# STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

| IN RE:                             | : |                  |
|------------------------------------|---|------------------|
|                                    | : |                  |
| A PETITION FOR A DECLARATORY       | : | PETITION NO.     |
| RULING ON THE NEED TO OBTAIN A     | : |                  |
| SITING COUNCIL CERTIFICATE FOR THE | : |                  |
| PROPOSED MODIFICATION OF AN        | : |                  |
| EXISTING WIRELESS                  | : |                  |
| TELECOMMUNICATIONS FACILITY AT     | : |                  |
| 340 BLOOMFIELD AVENUE, WINDSOR,    | : | JANUARY 14, 2022 |
| CONNECTICUT                        |   |                  |

# PETITION FOR A DECLARATORY RULING: INSTALLATION HAVING NO SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

# I. <u>Introduction</u>

Pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A."), DISH Wireless, LLC ("DISH") hereby petitions the Connecticut Siting Council (the "Council") for a declaratory ruling ("Petition") that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required under Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") for the modification of an existing wireless telecommunications facility at 340 Bloomfield Avenue in Windsor, Connecticut (the "Existing Facility").

# II. Existing Facility

The Existing Facility is located on an approximately 4.6-acre parcel that is the site of the Windsor Fire & EMS building. The Facility consists of a 148-foot monopole and associated compound owned by Crown Castle, and currently includes the telecommunications equipment of several wireless carriers. Attachment 1 contains the owner's authorization permitting DISH to file this Petition. The Facility was originally approved by the Town of Windsor on October 10, 2000 as documented in Attachment 2.

# III. DISH Facility

DISH's proposed facility is illustrated on the plans submitted as **Attachment 3**. DISH proposes the shared use of the Existing Facility to provide FCC licensed services. DISH will install three (3) panel antennas and six (6) remote radiohead units (RRH) on a new platform mount installed at the centerline height of approximately 99' AGL.

DISH has confirmed that the Existing Facility is capable of supporting the addition of DISH's

antennas and tower mounted equipment, as documented in the tower Structural Analysis Report annexed hereto as **Attachment 4**, and once new mounts are installed as documented in the Mount Analysis Report annexed hereto as **Attachment 5**.

DISH's 5' x 7' lease area is located along the southern edge of the existing fenced compound. In order to fully enclose its ground equipment, DISH will install a 7'-3" x 11' fence extension, thereby increasing the footprint of the Existing Facility by 79.8 sq. ft. Within its lease area, DISH will install a 5' x 7' steel platform for its ground equipment, supported by four (4) 12" x 12" footpads at grade.

# IV. The Proposed Modification Will Not Have A Substantial Adverse Environmental Effect

# 1. <u>Physical Environmental Effects</u>

The attachment of DISH's antennas to the existing monopole, and the installation of radio and electrical equipment within the expanded compound will not involve a significant alteration to the physical and environmental characteristics of the Property. No native trees will need to be removed and no on-site or off-site wetlands or watercourses will be impacted by the proposed facility expansion.

# 2. <u>Visual Effects</u>

Given the height of the existing tower, 148' AGL, which has existing antennas at multiple levels, DISH's proposed antenna installation at a centerline height of approximately 99' AGL would have a minimal visual impact. The proposed compound expansion will impact a small portion of the existing fenced perimeter and will also have a minimal visual impact.

# 3. <u>FCC Compliance</u>

Radio frequency ("RF") emissions resulting from AT&T's shared use of the Existing Facility will be well below the standards adopted by the Federal Communications Commission ("FCC"). Included in **Attachment 6** is a Radio Frequency Emissions Analysis Report prepared by EBI Consulting. This report confirms that the modified facility will operate well within the RF emission standards established by the FCC.

# V. Notice to the City, Property Owner and Abutting Landowners

On January 14, 2022, a copy of this Petition was sent to Town of Windsor Mayor Donald Trinks, Peter Souza, Town Manager, and Eric Barz, Town Planner. A notice of DISH's intent to file this Petition was also sent to the owners of land that may be considered to abut the Property. Included in **Attachment 7** is a sample abutter's letter and the list of those abutting landowners who were sent notice.

# VI. Conclusion

Based on the information provided above, the Petitioners respectfully requests that the Council issue a determination in the form of a declaratory ruling that the installation of a temporary tower at the Property will not have a substantial adverse environmental effect and does not require the issuance of a Certificate of Environmental Compatibility and Public Need pursuant to § 16-50k of the General Statutes.

Respectfully submitted,

Denise Sabo Northeast Site Solutions Agent for AT&T (860) 209-4690 denise@northeastsitesolutions.com

# Attachments

 Cc: Mayor Donald Trinks – Elected Official & Property Owner Town of Windsor
 275 Broad Street Windsor, CT 06095

> Peter Souza, Town Manager Town of Windsor 275 Broad Street Windsor, CT 06095

Eric Barz, Town Planner Town of Windsor 275 Broad Street Windsor, CT 06095

Crown Castle - Tower Owner

# **ATTACHMENT 1**



4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

# **Crown Castle Letter of Authorization**

**CT - CONNECTICUT SITING COUNCIL** 

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

# Re: Tower Share Application Crown Castle telecommunications site at: 340 BLOOMFIELD AVENUE, WINDSOR, CT 06095

NCWPCS MPL 29 - YEAR SITES TOWER HOLDING ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

> Crown Site ID/Name: 855662/WINDSORCENTRAL Customer Site ID: BOBDL00073A/CT-CCI-T-855662 Site Address: 340 BLOOMFIELD AVENUE, WINDSOR, CT 06095

Crown Castle

By:

10/26/2021 Date:

Richard Zajac Site Acquisition Specialist

| Property Location: 340 BLOOMFIELD AVE                                                          |                | MAP I                   | D: 54/ 456/ 98/T /       |                       | Bldg Name:                                            |                  |                                         | State               | Use: 4340                                          |
|------------------------------------------------------------------------------------------------|----------------|-------------------------|--------------------------|-----------------------|-------------------------------------------------------|------------------|-----------------------------------------|---------------------|----------------------------------------------------|
| Vision ID: 100890                                                                              | Account # 0378 | 8.01                    | В                        | <i>Bldg #:</i> 1 of 1 | Sec #: 1 of                                           | 1 Card           | 1 <i>of</i> 1                           | Print 1             | Date: 06/19/2019 09:19                             |
| CURRENT OWNER                                                                                  | TOPO.          | UTILITIES               | STRT./ROAD               | <b>LOCATION</b>       |                                                       | <b>CURRENT</b> A | ASSESSMENT                              |                     |                                                    |
| WINDSOR TOWN OF                                                                                |                |                         |                          |                       | Description                                           | Code             | Appraised Value                         | Assessed Value      |                                                    |
| 575 MOROSGO DR SUITE 13-F                                                                      |                |                         |                          |                       | IND LAND                                              | 3-1              | 205,000                                 |                     | $\begin{bmatrix} 0 & 6164 \\ 0 & 0 \end{bmatrix}$  |
| WEST TOWER ATTN: NREA TAX DEPT                                                                 |                |                         |                          |                       | IND IMPR                                              | 3-2              | 220,500                                 | 154,35              | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ WINDSOR, CT |
| ATLANTA, GA-30324<br>Additional Owners:                                                        |                | SUPPLEN                 | IENTAL DATA              |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                | Account # 0    | 3788.01                 | CTRACT 473               | 36.02                 |                                                       |                  |                                         |                     |                                                    |
|                                                                                                | INC:<br>CH     |                         | DIST                     | 8                     |                                                       |                  |                                         |                     |                                                    |
|                                                                                                | on             |                         | HEART                    |                       |                                                       |                  |                                         |                     | VICION                                             |
|                                                                                                | 2007 2         | 277340                  | GL YEAR                  |                       |                                                       |                  |                                         |                     | VISION                                             |
|                                                                                                | GIS ID:        | 3788.01                 | ASSOC PID#               |                       |                                                       | Total            | 444,600                                 | 311.22              | 0                                                  |
| RECORD OF OWNERSHIP                                                                            | BK-VOL/PA      | GE SALE DA              | TE a/u v/i SAL           | E PRICE V.C.          |                                                       | PREVI            | OUS ASSESSM                             | ENTS (HISTOR)       | <u>Y)</u>                                          |
| WINDSOR TOWN OF                                                                                | 190/ 568       | 08/06/                  | 1963                     |                       | Yr. Code Ass                                          | sessed Value     | Yr. Code Ass                            | essed Value Yr.     | Code Assessed Value                                |
|                                                                                                |                |                         |                          |                       | 2018 3-1                                              | 143,500 20       | 017 3-1                                 | 143,500 2016        | 6 3-1 143,500                                      |
|                                                                                                |                |                         |                          |                       | 2018 3-2                                              | 13,370 20        | )17 3-2                                 | 10,290 2016         | 6 3-2 10,290<br>6 3-3 154 350                      |
|                                                                                                |                |                         |                          |                       | 2010 3-5                                              | 134,330 20       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 154,550 2010        | 134,330                                            |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       | Total:                                                | 311,220          | Total:                                  | 308,140             | <i>Total:</i> 308,140                              |
| <b>EXEMPTIONS</b>                                                                              | _              |                         |                          |                       |                                                       | This signa       | ture acknowled                          | ges a visit by a Do | ata Collector or Assessor                          |
| Year Type Description                                                                          | Amount         |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  | APPKAIS                                 | SED VALUE SUN       | MMAKY                                              |
|                                                                                                |                |                         |                          |                       |                                                       | Appraised E      | ldg. Value (Carc                        | d)                  | 0                                                  |
|                                                                                                |                |                         |                          |                       |                                                       | Appraised X      | (B) Value (Bl                           | dg)                 | 0                                                  |
|                                                                                                |                |                         |                          |                       |                                                       | Appraised C      | B (L) Value (Bl                         | dg)                 | 220,500                                            |
| Total:                                                                                         |                |                         |                          |                       |                                                       | Appraised I      | and Value (Bldg                         | n)                  | 205.000                                            |
| 10111.                                                                                         | NO             | TES                     |                          |                       |                                                       | Special Lan      | d Value                                 |                     | 0                                                  |
| 09310.01                                                                                       | 10             | LAND VALUE              | ADJUSTED                 |                       |                                                       |                  | a value                                 |                     | Ŭ                                                  |
| 54-456-98T                                                                                     |                | PER INC APPR            | 10/2003                  |                       |                                                       | Total Appra      | ised Parcel Valu                        | e                   | 444,600                                            |
| AT&T CELLULAR TOWER                                                                            |                |                         |                          |                       |                                                       | Valuation N      | lethod:                                 |                     | Ι                                                  |
| MADVET VALUE DED                                                                               |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
| MARKET VALUE PER                                                                               |                |                         |                          |                       |                                                       | Adjustment:      |                                         |                     | 0                                                  |
| INCOME CAPITALIZATION                                                                          |                |                         |                          |                       |                                                       |                  |                                         | 37.1                |                                                    |
| 10/01/2001 SK                                                                                  |                |                         |                          |                       |                                                       | Net Total A      | ppraised Parcel                         | Value               | 444,600                                            |
|                                                                                                | BUILDING P.    | <mark>ERMIT RECO</mark> | RD                       |                       |                                                       |                  | VISI                                    | T/ CHANGE HIS       | STORY                                              |
| Permit ID Issue Date Type Description                                                          | An             | 10unt Insp              | . Date % Comp.           | Date Comp.            | Comments                                              | Туре             | Date                                    | IS ID Co            | d. Purpose/Result                                  |
| P-190267   02/13/2019   PL Plumbing<br>B-190120   01/23/2019   CM Commercie                    |                | 2,500                   | 0                        |                       | GAS PIPING FOR                                        | GENE             |                                         |                     | 0 Bldg Permit Insp<br>1 Mogsur+1Visit              |
| B-190129 01/23/2019 Civi Commercia<br>B-182243 09/05/2018 RE Renovation                        |                | 15,000                  | Ŏ                        |                       | GENERATOR ON                                          | CON              | 10/01/2001                              | SK 0                |                                                    |
| B-170622 03/30/2017 CM Commercia                                                               | վ              | 20,000 08/1             | 7/2017 100               | 10/01/2017            | REPLACE 3 ANTE                                        | ENNAS            |                                         |                     |                                                    |
| E-160074 01/11/2016 EL Electric<br>B-150876 05/01/2015 CM Commercia                            | 1              |                         | 8/2016 100<br>9/2015 100 |                       | REPLACE 6 ANTE<br>ADD 3 NEW ANTE                      | ENNA<br>ENNA     |                                         |                     |                                                    |
| B-141344 04/15/2015 CM Commercia                                                               | d I            | 0 06/1                  | 9/2015 100               | 10/01/2015            | SWAPPING 6 ANT                                        | <b>TENNA</b>     |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                | 7.1. 77.1               | LAND LINE V              | ALUATION SI           | ECTION                                                | ·                |                                         | En e si el Pri      |                                                    |
| B#     Use Code     Description     Zone     D     From       1     4340     Cell Tower     N7 | tage Depth C   | nits Unit               | <i>Price 1. Factor</i>   | S.A. $S.O.$ $C.$ $Fi$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | NO<br>CELL TOWE  | tes- Adj<br>D SITE                      | Special Pri         | cing Land Value                                    |
|                                                                                                |                | 0.03 AC 8               | 2,000.00 30.0000         |                       | 1.00                                                  | UCELL IOWEI      | X SI LE                                 |                     | 205,000                                            |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
|                                                                                                |                |                         |                          |                       |                                                       |                  |                                         |                     |                                                    |
| Total Card                                                                                     | Land Units:    | 0.05 AC Parc            | el Total Land Area:      | 0.05 AC               | I                                                     |                  |                                         | Total L             | and Value: 205,000                                 |
|                                                                                                |                |                         |                          | ·                     |                                                       |                  |                                         |                     |                                                    |

| Property L | ocation: 3-           | 40 B       | LOOMFIELD       | AVE            |                                                                                                                                                               |                                                                                                                                                                |        | MAP IL    | D: 54/ 456/              | 98/T /      |        | Bldg N | ame:        |   |      |      |                 |            |        | State Use: 4340              |
|------------|-----------------------|------------|-----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|--------------------------|-------------|--------|--------|-------------|---|------|------|-----------------|------------|--------|------------------------------|
| Vision ID  | : 100890              |            |                 | A              | ccoun                                                                                                                                                         | <i>t</i> # 0378                                                                                                                                                | 8.01   |           |                          | Bldg #:     | 1 of 1 | Sec #: | 1 <i>of</i> | 1 | Card | 1    | of              | f          | 1      | Print Date: 06/19/2019 09:19 |
|            | CONSTR                | <u>UCT</u> | ION DETAIL      |                | C                                                                                                                                                             | <u>ONSTR</u>                                                                                                                                                   | UCTIO. | N DETAI   | I <mark>L (CONT</mark> I | INUED)      |        |        |             |   | Р    | PHO' | <u>ГО &amp;</u> | <u>SKE</u> | ETCH   |                              |
| Element    | t Cd.                 | Ch. [      | Description     |                | Ele                                                                                                                                                           | ement                                                                                                                                                          | Cd.    | Ch. Desci | ription                  |             |        |        |             |   |      |      |                 |            |        |                              |
| Model      | 00                    |            | Vacant          |                |                                                                                                                                                               |                                                                                                                                                                |        |           |                          |             |        |        |             |   |      |      |                 |            |        |                              |
|            |                       |            |                 |                |                                                                                                                                                               |                                                                                                                                                                |        | IXED U    | SE                       |             |        |        |             |   |      |      |                 |            |        |                              |
|            |                       |            |                 |                | Code                                                                                                                                                          | Descriț                                                                                                                                                        | otion  |           | Per                      | centage     |        |        |             |   |      |      |                 |            |        |                              |
|            |                       |            |                 |                | 4340                                                                                                                                                          | Cell To                                                                                                                                                        | ower   |           |                          | 100         |        |        |             |   |      |      |                 |            |        |                              |
|            |                       |            |                 |                |                                                                                                                                                               | <u>CO</u>                                                                                                                                                      | ST/MA  | RKET V.   | ALUATIO                  | N           |        |        |             |   |      |      |                 |            |        |                              |
|            |                       |            |                 |                | Unadj. I<br>Net Otr<br>Bldg Va<br>Year Bi<br>Eff. Yea<br>Oep Co<br>Remodd<br>Year Ri<br>Nrml P<br>Functio<br>Externa<br>Conditi<br>% Com<br>Overall<br>Depr B | Base Rate<br>ler Adj:<br>alue New<br>.ilt<br>ar Built<br>de<br>9 Rating<br>emodeled<br>hysc Dep<br>nal Obsln<br>d Obslnc<br>on<br>plete<br>% Cond<br>ldg Value | с      | 0000      | 00                       |             |        |        |             |   | No   | Pho  | əto Q           | Dn F       | Record | Ι                            |
| (          | <mark>)B-OUTBU</mark> | ILD        | ING && YARI     | D ITEMS(L)     | ) / XF-                                                                                                                                                       | -BUILD                                                                                                                                                         | ING EX | XTRA FE   | ATURES(                  | ( <u>B)</u> |        |        |             |   |      |      |                 |            |        |                              |
| Code Des   | cription              |            | L/B Un          | its Unit Price | $\frac{Yr}{2001}$                                                                                                                                             | Dp Rt                                                                                                                                                          | %Cnd   | Apr Value | 2                        |             |        |        |             |   |      |      |                 |            |        |                              |
|            |                       |            |                 |                | 2001                                                                                                                                                          |                                                                                                                                                                |        | 220,300   |                          |             |        |        |             |   |      |      |                 |            |        |                              |
| Code       | Description           |            | BUILDING        | SUB-AREA       | Gros                                                                                                                                                          | MARY S<br>s Area                                                                                                                                               | SECTI( | JIN       |                          |             |        |        |             |   |      |      |                 |            |        |                              |
|            | Tel Cuo               | ace I      | iv/1 page Areas | 0              |                                                                                                                                                               | 0                                                                                                                                                              |        | Bld       | g Val·l                  |             |        |        |             |   |      |      |                 |            |        |                              |

# 41°51'09.3"N 72°39'37.8"W

Google Maps

Tower location - 340 BLOOMFIELD AVENUE, WINDSOR, CT 06095



Imagery ©2019 Google, Imagery ©2019 CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency, Map data 200 ft 📖



# 41°51'09.3"N 72°39'37.8"W



340 Bloomfield Ave, Windsor, CT 06095

• V83Q+2R Windsor, Connecticut

# **ATTACHMENT 2**



First in Connecticut. First for its citizens.

October 25, 2000

Cuddy & Feder & Worby LLP ATTN: Daniel F. Leary 90 Maple Avenue White Plains, NY 10601-5196

> Subject: Special Use #546 - Wireless Telecommunications Tower, 340 Bloomfield Avenue, Zoning Regulations Sections 12.2 & 2.2.19E(1), NZ Zone, Town of Windsor/AT&T Wireless PCS, LLC

> > **Site Plan #308E -** Revision, Wireless Telecommunications Tower, 340 Bloomfield Avenue, NZ Zone, Town of Windsor/AT&T Wireless PCS, LLC

Dear Mr. Leary:

At its meeting on October 10, 2000 the Windsor Town Planning & Zoning Commission took the following action on the subject applications:

# Approved subject to the following condition:

1) Final approval of the Fire Marshal regarding fire safety issues

Approval includes the following distance waiver:

1) 83 feet for Bloomfield Avenue south of site

Very truly yours,

Town Planning & Zoning Commission

/mm

I, Anita M. Mips, Chairperson of the Windsor Town Planning and Zoning Commission, hereby certify that on October 10, 2000 the Planning and Zoning Commission of the Town of Windsor granted approval of Special Use Application #546 for a Wireless Telecommunications Tower with a monopole height of 150 feet plus 20-foot Town public service whip antennas for a total height of 170 feet, under Zoning Regulations Sections 12.2 & 2.2.19E(1), subject to the following condition:

1) Final approval of the Fire Marshal regarding fire safety issues.

This approval also includes the following waiver in accordance with Zoning Regulations Section 12.1:

1) a waiver of the fall zone distance requirement for 83 feet in relation to the distance of the tower from Bloomfield Avenue, 340 feet being required, 257 feet being proposed.

Said Special Use was granted for the property located at:

340 Bloomfield Avenue

The owner of record of said parcel is:

Town of Windsor

Dated at Windsor, Connecticut, this <u>30</u> day of November, 2000

\_ Chairperson

**Public Act #75-317** 

Received for Record this \_\_\_\_\_ day of \_\_\_\_\_, 2000

\_\_\_\_\_ Attest: Town Clerk

# **ATTACHMENT 3**

|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      | SITE INF                                                                                                                                                                                  | ORMATION                                                                                                                                                                                                                                         | Γ                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      | PROPERTY OWNER:<br>ADDRESS:                                                                                                                                                               | WINDSOR TOWN OF<br>275 BROAD STREET<br>WINDSOR, CT 06095                                                                                                                                                                                         |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      | TOWER TYPE:                                                                                                                                                                               | MONOPOLE                                                                                                                                                                                                                                         |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      | TOWER CO SITE ID:                                                                                                                                                                         | 855662                                                                                                                                                                                                                                           |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         | SCOPE OF WORK                                                                                                                                                                                        | TOWER APP NUMBER:                                                                                                                                                                         | 556619                                                                                                                                                                                                                                           |                                                                               |
| wird occ                                                                                                                                                                                                                                                                                                                                                                                                | THIS IS NOT AN ALL INCLUSIVE LIST, CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER                                                                                                     | COUNTY:                                                                                                                                                                                   | HARTFORD                                                                                                                                                                                                                                         |                                                                               |
| WI EIESS m                                                                                                                                                                                                                                                                                                                                                                                              | THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:<br>TOWER SCOPE OF WORK:                                                                                                                             | LATITUDE (NAD 83):                                                                                                                                                                        | 41' 51' 9.34" N<br>41.85259444 N                                                                                                                                                                                                                 |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         | INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)     INSTALL (1) PROPOSED TOWER PLATFORM MOUNT     INSTALL PROPOSED JUMPERS                                                                        | ZONING JURISDICTION:                                                                                                                                                                      | 72' 39 37.79 W<br>72.66049722 W<br>CONNECTICUT SITING COUNCIL                                                                                                                                                                                    |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         | INSTALL (6) PROPOSED RRUS (2 PER SECTOR)     INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)     INSTALL (1) PROPOSED HYBRID CABLE                                                         | ZONING DISTRICT:                                                                                                                                                                          | NZ - MUNICIPAL MDL-94                                                                                                                                                                                                                            |                                                                               |
| BOBDL00073A                                                                                                                                                                                                                                                                                                                                                                                             | GROUND SCOPE OF WORK:<br>• INSTALL 18 -0" PROPOSED CHAIN LINK FENCE                                                                                                                                  | PARCEL NUMBER:                                                                                                                                                                            | 3788                                                                                                                                                                                                                                             |                                                                               |
| DISH Wireless L.L.C. SITE ADDRESS:                                                                                                                                                                                                                                                                                                                                                                      | INSTALL (1) PROPOSED METAL PLATFORM     INSTALL (1) PROPOSED ICE BRIDGE     INSTALL (1) PROPOSED PPC CABINET                                                                                         | OCCUPANCY GROUP:                                                                                                                                                                          | U                                                                                                                                                                                                                                                |                                                                               |
| 340 BLOOMEIELD AVENUE                                                                                                                                                                                                                                                                                                                                                                                   | INSTALL (1) PROPOSED EQUIPMENT CABINET     INSTALL (1) PROPOSED FOWER CONDUIT     INSTALL (1) PROPOSED TELCO CONDUIT                                                                                 | CONSTRUCTION TYPE:                                                                                                                                                                        | II-B                                                                                                                                                                                                                                             |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         | INSTALL (1) PROPOSED TELCO-FIBER BOX     INSTALL (1) PROPOSED GPS UNIT     INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)                                                                              | POWER COMPANY:                                                                                                                                                                            | EVERSOURCE                                                                                                                                                                                                                                       |                                                                               |
| WINDSOR, CT 06095                                                                                                                                                                                                                                                                                                                                                                                       | INSTALL (1) PROPOSED METER IN EXISTING SOCKET                                                                                                                                                        | TELEPHONE COMPANY:                                                                                                                                                                        | CROWN CASTLE                                                                                                                                                                                                                                     |                                                                               |
| CONNECTICUT CODE COMPLIANCE                                                                                                                                                                                                                                                                                                                                                                             | SITE PHOTO                                                                                                                                                                                           |                                                                                                                                                                                           | DIREC                                                                                                                                                                                                                                            | ודכ                                                                           |
| THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO<br>BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:<br><u>CODE TYPE</u> <u>CODE</u><br>BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS<br>MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS<br>ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS |                                                                                                                                                                                                      | DIRECTIONS FROM<br>CONTINUE TO BRADLEY<br>KEEP RIGHT TO CONTINU<br>E/BLOOMFIELD AVE IN V<br>AIRPORT CON, CONTINUI<br>MERGE WITH I-91 S TC<br>CENTER, CONTINUE ON<br>E/BLOOMFIELD AVE, TUF | BRADLEY INTERNATIONAL<br>INTERNATIONAL AIRPORT CON, F<br>UE ON BRADLEY INTERNATIONAL<br>WINDSOR. TAKE EXIT 37 FROM I<br>E ONTO CT-20 E/BRADLEY INTE<br>WARD HARTFORD, TAKE EXIT 37<br>CT-305 E/BLOOMFIELD AVE TO<br>RN LEFT ONTO WILLIAM ST, TUR | - A<br>HEAD<br>AIR<br>I-91<br>ERN4<br>7 FO<br>7 FO<br>7 YOI<br>2 YOI<br>2 N R |
| SHEET INDEX                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                           | VICINI                                                                                                                                                                                                                                           | TY                                                                            |
| SHEET NO. SHEET TITLE                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                                                                                           | a                                                                                                                                                                                                                                                |                                                                               |
| T-1 TITLE SHEET                                                                                                                                                                                                                                                                                                                                                                                         | ~                                                                                                                                                                                                    | Brd Ct                                                                                                                                                                                    | Kith C                                                                                                                                                                                                                                           |                                                                               |
| LS-1         ABUTTERS EXHIBIT           LS-2         WETLAND MAP                                                                                                                                                                                                                                                                                                                                        | and the second                                                                                     | Stre                                                                                                                                                                                      | L-91<br>Exit 37                                                                                                                                                                                                                                  |                                                                               |
| A-1         OVERALL AND ENLARGED SITE PLAN                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      | tam R                                                                                                                                                                                     | SALE .                                                                                                                                                                                                                                           |                                                                               |
| A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE<br>A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS                                                                                                                                                                                                                                                                                                                | 09/25/2020_09-05                                                                                                                                                                                     |                                                                                                                                                                                           | ter .                                                                                                                                                                                                                                            |                                                                               |
| A-4         EQUIPMENT DETAILS           A-5         EQUIPMENT DETAILS                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                                                                                           | 305                                                                                                                                                                                                                                              | 8                                                                             |
| A-6 EQUIPMENT DETAILS                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      | #å +                                                                                                                                                                                      | 91                                                                                                                                                                                                                                               |                                                                               |
| E-1         ELECTRICAL/FIBER ROUTE PLAN AND NOTES           E-2         ELECTRICAL DETAILS                                                                                                                                                                                                                                                                                                              | UNDERGROUND SERVICE ALERT CBYD 811<br>UTILITY NOTIFICATION CENTER OF CONNECTICUT                                                                                                                     | ew R                                                                                                                                                                                      | SITE LOCATION                                                                                                                                                                                                                                    |                                                                               |
| E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE                                                                                                                                                                                                                                                                                                                                                   | (800) 922-4455<br>WWW.CBYD.COM                                                                                                                                                                       | Jupky                                                                                                                                                                                     | L HIL RD                                                                                                                                                                                                                                         |                                                                               |
| G=1 GROUNDING PEAKS AND NOTES<br>G=2 GROUNDING DETAILS                                                                                                                                                                                                                                                                                                                                                  | CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION                                                                                                                                       | Barry Ln                                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                               |
| G=3 GROUNDING DETAILS                                                                                                                                                                                                                                                                                                                                                                                   | GENERAL NOTES                                                                                                                                                                                        |                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                |                                                                               |
| GN-1 LEGEND AND ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                           | THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION, A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON |                                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                               |
| GN-2         GENERAL NOTES           GN-3         GENERAL NOTES                                                                                                                                                                                                                                                                                                                                         | DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.                                                                             | wn Rd                                                                                                                                                                                     | Belmon                                                                                                                                                                                                                                           |                                                                               |
| GN-4 GENERAL NOTES                                                                                                                                                                                                                                                                                                                                                                                      | 11"x17" PLOT WILL BE HALE SCALE UNLESS OTHERWISE NOTED                                                                                                                                               |                                                                                                                                                                                           | - Ale                                                                                                                                                                                                                                            |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         | CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON<br>THE JOR SITE AND SHALL IMMEDIATELY NOTICY THE ENGINEER IN WRITING OF ANY DISORDEDANCIES REFORE                          | N ha in                                                                                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         | THE GOD STE, AND STALL IMMEDIATELT NOTITE THE ENGINEER IN WRITING OF ANT DISCREPANCIES BEFORE<br>PROCEEDING WITH THE WORK.                                                                           | NO SCALE                                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                               |

# **PROJECT DIRECTORY**

| APPLICANT:        | DISH Wir<br>5701 SC<br>LITTLETO        | reless L.L.C.<br>DUTH SANTA FE DRIVE<br>N, CO 80120   |
|-------------------|----------------------------------------|-------------------------------------------------------|
| OWER OWNER:       | CROWN<br>2000 CC<br>CANONSI<br>(877) 4 | CASTLE<br>DRPORATE DRIVE<br>BURG, PA 15317<br>86–9377 |
| NTE DESIGNER:     | B+T GR<br>1717 S.<br>TULSA,<br>(918) 5 | DUP<br>BOULDER AVE, SUITE 300<br>OK 74119<br>87-4630  |
| SITE ACQUISITION: |                                        | NICHOLAS CURRY<br>NICHOLAS.CURRY@<br>CROWNCASTLE.COM  |
| CONSTRUCTION M    | ANAGER:                                | JAVIER SOTO<br>JAVIER.SOTO@DISH.COM                   |
| RF ENGINEER:      |                                        | BOSSENER CHARLES<br>BOSSENER.CHARLES<br>@DISH.COM     |

# IONS

#### IRPORT:

AIKFORT: D NORTH TOWARD BRADLEY INTERNATIONAL AIRPORT, RPORT, TAKE CT-20 E AND I-91 S TO CT-305 D1 S, CONTINUE ONTO BRADLEY INTERNATIONAL VATIONAL AIRPORT CON, USE THE RIGHT 2 LANES TO OR CT-305/BLOOMFIELD AVE TOWARD WINDSOR OUR DESTINATION, TURN LEFT ONTO CT-305 RIGHT







#### PROPERTY INFORMATION

SUBJECT PROPERTY MAP: 54 / BLOCK: 456 / LOT: 456 340 BLOOMFIELD AVENUE WINDSOR, CT 06095

TOWN OF WINDSOR 275 BROAD STREET WINDSOR, CT 06095

5070 MAP: 54 / BLOCK: 456 / LOT: 456 342 BLOOMFIELD AVENUE WINDSOR, CT 06095

JR SILVESTER SPACE SERVICES LLC 105A FILLEY ST BLOOMFIELD, CT 06002

5069 MAP: 54 / BLOCK: 456 / LOT: 456 58 WILLIAM STREET WINDSOR, CT 06095

AUSTIN SAMUELS 123 EAST WOLCOTT AVENUE WINDSOR, CT 06095

4979 MAP: 53 / BLOCK: 456 / LOT: 456 298 BLOOMFIELD AVENUE WINDSOR, CT 06095

WILLIAM BEDNARZ 298 BLOOMFIELD AVENUE WINDSOR, CT 06095

<u>13597</u> MAP: 54 / BLOCK: 456 / LOT: 456 356 BLOOMFIELD AVENUE WINDSOR, CT 06095

ALLIANCE ENERGY LLC 15 NORTHEAST INDUSTRIAL ROAD BANFORD, CT 06405

12425 MAP: 54 / BLOCK: 456 / LOT: 456 350 BLOOMFIELD AVENUE WINDSOR, CT 06095

MCDONALDS CORPORATION PO BOX 182571 COLUMBUS, OH 43218

5067 MAP: 54 / BLOCK: 456 / LOT: 456 316 BLOOMFIELD AVENUE WINDSOR, CT 06095

PUBLIC SAFETY EXPANSION PARCEL 275 BROAD STREET WINDSOR, CT 06095

5066 MAP: 54 / BLOCK: 456 / LOT: 456 282 BLOOMFIELD AVENUE WINDSOR, CT 06095

HELEN BEDNARZ 298 BLOOMFIELD AVENUE WINDSOR, CT 06095

5171 MAP: 54 / BLOCK: 75 / LOT: 75 357 BLOOMFIELD AVENUE WINDSOR, CT 06095

STATE OF CONNECTICUT CAPITOL AVENUE HARTFORD, CT 06106

<u>5172</u> MAP: 54 / BLOCK: 75 / LOT: 75 153 COOK HILL ROAD WINDSOR, CT 06095

CONN AGR EXP STATON TR UW 153 COOK HILL ROAD WINDSOR, CT 06095

13603 MAP: 54 / BLOCK: 75 / LOT: 75 155 COOK HILL ROAD WINDSOR, CT 06095

CONN AGR EXP STATON TR UW 153 COOK HILL ROAD WINDSOR, CT 06095

12001 MAP: 54 / BLOCK: 75 / LOT: 75 321 BLOOMFIELD AVENUE WINDSOR, CT 06095

CONN AGRICULTURAL 153 COOK HILL ROAD WINDSOR, CT 06095

5170 MAP: 54 / BLOCK: 75 / LOT: 75 313 BLOOMFIELD AVENUE WINDSOR, CT 06095

EDWARD OLEARY KINDER CARE PO BOX 528 AGAWAM, MA 01001

wireless 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 CROWN CASTLE 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com 12/30/21 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED B' I HT BLJ BLJ RFDS REV #: CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION A 6/15/21 ISSUED FOR REVIEW 0 9/21/21 ISSUED FOR CONSTRUCTION 1 12/30/21 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 91728.014.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00073A 340 BLOOMFIELD AVENUE WINDSOR, CT 06095 SHEET TITLE ABUTTERS EXHIBIT SHEET NUMBER

LS-1





 $\Box$ 









| ROSENBERGER<br>GPSGLONASS-36-N-S         DIMENSION (DIA x H)       69mm x 98.5mm         WEIGHT (WITH ACCESSORIES)       515.74g         CONNECTOR       N-FEMALE         FREQUENCY RANGE       1559 MHz ~ 1610.5MHz         BACK         GPS UNIT       GPS UNIT         GPS UNITING<br>BRACKET       OUNDING<br>KIT         MOUNTING<br>BRACKET       OUNDING         OUNDING         MOUNTING         BACK       OUNDING         MOUNTING       BRACKET         OUNDING       GPS ANTENNA DETAIL | IDP<br>GPS<br>GROL<br>SIDE<br>GPS<br>GROL<br>GROL<br>KIT<br>MOUN<br>BRAC | UNIT<br>INDING<br>ATING<br>KET<br>UNIT<br>INDING<br>KET | MINIMUM OF 75% OR<br>270° IN ANY DIRECTION<br>GPS<br>GPS UNIT<br>GPS UNIT<br>GPS MINIMUM SKY VIEW REQUIREMENTS | NO SCALE | 2 | CU12PSM6P4XXX<br>(4 AWG CONDUCTORS)<br>CU12PSM6P4XXX<br>(4 AWG CONDUCTORS)<br>CU12PSM9<br>(8 AWG CONDUCTORS)<br>CU12PSM9<br>(8 AWG CONDUCTORS) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |                                                         |                                                                                                                |          |   |                                                                                                                                                |
| <u>NOT_USED</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO SCALE                                                                 | 4                                                       | NOT_USED                                                                                                       | NO SCALE | 5 | NOT USED                                                                                                                                       |
| <u>NOT USED</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO SCALE                                                                 | 1                                                       | <u>NOT USED</u>                                                                                                | NO SCALE | 8 | <u>NOT USED</u>                                                                                                                                |









|          |   |           | 5701 s<br>LIT                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eless.                             |
|----------|---|-----------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|          |   | (         |                                     | CCR<br>CCA<br>CORPORATE<br>INSBURG, PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OWN<br>STLE<br>DRIVE<br>15317      |
|          |   |           |                                     | 1717 S. B<br>SUITE 30<br>TULSA, O<br>PH: (918)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OULDER<br>)<br>K 74119<br>587-4630 |
| NO SCALE | 3 |           |                                     | www.btgr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o.com                              |
|          |   |           | "Think and the                      | Ne 23924<br>Ne 23924<br>No 2394<br>No 2394<br>No 2394<br>No 2394<br>No 2394<br>No 2394<br>No 2394<br>No 2394<br>No 2394<br>No | Munimumulation 12                  |
|          |   |           | B&T<br>Fy                           | ENGINEERING<br>PEC.000156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G, INC.<br>4<br>/22                |
|          |   | IT<br>UNL | IS A VIOL<br>ESS THEY<br>OF A LICEI | ATION OF LAW FOR<br>ARE ACTING UNDER<br>NSED PROFESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANY PERSON,<br>R THE DIRECTION     |
|          |   | DRA       | WN BY:                              | CHECKED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APPROVED BY:                       |
|          |   |           |                                     | BLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BLJ                                |
|          |   | RFD       | CO                                  | *:<br>NSTRUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TION                               |
|          |   |           | D                                   | OCUMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS                                 |
| NO SCALE | 6 | REV       | DATE                                | SUBMITTALS<br>DESCRIPTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DN                                 |
|          |   | A<br>0    | 6/15/2<br>9/21/2                    | I ISSUED FOR R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EVIEW                              |
|          |   | 1         | 12/30/2                             | 1 ISSUED FOR C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ONSTRUCTION                        |
|          |   |           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
|          |   |           | A&E                                 | PROJECT NU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MBER                               |
|          |   |           | ç                                   | 1728.014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01                                 |
|          |   |           | DI:<br>PRC                          | SH Wireless L.<br>DJECT INFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L.C.<br>ATION                      |
|          |   | 34        | B<br>O BL<br>WIND                   | OBDL0007<br>OOMFIELD<br>SOR, CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3A<br>AVENUE<br>06095              |
|          |   |           |                                     | SHEET TITLE<br>ELECTRICA<br>DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                  |
|          |   |           |                                     | SHEET NUMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R                                  |
| []       |   |           |                                     | E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| NO SCALE | 9 |           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |



| LOAD SERVED           | VOLT<br>(WA | AMPS<br>TTS) | TRIP  |         |                            | скт | TRIP            | VOLT AMPS<br>(WATTS) |        | LOAD SERVED |                                          |                 |  |  |
|-----------------------|-------------|--------------|-------|---------|----------------------------|-----|-----------------|----------------------|--------|-------------|------------------------------------------|-----------------|--|--|
|                       | L1          | L2           |       | "       |                            |     |                 | "                    |        | L1          | L2                                       |                 |  |  |
| PPC GFCI OUTLET       | 180         |              | 15A   | 15A 1 - |                            | Α   | Ŀ≁-             | 2                    | 304    | 2880        |                                          | ABB/GE INFINITY |  |  |
| CHARLES GFCI OUTLET   |             | 180          | 15A   | 3       | $\sim$                     | В   |                 | 4                    | 00/1   |             | 2880                                     | RECTIFIER 1     |  |  |
| -SPACE-               |             |              |       | 5       |                            | А   | <u>-</u> -      | 6                    | 304    | 2880        |                                          | ABB/GE INFINITY |  |  |
| -SPACE-               |             |              |       | 7       |                            | В   |                 | 8                    | 00/1   |             | 2880                                     | RECTIFIER 2     |  |  |
| -SPACE-               |             |              |       | 9       | $\sim$                     | Α   | <u>-</u> -      | 10                   | 304    | 2880        |                                          | ABB/GE INFINITY |  |  |
| -SPACE-               |             |              |       | 11      |                            | В   |                 | 12                   | 50A    |             | 2880                                     | RECTIFIER 3     |  |  |
| -SPACE-               |             |              |       | 13      |                            | Α   | <u>-</u> -      | 14                   | 304    | 2880        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | ABB/GE INFINITY |  |  |
| -SPACE-               |             |              |       | 15      | -                          | В   |                 | 16                   | JUA    |             | 2880                                     | RECTIFIER 4     |  |  |
| -SPACE-               |             |              |       | 17      | $\sim$                     | Α   |                 | 18                   |        |             |                                          | -SPACE-         |  |  |
| -SPACE-               |             |              |       | 19      | $\sim$                     | В   |                 | 20                   |        |             |                                          | -SPACE-         |  |  |
| -SPACE-               |             |              |       | 21      | $\sim$                     | Α   | $\vdash \frown$ | 22                   |        |             |                                          | -SPACE-         |  |  |
| -SPACE-               |             |              |       | 23      | $\vdash \frown \downarrow$ | В   |                 | 24                   |        |             |                                          | -SPACE-         |  |  |
| VOLTAGE AMPS          | 180         | 180          |       |         |                            |     |                 |                      |        | 11520       | 11520                                    |                 |  |  |
| 200A MCB, 16, 24 SPA  | CE, 120     | /240V        | L1 L2 |         |                            |     |                 |                      |        |             |                                          |                 |  |  |
| MB RATING: 65,000 AIC |             |              | 1170  | 0       | 1                          | 170 | 0               | VOLTAGE AMPS         |        |             |                                          |                 |  |  |
|                       |             |              | 98    |         |                            | 98  |                 | AMPS                 |        |             |                                          |                 |  |  |
|                       |             |              |       | g       | 8                          |     |                 | MAX                  | AMPS   | AMPS        |                                          |                 |  |  |
|                       |             |              |       | 13      | 23                         |     |                 | MAX                  | (125%) |             |                                          |                 |  |  |
|                       |             |              |       | 1;      | 23                         |     |                 | MAX                  | ( 125% |             |                                          |                 |  |  |

PANEL SCHEDULE

|  | NOT | USED |
|--|-----|------|
|  |     |      |

2

NO SCALE

| <u>NOTES</u>                                                                                                                                                         |                                                                                                        |            | _   |                                           |                                                                             |                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|-----|-------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|
| CURRENT CARRYING CONDUCTORS<br>80% PER 2014/17 NEC TABLE 3<br>) FOR UL1015 WIRE.                                                                                     | EACH, SHALL AI<br>10.15(B)(3)(a)                                                                       | PPLY<br>OR |     |                                           |                                                                             |                                                         |
| 15A-20A/1P BREAKER: 0.8 x 3<br>25A-30A/2P BREAKER: 0.8 x 4<br>35A-40A/2P BREAKER: 0.8 x 5<br>45A-60A/2P BREAKER: 0.8 x 7                                             | 0A = 24.0A<br>0A = 32.0A<br>5A = 44.0A<br>5A = 60.0A                                                   |            |     | 0                                         | 2S                                                                          |                                                         |
| PER NEC CHAPTER 9. TABLE 4.                                                                                                                                          | ARTICLE 358.                                                                                           |            |     |                                           | wir                                                                         | eless                                                   |
| 22 SQ. IN AREA<br>213 SQ. IN AREA<br>316 SQ. IN AREA<br>907 SQ. IN AREA                                                                                              |                                                                                                        |            |     | 5701 S<br>LIT                             | OUTH SANTA                                                                  | FE DRIVE<br>D120                                        |
| CONDUCTORS (1 CONDUIT): USIN                                                                                                                                         | NG THWN−2, CU                                                                                          |            |     |                                           |                                                                             |                                                         |
| 0211 SQ. IN X 2 = 0.0422 SQ.<br>0211 SQ. IN X 1 = 0.0211 SQ.<br>= 0.0633 SQ.                                                                                         | IN <ground< td=""><td></td><td></td><td><math>\bigcirc</math></td><td>CR</td><td>OWN</td></ground<>    |            |     | $\bigcirc$                                | CR                                                                          | OWN                                                     |
| TE TO HANDLE THE TOTAL OF (3)<br>INDICATED ABOVE.                                                                                                                    | WIRES,                                                                                                 |            |     | 2000<br>CANC                              | ) CORPORATE<br>DNSBURG, PA                                                  | DRIVE<br>15317                                          |
| NDUITS): USING UL1015, CU.                                                                                                                                           |                                                                                                        |            |     |                                           | I                                                                           |                                                         |
| $\begin{array}{rcl} 0266 & \text{SQ. IN } & \text{X} & 4 & = & 0.1064 & \text{SQ.} \\ 0082 & \text{SQ. IN } & \text{X} & 1 & = & 0.0082 & \text{SQ.} \\ \end{array}$ | IN<br>IN <bare gro<="" td=""><td>UND</td><td></td><td></td><td>B+T<br/>1717 S. B4</td><td></td></bare> | UND        |     |                                           | B+T<br>1717 S. B4                                                           |                                                         |
| ATE TO HANDLE THE TOTAL OF (5<br>INDICATED ABOVE.                                                                                                                    | 5) WIRES,                                                                                              |            |     |                                           | TULSA, O<br>PH: (918)<br>www.btgrr                                          | K 74119<br>587-4630<br>0.com                            |
| UNDUIT): USING THWN, CU.                                                                                                                                             |                                                                                                        |            |     |                                           |                                                                             | ~                                                       |
| $\begin{array}{rcl} 0.2079 & SQ. & IN \times S & = & 0.8037 & SQ\\ 0.0507 & SQ. & IN \times 1 & = & 0.0507 & SQ\\ & & & & & & \\ \end{array}$                        | 2. IN <ground<br>2. IN</ground<br>                                                                     |            |     | "Human                                    | <u>C</u>                                                                    | 3                                                       |
| ADEQUATE TO HANDLE THE TOTA<br>INDICATED ABOVE.                                                                                                                      | L OF (4) WIRES                                                                                         | ;,         |     | in the second second                      | No. 23924                                                                   | nummun an           |
|                                                                                                                                                                      |                                                                                                        |            |     |                                           | Manual En International 2/3                                                 | 0/21                                                    |
|                                                                                                                                                                      |                                                                                                        |            |     |                                           |                                                                             |                                                         |
|                                                                                                                                                                      |                                                                                                        |            |     | B&T                                       | ENGINEERING<br>PEC.000156                                                   | G, INC.<br>4                                            |
|                                                                                                                                                                      | NO SCALE                                                                                               | 1          | -   |                                           | (pires 2/10/                                                                | 22                                                      |
|                                                                                                                                                                      |                                                                                                        |            | UNI | IS A VIOL<br>ESS THEY<br>OF A LICEI<br>TO | ATION OF LAW FOR<br>ARE ACTING UNDEI<br>NSED PROFESSION/<br>ALTER THIS DOCU | ANT PERSON,<br>R THE DIRECTION<br>AL ENGINEER,<br>MENT. |
|                                                                                                                                                                      |                                                                                                        |            | DRA | WN BY:                                    | CHECKED BY:                                                                 | APPROVED BY:                                            |
|                                                                                                                                                                      |                                                                                                        |            |     | LHT                                       | BLJ                                                                         | BLJ                                                     |
|                                                                                                                                                                      |                                                                                                        |            | RF  | DS REV                                    | #:                                                                          | 0                                                       |
|                                                                                                                                                                      |                                                                                                        |            |     | CO<br>D                                   | NSTRUC <sup>.</sup><br>OCUMEN                                               | TION<br>ITS                                             |
|                                                                                                                                                                      |                                                                                                        |            |     |                                           | SUBMITTALS                                                                  |                                                         |
|                                                                                                                                                                      |                                                                                                        |            | REV | DATE                                      |                                                                             |                                                         |
|                                                                                                                                                                      |                                                                                                        |            | 0   | 9/21/2                                    | 1 ISSUED FOR H                                                              | ONSTRUCTION                                             |
|                                                                                                                                                                      |                                                                                                        |            | 1   | 12/30/2                                   | ISSUED FOR C                                                                | ONSTRUCTION                                             |
|                                                                                                                                                                      |                                                                                                        |            |     |                                           |                                                                             |                                                         |
|                                                                                                                                                                      |                                                                                                        |            |     |                                           |                                                                             |                                                         |
|                                                                                                                                                                      |                                                                                                        |            |     | A&E                                       | PROJECT NU                                                                  | MBER                                                    |
|                                                                                                                                                                      |                                                                                                        |            |     | g                                         | 91728.014.                                                                  | 01                                                      |
|                                                                                                                                                                      |                                                                                                        |            |     | DI:<br>PRC                                | SH Wireless L.<br>DJECT INFORM                                              | L.C.<br>ATION                                           |
|                                                                                                                                                                      |                                                                                                        |            | 3.  | B<br>40 BL<br>WIND                        | OBDLOOO7<br>OOMFIELD<br>SOR, CT                                             | 3A<br>AVENUE<br>06095                                   |
|                                                                                                                                                                      |                                                                                                        |            | EL  |                                           | SHEET TITLE                                                                 | NE, FAULT                                               |
|                                                                                                                                                                      |                                                                                                        |            |     | ALCS (                                    | SHEET NUMBE                                                                 | R                                                       |
|                                                                                                                                                                      |                                                                                                        |            |     |                                           | E-3                                                                         |                                                         |
|                                                                                                                                                                      | NO SCALE                                                                                               | 3          |     |                                           |                                                                             |                                                         |
|                                                                                                                                                                      |                                                                                                        |            |     |                                           |                                                                             |                                                         |





| <ol> <li>EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO G<br/>BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER<br/>WELD.</li> <li>ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR<br/>ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE<br/>AN ANTI-OXIDANT COMPOUND BEFORE MATING.</li> <li>FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM<br/>BEFORE MATING.</li> <li>DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON<br/>DOWN TO GROUNDING BUS.</li> <li>NUT &amp; WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BI<br/>THE BACK SIDE.</li> <li>ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT<br/>THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A<br/>REQUIRED.</li> <li>ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN</li> </ol> | ROUND<br>MIC<br>ES WITH<br>IPOUND<br>IDUCTOR<br>DLTED ON<br>ITOR.<br>IS<br>IERS). |   | EXTERNAL<br>TOOTHED<br>S/S NUT<br>S/S NUT<br>S/S LOCK<br>WASHER<br>S/S FLAT<br>WASHER<br>S/S FLAT<br>WASHER<br>S/S BOLT<br>(1 OF 2)<br>1/16" MINIMUM SPACING | CTOR INSULATION<br>P AGAINST THE<br>CTOR BARREL |   | EXTERNAL<br>TOOTHED<br>TOOTHED<br>SARREL, REQUIRED FOR<br>ALL INTERIOR TWO-HOLE<br>CONNECTORS<br>S/S NUT<br>S/S LOCK<br>WASHER<br>S/S FLAT<br>WASHER<br>S/S FLAT<br>S/S BOLT<br>(1 OF 2)<br>1/16" MINIMUM SPACING | UCTOR INSULATION |   | COCCROVIN<br>2000 CORPORATE DRIVE<br>2000 CORPORATE DRIVE<br>2000 CORPORATE DRIVE<br>2000 CORPORATE DRIVE<br>CANONSBURG, PA 15317<br>B+T GRP<br>1717 S. BOULDER<br>SUITE 200<br>1117 S. BOULDER<br>SUITE 200<br>1117 S. BOULDER<br>SUITE 200<br>SUITE                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TYPICAL GROUNDING NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO SCALE                                                                          | 1 | TYPICAL EXTERIOR TWO HOLE LUG                                                                                                                                | NO SCALE                                        | 2 | TYPICAL INTERIOR TWO HOLE LUG                                                                                                                                                                                     | NO SCALE         | 3 | PH: (918) 587-4630<br>www.btgrp.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NOTE: MINIMUM OF 3 THREADS<br>TO BE VISIBLE (TYP)<br>S/S SPLIT<br>2 HOLE LONG BARREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TYP)<br>WASHER (TYP)<br>WASHER (TYP)                                              |   |                                                                                                                                                              |                                                 |   |                                                                                                                                                                                                                   | ı I              |   | No 22924<br>No |
| TINNED SOLID COPPER<br>LUG (TYP)<br>TIN COATED SOLID<br>COPPER BUS BAR<br>CHERRY INSULATOR<br>INSTALLED IF REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VASHER (TYP)<br>YP)                                                               |   |                                                                                                                                                              |                                                 |   |                                                                                                                                                                                                                   |                  |   | B&T ENGINEERING, INC.<br>PEC.0001564<br>Expires 2/10/22       IT IS A VIOLATION OF LAW FOR ANY PERSON,<br>UNLESS THEY ARE ACTING UNDER THE DIRECTION<br>OF A LICENSED PROFESSIONAL ENGINEER,<br>TO ALTER THIS DOCUMENT.       DRAWN BY:     CHECKED BY: APPROVED BY:<br>LHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |   |                                                                                                                                                              |                                                 |   |                                                                                                                                                                                                                   |                  |   | RFDS REV #: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |   |                                                                                                                                                              |                                                 |   |                                                                                                                                                                                                                   |                  |   | DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO SCALE                                                                          | 4 |                                                                                                                                                              | NO SCALE                                        | 5 |                                                                                                                                                                                                                   | NO SCALE         | 0 | SUBMITTALS         REV       DATE       DESCRIPTION         A       6/15/21       ISSUED FOR REVIEW         0       9/21/21       ISSUED FOR CONSTRUCTION         1       12/30/21       ISSUED FOR CONSTRUCTION         1       12/30/21       ISSUED FOR CONSTRUCTION         A&E       PROJECT NUMBER         91728.014.01       DISH Wireless L.L.C.         PROJECT INFORMATION       BOBDL00073A         340       BLOOMFIELD AVENUE         WINDSOR, CT 06095       SHEET TITLE         GROUNDING DETAILS       SHEET NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   | - |                                                                                                                                                              |                                                 |   |                                                                                                                                                                                                                   |                  |   | G-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>NOT_USED</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO SCALE                                                                          | 1 | <u>NOT_USED</u>                                                                                                                                              | NO SCALE                                        | 8 | <u>NOT_USED</u>                                                                                                                                                                                                   | NO SCALE         | 9 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| RF JUMPER COLOR CODING                                                                                                                                             |                                                                                           | 3/4" TAPE WIDTHS WITH 3/4" SP                                                  | ACING                                              |                                                               |         |                                                 |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------|-------------------------------------------------|----------|
| LOW–BAND RRH –<br>(600MHz N71 BASEBAND) +<br>(850MHz N26 BAND) +<br>(700MHz N29 BAND) – OPTIONAL PER MARKET                                                        | ALPHA RRH<br>PORT 1 PORT 2 PORT 3 PORT<br>+ SLANT - SLANT + SLANT - SL<br>RED RED RED RED | 4<br>4<br>PORT 1<br>+ SLANT<br>BLUE<br>BLUE<br>BLUE<br>BLUE                    | PORT 4<br>- SLANT - SLANT - SL<br>BLUE GREEN GREEN | AMMA RRH<br>2 PORT 3 PORT 4<br>+ SLANT - SLANT<br>GREEN GREEN |         | OW BANDS (N71+N26<br>OPTIONAL - (N29)<br>ORANGE | 5)       |
| ADD FREQUENCY COLOR TO SECTOR BAND<br>(CBRS WILL USE YELLOW BANDS)                                                                                                 | ORANGE ORANGE RED REL<br>(-) PORT ORANGE ORANGE (-) PORT                                  | GE ORANGE ORANGE BLUE<br>(-) PORT ORANGE                                       | BLUE ORANGE ORAN<br>ORANGE (-) PORT                | IGE GREEN GREEN<br>FE ORANGE ORANGE<br>WHITE<br>(-) PORT      |         | CBRS TECH<br>(3 GHz)<br>YELLOW                  |          |
| MID-BAND RRH -<br>(AWS BANDS N66+N70)                                                                                                                              | RED RED RED REL<br>PURPLE PURPLE RED REL                                                  | BLUE BLUE BLUE<br>PURPLE PURPLE BLUE                                           | BLUE GREEN GREEN<br>BLUE PURPLE PURPL              | GREEN GREEN                                                   | ALPHA   | RED                                             | BETA     |
| ADD FREQUENCY COLOR TO SECTOR BAND<br>(CBRS WILL USE YELLOW BANDS)                                                                                                 | (-) PORT PURPLE PURP<br>(-) PORT (-) PURPLE                                               | E (-) PORT PURPLE                                                              | WHITE<br>(-) PORT                                  | PURPLE PURPLE WHITE (-) PORT                                  | <u></u> | LOR IDENTIFIE                                   | <u>.</u> |
| HYBRID/DISCREET CABLES                                                                                                                                             | EXAMPLE 1 EXAMPLE 2                                                                       | EXAMPLE 3                                                                      |                                                    |                                                               |         |                                                 |          |
| INCLUDE SECTOR BANDS BEING SUPPORTED                                                                                                                               | RED RED                                                                                   | RED                                                                            |                                                    |                                                               |         |                                                 |          |
| ALONG WITH FREQUENCY BANDS<br>EXAMPLE 1 - HYBRID, OR DISCREET, SUPPORTS                                                                                            | GREEN GREEN                                                                               | ORANGE<br>PURPLE                                                               |                                                    |                                                               |         |                                                 |          |
| EXAMPLE 2 - HYBRID, OR DISCREET, SUPPORTS                                                                                                                          | ORANGE YELLOW                                                                             |                                                                                |                                                    |                                                               |         |                                                 |          |
| CBRS ONLY, ALL SECTORS                                                                                                                                             |                                                                                           |                                                                                |                                                    |                                                               |         |                                                 |          |
| LOW-BAND RRH FIBER CABLES HAVE SECTOR<br>STRIPE ONLY                                                                                                               | RED PURPLE                                                                                | BLUE BLUE PURPLE                                                               | GREEN                                              | GREEN<br>PURPLE                                               |         |                                                 |          |
| POWER CABLES TO RRHs                                                                                                                                               | LOW BAND RRH HIGH BAND RRH                                                                | LOW BAND RRH HIGH BAND RF                                                      | CH LOW BAND RRH                                    | HIGH BAND RRH                                                 |         |                                                 |          |
| LOW-BAND RRH POWER CABLES HAVE SECTOR<br>STRIPE ONLY                                                                                                               | RED RED                                                                                   | BLUE BLUE                                                                      | GREEN                                              | GREEN                                                         |         |                                                 |          |
|                                                                                                                                                                    | PURPLE                                                                                    | PURPLE                                                                         |                                                    | PURPLE                                                        |         | NOT USED                                        |          |
| RET MOTORS AT ANTENNAS                                                                                                                                             | ANTENNA 1 ANTENNA 1<br>LOW BAND/ HIGH BAND/<br>"IN" "IN"                                  | ANTENNA 1 ANTENNA 1<br>LOW BAND/ HIGH BAND/<br>"IN" "IN"                       | ANTENNA 1 AN<br>LOW BAND/ HIGI<br>"IN"             | TENNA 1<br>H BAND/<br>"IN"                                    |         |                                                 |          |
|                                                                                                                                                                    | RED                                                                                       | BLUE                                                                           | GREEN                                              | GREEN                                                         |         |                                                 |          |
|                                                                                                                                                                    | PURPLE                                                                                    | PURPLE                                                                         | P                                                  |                                                               |         |                                                 |          |
| MICROWAVE RADIO LINKS                                                                                                                                              | ORWARD AZIMUTH OF 0-120 DEGREES FC                                                        | RWARD AZIMUTH OF 120-240 DEGREES                                               | FORWARD AZIMUTH OF 240                             | 0-360 DEGREES                                                 |         |                                                 |          |
| LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH<br>THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE.<br>ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH<br>ADDITIONAL MW RADIO. | PRIMARY SECONDARY                                                                         | PRIMARY SECONDARY                                                              | PRIMARY SEC                                        | CONDARY                                                       |         |                                                 |          |
| MICROWAVE CABLES WILL REQUIRE P-TOUCH<br>LABELS INSIDE THE CABINET TO IDENTIFY THE<br>LOCAL AND REMOTE SITE ID'S                                                   | WHITE       RED       WHITE       WHITE       RED       WHITE       WHITE                 | WHILE     WHILE       BLUE     BLUE       WHITE     WHITE       BLUE     WHITE | WHITE<br>GREEN<br>WHITE                            | WHITE<br>SREEN<br>WHITE                                       |         |                                                 |          |
| RF                                                                                                                                                                 | CABLE COLOR CODES                                                                         |                                                                                | [                                                  | NO SCALE                                                      |         | NOT USED                                        |          |

|        | AWS<br>(N66+N70+H-BLOCK)          |                                                           |                                                                                                               |  |  |
|--------|-----------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
|        | PURPLE                            |                                                           | <b>U:311</b>                                                                                                  |  |  |
|        |                                   |                                                           | wireless.                                                                                                     |  |  |
|        | NEGATIVE SLANT PORT<br>ON ANT/RRH |                                                           | 5701 SOUTH SANTA FE DRIVE<br>LITTLETON, CO 80120                                                              |  |  |
|        | WHITE                             |                                                           |                                                                                                               |  |  |
|        |                                   | _                                                         | CROWN                                                                                                         |  |  |
| SECTOR | GAMMA SECTOR                      |                                                           | 2000 CORPORATE DRIVE                                                                                          |  |  |
| UE     | GREEN                             |                                                           | CANONSBURG, PA 15317                                                                                          |  |  |
|        |                                   |                                                           |                                                                                                               |  |  |
|        |                                   | 2                                                         | SUITE 300<br>TULSA, OK 74119<br>PH: (918) 587-4630<br>www.btgrp.com                                           |  |  |
|        | NU SCALE                          | 2                                                         |                                                                                                               |  |  |
|        |                                   |                                                           |                                                                                                               |  |  |
|        |                                   |                                                           | S * No 23924                                                                                                  |  |  |
|        |                                   |                                                           | 10000 10000 10000000000000000000000000                                                                        |  |  |
|        |                                   |                                                           |                                                                                                               |  |  |
|        |                                   |                                                           | B&T ENGINEERING, INC.<br>PEC.0001564                                                                          |  |  |
|        |                                   |                                                           | Expires 2/10/22<br>IT IS A VIOLATION OF LAW FOR ANY PERSON,                                                   |  |  |
|        |                                   |                                                           | UNLESS THEY ARE ACTING UNDER THE DIRECTION<br>OF A LICENSED PROFESSIONAL ENGINEER,<br>TO ALTER THIS DOCUMENT. |  |  |
|        |                                   |                                                           | DRAWN BY: CHECKED BY: APPROVED BY:                                                                            |  |  |
|        |                                   |                                                           | RFDS REV #: 0                                                                                                 |  |  |
|        |                                   |                                                           | CONSTRUCTION                                                                                                  |  |  |
|        | NO SCALE                          | 3                                                         |                                                                                                               |  |  |
|        |                                   |                                                           | REV DATE DESCRIPTION                                                                                          |  |  |
|        |                                   |                                                           | A 6/15/21 ISSUED FOR REVIEW                                                                                   |  |  |
|        |                                   |                                                           | 1         12/30/21         ISSUED FOR CONSTRUCTION                                                            |  |  |
|        |                                   |                                                           |                                                                                                               |  |  |
|        |                                   |                                                           |                                                                                                               |  |  |
|        |                                   |                                                           | A&E PROJECT NUMBER                                                                                            |  |  |
|        |                                   |                                                           | 91728.014.01                                                                                                  |  |  |
|        |                                   | DISH Wireless L.L.C.<br>PROJECT INFORMATION               |                                                                                                               |  |  |
|        |                                   | BOBDL00073A<br>340 BLOOMFIELD AVENUE<br>WINDSOR, CT 06095 |                                                                                                               |  |  |
|        |                                   | Sheet title                                               |                                                                                                               |  |  |
|        |                                   | CABLE COLOR CODES                                         |                                                                                                               |  |  |
|        |                                   |                                                           |                                                                                                               |  |  |
|        | NO SCALE                          | 4                                                         |                                                                                                               |  |  |
|        |                                   |                                                           |                                                                                                               |  |  |

|                                                                                                                                                                                                                                    | AC                 | ALTERNATING CURRENT                           | LB(S)       | POUND(S)                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|-------------|------------------------------------------------|
| BUSS BAR INSULATOR                                                                                                                                                                                                                 | ADDL               | ADDITIONAL                                    | LF          | LINEAR FEET                                    |
| CHEMICAL ELECTROLYTIC GROUNDING SYSTEM                                                                                                                                                                                             | AFF                | ABOVE FINISHED FLOOR<br>ABOVE FINISHED GRADE  | LIE<br>MAS  | LONG TERM EVOLUTION<br>MASONRY                 |
| TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM                                                                                                                                                                                        | AGL                | ABOVE GROUND LEVEL                            | MAX         | MAXIMUM                                        |
| EXOTHERMIC WITH INSPECTION SLEEVE                                                                                                                                                                                                  |                    | AMPERAGE INTERRUPTION CAPACITY                | MB          | MACHINE BOLT                                   |
| GROUNDING BAR                                                                                                                                                                                                                      | ALT                | ALTERNATE                                     | MECH        | MANUFACTURER                                   |
|                                                                                                                                                                                                                                    | ANT                | ANTENNA                                       | MGB         | MASTER GROUND BAR                              |
|                                                                                                                                                                                                                                    | APPROX<br>ARCH     | APPROXIMATE ARCHITECTURAL                     | MIN         |                                                |
|                                                                                                                                                                                                                                    | ATS                | AUTOMATIC TRANSFER SWITCH                     | MTL         | MESCELERIECUS                                  |
| single pole switch                                                                                                                                                                                                                 | AWG                | AMERICAN WIRE GAUGE                           | MTS         | MANUAL TRANSFER SWITCH                         |
|                                                                                                                                                                                                                                    | BLDG               | BUILDING                                      | MW<br>NEC   | MICROWAVE<br>NATIONAL ELECTRIC CODE            |
| DUPLEX RECEPTACLE                                                                                                                                                                                                                  | BLK                | BLOCK                                         | NM          | NEWTON METERS                                  |
| DUPLEX GFCI RECEPTACLE                                                                                                                                                                                                             | BLKG               | BLOCKING<br>BEAM                              | NO.         | NUMBER                                         |
|                                                                                                                                                                                                                                    | BTC                | BARE TINNED COPPER CONDUCTOR                  | #<br>NTS    | NUMBER<br>NOT TO SCALE                         |
| FLUORESCENT LIGHTING FIXTURE                                                                                                                                                                                                       | BOF                | BOTTOM OF FOOTING                             | oc          | ON-CENTER                                      |
|                                                                                                                                                                                                                                    | CAB                | CABINET<br>CANTILEVERED                       | OSHA        | OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION  |
| SMOKE DETECTION (DC)                                                                                                                                                                                                               | СНС                | CHARGING                                      | OPNG<br>P/C | OPENING<br>PRECAST CONCRETE                    |
|                                                                                                                                                                                                                                    | S CLG              | CEILING                                       | PCS         | PERSONAL COMMUNICATION SERVICES                |
| EMERGENCY LIGHTING (DC)                                                                                                                                                                                                            | COL                | COLUMN                                        | PCU         | PRIMARY CONTROL UNIT                           |
| SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW                                                                                                                                                                                           | СОММ               | COMMON                                        | PRC<br>PP   | PRIMARY RADIO CABINET<br>POLARIZING PRESERVING |
| LED-1-25A400/51K-SR4-120-PE-DDB1XD                                                                                                                                                                                                 | CONC               |                                               | PSF         | POUNDS PER SQUARE FOOT                         |
| CHAIN LINK FENCE X X                                                                                                                                                                                                               | X X DBL            | DOUBLE                                        | PSI         | POUNDS PER SQUARE INCH                         |
| WOOD/WROUGHT IRON FENCE                                                                                                                                                                                                            | DC DC              | DIRECT CURRENT                                | PI          | PRESSURE TREATED<br>POWER CABINET              |
| WALL STRUCTURE                                                                                                                                                                                                                     | DEPT DE            | DEPARTMENT<br>DOUGLAS FIR                     | QTY         | QUANTITY                                       |
| LEASE AREA                                                                                                                                                                                                                         | — — — — — — DIA    | DIAMETER                                      | RAD         | RADIUS                                         |
| PROPERTY LINE (PL)                                                                                                                                                                                                                 | DIAG               | DIAGONAL                                      | REF         | REFERENCE                                      |
| SETBACKS                                                                                                                                                                                                                           | DIM                | DIMENSION                                     | REINF       | REINFORCEMENT                                  |
|                                                                                                                                                                                                                                    |                    | DOWEL                                         | REQ'D       |                                                |
| CABLE TRAY                                                                                                                                                                                                                         | EA                 | EACH                                          | REI         | RADIO FREQUENCY                                |
| WATER LINE W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W | W W EL.            | ELEVATION                                     | RMC         | RIGID METALLIC CONDUIT                         |
|                                                                                                                                                                                                                                    | ELEC               | ELECTRICAL                                    | RRH         | REMOTE RADIO HEAD                              |
|                                                                                                                                                                                                                                    |                    | ELECTRICAL METALLIC TUBING                    | RWY         | RACEWAY                                        |
|                                                                                                                                                                                                                                    |                    | EQUAL                                         | SCH         | SCHEDULE                                       |
| OVERHEAD POWEROHP                                                                                                                                                                                                                  | EXP                | EXPANSION                                     | SHT<br>SIAD | SHEET<br>SMART INTEGRATED ACCESS DEVICE        |
| OVERHEAD TELCO ONT ONT ONT                                                                                                                                                                                                         | OHT OHT EXT        | EXTERIOR<br>FACH WAY                          | SIM         | SIMILAR                                        |
| UNDERGROUND TELCO/POWER UGT/P UGT/P UGT/P UGT/P UGT/P                                                                                                                                                                              | GT/P — UGT/P — FAB | FABRICATION                                   | SPEC        | SPECIFICATION                                  |
| ABOVE GROUND POWER AGP                                                                                                                                     | — AGP — AGP — FF   | FINISH FLOOR                                  | SS          | STAINLESS STEEL                                |
| ABOVE GROUND TELCO AGT                                                                                                                                                                 | — AGT — AGT — FG   | FACILITY INTERFACE FRAME                      | STD         | STANDARD                                       |
| ABOVE GROUND TELCO/POWER AGT/P AGT/P AGT/P                                                                                                                                                                                         | GT/P AGT/P FIN     | FINISH(ED)                                    | STL<br>TEMP | STEEL                                          |
| WORKPOINT                                                                                                                                                                                                                          | FLR                | FLOOR                                         | ТНК         | THICKNESS                                      |
| W.P.                                                                                                                                                                                                                               | FDN<br>FOC         | FOUNDATION<br>FACE OF CONCRETE                | TMA         | TOWER MOUNTED AMPLIFIER                        |
| SECTION REFERENCE                                                                                                                                                                                                                  | FOM                | FACE OF MASONRY                               | IN<br>TOA   | TOP OF ANTENNA                                 |
| DETAIL REFERENCE                                                                                                                                                                                                                   | FOS                | FACE OF STUD                                  | TOC         | TOP OF CURB                                    |
|                                                                                                                                                                                                                                    | FS                 | FINISH SURFACE                                | TOF         |                                                |
|                                                                                                                                                                                                                                    | FT                 | FOOT                                          | TOP         | TOP OF PLATE (PARAPET)                         |
|                                                                                                                                                                                                                                    | FIG                | FOOTING<br>GAUGE                              | TOW         | TOP OF WALL                                    |
|                                                                                                                                                                                                                                    | GEN                | GENERATOR                                     | TVSS        | TRANSIENT VOLTAGE SURGE SUPPRESSION            |
|                                                                                                                                                                                                                                    | GFCI               | GROUND FAULT CIRCUIT INTERRUPTER              | UG          | UNDERGROUND                                    |
|                                                                                                                                                                                                                                    | GLB<br>GLV         | GLUL LAMINATED DEAM<br>GALVANIZED             | UL          | UNDERWRITERS LABORATORY                        |
|                                                                                                                                                                                                                                    | GPS                | GLOBAL POSITIONING SYSTEM                     | UNO         | UNLESS NOTED OTHERWISE                         |
|                                                                                                                                                                                                                                    | GND                | GROUND                                        | UPS         | UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)   |
|                                                                                                                                                                                                                                    | HDG                | HOT DIPPED GALVANIZED                         | VIF         | VERIFIED IN FIELD                              |
|                                                                                                                                                                                                                                    | HDR                | HEADER                                        | W V         | WIDE                                           |
|                                                                                                                                                                                                                                    | HGR                | HANGER<br>HEAT /VENTILATION /AIR CONDITIONING | W/<br>WD    | WOOD                                           |
|                                                                                                                                                                                                                                    | HVAC               | HEIGHT                                        | WP          | WEATHERPROOF                                   |
|                                                                                                                                                                                                                                    | IGR                | INTERIOR GROUND RING                          | WT          | WEIGHT                                         |
|                                                                                                                                                                                                                                    |                    |                                               |             |                                                |
| LEGEND                                                                                                                                                                                                                             |                    |                                               |             | ABBREVIATIONS                                  |
|                                                                                                                                                                                                                                    |                    |                                               |             |                                                |

AB

ABV

•

EXOTHERMIC CONNECTION

ANCHOR BOLT

ABOVE

IN

INT

INCH

INTERIOR



#### SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELSS LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

#### GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

UNITACIOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.



