THE CONNECTICUT LIGHT AND POWER COMPANY doing business as EVERSOURCE ENERGY

AMENDMENT TO PETITION NO. 1428 PROPOSED MODIFICATIONS TO A TELECOMMUNICATIONS FACILITY AT THE BRANFORD SUBSTATION Town of Branford

On August 21, 2020, The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") filed a petition with the Connecticut Siting Council ("Council") requesting a declaratory ruling that a Certificate of Environmental Compatibility and Public Need was not needed for the proposed installation of an omni-directional antenna on an existing approximately 50-foot tall wood pole and associated radio communications equipment at the Eversource-owned Branford Substation in Branford, because the proposed activities would not result in substantial adverse environmental effects (Petition No. 1428, the "Petition"). On October 23, 2020, the Council issued its declaratory ruling and found that the proposed modifications to the telecommunications facility would not have a substantial adverse environmental effect.

In early February 2021, Eversource contractors were preparing to install the antenna and discovered that the existing wood pole had been damaged, likely due to winds or downed trees from Tropical Storm Isaias and the tornado that struck Branford, and was no longer structurally sufficient to support the installation of the new equipment. Eversource now proposes to replace the wood pole with a steel pole of approximately the same height in approximately the same location as the existing wood pole. The antenna mounting height will

be the same. Accordingly, the proposed modification will not have a substantial adverse environmental effect.

The following attachments are included:

Attachment A – Construction Drawings (revised), dated March 30, 2021;

Attachment B - Structural Analysis (revised), dated March 26, 2021;

Attachment C- Mounting Analysis, dated March 29, 2021; and

Attachment D – Photographic Documentation and Simulations.

According to the current schedule, construction of modifications described in this amendment is scheduled to commence in April 2021. Project completion, including restoration, is expected by May 2021.

Prior to submitting this Amendment, Eversource representatives briefed the Town of Branford officials concerning the proposed modification. In addition, Eversource provided abutters with written notice of the filing of the Amendment. As stated in in the original Petition, Eversource representatives will continue proactive outreach to impacted property owners throughout the siting, construction, and restoration phases of the Project.

Communications regarding this Petition Amendment should be directed to:

Kathleen M. Shanley Manager – Transmission Siting Eversource Energy P.O. Box 270 Hartford, CT 06141-0270 Telephone: (860) 728-4527

Re

Kathleen M. Shanley Manager- Transmission Siting

List of Attachments:

Attachment A – Construction Drawings

By:

Attachment B – Structural Analysis Attachment C – Mounting Analysis Attachment D – Photographic Documentation and Simulations

Attachment A Construction Drawings

ENERGY

PROJECT SUMMARY

THE GENERAL SCOPE OF WORK CONSISTS OF THE FOLLOWING:

- 1. INSTALL (1) NEW 50'-0"± AGL TELECOM STEEL POLE
- 2. RELOCATE EXISTING ANTENNAS ON EXISTING 50'-0"± AGL TELECOM WOOD POLE TO PROPOSED MOUNTING SYSTEM AT SAME ELEVATION ON NEW STEEL POLE
- 3. REMOVE EXISTING 50'-0"± AGL TELECOM WOOD POLE
- 4. INSTALL (1) NEW RACK WITH DMR EQUIPMENT IN EXISTING RADIO SHELTER
- 5. INSTALL NEW ICE BRIDGE AT ELEVATION 0'-0"± AGL
- 6. INSTALL NEW GENERATOR AT ELEVATION 0'-0"± AGL
- 7. INSTALL NEW PROPANE TANK AT ELEVATION 0'-0"± AGL
- 8. INSTALL NEW COMPOUND FENCING AT ELEVATION 0'-0"± AGL
- 9. INSTALL NEW SILT FENCING AT ELEVATION 0'-0"± AGL
- 10. INSTALL (1) NEW OMNI/WHIP ANTENNA AT ELEVATION 72'-0"± AGL

GOVERNING CODES

2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS) 2017 NATIONAL ELECTRIC CODE TIA-222-H

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

SITE INFORMATION

SITE NAME: SITE ID NUMBER:	BRANFORD 11J #5343
SITE ADDRESS:	272 EAST MAIN ST BRANFORD, CT 06405
MAP: BLOCK: LOT: ZONE:	5 4 4 BL
LATITUDE: LONGITUDE: ELEVATION:	41° 17′ 33.11″ N 72° 47′ 40.68″ W 8′± AMSL
FEMA/FIRM DESIGNATION: ACREAGE:	AE 3.5± AC (BOOK: 0691. PAGE: 0043)

CONTACT INFORMATION

APPLICANTS: EVERSOURCE ENERGY 107 SELDEN STREET BERLIN, CT 06037

PROPERTY_OWNER: EVERSOURCE_ENERGY 107_SELDEN_STREET BERLIN, CT 06037

EVERSOURCE_ENERGY PROJECT_MANAGER: NIKOLL_PRECI (860) 655-3079

POWER PROVIDER: EVERSOURCE ENERGY (800) 286-2000 TELCO PROVIDER: FRONTIER

(800) 921-8102 CALL BEFORE YOU DIG: (800) 922-4455

Ψ

BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405

	STLE NEW S	
	DRAWI	
SHEET NO:	SHEET TITLE	
T-1	TITLE SHEET	
C-1	ABUTTERS MAP	
C-2	PARTIAL SITE PLAN	
C-3	SITE PLAN	
C-4	TOWER ELEVATION & ANTEN	
C-5	ICE BRIDGE DETAILS	
C-6	CHAINLINK FENCE DETAILS	
C-7	FARTHWORK DETAILS	
S-1	GENERATOR & PROPANE TA	
M-1	GENERATOR & PROPANE TA	
M-2	GENERATOR & PROPANE TA	
= 1 F−1		
	CROUNDING PLAN	
6-1	GROUNDING PLAN	
G-2	GROUNDING DETAILS	
G-3	GROUNDING DETAILS	
G-4	GROUNDING DETAILS	
G-5	GROUNDING DETAILS	
N-1	NOTES & SPECIFICATIONS	
N-2	NOTES & SPECIFICATIONS	
N-3	NOTES & SPECIFICATIONS	
	DO NOT SCA	
CLID		
CONDITIONS ON THE JOB SITE CONDITIONS ON THE JOB SITE ENGINEER IN WRITING OF ANY I WITH THE WORK OR B		
((UTILITIE	

DESIGN TYPE

UPGRADE STEEL POLE

NG INDEX

NA EQUIPMENT

NK CONCRETE PAD DETAILS ANK EQUIPMENT DETAILS NK EQUIPMENT DETAILS

ALE DRAWINGS

ALL PLANS & EXISTING DIMENSIONS & & SHALL IMMEDIATELY NOTIFY THE E RESPONSIBLE FOR SAME

UNDERGROUND SERVICE ALERT **PROTECTION CENTER, INC.** 811

48 HOURS BEFORE YOU DIG

DETAIL B

SITE PLAN NO SCALE

NOTES

- 1. ALL COAXIAL CABLE TO BE SECURED TO THE SUPPORT STRUCTURE AT DISTANCES NOT TO EXCEED 4'-O" OC.
- 2. CONTRACTOR MUST FOLLOW ALL MANUFACTURER'S RECOMMENDATIONS REGARDING THE INSTALLATION OF COAXIAL CABLES, CONNECTORS AND ANTENNAS
- 3. DESIGN OF THE FOUNDATION WAS BASED ON SUB012 EVERSOURCE SUBSTATION STANDARDS, SECTION 6.D., FOUNDATION STABILITY AND SOIL BEARING CAPACITY.
- 4. EXISTING ANTENNAS TO BE RELOCATED TO THEIR ORIGINAL CENTER LINE ELEVATION ON THE PROPOSED MOUNTING SYSTEM.
- 5. INSTALL POLE PER MANUFACTURER'S RECOMMENDATIONS. REFER TO SABRE-FWT ERECTION DRAWINGS 70' H9-LD9 WPE'S.
- BOTH PROPOSED STAND-OFF MOUNTS (P/N: TCHM3-L AND TCHM1-L) SHALL BE INSTALLED WITH A 3'-O" MINIMUM VERTICAL SEPARATION BETWEEN TOP AND BOTTOM POLE CONNECTIONS.
- 7. PROPOSED COAX CABLES TO BE STACKED IN ONE ROW
- 8. THE GEOTECHNICAL REPORT INDICATED A GROUND WATER TABLE AT 5'.
- 9. THE PROPOSED STEEL POLE COMES 70'-O" LONG. THE TOP 7'-O" OF THE POLE SHALL BE REMOVED MAKING THE NEW POLE LENGTH 63'-O". ALL EXPOSED STRUCTURAL STEEL, INCLUDING FIELD DRILLED HOLES, SHALL BE CLEANED AND TWO (2) COATS ZRC COLD GALVANIZING COMPOUND (OR ENGINEER APPROVED EQUAL) SHALL BE APPLIED BY BRUSH. FOLLOW THE MANUFACTURER'S RECOMMENDATIONS FOR SURFACE PREPARATION, APPLICATION, DRYING AND CURING TIMES.
- 10. THE FALL PROTECTION VANG WILL BE REMOVED WITH REMOVAL OF THE TOP 7'-0" OF THE POLE. EVERSOURCE SHALL REPLACE THE FALL PROTECTION VANG BY INSTALLING AN EVERSOURCE APPROVED RETROFIT KIT.
- 11. THE DIRECT EMBED CASING FOUNDATION, INCLUDING FINISH GRADING, SHALL BE INSTALLED PER EVERSOUCE DRAWING #09000-60015P001 REV. 4, DATED 02/10/2021 (LOCATED IN THE REFERENCE CUTSHEETS SECTION OF THIS DRAWING PACKAGE), WITH THE EXCEPTION OF THE POLE EMBEDMENT DEPTH AND STEEL CASING DIAMETER, WHICH SHOULD BE INSTALLED PER SHEET
- 12. NOT ALL EMBED CASING FOUNDATION DETAILS ARE SHOWN, SUCH AS BORE HOLE DIAMETER AND BACKFILL REQUIREMENTS OUTSIDE THE STEEL CASING. THE PURPOSE OF THIS FOUNDATION DETAIL IS TO ONLY CONVEY THE POLE EMBEDMENT DEPTH AND STEEL CASING DIAMETER, REMAINING REQUIRED DETAILS ARE SHOWN IN THE DRAWING REFERENCED IN NOTE 11.

NTENNA
SAL UPC1) ICTOR
" OD × 6'-0"
CTOR TCHM3-L)
POLE
PROPOSED 2 3/8" OD × 6'-0" MOUNT PIPE
PROPOSED UNIVERSAL CLAMP SET (P/N: UPC1)
EXISTING ANTENNA TO BE RELOCATED ON SECTOR B FROM EXISTING WOOD POLE EXISTING RELOCATED ANTENNA
EL POLE
EXISTING ANTENNA TO PIPE MOUNT ON SECTOR B (TO REMAIN ON EXISTING CROSS ARM)

SHEET NUMBER

C-4

<u>NOTES</u>

1. THE CLEARANCE BETWEEN THE BOTTOM OF THE FOUNDATION TO THE BOTTOM OF EMBEDDED PIPE SHALL BE A MINIMUM OF 4".

ICE BRIDGE DETAIL SITE PRO 1 P/N IB24D-V NO SCALE

ICE BRIDGE FOUNDATION DETAIL NO SCALE

— FINISH SLOPE TO DRAIN

– EXISTING AGGREGATE SURFACE - GRADE

- DIRECT BURIAL FOOTING

EVERSURCE ENERGY 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000 **₽ BLACK & VEATCH** 6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458–3595 PROJECT NO: 403093 DRAWN BY: TYW CAG CHECKED BY: 2 03/30/21 ISSUED FOR FILING 1 10/06/20 ISSUED FOR FILING 0 05/21/20 ISSUED FOR FILING REV DATE DESCRIPTION VIIII// OF CONN SONAL EV SSIONAL ET

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

03/30/2021

BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405

SHEET TITLE

ICE BRIDE DETAILS

SHEET NUMBER

C-5

EVERSURCE ENERGY

> 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	CAG

2	03/30/21	ISSUED FOR FILING
1	10/06/20	ISSUED FOR FILING
0	05/21/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405

SHEET TITLE

EARTHWORK DETAILS

SHEET NUMBER

C-7

<u>NOTE</u>

INSTALL COMPONENTS IN ACCORDANCE WITH GENERATOR MANUFACTURER'S INSTRUCTIONS.

PROPANE CONNECTION DIAGRAM NO SCALE

NOTES

- 1000 USWG AMSE VIII, DIV. 1 ABOVE GROUND LPG TANK AS MANUFACTURED BY ARCOSA TANK, LLC:
- * WWW.ARCOSATANK.COM * PH: 1–214–202–9258 * WEIGHT (EMPTY) = 1729 lbs
- 2. LPG TANK TO BE BOLTED TO CONCRETE SLAB.
- 3. GROUND TANK STAND (SHEET G-1).
- PROVIDE TANK MANUFACTURER SHOP DRAWING FOR REVIEW BY ENGINEER OF RECORD PRIOR TO PURCHASE. 4.

PROPANE TANK SCHEMATICS NO SCALE

	EVERS 107 SELDEI BERLIN, C PHONE: (800)	STREET 06037 286-2000
	BLACK & BLACK (1) 0VERLAND PAR PHONE: (913)	VEATCH IT, SUITE 2292 (, KS 66211 458–3595
	PROJECT NO:	403093
	DRAWN BY: CHECKED BY:	TYW CAG
,	2 03/30/21 ISSUED 1 10/06/20 ISSUED 0 05/21/20 ISSUED REV DATE DESCRI V DATE DESCRI C E E S SION/ 2/20/	FOR FILING FOR FILING FOR FILING FOR FILING PTION
	IT IS A VIOLATION OF L UNLESS THEY ARE ACTING OF A LICENSED PROFF TO ALTER THIS	W FOR ANY PERSON, UNDER THE DIRECTION SSSIONAL ENGINEER, DOCUMENT.
	BRANFOF 272 EAST BRANFORD,	RD 11J MAIN ST CT 06405
	SHEET UTILITY & DET	TITLE PLAN TAILS
	SHEET N	UMBER
	E-	1

- EXISTING WORK COURSE

- 6" WIDE PLASTIC U/G WARNING TAPE LABELED "CAUTION BURIED UTILITY LINES"

– CLEAN COMPACTED BACKFILL (NATIVE SOIL)

- COMPACTED PROCESSED GRAVEL; 4" MIN ON ALL SIDES

PVC SCH 80 CONDUIT
 (WHERE INDICATED, SIZE
 AS SHOWN ON LAYOUTS)

PVC SCH 80 CONDUIT (SIZE AS SHOWN ON LAYOUTS)

LEGEND

- EXOTHERMIC (UNLESS NOTED OTHERWISE).
- COMPRESSION CONNECTION (TWO HOLE LUG OR EQUIVALENT).
- ul-**e** 5/8"øx10-'0" COPPER CLAD STEEL GROUND ROD.
- uHO. 5/8"øx10'-0" COPPER CLAD STEEL GROUND ROD WITH INSPECTION SLEEVE.

--- GROUND WIRE.

KEY NOTES

- (A) POLE GROUNDING: #2 TINNED CU WIRE FROM EXISTING GROUND RING TO EXISTING POLE.
- B EXTERIOR GROUND BAR: EXISTING #2 TINNED CU WIRE FROM BURIED GROUND RING TO THE EXTERIOR GROUND BAR.
- (C) <u>SITE GROUNDING</u>: ADD 4/0 CU GROUND WIRE FROM EXISTING SUBSTATION GROUND AROUND FENCED AREAS AND CONNECT EXOTHERMICALLY. PLACE 3'-0" OUT FROM FENCE.
- (D) GROUND ROD: COPPER CLAD STEEL 5/8"Ø TEN (10) FEET LONG.

- (F) <u>FENCE GROUNDING</u>: IF FENCE IS WITHIN 6' OF GROUND RING, EXTEND 4/0 CU WIRE FROM BURIED GROUND RING TO FENCE CORNER POSTS AND EXOTHERMICALLY WELD. BOND INTERMEDIATE POST IF REQUIRED TO MAINTAIN 25' MAX SPACING. REFER TO SHEET G-5.
- (G) <u>GENERATOR/TANK GROUNDING</u>: EXTEND 4/0 CU WIRE FROM BURIED GROUND RING TO EACH GENERATOR/TANK AND EXOTHERMICALLY WELD.
- (H) <u>pole ground bar:</u> extend two #2 tinned cu wire from buried ground ring up to the tower ground bar and exothermically weld.
- (K) <u>GROUND ROD WITH INSPECTION SLEEVE:</u> COPPER CLAD STEEL 5/8"# TEN (10) FEET LONG WITH INSPECTION SLEEVE.

<u>NOTES</u>

- 1. ALL GROUNDING SYSTEM CONDUCTORS AND CONNECTIONS BELOW GRADE SHALL BE THERMAL WELDS AT GROUND RODS AND AT A MINIMUM OF 36" BELOW GRADE, OR 6" BELOW FROST LINE, WHICH EVER IS GREATER OF THE TWO DIMENSIONS.
- 2. ALL INSTALLATIONS SHALL BE FIELD VERIFIED.
- 3. ALL GROUND WIRE SHALL BE 4/0 STD BARE COPPER TINNED UNLESS NOTED OTHERWISE.
- ALL GROUND WIRES SHALL PROVIDE A STRAIGHT DOWNWARD PATH TO GROUND WITH GRADUAL BEND AS REQUIRED. GROUND WIRES SHALL NOT BE LOOPED OR SHARPLY BENT. 4.
- 5. THE CONTRACTOR SHALL COORDINATE INSTALLATION OF GROUND RODS AND GROUND RING WITH FOUNDATION AND UNDERGROUND CONDUIT.
- 6. EACH EQUIPMENT CABINET SHALL BE CONNECTED WITH #2 AWG INSULATED SOLID TINNED COPPER WIRE TO GROUND BAR. EQUIPMENT CABINETS SHALL EACH HAVE (2) LUG CONNECTIONS.
- 7. KOPR-SHIELD ANTI-OXIDATION COMPOUND SHALL BE USED ON ALL COMPRESSION GROUNDING CONNECTIONS.
- ALL EXOTHERMIC CONNECTIONS SHALL BE INSTALLED UTILIZING THE PROPER CONNECTION/MOLD AND MATERIALS FOR THE PARTICULAR APPLICATION. 8.
- ALL BOLTED GROUNDING CONNECTIONS SHALL BE INSTALLED WITH AN EXTERNAL TOOTHED LOCK WASHER, GROUNDING BUS BARS MAY HAVE PRE PUNCHED HOLES OR TAPPED HOLES. ALL HARDWARE SHALL BE 3/8" STAINLESS STEEL.
- 10. EXTERNAL GROUNDING CONDUCTOR SHALL NOT BE INSTALLED OR ROUTED THROUGH HOLES IN ANY METAL OBJECTS, CONDUITS, OR SUPPORTS TO PRECLUDE ESTABLISHING A MAGNETIC CHOKE POINT.
- 11. PLASTIC CLIPS SHALL BE USED TO FASTEN AND SUPPORT GROUNDING CONDUCTORS. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL NOT BE USED.
- 12. STANDARD BUS BARS MGB, GWB, IGB, TELCO GB, FIBER GB, AND POWER GB SHALL BE FURNISHED AND INSTALLED BY THE SUBCONTRACTOR. THEY SHALL NOT BE FABRICATED OR MODIFIED IN THE FIELD. ALL GROUNDING BUSES SHALL BE IDENTIFIED WITH MINIMUM 3/4" LETTERS BY WAY OF STENCILING OR DESIGNATION PLATE.
- 13. THE CONTRACTOR SHALL MEASURE GROUND RESISTANCE AT INSPECTION SLEEVE K, AFTER ALL GROUNDING IS COMPLETE. RECORD THE MEASUREMENT IN THE TEST PLAN DOCUMENT AND PROVIDE RESULTS TO THE PROJECT MANAGER FOR REVIEW. THE GROUND SYSTEM RESISTANCE TO EARTH GROUND SHALL NOT EXCEED FIVE (5) OHMS. IF THE GROUND TEST EXCEEDS THE MAXIMUM OF 5 OHMS, THE CONTRACTOR SHALL BE RESPONSIBLE TO PROVIDE ADDITIONAL GROUND CONNECTIONS AS REQUIRED TO MEET THE 5 OHMS MAXIMUM.
- 14. IF COAX ON ICE BRIDGE IS MORE THAT 6' FROM THE GROUND BAR AT THE BASE OF THE TOWER, A SECOND GROUND BAR WILL BE NEEDED AT THE END OF THE ICE BRIDGE RUN TO GROUND THE COAX GROUND KIT AND THE IN-LINE SURGE ARRESTORS.
- 15. CONTRACTOR SHALL REPAIR/PLACE EXISTING GROUNDING SYSTEM COMPONENTS DAMAGED DURING CONSTRUCTION AT THE CONTRACTORS EXPENSE.

 $\underbrace{\mathbb{E}}_{\text{all ice Bridge support post grounding: extend #2 tinned cu wire from buried ground ring to all ice bridge support posts and exothermically weld.}$

 \bigcirc <u>GATE GROUNDING:</u> EXTEND 4/0 TINNED CU WIRE FROM BURIED GROUND RING TO GATE POSTS AND EXOTHERMICALLY WELD. USE FLEXABLE BRAID TO CONNECT SWING GATE TO GATE POSTS.

EVERSURCE ENERGY

> 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	CAG

-		i i i i i i i i i i i i i i i i i i i
2	03/30/21	ISSUED FOR FILING
1	10/06/20	ISSUED FOR FILING
0	05/21/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION
-		

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405

SHEET TITLE

GROUNDING PLAN

SHEET NUMBER

G-1

<u>NOTES</u>

- 1. ALL LUGS SHALL BE 2-HOLE, LONG BARREL, TINNED SOLID COPPER UNLESS OTHERWISE SPECIFIED, USING THE PROPER U.L. TOOL AND CIRCUMFERENTIAL HEXAGON DIE. LUGS SHALL BE THOMAS AND BETTS SERIES 548##BE, BURNDY, ERICO OR EQUIVALENT. BOLT HOLE DIAMETER AND SPACING ON ALL GROUND LUGS SHALL MATCH HOLE DIAMETER AND SPACING OF THE GROUND BAR. ANGLE LUGS MAY BE USED IF CONSTRUCTION CONDITIONS DICTATE. REFER TO DETAIL "G".
- AN ANTI-OXIDATION COMPOUND SHALL BE APPLIED BETWEEN THE LUG AND GROUND BAR ONLY. DO NOT COVER THE LUG. THE ANTI-OXIDATION COMPOUND SHALL BE THOMAS AND BETTS "KOPR-SHIELD" OR BURNDY PENETROX-E.
- 3. GROUND BARS SHALL BE ATTACHED TO THE ANTENNA SUPPORT STRUCTURES WITH U.L. APPROVED MOUNTING DEVICES. GROUND CLAMPS MAY BE USED TO MOUNT THE GROUND BAR TO AVAILABLE FLANGES, COAX PORT RIMS, ETC. STEEL STRAPS MAY BE USED TO ATTACH GROUND BAR TO A MONOPOLE IF NO CONVENIENT CLAMPING SURFACES ARE PRESENT. ALL CONNECTING SURFACES SHALL BE CLEAN AND FREE OF DIRT, OIL AND CORROSION. GALVANIZED SURFACES SHALL BE POLISHED WITH A STEEL BRUSH. DO NOT DRILL HOLES OR USE EXOTHERMIC WELDS TO CONNECT GROUND LEADS TO A STEEL TOWER EXCEPT ON STEEL TABS OR FLANGES SPECIFICALLY DESIGNED FOR THAT PURPOSE.

NOTES

- 1. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
- 2. ALL HARDWARE SHALL BE S/S 3/8 INCH DIAMETER OR LARGER.
- FOR GROUND BOND TO STEEL ONLY: INSERT A CADMIUM FLAT WASHER BETWEEN LUG AND STEEL, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.

SITEPRO - 1/4"X4"X20" TINNED GROUND BAR KIT TINMG420U-K

BAR SHALL HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION

EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND

SECTION "P" - SURGE PROTECTORS

CELL REFERENCE GROUND BAR (IF CO-LOCATED) GENERATOR FRAMEWORK (IF AVAILABLE) (#2) COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#3/0) FIBER GROUND BAR (#2)

SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2) EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2)

SECTION "N" - NON-ISOLATED GROUND ZONE EQUIPMENT

MISC NON-ISOLATED GROUND ZONE BATTERY RACK

SECTION "I" - ISOLATED GROUND ZONE

ALL ISOLATED GROUND REFERENCE GROUND WINDOW BAR

DETAIL NOTES

- 1. EXOTHERMIC ALLY WELD #2 AWG BARE TINNED SOLID COPPER CONDUCTOR TO GROUND BAR. ROUTE CONDUCTOR TO BURIED GROUND RING AND PROVIDE EXOTHERMIC WELD.
- EC SHALL USE PERMANENT MARKER TO DRAW THE LINES BETWEEN EACH SECTION AND LABEL EACH SECTION ("P", "A", "N", "I") WITH 1" HIGH LETTERS.

(MGB) REFERENCE GROUND BAR NO SCALE

1. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED ON THE BACK SIDE.

INSTALLATION OF GROUND WIRE TO EXTERIOR GROUNDING BAR NO SCALE

SHEET NUMBER

G-3

<u>NOTES</u>

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.
- 3. WEATHER PROOFING SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.

CONNECTION OF CABLE GROUND KIT TO ANTENNA CABLE

CABLE INSTALLATION WITH WAI

-ICE BRIDGE SLOPE 1"/10'-0" TOWER (TYPE WILL VARY)-ROOF < SEE NOTE GROUND BAR ANTENNA CABLES ENTRY PANEL - 1/4"x4"x20" COPPER GROUND BAR (TYP) ()Ś TO EXTERIOR - ICE BRIDGE SUPPORT GROUNDING BUS (EGB) SHELTER PVC -للهم 6 FINISHED GRADE 10' LONG #2 AWG SOLID TINNED COPPER WIRE FOR ICE BRIDGE SUPPORT. (TYP) FOOTING 6 - EXOTHERMIC CONNECTION - EXTERIOR GROUND RING -EXOTHERMIC CONNECTION <u>NOTE</u> - GROUND ROD GROUND ROD-1. PROVIDE GROUND KIT 6" BEFORE TURN ICE BRIDGE AND ANTENNA CABLE DETAIL NO SCALE

<u>NOTE</u>

1. NUMBER OF GROUND BARS MAY VARY DEPENDING ON THE TYPE OF TOWER, ANTENNA LOCATION AND CONNECTION ORIENTATION. PROVIDE AS REQUIRED.

