STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

RULING ON THE NEED TO OBTAIN A
SITING COUNCIL CERTIFICATE FOR THE INSTALLATION OF A TEMPORARY TELECOMMUNICATIONS FACILITY AT SACRED HEART UNIVERSITY, 5151 PARK AVENUE, FAIRFIELD, CONNECTICUT
: PETITION NO.
\qquad
: : : : : : : NOVEMBER 8, 2021

PETITION FOR A DECLARATORY RULING:
 INSTALLATION HAVING NO
 SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

I. Introduction

Pursuant to Sections $16-50 \mathrm{j}-38$ and $16-50 \mathrm{j}-39$ of the Regulations of Connecticut State Agencies ("R.C.S.A."), Cellco Partnership d/b/a Verizon Wireless ("Cellco" or "Petitioner") in cooperation with New Cingular Wireless PCS, LLC ("AT\&T") and T-Mobile Northeast, LLC ("T-Mobile") hereby petitions the Connecticut Siting Council (the "Council") for a declaratory ruling ("Petition") that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required under Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") for the installation of a temporary telecommunications facility ("Temporary Facility") in the westerly portion of the Sacred Heart University ("SHU") main campus at 5151 Park Avenue in Fairfield, Connecticut (the "Property"). The Temporary Facility will allow Cellco, AT\&T and T-Mobile to continue to provide wireless service to the SHU campus and the surrounding area for the period of time between the termination of wireless service from the existing Pierre Toussaint Hall rooftop wireless facilities and the construction of the new replacement facility approved by the Council in Docket No. 495.

In cooperation with SHU, Cellco is in the process of compiling information necessary to file a Motion to Reopen the Docket No. 495 evidentiary proceeding for the purpose of relocating the telecommunications facility approved in Docket No. 495. The Motion to Reopen would propose to relocate the approved telecommunications facility from the northwest corner of the Property adjacent to Jefferson Street, to the area adjacent to the Pitt Center and SHU Football Stadium, in the southwest corner of the SHU main campus. The relocated facility would support antennas for Cellco, AT\&T and T-Mobile.

II. Factual Background

Cellco, AT\&T and T-Mobile currently maintained wireless telecommunications facilities on the roof of Pierre Toussaint Hall (formerly the Jewish Home), a residential dormitory building in the center of the SHU main campus. These existing facilities provide wireless service to the SHU campus, commercial and residential land uses around the campus, portions of the Merritt Parkway, Park Avenue, and Jefferson Street and portions of the Fairchild Wheeler Golf Course. As the Council is aware from the Docket No. 495 application and record, SHU has notified the Cellco, AT\&T and T-Mobile that all wireless service equipment must be removed from the roof of Toussaint Hall on or before January 13, 2022. In order to maintain wireless service on the SHU campus and the surrounding community, SHU has agreed to allow for the installation of a temporary tower adjacent to the Valentine Health and Recreation ("Valentine") Center while Cellco completes the construction of the permanent replacement facility described above.

III. Temporary Telecommunications Facility

The temporary telecommunications facility will consist of an approximately 125 -foot tall ballast-supported monopole tower and associated wireless telecommunications equipment located near the northwest corner of the Valentine Center in the westerly portion of the SHU
main campus. The Site Schematic included in Attachment 1 shows the location of the approved tower site in Council Docket No. 495, the temporary tower location near the Valentine Center and to soon to be proposed alternative tower location near the Pitt Center/SHU football stadium.

Verizon will install antennas at the top of the temporary tower at a centerline height of approximately 121 '- 7" above ground level ("AGL"); AT\&T will install antennas at a centerline height of approximately 111'- 7" AGL; and T-Mobile will install antennas at a centerline height of approximately 101'-7" AGL. The temporary tower will be located in the northerly portion of a 1,776 square-foot L-shaped facility compound. Equipment associated with the antennas would be installed on the ground behind and to the west of the Valentine Center. (See Project Plans included in Attachment 2). Power and telephone service will extend from existing service along Jefferson Street and run along the westerly boundary of the SHU Main Campus to the temporary cell site. Cellco anticipates the need to maintain the temporary telecommunications facility at the Property for approximately 12 to 18 months while it completes the Council's regulatory process needed to relocate and construct a new telecommunications facility in the southwest corner of the SHU main campus.

Included in Attachment 3 is a Structural Analysis Report confirming that the temporary ballast-supported tower can support the proposed Cellco, AT\&T and T-Mobile antennas and related tower-mounted equipment.
IV. Discussion
A. The Proposed Installation of Temporary Tower And Related Equipment Will Not Have A Substantial Adverse Environmental Effect

The Public Utility Environmental Standards Act (the "Act"), C.G.S. § 16-50g et seq., provides for the orderly and environmentally compatible development of telecommunications
towers in the state to avoid "a significant impact on the environment and ecology of the State of Connecticut." C.G.S. § 16-50g. To achieve these goals, the Act established the Council, and requires a Certificate of Environmental Compatibility and Public Need for the construction of cellular telecommunication towers "that may, as determined by the Council, have a substantial adverse environmental effect". C.G.S. § 16-50k(a).

1. Physical Environmental Effects

Cellco respectfully submit that the installation of a temporary tower supporting antennas and the installation of radio and electrical equipment within a 1,776 square foot facility compound, will not involve a significant alteration in the physical and environmental characteristics of the Property. The temporary tower facility will be placed in the westerly portion of the Property in an open area adjacent to the Valentine Center. Access to the temporary facility will extend over existing paved roadways on the SHU main campus. No trees will need to be removed and no on-site or off-site wetlands or watercourses will be impacted by the installation of the temporary facility.

2. Visual Effects

The visibility of the proposed temporary telecommunications facility would be limited to portions of the SHU main campus and select areas within one-half mile of the temporary tower location. Extended views may also occur up to a mile away to the southeast on the Fairchild Wheeler golf course. No substantive views of the temporary tower are anticipated from the residential areas to the north, east and west of the SHU main campus. A copy of the Visual Assessment \& Photo Simulations report for the temporary facility is included in Attachment 4. Based on the nature of development in the area, the Petitioner believes that the proposed temporary telecommunications facility will have a minimal and temporary visual impact.
3. FCC Compliance

Radio frequency ("RF") emissions from the proposed temporary installation will be well below the standards adopted by the Federal Communications Commission ("FCC"). Included in Attachment 5 is a Calculated Radio Frequency Exposure Report prepared by C-Squared Systems for the proposed temporary tower facility. This report confirms that the temporary facility will operate well within the RF emission standards established by the FCC.

4. FAA Summary Report

Included in Attachment 6 of this Petition is a Federal Airways \& Airspace Summary Report verifying that the temporary tower described in this Petition would not constitute an obstruction or hazard to air navigation and that notification to the FAA is not required. The Private Landing Facility (private heliport) referenced in the FAA Summary Report is the heliport located at the former General Electric Headquarter parcel now owned by SHU and is a part of its West Campus. The heliport is no longer in use.

B. Notice to the City, Property Owner and Abutting Landowners

On November 8, 2021 a copy of this Petition was sent to Fairfield First Selectwoman Brenda Kupchick; Joe Bienkowski, Fairfield’s Town Planner; and Michael Larobina, General Counsel at SHU and the Bridgeport Roman Catholic Diocesan Corporation, the owner of the Property. A notice of Cellco's intent to file this Petition and a copy of the Petition itself was also sent to the owners of land that may be considered to abut the Property. Included in Attachment 7 are copies of the letters sent to Ms. Kupcheck, Mr. Bienkowski, Mr. Larobina and the Bridgeport Roman Catholic Diocesan Corporation. Included in Attachment 8 is a sample abutter's letter and the list of those abutting landowners who were sent notice and a copy of the Petition.

V. Conclusion

Based on the information provided above, the Petitioners respectfully requests that the Council issue a determination in the form of a declaratory ruling that the installation of a temporary tower at the Property will not have a substantial adverse environmental effect and does not require the issuance of a Certificate of Environmental Compatibility and Public Need pursuant to § 16-50k of the General Statutes.

Respectfully submitted,

Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597
(860) 275-8200

Its Attorneys

ATTACHMENT 1

Legend
Proposed Verizon Wireless Site LayoutProposed Verizon Wireless Equipment
Proposed Verizon Wireless Utility Pole
Subject Property
Approximate Parcel Boundary

Site Schematic

Approved, Proposed, and Temporary Wireless Telecommunications Facilities Plattsville Relo CT 5151 Park Avenue
Fairfield, Connecticut

ATTACHMENT 2

ATTACHMENT 3

STRUCTURAL ANALYSIS REPORT
 For

PLATTSVILLE RELO CT
5151 Park Avenue
Fairfield, CT 06825

Antennas Mounted on the Temporary Ballasted Monopole

117'-6" Temporary Ballasted Monopole

Prepared for:

verizon ${ }^{\checkmark}$

118 Flanders Road Westborough, MA 01581

Dated: November 4, 2021
Prepared by:

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by Verizon to conduct a structural evaluation of the existing $117^{\prime}-6$ " temporary ballasted monopole supporting the proposed Verizon's antennas located at elevation $121^{\prime}-7$ "' above the ground level that is being relocated to 5151 Park Avenue Fairfield, CT. This analysis is to confirm that the existing tower and base structure with the new location and loading is in conformance with the original tower analysis and drawings referenced below.

This report represents this office's findings, conclusions and recommendations pertaining to the support of Verizon's existing and proposed antennas listed below.

The following documents were used for our reference:

- Temporary Monopole Design Drawings prepared by Ambor Structures dated June 29, 2015.
- Non-Penetrating Foundation Drawings prepared by Ambor Structures dated July 16, 2015.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower is in conformance with the ANSI/TIA-222-H Standard for the loading considered under the criteria listed in this report. The tower structure is rated at $\mathbf{8 8 . 8} \mathbf{\%}$ - (Pole Section-L3 from EL.85.428' to EL.105.428' Controlling).

FOUNDATION SUMMARY:

Based on our evaluation, we have determined that the existing foundation is in conformance with the ANSI/TIA-222-H Standard for the loading considered under the criteria listed in this report.

- Per the Non-Penetrating Foundation Design Drawings (6) $2 \mathrm{ft} \times 2 \mathrm{ft} \times 6 \mathrm{ft}$ concrete waste blocks per sector (typ. of 12 sectors, total of 72 blocks) each weighing a minimum of 3600 lbs are required to achieve its overturning capacity of 2500 ft kips.

HDG recommends the following prior to installation:

1. Stripping topsoil and fill to provide a minimum 2 -foot-thick layer of compacted structural fill or $3 / 4$ inch crushed stone base course. Crushed stone (if used) should be separated from the fill subgrade and excavation sidewalls using a non-woven geotextile fabric, such as Mirafi 140 N or equal, to prevent stone from punching into the fill subgrade.
2. Prior to placing the base course, the existing fill subgrade should be proof-rolled with multiple passes of a minimum 5 -ton vibratory roller. The subgrade should be firm and unyielding. If soft or unstable areas are identified, they should be evaluated by the geotechnical engineer to evaluate suitability or to further evaluate the extent of potential over-excavation and replacement needed to achieve a stable subgrade.
3. Once the subgrade has been properly prepared, the base course layer can be placed to achieve design foundation elevation. If a well-graded structural fill is used, it should be placed in maximum 12-inch-thick loose lifts (for vibratory rollers) or 6 -inch-thick loose lifts (large plate compactors) and compacted to at least 95% of the maximum dry density as determined by ASTM D 1557. Crushed stone, if used, should be placed in similar lift thicknesses, and chinked/compacted using multiple passes of a vibratory roller or large plate compactor.

APPURTENANCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
	4' Lightning Rod	$127^{\prime}-5^{\prime \prime}$	Top of Monopole
Verizon	(6) MX10FIT665-xx Antennas	$121^{\prime}-7^{\prime \prime}$	Platform
Verizon	(3) RF4439d-25A RRH's	$121^{\prime}-7^{\prime \prime}$	Platform
Verizon	(3) RF4440d-13A RRH's	$121^{\prime}-7^{\prime \prime}$	Platform
Verizon	(3) RT4401-48A RRH's	$121^{\prime}-7^{\prime \prime}$	Platform
Verizon	(3) TD-850B-LTE78-43 Diplexers	$121^{\prime}-7^{\prime \prime}$	Platform
Verizon	(1) Junction Box	$121^{\prime}-7^{\prime \prime}$	Platform
AT\&T	(6) TPA65R-BU8DA-K Antennas	110^{\prime}	Sector Frame
AT\&T	(3) 4449 B5/B12 RRH's	110^{\prime}	Sector Frame
AT\&T	(3) B2/B66A 8843 RRH's	110^{\prime}	Sector Frame
AT\&T	(3) 4415 B30 RRH's	110^{\prime}	Sector Frame
AT\&T	(1) Squid Surge Arrestor	110^{\prime}	Sector Frame
T-Mobile	(3) APXVAALL24_43-U-NA20 Antennas	90^{\prime}	Platform
T-Mobile	(3) AIR6449 B41 Antennas	90^{\prime}	Platform
T-Mobile	(3) 4480 B71+B85 RRH's	90^{\prime}	Platform
T-Mobile	(3) 4460 B25+B66 RRH's	90^{\prime}	Platform

*Proposed Appurtenances shown in Bold.

