## STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

| IN RE:  |   |
|---------|---|
| IIVICE. | • |

:

A PETITION OF CELLCO PARTNERSHIP : PETITION NO. \_\_\_\_

D/B/A VERIZON WIRELESS FOR A

DECLARATORY RULING ON THE NEED

TO OBTAIN A SITING COUNCIL

CERTIFICATE FOR MODIFICATIONS TO

AN EXISTING WIRELESS

TELECOMMUNICATIONS FACILITY AT 54

MEADOW STREET, NEW HAVEN, :

CONNECTICUT : AUGUST 26, 2020

#### PETITION FOR A DECLARATORY RULING: INSTALLATION HAVING NO SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

#### I. <u>Introduction</u>

Pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A."), Cellco Partnership d/b/a Verizon Wireless ("Cellco") hereby petitions the Connecticut Siting Council (the "Council") for a declaratory ruling ("Petition") that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required under Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") for modifications to its existing wireless telecommunications facility at 54 Meadow Street in New Haven, Connecticut (the "Property"). *See* Attachment 1 – Site Vicinity and Site Schematic Maps (Aerial Photograph).

#### II. Factual Background

In April of 1991, Cellco received Council approval to establish a wireless telecommunication facility on the roof of the building at the Property (Council Docket No. 140). Cellco currently maintains twelve (12) antennas (three (3) sectors of four (4) antennas) attached to the façade of the rooftop penthouse on the building. Equipment associated with the Cellco antennas is located in a secure equipment room inside the building. The Property is owned by

Gateway Partners LLC (the "Owner"). MCM Holdings LLC manages the rooftop telecommunications facilities at the Property for the Owner.

#### III. Proposed Construction Activity

#### A. Cellco's Proposed Modifications to the New Haven Facility

The proposed facility modifications will involve the removal of nine (9) existing antennas and the installation of twelve (12) new antennas (fifteen (15) total) and ten (10) remote radio heads ("RRHs") at various locations on the roof of the building. Three (3) antennas will remain attached to the penthouse façade; four (4) new antennas will also be attached to the penthouse façade (Beta and Beta/Gamma Sector antennas); Two (2) existing antennas and four (4) new antennas will be attached to the existing mechanical screen wall in the northwest corner of the building rooftop (Alpha and Delta Sector antennas); and one (1) existing antenna and one (1) new antenna will be attached to the building façade along the southeast corner of the building (Beta and Gama Sector antennas). (See Cellco's Project Plans included in Attachment 2).

Cellco is licensed to provide wireless telecommunications services in the 850 MHz, 1900 MHz, 2100 MHz and 28 GHz frequency ranges in New Haven and throughout the State of Connecticut. The modified facility will utilize all of Cellco's frequency ranges. Specifications for Cellco's antennas and remote radio heads are included in <a href="https://example.com/Attachment-3">Attachment 3</a>. A Structural Assessment Letter confirming that the building's structural components and the antenna mounting systems can adequately support Cellco's proposed facility modifications is included in Attachment 4.

#### IV. Discussion

A. The Proposed Facility Modifications Will Not Have A Substantial Adverse Environmental Effect

The Public Utility Environmental Standards Act (the "Act"), C.G.S. § 16-50g et seq.,

provides for the orderly and environmentally compatible development of telecommunications facilities in the state to avoid "a significant impact on the environment and ecology of the State of Connecticut." C.G.S. § 16-50g. To achieve these goals, the Act established the Council, and requires a Certificate of Environmental Compatibility and Public Need for the construction of cellular telecommunication towers "that may, as determined by the council, have a substantial adverse environmental effect". C.G.S. § 16-50k(a).

#### 1. Physical Environmental Effects

Cellco respectfully submits that the modifications to its roof-top facility will not involve a significant alteration in the physical and environmental characteristics of the Property.

#### 2. Visual Effects

Portions of the existing building and Cellco's modified facility may be visible from the commercial and industrial properties that surround the Property. The modifications proposed by Cellco will not, however, increase the visibility of the Cellco facility or the building and will not detract from the general characteristics of the building at the Property. A Photo Documentation & Simulations report ("Visual Assessment") is included in Attachment 5.

#### 3. FCC Compliance

Radio frequency ("RF") emissions from Cellco's modified facility will not exceed the maximum permissible exposure limits established by the Federal Communications Commission ("FCC"). Included in <u>Attachment 6</u> is a general power density table that demonstrates that Cellco's modified facility will operate within the FCC safety standards.

#### 4. FAA Notification Not Required

Cellco has run an Obstruction Analysis Report ("FAA Report") for the proposed New Haven Facility modifications. According to the FAA Report, notice of the facility modifications to the FAA is not required. A copy of the FAA Report is included in <u>Attachment 7</u>.

B. Notice to the City, Property Owner and Abutting Landowners

On August 26, 2020, a copy of this Petition was sent to New Haven's Mayor, Justin

Elicker; Aicha Woods, New Haven's Director of City Plan; Gateway Partners LLC, the Owner

of the Property, and MCM Holdings LLC, the roof-top manager. Copies of the letters sent to

Mayor Elicker, Ms. Woods, Gateway Partners LLC, and MCM Holdings LLC are included in

Attachment 8.

A copy of this Petition was also sent to the owners of land that abut the Property. A

sample abutter's letter and the list of those abutting landowners to whom notice was sent is

included in Attachment 9.

V. Conclusion

Based on the information provided above, Cellco respectfully requests that the Council

issue a determination, in the form of a declaratory ruling, that the replacement and relocation of

antennas, RRHs and related equipment, as described above, will not have a substantial adverse

environmental effect and does not require the issuance of a Certificate of Environmental

Compatibility and Public Need pursuant to § 16-50k of the General Statutes.

Respectfully submitted,

CELLCO PARTNERSHIP d/b/a VERIZON

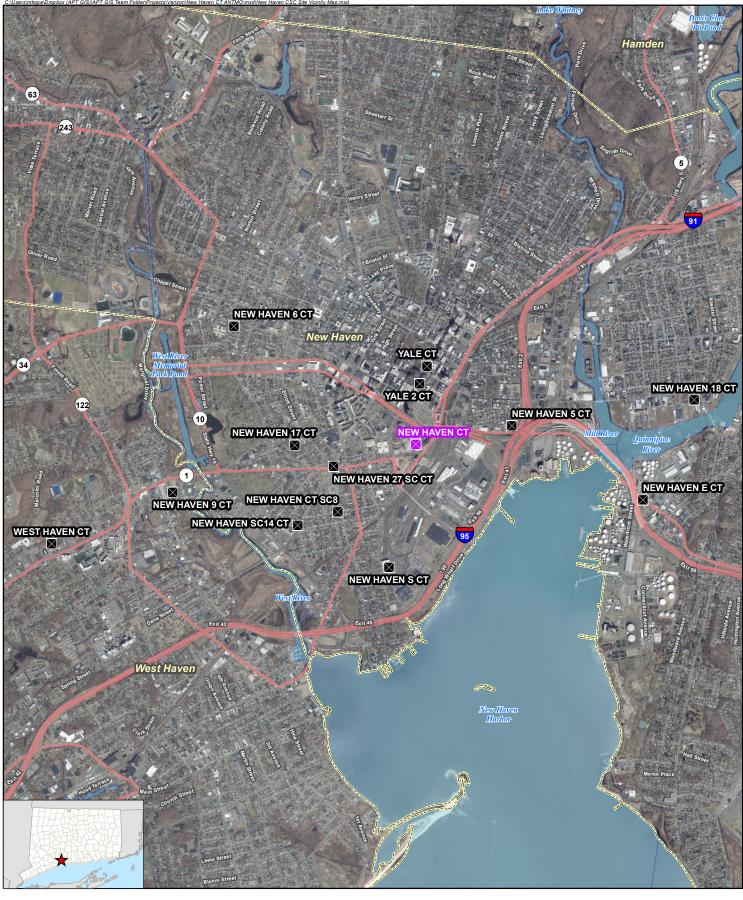
WIRELESS

By Kunse gmm-

Kenneth C. Baldwin, Esq.

Robinson & Cole LLP

280 Trumbull Street


Hartford, CT 06103-3597

(860) 275-8200

Its Attorneys

-4-

# **ATTACHMENT 1**

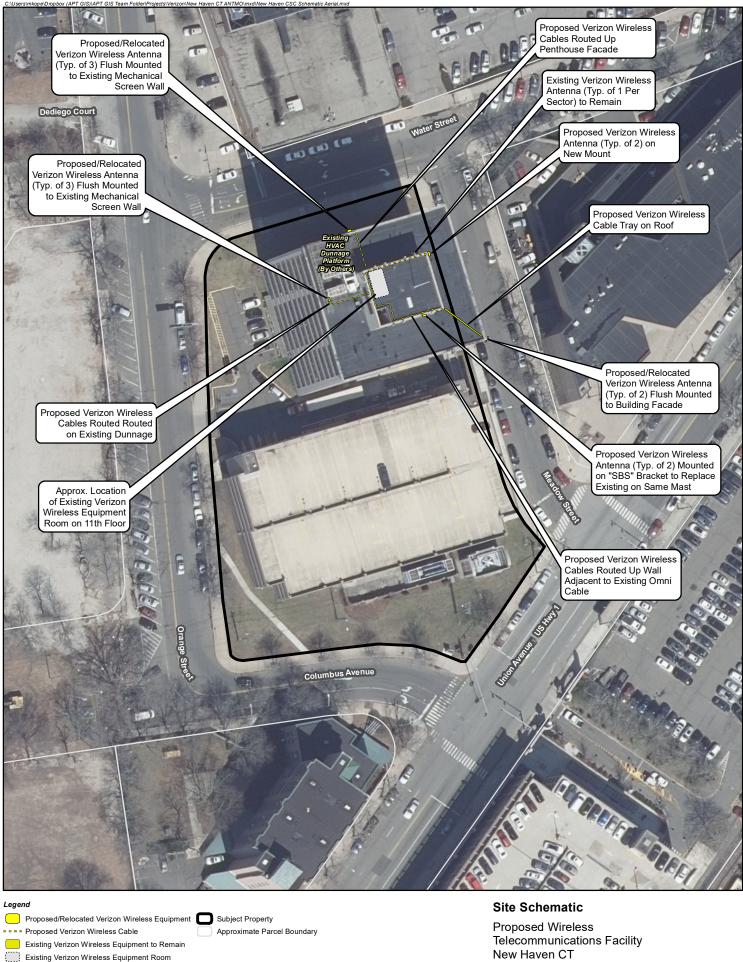


#### Legend

Proposed Verizon Wireless Facility

Surrounding Verizon Wireless Facilities

Municipal Boundary


## 3,000 1,500 0 3,000 Feet

#### **Site Vicinity Map**

Proposed Wireless Telecommunications Facility New Haven CT 54 Meadow Street New Haven, Connecticut

verizon /

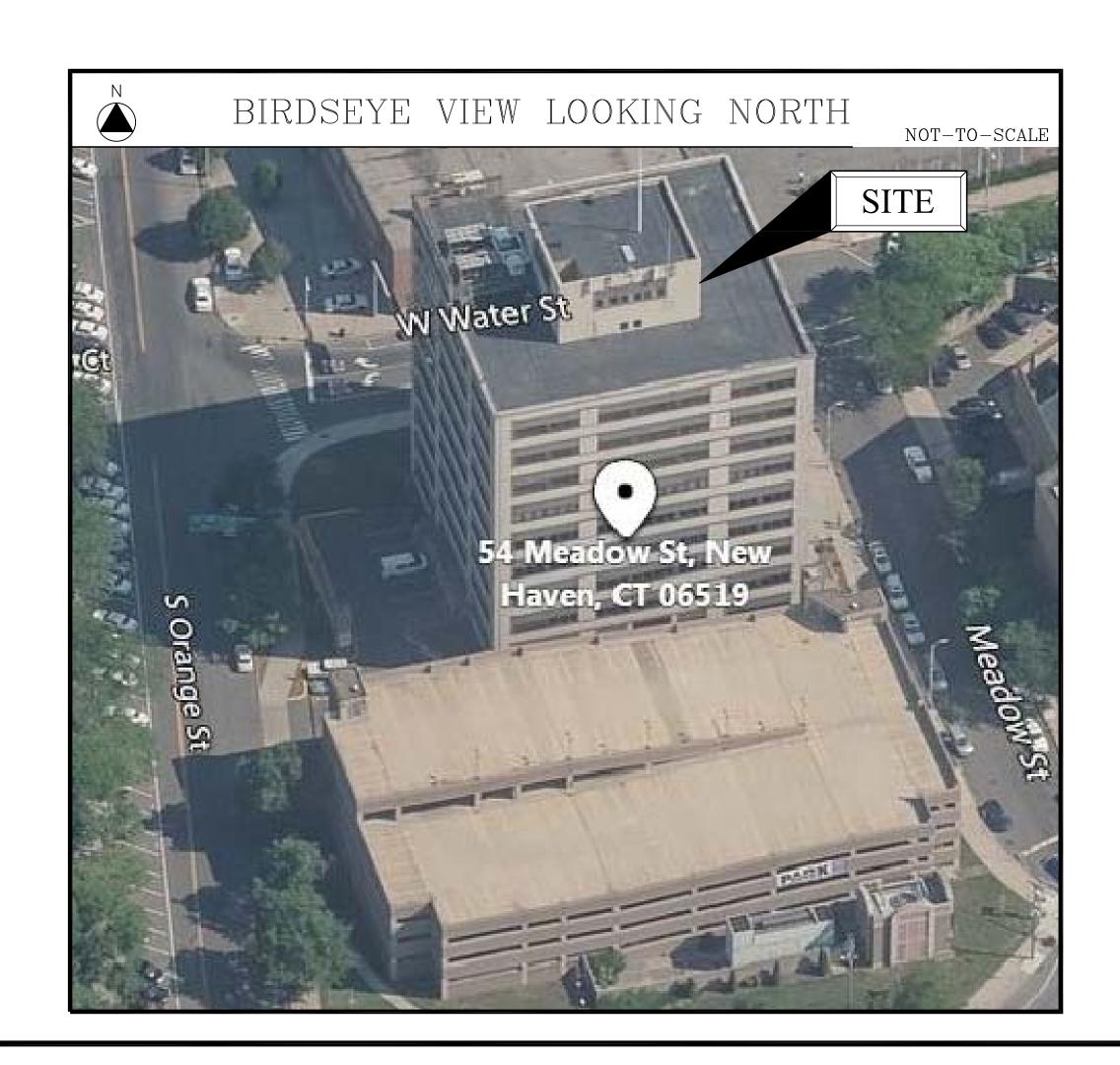




54 Meadow Street New Haven, Connecticut



verizon/


# **ATTACHMENT 2**

# Verizon/

# WIRELESS COMMUNICATIONS FACILITY

SITE NAME: NEW HAVEN CT

54 MEADOW ST. NEW HAVEN, CT 06519



| PRO                           | JECT SUMMARY                                                                               |  |  |
|-------------------------------|--------------------------------------------------------------------------------------------|--|--|
| SITE NAME:                    | NEW HAVEN CT                                                                               |  |  |
| SITE ADDRESS:                 | 54 MEADOW ST.<br>NEW HAVEN, CT 06519                                                       |  |  |
| PROPERTY OWNER:               | GATEWAY PARTNERS LLC<br>C/O LEXINGTON PROPERTY MGMT.<br>30 LEWIS ST.<br>HARTFORD, CT 06103 |  |  |
| ROOFTOP MGMT:                 | MCM SITE # CT-520                                                                          |  |  |
| PARCEL ID:                    | 238/ 0106/ 00101-00106                                                                     |  |  |
| COORDINATES:                  | 41° 17' 59.543" N 72° 55' 35.570" W                                                        |  |  |
| APPLICANT:                    | CELLCO PARTNERSHIP<br>d.b.a. VERIZON WIRELESS<br>20 ALEXANDER DR.<br>WALLINGFORD, CT 06492 |  |  |
| VERIZON WIRELESS<br>CONTACTS: | ARLINDO NETO - CONSTRUCTION<br>ALEKSEY TYURIN - LEASING                                    |  |  |
| LEGAL/REGULATORY<br>COUNSEL:  | KENNETH C. BALDWIN, ESQ.<br>ROBINSON & COLE, LLP<br>(860) 275-8345                         |  |  |

|              | DRAWING SCHEDULE         |
|--------------|--------------------------|
| SHEET NO.    | SHEET DESCRIPTION        |
| T-1          | TITLE SHEET              |
| C-1          | ROOF PLAN - EXISTING     |
| C-2          | ROOF PLAN - PROPOSED     |
| C <b>-</b> 3 | ELEVATIONS               |
| C-4          | ANTENNA PLANS & SECTIONS |

Cellco Partnership d/b/a Verizon Wireless

verizon /

WALLINGFORD, CT 06492

20 ALEXANDER DRIVE

On Air Engineering, LLC

88 Foundry Pond Road
Cold Spring, NY 10516

LICENSURE



DAVID WEINPAHL, P.E.

| NO.: | DATE:    | SUBMISSIONS                 |
|------|----------|-----------------------------|
| 0    | 06.06.20 | REVIEW SET                  |
| 1    | 06.19.20 | REVISED PER CLIENT COMMENTS |
| 2    | 07.13.20 | CSC FILING                  |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
| I    |          |                             |

ANTMO 28GHz CARRIER ADD ZONING DRAWINGS

DW

SITE NAME:

NEW HAVEN CT

PROJECT INFORMATION:

54 MEADOW ST. NEW HAVEN, CT 06519

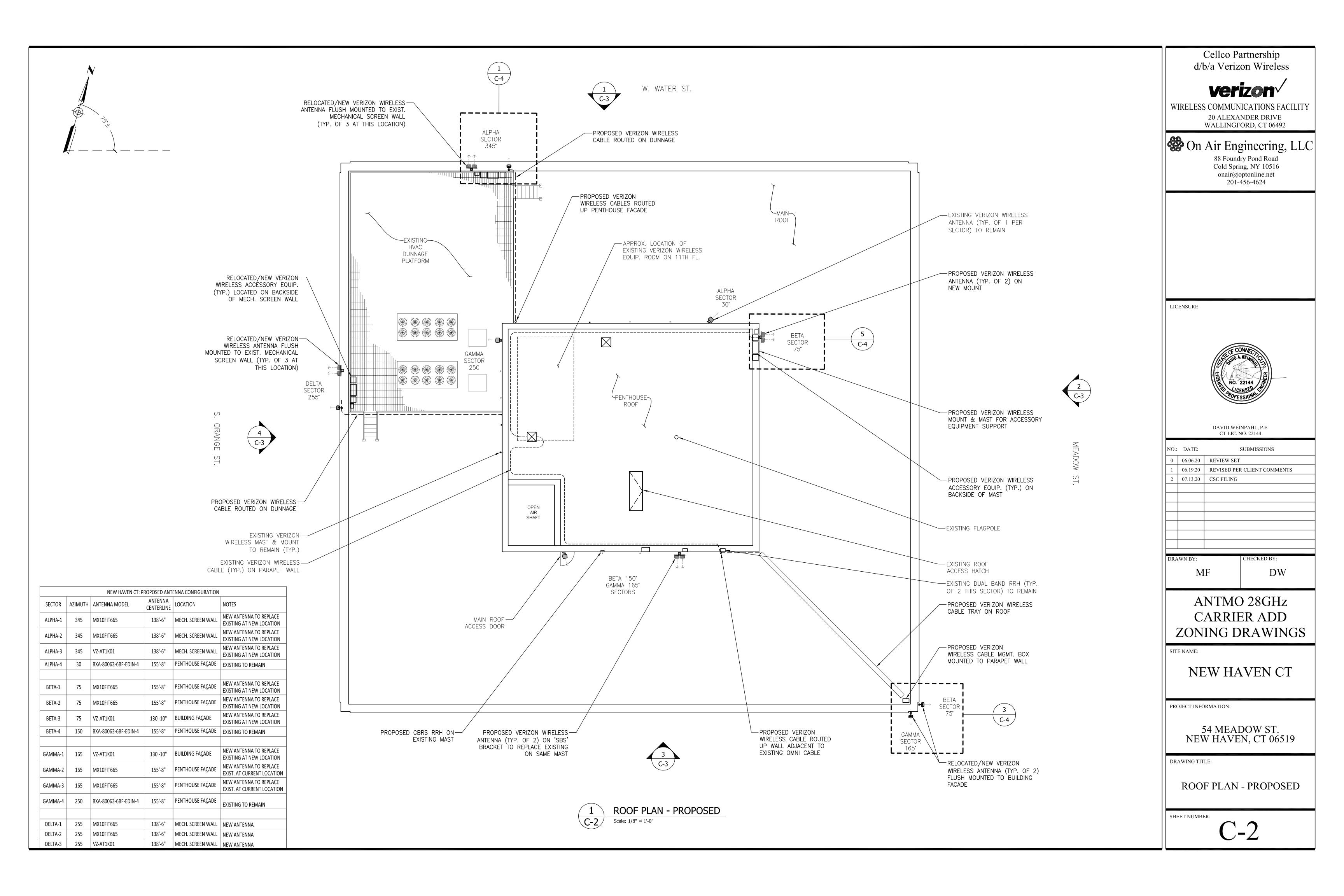
DRAWING TITLE:

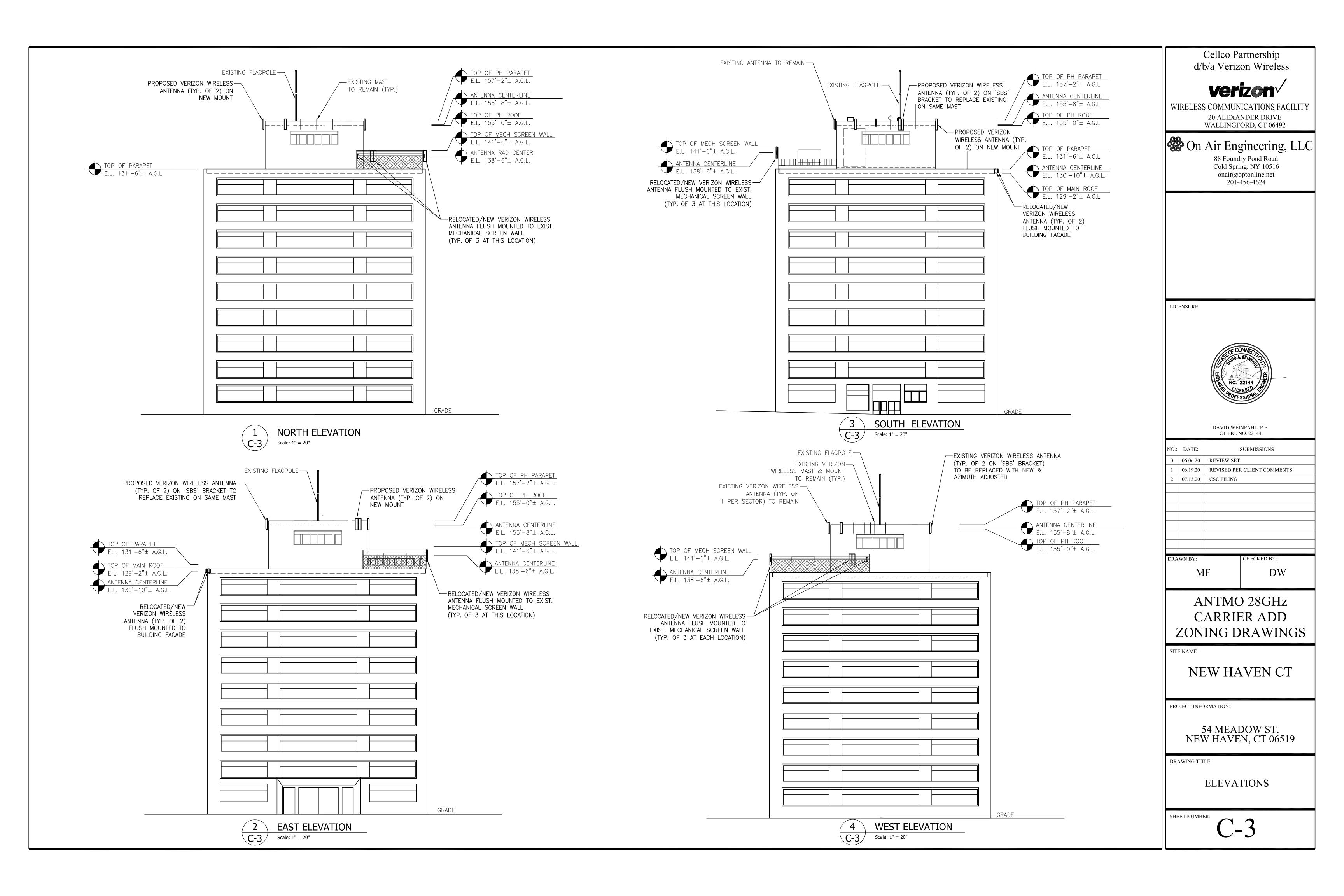
TITLE SHEET

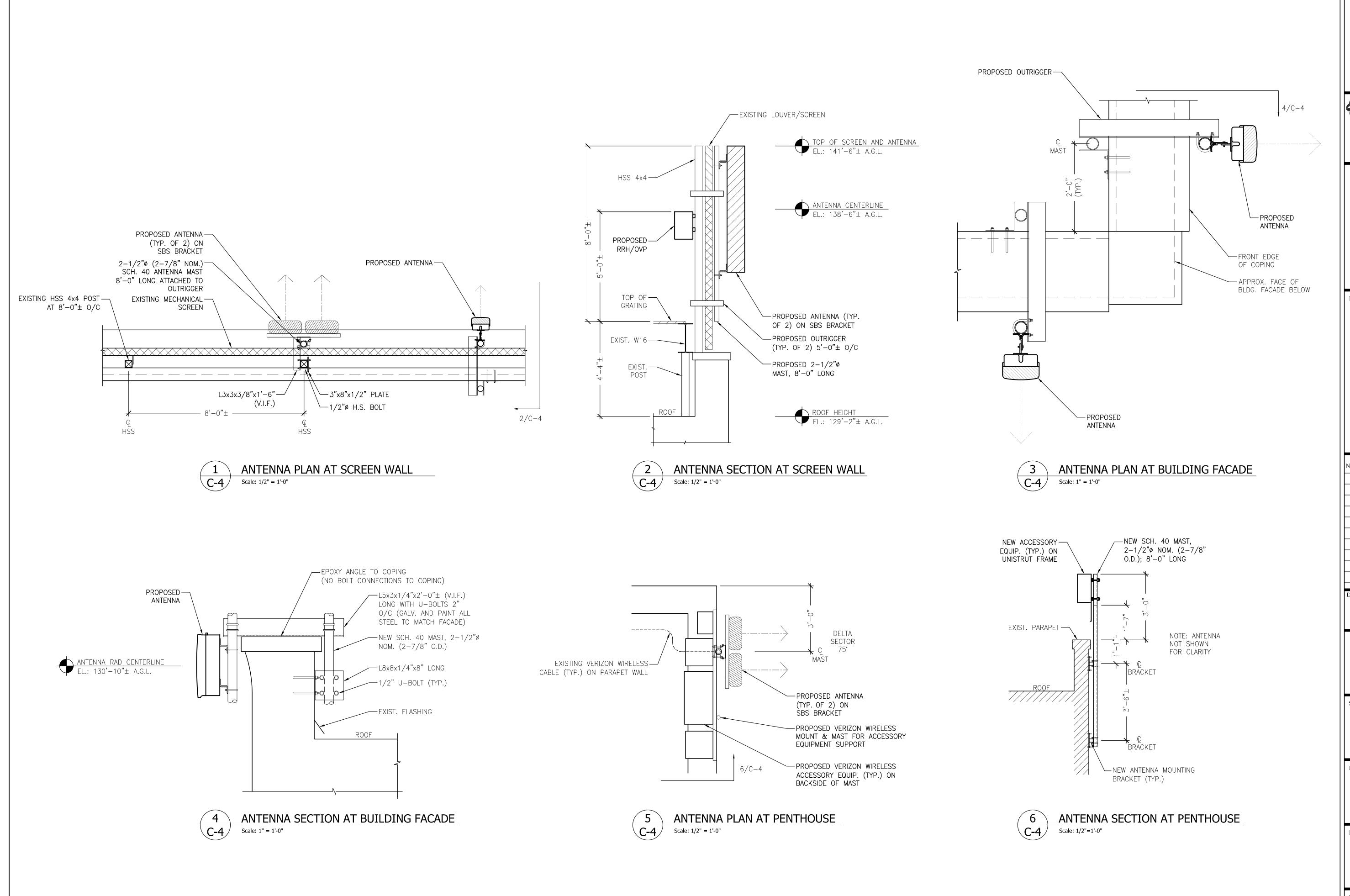
SHEET NUMBER:

**T-**2

## PROJECT DESCRIPTION


- REPLACEMENT & RELOCATION OF SEVERAL EXISTING VERIZON PANEL ANTENNAS CURRENTLY FACADE MOUNTED TO THE CENTRAL ROOFTOP PENTHOUSE. THE TOTAL ANTENNA QUANTITY WILL NCREASE FROM (12) TO (15) PANEL ANTENNAS.


- NEW ANTENNAS LOCATIONS INCLUDE FLUSH MOUNTS ON AN EXISTING MECHANICAL SCREEN WALL AND THE BUILDING FACADE. SEVERAL ANTENNAS TO REMAIN ON PENTHOUSE FACADE.


- ACCESSORY EQUIPMENT (RRH's, CABLE BOXES, ETC.) SHALL ALSO BE REPLACED AND RELOCATED WITH THEIR ASSOCIATED ANTENNA SECTORS.

Cellco Partnership d/b/a Verizon Wireless W. WATER ST. WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 APPROX. LOCATION OF EXISTING VERIZON WIRELESS On Air Engineering, LLC EQUIP. ROOM ON 11TH FL. 88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net 201-456-4624 EXISTING VERIZON WIRELESS ANTENNA (TYP.
OF 2 ON "SBS" BRACKET) TO BE REPLACED
AT NEW LOCATION (TYP. AT 2 SECTORS) HVAC DUNNAGE PLATFORM — EXISTING VERIZON WIRELESS ANTENNA (TYP. OF 1 PER ALPHA SECTOR 30° SECTOR) TO REMAIN LICENSURE -PENTHOUSE-ROOF DAVID WEINPAHL, P.E. CT LIC. NO. 22144 GAMMA SECTOR 250°/280° -EXISTING VERIZON EXISTING VERIZON WIRELESS— WIRELESS CABLE (TYP.) ON PARAPET WALL ANTENNA (TYP. OF 2 ON "SBS" BRACKET) TO BE REPLACED AT NEW LOCATION (TYP. AT 2 SECTORS) OPEN AIR SHAFT — EXISTING FLAGPOLE EXISTING VERIZON WIRELESS— ANTENNA (TYP. OF 1 PER SECTOR) TO BE REMOVED AND REPLACED AT NEW LOCATION ON —EXISTING ROOF ACCESS HATCH DWMF BLDG. FACADE; REFER TO 1/C-2 ANTMO 28GHz EXISTING VERIZON WIRELESS — BETA SECTOR 150° ACCESSORY EQUIP. (TYP.) TO BE RELOCATED WITH ANTENNAS CARRIER ADD (TYP. FOR ALPHA/GAMMA) ZONING DRAWINGS MAIN ROOF — ACCESS DOOR SITE NAME: NEW HAVEN CT PROJECT INFORMATION: 54 MEADOW ST. NEW HAVEN, CT 06519 EXISTING RAYCAP—OVP TO REMAIN EXISTING VERIZON WIRELESS ANTENNA — EXISTING DUAL BAND RRH (TYP. OF (TYP. OF 2 ON 'SBS' BRACKET) TO BE REPLACED WITH NEW & AZIMUTH ADJUSTED 2 THIS SECTOR) TO REMAIN DRAWING TITLE: ROOF PLAN - EXISTING ROOF PLAN - EXISTING C-1 Scale: 1/8" = 1'-0" SHEET NUMBER:

| NO.: | DATE:    | SUBMISSIONS                 |
|------|----------|-----------------------------|
| 0    | 06.06.20 | REVIEW SET                  |
| 1    | 06.19.20 | REVISED PER CLIENT COMMENTS |
| 2    | 07.13.20 | CSC FILING                  |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
| DRA` | WN BY:   | CHECKED BY:                 |







Cellco Partnership d/b/a Verizon Wireless

verizon/

WIRELESS COMMUNICATIONS FACILITY
20 ALEXANDER DRIVE
WALLINGFORD, CT 06492

# On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net 201-456-4624

LICENSURE



DAVID WEINPAHL, P.E. CT LIC. NO. 22144

| 0   | 06.06.20 | REVIEW SET  |                   |
|-----|----------|-------------|-------------------|
| 1   | 06.19.20 | REVISED PER | R CLIENT COMMENTS |
| 2   | 07.13.20 | CSC FILING  |                   |
|     |          |             |                   |
|     |          |             |                   |
|     |          |             |                   |
|     |          |             |                   |
|     |          |             |                   |
|     |          |             |                   |
|     |          |             |                   |
|     |          |             |                   |
| DRA | WN BY:   |             | CHECKED BY:       |
|     | M        | T           | DW                |

ANTMO 28GHz CARRIER ADD ZONING DRAWINGS

SITE NAME:

NEW HAVEN CT

PROJECT INFORMATION:

54 MEADOW ST. NEW HAVEN, CT 06519

DRAWING TITLE:

ANTENNA PLANS & SECTIONS

SHEET NUMBER:

**C**-4

# **ATTACHMENT 3**



#### MX10FIT665-xx

#### NWAV™ X-Pol Ten-Port Antenna

### X-Pol Ten-Port 6 ft, 65° Form in Tighter with Smart Bias Ts, 698-4200 MHz:

#### 2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- SON-Ready array spacing supports beamforming capabilities
- Suitable for 3G, 4G, and 5G interface technologies
- Integrated Smart Bias-Ts reduce leasing costs
- Optimized form factor for reduced wind loading





| Electrical specification (minimum/maximum)                | Ports 1, 2                 |         | Ports 3, 4, 5, 6 |           |           |  |
|-----------------------------------------------------------|----------------------------|---------|------------------|-----------|-----------|--|
| Frequency bands, MHz                                      | 698-798                    | 824-894 | 1695-1880        | 1850-1990 | 1920-2180 |  |
| Polarization                                              | ± 4                        | 45°     |                  | ± 45°     |           |  |
| Average gain over all tilts, dBi                          | 14.4                       | 14.8    | 17.8             | 18.1      | 18.2      |  |
| Horizontal beamwidth (HBW), degrees <sup>1</sup>          | 66.0                       | 57.0    | 63.0             | 63.0      | 58.0      |  |
| Front-to-back ratio, co-polar power @180°± 30°, dB        | >22                        | >22.0   | >25.0            | >25.0     | >25.0     |  |
| X-Pol discrimination (CPR) at boresight, dB               | >17.0                      | >15.6   | >23              | >18       | >18       |  |
| Vertical beamwidth (VBW), degrees <sup>1</sup>            | 13.5                       | 12.0    | 6.0              | 5.5       | 5.4       |  |
| Electrical downtilt (EDT) range, degrees                  | 2-14                       |         | 0-9              |           |           |  |
| First upper side lobe (USLS) suppression, dB <sup>1</sup> | ≤-17.0                     | ≤-16.0  | ≤-17.0           | ≤-16.0    | ≤-16.0    |  |
| Cross-polar isolation, port-to-port, dB <sup>1</sup>      | 25                         | 25      | 25               | 25        | 25        |  |
| Max VSWR / return loss, dB                                | 1.5:1 / -14.0 1.5:1 / -14. |         | 1.5:1 / -14.0    |           |           |  |
| Max passive intermodulation (PIM), 2x20W carrier, dBc     | -153 -153                  |         |                  |           |           |  |
| Max input power per any port, watts                       | 3                          | 00      |                  | 250       |           |  |
| Total composite power all ports (1-10), watts             |                            | 1500    |                  |           |           |  |

<sup>&</sup>lt;sup>1</sup> Typical value over frequency and tilt



#### **MX10FIT665-xx**

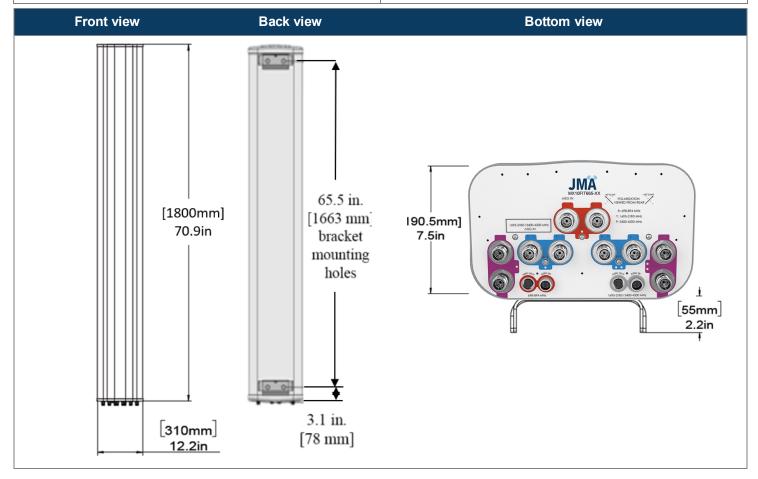
#### **PRELIMINARY**

#### NWAV™ X-Pol Ten-Port Antenna

| Electrical specification (minimum/maximum)                | al specification (minimum/maximum) Ports 7, 8, 9, 10 |                                    |           |           |
|-----------------------------------------------------------|------------------------------------------------------|------------------------------------|-----------|-----------|
| Frequency bands, MHz                                      | 3400-3550                                            | 3550-3700                          | 3700-3950 | 3950-4200 |
| Polarization                                              |                                                      | ± 45°                              |           |           |
| Average gain over all tilts, dBi                          | 13.6                                                 | 13.8                               | 14.0      | 14.2      |
| Horizontal beamwidth (HBW), degrees                       | 65                                                   | 62                                 | 60        | 58        |
| Front-to-back ratio, co-polar power @180°± 30°, dB        | >23                                                  | >23                                | >23       | >22       |
| Vertical beamwidth (VBW), degrees <sup>1</sup>            | 20                                                   | 19.6                               | 19.3      | 18.5      |
| Electrical downtilt (EDT) range, degrees                  | 2                                                    | 2-12 orderable in 1 deg increments |           |           |
| First upper side lobe (USLS) suppression, dB <sup>1</sup> | ≤-15                                                 | ≤-15                               | ≤-15      | ≤-15      |
| Cross-polar isolation, port-to-port, dB <sup>1</sup>      | 25                                                   | 25                                 | 25        | 25        |
| Max VSWR / return loss, dB                                |                                                      | 1.5:1 / -14.0                      |           |           |
| Max input power per any port, watts                       |                                                      | 150                                |           |           |
| Total composite power all ports (1-10), watts             |                                                      | 15                                 | 500       |           |

<sup>&</sup>lt;sup>1</sup> Typical value over frequency and tilt

<sup>\*</sup> For ports 7-10, the electrical downtilt is FET configured with internal RET, where the required electrical downtilt is defined at the time of order per the ordering information below.


| Ordering information                                                           |                                                                                                                                  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Antenna model                                                                  | Description                                                                                                                      |  |
|                                                                                | 6F X- Pol 10 Port FIT 65° 2-14°/ 0-9°/ 2-12°, 4.3-10 & SBTs                                                                      |  |
| MX10FIT665-xx (xx represents the FET in one degree increments for 3.4-4.2 GHz) | xx=02 thru 12 for each 1 degree tilt 3.4-4.2 GHz<br>Examples MX10FIT665-02 – 2deg, MX10FIT665-09 – 9deg, MX10FIT665-12-<br>12deg |  |
| Optional accessories                                                           |                                                                                                                                  |  |
| AISG cables                                                                    | M/F cables for AISG connections                                                                                                  |  |
| PCU-1000 RET controller                                                        | Stand-alone controller for RET control and configurations                                                                        |  |
| 91900314-02                                                                    | Dual Mount Bracket (see 91900314 bracket document for details)                                                                   |  |



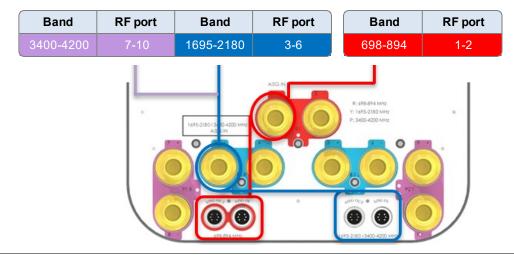
#### NWAV™ X-Pol Ten-Port Antenna

**MX10FIT665-xx** 

| Mechanical specifications                                   |                                      |
|-------------------------------------------------------------|--------------------------------------|
| Dimensions height/width/depth, inches (mm)                  | 70.9/ 12.2/ 7.5 (1800/ 309.9/ 190.5) |
| Shipping dimensions length/width/height, inches (mm)        | 76/ 20/ 14.5 (1930/ 508/ 368)        |
| No. of RF input ports, connector type, and location         | 10 x 4.3-10 female, bottom           |
| RF connector torque                                         | 96 lbf·in (10.85 N·m or 8 lbf·ft)    |
| Net antenna weight, lb (kg)                                 | 53.4 (24.3)                          |
| Shipping weight, lb (kg)                                    | 97.5 (44.3)                          |
| Antenna mounting and downtilt kit included with antenna     | 91900318                             |
| Net weight of the mounting and downtilt kit, lb (kg)        | 20.3 (9.2)                           |
| Range of mechanical up/down tilt                            | -2° to 12°                           |
| Rated wind survival speed, mph (km/h)                       | 150 (241)                            |
| Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N) | 74.1 (330), 26.1 (116), 69.8 (311)   |
| Equivalent flat plate @ 100 mph and Cd=2, sq ft             | 1.49                                 |






#### NWAV™ X-Pol Ten-Port Antenna

MX10FIT665-xx

| Remote electrical tilt (RET 1000) information             |                                                              |
|-----------------------------------------------------------|--------------------------------------------------------------|
| RET location                                              | Integrated into antenna                                      |
| RET interface connector type                              | 8-pin AISG connector per IEC 60130-9 or RF port bias-t       |
| RET connector torque                                      | Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)    |
| RET interface connector quantity                          | 2 pairs of AISG male/female connectors and 2 RF port bias-ts |
| RET interface connector location                          | Bottom of the antenna                                        |
| Total no. of internal RETs 698-894 MHz                    | 1                                                            |
| Total no. of internal RETs 1695-2180 MHz                  | 1                                                            |
| Total no. of internal RETs 3400-4200 MHz                  | 1                                                            |
| RET input operating voltage, vdc                          | 10-30                                                        |
| RET max power consumption, idle state, W                  | ≤ 2.0                                                        |
| RET max power consumption, normal operating conditions, W | ≤ 13.0                                                       |
| RET communication protocol                                | AISG 2.0 / 3GPP                                              |

#### **RET and RF connector topology**

Each RET device can be controlled either via the designated external AISG connector or RF smart bias-t port as shown below:



Note: The RET Device for 3400-4200 MHz is connected via the 1695-2180 Port 3 Bias T port or 1695-2180/3400-4200 MHz AISG ports.

| 5 sets of radiating arrays                                |
|-----------------------------------------------------------|
| R1: 698-894 MHz<br>B1: 1695-2180 MHz<br>B2: 1695-2180 MHz |
| P1: 3400-4200 MHz<br>P2: 3400-4200 MHz                    |

Array topology

| Band      | RF port |
|-----------|---------|
| 698-894   | 1-2     |
| 1695-2180 | 3-4     |
| 1695-2180 | 5-6     |
| 3400-4200 | 7-8     |
| 3400-4200 | 9-10    |



## **SAMSUNG**

# Dual-Band Radio Unit 700/850MHz (B13/B5)

RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.



The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

#### Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

#### **Key Technical Specifications**

Duplex Type: FDD Operating Frequencies:

B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L)

Weight: 31.9kg Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

## **SAMSUNG**

# Dual-Band Radio Unit AWS/PCS (B66/B2)

RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.