ANTENNA CABLE GROUNDING

INA CABLES (TYP) — CABLE GROUNDING KIT	EVERS ENERGY 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000
AWG (TYP) EW (OR EQUAL) MULTIPLE INCE WALL FEED THRU ABLY CLOSURE PLATE ROUND BAR	BLACK & VEATCH 6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458–3595
WG SOLID TINNED BCW ROUND RING	PROJECT NO: 403093 DRAWN BY: TYW CHECKED BY: CAG
	2 03/30/21 ISSUED FOR FILING 1 10/06/20 ISSUED FOR FILING 0 05/21/20 ISSUED FOR FILING 0 05/21/20 ISSUED FOR FILING REV DATE DESCRIPTION CENSIONAL ENGLISHED 0 05/21/20 ISSUED FOR FILING 0 0 05/21 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION 0 0 A LIER THIS DOCUMENT.
	BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405
	SHEET TITLE GROUNDING DETAILS
	SHEET NUMBER G-4

CONNECTER MATERIAL DESCRIPTION

ITEM#	DESCRIPTION	<u>STOCK#</u>
(1)	CABLE, BARE COPPER, #2 SOLID TINNED FOR BARBED WIRE FABRIC GROUND	533919
2	CABLE, BARE COPPER, 4/0 FOR ATTACHING FENCE TO SUBSTATION GROUND GRID	513367
3	CONNECTER, COMPRESSION, 4/0 GROUND LEAD TO 4/0 GROUND GRID	516765
4	CONNECTOR, SPLIT BOLT, TINNED COPPER FOR ATTACHING #8-#2 COPPER CABLE TO FENCE FABRIC AND BARBED WIRE	517632
5	COPPER BRAID, FLEXIBLE, TINNED 1 1/2"	512015
6	CONNECTOR, GROUND, 4/0 COPPER CABLE TO GATE POST	501917
7	CONNECTOR, GROUND, 4/0 COPPER CABLE TO CORNER POST	517487
8	CONNECTOR, GROUND, #2 COPPER CABLE TO TOP RAIL	515108
9	CONNECTOR, GROUND, 4/0 COPPER CABLE TO LINE POST	501915
10	CONNECTOR, COPPER, PARALLEL GROOVE, #1-4/0 RUN, #6-4/0 TAP	517579

EVERSEUR 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–20	iergy
BLACK & VEA 6800 W 115TH ST, SUITE OVERLAND PARK, KS 66 PHONE: (913) 458–35 PROJECT NO: DRAWN BY: CHECKED BY:	403093 TYW CAG
2 03/30/21 ISSUED FOR FILING 1 10/06/20 ISSUED FOR FILING 0 05/21/20 ISSUED FOR FILING REV DATE DESCRIPTION	
SS/ONAL EN SS/ONAL EN SS/ONAL EN CF A UCLANED PROFESSIONAL EN CF A UCLANED PROFESSIONAL EN TO ALTER THES PROFUMENT	PERSON, DIRECTION GINEER,
BRANFORD 11, 272 EAST MAIN BRANFORD, CT 06 SHEET TITLE GROUNDING DETAILS	, ST 405
SHEET NUMBER	

DESIGN BASIS

1. GOVERNING CODE: 2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS).

GENERAL CONDITIONS

- IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO COMPLY WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL BUILDING CODES, PERMIT CONDITIONS AND SAFETY CODES DURING CONSTRUCTION. 1.
- 2. THE ENGINEER IS NOT: A GUARANTOR OF THE INSTALLING CONTRACTOR'S WORK; RESPONSIBLE FOR SAFETY IN, ON OR ABOUT THE WORK SITE; IN CONTROL OF THE SAFETY OR ADEQUACY OF ANY BUILDING COMPONENT, SCAFFOLDING OR SUPERINTENDING THE WORK.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL PERMITS, INSPECTIONS, TESTING AND CERTIFICATES NEEDED FOR LEGAL OCCUPANCY OF THE FINISHED PROJECT. 3.
- THE CONTRACTOR IS RESPONSIBLE TO REVIEW THIS COMPLETE PLAN SET AND VERIFY THE EXISTING INCOMPTICATION IN THESE PLANS AS THEY RELATE TO THE WORK PRIOR TO SUBMITTING PRICE. SIGNIFICANT DEVIATIONS FROM WHAT IS SHOWN AFFECTING THE WORK SHALL BE REPORTED IMMEDIATELY TO THE CONSTRUCTION MANAGER.
- 5. DETAILS INCLUDED IN THIS PLAN SET ARE TYPICAL AND APPLY TO SIMILAR CONDITIONS.
- EXISTING ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIRING, AND EQUIPMENT OBSTRUCTING 6. THE WORK SHALL BE REMOVED AND/OR RELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER. TEMPORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.
- 7. THE CONTRACTOR SHALL DILIGENTLY PROTECT THE EXISTING BUILDING/SITE CONDITIONS AND THOSE OF ANY ADJOINING BUILDING/SITES AND RESTORE ANY DAMAGE CAUSED BY HIS ACTIVITIES TO THE PRE-CONSTRUCTION CONDITION
- 8. THE CONTRACTOR SHALL SAFEGUARD AGAINST: CREATING A FIRE HAZARD, AFFECTING TENANT EGRESS OR COMPROMISING BUILDING SITE SECURITY MEASURES.
- 9. THE CONTRACTOR SHALL REMOVE ALL DEBRIS AND CONSTRUCTION WASTE FROM THE SITE EACH DAY. WORK AREAS SHALL BE SWEPT AND MADE CLEAN AT THE END OF EACH WORK DAY.
- THE CONTRACTOR'S HOURS OF WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND ORDINANCES AND BE APPROVED BY OWNER.
- 11. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE CONSTRUCTION MANAGER IF ASBESTOS IS ENCOUNTERED DURING THE EXECUTION OF HIS WORK. THE CONTRACTOR SHALL CEASE ALL ACTIVITIES WHERE THE ASBESTOS MATERIAL IS FOUND UNTIL NOTIFIED BY THE CONSTRUCTION MANAGER TO RESUME OPERATIONS.

THERMAL & MOISTURE PROTECTION

- FIRE-STOP ALL PENETRATIONS FOR ELECTRICAL CONDUITS OR WAVEGUIDE CABLING THROUGH BUILDING WALLS, FLOORS, AND CEILINGS SHALL BE FIRESTOPPED WITH ACCEPTED MATERIALS TO MAINTAIN THE FIRE RATING OF THE EXISTING ASSEMBLY. ALL FILL MATERIAL SHALL BE SHAPED, FITTED, AND PERMANENTLY SECURED IN PLACE. FIRESTOPPING SHALL BE INSTALLED IN ACCORDANCE
- 2. HILTI CP620 FIRE FOAM OR 3M FIRE BARRIER FILL, VOID OR CAVITY MATERIAL OR ACCEPTED EQUAL SHALL BE APPLIED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS AND ASSOCIATED UNDERWRITERS LABORATORIES (UL) SYSTEM NUMBER.
- FIRESTOPPING SHALL BE APPLIED AS SOON AS PRACTICABLE AFTER PENETRATIONS ARE MADE AND EQUIPMENT INSTALLED. 3.
- FIRESTOPPED PENETRATIONS SHALL BE LEFT EXPOSED AND MADE AVAILABLE FOR INSPECTION BEFORE CONCEALING SUCH PENETRATIONS. FIRESTOPPING MATERIAL CERTIFICATES SHALL BE MADE AVAILABLE AT THE TIME OF INSPECTION.
- 5. ANY BUILDING ROOF PENETRATION AND/OR RESTORATION SHALL BE PERFORMED SO THAT THE ROOF WARRANTY IN PLACE IS NOT COMPROMISED. CONTRACTOR SHALL ARRANGE FOR OWNER'S ROOFING CONTRACTOR TO PERFORM ANY AND ALL ROOFING WORK IF SO REQUIRED BY EXISTING ROOF WARRANTY. OTHERWISE, ROOF SHALL BE MADE WATERTIGHT WITH LIKE CONSTRUCTION AS SOON AS PRACTICABLE AND AT COMPLETION OF CONSTRUCTION.
- ALL PENETRATIONS INTO AND/OR THROUGH BUILDING EXTERIOR WALLS SHALL BE SEALED WITH SILICONE SEALER. 6.
- WHERE CONDUIT AND CABLES PENETRATES FIRE RATED WALLS AND FLOORS, FIRE GROUT ALL PENETRATIONS IN ORDER TO MAINTAIN THE FIRE RATING USING A LISTED FIRE SEALING DEVICE OR GROUT
- 8. CONTRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS REQUIRED DURING CONSTRUCTION

SUBMITTALS

- 1. CONTRACTOR TO SUBMIT SHOP DRAWINGS TO ENGINEER FOR REVIEW PRIOR TO FABRICATION.
- 2. CONTRACTOR TO NOTIFY ENGINEER FOR INSPECTION PRIOR TO CLOSING PENETRATIONS
- CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE ENGINEER SHALL BE NOTIFIED OF ANY CONDITIONS WHICH PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 " ZINC (HOT-DIPPED GALVANIZED) COATINGS" ON IRON AND STEEL PRODUCTS
- 5. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS FOR REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.

CONCRETE

- ALL CONCRETE CONSTRUCTION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN CONCRETE INSTITUTE (ACI) CODES 301 & 318, LATEST REVISION.
- 2. FOUNDATION WORK SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S DESIGNS AND
- ALL CONCRETE USED SHALL BE 4000 PSI (28 DAY COMPRESSIVE STRENGTH) UNLESS NOTED OTHERWISE. THE CONCRETE MIX DESIGN SHALL USE THE FOLLOWING MATERIALS AND PARAMETERS:

PORTLAND CEMENT: AGGREGATE: WATER: ADMIXTURE: AIR:	ASTM C150, TYPE 1 ASTM C33, 1 INCH MIX POTABLE NON-CHLORIDE 6%*
AIR: SLUMP:	6%* 4 INCH UNLESS NOTED OTHERWISE

*ALL CONCRETE EXPOSED TO FREEZING WEATHER SHALL CONTAIN ENTRAINED AIR PER ACI 211 TABLE 4.2.1 OF ACI 318-05.

- 4. ALL REINFORCING STEEL SHALL BE ASTM A615, GR 60 (DEFORMED) UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS 'B' AND ALL HOOKS SHALL BE ACI STANDARD UNLESS NOTED OTHERWISE. REINFORCING BARS SHALL BE COLD BENT WHERE REQUIRED AND TIES (NOT WELDED).
- 5. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWING

CONCRETE CAST AGAINST EARTH = 3 INCHES CONCRETE EXPOSED TO EARTH OR WEATHER: #6 AND LARGER = 2 INCHES #5 AND SMALLER AND WWF = 1 1/2 INCHES CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND: SLAB AND WALL = 3/4 INCHES BEAMS AND COLUMNS = $1 \frac{1}{2}$ INCHES

- 6. A 3/4 INCH CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.
- 7. CONCRETE SHALL REPLACED IN A UNIFORM MANNER AND CONSOLIDATED IN PLACE.
- 8. CONCRETE FOOTINGS SHALL BE CAST AGAINST LEVEL, COMPACTED, NON-FROZEN BASE SOIL FREE OF STANDING WATER

STEEL

1. MATERIAL

WIDE FLANGE:	ASTM A572, GR 50
TUBING:	ASTM A500, GR C
PIPE:	ASTM A53, GR B AND ASTM 572, GR 50
ANGLE:	ASTM A570, GR 50 AND ASTM A36
BOLTS:	ASTM A325
GRATING:	TYPE GW–2 (1"x3/16" BARS)
MISC. MATERIAL:	ASTM A36

ALL STEEL SHAPES SHALL BE HOT-DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A123 WITH A COATING WEIGHT OF 2 OZ/SF

- 2. DAMAGED GALVANIZED SURFACES SHALL BE CLEANED WITH A WIRE BRUSH AND PAINTED WITH TWO COATS OF COLD ZINC, "GALVANOX", "DRY GALV", "ZINC II", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURER'S GUIDELINES. TOUCH UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT IN SHOP OR FIELD.
- DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC "MANUAL OF STEEL CONSTRUCTION" 13TH EDITION.
- 4. THE STEEL STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER COMPLETION. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO INSURE THE SAFETY OF THE BUILDING AND ITS COMPONENT PARTS DURING ERECTION.
- 5. ALL STEEL ELEMENTS SHALL BE INSTALLED PLUMB AND LEVEL.
- 6. TOWER MANUFACTURER'S DESIGNS SHALL PREVAIL FOR TOWER

CONNECTIONS

- CONNECTIONS SHALL BE DESIGNED BY THE FABRICATOR AND CONSTRUCTED IN ACCORDANCE WITH THE AISC "MANUAL OF STEEL CONSTRUCTION" 13TH EDITION. CONNECTIONS SHALL BE PROVIDED TO CONFORM TO THE REQUIREMENTS OF TYPE 2 CONSTRUCTION UNLESS OTHERWISE DETAILED. ALL WELDING SHALL BE PERFORMED BY AWS CERTIFIED WELDERS.
- 2. DESIGN CONNECTIONS AT BEAM ENDS FOR 10 KIPS (MIN)
- 3. ALL BUILDING CONNECTION POINTS ARE TO BE CENTERED OVER BEARING WALLS
- 4. CONNECTIONS SHALL BE MADE USING ASTM A325 BOLTS (SNUG TIGHT OR SLIP CRITICAL) OR WELDS. IF TENSION CONTROL BOLTS ARE USED, CONNECTIONS SHALL BE DESIGNED FOR SLIP CRITICAL BOLT ALLOWABLE LOAD VALUES.
- 5. NUT LOCKING DEVICES ARE REQUIRED FOR ALL BOLT ASSEMBLIES.
- 6. GRATING SHALL BE ATTACHED USING FOR GRATING CLAMPS OR 1/4 INCH FILLET WELDS. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY BE 5/8" DIAMETER GALVANIZED ASTM A307 BOLTS UNLESS OTHERWISE NOTED.
- 7. ALL BOLTS, ANCHORS, AND MISCELLANEOUS HARDWARE EXPOSED TO WEATHER SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE."

- CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". UPON COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED. SEE NOTE ABOVE.
- 9. USE THE LARGER OF 1/4 INCH FILLET WELDS OR MINIMUM SIZE PER AISC REQUIREMENTS WHERE NO WELD SIZE IS SHOWN ON THE DRAWINGS.
- 10. ALL ARC AND GAS WELDING SHALL BE DONE BY LICENSED AND CERTIFIED WELDER IN ACCORDANCE WITH AMERICAN WELDING SOCIETY.
- ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1. UPON THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATINGS SHALL
- 12. USE PRECAUTIONS AND PROCEDURES PER AWS D1.1 WHEN WELDING GALVANIZED METALS.

SITE GENERAL

- 1. CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORDANCE WITH OSHA REGULATIONS
- 2.
- BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. CONTRACTOR SHALL HAND DIG UTILITIES AS NEEDED. CONTRACTOR SHALL PROVIDE, BUT IS NOT AND D) TRENCHING AND EXCAVATION.
- 4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, OR OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED, AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT THE POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF THE CONSTRUCTION MANAGER.
- 6. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED DURING CONSTRUCTION.
- CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE OR PRE-CONSTRUCTION CONDITION WITH AS GOOD, OR BETTER, MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE. 7.
- 8. THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATIONS GREATER THAN 5 FEET IN DEPTH OR LESS WHERE SOIL CONDITIONS ARE DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER.
- THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF 9. EXCAVATIONS TO PROTECT ADJACENT PROPERTIES AND NEW WORK. GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION AND EROSION CONTROL GUIDELINES.

THESE PLANS DEPICT KNOWN UNDERGROUND STRUCTURES, CONDUITS, AND/OR PIPELINES. THE LOCATIONS FOR THESE ELEMENTS ARE BASED UPON THE VARIOUS RECORD DRAWINGS AVAILABLE. THE CONTRACTOR IS HEREBY ADVISED THAT THESE DRAWINGS MAY NOT ACCURATELY DEPICT AS-BUILT LOCATIONS AND OTHER UNKNOWN STRUCTURES. THE CONTRACTOR SHALL THEREFORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND ELEMENTS AND EXCAVATE WITH CARE AFTER CALLING MARKOUT SERVICE AT 1-800-272-4480 48 HOURS BEFORE DIGGING, DRILLING OR

ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTILITIES WHERE ENCOUNTERED, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION, SHALL BE RELOCATED AS DIRECTED BY ENGINEER EXTREME CAUTION SHOULD BE USED LIMITED TO, APPROPRIATE A) FALL PROTECTION, B) CONFINED SPACE ENTRY, C) ELECTRICAL SAFETY,

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	CAG

_		
2	03/30/21	ISSUED FOR FILING
1	10/06/20	ISSUED FOR FILING
0	05/21/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-1

EXCAVATION

- CONTRACTOR SHALL GRADE ONLY AREAS SHOWN TO BE MODIFIED HEREIN AND ONLY TO THE EXTENT REQUIRED TO SHED OVERLAND WATER FLOW AWAY FROM SITE. SLOPES SHALL NOT BE STEEPER THAN 3:1 (HORIZONTAL-VERITICAL), UNLESS NOTED OTHERWISE. SEDIMENTATION AND EROSION CONTROLS SHOWN AND SPECIFIED SHALL BE ESTABLISHED BEFORE STRIPPING EXISTING VEGETATION.
- 2. ORGANIC MATERIAL AND DEBRIS SHALL BE STRIPPED AND STOCKPILED BEFORE ADDING FILL MATERIAL
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT. 3.
- ALL FILL SHALL BE PLACED IN ONE FOOT LIFTS AND COMPACTED IN PLACE, STRUCTURAL FILL 4. SHALL BE COMPACTED TO 95% OF ITS MAXIMUM DRY UNIT WEIGHT TESTED IN ACCORDANCE WITH ASTM D1557.
- 5. EXCAVATIONS FOR FOOTINGS SHALL BE CUT LEVEL TO THE REQUIRED DEPTH AND TO UNDISTURBED SOIL. REPORT UNSUITABLE SOIL CONDITIONS TO THE CONSTRUCTION MANAGER.
- 6. TRENCH EXCAVATIONS SHALL BE BACKFILLED AT THE END OF EACH DAY
- 7. SURPLUS MATERIAL SHALL BE REMOVED FROM THE SITE.
- TOWER FOUNDATION EXCAVATION, BACKFILL AND COMPACTION SHALL BE IN ACCORDANCE WITH THE 8. TOWER MANUFACTURER'S DESIGNS AND SPECIFICATIONS.

MATERIAL

- NATIVE GENERAL MATERIAL MAY BE USED FOR TRENCH BACKFILL WHERE SELECT MATERIAL IS NOT SPECIFIED GRAVEL MATERIAL FOR CONDUIT TRENCH BACKFILL SHALL NOT CONTAIN ROCK GREATER THAN 2 INCHES IN DIAMETER.
- BANK OR CRUSHED GRAVEL SHALL CONSIST OF TOUGH, DURABLE PARTICLES OF CRUSHED OR UNCRUSHED GRAVEL FREE OF SOFT, THIN, ELONGATED OR LAMINATED PIECES AND MEET THE GRADATION REQUIREMENTS
- PROCESSED AGGREGATE BASE SHALL CONSIST OF COURSE AND FINE AGGREGATES COMBINED AND .3. MIXED SO THAT THE RESULTING MATERIAL CONFORMS TO THE GRADATION REQUIREMENTS. COURSE AGGREGATE SHALL BE EITHER GRAVEL OR BROKEN STONE AND FINE AGGREGATE SHALL CONSIST OF SAND.

	PERCE	NI PASSING	BY WEIGHT	
SQUARE	BANK GRAVE	EL BANK GR/	AVEL PROCESSI	ED
MESH	FILL	BASE	AGG BASE	
<u>SIEVES</u>		100		
PASS 5"		100	90-100	
PASS 3 1/2"		100		
PASS 2 1/4"		95-100		
PASS 2"		55-100		
PASS 1 1/2"				
PASS 1"				
PASS 3/4"			50-75	
PASS 1/4"	25-60	25-60	25-45	
PASS #10	15-45	15-45		
PASS #40	2-25	5-25	5-20	
PASS #100	0-10	0-10	2-12	
PASS #200	0-5	0-5		

- 4. FILL MATERIAL SHALL BE FREE OR ORGANIC MATERIAL, ICE, TRASH AND DEBRIS.
- REFER TO MOST CURRENT GEOTECHNICAL ENGINEERING REPORT FOR ALL FILL MATERIAL 5. REQUIREMENTS.

ELECTRICAL

- CONTRACTOR SHALL VERIFY EXISTING ELECTRIC SERVICE TYPE AND CAPACITY AND ORDER NEW ELECTRIC SERVICE FROM LOCAL ELECTRIC UTILITY, WHERE APPLICABLE. 1.
- 2. ALL ELECTRICAL WORK SHALL BE IN ACCORDANCE WITH ALL APPLICABLE CODES, AND SHALL BE ACCEPTABLE TO ALL AUTHORITIES HAVING JURISDICTION. WHERE A CONFLICT EXISTS BETWEEN CODES, PLAN AND SPECIFICATIONS, OR AUTHORITIES HAVING JURISDICTION, THE MORE STRINGENT AUTHORITIES SHALL APPLY.
- CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, ETC, FOR A COMPLETE AND PROPERLY OPERATIVE SYSTEM 3. ORERGIZED THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SPECIFIED HEREIN AND/OR OTHERWISE REQUIRED.
- 4. ALL ELECTRICAL CONDUCTORS SHALL BE 100% COPPER AND SHALL HAVE TYPE THHN INSULATION UNLESS INDICATED OTHERWISE.
- CONDUIT SHALL BE THREADED RIGID GALVANIZED STEEL OR EMT WITH ONLY COMPRESSION TYPE 5. COUPLINGS AND CONNECTORS, ALL MADE UP WRENCH TIGHT
- ALL BURIED CONDUIT SHALL BE MINIMUM SCH 40 PVC UNLESS NOTED OTHERWISE, OR AS PER 6. LOCAL CODE REQUIREMENTS.
- PROVIDE FLEXIBLE STEEL CONDUIT OR LIQUID TIGHT FLEXIBLE STEEL CONDUIT TO ALL VIBRATING EQUIPMENT, INCLUDING HVAC UNITS, TRANSFORMERS, MOTORS, ETC, OR WHERE EQUIPMENT IS PLACED UPON A SLAB ON GRADE.
- 8. ALL BRANCH CIRCUITS AND FEEDERS SHALL HAVE A SEPARATE GREEN INSULATED EQUIPMENT GROUNDING CONDUCTOR BONDED TO ALL ENCLOSURES, PULLBOXES, ETC.
- CONDUIT AND CABLE WITHIN CORRIDORS SHALL BE CONCEALED AND EXPOSED ELSEWHERE, UNLESS NOTED OTHERWISE. 9.
- 10. ELECTRICAL MATERIALS INSTALLED ON ROOFTOP SHALL BE LISTED FOR NEMA 3R USE. —AND ALL WIRING WITHIN A VENTILATION DUCT SHALL BE LISTED FOR SUCH USE. IN GENERAL WIRING METHODS WITHIN A DUCT SHALL BE AN MC CABLE WITH SMOOTH OR CORRUGATED METAL JACKET AND HAVE NO OUTER COVERING OVER THE METAL JACKET. INTERLOCKED ARMOR TYPE OF MC CABLE IS NOT ACCEPTABLE FOR THIS APPLICATION. CONTRACTOR CAN ALSO USE TYPE MI CABLE IN THE VENTILATION DUCT PROVIDED IT DOES NOT HAVE ANY OUTER COVERINGS OVER THE METAL EXTERIOR.
- 11. WIRING DEVICES SHALL BE SPECIFICATION GRADE, AND WIRING DEVICE COVER PLATES SHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED.

- 12. GROUNDING SYSTEM RESISTANCE SHALL BE MEASURED, RECORDED, AND DATED USING MEGGER DET14 OR SIMILAR INSTRUMENT. GROUND RESISTANCE SHALL NOT EXCEED 5 OHMS. IF THE RESISTANCE VALUE IS EXCEEDED, NOTIFY CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION
- 1.3 COORDINATE WITH BUILDING MANAGEMENT BEFORE PERFORMING ANY WORK INVOLVING EXISTING SYSTEMS OR EQUIPMENT IN ORDER TO DETERMINE THE EFFECT, IF ANY, ON OTHER TENANTS WITHIN THE BUILDING, AND TO DETERMINE THE APPROPRIATE TIME FOR PERFORMING THIS WORK.
- 14. THE CONTRACTOR SHALL BE REQUIRED TO VISIT THE SITE PRIOR TO SUBMITTING BID IN ORDER TO DETERMINE THE EXTENT OF THE EXISTING CONDITIONS.
- 15. ALL CONDUCTOR ENDS SHALL BE TAGGED AND ELECTRICAL EQUIPMENT LABELED WITH ENGRAVED IDENTIFICATION PLATES.
- 16. CONTRACTOR IS RESPONSIBLE FOR ALL CONTROL WIRING AND ALARM TIE-INS.

