	0.0000			0.000			

Discrete Tower Loads

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustmen			Front	Side	
	Leg		Lateral	t					
			Vert						
			ft	_	ft		ft ²	ft ²	K
			ft	۰					
			ft						
MT6407-77A	Α	From Leg	1.0000	0.0000	37.0000	No Ice	4.6922	1.8402	0.08
			0.00			1/2" Ice	4.9799	2.0626	0.11
MT0 407 774	_		0.00	0.0000	07.0000	1" Ice	5.2750	2.2920	0.14
MT6407-77A	В	From Leg	1.0000	0.0000	37.0000	No Ice	4.6922	1.8402	0.08
			0.00			1/2" Ice	4.9799	2.0626	0.11
MTC407.77A	_	Г.,	0.00	0.0000	27 0000	1" Ice	5.2750	2.2920	0.14
MT6407-77A	С	From Leg	1.0000 0.00	0.0000	37.0000	No Ice 1/2" Ice	4.6922	1.8402	0.08
			0.00			1/2 Ice 1" Ice	4.9799 5.2750	2.0626 2.2920	0.11 0.14
Mount Collar	С	None	0.00	0.0000	37.0000	No Ice	5.2750	5.0000	0.14
Would Collai	C	None		0.0000	37.0000	1/2" Ice	7.0000	7.0000	0.12
						1" Ice	9.0000	9.0000	0.28
***						1 100	3.0000	3.0000	0.20
XXDWMM-12.5-65-8T-	Α	From Leg	1.0000	0.0000	34.0000	No Ice	3.1184	9.3925	0.06
RRH w/ RT4401-48A w/			0.00			1/2" Ice	3.9638	10.6227	0.14
mount pipe			0.00			1" Ice	4.6875	11.7049	0.23
XXDWMM-12.5-65-8T-	В	From Leg	1.0000	0.0000	34.0000	No Ice	3.1184	9.3925	0.06
RRH w/ RT4401-48A w/		ū	0.00			1/2" Ice	3.9638	10.6227	0.14
mount pipe			0.00			1" Ice	4.6875	11.7049	0.23
XXDWMM-12.5-65-8T-	С	From Leg	1.0000	0.0000	34.0000	No Ice	3.1184	9.3925	0.06
RRH w/ RT4401-48A w/		_	0.00			1/2" Ice	3.9638	10.6227	0.14
mount pipe			0.00			1" Ice	4.6875	11.7049	0.23
CBRS RT4401-48A	Α	From Leg	1.0000	0.0000	34.0000	No Ice	0.9911	0.4962	0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
			0.00			1/2" Ice	1.1196	0.5965	0.03
			0.00			1" Ice	1.2555	0.7038	0.04
CBRS RT4401-48A	В	From Leg	1.0000	0.0000	34.0000	No Ice	0.9911	0.4962	0.02
			0.00			1/2" Ice	1.1196	0.5965	0.03
			0.00			1" Ice	1.2555	0.7038	0.04
CBRS RT4401-48A	С	From Leg	1.0000	0.0000	34.0000	No Ice	0.9911	0.4962	0.02
			0.00			1/2" Ice	1.1196	0.5965	0.03
			0.00			1" Ice	1.2555	0.7038	0.04
2.5" OD x 12' Mount Pipe	Α	From Leg	1.0000	0.0000	34.0000	No Ice	3.0000	3.0000	0.06
			0.00			1/2" Ice	4.2350	3.5292	0.08
			0.00			1" Ice	5.4900	4.5750	0.10
2.5" OD x 12' Mount Pipe	В	From Leg	1.0000	0.0000	34.0000	No Ice	3.0000	3.0000	0.06
			0.00			1/2" Ice	4.2350	3.5292	0.08
			0.00			1" Ice	5.4900	4.5750	0.10
2.5" OD x 12' Mount Pipe	С	From Leg	1.0000	0.0000	34.0000	No Ice	3.0000	3.0000	0.06
·			0.00			1/2" Ice	4.2350	3.5292	0.08
***			0.00			1" Ice	5.4900	4.5750	0.10
XGU-MB-134 w/ Pipe	Α	From Leg	1.0000	0.0000	30.0000	No Ice	3.0912	1.2078	0.02
Mount		Ü	0.00			1/2" Ice	3.3620	1.4621	0.05
			0.00			1" Ice	3.6438	1.7331	0.08
XGU-MB-134 w/ Pipe	В	From Leg	1.0000	0.0000	30.0000	No Ice	3.0912	1.2078	0.02
Mount		· ·	0.00			1/2" Ice	3.3620	1.4621	0.05
			0.00			1" Ice	3.6438	1.7331	0.08
XGU-MB-134 w/ Pipe	С	From Leg	1.0000	0.0000	30.0000	No Ice	3.0912	1.2078	0.02
Mount		· ·	0.00			1/2" Ice	3.3620	1.4621	0.05
			0.00			1" Ice	3.6438	1.7331	0.08
Mount Collar	С	None		0.0000	30.0000	No Ice	5.0000	5.0000	0.12
						1/2" Ice	7.0000	7.0000	0.20
						1" Ice	9.0000	9.0000	0.28

RHSDC-6627-PF-48	С	None		0.0000	27.0000	No Ice	4.0563	3.0975	0.03
						1/2" Ice	4.3155	3.3351	0.07
						1" Ice	4.5822	3.5801	0.11