CONCRETE, FOUNDATIONS, AND REINFORCING STEEL

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#### #4 BARS AND SMALLER 40 ksi

#### #5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

#### ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE FLIMINATED.

- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3
- 4 ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

41 ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT 42 CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

5 EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE 6 CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7 PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED. 8

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL FOURPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 10 TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 1.3 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND 14 NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET wireless CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER DESIGNED TO SWING OPEN DOWNWARDS CROWN SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CASTLE CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE B&T ENGINEERING, INC. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". PEC.0001564 ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED B' LHT BLJ BLJ RFDS REV # CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION A 6/15/21 ISSUED FOR REVIEW 0 9/21/21 ISSUED FOR CONSTRUCTION 1 12/30/21 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 91728.014.01 DISH Wireless L.L.C PROJECT INFORMATION BOBDI 0007.34 340 BLOOMFIELD AVENUE WINDSOR, CT 06095 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-3

16. 18. OCCURS OR FLEXIBILITY IS NEEDED. SCREW FITTINGS ARE NOT ACCEPTABLE. 20 21 (WIREMOLD SPECMATE WIREWAY). 22 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE. MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE 24 STEEL, SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR 25 BETTER) FOR EXTERIOR LOCATIONS. 26 NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 28. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. 29. 30.

17 GRADE PVC CONDUIT. NEC FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED EXTERIOR LOCATIONS EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR

#### GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90' BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.



# **ATTACHMENT 4**

Date: June 9, 2021



Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

| Subject:                      | Structural Analysis Report                                                                                                                    |                                                                |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Carrier Designation:          | <i>DISH Network</i> Co-Locate<br>Site Number:<br>Site Name:                                                                                   | BOBDL00073A<br>CT-CCI-T-855662                                 |  |
| Crown Castle Designation:     | BU Number:<br>Site Name:<br>JDE Job Number:<br>Work Order Number:<br>Order Number:                                                            | 855662<br>WINDSORCENTRAL<br>650064<br>1966278<br>556619 Rev. 1 |  |
| Engineering Firm Designation: | Crown Castle Project Number:                                                                                                                  | 1966278                                                        |  |
| Site Data:                    | 340 BLOOMFIELD AVENUE, WINDSOR, Hartford County, CT<br>Latitude <i>41° 51' 9.34"</i> , Longitude -72° 39' 37.79"<br>148 Foot - Monopole Tower |                                                                |  |

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

### LC7: Proposed Equipment Configuration

### Sufficient Capacity - 84.2%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Tyler Ho

Respectfully submitted by:



Terry P Styran 2021.06.10 11:41:57 -04'00'

Terry P. Styran, P.E. Senior Project Engineer

# TABLE OF CONTENTS

# 1) INTRODUCTION

### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

### 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

# 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations

# 5) APPENDIX A

tnxTower Output

### 6) APPENDIX B

**Base Level Drawing** 

# 7) APPENDIX C

Additional Calculations

# 1) INTRODUCTION

This tower is a 148 ft Monopole tower designed by Summit. The tower has been modified per reinforcement drawings prepared by B+T Group, in October of 2014. Reinforcement consists of installation of flat plate reinforcement with transition stiffeners at the base.

# 2) ANALYSIS CRITERIA

| TIA-222 Revision:    | TIA-222-H |
|----------------------|-----------|
| Risk Category:       | II        |
| Wind Speed:          | 125 mph   |
| Exposure Category:   | С         |
| Topographic Factor:  | 1         |
| Ice Thickness:       | 2 in      |
| Wind Speed with Ice: | 50 mph    |
| Service Wind Speed:  | 60 mph    |

# Table 1 - Proposed Equipment Configuration

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model               | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |
|------------------------|-------------------------------------|--------------------------|-------------------------|-----------------------------|----------------------------|---------------------------|
| 99.0                   | 99.0                                | 3                        | fujitsu                 | TA08025-B604                | 1                          | 1-1/2                     |
|                        |                                     | 3                        | fujitsu                 | TA08025-B605                |                            |                           |
|                        |                                     | 3                        | jma wireless            | MX08FRO665-21 w/ Mount Pipe |                            |                           |
|                        |                                     | 1                        | raycap                  | RDIDC-9181-PF-48            |                            |                           |
|                        |                                     | 1                        | tower mounts            | Commscope MC-PK8-DSH        |                            |                           |

### Table 2 - Other Considered Equipment

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                            | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in)                   |
|------------------------|-------------------------------------|--------------------------|-------------------------|------------------------------------------|----------------------------|---------------------------------------------|
|                        | 148.0                               | 1                        | tower mounts            | Platform Mount [LP 1201-1_HR-1]          |                            | 1-5/8<br>7/8<br>3/8<br>3/4<br>2"<br>Conduit |
|                        | 146.0                               | 3                        | cci antennas            | DTMABP7819VG12A                          | 7<br>1<br>1<br>2<br>2      |                                             |
|                        |                                     | 3                        | ericsson                | RRUS 11                                  |                            |                                             |
|                        |                                     | 3                        | ericsson                | RRUS12/RRUS A2                           |                            |                                             |
| 148.0                  |                                     | 3                        | kathrein                | 800 10121 w/ Mount Pipe                  |                            |                                             |
|                        |                                     | 2                        | quintel technology      | QS66512-2 w/ Mount Pipe                  |                            |                                             |
|                        |                                     | 1                        | quintel technology      | QS86512-2 w/ Mount Pipe                  |                            |                                             |
|                        |                                     | 1                        | raycap                  | DC6-48-60-18-8F                          |                            |                                             |
|                        |                                     | 1                        | rfs celwave             | PD320-2                                  |                            |                                             |
|                        | 139.0                               | 3                        | ericsson                | AIR 32 B2A/B66AA w/ Mount Pipe           |                            |                                             |
|                        |                                     | 3                        | ericsson                | ERICSSON AIR 21 B2A B4P w/<br>Mount Pipe |                            |                                             |
| 120.0                  |                                     | 3 ericsson               | ericsson                | KRY 112 144/1                            | - 13                       | 1-5/8                                       |
| 139.0                  |                                     | 3                        | ericsson                | RADIO 4449 B12/B71                       |                            |                                             |
|                        |                                     | 3                        | rfs celwave             | APXVAARR24_43-U-NA20 w/<br>Mount Pipe    |                            |                                             |
|                        |                                     | 1                        | tower mounts            | Platform Mount [LP 1201-1_HR-1]          |                            |                                             |
| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas                      | Antenna<br>Manufacturer           | Antenna Model                    | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |  |
|------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------|----------------------------|---------------------------|--|
|                        |                                     | 3 antel BXA-70063-4CF-EDIN-X w/ Mount<br>Pipe |                                   |                                  |                            |                           |  |
|                        | 6                                   |                                               | commscope                         | SBNHH-1D65B w/ Mount Pipe        |                            |                           |  |
|                        |                                     | 1                                             | rfs celwave                       | DB-T1-6Z-8AB-0Z                  |                            |                           |  |
|                        |                                     | 3                                             | samsung<br>telecommunicatio<br>ns | CBRS w/ Mount Pipe               |                            |                           |  |
| 126.0                  | 128.0                               | 3                                             | samsung<br>telecommunicatio<br>ns | MT6407-77A w/ Mount Pipe         | 8                          | 1-5/8                     |  |
|                        |                                     | 3                                             | samsung<br>telecommunicatio<br>ns | RFV01U-D1A                       |                            |                           |  |
|                        |                                     | 3                                             | samsung<br>telecommunicatio<br>ns | RFV01U-D2A                       |                            |                           |  |
|                        | 126.0                               | 1                                             | tower mounts                      | Platform Mount [LP 404-1_KCKR]   |                            |                           |  |
|                        |                                     | 3                                             | alcatel lucent                    | PCS 1900MHz 4x45W-65MHz          |                            |                           |  |
| 111.0                  | 111.0                               | 3                                             | alcatel lucent                    | TME-800MHz 2X50W RRH<br>W/FILTER | -                          | -                         |  |
|                        |                                     | 1                                             | tower mounts                      | Pipe Mount [PM 601-3]            |                            |                           |  |
|                        | 116.0                               | 1                                             | decibel                           | DB205-L                          |                            |                           |  |
|                        | 110.0                               | 1                                             | kathrein                          | K732267                          |                            | 7/8                       |  |
|                        | 113.0                               | 1                                             | sinclair                          | SD212-SF3P2SNM W/Mount Piipe     | 5                          |                           |  |
| 109.0                  |                                     | 3                                             | alcatel lucent                    | TD-RRH8X20-25                    | 3                          | 5/16                      |  |
| 100.0                  | 110.0                               | 4                                             | rfs celwave                       | APXVSPP18-C-A20 w/ Mount<br>Pipe | 1<br>3                     | 5/8<br>1-1/4              |  |
|                        |                                     | 3                                             | rfs celwave                       | APXVTM14-C-120 w/ Mount Pipe     |                            |                           |  |
|                        | 109.0                               | 1                                             | tower mounts                      | Platform Mount [LP 1201-1]       |                            |                           |  |
|                        | 79.0                                | 1                                             | tower mounts                      | Side Arm Mount [SO 702-3]        |                            |                           |  |
| 79.0                   | 76.0                                | 1                                             | kathrein                          | K732267                          | 2                          | 7/8                       |  |
|                        | 75.0                                | 1                                             | sinclair                          | SRL-227                          |                            |                           |  |
| 74.0                   | 75.0                                | 1                                             | radiowaves                        | HP2-23                           | 1                          | 2/9                       |  |
| /4.0                   | 74.0                                | 1                                             | tower mounts                      | Pipe Mount [PM 601-1]            |                            | 3/8                       |  |
| 50.0                   | 51.0                                | 1                                             | pctel                             | GPS-TMG-HR-26N                   | 1                          | 1/2                       |  |
| 50.0                   | 50.0                                | 1                                             | tower mounts                      | Side Arm Mount [SO 701-1]        |                            | 1/2                       |  |

### 3) ANALYSIS PROCEDURE

#### Table 3 - Documents Provided

| Document                                   | Reference | Source   |
|--------------------------------------------|-----------|----------|
| 4-GEOTECHNICAL REPORTS                     | 5269642   | CCISITES |
| 4-POST-MODIFICATION INSPECTION             | 5649676   | CCISITES |
| 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS   | 4864324   | CCISITES |
| 4-TOWER MANUFACTURER DRAWINGS              | 5338627   | CCISITES |
| 4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA | 5373232   | CCISITES |

#### 3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

#### 3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

### 4) ANALYSIS RESULTS

| Table 4 - Section Capacity (S | Summary) |
|-------------------------------|----------|
|-------------------------------|----------|

| Elevation (ft)  | Component<br>Type | Size                   | Critical Element | % Capacity | Pass /<br>Fail |
|-----------------|-------------------|------------------------|------------------|------------|----------------|
| 148 - 143       | Pole              | TP24.975x24x0.2188     | Pole             | 3.5%       | Pass           |
| 143 - 138       | Pole              | TP25.95x24.975x0.2188  | Pole             | 8.3%       | Pass           |
| 138 - 133       | Pole              | TP26.925x25.95x0.2188  | Pole             | 14.8%      | Pass           |
| 133 - 128       | Pole              | TP27.901x26.925x0.2188 | Pole             | 20.8%      | Pass           |
| 128 - 123       | Pole              | TP28.876x27.901x0.2188 | Pole             | 29.4%      | Pass           |
| 123 - 119.75    | Pole              | TP30.241x28.876x0.2188 | Pole             | 34.7%      | Pass           |
| 119.75 - 114.75 | Pole              | TP30.047x29.072x0.25   | Pole             | 36.4%      | Pass           |
| 114.75 - 109.75 | Pole              | TP31.022x30.047x0.25   | Pole             | 42.6%      | Pass           |
| 109.75 - 104.75 | Pole              | TP31.997x31.022x0.25   | Pole             | 51.0%      | Pass           |
| 104.75 - 99.75  | Pole              | TP32.972x31.997x0.25   | Pole             | 58.1%      | Pass           |
| 99.75 - 94.75   | Pole              | TP33.947x32.972x0.25   | Pole             | 66.2%      | Pass           |
| 94.75 - 93.5    | Pole              | TP34.191x33.947x0.25   | Pole             | 68.1%      | Pass           |

| 93.5 - 93.25  | Pole + Reinf. | TP34.24x34.191x0.4375  | Reinf. 4 Tension Rupture | 56.2%   | Pass |
|---------------|---------------|------------------------|--------------------------|---------|------|
| 93.25 - 88.25 | Pole + Reinf. | TP35.215x34.24x0.4313  | Reinf. 4 Tension Rupture | 62.3%   | Pass |
| 88.25 - 83.25 | Pole + Reinf. | TP36.19x35.215x0.425   | Reinf. 4 Tension Rupture | 68.0%   | Pass |
| 83.25 - 79.5  | Pole + Reinf. | TP37.847x36.19x0.425   | Reinf. 4 Tension Rupture | 72.0%   | Pass |
| 79.5 - 74.5   | Pole + Reinf. | TP37.396x36.421x0.4875 | Reinf. 4 Tension Rupture | 68.6%   | Pass |
| 74.5 - 69.5   | Pole + Reinf. | TP38.371x37.396x0.475  | Reinf. 4 Tension Rupture | 72.9%   | Pass |
| 69.5 - 64.5   | Pole + Reinf. | TP39.346x38.371x0.475  | Reinf. 4 Tension Rupture | 76.8%   | Pass |
| 64.5 - 62.5   | Pole + Reinf. | TP39.736x39.346x0.475  | Reinf. 4 Tension Rupture | 78.3%   | Pass |
| 62.5 - 62.25  | Pole          | TP39.785x39.736x0.3125 | Pole                     | 80.9%   | Pass |
| 62.25 - 57.75 | Pole          | TP40.663x39.785x0.3125 | Pole                     | 84.2%   | Pass |
| 57.75 - 57.5  | Pole + Reinf. | TP40.711x40.663x0.525  | Reinf, 2 Tension Rupture | 72.0%   | Pass |
| 57.5 - 52.5   | Pole + Reinf. | TP41.687x40.711x0.525  | Reinf. 2 Tension Rupture | 75.1%   | Pass |
| 52.5 - 47.5   | Pole + Reinf. | TP42.662x41.687x0.5125 | Reinf. 2 Tension Rupture | 77.9%   | Pass |
| 47.5 - 45     | Pole + Reinf. | TP44.222x42.662x0.5125 | Reinf. 2 Tension Rupture | 79.3%   | Pass |
| 45 - 38.5     | Pole + Reinf. | TP43.792x42.524x0.575  | Reinf. 2 Tension Rupture | 75.5%   | Pass |
| 38.5 - 38.25  | Pole + Reinf. | TP43.841x43.792x0.575  | Reinf. 2 Tension Rupture | 75.6%   | Pass |
| 38.25 - 38    | Pole + Reinf. | TP43.889x43.841x0.5063 | Reinf. 2 Tension Rupture | 76.8%   | Pass |
| 38 - 33       | Pole + Reinf. | TP44.865x43.889x0.5    | Reinf, 2 Tension Rupture | 78.8%   | Pass |
| 33 - 31.75    | Pole + Reinf. | TP45.108x44.865x0.5    | Reinf. 2 Tension Rupture | 79.3%   | Pass |
| 31.75 - 31.5  | Pole + Reinf. | TP45.157x45.108x0.725  | Reinf. 1 Bolt Shear      | 65.2%   | Pass |
| 31.5 - 28.25  | Pole + Reinf. | TP45.791x45.157x0.725  | Reinf. 1 Compression     | 63.8%   | Pass |
| 28.25 - 28    | Pole + Reinf. | TP45.84x45.791x0.5375  | Reinf. 1 Compression     | 72.0%   | Pass |
| 28 - 23       | Pole + Reinf. | TP46.815x45.84x0.5375  | Reinf. 1 Compression     | 73.7%   | Pass |
| 23 - 18       | Pole + Reinf. | TP47.79x46.815x0.525   | Reinf. 1 Compression     | 75.3%   | Pass |
| 18 - 13       | Pole + Reinf. | TP48.765x47.79x0.525   | Reinf. 1 Compression     | 76.8%   | Pass |
| 13 - 8        | Pole + Reinf. | TP49.74x48.765x0.525   | Reinf. 1 Compression     | 78.2%   | Pass |
| 8 - 3         | Pole + Reinf. | TP50.715x49.74x0.525   | Reinf. 1 Compression     | 79.5%   | Pass |
| 3 - 0         | Pole + Reinf. | TP51.3x50.715x0.5188   | Reinf. 1 Bolt Shear      | 83.4%   | Pass |
|               |               |                        |                          | Summary |      |
|               |               |                        | Pole                     | 84.2%   | Pass |
|               |               |                        | Reinforcement            | 83.4%   | Pass |
|               |               |                        | Overall                  | 84.2%   | Pass |

| Tabla | 5          | Towar | Component | Straccoc | VC  | Canadity | 107   |
|-------|------------|-------|-----------|----------|-----|----------|-------|
| lable | <b>5</b> - | rower | component | 21162262 | v5. | Capacity | - LC/ |

| Notes | Component                          | Elevation (ft) | % Capacity | Pass / Fail |
|-------|------------------------------------|----------------|------------|-------------|
| 1     | Anchor Rods                        | 0              | 78.9       | Pass        |
| 1     | Base Plate                         | 0              | 73.5       | Pass        |
| 1     | Base Foundation (Structure)        | 0              | 80.7       | Pass        |
| 1     | Base Foundation (Soil Interaction) | 0              | 70.8       | Pass        |
|       |                                    |                |            |             |

| Structure Rating (max from all components) = | 84.2% |
|----------------------------------------------|-------|
|----------------------------------------------|-------|

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

### 4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

### **APPENDIX A**

### **TNXTOWER OUTPUT**

|         |             |              | -                  |                    | 0                | N                |        |            | <u>148.0 ft</u>                 |         |           |
|---------|-------------|--------------|--------------------|--------------------|------------------|------------------|--------|------------|---------------------------------|---------|-----------|
| -       | 5.00        | 18           | 0.2188             |                    | 24.000           | 24.975           |        | 0.3        | 143.0 ft                        |         |           |
| 7       | 5.00        | 18           | 0.2188             |                    | 24.9752          | 25.9503          |        | 0.3        | 138.0.ft                        |         |           |
| e       | 5.00        | 18           | 0.2188             |                    | 5.9503           | 6.9255           |        | 0.3        | 100.0 %                         | ╏╾┵╽╇╧┥ |           |
| 4       | 5.00        | 18           | 2188 (             |                    | .9255 2          | .9006 2          |        | 0.3        | <u>133.0 π</u>                  |         |           |
| 5       | 00          | 18           | 2188 0             |                    | 9006 26          | 8758 27          |        | 0.3        | <u>128.0 ft</u>                 |         | ╒╛┇╞┯╍┪┨╞ |
|         | 9<br>0      |              | 88 0.:             | ы                  | 58 27.           | 10 28            |        |            | <u>123.0 ft</u>                 | 1-1-150 |           |
| 9       | 5.007.0     | 18           | 500 0.21           | 3.7                | 72.28.87         | 47 B0.24         |        | 4 0.5      | <u>116.0 ft</u>                 |         |           |
| 8       | 5.00        | 18           | 0.250 <b>0</b> .2( |                    | 0.0429.0         | 1.0230.0         |        | 0.4 0.     | 100.00                          |         |           |
| 6       | 5.00        | 18           | .2500 (            |                    | .0221 3          | .9971 3          |        | 0.4        | <u>109.8 π</u>                  |         |           |
| 10      | 00.9        | 18           | 2500 0             |                    | .9971 31         | 9721 31          |        | 0.4        | <u>104.8 ft</u>                 |         |           |
| 5       | 3 00.       | 18           | 200 0.2            |                    | 9721 31.         | 9471 32.         |        | .4         | <u>99.8 ft</u>                  |         |           |
| 32      | 225 5.      | 88           | 3260.2             |                    | 9682             | 3968.            |        |            | 94.8 ft<br>93.3 ft              | U       |           |
| 14 1    | 5.000       | 18 1         | 0.43000            |                    | 34 2 <b>303</b>  | 35.2 <b>34</b> 6 |        | 0.8 0      | 88.3 ft                         |         |           |
| 15      | 5.00        | 18           | 0.4250             |                    | 35.2145          | 36.1895          |        | 0.8        | 83.3.#                          |         |           |
|         | 02          | ~            | 50                 | 5                  | 895 3            | 470 3            |        | 4          | <u>03.3 IL</u>                  |         |           |
| 7 16    | 5.08.5      | 3 15         | 375 0.42           | 4.7                | 20836.18         | 95937.8          | 35     | 9 1.       | <u>74.8</u> ft                  |         |           |
| 18 1    | 5.00        | 18           | 0.47504            |                    | 37.3 <b>36</b> 9 | 38.33713         | A607-t | 0.9.0      | 69 5 ft                         |         |           |
| 19      | 5.00        | 18           | 0.4750             |                    | 8.3711           | 9.3462           |        | 1.0        | 64.5 ft                         |         |           |
| 2120    | 2500        | 1818         | 092770             |                    | 336663           | BSIGERS          |        | 0.4        | 64.5 ft<br>62.5 ft              |         |           |
| 53      | 54.500      | 18           | 3031025            |                    | 1982/18          | 0.6835           |        | 0.6 (      | 57 8 ft                         |         |           |
| 24 23   | 5.000.2     | 18 18        | 52.00621           |                    | 740468           | 686674           |        | 1.1 0.1    | 01.0 1                          |         |           |
| 55      | 8           | 8            | 125 0.             |                    | 3866 40          | 3618 41          |        | ÷          | <u>52.5 ft</u>                  |         |           |
|         | ι.<br>Ο     |              | 3.0.5              |                    | 8 41.            | 0 42.            |        | -          | <u>47.5 ft</u>                  |         |           |
| 26      | 6.58.00     | 18           | 0.512              | 5.50               | 342.661          | 944.222          |        | 1.8        | 00 5 6                          |         |           |
| 1987    | 197         | <b>8</b>     | 099990             |                    | NC SYN           | 163573           |        | @#17       | <u>39.5 π</u><br><u>38.0 ft</u> |         |           |
| 30      | 5.00        | 18           | 0.500              |                    | <b>35.880</b>    | 83.864           |        | 1.2        | 33.0 ft                         |         |           |
| 3 321   | 26.23       | 8 188        | 200890             |                    | 352086           | 390620           |        | 10013      | 31.5 ft                         |         |           |
| 34 3.   | 00.25.2     | 18 1         | 0550778            |                    | 1061196          | 1478339          |        | 0.11.      | <u>28.3 ft</u>                  |         |           |
| 35      | 5.00        | 18           | 0 0.531            |                    | 17 45.83         | 17 46.84         |        | 1.5        | <u>23.0 ft</u>                  |         |           |
| 36      | 5.00        | 18           | 0.525              |                    | 7 46.814         | 3 47.785         |        | 1.5        | <u>18.0 ft</u>                  |         |           |
| 37      | 5.00        | 18           | 0.5250             |                    | 47.789           | 48.764           |        | 1.5        | 13.0 ft                         |         |           |
| 38      | 5.00        | 18           | 0.5250             |                    | 48.7648          | 49.7399          |        | 1.5        | 8.0 ft                          |         |           |
| 39      | 5.00        | 18           | 0.5250             |                    | 19.7399          | 30.7150          |        | 1.5        | 30#                             |         |           |
| 40      | 3.00        | 18           | 0.5188             |                    | 0.7156           | 1.300€           |        | 0.9        | 0.0 ft                          |         |           |
|         |             | des          |                    | џ ( <del>[</del> [ | 5                | 5                |        | 28.1       |                                 |         |           |
| Section | Length (ft) | Number of Si | Thickness (ir.     | Socket Lengt       | Top Dia (in)     | Bot Dia (in)     | Grade  | Weight (K) |                                 |         |           |

 $\bigcirc$ 

ALL REACTIONS ARE FACTORED

AXIAL 118 K

1 TORQUE 1 kip-ft 50 mph WIND - 2.0000 in ICE

> AXIAL 63 K

TORQUE 6 kip-ft REACTIONS - 125 mph WIND

MOMENT 🛉 1333 kip-ft

> MOMENT 3984 kip-ft

SHEAR

12 K |

SHEAR

38 K |

|         |        | MATERIAL STRENGTH |       |    |    |  |  |
|---------|--------|-------------------|-------|----|----|--|--|
| GRADE   | Fy     | Fu                | GRADE | Fy | Fu |  |  |
| A607-65 | 65 ksi | 80 ksi            |       |    |    |  |  |

#### **TOWER DESIGN NOTES**

- Tower designed for Exposure C to the TIA-222-H Standard.
  Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
  Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase in thickness with height.
  Deflections are based upon a 60 mph wind.
  Tower Risk Category II.
  Topographic Category 1 with Crest Height of 0.00 ft
  TOWER RATING: 84.2%

|                         | Crown Castle          | <sup>Job:</sup> <b>E</b> | BU 855662                                                |                                                      |            |
|-------------------------|-----------------------|--------------------------|----------------------------------------------------------|------------------------------------------------------|------------|
| CROWN                   | 2000 Corporate Drive  | Projec                   | ət:                                                      |                                                      |            |
| CASILE                  | Canonsburg PA 15317   | Client                   | Crown Castle                                             | <sup>Drawn by:</sup> THo                             | App'd:     |
| The Pathway To Possible | Phone: (724) 416-2000 | Code:                    | TIA-222-H                                                | Date: 06/09/21                                       | Scale: NTS |
| ,                       | FAX:                  | Path:                    | C:\Users\THo\OneDrive - Crown Casile USA InciDesktop\WOF | RK SPACE/855662/WO 1966278 - SA/Proc/855662 modified | Dwg No. E- |

### **Tower Input Data**

The tower is a monopole. This tower is designed using the TIA-222-H standard. The following design criteria apply:

- Tower base elevation above sea level: 115.00 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 2.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

### Options

| $\checkmark$ | Consider Moments - Legs<br>Consider Moments - Horizontals<br>Consider Moments - Diagonals<br>Use Moment Magnification<br>Use Code Stress Ratios<br>Use Code Safety Factors - Guys<br>Escalate Ice<br>Always Use Max Kz<br>Use Special Wind Profile<br>Include Bolts In Member Capacity | $\checkmark$<br>$\checkmark$<br>$\checkmark$<br>$\checkmark$ | Distribute Leg Loads As Uniform<br>Assume Legs Pinned<br>Assume Rigid Index Plate<br>Use Clear Spans For Wind Area<br>Use Clear Spans For KL/r<br>Retension Guys To Initial Tension<br>Bypass Mast Stability Checks<br>Use Azimuth Dish Coefficients<br>Project Wind Area of Appurt.<br>Autocalc Torque Arm Areas | $\checkmark$ | Use ASCE 10 X-Brace Ly Rules<br>Calculate Redundant Bracing Forces<br>Ignore Redundant Members in FEA<br>SR Leg Bolts Resist Compression<br>All Leg Panels Have Same Allowable<br>Offset Girt At Foundation<br>Consider Feed Line Torque<br>Include Angle Block Shear Check<br>Use TIA-222-H Bracing Resist.<br>Exemption<br>Use TIA-222-H Tension Splice<br>Exemption |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Leg Bolts Are At Top Of Section<br>Secondary Horizontal Braces Leg<br>Use Diamond Inner Bracing (4 Sided)<br>SR Members Have Cut Ends<br>SR Members Are Concentric                                                                                                                     | $\checkmark$                                                 | Add IBC .6D+W Combination<br>Sort Capacity Reports By Component<br>Triangulate Diamond Inner Bracing<br>Treat Feed Line Bundles As Cylinder<br>Ignore KL/ry For 60 Deg. Angle Legs                                                                                                                                |              | Poles<br>Include Shear-Torsion Interaction<br>Always Use Sub-Critical Flow<br>Use Top Mounted Sockets<br>Pole Without Linear Attachments<br>Pole With Shroud Or No<br>Appurtenances<br>Outside and Inside Corner Radii Are<br>Known                                                                                                                                    |

### **Tapered Pole Section Geometry**

| Section | Elevation | Section<br>Length | Splice<br>Length | Number<br>of | Top<br>Diameter | Bottom<br>Diameter | Wall<br>Thickness | Bend<br>Radius | Pole Grade |
|---------|-----------|-------------------|------------------|--------------|-----------------|--------------------|-------------------|----------------|------------|
|         | ft        | ft                | ft               | Sides        | in              | in                 | in                | in             |            |

| Section | Elevation     | Section      | Splice       | Number      | Тор            | Bottom         | Wall             | Bend         | Pole Grade                      |
|---------|---------------|--------------|--------------|-------------|----------------|----------------|------------------|--------------|---------------------------------|
|         | ft            | Length<br>ft | Length<br>ft | ot<br>Sides | Diameter<br>in | Diameter<br>in | I hickness<br>in | Radius<br>in |                                 |
| L1      | 148.00-143.00 | 5.00         | 0.00         | 18          | 24.0000        | 24.9752        | 0.2188           | 0.8750       | A607-65                         |
| L2      | 143.00-138.00 | 5.00         | 0.00         | 18          | 24.9752        | 25.9503        | 0.2188           | 0.8750       | (65 ksi)<br>A607-65             |
| L3      | 138.00-133.00 | 5.00         | 0.00         | 18          | 25.9503        | 26.9255        | 0.2188           | 0.8750       | (65 KSI)<br>A607-65<br>(65 ksi) |
| L4      | 133.00-128.00 | 5.00         | 0.00         | 18          | 26.9255        | 27.9006        | 0.2188           | 0.8750       | A607-65<br>(65 ksi)             |
| L5      | 128.00-123.00 | 5.00         | 0.00         | 18          | 27.9006        | 28.8758        | 0.2188           | 0.8750       | A607-65<br>(65 ksi)             |
| L6      | 123.00-116.00 | 7.00         | 3.75         | 18          | 28.8758        | 30.2410        | 0.2188           | 0.8750       | A607-65<br>(65 ksi)             |
| L7      | 116.00-114.75 | 5.00         | 0.00         | 18          | 29.0721        | 30.0471        | 0.2500           | 1.0000       | À607-65<br>(65 ksi)             |
| L8      | 114.75-109.75 | 5.00         | 0.00         | 18          | 30.0471        | 31.0221        | 0.2500           | 1.0000       | À607-65<br>(65 ksi)             |
| L9      | 109.75-104.75 | 5.00         | 0.00         | 18          | 31.0221        | 31.9971        | 0.2500           | 1.0000       | À607-65<br>(65 ksi)             |
| L10     | 104.75-99.75  | 5.00         | 0.00         | 18          | 31.9971        | 32.9721        | 0.2500           | 1.0000       | A607-65<br>(65 ksi)             |
| L11     | 99.75-94.75   | 5.00         | 0.00         | 18          | 32.9721        | 33.9471        | 0.2500           | 1.0000       | À607-65<br>(65 ksi)             |
| L12     | 94.75-93.50   | 1.25         | 0.00         | 18          | 33.9471        | 34.1908        | 0.2500           | 1.0000       | À607-65<br>(65 ksi)             |
| L13     | 93.50-93.25   | 0.25         | 0.00         | 18          | 34.1908        | 34.2396        | 0.4375           | 1.7500       | À607-65<br>(65 ksi)             |
| L14     | 93.25-88.25   | 5.00         | 0.00         | 18          | 34.2396        | 35.2145        | 0.4313           | 1.7250       | À607-65<br>(65 ksi)             |
| L15     | 88.25-83.25   | 5.00         | 0.00         | 18          | 35.2145        | 36.1895        | 0.4250           | 1.7000       | À607-65<br>(65 ksi)             |
| L16     | 83.25-74.75   | 8.50         | 4.75         | 18          | 36.1895        | 37.8470        | 0.4250           | 1.7000       | À607-65<br>(65 ksi)             |
| L17     | 74.75-74.50   | 5.00         | 0.00         | 18          | 36.4208        | 37.3959        | 0.4875           | 1.9500       | À607-65<br>(65 ksi)             |
| L18     | 74.50-69.50   | 5.00         | 0.00         | 18          | 37.3959        | 38.3711        | 0.4750           | 1.9000       | A607-65<br>(65 ksi)             |
| L19     | 69.50-64.50   | 5.00         | 0.00         | 18          | 38.3711        | 39.3462        | 0.4750           | 1.9000       | À607-65<br>(65 ksi)             |
| L20     | 64.50-62.50   | 2.00         | 0.00         | 18          | 39.3462        | 39.7363        | 0.4750           | 1.9000       | À607-65<br>(65 ksi)             |
| L21     | 62.50-62.25   | 0.25         | 0.00         | 18          | 39.7363        | 39.7850        | 0.3125           | 1.2500       | À607-65<br>(65 ksi)             |
| L22     | 62.25-57.75   | 4.50         | 0.00         | 18          | 39.7850        | 40.6627        | 0.3125           | 1.2500       | A607-65<br>(65 ksi)             |
| L23     | 57.75-57.50   | 0.25         | 0.00         | 18          | 40.6627        | 40.7114        | 0.5250           | 2.1000       | A607-65<br>(65 ksi)             |
| L24     | 57.50-52.50   | 5.00         | 0.00         | 18          | 40.7114        | 41.6866        | 0.5250           | 2.1000       | A607-65<br>(65 ksi)             |
| L25     | 52.50-47.50   | 5.00         | 0.00         | 18          | 41.6866        | 42.6618        | 0.5125           | 2.0500       | A607-65<br>(65 ksi)             |
| L26     | 47.50-39.50   | 8.00         | 5.50         | 18          | 42.6618        | 44.2220        | 0.5125           | 2.0500       | A607-65<br>(65 ksi)             |
| L27     | 39.50-38.50   | 6.50         | 0.00         | 18          | 42.5243        | 43.7919        | 0.5750           | 2.3000       | A607-65<br>(65 ksi)             |
| L28     | 38.50-38.25   | 0.25         | 0.00         | 18          | 43.7919        | 43.8407        | 0.5750           | 2.3000       | A607-65<br>(65 ksi)             |
| L29     | 38.25-38.00   | 0.25         | 0.00         | 18          | 43.8407        | 43.8894        | 0.5062           | 2.0250       | A607-65<br>(65 ksi)             |
| L30     | 38.00-33.00   | 5.00         | 0.00         | 18          | 43.8894        | 44.8645        | 0.5000           | 2.0000       | A607-65<br>(65 ksi)             |
| L31     | 33.00-31.75   | 1.25         | 0.00         | 18          | 44.8645        | 45.1083        | 0.5000           | 2.0000       | A607-65<br>(65 ksi)             |
| L32     | 31.75-31.50   | 0.25         | 0.00         | 18          | 45.1083        | 45.1570        | 0.7250           | 2.9000       | A607-65<br>(65 ksi)             |
| L33     | 31.50-28.25   | 3.25         | 0.00         | 18          | 45.1570        | 45.7908        | 0.7250           | 2.9000       | A607-65<br>(65 ksi)             |
| L34     | 28.25-28.00   | 0.25         | 0.00         | 18          | 45.7908        | 45.8396        | 0.5375           | 2.1500       | A607-65<br>(65 ksi)             |
| L35     | 28.00-23.00   | 5.00         | 0.00         | 18          | 45.8396        | 46.8147        | 0.5375           | 2.1500       | A607-65                         |

| Section | Elevation   | Section | Splice | Number | Тор      | Bottom   | Wall      | Bend   | Pole Grade |
|---------|-------------|---------|--------|--------|----------|----------|-----------|--------|------------|
|         |             | Length  | Length | of     | Diameter | Diameter | Thickness | Radius |            |
|         | ft          | ft      | ft     | Sides  | in       | in       | in        | in     |            |
|         |             |         |        |        |          |          |           |        | (65 ksi)   |
| L36     | 23.00-18.00 | 5.00    | 0.00   | 18     | 46.8147  | 47.7897  | 0.5250    | 2.1000 | A607-65    |
|         |             |         |        |        |          |          |           |        | (65 ksi)   |
| L37     | 18.00-13.00 | 5.00    | 0.00   | 18     | 47.7897  | 48.7648  | 0.5250    | 2.1000 | A607-65    |
|         |             |         |        |        |          |          |           |        | (65 ksi)   |
| L38     | 13.00-8.00  | 5.00    | 0.00   | 18     | 48.7648  | 49.7399  | 0.5250    | 2.1000 | A607-65    |
|         |             |         |        |        |          |          |           |        | (65 ksi)   |
| L39     | 8.00-3.00   | 5.00    | 0.00   | 18     | 49.7399  | 50.7150  | 0.5250    | 2.1000 | A607-65    |
|         |             |         |        |        |          |          |           |        | (65 ksi)   |
| L40     | 3.00-0.00   | 3.00    |        | 18     | 50.7150  | 51.3000  | 0.5188    | 2.0750 | A607-65    |
|         |             |         |        |        |          |          |           |        | (65 ksi)   |

# **Tapered Pole Properties**

| -       |          | <u>.</u>        |                 |         |         | <u> </u>        |                        |                 |         |        |
|---------|----------|-----------------|-----------------|---------|---------|-----------------|------------------------|-----------------|---------|--------|
| Section | Tip Dia. | Area            | 1               | r       | С       | I/C             | J                      | lt/Q            | W       | w/t    |
|         | in       | in <sup>2</sup> | in <sup>4</sup> | in      | in      | in <sup>3</sup> | in <sup>4</sup>        | in <sup>2</sup> | in      |        |
| L1      | 24.3365  | 16.5116         | 1179.7676       | 8.4423  | 12.1920 | 96.7657         | 2361.0876              | 8.2574          | 3.8390  | 17.55  |
|         | 25.3267  | 17.1887         | 1330.9301       | 8.7885  | 12.6874 | 104.9019        | 2663.6114              | 8.5960          | 4.0106  | 18.334 |
| L2      | 25.3267  | 17.1887         | 1330.9301       | 8.7885  | 12.6874 | 104.9019        | 2663.6114              | 8.5960          | 4.0106  | 18.334 |
|         | 26.3169  | 17.8657         | 1494.4828       | 9.1347  | 13.1828 | 113.3665        | 2990.9320              | 8.9346          | 4.1823  | 19.119 |
| 13      | 26,3169  | 17.8657         | 1494 4828       | 9.1347  | 13,1828 | 113,3665        | 2990,9320              | 8,9346          | 4 1823  | 19,119 |
|         | 27 3071  | 18 5428         | 1670 9138       | 9 4809  | 13 6781 | 122 1594        | 3344 0261              | 9 2732          | 4 3539  | 19 903 |
| 14      | 27 3071  | 18 5428         | 1670 9138       | 9 4809  | 13 6781 | 122 1594        | 3344 0261              | 9 2732          | 4 3539  | 19 903 |
|         | 28 2973  | 19 2199         | 1860 7111       | 9 8271  | 14 1735 | 131 2808        | 3723 8705              | 9 6118          | 4 5255  | 20.688 |
| 15      | 28 2973  | 19 2199         | 1860 7111       | 9 8271  | 14 1735 | 131 2808        | 3723 8705              | 9.6118          | 4 5255  | 20.688 |
| LU      | 29 2875  | 19 8969         | 2064 3628       | 10 1732 | 14 6689 | 140 7306        | 4131 4420              | 9 9504          | 4 6971  | 21 473 |
| 16      | 20 2875  | 10 8060         | 2064 3628       | 10.1732 | 14 6689 | 140 7306        | 4131 4420              | 9,9504          | 4.6071  | 21.473 |
| LU      | 29.2073  | 20 8448         | 2004.3020       | 10.1732 | 15 2624 | 140.7300        | 4131.4420              | 10 4 2 4 4      | 4.0971  | 21.473 |
| 17      | 20.07.30 | 20.0440         | 2373.0799       | 10.0379 | 10.0024 | 162 5257        | 4750.4651              | 10.4244         | 4.9374  | 10 707 |
| L/      | 30.2240  | 22.0704         | 2400.2045       | 10.2319 | 14.7000 | 102.0207        | 4003.7274              | 11.43/4         | 4.0707  | 10.707 |
|         | 30.4721  | 23.6440         | 2052.2055       | 10.5780 | 15.2639 | 173.7503        | 5307.9008              | 11.8243         | 4.8483  | 19.393 |
| L8      | 30.4721  | 23.6440         | 2652.2055       | 10.5780 | 15.2639 | 1/3./563        | 5307.9008              | 11.8243         | 4.8483  | 19.393 |
|         | 31.4621  | 24.4177         | 2921.1639       | 10.9241 | 15.7592 | 185.3621        | 5846.1716              | 12.2112         | 5.0199  | 20.08  |
| L9      | 31.4621  | 24.4177         | 2921.1639       | 10.9241 | 15.7592 | 185.3621        | 5846.1716              | 12.2112         | 5.0199  | 20.08  |
|         | 32,4521  | 25.1913         | 3207 7173       | 11.2702 | 16.2545 | 197.3431        | 6419.6555              | 12.5981         | 5.1915  | 20.766 |
| L10     | 32.4521  | 25.1913         | 3207.7173       | 11.2702 | 16.2545 | 197.3431        | 6419.6555              | 12.5981         | 5.1915  | 20.766 |
|         | 33,4422  | 25.9650         | 3512.4232       | 11.6163 | 16.7498 | 209.6992        | 7029.4682              | 12.9849         | 5.3631  | 21.452 |
| L11     | 33.4422  | 25.9650         | 3512.4232       | 11.6163 | 16.7498 | 209.6992        | 7029.4682              | 12.9849         | 5.3631  | 21.452 |
|         | 34.4322  | 26.7386         | 3835.8391       | 11.9625 | 17.2451 | 222.4306        | 7676.7254              | 13.3718         | 5.5347  | 22.139 |
| L12     | 34.4322  | 26.7386         | 3835.8391       | 11.9625 | 17.2451 | 222.4306        | 7676.7254              | 13.3718         | 5.5347  | 22.139 |
|         | 34.6797  | 26.9320         | 3919.6818       | 12.0490 | 17.3689 | 225.6720        | 7844.5212              | 13.4686         | 5.5776  | 22.31  |
| L13     | 34.6508  | 46.8707         | 6746.3886       | 11.9824 | 17.3689 | 388.4171        | 13501.654              | 23.4398         | 5.2476  | 11.994 |
|         |          |                 |                 |         |         |                 | 3                      |                 |         |        |
|         | 34.7003  | 46.9384         | 6775.6619       | 11.9997 | 17.3937 | 389.5470        | 13560.239              | 23.4736         | 5.2562  | 12.014 |
|         |          |                 |                 |         |         |                 | 4                      |                 |         |        |
| L14     | 34.7012  | 46.2764         | 6682.5722       | 12.0019 | 17.3937 | 384.1951        | 13373.937              | 23.1426         | 5.2672  | 12.214 |
|         |          |                 |                 |         |         |                 | 5                      |                 |         |        |
|         | 35.6913  | 47.6109         | 7277.5542       | 12.3481 | 17.8890 | 406.8176        | 14564.684              | 23.8100         | 5.4388  | 12.612 |
|         |          |                 |                 |         |         |                 | 4                      |                 |         |        |
| L15     | 35.6922  | 46.9293         | 7175.9492       | 12.3503 | 17.8890 | 401.1378        | 14361.340              | 23.4691         | 5.4498  | 12.823 |
|         |          |                 |                 |         |         |                 | 7                      |                 |         |        |
|         | 36.6822  | 48.2446         | 7796.3386       | 12.6964 | 18.3843 | 424.0764        | 15602.935              | 24.1269         | 5.6214  | 13.227 |
|         |          |                 |                 |         |         |                 | 7                      |                 |         |        |
| L16     | 36.6822  | 48.2446         | 7796.3386       | 12.6964 | 18.3843 | 424.0764        | 15602.935              | 24.1269         | 5.6214  | 13.227 |
|         |          |                 |                 |         |         |                 | 7                      |                 |         |        |
|         | 38.3653  | 50.4804         | 8931.2919       | 13.2848 | 19.2263 | 464.5357        | 17874.335              | 25.2450         | 5.9131  | 13.913 |
|         |          |                 |                 |         |         |                 | 9                      |                 |         |        |
| L17     | 37.8481  | 55.6004         | 9070.0357       | 12.7563 | 18.5017 | 490.2259        | 18152.006              | 27.8055         | 5.5521  | 11.389 |
|         |          |                 |                 |         |         |                 | 0                      |                 |         |        |
|         | 37 8976  | 57 1093         | 9828 6824       | 13 1025 | 18 9971 | 517 3773        | 19670 297              | 28 5601         | 5 7237  | 11 741 |
|         | 01.0010  | 0111000         | 0020.0021       | 1011020 | 10.0011 | 011.0110        | 7                      | 20.0001         | 0.7207  |        |
| 118     | 37 8995  | 55 6638         | 9586 3984       | 13 1069 | 18 9971 | 504 6236        | , 19185 410            | 27 8372         | 5 7457  | 12 096 |
| 210     | 01.0000  | 30.0000         | 0000.0004       | 10.1003 | 10.0071 | 004.0200        | 8                      | 21.0012         | 0.1 -01 | 12.000 |
|         | 38 8897  | 57 1340         | 10366 224       | 13 4531 | 19 4925 | 531 8057        | 20746 089              | 28 5724         | 5 9173  | 12 457 |
|         | 55.0007  | 07.1040         | Λ<br>Δ          | 10.4001 | 10.4020 | 301.0007        | _0, <u>+0.009</u><br>N | 20.0127         | 0.0170  | 12.407 |
| 1 19    | 38 8897  | 57 1340         | 10366 224       | 13 4531 | 19 4925 | 531 8057        | 20746 089              | 28 5724         | 5 9173  | 12 457 |
| L13     | 00.0097  | 57.1540         | 10000.224       | 10.4001 | 10.4020 | 551.0057        | 201-0.009              | 20.0724         | 0.0170  | 12.407 |

| Section    | Tip Dia. | Area     | 1<br>in <sup>4</sup>    | r       | С       | I/C<br>in <sup>3</sup> | J<br>in4                | It/Q    | W       | w/t    |
|------------|----------|----------|-------------------------|---------|---------|------------------------|-------------------------|---------|---------|--------|
|            | 20.9700  | 59 6040  | 4                       | 12 7002 | 10.0970 | EE0 7009               | 0                       | 20 2077 | 6 0880  | 12.910 |
| 1.00       | 39.0799  | 50.0042  | 7                       | 13.7993 | 19.9079 | 559.7006               | 8                       | 29.3077 | 0.0009  | 12.019 |
| L20        | 39.8799  | 58.6042  | 11187.234<br>7          | 13.7993 | 19.9879 | 559.7008               | 22389.189<br>8          | 29.3077 | 6.0889  | 12.819 |
|            | 40.2760  | 59.1923  | 11527.407<br>7          | 13.9378 | 20.1860 | 571.0585               | 23069.983<br>5          | 29.6018 | 6.1576  | 12.963 |
| L21        | 40.3011  | 39.1035  | 7678.3780               | 13.9954 | 20.1860 | 380.3807               | 15366.859<br>5          | 19.5555 | 6.4436  | 20.619 |
|            | 40.3506  | 39.1518  | 7706.9022               | 14.0128 | 20.2108 | 381.3259               | 15423.945<br>3          | 19.5796 | 6.4522  | 20.647 |
| L22        | 40.3506  | 39.1518  | 7706.9022               | 14.0128 | 20.2108 | 381.3259               | 15423.945<br>3          | 19.5796 | 6.4522  | 20.647 |
|            | 41.2418  | 40.0223  | 8232.4864               | 14.3243 | 20.6566 | 398.5394               | 16475.805               | 20.0150 | 6.6066  | 21.141 |
| L23        | 41.2090  | 66.8834  | 13613.214               | 14.2489 | 20.6566 | 659.0235               | 27244.340               | 33.4481 | 6.2326  | 11.872 |
|            | 41.2585  | 66.9647  | 13662.884               | 14.2662 | 20.6814 | 660.6359               | 27343.747               | 33.4887 | 6.2412  | 11.888 |
| L24        | 41.2585  | 66.9647  | /<br>13662.884          | 14.2662 | 20.6814 | 660.6359               | 27343.747               | 33.4887 | 6.2412  | 11.888 |
|            | 42.2487  | 68.5896  | 7<br>14681.835          | 14.6124 | 21.1768 | 693.2984               | 29382.990               | 34.3013 | 6.4128  | 12.215 |
| L25        | 42.2506  | 66.9769  | 9<br>1434 <u>5</u> .329 | 14.6168 | 21.1768 | 677.4081               | 28709.535               | 33.4948 | 6.4348  | 12.556 |
|            | 43.2408  | 68.5631  | 7<br>15388.910          | 14.9630 | 21.6722 | 710.0770               | 3<br>30798.070          | 34.2881 | 6.6065  | 12.891 |
| L26        | 43.2408  | 68.5631  | 8<br>15388.910          | 14.9630 | 21.6722 | 710.0770               | 8<br>30798.070          | 34.2881 | 6.6065  | 12.891 |
|            | 44.8251  | 71.1012  | 8<br>17161.915          | 15.5169 | 22.4648 | 763.9478               | 8<br>34346.413          | 35.5573 | 6.8811  | 13.426 |
| L27        | 44.1808  | 76.5596  | 4<br>17021.087          | 14.8920 | 21.6024 | 787.9272               | 0<br>34064.571          | 38.2871 | 6.4723  | 11.256 |
|            | 44.3788  | 78.8731  | 5<br>18611.177          | 15.3420 | 22.2463 | 836.5966               | 9<br>37246.844          | 39.4440 | 6.6954  | 11.644 |
| L28        | 44.3788  | 78.8731  | 9<br>18611.177          | 15.3420 | 22.2463 | 836.5966               | 8<br>37246.844          | 39.4440 | 6.6954  | 11.644 |
|            | 44.4283  | 78.9620  | 9<br>18674.235          | 15.3593 | 22.2711 | 838.4976               | 8<br>37373 <u>.</u> 043 | 39.4885 | 6.7040  | 11.659 |
| L29        | 44.4389  | 69.6314  | 7<br>16519.948          | 15.3837 | 22.2711 | 741.7673               | 4<br>33061.634          | 34.8223 | 6.8250  | 13.481 |
|            | 44.4884  | 69.7097  | 6<br>16575.769          | 15.4010 | 22.2958 | 743.4470               | 5<br>33173.348          | 34.8615 | 6.8335  | 13.498 |
| L30        | 44.4894  | 68.8590  | 0<br>16378.206          | 15.4032 | 22.2958 | 734.5860               | 8<br>32777.963          | 34.4361 | 6.8445  | 13.689 |
|            | 45.4795  | 70.4065  | 4<br>17507.390          | 15.7494 | 22.7912 | 768.1655               | 7<br>35037.816          | 35.2099 | 7.0162  | 14.032 |
| L31        | 45.4795  | 70.4065  | 0<br>17507.390          | 15.7494 | 22.7912 | 768.1655               | 7<br>35037.816          | 35.2099 | 7.0162  | 14.032 |
|            | 45.7270  | 70,7933  | 0<br>17797.570          | 15.8359 | 22.9150 | 776.6776               | 7<br>35618.560          | 35.4034 | 7.0591  | 14,118 |
| <b>∟32</b> | 45.6923  | 102.1326 | 9<br>25417_947          | 15.7561 | 22.9150 | 1109.2272              | 4<br>50869.341          | 51.0760 | 6.6631  | 9.19   |
|            | 45.7418  | 102.2448 | 8<br>25501 802          | 15.7734 | 22,9398 | 1111 6851              | 1<br>51037 160          | 51,1321 | 6.6716  | 9.202  |
| 33         | 45 7418  | 102 2448 | 4 25501 802             | 15 7734 | 22 9398 | 1111 6851              | 8<br>51037 160          | 51 1321 | 6 6716  | 9 202  |
| 200        | 16 2851  | 102.2440 | 4                       | 15 0004 | 22.0000 | 11/2 20/7              | 8                       | 51 9615 | 6 7922  | 0.202  |
| 1.24       | 40.0004  | 77 2022  | 20000.700<br>7          | 16.0640 | 20.2017 | 050 6047               | 9                       | 20 6000 | 7 11002 | 12 004 |
| ∟34        | 40.4143  | 77 0005  | 19974.432<br>6          | 10.0049 | 23.2017 | 000 5 100              | 2                       | 30.0090 | 7.1132  | 10.234 |
| 1.05       | 40.4638  | 77.2865  | 20039.060<br>6          | 16.0822 | 23.2865 | 860.5438               | 40104.489               | 38.6506 | 7 1218  | 13.25  |
| L35        | 46.4638  | 77.2865  | 20039.060<br>6          | 16.0822 | 23.2865 | 860.5438               | 40104.489<br>2          | 38.6506 | 7.1218  | 13.25  |
|            | 47.4539  | 78.9500  | 21361.063<br>4          | 16.4284 | 23.7818 | 898.2088               | 42750.234<br>3          | 39.4825 | 7.2934  | 13.569 |
| L36        | 47.4559  | 77.1348  | 20881.206<br>1          | 16.4328 | 23.7818 | 878.0313               | 41789.888<br>3          | 38.5747 | 7.3154  | 13.934 |
|            | 48.4460  | 78.7596  | 22228.762               | 16.7790 | 24.2772 | 915.6236               | 44486.773               | 39.3873 | 7.4870  | 14.261 |

| Section | Tip Dia. | Area    | I              | r       | С       | I/C       | J                       | lt/Q    | W      | w/t    |
|---------|----------|---------|----------------|---------|---------|-----------|-------------------------|---------|--------|--------|
|         | in       | in²     | in⁴            | in      | in      | in³       | in <sup>4</sup>         | in²     | in     |        |
|         |          |         | 0              |         |         |           | 2                       |         |        |        |
| L37     | 48.4460  | 78.7596 | 22228.762<br>0 | 16.7790 | 24.2772 | 915.6236  | 44486.773<br>2          | 39.3873 | 7.4870 | 14.261 |
|         | 49.4361  | 80.3844 | 23633.081<br>1 | 17.1251 | 24.7725 | 954.0039  | 47297 <u>.</u> 259<br>3 | 40.1998 | 7.6586 | 14.588 |
| L38     | 49.4361  | 80.3844 | 23633.081<br>1 | 17.1251 | 24.7725 | 954.0039  | 47297.259<br>3          | 40.1998 | 7.6586 | 14.588 |
|         | 50.4262  | 82.0092 | 25095.334<br>6 | 17.4713 | 25.2679 | 993.1722  | 50223.690<br>4          | 41.0124 | 7.8302 | 14.915 |
| L39     | 50.4262  | 82.0092 | 25095.334<br>6 | 17.4713 | 25.2679 | 993.1722  | 50223.690<br>4          | 41.0124 | 7.8302 | 14.915 |
|         | 51.4163  | 83.6340 | 26616.693<br>5 | 17.8174 | 25.7632 | 1033.1285 | 53268.409<br>9          | 41.8250 | 8.0018 | 15.242 |
| L40     | 51.4173  | 82.6487 | 26309.654<br>4 | 17.8197 | 25.7632 | 1021.2108 | 52653.927<br>8          | 41.3322 | 8.0128 | 15.446 |
|         | 52.0114  | 83.6120 | 27240.347<br>5 | 18.0273 | 26.0604 | 1045.2774 | 54516.538<br>5          | 41.8139 | 8.1158 | 15.645 |

| - 16 |             |            |           |                             |                |              |              |              |              |
|------|-------------|------------|-----------|-----------------------------|----------------|--------------|--------------|--------------|--------------|
|      | Tower       | Gusset     | Gusset    | Gusset Grade Adjust. Factor | Adjust.        | Weight Mult. | Double Angle | Double Angle | Double Angle |
|      | Elevation   | Area       | Thickness | $A_f$                       | Factor         | -            | Stitch Bolt  | Stitch Bolt  | Stitch Bolt  |
|      |             | (per face) |           |                             | A <sub>r</sub> |              | Spacing      | Spacing      | Spacing      |
|      |             |            |           |                             |                |              | Diagonals    | Horizontals  | Redundants   |
|      | ft          | ft²        | in        |                             |                |              | in           | in           | in           |
| ĺ    | L1 148.00-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 143.00      |            |           |                             |                |              |              |              |              |
|      | L2 143.00-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 138.00      |            |           |                             |                |              |              |              |              |
|      | L3 138.00-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 133.00      |            |           |                             |                |              |              |              |              |
|      | L4 133.00-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 128.00      |            |           |                             |                |              |              |              |              |
|      | L5 128.00-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 123.00      |            |           | 1                           | 4              | 4            |              |              |              |
|      | 110 123.00- |            |           | Ι                           | I              | I            |              |              |              |
|      | 110.00      |            |           | 1                           | 1              | 1            |              |              |              |
|      | 114 75      |            |           | I                           | I              | I            |              |              |              |
|      | 18 114 75   |            |           | 1                           | 1              | 1            |              |              |              |
|      | 109 75      |            |           | · ·                         |                |              |              |              |              |
|      | L9 109 75   |            |           | 1                           | 1              | 1            |              |              |              |
|      | 104.75      |            |           |                             | •              | •            |              |              |              |
|      | L10 104 75  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 99.75       |            |           |                             |                |              |              |              |              |
|      | L11 99.75-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 94.75       |            |           |                             |                |              |              |              |              |
|      | L12 94.75-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 93.50       |            |           |                             |                |              |              |              |              |
|      | L13 93.50-  |            |           | 1                           | 1              | 0.958094     |              |              |              |
|      | 93.25       |            |           |                             |                |              |              |              |              |
|      | L14 93.25-  |            |           | 1                           | 1              | 0.960809     |              |              |              |
|      | 88.25       |            |           | 1                           | 4              | 0.064006     |              |              |              |
|      | LID 00.20-  |            |           | Ι                           | I              | 0.964226     |              |              |              |
|      | 116 83 25   |            |           | 1                           | 1              | 0.056603     |              |              |              |
|      | 74 75       |            |           | I                           |                | 0.900090     |              |              |              |
|      | 1 17 74 75  |            |           | 1                           | 1              | 0 959261     |              |              |              |
|      | 74.50       |            |           |                             | •              | 01000201     |              |              |              |
|      | L18 74 50-  |            |           | 1                           | 1              | 0.975776     |              |              |              |
|      | 69.50       |            |           |                             |                |              |              |              |              |
|      | L19 69.50-  |            |           | 1                           | 1              | 0.967801     |              |              |              |
|      | 64.50       |            |           |                             |                |              |              |              |              |
|      | L20 64.50-  |            |           | 1                           | 1              | 0.964722     |              |              |              |
|      | 62.50       |            |           |                             |                |              |              |              |              |
|      | L21 62.50-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 62.25       |            |           |                             |                |              |              |              |              |
|      | L22 62.25-  |            |           | 1                           | 1              | 1            |              |              |              |
|      | 51.15       |            |           | 4                           | 4              | 0.000007     |              |              |              |
|      | L23 5/./5-  |            |           | 1                           | 1              | 0.962397     |              |              |              |
|      | 57.50       |            |           |                             |                |              |              |              |              |

| Tower         | Gusset          | Gusset    | Gusset Grade Adjust. Factor | Adjust.        | Weight Mult. | Double Angle | Double Angle | Double Angle |
|---------------|-----------------|-----------|-----------------------------|----------------|--------------|--------------|--------------|--------------|
| Elevation     | Area            | Thickness | A <sub>f</sub>              | Factor         |              | Stitch Bolt  | Stitch Bolt  | Stitch Bolt  |
|               | (per face)      |           |                             | A <sub>r</sub> |              | Spacing      | Spacing      | Spacing      |
|               |                 |           |                             |                |              | Diagonals    | Horizontals  | Redundants   |
| ft            | ft <sup>2</sup> | in        |                             |                |              | in           | in           | in           |
| L24 57.50-    |                 |           | 1                           | 1              | 0.953698     |              |              |              |
| 52.50         |                 |           |                             |                |              |              |              |              |
| L25 52.50-    |                 |           | 1                           | 1              | 0.968174     |              |              |              |
| 47.50         |                 |           | 4                           | 4              | 0.004075     |              |              |              |
| L26 47.50-    |                 |           | -1                          | 1              | 0.964075     |              |              |              |
| 39.00         |                 |           | 1                           | 1              | 0.064244     |              |              |              |
| 28 50         |                 |           | I                           | I              | 0.904244     |              |              |              |
| 1 28 38 50    |                 |           | 1                           | 1              | 0 963892     |              |              |              |
| 38 25         |                 |           | 1                           | I              | 0.000002     |              |              |              |
| 1 29 38 25    |                 |           | 1                           | 1              | 0.9761       |              |              |              |
| 38.00         |                 |           |                             | •              |              |              |              |              |
| L30 38.00-    |                 |           | 1                           | 1              | 0.982924     |              |              |              |
| 33.00         |                 |           |                             |                |              |              |              |              |
| L31 33.00-    |                 |           | 1                           | 1              | 0.981651     |              |              |              |
| 31.75         |                 |           |                             |                |              |              |              |              |
| L32 31.75-    |                 |           | 1                           | 1              | 0.992017     |              |              |              |
| 31.50         |                 |           |                             |                |              |              |              |              |
| L33 31.50-    |                 |           | 1                           | 1              | 0.98534      |              |              |              |
| 28.25         |                 |           |                             |                |              |              |              |              |
| L34 28.25-    |                 |           | 1                           | 1              | 1.11262      |              |              |              |
| 28.00         |                 |           |                             |                |              |              |              |              |
| L35 28.00-    |                 |           | 1                           | 1              | 1.10388      |              |              |              |
| 23.00         |                 |           |                             |                | 4 40400      |              |              |              |
| L36 23.00-    |                 |           | 1                           | 1              | 1.12128      |              |              |              |
|               |                 |           | 1                           | 4              | 1 11205      |              |              |              |
| L37 18.00-    |                 |           | I                           | I              | 1.11305      |              |              |              |
| 13.00         |                 |           | 1                           | 1              | 1 10515      |              |              |              |
| 8 00          |                 |           | I                           | I              | 1.10515      |              |              |              |
| 139800-300    |                 |           | 1                           | 1              | 1 09756      |              |              |              |
| 140 3 00-0 00 |                 |           | 1                           | 1              | 1 10618      |              |              |              |
|               |                 |           | •                           | •              |              |              |              |              |

## Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description                           | Sector | Exclude               | Componen<br>t        | Placement        | Total<br>Number | Number<br>Per Row | Start/En         | Width or | Perimete<br>r | Weight |
|---------------------------------------|--------|-----------------------|----------------------|------------------|-----------------|-------------------|------------------|----------|---------------|--------|
|                                       |        | Torque<br>Calculation | Туре                 | ft               | Number          | 1 61 1100         | Position         | r<br>in  | in            | plf    |
| ***                                   |        |                       |                      |                  |                 |                   |                  |          |               |        |
| LDF4-50A(1/2")<br>***                 | С      | No                    | Surface Ar<br>(CaAa) | 50.00 -<br>0.00  | 1               | 1                 | 0.000<br>0.000   | 0.6300   |               | 0.15   |
| Safety Line 3/8                       | A      | No                    | Surface Ar<br>(CaAa) | 148.00 -<br>0.00 | 1               | 1                 | -0.250<br>-0.250 | 0.3750   |               | 0.22   |
| (Area) CCI-65FP-<br>085125 (H)        | А      | No                    | Surface Af<br>(CaAa) | 35.50 -<br>0.00  | 1               | 1                 | -0.250<br>-0.250 | 8.5000   | 19.5000       | 0.00   |
| (Area) CCI-65FP-<br>085125 (H)        | A      | No                    | Surface Af<br>(CaAa) | 35.50 -<br>0.00  | 1               | 1                 | 0.500<br>0.500   | 8.5000   | 19.5000       | 0.00   |
| (Area) CCI-65FP-<br>085125 (H)<br>*** | В      | No                    | Surface Af<br>(CaAa) | 35.50 -<br>0.00  | 1               | 1                 | 0.250<br>0.250   | 8.5000   | 19.5000       | 0.00   |
| (Area) CCI-65FP-<br>065125 (H)        | В      | No                    | Surface Af<br>(CaAa) | 60.50 -<br>25.50 | 1               | 1                 | -0.250<br>-0.250 | 6.5000   | 15.5000       | 0.00   |
| (Area) CCI-65FP-<br>065125 (H)        | С      | No                    | Surface Af<br>(CaAa) | 60.50 -<br>25.50 | 1               | 1                 | -0.250<br>-0.250 | 6.5000   | 15.5000       | 0.00   |
| (Area) CCI-65FP-<br>065125 (H)<br>*** | A      | No                    | Surface Af<br>(CaAa) | 60.50 -<br>35.50 | 1               | 1                 | -0.250<br>-0.250 | 6.5000   | 15.5000       | 0.00   |
| (Area) CCI-65FP-<br>060100 (H)        | А      | No                    | Surface Af<br>(CaAa) | 95.50 -<br>60.50 | 1               | 1                 | -0.250<br>-0.250 | 6.0000   | 14.0000       | 0.00   |
| (Area) CCI-65FP-                      | В      | No                    | Surface Af           | 95.50 -          | 1               | 1                 | -0.250           | 6.0000   | 14.0000       | 0.00   |

| Description      | Sector | Exclude     | Componen   | Placement | Total  | Number  | Start/En | Width or | Perimete | Weight |
|------------------|--------|-------------|------------|-----------|--------|---------|----------|----------|----------|--------|
|                  |        | From        | t          |           | Number | Per Row | d        | Diamete  | r        |        |
|                  |        | Torque      | Type       | ft        |        |         | Position | r        |          | plf    |
|                  |        | Calculation |            |           |        |         |          | in       | in       |        |
| 060100 (H)       |        |             | (CaAa)     | 60.50     |        |         | -0.250   |          |          |        |
| (Area) CCI-65FP- | С      | No          | Surface Af | 95.50 -   | 1      | 1       | -0.250   | 6.0000   | 14.0000  | 0.00   |
| 060100 (H)       |        |             | (CaAa)     | 60.50     |        |         | -0.250   |          |          |        |
| **               |        |             |            |           |        |         |          |          |          |        |

## Feed Line/Linear Appurtenances - Entered As Area

| Description                                       | Face | Allow   | Exclude               | Componen    | Placement     | Face   | Lateral   | #  |                                                           | $C_A A_A$                    | Weight                       |
|---------------------------------------------------|------|---------|-----------------------|-------------|---------------|--------|-----------|----|-----------------------------------------------------------|------------------------------|------------------------------|
|                                                   | Leg  | Sillelu | Torque<br>Calculation | Type        | ft            | in     | (Frac FW) |    |                                                           | ft²/ft                       | plf                          |
| LDF5-<br>50A(7/8")                                | В    | No      | No                    | Inside Pole | 148.00 - 0.00 | 0.0000 | 0         | 1  | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"               | 0.00<br>0.00<br>0.00<br>0.00 | 0.33<br>0.33<br>0.33<br>0.33 |
| LDF7-50A(1-<br>5/8")                              | В    | No      | No                    | Inside Pole | 148.00 - 0.00 | 0.0000 | 0         | 1  | Ice<br>No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.00<br>0.00<br>0.00<br>0.00 | 0.82<br>0.82<br>0.82<br>0.82 |
| 2" Flexible<br>Conduit                            | В    | No      | No                    | Inside Pole | 148.00 - 0.00 | 0.0000 | 0         | 2  | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"               | 0.00<br>0.00<br>0.00<br>0.00 | 0.34<br>0.34<br>0.34<br>0.34 |
| LDF7-50A(1-<br>5/8")                              | В    | No      | No                    | Inside Pole | 148.00 - 0.00 | 0.0000 | 0         | 6  | Ice<br>No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"        | 0.00<br>0.00<br>0.00<br>0.00 | 0.82<br>0.82<br>0.82<br>0.82 |
| FB-L98B-<br>002-<br>75000(3/8)                    | В    | No      | No                    | Inside Pole | 148.00 - 0.00 | 0.0000 | 0         | 1  | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"               | 0.00<br>0.00<br>0.00<br>0.00 | 0.06<br>0.06<br>0.06<br>0.06 |
| WR-<br>VG86ST-<br>BRD(3/4)                        | В    | No      | No                    | Inside Pole | 148.00 - 0.00 | 0.0000 | 0         | 2  | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice        | 0.00<br>0.00<br>0.00<br>0.00 | 0.58<br>0.58<br>0.58<br>0.58 |
| MLE Hybrid<br>9Power/18Fi<br>ber RL 2(1-<br>5/8") | A    | No      | No                    | Inside Pole | 139.00 - 0.00 | 0.0000 | 0         | 13 | No<br>Ice<br>1/2''<br>Ice                                 | 0.00<br>0.00<br>0.00<br>0.00 | 1.07<br>1.07<br>1.07<br>1.07 |

| Description                                      | Face | Allow<br>Shield | Exclude<br>From       | Componen<br>t         | Placement      | Face<br>Offset | Lateral<br>Offset | # |                                                    | $C_A A_A$                    | Weight                       |
|--------------------------------------------------|------|-----------------|-----------------------|-----------------------|----------------|----------------|-------------------|---|----------------------------------------------------|------------------------------|------------------------------|
|                                                  | Leg  | Ginola          | Torque<br>Calculation | Type                  | ft             | in             | (Frac FW)         |   |                                                    | ft²/ft                       | plf                          |
| ***                                              |      |                 |                       |                       |                |                |                   |   | 1"<br>Ice<br>2"<br>Ice                             |                              |                              |
| HJ7-50A(1-<br>5/8")                              | С    | No              | No                    | Inside Pole           | 126.00 - 0.00  | 0.0000         | 0                 | 8 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.00<br>0.00<br>0.00<br>0.00 | 1.04<br>1.04<br>1.04<br>1.04 |
| LDF5-<br>50A(7/8")                               | А    | No              | No                    | Inside Pole           | 109.00 - 0.00  | 0.0000         | 0                 | 5 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.00<br>0.00<br>0.00<br>0.00 | 0.33<br>0.33<br>0.33<br>0.33 |
| ATCB-B01-<br>006(5/16")                          | A    | No              | No                    | Inside Pole           | 109.00 - 0.00  | 0.0000         | 0                 | 3 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"        | 0.00<br>0.00<br>0.00<br>0.00 | 0.07<br>0.07<br>0.07<br>0.07 |
| MLE Hybrid<br>3Power/6Fib<br>er RL 2(1-<br>1/4") | A    | No              | No                    | Inside Pole           | 109.00 - 0.00  | 0.0000         | 0                 | 3 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"        | 0.00<br>0.00<br>0.00<br>0.00 | 0.68<br>0.68<br>0.68<br>0.68 |
| HB058-M12-<br>XXXF(5/8")                         | A    | No              | No                    | Inside Pole           | 109.00 - 0.00  | 0.0000         | 0                 | 1 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.00<br>0.00<br>0.00<br>0.00 | 0.24<br>0.24<br>0.24<br>0.24 |
| LDF5-<br>50A(7/8")                               | А    | No              | No                    | Inside Pole           | 79.00 - 0.00   | 0.0000         | 0                 | 2 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.00<br>0.00<br>0.00<br>0.00 | 0.33<br>0.33<br>0.33<br>0.33 |
| LDF2-<br>50(3/8")                                | A    | No              | No                    | Inside Pole           | 74.00 - 0.00   | 0.0000         | 0                 | 1 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.00<br>0.00<br>0.00<br>0.00 | 0.08<br>0.08<br>0.08<br>0.08 |
| 3/8-in<br>Detuner Wire                           | A    | No              | No                    | CaAa (Out<br>Of Face) | 147.00 - 15.00 | 36.000<br>0    | 0                 | 1 | No<br>Ice                                          | 0.02<br>0.12                 | 0.10<br>0.52                 |

tnxTower Report - version 8.0.9.0

| Description                    | Face<br>or | Allow<br>Shield | Exclude<br>From       | Componen<br>t         | Placement      | Face<br>Offset | Lateral<br>Offset | # |                                                    | $C_A A_A$                    | Weight                               |
|--------------------------------|------------|-----------------|-----------------------|-----------------------|----------------|----------------|-------------------|---|----------------------------------------------------|------------------------------|--------------------------------------|
|                                | Leg        |                 | Torque<br>Calculation | Туре                  | ft             | in             | (Frac FW)         |   |                                                    | ft²/ft                       | plf                                  |
|                                |            |                 |                       |                       |                |                |                   |   | 1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice              | 0.22<br>0.42                 | 1.55<br>5.44                         |
| 3/8-in<br>Detuner Wire         | В          | No              | No                    | CaAa (Out<br>Of Face) | 147.00 - 15.00 | 36.000<br>0    | 0                 | 1 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.02<br>0.12<br>0.22<br>0.42 | 0.10<br>0.52<br>1.55<br>5.44         |
| 3/8-in<br>Detuner Wire         | С          | No              | No                    | CaAa (Out<br>Of Face) | 147.00 - 15.00 | 36.000<br>0    | 0                 | 1 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.02<br>0.12<br>0.22<br>0.42 | 0.10<br>0.52<br>1.55<br>5.44         |
| CU12PSM9P<br>6XXX(1-1/2)<br>** | С          | No              | No                    | Inside Pole           | 99.00 - 0.00   | 0.0000         | 0                 | 1 | No<br>Ice<br>1/2"<br>Ice<br>1"<br>Ice<br>2"<br>Ice | 0.00<br>0.00<br>0.00<br>0.00 | 2.35<br>2.35<br>2.35<br>2.35<br>2.35 |

## Feed Line/Linear Appurtenances Section Areas

| Tower  | Tower         | Face | A <sub>R</sub> | A <sub>F</sub> | $C_A A_A$ | $C_A A_A$ | Weight |
|--------|---------------|------|----------------|----------------|-----------|-----------|--------|
| Sectio | Elevation     |      |                |                | In Face   | Out Face  |        |
| п      | ft            |      | ft²            | ft²            | ft²       | ft²       | lb     |
| L1     | 148.00-143.00 | А    | 0.000          | 0.000          | 0.188     | 0.075     | 1      |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.075     | 40     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.075     | 0      |
| L2     | 143.00-138.00 | А    | 0.000          | 0.000          | 0.188     | 0.094     | 15     |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.094     | 40     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.094     | 0      |
| L3     | 138.00-133.00 | А    | 0.000          | 0.000          | 0.188     | 0.094     | 71     |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.094     | 40     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.094     | 0      |
| L4     | 133.00-128.00 | А    | 0.000          | 0.000          | 0.188     | 0.094     | 71     |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.094     | 40     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.094     | 0      |
| L5     | 128.00-123.00 | А    | 0.000          | 0.000          | 0.188     | 0.094     | 71     |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.094     | 40     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.094     | 25     |
| L6     | 123.00-116.00 | А    | 0.000          | 0.000          | 0.263     | 0.131     | 100    |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.131     | 57     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.131     | 59     |
| L7     | 116.00-114.75 | А    | 0.000          | 0.000          | 0.047     | 0.023     | 18     |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.023     | 10     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.023     | 11     |
| L8     | 114.75-109.75 | А    | 0.000          | 0.000          | 0.188     | 0.094     | 71     |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.094     | 40     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.094     | 42     |
| L9     | 109.75-104.75 | А    | 0.000          | 0.000          | 0.188     | 0.094     | 89     |
|        |               | В    | 0.000          | 0.000          | 0.000     | 0.094     | 40     |
|        |               | С    | 0.000          | 0.000          | 0.000     | 0.094     | 42     |

| Tower    | Tower        | Face   | A <sub>R</sub>  | A <sub>F</sub>  | $C_A A_A$       | $C_A A_A$       | Weight   |
|----------|--------------|--------|-----------------|-----------------|-----------------|-----------------|----------|
| Sectio   | Elevation    |        |                 |                 | In Face         | Out Face        |          |
| <u>n</u> | ft           |        | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> | lb       |
| L10      | 104.75-99.75 | A      | 0.000           | 0.000           | 0.188           | 0.094           | 92       |
|          |              | В      | 0.000           | 0.000           | 0.000           | 0.094           | 40       |
| 1.4.4    | 00 75 04 75  | C      | 0.000           | 0.000           | 0.000           | 0.094           | 42       |
| LII      | 99.75-94.75  | A      | 0.000           | 0.000           | 0.938           | 0.094           | 92       |
|          |              | C      | 0.000           | 0.000           | 0.750           | 0.094           | 40<br>52 |
| 112      | 94 75-93 50  | Δ      | 0.000           | 0.000           | 1 297           | 0.034           | 23       |
|          | 04.10 00.00  | B      | 0.000           | 0.000           | 1 250           | 0.023           | 10       |
|          |              | č      | 0.000           | 0.000           | 1.250           | 0.023           | 13       |
| L13      | 93,50-93,25  | Ă      | 0.000           | 0.000           | 0.259           | 0.005           | 5        |
|          |              | В      | 0.000           | 0.000           | 0.250           | 0.005           | 2        |
|          |              | С      | 0.000           | 0.000           | 0.250           | 0.005           | 3        |
| L14      | 93.25-88.25  | А      | 0.000           | 0.000           | 5.188           | 0.094           | 92       |
|          |              | В      | 0.000           | 0.000           | 5.000           | 0.094           | 40       |
|          |              | С      | 0.000           | 0.000           | 5.000           | 0.094           | 54       |
| L15      | 88.25-83.25  | A      | 0.000           | 0.000           | 5.188           | 0.094           | 92       |
|          |              | В      | 0.000           | 0.000           | 5.000           | 0.094           | 40       |
| 1.40     |              | C      | 0.000           | 0.000           | 5.000           | 0.094           | 54       |
| L16      | 83.25-74.75  | A      | 0.000           | 0.000           | 8.819           | 0.159           | 159      |
|          |              |        | 0.000           | 0.000           | 8.500           | 0.159           | 02       |
| 1 17     | 74 75-74 50  | Δ      | 0.000           | 0.000           | 0.259           | 0.159           | 92       |
|          | 74.75-74.50  | B      | 0.000           | 0.000           | 0.250           | 0.005           | 2        |
|          |              | C      | 0.000           | 0.000           | 0.250           | 0.005           | 3        |
| L18      | 74.50-69.50  | Ă      | 0.000           | 0.000           | 5.188           | 0.094           | 95       |
|          |              | В      | 0.000           | 0.000           | 5,000           | 0.094           | 40       |
|          |              | С      | 0.000           | 0.000           | 5.000           | 0.094           | 54       |
| L19      | 69.50-64.50  | А      | 0.000           | 0.000           | 5.188           | 0.094           | 96       |
|          |              | В      | 0.000           | 0.000           | 5.000           | 0.094           | 40       |
|          |              | С      | 0.000           | 0.000           | 5.000           | 0.094           | 54       |
| L20      | 64.50-62.50  | А      | 0.000           | 0.000           | 2.075           | 0.037           | 38       |
|          |              | В      | 0.000           | 0.000           | 2.000           | 0.037           | 16       |
|          |              | C      | 0.000           | 0.000           | 2.000           | 0.037           | 22       |
| L21      | 62.50-62.25  | A      | 0.000           | 0.000           | 0.259           | 0.005           | 5        |
|          |              | В      | 0.000           | 0.000           | 0.250           | 0.005           | 2        |
| 1.22     | 60 05 57 75  |        | 0.000           | 0.000           | 0.250           | 0.005           | చ<br>ండ  |
| LZZ      | 02.20-07.70  | A<br>R | 0.000           | 0.000           | 4.090           | 0.084           | 00<br>36 |
|          |              | C      | 0.000           | 0.000           | 4.729           | 0.084           | 30<br>48 |
| 123      | 57 75-57 50  | Ă      | 0.000           | 0.000           | 0.280           | 0.004           | -0       |
| 220      |              | В      | 0.000           | 0.000           | 0.271           | 0.005           | 2        |
|          |              | Ċ      | 0.000           | 0.000           | 0.271           | 0.005           | 3        |
| L24      | 57.50-52.50  | А      | 0.000           | 0.000           | 5.604           | 0.094           | 96       |
|          |              | В      | 0.000           | 0.000           | 5.417           | 0.094           | 40       |
|          |              | С      | 0.000           | 0.000           | 5.417           | 0.094           | 54       |
| L25      | 52.50-47.50  | А      | 0.000           | 0.000           | 5.604           | 0.094           | 96       |
|          |              | В      | 0.000           | 0.000           | 5.417           | 0.094           | 40       |
| 1.00     |              | Ç      | 0.000           | 0.000           | 5.574           | 0.094           | 54       |
| L26      | 47.50-39.50  | A      | 0.000           | 0.000           | 8.967           | 0.150           | 153      |
|          |              | В      | 0.000           | 0.000           | 0.00/           | 0.150           | 00<br>97 |
| 1.27     | 20 50 29 50  |        | 0.000           | 0.000           | 9.171           | 0.150           | 87       |
| LZ/      | 39.00-38.00  | A<br>R | 0.000           | 0.000           | 1.121<br>1.023  | 0.019           | l A<br>D |
|          |              | C.     | 0.000           | 0.000           | 1 146           | 0.019           | 11       |
| 1.28     | 38 50-38 25  | Δ      | 0.000           | 0.000           | 0.280           | 0.015           | 5        |
| 220      | 00.00 00.20  | B      | 0.000           | 0.000           | 0.271           | 0.005           | 2        |
|          |              | č      | 0.000           | 0.000           | 0.287           | 0.005           | 3        |
| L29      | 38.25-38.00  | Ă      | 0.000           | 0.000           | 0.280           | 0.005           | 5        |
|          |              | В      | 0.000           | 0.000           | 0.271           | 0.005           | 2        |
|          |              | С      | 0.000           | 0.000           | 0.287           | 0.005           | 3        |
| L30      | 38.00-33.00  | А      | 0.000           | 0.000           | 9.979           | 0.094           | 96       |
|          |              | В      | 0.000           | 0.000           | 8.958           | 0.094           | 40       |
|          |              | С      | 0.000           | 0.000           | 5.732           | 0.094           | 55       |
| L31      | 33.00-31.75  | А      | 0.000           | 0.000           | 3.589           | 0.023           | 24       |
|          |              | В      | 0.000           | 0.000           | 3.125           | 0.023           | 10       |
| 1.00     | 04 75 04 50  | Ç      | 0.000           | 0.000           | 1.433           | 0.023           | 14       |
| L32      | 31.75-31.50  | A      | 0.000           | 0.000           | 0.718           | 0.005           | 5        |
|          |              | В      | 0.000           | 0.000           | 0.625           | 0.005           | 2        |
|          |              | C      | 0.000           | 0.000           | 0.287           | 0.005           | 3        |

| Tower  | Tower       | Face | A <sub>R</sub> | A <sub>F</sub> | $C_A A_A$ | $C_A A_A$ | Weight |
|--------|-------------|------|----------------|----------------|-----------|-----------|--------|
| Sectio | Elevation   |      |                |                | In Face   | Out Face  |        |
| n      | ft          |      | ft²            | ft²            | ft²       | ft²       | lb     |
| L33    | 31.50-28.25 | А    | 0.000          | 0.000          | 9.330     | 0.061     | 62     |
|        |             | В    | 0.000          | 0.000          | 8.125     | 0.061     | 26     |
|        |             | С    | 0.000          | 0.000          | 3.726     | 0.061     | 35     |
| L34    | 28.25-28.00 | А    | 0.000          | 0.000          | 0.718     | 0.005     | 5      |
|        |             | В    | 0.000          | 0.000          | 0.625     | 0.005     | 2      |
|        |             | С    | 0.000          | 0.000          | 0.287     | 0.005     | 3      |
| L35    | 28.00-23.00 | А    | 0.000          | 0.000          | 14.354    | 0.094     | 96     |
|        |             | В    | 0.000          | 0.000          | 9.792     | 0.094     | 40     |
|        |             | С    | 0.000          | 0.000          | 3.023     | 0.094     | 55     |
| L36    | 23.00-18.00 | А    | 0.000          | 0.000          | 14.354    | 0.094     | 96     |
|        |             | В    | 0.000          | 0.000          | 7.083     | 0.094     | 40     |
|        |             | С    | 0.000          | 0.000          | 0.315     | 0.094     | 55     |
| L37    | 18.00-13.00 | А    | 0.000          | 0.000          | 14.354    | 0.056     | 95     |
|        |             | В    | 0.000          | 0.000          | 7.083     | 0.056     | 40     |
|        |             | С    | 0.000          | 0.000          | 0.315     | 0.056     | 54     |
| L38    | 13.00-8.00  | А    | 0.000          | 0.000          | 14.354    | 0.000     | 95     |
|        |             | В    | 0.000          | 0.000          | 7.083     | 0.000     | 40     |
|        |             | С    | 0.000          | 0.000          | 0.315     | 0.000     | 54     |
| L39    | 8.00-3.00   | А    | 0.000          | 0.000          | 14.354    | 0.000     | 95     |
|        |             | В    | 0.000          | 0.000          | 7.083     | 0.000     | 40     |
|        |             | С    | 0.000          | 0.000          | 0.315     | 0.000     | 54     |
| L40    | 3.00-0.00   | А    | 0.000          | 0.000          | 8.613     | 0.000     | 57     |
|        |             | В    | 0.000          | 0.000          | 4.250     | 0.000     | 24     |
|        |             | С    | 0.000          | 0.000          | 0.189     | 0.000     | 32     |

## Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower  | Tower         | Face | Ice       | AP    | Ar              | CAAA            | CAAA     | Weiaht |
|--------|---------------|------|-----------|-------|-----------------|-----------------|----------|--------|
| Sectio | Elevation     | or   | Thickness | - 40  | - 1             | In Face         | Out Face |        |
| п      | ft            | Leg  | in        | ft²   | ft <sup>2</sup> | ft <sup>2</sup> | ft²      | lb     |
| L1     | 148.00-143.00 | A    | 1.972     | 0.000 | 0.000           | 2.159           | 1.653    | 51     |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 1.653    | 61     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 1.653    | 21     |
| L2     | 143.00-138.00 | А    | 1.965     | 0.000 | 0.000           | 2.152           | 2.059    | 70     |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 2.059    | 66     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 2.059    | 27     |
| L3     | 138.00-133.00 | А    | 1.958     | 0.000 | 0.000           | 2,145           | 2.052    | 125    |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 2.052    | 66     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 2.052    | 26     |
| L4     | 133.00-128.00 | А    | 1.951     | 0.000 | 0.000           | 2.138           | 2.044    | 125    |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 2.044    | 66     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 2.044    | 26     |
| L5     | 128.00-123.00 | А    | 1.943     | 0.000 | 0.000           | 2.130           | 2.037    | 124    |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 2.037    | 66     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 2.037    | 51     |
| L6     | 123.00-116.00 | А    | 1.933     | 0.000 | 0.000           | 2.969           | 2.838    | 173    |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 2.838    | 92     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 2.838    | 95     |
| L7     | 116.00-114.75 | Α    | 1.927     | 0.000 | 0.000           | 0.530           | 0.507    | 31     |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 0.507    | 16     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 0.507    | 17     |
| L8     | 114.75-109.75 | Α    | 1.921     | 0.000 | 0.000           | 2.109           | 2.015    | 123    |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 2.015    | 66     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 2.015    | 67     |
| L9     | 109.75-104.75 | А    | 1.913     | 0.000 | 0.000           | 2.100           | 2.006    | 140    |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 2.006    | 65     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 2.006    | 67     |
| L10    | 104.75-99.75  | A    | 1.904     | 0.000 | 0.000           | 2.091           | 1.997    | 143    |
|        |               | В    |           | 0.000 | 0.000           | 0.000           | 1.997    | 65     |
|        |               | С    |           | 0.000 | 0.000           | 0.000           | 1.997    | 67     |
| L11    | 99.75-94.75   | A    | 1.894     | 0.000 | 0.000           | 3.116           | 1.988    | 154    |
|        |               | В    |           | 0.000 | 0.000           | 1.034           | 1.988    | 77     |
|        |               | C    |           | 0.000 | 0.000           | 1.034           | 1.988    | 88     |
| L12    | 94 75-93 50   | A    | 1.888     | 0.000 | 0.000           | 2.241           | 0.495    | 55     |
|        |               | В    |           | 0.000 | 0.000           | 1.722           | 0.495    | 36     |
|        |               | С    |           | 0.000 | 0.000           | 1.722           | 0.495    | 39     |

| Tower<br>Sectio | Tower<br>Elevation | Face<br>or | lce<br>Thickness | A <sub>R</sub>  | A <sub>F</sub> | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weight |
|-----------------|--------------------|------------|------------------|-----------------|----------------|------------------------------------------|-------------------------------------------|--------|
| n               | ft                 | Leg        | in               | ft <sup>2</sup> | ft²            | ft <sup>2</sup>                          | ft <sup>2</sup>                           | lb     |
| L13             | 93.50-93.25        | Α          | 1.886            | 0.000           | 0.000          | 0.448                                    | 0.099                                     | 11     |
|                 |                    | В          |                  | 0.000           | 0.000          | 0.344                                    | 0.099                                     | 7      |
|                 |                    | С          |                  | 0.000           | 0.000          | 0.344                                    | 0.099                                     | 8      |
| L14             | 93,25-88,25        | А          | 1.881            | 0.000           | 0.000          | 8.949                                    | 1.975                                     | 219    |
|                 |                    | в          |                  | 0.000           | 0.000          | 6.881                                    | 1.975                                     | 142    |
|                 |                    | Ē          |                  | 0.000           | 0,000          | 6.881                                    | 1 975                                     | 155    |
| 1 1 5           | 88 25 83 25        | ~          | 1 870            | 0.000           | 0.000          | 8 0 2 8                                  | 1 964                                     | 218    |
|                 | 00.23-03.23        |            | 1.070            | 0.000           | 0.000          | 6.920                                    | 1.004                                     | 210    |
|                 |                    | Б          |                  | 0.000           | 0.000          | 0.070                                    | 1.904                                     | 141    |
|                 | 00 05 74 75        | C .        | 1.055            | 0.000           | 0.000          | 6.870                                    | 1.964                                     | 100    |
| L16             | 83.25-74.75        | A          | 1.855            | 0.000           | 0.000          | 15.126                                   | 3.313                                     | 371    |
|                 |                    | В          |                  | 0.000           | 0.000          | 11.653                                   | 3.313                                     | 238    |
|                 |                    | С          |                  | 0.000           | 0.000          | 11.653                                   | 3.313                                     | 261    |
| L17             | 74.75-74.50        | А          | 1.845            | 0.000           | 0.000          | 0.445                                    | 0.097                                     | 11     |
|                 |                    | В          |                  | 0.000           | 0.000          | 0.343                                    | 0.097                                     | 7      |
|                 |                    | С          |                  | 0.000           | 0.000          | 0.343                                    | 0.097                                     | 8      |
| I 18            | 74 50-69 50        | A          | 1 838            | 0.000           | 0 000          | 8 863                                    | 1 932                                     | 219    |
|                 | 11.00 00.00        | B          | 1.000            | 0.000           | 0.000          | 6,838                                    | 1 032                                     | 130    |
|                 |                    | D<br>C     |                  | 0.000           | 0.000          | 6 0 2 0                                  | 1.002                                     | 153    |
| 10              |                    |            | 1 005            | 0.000           | 0.000          | 0.000                                    | 1.902                                     | 102    |
| -19             | 69.50-64.50        | A          | 1.825            | 0.000           | 0.000          | 0.037                                    | 1.918                                     | 218    |
|                 |                    | В          |                  | 0.000           | 0.000          | 6.825                                    | 1 918                                     | 138    |
|                 |                    | С          |                  | 0.000           | 0.000          | 6.825                                    | 1.918                                     | 151    |
| L20             | 64.50-62.50        | А          | 1.815            | 0.000           | 0.000          | 3.527                                    | 0.763                                     | 87     |
|                 |                    | В          |                  | 0.000           | 0.000          | 2.726                                    | 0.763                                     | 55     |
|                 |                    | С          |                  | 0.000           | 0.000          | 2,726                                    | 0.763                                     | 60     |
| L21             | 62,50-62,25        | A          | 1.812            | 0.000           | 0.000          | 0.441                                    | 0.095                                     | 11     |
|                 |                    | B          |                  | 0.000           | 0.000          | 0.341                                    | 0.095                                     | 7      |
|                 |                    | C<br>C     |                  | 0.000           | 0.000          | 0.2/1                                    | 0.005                                     | ,<br>Q |
| 1 22            | 60 0E EZ ZE        | ~          | 1 005            | 0.000           | 0.000          | 0.341                                    | 1 700                                     | 107    |
|                 | 02.20-07.70        | A          | 1.605            | 0.000           | 0.000          | 0.140                                    | 1.709                                     | 197    |
|                 |                    | В          |                  | 0.000           | 0.000          | 6.353                                    | 1.709                                     | 126    |
|                 |                    | С          |                  | 0.000           | 0.000          | 6.353                                    | 1.709                                     | 138    |
| L23             | 57.75-57.50        | А          | 1.797            | 0.000           | 0.000          | 0.460                                    | 0.095                                     | 11     |
|                 |                    | В          |                  | 0.000           | 0.000          | 0.361                                    | 0.095                                     | 7      |
|                 |                    | С          |                  | 0.000           | 0.000          | 0.361                                    | 0.095                                     | 8      |
| 24              | 57 50-52 50        | A          | 1 789            | 0.000           | 0 000          | 9 182                                    | 1 883                                     | 219    |
|                 | 01100 02100        | B          |                  | 0.000           | 0,000          | 7 206                                    | 1 883                                     | 140    |
|                 |                    | Č          |                  | 0.000           | 0.000          | 7.200                                    | 1 883                                     | 154    |
| 1.25            | E2 E0 47 E0        | ~          | 1 770            | 0.000           | 0.000          | 0.149                                    | 1.000                                     | 210    |
| LZO             | 52.50-47.50        | A          | 1.//2            | 0.000           | 0.000          | 9.140                                    | 1.000                                     | 210    |
|                 |                    | В          |                  | 0.000           | 0.000          | 7.189                                    | 1.866                                     | 139    |
|                 |                    | C          |                  | 0.000           | 0.000          | 8.232                                    | 1.866                                     | 166    |
| L26             | 47.50-39.50        | A          | 1.748            | 0.000           | 0.000          | 14.559                                   | 2.946                                     | 344    |
|                 |                    | В          |                  | 0.000           | 0.000          | 11.463                                   | 2.946                                     | 220    |
|                 |                    | С          |                  | 0.000           | 0.000          | 14.763                                   | 2.946                                     | 283    |
| L27             | 39.50-38.50        | А          | 1.729            | 0.000           | 0.000          | 1.820                                    | 0.368                                     | 43     |
|                 |                    | B          |                  | 0 000           | 0 000          | 1 433                                    | 0.368                                     | 27     |
|                 |                    | c<br>c     |                  | 0.000           | 0.000          | 1 845                                    | 0.368                                     | 35     |
| 28              | 38 50 38 25        | ۰<br>۸     | 1 726            | 0.000           | 0.000          | 0 162                                    | 0.000                                     | 11     |
|                 | 00.00-00.20        |            | 1.720            | 0.000           | 0.000          | 0.400                                    | 0.091                                     | 7      |
|                 |                    | D          |                  | 0.000           | 0.000          | 0.337                                    | 0.091                                     | 1      |
| 00              | 00.05.00.00        | C .        | 4 705            | 0.000           | 0.000          | 0.459                                    | 0.091                                     | 9      |
| L29             | 38,25-38,00        | A          | 1.725            | 0.000           | 0.000          | 0.453                                    | 0.091                                     | 11     |
|                 |                    | В          |                  | 0.000           | 0.000          | 0.357                                    | 0.091                                     | 7      |
|                 |                    | С          |                  | 0.000           | 0.000          | 0.459                                    | 0.091                                     | 9      |
| L30             | 38.00-33.00        | А          | 1.712            | 0.000           | 0.000          | 14.260                                   | 1.806                                     | 262    |
|                 |                    | В          |                  | 0.000           | 0.000          | 11.527                                   | 1.806                                     | 178    |
|                 |                    | С          |                  | 0.000           | 0.000          | 9.156                                    | 1.806                                     | 173    |
| 31              | 33 00-31 75        | Ă          | 1 697            | 0.000           | 0,000          | 4 861                                    | 0 448                                     | 77     |
|                 | 00.00 01.70        | R          | 1.007            | 0.000           | 0.000          | 3 073                                    | 0 4 4 8                                   | 55     |
|                 |                    | 0          |                  | 0.000           | 0.000          | 2.010                                    | 0.440                                     | 10     |
| 20              | 24 75 24 50        |            | 1 000            | 0.000           | 0.000          | 2.201                                    | 0.440                                     | 43     |
| L3∠             | 31.75-31.50        | A          | 1.693            | 0.000           | 0.000          | 0.9/2                                    | 0.089                                     | 15     |
|                 |                    | В          |                  | 0.000           | 0.000          | 0.794                                    | 0.089                                     | 11     |
|                 |                    | С          |                  | 0.000           | 0.000          | 0.456                                    | 0.089                                     | 9      |
| L33             | 31.50-28.25        | А          | 1.683            | 0.000           | 0.000          | 12.612                                   | 1.155                                     | 199    |
|                 |                    | В          |                  | 0.000           | 0.000          | 10.313                                   | 1,155                                     | 141    |
|                 |                    | Ē          |                  | 0.000           | 0,000          | 5 914                                    | 1 155                                     | 111    |
| 34              | 28 25-28 00        | Δ          | 1 673            | 0.000           | 0,000          | 0 060                                    | 0.088                                     | 15     |
| -04             | 20.20-20.00        |            | 1.075            | 0.000           | 0.000          | 0.000                                    | 0.000                                     | 10     |
|                 |                    | D          |                  | 0.000           | 0.000          | 0./92                                    | 0.000                                     |        |
|                 | 00.00.00.00        | C          |                  | 0.000           | 0.000          | 0.454                                    | 0.088                                     | 8      |
| _35             | 28.00-23.00        | A          | 1.657            | 0.000           | 0.000          | 19.324                                   | 1.750                                     | 302    |
|                 |                    | В          |                  | 0.000           | 0.000          | 12.277                                   | 1.750                                     | 178    |
|                 |                    | С          |                  | 0.000           | 0.000          | 5.508                                    | 1.750                                     | 133    |

| Tower  | Tower       | Face | lce       | A <sub>R</sub> | AF    | $C_A A_A$ | $C_A A_A$ | Weight |
|--------|-------------|------|-----------|----------------|-------|-----------|-----------|--------|
| Sectio | Elevation   | or   | Thickness |                |       | In Face   | Out Face  | -      |
| n      | ft          | Leg  | in        | ft²            | ft²   | ft²       | ft²       | lb     |
| L36    | 23.00-18.00 | А    | 1.621     | 0.000          | 0.000 | 19.217    | 1.715     | 296    |
|        |             | В    |           | 0.000          | 0.000 | 8.704     | 1.715     | 141    |
|        |             | С    |           | 0.000          | 0.000 | 1.936     | 1.715     | 96     |
| L37    | 18.00-13.00 | А    | 1.576     | 0.000          | 0.000 | 19.083    | 1.002     | 281    |
|        |             | В    |           | 0.000          | 0.000 | 8.660     | 1.002     | 129    |
|        |             | С    |           | 0.000          | 0.000 | 1.891     | 1.002     | 87     |
| L38    | 13.00-8.00  | А    | 1.516     | 0.000          | 0.000 | 18.902    | 0.000     | 261    |
|        |             | В    |           | 0.000          | 0.000 | 8.599     | 0.000     | 114    |
|        |             | С    |           | 0.000          | 0.000 | 1.831     | 0.000     | 74     |
| L39    | 8.00-3.00   | А    | 1.421     | 0.000          | 0.000 | 18.617    | 0.000     | 248    |
|        |             | В    |           | 0.000          | 0.000 | 8.504     | 0.000     | 109    |
|        |             | С    |           | 0.000          | 0.000 | 1.736     | 0.000     | 72     |
| L40    | 3.00-0.00   | А    | 1.248     | 0.000          | 0.000 | 10.858    | 0.000     | 135    |
|        |             | В    |           | 0.000          | 0.000 | 4.999     | 0.000     | 59     |
|        |             | С    |           | 0.000          | 0.000 | 0.938     | 0.000     | 41     |

## Feed Line Center of Pressure

| Section | Elevation     | CP <sub>X</sub> | CP <sub>7</sub> | CP <sub>X</sub> | CP <sub>z</sub> |
|---------|---------------|-----------------|-----------------|-----------------|-----------------|
|         |               |                 | -               | Ice             | Ice             |
|         | ft            | in              | in              | in              | in              |
| L1      | 148.00-143.00 | -0.2926         | 0.0000          | -1,2483         | 0.0000          |
| L2      | 143.00-138.00 | -0.2910         | 0.0000          | -1.1984         | 0.0000          |
| L3      | 138.00-133.00 | -0.2915         | 0.0000          | -1.2154         | 0.0000          |
| L4      | 133.00-128.00 | -0.2919         | 0.0000          | -1.2315         | 0.0000          |
| L5      | 128.00-123.00 | -0.2923         | 0.0000          | -1.2465         | 0.0000          |
| L6      | 123.00-116.00 | -0.2927         | 0.0000          | -1.2633         | 0.0000          |
| L7      | 116.00-114.75 | -0.2929         | 0.0000          | -1.2699         | 0.0000          |
| L8      | 114.75-109.75 | -0.2931         | 0.0000          | -1.2752         | 0.0000          |
| L9      | 109.75-104.75 | -0.2934         | 0.0000          | -1.2872         | 0.0000          |
| L10     | 104.75-99.75  | -0.2937         | 0.0000          | -1.2984         | 0.0000          |
| L11     | 99.75-94.75   | -0.2432         | 0.0000          | -1.1734         | 0.0000          |
| L12     | 94.75-93.50   | -0.1243         | 0.0000          | -0.7470         | 0.0000          |
| L13     | 93.50-93.25   | -0.1246         | 0.0000          | -0.7488         | 0.0000          |
| L14     | 93.25-88.25   | -0.1257         | 0.0000          | -0.7545         | 0.0000          |
| L15     | 88.25-83.25   | -0.1277         | 0.0000          | -0.7650         | 0.0000          |
| L16     | 83.25-74.75   | -0.1304         | 0.0000          | -0.7782         | 0.0000          |
| L17     | 74 75 74 50   | -0.1311         | 0.0000          | -0.7830         | 0.0000          |
| L18     | 74.50-69.50   | -0.1321         | 0.0000          | -0.7848         | 0.0000          |
| L19     | 69.50-64.50   | -0.1340         | 0.0000          | -0.7933         | 0.0000          |
| L20     | 64.50-62.50   | -0.1353         | 0.0000          | -0.7989         | 0.0000          |
| L21     | 62.50-62.25   | -0.1357         | 0.0000          | -0.8004         | 0.0000          |
| L22     | 62.25-57.75   | -0.1329         | 0.0000          | -0.7919         | 0.0000          |
| L23     | 57.75-57.50   | -0.1316         | 0.0000          | -0.7880         | 0.0000          |
| L24     | 57.50-52.50   | -0.1325         | 0.0000          | -0.7915         | 0.0000          |
| L25     | 52.50-47.50   | -0.1335         | 0.1135          | -0.7820         | 0.4213          |
| L26     | 47.50-39.50   | -0.1350         | 0.2281          | -0.7739         | 0.8297          |
| L27     | 39.50-38.50   | -0.1354         | 0.2289          | -0.7769         | 0.8329          |
| L28     | 38.50-38.25   | -0.1357         | 0.2292          | -0.7719         | 0.8281          |
| L29     | 38.25-38.00   | -0.1357         | 0.2293          | -0.7720         | 0.8283          |
| L30     | 38.00-33.00   | 3.5445          | -0.6558         | 2.1274          | 0.0482          |
| L31     | 33.00-31.75   | 5.9972          | -1.2444         | 4.2943          | -0.5328         |
| L32     | 31.75-31.50   | 6.0120          | -1.2472         | 4.3061          | -0.5348         |
| L33     | 31.50-28.25   | 6.0433          | -1.2531         | 4.3313          | -0.5393         |
| L34     | 28.25-28.00   | 6.0733          | -1.2588         | 4.3557          | -0.5438         |
| L35     | 28.00-23.00   | 5.3624          | -0.6765         | 3.6015          | 0.0012          |
| L36     | 23.00-18.00   | 4.4529          | 0.0853          | 2.6858          | 0.6759          |
| L37     | 18.00-13.00   | 4.5214          | 0.0890          | 2.8307          | 0.6958          |
| L38     | 13.00-8.00    | 4.5962          | 0.0928          | 3.0369          | 0.7219          |
| L39     | 8.00-3.00     | 4.6493          | 0.0962          | 3.1016          | 0.6966          |
| L40     | 3.00-0.00     | 4.6911          | 0.0989          | 3.1872          | 0.6378          |

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

| Tower   | Feed Line  | Description                     | Feed Line          | Ka     | K <sub>a</sub> |
|---------|------------|---------------------------------|--------------------|--------|----------------|
| Section | Record No. | ,                               | Segment            | No lce | Ice            |
| L1      | 33         | Safety Line 3/8                 |                    | 1.0000 | 1.0000         |
| 10      | 30         | Safatulina 2/0                  | 148.00             | 1 0000 | 1 0000         |
| LZ      | 33         | Salety Line 3/6                 | 143.00             | 1.0000 | 1.0000         |
| L3      | 33         | Safety Line 3/8                 | 133.00 -           | 1.0000 | 1.0000         |
| L4      | 33         | Safety Line 3/8                 | 128.00 -           | 1.0000 | 1.0000         |
| 15      | 33         | Safety Line 3/8                 | 133.00<br>123.00 - | 1 0000 | 1 0000         |
|         |            |                                 | 128.00             | 1 0000 | 4 0000         |
| LO      | 33         | Safety Line 3/8                 | 123.00             | 1.0000 | 1.0000         |
| L7      | 33         | Safety Line 3/8                 | 114.75 -           | 1.0000 | 1.0000         |
| L8      | 33         | Safety Line 3/8                 | 109.75 -           | 1.0000 | 1.0000         |
| 19      | 33         | Safety Line 3/8                 | 114.75<br>104.75   | 1,0000 | 1,0000         |
|         |            |                                 | 109.75             |        |                |
| L10     | 33         | Satety Line 3/8                 | 99.75<br>104.75    | 1.0000 | 1.0000         |
| L11     | 33         | Safety Line 3/8                 | 94.75 -            | 1.0000 | 1.0000         |
| L11     | 43         | (Area) CCI-65FP-060100          | 99.75<br>94.75 -   | 1.0000 | 1.0000         |
| 1 11    | 44         | (H)<br>(Area) CCI-65EP-060100   | 95.50<br>94.75 -   | 1 0000 | 1 0000         |
|         |            | (H)                             | 95.50              | 1.0000 | 1.0000         |
| L11     | 45         | (Area) CCI-65FP-060100<br>(H)   | 94.75 -<br>95.50   | 1.0000 | 1.0000         |
| L12     | 33         | Safety Line 3/8                 | 93.50 -            | 1.0000 | 1.0000         |
| L12     | 43         | (Area) CCI-65FP-060100          | 94.75<br>93.50 -   | 1.0000 | 1.0000         |
| 1 12    | 44         | (H)<br>(Area) CCI-65EP-060100   | 94.75<br>93.50 -   | 1 0000 | 1 0000         |
|         |            | (Alea) 001-0011 000100<br>(H)   | 94.75              | 1.0000 | 1.0000         |
| L12     | 45         | (Area) CCI-65FP-060100<br>(H)   | 93.50 -<br>94.75   | 1.0000 | 1.0000         |
| L13     | 33         | Safety Line 3/8                 | 93.25              | 1.0000 | 1.0000         |
| L13     | 43         | (Area) CCI-65FP-060100          | 93.50<br>93.25 -   | 1.0000 | 1.0000         |
| 1 1 2   | лл         | (H)<br>(Area) CCL65EP_060100    | 93.50<br>93.25     | 1 0000 | 1 0000         |
|         | 44         | (H)                             | 93.50              | 1.0000 | 1.0000         |
| L13     | 45         | (Area) CCI-65FP-060100<br>(H)   | 93.25 -<br>93.50   | 1.0000 | 1.0000         |
| L14     | 33         | Safety Line 3/8                 | 88.25              | 1.0000 | 1.0000         |
| L14     | 43         | (Area) CCI-65FP-060100          | 93.25<br>88.25 -   | 1.0000 | 1.0000         |
| 1 1 4   | лл         |                                 | 93.25              | 1 0000 | 1 0000         |
| L14     | 44         | (Alea) CCI-03FP-060100<br>(H)   | 93.25              | 1.0000 | 1.0000         |
| L14     | 45         | (Area) CCI-65FP-060100<br>(H)   | 88.25 -<br>93.25   | 1.0000 | 1.0000         |
| L15     | 33         | Safety Line 3/8                 | 83.25 -            | 1.0000 | 1.0000         |
| L15     | 43         | (Area) CCI-65FP-060100          | 88.25<br>83.25 -   | 1.0000 | 1.0000         |
|         | A A        | (Area) CCL 655D 060400          | 88.25              | 1 0000 | 1 0000         |
| L15     | 44         | (Area) CCI-03FP-060100<br>(H)   | 88.25              | 1.0000 | 1.0000         |
| L15     | 45         | (Area) CCI-65FP-060100<br>(الم) | 83.25 -            | 1.0000 | 1.0000         |
| L16     | 33         | Safety Line 3/8                 | 74.75 -            | 1.0000 | 1.0000         |

## **Shielding Factor Ka**

| Tower   | Feed Line  | Description                    | Feed Line        | K <sub>a</sub> | Ka     |
|---------|------------|--------------------------------|------------------|----------------|--------|
| Section | Record No. |                                | Segment<br>Elev. | No Ice         | Ice    |
|         |            |                                | 83.25            |                |        |
| L16     | 43         | (Area) CCI-65FP-060100         | 74.75 -          | 1.0000         | 1.0000 |
| L16     | 44         | (ח)<br>(Area) CCI-65FP-060100  | 74.75 -          | 1.0000         | 1.0000 |
| 1.16    | 45         | (H)                            | 83.25            | 1 0000         | 1 0000 |
| L10     | 45         | (Area) CCI-65FP-060100<br>(H)  | 74.75<br>83.25   | 1.0000         | 1.0000 |
| L17     | 33         | Safety Line 3/8                | 74.50 -          | 1.0000         | 1.0000 |
| L17     | 43         | (Area) CCI-65FP-060100         | 74.75<br>74.50 - | 1.0000         | 1.0000 |
| 147     |            | (H)                            | 74.75            | 4 0000         | 1 0000 |
| LII     | 44         | (Area) CCI-65FP-060100<br>(H)  | 74.50<br>74.75   | 1.0000         | 1.0000 |
| L17     | 45         | (Area) CCI-65FP-060100         | 74.50 -          | 1.0000         | 1.0000 |
| L18     | 33         | Safety Line 3/8                | 69.50            | 1.0000         | 1.0000 |
| 1 10    | 12         | (Area) CCI 65ED 060100         | 74.50            | 1 0000         | 1 0000 |
| LIO     | 43         | (Alea) CCI-05FF-000100<br>(H)  | 74.50            | 1.0000         | 1.0000 |
| L18     | 44         | (Area) CCI-65FP-060100         | 69.50 -<br>74.50 | 1.0000         | 1.0000 |
| L18     | 45         | (ח)<br>(Area) CCI-65FP-060100  | 69.50 -          | 1.0000         | 1.0000 |
| 1.10    | 22         | (H)<br>Safaty Lina 3/8         | 74.50            | 1 0000         | 1 0000 |
| LIS     |            | Salety Line 5/6                | 69.50            | 1.0000         | 1.0000 |
| L19     | 43         | (Area) CCI-65FP-060100         | 64.50 -          | 1.0000         | 1.0000 |
| L19     | 44         | (II)<br>(Area) CCI-65FP-060100 | 64.50 -          | 1.0000         | 1.0000 |
| 1 10    | 15         | (H)<br>(Aroa) CCL 65EP 060100  | 69.50<br>64.50   | 1 0000         | 1 0000 |
| L13     | 40         | (H)                            | 69.50            | 1.0000         | 1.0000 |
| L20     | 33         | Safety Line 3/8                | 62.50 -<br>64.50 | 1.0000         | 1.0000 |
| L20     | 43         | (Area) CCI-65FP-060100         | 62.50 -          | 1.0000         | 1.0000 |
| L20     | 44         | (H)<br>(Area) CCI-65FP-060100  | 64.50<br>62.50 - | 1.0000         | 1.0000 |
| 1.20    | 45         | (H)<br>(Area) CCI-65EP-060100  | 64.50<br>62.50 - | 1 0000         | 1 0000 |
| 220     | 10         | (H)                            | 64.50            | 1.0000         | 1.0000 |
| L21     | 33         | Safety Line 3/8                | 62.25 -<br>62 50 | 1.0000         | 1.0000 |
| L21     | 43         | (Area) CCI-65FP-060100         | 62.25 -          | 1.0000         | 1.0000 |
| L21     | 44         | (H)<br>(Area) CCI-65FP-060100  | 62.50<br>62.25 - | 1.0000         | 1,0000 |
|         |            | (H)                            | 62.50            |                |        |
| L21     | 45         | (Area) CCI-65FP-060100<br>(H)  | 62.25 -<br>62.50 | 1.0000         | 1.0000 |
| L22     | 33         | Safety Line 3/8                | 57.75 -          | 1.0000         | 1.0000 |
| L22     | 39         | (Area) CCI-65FP-065125         | 62.25<br>57.75 - | 1.0000         | 1.0000 |
| 1.22    | 40         | (H)<br>(Aroa) CCI 65EP 065125  | 60.50<br>57.75   | 1 0000         | 1 0000 |
| LZZ     | 40         | (Alea) COI-001 F-000120<br>(H) | 60.50            | 1.0000         | 1.0000 |
| L22     | 41         | (Area) CCI-65FP-065125         | 57.75 -<br>60 50 | 1.0000         | 1.0000 |
| L22     | 43         | (Area) CCI-65FP-060100         | 60.50 -          | 1.0000         | 1.0000 |
| L22     | 44         | (H)<br>(Area) CCI-65FP-060100  | 62.25<br>60.50 - | 1.0000         | 1.0000 |
| L22     | 45         | (H)<br>(Area) CCI-65FP-060100  | 62.25<br>60.50 - | 1.0000         | 1.0000 |
| 1 23    | 33         | (H)<br>Safety Line 3/8         | 62.25<br>57.50 - | 1 0000         | 1 0000 |
| 220     |            |                                | _57 75           |                | 1.0000 |
| L23     | 39         | (Area) CCI-65FP-065125<br>(H)  | 57.50 -<br>57.75 | 1.0000         | 1.0000 |
| L23     | 40         | (Area) CCI-65FP-065125         | 57.50            | 1.0000         | 1.0000 |
| L23     | 41         | (H)<br>(Area) CCI-65FP-065125  | 57.75<br>57.50 - | 1.0000         | 1.0000 |
|         |            | (H)                            | 57.75            |                |        |

| Tower<br>Section | Feed Line<br>Record No. | Description                                             | Feed Line<br>Segment      | K₄<br>No Ice | K <sub>a</sub><br>Ice |
|------------------|-------------------------|---------------------------------------------------------|---------------------------|--------------|-----------------------|
| 24               | 33                      | Safety Line 3/8                                         | Elev.<br>52.50 -          | 1 0000       | 1 0000                |
| L24              | 39                      | (Area) CCI-65FP-065125                                  | 57.50<br>52.50 -          | 1.0000       | 1.0000                |
| L24              | 40                      | (H)<br>(Area) CCI-65FP-065125                           | 57.50<br>- 52.50          | 1.0000       | 1.0000                |
| L24              | 41                      | (H)<br>(Area) CCI-65FP-065125                           | 57.50<br>52.50 -          | 1.0000       | 1.0000                |
| L25              | 27                      | (H)<br>LDF4-50A(1/2")                                   | 57.50<br>47.50 -          | 1.0000       | 1.0000                |
| L25              | 33                      | Safety Line 3/8                                         | 50.00<br>47.50 -          | 1.0000       | 1.0000                |
| L25              | 39                      | (Area) CCI-65FP-065125                                  | 52.50<br>47.50 -<br>52.50 | 1.0000       | 1.0000                |
| L25              | 40                      | (۲۱)<br>(Area) CCI-65FP-065125<br>(H)                   | 47.50 -<br>52.50          | 1.0000       | 1.0000                |
| L25              | 41                      | (Area) CCI-65FP-065125<br>(H)                           | 47.50 -<br>52.50          | 1.0000       | 1.0000                |
| L26              | 27                      | LDF4-50A(1/2")                                          | 39.50 -<br>47.50          | 1.0000       | 1.0000                |
| L26              | 33                      | Safety Line 3/8                                         | 39.50 -<br>47.50          | 1.0000       | 1.0000                |
| L26              | 39                      | (Area) CCI-65FP-065125<br>(H)                           | 39.50 -<br>47.50          | 1.0000       | 1.0000                |
| L26              | 40                      | (Area) CCI-65FP-065125<br>(H)                           | 39.50 -<br>47.50          | 1.0000       | 1.0000                |
| L26              | 41                      | (Area) CCI-65FP-065125<br>(H)                           | 39.50 -<br>47.50          | 1.0000       | 1.0000                |
| L27              | 27                      | LDF4-50A(1/2")                                          | 38.50 -<br>39.50          | 1.0000       | 1.0000                |
| L27              | 33                      | Safety Line 3/8                                         | 38.50 -<br>39.50          | 1.0000       | 1.0000                |
| L27<br>L27       | 39                      | (Area) CCI-65FF-005125<br>(H)<br>(Area) CCI-65FP-065125 | 39.50 -<br>39.50 -        | 1,0000       | 1,0000                |
| 1 27             | 41                      | (Area) CCI-65EP-065125<br>(H)                           | 39.50<br>38.50 -          | 1 0000       | 1 0000                |
| L28              | 27                      | (H)<br>LDF4-50A(1/2")                                   | 39.50<br>38.25 -          | 1.0000       | 1.0000                |
| L28              | 33                      | Safety Line 3/8                                         | 38.50<br>38.25 -          | 1.0000       | 1.0000                |
| L28              | 39                      | (Area) CCI-65FP-065125                                  | 38.50<br>38.25 -          | 1.0000       | 1.0000                |
| L28              | 40                      | (H)<br>(Area) CCI-65FP-065125                           | 38.50<br>38.25 -          | 1.0000       | 1.0000                |
| L28              | 41                      | (H)<br>(Area) CCI-65FP-065125                           | 38.50<br>38.25 -          | 1.0000       | 1.0000                |
| L29              | 27                      | (H)<br>LDF4-50A(1/2")                                   | 38.50<br>38.00 -<br>38.25 | 1.0000       | 1.0000                |
| L29              | 33                      | Safety Line 3/8                                         | 38.00 -<br>38.25          | 1.0000       | 1.0000                |
| L29              | 39                      | (Area) CCI-65FP-065125<br>(H)                           | 38.00 -<br>38.25          | 1.0000       | 1.0000                |
| L29              | 40                      | (Area) CCI-65FP-065125<br>(H)                           | 38.00 -<br>38.25          | 1.0000       | 1.0000                |
| L29              | 41                      | (Area) CCI-65FP-065125<br>(H)                           | 38.00 -<br>38.25          | 1.0000       | 1.0000                |
| L30              | 27                      | LDF4-50A(1/2")                                          | - 33.00<br>38.00          | 1.0000       | 1.0000                |
| L30              | 33                      | Safety Line 3/8                                         | - 33.00<br>38.00          | 1.0000       | 1.0000                |
| L30              | 35                      | (Area) CCI-65FP-085125<br>(H)                           | 33.00 -<br>35.50          | 1.0000       | 1.0000                |
| L30              | 36                      | (Area) CCI-65FP-085125<br>(H)                           | 33.00 -<br>35.50          | 1.0000       | 1.0000                |
| L30              | 37                      | (Area) CCI-65FP-085125<br>(H)                           | 33.00 -<br>35.50          | 1.0000       | 1.0000                |
| L301             | 39                      | (Area) CCI-65EP-065125                                  | 33.00-1                   | 1.00001      | 1.0000                |

| Tower   | Feed Line  | Description                            | Feed Line        | K <sub>a</sub> | Ka     |
|---------|------------|----------------------------------------|------------------|----------------|--------|
| Section | Recora No. |                                        | Segment<br>Elev. | No ice         | Ice    |
| L30     | 40         | (H)<br>(Area) CCI-65FP-065125          | 38.00<br>33.00 - | 1.0000         | 1.0000 |
| L30     | 41         | (H)<br>(Area) CCI-65FP-065125          | 38.00<br>- 35.50 | 1.0000         | 1.0000 |
| L31     | 27         | (H)<br>LDF4-50A(1/2")                  | 38.00<br>31.75 - | 1.0000         | 1.0000 |
| L31     | 33         | Safety Line 3/8                        | 33.00<br>31.75 - | 1.0000         | 1.0000 |
| L31     | 35         | (Area) CCI-65FP-085125                 | 33.00<br>31.75 - | 1.0000         | 1.0000 |
| L31     | 36         | (H)<br>(Area) CCI-65FP-085125          | 33.00<br>31.75 - | 1.0000         | 1.0000 |
| L31     | 37         | (ח)<br>(Area) CCI-65FP-085125          | 31.75 -<br>22.00 | 1.0000         | 1.0000 |
| L31     | 39         | (ח)<br>(Area) CCI-65FP-065125<br>(ای)  | 31.75 -<br>33.00 | 1.0000         | 1.0000 |
| L31     | 40         | (ח)<br>(Area) CCI-65FP-065125<br>(H)   | 33.00<br>31.75 - | 1.0000         | 1.0000 |
| L32     | 27         | LDF4-50A(1/2")                         | 31.50 -<br>31.75 | 1.0000         | 1.0000 |
| L32     | 33         | Safety Line 3/8                        | 31.50<br>31.75   | 1.0000         | 1.0000 |
| L32     | 35         | (Area) CCI-65FP-085125<br>(H)          | 31.50 -<br>31.75 | 1.0000         | 1.0000 |
| L32     | 36         | (1.7)<br>(Area) CCI-65FP-085125<br>(H) | 31.50 -<br>31.75 | 1.0000         | 1.0000 |
| L32     | 37         | (Area) CCI-65FP-085125<br>(H)          | 31.50 -<br>31.75 | 1.0000         | 1.0000 |
| L32     | 39         | (Area) CCI-65FP-065125<br>(H)          | 31.50 -<br>31.75 | 1.0000         | 1.0000 |
| L32     | 40         | (Area) CCI-65FP-065125<br>(H)          | 31.50 -<br>31.75 | 1.0000         | 1.0000 |
| L33     | 27         | LDF4-50A(1/2")                         | 28.25 -<br>31.50 | 1.0000         | 1.0000 |
| L33     | 33         | Safety Line 3/8                        | 28.25 -<br>31.50 | 1.0000         | 1.0000 |
| L33     | 35         | (Area) CCI-65FP-085125<br>(H)          | - 28.25<br>31.50 | 1.0000         | 1.0000 |
| L33     | 36         | (Area) CCI-65FP-085125<br>(H)          | - 28.25<br>31.50 | 1.0000         | 1.0000 |
| L33     | 37         | (Area) CCI-65FP-085125<br>(H)          | - 28.25<br>31.50 | 1.0000         | 1.0000 |
| L33     | 39         | (Area) CCI-65FP-065125<br>(H)          | - 28.25<br>31.50 | 1.0000         | 1.0000 |
| L33     | 40         | (Area) CCI-65FP-065125<br>(H)          | 28.25 -<br>31.50 | 1.0000         | 1.0000 |
| L34     | 27         | LDF4-50A(1/2")                         | 28.00 -<br>28.25 | 1.0000         | 1.0000 |
| L34     | 33         | Safety Line 3/8                        | 28.00 -<br>28.25 | 1.0000         | 1.0000 |
| L34     | 35         | (Area) CCI-65FP-085125<br>(H)          | 28.00 -<br>28.25 | 1.0000         | 1.0000 |
| L34     | 36         | (Area) CCI-65FP-085125<br>(H)          | 28.00 -<br>28.25 | 1.0000         | 1.0000 |
| L34     | 37         | (Area) CCI-65FP-085125<br>(H)          | 28.00 -<br>28.25 | 1.0000         | 1.0000 |
| L34     | 39         | (Area) CCI-65FP-065125<br>(H)          | 28.00 -<br>28.25 | 1.0000         | 1.0000 |
| L34     | 40         | (Area) CCI-65FP-065125<br>(H)          | 28.00 -<br>28.25 | 1.0000         | 1.0000 |
| L35     | 27         | LDF4-50A(1/2")                         | 23.00 -<br>28.00 | 1.0000         | 1.0000 |
| L35     | 33         | Safety Line 3/8                        | 23.00 -<br>28.00 | 1.0000         | 1.0000 |
| L35     | 35         | (Area) CCI-65FP-085125<br>(H)          | 23.00 -<br>28.00 | 1.0000         | 1.0000 |
| L35     | 36         | (Area) CCI-65FP-085125<br>(H)          | 23.00 -<br>28.00 | 1.0000         | 1.0000 |

| Tower   | Feed Line  | Description                           | Feed Line    | Ka        | Ka        |
|---------|------------|---------------------------------------|--------------|-----------|-----------|
| Section | Record No. |                                       | Segment      | No Ice    | Ice       |
|         |            |                                       | Elev.        |           |           |
| L35     | 37         | (Area) CCI-65FP-085125                | 23.00 -      | 1.0000    | 1.0000    |
|         |            | (H)                                   | 28.00        |           |           |
| L35     | 39         | (Area) CCI-65FP-065125                | 25.50 -      | 1.0000    | 1.0000    |
|         |            | (H)                                   | 28.00        |           |           |
| L35     | 40         | (Area) CCI-65FP-065125                | 25.50 -      | 1.0000    | 1.0000    |
|         |            | (H)                                   | 28.00        |           |           |
| L36     | 27         | LDF4-50A(1/2")                        | 18.00 -      | 1.0000    | 1.0000    |
|         |            |                                       | 23.00        |           |           |
| L36     | 33         | Safety Line 3/8                       | 18.00 -      | 1.0000    | 1.0000    |
|         |            |                                       | 23.00        |           |           |
| L36     | 35         | (Area) CCI-65FP-085125                | 18.00 -      | 1.0000    | 1.0000    |
|         |            | (H)                                   | 23.00        |           |           |
| L36     | 36         | (Area) CCI-65FP-085125                | 18.00 -      | 1.0000    | 1.0000    |
|         |            | (H)                                   | 23.00        |           |           |
| L36     | 37         | (Area) CCI-65FP-085125                | 18.00 -      | 1.0000    | 1.0000    |
|         |            | (H)                                   | 23.00        |           |           |
| L37     | 27         | LDF4-50A(1/2")                        | 13.00 -      | 1.0000    | 1.0000    |
|         |            |                                       | 18.00        | 1         |           |
| L37     | 33         | Safety Line 3/8                       | 13.00 -      | 1.0000    | 1.0000    |
| 1.07    |            |                                       | 18.00        | 4 0 0 0 0 | 4 0 0 0 0 |
| L37     | 35         | (Area) CCI-65FP-085125                | 13.00 -      | 1.0000    | 1.0000    |
| 1.07    |            | (H)                                   | 18.00        | 4 0 0 0 0 | 4 0 0 0 0 |
| L37     | 36         | (Area) CCI-65FP-085125                | 13.00 -      | 1.0000    | 1.0000    |
| 1.07    | 07         |                                       | 18.00        | 1 0000    | 4 0000    |
| L37     | 37         | (Area) CCI-65FP-085125                | 13.00 -      | 1.0000    | 1.0000    |
| 1.20    | 07         |                                       | 18.00        | 1 0000    | 1 0000    |
| L38     | 27         | LDF4-50A(1/2)                         | 8.00 - 13.00 | 1.0000    | 1.0000    |
| L30     | 33         |                                       | 8.00 - 13.00 | 1.0000    | 1.0000    |
| LJO     | 30         | (Area) CCI-05FP-065125                | 0.00 - 13.00 | 1.0000    | 1.0000    |
| 1.20    | 26         |                                       | 0 00 12 00   | 1 0000    | 1 0000    |
| LJO     |            | (Area) CCI-03FF-065125                | 0.00 - 13.00 | 1.0000    | 1.0000    |
| 1.29    | 27         | (ח)<br>(Aroo) CCI 65ED 085125         | 8 00 12 00   | 1 0000    | 1 0000    |
| L30     | 57         | (Area) CCI-0311 -003123               | 0.00 - 13.00 | 1.0000    | 1.0000    |
| 130     | 27         | LDE4-504(1/2")                        | 3 00 - 8 00  | 1 0000    | 1 0000    |
| 139     | 33         | Safety Line 3/8                       | 3 00 8 00    | 1 0000    | 1,0000    |
| 139     | 35         | (Area) CCI-65EP-085125                | 3 00 8 00    | 1 0000    | 1 0000    |
| 200     | 00         | (H)                                   | 0.00 0.00    | 1.0000    | 1.0000    |
| 1.39    | 36         | (Area) CCI-65EP-085125                | 3 00 - 8 00  | 1 0000    | 1 0000    |
| 200     | 00         | (H)                                   | 0.00 0.00    | 1.0000    | 1.0000    |
| 139     | 37         | (Area) CCI-65EP-085125                | 3 00 - 8 00  | 1 0000    | 1 0000    |
| 200     | 01         | (H)                                   |              | 110000    | 10000     |
| L40     | 27         | LDF4-50A(1/2")                        | 0.00 - 3.00  | 1.0000    | 1.0000    |
| L40     | 33         | Safety Line 3/8                       | 0.00 - 3.00  | 1.0000    | 1.0000    |
| L40     | 35         | (Area) CCI-65FP-085125                | 0.00 - 3.00  | 1.0000    | 1.0000    |
|         |            | (H)                                   | 3.00 0100    |           |           |
| L40     | 36         | (Area) CCI-65FP-085125                | 0.00 - 3.00  | 1.0000    | 1.0000    |
|         |            | (H)                                   |              |           |           |
| L40     | 37         | (Area) CCI-65FP-085125                | 0.00 - 3.00  | 1.0000    | 1.0000    |
|         |            | (H)                                   |              |           |           |
|         |            | · · · · · · · · · · · · · · · · · · · |              |           |           |