GROUNDING

- #6 THWN SHALL BE STRANDED #6 COPPER WITH GREEN THWN INSULATION SUITABLE FOR WET INSTALLATIONS.
- 2. #2 THWN SHALL BE STRANDED #2 COPPER WITH THWN INSULATION SUITABLE FOR WET INSTALLATIONS.
- 3. #2 BARE TINNED SHALL BE SOLID COPPER TINNED, ALL BURIED WIRE SHALL MEET THIS CRITERIA.
- ALL LUGS SHALL BE 2-HOLE, LONG BARREL, TINNED SOLID COPPER UNLESS OTHERWISE SPECIFIED, LUGS SHALL BE THOMAS AND BETTS SERIES 548##BE OR EQUIVALENT (IE #2 THWN - 54856BE, #2 SOLID - 54856BE, AND #6 THWN - 54852BE).
- 5. ALL HARDWARE, BOLTS, NUTS, AND WASHERS SHALL BE 18-8 STAINLESS STEEL. EVERY CONNECTION SHALL BE BOLT-FLAT WASHER-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT IN THAT EXACT ORDER. BACK-TO-BACK LUGGING, BOLT-FLAT WASHER-LUG-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT, IN THAT EXACT ORDER, IS ACCEPTED WHERE NECESSARY TO CONNECT MANY LUGS TO A BUSS BAR, STACKING OF LUGS, BUSS-LUG-LUG, IS NOT ACCEPTABLE.
- WHERE CONNECTIONS ARE MADE TO STEEL OR DISSIMILAR METALS, A THOMAS AND BETTS DRAGON TOOTH WASHER MODEL DTWXXX SHALL BE USED BETWEEN THE LUG AND THE STEEL, BOLT-FLAT WASHER-STEEL-DRAGON TOOTH WASHER-LUG-FLAT WASHER-BELEVILE WASHER-NUT. 6.
- ALL CONNECTIONS, INTERIOR AND EXTERIOR, SHALL BE MADE WITH THOMAS AND BETTS KPOR-SHIELD. COAT ALL WIRES BEFORE LUGGING AND COAT ALL SURFACES BEFORE CONNECTING.
- 8. THE MINIMUM BEND RADIUS SHALL BE 8 INCHES FOR #6 WIRE AND SMALLER AND 12 INCHES FOR WIRE LARGER THAN #6.
- 9. ALL CONNECTIONS TO THE GROUND RING SHALL BE EXOTHERMIC WELD.
- 10. BOND THE FENCE TO THE GROUND RING AT EACH CORNER, AND AT EACH GATE POST WITH #2 SOLID TINNED WIRE, EXOTHERMIC WELD BOTH ENDS.
- 11. GROUND KITS SHALL BE SOLID COPPER STRAP WITH #6 WIRE 2-HOLE COMPRESSION CRIMPED LUGS AND SHALL BE SEALED ACCORDING TO MANUFACTURER INSTRUCTIONS.
- 12. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL BE
- 13. GROUND BARS SHALL BE FURNISHED AND INSTALLED WITH PRE-DRILLED HOLE DIAMETERS AND SPACINGS. GROUND BARS SHALL NEITHER BE FIELD FABRICATED NOR NEW HOLES DRILLED. GROUND LUGS SHALL MATCH THE SPACING ON THE BAR. HARDWARE DIAMETER SHALL BE MINIMUM 3.8 INCH.
- 14. MGB GROUND CONNECTION SHALL BE EXOTHERMIC WELDED TO THE GROUND SYSTEM.
- 15. ALL CABLE TRAY AND/OR PLATFORM STEEL SHALL BE BONDED TOGETHER WITH JUMPERS (#6 IN EQUIPMENT ROOM, #2 ELSEWHERE AND HOMERUN)

CABLE TRAY

- 1. CABLE TRAY SHALL BE MADE OF EITHER CORROSION RESISTANT METAL OR WITH A CORROSION RESISTANT FINISH
- 2. CABLE TRAY SHALL BE OF LADDER TRAY TYPE WITH FLAT COVER CLAMPED TO SIDE RAILS.
- 3. CABLE LADDER SHALL BE SIZED TO FIT ALL CABLES IN ACCORD WITH NEC AND NEMA 11-15-84.
- 4. CABLE LADDER TRAYS SHALL BE NEMA CLASS 12A BY PW INDUSTRIES, INC OR EQUAL.
- 5. CABLE LADDER TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS.
- ALL WORKMANSHIP SHALL CONFORM TO THESE REQUIREMENTS AND ALL LOCAL CODES AND STANDARDS TO ENSURE SAFE AND ADEQUATE GROUNDING SYSTEM.

ANTENNA & CABLE NOTES

- THE CONTRACTOR SHALL FURNISH AND INSTALL ALL TRANSMISSION CABLES, JUMPERS, CONNECTORS, GROUNDING STRAPS, ANTENNAS, MOUNTS AND HARDWARE. ALL MATERIALS SHALL BE INSPECTED BY THE CONTRACTOR FOR DAMAGE UPON DELIVERY, JUMPERS SHALL BE SUPPLIED AT ANTENNAS AND EQUIPMENT INSIDE SHELTER COORDINATE LENGTH OF JUMP CABLES WITH EVERSOURCE. COORDINATE AND VERIFY ALL OF THE MATERIALS TO BE PROVIDED WITH EVERSOURCE PRIOR TO SUBMITTING BID AND ORDERING MATERIALS.
- 2. AFTER INSTALLATION. THE TRANSMISSION LINE SYSTEM SHALL BE PIM/SWEEP TESTED FOR PROPER
- 3. ANTENNA CABLES SHALL BE COLOR CODED AT THE FOLLOWING LOCATIONS:
- AT THE ANTENNAS. AT THE WAVEGUIDE ENTRY PLATE ON BOTH SIDES OF THE EQUIPMENT SHELTER WALL.
 JUMPER CABLES AT THE EQUIPMENT ENTER.
- 4. SYSTEM INSTALLATION: THE CONTRACTOR SHALL INSTALL ALL CABLES AND ANTENNAS TO THE MANUFACTURER'S SPECIFICATIONS. THE CONTRACTOR IS RESPONSIBLE FOR THE PROCUREMENT AND INSTALLATION OF THE FOLLOWING:
- ALL CONNECTORS, ASSOCIATED CABLE MOUNTING, AND GROUNDING HARDWARE.
 WALL MOUNTS, STANDOFFS, AND ASSOCIATED HARDWARE.
 - 1/2 INCH HELIAX ANTENNA JUMPERS OF APPROPRIATE LENGTHS.
 - 5. MINIMUM BENDING RADIUS FOR COAXIAL CABLES: -7/8 INCH, RMIN = 15 INCHES -15/8 INCH, RMIN = 25 INCHES
 - 6. CABLE SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS WHERE POSSIBLE. CABLE SHALL NOT BE LEFT UNTERMINATED AND SHALL BE SEALED IMMEDIATELY AFTER BEING INSTALLED.
 - 7. ALL CABLE CONNECTIONS OUTSIDE SHALL BE COVERED WITH WATERPROOF SPLICING KIT.
 - 8. CONTRACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAVEL IN FIELD PRIOR TO
 - 9. CABLE SHALL BE FURNISHED WITHOUT SPLICES AND WITH CONNECTORS AT EACH END.

TYPICAL WOVEN WIRE FENCING NOTES

- 1. INSTALL FENCING PER ASTM F567, SWING GATES PER ASTM F900
- 2. GATE POST, CORNER, TERMINAL OR PULL POST 2 1/2 INCH DIAMETER SCHEDULE 40 FOR GATE WIDTHS UP THROUGH 6 FEET OR 12 FEET DOUBLE SWING GATE PER ASTM F1083.
- 3. LINE POST: 2 INCH DIAMETER SCHEDULE 40 PIPE PER ASTM F1083
- 4. GATE FRAME: 1 1/2 INCH DIAMETER SCHEDULE 40 PIPE PER ASTM F1083
- 7.
- AND AT TENSION WIRE BY HOG RINGS SPACED MAX 24 INCH INTERVALS.
- TENSION WIRE: 7 GA GALVANIZED STEEL.
- 9.
- 10. GATE LATCH: DROP DOWN LOCKABLE FORK LATCH AND LOCK, KEYED ALIKE FOR ALL SITES.
- 11. LOCAL ORDINANCE OF BARBED WIRE PERMIT REQUIREMENT SHALL BE COMPLIED IF REQUIRED.
- 12. HEIGHT = 6 FEET VERTICAL + 1 FOOT BARBED WIRE VERTICAL DIMENSION.

INSTALLATION AND DAMAGE WITH ANTENNAS CONNECTED. CONTRACTOR TO OBTAIN LATEST TESTING PROCEDURES FROM EVERSOURCE PRIOR TO BIDDING.

TOP RAIL AND BRACE RAIL: 1 1/2 DIAMETER SCHEDULE 40 PIPE PER ASTM F1083.

6. FABRIC: 12 GA CORE WIRE SIZE 2 INCH MESH, CONFORMING TO ASTM A392.

TIE WIRE: MINIMUM 11 GA GALVANIZED STEEL POSTS AND RAILS. A SINGLE WRAP OF FABRIC TIE

BARBED WIRE: DOUBLE STRAND 12 - 1/2 INCH OUTSIDE DIAMETER TWISTED WIRE TO MATCH WITH FABRIC 12 GA, 4 POINT BARBS SPACED ON APPROXIMATELY 5 INCH CENTERS.

EVERSURCE

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	CAG

2	03/30/21	ISSUED FOR FILING
1	10/06/20	ISSUED FOR FILING
0	05/21/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION
_		

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-2

BOLS					
	EXOTHERMIC CONNECTI	ON			
, 	COMPRESSION CONNEC	TION		EVEDS	
	5/8"øx10-'0" COPPER	CLAD ST	EEL GROUND ROD.	LVLNJ	ENERGY
	TEST GROUND ROD WI	TH INSPEC	CTION SLEEVE		ENERGY
	GROUNDING CONDUCTO	R		107 SELDE BERLIN, O	IN STREET
.)	KEY NOTES		PHONE: (800) 286-2000	
	~	v	v v v		
INK FENCE	^	^	_ * * *		
FENCE		0			
AREA		 *****			_
IDGE					2
TRAY					
NE	G	G	G G G		
GROUND ICAL/TELCO	———— E/T ———	— е/т -	Е/Т Е/Т	BLACK &	VEAICH
GROUND ICAL/CONTROL	———— E/C ———	— E/C -	E/C E/C	6800 W 115TH OVERLAND PAF PHONE: (913	ST, SUITE 2292 ₹K, KS 66211) 458-3595
GROUND ICAL	——— E ———	е ——	— Е ——— Е ———		
GROUND	— T	т ——	T T T	PROJECT NO:	403093
RTY LINE (PL)				DRAWN BY:	TYW
REVIATIONS				CHECKED BY:	CAG
ALTERNATING CURRE	INT	MGB	MASTER GROUNDING BAR		
AMPERAGE INTERRUF	PTION CAPACITY	MIN	МІЛІМИМ		
AUXILIARY NETWORK	INTERFACE	MW	MICROWAVE		
ASYNCHRONOUS TRA	ANSFER MODE	MTS	MANUAL TRANSFER SWITCH		
AUTOMATIC TRANSFE	R SWITCH	NEC	NATIONAL ELECTRICAL CODE		
AMERICAN WIRE GAL	IGE	OC	ON CENTER	0 07 (70 (01 100))5	
ADVANCED WIRELESS	S SERVICES	PP	POLARIZING PRESERVING	2 03/30/21 ISSUE	D FOR FILING
BATTERY		PCU	PRIMARY CONTROL UNIT	0 05/21/20 ISSUE	D FOR FILING
BASEBAND UNIT		PDU	PROTOCOL DATA UNIT	REV DATE DESCR	
BARE TINNED COPPE	ER CONDUCTOR	PWR	POWER		
BASE TRANSCEIVER	STATION	RECT	RECTIFIER	IN SEC	ONN.
CLIMATE CONTROL U	INIT	RET	REMOTE ELECTRICAL TILT		JECX
CODE DIVISION MULT	TIPLE ACCESS	RMC	RIGID METALLIC CONDUIT	T.S.	R C
CHARGING		RF	RADIO FREQUENCY	$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i$	
CLIMATE UNIT		RUC	RACK USER COMMISSIONING		
COMMON		RRH	REMOTE RADIO HEAD	Joshna	Friley
DIRECT CURRENT		RRU	REMOTE RADIO UNIT	70,, CF	NSE
DIAMETER		RWY	RACEWAY	SSION	AL ENGIN
DRAWING		SFP	SMALL FORM-FACTOR PLUGGABLE	111	1111
ELECTRICAL CONDUC	TOR	SIAD	SMART INTEGRATED ACCESS DEVICE	03/30)/2021
ELECTRICAL METALLI	C TUBING	SSC	SITE SOLUTIONS CABINET	IT IS A VIOLATION OF I	AW FOR ANY PERSON,
FACILITY INTERFACE	FRAME	T1	1544KBPS DIGITAL LINE	OF A LICENSED PROF TO ALTER THI	ESSIONAL ENGINEER, S DOCUMENT.
GENERATOR		TDMA	TIME-DIVISION MULTIPLE ACCESS		
GLOBAL POSITIONING	SYSTEM	ТМА	TOWER MOUNT AMPLIFIER	lí	
GLOBAL SYSTEM FOR	R MOBILE	TVSS	TRANSIENT VOLTAGE SUPPRESSION SYSTEM	BRANFO	RD 11J
HEAT/VENTILATION/A	IR CONDITIONING	TYP	TYPICAL	272 EAST	MAIN ST
INTERCONNECTION F	RAME	UMTS	UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM	BRANFORD,	CT 06405
INTERIOR GROUNDING	G RING (HALO)	UPS	UNINTERRUPTIBLE POWER SUPPLY		
LONG TERM EVOLUTI	ION		(DU POWER PLANT)		
				SHEEL	
				& SPECIF	ICATIONS

	COMPRESSION CO	ONNECTION			JUR
u⊨∎	5/8"øx10-'0" C	OPPER CLAD ST	EEL GROUND ROD.		Eľ
чH	TEST GROUND R	DD WITH INSPEC	CTION SLEEVE	107 SELDER	N STREET
	- — GROUNDING CON	DUCTOR		BERLIN, C PHONE: (800)	06037 286-20
C	KEY NOTES				
CHAINL	INK FENCE X	x	x x x		
WOOD	FENCE		00		
LEASE	AREA			lí	
ICE BR					
CABLE	TRAY				7
GAS LI	NE G	G	C C		eee ®
UNDER® ELECTR	GROUND ICAL/TELCO — E/T	———— E/T -	Е/Т Е/Т	BLACK &	VEA
UNDER ELECTR	GROUND ICAL/CONTROL — E/C	E/C ·	E/C E/C	6800 W 115TH S OVERLAND PARI PHONE: (913)	T, SUITE K, KS 66 458-35
UNDER ELECTR	GROUND e	—— E ———	— E ——— E ———		
UNDER® TELCO	GROUND T	— т ——	T T T	PROJECT NO:	
PROPE	RTY LINE (PL)			DRAWN BY:	
ABBF	REVIATIONS			CHECKED BY:	
AC	ALTERNATING CURRENT	MGB	MASTER GROUNDING BAR		
AIC	AMPERAGE INTERRUPTION CAPACITY	MIN			
	AUXILIARY NETWORK INTERFACE	MW	MICROWAVE		
AIM	ASTNCHRUNUUS TRANSFER MUDE	MIS			
AWG	AMERICAN WIRE GALIGE	00	ON CENTER		
AWS	ADVANCED WIRELESS SERVICES	PP		2 03/30/21 ISSUED	FOR FILING
BATT	BATTERY	PCU		0 05/21/20 ISSUED	FOR FILING
BBU	BASEBAND UNIT	PDU		REV DATE DESCRI	PTION
BTC	BARE TINNED COPPER CONDUCTOR	PWR	POWER		
BTS	BASE TRANSCEIVER STATION	RECT	RECTIFIER		
CCU	CLIMATE CONTROL UNIT	RET		NE OF	JUNEC
CDMA	CODE DIVISION MULTIPLE ACCESS	RMC		T. HUL	Ŕ,
CHG	CHARGING	RF	RADIO FREQUENCY		
CLU	CLIMATE UNIT	RUC	RACK USER COMMISSIONING		D
СОММ	COMMON	RRH	REMOTE RADIO HEAD	1 Joshue	E K
DC	DIRECT CURRENT	RRU	REMOTE RADIO UNIT		USE .
DIA	DIAMETER	RWY	RACEWAY	SS/ONI	AL ENG
DWG	DRAWING	SFP	SMALL FORM-FACTOR PLUGGABLE		ī'''
EC	ELECTRICAL CONDUCTOR	SIAD	SMART INTEGRATED ACCESS DEVICE	03/30	/2021
EMT	ELECTRICAL METALLIC TUBING	SSC	SITE SOLUTIONS CABINET	IT IS A VIOLATION OF LA UNLESS THEY ARE ACTING	W FOR ANY UNDER TH
FIF	FACILITY INTERFACE FRAME	T1	1544KBPS DIGITAL LINE	OF A LICENSED PROFE TO ALTER THIS	SSIONAL E
GEN	GENERATOR	TDMA	TIME-DIVISION MULTIPLE ACCESS		
GPS	GLOBAL POSITIONING SYSTEM	ТМА	TOWER MOUNT AMPLIFIER	11	
GSM	GLOBAL SYSTEM FOR MOBILE	TVSS	TRANSIENT VOLTAGE SUPPRESSION SYSTEM	BRANFOR	۲D 11
HVAC	HEAT/VENTILATION/AIR CONDITIONING	TYP	TYPICAL	272 EAST	MAIN
ICF	INTERCONNECTION FRAME	UMTS	UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM	BRANFURD,	
IGR	INTERIOR GROUNDING RING (HALO)	UPS	UNINTERRUPTIBLE POWER SUPPLY (DC POWER PLANT)		
LTE	LONG TERM EVOLUTION			SHEET	TITLE

SHEET NUMBER

N-3

REFERENCE CUTSHEETS

			LINE ITEM: *										
					CENTER 0 (WELD B FLATS 1	Xenter of gravity (Weld Beads on Embedment Flats 1,4,7,10)					ITEM 1 2	ASSY# 3169-1 3170-2	QTY. 1
QT #	str. #	STR LINE & RELEASE (*)	0.A.L.	CLASS	Distance From Top Of Shaft 1	DISTANCE FROM TOP OF SHAFT 2	embedment Depth (feet)	BGP DEPTH (FEET)	BEARING BEARING PLATE PLATE (THICK) (DIAM)		QUAN	itities in Bill of Mater	rial for
145			70'–0 "	H9-LD9	26'-0*	13'-7"	13'-0"	17°-0"	1/4"	28 " ø			ITE

- PROJECT NOTES:
- 1.) POLE SECTIONS SHAI 2.) THE TOP OF MID AN (65 ksi) PLATE.
- ERECTION NOTES:
- 1.) AS A MINIMUM, ALL TIGHTNESS ATTAINED
- USING AN ORDINARY 2.) ALL POLE SECTIONS
- FOR PROPER ORIEN
- 3.) PLEASE REFER TO RECOMMENDATIONS.
- MATERIAL NOTES:
- 1.) STEEL SPECIFICATION PLATE (ie POLE SHA PLATE (ie BASE PLA
- 2.) HIGH STRENGTH PLA MINIMUM AT -20° F
- WELDING NOTES:
- 1.) ALL WELDS SHALL 2.) LONGITUDINAL WELDS THAT DEPTH (TYPICAL
- WELDS WILL BE +6" FEMALE LAP SPLICE. 3.) FILLET WELDS SHALL
- FIELD WELDING WILL GENERAL NOTES:
- 1.) EACH STRUCTURE WI
- STAMPED IN 1/4" A STS CLASS#: H9-LD9 HT: 70'-0" PO: STR.#: H9-70-*
- ASSY#: 3170-2 * SEQ# ID PLATE DETAIL BASE TAG
- 2.) ALL OTHER PARTS A RESPECTIVE MARK N "STRUCTURES SHA "STRUCTURES SHAL "BGP" AT TOP SHA (NO "HARD LIP" I
- (BGP COATING MINIMUM TOLERANCE NOTES 1.) POLE SECTION LENG 2.) ALL OTHERS PER AL SHIPPING NOTES:
- 1.) HARDWARE IN BOM(S) PER PROJECT JOB REQUIRES "C

* STRUCTURE NO .: SEE CHART

I PROPRIETARY AND CONFIDENTIAL! THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIM ARE THE SOLE PROPERTY OF SABRE INDUSTRIES, INC. DUPLICATION OR DISSEMINATION OF THIS INFORMATION WITHOUT PRIOR WRITEN CONSENT OF SUBJECT INDUSTRIES, INC. IS PROMITED.

BILL OF MATERIAL	STR #: S	ee str.	data table
DESCRIPTION	0 01555	"Fy"	WEIGHT/Ibs
PL 1/4" x 11.750" x 21.559" x 47'-6" (1 PL 1/4" x 20.439" x 25.705" x 25'-6" (1	z Sided) 2 Sided)	65 ksi 65 ksi	2146 2153
TOTA	L BLACK WEI	GHT/lbs	4299
r (1) assembly only, () required.			
SHIP LOOSE ITEMS			
M PART NO QTY DESCRI	PTION		
PT99970 POLY-COTE PC 110 "BLACK" PINT KIT	TOUCH UP		
ALL BE FABRICATED FROM WEATHERING STEEL			
ND/OR BOTTOM SHAFTS TO BE SEALED WITH A	3/16" THICK	A871	
NUTS SHOULD BE INSTALLED SNUG TIGHT "S	NUG TICHT" I		DASTHE
BY A FEW IMPACTS OF AN IMPACT WRENCH O	R THE FULL	EFFORT	OF A MAN
SPUD WRENCH.		5 TA Pr	
TATION OF POLE SECTIONS PRIOR TO ENGAGING	SPLICES.	JUBE	USED
DRAWING "FWT002" SUPPLIED WITH FINAL DRAWI	NG PACKET F	or fwt	
NS: ALL SIEEL PER ASTM A871, GR 65 (UNLE	SS NUTED O	IHERWISE	.)
hr:): مح ksi A8/1 GR/ ATE/BEARING PLATE): 65 ksi A8/1 GR/	NDE 65		
ATES TO HAVE A CHARPY V-NOTCH IMPACT VAL	JE OF 15FT-	LBS.	
PER HEAT LOT TEST. (UNLESS NOTED OTHER	WISE)		
MEET THE REQUIREMENTS OF LATEST REVISION (FAWS D1.1.		
S SHALL BE 80% MINIMUM PENETRATION WITH	100% FUSION	TO SEAM	
LONG AT SHAFT ENDS AND SPLICE LENGTH +:	24" LONG AT		
L BE 100% FUSION THROUGH THEIR ENTIRE CR	DSS SECTION		
NOT BE PERMITTED WITHOUT WRITTEN APPROVA	L OF BUYER		
ILL BE MARKED WITH AN IDENTIFICATION PLATE	(3/4" HIGH	NUMBER	
WELDED TO THE B	NUL JEUTIUN	. JEE t	JELUNI.
SIR.#: H9-70-* ASSY#: 3169-1			
* SEQ#			
AND WELDMENTS SHIPPED WITH STRUCTURF WILL	. BE MARKED	WITH T	HEIR
NUMBER.			
ALL BE WEATHERING STEEL"	,"		
ALL HAVE BELOW GRADE PROTECTION IALL BE "FEATHERED"	I		
S ALLOWED)			
DRY THICKNESS OF 16 MILS)			
5:			
GTH: ±1"			
ISC			
FXACT OTY TO ASSEMBLE STRUCTURE(S) 5% EVTO	TO RE SUID	PFD	
EARLY ATT TO ASSEMBLE STRUCTURE(S). SA EXIK	NO DE SHIPI		
GO & NO-GO GAGE" TO BE USED			
	HERIN	<u> C 0</u>	TEEI
	AOTING	10 55	
SSPC-SP6 SAND B	LASTING	IS RE	QUIRED
			REV.: O
BIG: ON FLE			- SONLE NTS
ly WPFs	DATE:	SHEET	∞. 2 of 2
	J08 NO.:	DRAWIN	
WING -/U H9-LD9 WPES			E140

/2021 8:25 AM - DEACOP - C:\USERS\DEACOP\APPDATA\ROAMING\SYNERGIS\ADEPT\SUPPORT\TMPFILES\ADEPT\DEACOP\1.14D63785-C3AB-4338-97C2-F06D33EB8167.4.0\09000-60015p001.dwg - As

ES VER: 05/20

DIRECT EMBEDED FOUNDATION NOTES:

1. EVERSOURCE TO FURNISH STEEL POLES, ARMS, TRANSMISSION LINE HARDWARE, GROUNDING MATERIALS, STEP RUNGS, AND EPOXY COATING FOR TOUCH UP BEFORE EMBEDMENT.

2. CONTRACTOR TO PROVIDE LABOR, PROCESSED TRAP ROCK, CORRUGATED OR SMOOTH WALL CASINGS, AND EQUIPMENT AND MATERIAL NECESSARY TO HANDLE, TRANSPORT, AND INSTALL ALL MATERIAL FURNISHED BY EVERSOURCE. THE CONTRACTOR SHALL SUBMIT, FOR REVIEW AND APPROVAL BY EVERSOURCE TRANSMISSION LINE ENGINEERING, A PROCESSED TRAP ROCK BACKFILL REPORT PER OTRM 260/262 PRIOR TO THE START OF ANY EXCAVATION. THE REPORT SHALL, AT A MINIMUM, CONTAIN A SIEVE ANALYSIS, MAXIMUM DRY UNIT WEIGHT, AND INTERNAL FRICTION ANGLE. A NEW REPORT SHALL BE SUBMITTED FOR REVIEW AND APPROVAL PRIOR TO THE START OF CONSTRUCTION FOR ANY CHANGE OF QUARRY OR SUPPLIER, OR EVERY SIX MONTHS.

3. GROUNDING SHALL BE INSTALLED PER PROJECT SPECIFICATIONS.

4. SETTING DEPTHS ARE BASED ON SAND AND GRAVEL, PLUS SOME SILT OR CLAY, OR ROCK SOCKET CONDITIONS. CONTACT EVERSOURCE TRANSMISSION LINE ENGINEERING WHERE PEAT, SILT, OR CLAY IS ENCOUNTERED.

5. DIRECT EMBED H-FRAME AND GUYED STRUCTURES CLASS H6 OR LESS SHALL HAVE AN EMBEDMENT DEPTH 10% TOTAL POLE LENGTH + TWO (2) FEET, UNLESS OTHERWISE NOTED ON THE PROJECT DRAWINGS. DIRECT EMBEDDED STEEL MONOPOLES CLASS H9 OR GREATER SHALL HAVE AN EMBEDMENT DEPTH AS SPECIFIED IN OTRM 260, SECTION F.7, TABLE 1.