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	Kz	q_z	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft ²	е	ft²	ft²	ft ²		ft ²	ft²
L1 38.5000-	36.7402	1.025	0.036	3.560	Α	0.000	3.560	3.560	100.00	0.000	0.000
35.0000					В	0.000	3.560		100.00	0.000	0.000
					С	0.000	3.560		100.00	1.308	0.000
L2 35.0000-	32.4810	0.999	0.035	5.292	Α	0.000	5.292	5.292	100.00	0.000	0.000
30.0000					В	0.000	5.292		100.00	0.000	0.000
					С	0.000	5.292		100.00	3.270	0.000
L3 30.0000-	27.4818	0.964	0.034	5.533	Α	0.000	5.533	5.533	100.00	0.000	0.000
25.0000					В	0.000	5.533		100.00	0.000	0.000
					С	0.000	5.533		100.00	3.270	0.000
L4 25.0000-	22.4823	0.924	0.032	5.777	Α	0.000	5.777	5.777	100.00	0.000	0.000
20.0000					В	0.000	5.777		100.00	0.000	0.000
					С	0.000	5.777		100.00	3.270	0.000
L5 20.0000-	17.4833	0.877	0.030	6.021	Α	0.000	6.021	6.021	100.00	0.000	0.000
15.0000					В	0.000	6.021		100.00	0.000	0.000
					С	0.000	6.021		100.00	3.270	0.000

Section	Z	Kz	qz	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft ²	е	ft ²	ft ²	ft ²		ft²	ft²
L6 15.0000-	12.4839	0.85	0.030	6.263	Α	0.000	6.263	6.263	100.00	0.000	0.000
10.0000					В	0.000	6.263		100.00	0.000	0.000
					С	0.000	6.263		100.00	3.270	0.000
L7 10.0000-	7.4845	0.85	0.030	6.504	Α	0.000	6.504	6.504	100.00	0.000	0.000
5.0000					В	0.000	6.504		100.00	0.000	0.000
					С	0.000	6.504		100.00	3.270	0.000
L8 5.0000-	2.4848	0.85	0.030	6.748	Α	0.000	6.748	6.748	100.00	0.000	0.000
0.0000					В	0.000	6.748		100.00	0.000	0.000
					С	0.000	6.748		100.00	3.270	0.000

Tower Pressure - With Ice

$G_H = 1.100$

Section	Z	Kz	q_z	t_Z	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		ksf	in	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
L1 38.5000-	36.7402	1.025	0.006	1.0108	4.149	Α	0.000	4.149	4.149	100.00	0.000	0.000
35.0000						В	0.000	4.149		100.00	0.000	0.000
						С	0.000	4.149		100.00	2.545	0.000
L2 35.0000-	32.4810	0.999	0.006	0.9984	6.124	Α	0.000	6.124	6.124	100.00	0.000	0.000
30.0000						В	0.000	6.124		100.00	0.000	0.000
						С	0.000	6.124		100.00	6.334	0.000
L3 30.0000-	27.4818	0.964	0.006	0.9819	6.352	Α	0.000	6.352	6.352	100.00	0.000	0.000
25.0000						В	0.000	6.352		100.00	0.000	0.000
						С	0.000	6.352		100.00	6.297	0.000
L4 25.0000-	22.4823	0.924	0.006	0.9623	6.579	Α	0.000	6.579	6.579	100.00	0.000	0.000
20.0000						В	0.000	6.579		100.00	0.000	0.000
						С	0.000	6.579		100.00	6.253	0.000
L5 20.0000-	17.4833	0.877	0.005	0.9384	6.803	Α	0.000	6.803	6.803	100.00	0.000	0.000
15.0000						В	0.000	6.803		100.00	0.000	0.000
						С	0.000	6.803		100.00	6.199	0.000
L6 15.0000-	12.4839	0.85	0.005	0.9074	7.019	Α	0.000	7.019	7.019	100.00	0.000	0.000
10.0000						В	0.000	7.019		100.00	0.000	0.000
						С	0.000	7.019		100.00	6.129	0.000
L7 10.0000-	7.4845	0.85	0.005	0.8621	7.223	Α	0.000	7.223	7.223	100.00	0.000	0.000
5.0000						В	0.000	7.223		100.00	0.000	0.000
						С	0.000	7.223		100.00	6.027	0.000
L8 5.0000-	2.4848	0.85	0.005	0.7721	7.391	Α	0.000	7.391	7.391	100.00	0.000	0.000
0.0000						В	0.000	7.391		100.00	0.000	0.000
						С	0.000	7.391		100.00	5.825	0.000

Tower Pressure - Service

$G_H = 1.100$

Section	Z	Kz	qz	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft²
L1 38.5000-	36.7402	1.025	0.008	3.560	Α	0.000	3.560	3.560	100.00	0.000	0.000
35.0000					В	0.000	3.560		100.00	0.000	0.000
					С	0.000	3.560		100.00	1.308	0.000
L2 35.0000-	32.4810	0.999	0.008	5.292	Α	0.000	5.292	5.292	100.00	0.000	0.000
30.0000					В	0.000	5.292		100.00	0.000	0.000
					С	0.000	5.292		100.00	3.270	0.000
L3 30.0000-	27.4818	0.964	0.008	5.533	Α	0.000	5.533	5.533	100.00	0.000	0.000
25.0000					В	0.000	5.533		100.00	0.000	0.000
					С	0.000	5.533		100.00	3.270	0.000