VERIZON PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
Verizon	(6) $15 / 8^{\prime \prime}$ Coax Cables	$121^{\prime}-7{ }^{\prime \prime}$	Inside Monopole
Verizon	(1) 12x24 Hybrid Cables	$121^{\prime}-7{ }^{\prime \prime}$	Inside Monopole

*Proposed Verizon Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Pole Section-L1	23.8%	$115.428-125.428$	PASS	
Pole Section-L2	72.4%	$105.428-115.428$	PASS	
Pole Section-L3	$\mathbf{8 8 . 8} \%$	$85.428-105.428$	PASS	Controlling
Pole Section-L4	82.0%	$46.714-85.428$	PASS	
Pole Section-L5	75.9%	$8-46.714$	PASS	
Bolts/Base Plate	48.5%	-	PASS	

FOUNDATION COMPARISON SUMMARY:

	Design Capacity	Proposed Loading	Pass/Fail
Overturning	2500 ft -kips	1957.3 ft -kips	PASS

Note: HDG referenced non-penetrating foundation design drawings provided by the client and prepared by Ambor Structures dated July 16, 2015. According to design drawings the non-penetrating foundation has an overturning moment capacity of 2500 ft -kips. To achieve said capacity there is a ballast requirement of a minimum of $251,000 \mathrm{lbs}$ which consists of (6) $2 \mathrm{ft} \times 2 \mathrm{ft} \times 6 \mathrm{ft}$ concrete waste blocks per sector, for a total of (72) concrete waste blocks, each block should weigh a minimum of $3,600 \mathrm{lbs}$.

DESIGN CRITERIA:

1. EIA/TIA-222-H Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: Fairfield
Ultimate Wind Speed: 125 mph (3 second gust)
Structural Class: II
Exposure Category: C
Topographic Category: 1
Nominal Ice Thickness: 1 inch
2. Approximate height above grade to proposed antennas: $121^{\prime}-7$ "'
*Calculations and referenced documents are attached.

ASSUMPTIONS:

1. The appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
2. The temporary monopole and the non-penetrating foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
3. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas, RRHs and Junction Box be mounted on the proposed platform supported by the temporary ballasted monopole.

CALCULATIONS

125.4 ft

115.4 ft

105.4 ft
85.4 ft

TYPE	ELEVATION	TYPE	ELEVATION
4' Lightning Rod	127.4	$\begin{array}{l}\text { TPA65R-BU8DA-K Antenna w/ } \\ \text { Mounting Pipe }\end{array}$	110
$\begin{array}{l}\text { 12'-6" Platform w/ Handrail + } \\ \text { PRK-1245 (Verizon) }\end{array}$	121.6	$\begin{array}{l}\text { TPA65R-BU8DA-K Antenna w/ } \\ \text { Mounting Pipe }\end{array}$	110
$\begin{array}{l}\text { MX10FIT665-xx Antenna w/ Mounting } \\ \text { Pipe }\end{array}$	121.6	TPA65R-BU8DA-K Antenna w/	
Mounting Pipe			

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
$A 572-65$	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower designed for Exposure C to the TIA-222-H Standard.
2. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. TOWER RATING: 88.8%
ALL REACTIONS
ARE FACTORED

TORQUE 266 lb -ft
50 mph WIND - 1.0000 in ICE

TORQUE 1204 lb-ft
REACTIONS - 125 mph WIND
$p^{\text {Iob: }} 117.5$ ' Temporary Monopole Project: PLATTSVILLE RELO CT
North Andover MA
Phone: 978.557 .5553
FAX: 978.336.5586

Project: PLATTSVILLE RELO CT				
Client: VERIZON				
Drawn by: ID			App'd:	
Code: TIA-222-H				
Path:				
Date: $11 / 04 / 21$				Scale: NTS

tnxTower Hudson Design Group 45 Beechwood Drive	Job		$\text { Page } 1 \text { of } 12$
	Project	PLATTSVILLE RELO CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \\ \hline \end{array}$
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower base elevation above sea level: 8.00 ft .
Basic wind speed of 125 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation $f t$	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	125.43-115.43	10.00	0.00	18	17.7200	17.7200	0.1600	0.6400	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	115.43-105.43	10.00	0.00	18	17.7200	17.7200	0.1600	0.6400	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L3	105.43-85.43	20.00	0.00	18	17.7200	23.6200	0.2000	0.8000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L4	85.43-46.71	38.71	0.00	18	23.6200	33.8600	0.2800	1.1200	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L5	46.71-8.00	38.71		18	33.8600	44.0900	0.3200	1.2800	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia. in	Area in 2	I in 4	r in	C in	I / C in 3	J in 4	It/Q in 2	w in	
L1	17.9687	8.9177	347.4065	6.2338	9.0018	38.5932	695.2700	4.4597	2.8371	
	17.9687	8.9177	347.4065	6.2338	9.0018	38.5932	695.2700	4.4597	2.8371	
L2	17.9687	8.9177	347.4065	6.2338	9.0018	38.5932	695.2700	4.4597	2.8371	17.732
	17.9687	8.9177	347.4065	6.2338	9.0018	38.5932	695.2700	4.4597	2.8371	17.732
L3	17.9625	11.1217	431.2972	6.2196	9.0018	47.9125	863.1620	5.5619	2.7667	13.834
	23.9535	14.8670	1030.2320	8.3141	11.9990	85.8601	2061.8196	7.4349	3.8051	19.026
L4	23.9412	20.7427	1427.5948	8.2857	11.9990	118.9765	2857.0681	10.3733	3.6643	13.087
	34.3392	29.8432	4251.5225	11.9209	17.2009	247.1689	8508.6392	14.9244	5.4666	19.523

tnxTower Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Job	117.5' Temporary Monopole	$\begin{aligned} & \text { Page } \\ & 2 \text { of } 12 \end{aligned}$
	Project	PLATTSVILLE RELO CT	Date 12:23:36 11/04/21
	Client	VERIZON	Designed by ID

Section	Tip Dia.	Area	I	r	C	I / C	J	$I t / Q$	w	w / t
	in	in 2	in 4	in	in	in 3	in 4	in in	in	
L5	34.3330	34.0659	4841.5400	11.9067	17.2009	281.4705	9689.4507	17.0362	5.3962	16.863
	44.7208	44.4563	10760.2904	15.5383	22.3977	480.4190	21534.7394	22.2324	7.1966	22.49

Tower Elevation $f t$	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
125.43-115.43									
L2				1	1	1			
115.43-105.43									
L3				1	1	1			
105.43-85.43									
L4 85.43-46.71				1	1	1			
L5 46.71-8.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf		
6x24 Hybrid Fiber Cables	C	No	No	Inside Pole	90.00-11.00	2	No Ice	0.00	3.50		
							1/2" Ice	0.00	3.50		
							$1{ }^{\prime \prime}$ Ice	0.00	3.50		
1/4	C	No	No	Inside Pole	90.00-11.00	2	No Ice	0.00	0.25		
							1/2" Ice	0.00	0.25		
							$1{ }^{\prime \prime}$ Ice	0.00	0.25		
**											
DC Cable	C	No	No	Inside Pole	110.00-11.00	3	No Ice	0.00	1.70		
							1/2" Ice	0.00	1.70		
							1 " Ice	0.00	1.70		
Fiber	C	No	No	Inside Pole	110.00-11.00	1	No Ice	0.00	0.48		
							1/2" Ice	0.00	0.48		
							1" Ice	0.00	0.48		
**											
$15 / 8$			C	No	No	Inside Pole	125.43-11.00	6	No Ice	0.00	1.04
	1/2" Ice	0.00							1.04		
	1" Ice	0.00							1.04		
12×24 LI Hybrid Cable	C	No	No	Inside Pole	125.43-11.00	2	No Ice	0.00	3.20		
							1/2" Ice	0.00	3.20		
							$1{ }^{\prime \prime}$ Ice	0.00	3.20		

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$			t^{2}	$f t^{2}$	$f t^{2}$	$f t^{2}$

tnxTower Hudson Design Group 45 Beechwood Drive	Job 117.5' Temporary Monopole		Page 3 of 12
	Project	PLATTSVILLE RELO CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \end{array}$
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
			$f t^{2}$	$f t^{2}$	$f t^{2}$	$f t^{2}$	lb
		C	0.000	0.000	0.000	0.000	151.93
L3	$105.43-85.43$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L4		C	0.000	0.000	0.000	0.000	398.77
	$85.43-46.71$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L5		C	0.000	0.000	0.000	0.000	995.88
	$46.71-8.00$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	918.71

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& \begin{tabular}{l}
Tower \\
Elevation \\
ft
\end{tabular} \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Ice \\
Thickness in
\end{tabular} \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& | $C_{A} A_{A}$ In Face |
| :--- |
| In Face |
| $f t^{2}$ | \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{125.43-115.43} \& A \& \multirow[t]{3}{*}{1.138} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 126.40

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{115.43-105.43} \& A \& \multirow[t]{3}{*}{1.128} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 151.93

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{105.43-85.43} \& A \& \multirow[t]{3}{*}{1.111} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 398.77

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{85.43-46.71} \& A \& \multirow[t]{3}{*}{1.070} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 995.88

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{46.71-8.00} \& A \& \multirow[t]{3}{*}{0.981} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 918.71

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$ $I c e$
			in	in	in
Lt	in	in	0.0000	0.0000	0.0000
L2	$125.43-115.43$	0.0000000			
L3	$115.43-105.43$	0.0000	0.0000	0.0000	0.0000
L4	$105.43-85.43$	0.0000	0.0000	0.0000	0.0000
L5	$85.43-46.71$	0.0000	0.0000	0.0000	0.0000
	$46.71-8.00$	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

tnxTower Hudson Design Group 45 Beechwood Drive	Job	117.5' Temporary Monopole	$\begin{array}{ll} \hline \text { Page } \\ & \\ \end{array}$
	Project	PLATTSVILLE RELO CT	Date 12:23:36 11/04/21
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline 4' Lightning Rod

** \& C \& None \& \& 0.0000 \& 127.40 \& No Ice 1/2" Ice 1" Ice \& $$
\begin{aligned}
& 0.25 \\
& 0.66 \\
& 0.97
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.25 \\
& 0.66 \\
& 0.97
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 31.00 \\
& 33.82 \\
& 39.29
\end{aligned}
$$
\]

\hline 12'-6" Platform w/ Handrail + PRK-1245 (Verizon) \& C \& None \& \& 0.0000 \& 121.60 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[
$$
\begin{aligned}
& 23.50 \\
& 28.50 \\
& 33.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21.50 \\
& 26.50 \\
& 32.00
\end{aligned}
$$
\] \& 1945.00 2335.00 2845.00

\hline MX10FIT665-xx Antenna w/ Mounting Pipe \& A \& From Face \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.75 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 121.60 \& | No Ice $1 / 2^{\prime \prime}$ Ice |
| :--- |
| 1" Ice | \& \[

$$
\begin{aligned}
& 8.11 \\
& 8.57 \\
& 9.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.90 \\
& 7.85 \\
& 8.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
75.90 \\
142.99
\end{gathered}
$$
\]

\hline MX10FIT665-xx Antenna w/ Mounting Pipe \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.75 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 121.60 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 8.11 \\
& 8.57 \\
& 9.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.90 \\
& 7.85 \\
& 8.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
75.90 \\
142.99 \\
217.82
\end{gathered}
$$
\]

\hline MX10FIT665-xx Antenna w/ Mounting Pipe \& C \& From Face \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.75 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 121.60 \& | No Ice $1 / 2^{\prime \prime}$ Ice |
| :--- |
| 1" Ice | \& \[

$$
\begin{aligned}
& 8.11 \\
& 8.57 \\
& 9.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.90 \\
& 7.85 \\
& 8.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
75.90 \\
142.99 \\
217.82
\end{gathered}
$$
\]

\hline MX10FIT665-xx Antenna w/ Mounting Pipe \& A \& From Face \& $$
\begin{gathered}
3.00 \\
-0.75 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 121.60 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 8.11 \\
& 8.57 \\
& 9.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.90 \\
& 7.85 \\
& 8.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
75.90 \\
142.99 \\
217.82
\end{gathered}
$$
\]

\hline MX10FIT665-xx Antenna w/ Mounting Pipe \& B \& From Face \& $$
\begin{gathered}
3.00 \\
-0.75 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 121.60 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 8.11 \\
& 8.57 \\
& 9.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.90 \\
& 7.85 \\
& 8.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
75.90 \\
142.99 \\
217.82
\end{gathered}
$$
\]

\hline MX10FIT665-xx Antenna w/ Mounting Pipe \& C \& From Face \& $$
\begin{gathered}
3.00 \\
-0.75 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 121.60 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 8.11 \\
& 8.57 \\
& 9.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.90 \\
& 7.85 \\
& 8.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
75.90 \\
142.99 \\
217.82
\end{gathered}
$$
\]

\hline RF4439d-25A RRH \& A \& From Face \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 2.00
\end{aligned}
$$ \& 0.0000 \& 121.60 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.88 \\
& 2.05 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.25 \\
& 1.39 \\
& 1.54
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
98.00 \\
116.34 \\
137.47
\end{gathered}
$$
\]

\hline RF4439d-25A RRH \& B \& From Face \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 2.00
\end{aligned}
$$ \& 0.0000 \& 121.60 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.88 \\
& 2.05 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.25 \\
& 1.39 \\
& 1.54
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
98.00 \\
116.34 \\
137.47
\end{gathered}
$$
\]

\hline RF4439d-25A RRH \& C \& From Face \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 2.00
\end{aligned}
$$ \& 0.0000 \& 121.60 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.88 \\
& 2.05 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.25 \\
& 1.39 \\
& 1.54
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
98.00 \\
116.34 \\
137.47
\end{gathered}
$$
\]