6. ALL DIRECT EMBED STRUCTURES SHALL BE SET IN STEEL CASINGS UNLESS FULLY SET IN LEDGE (LEDGE WITHIN 3'-0" OF EXISTING GRADE) OR OTHERWISE SPECIFIED BY EVERSOURCE. CORRUGATED STEEL CASINGS SHALL HAVE A MINIMUM WALL THICKNESS OF 12 GAUGE. THE TOP OF STEEL CASINGS SHALL BE SET 0'-6" BELOW THE LOWEST FINISHED GRADE SURROUNDING THE STEEL CASINGS. UNDER NO CIRCUMSTANCES, SHALL STEEL CASINGS BE LEFT WITH EXPOSED EDGES AT THE CONCLUSION OF CONSTRUCTION. SEE DETAIL 1.

7. BACKFILL MATERIAL INSIDE AND OUTSIDE STEEL CASINGS SHALL CONFORM TO SECTION F.8.6 OF OTRM 260 FOR STEEL STRUCTURES AND SECTION 6.F OF OTRM 263 FOR WOOD STRUCTURES. A MINIMUM OF 8" SHALL SURROUND THE POLE FOR THE FULL LENGTH OF EMBEDMENT. BACKFILL MATERIAL SHALL BE MACHINE TAMPED IN 6" TO 8" LIFTS AND COMPACTED TO AN EQUIVALENT OF 95% OF ITS MAXIMUM DRY DENSITY BASED ON PROJECT SPECIFIC BACKFILL REPORT. THERE SHALL BE NO VOIDS BETWEEN STEEL POLES AND STEEL CASINGS.

8. ALL VOIDS BETWEEN STEEL CASINGS AND THE UNDISTURBED SOIL SHALL BE FILLED WITH MINIMUM 1000 PSI FLOWABLE FILL OR PROCESSED TRAP ROCK COMPACTED PER NOTE 7. FLOWABLE FILL SHALL BE PLACED WITH A HOPPER AND TREMIE IN SATURATED/POOR SOIL EXCAVATION. FLOWABLE FILL MAY BE GRAVITY (FREE FALL) PLACED IN DRY SOIL/LEDGE EXCAVATION ON EMBEDMENT DEPTHS NOT EXCEEDING 12 FEET. THE USE OF CONCRETE WITH A 7"-9" SLUMP IS A PERMISSIBLE SUBSTITUTE FOR FLOWABLE FILL PROVIDED IT MAKES GOOD CONTACT WITH IN-SITU SOIL ENSURING NO VOIDS.

9. STEEL CASINGS INSTALLED IN WETLAND LOCATIONS AND POOR SOILS WITH HIGH WATER TABLE SHALL BE DRIVEN, SCREWED, OR VIBRATED. THE EMBEDMENT DEPTH OF THESE STEEL CASINGS SHALL BE A MINIMUM OF 2'-O" DEEPER THAN THE DRY CASING EMBEDMENT DEPTH AND INSTALLED PER DETAIL 4, WITH A CONCRETE AND SOIL PLUG TO ALLOW FOR DE-WATERING DURING STRUCTURE SETTING. CONTRACTOR IS RESPONSIBLE TO MAINTAIN ADEQUATE HYDROSTATIC HEAD PRESSURE TO RESIST INFLOW OF MATERIAL INSIDE CASINGS.

- 9.1. THE CONCRETE PLUG SHALL BE A MINIMUM OF 3000 PSI COMPRESSIVE STRENGTH AND SHALL BE PLACED UNDER WATER USING A TREMIE PIPE. CONCRETE DESIGN APPROVAL IS NOT REQUIRED. MIXING CONCRETE ON SITE MAY BE PERMITTED UPON REVIEW OF MEANS AND METHODS.
 9.2. WHERE PRACTICAL, CORRUGATED OR SMOOTH CASINGS SHALL BE DRIVEN, SCREWED, OR VIBRATED TO THE
- REQUIRED DEPTH THROUGH SATURATED ON SMOOTH CASING'S STALL BE DRIVEN, SCREWED, OR VIBRATED TO THE REQUIRED DEPTH THROUGH SATURATED SOILS. AFTER VIBRATORY INSTALLATION, THE CONTRACTOR SHALL NOT PERFORM EXCAVATION ACTIVITIES UNTIL 24 HOURS AFTER STEEL CASINGS INSTALLATION COMPLETION. THE NATIVE SOILS SHALL THEN BE EXCAVATED LEAVING A 12 INCH SOIL PLUG. A MINIMUM 12 INCH CONCRETE PLUG SHALL BE POURED ON TOP OF THE NATIVE SOIL.
- 9.3. WHERE STEEL CASINGS CANNOT BE INSTALLED THROUGH SATURATED SOILS AS DESCRIBED IN 9.2, SMOOTH WALL TEMPORARY CASINGS MAY BE USED. THE EMBEDMENT DEPTH OF TEMPORARY CASINGS SHALL BE 2'-O" DEEPER THAN THE DRY EMBEDMENT DEPTH AND INSTALLED PER "SATURATED SOIL TEMPORARY CASING DETAIL" WITH A 3 FOOT UNIFORMLY GRADED 3/4" TRAP ROCK PLUG. THE ANNULUS BETWEEN TEMPORARY CASINGS AND STEEL CASINGS SHALL BE FILLED WITH FLOWABLE FILL AND THEN FOLLOWED BY TEMPORARY CASING REMOVAL. NO VOIDS SHALL REMAIN BETWEEN THE STEEL CASING AND THE ORIGINAL UNDISTURBED SOIL. FLOWABLE FILL SHALL BE PLACED WITH A HOPPER AND TREMIE. GRAVITY (FREE FALL) PLACEMENT WILL NOT BE ALLOWED.
- 9.4. CASINGS OF STRUCTURES SET IN LEDGE WITH HIGH WATER TABLES SHALL BE SEATED INTO THE ROCK SOCKET CREATING A SEAL. UNIFORMLY GRADED 3/4" TRAP ROCK AND/OR CONCRETE PLUG IS NOT REQUIRED TO ALLOW DE-WATERING IN THE INSTANCE.
- 9.5. FOR INSTALLATIONS, WHERE STANDING WATER IS ABOVE EXISTING GRADE, USE DETAIL 6. WHERE EXTRA FILL IS NOT PERMITTED DUE TO PERMITTING CONSTRAINTS, THE CONTRACTOR SHALL INSTALL TEMPORARY CASINGS, FORM, OR OTHER TEMPORARY DAM TO ALLOW FOR DE-WATERING. UNDER NO CIRCUMSTANCES SHALL STEEL CASINGS BE LEFT WITH EXPOSED EDGES AT THE CONCLUSION OF CONSTRUCTION. SEE DETAIL 1. CONTACT TRANSMISSION LINE ENGINEERING FOR STANDING WATER DEPTHS GREATER THAN 2 FEET ABOVE GRADE.

10. ALL INSTALLED STEEL CASINGS NOT BEING WORKED ON SHALL BE COVERED AT ALL LOCATIONS. STEEL CASING COVERS SHALL BE SECURED SO THEY CANNOT BE MOVED BY THE GENERAL PUBLIC.

11. UNLESS OTHERWISE SPECIFIED, SPREAD EXCESS EXCAVATION MATERIAL EVENLY AROUND THE POLE TO MATCH THE PRE-EXISTING CONTOUR OF THE SITE. FILL SHALL NOT BE OVER THE TOP OF THE SACRIFICIAL SLEEVE, EPOXY COATING, OR ABOVE THE GROUNDING NUT. THE BOTTOM BAIL CLIP (STEP RUNG) SHALL NOT BE CLOSER THAN 12 FEET FROM FINISHED GRADE.

12. THE ELECTRICAL CONTRACTOR SHALL FOLLOW OTRM 250, 260, 262, AND 263, AS APPLICABLE, FOR POLE SETTING AND FRAMING.

13. PRICING FOR STEEL CASINGS INSTALLATION SHALL BE AS INDICATED IN CONTRACT SPECIFICATIONS.

14. ANY DEVIATIONS FROM THIS DRAWING MUST BE APPROVED BY EVERSOURCE TRANSMISSION LINE ENGINEERING.

15. SPLICING OF STEEL CASINGS IS PERMITTED WHEN ORIGINAL SPECIFIED CAN LENGTH IS FOUND TO BE INADEQUATE FOR SITE SOIL AND WATER CONDITIONS. SEE DETAIL 7.

16. CORRUGATED METAL PIPE (CMP), OR SMOOTH WALL STEEL CASINGS MAY BE USED INTERCHANGEABLY.

17. A) THE MINIMUM STEEL CASING DIAMETER SHALL BE 20" LARGER THAN THE MAXIMUM POLE BASE

PLATE DIAMETER UNLESS OTHERWISE SPECIFIED BY THE EVERSOURCE PROJECT ENGINEER. B) THE STEEL CASING SHALL BE SET RELATIVE TO THE POLE CENTER AND THE MINIMUM CLEARANCE

B) THE STEEL CASING SHALL BE SET RELATIVE TO THE POLE CENTER AND THE MINIMUM CLEARANCE BETWEEN THE POLE AND STEEL CASINGS SHALL BE NO LESS THAN 8".

18. THE POLE BASE SHALL BEAR ON EITHER LEVEL 3/4" TRAP ROCK BEDDING OR A LEVEL PLAIN ROCK SURFACE WITH IT'S FULL BASE CONTACT AREA. SETTING THE POLE BASE PARTIALLY ON ROCK AND PARTIALLY ON TRAP ROCK IS NOT PERMITTED.

FINISH GRADING REQUIREMENTS **EVERS©URCE** ENERGY **TRANSMISSION STANDARDS** DIRECT EMBED CASING FOUNDATION CONSTRUCTION DETAILS REVISED DIMENSION PAD MS SAM DETAIL 6 UPDATED AS PER OTRM 260 MS EQ PAD | MS | SAM | EQ 04/17/19 04/17/19 04/17/19 REVISED/ADDED NOTES D BOOK & PAGES PAD | MS | ARCH D N.T.S. -scale MODIFIED HATCH TO DISTINGUISH BETWEEN N.T.S. PAD MS PROCESSED TRAP ROCK AND TRAP ROCK PROJ. NUMBER 09000-60015p001 AS BUILT REVISIONS BY CHK APP APP

dbSpectra

VHF Omni Antennas (160-222 MHz)

			1	60-17	4 MH	z		217-222 MHz										
	Model Number	DS1G03F36U-N	DS1G03F36U-D	DS1G06F36U-N	DS1G06F36U-D	DS1G03F36D-N	DS1G03F36D-D	DS2C00F36U-N	DS2C00F36U-D	DS2C03F36U-N	DS2C03F36U-D	DS2C06F36U-N	DS2C06F36U-D	DS2C00F36D-N	DS2C00F36D-D	DS2C03F36D-N	DS2C03F36D-D	
	Input Connector	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	
	Туре	Sing	gle	Sin	gle	Dı	ıal	Sir	gle	Sin	gle	Sin	gle	Dı	ual	Du	ıal	
	Bandwidth, MHz	14	Ļ	1	4	1	4	4	5	ţ	5	ţ	5	!	5	5	5	
_	Power, Watts	50	0	50	00	35	50	5	00	50	00	50	00	3	50	35	50	
	Gain , dBd	3		6	6	3	3	0		3		6	3	(C	3	3	
CTR	Horizontal Beamwidth, degrees	36	360		60	360		3	60	36	60	360		30	60	36	60	DGAG
ĒLĒ	Vertical Beamwidth, degrees	30		16		30		6	0	30		16		6	0	3	0	DS2C
	Beam Tilt, degrees	0		0		0)	0		0		(C	()	
	Isolation (minimum), dB	N//	Ą	N	/A	3	0	N	/A	N	/A	N/A		30		3	0	
	Number of Connectors	1		1	1	2	2		1		1		1	2	2	2	2	
CAL	Flat Plate Area, ft ² (m ²)	2.53 (0	0.24)	4.38 ((0.41)	4.5 (0.42)	1.9 (0.18)	1.9 (0.18)	2.58	(0.24)	2.4 (0.22)	4.1 ((0.38)	
ANK	Lateral Windload Thrust, lbf(N)	95 (4	23)	164 ((730)	169 (752)	53 (236)	69 (307)	108	(480)	90 (400)	169 (752)	
MECH,	Survival Wind Speed without ice, mph(kph) with 0.5" radial ice, mph(kph)	110 (1 93 (1	177) 50)	75 (⁻ 60 (121) (97)	75 (65 (121) 105)	222 193	(357) (311)	172 150	(277) (241)	110 (96 ((177) 154)	130 115	(209) (185)	75 (* 65 (*	121) 105)	
	Mounting Hardware included	DSH3	V3R	DSH	3V3N	DSH	3V3N	DSH	2V3R	DSH:	2V3R	DSH:	3V3N	DSH	3V3R	DSH	3V3N	
<u>က</u>	Length, ft(m)	12.7 (3.9)	21.9	(6.7)	22.3	(6.8)	7.7	(2.3)	9.9	(3)	18.1	(5.5)	13.6	(4.1)	24.3	(7.4)	
<u>N</u>	Radome O.D., in(cm)	3 (7	.6)	3 (7	7.6)	3 (7	7.6)	3 (7.6)	3 (7	7.6)	3 (7	7.6)	3 (1	7.6)	3 (7	' .6)	
	Mast O.D., in(cm)	2.5 (6	6.4)	2.5 ((6.4)	2.5 (6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5 (6.4)	
M	Net Weight w/o bracket, lb(kg)	37 (1	6.8)	60 (2	27.2)	63 (2	28.6)	19 (8.6)	26 (*	11.8)	47 (2	21.3)	40 (*	18.1)	70 (3	81.8)	
	Shipping Weight, lb(kg)	67 (3	0.4)	90 (4	40.8)	93 (4	2.2)	39 (17.7)	56 (2	25.4)	77 (3	34.9)	70 (3	31.8)	100 (45.4)	

Тор

DS2C03F36D-D

Bottom

Тор

Bottom

Тор

Bottom

TOWER/MAST SIZE AT PROPOSED ANTENNA ATTACHMENT = 8.5"± DIAMETER FOR UPPER LEVEL AND 10"± DIAMETER FOR LOWER LEVEL. PROPOSED CHAIN MOUNT FITS POLYGON OR ROUND POLES 5"-36" IN DIAMETER. NOTE: (1) 4" (4.5" OD) SCH 40 x 6'-0" AND (3) 2" (2.375" OD) SCH 40 x 6'-0" MOUNT PIPES ARE REQUIRED.

			TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	CRIPTIO 2'- TAF	0" STAND-OFF, TRIP PER ADJUSTABLE CH SITE PRO 1	LE SECTOR, IAIN MOUNT,	SITE I	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX				
•			RCH	3/09/2010	ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO. DRAWN BY RH18 3/9/2010 ENG. APPROVAL			ENG. APPROVAL	PART NO.	CHM3-L	-	ר ב ר
REV	DESCRIPTION OF REVISIONS REVISION HISTORY	CPD	BY	DATE	PROPERTARY NOTE: THE DATA MAN TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROVINETD.	CLASS SUB DRAWING USAGE CH 81 01 CUSTOMER BI		DRAWING USAGE CUSTOMER	снескер ву ВМС 3/15/2010	DWG. NO.	CHM3-L	۳ ۲	1 6

MOUNT-PIPE-TO-ANTENNA CLAMPS (TOTAL OF 5 KITS REQUIRED). SPACE CLAMPS PER ANTENNA MANUFACTURER'S RECOMMENDATIONS.

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	8	X-UPC1	SMALL PIPE TO PIPE BRACKET		0.85	6.79
2	4	G12R-20	1/2" x 20" THREADED ROD (HDG.)	20 in	3.23	12.91
3	16	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	1.14
4	16	G12LW	1/2" HDG LOCKWASHER		0.01	0.22
5	16	G12FW	1/2" HDG USS FLATWASHER		0.03	0.54
		•	•		TOTAL WT #	13 45

			TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREF			UNIVERSAL PIPE-TO-PIPE CLAMP SET FOR SMALL PIPES (1-1/4" TO 4-1/2")			A valmont V COMENT		Locations: New York, NY jineering Atlanta, GA 3ort Team: Los Angeles, CA 3-753-7446 Plymouth, IN Salem, OR Dallas, TX			
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD N 44	o. 48	DRAWN BY CEK 3/13/2009	ENG. APPROVAL	PA	RT NO.	PC1		-
Α	REDRAWN IN INV, UPDATED VIEWS & TABLE		KC8	8/20/2012			SUP		CHECKED BY	DW				무경
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF	81	01	CUSTOMER	CEK 2/18/2013	011	U	PC1		

TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.030") DRILED AND GAS CUT HOLES (# 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (# 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESCRI	2'-0" STANDOFF, 2'-0" STANDOFF, TAPER ADJUSTAB SITE F	BINGLE SECTOR, E CHAIN MOUNT, RO 1		STTE 1	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO.	RH18 3/12/2	ENG. APPROVAL	PA	ART NO. TCH	IM1-L		-1 ₽ 0 ₽
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT MOUSTHES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRES IS STRUCTLY PROHIBITED.	CLASS S	UB DRAWING USAGE	снескед ву ВМС 3/15/2010	DV	NG. NO. TCH	IM1-L		F GE 1

Model: 24RCL

Multi-Fuel Natural Gas/LPG

9001 KOHLER

The Kohler® Advantage

High Quality Power

Kohler home generators provide advanced voltage and frequency regulation along with ultra-low levels of harmonic distortion for excellent generator power quality to protect your valuable electronics.

• Extraordinary Reliability

Kohler is known for extraordinary reliability and performance and backs that up with a premium five-year or 2000 hour limited warranty.

• All-Aluminum Sound Enclosure

Quiet Operation

Kohler home generators provide quiet, neighborhoodfriendly performance.

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The generator set accepts rated load in one step.
- A standard five-year or 2000 hour limited warranty covers all systems and components.
- Quick-ship (QS) models with selected features are available. See your Kohler distributor for details.
- Meets 291 kph (181 mph) wind load rating.
- RDC2 Controller
 - One digital controller manages both the generator set and transfer switch functions (with optional Model RXT transfer switch).
 - Designed for today's most sophisticated electronics.
 - Electronic speed control responds quickly to varying household demand.
 - Digital voltage regulation protects your valuable electronics from harmonic distortion and unstable power quality.
 - Two-line, backlit LCD screen is easy to read in all lighting conditions, including direct sunlight and low light.
- Engine Features
 - Powerful and reliable 2.2 L liquid-cooled engine
 - Electronic engine management system.
 - Simple field conversion between natural gas and LPG fuels while maintaining emission certification.
- Innovative Cooling System
 - Electronically controlled fan speeds minimize generator set sound signature.
- Certifications
 - The 60 Hz generator set engine is certified by the Environmental Protection Agency (EPA) to conform to the New Source Performance Standard (NSPS) for stationary spark-ignited emissions.
 - $\circ~$ UL 2200/cUL listing is available (60 Hz only).
 - CSA certification is available (60 Hz only).
 - Accepted by the Massachusetts Board of Registration of Plumbers and Gas Fitters.
- Approved for stationary standby applications in locations served by a reliable utility source.

Generator Set Ratings

					Standby	/ Ratings	
				Natura	al Gas	LP	G
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	kW/kVA	Amps
4E5.0	120/240	1	60	21/21	87	24/24	100
	120/208	3	60	21/26	73	23/28	80
	127/220	3	60	21/26	69	23/28	75
	120/240	3	60	21/26	63	23/28	69
4D5.0	277/480	3	60	21/26	32	23/28	35
-	220/380*	3	50	16/20	30	17/22	33
	230/400	3	50	16/21	30	18/23	33
	240/416*	3	50	16/21	29	18/23	32

* 50 Hz models are factory-connected as 230/400 volts. Field-adjustable to 220/380 or 240/416 volts by an authorized service technician.

RATINGS: All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor. Due to manufacturing variations, the ratings tolerance is ±5%. Standby Ratings: Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads with an average load factor of 80% for the duration of a power outage. No overload capacity is specified for this rating. Ratings are in accordance with ISO-3046/1, BS 5514, AS 2789, and DIN 6271. GENERAL GUIDELINES FOR DERATING: *Altitude*: Derate 1.3% per 10° (18°F) temperature above 25°C (77°F). Availability is subject to change without notice. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler generator distributor for availability.

Alternator Specifications

ManufacturerKohlerType4-Pole, Rotating FieldExciter typeBrushless, Wound-FieldLeads: quantity, type4E5.04E5.04, 120/2404D5.012, ReconnectableVoltage regulatorSolid State, Volts/HzInsulation:NEMA MG1MaterialClass HTemperature rise130°C, StandbyBearing: quantity, type1, SealedCouplingFlexible DiscVoltage regulation, no-load to full-load±1.0% MaximumUnbalanced load capability100% of Rated StandbyOne-step load acceptance100% of RatingBoak motor starting k/A:(36%) din for yottages bolow)	Specifications	Alternator				
Type4-Pole, Rotating FieldExciter typeBrushless, Wound-FieldLeads: quantity, type4E5.04D5.012, ReconnectableVoltage regulatorSolid State, Volts/HzInsulation:NEMA MG1MaterialClass HTemperature rise130°C, StandbyBearing: quantity, type1, SealedCouplingFlexible DiscVoltage regulation, no-load to full-load±1.0% MaximumUnbalanced load capability100% of Rated StandbyOne-step load acceptance100% of RatingBoak motor starting k/A:(35%) din for yottages bolow)	Manufacturer	Kohler				
Exciter typeBrushless, Wound-FieldLeads: quantity, type4, 120/2404D5.04, 120/2404D5.012, ReconnectableVoltage regulatorSolid State, Volts/HzInsulation:NEMA MG1MaterialClass HTemperature rise130°C, StandbyBearing: quantity, type1, SealedCouplingFlexible DiscVoltage regulation, no-load to full-load±1.0% MaximumUnbalanced load capability100% of Rated StandbyOne-step load acceptance100% of RatingBoak motor starting k/A:(35%) din for yottages bolow)	Туре	4-Pole, Rotating Field				
Leads: quantity, type 4E5.0 4, 120/240 4D5.0 12, Reconnectable Voltage regulator Solid State, Volts/Hz Insulation: NEMA MG1 Material Class H Temperature rise 130°C, Standby Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby Current 00% of Rating Beak motor stating k/A: (35%) din for yottages balage)	Exciter type	Brushless, Wound-Field				
4E5.0 4, 120/240 4D5.0 12, Reconnectable Voltage regulator Solid State, Volts/Hz Insulation: NEMA MG1 Material Class H Temperature rise 130°C, Standby Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Boak motor stating k/A: (35%) din for voltages bolow)	Leads: quantity, type					
4D5.0 12, Reconnectable Voltage regulator Solid State, Volts/Hz Insulation: NEMA MG1 Material Class H Temperature rise 130°C, Standby Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Boak motor stating k/A: (35%) din for voltages bolow)	4E5.0	4, 120/240				
Voltage regulator Solid State, Volts/Hz Insulation: NEMA MG1 Material Class H Temperature rise 130°C, Standby Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Boak meter stating k/A: (35% din for voltages bolow)	4D5.0	12, Reconnectable				
Insulation: NEMA MG1 Material Class H Temperature rise 130°C, Standby Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Beak meter starting k/A: (35% din for uptraces below)	Voltage regulator	Solid State, Volts/Hz				
Material Class H Temperature rise 130°C, Standby Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Beak meter starting kVA: (35% din for voltages bolow)	Insulation:	NEMA MG1				
Temperature rise 130°C, Standby Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Beak meter starting kVA: (35%) dip for yotrages bolow)	Material	Class H				
Bearing: quantity, type 1, Sealed Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Beak meter starting k/A: (35% din for voltages below)	Temperature rise	130°C, Standby				
Coupling Flexible Disc Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Peak meter starting k/A: (35% dip for voltages below)	Bearing: quantity, type	1, Sealed				
Voltage regulation, no-load to full-load ±1.0% Maximum Unbalanced load capability 100% of Rated Standby One-step load acceptance 100% of Rating Poals motor starting k/A: (35% dip for voltages bolow)	Coupling	Flexible Disc				
Unbalanced load capability 100% of Rated Standby Current One-step load acceptance 100% of Rating Poak motor starting k/A: (35% dip for voltages below)	Voltage regulation, no-load to full-load	±1.0% Maximum				
One-step load acceptance 100% of Rating	Unbalanced load capability	100% of Rated Standby				
One-step load acceptance 100% of Rating		Current				
Poak motor starting k/Λ : (35% dip for voltages below)	One-step load acceptance	100% of Rating				
(35% up to voltages below)	Peak motor starting kVA:	(35% dip for voltages below)				
240 V 4E5.0 (4 lead) 37 (60 Hz)	240 V 4E5.0 (4 lead)	37 (60 Hz)				
480 V, 400 V 4D5.0 (12 lead) 59 (60 Hz) 44 (50 Hz)	480 V, 400 V 4D5.0 (12 lead)	59 (60 Hz) 44 (50 Hz)				

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and drip-proof construction.
- Windings are vacuum-impregnated with epoxy varnish for dependability and long life.
- Superior voltage waveform from a two-thirds pitch stator and skewed rotor.
- Total harmonic distortion (THD) from no load to full load with a linear load is less than 5%.