The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

#### Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

#### **Key Technical Specifications**

Duplex Type: FDD Operating Frequencies:

B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz)

Instantaneous Bandwidth:

70MHz(B66) + 60MHz(B2)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps)

Dimensions: 380 x 380 x 255mm (36.8L)

Weight: 38.3kg

Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

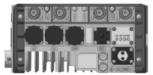
Cooling: Natural convection



## **Specifications**

The table below outlines the main specifications of the AU:


Table 1. Specifications


| Item          |                 | AT1K01                                                                                                                                                                                           |  |  |  |  |  |  |  |
|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Technology    |                 | 5G NR                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Operating Fre | equency         | 27.5 to 28.35 GHz                                                                                                                                                                                |  |  |  |  |  |  |  |
| RF Chain      |                 | 1024 TR/unit                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Antenna       | Configuration   | 1024 AE (4T4R)                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Array         | Element         | 256 AE (16H16V)/path, 1024 AE/unit                                                                                                                                                               |  |  |  |  |  |  |  |
|               | Gain            | 28 dBi/path                                                                                                                                                                                      |  |  |  |  |  |  |  |
| IBW/OBW       |                 | 850/800 MHz                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Channel Band  | dwidth/Capacity | 100 MHz Max 8CC (50/200/400 MHz will be supported in ES2, SVR19A: 100 MHz)                                                                                                                       |  |  |  |  |  |  |  |
| RF Output Po  | wer             | 26 dBm/path, 32 dBm/unit                                                                                                                                                                         |  |  |  |  |  |  |  |
| Input Voltage |                 | -48 V DC (-36 to -58 V DC) or 100 to 240 V AC                                                                                                                                                    |  |  |  |  |  |  |  |
| Input Current |                 | 10.9 A @ -48 V DC<br>4.3 A @ 100 to 240 V AC                                                                                                                                                     |  |  |  |  |  |  |  |
| LED           |                 | Total: 1 EA Powered, Operational, Fail (3 Status w/different colors)                                                                                                                             |  |  |  |  |  |  |  |
| Operational T | emperature      | -40~55°C (with solar load)                                                                                                                                                                       |  |  |  |  |  |  |  |
| Humidity      |                 | TBD                                                                                                                                                                                              |  |  |  |  |  |  |  |
| IP rating     |                 | IP65                                                                                                                                                                                             |  |  |  |  |  |  |  |
| EMC           | _               | FCC Title 47 CFR Part 15 Subpart B                                                                                                                                                               |  |  |  |  |  |  |  |
| Safety        |                 | UL 60950 or 62368                                                                                                                                                                                |  |  |  |  |  |  |  |
| Installation  |                 | Pole/Wall/Tower mounting                                                                                                                                                                         |  |  |  |  |  |  |  |
| Dimension (M  | / × D × H)      | <ul> <li>9.57 in. (243 mm) × 6.89 in. (175 mm) × 16.81 in. (427 mm) •(@without cover)</li> <li>9.57 in. (243 mm) × 6.89 in. (175 mm) × 19.4 in. (493 mm) (@with cover &amp; GPS Port)</li> </ul> |  |  |  |  |  |  |  |
| Volume        |                 | < 18.16 L                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Weight        |                 | < 33.07 lb (15.8 kg)                                                                                                                                                                             |  |  |  |  |  |  |  |

# [CBRS RRH] Spec.

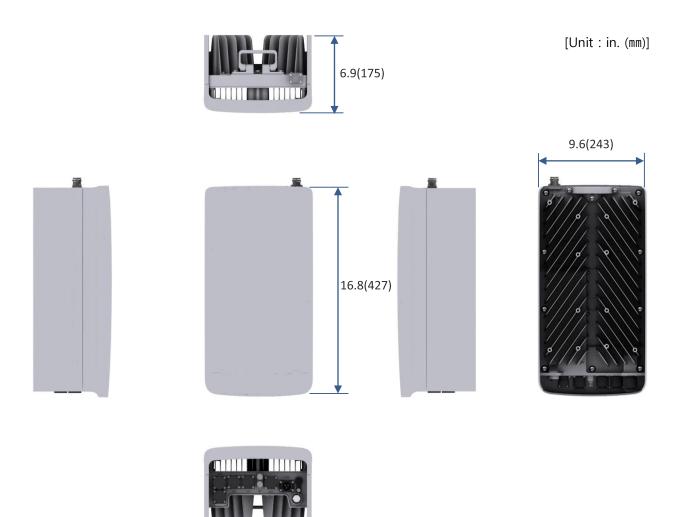








Current Size: 216 x 307 x 105.5 mm (6.99L) (8.5 x 12.1 x 4.1 inch., excluding Port Guard)


Design is subject to minor change

|                            | 2 16                                                              |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| Item                       | Specification                                                     |  |  |  |  |  |  |
| Band                       | Band 48 (3.5 GHz)                                                 |  |  |  |  |  |  |
| Frequency                  | 3550~3700 MHz                                                     |  |  |  |  |  |  |
| IBW                        | 150 MHz                                                           |  |  |  |  |  |  |
| OBW                        | 80 MHz                                                            |  |  |  |  |  |  |
| # of Carriers              | 5/10/15/20 MHz x 4 carriers                                       |  |  |  |  |  |  |
| RF Chain                   | 4TX / 4RX                                                         |  |  |  |  |  |  |
| RF Output Power            | 4 path x 5 W (Total: 20 W = 43 dBm)                               |  |  |  |  |  |  |
| & EIRP                     | (EIRP: 47 dBm / 10 MHz)                                           |  |  |  |  |  |  |
| RX Sensitivity             | Typical : -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)              |  |  |  |  |  |  |
| Modulation                 | 256-QAM support (1024-QAM with 1~2dB power back-off)              |  |  |  |  |  |  |
| Innut Davies               | -48 VDC (-38 to -57 VDC, 1 SKU),                                  |  |  |  |  |  |  |
| Input Power                | with clip-on AC-DC converter (Option)                             |  |  |  |  |  |  |
| Power Consumption          | About 160 Watt @ 100% RF load, typical conditions                 |  |  |  |  |  |  |
| Volume                     | Under 7L (w/o Antenna), Under 9.6L (with antenna)                 |  |  |  |  |  |  |
| Weight                     | Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.   |  |  |  |  |  |  |
| Operating Temperature      | -40°C (-40°F) ~ 55°C (131°F) (W/o solar load)                     |  |  |  |  |  |  |
| Cooling                    | Natural convection                                                |  |  |  |  |  |  |
|                            | 3GPP 36.104 Category A                                            |  |  |  |  |  |  |
| Unwanted Emission          | [B48] : FCC 47 CFR 96.41 e)                                       |  |  |  |  |  |  |
| Optic Interface            | 20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di    |  |  |  |  |  |  |
| CPRI Cascade               | Not supported                                                     |  |  |  |  |  |  |
| # of Antenna Port          | 4                                                                 |  |  |  |  |  |  |
| External Alarm (UDA)       | 4                                                                 |  |  |  |  |  |  |
| RET                        | AISG 2.2                                                          |  |  |  |  |  |  |
| TMA & built-in Bias-T I//F |                                                                   |  |  |  |  |  |  |
| and PIM cancellation       | Not supported                                                     |  |  |  |  |  |  |
|                            | Pole, wall, tower, back to back, side by side (for external ant), |  |  |  |  |  |  |
| Mounting Options           | 3 RRH with Clip-on Antenna on the pole                            |  |  |  |  |  |  |
|                            | Integrated (Clip-on) antenna (Option),                            |  |  |  |  |  |  |
| Antenna Type               | External antenna (Option)                                         |  |  |  |  |  |  |
|                            | Not Supported (HW Resource reserved                               |  |  |  |  |  |  |
| NB-IoT                     | for 1 Guard Band NB-IoT per LTE carrier)                          |  |  |  |  |  |  |
| Spectrum Analyzer          | TX/RX Support                                                     |  |  |  |  |  |  |
| External Alarm (UDA)       | 4                                                                 |  |  |  |  |  |  |
| 5G NR                      | Support with S/W upgrade                                          |  |  |  |  |  |  |
| XRAN                       | Support with S/W upgrade                                          |  |  |  |  |  |  |
|                            |                                                                   |  |  |  |  |  |  |

## 5G NR AU (AT1K01) Product Specifications

|                               | 28GHz                     | 39GHz               |
|-------------------------------|---------------------------|---------------------|
| Integrated AU                 |                           |                     |
| Operating frequency           | 26.5 ~ 29. 5GHz           | 37 ~ 40GHz          |
| IBW/OBW                       | 850MHz/800MHz             | 1.4GHz/800MHz       |
| EIRP                          | 60dBm                     | 59dBm               |
| Antenna Gain                  | 25dBi                     | 24dBi               |
| Tx/Rx                         | 4T4R                      |                     |
| Antenna Elements              | 1,024                     |                     |
| Beam Scan Range               | 120H / 4                  | 40V                 |
| Size/Weight                   | 9.6 x 16.8 x 6.9 in (18.1 | L) / 15.0Kg (33lbs) |
| Input Power                   | -48VDC / 100 °            | ~ 240VAC            |
| Power Consumption             | 362W                      |                     |
| Midhaul<br>(gNB-CU Interface) | 10G Optic x               | 2 ports             |
| Installation                  | Outdoor Pole/W            | /all Mount          |
| Clock Synchronization         | GPS and IEEE              | 1588v2              |
| Operating Temperature         | -40 deg C to +55 deg      | C with solar load   |
| Cooling                       | Natural Con-              | vection             |

## Appearance



# **ATTACHMENT 4**

#### On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net

July 13, 2020

Mr. Aleksey Tyurin Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Re: New Haven CT - Structural Assessment Letter - ANTMO 28GHz Carrier Add/Sector Add

MCM Site # CT-520; 54 Meadow St., New Haven, CT

Dear Aleksey:

This letter serves as a Structural Assessment for the proposed Cellco Partnership (d/b/a Verizon Wireless) antenna modification on the above referenced building.

Verizon Wireless is proposing to modify their existing 3-sector antenna configuration with a 4-sector configuration by replacing existing antennas, adding new antennas and relocating several antennas on the structure. The proposed antenna locations are detailed in Zoning Drawings prepared by our office dated July 13, 2020. Verizon's equipment room is located on the 11th floor inside the building.

Verizon's existing (12) panel antennas are all flush mounted to the central penthouse façade, extending approx. 18" above the parapet wall. The proposed re-configuration will maintain (7) antenna positions on the penthouse, some of which are being relocated to new mounts on the eastern penthouse facade. Verizon's other (5) antennas will be replaced and relocated to the existing mechanical HVAC screen wall framing in the northwest corner of the roof and supplemented with a sixth antenna, all flush mounted to that structure. Lastly, two additional antennas are proposed in southeast corner of the building, mounted to the inside parapet wall and extending over the top to achieve a "flush mount" appearance. Verizon's existing RRH's and OVP's will also be replaced, relocated and supplemented with new equipment as part of the modification, which will yield a total of (15) panel antennas upon completion.

The building structural components have been evaluated for this proposed modification, including the new antenna mounts and we have determined that they are capable of supporting the proposed loading, as per the attached structural calculations.

In conclusion, the proposed Verizon Wireless modification will not negatively impact the structural integrity of the host building and will be installed in accordance with the 2018 Connecticut State Building Code, adopted model codes (as amended) and all referenced standards, including TIA-222-G. Our findings are based on the assumption that the hosting structure and all structural members and appurtenances were properly designed, detailed, fabricated, installed and have been properly maintained since erection. Should you have any questions, please do not hesitate to contact our office.

Very touly yours,

CT License No. 22144

Managing Partner

On Air Engineering, LLC

DW:dw enclosure

## STRUCTURAL CALCULATIONS

**FOR** 

**VERIZON** SITE NAME: NEW HAVEN CT **54 MEADOW ST NEW HAVEN, CT** 

> DAVID A. WEINPAHL, P.E. ON AIR ENGINEERING, LLC 88 FOUNDRY POND ROAD **COLD SPRING, NY 10516**

> > PAUL C. BECK, P.E.

LICENSE NO. (CT) 12949

**PRESIDENT** 

PBA ENGINEERING, P.C. 12 KULICK ROAD FAIRFIELD, NEW JERSEY 07004-3363

PHONE: (973) 276-1700 (973) 276-9766 FAX:

STRUCTURAL ENGINEERS PROJECT NO. N-545

DATE: 6/15/2020 **TOTAL NO. PAGES ATTACHED: 17** 

| New Haven   30   0.186   0.062   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   112   Type A   Yes   North   A0   0.177   0.065   105   115   125   135   89   97   105   115   125   81   89   97   105   115   125   81   81   89   97   105   115   125   81   81   81   81   81   81   81   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (APPENDIX N) MUNICIPALITY - SPECIFIC STRUCTURAL DESIGN PARAMETERS |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|-------|------------------|-----|---------|---------------|--------|---------|--------|-------------------------------------------|---------------------------------------------|---------------------------------------|
| New Haven   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |               |       |                  |     |         |               | Wind D | esign P | aramet | ers                                       |                                             |                                       |
| New Haven   30   0.186   0.062   115   125   135   89   97   105   Type   Yes   Ves   V  | pality                                                            | Snow          |       | ctral<br>rations |     | d Speed | ds, $V_{ult}$ |        | Speeds  |        | Del                                       | oris                                        | e-Prone                               |
| NewIngton   30   0.182   0.064   115   125   135   89   97   105   112   Type A   Yes   New Milford   35   0.198   0.066   105   115   125   81   89   97   105   112   Type B   Type A   Yes   New Milford   35   0.198   0.066   110   120   130   85   93   101   Yes   Norfolk   40   0.175   0.065   105   115   125   81   89   97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Munici                                                            | Ground<br>Loa | Ss    | S <sub>1</sub>   |     |         | Cat           |        | Cat.    | Cat.   | Risk Cat. II<br>& III except<br>Occup I-2 | Risk Cat III<br>Occup I-2 &<br>Risk Cat. IV | Hurricane<br>Regio                    |
| New London   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | New Haven                                                         | 30            | 0.186 | 0.062            | 115 | 125     | 135           | 89     | 97      | 105    |                                           |                                             | Yes                                   |
| NewMorn   30   0.098   0.096   105   115   125   81   89   97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Newington                                                         | 30            | 0.182 | 0.064            | 115 | 125     | 135           | 89     | 97      | 105    |                                           |                                             |                                       |
| Newtown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | New London                                                        | 30            | 0.161 | 0.058            | 125 | 135     | 145           | 97     | 105     | 112    | Type B                                    | Type A                                      | Yes                                   |
| Norfolk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | New Milford                                                       | 35            | 0.198 | 0.066            | 105 | 115     | 125           | 81     | 89      | 97     |                                           |                                             |                                       |
| North Branford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Newtown                                                           | 30            | 0.208 | 0.066            | 110 | 120     | 130           | 85     | 93      |        |                                           |                                             | Yes                                   |
| Branford North North North   40 0.173 0.065 105 115 120 81 89 93   September   105 115 120 81 89 93   September   105 115 120 81 89 93   September   105 112   September   105 |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| North Canaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | North                                                             | 30            | 0.179 | 0.061            | 120 | 130     | 140           | 93     | 101     | 108    |                                           |                                             | Yes                                   |
| Canaan   North Haven   30   0.184   0.062   115   125   135   89   97   105   112   Type A   Yes   Stonington   Stonington   30   0.163   0.059   125   135   145   97   105   112   Type A   Yes   Stonington   Norwalk   30   0.232   0.067   110   120   130   85   93   101   Yes   Norwich   30   0.168   0.060   125   135   145   97   105   112   Type B   Type A   Yes   Old Lyme   30   0.164   0.059   125   135   145   97   105   112   Type B   Type A   Yes   Old Lyme   30   0.164   0.059   125   135   145   97   105   112   Type B   Type A   Yes   Old Saybrook   30   0.164   0.059   125   135   145   97   105   112   Type B   Type A   Yes   Orange   30   0.192   0.063   115   125   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| North Haven   30   0.184   0.062   115   125   135   89   97   105   Type A   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | 40            | 0.173 | 0.065            | 105 | 115     | 120           | 81     | 89      | 93     |                                           |                                             |                                       |
| Norwight   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | 30            | 0.184 | 0.062            | 115 | 125     | 135           | 89     | 97      | 105    |                                           |                                             | Yes                                   |
| Norwalk   30   0.232   0.067   110   120   130   85   93   101   Type A   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | 30            | 0.163 | 0.059            | 125 | 135     |               | 97     | 105     |        |                                           | Type A                                      | Yes                                   |
| Norwich   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 30            | 0.232 | 0.067            | 110 | 120     | 130           | 85     | 93      | 101    |                                           |                                             | Yes                                   |
| Old Lyme         30         0.164         0.059         125         135         145         97         105         112         Type B         Type A         Yes           Old Saybrook         30         0.164         0.059         125         135         145         97         105         112         Type B         Type A         Yes           Oxford         30         0.192         0.063         115         125         135         89         97         105         Yes           Plainfield         35         0.170         0.061         125         135         145         97         105         112         Type A         Yes           Plainfield         35         0.184         0.064         115         125         135         89         97         105         112         Type A         Yes           Plainville         35         0.186         0.064         115         125         135         89         97         105         Yes           Plainville         35         0.186         0.064         115         120         130         85         93         101         108         Yes           Portland         30 <td></td> <td>Type A</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |               |       |                  |     |         |               |        |         |        |                                           | Type A                                      |                                       |
| Old Saybrook         30         0.164         0.059         125         135         145         97         105         112         Type A         Yes           Orange         30         0.192         0.063         115         125         135         89         97         105         Yes           Plainfield         35         0.170         0.061         125         135         145         97         105         112         Type A         Yes           Plainfield         35         0.184         0.064         115         125         135         89         97         105         112         Type A         Yes           Plainville         35         0.186         0.064         110         120         130         85         93         101         Yes           Plymouth         35         0.186         0.064         110         120         130         85         93         101         108         Yes           Pomfret         40         0.172         0.063         125         135         145         97         105         112         Type A         Yes           Preston         30         0.167         0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |               |       |                  |     |         |               |        |         |        | Type B                                    |                                             |                                       |
| Orange         30         0.192         0.063         115         125         135         89         97         105         Yes           Oxford         30         0.196         0.064         110         125         130         85         97         101         Yes           Plainfield         35         0.170         0.061         125         135         145         97         105         112         Type A         Yes           Plainville         35         0.184         0.064         115         125         135         89         97         105         Yes           Plymouth         35         0.186         0.064         110         120         130         85         93         101         Yes           Pomfret         40         0.172         0.063         120         130         140         93         101         108         Yes           Portland         30         0.180         0.063         115         130         135         89         101         105         Yes           Preston         30         0.180         0.060         125         135         145         97         105         112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Oxford         30         0.196         0.064         110         125         130         85         97         101         Yes           Plainfield         35         0.170         0.061         125         135         145         97         105         112         Type A         Yes           Plainville         35         0.184         0.064         115         125         135         89         97         105         Yes           Plymouth         35         0.186         0.064         110         120         130         85         93         101         Yes           Pomfret         40         0.172         0.063         120         130         140         93         101         108         Yes           Portland         30         0.180         0.063         115         130         135         89         101         105         Yes           Preston         30         0.167         0.060         125         135         145         97         105         112         Type A         Yes           Prospect         30         0.167         0.064         115         125         135         89         97 </td <td></td> <td>71</td> <td>71</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |               |       |                  |     |         |               |        |         |        | 71                                        | 71                                          |                                       |
| Plainfield   35   0.170   0.061   125   135   145   97   105   112   Type A   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | 30            |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Plymouth   35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plainfield                                                        | 35            | 0.170 | 0.061            | 125 | 135     | 145           | 97     | 105     | 112    |                                           | Type A                                      | Yes                                   |
| Pomfret         40         0.172         0.063         120         130         140         93         101         108         Yes           Portland         30         0.180         0.063         115         130         135         89         101         105         Yes           Preston         30         0.167         0.060         125         135         145         97         105         112         Type A         Yes           Prospect         30         0.188         0.064         115         125         135         89         97         105         Yes           Putnam         40         0.172         0.063         120         130         140         93         101         108         Yes           Redding         30         0.220         0.067         110         120         130         85         93         101         Yes           Redding         30         0.220         0.068         110         120         130         85         93         101         Yes           Ridgefield         30         0.181         0.063         115         125         135         89         97         105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plainville                                                        | 35            | 0.184 | 0.064            | 115 | 125     | 135           | 89     | 97      | 105    |                                           | , ,                                         | Yes                                   |
| Portland         30         0.180         0.063         115         130         135         89         101         105         Yes           Preston         30         0.167         0.060         125         135         145         97         105         112         Type A         Yes           Prospect         30         0.188         0.064         115         125         135         89         97         105         Yes           Putnam         40         0.172         0.063         120         130         140         93         101         108         Yes           Redding         30         0.220         0.067         110         120         130         85         93         101         Yes           Ridgefield         30         0.230         0.068         110         120         125         85         93         97         Yes           Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salem         30         0.170         0.060         120         135         140         93         105         108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plymouth                                                          | 35            | 0.186 | 0.064            | 110 | 120     | 130           | 85     | 93      | 101    |                                           |                                             | Yes                                   |
| Preston         30         0.167         0.060         125         135         145         97         105         112         Type A         Yes           Prospect         30         0.188         0.064         115         125         135         89         97         105         Yes           Putnam         40         0.172         0.063         120         130         140         93         101         108         Yes           Redding         30         0.220         0.067         110         120         130         85         93         101         Yes           Ridgefield         30         0.230         0.068         110         120         125         85         93         97         Yes           Rocky Hill         30         0.181         0.063         115         125         135         89         97         105         Yes           Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pomfret                                                           | 40            | 0.172 | 0.063            | 120 | 130     | 140           | 93     | 101     | 108    |                                           |                                             | Yes                                   |
| Prospect         30         0.188         0.064         115         125         135         89         97         105         Yes           Putnam         40         0.172         0.063         120         130         140         93         101         108         Yes           Redding         30         0.220         0.067         110         120         130         85         93         101         Yes           Ridgefield         30         0.230         0.068         110         120         125         85         93         97         Yes           Rocky Hill         30         0.181         0.063         115         125         135         89         97         105         Yes           Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salem         30         0.170         0.060         120         135         140         93         105         108         Type A         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93 </td <td>Portland</td> <td>30</td> <td>0.180</td> <td>0.063</td> <td>115</td> <td>130</td> <td>135</td> <td>89</td> <td>101</td> <td>105</td> <td></td> <td></td> <td>Yes</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Portland                                                          | 30            | 0.180 | 0.063            | 115 | 130     | 135           | 89     | 101     | 105    |                                           |                                             | Yes                                   |
| Putnam         40         0.172         0.063         120         130         140         93         101         108         Yes           Redding         30         0.220         0.067         110         120         130         85         93         101         Yes           Ridgefield         30         0.230         0.068         110         120         125         85         93         97         Yes           Rocky Hill         30         0.181         0.063         115         125         135         89         97         105         Yes           Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salem         30         0.170         0.060         120         135         140         93         105         108         Type A         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93           Scotland         30         0.194         0.064         115         125         135         89         97         105         Yes </td <td>Preston</td> <td></td> <td>Type A</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Preston                                                           |               |       |                  |     |         |               |        |         |        |                                           | Type A                                      |                                       |
| Redding         30         0.220         0.067         110         120         130         85         93         101         Yes           Ridgefield         30         0.230         0.068         110         120         125         85         93         97         Yes           Rocky Hill         30         0.181         0.063         115         125         135         89         97         105         Yes           Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salem         30         0.170         0.060         120         135         140         93         105         108         Type A         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93           Scotland         30         0.172         0.061         120         130         140         93         101         108         Yes           Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |               | 0.188 |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Ridgefield         30         0.230         0.068         110         120         125         85         93         97         Yes           Rocky Hill         30         0.181         0.063         115         125         135         89         97         105         Yes           Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salem         30         0.170         0.060         120         135         140         93         105         108         Type A         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93           Scotland         30         0.172         0.061         120         130         140         93         101         108         Yes           Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes           Sharon         40         0.179         0.065         105         115         120         81         89         93         93 <td>Putnam</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Putnam                                                            |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Rocky Hill         30         0.181         0.063         115         125         135         89         97         105         Yes           Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salem         30         0.170         0.060         120         135         140         93         105         108         Type A         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93           Scotland         30         0.172         0.061         120         130         140         93         101         108         Yes           Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes           Sharon         40         0.179         0.065         105         115         120         81         89         93         93           Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Roxbury         35         0.197         0.065         110         120         125         85         93         97         Yes           Salem         30         0.170         0.060         120         135         140         93         105         108         Type A         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93           Scotland         30         0.172         0.061         120         130         140         93         101         108         Yes           Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes           Sharon         40         0.179         0.065         105         115         120         81         89         93           Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes           Sherman         35         0.202         0.066         105         115         120         81         89         93         101         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Salem         30         0.170         0.060         120         135         140         93         105         108         Type A         Yes           Salisbury         40         0.173         0.065         105         115         120         81         89         93           Scotland         30         0.172         0.061         120         130         140         93         101         108         Yes           Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes           Sharon         40         0.179         0.065         105         115         120         81         89         93           Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes           Sherman         35         0.202         0.066         105         115         120         81         89         93           Simsbury         35         0.174         0.064         110         120         130         85         93         101         Yes           Southbury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Salisbury         40         0.173         0.065         105         115         120         81         89         93           Scotland         30         0.172         0.061         120         130         140         93         101         108         Yes           Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes           Sharon         40         0.179         0.065         105         115         120         81         89         93           Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes           Sherman         35         0.202         0.066         105         115         120         81         89         93           Simsbury         35         0.179         0.064         110         120         130         85         93         101         Yes           Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Scotland         30         0.172         0.061         120         130         140         93         101         108         Yes           Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes           Sharon         40         0.179         0.065         105         115         120         81         89         93           Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes           Sherman         35         0.202         0.066         105         115         120         81         89         93           Simsbury         35         0.179         0.064         110         120         130         85         93         101         Yes           Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |               |       |                  |     |         |               |        |         |        |                                           | Type A                                      | Yes                                   |
| Seymour         30         0.194         0.064         115         125         135         89         97         105         Yes           Sharon         40         0.179         0.065         105         115         120         81         89         93           Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes           Sherman         35         0.202         0.066         105         115         120         81         89         93           Simsbury         35         0.179         0.064         110         120         130         85         93         101         Yes           Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| Sharon         40         0.179         0.065         105         115         120         81         89         93           Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes           Sherman         35         0.202         0.066         105         115         120         81         89         93           Simsbury         35         0.179         0.064         110         120         130         85         93         101         Yes           Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South         30         0.178         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Shelton         30         0.199         0.064         115         125         135         89         97         105         Yes           Sherman         35         0.202         0.066         105         115         120         81         89         93           Simsbury         35         0.179         0.064         110         120         130         85         93         101         Yes           Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South         30         0.178         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             | Yes                                   |
| Sherman         35         0.202         0.066         105         115         120         81         89         93           Simsbury         35         0.179         0.064         110         120         130         85         93         101         Yes           Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South         30         0.178         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             | \/                                    |
| Simsbury         35         0.179         0.064         110         120         130         85         93         101         Yes           Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South         30         0.178         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             | Yes                                   |
| Somers         35         0.174         0.064         115         125         135         89         97         105         Yes           Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South         30         0.178         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             | Vs                                    |
| Southbury         35         0.198         0.065         110         120         130         85         93         101         Yes           Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South         30         0.178         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| Southington         30         0.185         0.064         115         125         135         89         97         105         Yes           South         30         0.178         0.064         115         125         135         89         97         105         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| South 30 0.178 0.064 115 125 135 89 97 105 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |               |       |                  |     |         |               |        |         |        |                                           |                                             |                                       |
| vvinasor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | South<br>Windsor                                                  | 30            | 0.178 | 0.064            | 115 | 125     | 133           | 89     | 97      | 105    |                                           |                                             | res                                   |