\hline RF4440d-13A RRH \& A \& From Face \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 121.60 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.88 \\
& 2.05 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.01 \\
& 1.14 \\
& 1.28
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
82.00 \\
98.43 \\
117.53
\end{gathered}
$$
\]

\hline RF4440d-13A RRH \& B \& From Face \& \[
$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 121.60 \& | No Ice 1/2" Ice |
| :--- |
| 1" Ice | \& \[

$$
\begin{aligned}
& 1.88 \\
& 2.05 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.01 \\
& 1.14 \\
& 1.28
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
82.00 \\
98.43 \\
117.53
\end{gathered}
$$
\]

\hline RF4440d-13A RRH \& C \& From Face \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 121.60 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.88 \\
& 2.05 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.01 \\
& 1.14 \\
& 1.28
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
82.00 \\
98.43 \\
117.53
\end{gathered}
$$
\]

\hline RT4401-48A RRH \& A \& From Face \& $$
\begin{gathered}
2.00 \\
0.00 \\
-2.00
\end{gathered}
$$ \& 0.0000 \& 121.60 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.12 \\
& 1.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.50 \\
& 0.60 \\
& 0.71
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 19.00 \\
& 26.83 \\
& 36.59
\end{aligned}
$$
\]

\hline RT4401-48A RRH \& B \& From Face \& $$
\begin{gathered}
2.00 \\
0.00 \\
-2.00
\end{gathered}
$$ \& 0.0000 \& 121.60 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.12 \\
& 1.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.50 \\
& 0.60 \\
& 0.71
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 19.00 \\
& 26.83 \\
& 36.59
\end{aligned}
$$
\]

\hline RT4401-48A RRH \& C \& From Face \& $$
\begin{gathered}
2.00 \\
0.00 \\
-2.00
\end{gathered}
$$ \& 0.0000 \& 121.60 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.12 \\
& 1.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.50 \\
& 0.60 \\
& 0.71
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 19.00 \\
& 26.83 \\
& 36.59
\end{aligned}
$$
\]

\hline TD-850B-LTE78-43 | E14Z00P06 Diplexer \& A \& From Face \& 2.00
0.00 \& 0.0000 \& 121.60 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 1.95

2.12 \& 0.82

0.95 \& $$
\begin{aligned}
& 53.00 \\
& 68.16
\end{aligned}
$$

\hline
\end{tabular}

tnxTower Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Job	117.5' Temporary Monopole	Page 5 of 12
	Project	PLATTSVILLE RELO CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \\ \hline \end{array}$
	Client	VERIZON	Designed by ID

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow{4}{*}{| TD-850B-LTE78-43 \| |
| :--- |
| E14Z00P06 Diplexer |} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Face} \& -0.50 \& \& \& 1" Ice \& 2.31 \& 1.08 \& 85.92

\hline \& \& \& 2.00 \& 0.0000 \& 121.60 \& No Ice \& 1.95 \& 0.82 \& 53.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.12 \& 0.95 \& 68.16

\hline \& \& \& -0.50 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.31 \& 1.08 \& 85.92

\hline TD-850B-LTE78-43 | \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 2.00 \& 0.0000 \& 121.60 \& No Ice \& 1.95 \& 0.82 \& 53.00

\hline E14Z00P06 Diplexer \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.12 \& 0.95 \& 68.16

\hline \& \& \& -0.50 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.31 \& 1.08 \& 85.92

\hline \multirow[t]{3}{*}{Junction Box w/ Mounting Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 3.00 \& 0.0000 \& 121.60 \& No Ice \& 4.63 \& 3.93 \& 53.90

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 5.18 \& 4.65 \& 101.19

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.66 \& 5.24 \& 153.91

\hline ** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) $12^{\prime}-6{ }^{\prime \prime}$ Sector Frames (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& 0.0000 \& 110.00 \& No Ice \& 18.95 \& 13.10 \& 3000.00

\hline \& \& \& \& \& \& 1/2" Ice \& 28.30 \& 20.60 \& 3465.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 36.95 \& 27.50 \& 4135.00

\hline \multirow[t]{3}{*}{TPA65R-BU8DA-K Antenna w/ Mounting Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 110.00 \& No Ice \& 17.87 \& 10.02 \& 116.20

\hline \& \& \& -3.00 \& \& \& 1/2" Ice \& 18.50 \& 11.44 \& 234.88

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.14 \& 12.72 \& 363.91

\hline \multirow[t]{3}{*}{TPA65R-BU8DA-K Antenna w/ Mounting Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 110.00 \& No Ice \& 17.87 \& 10.02 \& 116.20

\hline \& \& \& -3.00 \& \& \& 1/2" Ice \& 18.50 \& 11.44 \& 234.88

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.14 \& 12.72 \& 363.91

\hline \multirow[t]{3}{*}{TPA65R-BU8DA-K Antenna w/ Mounting Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 110.00 \& No Ice \& 17.87 \& 10.02 \& 116.20

\hline \& \& \& -3.00 \& \& \& 1/2" Ice \& 18.50 \& 11.44 \& 234.88

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.14 \& 12.72 \& 363.91

\hline \multirow[t]{3}{*}{TPA65R-BU8DA-K Antenna w/ Mounting Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 110.00 \& No Ice \& 17.87 \& 10.02 \& 116.20

\hline \& \& \& 3.00 \& \& \& 1/2" Ice \& 18.50 \& 11.44 \& 234.88

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.14 \& 12.72 \& 363.91

\hline \multirow[t]{3}{*}{TPA65R-BU8DA-K Antenna w/ Mounting Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 110.00 \& No Ice \& 17.87 \& 10.02 \& 116.20

\hline \& \& \& 3.00 \& \& \& 1/2" Ice \& 18.50 \& 11.44 \& 234.88

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.14 \& 12.72 \& 363.91

\hline \multirow[t]{3}{*}{TPA65R-BU8DA-K Antenna w/ Mounting Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 110.00 \& No Ice \& 17.87 \& 10.02 \& 116.20

\hline \& \& \& 3.00 \& \& \& 1/2" Ice \& 18.50 \& 11.44 \& 234.88

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.14 \& 12.72 \& 363.91

\hline \multirow[t]{3}{*}{4449 B5/B12 RRH} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.97 \& 1.40 \& 7.20

\hline \& \& \& -1.00 \& \& \& 1/2" Ice \& 2.15 \& 1.56 \& 25.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.33 \& 1.72 \& 46.97

\hline \multirow[t]{3}{*}{4449 B5/B12 RRH} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.97 \& 1.40 \& 7.20

\hline \& \& \& -1.00 \& \& \& 1/2" Ice \& 2.15 \& 1.56 \& 25.68

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.33 \& 1.72 \& 46.97

\hline \multirow[t]{3}{*}{4449 B5/B12 RRH} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.97 \& 1.40 \& 7.20

\hline \& \& \& -1.00 \& \& \& 1/2" Ice \& 2.15 \& 1.56 \& 25.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.33 \& 1.72 \& 46.97

\hline \multirow[t]{3}{*}{B2/B66A 8843 RRH} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.64 \& 1.35 \& 72.00

\hline \& \& \& 1.00 \& \& \& 1/2" Ice \& 1.80 \& 1.50 \& 89.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.97 \& 1.65 \& 109.91

\hline \multirow[t]{3}{*}{B2/B66A 8843 RRH} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.64 \& 1.35 \& 72.00

\hline \& \& \& 1.00 \& \& \& 1/2" Ice \& 1.80 \& 1.50 \& 89.60

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.97 \& 1.65 \& 109.91

\hline \multirow[t]{3}{*}{B2/B66A 8843 RRH} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.64 \& 1.35 \& 72.00

\hline \& \& \& 1.00 \& \& \& 1/2" Ice \& 1.80 \& 1.50 \& 89.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.97 \& 1.65 \& 109.91

\hline \multirow[t]{3}{*}{4415 B30 RRH} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.64 \& 0.68 \& 44.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.80 \& 0.79 \& 56.41

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.97 \& 0.91 \& 71.18

\hline \multirow[t]{3}{*}{4415 B30 RRH} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.64 \& 0.68 \& 44.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.80 \& 0.79 \& 56.41

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.97 \& 0.91 \& 71.18

\hline 4415 B30 RRH \& C \& From Face \& 1.00 \& 0.0000 \& 110.00 \& No Ice \& 1.64 \& 0.68 \& 44.00

\hline
\end{tabular}

tnxTower Hudson Design Group 45 Beechwood Drive	Job 117.5' Temporary Monopole		6 of 12
	PLATTSVILLE RELO CT		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \end{array}$
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment 。	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
Squid Surge Arrestor	C	From Face	0.00	0.0000	110.00	1/2" Ice	1.80	0.79	56.41
			0.00			$1{ }^{\prime \prime}$ Ice	1.97	0.91	71.18
			1.00			No Ice	0.81	0.81	33.00
			0.00			1/2" Ice	1.30	1.30	48.38
			0.00			$1{ }^{\prime \prime}$ Ice	1.48	1.48	66.11
**									
12'-6" Platform w/ Handrail + PRK-1245 (T-Mobile)	C	None		0.0000	90.00	No Ice	23.50	21.50	1945.00
						1/2" Ice	28.50	26.50	2335.00
						1" Ice	33.50	32.00	2845.00
APXVAALL24_43-U-NA20	A	From Face	3.00	0.0000	90.00	No Ice	20.24	10.79	157.20
Antenna w/ Mounting Pipe			-3.00			1/2" Ice	20.89	12.21	290.89
			0.00			$1{ }^{\prime \prime}$ Ice	21.55	13.49	435.20
APXVAALL24_43-U-NA20	B	From Face	3.00	0.0000	90.00	No Ice	20.24	10.79	157.20
Antenna w/ Mounting Pipe			-3.00			1/2" Ice	20.89	12.21	290.89
			0.00			$1{ }^{\prime \prime}$ Ice	21.55	13.49	435.20
APXVAALL24_43-U-NA20	C	From Face	3.00	0.0000	90.00	No Ice	20.24	10.79	157.20
Antenna w/ Mounting Pipe			-3.00			1/2" Ice	20.89	12.21	290.89
			0.00			$1{ }^{\prime \prime}$ Ice	21.55	13.49	435.20
AIR6449 B41 Antenna w/ Mounting Pipe	A	From Face	0.00	0.0000	90.00	No Ice	6.42	3.89	124.90
			3.00			1/2" Ice	7.00	4.62	179.59
			0.00			$1{ }^{\prime \prime}$ Ice	7.50	5.22	240.17
AIR6449 B41 Antenna w/ Mounting Pipe	B	From Face	3.00	0.0000	90.00	No Ice	6.42	3.89	124.90
			3.00			1/2" Ice	7.00	4.62	179.59
			0.00			$1{ }^{\prime \prime}$ Ice	7.50	5.22	240.17
AIR6449 B41 Antenna w/ Mounting Pipe	C	From Face	3.00	0.0000	90.00	No Ice	6.42	3.89	124.90
			3.00			1/2" Ice	7.00	4.62	179.59
			0.00			1" Ice	7.50	5.22	240.17
4480 B71+B85 RRH	A	From Face	2.00	0.0000	90.00	No Ice	2.42	1.20	93.00
			-3.00			1/2" Ice	2.61	1.35	112.12
			1.00			$1{ }^{\prime \prime}$ Ice	2.81	1.51	134.14
4480 B71+B85 RRH	B	From Face	2.00	0.0000	90.00	No Ice	2.42	1.20	93.00
			-3.00			1/2" Ice	2.61	1.35	112.12
			1.00			$1{ }^{\prime \prime}$ Ice	2.81	1.51	134.14
4480 B71+B85 RRH	C	From Face	2.00	0.0000	90.00	No Ice	2.42	1.20	93.00
			-3.00			1/2" Ice	2.61	1.35	112.12
			1.00			$1{ }^{\prime \prime}$ Ice	2.81	1.51	134.14
4460 B25+B66 RRH	A	From Face	2.00	0.0000	90.00	No Ice	2.14	1.69	104.00
			-3.00			1/2" Ice	2.32	1.85	126.16
			-1.00			$1{ }^{\prime \prime}$ Ice	2.51	2.02	151.36
4460 B25+B66 RRH	B	From Face	2.00	0.0000	90.00	No Ice	2.14	1.69	104.00
			-3.00			1/2" Ice	2.32	1.85	126.16
			-1.00			$1{ }^{\prime \prime}$ Ice	2.51	2.02	151.36
4460 B25+B66 RRH	C	From Face	2.00	0.0000	90.00	No Ice	2.14	1.69	104.00
			-3.00			1/2" Ice	2.32	1.85	126.16
			-1.00			1 " Ice	2.51	2.02	151.36
**									

tnxTower Hudson Design Group 45 Beechwood Drive	Job	117.5' Temporary Monopole	$\begin{aligned} & \text { Page } \\ & 7 \text { of } 12 \end{aligned}$
	Project	PLATTSVILLE RELO CT	Date 12:23:36 11/04/21
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind $90 \mathrm{deg}+1.0$ Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp
36	1.2 Dead+1.0 Wind $270 \mathrm{deg}+1.0$ Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

tnxTower Hudson Design Group 45 Beechwood Drive	Job 117.5' Temporary Monopole		$\begin{array}{ll} \hline \text { Page } \\ 8 \text { of } 12 \end{array}$
	Project	PLATTSVILLE RELO CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \end{array}$
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

Maximum Member Forces

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation \(f t\) \& Component Type \& Condition \& \begin{tabular}{l}
Gov. Load \\
Comb.
\end{tabular} \& Axial