Application Data

Exhaust

3								
Engine Specifications	60 Hz	50 Hz	Exhaust System	60 Hz	50 Hz			
Manufacturer	Ko	nler	Exhaust manifold type	Γ	Dry			
Engine: model, type	Residential	Powertrain	Exhaust temperature at rated kW, dry					
	KG2204, 2.	2 L, 4-Cycle	exhaust, °C (°F)	633	(1171)			
	Natural A	spiration	Maximum allowable back pressure,					
Cylinder arrangement	In-li	ne 4	kPa (in. Hg)	7.5	(2.2)			
Displacement, L (cu. in.)	2.2 (1	34.25)	Freed					
Bore and stroke, mm (in.)	91 x 86 (3.5 x 3.4)	Fuel					
Compression ratio	10.	5:1	Fuel System					
Piston speed, m/min. (ft./min.)	310 (1016)	258 (847)	Fueltype	Natural G	as or LPG			
Main bearings: quantity, type	5, plain a	lloy steel	Fuel supply line inlet	1 in	NDT			
Rated rpm	1800	1500	Natural gas fuel supply pressure kPa		~0.18 psi			
Max. power at rated rpm, kW (HP)	()		(in H ₀ O)	1 24-2	74 (5-11)			
LPG	30 (40)	NA	I PG vapor withdrawal fuel supply	1.24-2.	0.4 psi			
Natural Gas	27 (36)	. NA	pressure, kPa (in, H_2O)	1 24-2	74 (5-11)			
Cylinder head material	Cast	Iron		1.24 2.				
Piston type and material	High Silicoi	n Aluminum	Fuel Composition Limits *	Nat. Gas	LP Gas			
Crankshaft material	Nodul	ar Iron	Methane, % by volume	90 min.	—			
Valve (exhaust) material	Forge	d Steel	Ethane, % by volume	4.0 max.	—			
Governor type	Elect	ronic	Propane, % by volume	1.0 max.	85 min.			
Frequency regulation, no-load to			Propene, % by volume	0.1 max.	5.0 max.			
full-load	Isochr	onous	C ₄ and higher, % by volume	0.3 max.	2.5 max.			
Frequency regulation, steady state	±1.	0%	Sulfur, ppm mass	25	max.			
Frequency	Fix	ed	Lower heating value,					
Air cleaner type	D	ry	MJ/m ³ (Btu/ft ³), min.	33.2 (890)	84.2 (2260)			
Engine Electrical			 Fuels with other compositions may be a outside the listed specifications, contact 	acceptable. If y t vour local dis	our fuel is tributor for			

Engine Electrical System

Ignition system	Electronic
Battery charging alternator:	
Ground (negative/positive)	Negative
Volts (DC)	14
Ampere rating	90
Starter motor rated voltage (DC)	12
Battery, recommended rating for -18°C (0°F):	
Qty., cold cranking amps (CCA)	One, 630
Battery voltage (DC)	12
Battery group size	24

Lubrication

further analysis and advice.

Lubricating System	
Туре	Full Pressure
Oil pan capacity, L (qt.)	4.2 (4.4)
Oil added during oil change (on average),	
L (qt.)	3.3 (3.5)
Oil filter: quantity, type	1, Cartridge

Application Data

Cooling

Radiator System	60 Hz	50 Hz
Ambient temperature, °C (°F)	45 (11	3)
Engine jacket water capacity, L (gal.)	2.65 (0	.7)
Radiator system capacity, including		
engine, L (gal.)	13.2 (3	.5)
Water pump type	Centrifu	ıgal
Fan diameter, mm (in.)	qty. 3 @ 40	06 (16)
Fan power requirements (powered by		
engine battery charging alternator)	12VDC, 18 ar	mps each

Operation Requirements

Air Requirements	60 Hz	50 Hz
Radiator-cooled cooling air,		
m ³ /min. (scfm)†	51 (1800)	51 (1800)
Combustion air, m ³ /min. (cfm)	1.4 (49)	1.2 (42)
Air over engine, m ³ /min. (cfm)	25 (900)	25 (900)
\ddagger Air density = 1.20 kg/m ³ (0.075 lbm/ft ³)		

Fuel Consumption [‡]						
Natural Gas, m ³ /hr. (cfh) at %	oad 60	Hz	50 Hz			
100%	8.5	(301)	7.8	(275)		
75%	6.3	(223)	6.4	(225)		
50%	5.6	(199)	5.4	(192)		
25%	4.0	(140)	3.3	(116)		
Exercise	2.8	(97)	2.9	(103)		
LP Gas, m ³ /hr. (cfh) at % load	60	Hz	50 Hz			
100%	3.2	(113)	2.7	(96)		
75%	2.8	(97)	2.3	(81)		
50%	2.4	(84)	2.0	(72)		
25%	1.8	(63)	1.7	(60)		
Exercise	1.4	(51)	1.4	(48)		
Nominal Fuel Rating: Natural gas, 37 MJ/m ³ (1000 Btu/ft ³)						

LP vapor conversion factors:

8.58 ft.³ = 1 lb. 0.535 m³ = 1 kg. 36.39 ft.³ = 1 gal.

Sound Enclosure Features

- Sound-attenuating enclosure uses acoustic insulation that meets UL 94 HF1 flammability classification and repels moisture absorption.
- Internally mounted critical silencer.
- Skid-mounted, aluminum construction with two removable access panels.
- Fade-, scratch-, and corrosion-resistant Kohler® cashmere powder-baked finish.

Sound Data

Model 24RCL 8 point logarithmic average sound levels are 54 dB(A) during weekly engine exercise and 61 dB(A) during full-speed generator diagnostics and normal operation. For comparison to competitor ratings, the lowest point sound levels are 52 dB(A) and 60 dB(A) respectively.*

All sound levels are measured at 7 meters with no load.

 Lowest of 8 points measured around the generator. Sound levels at other points around generator may vary depending on installation parameters.

RDC2 Controller

The RDC2 controller provides integrated control for the generator set, Kohler[®] Model RXT transfer switch, programmable interface module (PIM), and load management.

The RDC2 controller's 2-line LCD screen displays status messages and system settings that are clear and easy to read, even in direct sunlight or low light.

RDC2 Controller Features

- Membrane keypad
 - $\circ~$ OFF, AUTO, and RUN push buttons
 - Select and arrow buttons for access to system configuration and adjustment menus
- LED indicators for OFF, AUTO, and RUN modes
- LED indicators for utility power and generator set source availability and ATS position (Model RXT transfer switch required)
- LCD screen
 - Two lines x 16 characters per line
 - Backlit display with adjustable contrast for excellent visibility in all lighting conditions
- Scrolling system status display
- Generator set status
- Voltage and frequency
- Engine temperature
- Oil pressure
- o Battery voltage
- Engine runtime hours
- Date and time displays
- Smart engine cooldown senses engine temperature
- Digital isochronous governor to maintain steady-state speed at all loads
- Digital voltage regulation: ±1.0% RMS no-load to full-load
- Automatic start with programmed cranking cycle
- Programmable exerciser can be set to start automatically on any future day and time, and to run every week or every two weeks
- Exercise modes
 - $\circ~$ Unloaded exercise with complete system diagnostics
 - Unloaded full-speed exercise
 - Loaded full-speed exercise (Model RXT ATS required)
- Front-access mini USB connector for SiteTech[™] connection
- Integral Ethernet connector for Kohler[®] OnCue[®] Plus
- Built-in 2.5 amp battery charger
- Remote two-wire start/stop capability for optional connection of a Model RDT transfer switch

See additional controller features on the next page.

Additional RDC2 Controller Features

- Diagnostic messages
 - Displays diagnostic messages for the engine, generator, Model RXT transfer switch, programmable interface module (PIM), and load management device
 - Over 70 diagnostic messages can be displayed
- Maintenance reminders
- System settings
 - System voltage, frequency, and phase
 - Voltage adjustment
 - Measurement system, English or metric
- ATS status (Model RXT ATS required)
 - Source availability
 - ATS position (normal/utility or emergency/generator)
 - Source voltage and frequency
- ATS control (Model RXT ATS required)
 - Source voltage and frequency settings
 - Engine start time delay
 Transfer time delays
 - Transfer time delaysFixed pickup and dropout settings
 - Voltage calibration
- Programmable interface module (PIM) status displays
 Input status (active/inactive)
 - Output status (active/inactive)
- Load control menus
 - Load status
 - Test function

Generator Set Standard Features

- · Aluminum sound enclosure with enclosed silencer
- Battery rack and cables
- Electronic, isochronous governor
- Flexible fuel line
- Gas fuel system (includes fuel mixer, electronic secondary gas regulator, two gas solenoid valves, and flexible fuel line between the engine and the skid-mounted fuel system components)
- Integral vibration isolation
- Line circuit breaker
- Oil drain extension
- OnCue® Plus Generator Management System
- Operation and installation literature
- RDC2 controller with built-in battery charger
- Standard five-year or 2000 hour limited warranty

Available Options

Approvals and Listings

- UL 2200/cUL Listing (60 Hz only)
- CSA Approval (60 Hz only)

Controller Accessories

- Lockable Emergency Stop (lockout/tagout)
- Programmable Interface Module (PIM) (provides 2 digital inputs and 6 relay outputs)

Electrical System

- Battery
- Battery Heater

Available Options, Continued

Starting Aids

- Oil Pan Heater, 120 V, 1 Ph
- Oil Pan Heater, 240 V, 1 Ph

Recommended for ambient temperatures below 0°C (32°F).

Automatic Transfer Switches and Accessories

- Model RDT Automatic Transfer Switch
- Model RXT Automatic Transfer Switch
- Model RXT Automatic Transfer Switch with Combined Interface/Load Management Board
- Load Shed Kit for RDT or RXT
- Power Relay Modules (use up to 4 relay modules for each load management device)

Miscellaneous

Rated Power Factor Testing

Literature

- General Maintenance Literature Kit
- Overhaul Literature Kit
- Production Literature Kit

Warranty

Extended 5-Year/2000 Hour Comprehensive Limited Warranty

Other Options

Dimensions and Weights

Overall Size, L x W x H, mm (in.):

1880 x 836 x 1169 (74 x 32.9 x 46.0) 572 (1260)

Shipping Weight, wet, kg (lb.):

Weight includes generator set with engine fluids, sound enclosure, silencer, and packaging.

NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

DISTRIBUTED BY:

G4-228 (24RCL) 7/18c

OR REVISION LEVEL	BY	UNLESS OTHERWISE SPEC	IFIED - Will INFTERS	KOHI		METRIC	PRO)-E
	DRA	2) TOLERANCES ARE:	ATEL THE TERS			WI 53044		
3, (C-7) 421]	DRA	X.XX ± 0.25 X.X ± 1.0 X ± 1.5 SUR ANGLES ± 0° 30′	FACE FINISH	THIS DRAW PROPERTY /	ING IN DESIGN	AND DETAIL IS E USED EXCEPT	KOHLEF	R CO.
ENT, PITCHED	BGP		✓ MAX.	DESIGN OR	INVENTION ARE	RESERVED.	NTOHT.	3 OF
		PROJECTION	$-\Box$	TITLE			_	
	HM	APPROVALS	DATE		DIMENSIC	IN PRINT		
		DRAWN DRA IO) - 3 - 3	SCALE O 12	CAD NO.		SHEET	. ()
		CHECKED GFR 10) - 3 - 3	DWG NO.			<u> </u>	01 2
		APPROVED JJR I () - 3 - 3		ADV-8	641		D
		_						

Attachment B Structural Analysis Date: March 26, 2021

Black & Veatch Corp. 6800 W. 115th St., Suite 2292 Overland Park, KS 66211 (913) 458-2522

Subject:	Structural Analysis Report					
Eversource Designation:	Site Number: Site Name:	ES-106 Branford11J				
Engineering Firm Designation:	Black & Veatch Corp. Project Number:	405025				
Site Data:	272 East Main St, Branford, New Haven County, CT 0640 Latitude: 41° 17' 33.11", Longitude: -72° 47' 40.68" 50 Foot – Proposed Monopole Tower					

Black & Veatch Corp. is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Proposed Equipment Configuration

Sufficient Capacity – 53.2%

This analysis utilizes an ultimate 3-second gust wind speed of 140 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Joshua Riley / Chris Giannotti

Respectfully submitted by:

Joshua Riley, P.E. Professional Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary) Table 4 - Tower Component Stresses vs. Capacity - LC1 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a proposed 50 ft Monopole tower manufactured by Sabre-FWT.

2) ANALYSIS CRITERIA

TIA-222-H
III
140 mph ultimate
С
1
1.5 in
50 mph
0.179
0.061
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note							
	60.0	1	dbspectra	DS2C03F36D-D										
47.0	47.0	1	site pro 1	2' Stand-off Triple Sector Chain Mount (P/N: TCHM3-L)		7/8								
		1	generic	Mount Pipe 4" Sch 40 (4.5 OD) x 6'-0"	2		-							
									2	generic	Mount Pipe 2" Sch 40 (2.4 OD) x 6'-0"			
		3	site pro 1	Universal Clamp Set (P/N: UPC1)										
36.0			1	site pro 1	2' Stand-off Single Sector Chain Mount (P/N: TCHM1-L)									
	36.0	1	generic	Mount Pipe 2" Sch 40 (2.4 OD) x 6'-0"	-	-	-							
		1	site pro 1	Universal Clamp Set (P/N: UPC1)										

Table 2 – Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
47.0	55.0	1	kreco CO-41A		2	7/9	
47.0	53.0	1	generic	8.5' x 2.5" Dia. Omni	2	1/0	1
36.0	41.0	1	generic	8.5' x 2.5" Dia. Omni	1	7/8	

Notes: 1)

Existing Equipment Relocated From Existing Wood Pole To Proposed Steel Pole

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
TOWER MANUFACTURER DRAWINGS	Sabre-FWT Erection Drawing 70' H9-LD2 WPE's	-	Eversource
GEOTECHNICAL REPORT	Clarence Welti Assoc., Inc. Dated 3/11/2016	-	Eversource
OTRM 260	Processed Trap Rock Minimum Geotechnical Values	-	Eversource
09000-60015p001	Standard Direct Embed Foundation Details	-	Eversource

3.1) Analysis Method

tnxTower (version 8.0.7.4), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures to be installed and maintained in accordance with the manufacturer's specifications.
- 2) Tower is in plumb condition.
- 3) All coax cables routed as specified in Appendix B of this report.
- 4) All members are assumed to be as specified in the original tower design documents.
- 5) All member protective coatings are in good condition.
- 6) All tower members were properly design, fabricated, installed and have been properly maintained since erection.
- 7) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 8) Soil parameters provided by Eversource. Black & Veatch does not assume any responsibility for its accuracy.

This analysis may be affected if any assumptions are not valid or have been made in error. Black & Veatch Corp. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	50 - 9.5	Pole	TP21.559x10.304x0.25	1	-2.68	964.23	19.5	Pass
L2	9.5 - 0	Pole	TP23.02x20.2253x0.25	2	-3.81	1072.30	25.6	Pass
							Summary	
						Pole (L2)	25.6	Pass
						Rating =	25.6	Pass

Table 4 -	Tower	Compo	nont S	Strassas	ve	Canacif	w - I C	21
	IOWEI	Compo	Henr .	JII 63363	vэ.	Capaci	.у - ш	

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Base Foundation Soil Interaction	0	53.2	Pass
	Base Foundation	-	27.3	Pass

Structure Rating (max from all components) =	53.2%
--	-------

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The proposed tower must conform to the following specifications:

- Pole Type: Sabre-FWT 70' H9
- Embedment Depth: 13 ft
- Foundation: 3.0-4.0 ft Diameter Processed Trap Rock meeting OTRM 260 minimums (design meets SUB 090 8.A.2 requirements). A steel casing shall be used.

After proper installation, the tower and its foundation will have sufficient capacity to carry the proposed load configuration.

Maximum Tower Deflections - Service Wind

1-Iu/III/u/III	Manimum Fower Deneedons Service Wind							
Section	Elevation	Horz.	Gov.	Tilt	Twist	Check*		
No.		Deflection	Load					
	ft	in	Comb.	0	0			
L1	50 - 9.5	1.296	50	0.2186	0.0022	ОК		
L2	12.5 - 0	0.093	50	0.0633	0.0003	OK		

*Limit State Deformation (TIA-222-H Section 2.8.2)

1) Maximum Rotation = 4 Degrees

2) Maximum Deflection = 0.03 * Tower Height = 18 in.

Maximum Tower Deflections - Design Wind

Maximum	Tower Dene	ctions Des	ign wint	1			
Section	Elevation	Horz.	Gov.	Tilt	Twist	Combined	Check*
No.		Deflection	Load			Max	
	ft	in	Comb.	0	0		
L1	50 - 9.5	4.227	50	0.7094	0.0072	0.709	OK**
L2	12.5 - 0	0.304	50	0.2074	0.0011	0.207	OK

*Up to 0.5 degree is considered acceptable per SUB090 Section 7 ** Deflection approved by Eversource Energy

APPENDIX A

TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Side Arm Mount [SO 203-3]	47	2.5" Dia 8.5' Omni	47
DS2C03F36D-D	47	Side Arm Mount [SO 203-1]	36
CO-41A	47	2.5" Dia 8.5' Omni	36

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 140 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Risk Category III.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 25.6%

ALL REACTIONS ARE FACTORED AXIAL 7 K SHEAŔ MOMENT 1 K { 35 kip-ft

REACTIONS - 140 mph WIND

Job: Dronford 1 Black & Veatch Corp. BLACK & VEATCH Building a world of difference.⁶ 6800 W. 115th St., Suite 2292 Overland Park KS 66211 Overland Park, KS 66211 Phone: (913) 458-2984

FAX: (913) 458-8136

[™] Branford11J		
^{troject:} 405025		
lient: Eversource	^{Drawn by:} Josh Riley	App'd:
^{code:} TIA-222-H	Date: 03/08/21	Scale: NTS
ath:	D. Tempiana (Baraforti 1, Järanforti 1, Smel Psin Replacement 7049)(Frankorti 1, Structural Anabola 7	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in New Haven County, Connecticut.
- 2) Tower base elevation above sea level: 8.00 ft.
- 3) Basic wind speed of 140 mph.
- 4) Risk Category III.
- Exposure Category C. 5)
- Simplified Topographic Factor Procedure for wind speed-up calculations is used. 6)
- 7) Topographic Category: 1.
- 8) Crest Height: 0.00 ft.
- 9) Nominal ice thickness of 1.5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) A non-linear (P-delta) analysis was used.
- 16) Pressures are calculated at each section.
- 17) Stress ratio used in pole design is 1.
- 18) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules **Consider Moments - Legs Consider Moments - Horizontals** Assume Legs Pinned Calculate Redundant Bracing Forces Assume Rigid Index Plate Consider Moments - Diagonals Ignore Redundant Members in FEA **Use Moment Magnification** Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Clear Spans For KL/r All Leg Panels Have Same Allowable Use Code Stress Ratios Use Code Safety Factors - Guys Retension Guys To Initial Tension Offset Girt At Foundation Consider Feed Line Torque Bypass Mast Stability Checks Escalate Ice Always Use Max Kz $\sqrt{}$ Use Azimuth Dish Coefficients Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Use Special Wind Profile Project Wind Area of Appurt. Exemption Include Bolts In Member Capacity Autocalc Torque Arm Areas Use TIA-222-H Tension Splice Exemption Leg Bolts Are At Top Of Section Add IBC .6D+W Combination Poles Sort Capacity Reports By Component Include Shear-Torsion Interaction Secondary Horizontal Braces Leg $\sqrt{}$ Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow

SR Members Have Cut Ends SR Members Are Concentric

Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	50.00-9.50	40.50	3.00	12	10.3040	21.5590	0.2500	1.0000	A572-65 (65 ksi)
L2	9.50-0.00	12.50		12	20.2253	23.0200	0.2500	1.0000	A572-65 (65 ksi)

	Tapered Pole Properties											
Section	Tip Dia.	Area	1		r	С	I/C	J	It/Q	W	w/t	
	in	in ²	in⁴		in	in	in³	in⁴	in²	in		
L1	10.5793	8.0935	104.4	236	3.5993	5.3375	19.5642	211.5904	3.9834	2.091	5 8.36	5
	22.2313	17.1537	994.1	938	7.6286	11.1676	89.0251	2014.5061	8.4426	5.107	78 20.43	1
L2	21.5450	16.0801	818.9	578	7.1512	10.4767	78.1694	1659.4305	7.9141	4.750	04 19.00	2
	23.7439	18.3299	1213.0	283	8.1517	11.9244	101.7269	2457.9241	9.0214	5.499	94 21.99	7
Tower	· Gus	set G	usset	Guss	set Grade A	djust. Factor	Adjust.	Weight Mu	lt. Double	e Angle D	ouble Angle	Double Angle
Elevatio	on Are	ea Thi	ickness			Af	Factor	-	Stitc	h Bolt	Stitch Bolt	Stitch Bolt
	(per f	ace)					A_r		Spa	ncing	Spacing	Spacing
									Diag	onals I	Horizontals	Redundants
ft	ft ²	2	in							in	in	in
L1 50.00-9	9.50					1	1	1				
L2 9.50-0	.00					1	1	1				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		plf
		Calculation						in	in	
7/8	А	No	Surface Ar	47.00 -	4	3	-0.500	1.1100		0.54
			(CaAa)	36.00			0.300			
7/8	Α	No	Surface Ar	36.00 -	5	3	-0.500	1.1100		0.54
			(CaAa)	5.00			0.300			

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft²	ft ²	ft²	ft ²	ĸ
L1	50.00-9.50	А	0.000	0.000	12.488	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
L2	9.50-0.00	A	0.000	0.000	1.498	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft²	ft ²	K
L1	50.00-9.50	А	1.697	0.000	0.000	31.523	0.000	0.48
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
L2	9.50-0.00	А	1.419	0.000	0.000	3.783	0.000	0.06
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CP _z
	ft	in	in	in	in
L1	50.00-9.50	-1.5962	-0.5186	-2.0955	-0.6809
L2	9.50-0.00	-0.9083	-0.2951	-1.3919	-0.4522

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

	Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
I	L1	3	7/8	36.00 -	1.0000	1.0000
I				47.00		
	L1	4	7/8	9.50 - 36.00	1.0000	1.0000
I	L2	4	7/8	5.00 - 9.50	1.0000	1.0000

	Discrete Tower Loads										
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight		
			ft ft ft	٥	ft		ft²	ft²	К		
Side Arm Mount [SO 203- 3]	С	None		0.0000	47.00	No Ice 1/2" Ice 1" Ice 2" Ice	6.68 8.05 9.55 12.80	6.68 8.05 9.55 12.80	0.38 0.46 0.57 0.87		
DS2C03F36D-D	A	From Leg	2.00 0.00 13.00	0.0000	47.00	No Ice 1/2" Ice 1" Ice 2" Ice	5.58 7.47 9.38 13.25	5.58 7.47 9.38 13.25	0.07 0.11 0.16 0.30		
CO-41A	В	From Leg	2.00 0.00 8.00	0.0000	47.00	No Ice 1/2" Ice 1" Ice 2" Ice	3.15 4.38 5.63 7.77	3.15 4.38 5.63 7.77	0.01 0.04 0.07 0.15		
2.5" Dia 8.5' Omni	С	From Leg	2.00 0.00 6.00	0.0000	47.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.50 3.53 4.58 5.98	2.50 3.53 4.58 5.98	0.01 0.03 0.05 0.12		
Side Arm Mount [SO 203- 1]	С	From Leg	1.00 0.00 0.00	0.0000	36.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.78 2.24 2.75 3.89	3.79 4.47 5.21 6.78	0.13 0.15 0.19 0.29		
2.5" Dia 8.5' Omni	С	From Leg	2.00 0.00 5.00	0.0000	36.00	No Ice 1/2" Ice 1" Ice	2.50 3.53 4.58 5.98	2.50 3.53 4.58 5.98	0.01 0.03 0.05 0.12		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement	C _A A _A Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft	ft²	ft²	К
					2	2" Ice		
****Reserved***								

Load Combinations

Comb	Description
No.	
1	Dead Only
2	12 Dead+10 Wind 0 deg - No Ice
2	0.9 Dead+1.0 Wind 0 deg - No log
4	12 Dead+10 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No lee
6	1 2 Dead+1 0 Wind 60 deg - No lee
7	0.9 Dead+1.0 Wind 60 deg - No lee
8	1 2 Dead+1 0 Wind 90 deg - No lee
å	0.0 Dead+1.0 Wind 90 deg - No lee
10	1.2 Dead+1.0 Wind 120 deg. No lea
10	1.2 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 120 dea No lee
12	1.2 Dead+1.0 Wind 150 deg - No ice
13	1.2 Dead+1.0 Wind 150 deg - No los
14	1.2 Deau+1.0 Wind 190 deg - No ice
10	1.2 Deautility with doubles - No lee
10	1.2 Deau+1.0 Wind 210 deg - No ice
10	
10	1.2 Dead+1.0 Wind 240 deg - No ice
19	1.2 Dead+1.0 Wind 240 deg - No los
20	1.2 Deau+1.0 Wind 270 deg - No ice
21	1.2 Deat 1.0 Wind 270 deg - No ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	1.2 Deau+1.0 Wind 300 deg - No ice
24	1.2 Dead+1.0 Wind 350 deg - No ice
20	
20	1.2 Dead+1.0 ICE+1.0 Temp
21	1.2 Dead+1.0 Wind 0 deg+1.0 leg+1.0 Temp
20	1.2 Dead+1.0 Wind S0 deg+1.0 ide+1.0 Temp
29	1.2 Dead+1.0 Wind 80 degt10 ide+1.0 Temp
30	1.2 Deaut 1.0 Wind 10 deg 1.0 leg 1.0 leg 1.0 Temp
20	1.2 Dead+1.0 Wind 120 deg+1.0 ice+1.0 Temp
ა∠ ვე	1.2 Deautile wind 150 degt 1.0 lest 1.0 Temp
33	1.2 Deautility with 100 degt 1.0 left 1.0 tellip
34	1.2 Deautility wind 210 degt 1.0 leat 1.0 Temp
30	1.2 Deautillo Wind 240 degt 1.0 leat 1.0 temp
30	1.2 Deautility with 270 degt 1.0 leat 1.0 temp
20	1.2 Dead+1.0 Wind 300 deg+1.0 loc+1.0 Temp
20	1.2 Dead 1.0 Wind So degrid. Cet 1.0 Temp
39	
40	Dead+Wind S0 deg - Service
41	
42	Dead+Wind 90 deg - Service
43	Deadtwind 120 deg - Selvice
44	Dead-twind 150 deg - Selvice
40	
40	Dead+Wind 210 deg - Service
4/	DeadTwind 240 deg - Selvice
4ð 40	Dead+Wind 2/0 deg - Service
49	DeadTwind 300 deg - Selvice
50	Deau+wind Sou ded - Selvice

Sectio n	Elevation ft	Component Type	Condition	Gov. Load Comb	Axial K	Major Axis Moment kin ft	Minor Axis Moment
110.	<u> </u>	Dala			<u></u>		
LI	50 - 9.5	Pole	Max Tension	30	0.00	0.00	-0.00
			Max. Compression	26	-5.57	0.91	0.22
			Max. Mx	20	-2.68	91.70	1.19
			Max. My	2	-2.68	1.41	95.91
			Max. Vy	20	-3.71	91.70	1.19
			Max. Vx	2	-3.94	1.41	95.91
			Max. Torque	2			0.51
L2	9.5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-7.39	0.99	0.26
			Max. Mx	20	-3.81	144.14	1.78
			Max. My	2	-3.81	2.01	151.49
			Max. Vý	20	-4.69	144.14	1.78
			Max. Vx	2	-4.94	2.01	151.49
			Max. Torque	2			0.51