## Effective Width of Flat Linear Attachments / Feed Lines

|   | Tower   | Attachment | Description            | Attachment | Ratio      | Effective |
|---|---------|------------|------------------------|------------|------------|-----------|
|   | Section | Record No. |                        | Segment    | Calculatio | Width     |
|   |         |            |                        | Elev.      | n          | Ratio     |
|   |         |            |                        |            | Method     |           |
| 1 | L11     | 43         | (Area) CCI-65FP-060100 | 94.75 -    | Auto       | 0.0797    |
|   |         |            | (H)                    | 95.50      |            |           |
|   | L11     | 44         | (Area) CCI-65FP-060100 | 94.75 -    | Auto       | 0.0797    |
|   |         |            | (H)                    | 95.50      |            |           |

| Tower       | Attachment | Description                   | Attachment       | Ratio      | Effective |
|-------------|------------|-------------------------------|------------------|------------|-----------|
| Section     | Record No. |                               | Segment          | Calculatio | Width     |
|             |            |                               | Elev.            | Method     | Ralio     |
| L11         | 45         | (Area) CCI-65FP-060100        | 94.75 -          | Auto       | 0.0797    |
|             |            | (H)                           | 95.50            |            |           |
| L12         | 43         | (Area) CCI-65FP-060100        | 93.50 -          | Auto       | 0.0740    |
| 1 4 0       | 11         |                               | 94.75            | Auto       | 0.0740    |
| LIZ         | 44         | (Area) CCI-05FP-000100<br>(H) | 93.50 -<br>94.75 | Auto       | 0.0740    |
| L12         | 45         | (Area) CCI-65FP-060100        | 93.50 -          | Auto       | 0.0740    |
|             |            | (H)                           | 94.75            |            |           |
| L13         | 43         | (Area) CCI-65FP-060100        | 93.25 -          | Auto       | 0.1247    |
| 1 12        | 11         | (H)<br>(Aroo) CCI 6555 060100 | 93.50            | Auto       | 0 1247    |
| LIJ         |            | (H)                           | 93.50            | Auto       | 0.1247    |
| L13         | 45         | (Area) CCI-65FP-060100        | 93.25 -          | Auto       | 0.1247    |
|             |            | (H)                           | 93.50            |            |           |
| L14         | 43         | (Area) CCI-65FP-060100        | 88.25 -          | Auto       | 0.1078    |
| 11/         | 11         | (H)<br>(Area) CCL65EP-060100  | 93.25            | Auto       | 0 1078    |
| L 14        |            | (H)                           | 93.25            | Auto       | 0.1070    |
| L14         | 45         | (Area) CCI-65FP-060100        | 88.25 -          | Auto       | 0.1078    |
|             |            | (H)                           | 93.25            |            |           |
| L15         | 43         | (Area) CCI-65FP-060100        | 83.25 -          | Auto       | 0.0774    |
| 15          | 44         | (ח)<br>(Area) CCI-65EP-060100 | 83.25 -          | Auto       | 0 0774    |
| 210         |            | (H)                           | 88.25            | 71010      | 0.0774    |
| L15         | 45         | (Area) CCI-65FP-060100        | 83.25 -          | Auto       | 0.0774    |
|             |            | (H)                           | 88.25            |            |           |
| L16         | 43         | (Area) CCI-65FP-060100        | 74.75 -          | Auto       | 0.0388    |
| 116         | 44         | (ח)<br>(Area) CCI-65EP-060100 | 03.25<br>74 75 - | Auto       | 0.0388    |
| LIU         |            | (H)                           | 83.25            | 71010      | 0.0000    |
| L16         | 45         | (Area) CCI-65FP-060100        | 74.75 -          | Auto       | 0.0388    |
|             |            | (H)                           | 83.25            |            |           |
| L17         | 43         | (Area) CCI-65FP-060100        | 74.50 -          | Auto       | 0.0468    |
| 17          | 44         | (ח)<br>(Area) CCI-65EP-060100 | 74.75<br>74.50 - | Auto       | 0.0468    |
| <b>L</b> 11 |            | (H)                           | 74.75            | 71010      | 0.0400    |
| L17         | 45         | (Area) CCI-65FP-060100        | 74.50 -          | Auto       | 0.0468    |
|             | 10         |                               | 74.75            |            | 0.0004    |
| L18         | 43         | (Area) CCI-65FP-060100        | 69.50 -<br>74.50 | Auto       | 0.0281    |
| L18         | 44         | (Area) CCI-65FP-060100        | 69.50 -          | Auto       | 0.0281    |
|             |            | (H)                           | 74.50            | ,          |           |
| L18         | 45         | (Area) CCI-65FP-060100        | 69.50 -          | Auto       | 0.0281    |
| 1.10        | 40         |                               | 74.50            | Auto       | 0.0000    |
| L19         | 43         | (Area) CCI-05FP-000100<br>(H) | 69.50            | Auto       | 0.0033    |
| L19         | 44         | (Area) CCI-65FP-060100        | 64.50 -          | Auto       | 0.0033    |
|             |            | (H)                           | 69 <u>.</u> 50   |            |           |
| L19         | 45         | (Area) CCI-65FP-060100        | 64.50 -          | Auto       | 0.0033    |
| 1.20        | 13         | (H)<br>(Area) CCL65EP-060100  | 69.50            | Auto       | 0,0000    |
| LZU         | +3         | (H)                           | 64.50            | Auto       | 0.0000    |
| L20         | 44         | (Area) CCI-65FP-060100        | 62.50 -          | Auto       | 0.0000    |
|             |            | (H)                           | 64.50            |            |           |
| L20         | 45         | (Area) CCI-65FP-060100        | 62.50 -          | Auto       | 0.0000    |
| 1 21        | 43         | (ח)<br>(Area) CCI-65EP-060100 | 62 25 -          | Auto       | 0 0000    |
|             | 5          | (H)                           | 62.50            | 71010      | 5.0000    |
| L21         | 44         | (Area) CCI-65FP-060100        | 62.25 -          | Auto       | 0.0000    |
|             |            | (H)                           | 62.50            | <b>.</b> . | 0.0000    |
| L21         | 45         | (Area) CCI-65FP-060100        | 62.25 -          | Auto       | 0.0000    |
| 22          | 39         | (H)<br>(Area) CCI-65FP-065125 | 57 75 -          | Auto       | 0.0000    |
|             |            | (H)                           | 60.50            | , 1010     | 510000    |
| L22         | 40         | (Area) CCI-65FP-065125        | 57.75 -          | Auto       | 0.0000    |
| 1.00        |            |                               | 60.50            | ۲ ۲        | 0.0000    |
| L22         | 41         | (Area) ССІ-65FP-065125<br>/Ц\ | 57.75 -<br>60 50 | Auto       | 0.0000    |
|             |            | I (FI)                        | 00.00            |            | . I       |

|   | Tower<br>Section | Attachment<br>Record No. | Description                                             | Attachment<br>Segment     | Ratio<br>Calculatio | Effective<br>Width<br>Potio |
|---|------------------|--------------------------|---------------------------------------------------------|---------------------------|---------------------|-----------------------------|
|   |                  |                          |                                                         | Elev.                     | Method              | Ralio                       |
| 1 | L22              | 43                       | (Area) CCI-65FP-060100                                  | 60.50 -                   | Auto                | 0.0000                      |
|   | L22              | 44                       | (H)<br>(Area) CCI-65FP-060100<br>(H)                    | 62.25<br>60.50 -<br>62.25 | Auto                | 0.0000                      |
|   | L22              | 45                       | (11)<br>(Area) CCI-65FP-060100<br>(H)                   | 60.50 -<br>62.25          | Auto                | 0.0000                      |
|   | L23              | 39                       | (Area) CCI-65FP-065125<br>(H)                           | 57.50<br>57.75            | Auto                | 0.0405                      |
|   | L23              | 40                       | (Area) CCI-65FP-065125<br>(H)                           | 57.50 -<br>57.75          | Auto                | 0.0405                      |
|   | L23              | 41                       | (Area) CCI-65FP-065125<br>(H)                           | 57.50<br>57.75            | Auto                | 0.0405                      |
|   | L24              | 39                       | (Area) CCI-65FP-065125<br>(H)<br>(Area) CCI 65FP 065125 | 52.50<br>57.50            | Auto                | 0.0266                      |
|   | 24               | 40                       | (Area) CCI-65EP-065125<br>(H)<br>(Area) CCI-65EP-065125 | 57.50 -                   | Auto                | 0.0200                      |
|   | L25              | 39                       | (Area) CCI-65FP-065125<br>(Area) CCI-65FP-065125        | 57.50<br>47.50 -          | Auto                | 0.0019                      |
|   | L25              | 40                       | (H)<br>(Area) CCI-65FP-065125                           | 52.50<br>47.50 -          | Auto                | 0.0019                      |
|   | L25              | 41                       | (H)<br>(Area) CCI-65FP-065125                           | 52.50<br>47.50 -          | Auto                | 0.0019                      |
|   | L26              | 39                       | (H)<br>(Area) CCI-65FP-065125                           | 52.50<br>39.50 -          | Auto                | 0.0000                      |
|   | L26              | 40                       | (H)<br>(Area) CCI-65FP-065125<br>(لا)                   | 47.50<br>39.50 -<br>47.50 | Auto                | 0.0000                      |
|   | L26              | 41                       | (ח)<br>(Area) CCI-65FP-065125<br>(H)                    | 39.50<br>47.50            | Auto                | 0.0000                      |
|   | L27              | 39                       | (17)<br>(Area) CCI-65FP-065125<br>(H)                   | 38.50 -<br>39.50          | Auto                | 0.0000                      |
|   | L27              | 40                       | (Area) CCI-65FP-065125<br>(H)                           | 38.50 -<br>39.50          | Auto                | 0.0000                      |
|   | L27              | 41                       | (Area) CCI-65FP-065125<br>(H)                           | 38.50 -<br>39.50          | Auto                | 0.0000                      |
|   | L28              | 39                       | (Area) CCI-65FP-065125<br>(H)                           | 38.25 -<br>38.50          | Auto                | 0.0000                      |
|   | L28              | 40                       | (Area) CCI-65FP-065125<br>(H)                           | 38.25 - 38.50             | Auto                | 0.0000                      |
|   | L20<br>1 20      | 41                       | (Area) CCI-65FF-065125<br>(H)<br>(Area) CCI-65FP-065125 | 38.50<br>38.00            | Auto                | 0.0000                      |
|   | L29              | 40                       | (Area) CCI-65FP-065125<br>(H)<br>(Area) CCI-65FP-065125 | 38.25<br>38.00 -          | Auto                | 0.0000                      |
|   | L29              | 41                       | (H)<br>(Area) CCI-65FP-065125                           | 38.25<br>38.00 -          | Auto                | 0.0000                      |
|   | L30              | 35                       | (H)<br>(Area) CCI-65FP-085125                           | 38.25<br>33.00 -          | Auto                | 0.1796                      |
|   | L30              | 36                       | (H)<br>(Area) CCI-65FP-085125                           | 35.50<br>33.00 -          | Auto                | 0.1796                      |
|   | L30              | 37                       | (H)<br>(Area) CCI-65FP-085125<br>(H)                    | 35.50<br>33.00 -<br>35.50 | Auto                | 0.1796                      |
|   | L30              | 39                       | (۱۱)<br>(Area) CCI-65FP-065125<br>(H)                   | 33.00 -<br>38.00          | Auto                | 0.0000                      |
|   | L30              | 40                       | (Area) CCI-65FP-065125<br>(H)                           | 33.00 -<br>38.00          | Auto                | 0.0000                      |
|   | L30              | 41                       | (Area) CCI-65FP-065125<br>(H)                           | 35.50 -<br>38.00          | Auto                | 0.0000                      |
|   | L31              | 35                       | (Area) CCI-65FP-085125<br>(H)                           | 31.75 -<br>33.00          | Auto                | 0.1720                      |
|   | L31              | 36                       | (Area) CCI-65FP-085125<br>(H)                           | 31.75 -<br>33.00          | Auto                | 0.1720                      |
|   | L31              | 37                       | (Area) CCI-65FP-085125<br>(H)<br>(Area) CCI-65FP-065125 | 31.75<br>33.00<br>31.75   | Auto                | 0.1720                      |
|   | 201              | 55                       | (H)                                                     | 33.00                     | Auto                | 0.0000                      |

| Tower   | Attachment | Description                    | Attachment   | Ratio      | Effective |
|---------|------------|--------------------------------|--------------|------------|-----------|
| Section | Record No. |                                | Segment      | Calculatio | Width     |
|         |            |                                | Liev.        | Method     | Ralio     |
| L31     | 40         | (Area) CCI-65FP-065125         | 31.75 -      | Auto       | 0.0000    |
|         |            | (H)                            | 33.00        |            |           |
| L32     | 35         | (Area) CCI-65FP-085125         | 31.50 -      | Auto       | 0.2156    |
| 1.22    | 26         | (H)                            | 31.75        | Auto       | 0.0156    |
| LJZ     | 30         | (Area) CCI-05FP-065125<br>(H)  | 31.50 -      | Auto       | 0.2156    |
| L32     | 37         | (Area) CCI-65FP-085125         | 31.50 -      | Auto       | 0.2156    |
|         |            | (H)                            | 31.75        |            |           |
| L32     | 39         | (Area) CCI-65FP-065125         | 31.50 -      | Auto       | 0.0000    |
| 1 2 2   | 40         | (H)<br>(Aroa) CCL 65EB 065125  | 31./5        | Auto       | 0.0000    |
| LJZ     | 40         | (H)                            | 31.75        | Auto       | 0.0000    |
| L33     | 35         | (Area) CCI-65FP-085125         | 28.25 -      | Auto       | 0.2085    |
|         |            | (H)                            | 31.50        | _          |           |
| L33     | 36         | (Area) CCI-65FP-085125         | 28.25 -      | Auto       | 0.2085    |
| 133     | 37         | (ח)<br>(Area) CCI-65EP-085125  | 28 25 -      | Auto       | 0 2085    |
| 200     | 0,         | (H)                            | 31.50        | , (010     | 0.2000    |
| L33     | 39         | (Area) CCI-65FP-065125         | 28.25 -      | Auto       | 0.0000    |
| 1.00    |            |                                | 31.50        |            | 0.0000    |
| L33     | 40         | Area) CCI-65EP-065125 (الم     | 28.25 -      | Auto       | 0.0000    |
| 134     | 35         | (ח)<br>(Area) CCI-65EP-085125  | 28 00 -      | Auto       | 0 1626    |
| 201     |            | (H)                            | 28.25        | , 1010     | 011020    |
| L34     | 36         | (Area) CCI-65FP-085125         | 28.00 -      | Auto       | 0.1626    |
|         |            |                                | 28.25        |            | 0.4000    |
| L34     | 37         | (Area) CCI-65FP-085125         | 28.00 -      | Auto       | 0.1626    |
| L34     | 39         | (ח)<br>(Area) CCI-65FP-065125  | 28.00 -      | Auto       | 0.000     |
| 201     |            | (H)                            | 28.25        | , (410     | 010000    |
| L34     | 40         | (Area) CCI-65FP-065125         | 28.00 -      | Auto       | 0.0000    |
| 1.05    |            |                                | 28.25        |            | 0.4504    |
| L35     | 35         | (Area) CCI-65FP-085125         | 23.00 -      | Auto       | 0.1521    |
| L35     | 36         | (11)<br>(Area) CCI-65FP-085125 | 23.00 -      | Auto       | 0.1521    |
|         |            | (H)                            | 28.00        |            |           |
| L35     | 37         | (Area) CCI-65FP-085125         | 23.00 -      | Auto       | 0.1521    |
| 1.25    | 20         | (H)<br>(Aroo) CCL 655B 065125  | 28.00        | Auto       | 0,0000    |
| L30     | 39         | (Area) CCI-05FF-005125<br>(H)  | 25.50 -      | Auto       | 0.0000    |
| L35     | 40         | (Area) CCI-65FP-065125         | 25.50 -      | Auto       | 0.0000    |
|         |            | (H)                            | 28.00        |            |           |
| L36     | 35         | (Area) CCI-65FP-085125         | 18.00 -      | Auto       | 0.1293    |
| 136     | 36         | (Η)<br>(Δrea) CCI-65EP-085125  | 23.00        | Auto       | 0 1293    |
| LUU     |            | (H)                            | 23.00        | Auto       | 0.1200    |
| L36     | 37         | (Area) CCI-65FP-085125         | 18.00 -      | Auto       | 0.1293    |
| 1.07    |            | (H)                            | 23.00        |            | 0.4004    |
| L37     | 35         | Area) CCI-65FP-085125 (الم     | 13.00 -      | Auto       | 0.1091    |
| L37     | 36         | (11)<br>(Area) CCI-65FP-085125 | 13.00 -      | Auto       | 0,1091    |
|         |            | (H)                            | 18.00        | ,          |           |
| L37     | 37         | (Area) CCI-65FP-085125         | 13.00 -      | Auto       | 0.1091    |
| 1.00    | 25         |                                | 18.00        | A t .      | 0.0000    |
| L38     | 30         | (Area) CCI-65FP-085125         | 8.00 - 13.00 | Auto       | 0.0889    |
| L38     | 36         | (17)<br>(Area) CCI-65FP-085125 | 8.00 - 13.00 | Auto       | 0.0889    |
|         |            | (H)                            |              |            |           |
| L38     | 37         | (Area) CCI-65FP-085125         | 8.00 - 13.00 | Auto       | 0.0889    |
| 1.20    | <b>Э</b> Е | (H)                            | 300 000      | Auto       | 0 0607    |
| L39     | 35         | (Area) CCI-00FP-000125<br>(H)  | 3.00 - 8.00  | Auto       | 0.0007    |
| L39     | 36         | (Area) CCI-65FP-085125         | 3.00 - 8.00  | Auto       | 0.0687    |
|         |            | (H)                            |              |            |           |
| L39     | 37         | (Area) CCI-65FP-085125         | 3.00 - 8.00  | Auto       | 0.0687    |
| 1.40    | 35         | (Αrea) CCI-65EP-085125         | 0.00 - 3.00  | Auto       | 0.0513    |
| L40     |            | (H)                            | 0.00 - 0.00  | 7010       | 0.0010    |
| •       | •          |                                | •            |            |           |

|   | Tower<br>Section | Attachment<br>Record No. | Description            | Attachment<br>Segment | Ratio<br>Calculatio | Effective<br>Width |
|---|------------------|--------------------------|------------------------|-----------------------|---------------------|--------------------|
|   |                  |                          |                        | Ēlev.                 | n                   | Ratio              |
|   |                  |                          |                        |                       | Method              |                    |
| 1 | L40              | 36                       | (Area) CCI-65FP-085125 | 0.00 - 3.00           | Auto                | 0.0513             |
|   |                  |                          | (H)                    |                       |                     |                    |
|   | L40              | 37                       | (Area) CCI-65FP-085125 | 0.00 - 3.00           | Auto                | 0.0513             |
|   |                  |                          | (H)                    |                       |                     |                    |

## **Discrete Tower Loads**

| Description             | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                 | $C_A A_A$<br>Front           | $C_A A_A$<br>Side            | Weight                  |
|-------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---------------------------------|------------------------------|------------------------------|-------------------------|
|                         |                   |                | ft<br>ft<br>ft              | o                         | ft        |                                 | ft²                          | ft²                          | lb                      |
| **148**                 |                   |                |                             |                           |           |                                 |                              |                              |                         |
| 800 10121 w/ Mount Pipe | A                 | From Leg       | 4.00<br>0.00<br>-2.00       | 0.0000                    | 148.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 3.60<br>4.00<br>4.42<br>5.29 | 2.95<br>3.34<br>3.74<br>4.59 | 72<br>115<br>166<br>297 |
|                         | _                 |                |                             |                           |           | 2" Ice                          |                              |                              |                         |
| 800 10121 w/ Mount Pipe | В                 | From Leg       | 4.00<br>0.00                | 0.0000                    | 148.00    | No Ice<br>1/2''                 | 3.60<br>4.00                 | 2.95<br>3.34                 | 72<br>115               |
|                         |                   |                | -2.00                       |                           |           | lce<br>1" lce<br>2" lce         | 4.42<br>5.29                 | 3.74<br>4.59                 | 166<br>297              |
| 800 10121 w/ Mount Pipe | С                 | From Leg       | 4.00<br>0.00                | 0.0000                    | 148.00    | No Ice<br>1/2"                  | 3.60<br>4.00                 | 2.95<br>3.34                 | 72<br>115               |
|                         |                   |                | -2.00                       |                           |           | Ice<br>1" Ice<br>2" Ice         | 4.42<br>5.29                 | 3.74<br>4.59                 | 166<br>297              |
| QS66512-2 w/ Mount Pipe | А                 | From Leg       | 4.00                        | 0.0000                    | 148.00    | No Ice                          | 4.04                         | 4.18                         | 137                     |
|                         |                   |                | 0.00<br>-2.00               |                           |           | 1/2''<br>Ice                    | 4.42<br>4.82                 | 4.57<br>4.97                 | 206<br>287              |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice                | 5.63                         | 5.79                         | 482                     |
| QS86512-2 w/ Mount Pipe | В                 | From Leg       | 4.00                        | 0.0000                    | 148.00    | No Ice                          | 5.42                         | 5.62                         | 173                     |
|                         |                   |                | 0.00                        |                           |           | 1/2"                            | 5.92                         | 6.12                         | 264                     |
|                         |                   |                | -2.00                       |                           |           | Ice<br>1" Ice                   | 6.43<br>7.48                 | 6.63<br>7.69                 | 368<br>619              |
|                         | 0                 | - ·            | 4.00                        | 0.0000                    | 1 1 0 0 0 | 2" Ice                          |                              | 4.40                         | 107                     |
| QS66512-2 w/ Mount Pipe | C                 | From Leg       | 4.00                        | 0.0000                    | 148.00    | NO ICE                          | 4.04                         | 4.18                         | 137                     |
|                         |                   |                | -2.00                       |                           |           |                                 | 4.42                         | 4.57                         | 200                     |
|                         |                   |                | 2.00                        |                           |           | 1" Ice<br>2" Ice                | 5.63                         | 5.79                         | 482                     |
| PD320-2                 | в                 | From Leg       | 4.00                        | 0.0000                    | 148.00    | No Ice                          | 1.80                         | 1.00                         | 15                      |
|                         |                   |                | 0.00                        |                           |           | 1/2"                            | 3.41                         | 2.02                         | 22                      |
|                         |                   |                | -2.00                       |                           |           | Ice<br>1" Ice                   | 5.02<br>8.23                 | 3.03<br>5.07                 | 29<br>43                |
|                         | Р                 | From Loc       | 4 00                        | 0 0000                    | 1/12 00   | 2" Ice                          | 1 01                         | 1 01                         | 20                      |
| DC0-40-00-10-0F         | D                 | From Leg       | 4.00                        | 0.0000                    | 140.00    | 1/2"                            | 1.89                         | 1.21                         | 20<br>42                |
|                         |                   |                | 2.00                        |                           |           | ce                              | 2.11                         | 2.11                         | 67                      |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice                | 2.57                         | 2.57                         | 126                     |
| RRUS12/RRUS A2          | А                 | From Leg       | 4.00                        | 0.0000                    | 148.00    | No Ice                          | 3.14                         | 1.84                         | 72                      |
|                         |                   | -              | 0.00                        |                           |           | 1/2"                            | 3.36                         | 2.01                         | 99                      |
|                         |                   |                | -2.00                       |                           |           | Ice                             | 3.59                         | 2.20                         | 130                     |
|                         | _                 |                |                             |                           |           | 1" Ice<br>2" Ice                | 4.07                         | 2.59                         | 203                     |
| RRUS12/RRUS A2          | В                 | From Leg       | 4.00                        | 0.0000                    | 148.00    | No Ice                          | 3.14                         | 1.84                         | 72                      |

| Description                                   | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                  | $C_A A_A$<br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight       |
|-----------------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--------------------|---------------------------------------|--------------|
|                                               |                   |                | ft<br>ft<br>ft                      | ٥                         | ft        |                  | ft²                | ft²                                   | lb           |
|                                               |                   |                | 0.00                                |                           |           | 1/2"             | 3.36               | 2.01                                  | 99           |
|                                               |                   |                | -2.00                               |                           |           | Ice<br>1" Ice    | 3.59<br>4.07       | 2.20<br>2.59                          | 130<br>203   |
|                                               | C                 | From Log       | 4 00                                | 0.0000                    | 149.00    | 2" Ice           | 2 1 /              | 1 0/                                  | 70           |
| RRUS 12/RRUS AZ                               | C                 | FIONLEY        | 4.00                                | 0.0000                    | 140.00    | 1/2"             | 3.14               | 2.01                                  | 99           |
|                                               |                   |                | 2.00                                |                           |           | lce              | 3.59               | 2.20                                  | 130          |
|                                               |                   |                |                                     |                           |           | 1" Ice<br>2" Ice | 4.07               | 2.59                                  | 203          |
| RRUS 11                                       | А                 | From Leg       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 2.78               | 1.19                                  | 48           |
|                                               |                   |                | 0.00                                |                           |           | 1/2"             | 2.99               | 1.33                                  | 68           |
|                                               |                   |                | -2.00                               |                           |           | Ice              | 3.21               | 1.49                                  | 92           |
|                                               |                   |                |                                     |                           |           |                  | 3.00               | 1.00                                  | 150          |
| RRUS 11                                       | в                 | From Lea       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 2.78               | 1.19                                  | 48           |
|                                               | _                 |                | 0.00                                |                           |           | 1/2"             | 2.99               | 1.33                                  | 68           |
|                                               |                   |                | -2.00                               |                           |           | ce               | 3.21               | 1.49                                  | 92           |
|                                               |                   |                |                                     |                           |           | 1" Ice           | 3.66               | 1.83                                  | 150          |
|                                               | 0                 | <b>F</b>       | 1 00                                | 0.0000                    | 1 10 00   | 2" Ice           | 0.70               | 4.40                                  | 40           |
| RRUS 11                                       | C                 | From Leg       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 2.78               | 1.19                                  | 48           |
|                                               |                   |                | -2.00                               |                           |           | i/z              | 2.99               | 1.33                                  | 92           |
|                                               |                   |                | 2.00                                |                           |           | 1" Ice           | 3.66               | 1.83                                  | 150          |
|                                               |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |              |
| DTMABP7819VG12A                               | А                 | From Leg       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 0.98               | 0.34                                  | 19           |
|                                               |                   |                | 0.00                                |                           |           | 1/2"             | 1.10               | 0.42                                  | 26           |
|                                               |                   |                | -2.00                               |                           |           | Ice              | 1.23               | 0.51                                  | 36           |
|                                               |                   |                |                                     |                           |           | 1" Ice<br>2" Ice | 1.52               | 0.71                                  | 60           |
| DTMABP7819VG12A                               | В                 | From Leg       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 0.98               | 0.34                                  | 19           |
|                                               |                   |                | 0.00                                |                           |           | 1/2"             | 1.10               | 0.42                                  | 26           |
|                                               |                   |                | -2.00                               |                           |           | Ice              | 1.23               | 0.51                                  | 36           |
|                                               |                   |                |                                     |                           |           | 1" Ice<br>2" Ice | 1.52               | 0.71                                  | 60           |
| DTMABP7819VG12A                               | С                 | From Lea       | 4 00                                | 0 0000                    | 148 00    | Z ICE            | 0.98               | 0.34                                  | 19           |
|                                               | 0                 | 110m Log       | 0.00                                | 0.0000                    | 110.00    | 1/2"             | 1.10               | 0.42                                  | 26           |
|                                               |                   |                | -2.00                               |                           |           | Ice              | 1.23               | 0.51                                  | 36           |
|                                               |                   |                |                                     |                           |           | 1" Ice           | 1.52               | 0.71                                  | 60           |
|                                               |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |              |
| (2) 2.4" Dia. x 6-ft                          | A                 | From Leg       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 1.43               | 1.43                                  | 22           |
|                                               |                   |                | _2 00                               |                           |           |                  | 2.20               | 2.20                                  | 33<br>48     |
|                                               |                   |                | -2.00                               |                           |           | 1" Ice           | 3.06               | 3.06                                  | 90           |
|                                               |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |              |
| (2) 2.4" Dia. x 6-ft                          | В                 | From Leg       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 1.43               | 1.43                                  | 22           |
|                                               |                   |                | 0.00                                |                           |           | 1/2"             | 1.92               | 1.92                                  | 33           |
|                                               |                   |                | -2.00                               |                           |           |                  | 2.29               | 2.29                                  | 48           |
|                                               |                   |                |                                     |                           |           | 2" Ice           | 3.00               | 3.06                                  | 90           |
| (2) 2.4" Dia. x 6-ft                          | С                 | From Lea       | 4.00                                | 0.0000                    | 148.00    | No Ice           | 1.43               | 1.43                                  | 22           |
| (2) 211 2141 / 0 11                           | •                 | <b>_</b> og    | 0.00                                | 0.0000                    |           | 1/2"             | 1.92               | 1.92                                  | 33           |
|                                               |                   |                | -2.00                               |                           |           | ce               | 2.29               | 2.29                                  | 48           |
|                                               |                   |                |                                     |                           |           | 1" Ice           | 3.06               | 3.06                                  | 90           |
|                                               | 0                 | News           |                                     | 0.0000                    | 140.00    | 2" Ice           | 00.00              | 00.00                                 | 0050         |
|                                               | U U               | none           |                                     | 0.0000                    | 148.00    | 1/2"             | 20.39<br>31 10     | 20.39<br>31 10                        | 2390<br>3061 |
| <u>, , , , , , , , , , , , , , , , , , , </u> |                   |                |                                     |                           |           | ice              | 36.20              | 36.20                                 | 3864         |
|                                               |                   |                |                                     |                           |           | 1" Ice           | 45,40              | 45.40                                 | 5764         |
| ** 4 0 0 **                                   |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |              |
| FRICSSON AIR 21 B24                           | Δ                 | From Lea       | 4 00                                | 0 0000                    | 139.00    | No Ice           | 3 14               | 2 59                                  | 112          |
| B4P w/ Mount Pipe                             |                   | . 1011 LOG     | 0.00                                | 0.0000                    | 100.00    | 1/2"             | 3.45               | 2.88                                  | 164          |
|                                               |                   |                | 0.00                                |                           |           | ce               | 3.77               | 3.19                                  | 225          |
|                                               |                   |                |                                     |                           |           | 1" Ice<br>2" Ice | 4.43               | 3.84                                  | 375          |

| Description                              | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                                                     | $C_A A_A$<br>Front               | $C_A A_A$<br>Side            | Weight                   |
|------------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|-----------------------------------------------------|----------------------------------|------------------------------|--------------------------|
|                                          |                   |                | ft<br>ft<br>ft                      | ٥                         | ft        |                                                     | ft²                              | ft²                          | lb                       |
| ERICSSON AIR 21 B2A<br>B4P w/ Mount Pipe | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | No Ice<br>1/2"<br>Ice<br>1" Ice                     | 3.14<br>3.45<br>3.77<br>4.43     | 2.59<br>2.88<br>3.19<br>3.84 | 112<br>164<br>225<br>375 |
| ERICSSON AIR 21 B2A<br>B4P w/ Mount Pipe | С                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice           | 3.14<br>3.45<br>3.77<br>4.43     | 2.59<br>2.88<br>3.19<br>3.84 | 112<br>164<br>225<br>375 |
| AIR 32 B2A/B66AA w/<br>Mount Pipe        | A                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice           | 3.76<br>4.12<br>4.48<br>5.24     | 3.15<br>3.49<br>3.84<br>4.58 | 194<br>252<br>320<br>485 |
| AIR 32 B2A/B66AA w/<br>Mount Pipe        | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | No Ice<br>1/2"<br>Ice<br>1" Ice                     | 3.76<br>4.12<br>4.48<br>5.24     | 3.15<br>3.49<br>3.84<br>4.58 | 194<br>252<br>320<br>485 |
| AIR 32 B2A/B66AA w/<br>Mount Pipe        | С                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | No Ice<br>1/2"<br>Ice<br>1" Ice                     | 3.76<br>4.12<br>4.48<br>5.24     | 3.15<br>3.49<br>3.84<br>4.58 | 194<br>252<br>320<br>485 |
| APXVAARR24_43-U-NA20<br>w/ Mount Pipe    | A                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice           | 14.69<br>15.46<br>16.23<br>17.82 | 6.87<br>7.55<br>8.25<br>9.67 | 186<br>315<br>458<br>788 |
| APXVAARR24_43-U-NA20<br>w/ Mount Pipe    | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice           | 14.69<br>15.46<br>16.23<br>17.82 | 6.87<br>7.55<br>8.25<br>9.67 | 186<br>315<br>458<br>788 |
| APXVAARR24_43-U-NA20<br>w/ Mount Pipe    | С                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice           | 14.69<br>15.46<br>16.23<br>17.82 | 6.87<br>7.55<br>8.25<br>9.67 | 186<br>315<br>458<br>788 |
| RADIO 4449 B12/B71                       | A                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.65<br>1.81<br>1.98<br>2.34     | 1.16<br>1.30<br>1.45<br>1.76 | 74<br>90<br>109<br>155   |
| RADIO 4449 B12/B71                       | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | No Ice<br>1/2"<br>Ice<br>1" Ice                     | 1.65<br>1.81<br>1.98<br>2.34     | 1.16<br>1.30<br>1.45<br>1.76 | 74<br>90<br>109<br>155   |
| RADIO 4449 B12/B71                       | С                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.65<br>1.81<br>1.98<br>2.34     | 1.16<br>1.30<br>1.45<br>1.76 | 74<br>90<br>109<br>155   |
| KRY 112 144/1                            | A                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice           | 0.35<br>0.43<br>0.51<br>0.70     | 0.17<br>0.23<br>0.30<br>0.46 | 11<br>14<br>19<br>32     |
| KRY 112 144/1                            | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 139.00    | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.35<br>0.43<br>0.51<br>0.70     | 0.17<br>0.23<br>0.30<br>0.46 | 11<br>14<br>19<br>32     |

| Description                           | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                         | $C_A A_A$<br>Front   | C <sub>A</sub> A <sub>A</sub><br>Side | Weight         |
|---------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-------------------------|----------------------|---------------------------------------|----------------|
|                                       |                   |                | ft<br>ft<br>ft              | ٥                         | ft        |                         | ft²                  | ft²                                   | lb             |
| KRY 112 144/1                         | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 139.00    | No Ice<br>1/2"<br>Ice   | 0.35<br>0.43<br>0.51 | 0.17<br>0.23<br>0.30                  | 11<br>14<br>19 |
|                                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 0.70                 | 0.46                                  | 32             |
| (2) 2.4" Dia. x 4-ft                  | A                 | From Leg       | 4.00                        | 0.0000                    | 139.00    | No Ice<br>1/2"          | 0.87<br>1 12         | 0.87<br>1 12                          | 15<br>22       |
|                                       |                   |                | 0.00                        |                           |           | Ice<br>1" Ice<br>2" Ice | 1.37<br>1.91         | 1.37<br>1.91                          | 32<br>62       |
| (2) 2.4" Dia. x 4-ft                  | В                 | From Leg       | 4.00                        | 0.0000                    | 139.00    | No Ice                  | 0.87                 | 0.87                                  | 15             |
|                                       |                   |                | 0.00<br>0.00                |                           |           | 1/2"<br>Ice             | 1.12<br>1.37         | 1.12<br>1.37                          | 22<br>32       |
|                                       |                   |                | 0.00                        |                           |           | 1" Ice<br>2" Ice        | 1.91                 | 1.91                                  | 62             |
| (2) 2.4" Dia. x 4-ft                  | С                 | From Leg       | 4.00                        | 0.0000                    | 139.00    | No Ice                  | 0.87                 | 0.87                                  | 15             |
|                                       |                   |                | 0.00                        |                           |           | l/2                     | 1.37                 | 1.12                                  | 32             |
|                                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 1.91                 | 1.91                                  | 62             |
| Platform Mount [LP 1201-<br>1 HR-11   | С                 | None           |                             | 0.0000                    | 139.00    | No Ice<br>1/2"          | 26.39<br>31.40       | 26.39<br>31.40                        | 2356<br>3061   |
| <u>-</u> [[[(()]]]]                   |                   |                |                             |                           |           | lce                     | 36.20                | 36.20                                 | 3864           |
| **100**                               |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 45.40                | 45.40                                 | 5764           |
| MT6407-77A w/ Mount                   | А                 | From Leg       | 4.00                        | 0.0000                    | 126.00    | No Ice                  | 4.91                 | 2.68                                  | 96             |
| Pipe                                  |                   |                | 0.00                        |                           |           | 1/2"                    | 5.26                 | 3.14                                  | 136            |
|                                       |                   |                | 2.00                        |                           |           | 1" Ice                  | 6.36                 | 4.63                                  | 288            |
| MT6407-77A w/ Mount                   | R                 | From Log       | 4 00                        | 0 0000                    | 126.00    | 2" Ice                  | 1 01                 | 2.68                                  | 96             |
| Pipe                                  | D                 | I TOILLES      | 0.00                        | 0.0000                    | 120.00    | 1/2"                    | 5.26                 | 3.14                                  | 136            |
|                                       |                   |                | 2.00                        |                           |           | Ice<br>1" Ico           | 5.61                 | 3.62                                  | 180<br>288     |
|                                       |                   |                |                             |                           |           | 2" Ice                  | 0.50                 | 4.05                                  | 200            |
| MT6407-77A w/ Mount                   | С                 | From Leg       | 4.00                        | 0.0000                    | 126.00    | No Ice                  | 4.91                 | 2.68                                  | 96<br>136      |
| Pipe                                  |                   |                | 2.00                        |                           |           | l/2                     | 5.26<br>5.61         | 3.14                                  | 136            |
|                                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 6.36                 | 4.63                                  | 288            |
| BXA-70063-4CF-EDIN-X<br>w/ Mount Pine | A                 | From Leg       | 4.00                        | 0.0000                    | 126.00    | No Ice<br>1/2"          | 4.84<br>5.35         | 3.54<br>4.03                          | 37<br>75       |
| W Mount 1 po                          |                   |                | 2.00                        |                           |           | Ice                     | 5.88                 | 4.53                                  | 121            |
|                                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 6.99                 | 5.59                                  | 237            |
| BXA-70063-4CF-EDIN-X                  | В                 | From Leg       | 4.00                        | 0.0000                    | 126.00    | No Ice                  | 4.84                 | 3.54                                  | 37             |
| w/ Mount Pipe                         |                   |                | 0.00                        |                           |           | 1/2"                    | 5.35                 | 4.03                                  | 75             |
|                                       |                   |                | 2.00                        |                           |           | 1" Ice<br>2" Ice        | 5.88<br>6.99         | 4.53<br>5.59                          | 237            |
| BXA-70063-4CF-EDIN-X                  | С                 | From Leg       | 4.00                        | 0.0000                    | 126.00    | No Ice                  | 4.84                 | 3.54                                  | 37             |
| w/ Mount Pipe                         |                   |                | 0.00                        |                           |           | 1/2"                    | 5.35                 | 4.03                                  | 75<br>121      |
|                                       |                   |                | 2.00                        |                           |           | 1" Ice<br>2" Ice        | 6.99                 | 4.53<br>5.59                          | 237            |
| (2) SBNHH-1D65B w/                    | А                 | From Leg       | 4.00                        | 0.0000                    | 126.00    | No Ice                  | 4.09                 | 3.30                                  | 66             |
| Mount Pipe                            |                   |                | 0.00<br>2.00                |                           |           | 1/2''<br>Ice            | 4.49<br>4.89         | 3.68<br>4.07                          | 130<br>204     |
|                                       |                   |                | 2.00                        |                           |           | 1" Ice<br>2" Ice        | 5.72                 | 4.87                                  | 386            |
| (2) SBNHH-1D65B w/                    | В                 | From Leg       | 4.00                        | 0.0000                    | 126.00    | No Ice                  | 4.09                 | 3.30                                  | 66             |
| Mount Pipe                            |                   |                | 0.00                        |                           |           | 1/2''<br>Ice            | 4.49<br>4.89         | 3.68<br>4 07                          | 130<br>204     |
|                                       |                   |                | 2.00                        |                           |           | 1" Ice                  | 5.72                 | 4.87                                  | 386            |

| Description             | Face<br>or<br>Leg | Offset<br>Type              | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                  | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight    |
|-------------------------|-------------------|-----------------------------|-------------------------------------|---------------------------|-----------|------------------|--------------------|-------------------|-----------|
|                         |                   |                             | ft<br>ft<br>ft                      | ٥                         | ft        |                  | ft²                | ft²               | lb        |
|                         |                   |                             |                                     |                           |           | 2" Ice           |                    |                   |           |
| (2) SBNHH-1D65B w/      | С                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 4.09               | 3.30              | 66        |
| Mount Pipe              |                   |                             | 2.00                                |                           |           | 1/2              | 4.49               | 3.68              | 130       |
|                         |                   |                             | 2.00                                |                           |           | 1" Ice<br>2" Ice | 4.89<br>5.72       | 4.87              | 386       |
| CBRS w/ Mount Pipe      | А                 | From Lea                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 1.45               | 0.99              | 32        |
| •                       |                   | U                           | 0.00                                |                           |           | 1/2"             | 1.67               | 1.18              | 48        |
|                         |                   |                             | 2.00                                |                           |           | ce               | 1.90               | 1.39              | 68        |
|                         |                   |                             |                                     |                           |           | 1" Ice<br>2" Ice | 2.42               | 1.85              | 123       |
| CBRS w/ Mount Pipe      | В                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 1.45               | 0.99              | 32        |
|                         |                   |                             | 0.00                                |                           |           | 1/2"             | 1.67               | 1.18              | 48        |
|                         |                   |                             | 2.00                                |                           |           |                  | 1.90               | 1.39              | 68        |
|                         | _                 |                             |                                     |                           |           | 2" Ice           | 2.42               | 1.85              | 123       |
| CBRS w/ Mount Pipe      | С                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 1.45               | 0.99              | 32        |
|                         |                   |                             | 0.00                                |                           |           | 1/2"             | 1.67               | 1.18              | 48        |
|                         |                   |                             | 2.00                                |                           |           |                  | 1.90               | 1.39              | 08<br>102 |
|                         |                   |                             |                                     |                           |           | 2" Ice           | 2.42               | 1.00              | 125       |
| REV01U-D1A              | А                 | From Lea                    | 4 00                                | 0 0000                    | 126 00    | No Ice           | 1 88               | 1 25              | 84        |
|                         |                   | 110m Log                    | 0.00                                | 0.0000                    | 120.00    | 1/2"             | 2.05               | 1.39              | 103       |
|                         |                   |                             | 2.00                                |                           |           | Ice              | 2.22               | 1.54              | 124       |
|                         |                   |                             |                                     |                           |           | 1" Ice<br>2" Ice | 2.60               | 1.86              | 175       |
| RFV01U-D1A              | В                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 1.88               | 1.25              | 84        |
|                         |                   | -                           | 0.00                                |                           |           | 1/2"             | 2.05               | 1.39              | 103       |
|                         |                   |                             | 2.00                                |                           |           | ce               | 2.22               | 1.54              | 124       |
|                         |                   |                             |                                     |                           |           | 1" Ice           | 2.60               | 1.86              | 175       |
|                         | ~                 |                             | 4 00                                | 0.0000                    | 100.00    | 2" Ice           | 1 00               | 4.05              | 0.4       |
| REVUIU-DIA              | U                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | 1/2"             | 1.88               | 1.20              | 84<br>102 |
|                         |                   |                             | 2.00                                |                           |           |                  | 2.05               | 1.59              | 103       |
|                         |                   |                             | 2.00                                |                           |           | 1" Ice           | 2.60               | 1.86              | 175       |
|                         |                   |                             |                                     |                           |           | 2" Ice           |                    |                   |           |
| RFV01U-D2A              | А                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 1.88               | 1.01              | 70        |
|                         |                   |                             | 0.00                                |                           |           | 1/2"             | 2.05               | 1.14              | 87        |
|                         |                   |                             | 2.00                                |                           |           | ce               | 2.22               | 1.28              | 106       |
|                         |                   |                             |                                     |                           |           | 1" Ice<br>2" Ice | 2.60               | 1.59              | 153       |
| RFV01U-D2A              | В                 | From Lea                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 1.88               | 1.01              | 70        |
|                         |                   | 0                           | 0.00                                |                           |           | 1/2"             | 2.05               | 1.14              | 87        |
|                         |                   |                             | 2.00                                |                           |           | ce               | 2.22               | 1.28              | 106       |
|                         |                   |                             |                                     |                           |           | 1" Ice           | 2.60               | 1.59              | 153       |
|                         | 0                 | <b>F</b> actor <b>1</b> and | 4 00                                | 0.0000                    | 100.00    | 2" Ice           | 4.00               | 1.01              | 70        |
| RFV010-D2A              | C                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | NO ICE           | 1.88               | 1.01              | 70        |
|                         |                   |                             | 2.00                                |                           |           | I/Z              | 2.00               | 1.14              | 106       |
|                         |                   |                             | 2.00                                |                           |           | 1" Ice           | 2.60               | 1.59              | 153       |
|                         |                   |                             |                                     |                           |           | 2" Ice           |                    |                   |           |
| DB-T1-6Z-8AB-0Z         | С                 | From Leg                    | 4.00                                | 0.0000                    | 126.00    | No Ice           | 4.80               | 2.00              | 44        |
|                         |                   |                             | 0.00                                |                           |           | 1/2"             | 5.07               | 2.19              | 80        |
|                         |                   |                             | 2.00                                |                           |           | Ice              | 5.35               | 2.39              | 120       |
|                         |                   |                             |                                     |                           |           | 1" Ice<br>2" Ice | 5.93               | 2.81              | 213       |
| Platform Mount [LP 404- | С                 | None                        |                                     | 0.0000                    | 126.00    | No Ice           | 35.82              | 35.82             | 2318      |
| 1_KCKR]                 |                   |                             |                                     |                           |           | 1/2"             | 45.85              | 45.85             | 3016      |
|                         |                   |                             |                                     |                           |           | Ice              | 55.76              | 55.76             | 3886      |
|                         |                   |                             |                                     |                           |           |                  | 10.11              | 15.11             | 0142      |
| **111**                 |                   |                             |                                     |                           |           | ∠ ice            |                    |                   |           |
| TME-800MHz 2X50W        | А                 | From Lea                    | 1.00                                | 0.0000                    | 111.00    | No Ice           | 2.06               | 1.93              | 64        |
| RRH W/FILTER            |                   |                             | 0.00                                |                           |           | 1/2"             | 2.24               | 2.11              | 86        |
|                         |                   |                             | 0.00                                |                           |           | Ice              | 2.43               | 2.29              | 111       |

| Description            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                  | $C_A A_A$<br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight |
|------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--------------------|---------------------------------------|--------|
|                        |                   |                | ft<br>ft<br>ft                      | ٥                         | ft        |                  | ft²                | ft²                                   | lb     |
|                        |                   |                |                                     |                           |           | 1" Ice<br>2" Ice | 2.83               | 2.68                                  | 172    |
| TME-800MHz 2X50W       | в                 | From Lea       | 1 00                                | 0 0000                    | 111 00    | No Ice           | 2.06               | 1 93                                  | 64     |
| RRH W/FILTER           | 2                 | 1 tom Log      | 0.00                                | 010000                    |           | 1/2"             | 2.24               | 2.11                                  | 86     |
|                        |                   |                | 0.00                                |                           |           | Ice              | 2.43               | 2.29                                  | 111    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 2.83               | 2.68                                  | 172    |
|                        | C                 | From Log       | 1 00                                | 0 0000                    | 111 00    |                  | 2.06               | 1 03                                  | 64     |
| RRH W/FILTER           | U                 | 110m Leg       | 0.00                                | 0.0000                    | 111.00    | 1/2"             | 2.00               | 2 11                                  | 86     |
|                        |                   |                | 0.00                                |                           |           | lce              | 2.43               | 2 29                                  | 111    |
|                        |                   |                | 0.00                                |                           |           | 1" Ice           | 2.83               | 2.68                                  | 172    |
|                        |                   |                |                                     |                           |           | 2" Ice           | 2100               | 2100                                  |        |
| PCS 1900MHz 4x45W-     | Α                 | From Lea       | 1 00                                | 0 0000                    | 111 00    | No Ice           | 2 32               | 2 24                                  | 60     |
| 65MHz                  |                   |                | 0.00                                | 010000                    |           | 1/2"             | 2.53               | 2.44                                  | 83     |
|                        |                   |                | 0.00                                |                           |           | ce               | 2.74               | 2.65                                  | 110    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 3.19               | 3.09                                  | 173    |
|                        |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |        |
| PCS 1900MHz 4x45W-     | В                 | From Leg       | 1.00                                | 0.0000                    | 111.00    | No Ice           | 2.32               | 2.24                                  | 60     |
| 65MHz                  |                   | Ũ              | 0.00                                |                           |           | 1/2"             | 2.53               | 2.44                                  | 83     |
|                        |                   |                | 0.00                                |                           |           | ce               | 2.74               | 2.65                                  | 110    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 3.19               | 3.09                                  | 173    |
|                        |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |        |
| PCS 1900MHz 4x45W-     | С                 | From Leg       | 1.00                                | 0.0000                    | 111.00    | No Ice           | 2.32               | 2.24                                  | 60     |
| 65MHz                  |                   | -              | 0.00                                |                           |           | 1/2"             | 2.53               | 2.44                                  | 83     |
|                        |                   |                | 0.00                                |                           |           | ce               | 2.74               | 2.65                                  | 110    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 3.19               | 3.09                                  | 173    |
|                        |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |        |
| Pipe Mount [PM 601-3]  | С                 | None           |                                     | 0.0000                    | 111.00    | No Ice           | 3.17               | 3.17                                  | 195    |
|                        |                   |                |                                     |                           |           | 1/2"             | 3.79               | 3.79                                  | 232    |
|                        |                   |                |                                     |                           |           | ce               | 4.42               | 4.42                                  | 279    |
|                        |                   |                |                                     |                           |           | 1" Ice<br>2" Ice | 5.76               | 5.76                                  | 401    |
| **109**                |                   |                |                                     |                           |           |                  |                    |                                       |        |
| APXVTM14-C-120 w/      | А                 | From Leg       | 4.00                                | 0.0000                    | 109.00    | No Ice           | 4.09               | 2.86                                  | 77     |
| Mount Pipe             |                   |                | 0.00                                |                           |           | 1/2"             | 4.48               | 3.23                                  | 127    |
|                        |                   |                | 1.00                                |                           |           | ce               | 4.88               | 3.61                                  | 185    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 5.71               | 4.40                                  | 331    |
|                        | _                 |                |                                     |                           | 400.00    | 2" Ice           | 4.00               |                                       |        |
| APXVIM14-C-120 w/      | В                 | From Leg       | 4.00                                | 0.0000                    | 109.00    | No Ice           | 4.09               | 2.86                                  | 77     |
| Mount Pipe             |                   |                | 0.00                                |                           |           | 1/2"             | 4.48               | 3.23                                  | 127    |
|                        |                   |                | 1.00                                |                           |           |                  | 4.88               | 3.61                                  | 185    |
|                        |                   |                |                                     |                           |           | 1 ICe            | 5.7 I              | 4.40                                  | 331    |
| ABXV/TM14 C 120 w/     | C                 | From Log       | 4 00                                | 0 0000                    | 100.00    |                  | 4.00               | 2.96                                  | 77     |
| Mount Pine             | C                 | 110m Leg       | 4.00                                | 0.0000                    | 103.00    | 1/2"             | 4.09               | 2.00                                  | 127    |
| Mount ipe              |                   |                | 1 00                                |                           |           | l/2              | 4.40               | 3.61                                  | 185    |
|                        |                   |                | 1.00                                |                           |           | 1" Ice           | 5 71               | 4 40                                  | 331    |
|                        |                   |                |                                     |                           |           | 2" Ice           | 0.71               | 4.40                                  | 001    |
| APXVSPP18-C-A20 w/     | А                 | From Lea       | 4 00                                | 0 0000                    | 109.00    | No Ice           | 4 60               | 4 01                                  | 95     |
| Mount Pipe             |                   | 110m Log       | 0.00                                | 0.0000                    | 100.00    | 1/2"             | 5.05               | 4.45                                  | 160    |
| mount ipo              |                   |                | 1.00                                |                           |           | lce              | 5.50               | 4.89                                  | 235    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 6.44               | 5.82                                  | 419    |
|                        |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |        |
| APXVSPP18-C-A20 w/     | В                 | From Leg       | 4.00                                | 0.0000                    | 109.00    | No Ice           | 4.60               | 4.01                                  | 95     |
| Mount Pipe             |                   | 0              | 0.00                                |                           |           | 1/2"             | 5.05               | 4.45                                  | 160    |
| ·                      |                   |                | 1.00                                |                           |           | ce               | 5.50               | 4.89                                  | 235    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 6.44               | 5.82                                  | 419    |
|                        |                   |                |                                     |                           |           | 2" Ice           |                    |                                       |        |
| (2) APXVSPP18-C-A20 w/ | С                 | From Leg       | 4.00                                | 0.0000                    | 109.00    | No Ice           | 4.60               | 4.01                                  | 95     |
| Mount Pipe             |                   | -              | 0.00                                |                           |           | 1/2"             | 5.05               | 4.45                                  | 160    |
|                        |                   |                | 1.00                                |                           |           | ce               | 5.50               | 4.89                                  | 235    |
|                        |                   |                |                                     |                           |           | 1" Ice           | 6.44               | 5.82                                  | 419    |
|                        | _                 |                |                                     |                           |           | 2" Ice           | o                  | 0.0.0                                 |        |
| SD212-SF3P2SNM         | В                 | From Leg       | 4.00                                | 0.0000                    | 109.00    | No Ice           | 6.37               | 28.33                                 | 40     |
| W/Mount Piipe          |                   |                | 0.00                                |                           |           | 1/2"             | 6.97               | 29.54                                 | 189    |

tnxTower Report - version 8.0.9.0

| Description              | Face<br>or<br>Leg | Offset<br>Type          | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                         | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight     |
|--------------------------|-------------------|-------------------------|-------------------------------------|---------------------------|-----------|-------------------------|--------------------|-------------------|------------|
|                          |                   |                         | ft<br>ft<br>ft                      | o                         | ft        |                         | ft²                | ft²               | lb         |
|                          |                   |                         | 4.00                                |                           |           | Ice<br>1" Ice<br>2" Ice | 7.58<br>8.82       | 30.62<br>32.84    | 343<br>687 |
| TD-RRH8X20-25            | А                 | From Lea                | 4.00                                | 0.0000                    | 109.00    | No Ice                  | 4.05               | 1.53              | 70         |
|                          |                   |                         | 0.00                                |                           |           | 1/2"                    | 4.30               | 1.71              | 97         |
|                          |                   |                         | 1.00                                |                           |           | ce                      | 4.56               | 1.90              | 128        |
|                          | Б                 | <b>F</b> actor <b>1</b> | 4.00                                | 0.0000                    | 100.00    | 1" Ice<br>2" Ice        | 5.10               | 2.30              | 201        |
| 1D-RRH8X20-25            | в                 | From Leg                | 4.00                                | 0.0000                    | 109.00    | 1/2"                    | 4.05               | 1.53              | 70         |
|                          |                   |                         | 1.00                                |                           |           | l/2                     | 4.30               | 1 90              | 128        |
|                          |                   |                         | 1.00                                |                           |           | 1" Ice<br>2" Ice        | 5.10               | 2.30              | 201        |
| TD-RRH8X20-25            | С                 | From Leg                | 4.00                                | 0.0000                    | 109.00    | No Ice                  | 4.05               | 1.53              | 70         |
|                          |                   | Ū.                      | 0.00                                |                           |           | 1/2"                    | 4.30               | 1.71              | 97         |
|                          |                   |                         | 1.00                                |                           |           | ce                      | 4.56               | 1.90              | 128        |
|                          | _                 |                         |                                     |                           |           | 1" Ice<br>2" Ice        | 5.10               | 2.30              | 201        |
| DB205-L                  | В                 | From Leg                | 4.00                                | 0.0000                    | 109.00    | No Ice                  | 1.72               | 1.72              | 36         |
|                          |                   |                         | 7.00                                |                           |           | 1/2                     | 3.45<br>5.20       | 3,45              | 52<br>79   |
|                          |                   |                         | 7.00                                |                           |           | 1" Ice<br>2" Ice        | 8.75               | 8.75              | 164        |
| K732267                  | А                 | From Leg                | 4.00                                | 0.0000                    | 109.00    | No Ice                  | 0.65               | 3.10              | 14         |
|                          |                   | -                       | 0.00                                |                           |           | 1/2"                    | 0.76               | 3.34              | 37         |
|                          |                   |                         | 7.00                                |                           |           | ce                      | 0.87               | 3.59              | 63         |
|                          |                   |                         |                                     |                           |           | 1" Ice                  | 1.12               | 4.11              | 126        |
| (2) 2 4" Dia x 6 ft      | ٨                 | From Log                | 4 00                                | 0 0000                    | 100.00    | 2" Ice                  | 1 / 2              | 1 1 2             | 22         |
| (2) 2.4 Dia. x 0-1       | A                 | FIOIILEG                | 4.00                                | 0.0000                    | 109.00    | 1/2"                    | 1.43               | 1.43              | 22         |
|                          |                   |                         | 0.00                                |                           |           | lce                     | 2 29               | 2 29              | 48         |
|                          |                   |                         |                                     |                           |           | 1" Ice                  | 3.06               | 3.06              | 90         |
| (2) 2 4" Dia x 6-ft      | в                 | From Lea                | 4 00                                | 0 0000                    | 109 00    | No Ice                  | 1 43               | 1 43              | 22         |
|                          | -                 | <b>.</b> _09            | 0.00                                | 0,0000                    | 100,00    | 1/2"                    | 1.92               | 1.92              | 33         |
|                          |                   |                         | 0.00                                |                           |           | ce                      | 2.29               | 2.29              | 48         |
|                          |                   |                         |                                     |                           |           | 1" Ice<br>2" Ice        | 3.06               | 3.06              | 90         |
| (2) 2.4" Dia. x 6-ft     | С                 | From Leg                | 4.00                                | 0.0000                    | 109.00    | No Ice                  | 1.43               | 1.43              | 22         |
|                          |                   |                         | 0.00                                |                           |           | 1/2"                    | 1.92               | 1.92              | 33         |
|                          |                   |                         | 0.00                                |                           |           | ICE                     | 2.29               | 2.29              | 48         |
|                          |                   |                         |                                     |                           |           | 2" Ice                  | 0.00               | 0.00              | 50         |
| Platform Mount [LP 1201- | С                 | None                    |                                     | 0.0000                    | 109.00    | No Ice                  | 18.38              | 18.38             | 2100       |
| 1]                       |                   |                         |                                     |                           |           | 1/2"                    | 22.11              | 22.11             | 2652       |
|                          |                   |                         |                                     |                           |           | ce                      | 25.87              | 25.87             | 3263       |
|                          |                   |                         |                                     |                           |           | 1" Ice                  | 33.47              | 33.47             | 4662       |
| **                       |                   |                         |                                     |                           |           | 2" Ice                  |                    |                   |            |
| MX08ER0665-21 w/         | А                 | From Lea                | 4 00                                | 0 0000                    | 99.00     | No Ice                  | 8 01               | 4 23              | 108        |
| Mount Pipe               |                   | 1 tom Log               | 0.00                                | 0.0000                    | 00100     | 1/2"                    | 8.52               | 4.69              | 194        |
| ·                        |                   |                         | 0.00                                |                           |           | ce                      | 9.04               | 5.16              | 292        |
|                          |                   |                         |                                     |                           |           | 1" Ice                  | 10.11              | 6.12              | 522        |
|                          | _                 |                         |                                     |                           | ~~~~      | 2" Ice                  |                    |                   | 100        |
| MXU8FRO665-21 w/         | в                 | ⊢rom Leg                | 4.00                                | 0.0000                    | 99.00     | No Ice                  | 8.01               | 4.23              | 108        |
| Mount Pipe               |                   |                         | 0.00                                |                           |           |                         | 8.52               | 4.69              | 194        |
|                          |                   |                         | 0.00                                |                           |           | 1" Ice                  | 10 11              | 6 12              | 232<br>522 |
|                          |                   |                         |                                     |                           |           | 2" Ice                  | 10.11              | 0.12              | ULL        |
| MX08FRO665-21 w/         | С                 | From Leg                | 4.00                                | 0.0000                    | 99.00     | No Ice                  | 8.01               | 4.23              | 108        |
| Mount Pipe               |                   | -                       | 0.00                                |                           |           | 1/2"                    | 8.52               | 4.69              | 194        |
|                          |                   |                         | 0.00                                |                           |           | Ice                     | 9.04               | 5.16              | 292        |
|                          |                   |                         |                                     |                           |           | 1" ICe                  | 10.11              | 6.12              | 522        |
| TA08025-R604             | Δ                 | From Lea                | 4 00                                | 0 0000                    | 99 00     | ∠ ice<br>No loe         | 1 96               | 0 98              | 64         |
| 11100020 0004            | <i>,</i> , ,      | . Tom Log               |                                     | 0.0000                    | 00.00     | 110 100                 |                    | 0.00              | <b>U</b> T |

| Description             | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                  | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight    |
|-------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--------------------|-------------------|-----------|
|                         |                   |                | ft<br>ft<br>ft                      | ٥                         | ft        |                  | ft²                | ft²               | lb        |
|                         |                   |                | 0.00                                |                           |           | 1/2"             | 2.14               | 1.11              | 81        |
|                         |                   |                | 0.00                                |                           |           |                  | 2.32               | 1.25              | 100       |
|                         |                   |                |                                     |                           |           | 2" Ice           | 2.71               | 1.55              | 148       |
| TA08025-B605            | А                 | From Leg       | 4.00                                | 0.0000                    | 99.00     | No Ice           | 1.96               | 1.13              | 75        |
|                         |                   |                | 0.00                                |                           |           | 1/2"             | 2.14               | 1.27              | 93        |
|                         |                   |                | 0.00                                |                           |           | Ice              | 2.32               | 1.41              | 114       |
|                         |                   |                |                                     |                           |           | 1" Ice<br>2" Ice | 2.71               | 1.72              | 164       |
| TA08025-B604            | в                 | From Leg       | 4.00                                | 0.0000                    | 99.00     | No Ice           | 1.96               | 0.98              | 64        |
|                         |                   | U              | 0.00                                |                           |           | 1/2"             | 2.14               | 1.11              | 81        |
|                         |                   |                | 0.00                                |                           |           | Ice              | 2.32               | 1.25              | 100       |
|                         |                   |                |                                     |                           |           | 1" Ice<br>2" Ico | 2.71               | 1.55              | 148       |
| TA08025-B605            | в                 | From Lea       | 4.00                                | 0.0000                    | 99.00     | No Ice           | 1.96               | 1.13              | 75        |
|                         |                   |                | 0.00                                |                           |           | 1/2"             | 2.14               | 1.27              | 93        |
|                         |                   |                | 0.00                                |                           |           | ce               | 2.32               | 1.41              | 114       |
|                         |                   |                |                                     |                           |           | 1" Ice           | 2.71               | 1.72              | 164       |
| TA08025-B604            | C                 | From Lea       | 4 00                                | 0 0000                    | 99.00     | Z ICe            | 1 96               | 0.98              | 64        |
| 1700020 8004            | 0                 | 110m Log       | 0.00                                | 0.0000                    | 00.00     | 1/2"             | 2.14               | 1.11              | 81        |
|                         |                   |                | 0.00                                |                           |           | Ice              | 2.32               | 1.25              | 100       |
|                         |                   |                |                                     |                           |           | 1" Ice           | 2.71               | 1.55              | 148       |
| TA09025 B605            | C                 | From Log       | 4.00                                | 0 0000                    | 00.00     | 2" Ice           | 1.06               | 1 1 2             | 75        |
| 1408023-8003            | C                 | I TOIL LEG     | 0.00                                | 0.0000                    | 99.00     | 1/2"             | 2 14               | 1.13              | 93        |
|                         |                   |                | 0.00                                |                           |           | lce              | 2.32               | 1.41              | 114       |
|                         |                   |                |                                     |                           |           | 1" Ice           | 2.71               | 1.72              | 164       |
|                         |                   |                | 4.00                                | 0.0000                    | 00.00     | 2" Ice           | 0.04               | 4.00              | 00        |
| RDIDC-9181-PF-48        | A                 | From Leg       | 4.00                                | 0.0000                    | 99.00     | NO ICE           | 2.31               | 1.29              | 22<br>//1 |
|                         |                   |                | 0.00                                |                           |           | lce              | 2.70               | 1.61              | 63        |
|                         |                   |                |                                     |                           |           | 1" Ice           | 3.12               | 1.96              | 117       |
| (2) et v. 2" Mount Dino | ^                 | From Log       | 4 00                                | 0 0000                    | 00.00     | 2" Ice           | 1 00               | 1 00              | 20        |
| (2) 8 X 2 Mount Fipe    | A                 | FIONLEY        | 4.00                                | 0.0000                    | 99.00     | 1/2"             | 2 73               | 2 73              | 29<br>44  |
|                         |                   |                | 0.00                                |                           |           | lce              | 3.40               | 3.40              | 63        |
|                         |                   |                |                                     |                           |           | 1" Ice           | 4.40               | 4.40              | 119       |
|                         |                   | <b>F</b>       | 4.00                                | 0.0000                    | 00.00     | 2" Ice           | 4.00               | 4.00              | 00        |
| (2) 8' x 2" Mount Pipe  | В                 | From Leg       | 4.00                                | 0.0000                    | 99.00     | NO ICE<br>1/2"   | 1.90               | 1.90              | 29<br>44  |
|                         |                   |                | 0.00                                |                           |           | lce              | 3.40               | 3.40              | 63        |
|                         |                   |                |                                     |                           |           | 1" Ice           | 4.40               | 4.40              | 119       |
|                         |                   |                |                                     |                           | ~~~~      | 2" Ice           |                    |                   |           |
| (2) 8' x 2" Mount Pipe  | С                 | From Leg       | 4.00                                | 0.0000                    | 99.00     | No Ice           | 1.90               | 1.90              | 29        |
|                         |                   |                | 0.00                                |                           |           | lce              | 3 40               | 2.73              | 63        |
|                         |                   |                | 0.00                                |                           |           | 1" Ice           | 4.40               | 4.40              | 119       |
|                         |                   |                |                                     |                           |           | 2" Ice           |                    |                   |           |
| Commscope MC-PK8-DSH    | С                 | None           |                                     | 0.0000                    | 99.00     | No Ice           | 34.24              | 34.24             | 1749      |
|                         |                   |                |                                     |                           |           |                  | 62.95<br>91.66     | 62.95<br>91.66    | 2099      |
|                         |                   |                |                                     |                           |           | 1" Ice           | 149.08             | 149.08            | 3151      |
|                         |                   |                |                                     |                           |           | 2" Ice           |                    |                   |           |
| **80**<br>**70**        |                   |                |                                     |                           |           |                  |                    |                   |           |
| SRL-227                 | А                 | From Lea       | 6.00                                | 0.0000                    | 79.00     | No Ice           | 4.63               | 1.45              | 35        |
|                         |                   | <b>L</b> og    | 0.00                                | 2.0000                    |           | 1/2"             | 9.39               | 3.73              | 71        |
|                         |                   |                | -4.00                               |                           |           | Ice              | 14.15              | 6.02              | 106       |
|                         |                   |                |                                     |                           |           | 1" Ice           | 23.67              | 10.59             | 178       |
| K730267                 | R                 | From Lea       | 4 00                                | 0 0000                    | 79 00     |                  | 0.65               | 3 10              | 14        |
|                         |                   | LIGHT LOG      | 0.00                                | 0.0000                    | , 0.00    | 1/2"             | 0.76               | 3.34              | 37        |
|                         |                   |                | -3.00                               |                           |           | Ice              | 0.87               | 3.59              | 63        |
|                         |                   |                |                                     |                           |           | 1" Ice           | 1.12               | 4.11              | 126       |

| Description                          | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vort | Azimuth<br>Adjustmen<br>t | Placement |                                                    | $C_A A_A$<br>Front             | C <sub>A</sub> A <sub>A</sub><br>Side | Weight                    |
|--------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|----------------------------------------------------|--------------------------------|---------------------------------------|---------------------------|
|                                      |                   |                | ft<br>ft<br>ft                      | ٥                         | ft        |                                                    | ft²                            | ft <sup>2</sup>                       | lb                        |
| 2.4" Dia. x 4-ft                     | A                 | From Leg       | 6.00<br>0.00<br>0.00                | 0.0000                    | 79.00     | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice          | 0.87<br>1.12<br>1.37<br>1.91   | 0.87<br>1.12<br>1.37<br>1.91          | 15<br>22<br>32<br>62      |
| 2.4" Dia. x 4-ft                     | В                 | From Leg       | 6.00<br>0.00<br>0.00                | 0.0000                    | 79.00     | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice          | 0.87<br>1.12<br>1.37<br>1.91   | 0.87<br>1.12<br>1.37<br>1.91          | 15<br>22<br>32<br>62      |
| 2.4" Dia. x 4-ft                     | С                 | From Leg       | 6.00<br>0.00<br>0.00                | 0.0000                    | 79.00     | 2 ICe<br>No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.87<br>1.12<br>1.37<br>1.91   | 0.87<br>1.12<br>1.37<br>1.91          | 15<br>22<br>32<br>62      |
| Side Arm Mount [SO 702-<br>3]        | С                 | None           |                                     | 0.0000                    | 79.00     | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice          | 2.53<br>3.37<br>4.12<br>5.76   | 2.53<br>3.37<br>4.12<br>5.76          | 81<br>126<br>188<br>365   |
| **74**<br>Pipe Mount [PM 601-1]      | A                 | From Leg       | 0.50<br>0.00<br>0.00                | 0.0000                    | 74.00     | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice          | 1.32<br>1.58<br>1.84<br>2.40   | 1.32<br>1.58<br>1.84<br>2.40          | 65<br>77<br>93<br>134     |
| **50**<br>GPS-TMG-HR-26N             | A                 | From Leg       | 4.00<br>0.00<br>1.00                | 0.0000                    | 50.00     | No Ice<br>1/2"<br>Ice<br>1" Ice                    | 0.21<br>0.27<br>0.33<br>0.49   | 0.13<br>0.18<br>0.24<br>0.37          | 1<br>3<br>6<br>17         |
| 2.4" Dia. x 2-ft                     | A                 | From Leg       | 3.00<br>0.00<br>0.00                | 0.0000                    | 50.00     | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice          | 0.35<br>0.48<br>0.62<br>0.92   | 0.35<br>0.48<br>0.62<br>0.92          | 7<br>11<br>17<br>33       |
| Side Arm Mount [SO 701-<br>1]        | A                 | From Leg       | 1.50<br>0.00<br>0.00                | 0.0000                    | 50.00     | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice          | 0.85<br>1.14<br>1.43<br>2.01   | 1.67<br>2.34<br>3.01<br>4.35          | 65<br>79<br>93<br>121     |
| ***<br>Side Arm Mount [SO 601-<br>3] | С                 | None           |                                     | 0.0000                    | 147.00    | No Ice<br>1/2"<br>Ice<br>1" Ice                    | 7.63<br>9.41<br>11.34<br>15.83 | 7.63<br>9.41<br>11.34<br>15.83        | 476<br>587<br>724<br>1077 |
| Side Arm Mount [SO 601-<br>3]        | С                 | None           |                                     | 0.0000                    | 15.00     | 2 ICe<br>No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 7.63<br>9.41<br>11.34<br>15.83 | 7.63<br>9.41<br>11.34<br>15.83        | 476<br>587<br>724<br>1077 |
| ***                                  |                   |                |                                     |                           |           |                                                    |                                |                                       |                           |