Section	Z	Kz	q_z	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft ²	е	ft²	ft ²	ft ²		ft ²	ft ²
L4 25.0000-	22.4823	0.924	0.007	5.777	Α	0.000	5.777	5.777	100.00	0.000	0.000
20.0000					В	0.000	5.777		100.00	0.000	0.000
					С	0.000	5.777		100.00	3.270	0.000
L5 20.0000-	17.4833	0.877	0.007	6.021	Α	0.000	6.021	6.021	100.00	0.000	0.000
15.0000					В	0.000	6.021		100.00	0.000	0.000
					С	0.000	6.021		100.00	3.270	0.000
L6 15.0000-	12.4839	0.85	0.007	6.263	Α	0.000	6.263	6.263	100.00	0.000	0.000
10.0000					В	0.000	6.263		100.00	0.000	0.000
					С	0.000	6.263		100.00	3.270	0.000
L7 10.0000-	7.4845	0.85	0.007	6.504	Α	0.000	6.504	6.504	100.00	0.000	0.000
5.0000					В	0.000	6.504		100.00	0.000	0.000
					С	0.000	6.504		100.00	3.270	0.000
L8 5.0000-	2.4848	0.85	0.007	6.748	Α	0.000	6.748	6.748	100.00	0.000	0.000
0.0000					В	0.000	6.748		100.00	0.000	0.000
					С	0.000	6.748		100.00	3.270	0.000

Load Combinations

Comb.	Description
No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service

Comb.	Description
No.	
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	38.5 - 35	Pole	Max Tension	33	0.00	0.00	0.00
			Max. Compression	26	-1.04	0.00	-0.03
			Max. Mx	8	-0.55	-1.33	-0.01
			Max. My	14	-0.56	0.00	-1.30
			Max. Vy	8	0.68	-1.33	-0.01
			Max. Vx	14	0.66	0.00	-1.30
			Max. Torque	10			-0.00
L2	35 - 30	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-2.64	0.00	-0.09
			Max. Mx	8	-1.23	-9.69	-0.04
			Max. My	14	-1.26	0.00	-9.06
			Max. Vy	8	2.05	-9.69	-0.04
			Max. Vx	14	1.82	0.00	-9.06
			Max. Torque	9			-0.05
L3	30 - 25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-3.75	0.00	-0.16
			Max. Mx	8	-1.72	-23.02	-0.08
			Max. My	14	-1.78	0.00	-20.77
			Max. Vy	8	2.92	-23.02	-0.08
			Max. Vx	14	2.50	0.00	-20.77
			Max. Torque	9			-0.10
L4	25 - 20	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-4.22	0.00	-0.23
			Max. Mx	8	-2.04	-38.43	-0.11
			Max. My	14	-2.10	0.00	-33.57
			Max. Vy	8	3.24	-38.43	-0.11
			Max. Vx	14	2.62	0.00	-33.57
	00 45	- .	Max. Torque	9			-0.15
L5	20 - 15	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-4.71	0.00	-0.30
			Max. Mx	8	-2.40	-55.40	-0.14
			Max. My	14	-2.46	0.00	-46.96
			Max. Vy	8	3.55	-55.40	-0.14
			Max. Vx	14	2.73	0.00	-46.96
L6	15 - 10	Pole	Max. Torque Max Tension	9 1	0.00	0.00	-0.20 0.00
LO	15 - 10	Pole	Max. Compression	26	-5.22	0.00	-0.37
			Max. Mx	26 8	-5.22 -2.80	-73.85	-0.37 -0.15
				o 14	-2.85	0.00	-0.15 -60.89
			Max. My Max. Vy	8	3.84	-73.85	-0.15
			Max. Vx	14	2.84	0.00	-60.89
				9	2.04	0.00	
L7	10 - 5	Pole	Max. Torque Max Tension	1	0.00	0.00	-0.25 0.00
L/	10 - 3	FUIE	Max. Compression	26	-5.75	0.00	-0.44
			Max. Mx	8	-3.73 -3.24	-93.73	-0.44 -0.16
			Max. My	14	-3.24 -3.27	-93.73 0.00	-0.10 -75.33
			Max. Vy	8	-3.27 4.12	-93.73	-75.55 -0.16
			Max. Vx	14	2.93	0.00	-0.16 -75.33
			Max. Torque	9	۷.50	0.00	-0.30
L8	5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
	0 0	1 010	Wax 101101011		0.00	0.00	0.00

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-6.30	0.00	-0.50
			Max. Mx	8	-3.72	-115.02	-0.16
			Max. My	14	-3.72	0.00	-90.24
			Max. Vy	8	4.40	-115.02	-0.16
			Max. Vx	14	3.03	0.00	-90.24
			Max. Torque	9			-0.36

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	38.5 - 35	4.92	42	0.9163	0.0242
L2	35 - 30	4.25	42	0.9147	0.0242
L3	30 - 25	3.30	42	0.8893	0.0233
L4	25 - 20	2.40	42	0.8197	0.0209
L5	20 - 15	1.60	42	0.7084	0.0175
L6	15 - 10	0.93	42	0.5640	0.0136
L7	10 - 5	0.42	42	0.3939	0.0092
L8	5 - 0	0.11	42	0.2041	0.0047

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	•	۰	ft
37.0000	MT6407-77A	42	4.63	0.9164	0.0242	14827
34.0000	XXDWMM-12.5-65-8T-RRH w/	42	4.05	0.9124	0.0241	14827
	RT4401-48A w/ mount pipe					
30.0000	XGU-MB-134 w/ Pipe Mount	42	3.30	0.8893	0.0233	6086
27.0000	RHSDC-6627-PF-48	42	2.75	0.8530	0.0220	3879