#### MecaWind v2333 Software Developer: Meca Enterprises Inc., www.meca.biz, Copyright © 2018 Calculations Prepared by: Date: Jun 12, 2020 FileLocation : $U:\Mike\N-Jobs\N-545\N-545.wnd$ Basic Wind Parameters Wind Load Standard = ASCE 7-16 Exposure Category = B Wind Design Speed = 125.0 mph Risk Category = II Structure Type = Other Other Structure Type = Solid Sign General Wind Settings Incl LF = Include ASD Load Factor of 0.6 in Pressures = False $\overline{\text{DynType}}$ = Dynamic Type of Structure = Rigid DynType = Dynamic Type of Structure NF = Natural Frequency of Structure (Mode 1) Zg = Altitude (Ground Elevation) above Sea Level = 1.000 Hz= 0.000 ft= Base Elevation of Structure = 0.000 ftReacs = Show the Base Reactions in the output = False = Ch 27 Pt 1 MWFRSType = MWFRS Method Selected Topographic Factor per Fig 26.8-1 Topo = Topographic Feature = None Kzt = Topographic Factor = 1.000Solid Sign Inputs h : Height to Top of Sign = 141.500 ft B : Horizontal Width of Sign = 3.000 ft Lr : Dimension of return corner= $1.000 \, \text{ft}$ s : Vertical Height of Sign = $8.000 \, \text{ft}$ e : Solidity Ratio = $1.000 \, \text{Att:}$ Attached to Wall = False Exposure Constants per Table 26.11-1: Alpha: Const from Table 26.11-1: 7.000 Zg: Const from Table 26.11-1= 1200.000 ft At: Const from Table 26.11-1= 0.143 Bt: Const from Table 26.11-1= 0.840 Am: Const from Table 26.11-1= 0.250 Bm: Const from Table 26.11-1= 0.450 C: Const from Table 26.11-1= 0.333 Gust Factor Calculation: Gust Factor Category I Rigid Structures - Simplified Method G1 = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 = 0.85Gust Factor Category II Rigid Structures - Complete Analysis Zm = 0.6 \* Ht= 84.900 ft $= Cc * (33 / Zm) ^ 0.167$ = 0.256 Izm = L \* (Zm / 33) ^ Epsilon Lzm = 438.478Q = $(1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5$ G2 = 0.925\*((1+1.7\*1zm\*3.4\*Q)/(1+1.7\*3.4\*1zm))= 0.873= 0.855Gust Factor Used in Analysis G = Lessor Of G1 Or G2 = 0.850Main Wind Force Resisting System (MWFRS) Calculations for Solid Sign per Ch 29: = Load Factor based upon STRENGTH Design = Overall height of structure = 141.500 fths = Mean Roof Height above grade = 141.500 fth = 15 ft $[4.572 m] < Z < Zg --> (2.01*(Z/zg)^(2/Alpha) {Table 26.10-1} = 1.091$ = Topographic Factor is 1 since no Topographic feature specified = 1.000 Kd = Wind Directionality Factor per Table 26.6-1 $= (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF$ - 37.10 - Reduction factor to account for openings: (1-(1-e)^1.5) = 1.000 RC = Reduction factor for Case C not applicable since s/h <= 0.8 = 1.000 As = Gross Area of Sign: B \* s B/s = Aspect Ratio: B / s s/h = Clearance Ratio: s / h Cf = No+ T = 24.00 sq ft = Net Force Coefficient for Case A and B per Fig 29.3-1

```
Case A: Resultant force acts normal to face through geometric center

F = Design Wind force: qh * G * Cf * As * R = 1400 lb

Case B: Resultant force acts normal to face at a distance from the geometric center toward the windward edge equal to 0.2 times the average width

Dx = Force Offset from Center toward windward edge: 0.2 * B = 0.600 ft

F = Design Wind force: qh * G * Cf * As * R = 1400 lb

Case C: Since B/s < 2 then Case C need not be considered
```





Project Title: Engineer: Project ID: Project Descr:

**Steel Beam** 

File: N-545.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.3.25

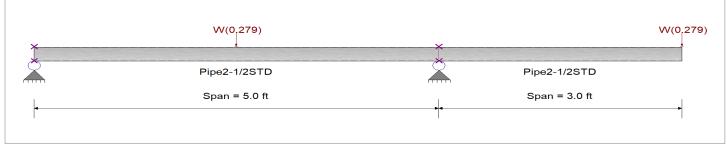
PBA ENGINEERING, P.C.

Lic. # : KW-06000304

DESCRIPTION: New Antenna Pipe Mast

#### **CODE REFERENCES**

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16


Load Combination Set: ASCE 7-16

#### **Material Properties**

Analysis Method : Allowable Strength Design

Beam Bracing : Completely Unbraced
Bending Axis : Major Axis Bending

Fy: Steel Yield: 35.0 ksi E: Modulus: 29,000.0 ksi



#### **Applied Loads**

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Load(s) for Span Number 1

Point Load: W = 0.2790 k @ 2.50 ft

Load(s) for Span Number 2

Point Load: W = 0.2790 k @ 3.0 ft

# DESIGN SUMMARY Maximum Bending Stress Ratio = 0.210:1 Maximum Shear Stress Ratio = 0.018:1 Section used for this span Pipe2-1/2STD Section used for this span Pipe2-1/2STD Ma: Applied 0.502 k-ft Va: Applied 0.1841 k

Ma: Applied Va: Applied 0.502 k-ft 0.1841 k Mn / Omega: Allowable Vn/Omega: Allowable 10.123 k 2.393 k-ft +D+0.60W+H Load Combination +D+0.60W+H Load Combination Location of maximum on span Location of maximum on span 2.520 ft 5.000ft Span # where maximum occurs Span #1 Span # where maximum occurs Span # 1

Maximum Deflection

#### Maximum Forces & Stresses for Load Combinations

| Load Combination            |        | Max Stress | s Ratios | Summary of Moment Values |        |        |      |           |      |      |        | Summary of Shear Values |           |  |  |
|-----------------------------|--------|------------|----------|--------------------------|--------|--------|------|-----------|------|------|--------|-------------------------|-----------|--|--|
| Segment Length              | Span # | M          | V        | Mmax +                   | Mmax - | Ma Max | Mnx  | Mnx/Omega | Cb   | Rm   | Va Max | Vnx                     | Vnx/Omega |  |  |
| +D+H                        |        |            |          |                          |        |        |      |           |      |      |        |                         |           |  |  |
| Dsgn. L = 5.00 ft           | 1      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| Dsgn. L = $3.00 \text{ ft}$ | 2      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| +D+L+H                      |        |            |          |                          |        |        |      |           |      |      |        |                         |           |  |  |
| Dsgn. $L = 5.00 \text{ ft}$ | 1      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| Dsgn. L = $3.00 \text{ ft}$ | 2      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| +D+Lr+H                     |        |            |          |                          |        |        |      |           |      |      |        |                         |           |  |  |
| Dsgn. L = $5.00 \text{ ft}$ | 1      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| Dsgn. L = $3.00 \text{ ft}$ | 2      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| +D+S+H                      |        |            |          |                          |        |        |      |           |      |      |        |                         |           |  |  |
| Dsgn. $L = 5.00 \text{ ft}$ | 1      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| Dsgn. L = $3.00 \text{ ft}$ | 2      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| +D+0.750Lr+0.750L+H         |        |            |          |                          |        |        |      |           |      |      |        |                         |           |  |  |
| Dsgn. L = 5.00 ft           | 1      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| Dsgn. $L = 3.00 \text{ ft}$ | 2      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| +D+0.750L+0.750S+H          |        |            |          |                          |        |        |      |           |      |      |        |                         |           |  |  |
| Dsgn. $L = 5.00 \text{ ft}$ | 1      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| Dsgn. L = 3.00 ft           | 2      |            | 0.000    |                          |        |        | 4.00 | 2.39      | 1.00 | 1.00 | -0.00  | 16.91                   | 10.12     |  |  |
| +D+0.60W+H                  |        |            |          |                          |        |        |      |           |      |      |        |                         |           |  |  |

+D+0.750Lr+0.750L+0.450W+H

+D+0.750L+0.750S+0.450W+H

+0.60D+0.60W+0.60H

W Only

H Only

-0.013

-0.013

-0.017

-0.028

0.264

0.264

0.352

0.586

Project Title: Engineer: Project ID: Project Descr:

File: N-545.ec6 **Steel Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.3.25 Lic. # : KW-06000304 PBA ENGINEERING, P.C. **DESCRIPTION:** New Antenna Pipe Mast **Load Combination** Max Stress Ratios Summary of Moment Values Summary of Shear Values Mnx/Omega Cb Vnx Vnx/Omega Span # М V Mmax + Mmax -Ma Max Mnx Rm Va Max Segment Length Dsgn. L = 5.00 ft 2.39 2.72 1.00 16.91 10.12 0.210 0.018 -0.50 0.50 4.00 0.18 Dsgn. L = 3.00 ft0.017 0.50 4.00 1.00 1.00 16.91 2 0.210 -0.50 2.39 0.17 10.12 +D+0.750Lr+0.750L+0.450W+H Dsgn. L = 5.00 ft Dsgn. L = 3.00 ft 0.157 0.014 -0.38 0.38 4.00 2.39 2.72 1.00 0.14 16.91 10.12 0.38 1.00 1.00 16.91 2 0.157 0.012 -0.38 4.00 2.39 0.13 10.12 +D+0.750L+0.750S+0.450W+H Dsgn. L = 5.00 ft Dsgn. L = 3.00 ft -0.38 0.38 2.39 0.157 0.014 4.00 2.72 1.00 0.14 16.91 10.12 1 0.157 0.012 -0.38 0.38 4.00 2.39 1.00 1.00 0.13 10.12 2 16.91 +0.60D+0.60W+0.60H Dsgn. L = 5.00 ft Dsgn. L = 3.00 ft 2.72 1.00 16.91 0.210 0.018 -0.50 0.50 4.00 2.39 0.18 10.12 1 2 0.210 0.017 -0.50 0.50 4.00 2.39 1.00 1.00 0.17 16.91 10.12 +D+0.70E+0.60H Dsgn. L = 5.00 ft0.000 4.00 2.39 1.00 1.00 -0.00 16.91 10.12 1 Dsgn. L = 3.00 ft0.000 4.00 2.39 1.00 1.00 -0.00 16.91 10.12 2 +D+0.750L+0.750S+0.5250E+H Dsgn. L = 5.00 ft Dsgn. L = 3.00 ft 0.000 4.00 2.39 1.00 1.00 -0.00 16.91 10.12 2 0.000 4.00 2.39 1.00 1.00 -0.00 16.91 10.12 +0.60D+0.70E+H Dsgn. L = 5.00 ft0.000 4.00 2.39 1.00 1.00 -0.00 16.91 10.12 0.000 1.00 1.00 -0.00 Dsgn. L = 3.00 ft 2 4.00 2.39 16.91 10.12 **Overall Maximum Deflections** Location in Span Load Combination Max. "-" Defl **Load Combination** Max. "+" Defl Span Location in Span 0.0000 0.000 W Only -0.0278 3.380 W Only 2 0.2211 3.000 0.0000 3.380 Values in KIPS **Vertical Reactions** Support notation: Far left is #1 Load Combination Support 1 Support 2 Support 3 Overall MAXimum -0.028 0.586 Overall MINimum -0.013 0.264 -0.017 +D+0.60W+H 0.352

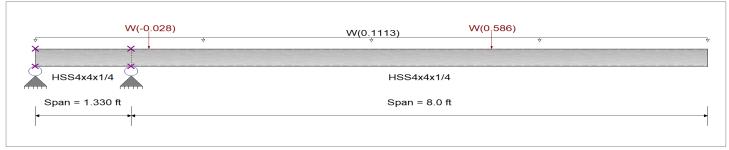
**Steel Beam** 

File: N-545.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.3.25 PBA ENGINEERING, P.C.

Lic. # : KW-06000304 **DESCRIPTION:** Existing Screen Verticals

**CODE REFERENCES** 


Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: ASCE 7-16

**Material Properties** 

Analysis Method: Allowable Strength Design Fy: Steel Yield: 46.0 ksi E: Modulus : Beam Bracing: Completely Unbraced 29,000.0 ksi

Bending Axis: Major Axis Bending



#### **Applied Loads**

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Loads on all spans...

Uniform Load on ALL spans: W = 0.01855 ksf, Tributary Width = 6.0 ft

Load(s) for Span Number 2

Point Load: W = -0.0280 k @ 0.250 ft

Point Load: W = 0.5860 k @ 5.0 ft

#### **DESIGN SUMMARY**

Max Upward Total Deflection

**Design OK** Maximum Shear Stress Ratio = Maximum Bending Stress Ratio = 0.361:1 0.117:1 HSS4x4x1/4 Section used for this span HSS4x4x1/4 Section used for this span Va : Applied Ma: Applied 3.891 k-ft 2.970 k Mn / Omega: Allowable 10.765 k-ft Vn/Omega: Allowable 25.423 k +D+0.60W+H **Load Combination** +D+0.60W+H **Load Combination** Location of maximum on span 1.330ft Location of maximum on span 1.330 ft Span # 1 Span # where maximum occurs Span # 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.963 in Ratio = 199 >= 180. Max Upward Transient Deflection -0.006 in Ratio = 2.841 >=180. Max Downward Total Deflection

332 >=180.

4736 >=180.

0.578 in Ratio =

-0.003 in Ratio =

#### **Maximum Forces & Stresses for Load Combinations**

| Load Combination    |        | Max Stress | Max Stress Ratios |        | Summary of Moment Values |        |       |           |      |      |        |       | Summary of Shear Values |  |  |
|---------------------|--------|------------|-------------------|--------|--------------------------|--------|-------|-----------|------|------|--------|-------|-------------------------|--|--|
| Segment Length      | Span # | M          | V                 | Mmax + | Mmax -                   | Ma Max | Mnx   | Mnx/Omega | Cb   | Rm   | Va Max | Vnx   | Vnx/Omega               |  |  |
| +D+H                |        |            |                   |        |                          |        |       |           |      |      |        |       |                         |  |  |
| Dsgn. L = 1.33 ft   | 1      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| Dsgn. L = 8.00 ft   | 2      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| +D+L+H              |        |            |                   |        |                          |        |       |           |      |      |        |       |                         |  |  |
| Dsgn. L = 1.33 ft   | 1      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| Dsgn. L = 8.00 ft   | 2      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| +D+Lr+H             |        |            |                   |        |                          |        |       |           |      |      |        |       |                         |  |  |
| Dsgn. L = 1.33 ft   | 1      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| Dsgn. L = 8.00 ft   | 2      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| +D+S+H              |        |            |                   |        |                          |        |       |           |      |      |        |       |                         |  |  |
| Dsgn. L = 1.33 ft   | 1      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| Dsgn. L = 8.00 ft   | 2      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| +D+0.750Lr+0.750L+H |        |            |                   |        |                          |        |       |           |      |      |        |       |                         |  |  |
| Dsgn. L = 1.33 ft   | 1      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| Dsgn. L = 8.00 ft   | 2      |            | 0.000             |        |                          |        | 17.98 | 10.77     | 1.00 | 1.00 | -0.00  | 42.46 | 25.42                   |  |  |
| +D+0.750L+0.750S+H  |        |            |                   |        |                          |        |       |           |      |      |        |       |                         |  |  |

W Only H Only

-4.802

6.398

| Steel Beam                                   |              |                  |               |          |           |                |             | Software cor | vriaht | ENEDCA   | ALC, INC. 1983-2 |          | -545.ec6   |
|----------------------------------------------|--------------|------------------|---------------|----------|-----------|----------------|-------------|--------------|--------|----------|------------------|----------|------------|
| Lic. # : KW-06000304                         |              |                  |               |          |           |                |             | Software cop | yngn   | LINLINGA |                  |          | RING, P.C. |
| DESCRIPTION: Ex                              | cisting Scre | een Vertical     | S             |          |           |                |             |              |        |          |                  |          |            |
| Load Combination                             |              | Max Stre         | ss Ratios     |          | S         | Summ           | nary of She | ear Values   |        |          |                  |          |            |
| Segment Length                               | Span #       | M                | V             | Mmax +   | Mmax -    | Ma Max         | Mnx         | Mnx/Omega    | Cb     | Rm       | Va Max           | Vnx      | Vnx/Omega  |
| Dsgn. L = 1.33 ft                            | 1            |                  | 0.000         |          |           |                | 17.98       | 10.77        | 1.00   | 1.00     | -0.00            | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            |                  | 0.000         |          |           |                | 17.98       | 10.77        | 1.00   | 1.00     | -0.00            | 42.46    | 25.42      |
| +D+0.60W+H                                   |              |                  |               |          |           |                |             |              |        |          |                  |          |            |
| Dsgn. L = 1.33 ft                            | 1            | 0.361            | 0.117         |          | -3.89     | 3.89           | 17.98       | 10.77        |        | 1.00     | 2.97             | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            | 0.361            | 0.034         |          | -3.89     | 3.89           | 17.98       | 10.77        | 1.00   | 1.00     | 0.87             | 42.46    | 25.42      |
| +D+0.750Lr+0.750L+0.450                      | W+H          |                  |               |          |           |                |             |              |        |          |                  |          |            |
| Dsgn. L = 1.33 ft                            | 1            | 0.271            | 0.088         |          | -2.92     | 2.92           | 17.98       | 10.77        |        | 1.00     | 2.23             | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            | 0.271            | 0.026         |          | -2.92     | 2.92           | 17.98       | 10.77        | 1.00   | 1.00     | 0.65             | 42.46    | 25.42      |
| +D+0.750L+0.750S+0.450V                      |              |                  |               |          |           |                |             |              |        |          |                  |          |            |
| Dsgn. L = 1.33 ft                            | 1            | 0.271            | 0.088         |          | -2.92     | 2.92           | 17.98       | 10.77        |        | 1.00     | 2.23             | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            | 0.271            | 0.026         |          | -2.92     | 2.92           | 17.98       | 10.77        | 1.00   | 1.00     | 0.65             | 42.46    | 25.42      |
| +0.60D+0.60W+0.60H                           |              |                  |               |          |           |                |             |              |        |          |                  |          |            |
| Dsgn. L = 1.33 ft                            | 1            | 0.361            | 0.117         |          | -3.89     | 3.89           | 17.98       | 10.77        |        | 1.00     | 2.97             | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            | 0.361            | 0.034         |          | -3.89     | 3.89           | 17.98       | 10.77        | 1.00   | 1.00     | 0.87             | 42.46    | 25.42      |
| +D+0.70E+0.60H                               |              |                  |               |          |           |                |             |              |        |          |                  |          |            |
| Dsgn. L = 1.33 ft                            | 1            |                  | 0.000         |          |           |                | 17.98       | 10.77        |        | 1.00     | -0.00            | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            |                  | 0.000         |          |           |                | 17.98       | 10.77        | 1.00   | 1.00     | -0.00            | 42.46    | 25.42      |
| +D+0.750L+0.750S+0.5250                      | E+H          |                  |               |          |           |                |             |              |        |          |                  |          |            |
| Dsgn. L = 1.33 ft                            | 1            |                  | 0.000         |          |           |                | 17.98       | 10.77        |        | 1.00     | -0.00            | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            |                  | 0.000         |          |           |                | 17.98       | 10.77        | 1.00   | 1.00     | -0.00            | 42.46    | 25.42      |
| +0.60D+0.70E+H                               |              |                  |               |          |           |                |             |              |        |          |                  |          |            |
| Dsgn. L = 1.33 ft                            | 1            |                  | 0.000         |          |           |                | 17.98       | 10.77        | 1.00   | 1.00     | -0.00            | 42.46    | 25.42      |
| Dsgn. L = 8.00 ft                            | 2            |                  | 0.000         |          |           |                | 17.98       | 10.77        | 1.00   | 1.00     | -0.00            | 42.46    | 25.42      |
| Overall Maximu                               | m Defle      | ctions           |               |          |           |                |             |              |        |          |                  |          |            |
| Load Combination                             |              | Span             | Max. "-" Defl | Location | n in Span | Load Com       | bination    |              |        | Ma       | ax. "+" Defl     | Location | in Span    |
|                                              |              | 1                | 0.0000        |          | 0.000     | W Only         |             |              |        |          | -0.0056          |          | 0.771      |
| W Only                                       |              | 2                | 0.9626        |          | 8.000     | -              |             |              |        |          | 0.0000           |          | 0.771      |
| Vertical Reactio                             | ns           |                  |               |          | Support   | notation : Far | left is #1  |              |        | Values   | in KIPS          |          |            |
| Load Combination                             |              | Support 1        | Support 2     | Suppor   | rt 3      |                |             |              |        |          |                  |          |            |
| Overall MAXimum                              |              | -4.802           | 6.398         |          |           |                |             |              |        |          |                  |          |            |
| Overall MINimum                              |              | -2.161           | 2.879         |          |           |                |             |              |        |          |                  |          |            |
| +D+0.60W+H                                   |              | -2.881           | 3.839         |          |           |                |             |              |        |          |                  |          |            |
| +D+0.750Lr+0.750L+0.4                        | 150W±H       | -2.161           | 2.879         |          |           |                |             |              |        |          |                  |          |            |
| +D+0.750L+0.750S+0.4<br>+D+0.750L+0.750S+0.4 |              | -2.161<br>-2.161 | 2.879         |          |           |                |             |              |        |          |                  |          |            |
|                                              | DUN+U        |                  |               |          |           |                |             |              |        |          |                  |          |            |
| +0.60D+0.60W+0.60H                           |              | -2.881<br>4.902  | 3.839         |          |           |                |             |              |        |          |                  |          |            |
| W ( IDIV                                     |              | // (11)          | 6 2010        |          |           |                |             |              |        |          |                  |          |            |

Project Title: Engineer: Project ID: Project Descr:

**Steel Beam** 

File: N-545.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.3.25

PBA ENGINEERING, P.C.