Dishes
| Description  | Face<br>or<br>Leg | Dish<br>Type                | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |                                        | Aperture<br>Area             | Weight                 |
|--------------|-------------------|-----------------------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------------------------------------|------------------------------|------------------------|
|              |                   |                             |                | ft                                  | 0                     | ٥                     | ft        | ft                  |                                        | ft²                          | lb                     |
| SC3-W100ASTX | В                 | Paraboloid<br>w/Shroud (HP) | From<br>Leg    | 1.00<br>0.00<br>0.00                | -61.0000              |                       | 80.00     | 3.00                | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 7.07<br>7.47<br>7.87<br>8.66 | 40<br>78<br>117<br>193 |
| HP2-23       | A                 | Paraboloid<br>w/Shroud (HP) | From<br>Leg    | 1.00<br>0.00<br>1.00                | 0.0000                |                       | 74.00     | 2.04                | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 3.27<br>3.55<br>3.82<br>4.36 | 27<br>50<br>60<br>100  |

### **Load Combinations**

| Comb. | Description                                |
|-------|--------------------------------------------|
| No.   | · · · · · · · · · · · · · · · · · · ·      |
| 1     | Dead Only                                  |
| 2     | 1.2 Dead+1.0 Wind 0 deg - No Ice           |
| 3     | 0.9 Dead+1.0 Wind 0 deg - No Ice           |
| 4     | 1.2 Dead+1.0 Wind 30 deg - No Ice          |
| 5     | 0.9 Dead+1.0 Wind 30 deg - No Ice          |
| 6     | 1.2 Dead+1.0 Wind 60 deg - No Ice          |
| 7     | 0.9 Dead+1.0 Wind 60 deg - No Ice          |
| 8     | 1.2 Dead+1.0 Wind 90 deg - No Ice          |
| 9     | 0.9 Dead+1.0 Wind 90 deg - No Ice          |
| 10    | 1.2 Dead+1.0 Wind 120 deg - No Ice         |
| 11    | 0.9 Dead+1.0 Wind 120 deg - No Ice         |
| 12    | 1.2 Dead+1.0 Wind 150 deg - No Ice         |
| 13    | 0.9 Dead+1.0 Wind 150 deg - No Ice         |
| 14    | 1.2 Dead+1.0 Wind 180 deg - No Ice         |
| 15    | 0.9 Dead+1.0 Wind 180 deg - No Ice         |
| 16    | 1.2 Dead+1.0 Wind 210 deg - No Ice         |
| 17    | 0.9 Dead+1.0 Wind 210 deg - No Ice         |
| 18    | 1.2 Dead+1.0 Wind 240 deg - No Ice         |
| 19    | 0.9 Dead+1.0 Wind 240 deg - No Ice         |
| 20    | 1.2 Dead+1.0 Wind 270 deg - No Ice         |
| 21    | 0.9 Dead+1.0 Wind 270 deg - No Ice         |
| 22    | 1.2 Dead+1.0 Wind 300 deg - No Ice         |
| 23    | 0.9 Dead+1.0 Wind 300 deg - No Ice         |
| 24    | 1.2 Dead+1.0 Wind 330 deg - No Ice         |
| 25    | 0.9 Dead+1.0 Wind 330 deg - No Ice         |
| 26    | 1.2 Dead+1.0 Ice+1.0 Temp                  |
| 27    | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp   |
| 28    | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp  |
| 29    | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp  |
| 30    | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp  |
| 31    | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp |
| 32    | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp |
| 33    | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp |
| 34    | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp |
| 35    | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp |
| 36    | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp |
| 37    | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp |
| 38    | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp |
| 39    | Dead+Wind 0 deg - Service                  |
| 40    | Dead+Wind 30 deg - Service                 |
| 41    | Dead+Wind 60 deg - Service                 |
| 42    | Dead+Wind 90 deg - Service                 |
| 43    | Dead+Wind 120 deg - Service                |
| 44    | Dead+Wind 150 deg - Service                |
| 45    | Dead+Wind 180 deg - Service                |
| 46    | Dead+Wind 210 deg - Service                |
| 47    | Dead+Wind 240 deg - Service                |
| 48    | Dead+Wind 2/U deg - Service                |
| 49    | Dead+Wind 300 deg - Service                |

tnxTower Report - version 8.0.9.0

Comb. No. 50

Dead+Wind 330 deg - Service

Description

### **Maximum Member Forces**

| Sectio | Elevation    | Component  | Condition        | Gov.    | Axial  | Major Axis | Minor Axis |
|--------|--------------|------------|------------------|---------|--------|------------|------------|
| n      | ft           | Туре       |                  | Load    |        | Moment     | Moment     |
| No.    |              |            |                  | Comb.   | lb     | lb-ft      | lb-ft      |
| L1     | 148 - 143    | Pole       | Max Tension      | 26      | 0      | 0          | 0          |
|        |              |            | Max. Compression | 26      | -12781 | -1359      | -792       |
|        |              |            | Max. Mx          | 8       | -4830  | -19451     | -198       |
|        |              |            | Max. My          | 14      | -4828  | -324       | -19256     |
|        |              |            | Max. Vy          | 20      | -5066  | 18713      | -159       |
|        |              |            | Max. Vx          | 14      | 5052   | -324       | -19256     |
|        |              |            | Max. Torque      | 4       |        |            | -896       |
| L2     | 143 - 138    | Pole       | Max Tension      | 1       | 0      | 0          | 0          |
|        |              |            | Max. Compression | 26      | -25964 | -1349      | -795       |
|        |              |            | Max. Mx          | 8       | -9824  | -50464     | -248       |
|        |              |            | Max. My          | 14      | -9819  | -375       | -50200     |
|        |              |            | Max. Vy          | 20      | -10048 | 49730      | -126       |
|        |              |            | Max. Vx          | 14      | 10037  | -375       | -50200     |
|        |              |            | Max. Torque      | 4       |        |            | -896       |
| L3     | 138 - 133    | Pole       | Max Tension      | 1       | 0      | 0          | 0          |
|        |              |            | Max. Compression | 26      | -26919 | -1345      | -809       |
|        |              |            | Max. Mx          | 8       | -10298 | -101903    | -279       |
|        |              |            | Max. My          | 14      | -10292 | -407       | -101585    |
|        |              |            | Max. Vy          | 20      | -10533 | 101173     | -125       |
|        |              |            | Max. Vx          | 14      | 10521  | -407       | -101585    |
|        |              |            | Max. Torque      | 4       |        |            | -896       |
| L4     | 133 - 128    | Pole       | Max Tension      | 1       | 0      | 0          | 0          |
|        |              |            | Max. Compression | 26      | -27897 | -1339      | -822       |
|        |              |            | Max. Mx          | 8       | -10792 | -155773    | -307       |
|        |              |            | Max. My          | 14      | -10786 | -437       | -155403    |
|        |              |            | Max. Vy          | 20      | -11023 | 155049     | -126       |
|        |              |            | Max. Vx          | 14      | 11012  | -437       | -155403    |
|        | 400 400      | <b>_</b> . | Max. I orque     | 4       |        | •          | -896       |
| L5     | 128 - 123    | Pole       | Max Lension      | 1       | 0      | 0          | 0          |
|        |              |            | Max. Compression | 26      | -41020 | -363       | -1402      |
|        |              |            | Max. Mx          | 8       | -15366 | -232520    | -184       |
|        |              |            | Max. My          | 14      | -15362 | 2          | -232189    |
|        |              |            | Max. Vy          | 20      | -16553 | 232278     | -523       |
|        |              |            |                  | 14      | 16486  | 2          | -232189    |
| 1.6    | 100 110      | Dala       | Max. Torque      | 4       | 0      | 0          | -896       |
| LO     | 123 - 110    | Pole       | Max Compression  | 1       | 41710  | 0          | 1416       |
|        |              |            | Max. Compression | 20      | -41719 | -303       | -1410      |
|        |              |            | Max My           | 0<br>1/ | -15750 | -200011    | -20        |
|        |              |            | Max Wy           | 20      | 16970  | 286574     | -200207    |
|        |              |            | Max Vy           | 1/      | 16803  | 163        | _286267    |
|        |              |            | Max Torque       | 18      | 10005  | 105        | 776        |
| 17     | 116 - 114 75 | Pole       | Max Tension      | 1       | 0      | 0          | 0          |
|        | 110 114.70   | 1 OIC      | Max Compression  | 26      | _43457 | -363       | -1436      |
|        |              |            | Max Mx           | 8       | -16719 | -372507    | 235        |
|        |              |            | Max My           | 14      | -16713 | 415        | -371638    |
|        |              |            | Max Vy           | 20      | -17412 | 372278     | -1012      |
|        |              |            | Max Vx           | 14      | 17346  | 415        | 371638     |
|        |              |            | Max Torque       | 18      |        | 110        | 775        |
| L8     | 114.75 -     | Pole       | Max Tension      | 1       | 0      | 0          | 0          |
| 20     | 109.75       | 1 010      |                  | •       | •      | •          | Ũ          |
|        |              |            | Max. Compression | 26      | -46128 | -363       | -1456      |
|        |              |            | Max. Mx          | 8       | -18039 | -461665    | 495        |
|        |              |            | Max. Mv          | 14      | -18032 | 670        | -460475    |
|        |              |            | Max. Vv          | 20      | -18640 | 461445     | -1314      |
|        |              |            | Max. Vx          | 14      | 18575  | 670        | -460475    |
|        |              |            | Max. Torque      | 18      |        |            | 775        |
| L9     | 109.75 -     | Pole       | Max Tension      | 1       | 0      | 0          | 0          |
|        | 104.75       |            |                  |         |        |            |            |
|        |              |            | Max. Compression | 26      | -57125 | -2255      | -4149      |

| Sectio<br>n | Elevation<br>ft | Component<br>Type | Condition         | Gov.<br>Load | Axial<br> | Major Axis<br>Moment | Minor Axis<br>Moment |
|-------------|-----------------|-------------------|-------------------|--------------|-----------|----------------------|----------------------|
| No.         |                 |                   |                   | Comb.        | lb        | lb-ft                | lb-ft                |
|             |                 |                   | Max. Mx           | 20           | -22280    | 576599               | -5132                |
|             |                 |                   | Max. My           | 14           | -22245    | 4726                 | -578166              |
|             |                 |                   | Max. Vv           | 20           | -22855    | 576599               | -5132                |
|             |                 |                   | Max. Vx           | 14           | 23130     | 4726                 | -578166              |
|             |                 |                   | Max Torque        | 4            | 20100     | 1120                 | -6417                |
| 1 10        | 104 75 -        | Pole              | Max Tension       | 1            | 0         | 0                    | 0,17                 |
| LIU         | 00.75           | I UIC             | Max Tension       | 1            | 0         | 0                    | 0                    |
|             | 99.75           |                   | May Comprossion   | 26           | 50061     | 2256                 | 4464                 |
|             |                 |                   | Max. Compression  | 20           | -20201    | -2200                | -4104                |
|             |                 |                   | Max. Mx           | 20           | -23078    | 691986               | -7462                |
|             |                 |                   | Max. My           | 14           | -23044    | 7019                 | -694925              |
|             |                 |                   | Max. Vy           | 20           | -23321    | 691986               | -7462                |
|             |                 |                   | Max. Vx           | 14           | 23596     | 7019                 | -694925              |
|             |                 |                   | Max. Torque       | 4            |           |                      | -6414                |
| L11         | 99.75 -         | Pole              | Max Tension       | 1            | 0         | 0                    | 0                    |
|             | 94.75           |                   |                   |              |           |                      |                      |
|             |                 |                   | Max Compression   | 26           | -66478    | -2255                | -3549                |
|             |                 |                   | May My            | 20           | _26911    | 824673               | _9681                |
|             |                 |                   | May My            | 20           | 20311     | 024010               | -300 I<br>820024     |
|             |                 |                   |                   | 14           | -200/4    | 3020                 | -029024              |
|             |                 |                   | wax. vy           | 20           | -21303    | 824673               | -90001               |
|             |                 |                   | Max. Vx           | 14           | 27621     | 9326                 | -829024              |
|             |                 |                   | Max. Torque       | 4            |           |                      | -6411                |
| L12         | 94.75 - 93.5    | Pole              | Max Tension       | 1            | 0         | 0                    | 0                    |
|             |                 |                   | Max. Compression  | 26           | -66859    | -2254                | -3550                |
|             |                 |                   | Max. Mx           | 20           | -27127    | 858853               | -10266               |
|             |                 |                   | Max. Mv           | 14           | -27090    | 9904                 | -863600              |
|             |                 |                   | Max Vv            | 20           | _27417    | 858853               | -10266               |
|             |                 |                   | May Vy            | 1/           | 27721     | 000000               | -863600              |
|             |                 |                   | IVIAX. VX         | 14           | 21134     | 9904                 | -003000              |
| 1.40        | 00 5 00 05      | D. 1              | Max. I orque      | 4            | <u>^</u>  | ^                    | -0209                |
| L13         | 93.5 - 93.25    | Pole              | Max Lension       | 1            | 0         | 0                    | U<br>2 7 7           |
|             |                 |                   | Max. Compression  | 26           | -66954    | -2258                | -3555                |
|             |                 |                   | Max. Mx           | 20           | -27203    | 865706               | -10386               |
|             |                 |                   | Max. My           | 14           | -27166    | 10016                | -870533              |
|             |                 |                   | Max. Vv           | 8            | 27434     | -865676              | 9261                 |
|             |                 |                   | Max Vx            | 14           | 27749     | 10016                | -870533              |
|             |                 |                   | Max Torquo        | 4            | 21145     | 10010                | 6268                 |
| 1.4.4       | 02.05           | Dela              | Max. Torque       | 4            | 0         | 0                    | -0200                |
| L14         | 93.25 -         | Pole              | Max Tension       | 1            | 0         | 0                    | 0                    |
|             | 88.25           |                   |                   | ~~           |           |                      |                      |
|             |                 |                   | iviax Compression | 26           | -68854    | -2248                | -3553                |
|             |                 |                   | Max. Mx           | 20           | -28395    | 1004123              | -12723               |
|             |                 |                   | Max. My           | 14           | -28360    | 12328                | -1010535             |
|             |                 |                   | Max. Vy           | 20           | -27952    | 1004123              | -12723               |
|             |                 |                   | Max. Vx           | 14           | 28270     | 12328                | -1010535             |
|             |                 |                   | Max. Torque       | 4            |           |                      | -6268                |
| 15          | 88 25 -         | Pole              | Max Tension       | 1            | 0         | 0                    | 0                    |
| L10         | 83.25           |                   | MAA TEHBIUH       |              | U         | 0                    | 0                    |
|             | 03.20           |                   | Max Compression   | 26           | 70775     | 2210                 | 3536                 |
|             |                 |                   | wax. Compression  | 20           | -10/10    | -2210                | -3030                |
|             |                 |                   | Max. Mx           | 20           | -29620    | 1145117              | -15060               |
|             |                 |                   | Max. My           | 14           | -29586    | 14640                | -1153114             |
|             |                 |                   | Max. Vy           | 20           | -28466    | 1145117              | -15060               |
|             |                 |                   | Max. Vx           | 14           | 28784     | 14640                | -1153114             |
|             |                 |                   | Max. Torque       | 4            |           |                      | -6266                |
| L16         | 83.25 -         | Pole              | Max Tension       | 1            | 0         | 0                    | 0                    |
|             | 74.75           |                   |                   |              | -         | -                    | -                    |
|             |                 |                   | Max. Compression  | 26           | -72426    | -2608                | -3760                |
|             |                 |                   | May My            | 20           | _30586    | _1252726             | 15650                |
|             |                 |                   | Max Max           | 11           | 20550     | 16105                | 10000                |
|             |                 |                   |                   | 14           | -30333    | 10420                | -1201917             |
|             |                 |                   | Max. Vy           | 20           | -29240    | 1252625              | -16893               |
|             |                 |                   | Max. Vx           | 14           | 29439     | 16425                | -1261917             |
|             |                 |                   | Max. Torque       | 16           |           |                      | 7197                 |
| L17         | 74.75 - 74.5    | Pole              | Max Tension       | 1            | 0         | 0                    | 0                    |
|             |                 |                   | Max. Compression  | 26           | -76802    | -3148                | -2510                |
|             |                 |                   | Max. Mx           | 20           | -33087    | 1401438              | -19655               |
|             |                 |                   | Max My            | 14           | -33046    | 19824                | -1411628             |
|             |                 |                   | Max Wy            | 20           | -30288    | 1/01/38              | _10655               |
|             |                 |                   | Max. Vy           | 20           | -00200    | 10004                | -18000               |
|             |                 |                   |                   | 14           | 30752     | 19824                | -1411028             |
|             |                 | <b>_</b> ·        | Max I orque       | 16           | c         | -                    | 7552                 |
| L18         | 74.5 - 69.5     | Pole              | Max Tension       | 1            | 0         | 0                    | 0                    |
|             |                 |                   | Max. Compression  | 26           | -79065    | -3107                | -2194                |
|             |                 |                   | Max. Mx           | 20           | -34585    | 1554400              | -22653               |

| Sectio | Elevation    | Component  | Condition          | Gov.  | Axial  | Major Axis | Minor Axis |
|--------|--------------|------------|--------------------|-------|--------|------------|------------|
| n      | ft           | Туре       |                    | Load  |        | Moment     | Moment     |
| No.    |              |            |                    | Comb. | lb     | lb-ft      | lb-ft      |
|        |              |            | Max. My            | 14    | -34547 | 23424      | -1566743   |
|        |              |            | Max. Vy            | 20    | -30864 | 1554400    | -22653     |
|        |              |            | Max. Vx            | 14    | 31327  | 23424      | -1566743   |
| 1.40   | 60 F 64 F    | Dele       | Max. Forque        | 10    | 0      | 0          | 7552       |
| L19    | 69.5 - 64.5  | Pole       | Iviax Tension      | 1     | 0      | 0          | 0          |
|        |              |            | Max. Compression   | 20    | -81211 | -3070      | -2172      |
|        |              |            | Max My             | 20    | -36044 | 1709694    | -20003     |
|        |              |            | Max. Wy            | 14    | -30000 | 27021      | -1724001   |
|        |              |            |                    | 20    | 21024  | 27024      | -20000     |
|        |              |            | Max. VX            | 14    | 51024  | 27021      | -1724001   |
| 1.20   | 645 625      | Polo       | Max Tongion        | 10    | 0      | 0          | 7400       |
| LZU    | 04.0 - 02.0  | FOIE       | Max Compression    | 26    | -82077 | -3055      | _2163      |
|        |              |            | Max My             | 20    | -36636 | 1772786    | -27061     |
|        |              |            | Max My             | 14    | -36601 | 28459      | _1788367   |
|        |              |            | Max Vy             | 20    | -31558 | 1772786    | -27061     |
|        |              |            | Max.Vy<br>Max.Vx   | 14    | 32021  | 28459      | -1788367   |
|        |              |            | Max Torque         | 16    | 02021  | 20100      | 7485       |
| L21    | 62.5 - 62 25 | Pole       | Max Tension        | 1     | 0      | 0          | 0          |
|        | 02.20        |            | Max. Compression   | 26    | -82167 | -3055      | -2165      |
|        |              |            | Max. Mx            | 20    | -36703 | 1780675    | -27219     |
|        |              |            | Max. Mv            | 14    | -36668 | 28638      | -1796371   |
|        |              |            | Max. Vv            | 20    | -31573 | 1780675    | -27219     |
|        |              |            | Max. Vx            | 14    | 32037  | 28638      | -1796371   |
|        |              |            | Max. Torque        | 16    |        |            | 7484       |
| L22    | 62.25 -      | Pole       | Max Tension        | 1     | 0      | 0          | 0          |
|        | 57.75        |            |                    |       |        |            |            |
|        |              |            | Max. Compression   | 26    | -83810 | -3018      | -2142      |
|        |              |            | Max. Mx            | 20    | -37761 | 1923521    | -30039     |
|        |              |            | Max. My            | 14    | -37730 | 31873      | -1941294   |
|        |              |            | Max. Vy            | 20    | -31947 | 1923521    | -30039     |
|        |              |            | Max. Vx            | 14    | 32409  | 31873      | -1941294   |
| 1.00   |              | <b>D</b> 1 | Max. I orque       | 16    | 0      | 0          | 7484       |
| L23    | 57.75-57.5   | Pole       | Max Tension        | 1     | 0      | 0          | 0          |
|        |              |            | Max. Compression   | 26    | -83927 | -3021      | -2145      |
|        |              |            | Max. Nix           | 20    | -37801 | 193 1505   | -30197     |
|        |              |            | Max My             | 14    | -37030 | 32031      | -1949394   |
|        |              |            | Max. Vy<br>Max. Vy | 20    | -31900 | 22051      | -30197     |
|        |              |            | Max. VX            | 14    | 32417  | 32051      | 7/91       |
| 1.24   | 57 5 52 5    | Polo       | Max Tonsion        | 10    | 0      | 0          | 0          |
| LZ4    | 57.5 - 52.5  | FUIE       | Max Compression    | 26    | _86273 | _2978      | _2118      |
|        |              |            | Max Mx             | 20    | -39491 | 2092478    | -33322     |
|        |              |            | Max Mv             | 14    | -39462 | 35635      | -2112669   |
|        |              |            | Max Vv             | 20    | -32456 | 2092478    | -33322     |
|        |              |            | Max. Vx            | 14    | 32917  | 35635      | -2112669   |
|        |              |            | Max. Torque        | 16    | -=     | 20000      | 7481       |
| L25    | 52.5 - 47.5  | Pole       | Max Tension        | 1     | 0      | 0          | 0          |
|        |              |            | Max, Compression   | 26    | -88827 | -2939      | -1474      |
|        |              |            | Max Mx             | 20    | -41240 | 2256133    | -36154     |
|        |              |            | Max. Mv            | 14    | -41215 | 39213      | -2278249   |
|        |              |            | Max. Vv            | 20    | -33033 | 2256133    | -36154     |
|        |              |            | Max. Vx            | 14    | 33461  | 39213      | -2278249   |
|        |              |            | Max. Torque        | 16    |        |            | 7479       |
| L26    | 47.5 - 39.5  | Pole       | Max Tension        | 1     | 0      | 0          | 0          |
|        |              |            | Max. Compression   | 26    | -90033 | -2920      | -1486      |
|        |              |            | Max. Mx            | 20    | -42081 | 2338969    | -37711     |
|        |              |            | Max. My            | 14    | -42058 | 40999      | -2362154   |
|        |              |            | Max. Vy            | 20    | -33269 | 2338969    | -37711     |
|        |              |            | Max. Vx            | 14    | 33697  | 40999      | -2362154   |
|        |              |            | Max. Torque        | 16    |        |            | 7309       |
| L27    | 39.5 - 38.5  | Pole       | Max Tension        | 1     | 0      | 0          | 0          |
|        |              |            | Max. Compression   | 26    | -95447 | -2870      | -1520      |
|        |              |            | Max. Mx            | 20    | -45956 | 2557587    | -41759     |
|        |              |            | Max. My            | 14    | -45935 | 45640      | -2583550   |
|        |              |            | Max. Vy            | 20    | -34008 | 2557587    | -41759     |
|        |              |            | Max. Vx            | 14    | 34436  | 45640      | -2583550   |
|        |              | _          | Max. Torque        | 16    |        |            | 7308       |
| L28    | 38.5 - 38.25 | Pole       | Max Tension        | 1     | 0      | 0          | 0          |

| Sectio | Elevation    | Component | Condition        | Gov.      | Axial            | Major Axis | Minor Axis             |
|--------|--------------|-----------|------------------|-----------|------------------|------------|------------------------|
| n      | ft           | Туре      |                  | Load      |                  | Moment     | Moment                 |
| No.    |              |           |                  | Comb.     | lb               | lb-ft      | lb-ft                  |
|        |              |           | Max. Compression | 26        | -95577           | -2872      | -1525                  |
|        |              |           | Max. Mx          | 20        | -46059           | 2566089    | -41915                 |
|        |              |           | Max. My          | 14        | -46038           | 45818      | -2592158               |
|        |              |           | Max. Vy          | 20        | -34023           | 2566089    | -41915                 |
|        |              |           | Max. Vx          | 14        | 34451            | 45818      | -2592158               |
|        |              |           | Max. Torque      | 16        |                  |            | 7307                   |
| L29    | 38.25 - 38   | Pole      | Max Tension      | 1         | 0                | 0          | 0                      |
|        |              |           | Max. Compression | 26        | -95698           | -2869      | -1526                  |
|        |              |           | Max. Mx          | 20        | -46145           | 2574595    | -42070                 |
|        |              |           | Max. My          | 14        | -46124           | 45997      | -2600771               |
|        |              |           | Max. Vy          | 20        | -34045           | 2574595    | -42070                 |
|        |              |           | Max, Vx          | 14        | 34473            | 45997      | -2600771               |
|        |              |           | Max. Torque      | 16        |                  |            | 7307                   |
| L30    | 38 - 33      | Pole      | Max Tension      | 1         | 0                | 0          | 0                      |
|        |              |           | Max. Compression | 26        | -98234           | -2873      | -1429                  |
|        |              |           | Max Mx           | 20        | -47880           | 2745829    | -45173                 |
|        |              |           | Max My           | 14        | -47861           | 49564      | -2774137               |
|        |              |           | Max Vy           | 20        | -34475           | 2745829    | _45173                 |
|        |              |           | Max Vy           | 14        | 3/001            | 19561      | 277/137                |
|        |              |           | Max Torquo       | 16        | 04001            | -3304      | 7307                   |
| 1 2 1  | 33 31 75     | Dolo      | Max Tonsion      | 10        | 0                | 0          | 0                      |
| LOI    | 33-31./5     | Fole      | Max Compression  | 1         | 00004            | 0          | 1076                   |
|        |              |           | Max. Compression | 20        | -90094           | -2007      | -13/0                  |
|        |              |           |                  | ∠U        | -40310           | 2100904    | -40947                 |
|        |              |           | Max. My          | 14        | -48300           | 50454      | -2817804               |
|        |              |           | Max. Vy          | 20        | -34582           | 2788964    | -45947                 |
|        |              |           | Max. Vx          | 14        | 35008            | 50454      | -2817804               |
|        |              |           | Max. Torque      | 16        |                  |            | 7305                   |
| L32    | 31.75 - 31.5 | Pole      | Max Tension      | 1         | 0                | 0          | 0                      |
|        |              |           | Max. Compression | 26        | -99059           | -2894      | -1370                  |
|        |              |           | Max. Mx          | 20        | -48451           | 2797607    | -46102                 |
|        |              |           | Max. My          | 14        | -48433           | 50631      | -2826554               |
|        |              |           | Max. Vy          | 20        | -34589           | 2797607    | -46102                 |
|        |              |           | Max. Vx          | 14        | 35015            | 50631      | -2826554               |
|        |              |           | Max. Torque      | 16        |                  |            | 7305                   |
| L33    | 31.5 - 28.25 | Pole      | Max Tension      | 1         | 0                | 0          | 0                      |
|        |              |           | Max. Compression | 26        | -101200          | -2925      | -1228                  |
|        |              |           | Max. Mx          | 20        | -49991           | 2910498    | -48111                 |
|        |              |           | Max, My          | 14        | -49975           | 52942      | -2940826               |
|        |              |           | Max. Vv          | 20        | -34903           | 2910498    | -48111                 |
|        |              |           | Max. Vx          | 14        | 35328            | 52942      | -2940826               |
|        |              |           | Max. Torque      | 16        |                  |            | 7305                   |
| 134    | 28 25 - 28   | Pole      | Max Tension      | 1         | 0                | 0          | 0                      |
| 201    |              |           | Max Compression  | 26        | -101349          | -2930      | -1221                  |
|        |              |           | Max Mx           | 20        | -50104           | 2919223    | -48266                 |
|        |              |           | Max My           | 14        | -50087           | 53120      | -2949657               |
|        |              |           | Max Wy           | 20        | _34916           | 2919223    | -48266                 |
|        |              |           | Max Vy           | 1/        | 35342            | 53120      | -2949657               |
|        |              |           | Max Torque       | 16        | 00072            | 00120      | 730/                   |
| 135    | 28 - 23      | Pole      | Max Tonguo       | 1         | Ο                | Ο          | ۲.00 <del>4</del><br>۸ |
| L00    | 20 - 23      |           | Max Compression  | 26        | -10/252          | _2004      | _1001                  |
|        |              |           | May My           | 20        | -104202          | 3004       | -1001                  |
|        |              |           | Max Mu           | 20        | -JZ 199<br>52106 | 5034700    | 2107210                |
|        |              |           | Wax Wy           | 14<br>20  | -02100           | 2004765    | -312/319<br>E19/7      |
|        |              |           | Max. Vy          | 2U<br>1 4 | -30320<br>25750  | SU94/00    | -0104/                 |
|        |              |           |                  | 14        | 35750            | 1000       | -312/319               |
| 1.00   | 00 40        | D.1.      | Max Torque       | 16        | 0                | 0          | 7304                   |
| L36    | 23 - 18      | Pole      | iviax Lension    | 1         | U                | U          | 0                      |
|        |              |           | Max. Compression | 26        | -107096          | -2804      | -780                   |
|        |              |           | Max. Mx          | 20        | -54334           | 32/2223    | -54415                 |
|        |              |           | Max. My          | 14        | -54323           | 60202      | -3306888               |
|        |              |           | Max. Vy          | 20        | -35695           | 3272223    | -54415                 |
|        |              |           | Max. Vx          | 14        | 36117            | 60202      | -3306888               |
|        |              |           | Max. Torque      | 16        |                  |            | 7303                   |
| L37    | 18 - 13      | Pole      | Max Tension      | 1         | 0                | 0          | 0                      |
|        |              |           | Max. Compression | 26        | -110946          | -2707      | -562                   |
|        |              |           | Max. Mx          | 20        | -57064           | 3451949    | -57468                 |
|        |              |           | Max. My          | 14        | -57056           | 63722      | -3488716               |
|        |              |           | Max. Vy          | 20        | -36287           | 3451949    | -57468                 |
|        |              |           | Max. Vx          | 14        | 36707            | 63722      | -3488716               |
|        |              |           | Max. Torque      | 16        |                  |            | 7302                   |
|        |              |           |                  |           |                  |            |                        |

148 Ft Monopole Tower Structural Analysis Project Number 1966278, Order 556619, Revision 1

| nent Moment                              |                              | Axiai                                               | Gov.                                  | Condition                                                                                             | Component | Elevation | Sectio |
|------------------------------------------|------------------------------|-----------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|-----------|--------|
|                                          | Moment                       |                                                     | Load                                  |                                                                                                       | Type      | ft        | n      |
| -ft lb-ft                                | lb-ft                        | lb                                                  | Comb.                                 |                                                                                                       |           |           | No.    |
| 0 0                                      | 0                            | 0                                                   | 1                                     | Max Tension                                                                                           | Pole      | 13 - 8    | L38    |
| <del>کا کا کا کا کا کا کا کا کا کا</del> | -2613                        | -113740                                             | 26                                    | Max. Compression                                                                                      |           |           |        |
| 4073 -60505                              | 3634073                      | -59250                                              | 20                                    | Max. Mx                                                                                               |           |           |        |
| 227 -3672933                             | 67227                        | -59245                                              | 14                                    | Max. My                                                                                               |           |           |        |
| 4073 -60505                              | 3634073                      | -36603                                              | 20                                    | Max. Vy                                                                                               |           |           |        |
| 227 -3672933                             | 67227                        | 37022                                               | 14                                    | Max. Vx                                                                                               |           |           |        |
| 7301                                     |                              |                                                     | 16                                    | Max. Torque                                                                                           |           |           |        |
| 0 C                                      | 0                            | 0                                                   | 1                                     | Max Tension                                                                                           | Pole      | 8 - 3     | L39    |
| 525 -149                                 | -2525                        | -116516                                             | 26                                    | Max. Compression                                                                                      |           |           |        |
| 7769 -63524                              | 3817769                      | -61462                                              | 20                                    | Max. Mx                                                                                               |           |           |        |
| 715 -3858711                             | 70715                        | -61460                                              | 14                                    | Max. My                                                                                               |           |           |        |
| 7769 -63524                              | 3817769                      | -36917                                              | 20                                    | Max. Vy                                                                                               |           |           |        |
| 715 -3858711                             | 70715                        | 37333                                               | 14                                    | Max. Vx                                                                                               |           |           |        |
| 7301                                     |                              |                                                     | 16                                    | Max. Torque                                                                                           |           |           |        |
| 0 C                                      | 0                            | 0                                                   | 1                                     | Max Tension                                                                                           | Pole      | 3 - 0     | L40    |
| 44                                       | -2480                        | -118141                                             | 26                                    | Max. Compression                                                                                      |           |           |        |
| 3732 -65327                              | 3928732                      | -62804                                              | 20                                    | Max. Mx                                                                                               |           |           |        |
| -3970918                                 | 72800                        | -62804                                              | 14                                    | Max. My                                                                                               |           |           |        |
| 3732 -65327                              | 3928732                      | -37102                                              | 20                                    | Max. Vý                                                                                               |           |           |        |
| -3970918                                 | 72800                        | 37517                                               | 14                                    | Max. Vx                                                                                               |           |           |        |
| 7301                                     |                              |                                                     | 16                                    | Max. Torque                                                                                           |           |           |        |
| 048888                                   | -2<br>392<br>72<br>392<br>72 | 0<br>-118141<br>-62804<br>-62804<br>-37102<br>37517 | 1<br>26<br>20<br>14<br>20<br>14<br>16 | Max Tension<br>Max. Compression<br>Max. Mx<br>Max. My<br>Max. Vy<br>Max. Vy<br>Max. Vx<br>Max. Torque | Pole      | 3 - 0     | L40    |

## **Maximum Reactions**

| Location | Condition           | Gov.  | Vertical | Horizontal, X | Horizontal, Z |
|----------|---------------------|-------|----------|---------------|---------------|
|          |                     | Load  | lb       | lb            | lb            |
|          |                     | Comb. |          |               |               |
| Pole     | Max. Vert           | 26    | 118141   | 0             | 0             |
|          | Max. H <sub>x</sub> | 21    | 47113    | 37080         | -600          |
|          | Max. H <sub>z</sub> | 3     | 47113    | -613          | 37434         |
|          | Max. M <sub>x</sub> | 2     | 3966336  | -613          | 37434         |
|          | Max. M <sub>z</sub> | 8     | 3922216  | -36997        | 607           |
|          | Max. Torsion        | 16    | 7301     | 19057         | -32770        |
|          | Min. Vert           | 9     | 47113    | -36997        | 607           |
|          | Min. H <sub>x</sub> | 9     | 47113    | -36997        | 607           |
|          | Min. H <sub>z</sub> | 15    | 47113    | 692           | -37494        |
|          | Min. M <sub>x</sub> | 14    | -3970918 | 692           | -37494        |
|          | Min. M <sub>z</sub> | 20    | -3928732 | 37079         | -600          |
|          | Min. Torsion        | 4     | -7211    | -18984        | 32670         |

# **Tower Mast Reaction Summary**

| Load                       | Vertical | Shearx | Shearz | Overturning            | Overturning            | Torque |
|----------------------------|----------|--------|--------|------------------------|------------------------|--------|
| Combination                |          |        |        | Moment, M <sub>x</sub> | Moment, M <sub>z</sub> |        |
|                            | lb       | lb     | lb     | lb-ft                  | lb-ft                  | lb-ft  |
| Dead Only                  | 52348    | 0      | 0      | -85                    | -134                   | 0      |
| 1.2 Dead+1.0 Wind 0 deg -  | 62818    | 613    | -37434 | -3966336               | -66500                 | 6615   |
| No Ice                     |          |        |        |                        |                        |        |
| 0.9 Dead+1.0 Wind 0 deg -  | 47113    | 613    | -37434 | -3915882               | -65700                 | 6614   |
| No Ice                     |          |        |        |                        |                        |        |
| 1.2 Dead+1.0 Wind 30 deg - | 62818    | 18984  | -32670 | -3463483               | -2014908               | 7211   |
| No Ice                     |          |        |        |                        |                        |        |
| 0.9 Dead+1.0 Wind 30 deg - | 47113    | 18984  | -32670 | -3419433               | -1989260               | 7206   |
| No Ice                     |          |        |        |                        |                        |        |
| 1.2 Dead+1.0 Wind 60 deg - | 62818    | 32291  | -19210 | -2037442               | -3425344               | 5919   |
| No Ice                     |          |        |        |                        |                        |        |
| 0.9 Dead+1.0 Wind 60 deg - | 47113    | 32291  | -19210 | -2011554               | -3381685               | 5912   |
| No Ice                     |          |        |        |                        |                        |        |
| 1.2 Dead+1.0 Wind 90 deg - | 62818    | 36997  | -607   | -65940                 | -3922216               | 3139   |
| No Ice                     |          |        |        |                        |                        |        |
| 0.9 Dead+1.0 Wind 90 deg - | 47113    | 36997  | -607   | -65151                 | -3872219               | 3133   |

| Load                                          | Vertical | Shear <sub>x</sub> | Shearz | Overturning                     | Overturning         | Torque |
|-----------------------------------------------|----------|--------------------|--------|---------------------------------|---------------------|--------|
| Combination                                   | lb       | lb                 | lb     | Moment, M <sub>x</sub><br>Ib-ft | Moment, Mz<br>Ib-ft | lb-ft  |
| No Ice<br>1.2 Dead+1.0 Wind 120 deg           | 62818    | 31787              | 18256  | 1931036                         | -3368250            | -371   |
| - No Ice<br>0.9 Dead+1.0 Wind 120 deg         | 47113    | 31787              | 18256  | 1906445                         | -3325261            | -375   |
| - No Ice<br>1.2 Dead+1.0 Wind 150 deg         | 62818    | 18048              | 32183  | 3407325                         | -1910449            | -4000  |
| 0.9 Dead+1.0 Wind 150 deg                     | 47113    | 18048              | 32183  | 3363979                         | -1886030            | -4001  |
| 1.2 Dead+1.0 Wind 180 deg                     | 62818    | -692               | 37494  | 3970918                         | 72800               | -6659  |
| 0.9 Dead+1.0 Wind 180 deg<br>- No Ice         | 47113    | -692               | 37494  | 3920459                         | 71999               | -6658  |
| 1.2 Dead+1.0 Wind 210 deg<br>- No Ice         | 62818    | -19057             | 32770  | 3471284                         | 2020720             | -7301  |
| 0.9 Dead+1.0 Wind 210 deg<br>- No Ice         | 47113    | -19057             | 32770  | 3427213                         | 1995076             | -7296  |
| 1.2 Dead+1.0 Wind 240 deg<br>- No Ice         | 62818    | -32352             | 19289  | 2043535                         | 3430151             | -6136  |
| 0.9 Dead+1.0 Wind 240 deg<br>- No Ice         | 47113    | -32352             | 19289  | 2017652                         | 3386525             | -6130  |
| 1.2 Dead+1.0 Wind 270 deg<br>- No Ice         | 62818    | -37079             | 600    | 65326                           | 3928732             | -3405  |
| 0.9 Dead+1.0 Wind 270 deg<br>- No Ice         | 47113    | -37080             | 600    | 64588                           | 3878755             | -3399  |
| 1.2 Dead+1.0 Wind 300 deg<br>- No Ice         | 62818    | -31851             | -18161 | -1923520                        | 3373118             | 104    |
| 0.9 Dead+1.0 Wind 300 deg<br>- No Ice         | 4/113    | -31851             | -18161 | -1898967                        | 3330177             | 109    |
| - No Ice                                      | 62818    | -17981             | -32180 | -3407398                        | 1904610             | 4134   |
| - No Ice                                      | 47113    | -17981             | -32180 | -3364031                        | 1880314             | 4136   |
| 1.2 Dead+1.0 Vind 0                           | 118141   | 103                | -12011 | -1331040                        | -14087              | 1581   |
| 1.2 Dead+1.0 Wind 30                          | 118141   | 6029               | -10443 | -1157436                        | -672195             | 1535   |
| 1.2 Dead+1.0 Wind 60<br>deg+1.0 Ice+1.0 Temp  | 118141   | 10345              | -6087  | -674619                         | -1151328            | 1085   |
| 1.2 Dead+1.0 Wind 90<br>deg+1.0 Ice+1.0 Temp  | 118141   | 11899              | -102   | -11055                          | -1323556            | 366    |
| 1.2 Dead+1.0 Wind 120<br>deg+1.0 Ice+1.0 Temp | 118141   | 10263              | 5931   | 657167                          | -1141827            | -427   |
| 1.2 Dead+1.0 Wind 150<br>deg+1.0 Ice+1.0 Temp | 118141   | 5876               | 10365  | 1148599                         | -654690             | -1150  |
| 1.2 Dead+1.0 Wind 180<br>deg+1.0 Ice+1.0 Temp | 118141   | -118               | 12023  | 1332429                         | 9900                | -1586  |
| 1.2 Dead+1.0 Wind 210<br>deg+1.0 Ice+1.0 Temp | 118141   | -6043              | 10462  | 1159479                         | 667919              | -1553  |
| 1.2 Dead+1.0 Wind 240<br>deg+1.0 Ice+1.0 Temp | 118141   | -10357             | 6103   | 676314                          | 1146825             | -1132  |
| 1.2 Dead+1.0 Wind 270<br>deg+1.0 Ice+1.0 Temp | 118141   | -11915             | 100    | 11303                           | 1319409             | -420   |
| 1.2 Dead+1.0 Wind 300<br>deg+1.0 Ice+1.0 Temp | 118141   | -10276             | -5912  | -655186                         | 1137366             | 378    |
| 1.2 Dead+1.0 Wind 330<br>deg+1.0 Ice+1.0 Temp | 118141   | -5863              | -10364 | -1148155                        | 648032              | 1180   |
| Dead+Wind 0 deg - Service                     | 52348    | 133                | -8124  | -854539                         | -14450              | 1453   |
| Dead+Wind 60 deg - Service                    | 52348    | 7008               | -4169  | -438985                         | -738055             | 1297   |
| Dead+Wind 90 deg - Service                    | 52348    | 8028               | -132   | -14253                          | -845010             | 689    |
| Dead+Wind 120 deg -                           | 52348    | 6898               | 3962   | 415942                          | -725706             | -79    |
| Service<br>Dead+Wind 150 deg -<br>Service     | 52348    | 3917               | 6984   | 734006                          | -411687             | -874   |
| Dead+Wind 180 deg -<br>Service                | 52348    | -150               | 8137   | 855434                          | 15572               | -1461  |
| Dead+Wind 210 deg -                           | 52348    | -4136              | 7112   | 747844                          | 435244              | -1605  |

tnxTower Report - version 8.0.9.0

| Load<br>Combination            | Vertical | Shear <sub>x</sub> | Shearz | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, M <sub>z</sub> | Torque |
|--------------------------------|----------|--------------------|--------|---------------------------------------|---------------------------------------|--------|
|                                | lb       | lb                 | lb     | lb-ft                                 | lb-ft                                 | lb-ft  |
| Service                        |          |                    |        |                                       |                                       |        |
| Dead+Wind 240 deg -<br>Service | 52348    | -7021              | 4186   | 440237                                | 738896                                | -1350  |
| Dead+Wind 270 deg -<br>Service | 52348    | -8046              | 130    | 14033                                 | 846196                                | -749   |
| Dead+Wind 300 deg -<br>Service | 52348    | -6912              | -3941  | -414420                               | 726543                                | 25     |
| Dead+Wind 330 deg -<br>Service | 52348    | -3902              | -6984  | -734101                               | 410184                                | 910    |

# **Solution Summary**

|           | Sur    | Sum of Applied Forces |        |        | Sum of Reactions |        |         |  |
|-----------|--------|-----------------------|--------|--------|------------------|--------|---------|--|
| Load      | PX     | PY                    | PZ     | PX     | PY               | PZ     | % Error |  |
| Comb.     | lb     | lb                    | lb     | lb     | lb               | lb     |         |  |
| 1         | 0      | -52348                | 0      | 0      | 52348            | 0      | 0.000%  |  |
| 2         | 613    | -62818                | -37434 | -613   | 62818            | 37434  | 0.000%  |  |
| 3         | 613    | -47113                | -37434 | -613   | 47113            | 37434  | 0.000%  |  |
| 4         | 18984  | -62818                | -32670 | -18984 | 62818            | 32670  | 0.000%  |  |
| 5         | 18984  | -47113                | -32670 | -18984 | 47113            | 32670  | 0.000%  |  |
| 6         | 32291  | -62818                | -19210 | -32291 | 62818            | 19210  | 0.000%  |  |
| 7         | 32291  | -47113                | -19210 | -32291 | 47113            | 19210  | 0.000%  |  |
| 8         | 36997  | -62818                | -607   | -36997 | 62818            | 607    | 0.001%  |  |
| 9         | 36997  | -47113                | -607   | -36997 | 47113            | 607    | 0.001%  |  |
| 10        | 31787  | -62818                | 18256  | -31787 | 62818            | -18256 | 0.000%  |  |
| 11        | 31787  | -47113                | 18256  | -31787 | 47113            | -18256 | 0.000%  |  |
| 12        | 18048  | -62818                | 32183  | -18048 | 62818            | -32183 | 0.000%  |  |
| 13        | 18048  | -47113                | 32183  | -18048 | 47113            | -32183 | 0.000%  |  |
| 10        | _692   | _62818                | 37/0/  | 692    | 62818            | _37/0/ | 0.000%  |  |
| 14        | 602    | 47113                 | 37404  | 602    | 17112            | 37/0/  | 0.000%  |  |
| 15        | -092   | 62010                 | 22770  | 10057  | 62010            | 22770  | 0.000%  |  |
| 10        | -19037 | -02010                | 22770  | 19057  | 47112            | -32770 | 0.000%  |  |
| 10        | -19007 | -4/113                | 32770  | 19007  | 47110            | -32770 | 0.000%  |  |
| 18        | -32352 | -02818                | 19289  | 32352  | 02010            | -19289 | 0.000%  |  |
| 19        | -32352 | -4/113                | 19289  | 32352  | 47113            | -19289 | 0.000%  |  |
| 20        | -37080 | -02818                | 600    | 37079  | 62818            | -600   | 0.000%  |  |
| 21        | -37080 | -4/113                | 600    | 37080  | 4/113            | -600   | 0.000%  |  |
| 22        | -31851 | -62818                | -18161 | 31851  | 62818            | 18161  | 0.000%  |  |
| 23        | -31851 | -4/113                | -18161 | 31851  | 47113            | 18161  | 0.000%  |  |
| 24        | -17981 | -62818                | -32180 | 17981  | 62818            | 32180  | 0.000%  |  |
| 25        | -17981 | -47113                | -32180 | 17981  | 47113            | 32180  | 0.000%  |  |
| 26        | 0      | -118141               | 0      | 0      | 118141           | 0      | 0.000%  |  |
| 27        | 103    | -118141               | -12011 | -103   | 118141           | 12011  | 0.000%  |  |
| 28        | 6029   | -118141               | -10443 | -6029  | 118141           | 10443  | 0.000%  |  |
| 29        | 10345  | -118141               | -6088  | -10345 | 118141           | 6087   | 0.000%  |  |
| 30        | 11899  | -118141               | -102   | -11899 | 118141           | 102    | 0.000%  |  |
| 31        | 10263  | -118141               | 5931   | -10263 | 118141           | -5931  | 0.000%  |  |
| 32        | 5876   | -118141               | 10365  | -5876  | 118141           | -10365 | 0.000%  |  |
| 33        | -118   | -118141               | 12023  | 118    | 118141           | -12023 | 0.000%  |  |
| 34        | -6043  | -118141               | 10462  | 6043   | 118141           | -10462 | 0.000%  |  |
| 35        | -10357 | -118141               | 6103   | 10357  | 118141           | -6103  | 0.000%  |  |
| 36        | -11915 | -118141               | 100    | 11915  | 118141           | -100   | 0.000%  |  |
| 37        | -10276 | -118141               | -5912  | 10276  | 118141           | 5912   | 0.000%  |  |
| 38        | -5863  | -118141               | -10364 | 5863   | 118141           | 10364  | 0.000%  |  |
| 30        | 133    | -523/18               | _812/  | _133   | 523/8            | 8124   | 0.000%  |  |
| 40        | 4120   | -52348                | _7000  | _4120  | 52348            | 7000   | 0.001%  |  |
| 40<br>//1 | 7008   | -52340                | _/160  | _7008  | 52340            | 1050   | 0.000%  |  |
| 41        | 2000   | 502040                | 100    | -1000  | 52040            | 4108   | 0.001%  |  |
| 4Z<br>12  | 0023   | 502040                | 2060   | -0020  | 52240            | 102    | 0.002%  |  |
| 40        | 0099   | -02040                | 330Z   | -0090  | 02040<br>50240   | -3902  | 0.001%  |  |
| 44        | 3917   | -02340                | 0900   | -3917  | 52348            | -0984  | 0.000%  |  |
| 45        | -150   | -52348                | 8137   | 150    | 52348            | -8137  | 0.001%  |  |
| 46        | -4136  | -52348                | /112   | 4136   | 52348            | -/112  | 0.000%  |  |
| 4/        | -/021  | -52348                | 4186   | /021   | 52348            | -4186  | 0.000%  |  |
| 48        | -8047  | -52348                | 130    | 8046   | 52348            | -130   | 0.002%  |  |
| 49        | -6913  | -52348                | -3941  | 6912   | 52348            | 3941   | 0.001%  |  |
| 50        | -3902  | -52348                | -6984  | 3902   | 52348            | 6984   | 0.001%  |  |

| Load        | Converged? | Number     | Displacement | Force       |
|-------------|------------|------------|--------------|-------------|
| Combination | <b>J</b>   | of Cvcles  | Tolerance    | Tolerance   |
| 1           | Yes        | 6          | 0.0000001    | 0.0000001   |
| 2           | Yes        | 20         | 0.00000001   | 0.00009389  |
| 3           | Yes        | 20         | 0.00000001   | 0.00006842  |
| 1           | Ves        | 20         | 0.00000001   | 0.00010786  |
|             | Voc        | 22         | 0.00000001   | 0.0007212   |
| 5           | Vee        | 22         | 0.00000001   | 0.00007313  |
| 0           | Yes        | 22         | 0.00000001   | 0.00009241  |
| 1           | Yes        | 21         | 0.0000001    | 0.00014332  |
| 8           | res        | 18         | 0.00000001   | 0.00011093  |
| 9           | Yes        | 18         | 0.00000001   | 0.00008299  |
| 10          | Yes        | 22         | 0.0000001    | 0.00009084  |
| 11          | Yes        | 21         | 0.0000001    | 0.00014164  |
| 12          | Yes        | 22         | 0.0000001    | 0.00009607  |
| 13          | Yes        | 22         | 0.0000001    | 0.00006523  |
| 14          | Yes        | 19         | 0.0000001    | 0.00012546  |
| 15          | Yes        | 19         | 0.0000001    | 0.00009451  |
| 16          | Yes        | 22         | 0.0000001    | 0.00009173  |
| 17          | Yes        | 21         | 0.0000001    | 0.00014205  |
| 18          | Yes        | 22         | 0.0000001    | 0.00010651  |
| 19          | Yes        | 22         | 0.0000001    | 0.00007219  |
| 20          | Yes        | 19         | 0.0000001    | 0.00013162  |
| 21          | Yes        | 19         | 0.00000001   | 0.00009732  |
| 22          | Yes        | 22         | 0.00000001   | 0.00009070  |
| 22          | Ves        | 21         | 0.00000001   | 0.0001/11/5 |
| 20          | Vos        | 21         | 0.00000001   | 0.00009662  |
| 24          | Voc        | 22         | 0.00000001   | 0.00000002  |
| 20          | Vee        | 2 I<br>1 2 | 0.00000001   | 0.00013472  |
| 20          | Yes        | 12         | 0.00000001   | 0.00013197  |
| 27          | res        | 21         | 0.00000001   | 0.00010552  |
| 28          | Yes        | 21         | 0.0000001    | 0.00013053  |
| 29          | Yes        | 21         | 0.0000001    | 0.00012815  |
| 30          | Yes        | 21         | 0.0000001    | 0.00010539  |
| 31          | Yes        | 21         | 0.0000001    | 0.00012715  |
| 32          | Yes        | 21         | 0.00000001   | 0.00012863  |
| 33          | Yes        | 21         | 0.0000001    | 0.00010635  |
| 34          | Yes        | 21         | 0.0000001    | 0.00012825  |
| 35          | Yes        | 21         | 0.0000001    | 0.00012987  |
| 36          | Yes        | 21         | 0.0000001    | 0.00010456  |
| 37          | Yes        | 21         | 0.0000001    | 0.00012549  |
| 38          | Yes        | 21         | 0.0000001    | 0.00012487  |
| 39          | Yes        | 16         | 0.00000001   | 0.00010392  |
| 40          | Yes        | 17         | 0.0000001    | 0.00010356  |
| 41          | Yes        | 16         | 0.00000001   | 0.00014827  |
| 42          | Yee        | 15         | 0.00000001   | 0 00012440  |
| 42          | Vee        | 16         | 0.0000001    | 0.00012440  |
| 40          | Voc        | 10         | 0.0000001    | 0.00014000  |
| 44          | T US       | 16         |              | 0.00000308  |
| 40          | Tes        | 10         | 0.0000001    | 0.00003023  |
| 40          | res        | 17         | 0.0000001    | 0.00007283  |
| 47          | Yes        | 1/         | 0.00000001   | 0.00009873  |
| 48          | Yes        | 15         | 0.00000001   | 0.000141/2  |
| 49          | Yes        | 16         | 0.00000001   | 0.00014543  |
| 50          | Yes        | 16         | 0.0000001    | 0.00013437  |

### **Non-Linear Convergence Results**

### Maximum Tower Deflections - Service Wind

| Section | Elevation | Horz.      | Gov.  | Tilt   | Twist  |
|---------|-----------|------------|-------|--------|--------|
| No.     |           | Deflection | Load  |        |        |
|         | ft        | in         | Comb. | 0      | 0      |
| L1      | 148 - 143 | 20.305     | 46    | 1.1844 | 0.0075 |
| L2      | 143 - 138 | 19.065     | 46    | 1.1828 | 0.0072 |
| L3      | 138 - 133 | 17.830     | 46    | 1.1758 | 0.0070 |
| L4      | 133 - 128 | 16.606     | 46    | 1.1614 | 0.0068 |

#### 148 Ft Monopole Tower Structural Analysis Project Number 1966278, Order 556619, Revision 1

| Section | Elevation       | Horz.      | Gov.  | Tilt   | Twist  |
|---------|-----------------|------------|-------|--------|--------|
| No.     |                 | Deflection | Load  |        |        |
|         | ft              | in         | Comb. | 0      | 0      |
| L5      | 128 - 123       | 15.401     | 46    | 1.1394 | 0.0066 |
| L6      | 123 - 116       | 14.222     | 46    | 1.1097 | 0.0064 |
| L7      | 119.75 - 114.75 | 13.475     | 46    | 1.0856 | 0.0063 |
| L8      | 114.75 - 109.75 | 12.350     | 46    | 1.0598 | 0.0063 |
| L9      | 109.75 - 104.75 | 11.263     | 46    | 1.0142 | 0.0062 |
| L10     | 104.75 - 99.75  | 10.228     | 46    | 0.9620 | 0.0054 |
| L11     | 99.75 - 94.75   | 9.251      | 46    | 0.9037 | 0.0047 |
| L12     | 94.75 - 93.5    | 8.337      | 46    | 0.8399 | 0.0040 |
| L13     | 93.5 - 93.25    | 8.120      | 46    | 0.8233 | 0.0038 |
| L14     | 93,25 - 88,25   | 8,077      | 46    | 0.8213 | 0.0038 |
| L15     | 88.25 - 83.25   | 7.238      | 46    | 0.7797 | 0.0034 |
| L16     | 83.25 - 74.75   | 6.445      | 46    | 0.7352 | 0.0031 |
| L17     | 79.5 - 74.5     | 5.881      | 46    | 0.7004 | 0.0029 |
| L18     | 74.5 - 69.5     | 5,159      | 46    | 0.6766 | 0.0027 |
| L19     | 69.5 - 64.5     | 4.475      | 46    | 0.6305 | 0.0024 |
| L20     | 64.5 - 62.5     | 3.839      | 46    | 0.5834 | 0.0021 |
| L21     | 62.5 - 62.25    | 3,599      | 46    | 0.5643 | 0.0020 |
| L22     | 62.25 - 57.75   | 3.569      | 46    | 0.5607 | 0.0020 |
| L23     | 57.75 - 57.5    | 3,072      | 46    | 0.4955 | 0.0017 |
| L24     | 57.5 - 52.5     | 3.046      | 46    | 0.4933 | 0.0016 |
| L25     | 52.5 - 47.5     | 2,552      | 46    | 0.4490 | 0.0014 |
| L26     | 47.5 - 39.5     | 2.106      | 46    | 0.4033 | 0.0012 |
| L27     | 45 - 38.5       | 1.901      | 46    | 0.3804 | 0.0011 |
| L28     | 38.5 - 38.25    | 1.403      | 46    | 0.3475 | 0.0010 |
| L29     | 38.25 - 38      | 1.385      | 46    | 0.3453 | 0.0010 |
| L30     | 38 - 33         | 1.367      | 46    | 0.3429 | 0.0010 |
| L31     | 33 - 31.75      | 1.033      | 46    | 0.2938 | 0.0008 |
| L32     | 31.75 - 31.5    | 0.958      | 46    | 0.2817 | 0.0008 |
| L33     | 31.5 - 28.25    | 0.943      | 46    | 0.2800 | 0.0008 |
| L34     | 28.25 - 28      | 0.760      | 46    | 0.2577 | 0.0007 |
| L35     | 28 - 23         | 0.747      | 46    | 0.2554 | 0.0007 |
| L36     | 23 - 18         | 0.503      | 46    | 0.2100 | 0.0006 |
| L37     | 18 - 13         | 0.308      | 46    | 0.1638 | 0.0004 |
| L38     | 13 - 8          | 0.160      | 46    | 0.1179 | 0.0003 |
| L39     | 8 - 3           | 0.061      | 46    | 0.0723 | 0.0002 |
| L40     | 3 - 0           | 0.009      | 46    | 0.0272 | 0.0001 |
|         |                 |            |       |        |        |

### Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                | Gov.  | Deflection | Tilt   | Twist  | Radius of |
|-----------|-----------------------------|-------|------------|--------|--------|-----------|
|           |                             | Load  |            |        |        | Curvature |
| ft        |                             | Comb. | in         | 0      | 0      | ft        |
| 148.00    | 800 10121 w/ Mount Pipe     | 46    | 20.305     | 1.1844 | 0.0076 | 61200     |
| 147.00    | Side Arm Mount [SO 601-3]   | 46    | 20.057     | 1.1843 | 0.0075 | 61200     |
| 139.00    | ERICSSON AIR 21 B2A B4P w/  | 46    | 18.077     | 1.1778 | 0.0071 | 30471     |
|           | Mount Pipe                  |       |            |        |        |           |
| 126.00    | MT6407-77A w/ Mount Pipe    | 46    | 14.925     | 1.1289 | 0.0065 | 9614      |
| 111.00    | TME-800MHz 2X50W RRH        | 46    | 11.530     | 1.0270 | 0.0063 | 6181      |
|           | W/FILTER                    |       |            |        |        |           |
| 109.00    | APXVTM14-C-120 w/ Mount     | 46    | 11.105     | 1.0065 | 0.0061 | 5739      |
|           | Pipe                        |       |            |        |        |           |
| 99.00     | MX08FRO665-21 w/ Mount Pipe | 46    | 9.110      | 0.8949 | 0.0046 | 4632      |
| 80.00     | SC3-W100ASTX                | 46    | 5.955      | 0.7041 | 0.0029 | 8089      |
| 79.00     | SRL-227                     | 46    | 5.807      | 0.6972 | 0.0029 | 8597      |
| 75.00     | HP2-23                      | 46    | 5.230      | 0.6794 | 0.0027 | 8294      |
| 74.00     | Pipe Mount [PM 601-1]       | 46    | 5.089      | 0.6733 | 0.0027 | 7818      |
| 50.00     | GPS-TMG-HR-26N              | 46    | 2.323      | 0.4267 | 0.0014 | 6247      |
| 15.00     | Side Arm Mount [SO 601-3]   | 46    | 0.213      | 0.1362 | 0.0004 | 6215      |

# **Maximum Tower Deflections - Design Wind**

### 148 Ft Monopole Tower Structural Analysis Project Number 1966278, Order 556619, Revision 1

| Section | Elevation       | Horz.      | Gov.  | Tilt   | Twist  |
|---------|-----------------|------------|-------|--------|--------|
| No.     |                 | Deflection | Load  |        |        |
|         | ft              | in         | Comb. | 0      | 0      |
| L1      | 148 - 143       | 94.291     | 16    | 5.5107 | 0.0343 |
| L2      | 143 - 138       | 88.537     | 16    | 5.5032 | 0.0330 |
| L3      | 138 - 133       | 82.805     | 16    | 5.4707 | 0.0319 |
| L4      | 133 - 128       | 77.123     | 16    | 5.4031 | 0.0309 |
| L5      | 128 - 123       | 71.530     | 16    | 5.3002 | 0.0300 |
| L6      | 123 - 116       | 66.062     | 16    | 5.1620 | 0.0292 |
| L7      | 119.75 - 114.75 | 62.593     | 16    | 5.0496 | 0.0289 |
| L8      | 114.75 - 109.75 | 57.369     | 16    | 4.9295 | 0.0285 |
| L9      | 109.75 - 104.75 | 52.326     | 16    | 4.7171 | 0.0281 |
| L10     | 104.75 - 99.75  | 47.520     | 16    | 4.4746 | 0.0248 |
| L11     | 99.75 - 94.75   | 42.982     | 16    | 4.2034 | 0.0213 |
| L12     | 94.75 - 93.5    | 38.739     | 16    | 3.9067 | 0.0181 |
| L13     | 93.5 - 93.25    | 37.728     | 16    | 3.8293 | 0.0174 |
| L14     | 93.25 - 88.25   | 37.528     | 16    | 3.8201 | 0.0173 |
| L15     | 88.25 - 83.25   | 33.632     | 16    | 3.6268 | 0.0157 |
| L16     | 83.25 - 74.75   | 29.946     | 16    | 3.4194 | 0.0141 |
| L17     | 79.5 - 74.5     | 27.326     | 16    | 3.2577 | 0.0130 |
| L18     | 74.5 - 69.5     | 23.973     | 16    | 3.1467 | 0.0122 |
| L19     | 69.5 - 64.5     | 20.792     | 16    | 2.9322 | 0.0109 |
| L20     | 64.5 - 62.5     | 17.838     | 16    | 2.7127 | 0.0096 |
| L21     | 62.5 - 62.25    | 16.721     | 16    | 2.6237 | 0.0092 |
| L22     | 62.25 - 57.75   | 16.584     | 16    | 2.6070 | 0.0091 |
| L23     | 57.75 - 57.5    | 14.271     | 16    | 2.3035 | 0.0075 |
| L24     | 57.5 - 52.5     | 14.151     | 16    | 2.2933 | 0.0075 |
| L25     | 52.5 - 47.5     | 11.858     | 16    | 2.0872 | 0.0065 |
| L26     | 47.5 - 39.5     | 9.784      | 16    | 1.8747 | 0.0056 |
| L27     | 45 - 38.5       | 8.831      | 16    | 1.7682 | 0.0052 |
| L28     | 38.5 - 38.25    | 6.517      | 16    | 1.6147 | 0.0046 |
| L29     | 38.25 - 38      | 6.432      | 16    | 1.6048 | 0.0046 |
| L30     | 38 - 33         | 6.349      | 16    | 1.5935 | 0.0046 |
| L31     | 33 - 31.75      | 4.800      | 16    | 1.3652 | 0.0038 |
| L32     | 31.75 - 31.5    | 4.450      | 16    | 1.3087 | 0.0036 |
| L33     | 31.5 - 28.25    | 4.382      | 16    | 1.3008 | 0.0036 |
| L34     | 28.25 - 28      | 3.532      | 16    | 1.1972 | 0.0032 |
| L35     | 28 - 23         | 3.469      | 16    | 1.1867 | 0.0032 |
| L36     | 23 - 18         | 2.337      | 16    | 0.9754 | 0.0026 |
| L37     | 18 - 13         | 1.428      | 16    | 0.7606 | 0.0019 |
| L38     | 13 - 8          | 0.744      | 16    | 0.5474 | 0.0014 |
| L39     | 8 - 3           | 0.281      | 16    | 0.3358 | 0.0008 |
| L40     | 3 - 0           | 0.040      | 16    | 0.1262 | 0.0003 |
|         |                 |            |       |        |        |