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	۰
L1	38.5 - 35	21.86	8	4.0729	0.1065
L2	35 - 30	18.87	8	4.0657	0.1065
L3	30 - 25	14.66	8	3.9541	0.1024
L4	25 - 20	10.67	8	3.6460	0.0919
L5	20 - 15	7.10	8	3.1518	0.0771
L6	15 - 10	4.12	8	2.5098	0.0596
L7	10 - 5	1.88	8	1.7529	0.0406
L8	5 - 0	0.48	8	0.9085	0.0205

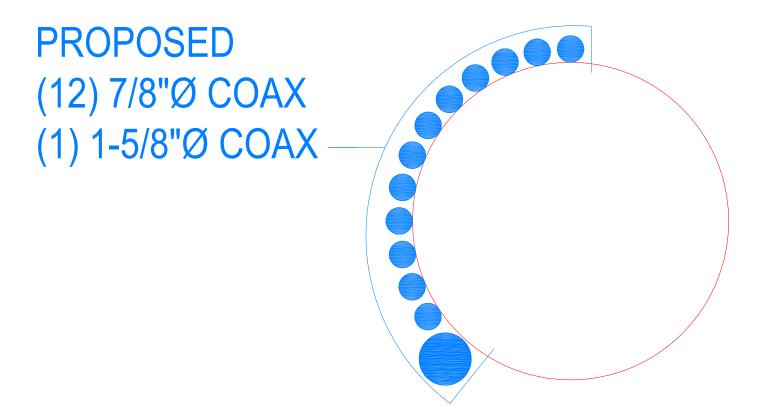
Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
37.0000	MT6407-77A	8	20.58	4.0731	0.1066	3403
34.0000	XXDWMM-12.5-65-8T-RRH w/	8	18.02	4.0559	0.1062	3403
	RT4401-48A w/ mount pipe					
30.0000	XGU-MB-134 w/ Pipe Mount	8	14.66	3.9541	0.1024	1389
27.0000	RHSDC-6627-PF-48	8	12.23	3.7936	0.0968	883

Pole Design Data

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u
	ft		ft	ft		in ²	K
L1	38.5 - 35 (1)	TP12.41x12x6.205	3.5000	0.0000	0.0	120.9580	-0.55
L2	35 - 30 (2)	TP12.99x12.41x6.495	5.0000	0.0000	0.0	132.5280	-1.23
L3	30 - 25 (3)	TP13.57x12.99x6.785	5.0000	0.0000	0.0	144.6270	-1.72
L4	25 - 20 (4)	TP14.16x13.57x7.08	5.0000	0.0000	0.0	157.4770	-2.04
L5	20 - 15 (5)	TP14.74x14.16x7.37	5.0000	0.0000	0.0	170.6420	-2.40
L6	15 - 10 (6)	TP15.32x14.74x7.66	5.0000	0.0000	0.0	184.3350	-2.80
L7	10 - 5 (7)	TP15.9x15.32x7.95	5.0000	0.0000	0.0	198.5570	-3.24
L8	5 - 0 (8)	TP16.49x15.9x8.245	5.0000	0.0000	0.0	213.5660	-3.72

Pole Bending Design Data


Section No.	Elevation	Size	M_{ux}
	ft		kip-ft
L1	38.5 - 35 (1)	TP12.41x12x6.205	1.33
L2	35 - 30 (2)	TP12.99x12.41x6.495	9.69
L3	30 - 25 (3)	TP13.57x12.99x6.785	23.02
L4	25 - 20 (4)	TP14.16x13.57x7.08	38.43
L5	20 - 15 (5)	TP14.74x14.16x7.37	55.40
L6	15 - 10 (6)	TP15.32x14.74x7.66	73.85
L7	10 - 5 (7)	TP15.9x15.32x7.95	93.73
L8	5 - 0 (8)	TP16.49x15.9x8.245	115.00

Pole Shear Design Data

Section	Elevation	Size	Actual
No.			V_u
	ft		K
L1	38.5 - 35 (1)	TP12.41x12x6.205	0.68
L2	35 - 30 (2)	TP12.99x12.41x6.495	2.05
L3	30 - 25 (3)	TP13.57x12.99x6.785	2.92
L4	25 - 20 (4)	TP14.16x13.57x7.08	3.24
L5	20 - 15 (5)	TP14.74x14.16x7.37	3.55
L6	15 - 10 (6)	TP15.32x14.74x7.66	3.84
L7	10 - 5 (7)	TP15.9x15.32x7.95	4.12
L8	5 - 0 (8)	TP16.49x15.9x8.245	4.40

APPENDIX B

Base Level Drawing

APPENDIX C ADDITIONAL CALCULATIONS

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Effective: 7/31/2019 Version: v0.5

Job Number: 42920-0009.001.7805 By: **NCM** Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (35 FT)

Wood Pole Geometry		<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft AGL)	2012 NDS (LRFD)
Embedment	13.00 ft	
Top Pole Diameter	12.00 in.	<u>Maximum Capacity Ratio</u>
Btm Pole Diameter	18.00 in.	100%
Elev. Of Critical Section	35.00 ft	
Critical Diameter	12.41 in.	<u> Applied Loading (From TnxTower)</u>
Critrical Cross Sectional Area	120.91 in. ²	Moment (kip*ft 1.33
Critical Section Modulus	187.53 in. ³	Shear (kips) 0.68
Critical Moment of Inertia	1163.44 in. ⁴	Axial (kips) 0.55

Wood Pole Information

Species		Southern Pine
F _b	1950	psi
F_{ν}	160	psi
F _c	1250	psi
E	1500000	psi
E_{min}	600000	psi
	*Accumed pole by	as been Air Dried