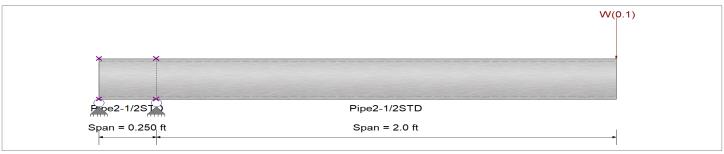
Lic. # : KW-06000304

DESCRIPTION: Facade Mount Vertical

#### **CODE REFERENCES**

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: ASCE 7-16


#### **Material Properties**

Analysis Method: Allowable Strength Design

Beam Bracing: Completely Unbraced

Fy: Steel Yield: 35.0 ksi
E: Modulus: 29,000.0 ksi

Bending Axis: Major Axis Bending



#### **Applied Loads**

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Load(s) for Span Number 2

Point Load: W = 0.10 k @ 2.0 ft

**DESIGN SUMMARY** 

Design OK

Maximum Bending Stress Ratio = **0.050**: 1 Maximum Shear Stress Ratio = **0.047**:1 Section used for this span Section used for this span Pipe2-1/2STD Pipe2-1/2STD Ma: Applied Va: Applied 0.120 k-ft 0.480 k Mn / Omega: Allowable Vn/Omega: Allowable 2.393 k-ft 10.123 k **Load Combination** +D+0.60W+H **Load Combination** +D+0.60W+H 0.000 ft Location of maximum on span 0.250ft Location of maximum on span Span # where maximum occurs Span # where maximum occurs Span # 1 Span # 1

Maximum Deflection

**Maximum Forces & Stresses for Load Combinations** 

| Load Combination            |        | Max Stress | Ratios |        | 5      | Summary of Mo | oment Valu | ies       |      |      | Summa  | ary of Sh | ear Values |
|-----------------------------|--------|------------|--------|--------|--------|---------------|------------|-----------|------|------|--------|-----------|------------|
| Segment Length              | Span # | M          | V      | Mmax + | Mmax - | Ma Max        | Mnx        | Mnx/Omega | Cb   | Rm   | Va Max | Vnx       | Vnx/Omega  |
| +D+H                        |        |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. $L = 0.25 \text{ ft}$ | 1      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| Dsgn. L = 2.00 ft           | 2      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| +D+L+H                      |        |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. L = 0.25 ft           | 1      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| Dsgn. L = 2.00 ft           | 2      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| +D+Lr+H                     |        |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. L = 0.25 ft           | 1      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| Dsgn. L = 2.00 ft           | 2      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| +D+S+H                      |        |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. L = 0.25 ft           | 1      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| Dsgn. L = 2.00 ft           | 2      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| +D+0.750Lr+0.750L+H         |        |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. L = 0.25 ft           | 1      |            | 0.000  |        |        |               | 4.00       | 2.39      |      | 1.00 | -0.00  | 16.91     | 10.12      |
| Dsgn. L = 2.00 ft           | 2      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| +D+0.750L+0.750S+H          |        |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. L = 0.25 ft           | 1      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| Dsgn. L = 2.00 ft           | 2      |            | 0.000  |        |        |               | 4.00       | 2.39      | 1.00 | 1.00 | -0.00  | 16.91     | 10.12      |
| +D+0.60W+H                  |        |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. L = 0.25 ft           | 1      | 0.050      | 0.047  |        | -0.12  | 0.12          | 4.00       | 2.39      | 1.67 | 1.00 | 0.48   | 16.91     | 10.12      |
| Dsgn. L = 2.00 ft           | 2      | 0.050      | 0.006  |        | -0.12  | 0.12          | 4.00       | 2.39      | 1.00 | 1.00 | 0.06   | 16.91     | 10.12      |
| +D+0.750Lr+0.750L+0.450W    | +H     |            |        |        |        |               |            |           |      |      |        |           |            |
| Dsgn. L = 0.25 ft           | 1      | 0.038      | 0.036  |        | -0.09  | 0.09          | 4.00       | 2.39      | 1.67 | 1.00 | 0.36   | 16.91     | 10.12      |

Project Title: Engineer: Project ID: Project Descr:

| Steel Beam                              |              |              |                |            |           |                |              | Software cor | vriaht l | ENERCAI      | _C, INC. 1983-2 |                | 545.ec6        |
|-----------------------------------------|--------------|--------------|----------------|------------|-----------|----------------|--------------|--------------|----------|--------------|-----------------|----------------|----------------|
| Lic. # : KW-0600030                     | )4           |              |                |            |           |                | _            | Software cop | yngni    | LINLINGAL    |                 |                | RING, P.C.     |
| DESCRIPTION:                            | Facade Mou   | unt Vertical |                |            |           |                |              |              |          |              |                 |                |                |
| Lood Combination                        |              | Max Stre     | ec Datine      |            |           | Summary of M   | loment Valu  | 200          |          |              | Summ            | ary of She     | ar Values      |
| Load Combination                        | Span #       | M            | V -            | Mmax +     | Mmax -    | Ma Max         | Mnx          | Mnx/Omega    | Ch       | Rm           | Va Max          | ,              | Vnx/Omega      |
| Segment Length                          | <u> </u>     |              |                | IVIIIIAX + |           |                |              |              |          |              |                 |                |                |
| Dsgn. L = 2.00 ft<br>+D+0.750L+0.750S+0 | 2<br>450W. H | 0.038        | 0.004          |            | -0.09     | 0.09           | 4.00         | 2.39         | 1.00     | 1.00         | 0.05            | 16.91          | 10.12          |
| Dsgn. L = 0.25 ft                       | .430W+H<br>1 | 0.038        | 0.036          |            | -0.09     | 0.09           | 4.00         | 2.39         | 1.67     | 1 00         | 0.36            | 16.91          | 10.12          |
| Dsgn. L = 0.23 ft<br>Dsgn. L = 2.00 ft  | 2            | 0.038        | 0.004          |            | -0.07     | 0.07           | 4.00         | 2.39         | 1.00     |              | 0.05            | 16.91          | 10.12          |
| +0.60D+0.60W+0.60H                      |              | 0.000        | 0.00.          |            | 0.07      | 0.07           |              | 2.07         |          |              | 0.00            |                |                |
| Dsgn. L = 0.25 ft                       | 1            | 0.050        | 0.047          |            | -0.12     | 0.12           | 4.00         | 2.39         | 1.67     | 1.00         | 0.48            | 16.91          | 10.12          |
| Dsgn. L = 2.00 ft                       | 2            | 0.050        | 0.006          |            | -0.12     | 0.12           | 4.00         | 2.39         | 1.00     | 1.00         | 0.06            | 16.91          | 10.12          |
| +D+0.70E+0.60H                          |              |              |                |            |           |                |              |              |          |              |                 |                |                |
| Dsgn. $L = 0.25 \text{ ft}$             | 1            |              | 0.000          |            |           |                | 4.00         | 2.39         |          | 1.00         | -0.00           | 16.91          | 10.12          |
| Dsgn. L = 2.00 ft                       | 2            |              | 0.000          |            |           |                | 4.00         | 2.39         | 1.00     | 1.00         | -0.00           | 16.91          | 10.12          |
| +D+0.750L+0.750S+0                      | .5250E+H     |              | 0.000          |            |           |                | 4.00         | 2.20         | 1 00     | 1.00         | 0.00            | 1/ 01          | 10.10          |
| Dsgn. L = 0.25 ft<br>Dsgn. L = 2.00 ft  | 2            |              | 0.000<br>0.000 |            |           |                | 4.00<br>4.00 | 2.39<br>2.39 |          | 1.00<br>1.00 | -0.00<br>-0.00  | 16.91<br>16.91 | 10.12<br>10.12 |
| +0.60D+0.70E+H                          | 2            |              | 0.000          |            |           |                | 4.00         | 2.39         | 1.00     | 1.00         | -0.00           | 10.91          | 10.12          |
| Dsgn. L = 0.25 ft                       | 1            |              | 0.000          |            |           |                | 4.00         | 2.39         | 1.00     | 1.00         | -0.00           | 16.91          | 10.12          |
| Dsgn. L = 2.00 ft                       | 2            |              | 0.000          |            |           |                | 4.00         | 2.39         | 1.00     |              | -0.00           | 16.91          | 10.12          |
| Overall Maxi                            | mum Defle    | ctions       |                |            |           |                |              |              |          |              |                 |                |                |
| Load Combination                        |              | Span         | Max. "-" Defl  | Location   | n in Span | Load Com       | bination     |              |          | Ma           | x. "+" Defl     | Location       | in Span        |
|                                         |              | 1            | 0.0000         |            | 0.000     | W Only         |              |              |          |              | -0.0000         | (              | 0.145          |
| W Only                                  |              | 2            | 0.0123         |            | 2.000     |                |              |              |          |              | 0.0000          | (              | 0.145          |
| Vertical Read                           | ctions       |              |                |            | Support   | notation : Far | left is #1   |              |          | Values i     | n KIPS          |                |                |
| Load Combination                        |              | Support 1    | Support 2      | Suppor     | rt 3      |                |              |              |          |              |                 |                |                |
| Overall MAXimum                         |              | -0.800       | 0.900          |            |           |                |              |              |          |              |                 |                |                |
| Overall MINimum                         |              | -0.360       | 0.405          |            |           |                |              |              |          |              |                 |                |                |
| +D+0.60W+H                              |              | -0.480       | 0.540          |            |           |                |              |              |          |              |                 |                |                |
| +D+0.750Lr+0.750                        | L+0.450W+H   | -0.360       | 0.405          |            |           |                |              |              |          |              |                 |                |                |
| +D+0.750L+0.750S                        | S+0.450W+H   | -0.360       | 0.405          |            |           |                |              |              |          |              |                 |                |                |
| +0.60D+0.60W+0.                         | 60H          | -0.480       | 0.540          |            |           |                |              |              |          |              |                 |                |                |
| W Only                                  |              | -0.800       | 0.900          |            |           |                |              |              |          |              |                 |                |                |
| H Only                                  |              |              |                |            |           |                |              |              |          |              |                 |                |                |



#### www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Masonry - Jun 12, 2020 Date: 6/12/2020

Fastening point:

#### Specifier's comments:

# 1 Input data

Anchor type and diameter: HY 270 + threaded rod 5.8 1/2, HIT-SC 18x50

Item number: 385422 HAS 5.8 1/2"x3-1/8" (element) / 2194247 HIT-HY

270 (adhesive) / 360485 HIT-SC 18x50 (sieve sleeve)

Effective embedment depth:  $h_{ef} = 2.000 \text{ in.}$ 

Material: 5.8

Evaluation Service Report: ESR-4143

Issued I Valid: 1/1/2020 | 1/1/2021

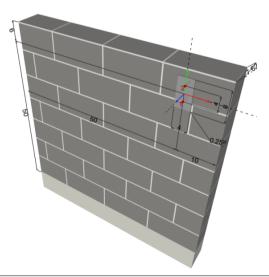
Proof: Design Method ASD Masonry

Stand-off installation:  $e_b = 0.000$  in. (no stand-off); t = 0.250 in.

Anchor plate<sup>R</sup>:  $I_x \times I_y \times t = 4.000$  in.  $\times 0.250$  in.; (Recommended plate thickness: not calculated)

Profile: no profile

Base material: Hollow CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in. ;


Joints: vertical: 0.375 in.; horizontal: 0.375 in.

Base material temperature: 68 °F

Installation: Face installation

Seismic loads no

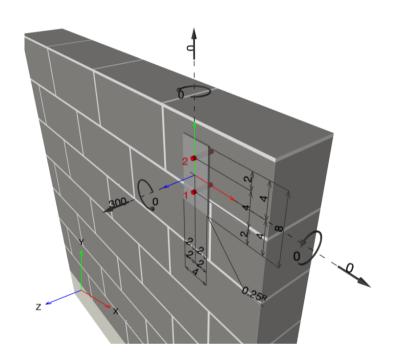
#### Geometry [in.]





 $<sup>^{\</sup>rm R}$  - The anchor calculation is based on a rigid anchor plate assumption.




#### www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Masonry - Jun 12, 2020 Date: 6/12/2020

Fastening point:

#### Geometry [in.] & Loading [lb, in.lb]

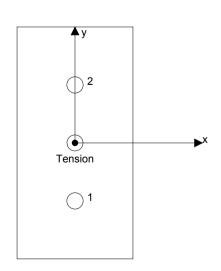


#### 1.1 Design results

| Case | Description   | Forces [lb] / Moments [in.lb]             | Seismic | Max. Util. Anchor [%] |
|------|---------------|-------------------------------------------|---------|-----------------------|
| 1    | Combination 1 | $N = 300; V_x = 0; V_y = 0;$              | no      | 46                    |
|      |               | $M_{x} = 0$ ; $M_{y} = 0$ ; $M_{z} = 0$ ; |         |                       |

# 2 Load case/Resulting anchor forces

Load case: Service loads


Anchor reactions [lb]

Tension force: (+Tension, -Compression)

| Anchor | Tension force | Shear force | Shear force x | Shear force y |
|--------|---------------|-------------|---------------|---------------|
| 1      | 150           | 0           | 0             | 0             |
| 2      | 150           | 0           | 0             | 0             |

 $\begin{tabular}{ll} max. compressive strain: & - [\%] \\ max. compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 300 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$ 

Anchor forces are calculated based on the assumption of a rigid anchor plate.



Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2020 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan



#### www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Masonry - Jun 12, 2020 Date: 6/12/2020

Fastening point:

# 3 Tension load (Most utilized anchor 1)

|                | Load P <sub>s</sub> [lb] | Capacity P <sub>t</sub> [lb] | Utilization $\beta_P = P_s/P_t$ [%] | Status |
|----------------|--------------------------|------------------------------|-------------------------------------|--------|
| Steel strength | 150                      | 4,700                        | 4                                   | OK     |
| Bond strength  | 150                      | 330                          | 46                                  | OK     |

#### 3.1 Steel strength

 $\rm P_{t,s}$  = ESR Value  $\,$  refer to ICC-ES ESR-4143  $\rm P_{t,s} \geq P_{s}$ 

#### Results

#### 3.2 Bond strength

P<sub>t,b,Base</sub> = ESR Value refer to ICC-ES ESR-4143

 $P_{t,b}$  =  $P_{t,b,Base} \cdot f_{red,E} \cdot f_{red,s} \cdot f_{red,Temp}$ 

 $P_{t,b} \ge P_s$ 

#### Variables

| c <sub>min</sub> [in.] | c <sub>cr</sub> [in.] | s <sub>min</sub> [in.] | s <sub>cr</sub> [in.] | Temperature [°F] |
|------------------------|-----------------------|------------------------|-----------------------|------------------|
| 4 000                  | _                     | 4 000                  | _                     | 68               |

#### Results

| P <sub>t,b</sub> [lb] | P <sub>t,b,Base</sub> [lb] | P <sub>s</sub> [lb] | $f_{red,E}$ | $f_{red,S}$ | $f_{red,Temp}$ | f <sub>red,TwoInOne</sub> |
|-----------------------|----------------------------|---------------------|-------------|-------------|----------------|---------------------------|
| 330                   | 330                        | 150                 | 1.000       | 1.000       | 1.000          | 1.000                     |

3



| www | hilti | com |
|-----|-------|-----|

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Masonry - Jun 12, 2020
 Date:
 6/12/2020

 Fastening point:
 6/12/2020

#### 4 Shear load (Most utilized anchor 1)

|                  | Load V <sub>s</sub> [lb] | Capacity V <sub>t</sub> [lb] | Utilization $\beta_V = V_s/V_t$ [%] | Status |  |
|------------------|--------------------------|------------------------------|-------------------------------------|--------|--|
| Overall strength | N/A                      | N/A                          | N/A                                 | N/A    |  |

#### 5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- · Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar joints.
- · The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- Drilling method (hammer, rotary) to be in accordance with the approval!
- · Masonry needs to be built in a regular way in accordance with state-of the art guidelines!
- · Warnings/Notes OST in Masonry HNA!

# Fastening meets the design criteria!



#### www.hilti.com

 Company:
 Page:

 Address:
 Specifier:

 Phone I Fax:
 |

 Design:
 Masonry - Jun 12, 2020

 Date:

Fastening point:

#### 6 Installation data

Profile: no profile

Hole diameter in the fixture:  $d_f$  = 0.563 in. Plate thickness (input): 0.250 in.

Drilling method: Drilled in rotary mode

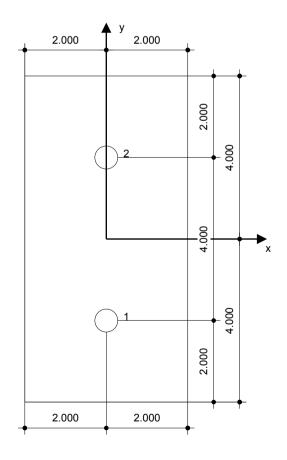
Anchor type and diameter: HY 270 + threaded rod 5.8 1/2,

5

6/12/2020

HIT-SC 18x50

Item number: 385422 HAS 5.8 1/2"x3-1/8" (element) / 2194247 HIT-HY 270 (adhesive) / 360485 HIT-SC 18x50


(sieve sleeve)

Installation torque: 54 in.lb

Hole diameter in the base material: 0.688 in. Hole depth in the base material: 2.375 in.

Minimum thickness of the base material: 7.625 in.

Hilti HIT-V threaded rod with HIT-HY 270 injection mortar and 1 HIT-SC 18x50 sieve sleeve(s) with 2 in embedment h\_ef, 1/2, Steel galvanized, Rotary drilled installation per ESR-4143



#### Coordinates Anchor [in.]

| Anchor | X     | у      | C <sub>-x</sub> | C+x    | C <sub>-y</sub> | C <sub>+y</sub> |
|--------|-------|--------|-----------------|--------|-----------------|-----------------|
| 1      | 0.000 | -2.000 | 50.000          | 10.000 | 48.000          | 8.000           |
| 2      | 0.000 | 2.000  | 50.000          | 10.000 | 52.000          | 4.000           |



| www | hi | lti | റവ | m |
|-----|----|-----|----|---|

| Company:        |                        | Page:      |           |
|-----------------|------------------------|------------|-----------|
| Address:        |                        | Specifier: |           |
| Phone I Fax:    |                        | E-Mail:    |           |
| Design:         | Masonry - Jun 12, 2020 | Date:      | 6/12/2020 |
| Fastening point | •                      |            |           |

#### 7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

# **ATTACHMENT 5**

# Photo Documentation & Simulations

NEW HAVEN CT 54 MEADOW STREET NEW HAVEN, CT 06519

Prepared in July 2020 by: All-Points Technology Corporation, P.C. 567 Vauxhall Street Extension – Suite 311 Waterford, CT 06385

Prepared for Verizon Wireless





#### **VISUAL ASSESSMENT & PHOTO-SIMULATIONS**

Cellco Partnership, d/b/a Verizon Wireless is seeking approval for the modification of an existing wireless communications facility (the "Facility") at 54 Meadow Street in New Haven, Connecticut. At the request of Verizon Wireless, All-Points Technology Corporation, P.C. ("APT") completed this assessment and prepared computer-generated photo-simulations depicting the Facility.

# **Project Undertaking**

The proposed modifications to the Facility would take place on the rooftop of an existing multistory building (the "Host Building"). Currently, Verizon Wireless maintains twelve (12) antennas and various appurtenances on the building's penthouse. Verizon Wireless plans to replace nine (9) antennas, leave three (3) existing antennas as is, and install three (3) new antennas for a total of fifteen (15) antennas. Of the nine (9) antennas being replaced, seven (7) will be relocated to positions on the building façade, penthouse façade, and an existing mechanical screen wall on the rooftop.

The building rooftop extends to a height of approximately 129' 2" above ground level ("AGL"). A parapet wall extends to a height of approximately 131' 6" AGL. The penthouse rooftop extends to a height of approximately 155' AGL with a parapet extending to approximately 157' 2" AGL. Please refer to the Site Drawings prepared by On Air Engineering, LLC, Rev. 2 dated July 13, 2020, and provided under separate cover, for details regarding the proposed installation.

#### **Field Reconnaissance**

APT completed field reconnaissance in the vicinity of the Facility to record existing conditions, inventory visible and non-visible locations, and provide photographic documentation from publicly accessible areas. The field reconnaissance was completed on July 8, 2020. Weather conditions were favorable for the in-field activity with partly cloudy skies.

# **Photographic Documentation and Simulations**

During the field reconnaissance, APT obtained photo-documentation of representative locations where the Host Building was visible. At each photo location, the geographic coordinates of the camera's position were logged using global positioning system ("GPS") technology. Photographs were taken with a Canon EOS 6D digital camera body<sup>1</sup> and Canon EF 24 to 105 millimeter ("mm") zoom lens. APT typically uses a standard focal length of 50mm to present a consistent

<sup>&</sup>lt;sup>1</sup> The Canon EOS 6D is a full-framed camera which includes a lens receptor of the same size as the film used in 35mm cameras. As such, the images produced are comparable to those taken with a conventional 35mm camera.

field of view. On occasion, photos are taken at lower focal lengths to provide a greater depth of field and to provide context to the scene by including surrounding features within the photograph. During this evaluation, one (1) photograph was taken at a 24mm focal length as noted in the table (Table 1 – Photo Locations) on the following pages.

Photographic simulations were generated to portray scaled renderings of the proposed Facility from all eight (8) locations presented herein where the Facility may be recognizable. Using field data, Site plan information and 3-dimensional (3D) modeling software, spatially referenced models of the Facility were generated and merged. The geographic coordinates obtained in the field for the photograph locations were incorporated into the model to produce virtual camera positions within the spatial 3D model. Photo-simulations were then created using a combination of renderings generated in the 3D model and photo-rendering software programs, which were ultimately composited and merged with the existing conditions photographs (using Photoshop image editing software). The scale of the subjects in the photograph (the Host Building) and the corresponding simulation (the Facility) is proportional to their surroundings.