# **Critical Deflections and Radius of Curvature - Design Wind**

| Elevation | Appurtenance                | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|-----------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                             | Comb.        | in         | o      | o      | ft                     |
| 148.00    | 800 10121 w/ Mount Pipe     | 16           | 94,291     | 5.5107 | 0.0343 | 14189                  |
| 147.00    | Side Arm Mount [SO 601-3]   | 16           | 93.139     | 5.5101 | 0.0341 | 14189                  |
| 139.00    | ERICSSON AIR 21 B2A B4P w/  | 16           | 83.948     | 5.4798 | 0.0321 | 6837                   |
|           | Mount Pipe                  |              |            |        |        |                        |
| 126.00    | MT6407-77A w/ Mount Pipe    | 16           | 69.325     | 5.2513 | 0.0296 | 2103                   |
| 111.00    | TME-800MHz 2X50W RRH        | 16           | 53.567     | 4.7766 | 0.0285 | 1346                   |
|           | W/FILTER                    |              |            |        |        |                        |
| 109.00    | APXVTM14-C-120 w/ Mount     | 16           | 51.589     | 4.6814 | 0.0279 | 1252                   |
|           | Pipe                        |              |            |        |        |                        |
| 99.00     | MX08FRO665-21 w/ Mount Pipe | 16           | 42.326     | 4.1624 | 0.0210 | 1008                   |
| 80.00     | SC3-W100ASTX                | 16           | 27.670     | 3.2750 | 0.0133 | 1751                   |
| 79.00     | SRL-227                     | 16           | 26.984     | 3.2430 | 0.0131 | 1861                   |
| 75.00     | HP2-23                      | 16           | 24.301     | 3.1599 | 0.0125 | 1793                   |
| 74.00     | Pipe Mount [PM 601-1]       | 16           | 23.646     | 3.1313 | 0.0123 | 1690                   |
| 50.00     | GPS-TMG-HR-26N              | 16           | 10.793     | 1.9836 | 0.0062 | 1346                   |
| 15.00     | Side Arm Mount [SO 601-3]   | 16           | 0.991      | 0.6324 | 0.0016 | 1338                   |

# **Compression Checks**

# **Pole Design Data**

| Section | Elevation              | Size                         | L    | Lu   | Kl/r | A                    | $P_u$  | $\phi P_n$ | Ratio                  |
|---------|------------------------|------------------------------|------|------|------|----------------------|--------|------------|------------------------|
| NO.     | ft                     |                              | ft   | ft   |      | in <sup>2</sup>      | lb     | lb         | $\frac{P_u}{\Phi P_r}$ |
| L1      | 148 - 143 (1)          | TP24.9752x24x0.2188          | 5.00 | 0.00 | 0.0  | 17.188               | -4833  | 1005540    | 0.005                  |
| L2      | 143 - 138 (2)          | TP25.9503x24.9752x0.21       | 5.00 | 0.00 | 0.0  | 7<br>17.865<br>7     | -9831  | 1045150    | 0.009                  |
| L3      | 138 - 133 (3)          | TP26.9255x25.9503x0.21       | 5.00 | 0.00 | 0.0  | 18.542<br>8          | -10305 | 1084750    | 0.009                  |
| L4      | 133 - 128 (4)          | TP27.9006x26.9255x0.21       | 5.00 | 0.00 | 0.0  | 19.219<br>9          | -10799 | 1124360    | 0.010                  |
| L5      | 128 - 123 (5)          | TP28.8758x27.9006x0.21       | 5.00 | 0.00 | 0.0  | 19.896<br>9          | -15367 | 1163970    | 0.013                  |
| L6      | 123 - 116 (6)          | TP30.241x28.8758x0.218       | 7.00 | 0.00 | 0.0  | 20.337               | -15735 | 1189720    | 0.013                  |
| L7      | 116 - 114.75<br>(7)    | TP30.0471x29.0721x0.25       | 5.00 | 0.00 | 0.0  | 23.644               | -16697 | 1383170    | 0.012                  |
| L8      | 114.75 -<br>109.75 (8) | TP31.0221x30.0471x0.25       | 5.00 | 0.00 | 0.0  | 24.417<br>7          | -18016 | 1428430    | 0.013                  |
| L9      | 109.75 -<br>104.75 (9) | TP31.9971x31.0221x0.25       | 5.00 | 0.00 | 0.0  | 25.191<br>3          | -22203 | 1473690    | 0.015                  |
| L10     | 104.75 -<br>99.75 (10) | TP32.9721x31.9971x0.25       | 5.00 | 0.00 | 0.0  | 25.965<br>0          | -23003 | 1518950    | 0.015                  |
| L11     | 99.75 - 94.75<br>(11)  | TP33.9471x32.9721x0.25       | 5.00 | 0.00 | 0.0  | 26.738<br>6          | -26833 | 1564210    | 0.017                  |
| L12     | 94.75 - 93.5<br>(12)   | TP34.1908x33.9471x0.25       | 1.25 | 0.00 | 0.0  | 26.932<br>0          | -27050 | 1575520    | 0.017                  |
| L13     | 93.5 - 93.25<br>(13)   | TP34.2396x34.1908x0.43<br>75 | 0.25 | 0.00 | 0.0  | 46.938<br>4          | -27127 | 2745900    | 0.010                  |
| L14     | 93.25 - 88.25          | TP35.2145x34.2396x0.43<br>13 | 5.00 | 0.00 | 0.0  | 47.610<br>9          | -28321 | 2785240    | 0.010                  |
| L15     | 88.25 - 83.25<br>(15)  | TP36.1895x35.2145x0.42<br>5  | 5.00 | 0.00 | 0.0  | 48 <u>.</u> 244<br>6 | -29549 | 2822310    | 0.010                  |
| L16     | 83.25 - 74.75<br>(16)  | TP37.847x36.1895x0.425       | 8.50 | 0.00 | 0.0  | 49.231<br>0          | -30511 | 2880010    | 0.011                  |
| L17     | 74.75 - 74.5<br>(17)   | TP37.3959x36.4208x0.48<br>75 | 5.00 | 0.00 | 0.0  | 57.109<br>3          | -33006 | 3340900    | 0.010                  |
| L18     | 74.5 - 69.5<br>(18)    | TP38.3711x37.3959x0.47<br>5  | 5.00 | 0.00 | 0.0  | 57.134<br>0          | -34509 | 3342340    | 0.010                  |
| L19     | 69.5 - 64.5<br>(19)    | TP39.3462x38.3711x0.47<br>5  | 5.00 | 0.00 | 0.0  | 58.604<br>2          | -35973 | 3428350    | 0.010                  |
| L20     | 64.5 - 62.5<br>(20)    | TP39.7363x39.3462x0.47<br>5  | 2.00 | 0.00 | 0.0  | 59.192<br>3          | -36567 | 3462750    | 0.011                  |
| L21     | 62.5 - 62.25<br>(21)   | TP39.785x39.7363x0.312<br>5  | 0.25 | 0.00 | 0.0  | 39.151<br>8          | -36634 | 2290380    | 0.016                  |
| L22     | 62.25 - 57.75<br>(22)  | TP40.6627x39.785x0.312<br>5  | 4.50 | 0.00 | 0.0  | 40.022<br>3          | -37699 | 2341310    | 0.016                  |
| L23     | 57.75 - 57.5<br>(23)   | TP40.7114x40.6627x0.52<br>5  | 0.25 | 0.00 | 0.0  | 66.964<br>7          | -37800 | 3917430    | 0.010                  |
| L24     | 57.5 - 52.5<br>(24)    | TP41.6866x40.7114x0.52<br>5  | 5.00 | 0.00 | 0.0  | 68.589<br>6          | -39434 | 4012490    | 0.010                  |
| L25     | 52.5 - 47.5<br>(25)    | TP42.6618x41.6866x0.51<br>25 | 5.00 | 0.00 | 0.0  | 68.563<br>1          | -41190 | 4010940    | 0.010                  |
| L26     | 47.5 - 39.5<br>(26)    | TP44.222x42.6618x0.512<br>5  | 8.00 | 0.00 | 0.0  | 69.356<br>3          | -42033 | 4057340    | 0.010                  |
| L27     | 39.5 - 38.5<br>(27)    | TP43.7919x42.5243x0.57<br>5  | 6.50 | 0.00 | 0.0  | 78.873<br>1          | -45912 | 4614070    | 0.010                  |
| L28     | 38.5 - 38.25<br>(28)   | TP43.8407x43.7919x0.57<br>5  | 0.25 | 0.00 | 0.0  | 78.962<br>0          | -46015 | 4619280    | 0.010                  |
| L29     | 38.25 - 38<br>(29)     | TP43.8894x43.8407x0.50<br>63 | 0.25 | 0.00 | 0.0  | 69.709<br>7          | -46102 | 4078020    | 0.011                  |
| L30     | 38 - 33 (30)           | TP44.8645x43.8894x0.5        | 5.00 | 0.00 | 0.0  | 70.406<br>5          | -47842 | 4118780    | 0.012                  |

148 Ft Monopole Tower Structural Analysis Project Number 1966278, Order 556619, Revision 1

| Section<br>No. | Elevation            | Size                         | L    | $L_u$ | Kl/r | A            | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|----------------------|------------------------------|------|-------|------|--------------|--------|------------|-------------------------|
|                | ft                   |                              | ft   | ft    |      | in²          | lb     | lb         | $\phi P_n$              |
| L31            | 33 - 31.75<br>(31)   | TP45.1083x44.8645x0.5        | 1.25 | 0.00  | 0.0  | 70.793<br>3  | -48281 | 4141410    | 0.012                   |
| L32            | 31.75 - 31.5<br>(32) | TP45.157x45.1083x0.725       | 0.25 | 0.00  | 0.0  | 102.24<br>50 | -48415 | 5981320    | 0.008                   |
| L33            | 31.5 - 28.25<br>(33) | TP45.7908x45.157x0.725       | 3.25 | 0.00  | 0.0  | 103.70<br>30 | -49958 | 6066640    | 0.008                   |
| L34            | 28.25 - 28<br>(34)   | TP45.8396x45.7908x0.53<br>75 | 0.25 | 0.00  | 0.0  | 77.286<br>5  | -50071 | 4521260    | 0.011                   |
| L35            | 28 - 23 (35)         | TP46.8147x45.8396x0.53<br>75 | 5.00 | 0.00  | 0.0  | 78.950<br>0  | -52172 | 4618570    | 0.011                   |
| L36            | 23 - 18 (36)         | TP47.7897x46.8147x0.52<br>5  | 5.00 | 0.00  | 0.0  | 78.759<br>6  | -54312 | 4607440    | 0.012                   |
| L37            | 18 - 13 (37)         | TP48.7648x47.7897x0.52<br>5  | 5.00 | 0.00  | 0.0  | 80.384<br>4  | -57048 | 4702490    | 0.012                   |
| L38            | 13 - 8 (38)          | TP49.7399x48.7648x0.52<br>5  | 5.00 | 0.00  | 0.0  | 82.009<br>2  | -59240 | 4797540    | 0.012                   |
| L39            | 8 - 3 (39)           | TP50.715x49.7399x0.525       | 5.00 | 0.00  | 0.0  | 83.634<br>0  | -61458 | 4892590    | 0.013                   |
| L40            | 3 - 0 (40)           | TP51.3x50.715x0.5188         | 3.00 | 0.00  | 0.0  | 83.612<br>0  | -62804 | 4891300    | 0.013                   |

# Pole Bending Design Data

| Section<br>No. | Elevation      | Size                         | M <sub>ux</sub> | φ <b>Μ</b> <sub>nx</sub> | Ratio<br>M <sub>ux</sub> | M <sub>uy</sub> | φ <b>M</b> <sub>ny</sub> | Ratio<br>M <sub>uv</sub> |
|----------------|----------------|------------------------------|-----------------|--------------------------|--------------------------|-----------------|--------------------------|--------------------------|
|                | ft             |                              | lb-ft           | lb-ft                    | $\phi M_{nx}$            | lb-ft           | lb-ft                    | $\phi M_{nv}$            |
| L1             | 148 - 143 (1)  | TP24.9752x24x0.2188          | 19519           | 619979                   | 0.031                    | 0               | 619979                   | 0.000                    |
| L2             | 143 - 138 (2)  | TP25.9503x24.9752x0.21       | 50555           | 662160                   | 0.076                    | 0               | 662160                   | 0.000                    |
|                |                | 88                           |                 |                          |                          |                 |                          |                          |
| L3             | 138 - 133 (3)  | TP26.9255x25.9503x0.21       | 102001          | 705064                   | 0.145                    | 0               | 705064                   | 0.000                    |
| 1.4            | 100 100 (4)    |                              | 155077          | 749699                   | 0 200                    | 0               | 749600                   | 0.000                    |
| L4             | 155 - 126 (4)  | 88                           | 155677          | 740023                   | 0.200                    | 0               | 740023                   | 0.000                    |
| 15             | 128 - 123 (5)  | TP28 8758x27 9006x0 21       | 232521          | 792771                   | 0 293                    | 0               | 792771                   | 0.000                    |
| LO             | 120 120 (0)    | 88                           | 202021          | 102111                   | 0.200                    | 0               | 102111                   | 0.000                    |
| L6             | 123 - 116 (6)  | TP30.241x28.8758x0.218       | 286846          | 821749                   | 0.349                    | 0               | 821749                   | 0.000                    |
|                | ( <i>)</i>     | 8                            |                 |                          |                          |                 |                          |                          |
| L7             | 116 - 114 75   | TP30.0471x29.0721x0.25       | 372699          | 1010683                  | 0.369                    | 0               | 1010683                  | 0.000                    |
|                | (7)            |                              |                 |                          |                          |                 |                          |                          |
| L8             | 114.75 -       | TP31.0221x30.0471x0.25       | 462020          | 1066967                  | 0.433                    | 0               | 1066967                  | 0.000                    |
| 10             | 109.75 (8)     | TD21 0071v21 0221v0 25       | E91710          | 1100000                  | 0 5 1 9                  | 0               | 1100000                  | 0.000                    |
| L9             | 109.75 -       | 1P31.9971X31.0221X0.25       | 501710          | 1123903                  | 0.516                    | 0               | 1123903                  | 0.000                    |
| 1 10           | 104.75         | TP32 9721x31 9971x0 25       | 700120          | 1181667                  | 0 592                    | 0               | 1181667                  | 0 000                    |
| 210            | 99.75 (10)     |                              | 100120          | 1101001                  | 01002                    | Ū               | 1101001                  | 01000                    |
| L11            | 99.75 - 94.75  | TP33.9471x32.9721x0.25       | 835858          | 1239942                  | 0.674                    | 0               | 1239942                  | 0.000                    |
|                | (11)           |                              |                 |                          |                          |                 |                          |                          |
| L12            | 94.75 - 93.5   | TP34.1908x33.9471x0.25       | 870833          | 1254592                  | 0.694                    | 0               | 1254592                  | 0.000                    |
|                | (12)           |                              |                 |                          |                          | -               |                          |                          |
| L13            | 93.5 - 93.25   | TP34.2396x34.1908x0.43       | 877850          | 2411783                  | 0.364                    | 0               | 2411783                  | 0.000                    |
| 144            | (13)           | /5<br>TD35 2145×24 2206×0 42 | 1010459         | 0510700                  | 0 405                    | 0               | 0510700                  | 0.000                    |
| L14            | 93.23 - 00.25  | 1231143234.239020.43         | 1019456         | 2010/00                  | 0.405                    | 0               | 2310700                  | 0.000                    |
| L 15           | 88 25 - 83 25  | TP36 1895x35 2145x0 42       | 1163650         | 2625567                  | 0 443                    | 0               | 2625567                  | 0 000                    |
| 210            | (15)           | 5                            | 1100000         | 2020001                  | 01110                    | Ũ               | 2020001                  | 01000                    |
| L16            | 83.25 - 7́4.75 | TP37.847x36.1895x0.425       | 1273658         | 2734667                  | 0.466                    | 0               | 2734667                  | 0.000                    |
|                | (16)           |                              |                 |                          |                          |                 |                          |                          |
| L17            | 74.75 - 74.5   | TP37.3959x36.4208x0.48       | 1425633         | 3203208                  | 0.445                    | 0               | 3203208                  | 0.000                    |
|                | (17)           | 75                           | 1500000         |                          |                          |                 |                          |                          |
| L18            | (4.5 - 69.5    | IP38.3711x37.3959x0.47       | 1582900         | 3292542                  | 0.481                    | 0               | 3292542                  | 0.000                    |
| 1 10           | (18)           | 5<br>TD30 3462v38 3711v0 47  | 17/0933         | 3465250                  | 0 503                    | 0               | 3465250                  | 0 000                    |
| LIS            | (19)           | 5                            | 1742000         | 5405230                  | 0.000                    | U               | 3403230                  | 0.000                    |
| L20            | 64.5 - 62.5    | TP39.7363x39.3462x0.47       | 1807500         | 3535567                  | 0.511                    | 0               | 3535567                  | 0.000                    |
|                | (20)           | 5                            |                 |                          |                          | -               |                          |                          |

| Section<br>No. | Elevation                       | Size                                           | M <sub>ux</sub>    | φ <b>Μ</b> <sub>nx</sub> | Ratio<br>M <sub>ux</sub> | M <sub>uy</sub> | φ <b>M</b> <sub>ny</sub> | Ratio<br>M <sub>uv</sub> |
|----------------|---------------------------------|------------------------------------------------|--------------------|--------------------------|--------------------------|-----------------|--------------------------|--------------------------|
|                | ft                              |                                                | lb-ft              | lb-ft                    | $\phi M_{nx}$            | lb-ft           | lb-ft                    | $\phi M_{nv}$            |
| L21            | 62.5 - 62.25<br>(21)            | TP39.785x39.7363x0.312<br>5                    | 1815608            | 2175875                  | 0.834                    | 0               | 2175875                  | 0.000                    |
| L22            | 62.25 - 57.75<br>(22)           | TP40.6627x39.785x0.312<br>5                    | 1962442            | 2256725                  | 0.870                    | 0               | 2256725                  | 0.000                    |
| L23            | 57.75 - 57.5<br>(23)            | TP40.7114x40.6627x0.52<br>5                    | 1970650            | 4090158                  | 0.482                    | 0               | 4090158                  | 0.000                    |
| L24            | 57.5 - 52.5<br>(24)             | TP41.6866x40.7114x0.52<br>5                    | 2136033            | 4292383                  | 0.498                    | 0               | 4292383                  | 0.000                    |
| L25            | 52.5 - 47.5<br>(25)             | TP42.6618x41.6866x0.51<br>25                   | 2303783            | 4396267                  | 0.524                    | 0               | 4396267                  | 0.000                    |
| L26            | 47.5 - 39.5<br>(26)             | TP44.222x42.6618x0.512<br>5                    | 2388767            | 4499183                  | 0.531                    | 0               | 4499183                  | 0.000                    |
| L27            | 39.5 - 38.5<br>(27)             | TP43.7919x42.5243x0.57<br>5                    | 2612950            | 5179575                  | 0.504                    | 0               | 5179575                  | 0.000                    |
| L28            | 38.5 - 38.25<br>(28)            | TP43.8407x43.7919x0.57<br>5                    | 2621667            | 5191350                  | 0.505                    | 0               | 5191350                  | 0.000                    |
| L29            | 38.25 - 38<br>(29)              | TP43.8894x43.8407x0.50<br>63                   | 2630392            | 4602867                  | 0.571                    | 0               | 4602867                  | 0.000                    |
| L30            | 38 - 33 (30)                    | TP44.8645x43.8894x0.5                          | 2805900            | 4755908                  | 0.590                    | 0               | 4755908                  | 0.000                    |
| L31            | 33 - 31.75 <sup>´</sup><br>(31) | TP45.1083x44.8645x0.5                          | 2850100            | 4808608                  | 0.593                    | 0               | 4808608                  | 0.000                    |
| L32            | 31.75 - 31.5<br>(32)            | TP45.157x45.1083x0.725                         | 2858958            | 6882717                  | 0.415                    | 0               | 6882717                  | 0.000                    |
| L33            | 31.5 - 28.25<br>(33)            | TP45.7908x45.157x0.725                         | 2974617            | 7082075                  | 0.420                    | 0               | 7082075                  | 0.000                    |
| L34            | 28.25 - 28<br>(34)              | TP45.8396x45.7908x0.53<br>75                   | 2983550            | 5327842                  | 0.560                    | 0               | 5327842                  | 0.000                    |
| L35            | 28 - 23 (35)                    | TP46.8147x45.8396x0.53<br>75                   | 3163342            | 5561033                  | 0.569                    | 0               | 5561033                  | 0.000                    |
| L36            | 23 - 18 (36)                    | TP47.7897x46.8147x0.52<br>5                    | 3345033            | 5668858                  | 0.590                    | 0               | 5668858                  | 0.000                    |
| L37            | 18 - 13 (37)                    | TP48.7648x47.7897x0.52<br>5                    | 3528967            | 5906475                  | 0.597                    | 0               | 5906475                  | 0.000                    |
| L38            | 13 - 8 (38)                     | TP49.7399x48.7648x0.52<br>5                    | 3715283            | 6148975                  | 0.604                    | 0               | 6148975                  | 0.000                    |
| L39<br>L40     | 8 - 3 (39)<br>3 - 0 (40)        | TP50.715x49.7399x0.525<br>TP51.3x50.715x0.5188 | 3903150<br>4016608 | 6387725<br>6425658       | 0.611<br>0.625           | 0<br>0          | 6387725<br>6425658       | 0.000<br>0.000           |

# Pole Shear Design Data

| Section | Elevation                | Size                         | Actual | $\phi V_n$ | Ratio      | Actual | $\phi T_n$ | Ratio      |
|---------|--------------------------|------------------------------|--------|------------|------------|--------|------------|------------|
| No.     |                          |                              | $V_u$  |            | $V_u$      | $T_u$  |            | $T_u$      |
|         | ft                       |                              | lb     | lb         | $\phi V_n$ | lb-ft  | lb-ft      | $\phi T_n$ |
| L1      | 148 - 143 (1)            | TP24.9752x24x0.2188          | 5072   | 301661     | 0.017      | 1      | 654014     | 0.000      |
| L2      | 143 - 138 (2)            | TP25.9503x24.9752x0.21<br>88 | 10051  | 313544     | 0.032      | 1      | 706553     | 0.000      |
| L3      | 138 - 133 (3)            | TP26.9255x25.9503x0.21<br>88 | 10534  | 325426     | 0.032      | 1      | 761120     | 0.000      |
| L4      | 133 - 128 (4)            | TP27.9006x26.9255x0.21<br>88 | 11024  | 337309     | 0.033      | 1      | 817718     | 0.000      |
| L5      | 128 - 123 (5)            | TP28.8758x27.9006x0.21<br>88 | 16552  | 349191     | 0.047      | 666    | 876342     | 0.001      |
| L6      | 123 - 116 (6)            | TP30.241x28.8758x0.218<br>8  | 16900  | 356915     | 0.047      | 776    | 915542     | 0.001      |
| L7      | 116 - 114.75<br>(7)      | TP30.0471x29.0721x0.25       | 17443  | 414952     | 0.042      | 775    | 1082808    | 0.001      |
| L8      | 114.75 -<br>109.75 (8)   | TP31.0221x30.0471x0.25       | 18673  | 428530     | 0.044      | 774    | 1154833    | 0.001      |
| L9      | 109.75 - ´<br>104.75 (9) | TP31.9971x31.0221x0.25       | 23461  | 442108     | 0.053      | 6402   | 1229167    | 0.005      |
| L10     | 104.75 - ´<br>99.75 (10) | TP32.9721x31.9971x0.25       | 23927  | 455685     | 0.053      | 6399   | 1305825    | 0.005      |
| L11     | 99.75 - 94.75<br>(11)    | TP33.9471x32.9721x0.25       | 27943  | 469263     | 0.060      | 6258   | 1384800    | 0.005      |
| L12     | 94.75 - 93.5             | TP34.1908x33.9471x0.25       | 28056  | 472657     | 0.059      | 6257   | 1404908    | 0.004      |

| Section    | Elevation                     | Size                                           | Actual               | φVn                | Ratio                  | Actual       | $\phi T_n$         | Ratio                  |
|------------|-------------------------------|------------------------------------------------|----------------------|--------------------|------------------------|--------------|--------------------|------------------------|
| <i>NO.</i> | ft                            |                                                | V <sub>u</sub><br>Ib | lb                 | $\frac{V_u}{\Phi V_n}$ | lb-ft        | lb-ft              | $\frac{T_u}{\Phi T_n}$ |
| L13        | (12)<br>93.5 - 93.25          | TP34.2396x34.1908x0.43                         | 28090                | 823769             | 0.034                  | 6256         | 2438533            | 0.003                  |
| L14        | (13)<br>93.25 - 88.25<br>(14) | 75<br>TP35.2145x34.2396x0.43                   | 28593                | 835572             | 0.034                  | 6254         | 2545275            | 0.002                  |
| L15        | (14)<br>88.25 - 83.25<br>(15) | TP36.1895x35.2145x0.42                         | 29107                | 846692             | 0.034                  | 6252         | 2651908            | 0.002                  |
| L16        | 83.25 - 74.75<br>(16)         | TP37.847x36.1895x0.425                         | 29887                | 864003             | 0.035                  | 7197         | 2761458            | 0.003                  |
| L17        | 74.75 - 74.5<br>(17)          | TP37.3959x36.4208x0.48<br>75                   | 31193                | 1002270            | 0.031                  | 7552         | 3239583            | 0.002                  |
| L18        | 74.5 - 69.5<br>(18)           | TP38.3711x37.3959x0.47<br>5                    | 31754                | 1002700            | 0.032                  | 7488         | 3327717            | 0.002                  |
| L19        | 69.5 - 64.5<br>(19)           | TP39.3462x38.3711x0.47                         | 32250                | 1028500            | 0.031                  | 7486         | 3501175            | 0.002                  |
| L20        | 64.5 - 62.5<br>(20)           | TP39.7363x39.3462x0.47                         | 32446                | 1038820            | 0.031                  | 7485         | 3571800            | 0.002                  |
| L21        | 62.5 - 62.25<br>(21)          | TP39.785x39.7363x0.312<br>5                    | 32466                | 687115             | 0.047                  | 7484         | 2375225            | 0.003                  |
| L22        | 62.25 - 57.75<br>(22)         | TP40.6627x39.785x0.312<br>5                    | 32833                | 702392             | 0.047                  | 7481         | 2482017            | 0.003                  |
| L23        | 57.75 - 57.5<br>(23)          | TP40.7114x40.6627x0.52<br>5                    | 32846                | 1175230            | 0.028                  | 7481         | 4136017            | 0.002                  |
| L24        | 57.5 - 52.5<br>(24)           | TP41.6866x40.7114x0.52<br>5                    | 33340                | 1203750            | 0.028                  | 7479         | 4339183            | 0.002                  |
| L25        | 52.5 - 47.5<br>(25)           | TP42.6618x41.6866x0.51<br>25                   | 33891                | 1203280            | 0.028                  | 7310         | 4441583            | 0.002                  |
| L26        | 47.5 - 39.5<br>(26)           | TP44.222x42.6618x0.512<br>5                    | 34127                | 1217200            | 0.028                  | 7309         | 4544933            | 0.002                  |
| L27        | 39.5 - 38.5<br>(27)           | TP43.7919x42.5243x0.57<br>5                    | 34865                | 1384220            | 0.025                  | 7308         | 5238892            | 0.001                  |
| L28        | 38.5 - 38.25<br>(28)          | TP43.8407x43.7919x0.57<br>5                    | 34881                | 1385780            | 0.025                  | 7307         | 5250725            | 0.001                  |
| L29        | 38.25 - 38<br>(29)            | TP43.8894x43.8407x0.50<br>63                   | 34902                | 1223410            | 0.029                  | 7307         | 4648058            | 0.002                  |
| L30<br>L31 | 38 - 33 (30)<br>33 - 31.75    | TP44.8645x43.8894x0.5<br>TP45.1083x44.8645x0.5 | 35329<br>35436       | 1235630<br>1242420 | 0.029<br>0.029         | 7306<br>7305 | 4800708<br>4853608 | 0.002<br>0.002         |
| L32        | (31)<br>31.75 - 31.5          | TP45.157x45.1083x0.725                         | 35443                | 1794400            | 0.020                  | 7305         | 6982233            | 0.001                  |
| L33        | (32)<br>31.5 - 28.25          | TP45.7908x45.157x0.725                         | 35755                | 1819990            | 0.020                  | 7305         | 7182850            | 0.001                  |
| L34        | (33)<br>28.25 - 28            | TP45.8396x45.7908x0.53                         | 35767                | 1356380            | 0.026                  | 7304         | 5381200            | 0.001                  |
| L35        | (34)<br>28 - 23 (35)          | 75<br>TP46.8147x45.8396x0.53<br>75             | 36175                | 1385570            | 0.026                  | 7303         | 5615333            | 0.001                  |
| L36        | 23 - 18 (36)                  | 73<br>TP47.7897x46.8147x0.52                   | 36540                | 1382230            | 0.026                  | 7302         | 5721341            | 0.001                  |
| L37        | 18 - 13 (37)                  | TP48.7648x47.7897x0.52                         | 37128                | 1410750            | 0.026                  | 7301         | 5959841            | 0.001                  |
| L38        | 13 - 8 (38)                   | TP49.7399x48.7648x0.52<br>5                    | 37440                | 1439260            | 0.026                  | 7301         | 6203208            | 0.001                  |
| L39<br>L40 | 8 - 3 (39)<br>3 - 0 (40)      | TP50.715x49.7399x0.525<br>TP51.3x50.715x0.5188 | 37749<br>37931       | 1467780<br>1467390 | 0.026<br>0.026         | 7301<br>7301 | 6451441<br>6525725 | 0.001<br>0.001         |

# Pole Interaction Design Data

| Section<br>No. | Elevation     | Ratio<br>P <sub>u</sub> | Ratio<br>M <sub>ux</sub> | Ratio<br>M <sub>uy</sub> | Ratio<br>V <sub>u</sub> | Ratio<br>T <sub>u</sub> | Comb.<br>Stress | Allow.<br>Stress | Criteria |
|----------------|---------------|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-----------------|------------------|----------|
|                | ft            | $\phi P_n$              | φ <i>M</i> <sub>nx</sub> | φ <i>M</i> <sub>ny</sub> | φ <i>V</i> _n           | $\phi T_n$              | Ratio           | Ratio            |          |
| L1             | 148 - 143 (1) | 0.005                   | 0.031                    | 0.000                    | 0.017                   | 0.000                   | 0.037           | 1.050            | 4.8.2    |
| L2             | 143 - 138 (2) | 0.009                   | 0.076                    | 0.000                    | 0.032                   | 0.000                   | 0.087           | 1.050            | 4.8.2    |
| L3             | 138 - 133 (3) | 0.009                   | 0.145                    | 0.000                    | 0.032                   | 0.000                   | 0.155           | 1.050            | 4.8.2    |

| Section | Elevation                    | Ratio      | Ratio                   | Ratio                   | Ratio                  | Ratio           | Comb.   | Allow.  | Criteria       |
|---------|------------------------------|------------|-------------------------|-------------------------|------------------------|-----------------|---------|---------|----------------|
| No.     | Ħ                            |            | Mux                     | Muy                     |                        | $T_u$           | Stress  | Stress  |                |
|         | 122 129 (4)                  | $\phi P_n$ | φ <i>M<sub>nx</sub></i> | φ <i>M<sub>ny</sub></i> | φ <i>V<sub>n</sub></i> | φ1 <sub>n</sub> | 0.210   | 1.050   | 190            |
| 15      | 128 - 128 (4)                | 0.013      | 0.208                   | 0.000                   | 0.033                  | 0.000           | 0.219   | 1.050   | 4.8.2          |
| L6      | 123 - 116 (6)                | 0.013      | 0.349                   | 0.000                   | 0.047                  | 0.001           | 0.365   | 1.050   | 4.8.2          |
| L7      | 116 - 114 75                 | 0.012      | 0.369                   | 0.000                   | 0.042                  | 0.001           | 0.383   | 1.050   | 4.8.2          |
|         | (7)                          |            |                         |                         |                        |                 |         |         |                |
| L8      | 114.75 -                     | 0.013      | 0.433                   | 0.000                   | 0.044                  | 0.001           | 0.448   | 1.050   | 4.8.2          |
|         | 109.75 (8)                   |            |                         |                         |                        |                 |         |         |                |
| L9      | 109.75 -                     | 0.015      | 0.518                   | 0.000                   | 0.053                  | 0.005           | 0.536   | 1.050   | 4.8.2          |
|         | 104.75 (9)                   |            |                         |                         |                        |                 |         |         |                |
| L10     | 104.75 -                     | 0.015      | 0.592                   | 0.000                   | 0.053                  | 0.005           | 0.611   | 1.050   | 4.8.2          |
|         | 99.75 (10)                   | 0.047      | 0.074                   |                         |                        | 0.005           |         | 4 9 5 9 |                |
| L11     | 99.75 - 94.75                | 0.017      | 0.674                   | 0.000                   | 0.060                  | 0.005           | 0.695   | 1.050   | 4.8.2          |
| 140     | (11)                         | 0.017      | 0.004                   | 0.000                   | 0.050                  | 0.004           | 0.745   | 1.050   | 4.0.0          |
| LIZ     | 94.75 - 93.5                 | 0.017      | 0.694                   | 0.000                   | 0.059                  | 0.004           | 0.715   | 1.050   | 4.8.2          |
| 1 1 2   | (12)                         | 0.010      | 0.364                   | 0.000                   | 0.034                  | 0.003           | 0 375   | 1.050   | 182            |
| LIJ     | 93.3 - 93.23<br>(13)         | 0.010      | 0.304                   | 0.000                   | 0.034                  | 0.003           | 0.375   | 1.050   | 4.0.2          |
| 14      | 93 25 - 88 25                | 0.010      | 0 405                   | 0.000                   | 0.034                  | 0.002           | 0 4 1 6 | 1 050   | 482            |
|         | (14)                         | 01010      | 01100                   | 01000                   | 01001                  | 01002           | 01110   | 11000   | HOLE           |
| L15     | 88,25 - 83,25                | 0.010      | 0.443                   | 0.000                   | 0.034                  | 0.002           | 0.455   | 1.050   | 4.8.2          |
|         | (15)                         |            |                         |                         |                        |                 |         |         |                |
| L16     | 83.25 - 74.75                | 0.011      | 0.466                   | 0.000                   | 0.035                  | 0.003           | 0.478   | 1.050   | 4.8.2          |
|         | (16)                         |            |                         |                         |                        |                 |         |         |                |
| L17     | 74.75 - 74.5                 | 0.010      | 0.445                   | 0.000                   | 0.031                  | 0.002           | 0.456   | 1.050   | 4.8.2          |
|         | (17)                         | 0.040      | 0.404                   |                         |                        |                 | 0.400   | 4 9 5 9 |                |
| L18     | (19)                         | 0.010      | 0.481                   | 0.000                   | 0.032                  | 0.002           | 0.492   | 1.050   | 4.8.2          |
| 1 10    | (18)                         | 0.010      | 0 502                   | 0.000                   | 0.021                  | 0.002           | 0.515   | 1.050   | 100            |
| LIS     | (10)                         | 0.010      | 0.505                   | 0.000                   | 0.031                  | 0.002           | 0.515   | 1.050   | 4.0.2          |
| 120     | 64 5 - 62 5                  | 0.011      | 0.511                   | 0.000                   | 0.031                  | 0.002           | 0 523   | 1 050   | 482            |
| 220     | (20)                         | 01011      | 01011                   | 01000                   | 01001                  | 01002           | 01020   | 11000   | HOLE           |
| L21     | 62.5 - 62.25                 | 0.016      | 0.834                   | 0.000                   | 0.047                  | 0.003           | 0.853   | 1.050   | 4.8.2          |
|         | (21)                         |            |                         |                         |                        |                 |         |         |                |
| L22     | 62.25 - 57.75                | 0.016      | 0.870                   | 0.000                   | 0.047                  | 0.003           | 0.888   | 1.050   | 4.8.2          |
|         | (22)                         |            |                         |                         |                        |                 |         |         |                |
| L23     | 57.75 - 57.5                 | 0.010      | 0.482                   | 0.000                   | 0.028                  | 0.002           | 0.492   | 1.050   | 4.8.2          |
| 1.04    | (23)                         | 0.010      | 0.409                   | 0.000                   | 0.000                  | 0.000           | 0 500   | 1.050   | 400            |
| LZ4     | 07.0 - 02.0<br>(24)          | 0.010      | 0.498                   | 0.000                   | 0.028                  | 0.002           | 0.508   | 1.050   | 4.0.2          |
| 125     | (24)<br>52 5 - 47 5          | 0.010      | 0 524                   | 0.000                   | 0.028                  | 0.002           | 0 535   | 1.050   | 482            |
| LZO     | (25)                         | 0.010      | 0.024                   | 0.000                   | 0.020                  | 0.002           | 0.000   | 1.000   | 4.0.2          |
| L26     | 47.5 - 39.5                  | 0.010      | 0.531                   | 0.000                   | 0.028                  | 0.002           | 0.542   | 1.050   | 4.8.2          |
|         | (26)                         |            |                         |                         |                        |                 |         |         |                |
| L27     | 39.5 - 38.5                  | 0.010      | 0.504                   | 0.000                   | 0.025                  | 0.001           | 0.515   | 1.050   | 4.8.2          |
|         | (27)                         |            |                         |                         |                        |                 |         |         |                |
| L28     | 38.5 - 38.25                 | 0.010      | 0.505                   | 0.000                   | 0.025                  | 0.001           | 0.516   | 1.050   | 4.8.2          |
| 1.20    | (28)                         | 0.011      | 0 571                   | 0.000                   | 0.020                  | 0.000           | 0 594   | 1.050   | 100            |
| LZ9     | 30.25 - 30                   | 0.011      | 0.571                   | 0.000                   | 0.029                  | 0.002           | 0.564   | 1.050   | 4.0.2          |
| 1.30    | 38 - 33 (30)                 | 0.012      | 0 590                   | 0.000                   | 0.029                  | 0.002           | 0.603   | 1.050   | 482            |
| L31     | 33 - 31.75                   | 0.012      | 0.593                   | 0.000                   | 0.029                  | 0.002           | 0.605   | 1.050   | 4.8.2          |
|         | (31)                         |            |                         |                         |                        |                 |         |         |                |
| L32     | 31.75 - 31.5                 | 0.008      | 0.415                   | 0.000                   | 0.020                  | 0.001           | 0.424   | 1.050   | 4.8.2          |
|         | (32)                         |            |                         |                         |                        |                 |         |         |                |
| L33     | 31.5 - 28.25                 | 0.008      | 0.420                   | 0.000                   | 0.020                  | 0.001           | 0.429   | 1.050   | 4.8.2          |
|         | (33)                         |            |                         |                         |                        |                 |         |         |                |
| L34     | 28.25 - 28                   | 0.011      | 0.560                   | 0.000                   | 0.026                  | 0.001           | 0.572   | 1.050   | 4.8.2          |
| 1.05    | (34)                         | 0.044      | 0 500                   | 0.000                   | 0.000                  | 0.004           | 0 5 0 4 | 1.050   | 4 0 0          |
| L30     | 20-23 (30)<br>23 19 (26)     | 0.011      | 0.009                   | 0.000                   | 0.020                  | 0.001           | 0.001   | 1.000   | 4.0.Z<br>1 8 2 |
| L30     | 20 - 10 (30)<br>18 - 12 (27) | 0.012      | 0.090                   | 0.000                   | 0.020<br>0.026         | 0.001           | 0.003   | 1.000   | 4.0.∠<br>182   |
| 138     | 13 - 13 (37)<br>13 - 8 (38)  | 0.012      | 0.097                   | 0.000                   | 0.020                  | 0.001           | 0.010   | 1 050   | 4.0.2          |
| L39     | 8 - 3 (39)                   | 0.012      | 0.611                   | 0.000                   | 0.026                  | 0.001           | 0.624   | 1.050   | 4.8 2          |
| L40     | 3 - 0 (40)                   | 0.013      | 0.625                   | 0.000                   | 0.026                  | 0.001           | 0.639   | 1.050   | 4.8.2          |
|         |                              |            |                         |                         |                        |                 |         |         |                |

| Section | Elevation       | Component | Size                     | Critical | P      | ØP <sub>allow</sub> | %        | Pass |
|---------|-----------------|-----------|--------------------------|----------|--------|---------------------|----------|------|
| No.     | ft              | Туре      |                          | Element  | lb     | lb                  | Capacity | Fail |
| L1      | 148 - 143       | Pole      | TP24.9752x24x0.2188      | 1        | -4833  | 1055817             | 3.5      | Pass |
| L2      | 143 - 138       | Pole      | TP25.9503x24.9752x0.2188 | 2        | -9831  | 1097407             | 8.3      | Pass |
| L3      | 138 - 133       | Pole      | TP26.9255x25.9503x0.2188 | 3        | -10305 | 1138987             | 14.8     | Pass |
| L4      | 133 - 128       | Pole      | TP27.9006x26.9255x0.2188 | 4        | -10799 | 1180578             | 20.8     | Pass |
| L5      | 128 - 123       | Pole      | TP28.8758x27.9006x0.2188 | 5        | -15367 | 1222168             | 29.4     | Pass |
| L6      | 123 - 116       | Pole      | TP30.241x28.8758x0.2188  | 6        | -15735 | 1249206             | 34.7     | Pass |
| L7      | 116 - 114 75    | Pole      | TP30.0471x29.0721x0.25   | 7        | -16697 | 1452328             | 36.4     | Pass |
| L8      | 114.75 - 109.75 | Pole      | TP31.0221x30.0471x0.25   | 8        | -18016 | 1499851             | 42.6     | Pass |
| L9      | 109.75 - 104.75 | Pole      | TP31.9971x31.0221x0.25   | 9        | -22203 | 1547374             | 51.0     | Pass |
| L10     | 104.75 - 99.75  | Pole      | TP32.9721x31.9971x0.25   | 10       | -23003 | 1594897             | 58.2     | Pass |
| L11     | 99.75 - 94.75   | Pole      | TP33.9471x32.9721x0.25   | 11       | -26833 | 1642420             | 66.2     | Pass |
| L12     | 94.75 - 93.5    | Pole      | TP34.1908x33.9471x0.25   | 12       | -27050 | 1654296             | 68.1     | Pass |
| L13     | 93.5 - 93.25    | Pole      | TP34.2396x34.1908x0.4375 | 13       | -27127 | 2883195             | 35.7     | Pass |
| L14     | 93.25 - 88.25   | Pole      | TP35.2145x34.2396x0.4313 | 14       | -28321 | 2924502             | 39.6     | Pass |
| L15     | 88.25 - 83.25   | Pole      | TP36.1895x35.2145x0.425  | 15       | -29549 | 2963425             | 43.3     | Pass |
| L16     | 83.25 - 74.75   | Pole      | TP37.847x36.1895x0.425   | 16       | -30511 | 3024010             | 45.5     | Pass |
| L17     | 74.75 - 74.5    | Pole      | TP37.3959x36.4208x0.4875 | 17       | -33006 | 3507945             | 43.4     | Pass |
| L18     | 74.5 - 69.5     | Pole      | TP38.3711x37.3959x0.475  | 18       | -34509 | 3509457             | 46.9     | Pass |
| L19     | 69.5 - 64.5     | Pole      | TP39.3462x38.3711x0.475  | 19       | -35973 | 3599767             | 49.0     | Pass |
| L20     | 64.5 - 62.5     | Pole      | TP39.7363x39.3462x0.475  | 20       | -36567 | 3635887             | 49.8     | Pass |
| L21     | 62.5 - 62.25    | Pole      | TP39.785x39.7363x0.3125  | 21       | -36634 | 2404899             | 81.2     | Pass |
| L22     | 62.25 - 57.75   | Pole      | TP40.6627x39.785x0.3125  | 22       | -37699 | 2458375             | 84.6     | Pass |
| L23     | 57.75 - 57.5    | Pole      | TP40.7114x40.6627x0.525  | 23       | -37800 | 4113301             | 46.9     | Pass |
| L24     | 57.5 - 52.5     | Pole      | TP41.6866x40.7114x0.525  | 24       | -39434 | 4213114             | 48.4     | Pass |
| L25     | 52.5 - 47.5     | Pole      | TP42.6618x41.6866x0.5125 | 25       | -41190 | 4211487             | 51.0     | Pass |
| L26     | 47.5 - 39.5     | Pole      | TP44.222x42.6618x0.5125  | 26       | -42033 | 4260207             | 51.6     | Pass |
| L27     | 39.5 - 38.5     | Pole      | TP43.7919x42.5243x0.575  | 27       | -45912 | 4844773             | 49.1     | Pass |
| L28     | 38.5 - 38.25    | Pole      | TP43.8407x43.7919x0.575  | 28       | -46015 | 4850244             | 49.1     | Pass |
| L29     | 38.25 - 38      | Pole      | TP43.8894x43.8407x0.5063 | 29       | -46102 | 4281921             | 55.6     | Pass |
| L30     | 38 - 33         | Pole      | TP44.8645x43.8894x0.5    | 30       | -47842 | 4324719             | 57.4     | Pass |
| L31     | 33 - 31.75      | Pole      | TP45 1083x44 8645x0 5    | 31       | -48281 | 4348480             | 57.6     | Pass |
| L32     | 31.75 - 31.5    | Pole      | TP45.157x45.1083x0.725   | 32       | -48415 | 6280386             | 40.4     | Pass |
| L33     | 31.5 - 28.25    | Pole      | TP45.7908x45.157x0.725   | 33       | -49958 | 6369972             | 40.8     | Pass |
| L34     | 28.25 - 28      | Pole      | TP45.8396x45.7908x0.5375 | 34       | -50071 | 4747323             | 54.5     | Pass |
| L35     | 28 - 23         | Pole      | TP46.8147x45.8396x0.5375 | 35       | -52172 | 4849498             | 55.3     | Pass |
| L36     | 23 - 18         | Pole      | TP47.7897x46.8147x0.525  | 36       | -54312 | 4837812             | 57.4     | Pass |
| L37     | 18 - 13         | Pole      | TP48.7648x47.7897x0.525  | 37       | -57048 | 4937614             | 58.1     | Pass |
| L38     | 13 - 8          | Pole      | TP49.7399x48.7648x0.525  | 38       | -59240 | 5037417             | 58.8     | Pass |
| L39     | 8 - 3           | Pole      | TP50.715x49.7399x0.525   | 39       | -61458 | 5137219             | 59.5     | Pass |
| L40     | 3 - 0           | Pole      | TP51.3x50.715x0.5188     | 40       | -62804 | 5135865             | 60.8     | Pass |
|         |                 |           |                          |          |        |                     | Summarv  |      |
|         |                 |           |                          |          |        | Pole (L22)          | 84.6     | Pass |
|         |                 |           |                          |          |        | RATING =            | 84.6     | Pass |

### **Section Capacity Table**

\*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

### **APPENDIX B**

### **BASE LEVEL DRAWING**



### **APPENDIX C**

### ADDITIONAL CALCULATIONS



Site BU: 855662



|   |     | Work Order:1966278 CASILE      |                        |                           |                 |                      |                         |                     |                     |                   |  |  |  |  |
|---|-----|--------------------------------|------------------------|---------------------------|-----------------|----------------------|-------------------------|---------------------|---------------------|-------------------|--|--|--|--|
|   | Pol | le Geometry                    |                        |                           |                 |                      |                         |                     | Copyright @         | 2019 Crown Castle |  |  |  |  |
|   |     | Pole Height Above<br>Base (ft) | Section Length<br>(ft) | Lap Splice Length<br>(ft) | Number of Sides | Top Diameter<br>(in) | Bottom Diameter<br>(in) | Wall Thickness (in) | Bend Radius<br>(in) | Pole Material     |  |  |  |  |
| ſ | 1   | 148                            | 32                     | 3.75                      | 18              | 24                   | 30.241                  | 0.21875             | Auto                | A607-65           |  |  |  |  |
|   | 2   | 119.75                         | 45                     | 4.75                      | 18              | 29.07                | 37.847                  | 0.25                | Auto                | A607-65           |  |  |  |  |
|   | 3   | 79.5                           | 40                     | 5.5                       | 18              | 36.42                | 44.222                  | 0.3125              | Auto                | A607-65           |  |  |  |  |
|   | 4   | 45                             | 45                     | 0                         | 18              | 42.52                | 51.3                    | 0.375               | Auto                | A607-65           |  |  |  |  |
|   |     |                                |                        |                           |                 |                      |                         |                     |                     |                   |  |  |  |  |

### **Reinforcement Configuration**

|    | Bottom Effective<br>Elevation (ft) | Top Effective<br>Elevation (ft) | Туре  | Model          | Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|----|------------------------------------|---------------------------------|-------|----------------|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| 1  | 0                                  | 31.75                           | plate | CCI-SFP-085125 | 3      |   |   |   |   |   |   |   | x |   |    |    |    | x  |    |    |    |    | x  |
| 2  | 28.25                              | 57.75                           | plate | CCI-SFP-065125 | 2      |   |   |   |   |   | x |   |   |   |    |    | x  |    |    |    |    |    |    |
| 3  | 38.25                              | 57.75                           | plate | CCI-SFP-065125 | 1      |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | x  |
| 4  | 62.5                               | 93.5                            | plate | CCI-SFP-060100 | 3      |   |   |   |   |   | x |   |   |   |    |    | x  |    |    |    |    |    | x  |
| 5  |                                    |                                 |       |                |        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 6  |                                    |                                 |       |                |        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 7  |                                    |                                 |       |                |        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 8  |                                    |                                 |       |                |        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 9  |                                    |                                 |       |                |        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 10 |                                    |                                 |       |                |        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |

#### **Reinforcement Details**

|   | B (in) | H (in) | Gross<br>Area<br>(in <sup>2</sup> ) | Pole Face to<br>Centroid (in) | Bottom Termination<br>Type | Bottom<br>Termination<br>Length (in) | Top Termination Type | Top<br>Termination<br>Length (in) | Lu (in) | Net Area<br>(in2) | Bolt Hole Size<br>(in) | Reinforcement<br>Material |
|---|--------|--------|-------------------------------------|-------------------------------|----------------------------|--------------------------------------|----------------------|-----------------------------------|---------|-------------------|------------------------|---------------------------|
| 1 | 8.5    | 1.25   | 10.625                              | 0.625                         | PC 8.8 - M20 (100)         | 45                                   | PC 8.8 - M20 (100)   | 45.000                            | 17.000  | 9.063             | 1.1875                 | A572-65                   |
| 2 | 6.5    | 1.25   | 8.125                               | 0.625                         | PC 8.8 - M20 (100)         | 33                                   | PC 8.8 - M20 (100)   | 33.000                            | 19.000  | 6.563             | 1.1875                 | A572-65                   |
| 3 | 6.5    | 1.25   | 8.125                               | 0.625                         | PC 8.8 - M20 (100)         | 33                                   | PC 8.8 - M20 (100)   | 33.000                            | 19.000  | 6.563             | 1.1875                 | A572-65                   |
| 4 | 6      | 1      | 6                                   | 0.5                           | PC 8.8 - M20 (100)         | 24                                   | PC 8.8 - M20 (100)   | 24.000                            | 16.000  | 4.750             | 1.1875                 | A572-65                   |

# TNX Geometry Input

| Inc | rement (ft): 5 Ex   | port to TNX         |                   |                 |                   |                 |                     |              |            |
|-----|---------------------|---------------------|-------------------|-----------------|-------------------|-----------------|---------------------|--------------|------------|
|     |                     |                     | Lap Splice Length |                 |                   | Bottom Diameter |                     | Tapered Pole | Weight     |
|     | Section Height (ft) | Section Length (ft) | (ft)              | Number of Sides | Top Diameter (in) | (in)            | Wall Thickness (in) | Grade        | Multiplier |
| 1   | 148 - 143           | 5                   |                   | 18              | 24.000            | 24.975          | 0.21875             | A607-65      | 1.000      |
| 2   | 143 - 138           | 5                   |                   | 18              | 24.975            | 25.950          | 0.21875             | A607-65      | 1.000      |
| 3   | 138 - 133           | 5                   |                   | 18              | 25.950            | 26.925          | 0.21875             | A607-65      | 1.000      |
| 4   | 133 - 128           | 5                   |                   | 18              | 26.925            | 27.901          | 0.21875             | A607-65      | 1.000      |
| 5   | 128 - 123           | 5                   |                   | 18              | 27.901            | 28.876          | 0.21875             | A607-65      | 1.000      |
| 6   | 123 - 119.75        | 7                   | 3.75              | 18              | 28.876            | 30.241          | 0.21875             | A607-65      | 1.000      |
| 7   | 119.75 - 114.75     | 5                   |                   | 18              | 29.072            | 30.047          | 0.25                | A607-65      | 1.000      |
| 8   | 114.75 - 109.75     | 5                   |                   | 18              | 30.047            | 31.022          | 0.25                | A607-65      | 1.000      |
| 9   | 109.75 - 104.75     | 5                   |                   | 18              | 31.022            | 31.997          | 0.25                | A607-65      | 1.000      |
| 10  | 104.75 - 99.75      | 5                   |                   | 18              | 31.997            | 32.972          | 0.25                | A607-65      | 1.000      |
| 11  | 99.75 - 94.75       | 5                   |                   | 18              | 32.972            | 33.947          | 0.25                | A607-65      | 1.000      |
| 12  | 94.75 - 93.5        | 1.25                |                   | 18              | 33.947            | 34.191          | 0.25                | A607-65      | 1.000      |
| 13  | 93.5 - 93.25        | 0.25                |                   | 18              | 34.191            | 34.240          | 0.4375              | A607-65      | 0.958      |
| 14  | 93.25 - 88.25       | 5                   |                   | 18              | 34.240            | 35.215          | 0.43125             | A607-65      | 0.961      |
| 15  | 88.25 - 83.25       | 5                   |                   | 18              | 35.215            | 36.190          | 0.425               | A607-65      | 0.964      |
| 16  | 83.25 - 79.5        | 8.5                 | 4.75              | 18              | 36.190            | 37.847          | 0.425               | A607-65      | 0.957      |
| 17  | 79.5 - 74.5         | 5                   |                   | 18              | 36.421            | 37.396          | 0.4875              | A607-65      | 0.959      |
| 18  | 74.5 - 69.5         | 5                   |                   | 18              | 37.396            | 38.371          | 0.475               | A607-65      | 0.976      |
| 19  | 69.5 - 64.5         | 5                   |                   | 18              | 38.371            | 39.346          | 0.475               | A607-65      | 0.968      |
| 20  | 64.5 - 62.5         | 2                   |                   | 18              | 39.346            | 39.736          | 0.475               | A607-65      | 0.965      |
| 21  | 62.5 - 62.25        | 0.25                |                   | 18              | 39.736            | 39.785          | 0.3125              | A607-65      | 1.000      |
| 22  | 62.25 - 57.75       | 4.5                 |                   | 18              | 39.785            | 40.663          | 0.3125              | A607-65      | 1.000      |
| 23  | 57.75 - 57.5        | 0.25                |                   | 18              | 40.663            | 40.711          | 0.525               | A607-65      | 0.962      |
| 24  | 57.5 - 52.5         | 5                   |                   | 18              | 40.711            | 41.687          | 0.525               | A607-65      | 0.954      |
| 25  | 52.5 - 47.5         | 5                   |                   | 18              | 41.687            | 42.662          | 0.5125              | A607-65      | 0.968      |
| 26  | 47.5 - 45           | 8                   | 5.5               | 18              | 42.662            | 44.222          | 0.5125              | A607-65      | 0.964      |
| 27  | 45 - 38.5           | 6.5                 |                   | 18              | 42.524            | 43.792          | 0.575               | A607-65      | 0.964      |
| 28  | 38.5 - 38.25        | 0.25                |                   | 18              | 43.792            | 43.841          | 0.575               | A607-65      | 0.964      |
| 29  | 38.25 - 38          | 0.25                |                   | 18              | 43.841            | 43.889          | 0.50625             | A607-65      | 0.976      |
| 30  | 38 - 33             | 5                   |                   | 18              | 43.889            | 44.865          | 0.5                 | A607-65      | 0.983      |
| 31  | 33 - 31.75          | 1.25                |                   | 18              | 44.865            | 45.108          | 0.5                 | A607-65      | 0.982      |
| 32  | 31.75 - 31.5        | 0.25                |                   | 18              | 45.108            | 45.157          | 0.725               | A607-65      | 0.992      |
| 33  | 31.5 - 28.25        | 3.25                |                   | 18              | 45.157            | 45.791          | 0.725               | A607-65      | 0.985      |
| 34  | 28.25 - 28          | 0.25                |                   | 18              | 45.791            | 45.840          | 0.5375              | A607-65      | 1.113      |
| 35  | 28 - 23             | 5                   |                   | 18              | 45.840            | 46.815          | 0.5375              | A607-65      | 1.104      |
| 36  | 23 - 18             | 5                   |                   | 18              | 46.815            | 47.790          | 0.525               | A607-65      | 1.121      |
| 37  | 18 - 13             | 5                   |                   | 18              | 47.790            | 48.765          | 0.525               | A607-65      | 1.113      |
| 38  | 13 - 8              | 5                   |                   | 18              | 48.765            | 49.740          | 0.525               | A607-65      | 1.105      |
| 39  | 8 - 3               | 5                   |                   | 18              | 49.740            | 50.715          | 0.525               | A607-65      | 1.098      |
| 40  | 3 - 0               | 3                   |                   | 18              | 50.715            | 51.300          | 0.51875             | A607-65      | 1.106      |

# **TNX Section Forces**

| _Ine | crement (ft): | 5           | TNX Output         |                       |                    |  |  |  |  |
|------|---------------|-------------|--------------------|-----------------------|--------------------|--|--|--|--|
|      |               |             |                    | M <sub>ux</sub> (kip- |                    |  |  |  |  |
|      | Section H     | leight (ft) | P <sub>u</sub> (K) | ft)                   | V <sub>u</sub> (К) |  |  |  |  |
| 1    | 148 -         | - 143       | 4.83               | 19.51                 | 5.07               |  |  |  |  |
| 2    | 143 -         | - 138       | 9.83               | 50.54                 | 10.05              |  |  |  |  |
| 3    | 138 -         | - 133       | 10.31              | 101.98                | 10.53              |  |  |  |  |
| 4    | 133 -         | - 128       | 10.80              | 155.84                | 11.02              |  |  |  |  |
| 5    | 128 -         | - 123       | 15.37              | 232.46                | 16.55              |  |  |  |  |
| 6    | 123 -         | - 119.75    | 15.74              | 286.74                | 16.89              |  |  |  |  |
| 7    | 119.75 -      | - 114.75    | 16.70              | 372.57                | 17.44              |  |  |  |  |
| 8    | 114.75        | - 109.75    | 18.02              | 461.86                | 18.67              |  |  |  |  |
| 9    | 109.75        | - 104.75    | 22.21              | 581.52                | 23.45              |  |  |  |  |
| 10   | 104.75 ·      | - 99.75     | 23.01              | 699.89                | 23.92              |  |  |  |  |
| 11   | 99.75 ·       | - 94.75     | 26.84              | 835.58                | 27.93              |  |  |  |  |
| 12   | 94.75         | - 93.5      | 27.06              | 870.55                | 28.05              |  |  |  |  |
| 13   | 93.5 ·        | - 93.25     | 27.14              | 877.56                | 28.08              |  |  |  |  |
| 14   | 93.25         | - 88.25     | 28.33              | 1019.12               | 28.58              |  |  |  |  |
| 15   | 88.25 ·       | - 83.25     | 29.56              | 1163.26               | 29.10              |  |  |  |  |
| 16   | 83.25 ·       | - 79.5      | 30.50              | 1273.04               | 29.48              |  |  |  |  |
| 17   | 79.5 ·        | - 74.5      | 32.99              | 1422.96               | 30.78              |  |  |  |  |
| 18   | 74.5 ·        | - 69.5      | 34.49              | 1578.18               | 31.34              |  |  |  |  |
| 19   | 69.5 ·        | - 64.5      | 35.95              | 1736.07               | 31.84              |  |  |  |  |
| 20   | 64.5          | - 62.5      | 36.55              | 1799.91               | 32.04              |  |  |  |  |
| 21   | 62.5 ·        | - 62.25     | 36.61              | 1807.92               | 32.06              |  |  |  |  |
| 22   | 62.25 ·       | - 57.75     | 37.68              | 1952.91               | 32.42              |  |  |  |  |
| 23   | 57.75 ·       | - 57.5      | 37.78              | 1961.02               | 32.44              |  |  |  |  |
| 24   | 57.5 ·        | - 52.5      | 39.41              | 2124.36               | 32.93              |  |  |  |  |
| 25   | 52.5 ·        | - 47.5      | 41.16              | 2290.08               | 33.48              |  |  |  |  |
| 26   | 47.5 ·        | - 45        | 42.01              | 2374.03               | 33.72              |  |  |  |  |
| 27   | 45 ·          | - 38.5      | 45.88              | 2595.57               | 34.46              |  |  |  |  |
| 28   | 38.5          | - 38.25     | 45.99              | 2604.19               | 34.47              |  |  |  |  |
| 29   | 38.25         | - 38        | 46.07              | 2612.81               | 34.49              |  |  |  |  |
| 30   | 38            | - 33        | 47.81              | 2786.28               | 34.92              |  |  |  |  |
| 31   | 33            | - 31.75     | 48.25              | 2829.97               | 35.03              |  |  |  |  |
| 32   | 31.75         | - 31.5      | 48.38              | 2838.73               | 35.04              |  |  |  |  |
| 33   | 31.5          | 28.25       | 49.92              | 2953.07               | 35.35              |  |  |  |  |
| 34   | 28.25         | - 28        | 50.04              | 2961.91               | 35.36              |  |  |  |  |
| 35   | 28            | - 23        | 52.14              | 3139.67               | 35.77              |  |  |  |  |
| 36   | 23            | - 18        | 54.27              | 3319.35               | 36.14              |  |  |  |  |
| 37   | 18            | - 13        | 57.01              | 3501.27               | 36.73              |  |  |  |  |
| 38   | 13 -          | - 8         | 59.20              | 3685.59               | 37.04              |  |  |  |  |
| 39   | 8 -           | - 3         | 61.41              | 3871.46               | 37.35              |  |  |  |  |
| 40   | 3 -           | - 0         | 62.76              | 3983.73               | 37.53              |  |  |  |  |

# **Analysis Results**

| Elevation (ft)  | Component<br>Type | Size                   | Critical Element         | % Capacity | Pass / Fail |
|-----------------|-------------------|------------------------|--------------------------|------------|-------------|
| 148 - 143       | Pole              | TP24.975x24x0.2188     | Pole                     | 3.5%       | Pass        |
| 143 - 138       | Pole              | TP25.95x24.975x0.2188  | Pole                     | 8.3%       | Pass        |
| 138 - 133       | Pole              | TP26.925x25.95x0.2188  | Pole                     | 14.8%      | Pass        |
| 133 - 128       | Pole              | TP27.901x26.925x0.2188 | Pole                     | 20.8%      | Pass        |
| 128 - 123       | Pole              | TP28.876x27.901x0.2188 | Pole                     | 29.4%      | Pass        |
| 123 - 119.75    | Pole              | TP30.241x28.876x0.2188 | Pole                     | 34.7%      | Pass        |
| 119.75 - 114.75 | Pole              | TP30.047x29.072x0.25   | Pole                     | 36.4%      | Pass        |
| 114.75 - 109.75 | Pole              | TP31.022x30.047x0.25   | Pole                     | 42.6%      | Pass        |
| 109.75 - 104.75 | Pole              | TP31.997x31.022x0.25   | Pole                     | 51.0%      | Pass        |
| 104.75 - 99.75  | Pole              | TP32.972x31.997x0.25   | Pole                     | 58.1%      | Pass        |
| 99.75 - 94.75   | Pole              | TP33.947x32.972x0.25   | Pole                     | 66.2%      | Pass        |
| 94.75 - 93.5    | Pole              | TP34.191x33.947x0.25   | Pole                     | 68.1%      | Pass        |
| 93.5 - 93.25    | Pole + Reinf.     | TP34.24x34.191x0.4375  | Reinf. 4 Tension Rupture | 56.2%      | Pass        |
| 93.25 - 88.25   | Pole + Reinf.     | TP35.215x34.24x0.4313  | Reinf. 4 Tension Rupture | 62.3%      | Pass        |
| 88.25 - 83.25   | Pole + Reinf.     | TP36.19x35.215x0.425   | Reinf. 4 Tension Rupture | 68.0%      | Pass        |
| 83.25 - 79.5    | Pole + Reinf.     | TP37.847x36.19x0.425   | Reinf. 4 Tension Rupture | 72.0%      | Pass        |
| 79.5 - 74.5     | Pole + Reinf.     | TP37.396x36.421x0.4875 | Reinf. 4 Tension Rupture | 68.6%      | Pass        |
| 74.5 - 69.5     | Pole + Reinf.     | TP38.371x37.396x0.475  | Reinf. 4 Tension Rupture | 72.9%      | Pass        |
| 69.5 - 64.5     | Pole + Reinf.     | TP39.346x38.371x0.475  | Reinf. 4 Tension Rupture | 76.8%      | Pass        |
| 64.5 - 62.5     | Pole + Reinf.     | TP39.736x39.346x0.475  | Reinf. 4 Tension Rupture | 78.3%      | Pass        |
| 62.5 - 62.25    | Pole              | TP39.785x39.736x0.3125 | Pole                     | 80.9%      | Pass        |
| 62.25 - 57.75   | Pole              | TP40.663x39.785x0.3125 | Pole                     | 84.2%      | Pass        |
| 57.75 - 57.5    | Pole + Reinf.     | TP40.711x40.663x0.525  | Reinf. 2 Tension Rupture | 72.0%      | Pass        |
| 57.5 - 52.5     | Pole + Reinf.     | TP41.687x40.711x0.525  | Reinf. 2 Tension Rupture | 75.1%      | Pass        |
| 52.5 - 47.5     | Pole + Reinf.     | TP42.662x41.687x0.5125 | Reinf. 2 Tension Rupture | 77.9%      | Pass        |
| 47.5 - 45       | Pole + Reinf.     | TP44.222x42.662x0.5125 | Reinf. 2 Tension Rupture | 79.3%      | Pass        |
| 45 - 38.5       | Pole + Reinf.     | TP43.792x42.524x0.575  | Reinf. 2 Tension Rupture | 75.5%      | Pass        |
| 38.5 - 38.25    | Pole + Reinf.     | TP43.841x43.792x0.575  | Reinf. 2 Tension Rupture | 75.6%      | Pass        |
| 38.25 - 38      | Pole + Reinf.     | TP43.889x43.841x0.5063 | Reinf. 2 Tension Rupture | 76.8%      | Pass        |
| 38 - 33         | Pole + Reinf.     | TP44.865x43.889x0.5    | Reinf. 2 Tension Rupture | 78.8%      | Pass        |
| 33 - 31.75      | Pole + Reinf.     | TP45.108x44.865x0.5    | Reinf. 2 Tension Rupture | 79.3%      | Pass        |
| 31.75 - 31.5    | Pole + Reinf.     | TP45.157x45.108x0.725  | Reinf. 1 Bolt Shear      | 65.2%      | Pass        |
| 31.5 - 28.25    | Pole + Reinf.     | TP45.791x45.157x0.725  | Reinf. 1 Compression     | 63.8%      | Pass        |
| 28.25 - 28      | Pole + Reinf.     | TP45.84x45.791x0.5375  | Reinf. 1 Compression     | 72.0%      | Pass        |
| 28 - 23         | Pole + Reinf.     | TP46.815x45.84x0.5375  | Reinf. 1 Compression     | 73.7%      | Pass        |
| 23 - 18         | Pole + Reinf.     | TP47.79x46.815x0.525   | Reinf. 1 Compression     | 75.3%      | Pass        |
| 18 - 13         | Pole + Reinf.     | TP48.765x47.79x0.525   | Reinf. 1 Compression     | 76.8%      | Pass        |
| 13 - 8          | Pole + Reinf.     | TP49.74x48.765x0.525   | Reinf. 1 Compression     | 78.2%      | Pass        |
| 8 - 3           | Pole + Reinf.     | TP50.715x49.74x0.525   | Reinf. 1 Compression     | 79.5%      | Pass        |
| 3 - 0           | Pole + Reinf.     | TP51.3x50.715x0.5188   | Reinf. 1 Bolt Shear      | 83.4%      | Pass        |
|                 |                   |                        |                          | Summary    |             |
|                 |                   |                        | Pole                     | 84.2%      | Pass        |
|                 |                   |                        | Reinforcement            | 83.4%      | Pass        |
|                 |                   |                        | Overall                  | 84.2%      | Pass        |

# **Additional Calculations**

| Section         | Mom   | ent of Inertia | a (in <sup>4</sup> ) | Area (in <sup>2</sup> ) |        |        | % Capacity* |       |       |       |       |
|-----------------|-------|----------------|----------------------|-------------------------|--------|--------|-------------|-------|-------|-------|-------|
| Elevation (ft)  | Pole  | Reinf.         | Total                | Pole                    | Reinf. | Total  | Pole        | R1    | R2    | R3    | R4    |
| 148 - 143       | 1330  | n/a            | 1330                 | 17.19                   | n/a    | 17.19  | 3.5%        |       |       |       |       |
| 143 - 138       | 1494  | n/a            | 1494                 | 17.87                   | n/a    | 17.87  | 8.3%        |       |       |       |       |
| 138 - 133       | 1670  | n/a            | 1670                 | 18.54                   | n/a    | 18.54  | 14.8%       |       |       |       |       |
| 133 - 128       | 1860  | n/a            | 1860                 | 19.22                   | n/a    | 19.22  | 20.8%       |       |       |       |       |
| 128 - 123       | 2064  | n/a            | 2064                 | 19.90                   | n/a    | 19.90  | 29.4%       |       |       |       |       |
| 123 - 119.75    | 2204  | n/a            | 2204                 | 20.34                   | n/a    | 20.34  | 34.7%       |       |       |       |       |
| 119.75 - 114.75 | 2651  | n/a            | 2651                 | 23.64                   | n/a    | 23.64  | 36.4%       |       |       |       |       |
| 114.75 - 109.75 | 2920  | n/a            | 2920                 | 24.42                   | n/a    | 24.42  | 42.6%       |       |       |       |       |
| 109.75 - 104.75 | 3207  | n/a            | 3207                 | 25.19                   | n/a    | 25.19  | 51.0%       |       |       |       |       |
| 104.75 - 99.75  | 3511  | n/a            | 3511                 | 25.96                   | n/a    | 25.96  | 58.1%       |       |       |       |       |
| 99.75 - 94.75   | 3834  | n/a            | 3834                 | 26.74                   | n/a    | 26.74  | 66.2%       |       |       |       |       |
| 94.75 - 93.5    | 3918  | n/a            | 3918                 | 26.93                   | n/a    | 26.93  | 68.1%       |       |       |       |       |
| 93.5 - 93.25    | 3935  | 2822           | 6757                 | 26.97                   | 18.00  | 44.97  | 39.3%       |       |       |       | 56.2% |
| 93.25 - 88.25   | 4284  | 2979           | 7262                 | 27.74                   | 18.00  | 45.74  | 44.0%       |       |       |       | 62.3% |
| 88.25 - 83.25   | 4652  | 3140           | 7792                 | 28.52                   | 18.00  | 46.52  | 48.6%       |       |       |       | 68.0% |
| 83.25 - 79.5    | 4942  | 3263           | 8205                 | 29.10                   | 18.00  | 47.10  | 51.9%       |       |       |       | 72.0% |
| 79.5 - 74.5     | 6388  | 3345           | 9733                 | 36.78                   | 18.00  | 54.78  | 45.8%       |       |       |       | 68.6% |
| 74.5 - 69.5     | 6906  | 3515           | 10421                | 37.75                   | 18.00  | 55.75  | 49.1%       |       |       |       | 72.9% |
| 69.5 - 64.5     | 7450  | 3690           | 11140                | 38.72                   | 18.00  | 56.72  | 52.2%       |       |       |       | 76.8% |
| 64.5 - 62.5     | 7676  | 3762           | 11437                | 39.10                   | 18.00  | 57.10  | 53.4%       |       |       |       | 78.3% |
| 62.5 - 62.25    | 7704  | n/a            | 7704                 | 39.15                   | n/a    | 39.15  | 80.9%       |       |       |       |       |
| 62.25 - 57.75   | 8230  | n/a            | 8230                 | 40.02                   | n/a    | 40.02  | 84.2%       |       |       |       |       |
| 57.75 - 57.5    | 8259  | 5409           | 13669                | 40.07                   | 24.38  | 64.44  | 50.2%       |       | 72.0% | 72.0% |       |
| 57.5 - 52.5     | 8872  | 5662           | 14534                | 41.04                   | 24.38  | 65.41  | 52.8%       |       | 75.1% | 75.1% |       |
| 52.5 - 47.5     | 9514  | 5920           | 15434                | 42.00                   | 24.38  | 66.38  | 55.3%       |       | 77.9% | 77.9% |       |
| 47.5 - 45       | 9847  | 6051           | 15897                | 42.49                   | 24.38  | 66.86  | 56.6%       |       | 79.3% | 79.3% |       |
| 45 - 38.5       | 12303 | 6226           | 18529                | 51.68                   | 24.38  | 76.05  | 50.9%       |       | 75.5% | 75.5% |       |
| 38.5 - 38.25    | 12344 | 6239           | 18583                | 51.73                   | 24.38  | 76.11  | 51.0%       |       | 75.6% | 75.6% |       |
| 38.25 - 38      | 12541 | 4166           | 16707                | 51.79                   | 16.25  | 68.04  | 62.2%       |       | 76.8% |       |       |
| 38 - 33         | 13397 | 4352           | 17749                | 52.95                   | 16.25  | 69.20  | 64.2%       |       | 78.8% |       |       |
| 33 - 31.75      | 13617 | 4399           | 18017                | 53.24                   | 16.25  | 69.49  | 64.7%       |       | 79.3% |       |       |
| 31.75 - 31.5    | 13800 | 12075          | 25875                | 53.30                   | 48.13  | 101.42 | 46.3%       | 65.2% | 59.5% |       |       |
| 31.5 - 28.25    | 14389 | 12408          | 26798                | 54.05                   | 48.13  | 102.18 | 47.4%       | 63.8% | 60.5% |       |       |
| 28.25 - 28      | 14322 | 5866           | 20187                | 54.11                   | 31.88  | 85.99  | 61.0%       | 72.0% |       |       |       |
| 28 - 23         | 15257 | 6111           | 21369                | 55.27                   | 31.88  | 87.15  | 62.8%       | 73.7% |       |       |       |
| 23 - 18         | 16233 | 6362           | 22595                | 56.43                   | 31.88  | 88.31  | 64.5%       | 75.3% |       |       |       |
| 18 - 13         | 17249 | 6618           | 23867                | 57.59                   | 31.88  | 89.47  | 66.1%       | 76.8% |       |       |       |
| 13 - 8          | 18307 | 6880           | 25186                | 58.75                   | 31.88  | 90.63  | 67.7%       | 78.2% |       |       |       |
| 8 - 3           | 19407 | 7146           | 26553                | 59.91                   | 31.88  | 91.79  | 69.2%       | 79.5% |       |       |       |
| 3 - 0           | 20088 | 7309           | 27396                | 60.61                   | 31.88  | 92.49  | 70.0%       | 83.4% |       |       |       |

Note: Section capacity checked using 5 degree increments. Rating per TIA-222-H Section 15.5.