*Lu (in) = 462.00

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial]
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C _{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	1.00			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C _{cs}			1.00	(Critical Section Factor)
	С _р				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F _b	4194.4	psi
Adjusted F_{ν}	345.6	psi
Adjusted F	154.2	psi

Calculated Capacities (35 ft)

Applied Compression Stress (fc)	4.55	psi
Adjusted Allowable Stress (F'c)	154.24	psi
fb1	85.10	psi
Fb1'	4194.45	psi
Fce1	155.64	psi
1 - fc / Fce1	0.97	
% Capacity	2.2%	

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Effective: 7/31/2019 Version: v0.5

Job Number: 42920-0009.001.7805 NCM By: Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (30 FT)

Wood Pole Geometry			<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft	AGL)	2012 NDS (LRFD)
Embedment	13.00 ft		
Top Pole Diameter	12.00 in.	<u>Ma</u>	ximum Capacity Ratio
Btm Pole Diameter	18.00 in.		100%
Elev. Of Critical Section	30.00 ft		
Critical Diameter	12.99 in.	Applied Load	ding (From TnxTower)
Critrical Cross Sectional Area	132.53 in. ²	Moment (kip*ft	9.69
Critical Section Modulus	215.21 in. ³	Shear (kips)	2.05
Critical Moment of Inertia	1397.80 in. ⁴	Axial (kips)	1.22

Wood Pole Information

Species		Southern Pine
F _b	1950	psi
F_{v}	160	psi
F _c	1250	psi
E	1500000	psi
E _{min}	600000	psi
	* A serum ad note be	an hoon Air Dried

*Lu (in) =

462.00

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial	
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C_{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	0.99			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C_{cs}			1.00	(Critical Section Factor)
	C _b				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F _b		psi
Adjusted F_{ν}		psi
Adjusted F_c	154.2	psi

Calculated Capacities (30 ft)

Applied Compression Stress (fc) 9.21 psi Adjusted Allowable Stress (F'c) 154.24 psi fb1 540.32 psi Fb1' 4173.12 psi Fce1 155.64 psi 1 - fc / Fce1 0.94 % Capacity 14.1%

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Version: v0.5 Effective: 7/31/2019 Job Number: 42920-0009.001.7805 NCM By: Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (25 FT)

Wood Pole Geometry		<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft AGL	2012 NDS (LRFD)
Embedment	13.00 ft	
Top Pole Diameter	12.00 in.	<u>Maximum Capacity Ratio</u>
Btm Pole Diameter	18.00 in.	100%
Elev. Of Critical Section	25.00 ft	
Critical Diameter	13.57 in.	Applied Loading (From TnxTower)
Critrical Cross Sectional Area	144.69 in. ²	Moment (kip*ft 23.01
Critical Section Modulus	245.48 in. ³	Shear (kips) 2.92
Critical Moment of Inertia	1665.90 in. ⁴	Axial (kips) 1.71

Wood Pole Information

Species	Southern Pine		
F _b	1950	psi	
F_{v}	160	psi	
F _c	1250	psi	
E	1500000	psi	
E _{min}	600000	psi	
	*Assumed pole ha	as been Air Dried	

*Lu (in) =

462.00

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial]
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C _{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	1.00			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C _{cs}			1.00	(Critical Section Factor)
	С _р				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F_b		psi
Adjusted F_{ν}	345.6	psi
Adjusted F.	154.2	psi

Calculated Capacities (25 ft)

Applied Compression Stress (fc) 11.82 psi Adjusted Allowable Stress (F'c) 154.24 psi fb1 1124.83 psi Fb1' 4208.94 psi Fce1 155.64 psi 1 - fc / Fce1 0.92 % Capacity 29.5%

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Version: v0.5 Effective: 7/31/2019 Job Number: 42920-0009.001.7805 NCM By: Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (20 FT)

Wood Pole Geometry		<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft AGL)	2012 NDS (LRFD)
Embedment	13.00 ft	
Top Pole Diameter	12.00 in.	<u>Maximum Capacity Ratio</u>
Btm Pole Diameter	18.00 in.	100%
Elev. Of Critical Section	20.00 ft	
Critical Diameter	14.16 in.	<u> Applied Loading (From TnxTower)</u>
Critrical Cross Sectional Area	157.37 in. ²	Moment (kip*ft 38.42
Critical Section Modulus	278.46 in. ³	Shear (kips) 3.24
Critical Moment of Inertia	1970.84 in. ⁴	Axial (kips) 2.02

Wood Pole Information

Species		Southern Pine
F _b	1950	psi
F_{ν}	160	psi
F _c	1250	psi
E	1500000	psi
E_{min}	600000	psi
	*Accumed pole by	as been Air Dried

*Lu (in) = 462.00

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial	1
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	Ct	1.00	1.00	1.00	(Temperature Factor)
	C _{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	1.00			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C _{cs}			1.00	(Critical Section Factor)
	С _р				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

psi

psi

psi

Adjusted F _b	4189.3	psi
Adjusted F_{ν}		psi
Adjusted F.	154.2	psi

Calculated Capacities (20 ft)

Applied Compression Stress (fc) 12.84 Adjusted Allowable Stress (F'c) 154.24 fb1 1655.69 psi Fb1' 4189.33 psi Fce1 155.64 1 - fc / Fce1 0.92 % Capacity 43.8%

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Effective: 7/31/2019 Version: v0.5

Job Number: 42920-0009.001.7805 NCM By: Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (15 FT)