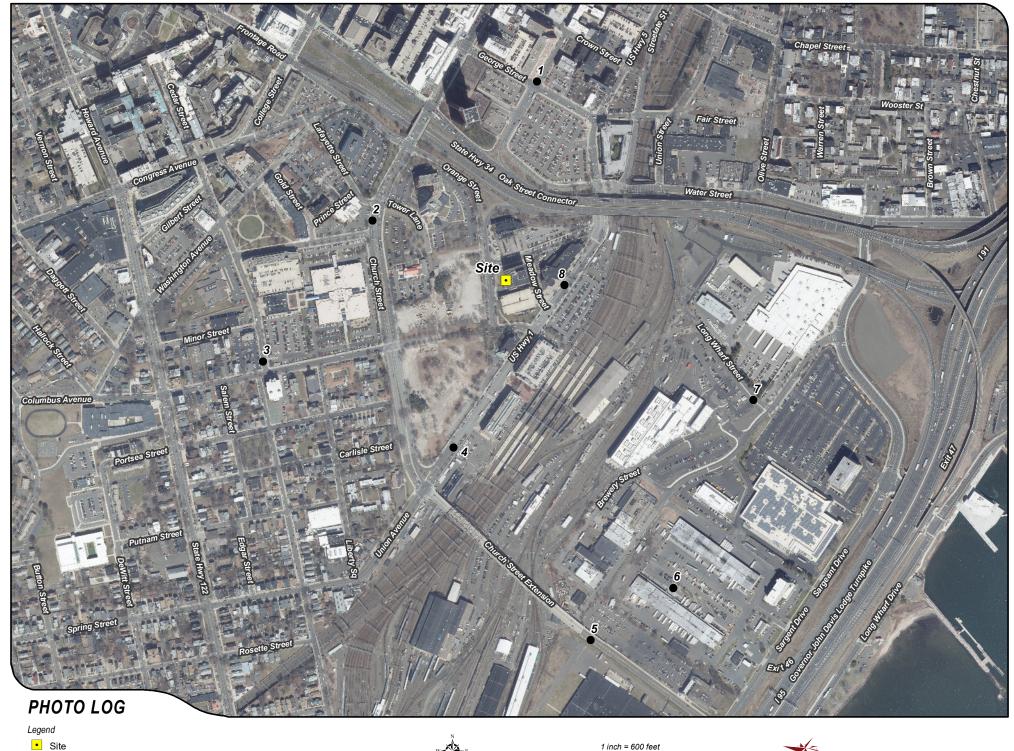
For presentation purposes in this report, the photographs were produced in an approximate 7-inch by 10.5-inch format. When reproducing the images in this format size, we believe it is important to present the largest view while providing key contextual landscape elements (existing developments, street signs, utility poles, etc.) so that the viewer can determine the proportionate scale of each object within the scene. Photographs presented in the attachment at the end of this report include documentation of existing conditions, identification of antennas proposed for removal/relocation, identification of relocated/new antennas, and photosimulations of the modified Facility. The photo-simulations are intended to provide the reader with a general understanding of the different view characteristics associated with the Facility from various locations. Photographs were taken from publicly-accessible areas and unobstructed view lines were chosen wherever possible.

The table on the following page summarizes the photographs and simulations presented in the attachment to this report, and includes a description of each location, view orientation, and distance from where the photo was taken relative to the proposed Facility. The photo locations are depicted on the photolog provided as an attachment to this report.

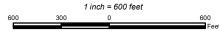
**Table 1 – Photo Locations** 

| ge Street at George Street<br>Church Street South<br>Cedar Street | South<br>Southeast<br>Northeast | ± 0.23 Mile<br>± 0.18 Mile<br>± 0.32 Mile |
|-------------------------------------------------------------------|---------------------------------|-------------------------------------------|
|                                                                   |                                 |                                           |
| Cedar Street                                                      | Northeast                       | I O 22 Mile                               |
|                                                                   |                                 | ± 0.32 Mile                               |
| Union Avenue                                                      | Northeast                       | ± 0.22 Mile                               |
| Church Street                                                     | Northwest                       | ± 0.44 Mile                               |
| Food Terminal Plaza                                               | Northwest                       | ± 0.41 Mile                               |
| Brewery Street                                                    | Northwest                       | ± 0.32 Mile                               |
| Union Avenue                                                      | West                            | ± 309 Feet                                |
|                                                                   | Brewery Street                  | Brewery Street Northwest                  |

#### **Conclusions**


As presented on the attached photo-simulations, views of the Facility would change slightly with the proposed modifications. The Host Building currently has multiple antennas and equipment mounted on the penthouse façade. The modifications as proposed by Verizon Wireless do not increase visibility of the Facility, nor do they detract from the general characteristics of the Host Building, as is.

#### Limitations


This analysis may not account for all visible locations, as it is based on the combination of computer modeling, incorporating aerial photographs, and in-field observations from publicly-accessible locations. No access to private properties was provided to APT personnel. This analysis does not claim to depict the only areas, or all locations, where visibility may occur; it is intended to provide a representation of those areas where the Facility is likely to be seen.

The photo-simulations provide a representation of the Facility under similar settings as those encountered during the field review and reconnaissance. Views of the Facility can change throughout the seasons and the time of day, and are dependent on weather and other atmospheric conditions (e.g., haze, fog, clouds); the location, angle and intensity of the sun; and the specific viewer location. Weather conditions on the day of the field review included variable winds and sunny skies.

# **ATTACHMENTS**



W E











































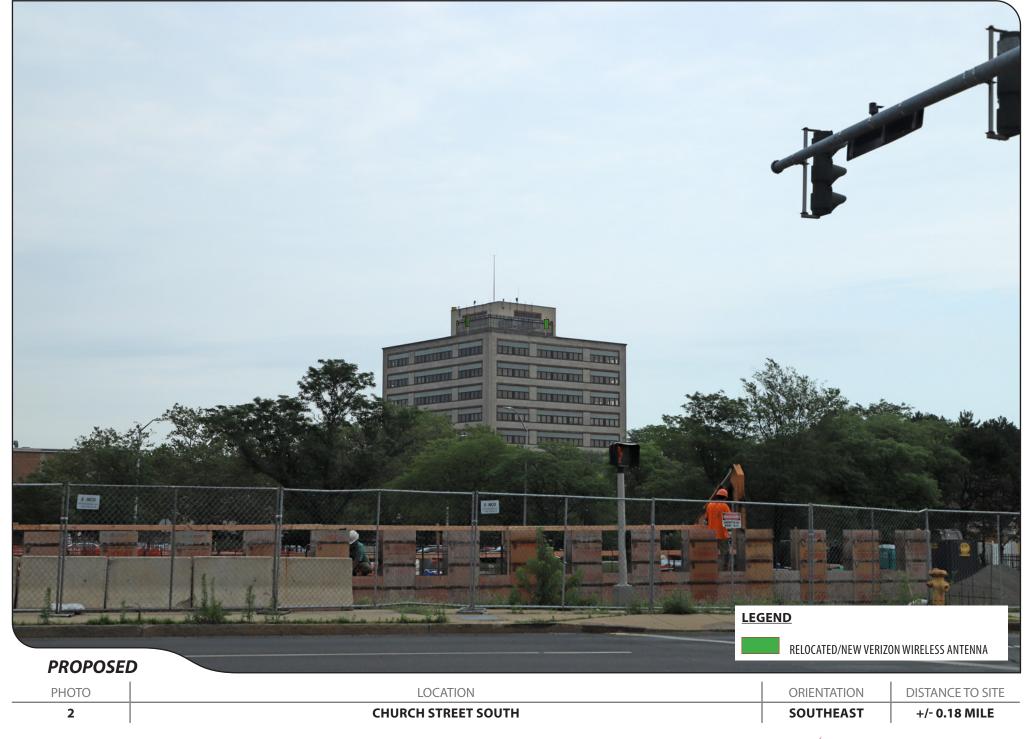

































PHOTO LOCATION ORIENTATION DISTANCE TO SITE

3 CEDAR STREET NORTHEAST +/- 0.32 MILE

























| 4     | UNION AVENUE | NORTHEAST   | +/- 0.22 MILE    |
|-------|--------------|-------------|------------------|
| PHOTO | LOCATION     | ORIENTATION | DISTANCE TO SITE |















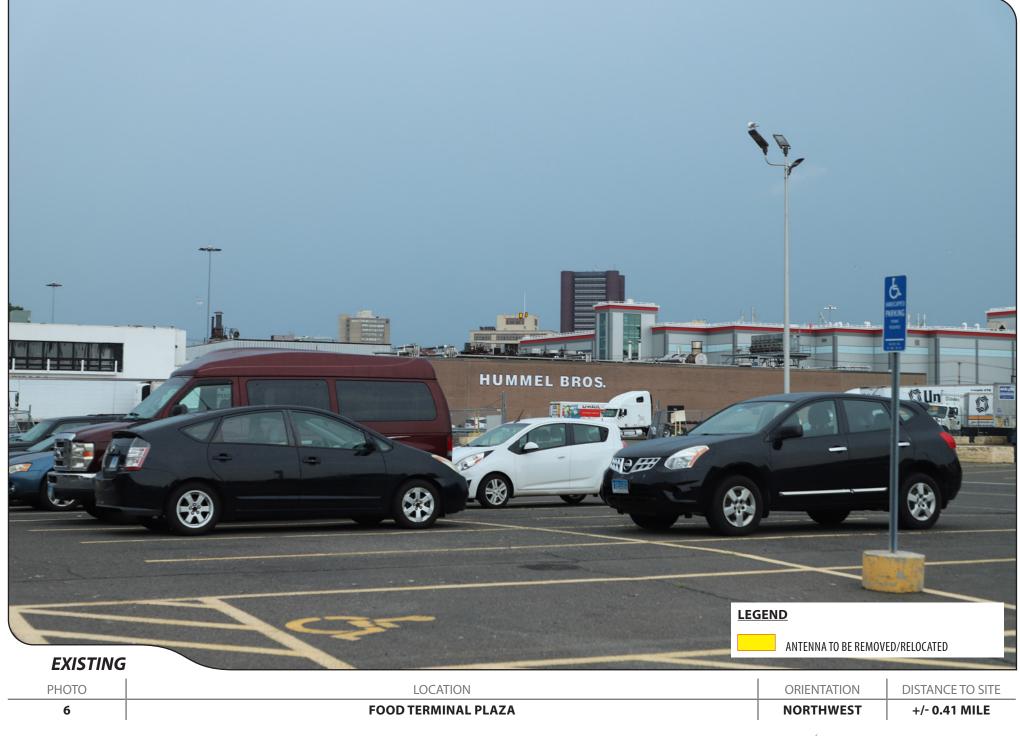






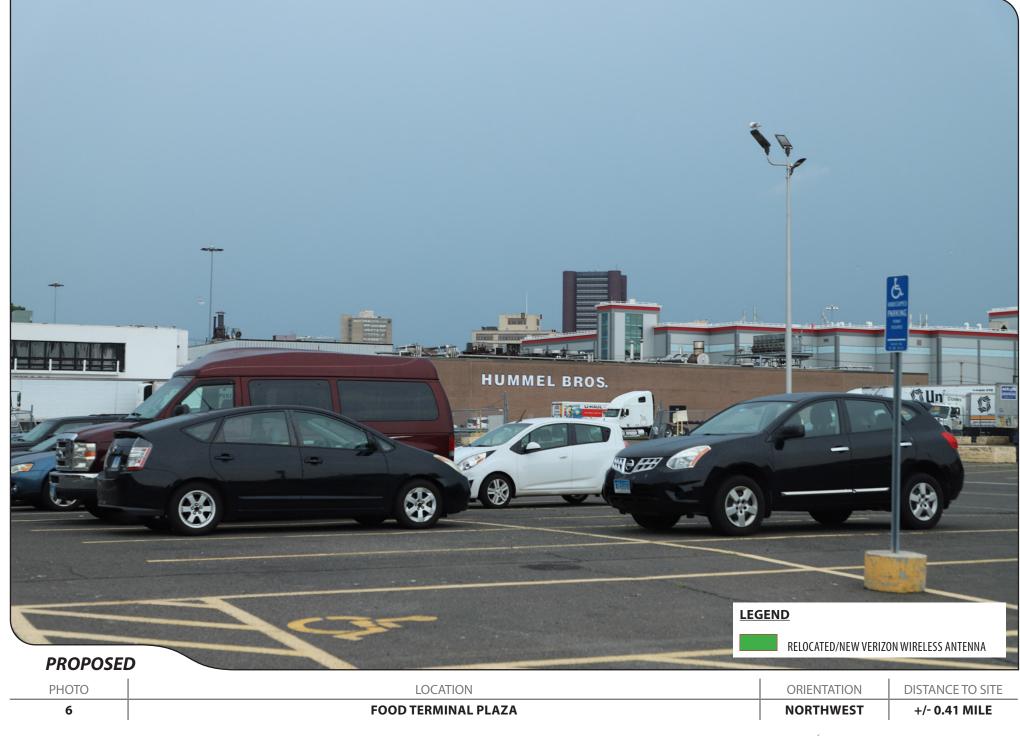




































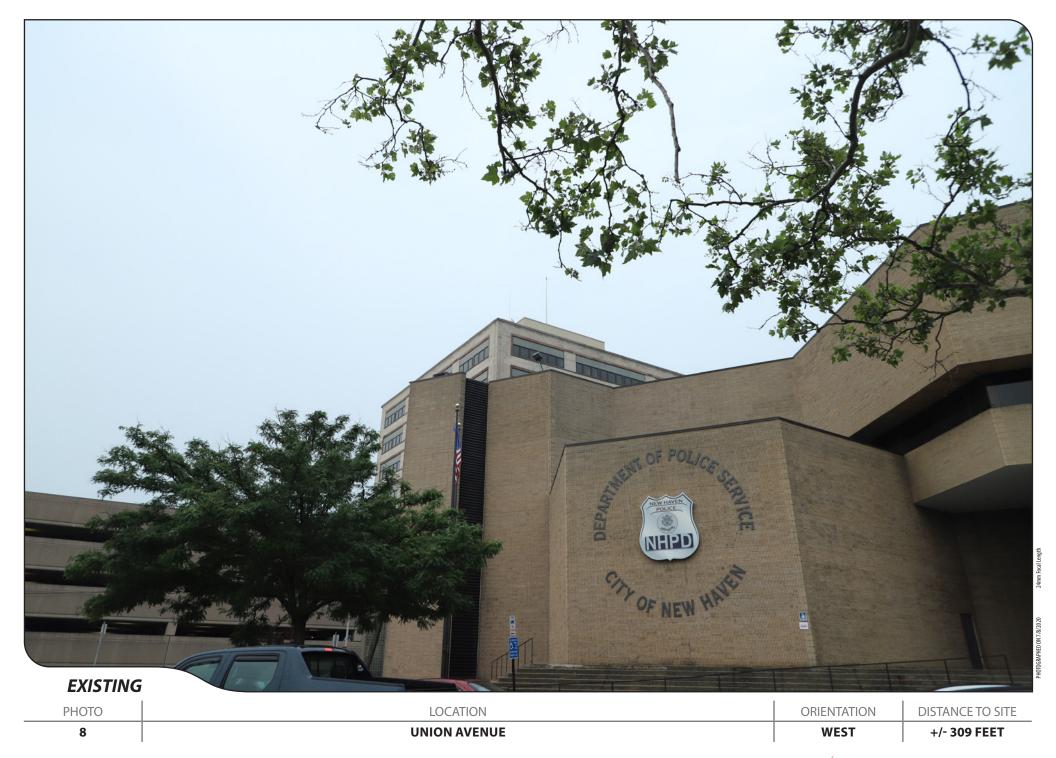













| 7     | BREWERY STREET | NORTHWEST   | +/- 0.32 MILE    |
|-------|----------------|-------------|------------------|
| PHOTO | LOCATION       | ORIENTATION | DISTANCE TO SITE |



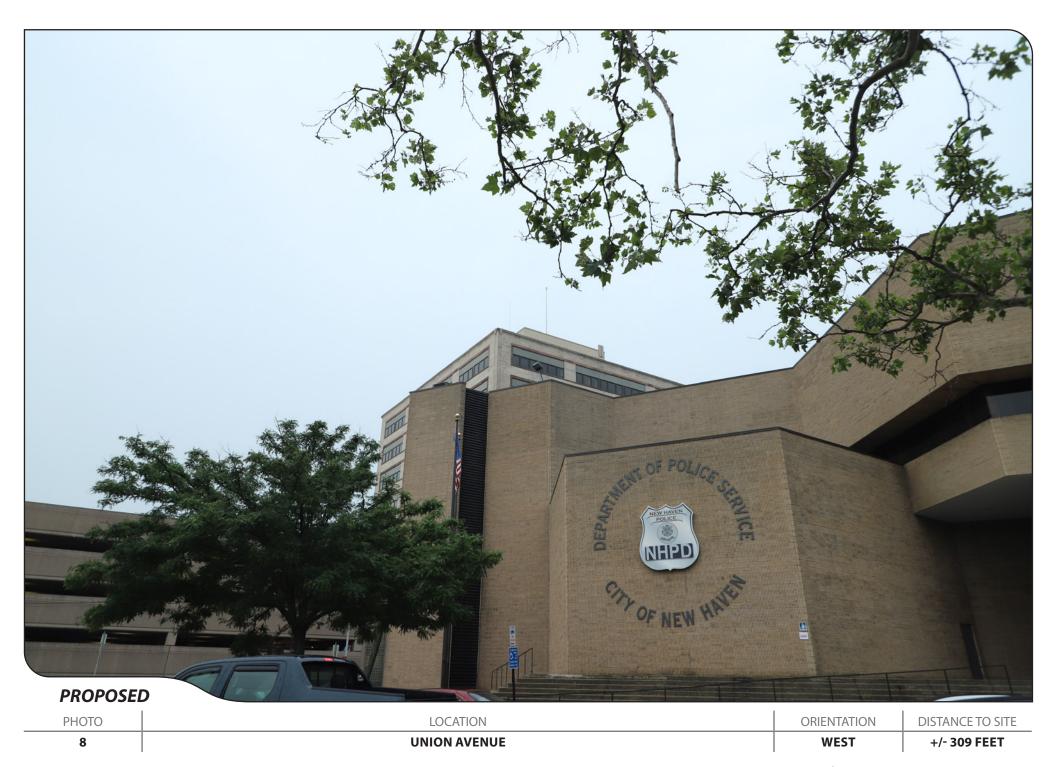



























# **ATTACHMENT 6**

Site Name: New Haven CT Cumulative Power Density

| Operator     | Operating<br>Frequency | Number of Trans. | ERP Per<br>Trans. | Total<br>ERP | Distance<br>to Target | Calculated<br>Power<br>Density | Maximum<br>Permissible<br>Exposure* | Fraction of MPE |
|--------------|------------------------|------------------|-------------------|--------------|-----------------------|--------------------------------|-------------------------------------|-----------------|
|              | (MHz)                  |                  | (watts)           | (watts)      | (feet)                | (mW/cm^2)                      | (mW/cm^2)                           | (%)             |
| VZW 700      | 746                    | 4                | 556               | 2,224        | 136                   | 0.0432                         | 0.497333333                         | 8.69%           |
| VZW Cellular | 869                    | 2                | 354               | 708          | 155                   | 0.0106                         | 0.579333333                         | 1.83%           |
| VZW Cellular | 880                    | 4                | 556               | 2,224        | 136                   | 0.0432                         | 0.586666667                         | 7.37%           |
| VZW PCS      | 1,970                  | 4                | 1,303             | 5,213        | 136                   | 0.1013                         | 1.0                                 | 10.13%          |
| VZW AWS      | 2,145                  | 4                | 1,396             | 5,585        | 136                   | 0.1086                         | 1.0                                 | 10.86%          |
| VZW CBRS     | 3,550                  | 4                | 51                | 204          | 136                   | 0.0040                         | 1.0                                 | 0.40%           |
| VZW 28GHz    | 27,600                 | 1                | 610               | 610          | 136                   | 0.0119                         | 1.0                                 | 1.19%           |

**Total Percentage of Maximum Permissible Exposure** 

40.47%

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

- 1. closest accessible point is distance from antenna to base of pole;
- 2. continuous transmission from all available channels at full power for indefinite time period; and,
- 3. all RF energy is assumed to be directed solely to the base of the pole.

<sup>\*</sup>Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

# **ATTACHMENT 7**

### Federal Aviation Regulations Part 77 Sub-Part C Obstruction Analysis Report

Verizon Wireless Ziad Cheiban 20 Alexander Drive Wallingford, CT 06492

E-mail: ziad.cheiban@verizonwireless.com

Phone: 8604717860 Fax:

Site Identification: MCM\_CT-520 Nearest City: MCM\_CT-520 New Haven, CT

Site Information (Coordinate Datum - NAD83)

**Latitude:** 41° - 17' - 59.54" **Decimal Degrees:** 41.2998722222222° **Decimal Degrees:** 72.92654722222222°

Ground Elevation: 11 feet AMSL Structure Height: 160 feet AGL

Overall Height: 171 feet AMSL

FAA Number: Null

Airspace Study #: 2020-APS-3708-OE

Analyzed on: 5/22/2020. Using Airspace® 20.5.463. Airspace® Data Date: 5/15/2020

This Airspace Analysis was completed under all obstacle evaluation rules specified in Federal Aviation Regulations (FAR) Part 77 sub-Part C.

Approved,

Bella B Harris, Airspace Technician Federal Airways and Airspace® 1423 S. Patrick Dr. Satellite Beach, FL 32935 (321)777-1266 Clyde J Pittman, Aerospace Engineer

Date Printed: 05-22-2020

AIRSPACE® and TERPS® are registered ® trademarks of Federal Airways & Airspace® Copyright © 1989 - 2020 Federal Airways & Airspace®

Site ID Number: MCM\_CT-520

#### **AERONAUTICAL RECOMMENDATIONS**

Notice to the FAA is not required at the analyzed height and location.

TERPS® analysis has been completed for the proposed site. The maximum allowable height identified is 363 feet AMSL based upon HVN VFR Traffic Pattern Airspace.

The proposed structure does not penetrate obstruction standards. An aeronautical analysis by the Federal Aviation Administration would likely find no adverse aeronautical impact. An extended study will not be required. The maximum not to exceed height to avoid an extended study by the FAA is 213 feet AMSL based upon HVN FAR 77.17(a)(2) VFR Transitional Surface.

Marking and Lighting are not normally required for structures 200 feet or less. However, it may become a requirement based upon the outcome of the aeronautical study conducted by the FAA. It will then become part of the determination and a requirement of the determination.

No adverse impact to low altitude federal airways are identified.

No impact to VFR Traffic Pattern Airspace.

No Potential FCC Licensed AM Broadcast Station interference identified.

No impact to an Air Navigation Facility has been identified.

Site ID Number: MCM CT-520

#### LANDING FACILITY INFORMATION

The nearest public use landing facility to the proposed location is: TWEED-NEW HAVE (Ident: HVN)

The distance to the nearest runway of this landing facility is 14983 feet or 2.8 statute miles. The true bearing is 140.12° to this landing facility.

Private landing facilities are exempt from review by the FAA under FAR Part 77. However, locating near a private landing facility may affect aircraft operations during take-off and landing.

The nearest private landing facility is: 1CT2: YALE
The proposed structure is located 3220 feet or .6 statute miles.
The true bearing to this landing facility is 301 degrees.

The proposed structure is within 3 nautical miles (3.45 statute miles) of a private landing facility. This landing facility and supporters are likely to resist this proposal during the local zoning board hearing.

#### **FAA NOTICE REQUIREMENTS**

#### Notice to the FAA is not required because the proposed structure

- 1) is less than 200 feet above ground level [FAR Part 77.9(a)].
- 2) does not exceed runway slope criteria [FAR Part 77.9(b)].
- 3) is not a traverse way (road) [FAR 77.9(c)].
- 4) is not within a protected instrument procedure area [FAR 77.9 IFR].
- 5) is not on airport property [FAR 77.9(d)].
- 6) is not near an air navigation facility [FAR 77.9 IFR].