### **Monopole Base Plate Connection**



| Site Info |                |
|-----------|----------------|
| BU #      | 855662         |
| Site Name | WINDSORCENTRAL |
| Order #   | 556619 Rev. 1  |

| Analysis Considerations |    |  |  |  |  |  |  |
|-------------------------|----|--|--|--|--|--|--|
| TIA-222 Revision        | Н  |  |  |  |  |  |  |
| Grout Considered:       | No |  |  |  |  |  |  |
| l <sub>ar</sub> (in)    | 2  |  |  |  |  |  |  |

| Applied Loads                           |         |
|-----------------------------------------|---------|
| Moment (kip-ft)                         | 3984.00 |
| Axial Force (kips)                      | 63.00   |
| Shear Force (kips)                      | 38.00   |
| *************************************** | 111     |

\*TIA-222-H Section 15.5 Applied



#### **Connection Properties**

#### Anchor Rod Data

(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 58" BC Anchor Spacing: 6 in

### Base Plate Data

57" W x 2.75" Plate (A572-55; Fy=55 ksi, Fu=70 ksi); Clip: 8.5 in

#### Stiffener Data

N/A

#### Pole Data

51.3" x 0.375" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

### **Analysis Results**

| Anchor Rod Summary      |                | (units of kips, kip-in) |
|-------------------------|----------------|-------------------------|
| Pu_t = 202              | φPn_t = 243.75 | Stress Rating           |
| Vu = 2.38               | φVn = 149.1    | 78.9%                   |
| Mu = n/a                | φMn = n/a      | Pass                    |
| Base Plate Summary      |                |                         |
| Max Stress (ksi):       | 38.22          | (Flexural)              |
| Allowable Stress (ksi): | 49.5           |                         |
| Stress Rating:          | 73.5%          | Pass                    |

| -          |
|------------|
|            |
| _          |
|            |
| 0          |
|            |
|            |
| -          |
| ~          |
| •••        |
| _          |
|            |
| Ē          |
| _          |
| _          |
|            |
| -          |
| 0          |
| <u> </u>   |
|            |
|            |
|            |
| <u> </u>   |
|            |
| <b>a</b> ) |
| -          |
|            |
| <b>^</b>   |
|            |
|            |
| _          |
| 0          |
|            |
| a          |
| -          |
|            |
|            |
|            |
| -          |
| $\sim$     |
| r 1        |
| _          |
|            |

CCROWN

Check Limitation Apply TIA-222-H Section 15.5:

N/A

Additional Longitudinal Rebar Input Effective Depths (else Actual): Shear Design Options Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth: Calcula

Uplift

Compression 7.56 1.79

Soil Lateral Check C D<sub>vo</sub> (ft from TOC) Soil Safety Factor

**Analysis Results** 

| Appli              | ed Loads |        |
|--------------------|----------|--------|
|                    | Comp.    | Uplift |
| Moment (kip-ft)    | 3984     |        |
| Axial Force (kips) | 63       |        |
| Shear Force (kips) | 38       |        |
|                    |          |        |
| -                  | •        |        |

| Material Propertie<br>e Strength, f'c:<br>ir Strength, Fy:<br>i Strength, Fyt: |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

| sign Data | 32.5 ft | 0.5 ft           | ection 1 | de to 32.5' below grade | 7 4           | 20             | 11         | 4 in                | 5        | 18 in       |
|-----------|---------|------------------|----------|-------------------------|---------------|----------------|------------|---------------------|----------|-------------|
| Pier De   | Depth   | Ext. Above Grade | Pier S   | From 0.5' above gra     | Pier Diameter | Rebar Quantity | Rebar Size | Clear Cover to Ties | Tie Size | Tie Spacing |

|         | <b>Belled Pier Inputs</b> |
|---------|---------------------------|
| Critio  | Embedded Pole Inputs      |
| עבווומו |                           |

Rebar & Pier Options

| Max Moment (kip-ft)                | 4241.36     |        |
|------------------------------------|-------------|--------|
| Rating*                            | 70.8%       |        |
| Soil Vertical Check                | Compression | Uplift |
| Skin Friction (kips)               | 150.09      | -      |
| End Bearing (kips)                 | 138.54      | 1      |
| Weight of Concrete (kips)          | 140.68      | I      |
| Total Capacity (kips)              | 288.63      | I      |
| Axial (kips)                       | 203.68      | 1      |
| Rating*                            | 67.2%       | •      |
| <b>Reinforced Concrete Flexure</b> | Compression | Uplift |
| Critical Depth (ft from TOC)       | 7.66        | I      |
| Critical Moment (kip-ft)           | 4241.26     | •      |
| Critical Moment Capacity           | 5008.19     | -      |
| Rating*                            | 80.7%       |        |
| <b>Reinforced Concrete Shear</b>   | Compression | Uplift |
| Critical Depth (ft from TOC)       | 19.60       |        |
| Critical Shear (kip)               | 335.43      | I      |

Shear-Friction Methodology is Applied

ï 1

1965.60 16.3%

Critical Shear Capacity

Rating\*

| 80.7%                         | 70.8%                    | 15.5                          |
|-------------------------------|--------------------------|-------------------------------|
| Structural Foundation Rating* | Soil Interaction Rating* | *Rating per TIA-222-H Section |

Soil Profile

|             | Soil Type                                               | Cohesionless | Cohesionless | Cohesionless | Cohesionless | Cohesive |
|-------------|---------------------------------------------------------|--------------|--------------|--------------|--------------|----------|
|             | SPT Blow<br>Count                                       |              |              |              |              |          |
|             | Ult. Gross<br>Bearing<br>Capacity<br>(ksf)              |              |              |              |              | 4.8      |
|             | Ultimate Skin<br>Friction Uplift<br>Override (ksf)      | 00.0         | 00.0         | 0.36         | 0.49         | 0.28     |
|             | Ultimate Skin<br>Friction Comp<br>Override<br>(ksf)     | 00.0         | 00.0         | 0.36         | 0.49         | 0.28     |
|             | Calculated<br>Ultimate Skin<br>Friction Uplift<br>(ksf) | 000.0        | 000.0        | 000.0        | 0.000        | 0.440    |
|             | Calculated<br>Ultimate Skin<br>Friction Comp<br>(ksf)   | 000.0        | 000'0        | 000'0        | 000'0        | 0.440    |
| 5           | Angle of<br>Friction<br>(degrees)                       | 0            | 0            | 35           | 31           |          |
| # of Layers | Cohesion<br>(ksf)                                       | 0            | 0            |              |              | 0.8      |
|             | Y <sub>concrete</sub><br>(pcf)                          | 150          | 87.6         | 87.6         | 87.6         | 87.6     |
|             | Y <sub>soil</sub><br>(pcf)                              | 110          | 50           | 55           | 50           | 50       |
|             | Thickness<br>(ft)                                       | 2            | 3            | 7            | 4            | 16.5     |
| 2           | Bottom (ft)                                             | 2            | 5            | 12           | 16           | 32.5     |
| ter Depth   | Top<br>(ft)                                             | 0            | 2            | 5            | 12           | 16       |
| Groundwa    | Layer                                                   | -            | 2            | 3            | 4            | 5        |



No Address at This

Location

# ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 115.16 ft (NAVD 88) Latitude: 41.852594 Longitude: -72.660497



### Wind

### **Results:**

| Wind Speed:  |  |
|--------------|--|
| 10-year MRI  |  |
| 25-year MRI  |  |
| 50-year MRI  |  |
| 100-year MRI |  |

| 121 Vmph | 125 Vmph |
|----------|----------|
| 76 Vmph  |          |
| 86 Vmph  |          |
| 92 Vmph  |          |
| 99 Vmph  |          |

### Date Socressed:

**ASCE/BED7200**,1Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.



| Site Soil Class:<br>Results: | D - Stiff Soil |                          |       |  |
|------------------------------|----------------|--------------------------|-------|--|
| Ss :                         | 0.179          | S <sub>DS</sub> :        | 0.191 |  |
| <b>S</b> <sub>1</sub> :      | 0.064          | <b>S</b> <sub>D1</sub> : | 0.103 |  |
| F <sub>a</sub> :             | 1.6            | T <sub>L</sub> :         | 6     |  |
| F <sub>v</sub> :             | 2.4            | PGA :                    | 0.089 |  |
| S <sub>MS</sub> :            | 0.286          | PGA M :                  | 0.142 |  |
| S <sub>M1</sub> :            | 0.154          | F <sub>PGA</sub> :       | 1.6   |  |
|                              |                | e                        | 1     |  |

### Seismic Design Category B



Data Accessed: Date Source:

#### Thu Apr 29 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



### Ice

#### Results:

| Ice Thickness:     | 1.00 in.                                        |
|--------------------|-------------------------------------------------|
| Concurrent Tempera | ıre: 5 F                                        |
| Gust Speed:        | 50 mph                                          |
| Data Source:       | Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8 |
| Date Accessed:     | Thu Apr 29 2021                                 |

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

# **ATTACHMENT 5**

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Trylon Charlotte, NC 28277 1825 W. Walnut Hill Lane. 704-405-6589 Suite 302 Irving, TX 75038 214-930-1730 Subject: Mount Replacement Analysis Report Carrier Designation: **Dish Network Dish 5G** Carrier Site Number: BOBDL00073A Carrier Site Name: CT-CCI-T-855662 Crown Castle Designation: Crown Castle BU Number: 855662 Crown Castle Site Name: **WINDSORCENTRAL** Crown Castle JDE Job Number: 650064 Crown Castle Order Number: 556619 Rev. 1 189048 Engineering Firm Designation: **Trylon Report Designation:** Site Data: 340 Bloomfield Avenue, Windsor, Hartford County, CT, 06095 Latitude 41°51'9.34" Longitude -72°39'37.79" Structure Information: Tower Height & Type: 150.0 ft Monopole Mount Elevation: 99.0 ft Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

#### Sufficient\* Platform \*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Marius Balan

Respectfully Submitted by: Cliff Abernathy, P.E.







### TABLE OF CONTENTS

### 1) INTRODUCTION

### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

### 4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

### 5) APPENDIX A

Wire Frame and Rendered Models

### 6) APPENDIX B

Software Input Calculations

### 7) APPENDIX C

Software Analysis Output

### 8) APPENDIX D

Additional Calculations

### 9) APPENDIX E

Supplemental Drawings

### 1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

### 2) ANALYSIS CRITERIA

| Building Code:                   | 2015 IBC |
|----------------------------------|----------|
|                                  |          |
| TIA-222 Revision:                | HA-222-H |
| Risk Category:                   | 11       |
| Ultimate Wind Speed:             | 125 mph  |
| Exposure Category:               | С        |
| Topographic Factor at Base:      | 1.0      |
| Topographic Factor at Mount:     | 1.0      |
| Ice Thickness:                   | 2.0 in   |
| Wind Speed with Ice:             | 50 mph   |
| Seismic S <sub>s</sub> :         | 0.179    |
| Seismic S <sub>1</sub> :         | 0.064    |
| Live Loading Wind Speed:         | 30 mph   |
| Man Live Load at Mid/End-Points: | 250 lb   |
| Man Live Load at Mount Pipes:    | 500 lb   |
|                                  |          |

### Table 1 – Proposed Equipment Configuration

| Mount<br>Centerline<br>(ft) | Antenna<br>Centerline<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model    | Mount / Modification<br>Details |
|-----------------------------|-------------------------------|--------------------------|-------------------------|------------------|---------------------------------|
| 99.0                        | 99.0                          | 3                        | JMA WIRELESS            | MX08FRO665-21    | 9.0 ft Diotform                 |
|                             |                               | 3                        | FUJITSU                 | TA08025-B604     | 6.0 It Platform                 |
|                             |                               | 3                        | FUJITSU                 | TA08025-B605     |                                 |
|                             |                               | 1                        | RAYCAP                  | RDIDC-9181-PF-48 |                                 |

### 3) ANALYSIS PROCEDURE

### Table 2 – Documents Provided

| Document                    | Remarks                     | Reference      | Source    |
|-----------------------------|-----------------------------|----------------|-----------|
| Crown Application           | Dish Network<br>Application | 556619, Rev. 1 | CCI Sites |
| Mount Manufacturer Drawings | Commscope                   | MC-PK8-C       | Trylon    |

### 3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

#### 3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

| Channel, Solid Round, Angle, Plate | ASTM A36 (GR 36)    |
|------------------------------------|---------------------|
| HSS (Rectangular)                  | ASTM A500 (GR B-46) |
| Pipe                               | ASTM A53 (GR 35)    |
| Connection Bolts                   | ASTM A325           |

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

#### 4) ANALYSIS RESULTS

| Notes | Component           | Critical<br>Member | Centerline (ft) | % Capacity | Pass / Fail |
|-------|---------------------|--------------------|-----------------|------------|-------------|
| 1, 2  | Mount Pipe(s)       | MP1                |                 | 30.4       | Pass        |
|       | Horizontal(s)       | H1                 |                 | 10.9       | Pass        |
|       | Standoff(s)         | M2                 |                 | 59.3       | Pass        |
|       | Bracing(s)          | M1                 | 99.0            | 44.4       | Pass        |
|       | Plate(s)            | M15                |                 | 22.7       | Pass        |
|       | Handrail(s)         | M20                |                 | 12.4       | Pass        |
|       | Mount Connection(s) | _                  |                 | 24.1       | Pass        |

#### Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

#### Structure Rating (max from all components) =

**59.3**%

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H, Section 15.5

### 4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, part no MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.
**APPENDIX A** 

WIRE FRAME AND RENDERED MODELS

| Trylon     SK - 1       MB     855662     July 29, 2021 at 2:00 PM       189048     855662 r3d | Image: constraint of the second se |        |                                                      |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------|
| 103040                                                                                         | 189048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 855662 | Sr 1       July 29, 2021 at 2:00 PM       855662.r3d |



#### APPENDIX B

#### SOFTWARE INPUT CALCULATIONS



## ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

**Elevation:** 115.16 ft (NAVD 88) **Latitude:** 41.852594 **Longitude:** -72.660497





| Site Soil Class:<br>Results: | D - Stiff Soil |                          |       |  |
|------------------------------|----------------|--------------------------|-------|--|
| Ss :                         | 0.179          | S <sub>DS</sub> :        | 0.191 |  |
| S <sub>1</sub> :             | 0.064          | <b>S</b> <sub>D1</sub> : | 0.103 |  |
| F <sub>a</sub> :             | 1.6            | T <sub>L</sub> :         | 6     |  |
| F <sub>v</sub> :             | 2.4            | PGA :                    | 0.089 |  |
| S <sub>MS</sub> :            | 0.286          | PGA M :                  | 0.142 |  |
| S <sub>M1</sub> :            | 0.154          | F <sub>PGA</sub> :       | 1.6   |  |
|                              |                | e                        | 1     |  |

#### Seismic Design Category B



Data Accessed: Date Source:

#### Thu Jul 29 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### Ice

#### Results:

|      | Ice Thickness:          | 1.00 in.                                        |
|------|-------------------------|-------------------------------------------------|
|      | Concurrent Temperature: | 5 F                                             |
|      | Gust Speed:             | 50 mph                                          |
| Data | Source:                 | Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8 |
| Date | Accessed:               | Thu Jul 29 2021                                 |

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.



#### **TIA LOAD CALCULATOR 2.0**

| PROJECT DATA       |                 |  |
|--------------------|-----------------|--|
| Job Code:          | 189048          |  |
| Carrier Site ID:   | BOBDL00073A     |  |
| Carrier Site Name: | CT-CCI-T-855662 |  |

| CODES AND STANDARDS  |           |  |
|----------------------|-----------|--|
| Building Code:       | 2015 IBC  |  |
| Local Building Code: | 2018 CSBC |  |
| Design Standard:     | TIA-222-H |  |

| STRUCTURE DETAILS  |          |     |  |
|--------------------|----------|-----|--|
| Mount Type:        | Platform |     |  |
| Mount Elevation:   | 99.0     | ft. |  |
| Number of Sectors: | 3        |     |  |
| Structure Type:    | Monopole |     |  |
| Structure Height:  | 150.0    | ft. |  |

| ANALYSIS CRITERIA        |                |     |  |
|--------------------------|----------------|-----|--|
| Structure Risk Category: | I              |     |  |
| Exposure Category:       | С              |     |  |
| Site Class:              | D - Stiff Soil |     |  |
| Ground Elevation:        | 115.16         | ft. |  |

| TOPOGRAPHIC DATA                      |      |     |  |
|---------------------------------------|------|-----|--|
| Topographic Category:                 | 1.00 |     |  |
| Topographic Feature:                  | N/A  |     |  |
| Crest Point Elevation:                | 0.00 | ft. |  |
| Base Point Elevation:                 | 0.00 | ft. |  |
| Crest to Mid-Height (L/2):            | 0.00 | ft. |  |
| Distance from Crest (x):              | 0.00 | ft. |  |
| Base Topo Factor (K <sub>zt</sub> ):  | 1.00 |     |  |
| Mount Topo Factor (K <sub>zt</sub> ): | 1.00 |     |  |

| WIND PARAMETERS                          |       |     |  |
|------------------------------------------|-------|-----|--|
| Design Wind Speed:                       | 125   | mph |  |
| Wind Escalation Factor ( $K_s$ ):        | 1.00  |     |  |
| Velocity Coefficient (Kz):               | 1.26  |     |  |
| Directionality Factor (K <sub>d</sub> ): | 0.95  |     |  |
| Gust Effect Factor (Gh):                 | 1.00  |     |  |
| Shielding Factor (K <sub>a</sub> ):      | 0.90  |     |  |
| Velocity Pressure (q <sub>z</sub> ):     | 47.79 | psf |  |

| ICE PARAMETERS                            |       |     |  |
|-------------------------------------------|-------|-----|--|
| Design Ice Wind Speed:                    | 50    | mph |  |
| Design Ice Thickness (t <sub>i</sub> ):   | 2.00  | in  |  |
| Importance Factor (I <sub>i</sub> ):      | 1.00  |     |  |
| Ice Velocity Pressure (q <sub>zi</sub> ): | 47.79 | psf |  |
| Mount Ice Thickness (t <sub>iz</sub> ):   | 2.23  | in  |  |

| WIND STRUCTURE CALCULATIONS |       |     |
|-----------------------------|-------|-----|
| Flat Member Pressure:       | 86.03 | psf |
| Round Member Pressure:      | 51.62 | psf |
| Ice Wind Pressure:          | 7.30  | psf |

| SEISMIC PARAMETERS                      |       |   |  |  |
|-----------------------------------------|-------|---|--|--|
| Importance Factor (I <sub>e</sub> ):    | 1.00  | 1 |  |  |
| Short Period Accel .(S <sub>s</sub> ):  | 0.179 | g |  |  |
| 1 Second Accel (S <sub>1</sub> ):       | 0.064 | g |  |  |
| Short Period Des. (S <sub>DS</sub> ):   | 0.19  | g |  |  |
| 1 Second Des. (S <sub>D1</sub> ):       | 0.10  | g |  |  |
| Short Period Coeff. (F <sub>a</sub> ):  | 1.60  | 1 |  |  |
| 1 Second Coeff. $(F_v)$ :               | 2.40  | 1 |  |  |
| Response Coefficient (Cs):              | 0.10  | ł |  |  |
| Amplification Factor (A <sub>S</sub> ): | 1.20  |   |  |  |

## LOAD COMBINATIONS [LRFD]

| #  | Description                 |
|----|-----------------------------|
| 1  | 1.4DL                       |
| 2  | 1.2DL + 1WL 0 AZI           |
| 3  | 1.2DL + 1WL 30 AZI          |
| 4  | 1.2DL + 1WL 45 AZI          |
| 5  | 1.2DL + 1WL 60 AZI          |
| 6  | 1.2DL + 1WL 90 AZI          |
| 7  | 1.2DL + 1WL 120 AZI         |
| 8  | 1.2DL + 1WL 135 AZI         |
| 9  | 1.2DL + 1WL 150 AZI         |
| 10 | 1.2DL + 1WL 180 AZI         |
| 11 | 1.2DL + 1WL 210 AZI         |
| 12 | 1.2DL + 1WL 225 AZI         |
| 13 | 1.2DL + 1WL 240 AZI         |
| 14 | 1.2DL + 1WL 270 AZI         |
| 15 | 1.2DL + 1WL 300 AZI         |
| 16 | 1.2DL + 1WL 315 AZI         |
| 17 | 1.2DL + 1WL 330 AZI         |
| 18 | 0.9DL + 1WL 0 AZI           |
| 19 | 0.9DL + 1WL 30 AZI          |
| 20 | 0.9DL + 1WL 45 AZI          |
| 21 | 0.9DL + 1WL 60 AZI          |
| 22 | 0.9DL + 1WL 90 AZI          |
| 23 | 0.9DL + 1WL 120 AZI         |
| 24 | 0.9DL + 1WL 135 AZI         |
| 25 | 0.9DL + 1WL 150 AZI         |
| 26 | 0.9DL + 1WL 180 AZI         |
| 27 | 0.9DL + 1WL 210 AZI         |
| 28 | 0.9DL + 1WL 225 AZI         |
| 29 | 0.9DL + 1WL 240 AZI         |
| 30 | 0.9DL + 1WL 270 AZI         |
| 31 | 0.9DL + 1WL 300 AZI         |
| 32 | 0.9DL + 1WL 315 AZI         |
| 33 |                             |
| 34 |                             |
| 35 | 1.2DL + 1DLi + 1WLi 30 AZI  |
| 36 | 1.2DL + 1DLi + 1WLi 45 AZI  |
| 37 | 1.2DL + 1DLi + 1WLi 60 AZI  |
| 38 | 1.2DL + 1DLi + 1WLi 90 AZI  |
| 39 | 1.2DL + 1DLi + 1WLi 120 AZI |
| 40 | 1.2DL + 1DLi + 1WLi 135 AZI |
| 41 | 1.2DL + 1DLi + 1WLi 150 AZI |

| #     | Description                                       |
|-------|---------------------------------------------------|
| 42    | 1.2DL + 1DLi + 1WLi 180 AZI                       |
| 43    | 1.2DL + 1DLi + 1WLi 210 AZI                       |
| 44    | 1.2DL + 1DLi + 1WLi 225 AZI                       |
| 45    | 1.2DL + 1DLi + 1WLi 240 AZI                       |
| 46    | 1.2DL + 1DLi + 1WLi 270 AZI                       |
| 47    | 1.2DL + 1DLi + 1WLi 300 AZI                       |
| 48    | 1.2DL + 1DLi + 1WLi 315 AZI                       |
| 49    | 1.2DL + 1DLi + 1WLi 330 AZI                       |
| 50    | (1.2+0.2Sds) + 1.0E 0 AZI                         |
| 51    | (1.2+0.2Sds) + 1.0E 30 AZI                        |
| 52    | (1.2+0.2Sds) + 1.0E 45 AZI                        |
| 53    | (1.2+0.2Sds) + 1.0E 60 AZI                        |
| 54    | (1.2+0.2Sds) + 1.0E 90 AZI                        |
| 55    | (1.2+0.2Sds) + 1.0E 120 AZI                       |
| 56    | (1.2+0.2Sds) + 1.0E 135 AZI                       |
| 57    | (1.2+0.2Sds) + 1.0E 150 AZI                       |
| 58    | (1.2+0.2Sds) + 1.0E 180 AZI                       |
| 59    | (1.2+0.2Sds) + 1.0E 210 AZI                       |
| 60    | (1.2+0.2Sds) + 1.0E 225 AZI                       |
| 61    | (1.2+0.2Sds) + 1.0E 240 AZI                       |
| 62    | (1.2+0.2Sds) + 1.0E 270 AZI                       |
| 63    | (1.2+0.25ds) + 1.0E 300 AZI                       |
| 64    | (1.2+0.25ds) + 1.0E 315 AZI                       |
| 66    | $(1.2+0.25 \text{ ds}) + 1.0 \pm 350 \text{ AZI}$ |
| 67    | (0.9 - 0.25 ds) + 1.0E 0 AZI                      |
| 68    | (0.9-0.25  ds) + 1.0 E 30  AZI                    |
| 69    | (0.9-0.25ds) + 1.0E 43 AZI                        |
| 70    | (0.9-0.25ds) + 1.0E 00 AZI                        |
| 71    | (0.9-0.25ds) + 1.0E 120 AZI                       |
| 72    | (0.9 - 0.28  ds) + 1.02 + 120  Az                 |
| 73    | (0.9-0.2Sds) + 1.0E 150 AZI                       |
| 74    | (0.9-0.2Sds) + 1.0E 180 AZI                       |
| 75    | (0.9-0.2Sds) + 1.0E 210 AZI                       |
| 76    | (0.9-0.2Sds) + 1.0E 225 AZI                       |
| 77    | (0.9-0.28 ds) + 1.0E.240 AZI                      |
| 78    | (0.9-0.2Sds) + 1.0E 270 AZI                       |
| 79    | (0.9-0.25ds) + 1.0E 270 AZI                       |
| 80    | (0.9 - 0.2  GeV) + 1.0 E 3.0  GeV                 |
| Q1    | $(0.0 - 0.26 d_{S}) + 1.0E 310 AZI$               |
|       | (0.5-0.2305) + 1.0E 330 AZI                       |
| ŏ∠-88 | 1.2D + 1.5 LV1                                    |

| #   | Description                        | #   | Description                        |
|-----|------------------------------------|-----|------------------------------------|
|     |                                    |     |                                    |
| 89  | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1   | 121 | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3   |
| 90  | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1  | 122 | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3  |
| 91  | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1  | 123 | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3  |
| 92  | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1  | 124 | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3  |
| 93  | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1  | 125 | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3  |
| 94  | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1 | 126 | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 |
| 95  | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1 | 127 | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 |
| 96  | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1 | 128 | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 |
| 97  | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1 | 129 | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 |
| 98  | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1 | 130 | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 |
| 99  | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1 | 131 | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 |
| 100 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1 | 132 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 |
| 101 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1 | 133 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 |
| 102 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 | 134 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 |
| 103 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1 | 135 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 |
| 104 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1 | 136 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3 |
| 105 | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2   | 137 | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4   |
| 106 | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2  | 138 | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4  |
| 107 | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2  | 139 | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4  |
| 108 | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2  | 140 | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4  |
| 109 | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2  | 141 | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4  |
| 110 | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2 | 142 | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4 |
| 111 | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 | 143 | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4 |
| 112 | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 | 144 | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4 |
| 113 | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2 | 145 | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4 |
| 114 | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 | 146 | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4 |
| 115 | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 | 147 | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4 |
| 116 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 | 148 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4 |
| 117 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2 | 149 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4 |
| 118 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 | 150 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4 |
| 119 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 | 151 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4 |
| 120 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 | 152 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4 |

\*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

## EQUIPMENT LOADING

| Appurtenance Name/Location | Qty. | Elevation [ft] | -       | <b>EPA</b> <sub>N</sub> (ft2) | <b>EPA</b> <sub>T</sub> (ft2) | Weight (lbs) |
|----------------------------|------|----------------|---------|-------------------------------|-------------------------------|--------------|
| MX08FRO665-21              | 3    | 99             | No Ice  | 8.01                          | 3.21                          | 82.50        |
| MP1/MP4/MP7, 0/120/240     |      |                | w/ Ice  | 10.18                         | 5.12                          | 382.31       |
| TA08025-B604               | 3    | 99             | No Ice  | 1.96                          | 0.98                          | 63.90        |
| MP1/MP4/MP7, 0/120/240     |      |                | w/ Ice  | 2.53                          | 1.42                          | 96.86        |
| TA08025-B605               | 3    | 99             | No Ice  | 1.96                          | 1.13                          | 75.00        |
| MP1/MP4/MP7, 0/120/240     |      |                | w/ Ice  | 2.53                          | 1.59                          | 102.92       |
| RDIDC-9181-PF-48           | 1    | 99             | No Ice  | 2.01                          | 1.17                          | 21.85        |
| MP1/MP/MP, 0/120/240       |      |                | w/ Ice  | 2.58                          | 1.65                          | 101.51       |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                |         |                               |                               |              |
|                            |      |                | W/ ICe  |                               |                               |              |
|                            |      |                | INO ICE |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |
|                            |      |                | No Ice  |                               |                               |              |
|                            |      |                | w/ Ice  |                               |                               |              |

## EQUIPMENT LOADING [CONT.]

| Appurtenance Name/Location | Qty. | Elevation [ft] |        | <b>EPA</b> <sub>N</sub> (ft2) | <b>EPA</b> <sub>T</sub> (ft2) | Weight (lbs) |
|----------------------------|------|----------------|--------|-------------------------------|-------------------------------|--------------|
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
| -                          | -    |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
| -                          | -    |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            | -    |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            | -    |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |
|                            |      |                | No Ice |                               |                               |              |
|                            |      |                | w/ Ice |                               |                               |              |

### **EQUIPMENT WIND CALCULATIONS**

| Appurtenance Name | Qty. | Elevation [ft] | <b>K</b> <sub>zt</sub> | Kz   | K <sub>d</sub> | <b>t</b> <sub>d</sub> | <b>q</b> <sub>z</sub><br>[psf] | <b>q</b> <sub>zi</sub><br>[psf] |
|-------------------|------|----------------|------------------------|------|----------------|-----------------------|--------------------------------|---------------------------------|
| MX08FRO665-21     | 3    | 99             | 1.00                   | 1.26 | 0.95           | 2.23                  | 47.79                          | 7.65                            |
| TA08025-B604      | 3    | 99             | 1.00                   | 1.26 | 0.95           | 2.23                  | 47.79                          | 7.65                            |
| TA08025-B605      | 3    | 99             | 1.00                   | 1.26 | 0.95           | 2.23                  | 47.79                          | 7.65                            |
| RDIDC-9181-PF-48  | 1    | 99             | 1.00                   | 1.26 | 0.95           | 2.23                  | 47.79                          | 7.65                            |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |
|                   |      |                |                        |      |                |                       |                                |                                 |

## **EQUIPMENT LATERAL WIND FORCE CALCULATIONS**

| Appurtenance Name      | Qty. |        | 0°<br>180° | 30°<br>210° | 60°<br>240° | 90°<br>270° | 120°<br>300° | 150°<br>330° |
|------------------------|------|--------|------------|-------------|-------------|-------------|--------------|--------------|
| MX08FRO665-21          | 3    | No Ice | 344.53     | 189.69      | 292.92      | 138.07      | 292.92       | 189.69       |
| MP1/MP4/MP7, 0/120/240 |      | w/ Ice | 70.08      | 43.94       | 61.37       | 35.23       | 61.37        | 43.94        |
| TA08025-B604           | 3    | No Ice | 84.46      | 52.76       | 73.89       | 42.20       | 73.89        | 52.76        |
| MP1/MP4/MP7, 0/120/240 |      | w/ Ice | 17.39      | 11.69       | 15.49       | 9.79        | 15.49        | 11.69        |
| TA08025-B605           | 3    | No Ice | 84.46      | 57.55       | 75.49       | 48.58       | 75.49        | 57.55        |
| MP1/MP4/MP7, 0/120/240 |      | w/ Ice | 17.39      | 12.55       | 15.77       | 10.93       | 15.77        | 12.55        |
| RDIDC-9181-PF-48       | 1    | No Ice | 86.54      | 59.32       | 77.46       | 50.25       | 77.46        | 59.32        |
| MP1/MP/MP, 0/120/240   |      | w/ Ice | 17.78      | 12.94       | 16.16       | 11.32       | 16.16        | 12.94        |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | Nolce  |            |             |             |             |              |              |
|                        |      | w/ lco |            |             |             |             |              |              |
|                        |      |        |            |             |             |             |              |              |
|                        |      | No ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |
|                        |      | No Ice |            |             |             |             |              |              |
|                        |      | w/ Ice |            |             |             |             |              |              |

### EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

| Appurtenance Name | Qty. |        | 0°<br>180° | 30°<br>210° | 60°<br>240° | 90°<br>270° | 120°<br>300° | 150°<br>330° |
|-------------------|------|--------|------------|-------------|-------------|-------------|--------------|--------------|
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |
|                   |      | No Ice |            |             |             |             |              |              |
|                   |      | w/ Ice |            |             |             |             |              |              |

## **EQUIPMENT SEISMIC FORCE CALCULATIONS**

| Appurtenance Name | Qty. | Elevation [ft] | Weight<br>[lbs] | <b>F</b> <sub>p</sub><br>[lbs] |
|-------------------|------|----------------|-----------------|--------------------------------|
| MX08FRO665-21     | 3    | 99             | 82.5            | 9.45                           |
| TA08025-B604      | 3    | 99             | 63.9            | 7.32                           |
| TA08025-B605      | 3    | 99             | 75              | 8.59                           |
| RDIDC-9181-PF-48  | 1    | 99             | 21.85           | 2.50                           |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |
|                   |      |                |                 |                                |

APPENDIX C

### SOFTWARE ANALYSIS OUTPUT



July 29, 2021 2:01 P M Checked By: CA

#### (Global) Model Settings

| Display Sections for Member Calcs          | 5                  |
|--------------------------------------------|--------------------|
| Max Internal Sections for Member Calcs     | 97                 |
| Include S hear Deformation?                | Yes                |
| Increase Nailing Capacity for Wind?        | Yes                |
| Include W arping?                          | Yes                |
| Trans Load Btwn Intersecting Wood Wall?    | Yes                |
| Area Load Mesh (in <sup>2</sup> )          | 144                |
| Merge Tolerance (in)                       | .12                |
| P-Delta Analysis Tolerance                 | 0.50%              |
| Include P - Delta for Walls?               | Yes                |
| Automatically Iterate Stiffness for Walls? | Yes                |
| Max Iterations for Wall Stiffness          | 3                  |
| Gravity Acceleration (in/sec ^2)           | 386.4              |
| Wall Mesh Size (in)                        | 24                 |
| Eigensolution Convergence Tol. (1.E-)      | 4                  |
| Vertical Axis                              | Z                  |
| Global Member Orientation Plane            | XY                 |
| Static Solver                              | Sparse Accelerated |
| Dynamic Solver                             | Accelerated Solver |
|                                            |                    |

| Hot Rolled Steel Code  | AISC 15th(360-16): LRFD |
|------------------------|-------------------------|
| Adjust Stiffness?      | Yes(Iterative)          |
| R ISAC onnection Code  | AISC 15th(360-16): LRFD |
| Cold Formed Steel Code | None                    |
| Wood Code              | None                    |
| Wood Temperature       | < 100F                  |
| Concrete Code          | None                    |
| Masonry Code           | None                    |
| Aluminum Code          | None - Building         |
| Stainless Steel Code   | AISC 14th(360-10): LRFD |
| Adjust Stiffness?      | Yes(Iterative)          |

| Number of Shear Regions       | 4                  |
|-------------------------------|--------------------|
| Region Spacing Increment (in) | 4                  |
| Biaxial Column Method         | Exact Integration  |
| Parme Beta Factor (PCA)       | .65                |
| Concrete Stress Block         | Rectangular        |
| Use Cracked Sections?         | Yes                |
| Use Cracked Sections Slab?    | No                 |
| Bad Framing Warnings?         | No                 |
| Unused Force Warnings?        | Yes                |
| Min 1 Bar Diam. Spacing?      | No                 |
| Concrete Rebar Set            | REBAR_SET_ASTMA615 |
| Min % Steel for Column        | 1                  |
| Max % Steel for Column        | 8                  |
|                               |                    |

### (Global) Model Settings, Continued

| Seismic Code                | ASCE 7-16   |
|-----------------------------|-------------|
| Seismic Base Elevation (in) | Not Entered |
| Add Base Weight?            | Yes         |
| CtX                         | .02         |
| CtZ                         | .02         |
| T X (sec)                   | Not Entered |
| TZ (sec)                    | Not Entered |
| RX                          | 3           |
| RZ                          | 3           |
| CtExp. X                    | .75         |
| Ct Exp. Z                   | .75         |
| SD1                         | 1           |
| SDS                         | 1           |
| S1                          | 1           |
| TL (sec)                    | 5           |
| Risk Cat                    | l or ll     |
| Drift Cat                   | Other       |
| OmZ                         | 1           |
| Om X                        | 1           |
| CdZ                         | 1           |
| CdX                         | 1           |
| R ho Z                      | 1           |
| R ho X                      | 1           |
|                             |             |

### Hot Rolled Steel Properties

|   | Label          | E[ksi] | G [ksi] | Nu | Therm (/1E. | .Density[k/ft | Yield[psi] | Ry  | Fu[psi] | Rt  |
|---|----------------|--------|---------|----|-------------|---------------|------------|-----|---------|-----|
| 1 | A992           | 29000  | 11154   | .3 | .65         | .49           | 50000      | 1.1 | 65000   | 1.1 |
| 2 | A36 Gr.36      | 29000  | 11154   | .3 | .65         | .49           | 36000      | 1.5 | 58000   | 1.2 |
| 3 | A572 G r.50    | 29000  | 11154   | .3 | .65         | .49           | 50000      | 1.1 | 65000   | 1.1 |
| 4 | A500 Gr.B RND  | 29000  | 11154   | .3 | .65         | .527          | 42000      | 1.4 | 58000   | 1.3 |
| 5 | A500 Gr.B Rect | 29000  | 11154   | .3 | .65         | .527          | 46000      | 1.4 | 58000   | 1.3 |
| 6 | A53 Gr.B       | 29000  | 11154   | .3 | .65         | .49           | 35000      | 1.6 | 60000   | 1.2 |
| 7 | A1085          | 29000  | 11154   | .3 | .65         | .49           | 50000      | 1.4 | 65000   | 1.3 |

#### **Cold Formed Steel Properties**

|   | Label            | E [ksi] | G [ksi] | Nu | Therm (/1E5F) | Density[k/ft^3] | Yie <b>l</b> d[psi] | Fu[psi] |
|---|------------------|---------|---------|----|---------------|-----------------|---------------------|---------|
| 1 | A653 S S G r33   | 29500   | 11346   | .3 | .65           | .49             | 33000               | 45000   |
| 2 | A653 S S G r50/1 | 29500   | 11346   | .3 | .65           | .49             | 50000               | 65000   |

### Hot Rolled Steel Section Sets

|   | Label             | Shape             | Туре | Design List  | Materia   | Design  | A [in2] | lyy [in4] | lzz [in4] | J [in4] |
|---|-------------------|-------------------|------|--------------|-----------|---------|---------|-----------|-----------|---------|
| 1 | 6.5"x0.37" Plate  | 6.5"x0.37" Plate  | Beam | RECT         | A36 Gr.36 | Typical | 2.405   | .027      | 8.468     | .106    |
| 2 | L2x2x3            | L2x2x3            | Beam | Single Angle | A36 Gr.36 | Typical | .722    | .271      | .271      | .009    |
| 3 | PIPE 3.5          | PIPE 3.5          | Beam | Pipe         | A53 Gr.B  | Typical | 2.5     | 4.52      | 4.52      | 9.04    |
| 4 | C 3X 5            | C 3X 5            | Beam | Channel      | A36 Gr.36 | Typical | 1.47    | .241      | 1.85      | .043    |
| 5 | PIPE 2.0          | PIPE 2.0          | Beam | Pipe         | A53 Gr.B  | Typical | 1.02    | .627      | .627      | 1.25    |
| 6 | L6.6"X4.46"X0.25" | L6.6"X4.46"X0.25" | Beam | Single Angle | A36 Gr.36 | Typical | 2.703   | 4.759     | 12.473    | .055    |



#### Cold Formed Steel Section Sets

|   | Label | Shape       | Туре | Design Li | Material       | Design R | . A [in2] | lyy [in4] | lzz [in4] | J [in4] |
|---|-------|-------------|------|-----------|----------------|----------|-----------|-----------|-----------|---------|
| 1 | CF1A  | 8CU1.25X057 | Beam | None      | A653 S S G r33 | Typical  | .581      | .057      | 4.41      | .00063  |

#### Joint Boundary Conditions

|   | Joint Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] |
|---|-------------|----------|----------|----------|------------------|------------------|------------------|
| 1 | N25         | Reaction | Reaction | Reaction | Reaction         | Reaction         | Reaction         |
| 2 | N1          | Reaction | Reaction | Reaction | Reaction         | Reaction         | Reaction         |
| 3 | N 13        | Reaction | Reaction | Reaction | Reaction         | Reaction         | Reaction         |

#### **Basic Load Cases**

|    | BLC Description         | Category | X Gravity | Y Gravity | Z G ravity | Joint | Point | Distributed | Area (Me | <u>.Surface(</u> |
|----|-------------------------|----------|-----------|-----------|------------|-------|-------|-------------|----------|------------------|
| 1  | Self Weight             | DL       |           |           | -1         |       | 20    |             | 3        |                  |
| 2  | Structure Wind X        | WLX      |           |           |            |       |       | 33          |          |                  |
| 3  | Structure Wind Y        | WLY      |           |           |            |       |       | 33          |          |                  |
| 4  | Wind Load 0 AZI         | WLX      |           |           |            |       | 20    |             |          |                  |
| 5  | Wind Load 30 AZI        | None     |           |           |            |       | 40    |             |          |                  |
| 6  | Wind Load 45 AZI        | None     |           |           |            |       | 40    |             |          |                  |
| 7  | Wind Load 60 AZI        | None     |           |           |            |       | 40    |             |          |                  |
| 8  | Wind Load 90 AZI        | WLY      |           |           |            |       | 20    |             |          |                  |
| 9  | Wind Load 120 AZI       | None     |           |           |            |       | 40    |             |          |                  |
| 10 | Wind Load 135 AZI       | None     |           |           |            |       | 40    |             |          |                  |
| 11 | Wind Load 150 AZI       | None     |           |           |            |       | 40    |             |          |                  |
| 12 | Ice Weight              | OL1      |           |           |            |       | 20    | 33          | 3        |                  |
| 13 | Structure Ice Wind X    | OL2      |           |           |            |       |       | 33          |          |                  |
| 14 | Structure Ice Wind Y    | OL3      |           |           |            |       |       | 33          |          |                  |
| 15 | Ice Wind Load 0 AZI     | OL2      |           |           |            |       | 20    |             |          |                  |
| 16 | Ice Wind Load 30 AZI    | None     |           |           |            |       | 40    |             |          |                  |
| 17 | Ice Wind Load 45 AZI    | None     |           |           |            |       | 40    |             |          |                  |
| 18 | Ice Wind Load 60 AZI    | None     |           |           |            |       | 40    |             |          |                  |
| 19 | Ice Wind Load 90 AZI    | OL3      |           |           |            |       | 20    |             |          |                  |
| 20 | Ice Wind Load 120 AZI   | None     |           |           |            |       | 40    |             |          |                  |
| 21 | Ice Wind Load 135 AZI   | None     |           |           |            |       | 40    |             |          |                  |
| 22 | Ice Wind Load 150 AZI   | None     |           |           |            |       | 40    |             |          |                  |
| 23 | Seismic Load X          | ELX      | 115       |           |            |       | 20    |             |          |                  |
| 24 | Seismic Load Y          | ELY      |           | 115       |            |       | 20    |             |          |                  |
| 25 | Live Load 1 (Lv)        | LL       |           |           |            | 1     |       |             |          |                  |
| 26 | Live Load 2 (Lv)        | LL       |           |           |            | 1     |       |             |          |                  |
| 27 | Live Load 3 (Lv)        | LL       |           |           |            | 1     |       |             |          |                  |
| 28 | Live Load 4 (Lv)        | LL       |           |           |            | 1     |       |             |          |                  |
| 29 | Live Load 5 (Lv)        | LL       |           |           |            | 1     |       |             |          |                  |
| 30 | Live Load 6 (Lv)        | LL       |           |           |            | 1     |       |             |          |                  |
| 31 | Maintenance Load 1 (Lm) | None     |           |           |            | 1     |       |             |          |                  |
| 32 | Maintenance Load 2 (Lm) | None     |           |           |            | 1     |       |             |          |                  |
| 33 | Maintenance Load 3 (Lm) | None     |           |           |            | 1     |       |             |          |                  |
| 34 | Maintenance Load 4 (Lm) | None     |           |           |            | 1     |       |             |          |                  |
| 35 | Maintenance Load 5 (Lm) | None     |           |           |            | 1     |       |             |          |                  |
| 36 | Maintenance Load 6 (Lm) | None     |           |           |            | 1     |       |             |          |                  |
| 37 | Maintenance Load 7 (Lm) | None     |           |           |            | 1     |       |             |          |                  |
| 38 | Maintenance Load 8 (Lm) | None     |           |           |            | 1     |       |             |          |                  |

### Basic Load Cases (Continued)

|    | <b>BLC Description</b>     | Category | X Gravity | Y Gravity | Z G ravity | Joint | P oint | Distributed | Area (Me | Surface( |
|----|----------------------------|----------|-----------|-----------|------------|-------|--------|-------------|----------|----------|
| 39 | Maintenance Load 9 (Lm)    | None     |           |           |            | 1     |        |             |          |          |
| 40 | BLC 1 Transient Area Loads | None     |           |           |            |       |        | 9           |          |          |
| 41 | BLC 12 Transient Area Loa  | None     |           |           |            |       |        | 9           |          |          |

#### Load Combinations

|    | <b>Des cription</b>       | S P    | S B | Factor | •В | Fac  | В  | Fac  | В  | Fac. | В  | Fac | В | Fac | В | Fac. | В | Fac. | В | Fac | В | Fac |
|----|---------------------------|--------|-----|--------|----|------|----|------|----|------|----|-----|---|-----|---|------|---|------|---|-----|---|-----|
| 1  | 1.4DL                     | Yes Y  | DL  | 1.4    |    |      |    |      |    |      |    |     |   |     |   |      |   |      |   |     |   |     |
| 2  | 1.2DL +1WL 0 AZI          | Yes Y  | DL  | 1.2    | 2  | 1    | 3  |      | 4  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 3  | 1.2DL +1WL 30 AZ          | Yes Y  | DL  | 1.2    | 2  | .866 | 3  | .5   | 5  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 4  | 1.2DL + 1WL 45 AZ         | Yes Y  | DL  | 1.2    | 2  | .707 | 3  | .707 | 6  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 5  | 1.2DL +1WL 60 AZ          | Yes Y  | DL  | 1.2    | 2  | .5   | 3  | .866 | 7  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 6  | 1.2DL +1WL 90 AZ          | Yes Y  | DL  | 1.2    | 2  |      | 3  | 1    | 8  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 7  | 1.2DL + 1WL 120 AZI       | Yes Y  | DL  | 1.2    | 2  | 5    | 3  | .866 | 9  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 8  | 1.2DL + 1WL 135 AZI       | Yes Y  | DL  | 1.2    | 2  | 707  | 3  | .707 | 10 | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 9  | 1.2DL + 1WL 150 AZI       | Yes Y  | DL  | 1.2    | 2  | 866  | 3  | .5   | 11 | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 10 | 1.2DL + 1WL 180 AZI       | Yes Y  | DL  | 1.2    | 2  | -1   | 3  |      | 4  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 11 | 1.2DL + 1WL 210 AZI       | Yes Y  | DL  | 1.2    | 2  | 866  | 3  | 5    | 5  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 12 | 1.2DL + 1WL 225 AZI       | Yes Y  | DL  | 1.2    | 2  | 707  | 3  | 707  | 6  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 13 | 1.2DL + 1WL 240 AZI       | Yes Y  | DL  | 1.2    | 2  | 5    | 3  | 866  | 7  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 14 | 1.2DL + 1WL 270 AZI       | Yes Y  | DL  | 1.2    | 2  |      | 3  | -1   | 8  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 15 | 1.2DL + 1WL 300 AZI       | Yes Y  | DL  | 1.2    | 2  | .5   | 3  | 866  | 9  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 16 | 1.2DL + 1WL 315 AZI       | Yes Y  | DL  | 1.2    | 2  | .707 | 3  | 707  | 10 | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 17 | 1.2DL + 1WL 330 AZI       | Yes Y  | DL  | 1.2    | 2  | .866 | 3  | 5    | 11 | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 18 | 0.9DL +1WL 0 AZI          | Yes Y  | DL  | .9     | 2  | 1    | 3  |      | 4  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 19 | 0.9DL +1WL 30 AZ          | Yes Y  | DL  | .9     | 2  | .866 | 3  | .5   | 5  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 20 | 0.9DL +1WL 45 AZ          | Yes Y  | DL  | .9     | 2  | .707 | 3  | .707 | 6  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 21 | 0.9DL +1WL 60 AZ          | Yes Y  | DL  | .9     | 2  | .5   | 3  | .866 | 7  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 22 | 0.9DL +1WL 90 AZ          | Yes Y  | DL  | .9     | 2  |      | 3  | 1    | 8  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 23 | 0.9DL + 1WL 120 AZI       | Yes Y  | DL  | .9     | 2  | 5    | 3  | .866 | 9  | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 24 | 0.9DL + 1WL 135 AZI       | Yes Y  | DL  | .9     | 2  | 707  | 3  | .707 | 10 | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 25 | 0.9DL + 1WL 150 AZI       | Yes Y  | DL  | .9     | 2  | 866  | 3  | .5   | 11 | 1    |    |     |   |     |   |      |   |      |   |     |   |     |
| 26 | 0.9DL + 1WL 180 AZI       | Yes Y  | DL  | .9     | 2  | -1   | 3  |      | 4  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 27 | 0.9DL + 1WL 210 AZI       | Yes Y  | DL  | .9     | 2  | 866  | 3  | 5    | 5  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 28 | 0.9DL + 1WL 225 AZI       | Yes Y  | DL  | .9     | 2  | 707  | 3  | 707  | 6  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 29 | 0.9DL + 1WL 240 AZI       | Yes Y  | DL  | .9     | 2  | 5    | 3  | 866  | 7  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 30 | 0.9DL + 1WL 270 AZI       | Yes Y  | DL  | .9     | 2  |      | 3  | -1   | 8  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 31 | 0.9DL + 1WL 300 AZI       | Yes Y  | DL  | .9     | 2  | .5   | 3  | 866  | 9  | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 32 | 0.9DL + 1WL 315 AZI       | Yes Y  | DL  | .9     | 2  | .707 | 3  | 707  | 10 | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 33 | 0.9DL + 1WL 330 AZI       | Yes Y  | DL  | .9     | 2  | .866 | 3  | 5    | 11 | -1   |    |     |   |     |   |      |   |      |   |     |   |     |
| 34 | 1.2DL + 1DLi + 1W Li 0 A. | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | 1    | 14 |      | 15 | 1   |   |     |   |      |   |      |   |     |   |     |
| 35 | 1.2DL + 1DLi + 1W Li 30 . | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | .866 | 14 | .5   | 16 | 1   |   |     |   |      |   |      |   |     |   |     |
| 36 | 1.2DL + 1DLi + 1W Li 45 . | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | .707 | 14 | .707 | 17 | 1   |   |     |   |      |   |      |   |     |   |     |
| 37 | 1.2DL + 1DLi + 1W Li 60 . | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | .5   | 14 | .866 | 18 | 1   |   |     |   |      |   |      |   |     |   |     |
| 38 | 1.2DL + 1DLi + 1W Li 90 . | .Yes Y | DL  | 1.2    | 0  | 1    | 13 |      | 14 | 1    | 19 | 1   |   |     |   |      |   |      |   |     |   |     |
| 39 | 1.2DL + 1DLi + 1W Li 12   | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | 5    | 14 | .866 | 20 | 1   |   |     |   |      |   |      |   |     |   |     |
| 40 | 1.2DL + 1DLi + 1W Li 13   | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | 707  | 14 | .707 | 21 | 1   |   |     |   |      |   |      |   |     |   |     |
| 41 | 1.2DL + 1DLi + 1W Li 15   | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | 866  | 14 | .5   | 22 | 1   |   |     |   |      |   |      |   |     |   |     |
| 42 | 1.2DL + 1DLi + 1W Li 18   | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | -1   | 14 |      | 15 | -1  |   |     |   |      |   |      |   |     |   |     |
| 43 | 1.2DL + 1DLi + 1W Li 21   | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | 866  | 14 | 5    | 16 | -1  |   |     |   |      |   |      |   |     |   |     |
| 44 | 1.2DL + 1DLi + 1W Li 22   | .Yes Y | DL  | 1.2    | 0  | 1    | 13 | 707  | 14 | 707  | 17 | -1  |   |     |   |      |   |      |   |     |   |     |

### Load Combinations (Continued)

|          | <b>Des cription</b>            | S      | Ρ      | S B | F      | actor   | •В | Fac. | .в         | Fac   | В  | Fac  | В  | Fac.     | В | Fac | В | Fac | В | Fac. | .в | Fac. | В | Fac |
|----------|--------------------------------|--------|--------|-----|--------|---------|----|------|------------|-------|----|------|----|----------|---|-----|---|-----|---|------|----|------|---|-----|
| 45       | 1.2DL + 1DLi + 1W Li 24        | Yes    | Y      | D   | L      | 1.2     | 0  | 1    | 13         | 5     | 14 | 866  | 18 | -1       |   |     |   |     |   |      |    |      |   |     |
| 46       | 1.2DL + 1DLi + 1W Li 27        | Yes    | Y      | D   | L      | 1.2     | 0  | 1    | 13         |       | 14 | -1   | 19 | -1       |   |     |   |     |   |      |    |      |   |     |
| 47       | 1.2DL + 1DLi + 1W Li 30        | Yes    | Ŷ      | D   | ī      | 1.2     | 0  | 1    | 13         | .5    | 14 | 866  | 20 | -1       |   |     |   |     |   |      |    |      |   |     |
| 48       | 1.2DL + 1DLi + 1W Li 31        | Yes    | Ŷ      |     | -<br>1 | 12      | 0  | 1    | 13         | .707  | 14 | 707  | 21 | -1       |   |     |   |     |   |      |    |      |   |     |
| 49       | 1.2DL + 1DLi + 1W Li 33        | Yes    | Ý      |     | 1      | 1.2     | 0  | 1    | 13         | .866  | 14 | - 5  | 22 | _1       |   |     |   |     |   |      | -  |      |   |     |
| 50       | (1 2+0 2Sds) + 1 0F 0 AZ       | Yes    | V      |     |        | 1 2 3 8 | F  | 1    | F          |       | 14 | .0   | 22 | <u> </u> |   |     |   |     |   |      |    |      |   |     |
| 51       | (1.2 + 0.25 ds) + 1.0E 30      | Yes    | V      |     |        | 1 2 3 8 | F  | 866  | F          | 5     |    |      |    |          |   |     | - |     |   |      |    |      |   |     |
| 52       | (1 2+0 2Sds) +1 0E 45          | Yes    | V      |     |        | 1 2 3 8 | F  | 707  | F          | 707   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 53       | (1.2+0.25 ds) + 1.0E 60        | Yes    | V      |     |        | 1 2 38  | F  | 5    | F          | 866   |    |      |    |          |   |     |   |     |   |      |    |      |   | -   |
| 53       | (1.2+0.25 ds) + 1.0E.00        | Ves    | V      |     |        | 1.238   | E  | .5   | F          | .000  |    |      |    |          |   |     | _ |     |   |      |    |      |   |     |
| 54       | (1.2+0.25 ds) + 1.0E 120       | Voc    | T<br>V |     |        | 1.230   | E  | 5    | E          | 1 866 |    |      |    |          |   |     | - |     |   |      |    |      |   |     |
| 55       | (1.2+0.25 ds) + 1.0E 125       | .1 C3  | T<br>V |     |        | 1.230   | E  | 5    | ۲ <u>۲</u> | .000  |    |      |    |          |   |     | _ |     |   |      |    |      |   |     |
| 50       | (1.2+0.25  ds) + 1.0E 155.     |        | T<br>V |     |        | 1.2.00  | E  | 101  | E          | .101  |    |      |    |          |   |     | _ |     |   |      |    |      |   |     |
| 57       | (1.2+0.25  ds) + 1.0E 130.     | .res   | Y      |     |        | 1.200   | E  | 000  |            | .5    |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 58       | (1.2+0.25  ds) + 1.0 = 180.    | .res   | Y      |     | Ļ      | 1.230   | E  | -1   | E          | -     |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 59       | (1.2+0.25 ds) + 1.0E 210.      | .res   | Y      |     |        | 1.238   | E  | 860  | E          | 5     |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 60       | (1.2+0.25 ds) + 1.0E 225.      | .Yes   | Y      |     |        | 1.238   | E  | 707  | E          | /0/   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 61       | (1.2+0.25ds) + 1.0E 240.       | .Yes   | Y      |     | L      | 1.238   | E  | 5    | E          | 866   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 62       | (1.2+0.2Sds) + 1.0E 270.       | .Yes   | Y      | D   | L      | 1.238   | E  |      | E          | -1    |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 63       | (1.2+0.2Sds) +1.0E 300.        | .Yes   | Y      | D   | L      | 1.238   | Ε  | .5   | Ε          | 866   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 64       | (1.2+0.2Sds) + 1.0E 315.       | .Yes   | Y      | D   | L      | 1.238   | Ε  | .707 | Ε          | 707   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 65       | (1.2+0.2Sds) + 1.0E 330.       | .Yes   | Y      | D   | L      | 1.238   | Ε  | .866 | Ε          | 5     |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 66       | (0.9-0.2Sds) + 1.0E 0 AZ       | l Y es | Y      | D   | L      | .862    | Ε  | 1    | Ε          |       |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 67       | (0.9-0.2Sds) + 1.0E 30 A.      | .Yes   | Υ      | D   | L      | .862    | Ε  | .866 | Ε          | .5    |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 68       | (0.9-0.2Sds) + 1.0E 45 A.      | .Yes   | Y      | D   | L      | .862    | Ε  | .707 | Ε          | .707  |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 69       | (0.9-0.2Sds) + 1.0E 60 A.      | .Yes   | Υ      | D   | L      | .862    | Ε  | .5   | Ε          | .866  |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 70       | (0.9-0.2Sds) + 1.0E 90 A.      | .Yes   | Υ      | D   | L      | .862    | Ε  |      | Ε          | 1     |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 71       | (0.9-0.2Sds) + 1.0E 120        | Yes    | Υ      | D   | L      | .862    | Ε  | 5    | Ε          | .866  |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 72       | (0.9-0.2Sds) + 1.0E 135        | Yes    | Y      | D   | L      | .862    | Ε  | 707  | Έ          | .707  |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 73       | (0.9-0.2Sds) + 1.0E 150        | Yes    | Υ      | D   | L      | .862    | Ε  | 866  | E          | .5    |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 74       | (0.9-0.2Sds) + 1.0E 180        | Yes    | Y      | D   | L      | .862    | Ε  | -1   | Ε          |       |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 75       | (0.9-0.2Sds) + 1.0E 210        | Yes    | Ý      |     | ī      | 862     | Ε  | 866  | E          | 5     |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 76       | (0.9-0.2Sds) + 1.0E 225        | Yes    | Ŷ      |     | 1      | 862     | Ε  | 707  | Έ          | 707   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 77       | (0.9-0.2Sds) + 1.0E 240        | Yes    | Ý      |     | 1      | 862     | Ε  | - 5  | Ε          | 866   |    |      |    |          |   |     |   |     |   |      |    |      |   | _   |
| 78       | (0.9-0.2Sds) + 1.0E 270        | Yes    | Y      |     | ī      | 862     | Ε  |      | Ε          | _1    |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 79       | (0.9-0.2Sds) + 1.0E 300        | Yes    | Y      |     |        | 862     | Ε  | 5    | Ε          | 866   |    |      |    |          |   |     | - |     |   |      |    |      |   | _   |
| 80       | (0.9-0.2Sds) + 1.0E 315        | Yes    | Y      |     |        | 862     | Ε  | 707  | Ε          | 707   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 81       | (0.9-0.28ds) + 1.0E.330        | Yes    | v      |     |        | 862     | F  | 866  | F          | - 5   |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 82       | 12D + 151y1                    | Yes    | V      |     |        | 1 2     | 25 | 1 5  |            | 5     |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 82       | 1.2D + 1.5Lv1<br>1.2D + 1.5Lv2 | Yes    | V      |     |        | 1.2     | 26 | 1.5  |            |       |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| Q/       | 1.2D + 1.5Lv2                  | Yes    |        |     |        | 1.2     | 20 | 1.5  |            |       |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 04<br>85 | $1.20 \pm 1.5 LV3$             | Yee    | V      |     | H      | 1.2     | 21 | 1.5  |            |       |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 00       | $1.20 \pm 1.5 \text{ LV4}$     | Voc    | 1<br>V |     |        | 1.2     | 20 | 1.0  |            |       |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 00       | 1.20 + 1.5 LV3                 | Vac    | 1<br>V |     | -      | 1.2     | 29 | 1.5  |            |       |    |      |    |          |   |     |   |     |   |      |    |      |   |     |
| 0/       | 1.2U + 1.5 LV0                 | Vac    | Y      |     |        | 1.2     | 30 | 1.5  | 4          | 05.0  | 0  | 05.0 | 0  |          |   |     |   |     |   |      |    |      |   |     |
| 88       | 1.2D + 1.5Lin + 1.0Wm          | T es   | Y      |     |        | 1.2     | 31 | 1.5  | 4          | .058  | 2  | .058 | 3  | 000      |   |     |   |     |   |      |    |      |   |     |
| 89       | 1.2D + 1.5Lm + 1.0Wm           | r es   | Y      |     |        | 1.2     | 31 | 1.5  | 5          | .058  | 2  | .05  | 3  | .029     |   |     |   |     |   |      |    |      |   |     |
| 90       | 1.2D + 1.5Lm + 1.0Wm           | Y es   | Y      |     |        | 1.2     | 31 | 1.5  | 6          | .058  | 2  | .041 | 3  | .041     |   |     |   |     |   |      |    |      |   |     |
| 91       | 1.2D + 1.5Lm + 1.0Wm           | Y es   | Y      | D   |        | 1.2     | 31 | 1.5  | 1          | .058  | 2  | .029 | 3  | .05      |   |     | _ |     |   |      |    |      |   |     |
| 92       | 1.2D + 1.5Lm + 1.0Wm           | Yes    | Y      | D   | L      | 1.2     | 31 | 1.5  | 8          | .058  | 2  | 3.5  | 3  | .058     |   |     |   |     |   |      |    |      |   |     |
| 93       | 1.2D + 1.5Lm + 1.0Wm           | Yes    | Y      | D   | L      | 1.2     | 31 | 1.5  | 9          | .058  | 2  | 029  | 3  | .05      |   |     |   | _   |   |      |    |      |   |     |
| 94       | 1.2D + 1.5Lm + 1.0Wm           | Yes    | Y      | D   | L      | 1.2     | 31 | 1.5  | 10         | .058  | 2  | 041  | 3  | .041     |   |     |   |     |   |      |    |      |   |     |
| 95       | 1.2D + 1.5Lm + 1.0Wm           | Yes    | Y      | D   | L      | 1.2     | 31 | 1.5  | 11         | .058  | 2  | 05   | 3  | .029     |   |     |   |     |   |      |    |      |   |     |
| 96       | 1.2D + 1.5Lm + 1.0Wm           | Yes    | Y      | D   | L      | 1.2     | 31 | 1.5  | 4          | .058  | 2  | 058  | 3  | 7.0      |   |     |   |     |   |      |    |      |   |     |