Wood Pole Geometry		_	<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft	AGL)	2012 NDS (LRFD)
Embedment	13.00 ft		
Top Pole Diameter	12.00 in.	<u>Ma</u>	ximum Capacity Ratio
Btm Pole Diameter	18.00 in.		100%
Elev. Of Critical Section	15.00 ft		
Critical Diameter	14.74 in.	Applied Loa	ding (From TnxTower)
Critrical Cross Sectional Area	170.59 in. ²	Moment (kip*ft	55.38
Critical Section Modulus	314.27 in. ³	Shear (kips)	3.55
Critical Moment of Inertia	2315.84 in. ⁴	Axial (kips)	2.38

Wood Pole Information

Species	Southern Pine		
F _b	1950	psi	
F_{ν}	160	psi	
F _c E	1250	psi	
E	1500000	psi	
E _{min}	600000	psi	

^{*}Assumed pole has been Air Dried

*Lu (in) = 462.00

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial	
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C_{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	0.99			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C _{cs}			1.00	(Critical Section Factor)
	C _b				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F_b 4170.6 psi 345.6 psi Adjusted F_v Adjusted F_c

Calculated Capacities (15 ft)

% Capacity

Applied Compression Stress (fc) Adjusted Allowable Stress (F'c) fb1 Fb1' Fce1 1 - fc / Fce1

154.24	ps
2114.61	ps
4170.60	ps
155.64	ps
0.91	
56.5%	

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Effective: 7/31/2019 Version: v0.5

Job Number: 42920-0009.001.7805 **NCM** By: Date: 4/6/2022

Site Number: 0 Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (10 FT)

Wood Pole Geometry		<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft AGL)	2012 NDS (LRFD)
Embedment	13.00 ft	
Top Pole Diameter	12.00 in.	<u>Maximum Capacity Ratio</u>
Btm Pole Diameter	18.00 in.	100%
Elev. Of Critical Section	10.00 ft	
Critical Diameter	15.32 in.	<u> Applied Loading (From TnxTower)</u>
Critrical Cross Sectional Area	184.34 in. ²	Moment (kip*ft 73.83
Critical Section Modulus	353.03 in. ³	Shear (kips) 3.84
Critical Moment of Inertia	2704.26 in. ⁴	Axial (kips) 2.77

Wood Pole Information

Species	Southern Pine		
F _b	1950	psi	
F_{v}	160	psi	
F _c	1250	psi	
E	1500000	psi	
E _{min}	600000	psi	
•	*Accumed pole be	sa baan Air Driad	

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial	1
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C _{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	0.99			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C _{cs}			1.00	(Critical Section Factor)
	Сь				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F _b		psi
Adjusted F_{ν}		psi
Adjusted F_c	154.2	psi

Calculated Capacities (10 ft)

% Capacity

Applied Compression Stress (fc) Adjusted Allowable Stress (F'c) fb1 Fb1' Fce1 1 - fc / Fce1

15.03	psi
154.24	psi
2509.60	psi
4152.68	psi
155.64	psi
0.90	
67.8%	
	154.24 2509.60 4152.68 155.64 0.90

^{*}Lu (in) = 462.00

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Version: v0.5 Effective: 7/31/2019 Job Number: 42920-0009.001.7805 NCM By: Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (5 FT)

Wood Pole Geometry		<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft AGL)	2012 NDS (LRFD)
Embedment	13.00 ft	
Top Pole Diameter	12.00 in.	Maximum Capacity Ratio
Btm Pole Diameter	18.00 in.	100%
Elev. Of Critical Section	5.00 ft	
Critical Diameter	15.90 in.	<u> Applied Loading (From TnxTower)</u>
Critrical Cross Sectional Area	198.63 in. ²	Moment (kip*ft 93.71
Critical Section Modulus	394.85 in. ³	Shear (kips) 4.12
Critical Moment of Inertia	3139.62 in. ⁴	Axial (kips) 3.20

Wood Pole Information

Species	Southern Pine		
F _b	1950	psi	
F_{v}	160	psi	
F _c	1250	psi	
E	1500000	psi	
E _{min}	600000	psi	
•	*Accumed pole be	sa baan Air Driad	

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial	
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C_{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	0.98			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C_{cs}			1.00	(Critical Section Factor)
	C _b				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F_b 4135.5 psi 345.6 psi Adjusted F_v Adjusted F_c

Calculated Capacities (5 ft)

Applied Compression Stress (fc) Adjusted Allowable Stress (F'c) fb1 Fb1'

Fce1 1 - fc / Fce1 % Capacity

	_
16.11	psi
154.24	psi
2847.98	psi
4135.49	psi
155.64	psi
0.90	
77.9%	

^{*}Lu (in) = 462.00

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Version: v0.5 Effective: 7/31/2019 Job Number: 42920-0009.001.7805 NCM By: Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (0 FT)

Wood Pole Geometry			<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft AG	L) 2	2012 NDS (LRFD)
Embedment	13.00 ft		_
Top Pole Diameter	12.00 in.	<u>Maxim</u>	um Capacity Ratio
Btm Pole Diameter	18.00 in.		100%
Elev. Of Critical Section	0.00 ft		
Critical Diameter	16.49 in.	<u>Applied Loading</u>	(From TnxTower)
Critrical Cross Sectional Area	213.45 in. ²	Moment (kip*ft	115.00
Critical Section Modulus	439.85 in. ³	Shear (kips)	4.40
Critical Moment of Inertia	3625.53 in. ⁴	Axial (kips)	3.67