Maximum Member Forces

Maximum Reactions Vertical K Horizontal, X Horizontal, Z Condition Gov. Load ĸ

K

		Louu	N	N	N N
		Comb.			
Pole	Max. Vert	26	7.39	0.00	0.00
	Max. H _x	21	2.86	4.69	0.05
	Max. H _z	2	3.81	0.05	4.94
	Max. M _x	2	151.49	0.05	4.94
	Max. M _z	8	143.49	-4.69	-0.05
	Max. Torsion	2	0.51	0.05	4.94
	Min. Vert	9	2.86	-4.69	-0.05
	Min. H _x	8	3.81	-4.69	-0.05
	Min. H _z	14	3.81	-0.05	-4.94
	Min. M _x	14	-151.30	-0.05	-4.94
	Min. Mz	20	-144.14	4.69	0.05
	Min. Torsion	14	-0.51	-0.05	-4.94

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment. M _v	Overturning Moment. M ₂	Torque
	K	K	К	kip-ft	kip-ft	kip-ft
Dead Only	3.18	0.00	0.00	-0.08	0.27	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	3.81	-0.05	-4.94	-151.49	2.01	-0.51
0.9 Dead+1.0 Wind 0 deg - No Ice	2.86	-0.05	-4.94	-151.23	1.93	-0.51
1.2 Dead+1.0 Wind 30 deg - No Ice	3.81	2.40	-4.25	-130.36	-72.94	-0.47
0.9 Dead+1.0 Wind 30 deg - No Ice	2.86	2.40	-4.25	-130.14	-72.91	-0.47
1.2 Dead+1.0 Wind 60 deg - No Ice	3.81	4.21	-2.43	-74.33	-128.25	-0.31
0.9 Dead+1.0 Wind 60 deg - No Ice	2.86	4.21	-2.43	-74.19	-128.14	-0.31
1.2 Dead+1.0 Wind 90 deg - No Ice	3.81	4.69	0.05	1.59	-143.49	-0.07
0.9 Dead+1.0 Wind 90 deg - No Ice	2.86	4.69	0.05	1.61	-143.35	-0.07
1.2 Dead+1.0 Wind 120 deg - No Ice	3.81	4.08	2.41	74.24	-125.06	0.19

Location

Load	Vertical	Shear _x	Shear₂	Overturning	Overturning	Torque
Combination	К	K	K	Moment, M _x kip-ft	Moment, Mz kip-ft	kip-ft
0.9 Dead+1.0 Wind 120 deg	2.86	4.08	2.41	74.16	-124.95	0.19
1.2 Dead+1.0 Wind 150 deg - No Ice	3.81	2.48	4.30	131.86	-75.86	0.40
0.9 Dead+1.0 Wind 150 deg - No Ice	2.86	2.48	4.30	131.68	-75.82	0.40
1.2 Dead+1.0 Wind 180 deg - No Ice	3.81	0.05	4.94	151.30	-1.36	0.51
0.9 Dead+1.0 Wind 180 deg - No Ice	2.86	0.05	4.94	151.09	-1.44	0.51
1.2 Dead+1.0 Wind 210 deg - No Ice	3.81	-2.40	4.25	130.17	73.59	0.47
0.9 Dead+1.0 Wind 210 deg - No Ice	2.86	-2.40	4.25	130.00	73.40	0.47
1.2 Dead+1.0 Wind 240 deg - No Ice	3.81	-4.21	2.43	74.14	128.91	0.31
0.9 Dead+1.0 Wind 240 deg - No Ice	2.86	-4.21	2.43	74.05	128.63	0.31
1.2 Dead+1.0 Wind 270 deg - No Ice	3.81	-4.69	-0.05	-1.78	144.14	0.07
0.9 Dead+1.0 Wind 270 deg - No Ice	2.86	-4.69	-0.05	-1.75	143.84	0.07
1.2 Dead+1.0 Wind 300 deg - No Ice	3.81	-4.08	-2.41	-74.44	125.71	-0.19
0.9 Dead+1.0 Wind 300 deg - No Ice	2.86	-4.08	-2.41	-74.30	125.44	-0.19
1.2 Dead+1.0 Wind 330 deg - No Ice	3.81	-2.48	-4.30	-132.05	76.51	-0.40
0.9 Dead+1.0 Wind 330 deg - No Ice	2.86	-2.48	-4.30	-131.82	76.31	-0.40
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	7.39 7.39	0.00 -0.01	0.00 -1.01	-0.26 -33.87	0.99 1.29	-0.00 -0.12
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 30	7.39	0.49	-0.87	-29.22	-15.38	-0.12
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 60	7.39	0.86	-0.50	-16.81	-27.66	-0.09
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 90	7.39	1.00	0.01	0.03	-32.27	-0.03
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 120	7.39	0.87	0.51	16.80	-27.96	0.04
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 150	7.39	0.51	0.88	28.99	-15.90	0.09
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 180	7.39	0.01	1.01	33.34	0.69	0.12
deg+1.0 lce+1.0 Temp 1 2 Dead+1 0 Wind 210	7 39	-0.49	0.87	28.69	17.36	0.12
deg+1.0 Ice+1.0 Temp 1.2 Doad+1.0 Wind 240	7 30	0.96	0.50	16.28	20.65	0.00
deg+1.0 lce+1.0 Temp	7.09	-0.00	0.50	0.57	29.00	0.09
deg+1.0 lce+1.0 Temp	7.09	-1.00	-0.01	-0.57	34.25	0.03
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	7.39	-0.87	-0.51	-17.33	29.95	-0.04
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	7.39	-0.51	-0.88	-29.52	17.88	-0.09
Dead+Wind 0 deg - Service	3.18	-0.01	-0.81	-24.94	0.55	-0.08
Dead+Wind 30 deg - Service	3.18	0.39	-0.70	-21.47	-11.76	-0.08
Dead+Wind 00 deg - Service	J. 10 2, 10	0.09	-0.40	-12.21	-20.04 _22.21	-0.05 _0.01
Dead+Wind 90 deg - Service	3.18	0.67	0.40	12.13	-20.34	0.03
Service Dead+Wind 150 deg -	3.18	0.41	0.71	21.59	-12.24	0.07
Service	0.40	0.04	0.04	04 70	0.00	0.00
Service	3.18	0.01	0.81	24.78	-0.00	80.0
Dead+Wind 210 deg - Service	3.18	-0.39	0.70	21.31	12.30	80.0
Dead+wind 240 deg - Service	3.18	-0.69	0.40	12.11	21.38	0.05

50 Ft Monopole Tower Structural Analysis Report Project Number 405025

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	ĸ	kip-ft	kip-ft	kip-ft
Dead+Wind 270 deg - Service	3.18	-0.77	-0.01	-0.36	23.88	0.01
Dead+Wind 300 deg - Service	3.18	-0.67	-0.40	-12.28	20.86	-0.03
Dead+Wind 330 deg - Service	3.18	-0.41	-0.71	-21.74	12.78	-0.07

Solution Summary

	Sur	Sum of Applied Forces			Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Error	
Comb.	K	K	К	K	K	K		
1	0.00	-3.18	0.00	0.00	3.18	0.00	0.000%	
2	-0.05	-3.81	-4.94	0.05	3.81	4.94	0.000%	
3	-0.05	-2.86	-4.94	0.05	2.86	4.94	0.000%	
4	2.40	-3.81	-4.25	-2.40	3.81	4.25	0.000%	
5	2.40	-2.86	-4.25	-2.40	2.86	4.25	0.000%	
6	4.21	-3.81	-2.43	-4.21	3.81	2.43	0.000%	
7	4.21	-2.86	-2.43	-4.21	2.86	2.43	0.000%	
8	4.69	-3.81	0.05	-4.69	3.81	-0.05	0.000%	
9	4.69	-2.86	0.05	-4.69	2.86	-0.05	0.000%	
10	4 08	-3.81	2 41	-4 08	3.81	-2 41	0.000%	
11	4 08	-2.86	2 41	-4 08	2.86	-2 41	0.000%	
12	2 48	-3.81	4 30	-2.48	3.81	-4.30	0.000%	
13	2.48	-2.86	4 30	-2.48	2.86	-4.30	0.000%	
14	0.05	-3.81	4 94	-0.05	3.81	-4 94	0.000%	
15	0.05	-2.86	4.04	-0.05	2.86	-4.04	0.000%	
16	-2.40	-2.00	4.04	2 40	2.00	-4.04	0.000%	
17	-2.40	-2.86	4.25	2.40	2.86	-4.25	0.000%	
10	-2.40	-2.00	7.20	2.40	2.00	-4.25	0.000%	
10	-4.21	-3.01	2.43	4.21	2.01	-2.43	0.000%	
19	-4.21	-2.00	2.43	4.21	2.00	-2.45	0.000%	
20	-4.09	-3.01	-0.05	4.09	2.01	0.05	0.000%	
21	-4.09	-2.00	-0.05	4.09	2.00	0.05	0.000%	
22	-4.00	-3.01	-2.41	4.00	3.01	2.41	0.000%	
23	-4.08	-2.80	-2.41	4.08	2.80	2.41	0.000%	
24	-2.48	-3.81	-4.30	2.48	3.81	4.30	0.000%	
25	-2.48	-2.86	-4.30	2.48	2.86	4.30	0.000%	
26	0.00	-7.39	0.00	0.00	7.39	0.00	0.000%	
27	-0.01	-7.39	-1.01	0.01	7.39	1.01	0.000%	
28	0.49	-7.39	-0.87	-0.49	7.39	0.87	0.000%	
29	0.86	-7.39	-0.50	-0.86	7.39	0.50	0.000%	
30	1.00	-7.39	0.01	-1.00	7.39	-0.01	0.000%	
31	0.87	-7.39	0.51	-0.87	7.39	-0.51	0.000%	
32	0.51	-7.39	0.88	-0.51	7.39	-0.88	0.000%	
33	0.01	-7.39	1.01	-0.01	7.39	-1.01	0.000%	
34	-0.49	-7.39	0.87	0.49	7.39	-0.87	0.000%	
35	-0.86	-7.39	0.50	0.86	7.39	-0.50	0.000%	
36	-1.00	-7.39	-0.01	1.00	7.39	0.01	0.000%	
37	-0.87	-7.39	-0.51	0.87	7.39	0.51	0.000%	
38	-0.51	-7.39	-0.88	0.51	7.39	0.88	0.000%	
39	-0.01	-3.18	-0.81	0.01	3.18	0.81	0.000%	
40	0.39	-3.18	-0.70	-0.39	3.18	0.70	0.000%	
41	0.69	-3.18	-0.40	-0.69	3.18	0.40	0.000%	
42	0.77	-3.18	0.01	-0.77	3.18	-0.01	0.000%	
43	0.67	-3.18	0.40	-0.67	3.18	-0.40	0.000%	
44	0.41	-3.18	0.71	-0.41	3.18	-0.71	0.000%	
45	0.01	-3.18	0.81	-0.01	3.18	-0.81	0.000%	
46	-0.39	-3.18	0.70	0.39	3.18	-0.70	0.000%	
47	-0.69	-3.18	0.40	0.69	3.18	-0.40	0.000%	
48	-0.77	-3.18	-0.01	0.77	3.18	0.01	0.000%	
49	-0.67	-3.18	-0.40	0.67	3.18	0.40	0.000%	
50	-0.41	-3.18	-0.71	0.41	3.18	0.71	0.000%	

	Non-Linear	Convergence	Results
--	------------	-------------	---------

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.0000001
3	Yes	4	0.00000001	0.0000001
4	Yes	4	0.0000001	0.0000001
5	Yes	4	0.00000001	0.00000001
6	Yes	4	0.0000001	0.00000001
7	Yes	4	0.00000001	0.00000001
8	Ves	4	0.00000001	0.00000001
9	Ves	4	0.00000001	0.00000001
10	Ves	4	0.00000001	0.00000001
10	Voc	4	0.00000001	0.00000001
10	Vee	4	0.00000001	0.00000001
12	Vee	4	0.00000001	0.00000001
13	res	4	0.00000001	0.0000001
14	Yes	4	0.00000001	0.0000001
15	Yes	4	0.00000001	0.00000001
16	Yes	4	0.0000001	0.00000001
17	Yes	4	0.00000001	0.00000001
18	Yes	4	0.00000001	0.00000001
19	Yes	4	0.0000001	0.00000001
20	Yes	4	0.0000001	0.0000001
21	Yes	4	0.0000001	0.0000001
22	Yes	4	0.0000001	0.0000001
23	Yes	4	0.0000001	0.0000001
24	Yes	4	0.0000001	0.0000001
25	Yes	4	0.0000001	0.0000001
26	Yes	4	0.0000001	0.00000001
27	Yes	4	0.0000001	0.0000001
28	Yes	4	0.0000001	0.0000001
29	Yes	4	0.0000001	0.0000001
30	Yes	4	0.00000001	0.00000001
31	Yes	4	0.00000001	0.00000001
32	Ves	4	0.00000001	0.00000001
33	Ves	4	0.00000001	0.00000001
34	Voc	4	0.00000001	0.00000001
35	Voc	4	0.00000001	0.00000001
36	Vee	4	0.00000001	0.00000001
30	Yes	4	0.00000001	0.00000001
37	res	4	0.00000001	0.0000001
38	Yes	4	0.0000001	0.0000001
39	Yes	4	0.0000001	0.0000001
40	Yes	4	0.00000001	0.00000001
41	Yes	4	0.00000001	0.00000001
42	Yes	4	0.00000001	0.0000001
43	Yes	4	0.0000001	0.00000001
44	Yes	4	0.0000001	0.0000001
45	Yes	4	0.0000001	0.0000001
46	Yes	4	0.0000001	0.0000001
47	Yes	4	0.0000001	0.0000001
48	Yes	4	0.0000001	0.0000001
49	Yes	4	0.0000001	0.0000001
50	Yes	4	0.0000001	0.00000001

	Ма	aximum To	wer Def	lections - 3	Service Wind
Section	Elevation	Horz. Deflection	Gov.	Tilt	Twist
110.	ft	in	Comb.	٥	0
L1	50 - 9.5	1.296	50	0.2186	0.0022
L2	12.5 - 0	0.093	50	0.0633	0.0003

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
47.00	Side Arm Mount [SO 203-3]	50	1.172	0.2072	0.0020	60796
36.00	Side Arm Mount [SO 203-1]	50	0.735	0.1648	0.0013	21713

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	۰
L1	50 - 9.5	7.789	24	1.3063	0.0133
L2	12.5 - 0	0.560	24	0.3824	0.0020

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
47.00	Side Arm Mount [SO 203-3]	24	7.045	1.2390	0.0121	10141
36.00	Side Arm Mount [SO 203-1]	24	4.421	0.9883	0.0082	3622

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	А	P _u	φ P _n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
L1	50 - 9.5 (1)	TP21.559x10.304x0.25	40.50	0.00	0.0	16.482 6	-2.68	964.23	0.003
L2	9.5 - 0 (2)	TP23.02x20.2253x0.25	12.50	0.00	0.0	18.329 8	-3.81	1072.30	0.004

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	M _{uy}	φ M _{ny}	Ratio M _{uv}
	ft		kip-ft	kip-ft	φ M _{nx}	kip-ft	kip-ft	φ M _{ny}
L1 L2	50 - 9.5 (1) 9.5 - 0 (2)	TP21.559x10.304x0.25 TP23.02x20.2253x0.25	96.69 152.61	504.65 604.73	0.192 0.252	0.00 0.00	504.65 604.73	0.000 0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	φVn	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u
	ft		ĸ	K	φV _n	kip-ft	kip-ft	ϕT_n
L1	50 - 9.5 (1)	TP21.559x10.304x0.25	3.97	289.27	0.014	0.40	521.00	0.001
L2	9.5 - 0 (2)	TP23.02x20.2253x0.25	4.97	321.69	0.015	0.40	644.32	0.001

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ M _{nx}	φ M _{ny}	φVn	ϕT_n	Ratio	Ratio	
L1	50 - 9.5 (1)	0.003	0.192	0.000	0.014	0.001	0.195	1.000	4.8.2
L2	9.5 - 0 (2)	0.004	0.252	0.000	0.015	0.001	0.256	1.000	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	50 - 9.5	Pole	TP21.559x10.304x0.25	1	-2.68	964.23	19.5	Pass
L2	9.5 - 0	Pole	TP23.02x20.2253x0.25	2	-3.81	1072.30	25.6	Pass
							Summary	
						Pole (L2)	25.6	Pass
						RATING =	25.6	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

****** INPUT DATA

Pier Properties

Diameter	Distance	Concrete	Steel
	of Top of Pier	Strength	Yield
	above Ground		Strength
(ft)	(ft)	(ksi)	(ksi)
3.00	0.00		

Soil Properties

Layer	Туре	Thickness	Depth at Top of Layer	Density	CU	KP	PHI
		(ft)	(ft)	(lbs/ft^3)	(psf)		(deg)
1	Sand	3.33	0.00	120.0		1.000	
2	Sand	1.67	3.33	120.0		3.000	30.00
3	Sand	8.00	5.00	58.0		3.000	30.00

Design (Factored) Loads at Top of Pier

Moment	Axial Load	Shear Load	Additional Safety Factor Against
(ft-k)	(kips)	(kips)	SOII FAILURE
153.0	4.0	5.00	2.50

Calculated Pier Properties

Length	Weight	Pressure	Pressure	Total
		Due To	Due To	End-Bearing
		Axial Load	Weight	Pressure
(ft)	(kips)	(psf)	(psf)	(psf)
13.000	13.784	565.9	1950.0	2515.9

Ultimate Resisting Forces Along Pier

Туре	Distance of Top of Layer to Top of Pier	Thickness	Density	CU	KP	Force	Arm
	(ft)	(ft)	(lbs/ft^3)	(psf)		(kips)	(ft)
Sand	0.00	3.33	120.0		1.000	5.99	2.22

Black & Veatch

Sand	3.33	1.67	120.0	3.000	22.54	4.22
Sand	5.00	4.20	58.0	3.000	81.89	7.22
Sand	9.20	3.80	58.0	3.000	-97.82	11.17

Shear and Moments Along Pier

Distance below Top of Pier (ft)	Shear (with Safety Factor) (kips)	Moment (with Safety Factor) (ft-k)	Shear (without Safety Factor) (kips)	Moment (without Safety Factor) (ft-k)
0.00	12.6	393.5	5.0	157.4
1.30	11.7	409.5	4.7	163.8
2.60	8.9	423.1	3.6	169.2
3.90	-0.1	430.7	-0.0	172.3
5.20	-19.2	418.7	-7.7	167.5
6.50	-42.0	379.2	-16.8	151.7
7.80	-67.4	308.4	-27.0	123.4
9.10	-95.5	202.8	-38.2	81.1
10.40	-69.4	92.5	-27.8	37.0
11.70	-36.0	23.7	-14.4	9.5
13.00	0.0	0.0	0.0	0.0

Embedded Pole

This sheet calculates the capacity of an embedded pole according to either EIA/TIA-222-F, TIA-222-G, or TIA-222-H.

Branford11J
Eversource

TIA Revision: H

Reaction	IS:	
Tower Weight, P _u :	4	kip
Moment, M _u :	153.0	kip-ft

Embedded Shaft Properties:		
Shaft Filled & Encased with Concrete?	N	Y/N
Yield Stress, Fy:	65	ksi
# of Sides:	12	"0" if round
Thickness of Pole, t:	0.25	in
Dia. at Top of Pole Section:	20.2253	in
Dia. at Bot. of Pole Section:	25.705	in
Length of Pole Section:	25.5	ft
Diameter at Max Moment, D:	23.75	in

Pier Properties			
Diameter of Pier, Dp:	3.0	ft	
Depth of Foundation, L:	13	ft	
Processed Trap Rock Density, δc:	90	pcf	

Soil Prope	rties	
Soil Unit Weight, γ:	58	pcf
Ultimate Gross Bearing, Bc:	8	ksf

Caisson An	alysis	
Depth to Zero Shear	3.90	ft
Max Moment	172.30	kip-ft
Overturning FOS:	2.5	

Depth		Shear		Moment	
2.6	ft	3.6	kips	169.2	kip-ft
3.9	ft	0	kips	172.3	kip-ft
5.2	ft	-7.7	kips	167.5	kip-ft

	Design (Checks		
	Capacity/ Availability	Demand/ Limits	Rating	Check
Steel Axial Capacity (k):	1334.94	4.00	0.30%	Pass
Steel Moment Capacity (k-ft):	637.38	172.30	27.03%	Pass
Combined Ratio:	1.00	0.273	27.33%	Pass
Soil Moment Capacity (FOS):	2.50	1.33	53.20%	Pass
Bearing Pressure (ksf):	6.00	1.74	28.93%	Pass

Soil Rating:	53.2%
Structural Rating:	27.3%

REFERENCES

EVERSURCE ENERGY 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000 **₽ BLACK & VEATCH** 6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595 PROJECT NO: 403093 DRAWN BY: TYW CAG CHECKED BY G 03/26/21 ISSUED FOR REVIEW F 03/03/21 ISSUED FOR REVIEW E 05/01/20 ISSUED FOR REVIEW D 04/15/20 ISSUED FOR REVIEW C 04/01/20 ISSUED FOR REVIEW B 03/11/20 ISSUED FOR REVIEW A 12/17/19 ISSUED FOR REVIEW DATE DESCRIPTION IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

BRANFORD 11J 272 EAST MAIN ST BRANFORD, CT 06405

SHEET TITLE

PARTIAL SITE PLAN

SHEET NUMBER

C-2

<u>SITE PLAN</u> NO SCALE

<u>NOTES</u>

- 1. ALL COAXIAL CABLE TO BE SECURED TO THE SUPPORT STRUCTURE AT DISTANCES NOT TO EXCEED 4'-O" OC.
- 2. CONTRACTOR MUST FOLLOW ALL MANUFACTURER'S RECOMMENDATIONS REGARDING THE INSTALLATION OF COAXIAL CABLES, CONNECTORS AND ANTENNAS
- 3. DESIGN OF THE FOUNDATION WAS BASED ON SUB012 EVERSOURCE SUBSTATION STANDARDS, SECTION 6.D., FOUNDATION STABILITY AND SOIL BEARING CAPACITY.
- 4. EXISTING ANTENNAS TO BE RELOCATED TO THEIR ORIGINAL CENTER LINE ELEVATION ON THE PROPOSED MOUNTING SYSTEM.
- 5. INSTALL POLE PER MANUFACTURER'S RECOMMENDATIONS. REFER TO SABRE-FWT ERECTION DRAWINGS 70' H9-LD9 WPE'S.
- BOTH PROPOSED STAND-OFF MOUNTS (P/N: TCHM3-L AND TCHM1-L) SHALL BE INSTALLED WITH A 3'-O" MINIMUM VERTICAL SEPARATION BETWEEN TOP AND BOTTOM POLE CONNECTIONS.
- 7. PROPOSED COAX CABLES TO BE STACKED IN ONE ROW
- 8. THE GEOTECHNICAL REPORT INDICATED A GROUND WATER TABLE AT 5'.
- 9. THE PROPOSED STEEL POLE COMES 70'-O" LONG. THE TOP 7'-O" OF THE POLE SHALL BE REMOVED MAKING THE NEW POLE LENGTH 63'-O". ALL EXPOSED STRUCTURAL STEEL, INCLUDING FIELD DRILLED HOLES, SHALL BE CLEANED AND TWO (2) COATS ZRC COLD GALVANIZING COMPOUND (OR ENGINEER APPROVED EQUAL) SHALL BE APPLIED BY BRUSH. FOLLOW THE MANUFACTURER'S RECOMMENDATIONS FOR SURFACE PREPARATION, APPLICATION, DRYING AND CURING TIMES.
- 10. THE FALL PROTECTION VANG WILL BE REMOVED WITH REMOVAL OF THE TOP 7'-0" OF THE POLE. EVERSOURCE SHALL REPLACE THE FALL PROTECTION VANG BY INSTALLING AN EVERSOURCE APPROVED RETROFIT KIT.
- 11. THE DIRECT EMBED CASING FOUNDATION, INCLUDING FINISH GRADING, SHALL BE INSTALLED PER EVERSOUCE DRAWING #09000-60015P001 REV. 4, DATED 02/10/2021 (LOCATED IN THE REFERENCE CUTSHEETS SECTION OF THIS DRAWING PACKAGE), WITH THE EXCEPTION OF THE POLE EMBEDMENT DEPTH AND STEEL CASING DIAMETER, WHICH SHOULD BE INSTALLED PER SHEET
- 12. NOT ALL EMBED CASING FOUNDATION DETAILS ARE SHOWN, SUCH AS BORE HOLE DIAMETER AND BACKFILL REQUIREMENTS OUTSIDE THE STEEL CASING. THE PURPOSE OF THIS FOUNDATION DETAIL IS TO ONLY CONVEY THE POLE EMBEDMENT DEPTH AND STEEL CASING DIAMETER, REMAINING REQUIRED DETAILS ARE SHOWN IN THE DRAWING REFERENCED IN NOTE 11.