$l b$ \& Major Axis Moment $l b-f t$ \& Minor Axis Moment $l b-f t$

\hline \multirow[t]{7}{*}{L1} \& \multirow[t]{7}{*}{$$
\begin{gathered}
125.428- \\
115.428
\end{gathered}
$$} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 8 \& 0.01 \& 0.01 \& 2.20

\hline \& \& \& Max. Compression \& 26 \& -7236.60 \& 1110.43 \& -699.21

\hline \& \& \& Max. Mx \& 20 \& -3722.56 \& 32575.33 \& -170.57

\hline \& \& \& Max. My \& 14 \& -3716.03 \& 242.39 \& -32628.92

\hline \& \& \& Max. Vy \& 20 \& -5302.36 \& 32575.33 \& -170.57

\hline \& \& \& Max. Vx \& 14 \& 5334.61 \& 242.39 \& -32628.92

\hline \& \& \& Max. Torque \& 12 \& \& \& -1382.34

\hline \multirow[t]{7}{*}{L2} \& \multirow[t]{7}{*}{$$
\begin{gathered}
115.428- \\
105.428
\end{gathered}
$$} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 26 \& -16310.84 \& 1139.64 \& -871.39

\hline \& \& \& Max. Mx \& 20 \& -8455.78 \& 115351.43 \& -260.49

\hline \& \& \& Max. My \& 14 \& -8447.08 \& 273.22 \& -115804.20

\hline \& \& \& Max. Vy \& 20 \& -11736.82 \& 115351.43 \& -260.49

\hline \& \& \& Max. Vx \& 14 \& 11770.91 \& 273.22 \& -115804.20

\hline \& \& \& Max. Torque \& 12 \& \& \& -1409.55

\hline \multirow[t]{7}{*}{L3} \& \multirow[t]{7}{*}{$$
\begin{gathered}
105.428- \\
85.428
\end{gathered}
$$} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 26 \& -25105.69 \& 444.99 \& -1362.05

\hline \& \& \& Max. Mx \& 20 \& -13890.65 \& 382123.61 \& -516.03

\hline \& \& \& Max. My \& 14 \& -13882.80 \& -36.89 \& -383869.32

\hline \& \& \& Max. Vy \& 20 \& -17530.13 \& 382123.61 \& -516.03

\hline \& \& \& Max. Vx \& 14 \& 17564.81 \& -36.89 \& -383869.32

\hline \& \& \& Max. Torque \& 12 \& \& \& -1408.42

\hline \multirow[t]{7}{*}{L4} \& \multirow[t]{7}{*}{$$
\begin{gathered}
85.428- \\
46.714
\end{gathered}
$$} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 26 \& -31824.05 \& 445.95 \& -1382.28

\hline \& \& \& Max. Mx \& 20 \& -19854.46 \& 1112006.77 \& -569.61

\hline \& \& \& Max. My \& 14 \& -19851.17 \& -9.29 \& $$
\begin{gathered}
-1115058.1 \\
9
\end{gathered}
$$

\hline \& \& \& Max. Vy \& 20 \& -20286.46 \& 1112006.77 \& -569.61

\hline \& \& \& Max. Vx \& 14 \& 20319.31 \& -9.29 \& $$
\begin{gathered}
-1115058.1 \\
9
\end{gathered}
$$

\hline \& \& \& Max. Torque \& 10 \& \& \& -1212.98

\hline \multirow[t]{7}{*}{L5} \& \multirow[t]{7}{*}{46.714-8} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 26 \& -41006.28 \& 432.58 \& -1359.26

\hline \& \& \& Max. Mx \& 20 \& -27951.98 \& 1952988.47 \& -575.53

\hline \& \& \& Max. My \& 14 \& -27951.91 \& -9.28 \& $$
\begin{gathered}
-1957273.8 \\
9
\end{gathered}
$$

\hline \& \& \& Max. Vy \& 8 \& 23168.00 \& $$
\begin{gathered}
-1952969.8 \\
6
\end{gathered}
$$ \& -575.56

\hline \& \& \& Max. Vx \& 14 \& 23198.94 \& -9.28 \& $$
\begin{gathered}
-1957273.8 \\
9
\end{gathered}
$$

\hline \& \& \& Max. Torque \& 10 \& \& \& -1205.51

\hline
\end{tabular}

Maximum Reactions

Location	Condition	Gov. Load	Vertical $l b$	Horizontal, X $l b$	Horizontal, Z $l b$
		Comb.			
Pole	Max. Vert	26	41006.28	-0.31	0.54
	Max. H_{x}	21	20979.30	23143.88	-0.00
	Max. H_{z}	3	20979.30	0.00	23174.77
	Max. M_{x}	2	1956099.97	0.00	23174.26

tnxTower Hudson Design Group 45 Beechwood Drive	Job	117.5' Temporary Monopole	$\begin{aligned} & \text { Page } \\ & \\ & 9 \text { of } 12 \end{aligned}$
	Project	PLATTSVILLE RELO CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \end{array}$
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

Location	Condition	Gov. Load Comb.	Vertical $l b$	Horizontal, X $l b$	Horizontal, Z $l b$
	Max. M_{z}	8	1952969.86	-23143.37	-0.00
	Max. Torsion	23	1203.04	20043.91	11587.80
	Min. Vert	15	20979.30	0.00	-23174.77
	Min. H_{x}	9	20979.30	-23143.88	-0.00
	Min. H_{z}	15	20979.30	0.00	-23174.77
	Min. M_{x}	14	-1957273.89	0.00	-23174.26
	Min. M_{z}	20	-1952988.47	23143.37	-0.00
	Min. Torsion	11	-1203.56	-20043.91	-11587.80

Tower Mast Reaction Summary

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	23310.40	0.09	-0.15	440.94	-4.48	-0.01
1.2 Dead+1.0 Wind 0 deg - No	27972.38	-0.00	-23174.26	-1956099.97	-9.45	-811.67
Ice						
0.9 Dead+1.0 Wind 0 deg - No	20979.30	-0.00	-23174.77	-1930155.07	-8.93	-805.77
Ice						
1.2 Dead+1.0 Wind 30 deg - No	27972.48	11572.34	-20070.63	-1694072.54	-976549.79	-242.81
Ice						
0.9 Dead+1.0 Wind 30 deg - No	20979.36	11572.36	-20070.66	-1671580.68	-963504.20	-235.97
Ice						
1.2 Dead+1.0 Wind 60 deg - No	27972.48	20043.88	-11587.78	-977834.99	-1691433.84	391.29
Ice						
0.9 Dead+1.0 Wind 60 deg - No	20979.36	20043.91	-11587.80	-964914.95	-1668838.85	397.25
Ice						
1.2 Dead+1.0 Wind 90 deg - No	27972.38	23143.37	0.00	575.31	-1952969.86	920.83
Ice						
0.9 Dead+1.0 Wind 90 deg - No	20979.30	23143.88	0.00	419.62	-1926930.53	924.29
Ice						
1.2 Dead+1.0 Wind 120 deg -	27972.48	20043.88	11587.79	978991.00	-1691444.36	1203.51
No Ice						
0.9 Dead+1.0 Wind 120 deg -	20979.36	20043.91	11587.80	965758.11	-1668846.58	1203.56
No Ice						
1.2 Dead+1.0 Wind 150 deg -	27972.48	11572.34	20070.63	1695240.57	-976560.33	1163.45
No Ice						
0.9 Dead+1.0 Wind 150 deg -	20979.36	11572.36	20070.66	1672432.68	-963511.95	1160.09
No Ice						
1.2 Dead+1.0 Wind 180 deg -	27972.38	-0.00	23174.26	1957273.89	-9.50	811.59
No Ice						
0.9 Dead+1.0 Wind 180 deg -	20979.30	-0.00	23174.77	1931011.43	-8.95	805.71
No Ice						
1.2 Dead+1.0 Wind 210 deg -	27972.48	-11572.34	20070.63	1695257.16	976550.12	242.31
No Ice						
0.9 Dead+1.0 Wind 210 deg -	20979.36	-11572.36	20070.66	1672444.56	963500.30	235.48
No Ice						
1.2 Dead+1.0 Wind 240 deg -	27972.48	-20043.88	11587.78	979007.57	1691453.39	-391.76
No Ice						
0.9 Dead+1.0 Wind 240 deg -	20979.36	-20043.91	11587.80	965769.98	1668848.72	-397.71
No Ice						
1.2 Dead+1.0 Wind 270 deg -	27972.38	-23143.37	0.00	575.29	1952988.47	-920.75
No Ice						
0.9 Dead+1.0 Wind 270 deg -	20979.30	-23143.88	0.00	419.61	1926939.54	-924.23
No Ice						
1.2 Dead+1.0 Wind 300 deg -	27972.48	-20043.88	-11587.78	-977851.59	1691442.89	-1202.95
No Ice						

tnxTower Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Job	117.5' Temporary Monopole	$\begin{aligned} & \text { Page } \\ & 10 \text { of } 12 \end{aligned}$
	Project	PLATTSVILLE RELO CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \end{array}$
	Client	VERIZON	Designed by ID

Load Combination	Vertical $l b$	Shear ${ }_{x}$ $l b$	Shear ${ }_{z}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
0.9 Dead+1.0 Wind 300 deg -	20979.36	-20043.91	-11587.80	-964926.84	1668841.00	-1203.04
No Ice						
1.2 Dead+1.0 Wind 330 deg -	27972.48	-11572.34	-20070.63	-1694089.13	976539.64	-1163.02
0.9 Dead+1.0 Wind 330 deg -	20979.36	-11572.36	-20070.66	-1671592.56	963492.60	-1159.67
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	41006.28	0.31	-0.54	1359.26	432.58	0.12
1.2 Dead+1.0 Wind 0 deg+1.0	41006.27	0.00	-5558.44	-466810.77	489.59	-166.72
Ice +1.0 Temp						
1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$	41006.27	2777.82	-4813.75	-404069.97	-233484.52	-39.18
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$	41006.27	4811.33	-2779.22	-232659.93	-404765.21	98.89
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	41006.27	5555.64	-0.01	1490.67	-467458.48	210.50
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	41006.27	4811.33	2779.21	235641.59	-404765.83	265.73
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	41006.27	2777.82	4813.74	407052.29	-233485.17	249.78
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	41006.27	0.00	5558.43	469793.39	489.53	166.94
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	41006.27	-2777.82	4813.74	407053.24	234464.80	39.41
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	41006.27	-4811.32	2779.21	235642.52	405746.60	-98.65
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	41006.27	-5555.64	-0.01	1490.62	468439.84	-210.25
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	41006.27	-4811.32	-2779.22	-232660.94	405746.04	-265.48
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	41006.27	-2777.82	-4813.75	-404070.97	234464.25	-249.55
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	23310.39	0.00	-4778.05	-400212.21	6.96	-170.76
Dead+Wind 30 deg - Service	23310.39	2385.84	-4137.91	-346528.37	-199962.10	-49.65
Dead+Wind 60 deg - Service	23310.39	4132.40	-2389.03	-199861.81	-346349.49	84.77
Dead+Wind 90 deg - Service	23310.39	4771.68	-0.00	488.66	-399931.09	196.49
Dead+Wind 120 deg - Service	23310.39	4132.40	2389.02	200839.32	-346349.83	255.56
Dead+Wind 150 deg - Service	23310.39	2385.84	4137.91	347506.26	-199962.45	246.15
Dead+Wind 180 deg - Service	23310.39	0.00	4778.04	401190.29	6.96	170.79
Dead+Wind 210 deg - Service	23310.39	-2385.84	4137.91	347506.79	199976.67	49.67
Dead+Wind 240 deg - Service	23310.39	-4132.39	2389.02	200839.84	346364.66	-84.76
Dead+Wind 270 deg - Service	23310.39	-4771.68	-0.00	488.66	399946.24	-196.46
Dead+Wind 300 deg - Service	23310.39	-4132.40	-2389.03	-199862.34	346364.33	-255.52
Dead+Wind 330 deg - Service	23310.39	-2385.84	-4137.91	-346528.90	199976.34	-246.11

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	$P Z$	$P X$	PY	$P Z$	
Comb.	$l b$						
1	0.00	-23310.40	0.00	-0.09	23310.40	0.15	0.001\%
2	0.00	-27972.48	-23175.65	0.00	27972.38	23174.26	0.004\%
3	0.00	-20979.36	-23175.65	0.00	20979.30	23174.77	0.003\%
4	11572.38	-27972.48	-20070.70	-11572.34	27972.48	20070.63	0.000\%
5	11572.38	-20979.36	-20070.70	-11572.36	20979.36	20070.66	0.000\%
6	20043.95	-27972.48	-11587.82	-20043.88	27972.48	11587.78	0.000\%
7	20043.95	-20979.36	-11587.82	-20043.91	20979.36	11587.80	0.000\%
8	23144.76	-27972.48	0.00	-23143.37	27972.38	-0.00	0.004\%
9	23144.76	-20979.36	0.00	-23143.88	20979.30	-0.00	0.003\%

tnxTower Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Job	117.5' Temporary Monopole	$\begin{aligned} & \text { Page } 11 \text { of } 12 \end{aligned}$
	Project	PLATTSVILLE RELO CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \\ \hline \end{array}$
	Client	VERIZON	Designed by ID