Wood Pole Information

Species	Southern Pine		
F _b	1950	psi	
F_{v}	160	psi	
F _c	1250	psi	
E	1500000	psi	
E _{min}	600000	psi	
•	*Accumed pole be	sa baan Air Driad	

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial]
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C _{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	0.98			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C _{cs}			1.00	(Critical Section Factor)
	С _р				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F_b	4119.0	psi
Adjusted F_{ν}	345.6	psi
Adjusted F.	165.7	psi

Calculated Capacities (0 ft)

Applied Compression Stress (fc) 17.19 Adjusted Allowable Stress (F'c) 165.69 fb1 3137.46 psi Fb1' 4118.99 psi Fce1 167.31 1 - fc / Fce1 0.90 % Capacity 86.0%

psi

psi

psi

^{*}Lu (in) = 462.00

^{*} Conservative: occurs further up the tower leg.

^{**}Based on square section with equivalent area

Job Number: Site Number: Site Name:

42920-0009.001.7805 **Durham Fair 2 CT**

Page: Bv: Date:

NCN 4/6/2022

0.75

0.75

0.75

DIRECT EMBED SOIL AND STEEL ANALYSIS - TIA-222-G

Factored Base Reactions from RISA

Comp. (+) Tension (-) Moment, Mu = k-ft 115.0 Shear, Vu = 4.4 kips Axial Load, Pu = kips (from 1.2D + 1.6W)*

OTMu = 115.0 0.0 k-ft @ Ground

Safety Factors / Load Factors / ₱ Factors

Tower Type = ACI Code = Seismic Design Category = Reference Standard = **Utilize Shear-Friction Methodology?** Use 1.3 Load Factor? Load Factor =

Soil Lateral Resistance =

Concrete Wt. Resist Uplift =

Skin Friction =

End Bearing =

Nonopole DE
CI 318-08
)
TA-222-G
'es
lo
1.00

Safety Factor

2.00

2.00

2.00

1.2

Direct Embed Concrete / Gravel Parameters

Diameter = Height Above Grade = 0 ft, Assumed 0 ft for DE Depth Below Grade = 13 ft fc' = 3 ksi EC = 0.003 in/in L / D Ratio = 4.33

Mat Ftdn. Cap Width = Mat Ftdn. Cap Length = Depth Below Grade =

Load Combinations Checked per TIA-222-G

1. (0.75) Ult. Skin Friction + (0.75) Ult. End Bearing

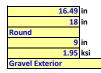
+ (0.75) Effective Soil Wt. - (1.2) Buoyant Conc. Wt. ≥ Comp.

2. (0.75) Ult. Skin Friction + (0.9) Buoyant Conc. Wt. \geq Uplift

Soil Parameters

Water Table Depth = Depth to Ignore Soil = Depth to Full Cohesion = Full Cohesion Starts at?*

99.00 ft 3.00 ft Above Full Cohesion Lateral Resistance = 4(Cohesion)(Dia)(H) Below Full Cohesion Lateral Resistance = 8(Cohesion)(Dia)(H)


*Note: The drilled pier foundation was analyzed using the methodology in the software 'PLS-Caisson' (Version 8.10, or newer, by Power Line Systems, Inc.). Per the methods in PLS-Caisson, the soil reactions of cohesive soils are calculated using 8CD independent of the depth of the soil layer. The depth of soil to be ignored at the top of the drilled pier is based the recommendations of the site specific geotechnical report. In the absence of any recommendations, the frost depth at the site or one half of the drilled pier diameter (whichever is greater) shall be ignored.

Steel Parameters

Rebar Ties Number of Bars = Size = Fv = 29000 MOE = 29000 ksi Side Clear Cover to Ties = Top Clear Cover to Ties = Tie Upper Spacing = Tie Lower Spacing = **Upper Tie Spacing Depth:** ft Below Grade

Direct Embed Pole Shaft Parameters

Dia @ Grade = Dia @ Depth Below Grade = Number of Sides = Thickness = Backfill Condition =

Maximum Capacity Ratios

Maximum Soil Ratio = Maximum Steel Ratio = Apply 1.05 Normalization =

110.0%
105.0%

Define Soil Layers

Note: Cohesion = Undrained Shear Strengh = Unconfined Compressive Strength / 2

Layer	Thickness ft	Unit Weight pcf	Cohesion psf	Friction Angle degrees	Soil Type	Ultimate End Bearing psf	Comp. Ult. Skin Friction psf	Tension Ult. Skin Friction psf	Depth ft
1	13	110	0	30	Sand	4000	500		13
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									

Soil Results: Overturning

Depth to COR = 9.70 ft, from Grade 4.40 kips Shear, Vu = Resisting Shear, ΦVn = 5.43 kips Bending Moment, Mu = 157.68 k-ft, from COR Resisting Moment, ΦMn = 194.47 k-ft, from COR

Uplift, Tu = Uplift Capacity, ΦTn = **UPLIFT RATIO =** Compression, Cu = Comp. Capacity, ΦCn =

0.00 kips 2.85 kips 0.0% OK 3.67 kips 19.74 kips

MOMENT/SHEAR RATIO =

81.1% OK

COMPRESSION RATIO =

Soil Results: Uplift & Compression

18.6% OK

Pole Capacity Results:

Axial Load, Pu = 4.32 kips @ 3.50 ft Below Grade 2.99 kips @ 3.50 ft Below Grade Shear, Vu = Moment, Mu = 130.06 k-ft @ 3.50 ft Below Grade

(c) Copyright 2022 by Paul J. Ford and Company, all rights reserved.