ANTENNA
ISAL UPC1) ICTOR
" OD x 6'-0"
CTOR TCHM3-L)
POLE
PROPOSED 2 3/8" OD × 6'-0" MOUNT PIPE
PROPOSED UNIVERSAL CLAMP SET (P/N: UPC1)
EXISTING ANTENNA TO BE RELOCATED ON SECTOR B FROM EXISTING WOOD POLE
- EXISTING RELOCATED ANTENNA
EL POLE
EXISTING ANTENNA TO PIPE MOUNT ON SECTOR B (TO REMAIN ON EXISTING CROSS ARM)

ANTENNA EQUIPMENT

SHEET NUMBER

C-4

Structure Data Table												LINE ITEM: *				
QT #	str. #	STR LINE & RELEASE (*)	0.A.L.	CLASS	CENTER 0 (WELD B FLATS 1	F GRAVITY EADS ON 1,4,7,10)	EMBEDMENT				ITEM 1 2	ASSY# 3169-1 3170-2	QTY. 1			
					Distance From Top Of Shaft 1	DISTANCE FROM TOP OF SHAFT 2	embedment Depth (feet)	BGP DEPTH (FEET)	BEARING PLATE (THICK)	BEARING PLATE (DIAM)	QUAN	itities in Bill of Mater	rial foi			
145			70'–0 "	H9-LD9	26'-0*	13'-7"	13'-0"	17°-0"	1/4"	28 " ø			ITE			

- PROJECT NOTES:
- 1.) POLE SECTIONS SHAI 2.) THE TOP OF MID AN (65 ksi) PLATE.
- ERECTION NOTES:
- 1.) AS A MINIMUM, ALL TIGHTNESS ATTAINED
- USING AN ORDINARY 2.) ALL POLE SECTIONS
- FOR PROPER ORIEN
- 3.) PLEASE REFER TO RECOMMENDATIONS.
- MATERIAL NOTES:
- 1.) STEEL SPECIFICATION PLATE (ie POLE SHA PLATE (ie BASE PLA
- 2.) HIGH STRENGTH PLA MINIMUM AT -20° F
- WELDING NOTES:
- 1.) ALL WELDS SHALL 2.) LONGITUDINAL WELDS THAT DEPTH (TYPICAL
- WELDS WILL BE +6" FEMALE LAP SPLICE. 3.) FILLET WELDS SHALL
- FIELD WELDING WILL GENERAL NOTES:
- 1.) EACH STRUCTURE WI
- STAMPED IN 1/4" A STS CLASS#: H9-LD9 HT: 70'-0" PO: STR.#: H9-70-*
- ASSY#: 3170-2 * SEQ# ID PLATE DETAIL BASE TAG
- 2.) ALL OTHER PARTS A RESPECTIVE MARK N "STRUCTURES SHA "STRUCTURES SHAL "BGP" AT TOP SHA (NO "HARD LIP" I
- (BGP COATING MINIMUM TOLERANCE NOTES 1.) POLE SECTION LENG 2.) ALL OTHERS PER AL SHIPPING NOTES:
- 1.) HARDWARE IN BOM(S) PER PROJECT JOB REQUIRES "C

* STRUCTURE NO .: SEE CHART

I PROPRIETARY AND CONFIDENTIAL! THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIM ARE THE SOLE PROPERTY OF SABRE INDUSTRIES, INC. DUPLICATION OR DISSEMINATION OF THIS INFORMATION WITHOUT PRIOR WRITEN CONSENT OF SUBJECT INJURY INC. IS PROMINED.

BILL OF MATERIAL	STR #: S	EE STR. DATA TABLE											
DESCRIPTION		"Fy" WEIGHT/Ibs											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 SIDED) 2 SIDED)	65 ksi 2146											
TOTA	L BLACK WEI	GHT/lbs 4299											
R (1) ASSEMBLY ONLY, () REQUIRED.													
SHIP LOOSE ITEMS													
EM PART NO QTY DESCRI	TOUCH UP												
PT99970 "BLACK" PINT KIT													
ALL BE FABRICATED FROM WEATHERING STEEL.													
ND/OR BOTTOM SHAFTS TO BE SEALED WITH A 3/16" THICK A871													
NUTS SHOULD BE INSTALLED SNUG TIGHT. "SNUG TIGHT" IS DEFINED AS THE													
) BY A FEW IMPACTS OF AN IMPACT WRENCH O	r the full	EFFORT OF A MAN											
WILL HAVE ORIENTATION AND SECTION IDENTIFI	CATION MARK	s to be used											
TATION OF POLE SECTIONS PRIOR TO ENGAGING	SPLICES.												
URAWING FWIUUZ SUPPLIED WITH FINAL DRAWI	NG PACKET F	יטא זישו											
NS: ALL STEEL PER ASTM A871, GR 65 (UNLE	SS NOTED O	THERWISE)											
AFT): 65 ksi A871 GR	ADE 65												
ATE/BEARING PLATE): 65 ksi A871 GR	ADE 65	1.20											
ATES TO HAVE A CHARPY V—NOTCH IMPACT VAL	ue of 15ft- Wisf)	-LBS.											
	113E)												
MEET THE REQUIREMENTS OF LATEST REVISION (OF AWS D1.1												
S SHALL BE 80% MINIMUM PENETRATION WITH	100% FUSION	то											
NL), UNLESS NOTED. 100% FULL PENETRATION L * LONG AT SHAFT FNDS AND SPLICE LENGTH +	.ONGITUDINAL 24" LONG AT	SEAM											
LUNG AL SHAFL ENUS AND SPLICE LENGIN +24 LUNG AL													
l be 100% fusion through their entire cross section Not be permitted without written approval of buyer													
VILL BE MARKED WITH AN IDENTIFICATION PLATE	(3/4" HIGH	NUMBERS											
A871—65ksi PLATE MATERIAL) WELDED TO THE E	BASE SECTION	. SEE BELOW:											
STR.#: H9-70-*													
ASS1#: 5169-1 * SEQ#													
ID PLATE DETAIL													
IVPIAG AND WEIDMENTS SHIPPED WITH STRUCTURE WILL) with their											
NUMBER.		, L IN											
ALL BE WEATHERING STEEL"													
ALL HAVE BELOW GRADE PROTECTION"													
S ALLOWED)													
I DRY THICKNESS OF 16 MILS)													
S:													
GTH: ±1"													
ISC													
EXACT QTY TO ASSEMBLE STRUCTURE(S). 5% EXTR	A TO BE SHIP	PED											
GU & NU-GU GAGE IU BE USED													
AMERICA"													
IC STEEL ONLY													
[WEATHERING STEEL]													
SSPC-SP6 SAND B	LASTING	IS REQUIRED											
PESC: RELEASED FOR FABRICATION		REV.: 0											
LANG: CAD FILE:	DATE:	_ SHEET NO.:											
"WPEs	JOB NO.:	2 of 2											
WING -70' H9-LD9 WPE's		E145											

dbSpectra

VHF Omni Antennas (160-222 MHz)

		160-174 MHz						217-222 MHz										
	Model Number	DS1G03F36U-N	DS1G03F36U-D	DS1G06F36U-N	DS1G06F36U-D	DS1G03F36D-N	DS1G03F36D-D	DS2C00F36U-N	DS2C00F36U-D	DS2C03F36U-N	DS2C03F36U-D	DS2C06F36U-N	DS2C06F36U-D	DS2C00F36D-N	DS2C00F36D-D	DS2C03F36D-N	DS2C03F36D-D	
	Input Connector	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	
	Туре	Sing	gle	Sin	gle	Dı	ıal	Sir	gle	Sin	gle	Sin	gle	Dı	ual	Du	ıal	
	Bandwidth, MHz	14	Ļ	14		14		4	5		5		5		5		5	
ELECTRICAL	Power, Watts	500		500		350		500		500		500		350		350		
	Gain , dBd	3		6		3		0		3		6		0		3		
	Horizontal Beamwidth, degrees	360		360		360		360		360		360		360		360		DGAG
	Vertical Beamwidth, degrees	30)	16		30		6	60		30		16		60		30	
	Beam Tilt, degrees	0		C)	0		0		0		0		0		0		
	Isolation (minimum), dB	N//	Ą	N	/A	30		N	N/A		N/A		/A	30		30		
	Number of Connectors	1		1	1	2	2		1	1		1		2		2	2	
	Flat Plate Area, ft ² (m ²)	2.53 (0	0.24)	4.38 ((0.41)	4.5 (0.42)		1.9 (1.9 (0.18)		1.9 (0.18)		(0.24)	2.4 (0.22)		4.1 (0.38)		
ANK	Lateral Windload Thrust, lbf(N)	95 (4	35 (423) 164 (730)		169 (752)		53 (236)		69 (307)		108 (480)		90 (400)		169 (752)			
MECH	Survival Wind Speed without ice, mph(kph) with 0.5" radial ice, mph(kph)	110 (1 93 (1	177) 50)	75 (⁻ 60 (121) (97)	75 (65 (121) 105)	222 193	(357) (311)	172 150	(277) (241)	110 (96 ((177) 154)	130 115	(209) (185)	75 (* 65 (*	121) 105)	
	Mounting Hardware included	DSH3	V3R	DSH	3V3N	DSH	3V3N	DSH	2V3R	DSH:	2V3R	DSH:	3V3N	DSH	3V3R	DSH	3V3N	
ENSIONS	Length, ft(m)	12.7 (3.9)	21.9	(6.7)	22.3	(6.8)	7.7	(2.3)	9.9	(3)	18.1	(5.5)	13.6	(4.1)	24.3	(7.4)	
	Radome O.D., in(cm)	3 (7	.6)	3 (7	7.6)	3 (7	7.6)	3 (7.6)	3 (7	7.6)	3 (7	7.6)	3 (1	7.6)	3 (7	' .6)	
	Mast O.D., in(cm)	2.5 (6	6.4)	2.5 ((6.4)	2.5 (6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5 (6.4)	
M	Net Weight w/o bracket, lb(kg)	37 (1	6.8)	60 (2	27.2)	63 (2	63 (28.6) 19		8.6)	26 (11.8)		47 (21.3)		40 (18.1)		70 (31.8)		
	Shipping Weight, lb(kg)	67 (3	0.4)	90 (4	40.8)	93 (4	2.2)	39 (17.7)	56 (2	25.4)	77 (3	34.9)	70 (3	31.8)	100 (45.4)	

Тор

DS2C03F36D-D

Bottom

Тор

Bottom

Тор

Bottom
TOWER/MAST SIZE AT PROPOSED ANTENNA ATTACHMENT = 8.5"± DIAMETER FOR UPPER LEVEL AND 10"± DIAMETER FOR LOWER LEVEL. PROPOSED CHAIN MOUNT FITS POLYGON OR ROUND POLES 5"-36" IN DIAMETER. NOTE: (1) 4" (4.5" OD) SCH 40 x 6'-0" AND (3) 2" (2.375" OD) SCH 40 x 6'-0" MOUNT PIPES ARE REQUIRED.

					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	CRIPTIO 2'- TAF	0" STAND-OFF, TRIP PER ADJUSTABLE CH SITE PRO 1	LE SECTOR, IAIN MOUNT,	SITE I	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
•			RCH	3/09/2010	ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD N	0.	DRAWN BY RH18 3/9/2010	ENG. APPROVAL	PART NO.	CHM3-L	-	ר ב ר
REV	DESCRIPTION OF REVISIONS REVISION HISTORY	CPD	BY	DATE	PROPERTARY NOTE: THE DATA MAN TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROHIBITED.	CLASS 81	^{SUB}	DRAWING USAGE CUSTOMER	снескер ву ВМС 3/15/2010	DWG. NO.	CHM3-L	۳ ۲	1 6

MOUNT-PIPE-TO-ANTENNA CLAMPS (TOTAL OF 5 KITS REQUIRED). SPACE CLAMPS PER ANTENNA MANUFACTURER'S RECOMMENDATIONS.

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	8	X-UPC1	SMALL PIPE TO PIPE BRACKET		0.85	6.79
2	4	G12R-20	1/2" x 20" THREADED ROD (HDG.)	20 in	3.23	12.91
3	16	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	1.14
4	16	G12LW	1/2" HDG LOCKWASHER		0.01	0.22
5	16	G12FW	1/2" HDG USS FLATWASHER		0.03	0.54
		•	•		TOTAL WT #	13 45

					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	FO	N UNIVERSAL PIPE-1 CLAMP SET R SMALL PIPES (1-1/-	TO-PIPE 4" TO 4-1/2")		STTE 1	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD N 44	o. 48	DRAWN BY CEK 3/13/2009	ENG. APPROVAL	PA	RT NO.	PC1		-
Α	REDRAWN IN INV, UPDATED VIEWS & TABLE		KC8	8/20/2012			SUP		CHECKED BY	DW				무경
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF	81	01	CUSTOMER	CEK 2/18/2013	011	U	PC1		

TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.030") DRILED AND GAS CUT HOLES (# 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (# 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESCRI	2'-0" STANDOFF, 2'-0" STANDOFF, TAPER ADJUSTAB SITE F	BINGLE SECTOR, E CHAIN MOUNT, RO 1		STTE 1	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO.	RH18 3/12/2	ENG. APPROVAL	PA	ART NO. TCH	IM1-L		_ 0 ₽
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT MOUSTHES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRES IS STRUCTLY PROHIBITED.	CLASS S	UB DRAWING USAGE	снескед ву ВМС 3/15/2010	DV	NG. NO. TCH	IM1-L		F GE 1

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IIISoil Class:D - Stiff Soil

 Elevation:
 6.13 ft (NAVD 88)

 Latitude:
 41.292531

 Longitude:
 -72.794633

Wind

Results:

Wind Speed:	138 Vmph	Wind Speed is 140 mph per 2018 Connecticut State Building Code
10-year MRI	78 Vmph	
25-year MRI	88 Vmph	
50-year MRI	95 Vmph	
100-year MRI	103 Vmph	

Date Socessed:

AGE M/**3 H**/**9 /202**,1Fig. 26.5-1B and Figs. CC-1−CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.179	S _{DS} :	0.191	
S ₁ :	0.061	S _{D1} :	0.098	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.092	
S _{MS} :	0.287	PGA M:	0.148	
S _{M1} :	0.147	F _{PGA} :	1.6	
		l _e :	1.25	

Seismic Design Category B

Data Accessed: Date Source:

Tue Mar 09 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thickness:	0.75 in.
Concurrent Temper	ture: 15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Tue Mar 09 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment C Mounting Analysis

March 29, 2021

MOUNT EVALUATION LETTER

Site Number:	ES-106
Site Name:	BRANFORD11J
Site Data:	272 East Main St.
	Branford, CT 06405
Latitude:	41° 17′ 33.11″
Longitude:	-72° 47′ 40.68″

Black & Veatch Corporation is pleased to submit this "Mount Evaluation Letter" to determine the structural integrity of antenna mounting system on the above-mentioned site. The purpose of this evaluation is to determine the capacity of the system in supporting the final loading in the attached "Loading Summary".

Based on our evaluation we have determined the antenna mounting system to be:	<u>SUFFICIENT</u>	
Structure Rating (max from all components) =	68.9%	

The proposed mounting system will be capable of supporting the existing and proposed equipment, under the assumptions described in Section 4 of the report and the following conditions:

- Contractor shall be responsible for the means and methods of construction.
- Contractor shall inspect the condition of all existing and proposed structural members, all relevant members and connections and report any deficiencies to the engineer prior to installation of any new antennas and other equipment.

The scope of this evaluation pertains only to the existing antenna mounting system and does not include examination of the loads imparted by the antenna mounting system to the existing tower and its structural components. This document was prepared based on information provided to Black & Veatch. If existing conditions do not reflect those represented, this analysis is no longer valid.

Please contact Josh Riley in our Overland Park Office at 913-458-2522 if you have any questions or comments.

Sincerely, Black & Veatch Corporation

Prepared By: Joohwan Jung Submitted By: Josh Riley, P.E.

TABLE OF CONTENTS

- 1. LOADING SUMMARY
- 2. ANALYSIS CRITERIA SUMMARY
- 3. REFERENCES
- 4. ASSUMPTIONS
- 5. RESULTS SUMMARY

APPENDICES

APPENDIX 1: MOUNT ANALYSIS REPORT

APPENDIX 2: RISA PRINTOUTS

APPENDIX 3: ATTACHMENTS

BRANFORD11J

1. LOADING SUMMARY

	Appurtenance									
Carrier	Position	Sector	Antenna RAD Center (ft)	Mount Centerline (ft)	Qty	Туре	Manufacturer	Model		
Eversource	-	-	60	47	1	Omni	dbSpectra	DS2C03F36D-D		
Eversource	-	-	55	47	1	Omni	Kreco	CO-41A		
Eversource	-	-	53	47	1	Omni	-	Generic Omni		
Eversource	-	-	41	36	1	Omni	-	Generic Omni		

This analysis analyzes the worst-case scenario for the proposed omni stand-off frame. All levels are deemed sufficient.

BRANFORD11J

2. ANALYSIS CRITERIA SUMMARY

ANALYSIS CRITERIA						
STANDARD	ТІА-222-Н					
WIND SPEED	Ultimate of 140 mph					
WIND SPEED WITH ICE	50 mph with 1.5" radial ice thickness					
EXPOSURE CATEGORY	С					
RISK CATEGORY	III					
TOPO CATEGORY	Flat					
CREST HEIGHT	N/A					
SPECTRAL RESPONSE FACTORS, Ss & S1	0.179 g & 0.061 g					

3. REFERENCES

- American Institute of Steel Construction, AISC 15th Edition
- Telecommunications Industry Association Standard, TIA-222-H & 2018 Connecticut State Building Code
- Mount Assembly Drawing (Model: TCHM3-L) by SitePro 1, dated 03/15/2010
- Mount Assembly Drawing (Model: TCHM1-L) by SitePro 1, dated 03/15/2010

4. ASSUMPTIONS

This analysis may be affected if any assumptions are not valid or have been made in error. Black & Veatch should be notified to determine the effect on the structural integrity of the antenna mounting system.

- The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- The configuration of antennas, mounts, and other appurtenances are as specified in the Loading Summary and the referenced drawings.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- Sector frame center line: located equidistant between top & bottom boom; Platform center line: located at the base perimeter of platform, unless otherwise specified.
- Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
Pipe	ASTM A53 (GR B-35)
Connection Bolts	ASTM A325

BRANFORD11J

5. RESULTS SUMMARY

Name	Bending Stre	ess Ratio	Shear Stress Ratio		
Arm: HSS3X3X3/16	68.9%	Pass	36.2%	Pass	
Mount Pipe: Pipe 4.0 Std	36.9%	Pass	27.3%	Pass	

*Von Mises SR = (Max Von Mises Value From RISA-3D)/(0.9*Fy)

**Capacity rating per TIA-222-H Section 15.5.

March 16, 2021

BRANFORD11J

APPENDIX 1: MOUNT ANALYSIS REPORT

Client:	Eversource	Computed By: Joohwan Jung
Site Name:	BRANFORD11J (ES-106)	Date: 3/16/2021
		Verified By: JW
Title:	MOUNT ANALYSIS REPORT	Date: 3/16/2021

Dead and Live Loads

Maintenance Live Load:	$L_V =$	250	lb	
Installation Live Load:	L _M =	0	lb	

Appurtenance Dead Loads							
Name	Weight (lb)						
DS2C03F36D-D	70						

DS2C03F36D-D

Client: Eversource

Computed By: Joohwan Jung

Site Name: BRANFO	RD11J (ES-	106)]	Date: 3/10	5/2021
								Verifie	d By: JW	
BLACK & VEATCH Title: MOUNT	ANALYSIS	REPORT]	Date: 3/1	5/2021
Appurtenance Wind Loading				<u>Equation</u>	<u>s</u>				TI	A-222-H
Exposure Category =	- C			K _z = 2.01 (z / z _g) ²	/α				2.6.5.2
Risk Category =	:									
Topographic Category =	: 1			$K_h = e^{(f \cdot z)}$	H)				2	.6.6.2.1
Basic Wind Speed, V =	= 140	mph								
Height Above Ground, z =	- 86	ft		K _{zt} = [1 + K	α _c K _t / K _r] ²			2	.6.6.2.1
Crest Height, H =	= N/A	ft								
Velocity Pressure Coefficient, K _z	= 1.23			$K_{e} = e^{-0.000}$	J32~72					2.6.8
Topographic Factor, K _{zt}	= 1.00									
Wind Directionality Factor, K _d	= 0.95			q _z = 0.002	56 K _z K _z	_t K _e K _d V [∠]			2	2.6.11.6
Shielding Factor, K _a	= 0.90									
Ground Elevation Factor, K _e	= 1.000			$F_A = q_z G_h (H_z)$	EPA)				2	2.6.11.2
Wind Velocity Pressure, q _z	= 58.43	psf								
Gust Effect Factor, G _h	= 1.00			$F_M = q_z G_h G_h$	C _f D _p				2	2.6.11.2
		Appurt	enance W	ind Loads						
Namo	Н	eight	Width	Depth		Norma	I		Tangent	ial
Name		(ft)	(ft)	(ft)	Ca	EPA FT2	F _A (lb)	C _a	EPA FT2	F _A (lb)

0.25

24.30

0.25

2.00

10.94

638.93

2.00

10.94

638.93

Mount Pipe: Pipe 4.0 Std

Title: MOUNT ANALYSIS REPORT

 Client:
 Eversource
 Computed By: Joohwan Jung

 Site Name:
 BRANFORD11J (ES-106)
 Date: 3/16/2021

 Verified By:
 JW

Date: 3/16/2021

Member Wind Loading				Equ	ations			TIA-222-H
Exposure Category =	С			K _z = 2	2.01 (z / z _g) ²	2/α		2.6.5.2
Risk Category =	III							
Topographic Category =	1			K _h = 6	e ^(f · z /H)			2.6.6.2.1
Basic Wind Speed, V =	140	mph						
Height Above Ground, z =	86	ft		K _{zt} =	$[1 + K_c K_t / K_t]$	₁] ²		2.6.6.2.1
Crest Height, H =	N/A	ft						
Velocity Pressure Coefficient, K _z =	1.23			$K_e = e$	2-0.000032*2s			2.6.8
Topographic Factor, K _{zt} =	1.00							
Wind Directionality Factor, K _d =	0.95			$q_z = 0$).00256 K _z K _z	_t K _e K _d V [∠]		2.6.11.6
Shielding Factor, K _a =	0.90							
Ground Elevation Factor, K _e =	1.000			$F_A = c$	q _z G _h (EPA)			2.6.11.2
Wind Velocity Pressure, $q_z =$	58.43	psf						
Gust Effect Factor, G _h =	1.00		$F_{M} = q_{z}G_{h}C_{f}D_{p}$					
Member	Wind	Loads	•					
Name	De	epth	Width	C.	D _p	F _M		
Name	(ft)	(ft)	Cf	(ft)	(lb)		
Arm: HSS3X3X3/16	0	.25	0.25	2	0.25	29.22		

0.38

1.2

0.38

26.29

Appurtenance Ice Dead Loads												
Namo	Height w/ ice	Width w/ice	Depth w/ ice	V _{ice}	DL _{ice}							
Name	(ft)	(ft)	(ft)	(ft ³)	(lb)							
DS2C03F36D-D	24.62	0.57	0.57	6.38	357.19							

Client: Eversource

Importance Factor, I =

Height Escalation Factor, K_{iz} =

Factored Ice Thickness, T_{iz} =

Grating Ice Dead Load, D_{Gice} =

Topographic Factor, $K_{zt} = 1.00$

Computed By: Joohwan Jung

2.6.10

B ,	Site Name: BRANFORD	11J (ES-1	.06)		Date:	3/16/2021
					Verified By:	WL
LACK & VEATCH	Title: MOUNT AN	ALYSIS R	EPORT		Date:	3/16/2021
Member Ice Dec	ad Loading			<u>Equations</u>		TIA-222-H
	Exposure Category =	С				
	Risk Category =	Ш		$K_{h} = e^{(f \cdot z/H)}$		2.6.6.2.1
Тор	ographic Category =	1				
Heigh	nt Above Ground, z =	86	ft	$K_{zt} = [1 + K_c K_t / K_h]^2$		2.6.6.2.1
	Crest Height, H =	N/A	ft			
Desi	ign Ice Thickness, T _i =	1.50	in	$K_{iz} = (z/33)^{0.10}$		2.6.10

 $\mathsf{T}_{iz} = \mathsf{T}_{i} \mathsf{I} \; \mathsf{K}_{iz} (\mathsf{K}_{zt})^{0.35}$ 2.6.10

Aiz = pi*Tiz*(Dc+Tiz)

DL_{ice}=Aiz*56pcf

Member Ice Dead Loads												
Namo	Depth w/ ice	Width w/ ice	Dc	Aiz								
Name	(ft)	(ft)	(ft)	(ft ²)								
Arm: HSS3X3X3/16	0.57	0.57	0.35	0.25	14.24							
Mount Pipe: Pipe 4.0 Std	0.69		0.38	0.27	14.84							

in

psf

1.15

1.10

1.90

8.86

Client: Eversource

Computed By: Joohwan Jung

	Site Name: BRANFORD	11J (ES-1	06)		Date: 3/16/2021
				,	Verified By: JW
LACK & VEATCH	Title: MOUNT AN	IALYSIS R	EPORT		Date: 3/16/2021
Appurtenance Ice	Wind Loading			<u>Equations</u>	TIA-222-H
Ex	posure Category =	С		$K_z = 2.01 (z / z_g)^{2/\alpha}$	2.6.5.2
	Risk Category =	Ш			
Торо	graphic Category =	1		$K_{h} = e^{(f \cdot z/H)}$	2.6.6.2.1
lce	e Wind Speed, V _{ice} =	50	mph		
Height	Above Ground, z =	86	ft	$K_{zt} = [1 + K_c K_t / K_h]^2$	2.6.6.2.1
	Crest Height, H =	N/A	ft		
Velocity Pressu	ure Coefficient, K _z =	1.23	psf	$K_e = e^{-0.000032^{\circ}25}$	2.6.8
Торо	graphic Factor, K _{zt} =	1.00			
Wind Directi	ionality Factor, K _d =	0.95		$q_z = 0.00256 K_z K_{zt} K_e K_d V^2$	2.6.11.6
Sh	nielding Factor, K _a =	0.90			
Ground Elev	vation Factory, K _e =	1.000		$F_{A(ice)} = q_{z(ice)}G_{h}(EPA)_{A(ice)}$	2.6.11.2
Ice Wind Veloci	ty Pressure, q _{z(ice)} =	7.453			
Factored	l Ice Thickness, T _{iz} =	1.90	in	$F_{M(ice)} = q_{z(ice)}G_hC_fD_{p(ice)}$	2.6.11.2
Gust	t Effect Factor, G _h =	1			

Appurtenance Ice Wind Loads												
Name	Height	Width t) w/ Ice (ft)	Width Depth			Normal		Tangential				
	w/ Ice (ft)		ce (ft) w/ lce (ft)	Ca	EPA FT2	F _A (lb)	Ca	EPA FT2	F _A (lb)			
DS2C03F36D-D	24.62	0.57	0.57	-	19.43	144.82	-	19.43	144.82			