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	$P Z$	
Comb.	$l b$						
10	20043.95	-27972.48	11587.82	-20043.88	27972.48	-11587.79	0.000\%
11	20043.95	-20979.36	11587.82	-20043.91	20979.36	-11587.80	0.000\%
12	11572.38	-27972.48	20070.70	-11572.34	27972.48	-20070.63	0.000\%
13	11572.38	-20979.36	20070.70	-11572.36	20979.36	-20070.66	0.000\%
14	0.00	-27972.48	23175.65	0.00	27972.38	-23174.26	0.004\%
15	0.00	-20979.36	23175.65	0.00	20979.30	-23174.77	0.003\%
16	-11572.38	-27972.48	20070.70	11572.34	27972.48	-20070.63	0.000\%
17	-11572.38	-20979.36	20070.70	11572.36	20979.36	-20070.66	0.000\%
18	-20043.95	-27972.48	11587.82	20043.88	27972.48	-11587.78	0.000\%
19	-20043.95	-20979.36	11587.82	20043.91	20979.36	-11587.80	0.000\%
20	-23144.76	-27972.48	0.00	23143.37	27972.38	-0.00	0.004\%
21	-23144.76	-20979.36	0.00	23143.88	20979.30	-0.00	0.003\%
22	-20043.95	-27972.48	-11587.82	20043.88	27972.48	11587.78	0.000\%
23	-20043.95	-20979.36	-11587.82	20043.91	20979.36	11587.80	0.000\%
24	-11572.38	-27972.48	-20070.70	11572.34	27972.48	20070.63	0.000\%
25	-11572.38	-20979.36	-20070.70	11572.36	20979.36	20070.66	0.000\%
26	0.00	-41006.28	0.00	-0.31	41006.28	0.54	0.002\%
27	0.00	-41006.28	-5559.18	-0.00	41006.27	5558.44	0.002\%
28	2778.19	-41006.28	-4814.39	-2777.82	41006.27	4813.75	0.002\%
29	4811.97	-41006.28	-2779.59	-4811.33	41006.27	2779.22	0.002\%
30	5556.38	-41006.28	0.00	-5555.64	41006.27	0.01	0.002\%
31	4811.97	-41006.28	2779.59	-4811.33	41006.27	-2779.21	0.002\%
32	2778.19	-41006.28	4814.39	-2777.82	41006.27	-4813.74	0.002\%
33	0.00	-41006.28	5559.18	-0.00	41006.27	-5558.43	0.002\%
34	-2778.19	-41006.28	4814.39	2777.82	41006.27	-4813.74	0.002\%
35	-4811.97	-41006.28	2779.59	4811.32	41006.27	-2779.21	0.002\%
36	-5556.38	-41006.28	0.00	5555.64	41006.27	0.01	0.002\%
37	-4811.97	-41006.28	-2779.59	4811.32	41006.27	2779.22	0.002\%
38	-2778.19	-41006.28	-4814.39	2777.82	41006.27	4813.75	0.002\%
39	0.00	-23310.40	-4778.96	-0.00	23310.39	4778.05	0.004\%
40	2386.30	-23310.40	-4138.70	-2385.84	23310.39	4137.91	0.004\%
41	4133.19	-23310.40	-2389.48	-4132.40	23310.39	2389.03	0.004\%
42	4772.59	-23310.40	0.00	-4771.68	23310.39	0.00	0.004\%
43	4133.19	-23310.40	2389.48	-4132.40	23310.39	-2389.02	0.004\%
44	2386.30	-23310.40	4138.70	-2385.84	23310.39	-4137.91	0.004\%
45	0.00	-23310.40	4778.96	-0.00	23310.39	-4778.04	0.004\%
46	-2386.30	-23310.40	4138.70	2385.84	23310.39	-4137.91	0.004\%
47	-4133.19	-23310.40	2389.48	4132.39	23310.39	-2389.02	0.004\%
48	-4772.59	-23310.40	0.00	4771.68	23310.39	0.00	0.004\%
49	-4133.19	-23310.40	-2389.48	4132.40	23310.39	2389.03	0.004\%
50	-2386.30	-23310.40	-4138.70	2385.84	23310.39	4137.91	0.004\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	18	0.00003988	0.00012869
3	Yes	18	0.00002527	0.00009614
4	Yes	22	0.00000001	0.00014054
5	Yes	22	0.00000001	0.00009271
6	Yes	22	0.00000001	0.00014147
7	Yes	22	0.00000001	0.00009335
8	Yes	18	0.00003989	0.00010490
9	Yes	18	0.00002528	0.00007835
10	Yes	22	0.00000001	0.00014808
11	Yes	22	0.00000001	0.00009789
12	Yes	22	0.00000001	0.00013790

tnxTower Hudson Design Group 45 Beechwood Drive	Job 117.5' Temporary Monopole		Page 12 of 12
	PLATTSVILLE RELO CT		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:23:36 11/04/21 } \end{array}$
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	VERIZON	Designed by ID

13				
14	Yes	22	0.00000001	0.00009078
15	Yes	18	0.00003987	0.00012881
16	Yes	18	0.00002527	0.00009621
17	Yes	22	0.00000001	0.00014513
18	Yes	22	0.00000001	0.00009575
19	Yes	22	0.00000001	0.00014382
20	Yes	22	0.00000001	0.00009487
21	Yes	18	0.00003989	0.00010492
22	Yes	18	0.00002528	0.00007836
23	Yes	22	0.00000001	0.00013778
24	Yes	22	0.00000001	0.00009077
25	Yes	22	0.00000001	0.00014834
26	Yes	22	0.00000001	0.00009810
27	Yes	10	0.00000001	0.00001389
28	Yes	18	0.00010392	0.00005070
29	Yes	18	0.00010371	0.00009942
30	Yes	18	0.00010371	0.00009957
31	Yes	18	0.00010391	0.00005056
32	Yes	18	0.00010378	0.00010815
33	Yes	18	0.00010385	0.000099990
34	Yes	18	0.00010408	0.00005150
35	Yes	18	0.00010392	0.00010657
36	Yes	18	0.00010392	0.00010615
37	Yes	18	0.00010408	0.00005100
38	Yes	18	0.00010385	0.00009891
39	Yes	18	0.00010379	0.00010733
40	Yes	16	0.00012460	0.00005123
41	Yes	16	0.00012441	0.00007036
42	Yes	16	0.00012440	0.00007268
43	Yes	16	0.00012460	0.00004915
44	Yes	16	0.00012444	0.00009366
45	Yes	16	0.00012447	0.00006564
46	Yes	16	0.00012467	0.00005154
47	Yes	16	0.00012449	0.00008320
48	Yes	16	0.00012449	0.00007931
49	Yes	16	0.00012465	0.00004923
50	Yes	16	0.00012445	0.00006514
	Yes	16	0.00012443	0.00009455

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \emptyset P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	$\begin{gathered} 125.428- \\ 115.428 \end{gathered}$	Pole	TP17.72x17.72x0.16	1	-3717.36	39426.80	23.8	Pass
L2	$\begin{gathered} 115.428- \\ 105.428 \end{gathered}$	Pole	TP17.72x17.72x0.16	2	-8447.08	39426.80	72.4	Pass
L3	105.428-85.428	Pole	TP23.62x17.72x0.2	3	-13882.80	116920.00	88.8	Pass
L4	85.428-46.714	Pole	TP33.86x23.62x0.28	4	-19851.20	482501.00	82.0	Pass
L5	46.714-8	Pole	TP44.09x33.86x0.32	5	-27951.90	1190110.00	75.9	Pass
							Summary	
						Pole (L3)	88.8	Pass
						RATING =	88.8	Pass

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

Site Data		
BU\#: 0		
Site Name: PLATTESVILLE RELO CT		
App \#: 0		
Pole Manufacturer:		Other

Anchor Rod Data		
Qty:	12	
Diam:	2.25	in
Rod Material:	8.8	(Metric Grade)
Strength (Fu):	120	ksi
Yield (Fy):	96	ksi
Bolt Circle:	54	in

Plate Data		
Diam:	60	in
Thick:	2.75	in
Grade:	50	ksi
		in

Stiffener Data (Welding at both sides)		
Config:	0	<-- Disregard
Weld Type:		
Groove Depth:		
Groove Angle:		<-- Disregard
Fillet H. Weld:		in
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

Reactions		
Mu:	1957	ft-kips
Axial, Pu:	28	kips
Shear, Vu:	23	kips
Eta Factor, $\mathrm{\eta}$	0.5	TIA G (Fig. 4-4)

If No stiffeners, Criteria:	AISC LRFD

Bolt Results

Max Rod (Cu+ Vu/ń):
Allowable Axial, Φ^{*} Fu*Anet:
Anchor Rod Stress Ratio:

151.2 Kips	Rigid
312.0 Kips	AISC LRFD
φ^{*} Tn	

48.5\% Pass

Base Plate Results	Flexural Check	Rigid
Base Plate Stress:	19.5 ksi	AISC LRFD
Allowable Plate Stress:	45.0 ksi	φ^{*} Fy
Base Plate Stress Ratio:	43.3% Pass	Y.L. Length:
		31.18

n/a
 Stiffener Results

Horizontal Weld:	n / a
Vertical Weld:	n / a
Plate Flex+Shear, fb/Fb+(fv/Fv)^2:	n / a
Plate Tension+Shear, $\mathrm{ft} / \mathrm{Ft}+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2:$	n / a
Plate Comp. (AISC Bracket):	n / a

Pole Results

Pole Punching Shear Check: n/a

Pole Data		
Diam:	44.09	in
Thick:	0.32	in
Grade:	65	ksi
\# of Sides:	18	"0" IF Round
Fu	80	ksi
Reinf. Fillet Weld	0	"0" if None

[^0]Date:
11/3/2021
Project Name: PLATTESVILLE RELO CT
Designed By: ID Checked By: MSC

Check Concrete Waste Blocks:

Nominal Weight of Concrete:
Volume of Concrete:
Weight of Concrete Waste Block:

150 pcf
$24 \mathrm{ft}^{3}$
3600 lbs

Item	Wt. (Lbs/ft.)	Linear ft.	$\underline{\text { Qty. }}$	Iotal (Lbs.)
Concrete Waste Blocks	3600		72	259200
Iotal, $\mathrm{T}_{\text {weight }}$			$\underline{\mathbf{2 5 9 2 0 0}}$ lbs	

Minimum Ballast Weight Requirement for Overturning:

*HDG referenced Non-Penetrating Foundation Design Drawings provided by the client and prepared by Ambor Structures dated July 16, 2015.

251000 lbs.

Check Non-Penantrating Foundation Weight Requirements for Overturning:

$=$| 251000 lbs. | $<$ | 259200 lbs. | O.K! |
| :---: | :---: | :---: | :---: |

Check Soil Bearing Capacity:

Item	Wt. (Lbs/ft.)	Linear ft.	Qty.	Iotal (Lbs.)
Monopole	27972		1	27972
Concrete Waste Blocks	3600		72	259200
Misc.	15000		1	15000
Total, $\mathbf{T}_{\text {weight }}$				$\underline{\mathbf{3 0 2 1 7 2}}$ Ibs

Diameter of Base:
Area of Base:
Bearing Pressure:
24.5 ft
$472.7 \mathrm{ft}^{2}$
639.2 psf

Assumed Soil Bearing Capacity:

*Due to lack of information a worse case presumptive load-bearing value was used to calculate the soil bearing capacity. According to the IBC 2015 Section 1806.2 the worse case presumptive load bearing value is 1500 psf.
$=1$ (See IBC 2015 Section 1806.2)

Check Soil Bearing Capacity:

$=$| 639.2 psf | $<$ | 1500 psf | O.K! |
| :---: | :---: | :---: | :---: |

REFERENCE DOCUMENTS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
12' Low Profile	116	(12) TMABPDB7823	106
(6) OPA-65R-LCUU-H4	116	(12) TMABPDB7823	80
12' Low Profile	106	(12) OPA-65R-LCUU-H4	80
(12) OPA-65R-LCUU-H4	106	12' Low Profile	80

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 74 mph basic wind with 0.75 in ice.
4. Deflections are based upon a 60 mph wind.
. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.
5. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
6. Tower will meet or exceed the required 100 mph ($3-\mathrm{sec}$ gust) wind speed for Bridgeport, CT
7. IBC 2003 in conjunction with the 2005 CT supplement and 2013 Amendments.
8. TOWER RATING: 93.8%

11/16/2015

PROJ ECT INFORMATION:
Date: September 42015
Customer: Blue Sky Tower Partners, LLC
Tower Design: 117 ft 85 mph Monopole with Ballasted Foundation
Site \#: CT-5020
Site Location:
220 Evergreen Street
Bridgeport, CT 06606
Firfie7

Design Criteria:
WIND
85 mph basic wind in accordance with TIA-222-F Standard. IBC 2003 in conjunction with the 2005 CT supplement and 2013 amendments.
74 mph basic wind wit 0.75 in ice. Ice is considered to increase in thickness with height.
EXPOSURE
C
TOWER CLASS:
II
TOPOGRAPHIC CATEGORY
1 with Crest Height: Oft
Tower Reactions:
Moment: 2220 kip-ft
Shear: 26 K
Axial: 25K
Ballast Requirement:
$251,000 \mathrm{lbs}$
Preferred Ballast Type:
Concrete waste block - $2 \mathrm{ft} \times 2 \mathrm{ft} \times 6 \mathrm{ft}$; $3,600 \mathrm{lbs}$
Qty per Sector (12):
6 blocks (can be stood on end to achieve ballast requirement within the space provided)

IF RELOCATED, ADDITIONAL CALCULATIONS WILL NEED TO BE RUN FOR VERIFICATION.