Effective: 7/31/2019 Version: v0.5

Job Number: 42920-0009.001.7805 **NCM** By: Date: 4/6/2022

Site Number: 0

Site Name: DURHAM FAIR 2 CT

SOLID ROUND TIMBER POLE CALCUATIONS (-3.5 FT)

Wood Pole Geometry		<u>Code</u>
Total Pole Length	51.50 ft (38.5 ft AGL	2012 NDS (LRFD)
Embedment	13.00 ft	
Top Pole Diameter	12.00 in.	<u>Maximum Capacity Ratio</u>
Btm Pole Diameter	18.00 in.	100%
Elev. Of Critical Section	-3.50 ft	
Critical Diameter	16.89 in.	<u>Applied Loading (From TnxTower)</u>
Critrical Cross Sectional Area	224.14 in. ²	Moment (kip*ft 130.06
Critical Section Modulus	473.30 in. ³	Shear (kips) 2.99
Critical Moment of Inertia	3997.77 in. ⁴	Axial (kips) 4.32

Wood Pole Information

Species	Southern Pine		
F _b	1950	psi	
F_{v}	160	psi	
F _c	1250	psi	
E	1500000	psi	
E _{min}	600000	psi	
	* A serum ad note be	an hoon Air Dried	

*Lu (in) =

462.00

Calculate the Adjusted Design Stesses (2012 NDS)

	Factor	Flexure	Shear	Axial]
(ASD)	C _d	1.00	1.00	1.00	(Load Duration Factor)
	C _t	1.00	1.00	1.00	(Temperature Factor)
	C _{ct}	1.00	1.00	1.00	(Condition Treatment Factor)
	C _F	0.98			(Size Factor)
	C _P			0.06	(Column Stability Factor)
	C _{cs}			1.00	(Critical Section Factor)
	С _р				(Bearing Area Factor)
	C _{Is}	1.00		1.00	(Loading Sharing Factor)
(LRFD)	K _F	2.54	2.88	2.40	(Format Converstion Factor)
(LRFD)	ф	0.85	0.75	0.90	(Resistance Factor)
(LRFD)	λ	1.00	1.00	1.00	(Time Effect Factor)

Adjusted F _b	4107.8	psi
Adjusted F_{ν}		psi
Adjusted F _c	154.2	psi

Calculated Capacities (-3.5 ft)

% Capacity

Applied Compression Stress (fc) Adjusted Allowable Stress (F'c) fb1 Fb1' Fce1 1 - fc / Fce1

psi
psi
psi
psi
psi

^{*} Conservative: occurs further up the tower leg.

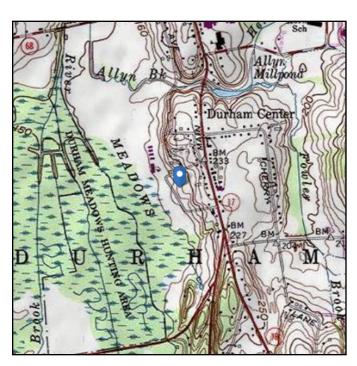
^{**}Based on square section with equivalent area

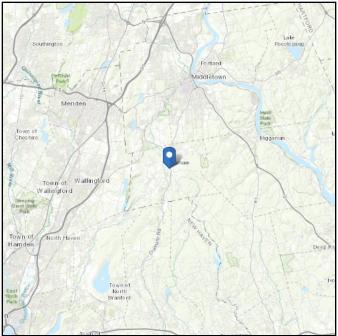
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEL7-16 Elevation: 187.


Risk Category: ^Ⅱ


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 187.56 ft (NAVD 88)

Latitude: 41.468422 **Longitude:** -72.681983

Wind

Results:

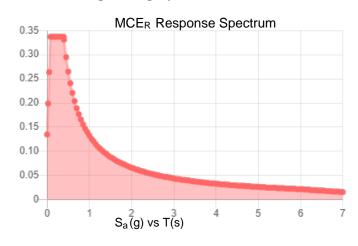
Wind Speed: 120 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 92 Vmph
100-year MRI 99 Vmph

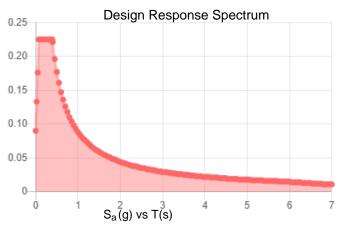
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

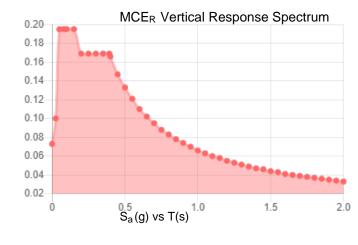
Date Accessed: Tue Nov 09 2021

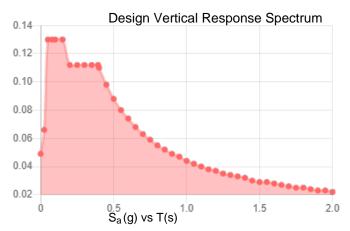
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _s :	0.211	S _{D1} :	0.088
S_1 :	0.055	T_L :	6
F _a :	1.6	PGA :	0.118
F_{ν} :	2.4	PGA _M :	0.185
S _{MS} :	0.337	F _{PGA} :	1.564
S _{M1} :	0.133	l _e :	1
S _{DS} :	0.225	C _v :	0.722

Seismic Design Category B

Data Accessed:

Date Source:

Tue Nov 09 2021

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Tue Nov 09 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.