Client: Eversource				Computed By: Joohwan Jung
Site Name: BRANFORD	11J (ES-1	06)		Date: 3/16/2021
				Verified By: JW
LACK & VEATCH Title: MOUNT AN	ALYSIS R	EPORT		Date: 3/16/2021
Member Ice Wind Loading			<u>Equations</u>	TIA-222-H
Exposure Category =	С		$K_z = 2.01 (z / z_g)^{2/\alpha}$	2.6.5.2
Risk Category =	Ш			
Topographic Category =	1		$K_{h} = e^{(f \cdot z / H)}$	2.6.6.2.1
Ice Wind Speed, V_{ice} =	50	mph		
Height Above Ground, z =	86	ft	$K_{zt} = [1 + K_c K_t / K_h]^2$	2.6.6.2.1
Crest Height, H =	N/A	ft		
Velocity Pressure Coefficient, K _z =	1.23	psf	$K_e = e^{-0.000032^{\circ}25}$	2.6.8
Topographic Factor, K _{zt} =	1.00			
Wind Directionality Factor, K _d =	0.95		$q_z = 0.00256 K_z K_{zt} K_e K_d V^2$	2.6.11.6
Shielding Factor, K _a =	0.90			
Ground Elevation Factory, K _e =	1.000		$F_{A(ice)} = q_{z(ice)}G_{h}(EPA)_{A(ice)}$	2.6.11.2
Ice Wind Velocity Pressure, q _{z(ice)} =	7.453			
Factored Ice Thickness, T _{iz} =	1.90	in	$F_{M(ice)} = q_{z(ice)}G_hC_fD_{p(ice)}$	2.6.11.2
Gust Effect Factor, G _h =	1			I
Mombor		dloade		

Member Ice Wind Loads									
Name	Depth w/ Ice (ft)	Width w/ Ice (ft)	C _f	D _{p(ice)} (ft)	F _{M(ice)} (Ib/ft)				
Arm: HSS3X3X3/16	0.57	0.57	2	0.57	8.44				
Mount Pipe: Pipe 4.0 Std	0.69		1.2	0.69	6.18				

Client: Eversource

Computed By: Joohwan Jung

Client. Eve	Isource		Computed by. Joonwan Jung
Site Name: BRA	NFORD11J (ES-106)		Date: 3/16/2021
			Verified By: JW
LACK & VEATCH Title: MC	UNT ANALYSIS REPORT		Date: 3/16/2021
Seismic Loading		<u>Equations</u>	ТІА-222-Н
Site C Spectral Respons	ass = D e. S _c = 0.171 g	$S_{D1} = 2/3 F_v S_1$	2.7.5
Max Spectral Response Accel. Site Coefficien	$E_{r}, S_{1} = 0.062$ g t, $F_{a} = 1.60$	$S_{DS} = 2/3 F_a S_s \ge S_{D1}$	2.7.5
Vel. Site Coefficien Design Spec. Response (1 sec)	t, $F_v = 2.40$ S _{D1} = 0.099	$C_{\rm s} = 1/2 \; {\rm S}_{\rm DS} {\rm I} \ge 0.03$	2.7.7.1.1
Design Spec. Response	, S _{DS} = 0.182	$E_{H} = A_{s} C_{s} W$	2.7.7
Importantance Facto Seismic Response Coefficien Amplification Facto	or, $I = 1.25$ t, $C_s = 0.114$ r, $A_s = 3$	$E_v = A_s 0.2 S_{DS} W$	2.7.6

Appurtenance Seismic Loads								
Name	Weight (lb)	E _H (lb)	E _v (lb)					
DS2C03F36D-D	70	23.94	7.66					

March 16, 2021

BRANFORD11J

APPENDIX 2: RISA PRINTOUTS

z [•] Y		
	•	
Black & Veatch Corp		SK - 1
loohwan Jung	BRANFORD11,J Risa Model	Mar 16, 2021 at 1.21 PM

z [•] Y		
	ſ	
	•	
	7792	
Envelope Only Solution		
Black & Veatch Corp.		SK - 2
Joohwan Jung	BRANFORD11J Risa Model	Mar 16, 2021 at 1:21 PM
405025.2021.2200		BRANFORD11J Risa Model.r3d

z [•] Y		Code Check (Env) No Calc > 1.0 .90-1.0 .7590
		.5075
	t	
	O Z	
	7 ⁹⁴⁷ -60 C	
Member Code Checks Displayed (Envelop Envelope Only Solution	ea)	
Black & Veatch Corp.		SK - 3
Joonwan Jung	BRANFORD11J Risa Model	Mar 16, 2021 at 1:21 PM

		Shear Check (Env) . No Calc . 90-10 . 50-75 0-50
Member Shear Checks Displayed (Envelo	pped)	
Black & Veatch Corp.		SK - 4
Joohwan Jung	BRANFORD11J Risa Model	Mar 16, 2021 at 1:21 PM
405025,2021,2200		BRANFORD11J Risa Model.r3d

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR SET ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	None
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Arm	HSS3X3X3	Beam	None	A53 Gr.B	Typical	1.89	2.46	2.46	4.03
2	Mount Pipe	PIPE 4.0	Column	None	A53 Gr.B	Typical	2.96	6.82	6.82	13.6

General Material Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]
1	gen Conc3NW	3155	1372	.15	.6	.145
2	gen Conc4NW	3644	1584	.15	.6	.145
3	gen Conc3LW	2085	906	.15	.6	.11
4	gen Conc4LW	2408	1047	.15	.6	.11
5	gen Alum	10600	4077	.3	1.29	.173
6	gen Steel	29000	11154	.3	.65	.49
7	RĪGID	1e+6		.3	0	0

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N11	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N2			Arm	Beam	None	A53 Gr.B	Typical
2	M2	N3	N4			Mount Pipe	Column	None	A53 Gr.B	Typical
3	M3	N10	N7			RIGID	None	None	RIGID	Typical
4	M4	N9	N6			RIGID	None	None	RIGID	Typical
5	M5	N8	N5			RIGID	None	None	RIGID	Typical
6	M6	N11	N12			Arm	Beam	None	A53 Gr.B	Typical
7	M7	N13	N14			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	.Analysis	Inactive	Seismic
1	M1						Yes				None
2	M2						Yes	** NA **			None
3	M3						Yes	** NA **			None
4	M4						Yes	** NA **			None
5	M5						Yes	** NA **			None
6	M6						Yes				None
7	M7						Yes	** NA **			None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	Kyy	Kzz	Cb	Function
1	M1	Arm	1.833									Lateral
2	M2	Mount Pipe	6									Lateral
3	M6	Arm	1.833									Lateral

Basic Load Cases

1 DL -1 1 2 Maintenance LL - LV LL 1 1	
2 Maintenance LL - LV LL 1	
3 Installation LL - LM LL 1	
4 Wind - 0 Deg (X) WL 1 3	
5 Wind - 30 Deg (X) WL 1 3	
6 Wind - 60 Deg (X) WL 1 3	
7 Wind - 90 Deg (X) WL 1 3	
8 Wind - 120 Deg (X) WL 1 3	
9 Wind - 150 Deg (X) WL 1 3	
10 Wind - 180 Deg (X) WL 1 3	
11 Wind - 210 Deg (X) WL 1 3	
12 Wind - 240 Deg (X) WL 1 3	
13 Wind - 270 Deg (X) WL 1 3	
14 Wind - 300 Deg (X) WL 1 3	
15 Wind - 330 Deg (X) WL 1 3	
16 Wind - 0 Deg (Z) WL 1 3	
17 Wind - 30 Deg (Z) WL 1 3	
18 Wind - 60 Deg (Z) WL 1 3	
19 Wind - 90 Deg (Z) WL 1 3	
20 Wind - 120 Deg (Z) WL 1 3	
21 Wind - 150 Deg (Z) WL 1 3	
22 Wind - 180 Deg (Z) WL 1 3	
23 Wind - 210 Deg (Z) WL 1 3	
24 Wind - 240 Deg (Z) WL 1 3	
25 Wind - 270 Deg (Z) WL 1 3	
26 Wind - 300 Deg (Z) WL 1 3	
27 Wind - 330 Deg (Z) WL 1 3	
28 Ice DL DL 1 3	
29 Ice Wind - 0 Deg (X) WL 1 3	
30 Ice Wind - 30 Deg (X) WL 1 3	
31 Ice Wind - 60 Deg (X) WL 1 3	
32 Ice Wind - 90 Deg (X) WL 1 3	
33 Ice Wind - 120 Deg (X) WI	
34 Ice Wind - 150 Deg (X) WL 1 3	
35 Ice Wind - 180 Deg (X) WI 1 3	
36 Ice Wind - 210 Deg (X) WI 1 3	
37 Ice Wind - 240 Deg (X) WL 1 3	

Company:Black & Veatch Corp.Designer:Joohwan JungJob Number:405025.2021.2200Model Name:BRANFORD11J Risa Model

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
38	Ice Wind - 270 Deg (X)	WL				1		3		
39	Ice Wind - 300 Deg (X)	WL				1		3		
40	Ice Wind - 330 Deg (X)	WL				1		3		
41	Ice Wind - 0 Deg (Z)	WL				1		3		
42	Ice Wind - 30 Deg (Z)	WL				1		3		
43	Ice Wind - 60 Deg (Z)	WL				1		3		
44	Ice Wind - 90 Deg (Z)	WL				1		3		
45	Ice Wind - 120 Deg (Z)	WL				1		3		
46	Ice Wind - 150 Deg (Z)	WL				1		3		
47	Ice Wind - 180 Deg (Z)	WL				1		3		
48	Ice Wind - 210 Deg (Z)	WL				1		3		
49	Ice Wind - 240 Deg (Z)	WL				1		3		
50	Ice Wind - 270 Deg (Z)	WL				1		3		
51	Ice Wind - 300 Deg (Z)	WL				1		3		
52	Ice Wind - 330 Deg (Z)	WL				1		3		
53	Lateral Seismic - Eh (ELX	.342			1				
54	Lateral Seismic - Eh (Z)	ELZ			.342	1				
55	Vertical Seismic - Ev (ELY		109		1				

Load Combinations

	Description	S	P	S	В	Fa	. В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	WIND LOAD COMBOS (140 MPH)																							
2	1.2DL + WL (0 DEG)	Yes	Y		1	1.2	4	1	16	1														
3	1.2DL + WL (30 DEG)	Yes	Υ		1	1.2	5	1	17	1														
4	1.2DL + WL (60 DEG)	Yes	Y		1	1.2	6	1	18	1														
5	1.2DL + WL (90 DEG)	Yes	Υ		1	1.2	7	1	19	1														
6	1.2DL + WL (120 DEG)	Yes	Υ		1	1.2	8	1	20	1														
7	1.2DL + WL (150 DEG)	Yes	Y		1	1.2	9	1	21	1														
8	1.2DL + WL (180 DEG)	Yes	Υ		1	1.2	10	1	22	1														
9	1.2DL + WL (210 DEG)	Yes	Υ		1	1.2	11	1	23	1														
10	1.2DL + WL (240 DEG)	Yes	Υ		1	1.2	12	1	24	1														
11	1.2DL + WL (270 DEG)	Yes	Υ		1	1.2	13	1	25	1														
12	1.2DL + WL (300 DEG)	Yes	Υ		1	1.2	14	1	26	1														
13	1.2DL + WL (330 DEG)	Yes	Υ		1	1.2	15	1	27	1														
14																								
15	MOUNT LOAD COMBOS (30 MP																							
16	1.4DL	Yes	Υ		1	1.4																		
17	1.2DL + 1.5LV	Yes	Υ		1	1.2	2	1.5																
18	1.2DL + 1.5LM + WL (0 DEG)	Yes	Υ		1	1.2	3	1.5	4	.046	16	.046												
19	1.2DL + 1.5LM + WL (30 DEG)	Yes	Ŷ		1	1.2	3	1.5	5	.046	17	.046		-										
20	1.2DL + 1.5LM + WL (60 DEG)	Yes	Y		1	1.2	3	1.5	6	.046	18	.046												
21	1.2DL + 1.5LM + WL (90 DEG)	Yes	Ŷ		1	1.2	3	1.5	7	.046	19	.046												
22	1.2DL + 1.5LM + WL (120 DEG)	Yes	Y		1	1.2	3	1.5	8	.046	20	.046												
23	1.2DL + 1.5LM + WL (150 DEG)	Yes	Ý		1	1.2	3	1.5	9	.046	21	.046												
24	1.2DL + 1.5LM + WL (180 DEG)	Yes	Ŷ		1	12	3	1.5	10	.046	22	.046												
25	1.2DL + 1.5LM + WL (210 DEG)	Yes	Ý		1	1.2	3	1.5	11	.046	23	.046												
26	1.2DL + 1.5LM + WL (240 DEG)	Yes	Ý		1	1.2	3	1.5	12	.046	24	.046												
27	1.2DL + 1.5LM + WL (270 DEG)	Yes	Ý		1	1.2	3	1.5	13	.046	25	.046												
28	1.2DL + 1.5LM + WL (300 DEG)	Yes	Ý		1	12	3	1.5	14	.046	26	.046												
29	1.2DL + 1.5LM + WL (330 DEG)	Yes	Ý		1	12	3	1.5	15	.046	27	.046		-										
30							Ŭ	1.0																
31	ICE LOAD COMBOS (1.5". 50 M						1																	
32	1.2DL + Ice DL + Ice WL (0 DEG)	Yes	Y		1	12	28	1	29	1	41	1												
33	1.2DL + Ice DL + Ice WL (30 DEG)	Yes	Ý		1	12	28	1	30	1	42	1												
34	1.2DL + Ice DL + Ice WL (60 DFG)	Yes	Y		1	1.2	28	1	31	1	43	1												
34	1.2DL + Ice DL + Ice WL (60 DEG)	Yes	Y		1	1.2	28	1	31	1	43	1												

Company:Black & Veatch Corp.Designer:Joohwan JungJob Number:405025.2021.2200Model Name:BRANFORD11J Risa Model

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	. B	Fa	. B	Fa	В	Fa								
35	1.2DL + Ice DL + Ice WL (90 DEG))Yes	Υ		1	1.2	28	1	32	1	44	1												
36	1.2DL + Ice DL + Ice WL (120 DE	Yes	Y		1	1.2	28	1	33	1	45	1												
37	1.2DL + Ice DL + Ice WL (150 DE	Yes	Y		1	1.2	28	1	34	1	46	1												
38	1.2DL + Ice DL + Ice WL (180 DE	Yes	Υ		1	1.2	28	1	35	1	47	1												
39	1.2DL + Ice DL + Ice WL (210 DE	Yes	Υ		1	1.2	28	1	36	1	48	1												
40	1.2DL + Ice DL + Ice WL (240 DE	Yes	Y		1	1.2	28	1	37	1	49	1												
41	1.2DL + Ice DL + Ice WL (270 DE	Yes	Υ		1	1.2	28	1	38	1	50	1												
42	1.2DL + Ice DL + Ice WL (300 DE	Yes	Υ		1	1.2	28	1	39	1	51	1												
43	1.2DL + Ice DL + Ice WL (330 DE	Yes	Υ		1	1.2	28	1	40	1	52	1												
44																								
45	SEISMIC LOAD COMBOS																							
46	1.2DL + Ev (Y) + Eh (X)	Yes	Υ		1	1.2	55	1	53	1														
47	1.2DL - Ev (Y) + Eh (X)	Yes	Υ		1	1.2	55	-1	53	1														
48	1.2DL + Ev (Y) - Eh (X)	Yes	Y		1	1.2	55	1	53	-1														
49	1.2DL - Ev (Y) - Eh (X)	Yes	Υ		1	1.2	55	-1	53	-1														
50	1.2DL + Ev (Y) + Eh (Z)	Yes	Y		1	1.2	55	1	54	1														
51	1.2DL - Ev (Y) + Eh (Z)	Yes	Υ		1	1.2	55	-1	54	1														
52	1.2DL + Ev (Y) - Eh (Z)	Yes	Y		1	1.2	55	1	54	-1														
53	1.2DL - Ev (Ŷ) - Eh (Ż)	Yes	Υ		1	1.2	55	-1	54	-1														
54																								

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-in]	LC	MY [k-in]	LC	MZ [k-in]	LC
1	N1	max	3161.879	2	732.703	2	2863.876	5	9.786	5	41.668	11	5.276	2
2		min	-3270.203	8	-538.645	8	-2863.876	11	-9.786	11	-41.668	5	-3.156	8
3	N11	max	2366.394	8	723.463	8	1960.058	11	3.118	5	21.052	5	5.388	8
4		min	-2258.069	2	-547.885	2	-1960.058	5	-3.118	11	-21.052	11	-3.397	2
5	Totals:	max	903.809	2	683.261	38	903.818	5						
6		min	-903.809	8	167.963	49	-903.818	11						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	.Loc[ft]	Dir	LC	phi*Pnc	.phi*Pnt [.	phi*Mn y	.phi*Mn z0	Cb Eqn
1	M1	HSS3X3X3	.689	0	11	.362	0	z	11	58412.63	59535	62.055	62.055 2	H1-1b
2	M2	PIPE 4.0	.369	2.75	11	.273	2.75		11	83097.9	93240	127.575	127.575	H1-1b
3	M6	HSS3X3X3	.417	1.833	10	.183	1.833	z	11	58412.63	59535	62.055	62.055 2	2H1-1b

March 16, 2021

BRANFORD11J

APPENDIX 3: ATTACHMENTS

dbSpectra

VHF Omni Antennas (160-222 MHz)

			1	60-17	'4 MH	z					2	17-22	2 MH	z				
	Model Number	DS1G03F36U-N	DS1G03F36U-D	DS1G06F36U-N	DS1G06F36U-D	DS1G03F36D-N	DS1G03F36D-D	DS2C00F36U-N	DS2C00F36U-D	DS2C03F36U-N	DS2C03F36U-D	DS2C06F36U-N	DS2C06F36U-D	DS2C00F36D-N	DS2C00F36D-D	DS2C03F36D-N	DS2C03F36D-D	
	Input Connector	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	
	Туре	Sin	gle	Sin	gle	Dı	Jal	Sir	ngle	Sin	gle	Sir	igle	Dı	ual	Dı	ıal	
	Bandwidth, MHz	1	4	1	4	1	4		5	ţ	5	:	5	!	5	5	5	
_	Power, Watts	50	00	50	00	3	50	5	00	50	00	50	00	3	50	35	50	
	Gain, dBd	3	3	6	3	;	3		0	3	3	(6	(C	3	}	
С Ц Ц	Horizontal Beamwidth, degrees	36	60	36	60	36	50	3	60	36	60	30	60	30	60	36	60	DCA
Щ	Vertical Beamwidth, degrees	3	0	1	6	3	0	6	60	3	0	1	6	6	0	3	0	DS20
	Beam Tilt, degrees	0)	()	(C		0	()	(C	(C	()	
	Isolation (minimum), dB	N	/A	N	/A	3	0	N	/A	N	/A	N	/A	3	0	3	0	
	Number of Connectors	1			1	2	2		1		1		1		2	2	2	
SAL	Flat Plate Area, ft ² (m ²)	2.53 (0.24)	4.38	(0.41)	4.5 (0.42)	1.9 (0.18)	1.9 (0.18)	2.58	(0.24)	2.4 (0.22)	4.1 (0	0.38)	
ANK	Lateral Windload Thrust, lbf(N)	95 (4	423)	164 ((730)	169	(752)	53 (236)	69 (307)	108	(480)	90 (400)	169 (752)	
MECH	Survival Wind Speed without ice, mph(kph) with 0.5" radial ice, mph(kph)	110 (93 (177) 150)	75 (60 (121) (97)	75 (65 (121) 105)	222 193	(357) (311)	172 150	(277) (241)	110 96 ((177) 154)	130 115	(209) (185)	75 (* 65 (*	121) 105)	
	Mounting Hardware included	DSH:	3V3R	DSH:	3V3N	DSH:	3V3N	DSH	2V3R	DSH:	2V3R	DSH	3V3N	DSH	3V3R	DSH	3V3N	
လ	Length, ft(m)	12.7	(3.9)	21.9	(6.7)	22.3	(6.8)	7.7	(2.3)	9.9	(3)	18.1	(5.5)	13.6	(4.1)	24.3	(7.4)	
<u>N</u>	Radome O.D., in(cm)	3 (7	7.6)	3 (7	7.6)	3 (7	7.6)	3 (7.6)	3 (7	7.6)	3 (7.6)	3 (7	7.6)	3 (7	'.6)	
ONU UNU	Mast O.D., in(cm)	2.5 (6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5	(6.4)	2.5 (6.4)	
M	Net Weight w/o bracket, lb(kg)	37 (1	6.8)	60 (2	27.2)	63 (2	28.6)	19	(8.6)	26 (*	11.8)	47 (2	21.3)	40 (18.1)	70 (3	81.8)	
	Shipping Weight, lb(kg)	67 (3	30.4)	90 (4	40.8)	93 (4	42.2)	39 (17.7)	56 (2	25.4)	77 (:	34.9)	70 (3	31.8)	100 (45.4)	

Тор

Тор

Bottom

Bottom

Тор

Bottom

TOWER/MAST SIZE AT PROPOSED ANTENNA ATTACHMENT = 8.5"± DIAMETER FOR UPPER LEVEL AND 10"± DIAMETER FOR LOWER LEVEL. PROPOSED CHAIN MOUNT FITS POLYGON OR ROUND POLES 5"-36" IN DIAMETER. NOTE: (1) 4" (4.5" OD) SCH 40 x 6'-0" AND (3) 2" (2.375" OD) SCH 40 x 6'-0" MOUNT PIPES ARE REQUIRED.

				TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESCRIPTION 2'-0" STAND-OFF, TRIPLE SECTOR, TAPER ADJUSTABLE CHAIN MOUNT, SITE PRO 1				Locations: New York, NY A valmont ♥ COMENTY A valmont ♥ COMENTY A valmont ♥ COMENTY				
			3/09/2010	ALL OTHER MACHINING (# 0.030") ALL OTHER ASSEMBLY (# 0.060")	CPD N	0.	DRAWN BY RH18 3/9/2010	ENG. APPROVAL	PART NO.	CHM3-L	-	י צכ	
REV	DESCRIPTION OF REVISIONS REVISION HISTORY	CPD	BY	DATE	PROPERTARY NOTE: THE DATA MAN TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROVINETD.	CLASS 81	^{SUB}	DRAWING USAGE CUSTOMER	снескер ву ВМС 3/15/2010	DWG. NO.	CHM3-L	بر ح	۱ ĥ

MOUNT-PIPE-TO-ANTENNA CLAMPS (TOTAL OF 5 KITS REQUIRED). SPACE CLAMPS PER ANTENNA MANUFACTURER'S RECOMMENDATIONS.

	PARTS LIST													
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.								
1	8	X-UPC1	SMALL PIPE TO PIPE BRACKET		0.85	6.79								
2	4	G12R-20	1/2" x 20" THREADED ROD (HDG.)	20 in	3.23	12.91								
3	16	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	1.14								
4	16	G12LW	1/2" HDG LOCKWASHER		0.01	0.22								
5	16	G12FW	1/2" HDG USS FLATWASHER		0.03	0.54								
		•	6	•	TOTAL WT #	13 45								

				TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESCRIPTION UNIVERSAL PIPE-TO-PIPE CLAMP SET FOR SMALL PIPES (1-1/4" TO 4-1/2")					STTE 1	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX		
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD N 44	o. 48	DRAWN BY CEK 3/13/2009	ENG. APPROVAL	PA	RT NO.	PC1		-
Α	REDRAWN IN INV, UPDATED VIEWS & TABLE		KC8	8/20/2012		CI 499	SUP	DRAWING USAGE	CHECKED BY	DW				무경
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF	81	01	CUSTOMER	CEK 2/18/2013	0	U	PC1		

TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.0307) DRILED AND GAS CUT HOLES (± 0.0307) - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.0107) - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESCRI	2'-0" STANDOFF, 2'-0" STANDOFF, TAPER ADJUSTAB SITE F	BINGLE SECTOR, E CHAIN MOUNT, RO 1		STTE 1	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO.	RH18 3/12/2	ENG. APPROVAL	PA	ART NO. TCH	IM1-L		1 8
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT MOUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROHIBITED.	CLASS S	UB DRAWING USAGE	снескед ву ВМС 3/15/2010	DV	NG. NO. TCH	IM1-L		Г - -

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IIISoil Class:D - Stiff Soil

 Elevation:
 6.13 ft (NAVD 88)

 Latitude:
 41.292531

 Longitude:
 -72.794633

Wind

Results:

Wind Speed:	138 Vmph	Wind Speed is 140 mph per 2018 Connecticut State Building Code
10-year MRI	78 Vmph	
25-year MRI	88 Vmph	
50-year MRI	95 Vmph	
100-year MRI	103 Vmph	

Date Socresed:

AGE M3H97202,1Fig. 26.5-1B and Figs. CC-1−CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.179	S _{DS} :	0.191	
S ₁ :	0.061	S _{D1} :	0.098	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.092	
S _{MS} :	0.287	PGA M:	0.148	
S _{M1} :	0.147	F _{PGA} :	1.6	
		l _e :	1.25	

Seismic Design Category B

Data Accessed: Date Source:

Tue Mar 09 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thi	ckness:	0.75 in.
Concu	rrent Temperature:	15 F
Gust S	peed:	50 mph
Data Source	e:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Acces	sed:	Tue Mar 09 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment D Photographic Documentation and Simulations

Photographic Documentation & Simulations

BRANFORD 11J 272 EAST MAIN STREET BRANFORD, CT 06405

Prepared in April 2021 by: All-Points Technology Corporation, P.C. 567 Vauxhall Street Extension – Suite 311 Waterford, CT 06385

Prepared for Eversource Energy

1 inch = 300 feet

300

1	EACT MAIN CTDEET	WEST		
PHOTO	LOCATION	ORIENTATION	DISTANCE TO SITE	VISIBILITY

2	EAST MAIN STREET	NORTHWEST	+/-360 FEET	VISIBLE
рното	LOCATION	ORIENTATION	DISTANCE TO SITE	VISIBILITY

2	FAST MAIN STREET	NORTHWEST	+/-360 EEET	VISIBI F
РНОТО	LOCATION	ORIENTATION	DISTANCE TO SITE	VISIBILITY

РНОТО

F	ΕΔΟΣ ΜΑΙΝΙ ΣΤΡΕΕΤ ΑΤ ΜΙΤΙ ΟΙ ΔΙΝ ΦΟΔΟ	NODTHEAST		
PHOTO	LOCATION	ORIENTATION	DISTANCE TO SITE	VISIBILITY

PHOTO	LOCATION	ORIENTATION	DISTANCE TO SITE	VISIBILITY
6	EAST MAIN STREET AT NORTH MAIN STREET	NORTHEAST	+/- 0.38 MILE	NOT VISIBLE

ALL-POINTS TECHNOLOGY CORPORATION