REV	DATE	

STRUCTURAL STEEL:

1. PROVIDE STRUCTURAL STEEL CONFORMING TO THE FOLLOWING STANDARDS:
1.1. AISC MANUAL OF STEEL CONSTRUCTION, 13TH EDITION
1.3. AISC 303-05, CODE OF STANDARD PRACTICE FOR STRUCTURAL STEEL BUILDI NGS AND 1.4 BRIDGES
1.4. AISC 326-02, DETAILING FOR STEEL CONSTRUCTION, ZND EDITION

SHOP DRAWINGS:

1. SUBMIT SHOP DRAWINGS PREPARED IN ACCORDANCE WITH AISC 326-02
2. PROVIDE COMPLETE WELDING INFORMATION USING AWS SYMBOLS.
3. USE PREQUALIFIED WELDED J OINTS PER AISC AND AWS D1.1 "STRUCTURAL WELDING CODE." DO NOT BEGIN FABRICATION UNTIL SHOP DRAWINGS ARE COMPLETED AND REVIEWED BY THE STRUCTURAL ENGI NEER OF RECORD.

UNLESS NOTED OTHERWISE PROVIDE STRUCTURAL STEEL CONFORMING TO:

1. WIDE FLANGE SHAPES: ASTM A992 OR EQUIVALENT
2. CHANNELS, ANGLES AND PLATES: ASTM A36 OR EQUIVALENT
3. HOLLOW STEEL SECTIONS (HSS): ASTM A500, GRADE B OR EQUIVALEN
4. STRUCTURAL PIP
5. DEFORMED BAR ANCHORS (DBA): ASTM A53, TYPE E OR S, GRADE B
ASTM A 29
6. ANCHOR RODS

ASTM F 1554, GRADE 36.
bolted connections:
UNLESS NOTED OTHERWISE, MAKE ALL CONNECTIONS WITH 3/4" DIAMETER ASTM A 325 UIVALENT. WELDED CONNECTIONS
a. MAKE ALL WELDED CONNECTIONS IN ACCORDANCE WITH AWS D1.1-04 "STRUCTURAL WELDING CODE", USING TYPE ETOXX ELECTRODES.
b. EMPLOY ONLY CERTIFIED WELDERS.

MAINTAIN PROOF OF CERTIFICATION AT THE J OB SITE.
PROVIDE CONNECTIONS FOR BEAMS WHICH CANNOT CONFORM TO THE TYPICAL CONNECTION DETAILS IN ACCORDANCE WITH THE FOLLOWING

1. WHERE MEMBER REACTIONS ARE NOT SHOWN ON THE DRAWI NGS, DETAIL CONNECTIONS位 IN TABLE 3-6 OF THE AISC STEEL CONSTRUCTION MANUAL FOR THE SPAN SHOWN ON THE DRAWING.
2. WHERE MEMBER REACTIONS ARE SHOWN, PROVIDE CONNECTIONS TO DEVELOP THE REACTIONS SHOWN. ACCOUNT FOR THE ECCENTRICITY. PROVU DE SPECIAL CONNECTIONS BETWEEN STEEL FRAMING COMPONENTS NOT DETAILED BY THE
STRUCTURAL ENGI NEER OF RECORD DESI GNED BY A PROFESSI ONAL ENGI NEER REGI STERED IN THE STATE WHERE THE PROJECT IS TO BE CONSTRUCTED INCLUDING BUT NOT UMITED TO BRACE END EAT CONNECTIONS, AND
3. DO NOT USE GAS CUTTING TORCHES TO CORRECT FABRI CATION ERRORS IN STRUCTURAL
4. PTEEL FRAMING. BRACING MOMENT CONNECTIONS, AND FLOOR/ROOF DECKS (DIAPHRAGMS) ARE COMPLETELY INSTALLED.
5. PAINT STRUCTURAL STEEL IN ACCORDANCE WITH THE PROJECT SPEGFICATIONS. DO NOT PAINT STEEL SURFACES TO BE ENCASED IN CONCRETE, SURFACES TO RECEIVE FIREPROOFING, CONNECTIONS DESIGNATED AS FRICTION TYPE, SURFACES TO BE WELDED, OR SURFACES RECEIVING WELDED STUDS OR DEFORMED BAR ANCHORS ("DBA's') IN THE FIELD..

370 Jackson St. Suite 475, St. Paul, MN 55101
http://amborstructures. com

Trusted provider of monopoles and innovative structural solutions

bennett \& pless |B

Experience Structural Expertise
Experience Structural Expertise
Atlanta, GA.Chattanooga, TNa North Sioux City, SD

DESCRIPTION:

DRAWING\#: KE

July 16, 2015

DRAWN:

ENGR:

HECKED:
SPECS:
.

ATTACHMENT 4

Visual Assessment \& Photo-Simulations

VISUAL ASSESSMENT \& PHOTO-SIMULATIONS

Cellco Partnership, d/b/a Verizon Wireless is seeking approval to relocate its existing wireless communications facility from a building located at 175 Jefferson Street in Fairfield, Connecticut (the "existing Rooftop") to a temporary ballast mounted monopole at 5151 Park Avenue in Fairfield, Connecticut (the "Host Property"). Both locations are located on the main campus of Sacred Heart University ("SHU" or the "University"). At the request of Verizon Wireless, AllPoints Technology Corporation, P.C. ("APT") completed this visual assessment and prepared computer-generated photo-simulations depicting the proposed installation of the temporary wireless telecommunications facility (the "Temporary Facility") at the Host Property.

Project Undertaking

The proposed Temporary Facility includes a $\pm 125^{\prime}-7^{\prime \prime}$ tall ballast mounted monopole in an irregularly shaped approximately 2,456 square foot fenced compound, located near the northeast corner of the Bobby Valentine Health and Recreation Center on the western portion of the Host Property (the "Site). The monopole would be constructed to temporarily hold Verizon Wireless' antennas and equipment ${ }^{1}$. Verizon Wireless would install its antenna array at a centerline height of $\pm 121^{\prime}-7$ " above ground level ("AGL"). The Temporary Facility will be decommissioned upon completion of a proposed permanent wireless communications facility in the near future.

Project Setting

The Host Property is located west of Park Avenue and south of Jefferson Street in the northeastern portion of Fairfield on the University's main campus. Fairchild Wheeler Golf Course borders the Host Property to the west and south. Notre Dame Catholic High School is located across Jefferson Street north of the Site. Land use in the immediate vicinity also includes high density residentially-developed properties.

Balloon Float and Photographic Documentation

On September 14, 2021, APT personnel completed a balloon float and photo-documented existing conditions. The balloon float consisted of raising a brightly-colored, approximately 4foot diameter, helium-filled balloon tethered to a string height of ± 130 feet AGL at the Site. Weather conditions were favorable with calm winds and sunny skies.

During the field reconnaissance, APT obtained photo-documentation of representative locations where the balloon was visible. At each photo location, the geographic coordinates of the camera's position were logged using global positioning system ("GPS") technology. Photographs were taken with a Canon EOS 6D digital camera body ${ }^{2}$ and Canon EF 24 to 105 millimeter

[^1]("mm") zoom lens. APT typically uses a standard focal length of 50 mm to present a consistent field of view.

Photographic Simulations

Photographic simulations were generated to portray scaled renderings of the proposed Facility from three (3) locations presented herein where at least a portion of the Temporary Facility would be seen. Using field data, site plan information and 3-dimensional (3D) modeling software, spatially referenced models of the Site and monopole were generated and merged. The geographic coordinates obtained in the field for the photograph locations were incorporated into the model to produce virtual camera positions within the spatial 3D model. Photosimulations were then created using a combination of renderings generated in the 3D model and photo-rendering software programs, which were ultimately composited and merged with the existing conditions photographs (using Photoshop image editing software). The scale of the subjects in the photograph (the balloon) and the corresponding simulation (the Temporary Facility) is proportional to their surroundings.

Photographs of the balloon float and photo-simulations of the proposed Temporary Facility are presented in the attachment at the end of this report. The photos that include the balloon in the view provide visual reference points for the approximate height and location of the Temporary Facility relative to the scene. All simulations were created to represent the top height of the monopole at $125^{\prime}-7{ }^{\prime \prime}$ AGL.

Table 1 - Photo Locations summarizes the photographs and simulations presented in the attachment to this report, and includes a description of each location, view orientation, distance from where the photo was taken relative to the proposed Temporary Facility, and the approximate height of the monopole that is visible in the view. The photo locations are depicted on the photolog provided in the attachment to this report.

Table 1 - Photo Locations

Photo	Location	Orientation	Distance to Site	Height of Monopole Visible in Photograph
1	Sacred Heart University - Pioneer Way	West	± 0.10 Mile	$60^{\prime}-70^{\prime}$
2	Sacred Heart University - William H. Pitt Health and Recreation Center	Northwest	± 0.15 Mile	$40^{\prime}-50^{\prime}$
3	Sacred Heart University - Gaynos Drive	Southwest	± 0.14 Mile	$10^{\prime}-20^{\prime}$

Conclusions

The majority of visibility associated with the Temporary Facility would occur on the main campus of the University and areas generally within 0.5 mile of the Site. Views could also extend to select locations up to nearly one mile to the southeast within portions of the Fairchild Wheeler Golf Course. No substantive views of the Temporary Facility are anticipated from residential properties to the north, east, or west.

Given the combination of topography, existing buildings and campus infrastructure, and intervening trees, it is our opinion that the proposed installation of the Temporary Facility will have a minimal and short-term visual impact beyond the immediate vicinity of the Site.

Proximity to Schools And Commercial Child Day Care Centers

Notre Dame Catholic High School (220 Jefferson Street) is located approximately 0.24 mile north of the Site. APT did not access the grounds of Notre Dame Catholic High School because it is a private school. However, portions of the Temporary Facility may be visible from some exterior locations on the school property. ABC Day Care is located approximately 1.17 miles northeast of the Site. The proposed Temporary Facility would not be visible from the vicinity of ABC Day Care.

Limitations

For presentation purposes in this report, the photographs were produced in an approximate 7inch by 10.5 -inch format. When reproducing the images in this format size, we believe it is important to present the largest view while providing key contextual landscape elements (existing developments, street signs, utility poles, etc.) so that the viewer can determine the proportionate scale of each object within the scene. The photo-simulations provide a representation of the Temporary Facility under similar settings as those encountered during the field review and reconnaissance. Views can change throughout the seasons and the time of day, and are dependent on weather and other atmospheric conditions (e.g., haze, fog, clouds); the location, angle and intensity of the sun; and the specific viewer location. Weather conditions on the day of the field review included calm winds and sunny skies.

ATTACHMENTS

Legend

- Temporary Site Photographic Location Municipal Boundary

ATTACHMENT 5

Calculated Radio Frequency Exposure

Plattsville Relo - Temporary Tower
5151 Park Avenue, Fairfield, CT 06825

October 28, 2021

Table of Contents

1. Introduction. 1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits 1
3. RF Exposure Calculation Methods 2
4. Calculation Results 3
5. Conclusion 4
6. Statement of Certification 4
Attachment A: References 5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) 6
Attachment C: AT\&T Antenna Data Sheets and Electrical Patterns 8
List of Tables
Table 1: Carrier Information 3
Table 2: FCC Limits for Maximum Permissible Exposure (MPE) 6
List of Figures
Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE) 7

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed installation of the AT\&T, Verizon Wireless and T-Mobile antenna arrays on a new temporary monopole tower located at 5151 Park Avenue in Fairfield, CT. The coordinates of the tower are 41.220258 N, 73.247433 W.

This report considers the planned antenna configuration for AT\&T, Verizon Wireless and T-Mobile to derive the resulting \% Maximum Permissible Exposure of its proposed installation.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz . The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter ($\mathrm{mW} / \mathrm{cm}^{2}$). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

3. RF Exposure Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

Power Density $=\left(\frac{1.6^{2} \times 1.64 \times \text { ERP }}{4 \pi \times R^{2}}\right) X$ Off Beam Loss

Where:
ERP $=$ Effective Radiated Power
$\mathrm{R}=$ Radial Distance $=\sqrt{\left(H^{2}+V^{2}\right)}$
$\mathrm{H}=$ Horizontal Distance from antenna
$\mathrm{V}=$ Vertical Distance from radiation center of antenna
Ground reflection factor of 1.6
Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

Systems

4. Calculation Results

Table 1 below outlines the cumulative power density information for the AT\&T, Verizon Wireless and T-Mobile equipment at the site. The proposed antennas are directional in nature; therefore, the majority of the RF power is focused out towards the horizon. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the tower. Please refer to Attachment C for the vertical pattern of the proposed AT\&T antennas. The calculated results in Table 1 include a nominal 10 dB off-beam pattern loss to account for the lower relative gain below the antennas.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitter (Watts)	Power Density $\left(\mathbf{m w / c m}{ }^{2}\right)$	Limit	\% MPE
AT\&T	110	763	1	3541	0.0118	0.5087	2.32%
AT\&T	110	885	1	3883	0.0129	0.5900	2.19%
AT\&T	110	1900	2	4562	0.0303	1.0000	3.03%
AT\&T	110	2100	2	8226	0.0547	1.0000	5.47%
AT\&T	110	2300	1	6747	0.0224	1.0000	2.24%
T-Mobile	90	2100	1	6153	0.0314	1.0000	3.14%
T-Mobile	90	1900	1	6013	0.0307	1.0000	3.07%
T-Mobile	90	1900	1	376	0.0019	1.0000	0.19%
T-Mobile	90	600	1	826	0.0042	0.4000	1.05%
T-Mobile	90	600	1	1652	0.0084	0.4000	2.11%
T-Mobile	90	700	1	826	0.0042	0.4667	0.90%
T-Mobile	90	2500	1	4488	0.0229	1.0000	2.29%
T-Mobile	90	2500	1	4488	0.0229	1.0000	2.29%
T-Mobile	90	2500	1	22440	0.1144	1.0000	11.44%
Verizon	121.7	3500	1	14	0.0000	1.0000	0.00%
Verizon	121.7	700	1	507	0.0014	0.4667	0.29%
Verizon	121.7	850	1	543	0.0015	0.5667	0.26%
Verizon	121.7	850	2	270	0.0014	0.5667	0.26%
Verizon	121.7	1900	1	1333	0.0036	1.0000	0.36%
Verizon	121.7	1900	1	1462	0.0039	1.0000	0.39%
						Total	43.29%

Table 1: Carrier Information

5. Conclusion

The above analysis concludes that RF exposure at ground level from the proposed site will be below the maximum power density levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using conservative calculation methods, the highest expected percent of Maximum Permissible Exposure at ground level is $\mathbf{4 3 . 2 9 \%}$ of the FCC General Population/Uncontrolled limit.