July 29, 2021 2:01 P M Checked By: CA

#### Load Combinations (Continued)

| 97     120     +15.m     +10.Wm     Vies Y     DL     12     31     15     6     668     2     641     5       99     120     +15.m     +10.Wm     Vies Y     DL     12     31     15     6     688     2     4.02     3     -061       100     120     +15.m     +10.Wm     Vies Y     DL     12     31     15     16     688     2     409     3     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061     -061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Des cription                 | S P S  | BFactorB  | FacB   | FacB   | FacB.   | FacB | FacB. | . FacB | Fac | B Fac. | .B Fac |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|-----------|--------|--------|---------|------|-------|--------|-----|--------|--------|
| 98     120 + 15.Lm + 10.VmYesi Y     DL     121 + 11.5     6     0.68     2     0.04     3     0.04       100     120 + 15.Lm + 10.VmYesi Y     DL     1.2     31 1.5     9     0.68     2     0.05     0.05       101     120 + 15.Lm + 10.VmYesi Y     DL     1.2     31 1.5     1.5     0.68     2     0.02     3     0.05       101     120 + 15.Lm + 10.VmYesi Y     DL     1.2     31 1.5     10     58     2     0.01     3     0.04       103     120 + 15.Lm + 10.VmYesi Y     DL     1.2     31 1.5     10     6.68     3     0.02       104     120 + 15.Lm + 10.VmYesi Y     DL     1.2     32 1.5     0.68     2     0.05     3     0.62       101     120 + 15.Lm + 10.VmYesi Y     DL     1.2     32 1.5     0.68     2     0.65     3     0.02       110     120 + 15.Lm + 10.VmYesi Y     DL     1.2     32 1.5     1.668     2     0.65     3     0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97 1.2D + 1.5Lm + 1.0Wm.     | Yes Y  | DL 1.2 31 | 1.5 5  | .058 2 | 05 3    | 029  |       |        |     |        |        |
| 9   120   +13Lm   +10Vm   New   Y   DL   1.2   31   1.5   9   68   2   -06   00     100   120   +15Lm   +10Vm   Y   DL   1.2   31   1.5   9   68   2   02   3   -05     101   120   +15Lm   +10Vm   New Y   DL   1.2   31   1.5   10   58   2   02   3   -05     101   120   +15Lm   +10Vm   New Y   DL   2   31   5   0.65   2   0.65   1.02   1.05   1.02   1.05   1.02   1.05   1.05   1.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98 1.2D + 1.5Lm + 1.0Wm.     | Yes Y  | DL 1.2 31 | 1.5 6  | .058 2 | 041 3   | 041  |       |        |     |        |        |
| 100   120   1.12   31   1.2   3.1   1.6   0.058   2   1   3.058       101   1.20   1.5   1.5   9.058   2   2.029   3.055       101   1.20   1.5   1.15   10   0.058   2   2.029   3.041     103   1.20   1.5   1.0   0.058   2   0.041   3.041     103   1.20   1.5   1.6   0.682   2   0.053   3.029      105   1.20   1.5   1.6   0.682   2   0.053   3.029       106   1.20   1.5   1.08   2   0.053   3.055        101   1.20   1.5   1.08   2   0.053   3.055        110   1.20   1.5   1.08   2   0.053   3.056 <td< td=""><td>99 1.2D + 1.5Lm + 1.0Wm.</td><td>Yes Y</td><td>DL 1.2 31</td><td>1.5 7</td><td>.058 2</td><td>029 3</td><td>05</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99 1.2D + 1.5Lm + 1.0Wm.     | Yes Y  | DL 1.2 31 | 1.5 7  | .058 2 | 029 3   | 05   |       |        |     |        |        |
| 101   120 + 1.5Lm + 1.0WmYes   Y   DL   1.2   31 1.5   9   0.068   2   0.07   3   0.06     102   120 + 1.5Lm + 1.0WmYes   Y   DL   1.2   31 1.5   10   0.068   2   0.041   3   0.041     103   120 + 1.5Lm + 1.0WmYes   Y   DL   1.2   31 1.5   6   0.68   2   0.64   3   0.041     105   120 + 1.5Lm + 1.0WmYes   Y   DL   1.2   32 1.5   6   0.68   2   0.41   3   0.41     106   120 + 1.5Lm + 1.0WmYes   Y   DL   1.2   32 1.5   1.6   0.68   2   3.05   0.65   0.65   0.05   0.65   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01 <td>100 1.2D + 1.5Lm + 1.0Wm.</td> <td>Yes Y</td> <td>DI 1.2 31</td> <td>1.5 8</td> <td>.058 2</td> <td>-1 3</td> <td>058</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 1.2 31 | 1.5 8  | .058 2 | -1 3    | 058  |       |        |     |        |        |
| 102   120   1.51m   1.00m   Yes   Y   D1   12.31   1.5   10.68   2   0.41   0.41     103   1.20   1.51m   1.05   1.2   31   1.5   11.05   2   0.63   0.23     104   1.20   1.51m   1.00m   Yes   Y   D1   1.2   32   1.5   6   0.65   2   0.63   0.29   0.65     105   1.20   1.51m   1.00m   Yes   Y   D1   1.2   32   1.5   6.068   2   0.43   0.41     107   1.20   1.51m   1.00m   Yes   Y   D1   1.2   32   1.5   0.68   2   0.65   0.65   0.65     108   1.20   1.51m   1.00m   Yes   Y   D1   1.2   21.5   1.068   2   0.63   0.29   0.1   1.2   1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2   1.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 31  | 159    | .058 2 | .029 3  | - 05 |       |        |     |        |        |
| 103   120   1.5Lm   1.1Lm   11   1.1Lm   1.1Lm<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102 1.2D + 1.5Lm + 1.0Wm.    | .Yes Y | DI 12 31  | 1.5 10 | .058 2 | .041 .3 | 041  |       |        |     |        |        |
| 100   1120   112   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  |           | 1.5 11 | .058 2 | 05 3    | 029  |       |        |     |        |        |
| 106   1.20   1.15.un   1.10Wm Yes   Y   D1   1.2   22   1.5   6   686   2   .06   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 32  | 1.5 4  | .058 2 | .058 3  |      |       |        |     |        |        |
| 100     120     1.5Lm     1.0Wm     Yes     Y     DL     1.2     32     1.5     6     058     2     1.44     3     1.44       107     1.20     1.5Lm     1.0Wm     Y     DL     1.2     32     1.5     8     0.68     2     1.02     1.02     1.02     1.01     1.02     1.5Lm     1.01     1.22     1.5Lm     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02     1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105 1.2D + 1.5Lm + 1.0Wm     | Yes Y  |           | 155    | .058 2 | 05 3    | .029 |       |        |     |        |        |
| 100   1.20   +1.5Lm   +1.0Wm   Wei Y   DL   1.2   22   1.5   7   058   2   .028   3   0.05     100   1.20   +1.5Lm   +1.0Wm   Wei Y   DL   1.2   .22   1.5   9   058   2   .028   3   .065     110   1.20   +1.5Lm   +1.0Wm   Wei Y   DL   1.2   .22   1.5   9   .058   2   .048   3   .041     111   1.20   +1.5Lm   +1.0Wm   Wei Y   DL   1.2   .22   1.5   1.058   2   .048   3   .041     111   1.20   +1.5Lm   +1.0Wm   Wei Y   DL   1.2   .22   1.5   6   .058   2   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $106 \ 1.2D + 1.5Lm + 1.0Wm$ | Yes Y  |           | 156    | .058 2 | .00 0   | .041 |       |        |     |        |        |
| 100   120   1.51m   1.0Vm   Yes   Y   DL   1.2   2   1.5   8   0.68   2   3.6.5   3   0.68     109   1.20   1.51m   1.0Vm   Yes   Y   DL   1.2   32   1.5   9   0.68   2   -003   3   0.05     111   1.20   1.51m   1.0Vm   Yes   Y   DL   1.2   32   1.5   1.068   2   -003   3   0.029     112   1.20   1.51m   1.0Vm   Yes   Y   DL   1.2   32   1.5   1.058   2   -003   3   0.041     112   1.20   1.51m   1.0Vm   Yes   Y   DL   1.2   32   1.5   0.058   2   -003   3   -041     114   1.20   1.51m   1.0Vm   Yes   Y   DL   1.2   32   1.5   9   0.68   2   .041   3   -041   1.011   1.011   1.011   1.011   1.011   1.011   1.011   1.011 <td>107 1.2D + 1.5Lm + 1.0Wm</td> <td>Yes Y</td> <td>DL 1.2 32</td> <td>1.5 7</td> <td>.058 2</td> <td>.029 3</td> <td>05</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107 1.2D + 1.5Lm + 1.0Wm     | Yes Y  | DL 1.2 32 | 1.5 7  | .058 2 | .029 3  | 05   |       |        |     |        |        |
| 100   120   1.12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   11   12   12   12   12   12   12   12   12   11   12   11   11   12   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 32  | 158    | .058 2 | 3.5 3   | .058 |       |        |     |        |        |
| 100   1.20   1.5.Lm   1.0WmYes   Y   DL   1.2   32   1.5   10   68   2   -041   3   0.41     111   1.20   1.5.Lm   1.0WmYes   Y   DL   1.2   32   1.5   10   68   2   -041   3   0.041     113   1.20   1.5.Lm   1.0WmYes   Y   DL   1.2   32   1.5   5   0.68   2   -041   3   -041     113   1.20   1.5.Lm   1.0WmYes   Y   DL   1.2   32   1.5   5   0.68   2   -041   3   -056     116   1.20   1.5.Lm   1.0WmYes   Y   DL   1.2   32   1.5   10.68   2   .041   3   .041     119   1.20   1.5.Lm   1.0WmYes   Y   DL   1.2   33   1.5   0.68   2   .041   3   .041     120   1.20   1.5.Lm   1.0WmYes   Y   DL   1.2   .31   .55   .058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109 1.2D + 1.5Lm + 1.0Wm     | Yes Y  | DL 1.2 32 | 1.5 9  | .058 2 | 029 3   | 05   |       |        |     |        |        |
| 10   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 $12D + 15Im + 10Wm$      | Yes V  |           | 1.5 10 | 058 2  | - 041 3 | 041  |       |        |     |        |        |
| 111   1.2.0.2   1.2.0.2   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1   1.1.2.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111 12D + 15Im + 10Wm        | Yes V  | DL 1.2 32 | 1.5 11 | 058 2  | - 05 3  | 029  |       |        |     |        |        |
| 113   1.2.0.2   1.2.0.2   1.5   5.083   1.083   1.024     113   1.2.0   1.5.1   1.5.08   2   1.053   1.024   1.044   1.044     115   1.2.0   1.5.1   1.5.6   0.58   2   0.023   1.055   1.055     116   1.2.0   1.5.1   1.004   1.022   1.5.1   1.068   2   0.023   1.055     117   1.2.0   1.5.1   1.004   1.022   1.5.1   0.058   2   0.023   1.055     118   1.2.0   1.5.1   1.0048   2   0.05   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041   1.0041 <td< td=""><td>112 1.2D + 1.5Lm + 1.0Wm</td><td>Yes V</td><td>DI 12 32</td><td>15 /</td><td>.058 2</td><td>058 3</td><td>7.0.</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112 1.2D + 1.5Lm + 1.0Wm     | Yes V  | DI 12 32  | 15 /   | .058 2 | 058 3   | 7.0. |       |        |     |        |        |
| 1.10   1.12   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2 <td< td=""><td>113 <math>1.2D + 1.5l m + 1.0Wm</math></td><td>Yes V</td><td></td><td>155</td><td>.058 2</td><td>- 05 3</td><td>029</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113 $1.2D + 1.5l m + 1.0Wm$  | Yes V  |           | 155    | .058 2 | - 05 3  | 029  |       |        |     |        |        |
| 111   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   31   1.5   1.058   2   0.68   3   0.29   1.20   1.20   1.20   31   1.5   1.058   2   0.68   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114 $1.2D + 1.5Lm + 1.0Wm$   | Yes Y  | DL 1.2 32 | 156    | .058 2 | 041 3   | 041  |       |        |     |        |        |
| 110   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.10   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115 $1.2D + 1.5Lm + 1.0Wm$   | Yes Y  | DL 1.2 32 | 1.5 7  | .058 2 | 029 3   | - 05 |       |        |     |        |        |
| 117   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 32  | 1.5 8  | .058 2 | -1 3    | 058  |       |        |     |        |        |
| 111   1.20   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.1   1.05   2   0.68   3   2   1.2   1.2   1.2   1.1   1.1   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.5   1.05   0.68   2   0.68   3   0.29   1   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2 <td>117 1.2D + 1.5Lm + 1.0Wm.</td> <td>Yes Y</td> <td>DI 12 32</td> <td>1.5 9</td> <td>.058 2</td> <td>.029 3</td> <td>- 05</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 32  | 1.5 9  | .058 2 | .029 3  | - 05 |       |        |     |        |        |
| 119   1.22   1.12   1.2   1.12   1.12   1.11   1.08   2   1.05   3   1.02     119   1.22   1.5   1.1   1.22   1.5   1.1   1.08   2   1.05   3   1.02     120   1.20   1.5   1.1   1.2   33   1.5   5   0.58   2   0.05   3   0.29   1   1   1.01   1   1.01   1   1.01   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1.11   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118 1.2D + 1.5Lm + 1.0Wm.    | .Yes Y | DI 12 32  | 1.5 10 | .058 2 | .041 3  | 041  |       |        |     |        |        |
| 110   1.20   1.21   1.21   1.21   1.21   1.21   1.21   1.21   1.22   1.22   1.22   1.22   1.22   1.22   1.21   1.21   1.21   1.21   1.21   1.21   1.21   1.21   1.22   1.22   1.22   1.22   1.22   1.22   1.21   1.21   1.21   33   1.5   5   0.58   2   0.29   3   0.5   0.5     123   1.20   1.51.m   1.0Wm Yes   Y   DL   1.2   33   1.5   1.088   2   0.29   3   0.55   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 32  | 1.5 11 | .058 2 | 05 3    | 029  |       |        |     |        |        |
| 121   1.20   +1.5 Lm   +1.0Wm   Ye   Y   DL   1.2   33   1.5   5   0.68   2   0.5   3   0.29   1     122   1.20   +1.5Lm   +1.0Wm   Yes   Y   DL   1.2   33   1.5   5   0.68   2   0.05   3   0.05     124   1.2D   +1.5Lm   +1.0Wm   Yes   Y   DL   1.2   33   1.5   9   0.68   2   0.29   3   0.55   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 154    | .058 2 | .058 3  |      |       |        |     |        |        |
| 122   120 + 1.5 Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   6   0.68   2   0.04   3   0.041     123   1.2D + 1.5 Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   6   0.68   2   0.041   3   0.05     124   1.2D + 1.5 Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   8   0.68   2   0.05   1.058     126   1.2D + 1.5 Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   10   0.68   2   -0.041   3   0.41   1.041     126   1.2D + 1.5 Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   10.058   2   -0.053   3   0.029   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.041   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 33 | 1.5 5  | .058 2 | 05 3    | .029 |       |        |     |        |        |
| 123   1.20   1.51   1.2   33   1.5   7   .05   2   .02   3   .05     124   1.20   1.51   1.1   2.33   1.5   7   .058   2   .029   3   .05     124   1.20   1.51   1.00   .000   3   .05   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .058   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .041   .058   .058   .058   .058   .058   .029   .05   .051   .051   .058   .029   .05   .051   .051   .051   .051   .056   .029   .05   .051   .051   .051   .051   .058   .029   .05   .051   .051   .051   .051   .058   .058   .051   .051   .051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 1.5 6  | .058 2 | .00 0   | .041 |       |        |     |        |        |
| 124   1.20 + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   8   0.58   2   0.05     125   1.20 + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   9   0.58   2   0.05   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 1.5 7  | .058 2 | .029 3  | 05   |       |        |     |        |        |
| 125   1.20 + 1.5Lm + 1.0WmYes   Y   DL   1.2   33   1.5   9   0.58   2   -0.29   3   .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 1.5 8  | .058 2 | 3.5 3   | .058 |       |        |     |        |        |
| 126   12.D   1.5Lm   1.0Vm   Yes   Y   DL   1.2   33   1.5   10   0.68   2   -04   3   0.41        12     127   1.2D   1.5Lm   1.0Vm   Yes   Y   DL   1.2   33   1.5   11   0.68   2   -05   3   0.29         12   1.5Lm   1.0Vm   Yes   Y   DL   1.2   33   1.5   5   0.58   2   -0.53   3   0.29         1.2   1.2   1.2   33   1.5   5   0.58   2   -0.53   3   0.29            1.2   1.2   1.2   1.2   33   1.5   1.058   2   -0.58   3   0.41       1.02   1.2   1.5   1.05   1.05   2   0.58   2   0.55   1.05   1.05<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 1.5 9  | .058 2 | 029 3   | 05   |       |        |     |        |        |
| 127   1.20 + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   11   0.58   2  05   3   .029        128   1.20 + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   4   .058   2  058   3   7.0 <t< td=""><td>126 1.2D + 1.5Lm + 1.0Wm.</td><td>Yes Y</td><td>DI 12 33</td><td>1.5 10</td><td>.058 2</td><td>041 3</td><td>.041</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 1.5 10 | .058 2 | 041 3   | .041 |       |        |     |        |        |
| 128   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   4   .058   2   .058   3   7.0   Image: Constraint of the constraint of                              | 127 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 15 11  | .058 2 | 05 3    | .029 |       |        |     |        |        |
| 129   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   5   0.58   2   .05   3   .029   Image: Constraint of the                          | 128 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 154    | .058 2 | 058 3   | 7.0  |       |        |     |        |        |
| 130   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   6   0.56   2   -041   3   -041   Image: Constraint of the constraint of t                           | 129 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 1.5 5  | .058 2 | - 05 3  | 029  |       |        |     | _      |        |
| 131   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   7   0.56   2   0.29   3   -0.56   Image: Constraint of the constraint of                            | 130 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DI 12 33  | 156    | .058 2 | 041 3   | 041  |       |        |     |        |        |
| 132   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   8   0.58   2   -1   3   -058   Image: Constraint of the constraint of                               | 131 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 33 | 1.5 7  | .058 2 | 029 3   | 05   |       |        |     |        |        |
| 133   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   9   0.58   2   0.29   3   -0.5   Image: Constraint of the constraint of t                           | 132 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 33 | 1.5 8  | .058 2 | -1 3    | 058  |       |        |     |        |        |
| 134   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   10   0.58   2   0.41   3   -0.41   Image: Constraint of the constraint of                           | 133 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 33 | 1.5 9  | .058 2 | .029 3  | 05   |       |        |     |        |        |
| 135   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   33   1.5   11   0.58   2   0.58   3   0.29   Image: Constraint of the constraint of                            | 134 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 33 | 1.5 10 | .058 2 | .041 3  | 041  |       |        |     |        |        |
| 136   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   4   0.58   2   0.58   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 33 | 1.5 11 | .058 2 | .05 3   | 029  |       |        |     |        |        |
| 137   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   5   .05   3   .029   Image: State | 136 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 1.5 4  | .058 2 | .058 3  |      |       |        |     |        |        |
| 138   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   6   .058   2   .041   3   .041   Image: Constraint of the constraint of t                           | 137 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 1.5 5  | .058 2 | .05 3   | .029 |       |        |     |        |        |
| 139   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   7   0.58   2   0.29   3   0.5   Image: Constraint of the text of tex of text of tex of text of text of tex of t                           | 138 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 1.5 6  | .058 2 | .041 3  | .041 |       |        |     |        |        |
| 140   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   8   .058   2   3.5   3   .058   Image: Constraint of the constraint of                              | 139 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 1.5 7  | .058 2 | .029 3  | .05  |       |        |     |        |        |
| 141   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   9   .05   2   .029   3   .05   Image: Constraint of the text of                           | 140 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 1.5 8  | .058 2 | 3.5 3   | .058 |       |        |     |        |        |
| 142   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   10   .058   2  041   3   .041 <td< td=""><td>141 1.2D + 1.5Lm + 1.0Wm .</td><td>.Yes Y</td><td>DL 1.2 34</td><td>1.5 9</td><td>.058 2</td><td>029 3</td><td>.05</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141 1.2D + 1.5Lm + 1.0Wm .   | .Yes Y | DL 1.2 34 | 1.5 9  | .058 2 | 029 3   | .05  |       |        |     |        |        |
| 143   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   11   058   2  05   3   .029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 142 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 1.5 10 | .058 2 | 041 3   | .041 |       |        |     |        |        |
| 144   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   4   .058   2  058   3   7.0   Image: Constraint of the constraint o                                 | 143 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 1.5 11 | .058 2 | 05 3    | .029 |       |        |     |        |        |
| 145   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   5   .058   2  05   3  029   Image: Constraint of the constraint of                                  | 144 1.2D + 1.5Lm + 1.0Wm.    | Yes Y  | DL 1.2 34 | 154    | .058 2 | 058 3   | 7.0  |       |        |     |        |        |
| 146   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   6   .058   2  041   3  041 <td>145 1.2D + 1.5Lm + 1.0Wm .</td> <td>Yes Y</td> <td>DL 1.2 34</td> <td>155</td> <td>.058 2</td> <td>05 3</td> <td>029</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 145 1.2D + 1.5Lm + 1.0Wm .   | Yes Y  | DL 1.2 34 | 155    | .058 2 | 05 3    | 029  |       |        |     |        |        |
| 147   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   7   .058   2  029   3  05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 146 1.2D + 1.5Lm + 1.0Wm .   | Yes Y  | DL 1.2 34 | 1.5 6  | .058 2 | 041 3   | 041  |       |        |     |        |        |
| 148   1.2D + 1.5Lm + 1.0Wm Yes   Y   DL   1.2   34   1.5   8   .058   2   -1   3  058 <td>147 1.2D + 1.5Lm + 1.0Wm .</td> <td>Yes Y</td> <td>DL 1.2 34</td> <td>1.5 7</td> <td>.058 2</td> <td>029 3</td> <td>05</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147 1.2D + 1.5Lm + 1.0Wm .   | Yes Y  | DL 1.2 34 | 1.5 7  | .058 2 | 029 3   | 05   |       |        |     |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 148 1.2D + 1.5Lm + 1.0Wm .   | Yes Y  | DL 1.2 34 | 1.5 8  | .058 2 | -1 3    | 058  |       |        |     |        |        |

RISA-3D Version 17.0.4 [C:\...\...\Engineering\MA\_07.29.2021\01.RISA\855662.r3d]



July 29, 2021 2:01 P M Checked By: CA

#### Load Combinations (Continued)

| Des cription                                  | S I    | P S          | . В | Factor | •в | Fac | В                 | Fac  | В | Fac   | в | FacE  | 3 Fac. | .В | Fac | В | Fac | В | Fac | В | Fac |
|-----------------------------------------------|--------|--------------|-----|--------|----|-----|-------------------|------|---|-------|---|-------|--------|----|-----|---|-----|---|-----|---|-----|
| 149 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DL  | 1.2    | 34 | 1.5 | 9                 | .058 | 2 | .029  | 3 | 05    |        |    |     |   |     |   |     |   |     |
| 150 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DL  | 1.2    | 34 | 1.5 | 10                | .058 | 2 | .041  | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 151 1.2D + 1.5Lm + 1.0Wm                      | . Yes  | Y            | DL  | 1.2    | 34 | 1.5 | 11                | .058 | 2 | .05   | 3 | 029   |        |    |     |   |     |   |     |   |     |
| 152 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DL  | 1.2    | 35 | 1.5 | 4                 | .058 | 2 | .058  | 3 |       |        |    |     |   |     |   |     |   |     |
| 153 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DL  | 1.2    | 35 | 1.5 | 5                 | .058 | 2 | .05   | 3 | .029  |        |    |     |   |     |   |     |   |     |
| 154 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DL  | 1.2    | 35 | 1.5 | 6                 | .058 | 2 | .041  | 3 | .041  |        |    |     |   |     |   |     |   |     |
| 155 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DL  | 1.2    | 35 | 1.5 | 7                 | .058 | 2 | .029  | 3 | .05   |        |    |     |   |     |   |     |   |     |
| 156 1.2D + 1.5Lm + 1.0Wm                      | . Yes  | Y            | DL  | 1.2    | 35 | 1.5 | 8                 | .058 | 2 | 3.5   | 3 | .058  |        |    |     |   |     |   |     |   |     |
| 157 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DI  | 12     | 35 | 1.5 | 9                 | .058 | 2 | 029   | 3 | 05    |        |    |     |   |     |   |     |   |     |
| 158 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DI  | 12     | 35 | 1.5 | 10                | .058 | 2 | 041   | 3 | .041  |        |    |     |   |     |   |     |   |     |
| 159 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Ý            | DI  | 12     | 35 | 1.5 | 11                | .058 | 2 | - 05  | 3 | .029  |        |    |     |   |     |   |     |   |     |
| 160 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DI  | 12     | 35 | 1.5 | 4                 | .058 | 2 | 058   | 3 | 7.0   |        |    |     |   |     |   |     |   |     |
| 161 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Ý            | DI  | 1.2    | 35 | 1.5 | 5                 | .058 | 2 | - 05  | 3 | 029   |        |    |     |   |     |   |     |   |     |
| 162 1.2D + 1.5Lm + 1.0Wm                      | .Yes   | Y            | DI  | 1.2    | 35 | 1.5 | 6                 | .058 | 2 | 041   | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 163 1.2D + 1.5Lm + 1.0Wm                      | Yes    | v –          |     | 1.2    | 35 | 1.5 | 7                 | .058 | 2 | 029   | 3 | - 05  |        |    |     |   |     |   |     |   |     |
| 164 1.2D + 1.5Lm + 1.0Wm                      | Yes    | Y            | DL  | 1.2    | 35 | 1.5 | 8                 | .058 | 2 | -1    | 3 | 058   |        |    |     |   |     |   |     |   |     |
| 165 1.2D + 1.5Lm + 1.0Wm                      | Yes    | Y            |     | 1.2    | 35 | 1.5 | q                 | .058 | 2 | .029  | 3 | - 05  |        |    |     |   |     |   |     |   |     |
| 166 1.2D + 1.5Lm + 1.0Wm                      | Yes    | Y            | DL  | 1.2    | 35 | 1.5 | 10                | .058 | 2 | .041  | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 167 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 35 | 1.5 | 11                | 058  | 2 | 05    | 3 | - 029 |        |    |     |   |     |   |     |   |     |
| 168 12D + 15Im + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 1                 | 058  | 2 | 058   | 3 |       |        |    |     |   |     |   |     |   |     |
| 169 12D + 151m + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | <del>-</del><br>5 | 058  | 2 | 05    | 3 | 029   |        |    |     |   |     |   |     |   |     |
| 170 12D + 15Lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 6                 | 058  | 2 | .03   | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 171 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 7                 | 058  | 2 | 029   | 3 | 05    |        |    |     |   |     |   |     |   |     |
| 172 12D + 15Lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | /<br>8            | 058  | 2 | 3.5   | 3 | 058   |        |    |     |   |     |   |     |   |     |
| 172 $12D$ $15lm$ $10Wm$                       | Yes    | V            |     | 1.2    | 36 | 1.5 | 0                 | 058  | 2 | - 029 | 3 | 05    |        | -  |     |   |     |   |     |   |     |
| 174 12D + 15Lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 10                | 058  | 2 | - 041 | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 175 12D + 15Lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 11                | 058  | 2 | .01   | 3 | 029   |        |    |     |   |     |   |     |   |     |
| 176 12D + 15Lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 1                 | 058  | 2 | - 058 | 3 | 7.0   |        |    |     |   |     |   |     |   |     |
| 177 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 4                 | 058  | 2 | - 05  | 3 | - 029 |        | -  |     |   |     |   |     |   |     |
| 178 1 2D + 15l m + 10Wm                       | Yes    | V            |     | 1.2    | 36 | 1.5 | 6                 | 058  | 2 | - 041 | 3 | - 041 |        |    |     |   |     |   |     |   |     |
| 179 $12D + 15lm + 10Wm$                       | Yes    | V            |     | 1.2    | 36 | 1.5 | 7                 | 058  | 2 | - 029 | 3 | - 05  |        |    |     |   |     |   |     |   |     |
| 180 1.2D + 1.5Lm + 1.0Wm                      | Yes    | Y            |     | 1.2    | 36 | 1.5 | 8                 | .058 | 2 | -1    | 3 | 058   |        |    |     |   |     |   |     |   |     |
| 181 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | a                 | 058  | 2 | 029   | 3 | - 05  |        |    |     |   |     |   |     |   |     |
| 182 12D + 15Im + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 10                | 058  | 2 | 041   | 3 | - 041 |        |    |     |   |     |   |     |   |     |
| 183 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 36 | 1.5 | 11                | 058  | 2 | 05    | 3 | - 029 |        |    |     |   |     |   |     |   |     |
| 184 12D + 15Lm + 10Wm                         | Yes    | V            |     | 1.2    | 37 | 1.5 | 1                 | 058  | 2 | 058   | 3 |       |        |    |     |   |     |   |     |   |     |
| 185 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 37 | 1.5 | <del>-</del><br>5 | 058  | 2 | 05    | 3 | 029   |        |    |     |   |     |   |     |   |     |
| 186 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 37 | 1.5 | 6                 | 058  | 2 | 041   | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 187 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 37 | 1.5 | 7                 | 058  | 2 | 029   | 3 | 05    |        |    |     |   |     |   |     |   |     |
| 188 1.2D + 1.5Lm + 1.0Wm                      | Yes    | V            |     | 1.2    | 37 | 1.5 | 8                 | .058 | 2 | 3.5   | 3 | 058   |        |    |     |   |     |   |     |   |     |
| 189 12D + 15lm + 10Wm                         | Yes    | $\mathbf{v}$ |     | 1.2    | 37 | 1.5 | a                 | 058  | 2 | - 029 | 3 | 05    |        |    |     |   |     |   |     |   |     |
| 190 12D + 15lm + 10Wm                         | Yes    | V            |     | 1.2    | 37 | 1.5 | 10                | 058  | 2 | - 041 | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 191 1.2D + 1.5I m + 1.0Wm                     | Yes    | Y            |     | 1.2    | 37 | 1.5 | 11                | .058 | 2 | - 05  | 3 | .029  |        |    |     |   |     |   |     |   |     |
| 192 1.2D + 1.5Im + 1.0Wm                      | Yes    | Y            |     | 1.2    | 37 | 1.5 | 4                 | .058 | 2 | 058   | 3 | 7.0   |        |    |     |   |     |   |     |   |     |
| 193 1.2D + 1.5I m + 1.0Wm                     | Yes    | Y            |     | 1.2    | 37 | 1.5 | 4                 | .058 | 2 | _ 05  | 2 | - 029 |        |    |     |   |     |   |     |   |     |
| 194 1.2D + 1.5I m + 1.0Wm                     | Yes    | Y            |     | 1.2    | 37 | 1.5 | 6                 | .058 | 2 | 041   | 3 | 041   |        |    |     |   |     |   |     |   |     |
| 195 1.2D + 1.5I m + 1.0Wm                     | Yes    | Y            |     | 1.2    | 37 | 1.5 | 7                 | .058 | 2 | 029   | 3 | - 05  |        |    |     |   |     |   |     |   |     |
| 196 1.2D + 1.5I m + 1.0Wm                     | Yes    | Y            |     | 1.2    | 37 | 1.5 | 8                 | .058 | 2 | -1.   | 3 | 058   |        |    |     |   |     |   |     |   |     |
| $197 120 \pm 151 \text{ m} \pm 100 \text{ m}$ | Yes    | V            |     | 1.2    | 37 | 1.5 | 0<br>0            | 058  | 2 | 029   | 2 | - 05  |        |    |     |   |     |   |     |   |     |
| 198 120 + 151m + 10Wm                         | Yes    | V            |     | 1.2    | 37 | 1.5 | 10                | 058  | 2 | 041   | 2 | - 041 |        |    |     |   |     |   |     |   |     |
| 199 1.2D + 1.5I m + 1.0Wm                     | Yes    | Y            |     | 1.2    | 37 | 1.5 | 11                | .058 | 2 | 05    | 2 | 029   |        |    |     |   |     |   |     |   |     |
| $200 \ 12D + 15Lm + 10Wm$                     | Yes    | V            |     | 1.2    | 30 | 1.5 | 1                 | 058  | 2 | 058   | 2 |       |        |    |     |   |     |   |     |   |     |
|                                               | . 1 03 |              | DL  | 1.4    | 50 | 1.0 | 4                 | .000 | 2 | .000  | 3 |       |        |    |     |   |     |   |     |   |     |

RISA-3D Version 17.0.4 [C:\...\...\Engineering\MA\_07.29.2021\01.RISA\855662.r3d]



#### Load Combinations (Continued)

| Des cription               | SP     | . S B | Factor | В  | Fac | B  | FacB   | Fac. | В | Fac  | 3 | Fac | В | Fac | В | Fac | В | Fac. | B | Fac |
|----------------------------|--------|-------|--------|----|-----|----|--------|------|---|------|---|-----|---|-----|---|-----|---|------|---|-----|
| 201 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 5  | .058 2 | .05  | 3 | .029 |   |     |   |     |   |     |   |      |   |     |
| 202 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 6  | .058 2 | .041 | 3 | .041 |   |     |   |     |   |     |   |      |   |     |
| 203 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 7  | .058 2 | .029 | 3 | .05  |   |     |   |     |   |     |   |      |   |     |
| 204 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 8  | .058 2 | 3.5  | 3 | .058 |   |     |   |     |   |     |   |      |   |     |
| 205 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 9  | .058 2 | 029  | 3 | .05  |   |     |   |     |   |     |   |      |   |     |
| 206 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 10 | .058 2 | 041  | 3 | .041 |   |     |   |     |   |     |   |      |   |     |
| 207 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 11 | .058 2 | 05   | 3 | .029 |   |     |   |     |   |     |   |      |   |     |
| 208 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 4  | .058 2 | 058  | 3 | 7.0  |   |     |   |     |   |     |   |      |   |     |
| 209 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 5  | .058 2 | 05   | 3 | 029  |   |     |   |     |   |     |   |      |   |     |
| 210 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 6  | .058 2 | 041  | 3 | 041  |   |     |   |     |   |     |   |      |   |     |
| 211 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 7  | .058 2 | 029  | 3 | 05   |   |     |   |     |   |     |   |      |   |     |
| 212 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 8  | .058 2 | -1   | 3 | 058  |   |     |   |     |   |     |   |      |   |     |
| 213 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 9  | .058 2 | .029 | 3 | 05   |   |     |   |     |   |     |   |      |   |     |
| 214 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 38 | 1.5 | 10 | .058 2 | .041 | 3 | 041  |   |     |   |     |   |     |   |      |   |     |
| 215 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 38 | 1.5 | 11 | .058 2 | .05  | 3 | 029  |   |     |   |     |   |     |   |      |   |     |
| 216 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 4  | .058 2 | .058 | 3 |      |   |     |   |     |   |     |   |      |   |     |
| 217 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 39 | 1.5 | 5  | .058 2 | .05  | 3 | .029 |   |     |   |     |   |     |   |      |   |     |
| 218 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 6  | .058 2 | .041 | 3 | .041 |   |     |   |     |   |     |   |      |   |     |
| 219 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 7  | .058 2 | .029 | 3 | .05  |   |     |   |     |   |     |   |      |   |     |
| 220 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 8  | .058 2 | 3.5  | 3 | .058 |   |     |   |     |   |     |   |      |   |     |
| 221 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 9  | .058 2 | 029  | 3 | .05  |   |     |   |     |   |     |   |      |   |     |
| 222 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 10 | .058 2 | 041  | 3 | .041 |   |     |   |     |   |     |   |      |   |     |
| 223 1.2D + 1.5Lm + 1.0Wm . | Yes Y  | DL    | 1.2    | 39 | 1.5 | 11 | .058 2 | 05   | 3 | .029 |   |     |   |     |   |     |   |      |   |     |
| 224 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 4  | .058 2 | 058  | 3 | 7.0  |   |     |   |     |   |     |   |      |   |     |
| 225 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 5  | .058 2 | 05   | 3 | 029  |   |     |   |     |   |     |   |      |   |     |
| 226 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 6  | .058 2 | 041  | 3 | 041  |   |     |   |     |   |     |   |      |   |     |
| 227 1.2D + 1.5Lm + 1.0Wm.  | .Yes Y | DL    | 1.2    | 39 | 1.5 | 7  | .058 2 | 029  | 3 | 05   |   |     |   |     |   |     |   |      |   |     |
| 228 1.2D + 1.5Lm + 1.0Wm.  | .Yes Y | DL    | 1.2    | 39 | 1.5 | 8  | .058 2 | -1   | 3 | 058  |   |     |   |     |   |     |   |      |   |     |
| 229 1.2D + 1.5Lm + 1.0Wm.  | Yes Y  | DL    | 1.2    | 39 | 1.5 | 9  | .058 2 | .029 | 3 | 05   |   |     |   |     |   |     |   |      |   |     |
| 230 1.2D + 1.5Lm + 1.0Wm.  | .Yes Y | DL    | 1.2    | 39 | 1.5 | 10 | .058 2 | .041 | 3 | 041  |   |     |   |     |   |     |   |      |   |     |
| 231 1.2D + 1.5Lm + 1.0Wm . | .Yes Y | DL    | 1.2    | 39 | 1.5 | 11 | .058 2 | .05  | 3 | 029  |   |     |   |     |   |     |   |      |   |     |

### Envelope Joint Reactions

|   | Joint   |     | X <b>[</b> b] | LC | Y <b>[</b> b] | LC | Z [lb]   | LC | MX [lb-ft] | LC  | MY [lb-ft] | LC | MZ [lb-ft]       | LC |
|---|---------|-----|---------------|----|---------------|----|----------|----|------------|-----|------------|----|------------------|----|
| 1 | N25     | max | 1615.18       | 3  | 1076.489      | 20 | 2311.367 | 39 | 86.894     | 31  | 186.667    | 33 | 1917.76          | 19 |
| 2 |         | min | -1609.166     | 27 | -1081.272     | 12 | 72.772   | 31 | -4209.326  | 38  | -2283.837  | 41 | -1920.944        | 11 |
| 3 | N1      | max | 1698.64       | 17 | 960.339       | 8  | 2377.357 | 45 | 4120.316   | 45  | 159.962    | 19 | 1965.815         | 25 |
| 4 |         | min | -1696.522     | 25 | -952.507      | 32 | 83.543   | 21 | -52.497    | 21  | -2790.389  | 43 | -1970.414        | 17 |
| 5 | N 13    | max | 428.935       | 18 | 1646.732      | 22 | 2249.585 | 34 | 652.262    | 194 | 4652.38    | 34 | 1614 <u>.</u> 53 | 30 |
| 6 |         | min | -437.189      | 10 | -1649.584     | 14 | 43.274   | 26 | -540.795   | 172 | -166.177   | 26 | -1617.459        | 6  |
| 7 | Totals: | max | 3327.43       | 18 | 3110.372      | 22 | 6752.443 | 43 |            |     |            |    |                  |    |
| 8 |         | min | -3327.431     | 10 | -3110.373     | 14 | 1367.852 | 67 |            |     |            |    |                  |    |

### Envelope A ISC 15th (360-16): LRFD Steel Code Checks

|   | Member | Shape    | Code Check | Loc[in] | LC | ShearCheck | Lo |      | . phi*P | phi*P | phi*M | .phi*M | Eqn                 |
|---|--------|----------|------------|---------|----|------------|----|------|---------|-------|-------|--------|---------------------|
| 1 | M2     | PIPE 3.5 | .623       | 0       | 45 | .165       | 0  | 9    | 6449    | 78750 | 7953  | .7953  | H1-1b               |
| 2 | M12    | PIPE 3.5 | .601       | 0       | 39 | .160       | 0  | 3    | 6449    | 78750 | 7953  | .7953  | <mark>H1-</mark> 1b |
| 3 | M7     | PIPE 3.5 | .585       | 0       | 34 | .151       | 0  | 14   | 6449    | 78750 | 7953  | .7953  | H1 <b>-</b> 1b      |
| 4 | M1     | C 3X 5   | .467       | 34.856  | 45 | .168       | 63 | y 40 | 3710    | 47628 | 981.2 | 4104 - | <mark>H1-</mark> 1b |



#### Envelope A ISC 15th (360-16): LRFD Steel Code Checks (Continued)

|    | Member | Shape         | Code Check | Loc[in] | LC  | ShearCheck | Lo |      | phi*P | .phi*P  | .phi*M. | phi*M  | Eqn                       |
|----|--------|---------------|------------|---------|-----|------------|----|------|-------|---------|---------|--------|---------------------------|
| 5  | M11    | C 3X 5        | .456       | 34.856  | 45  | .166       | 63 | y 35 | 3710  | 47628   | 981.2.  | 4104   | H1 <b>-</b> 1b            |
| 6  | M6     | C 3X 5        | .439       | 34.856  | 34  | .161       | 63 | y 46 | 3710  | 47628   | 981.2.  | 4104   | <mark>H1-</mark> 1b       |
| 7  | MP1    | PIPE 2.0      | .320       | 48      | 16  | .044       | 48 | 17   | 2086  | . 32130 | 1871    | . 1871 | H1 <b>-</b> 1b            |
| 8  | MP4    | PIPE_2.0      | .314       | 48      | 11  | .045       | 48 | 11   | 2086  | . 32130 | 1871    | . 1871 | <mark>H1-</mark> 1b       |
| 9  | MP3    | PIPE_2.0      | .299       | 48      | 5   | .026       | 48 | 10   | 2086  | . 32130 | 1871    | . 1871 | . <b>1</b> H1 <b>-</b> 1b |
| 10 | MP7    | PIPE_2.0      | .296       | 48      | 10  | .036       | 48 | 6    | 2086  | . 32130 | 1871    | . 1871 | H1 <b>-</b> 1b            |
| 11 | MP9    | PIPE 2.0      | .295       | 48      | 10  | .029       | 48 | 3    | 2086  | . 32130 | 1871    | . 1871 | H1 <b>-</b> 1b            |
| 12 | MP2    | PIPE 2.0      | .289       | 48      | 5   | .041       | 48 | 8    | 2086  | . 32130 | 1871    | . 1871 | . <b>1</b> H1 <b>-</b> 1b |
| 13 | MP8    | PIPE 2.0      | .287       | 48      | 10  | .034       | 48 | 14   | 2086  | . 32130 | 1871    | . 1871 | H1 <b>-</b> 1b            |
| 14 | MP5    | PIPE 2.0      | .274       | 48      | 16  | .041       | 48 | 3    | 2086  | . 32130 | 1871    | . 1871 | <mark>H1-</mark> 1b       |
| 15 | MP6    | PIPE 2.0      | .272       | 48      | 15  | .030       | 48 | 9    | 2086  | 32130   | 1871    | . 1871 | H1 <b>-</b> 1b            |
| 16 | M15    | 6.5"x0.37" PI | .239       | 21      | 7   | .112       | 21 | y 37 | 3513  | 77922   | 600.6.  | . 6357 | H1 <b>-</b> 1b            |
| 17 | M10    | 6.5"x0.37" PI | .238       | 21      | 2   | .110       | 21 | y 48 | 3513  | 77922   | 600.6.  | 6384   | H1 <b>-</b> 1b            |
| 18 | M5     | 6.5"x0.37" Pl | .233       | 21      | 12  | .117       | 21 | y 42 | 3513  | 77922   | 600.6.  | 6586   | <mark>H1-</mark> 1b       |
| 19 | M3     | L2x2x3        | .201       | 0       | 3   | .034       | 0  | z 49 | 2096  | . 2339  | 557.7   | . 1182 | 1 H2-1                    |
| 20 | M13    | L2x2x3        | .199       | 0       | 14  | .033       | 0  | z 43 | 2096  | . 2339  | 557.7.  | . 1182 | 1 H2-1                    |
| 21 | M8     | L2x2x3        | .172       | 0       | 9   | .033       | 0  | z 38 | 2096  | . 2339  | 557.7.  | . 1182 | 1 H2-1                    |
| 22 | M4     | L2x2x3        | .147       | 0       | 13  | .037       | 0  | y 41 | 2096  | . 2339  | 557.7.  | . 1182 | 1 H2-1                    |
| 23 | M9     | L2x2x3        | .132       | 0       | 2   | .035       | 0  | y 46 | 2096  | . 2339  | 557.7.  | . 1182 | 1 H2-1                    |
| 24 | M20    | PIPE 2.0      | .131       | 24      | 16  | .117       | 72 | 8    | 1491  | . 32130 | 1871    | . 1871 | H1 <b>-</b> 1b            |
| 25 | M19    | PIPE 2.0      | .130       | 24      | 11  | .124       | 72 | 2    | 1491  | . 32130 | 1871    | . 1871 | H1 <b>-</b> 1b            |
| 26 | M21    | PIPE_2.0      | .129       | 72      | 5   | .119       | 72 | 13   | 1491  | . 32130 | 1871    | . 1871 | <mark>H1-</mark> 1b       |
| 27 | M14    | L2x2x3        | .123       | 0       | 7   | .036       | 0  | y 36 | 2096  | . 2339  | 557.7   | . 1182 | 1 H2-1                    |
| 28 | H1     | PIPE 3.5      | .115       | 72      | 102 | .087       | 24 | 11   | 6066  | . 78750 | 7953    | 7953   | . <b>1</b> H1 <b>-</b> 1b |
| 29 | H3     | PIPE 3.5      | .114       | 31      | 10  | .090       | 24 | 16   | 6066  | . 78750 | 7953    | 7953   | H1 <b>-</b> 1b            |
| 30 | H2     | PIPE 3.5      | .113       | 72      | 143 | .082       | 24 | 5    | 6066  | 78750   | 7953    | 7953   | . <b>1</b> H1 <b>-</b> 1b |
| 31 | M22    | L6.6"X4.46"X  | .059       | 0       | 22  | .033       | 42 | z 4  | 5117  | 87561   | 2464    | 7125   | 1 H2-1                    |
| 32 | M23    | L6.6"X4.46"X  | .058       | 0       | 26  | .032       | 0  | y 9  | 5117  | 87561   | 2464    | 7125   | 1 H2-1                    |
| 33 | M24    | L6 6"X4 46"X  | .052       | 4.813   | 33  | .030       | 0  | y 14 | 5117  | 87561   | 2464    | 7125   | 1 H2-1                    |

#### Envelope None Cold Formed Steel Code Checks

| Member | Shape | Code Check | Loc[in]LC SheaLoc[iDirLC | Pn[ <b>l</b> b] | Tn[b] | Mnyy[l Mnzz[l | Cb | Cmyy Cmzz | Eqn |
|--------|-------|------------|--------------------------|-----------------|-------|---------------|----|-----------|-----|
|        |       |            | No Data to Print.        |                 |       |               |    |           |     |

APPENDIX D

### ADDITIONAL CALCUATIONS



#### BOLT TOOL 1.5.2

| Project Data       |                 |  |  |  |  |  |  |
|--------------------|-----------------|--|--|--|--|--|--|
| Job Code:          | 189048          |  |  |  |  |  |  |
| Carrier Site ID:   | BOBDL00073A     |  |  |  |  |  |  |
| Carrier Site Name: | CT-CCI-T-855662 |  |  |  |  |  |  |

| Code                 |           |  |  |  |  |  |
|----------------------|-----------|--|--|--|--|--|
| Design Standard:     | TIA-222-H |  |  |  |  |  |
| Slip Check:          | No        |  |  |  |  |  |
| Pretension Standard: | AISC      |  |  |  |  |  |

| Bolt Properties         |       |     |  |  |  |  |  |
|-------------------------|-------|-----|--|--|--|--|--|
| Connection Type:        | Bolt  |     |  |  |  |  |  |
| Diameter:               | 0.625 | in  |  |  |  |  |  |
| Grade:                  | A325  |     |  |  |  |  |  |
| Yield Strength (Fy):    | 92    | ksi |  |  |  |  |  |
| Ultimate Strength (Fu): | 120   | ksi |  |  |  |  |  |
| Number of Bolts:        | 4     |     |  |  |  |  |  |
| Threads Included:       | Yes   |     |  |  |  |  |  |
| Double Shear:           | No    |     |  |  |  |  |  |
| Connection Pipe Size:   | -     | in  |  |  |  |  |  |



#### **Connection Description**

#### Standoff to Collar

| Bolt Check*                          |         |      |  |  |  |  |  |  |
|--------------------------------------|---------|------|--|--|--|--|--|--|
| Tensile Capacity (φT <sub>n</sub> ): | 20340.1 | lbs  |  |  |  |  |  |  |
| Shear Capacity (φV <sub>n</sub> ):   | 13805.8 | lbs  |  |  |  |  |  |  |
| Tension Force (T <sub>u</sub> ):     | 5141.3  | lbs  |  |  |  |  |  |  |
| Shear Force (V <sub>u</sub> ):       | 411.4   | lbs  |  |  |  |  |  |  |
| Tension Usage:                       | 24.1%   |      |  |  |  |  |  |  |
| Shear Usage:                         | 2.8%    |      |  |  |  |  |  |  |
| Interaction:                         | 24.1%   | Pass |  |  |  |  |  |  |
| Controlling Member:                  | M2      |      |  |  |  |  |  |  |
| Controlling LC:                      | 42      |      |  |  |  |  |  |  |

\*Rating per TIA-222-H Section 15.5

APPENDIX E

#### SUPPLEMENTAL DRAWINGS

| <u></u>                                                                                                                                                                                                                                                                                                                                             | <u>(**:</u> | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REV. ECN BY DATE   REV. ECN DECNPTIONS BY DATE   REV. ECN DECRPTIONS BY DATE   C 8000005779 CHANGE NOSE CORNER BRY, ADD GUB-4240 MSM 11/22/14   C 8000007579 CHANGE NOSE CORNER BRY, ADD GUB-4240 MSM 11/22/14                                                                                                                                      |             | There demands and subjection are in previets Text and the previets Text and the previets   There demands and subjection are interpreted WS/N Text and the previets   The demands and subjection are interpreted WS/N Text and the previets   The demands and subjection are interpreted WS/N Text and the previets   The demands are interpreted are interpre |
| Tiew   Part NO.   Description   dtv   weight   Note Note Note     1   MIC3006SB   steel bundle for snub nose platform   1   402.64 LBS   Note Note     2   MCPK8CSB   pipe steel bundle for MC-PK8-C   1   402.64 LBS   Note Note     3   MCPK8CHWK   HARDWARE KIT FOR MC-PK8-C   1   543.22 LBS   D     FOR BOM ENTRY ONLY   ONL   ONL   ONL   ONL |             | NOTES:<br>1. CUSTOMER ASSEMBLY SHEETS 2-3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |





# **ATTACHMENT 6**



## RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

**Dish Wireless Existing Facility** 

## Site ID: BOBDL00073A

855662 340 Bloomfield Avenue Windsor, Connecticut 06095

October 26, 2021

EBI Project Number: 6221006488

| Site Compliance Summary                                             |           |  |  |  |  |  |
|---------------------------------------------------------------------|-----------|--|--|--|--|--|
| Compliance Status:                                                  | COMPLIANT |  |  |  |  |  |
| Site total MPE% of<br>FCC general<br>population<br>allowable limit: | 21.21%    |  |  |  |  |  |



environmental | engineering | due diligence

October 26, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00073A - 855662

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **340 Bloomfield Avenue** in **Windsor, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm<sup>2</sup>). The number of  $\mu$ W/cm<sup>2</sup> calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm<sup>2</sup>). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400  $\mu$ W/cm<sup>2</sup> and 467  $\mu$ W/cm<sup>2</sup>, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000  $\mu$ W/cm<sup>2</sup>. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.



Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

### CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 340 Bloomfield Avenue in Windsor, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.


environmental | engineering | due diligence

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 99 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.



Dish Wireless Site Inventory and Power Data

| Sector:                    | A                               | Sector:             | В                 | Sector:             | C                 |
|----------------------------|---------------------------------|---------------------|-------------------|---------------------|-------------------|
| Antenna #:                 | I                               | Antenna #:          | I                 | Antenna #:          | I                 |
| Make / Model: JMA MX0<br>2 | JMA MX08FRO665-                 | Make / Model:       | JMA MX08FRO665-   | Make / Model:       | JMA MX08FRO665-   |
|                            | 21                              |                     | 21                |                     | 21                |
| Frequency Bands:           | Erequency Bands: 600 MHz / 1900 | Frequency Bands:    | 600 MHz / 1900    | Frequency Bands:    | 600 MHz / 1900    |
| riequency bands.           | MHz                             | rrequency bands.    | MHz               |                     | MHz               |
| Gain:                      | 17.45 dBd / 22.65               | Gain:               | 17.45 dBd / 22.65 | Gain:               | 17.45 dBd / 22.65 |
|                            | dBd                             |                     | dBd               |                     | dBd               |
| Height (AGL):              | 99 feet                         | Height (AGL):       | 99 feet           | Height (AGL):       | 99 feet           |
| Channel Count:             | 8                               | Channel Count:      | 8                 | Channel Count:      | 8                 |
| Total TX Power (W):        | 280 Watts                       | Total TX Power (W): | 280 Watts         | Total TX Power (W): | 280 Watts         |
| ERP (VV):                  | 3,065.51                        | ERP (VV):           | 3,065.51          | ERP (VV):           | 3,065.51          |
| Antenna AI MPE %:          | 1.83%                           | Antenna BI MPE %:   | 1.83%             | Antenna CI MPE %:   | 1.83%             |



environmental | engineering | due diligence

| Site Composite MPE %             |        |  |  |  |
|----------------------------------|--------|--|--|--|
| Carrier                          | MPE %  |  |  |  |
| Dish Wireless (Max at Sector A): | 1.83%  |  |  |  |
| Verizon                          | 7.27%  |  |  |  |
| AT&T                             | 0.95%  |  |  |  |
| T-Mobile                         | 2.14%  |  |  |  |
| Clearwire                        | 0.12%  |  |  |  |
| Sprint                           | 0.07%  |  |  |  |
| Town                             | 8.83%  |  |  |  |
| Site Total MPE % :               | 21.21% |  |  |  |

| Dish Wireless MPE % Per Sector |        |  |  |  |
|--------------------------------|--------|--|--|--|
| Dish Wireless Sector A Total:  | 1.83%  |  |  |  |
| Dish Wireless Sector B Total:  | 1.83%  |  |  |  |
| Dish Wireless Sector C Total:  | 1.83%  |  |  |  |
|                                |        |  |  |  |
| Site Total MPE % :             | 21.21% |  |  |  |

| Dish Wireless Maximum MPE Power Values (Sector A)             |               |                               |                  |                                    |                    |                           |                  |
|---------------------------------------------------------------|---------------|-------------------------------|------------------|------------------------------------|--------------------|---------------------------|------------------|
| Dish Wireless Frequency<br>Band /<br>Technology<br>(Sector A) | #<br>Channels | Watts ERP<br>(Per<br>Channel) | Height<br>(feet) | Total Power<br>Density<br>(µW/cm²) | Frequency<br>(MHz) | Allowable MPE<br>(µW/cm²) | Calculated % MPE |
| Dish Wireless 600 MHz n71                                     | 4             | 223.68                        | 99.0             | 3.72                               | 600 MHz n71        | 400                       | 0.93%            |
| Dish Wireless 1900 MHz n70                                    | 4             | 542.70                        | 99.0             | 9.02                               | 1900 MHz n70       | 1000                      | 0.90%            |
|                                                               |               |                               | •                | •                                  |                    | Total:                    | 1.83%            |

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.



### Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| Dish Wireless Sector    | Power Density Value (%) |
|-------------------------|-------------------------|
| Sector A:               | 1.83%                   |
| Sector B:               | 1.83%                   |
| Sector C:               | 1.83%                   |
| Dish Wireless           |                         |
| Maximum MPE %           | 1.83%                   |
| (Sector A):             |                         |
|                         |                         |
| Site Total:             | 21.21%                  |
|                         |                         |
| Site Compliance Status: | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is **21.21%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

# **ATTACHMENT 7**



## Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

# Click-N-Ship® Label Record





### Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

# Click-N-Ship® Label Record





## Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

# Click-N-Ship® Label Record





### Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

# Click-N-Ship® Label Record







FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

| 10001210-81                                                    | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03:58 PM                                                                                                                                                                                                                                          |
| Qty                                                            | Unit<br>Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Price                                                                                                                                                                                                                                             |
| 1<br>ta, NY 14586<br>14.10 oz<br>ate:<br>1/2022<br>5 9930 0179 | 5<br>0031 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0.00                                                                                                                                                                                                                                            |
| 1<br>14.10 oz<br>19:<br>/2022<br>9930 0179 0                   | 030 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0.00                                                                                                                                                                                                                                            |
| 1<br>5095<br>14.20 oz<br>e:<br>2022<br>9930 0179 00            | 030 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0.00                                                                                                                                                                                                                                            |
| 1<br>095<br>14.20 oz<br>3:<br>022<br>930 0179 003              | 30 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0.00                                                                                                                                                                                                                                            |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
|                                                                | Qty<br>1<br>ta, NY 14586<br>14.10 oz<br>ate:<br>1/2022<br>5 9930 0179<br>06095<br>14.10 oz<br>te:<br>/2022<br>9930 0179 00<br>14.20 oz<br>2022<br>9930 0179 00<br>1<br>9930 0179 00<br>1<br>14.20 oz<br>2022<br>9930 0179 00<br>1<br>1<br>1<br>2022<br>9930 0179 00<br>1<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>0<br>2<br>1<br>2<br>0<br>2<br>1<br>2<br>0<br>2<br>1<br>2<br>0<br>2<br>1<br>2<br>0<br>2<br>0<br>1<br>1<br>2<br>0<br>2<br>0<br>1<br>1<br>2<br>0<br>2<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Qty Unit<br>Price<br>1<br>ta, NY 14586<br>14.10 oz<br>ate:<br>1/2022<br>5 9930 0179 0031 08<br>14.10 oz<br>te:<br>/2022<br>9930 0179 0030 85<br>14.20 oz<br>e:<br>2022<br>9930 0179 0030 54<br>095<br>14.20 oz<br>e:<br>2022<br>9930 0179 0030 61 |

increases and limited employee availability due to the impacts of COVTD-19. We appreciate your patience.

#### **CERTIFICATION OF SERVICE**

I hereby certify that on the 14th day of January 2022, DISH Wireless, LLC provided notice of its intent to file a Petition for a declaratory ruling that a Certificate of Environmental Compatibility and Public Need is not required for the modification of a wireless telecommunications facility at 340 Bloomfield Avenue in Windsor, Connecticut, to the following:

#### Abutters

| MCDONALDS CORPORATION | AUSTIN SAMUELS          |
|-----------------------|-------------------------|
| PO BOX 182571         | 123 EAST WOLCOTT AVENUE |
| COLUMBUS, OH 43218    | WINDSOR, CT 06095       |
|                       |                         |
|                       |                         |
|                       |                         |

WILLIAM BEDNARZ 298 BLOOMFIELD AVENUE WINDSOR, CT 06095 PUBLIC SAFETY EXPANSION PARCEL 275 BROAD STREET WINDSOR, CT 06095

EDWARD OLEARY KINDER CARE PO BOX 528 AGAWAM, MA 01001 CONN AGRICULTURAL 153 COOK HILL ROAD WINDSOR, CT 06095

CONN AGR EXP STATON TR UW 153 COOK HILL ROAD WINDSOR, CT 06095

Owner

TOWN OF WINDSOR 275 BROAD STREET WINDSOR, CT 06095

Respectfully Submitted,

Victoria Masse Northeast Site Solutions 420 Main Street #2 Sturbridge, MA 01566 January 14, 2022

#### VIA USPS CERTIFIED MAIL/ RETURN RECEIPT REQUESTED

TOWN OF WINDSOR 275 BROAD STREET WINDSOR, CT 06095

#### RE: Proposed Modification to Existing Wireless Telecommunications Facility at 340 Bloomfield Avenue in Windsor, CT

To Whom It May Concern:

I am writing to you on behalf of DISH Wireless, LLC ("DISH"). DISH intends to file with the Connecticut Siting Council ("Council") a petition for declaratory ruling ("Petition") that a Certificate of Environmental Compatibility and Public Need is not required.

The Petition will provide details of the Existing Facility modification and explain why it will have no significant adverse environmental effect.

This letter serves as notice to you as an abutting property owner pursuant to § 16-50j-40 of the Regulations of Connecticut State Agencies. DISH will file the Petition on or about January 14, 2022 and will request that the Council place the Petition on some future agenda.

You may review the Petition at the office of the Council, which is located at Ten Franklin Square, New Britain, Connecticut, 06051, or at the Office of the Town Clerk at the Windsor Town Hall. All inquiries should be addressed to Council or to the undersigned.

Sincerely,

Victoria Masse Northeast Site Solutions 420 Main Street #2 Sturbridge, MA 01566









\_





11







\$0.58 First-Class Mail@ 1 letter Windsor, CT 06095 Weight: 0 1b 0.40 oz Estimated Delivery Date Thu 03/03/2022 \$3.75 Certified Mail® Tracking #: 70210350000060292722 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8084 67 \$7.38 Total \$0.58 First-Class Mail@ 1 Letter Windsor, CT 06095 Weight: 0 1b 0.40 oz Estimated Delivery Date Thu 03/03/2022 \$3.75 Certified Mail® Tracking #: 70210350000060292715 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8087 57 \$7.38 Total \$0.58 First-Class Mail® 1 letter Windsor, CT 06095 Weight: 0 1b 0.40 oz Estimated Delivery Date Thu 03/03/2022 \$3.75 Certified Mail® Tracking #: 70210350000060292708 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8087 40 \$7.38 Total \$0.58 First-Class Mail® 1 letter Columbus, OH 43218 Weight: 0 1b 0.40 oz Estimated Delivery Date Fri 03/04/2022 \$3.75 Certified Mail® Tracking #: 70210350000060292692 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8086 03 \$7.38 Total

Grand Intal. AEA \$0.58 1 First-Class Mail® letter Windsor, CT 06095 Weight: 0 10 0.40 02 Estimated belivery Date Thu 103/03/2022 Certified Mail® \$3.75 Tacking #: 70210350000060292685 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8085 97 \$7.38 Total \$0.58 First-Class Mail® 1 Letter Windsor, CT 06095 Weight: 0 1b 0.40 oz Estimated Delivery Date Thu 03/03/2022 \$3.75 Certified Mail® (racking #: 70203160000057192982 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8086 72 \$7.38 Total \$0.58 First-Class Mail® 1 Letter Windsor, CT 06095 Weight: 0 1b 0.40 oz Estimated Delivery Date Thu 03/03/2022 \$3.75 Certified Mail@ Tracking #: 70210350000060292739 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8086 89 \$7.38 Total \$0.58 First-Class Mail® 1 Letter Agawam, MA 01001 Weight: 0 1b 0.40 oz Estimated Delivery Date Thu 03/03/2022 \$3.75 Certified Mail® Tracking #: 70210350000060292746 \$3.05 Return Receipt Tracking #: 9590 9402 7092 1251 8084 74 \$7.38 Total