Date Printed: 05-22-2020

Site ID Number: MCM\_CT-520

#### **AERONAUTICAL IMPACT**

#### FAR Part 77 Subpart-C Obstruction Standards

The proposed structure would not violate or exceed obstruction standards as defined by FAR Part 77.17(a)(1), 77.17(a)(2) and 77.19.

#### Terminal Instrument Procedure Standards - FAR Part 77.17(a)(3)

No adverse impact with a US Terminal Approach or Departure Procedure has been identified.

### Minimum Obstacle Clearance Altitude (MOCA) - FAR Part 77.17(a)(4)

The proposed structure is not located within a low altitude airway area or will not impact aircraft using any airway.

#### VFR Traffic Pattern Airspace

The proposed structure is not located within a VFR Traffic Pattern Airspace or is below the allowable height. It will not impact aircraft circling to land.

#### FCC Licensed AM Broadcast Station Proof-of-Performance

The proposed structure is not located within the specified range of an FCC Licensed AM radio and will not require Proof-of-Performance analysis.

Airspace User:

File: 2020-APS-3708-OE

Location: New Haven, CT

Latitude: 41°-17'-59.54" Longitude: 72°-55'-35.57"

SITE ELEVATION AMSL....11 ft. STRUCTURE HEIGHT.....160 ft. OVERALL HEIGHT AMSL....171 ft.

#### NOTICE CRITERIA

FAR 77.9(a): NNR (DNE 200 ft AGL)

FAR 77.9(b): NR (Exceeds Notice Slope, Maximum: 162 ft.)

NNR See below regarding Notice Criteria Exemption under 77.9(e)(4).

FAR 77.9(c): NNR (Not a Traverse Way)

FAR 77.9: NNR FAR 77.9 IFR Straight-In Notice Criteria for HVN FAR 77.9: NNR FAR 77.9 IFR Straight-In Notice Criteria for BDR

FAR 77.9(d): NNR (Off Airport Construction)

NR = Notice Required
NNR = Notice Not Required

PNR = Possible Notice Required (depends upon actual IFR procedure)
For new construction review Air Navigation Facilities at bottom
of this report.

If the proposed construction is an alteration to an existing structure, notice requirements may be superceded by the item exemptions listed below.

The location and analysis were based upon an existing structure. However, no existing aeronautical study number was identified. If the 'existing' structure penetrates an obstruction surface defined by CFR 77.17, 77.19, 77.21 or 77.23 (see below) it is strongly recommended the FAA be notified of the 'existing' structure to determine obstruction marking or lighting requirements. It is not uncommon for the FAA to issue a Determination of No Hazard (DNH) for an existing structure and modify the airspace to accommodate the structure, should that be required. If the FAA issues a DNH enter the aeronautical study number (ASN) in the space provided on the Airspace Analysis Window Form and re-run Airspace.

No frequencies were identified in this alteration are included in the FAA's Co-Location Policy published in the Federal Register November 15, 2007. Therefore, application of the Co-Location Policy notice exemption rule can not be applied.

Title 14 CFR Part 77.9(e), Notice Criteria Exception:
The location and analysis were based upon an existing structure with the alteration limited to the addition of an antenna with a height no greater than 20 feet. Title 14 CFR Part 77.9(e)(4) exempts the requirement for notice to the FAA; "Any antenna structure of 20 feet or less in height except one that would increase the height of another antenna structure." If the addition of an antenna of 20 feet or less to an existing structure increase the height of the structure to exceed 200 feet AGL or penetrate an obstruction surface defined by Title 14 CFR 77.17, 77.19, 77.21 or 77.23 notice is recommended. This will allow the FAA to determine the level of obstruction lighting required and any aeronautical impacts, if any, to aircraft operations. Notice of an existing structure almost always receives a No Hazard Determination. Please see Summary Report below plus the Airport and Part 77 Reports for application of the above listed CFRs.

```
OBSTRUCTION STANDARDS
  FAR 77.17(a)(1): DNE 499 ft AGL
   FAR 77.17(a)(2): DNE - Airport Surface
  FAR 77.17(a)(2): DNE - Allpoit Surface
FAR 77.19(a): DNE - Horizontal Surface
FAR 77.19(b): DNE - Conical Surface
FAR 77.19(c): DNE - Primary Surface
FAR 77.19(d): DNE - Approach Surface
FAR 77.19(e): DNE - Approach Transitional Surface
FAR 77.19(e): DNE - Abeam Transitional Surface
VFR TRAFFIC PATTERN AIRSPACE FOR: HVN: TWEED-NEW HAVEN
Type: A RD: 14983.55 RE: 12.6
  FAR 77.17(a)(1): DNE FAR 77.17(a)(2): DNE
                                      DNE - Height No Greater Than 200 feet AGL.
   VFR Horizontal Surface: DNE
   VFR Conical Surface: DNE
                                     DNE
  VFR Primary Surface:
VFR Approach Surface:
   VFR Transitional Surface: DNE
   The structure is within VFR - Traffic Pattern Airspace Climb/Descent Area.
   Structures exceeding the greater of 350' AAE, 77.17(a)(2), or VFR horizontal
   and conical surfaces will receive a hazard determination from the FAA.
  Maximum AMSL of Climb/Descent Area is 363 feet.
VFR TRAFFIC PATTERN AIRSPACE FOR: BDR: IGOR I SIKORSKY MEMORIAL
Type: A RD: 72131.77 RE: 6.5
  FAR 77.17(a)(1): DNE
FAR 77.17(a)(2): DNE - Greater Than 5.99 NM.
VFR Horizontal Surface: DNE
  VFR Conical Surface: DNE
VFR Primary Surface: DNE
   VFR Primary Surface:
  VFR Approach Surface: DNE
   VFR Transitional Surface: DNE
TERPS DEPARTURE PROCEDURE (FAA Order 8260.3, Volume 4)
   FAR 77.17(a)(3) Departure Surface Criteria (40:1)
   DNE Departure Surface
MINIMUM OBSTACLE CLEARANCE ALTITUDE (MOCA)
   FAR 77.17(a)(4) MOCA Altitude Enroute Criteria
   The Maximum Height Permitted is 500 ft AMSL
PRIVATE LANDING FACILITIES
                                                 BEARING RANGE DELTA ARP FAA
To FACIL IN NM ELEVATION IFR
   FACTL
   IDENT TYP NAME
   1CT2 HEL YALE NEW HAVEN HOSPITAL 300.93 .53 -48
   No Impact to Private Landing Facility
   Structure 48 ft below heliport.
  CT40 HEL BOB THOMAS FORD
                                                               5.74 4.21
   No Impact to Private Landing Facility
   Structure is beyond notice limit by 20580 feet.
   CT84 HEL PARTYKA CHEVROLET
                                                              10.38 4.5 +121
   No Impact to Private Landing Facility
   Structure is beyond notice limit by 22342 feet.
AIR NAVIGATION ELECTRONIC FACILITIES
                  ST DIST DELTA GRND APCH
E AT FREQ VECTOR (ft) ELEVA ST LOCATION ANGLE BEAR
   FAC

        HVN
        LOCALIZER
        I
        109.1
        131.00
        14388
        +154
        CT RWY 02 TWEED-NEW
        .61

        HVN
        ATCT
        I
        A/G
        137.35
        16907
        +80
        CT TWEED-NEW HAVEN
        .27

        JWE
        NDB
        D
        36
        300.55
        59247
        -400
        CT CLERA
        -.39

        MAD
        VOR/DME
        R
        110.4
        85.4
        64591
        -45
        CT MADISON
        -.04

        BDR
        VOR/DME
        R
        108.8
        226.96
        74409
        +162
        CT BRIDGEPORT
        .12
```

| CCC            | VOR/DME    | R | 117.2  | 165.42 | 139419 | +86  | NY | CALVERTON         | .04  |
|----------------|------------|---|--------|--------|--------|------|----|-------------------|------|
| KOKX           | RADAR WXL  | I |        | 173.79 | 159182 | -24  | NY | NEW YORK          | 01   |
| HFD            | VOR/DME    | R | 114.9  | 39.76  | 162031 | -678 | CT | HARTFORD          | 24   |
| QVH            | RADAR ARSR | I | 1326.9 | 156.82 | 167033 | -180 | NY | RIVERHEAD         | 06   |
| CMK            | VOR/DME    | R | 116.6  | 267.49 | 180089 | -523 | NY | CARMEL            | 17   |
| ISP            | RADAR      | I | 2735.  | 194.47 | 185780 | -11  | NY | LONG ISLAND MacAR | 0.00 |
| FOK            | TACAN      | R | 111.0  | 154.33 | 186959 | +121 | NY | SUFFOLK CO        | .04  |
| DPK            | VOR/DME    | R | 117.7  | 209.21 | 212362 | +48  | NY | DEER PARK         | .01  |
| HPN            | RADAR      | I | 2735.  | 248.88 | 232364 | -339 | NY | WESTCHESTER COUNT | 08   |
| $\mathtt{BDL}$ | RADAR      | I |        | 15.92  | 242105 | -65  | CT | BRADLEY INTL      | 02   |

CFR Title 47, §1.30000-§1.30004

AM STUDY NOT REQUIRED: Structure is near a licensed AM radio station. However, Movement Method Proof is not required because only antenna structures fall within the jurisdiction of the FCC. Please review AM Station Report for details.

Airspace® Summary Version 20.5.565

 ${\tt AIRSPACE^{\$}}$  and  ${\tt TERPS^{\$}}$  are registered  $^{\$}$  trademarks of Federal Airways & Airspace  $^{\$}$  Copyright  $^{\$}$  1989 - 2020

05-22-2020 14:12:20

|             | * F.A.                        | .R. 77 OBSTRUCTION                         | N ANALYSIS                     | *                        |
|-------------|-------------------------------|--------------------------------------------|--------------------------------|--------------------------|
|             | FILE: 2020-                   | -APS-3708-OE                               |                                |                          |
|             | LATITUDE: 4                   | 11°-17'-59.54"                             | LONGITUDE                      | E: 72°-55'-35.57"        |
|             | STRUCTURE H                   | TION AMSL HEIGHT1 IGHT AMSL1               | 60 ft.                         |                          |
| 77.17(a)(1) | A height more                 | e than 499 ft. Abov                        | ve Ground Leve                 | el (AGL).                |
|             | *****                         | DOES NOT EXCEED **                         | ******                         |                          |
|             | THE MAXIMUM AI                | LLOWABLE HEIGHT IS:                        | 510                            | ft. AMSL                 |
|             | THE GROUND ELE                | EVATION AT THE SITE                        | IS: 11                         | Et. AMSL                 |
|             | THE OVERALL CA                | ASE ELEVATION IS:                          | 171                            | ft. AMSL                 |
|             | THE CASE IS BE                | ELOW THE ALLOWABLE                         | BY: 339                        | ft.                      |
|             | BEGI                          | **************************************     | FOR HVN                        |                          |
| 77.17(a)(2) | A height AGL                  | or airport elevati                         | on, whichever                  | r is higher.             |
|             | *****                         | DOES NOT EXCEED **                         | ******                         |                          |
|             | BECAUSE: Propo                | osed height does no                        | ot exceed 200                  | feet Above Ground Level. |
|             | THE REFERENCE                 | AIRPORT IDENT IS:.                         | HVN                            |                          |
|             | THE AIRPORT EI                | LEVATION IS:                               | 13                             | Et. AMSL                 |
|             | THE DISTANCE H                | FROM THE CASE TO AF                        | RP IS: 2.812                   | 26 NAUTICAL MILES        |
|             | THE BEARING A                 | IRPORT TO CASE IS:.                        | 320.3                          | 115 DEGREES              |
|             | THE CASE HEIGH                | HT AGL IS:                                 | 160                            | ft.                      |
|             | ALLOWABLE HEIC                | GHT                                        | 213                            | ft. AMSL                 |
| 77.19(a) A  |                               | ing a horizontal su<br>tion within a radiu |                                |                          |
|             | *****                         | DOES NOT EXCEED **                         | ******                         |                          |
|             | NOT WITHIN SPE                | ECIFIED HORIZONTAL                         | SURFACE AREA                   |                          |
| 77.19(b) A  | height exceeds from the horiz | ing a conical surfazontal surface at 2     | ace (a slope o<br>20/1 ratio). | outward 4000 ft.         |
|             | *****                         | DOES NOT EXCEED **                         | ******                         |                          |
|             | NOT WITHIN SPE                | ECIFIED CONICAL SUF                        | RFACE AREA                     |                          |
|             |                               | **************************************     | ALYSIS *                       |                          |

RUNWAY 02/20

#### EXISTING RUNWAY 02/20

77.19(c) A height exceeding runway primary surface. \*\*\*\*\*\*\* DOES NOT EXCEED \*\*\*\*\*\*\*\* NOT WITHIN SPECIFIED RUNWAY PRIMARY SURFACE 77.19(e) A height exceeding a transitional surface abeam runway. \*\*\*\*\*\* DOES NOT EXCEED \*\*\*\*\*\*\*\* NOT WITHIN SPECIFIED RUNWAY ABEAM TRANSITIONAL SURFACE 77.19(d) A height exceeding an approach surface of RUNWAY 20. THE BEARING TO THE CASE FROM THE THRESHOLD IS...... 313.249 degrees THE NORMAL BEARING TO THE CENTERLINE IS...... 92.91 degrees THE CENTERLINE OUTBOUND TRUE BEARING IS..... 2.91 degrees THE ABEAM DISTANCE TO CENTERLINE FROM CASE IS...... 11321.31 ft. THE RUNWAY THRESHOLD ELEVATION IS............................ 12.6 ft. AMSL THE DISTANCE FROM THRESHOLD + 200' TO THE CASE IS... 14853.313 ft. THE DISTANCE FROM THRESHOLD + 200' TO NB IS...... 9609.94 ft. THE CRITICAL WIDTH OF HALF THE APPROACH IS...... 1701.237 ft. \*\*\*\*\*\* DOES NOT EXCEED \*\*\*\*\*\*\*\* BEYOND DEFINED APPROACH & TRANSITIONAL AREAS. DISTANCE FROM THE THRESHOLD TO OFFSET IS...... 9809.9 ft. THE SLOPE OF RUNWAY 20 IS: 34 TO 1. The FAA has defined this runway as a non-utility runway. It has a non-precision approach. The obstacle surface extends 10,000 feet (34:1 Slope) symmetrically centered along the runway centerline extended. Please review the US Terminal Procedures volume associated with this airport. If a procedure for this airport and/or runway exist use Terps® Professional software to determine the height limits (if any) the procedure will have on the proposed structure. Non-precision instrument procedures can extend 10 NM from the runway and a circling approach to the airport or runway can extend out up to 4.5 NM from every runway end. \*\*\*\*\*\*\* \* BEGIN RUNWAY ANALYSIS \* \*\*\*\*\*\*\* **RUNWAY 14/32** EXISTING RUNWAY 14/32 77.19(c) A height exceeding runway primary surface.

2

\*\*\*\*\*\*\* DOES NOT EXCEED \*\*\*\*\*\*\*\*

NOT WITHIN SPECIFIED RUNWAY PRIMARY SURFACE

| 77.19(e) A he                          | ight exceeding a transitional surface abeam runway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **                                     | ****** DOES NOT EXCEED ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NO                                     | T WITHIN SPECIFIED RUNWAY ABEAM TRANSITIONAL SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 77.19(d) A he                          | ight exceeding an approach surface of RUNWAY 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TH                                     | E BEARING TO THE CASE FROM THE THRESHOLD IS 320.343 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TH                                     | E NORMAL BEARING TO THE CENTERLINE IS 221.19 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TH                                     | E CENTERLINE OUTBOUND TRUE BEARING IS 311.19 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TH                                     | E ABEAM DISTANCE TO CENTERLINE FROM CASE IS 2443.81 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TH                                     | E RUNWAY THRESHOLD ELEVATION IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TH                                     | E DISTANCE FROM THRESHOLD + 200' TO THE CASE IS 15358.707 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TH                                     | E DISTANCE FROM THRESHOLD + 200' TO NB IS 15164.09 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TH                                     | E CRITICAL WIDTH OF HALF THE APPROACH IS 1766.404 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| **                                     | ****** DOES NOT EXCEED ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA                                     | SE IS BEYOND APPROACH SURFACE, OUT BY 5164.04 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TH                                     | E SLOPE OF RUNWAY 14 IS: 20 TO 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| vi<br>sy<br>ai<br>Pr<br>th<br>so<br>ha | e FAA has defined this runway as a non-utility runway. It has a sual approach. The obstacle surface extends 5000 feet (20:1 Slope) mmetrically centered along the runway centerline extended. This rport may have a circling approach. Please review the US Terminal ocedures volume associated with this airport. If a procedure for is airport and/or this runway exist use Terps® Professional ftware to determine the height limits (if any) the procedure will ve on the proposed structure. A circling approach to the airport any runway can extend out up to 4.5 NM from every runway end. |
|                                        | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 77 17/-1/21 7                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | height AGL or airport elevation, whichever is higher.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | CAUSE: Location studied is further than 5.99 nm. from ARP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DE:                                    | CAUSE: LOCACION SCUULEU IS TUTCHEL CHAIN 5.99 MM. ITOM ARP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | ight exceeding a horizontal surface 150 ft. above rport elevation within a radius of >> BDR <<.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| **                                     | ******* DOES NOT EXCEED ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NO                                     | T WITHIN SPECIFIED HORIZONTAL SURFACE AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| fr                                     | ight exceeding a conical surface (a slope outward 4000 ft. om the horizontal surface at 20/1 ratio).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| **                                     | ****** DOES NOT EXCEED ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|          |   | RUNWAY 06/24<br>EXISTING RUNWAY 06/24                                                                                       |
|----------|---|-----------------------------------------------------------------------------------------------------------------------------|
| 77.19(c) | A | height exceeding runway primary surface.                                                                                    |
|          |   | ******* DOES NOT EXCEED ********                                                                                            |
|          |   | NOT WITHIN SPECIFIED RUNWAY PRIMARY SURFACE                                                                                 |
| 77.19(e) | A | height exceeding a transitional surface abeam runway.                                                                       |
|          |   | ******* DOES NOT EXCEED ********                                                                                            |
|          |   | NOT WITHIN SPECIFIED RUNWAY ABEAM TRANSITIONAL SURFACE                                                                      |
| 77.19(d) | Α | height exceeding an approach surface of RUNWAY 24.                                                                          |
|          |   | THE BEARING TO THE CASE FROM THE THRESHOLD IS 47.451 degrees                                                                |
|          |   | THE NORMAL BEARING TO THE CENTERLINE IS 135 degrees                                                                         |
|          |   | THE CENTERLINE OUTBOUND TRUE BEARING IS 45 degrees                                                                          |
|          |   | THE ABEAM DISTANCE TO CENTERLINE FROM CASE IS 3070.97 ft.                                                                   |
|          |   | ******* DOES NOT EXCEED ********                                                                                            |
|          |   | CASE MEETS ANGULAR CRITERIA BUT IS LOCATED GREATER THAN 50,000 ft. FROM THE START OF ANY APPROACH TYPE, OUT BY 21872.7 feet |
|          |   | **************************************                                                                                      |
|          |   | RUNWAY 11/29<br>EXISTING RUNWAY 11/29                                                                                       |
| 77.19(c) | A | height exceeding runway primary surface.                                                                                    |
|          |   | ******* DOES NOT EXCEED ********                                                                                            |
|          |   | NOT WITHIN SPECIFIED RUNWAY PRIMARY SURFACE                                                                                 |
| 77.19(e) | A | height exceeding a transitional surface abeam runway.                                                                       |
|          |   | ******* DOES NOT EXCEED ********                                                                                            |
|          |   | NOT WITHIN SPECIFIED RUNWAY ABEAM TRANSITIONAL SURFACE                                                                      |
| 77.19(d) | Α | height exceeding an approach surface of RUNWAY 29.                                                                          |
|          |   | THE BEARING TO THE CASE FROM THE THRESHOLD IS 46.656 degrees                                                                |
|          |   | THE NORMAL BEARING TO THE CENTERLINE IS 187.83 degrees                                                                      |

THE CENTERLINE OUTBOUND TRUE BEARING IS...... 97.83 degrees THE ABEAM DISTANCE TO CENTERLINE FROM CASE IS...... 56098.88 ft. THE RUNWAY THRESHOLD ELEVATION IS................. 6.5 ft. AMSL THE DISTANCE FROM THRESHOLD + 200' TO THE CASE IS... 72006.221 ft. THE DISTANCE FROM THRESHOLD + 200' TO NB IS...... 45265.32 ft. THE CRITICAL WIDTH OF HALF THE APPROACH IS...... 7039.792 ft. \*\*\*\*\*\*\* DOES NOT EXCEED \*\*\*\*\*\*\*\* BEYOND DEFINED APPROACH & TRANSITIONAL AREAS. RUNWAY CENTERLINE OFFSET IS...... 56098.88 ft. DISTANCE FROM THE THRESHOLD TO OFFSET IS...... 45465.28 ft. THE SLOPE OF RUNWAY 29 IS: 34 TO 1.

The FAA has defined this runway as a non-utility runway. It has a non-precision approach. The obstacle surface extends 10,000 feet (34:1 Slope) symmetrically centered along the runway centerline extended. Please review the US Terminal Procedures volume associated with this airport. If a procedure for this airport and/or runway exist use Terps® Professional software to determine the height limits (if any) the procedure will have on the proposed structure.

Non-precision instrument procedures can extend 10 NM from the runway and a circling approach to the airport or runway can extend out up to 4.5 NM from every runway end.

Airspace Data Version: 2020.5.463

 ${\tt AIRSPACE^{\$}}$  and  ${\tt TERPS^{\$}}$  are registered  $^{\$}$  trademarks of Federal Airways & Airspace  $^{\$}$  Copyright  $^{\$}$  1989 - 2020

05-22-2020 12:40:38

File: 2020-APS-3708-OE

OVERALL ELEVATION (AMSL): 171 LATITUDE: 41°-17'-59.54" LONGITUDE: 72°-55'-35.57"

| FACIL |     |                 | BEARING  | DISTANCE | DELTA ARP | FAR |
|-------|-----|-----------------|----------|----------|-----------|-----|
| IDENT | TYP | NAME            | To FACIL | IN N.M.  | ELEVATION | P77 |
|       |     |                 |          |          |           |     |
| HVN   | AIR | TWEED-NEW HAVEN | 140.12   | 2.812    | +158.4    | YES |

This facility has at least one runway over 3,200 feet in length.

Your structure DNE FAR 77.9(a) but EXCEEDS FAR 77.9(b) Notice Criteria for this airport. You must notify the Federal Aviation Administration using a FAA Form 7460-1 a minimum of 45 days prior to your construction start date. As a minimum, please review reports for FAR Part 77 Obstruction Surfaces, Air Navigation and Communication facilities.

EXCEEDS FAR 77.9(b)(2) Notice Criteria by: 9 feet.

You are 14983 feet from the nearest runway threshold and the threshold elevation is 13 feet. Please review runway analysis for remaining airport surfaces.

This airport has both Circling and Straight-In Instrument Procedures. Please review published US Terminal (TERPS®) Approach Procedures for this landing facility.

DNE FAR 77.9 IFR Notice Criteria for HVN

Category 'D' Circling Approach Area extends 3.78 NM from each runway.

| FACIL<br>IDENT | TYP | NAME                     | BEARING<br>To FACIL | 21211102 | DELTA ARP<br>ELEVATION | FAR<br>P77 |
|----------------|-----|--------------------------|---------------------|----------|------------------------|------------|
|                |     |                          |                     |          |                        |            |
| BDR            | AIR | IGOR I SIKORSKY MEMORIAL | 227.75              | 12.193   | +162.5                 | YES        |

This facility has at least one runway over 3,200 feet in length.