As noted previously, the calculated \% MPE levels are more conservative (higher) than the actual signal levels will be from the finished modifications.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, ANSI/IEEE Std. C95.1 and ANSI/IEEE Std. C95.3.

Reviewed/Approved By:
Martin J. Levin
October 28, 2021
Senior RF Engineer
C Squared Systems, LLC

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering \& Technology
IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, $100 \mathrm{kHz}-300 \mathrm{GHz}$ IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure ${ }^{1}$				
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging Time $\|E\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure ${ }^{2}$

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (E) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	-	-	f 1500	30
$1500-100,000$	-	-	1.0	30
$\mathrm{f}=$ frequency in $\mathrm{MHz} *$ Plane-wave equivalent power density				

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

[^2]

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: AT\&T Antenna Data Sheets and Electrical Patterns

763 MHz	
Manufacturer:	CCI Products
Model \#:	TPA65R-BU8D
Frequency Band:	$698-806 \mathrm{MHz}$
Gain:	13.45 dBd
Vertical Beamwidth:	9.5°
Horizontal Beamwidth:	74°
Polarization:	Dual Linear 45
Size L x W x D:	$96.0^{\prime \prime} \times 20.7 " \mathrm{x} 7.7^{\prime \prime}$

$1900 \mathrm{MHz} \begin{aligned} & \\ \text { Manufacturer: } & \text { CCI Products } \\ \text { Model \#: } & \text { TPA65R-BU8D } \\ \text { Frequency Band: } & 1850-1990 \mathrm{MHz} \\ \text { Gain: } & 14.6 \mathrm{dBd} \\ \text { Vertical Beamwidth: } & 5.1^{\circ} \\ \text { Horizontal Beamwidth: } & 68^{\circ} \\ \text { Polarization: } & \text { Dual Linear } 45^{\circ} \\ \text { Size L x W x D: } & 96.0^{\prime \prime} \times 20.7^{\prime \prime} \times 7.7^{\prime \prime} \end{aligned}$	
$2100 \mathrm{MHz} \begin{aligned} & \\ \text { Manufacturer: } & \text { CCI Products } \\ \text { Model \#: } & \text { TPA65R-BU8D } \\ \text { Frequency Band: } & 1920-2180 \mathrm{MHz} \\ \text { Gain: } & 16.15 \mathrm{dBd} \\ \text { Vertical Beamwidth: } & 5.1^{\circ} \\ \text { Horizontal Beamwidth: } & 66^{\circ} \\ \text { Polarization: } & \text { Dual Linear } 45^{\circ} \\ \text { Size L x W x D: } & 96.0^{\circ} \times 20.7 " \times 7.7^{\prime \prime} \end{aligned}$	
$2300 \mathrm{MHz} \begin{aligned} & \\ \text { Manufacturer: } & \text { CCI Products } \\ \text { Model \#: } & \text { TPA65R-BU8D } \\ \text { Frequency Band: } & 2300-2400 \mathrm{MHz} \\ \text { Gain: } & 15.85 \mathrm{dBd} \\ \text { Vertical Beamwidth: } & 4.1^{\circ} \\ \text { Horizontal Beamwidth: } & 62^{\circ} \\ \text { Polarization: } & \text { Dual Linear } 45^{\circ} \\ \text { Size L x W x D: } & 96.0^{\circ} \times 20.7 " \times 7.7^{\prime \prime} \end{aligned}$	

ATTACHMENT 6

Airspace User: Meaghan Kate McLean
File: PLATTSVILLE CT _Temp Pole/COW
Location: Fairfield, CT
Latitude: 41-13'-12.93"
Longitude: 73º14'-50.76"
SITE ELEVATION AMSL...... 281 ft.
STRUCTURE HEIGHT......... 126 ft.
OVERALL HEIGHT AMSL...... 407 ft.

```
    NOTICE CRITERIA
    FAR 77.9(a): NNR (DNE 200 ft AGL)
    FAR 77.9(b): NNR (DNE Notice Slope)
    FAR 77.9(c): NNR (Not a Traverse Way)
    FAR 77.9: NNR FAR 77.9 IFR Straight-In Notice Criteria
for BDR
    FAR 77.9: NNR (No Expected TERPS® impact DXR)
    FAR 77.9(d): NNR (Off Airport Construction)
    NR = Notice Required
    NNR = Notice Not Required
    PNR = Possible Notice Required (depends upon actual IFR
procedure)
```

For new construction review Air Navigation Facilities at bottom of this report. Notice to the FAA is not required at the analyzed location and height for slope, height or Straight-In procedures. Please review the 'Air Navigation'section for notice requirements for offset IFR procedures and EMI.

```
OBSTRUCTION STANDARDS
    FAR 77.17(a)(1): DNE 499 ft AGL
    FAR 77.17(a)(2): DNE - Airport Surface
    FAR 77.19(a): DNE - Horizontal Surface
    FAR 77.19(b): DNE - Conical Surface
    FAR 77.19(c): DNE - Primary Surface
    FAR 77.19(d): DNE - Approach Surface
    FAR 77.19(e): DNE - Approach Transitional Surface
    FAR 77.19(e): DNE - Abeam Transitional Surface
VFR TRAFFIC PATTERN AIRSPACE FOR: BDR: IGOR I SIKORSKY MEML
```

```
    Type: A RD: 36683.36 RE: 8.5
        FAR 77.17(a)(1): DNE
    FAR 77.17(a)(2): DNE - Greater Than 5.99 NM.
    VFR Horizontal Surface: DNE
    VFR Conical Surface: DNE
    VFR Primary Surface: DNE
    VFR Approach Surface: DNE
    VFR Transitional Surface: DNE
    VFR TRAFFIC PATTERN AIRSPACE FOR: DXR: DANBURY MUNI
    Type: A RD: 83353.54 RE: 454.1
    FAR 77.17(a)(1): DNE
    FAR 77.17(a)(2): DNE - Greater Than 5.99 NM.
    VFR Horizontal Surface: DNE
    VFR Conical Surface: DNE
    VFR Primary Surface: DNE
    VFR Approach Surface: DNE
    VFR Transitional Surface: DNE
    TERPS DEPARTURE PROCEDURE (FAA Order 8260.3, Volume 4)
    FAR 77.17(a)(3) Departure Surface Criteria (40:1)
    DNE Departure Surface
    MINIMUM OBSTACLE CLEARANCE ALTITUDE (MOCA)
    FAR 77.17(a)(4) MOCA Altitude Enroute Criteria
    The Maximum Height Permitted is 1500 ft AMSL
    PRIVATE LANDING FACILITIES
    FACIL BEARING RANGE
DELTA ARP FAA
    IDENT TYP NAME TO FACIL IN NM
ELEVATION IFR
```



```
+285
    Possible Impact to Private landing Facility
    Exceeds Notice Standards by: 199 ft (N/A Private Heliport)
    Possible Impact to Private landing Facility
    Helicopter Approach Surface violation is: 68 ft (N/A
Private Heliport)
    CT12 HEL MEDICAL CENTER 119 2.37
+259
    No Impact to Private Landing Facility
    Structure is beyond notice limit by 9400 feet.
    CT37 HEL SIKORSKY BRIDGEPORT 151.56 4.03
+398.7
    No Impact to Private Landing Facility
    Structure is beyond notice limit by }19487\mathrm{ feet.
```

0CT7 HEL BRIDGEPORT HOSPITAL 117.65 4.13
No Impact to Private Landing Facility
Structure is beyond notice limit by 20094 feet.
CT76 HEL CHASE MANHATTAN BANK OF CT 73.3 4.59

No Impact to Private Landing Facility
Structure is beyond notice limit by 22889 feet.
AIR NAVIGATION ELECTRONIC FACILITIES
FAC ST DIST DELTA
GRND APCH
IDNT TYPE AT FREQ VECTOR (ft) ELEVA ST LOCATION
ANGLE BEAR
---- ----------

BDR VOR/DME R 108.8122 .7140204 +401 CT

BDR	VOR/DME	R	108.8	122.71	40204	+401 CT	
BRIDGEPORT		.57					
JWE	NDB	D	36	32.08	69741	-164	CT

$\begin{array}{lllllllllll} & & & -.13 \\ \text { CLERA } \\ \text { CMK } & \text { VOR/DME } & \text { R } & 116.6 & 283.47 & 94365 & -287 & N Y\end{array}$
CARMEL
$-.17$
HPN RADAR I 2735. 247.21 139637 -103 NY
WESTCHESTER COUNT -. 04
MAD VOR/DME I 110.4 77.22 156411 +191 CT
MADISON . 07
ISP RADAR I 2735. 164.52 156549 +225 NY LONG
ISLAND MacAR . 08
DPK VOR/DME R 117.7 185.66 156903 +284 NY DEER
PARK . 10
CCC VOR/DME R 117.2130 .72162829 +322 NY
CALVERTON
.11
KOKX RADAR WXL Y $140.82167021+212$ NY NEW
YORK . 07
QVH RADAR ARSR Y 1326.9 129.03 198400 +56 NY
RIVERHEAD . 02

CFR Title 47, \$1.30000-§1.30004
AM STUDY NOT REQUIRED: Structure is not near a FCC licensed AM station. Movement Method Proof as specified in \S $73.151(c)$ is not required.Please review 'AM Station Report' for details. Nearest AM Station: WCUM @ 3839 meters.

Airspace® Summary Version 21.9 .615

AIRSPACE® and TERPS® are registered ${ }^{\circledR}$ ® trademarks of Federal
Airways \& Airspace®
Copyright © 1989-2021

10-13-2021
16:57:31

ATTACHMENT 7

Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts and New York

November 8, 2021

Via Certificate of Mailing

Brenda L. Kupchick, First Selectwoman
Town of Fairfield
Sullivan Independence Hall
725 Old Post Road
Fairfield, CT 06824

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for the Installation of a Wireless Telecommunications Facility on the Main Campus of Sacred Heart University ('SHU") at 5151 Park Avenue, Fairfield, Connecticut

Dear First Selectwoman Kupchick:
This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Cellco intends to file a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to install a temporary telecommunications facility (the "Temporary Facility") adjacent to the Valentine Health and Recreation ("Valentine") Center in the westerly portion of the Sacred Heart University ("SHU") main campus at 5151 Park Avenue in Fairfield (the "Property"). The Temporary Facility will allow Cellco, AT\&T and T-Mobile to maintain wireless service at SHU and in the surrounding area after decommissioning the existing roof-top wireless facility on Toussaint Residence Hall. The Temporary Facility will be used until the new permanent telecommunications facility on the SHU main campus can be constructed.

The Temporary Facility will consist of an approximately 125 -foot tall ballasted monopole tower located adjacent to the Valentine Center. Cellco will install antennas at a height of 121'$7 "$ above grade. AT\&T will install antennas at a height of $111^{\prime}-7 "$ above grade. T-Mobile will install antennas at a height of $101^{\prime}-7{ }^{\prime \prime}$ above grade. Equipment associated with the antennas will be located along the west side of the Valentine Center. A copy of the Petition for the Temporary Facility is attached.

Brenda L. Kupchick, First Selectwoman

November 8, 2021
Page 2

As you may recall, on April 26, 2021, the Council approved Cellco's proposed construction of a new tower site in the northwest corner of the SHU main campus, near the new SHU Maintenance Facility (Council Docket No. 495). For the last several months, Cellco has been working with SHU to relocate the approved tower site to the southwest portion of the SHU Main Campus near the Pitt Center/SHU football stadium. The proposed relocation of the permanent replacement tower will be the subject of a future filing with the Council. You will receive notice of that future filing shortly. Also included in the attached copy of the Petition is a Site Schematic that shows the location of the approved Docket No. 495 tower site, the proposed Temporary Facility location and the location of the proposed relocated tower site near the Pitt Center/SHU football stadium for your reference.

A copy of a similar notice letter and the full Petition for the Temporary Facility was also sent to the owners of land that abut the Property. A list of abutting property owners who received this notice is included in the Petition.

Please contact me if you have any questions regarding this proposal.

Attachment

Copy to:
James T. Baldwin, Esq. (via jbaldwin@cbklaw.net)
Michael Larobina, Esq., General Counsel, Sacred Heart University

Robinson+Cole

KENNETH C. BALDWIN
280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts and New York

November 8, 2021

Via Certificate of Mailing

Joe Bienkowski, Town Planner
Town Plan and Zoning Department
Town of Fairfield
Sullivan Independence Hall
725 Old Post Road
Fairfield, CT 06824
Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for the Installation of a Wireless Telecommunications Facility on the Main Campus of Sacred Heart University ("SHU") at 5151 Park Avenue, Fairfield, Connecticut

Dear Mr. Bienkowski:
This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Cellco intends to file a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to install a temporary telecommunications facility (the "Temporary Facility") adjacent to the Valentine Health and Recreation ("Valentine") Center in the westerly portion of the Sacred Heart University ("SHU") main campus at 5151 Park Avenue in Fairfield (the "Property"). The Temporary Facility will allow Cellco, AT\&T and T-Mobile to maintain wireless service at SHU and in the surrounding area after decommissioning the existing roof-top wireless facility on Toussaint Residence Hall. The Temporary Facility will be used until the new permanent telecommunications facility on the SHU main campus can be constructed.

The Temporary Facility will consist of an approximately 125 -foot tall ballasted monopole tower located adjacent to the Valentine Center. Cellco will install antennas at a height of 121'$7 "$ above grade. AT\&T will install antennas at a height of $111^{\prime}-7 "$ above grade. T-Mobile will install antennas at a height of $101^{\prime}-7{ }^{\prime \prime}$ above grade. Equipment associated with the antennas will be located along the west side of the Valentine Center. A copy of the Petition for the Temporary Facility is attached.

Joe Bienkowski, Town Planner
November 8, 2021
Page 2

As you may recall, on April 26, 2021, the Council approved Cellco's proposed construction of a new tower site in the northwest corner of the SHU main campus, near the new SHU Maintenance Facility (Council Docket No. 495). For the last several months, Cellco has been working with SHU to relocate the approved tower site to the southwest portion of the SHU Main Campus near the Pitt Center/SHU football stadium. The proposed relocation of the permanent replacement tower will be the subject of a future filing with the Council. You will receive notice of that future filing shortly. Also included in the attached copy of the Petition is a Site Schematic that shows the location of the approved Docket No. 495 tower site, the proposed Temporary Facility location and the location of the proposed relocated tower site near the Pitt Center/SHU football stadium for your reference.

A copy of a similar notice letter and the full Petition for the Temporary Facility was also sent to the owners of land that abut the Property. A list of abutting property owners who received this notice is included in the Petition.

Please contact me if you have any questions regarding this proposal.

Attachment

KEnNETH C. BALDWIN

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts and New York

November 8, 2021

Via Certificate of Mailing

Michael Larobina, Esq., General Counsel
Sacred Heart University Inc.
5151 Park Avenue
Fairfield, CT 06825

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for the Installation of a Wireless Telecommunications Facility on the Main Campus of Sacred Heart University ("SHU") at 5151 Park Avenue, Fairfield, Connecticut

Dear Mr. Larobina:
This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Cellco intends to file a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to install a temporary telecommunications facility (the "Temporary Facility") adjacent to the Valentine Health and Recreation ("Valentine") Center in the westerly portion of the Sacred Heart University ("SHU") main campus at 5151 Park Avenue in Fairfield (the "Property"). The Temporary Facility will allow Cellco, AT\&T and T-Mobile to maintain wireless service at SHU and in the surrounding area after decommissioning the existing roof-top wireless facility on Toussaint Residence Hall. The Temporary Facility will be used until the new permanent telecommunications facility on the SHU main campus can be constructed.

The Temporary Facility will consist of an approximately 125 -foot tall ballasted monopole tower located adjacent to the Valentine Center. Cellco will install antennas at a height of 121'$7 "$ above grade. AT\&T will install antennas at a height of $111^{\prime}-7 "$ above grade. T-Mobile will install antennas at a height of $101^{\prime}-7{ }^{\prime \prime}$ above grade. Equipment associated with the antennas will be located along the west side of the Valentine Center. A copy of the Petition for the Temporary Facility is attached.

As you may recall, on April 26, 2021, the Council approved Cellco's proposed construction of a new tower site in the northwest corner of the SHU main campus, near the new SHU Maintenance Facility (Council Docket No. 495). For the last several months, Cellco has been working with SHU to relocate the approved tower site to the southwest portion of the SHU Main Campus near the Pitt Center/SHU football stadium. The proposed relocation of the permanent replacement tower will be the subject of a future filing with the Council. You will receive notice of that future filing shortly. Also included in the attached copy of the Petition is a Site Schematic that shows the location of the approved Docket No. 495 tower site, the proposed Temporary Facility location and the location of the proposed relocated tower site near the Pitt Center/SHU football stadium for your reference.

A copy of a similar notice letter and the full Petition for the Temporary Facility was also sent to the owners of land that abut the Property. A list of abutting property owners who received this notice is included in the Petition.

Please contact me if you have any questions regarding this proposal.

Attachment

Robinson+Cole

Kenneth C. BALDWIN

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts and New York

November 8, 2021

Via Certificate of Mailing

Bridgeport Roman Catholic Diocesan Corporation
238 Jewett Avenue
Bridgeport, CT 06606

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for the Installation of a Wireless Telecommunications Facility on the Main Campus of Sacred Heart University ('SHU") at 5151 Park Avenue, Fairfield, Connecticut

Dear Sir or Madam:
This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Cellco intends to file a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to install a temporary telecommunications facility (the "Temporary Facility") adjacent to the Valentine Health and Recreation ("Valentine") Center in the westerly portion of the Sacred Heart University ("SHU") main campus at 5151 Park Avenue in Fairfield (the "Property"). The Temporary Facility will allow Cellco, AT\&T and T-Mobile to maintain wireless service at SHU and in the surrounding area after decommissioning the existing roof-top wireless facility on Toussaint Residence Hall. The Temporary Facility will be used until the new permanent telecommunications facility on the SHU main campus can be constructed.

The Temporary Facility will consist of an approximately 125 -foot tall ballasted monopole tower located adjacent to the Valentine Center. Cellco will install antennas at a height of 121'$7 "$ above grade. AT\&T will install antennas at a height of 111 '-7" above grade. T-Mobile will install antennas at a height of $101^{\prime}-7$ " above grade. Equipment associated with the antennas will be located along the west side of the Valentine Center. A copy of the Petition for the Temporary Facility is attached.

As you may recall, on April 26, 2021, the Council approved Cellco's proposed construction of a new tower site in the northwest corner of the SHU main campus, near the new

Bridgeport Roman Catholic Diocesan Corporation
November 8, 2021
Page 2

SHU Maintenance Facility (Council Docket No. 495). For the last several months, Cellco has been working with SHU to relocate the approved tower site to the southwest portion of the SHU Main Campus near the Pitt Center/SHU football stadium. The proposed relocation of the permanent replacement tower will be the subject of a future filing with the Council. You will receive notice of that future filing shortly. Also included in the attached copy of the Petition is a Site Schematic that shows the location of the approved Docket No. 495 tower site, the proposed Temporary Facility location and the location of the proposed relocated tower site near the Pitt Center/SHU football stadium for your reference.

A copy of a similar notice letter and the full Petition for the Temporary Facility was also sent to the owners of land that abut the Property. A list of abutting property owners who received this notice is included in the Petition.

Please contact me if you have any questions regarding this proposal.

Attachment

ATTACHMENT 8

KENNETH C. BALDWIN
280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345
Also admitted in Massachusetts and New York

November 8, 2021

Via Certificate of Mailing

«Name_and_Address»

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for the Installation of a Wireless Telecommunications Facility on the Main Campus of Sacred Heart University at 5151 Park Avenue, Fairfield, Connecticut

Dear «Salutation»:
This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Cellco intends to file a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to install a temporary telecommunications facility (the "Temporary Facility") adjacent to the Valentine Health and Recreation ("Valentine") Center in the westerly portion of the Sacred Heart University ("SHU") main campus at 5151 Park Avenue in Fairfield (the "Property"). The Temporary Facility will allow Cellco, AT\&T and T-Mobile to maintain wireless service at SHU and in the surrounding area after decommissioning the existing roof-top wireless facility on Toussaint Residence Hall. The Temporary Facility will be used until the new permanent telecommunications facility on the SHU main campus can be constructed.

The Temporary Facility will consist of an approximately 125 -foot tall ballasted monopole tower located adjacent to the Valentine Center. Cellco will install antennas at a height of 121'-7" above grade. AT\&T will install antennas at a height of 111'-7" above grade. T-Mobile will install antennas at a height of $101^{\prime}-7$ " above grade. Equipment associated with the antennas will be located along the west side of the Valentine Center. A copy of the Petition for the Temporary Facility is attached.

As you may recall, on April 26, 2021, the Council approved Cellco's proposed construction of a new tower site in the northwest corner of the SHU main campus, near the new SHU Maintenance Facility (Council Docket No. 495). For the last several months, Cellco has been working with SHU to relocate the approved tower site to the southwest portion of the SHU Main Campus near the Pitt Center/SHU football stadium. The proposed relocation of the

November 8, 2021
Page 2
permanent replacement tower will be the subject of a future filing with the Council. You will receive notice of that future filing shortly. Also included in the attached copy of the Petition is a Site Schematic that shows the location of the Approved Docket No. 495 tower site, the proposed Temporary Facility location and the location of the proposed relocated tower site near the Pitt Center/SHU football stadium for your reference.

This notice is being sent to you because you are listed on the Town Assessor's records as an owner of land that may be considered to abut the Property. If you have any questions regarding the Petition, the Council's process for reviewing the Petition or the details of the filing itself, please feel free to contact me at the number listed above. You may also contact the Council directly at 860-827-2935.

Kenneth C. Baldwin
Attachment

ADJACENT PROPERTY OWNERS

PROPERTY ADDRESS: 5151 PARK AVENUE, FARIFIELD, CT
ASSESSORS PARCEL ID: 01300100000
THE FOLLOWING INFORMATION WAS COLLECTED FROM THE MUNICIPAL ONLINE GIS AND TAX ASSESSOR'S RECORDS ON NOVEMBER 4, 2021.

FAIRFIELD

	Property Address	Owner and Mailing Address
1.	2390 Easton Turnpike	City of Bridgeport c/o Mayor's Office 45 Lyon Terrace Bridgeport, CT 06604
2.	5401 Park Avenue 175 Jefferson Street 283 Jefferson Street	Sacred Heart University Inc. 5151 Park Avenue Fairfield, CT 06825
3.	118 Jefferson Street	Ludlow Realty LLC 118 Jefferson Street Fairfield, CT 06825
4.	220 Jefferson Street	Bridgeport Roman Catholic Diocesan Corporation 238 Jewett Avenue Bridgeport, CT 06606
5.	288 Jefferson Street	Scott P. and Kathy Auer 288 Jefferson Street Fairfield, CT 06825
6.	22 Donna Drive	Paul Pennino and Susan Cocozza 22 Donna Drive Fairfield, CT 06825
7.	15 Donna Drive	Jeffery and Tracey Taylor 15 Donna Drive Fairfield, CT 06825
8.	370 Jefferson Street	Nay Kang 370 Jefferson Street Fairfield, CT 06825

	Property Address	Owner and Mailing Address
9.	392 Jefferson Street	Joshua and Melinda Prince 3 Glenarden Road Trumbull, CT 06611
10.	418 Jefferson Street	Robert Fuda 418 Jefferson Street Fairfield, CT 06825
11.	12 Weeping Willow Lane	Alexandra McHale 12 Weeping Willow Lane Fairfield, CT 06825
12.	21 Weeping Willow Lane	William and Mary Kate Mitchell 21 Weeping Willow Lane Fairfield, CT 06825
13.	4959 Park Avenue	Bridgeport Roman Catholic Diocesan Corporation 238 Jewett Avenue Bridgeport, CT 06606

BRIDGEPORT

	Property Address	Owner and Mailing Address
14.	4940 Park Avenue	Sacred Heart University Inc. 5151 Park Avenue Fairfield, CT 06825
15.	4950 Park Avenue	Sacred Heart University Inc. 5151 Park Avenue Fairfield, CT 06825
16.	5020 Park Avenue	Sacred Heart University Inc. 5151 Park Avenue Fairfield, CT 06825
17.	5060 Park Avenue	Sacred Heart University Inc. 5151 Park Avenue Fairfield, CT 06825
18.	5088 Park Avenue	Leah Moran 5088 Park Avenue Bridgeport, CT 06606

	Property Address	Owner and Mailing Address
19.	5120 Park Avenue	Estate of George Saden c/o Walter A. Flynn Jr., Executor 1087 Broad Street Bridgeport, CT 06604
20.	5160 Park Avenue	North Park Baptist Church Inc. 5160 Park Avenue Bridgeport, CT 06604
21.	5252 Park Avenue	Sacred Heart University Inc. 5151 Park Avenue Fairfield, CT 06825
22.	5294 Park Avenue	Wendy B. Montanaro 16 Wimbledon Lane Easton, CT 06612
23.	3935 Old Town Road	Richard Montanaro and Donald Bosak, Trustees 5294 Park Avenue Bridgeport, CT 06604
24.	5336 Park Avenue	Charles and Barbara Adams 5336 Park Avenue Bridgeport, CT 06604

CERTIFICATION OF SERVICE

I hereby certify that a copy of the foregoing letter was sent by certified mail, return receipt requested, to each of the parties on the attached list of abutting landowners.

November 8, 2021
Date

Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103
Attorneys for Cellco Partnership d/b/a Verizon
Wireless

[^0]: * 0 = none, 1 = every bolt, 2 = every 2 bolts, $3=2$ per bolt
 ${ }^{* *}$ Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

[^1]: ${ }^{1}$ The Temporary Facility has been designed to accommodate the two (2) additional wireless service providers' antennas currently sharing the existing Rooftop.
 ${ }^{2}$ The Canon EOS 6D is a full-framed camera which includes a lens receptor of the same size as the film used in 35 mm cameras. As such, the images produced are comparable to those taken with a conventional 35 mm camera.

[^2]: ${ }^{1}$ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure
 ${ }^{2}$ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