Your structure DNE FAR 77.9(a) or 77.9(b) Notice Criteria for this airport. However, you may EXCEED other Notice Standards. As a minimum, please review reports for FAR Part 77 Obstruction Surfaces, Air Navigation and Communication facilities.

You are 72131 feet from the nearest runway threshold and the threshold elevation is 7 feet. Please review runway analysis for remaining airport surfaces.

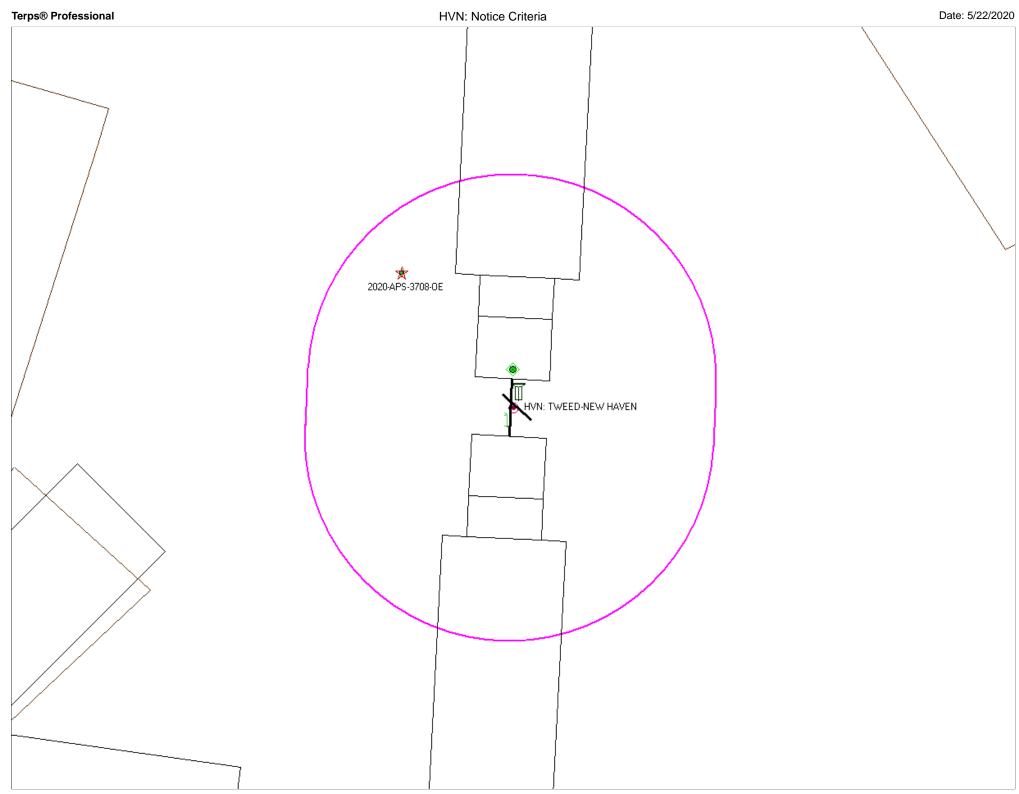
This airport has both Circling and Straight-In Instrument Procedures. Please review published US Terminal (TERPS $^{\$}$ ) Approach Procedures for this landing facility.

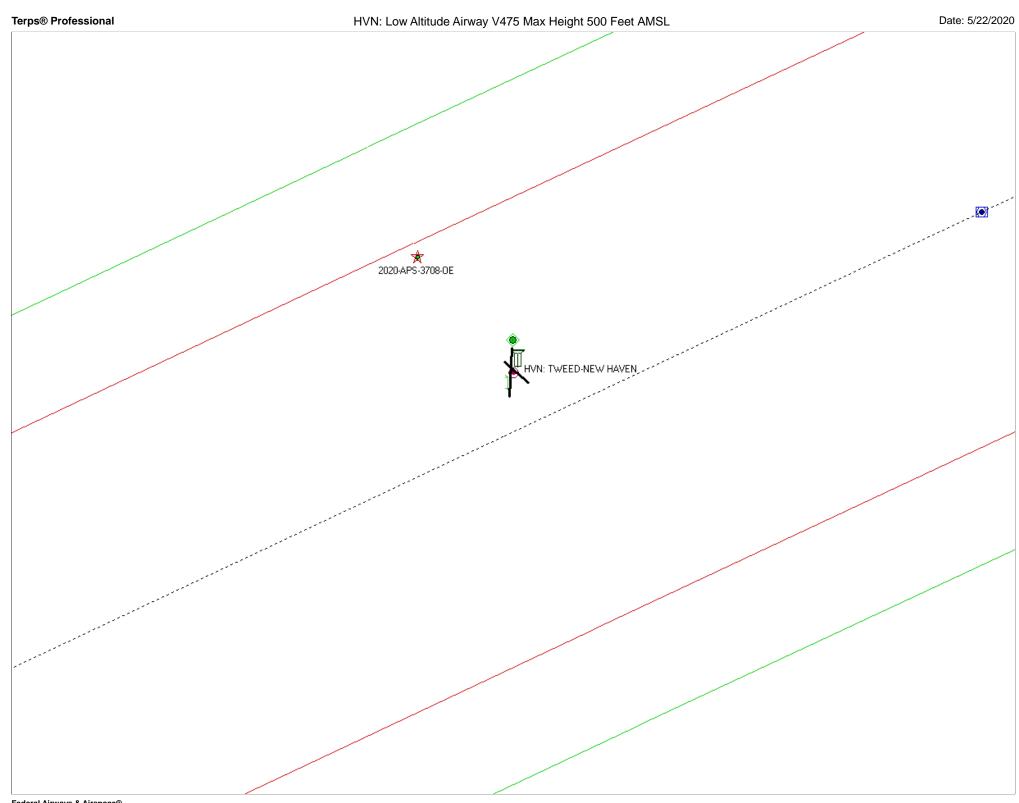
DNE 77.9 IFR Notice Criteria BDR

Category 'D' Circling Approach Area extends 3.78 NM from each runway.

THE NEAREST AIRPORT TO CASE COORDINATES IS: HVN

TWEED-NEW HAVEN is an Airport type landing facility and is associated with the city of NEW HAVEN, CT. The facility is eligible for Study


under FAR Part 77 sub-Part C.


Its Reference Point (ARP) elevation is: 12.6 feet AMSL and you are locating 17089 feet from this landing facility.

Airspace<sup>®</sup> State Data Version 2020.5.463

AIRSPACE® and TERPS® are registered ® trademarks of Federal Airways & Airspace® Copyright © 1989 - 2020

05-22-2020 12:40:37





MINIMUM OBSTACLE CLEARANCE ALTITUDE (MOCA)

FILE: 2020-APS-3708-OE

LATITUDE: 41 - 17 - 59.54 LONGITUDE: 72 - 55 - 35.57

SITE ELEVATION AMSL..... 11 ft. STRUCTURE HEIGHT...... 160 ft. OVERALL HEIGHT AMSL..... 171 ft.

FAR 77.17(a)(4) - EN ROUTE CRITERIA MINIMUM OBSTACLE CLEARANCE ALTITUDE (MOCA)

### LOW ALTITUDE AIRWAY

| AIRWAY | SEQUENCE | LATITUDE     | LONGITUDE     | MEA  | LENGTH | (MM) |
|--------|----------|--------------|---------------|------|--------|------|
|        |          |              |               |      |        |      |
| V188   | 140      | 41-19-35.11N | 073-16-59.58W | 3000 | 20.0   | 9    |
| V188   | 150      | 41-23-33.74N | 072-50-50.56W | 3000 |        |      |

Minimum Obstacle Clearance Altitude (MOCA) is: 3000 AMSL.

Proposed structure is between the above points along Airway V188. The Abeam distance from the course centerline is 4.74 NM. The proposed structure is within the width of the secondary area of this airway. The width of the primary area is 8 NM and the width of the secondary is 2 NM.

The maximum allowable height permitted by the secondary area MOCA of this airway at this location is 2684 feet AMSL.

#### LOW ALTITUDE AIRWAY

| AIRWAY | SEQUENCE | LATITUDE     | LONGITUDE     | MEA  | LENGTH | (MM) |
|--------|----------|--------------|---------------|------|--------|------|
|        |          |              |               |      |        |      |
| V229   | 210      | 41-17-58.03N | 072-57-32.8W  | 2000 | 7.5    | 3    |
| V229   | 220      | 41-23-33.74N | 072-50-50.56W | 2000 |        |      |

Minimum Obstacle Clearance Altitude (MOCA) is: 2000 AMSL.

Proposed structure is between the above points along Airway V229. The Abeam distance from the course centerline is 1.07 NM. The proposed structure is within the width of the primary area of this airway. The width of the primary area of this airway is 8 NM. The minimum en route altitude (MEA) for this airway segment Is 2000 feet AMSL. Any Height above 1000 feet AMSL will not be approved. Your proposed structure must remain below this value.

### LOW ALTITUDE AIRWAY

| AIRWAY | SEQUENCE | LATITUDE     | LONGITUDE     | MEA  | LENGTH | (MM) |
|--------|----------|--------------|---------------|------|--------|------|
|        |          |              |               |      |        |      |
| V374   | 80       | 41-13-59.78N | 073-11-37.93W | 2500 | 17.5   | 4    |
| V374   | 90       | 41-11-08.77N | 072-48-41.98W | 2500 |        |      |

Minimum Obstacle Clearance Altitude (MOCA) is: 2500 AMSL.

Proposed structure is between the above points along Airway V374. The Abeam distance from the course centerline is 5.9 NM. The proposed structure is within the width of the secondary area of this airway. The

width of the primary area is 8 NM and the width of the secondary is 2 NM.

The maximum allowable height permitted by the secondary area MOCA of this airway at this location is 2474 feet AMSL.

### LOW ALTITUDE AIRWAY

| AIRWAY | SEQUENCE | LATITUDE      | LONGITUDE      | MEA  | LENGTH | (MM) |
|--------|----------|---------------|----------------|------|--------|------|
|        |          |               |                |      |        |      |
| V475   | 60       | 41-09-38.495N | 073-07-28.188W | 2000 | 11.72  | 2    |
| V475   | 70       | 41-14-38.04N  | 072-53-25.59W  | 2000 |        |      |

Minimum Obstacle Clearance Altitude (MOCA) is: 1500 AMSL.

Proposed structure is between the above points along Airway V475. The Abeam distance from the course centerline is 3.73 NM. The proposed structure is within the width of the primary area of this airway. The width of the primary area of this airway is 8 NM. The minimum en route altitude (MEA) for this airway segment Is 2000 feet AMSL. Any Height above 500 feet AMSL will not be approved. Your proposed structure must remain below this value.

Airspace® State Version 2020.5.463

 ${\tt AIRSPACE^{\$}}$  and  ${\tt TERPS^{\$}}$  are registered  $^{\$}$  trademarks of Federal Airways & Airspace  $^{\$}$  Copyright  $^{\$}$  1989 - 2020

05-22-2020 12:40:42

The mathematical algorithms used by this program are derived directly from Federal Aviation Regulations Part 77, sub-part C.

### Circling Approach Area Analysis

\*\*\* 2020-APS-3708-OE \*\*\*

### TWEED-NEW HAVEN

Date: 05-22-2020 Time: 13:17:25

### STUDY OBJECT DATA

Study Latitude: 41° 17' 59.54" N Study Longitude: 72° 55' 35.57" W

Ground Elevation: 11' AMSL ft.
AGL Height: 160' AGL ft.

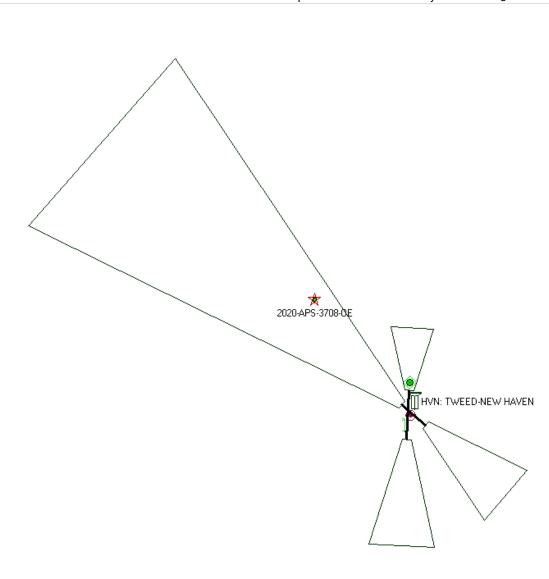
Overall Elevation: 171' AMSL ft.

### INSTRUMENT APPROACH PROCEDURE (IAP) ANALYSIS

Distance: 14984 ft.

Aircraft Category: C Circling MDA: 780

Vkias: 140 knots


Vktas: 145.7757 knots

Bank Angle: 20°
Straight Segment: 0.5 NM
Expanded CAA: True
Turn Radius: 2.8 NM

Maximum AMSL: 480

Terps® Version 20.4.745 Airspace® and Terps® are registered ® trademarks of Federal Airways and Airspace®. Copyright © 1989 - 2019

The mathematical algorithms used by this program are derived directly from Federal Aviation Administration (FAA) Orders on Instrument Flight Procedures.



### Departure Runway 32

\*\*\* 2020-APS-3708-OE \*\*\*

TWEED-NEW HAVEN - Runway: 32 Date: 05-27-2020 Time: 09:54:32

### STUDY OBJECT DATA

Study Latitude: 41° 17' 59.54" N Study Longitude: 72° 55' 35.57" W

Ground Elevation: 11' AMSL ft. AGL Height: 160' AGL ft.

Overall Elevation: 171' AMSL ft.

### INSTRUMENT DEPARTURE ANALYSIS

Initial Climb Area (ICA): DNE ICA

Diverse Departure A Inside Diverse A - Max Hgt: 899 ft

Diverse Departure B Not in Diverse B - DNE Diverse B

The above analysis is in accordance with FAA Order 8260.3B Change 26. This analysis used a 465 ft/NM climb gradient (CG) and an Obstacle Clearance Surface (OCS) that provides 111 feet of obstacle clearance at 1 NM from the Departure End of Runway (DER). Some runways have published climb gradients greater than 200 ft/NM. A specified climb gradient greater than standard (200 ft/NM) is sometimes necessary to allow acceptable obstacle clearance. Should your location exceed the value indicated above you may need to determine if there is a published CG and conduct additional calculations to determine if the CG will provide proper clearance for your proposed structure.

Terps® Version 20.4.748 Airspace® and Terps® are registered ® trademarks of Federal Airways and Airspace®. Copyright © 1989 - 2019

The mathematical algorithms used by this program are derived directly from Federal Aviation Administration (FAA) Orders on Instrument Flight Procedures.

### TERPS ANALYSIS SUMMARY

### \*\*\* 2020-APS-3708-OE \*\*\*

### STUDY OBJECT DATA

Study Latitude: 41° 17' 59.54"
Study Longitude: 72° 55' 35.57"
Ground Elevation: 11' AMSL
AGL Height: 160' AGL

Overall Elevation: 171' AMSL

### AIRSPACE/TERPS LIMIT: 363' AMSL --- VFR TRAFFIC PATTERN AIRSPACE

| Ι | HVN | IAP | RWY 02 ILS19<br>Amdt 18                                | 10000 |
|---|-----|-----|--------------------------------------------------------|-------|
| Ι | HVN | IAP | RWY 02 LOC19<br>Amdt 18                                | 10000 |
| Ι | HVN | IAP | RWY 02 LPV<br>Amdt 1                                   | 10000 |
| Ι | HVN | IAP | RWY 02 VNAV<br>Amdt 1                                  | 10000 |
| Ι | HVN | IAP | RWY 02 LNAV<br>Amdt 1                                  | 10000 |
| Ι | HVN | IAP | RWY 20X LOC19 Orig-1DR                                 | 10000 |
| Ι | HVN | IAP | RWY 20X LNAV<br>Orig -1DR                              | 10000 |
| Ι | HVN | MRP | LOW ALTITUDE AIRWAY V475                               | 500   |
| Ι | NVF | CIR | CATEGORY C<br>EXPANDED                                 | 480   |
| Ι | HVN | DEP | RUNWAY 02<br>DIVERSE A                                 | 712   |
| Ι | HVN | DEP | RUNWAY 32<br>DIVERSE A                                 | 899   |
| Ι | HVN | VFR | TRAFFIC PATTERN AIRSPACE CATEGORY D CLIMB/DESCEND AREA | 363   |
| Ι | HVN | VFR | TRANSITIONAL SURFACE 77.17(A)(2)                       | 213   |
|   |     |     |                                                        |       |

Terps<sup>®</sup> Version 20.4.745 Airspace® and Terps® are registered ® trademarks of Federal Airways & Airspace®

Date: 05-22-2020 Time: 15:01:35



### **POINT ELEVATION DATA**

# SRTM GROUND ELEVATION DATA North American Datum 1983 North American Vertical Datum 1988 - NAVD88

### 2020-APS-3708-OE MCM\_CT-520

**Latitude:** 41° - 17′ - 59.54″ N **Decimal Degrees:** 41.2998722222222° **Longitude:** 72° - 55′ - 35.57″ W **Decimal Degrees:** 72.9265472222222°

**Ground Elevation: 8.18 Feet AMSL** 

This certifies the Digital Elevation Model (DEM) value for the specified latitude/longitude point was obtained from the SRTM Endeavour radar mission of February 2000. NASA has released the finished version edited by the National Intelligence Agency. The elevation value meets vertical accuracy criteria as specified by FAA Order 8260.19C, Appendix 2, Obstacle Accuracy Standards, Codes And Sources, paragraph 101 for Code 'C'. The elevation value for the specified latitude/longitude is accurate to within ±20 feet vertically.

Date Printed: 05-21-2020

## **ATTACHMENT 8**

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 26, 2020

### Via Certificate of Mailing

Justin Elicker, Mayor City of New Haven 165 Church Street, 2<sup>nd</sup> Floor New Haven, CT 06510

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 54 Meadow Street, New Haven, Connecticut

Dear Mayor Elicker:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to make certain modifications to its existing telecommunications facility on the roof of the building at 54 Meadow Street in New Haven (the "Property").

The modifications will consist of removing certain antennas and installing newer model antennas and remote radio heads at various locations on the roof. The existing facility is under the exclusive jurisdiction of the Connecticut Siting Council by virtue of its April 1, 1991 approval of Docket No. 140.

A copy of the full Petition is attached for your review. Landowners whose parcels are considered to abut the Property were also sent notice of this filing along with a copy of the Petition.

Please contact me if you have any questions regarding this proposal.

Sincerely,

Kenneth C. Baldwin

Kunie gmu-

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 26, 2020

### Via Certificate of Mailing

Aicha Woods, Director of City Plan City of New Haven 165 Church Street, 5<sup>th</sup> Floor New Haven, CT 06510

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 54 Meadow Street, New Haven, Connecticut

Dear Ms. Woods:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to make certain modifications to its existing telecommunications facility on the roof of the building at 54 Meadow Street in New Haven (the "Property").

The modifications will consist of removing certain antennas and installing newer model antennas and remote radio heads at various locations on the roof. The existing facility is under the exclusive jurisdiction of the Connecticut Siting Council by virtue of its April 1, 1991 approval of Docket No. 140.

A copy of the full Petition is attached for your review. Landowners whose parcels are considered to abut the Property were also sent notice of this filing along with a copy of the Petition.

Please contact me if you have any questions regarding this proposal.

Sincerely,

Kenneth C. Baldwin

Kung gmu

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 26, 2020

### Via Certificate of Mailing

Gateway Partners LLC c/o Lexington Property Management 30 Lewis Street Hartford, CT 06103

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 54 Meadow Street, New Haven, Connecticut

Dear Sir or Madam:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to make certain modifications to its existing telecommunications facility on the roof of the building at 54 Meadow Street in New Haven (the "Property").

The modifications will consist of removing certain antennas and installing newer model antennas and remote radio heads at various locations on the roof. The existing facility is under the exclusive jurisdiction of the Connecticut Siting Council by virtue of its April 1, 1991 approval of Docket No. 140.

A copy of the full Petition is attached for your review. Landowners whose parcels are considered to abut the Property were also sent notice of this filing along with a copy of the Petition.

Please contact me if you have any questions regarding this proposal.

Sincerely,

Kenneth C. Baldwin

Kunie mu

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 26, 2020

### Via Certificate of Mailing

MCM Holdings LLC 40 Woodland Street Hartford, CT 06105

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 54 Meadow Street, New Haven, Connecticut

Dear Sir or Madam:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to make certain modifications to its existing telecommunications facility on the roof of the building at 54 Meadow Street in New Haven (the "Property").

The modifications will consist of removing certain antennas and installing newer model antennas and remote radio heads at various locations on the roof. The existing facility is under the exclusive jurisdiction of the Connecticut Siting Council by virtue of its April 1, 1991 approval of Docket No. 140.

A copy of the full Petition is attached for your review. Landowners whose parcels are considered to abut the Property were also sent notice of this filing along with a copy of the Petition.

Please contact me if you have any questions regarding this proposal.

Sincerely,

### Kenneth C. Baldwin

### Attachment

## **ATTACHMENT 9**

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 26, 2020

Via Certificate of Mailing

«Owners\_and\_Mailing\_Address»

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to an Existing Wireless Telecommunications Facility at 54 Meadow Street, New Haven, Connecticut

Dear «Salutation»:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval to make certain modifications to its existing telecommunications facility on the roof of the building at 54 Meadow Street in New Haven (the "Property").

The modifications will consist of removing certain antennas and installing newer model antennas and remote radio heads at various locations on the roof. The existing facility is under the exclusive jurisdiction of the Connecticut Siting Council by virtue of its April 1, 1991 approval of Docket No. 140. A copy of the full Petition is attached for your review.

This notice is being sent to you because you are listed on the City Assessor's records as an owner of land that abuts the Property. If you have any questions regarding the Petition, the Council's process for reviewing the Petition or the details of the filing itself, please feel free to contact me at the number listed above. You may also contact the Council directly at 860-827-2935.

Sincerely,
Kun & Mu

Kenneth C. Baldwin

Attachment

### CELLCO PARTNERSHIP D/B/A VERIZON WIRELESS

### ABUTTING PROPERTY OWNERS

### 54 MEADOWN STREET NEW HAVEN, CONNECTICUT

|    | Property Address       | Owner's and Mailing Address                                                     |
|----|------------------------|---------------------------------------------------------------------------------|
| 1. | 78 Meadow Street       | Knights of Columbus<br>1 Columbus Plaza<br>New Haven, CT 06510                  |
| 2. | 1 Union Avenue         | City of New Haven 1 Union Avenue New Haven, CT 06519                            |
| 3. | 170 Union Avenue       | State of Connecticut PO Box 317546 Newington, CT 06131                          |
| 4. | 49 Union Avenue        | City of New Haven Housing Authority<br>360 Orange Street<br>New Haven, CT 06511 |
| 5. | 86 South Orange Street | Church Street New Haven LLC<br>2150 Washington Street<br>Newton, MA 02462       |
| 6. | 90 South Orange Street | City of New Haven<br>165 Church Street<br>New Haven, CT 06511                   |