

STORMWATER MANAGEMENT REPORT

PROPOSED EAST WINDSOR SOLAR ONE, LLC SOLAR PROJECT

341 EAST ROAD EAST WINDSOR AND ELLINGTON, CONNECTICUT HARTFORD COUNTY

Prepared for:

East Windsor Solar One, LLC 150 Trumbull Street, 4th Floor Hartford, CT

Prepared by:

All-Points Technology Corporation, P.C. 567 Vauxhall Street Extension, Suite 311 Waterford, CT 06385

20 No. 20025 SS/ONAL ENCIDENT

July 2020

Table of Contents

INTRODUCTION	1
EXISTING SITE CONDITIONS	1
DEVELOPED SITE CONDITIONS	1
STORMWATER MANAGEMENT	2
CONCLUSION	4

Tables

TABLE 1-1 PRE-DEVELOPED PEAK STORM RUNOFF (Q), CUBIC FEET PER SECOND (CFS)
TABLE 1-2 POST-DEVELOPED PEAK STORM RUNOFF (Q), CUBIC FEET PER SECOND (CFS) 4

Appendices

APPENDIX A: NRCS SOIL SURVEY APPENDIX B: EXISTING DRAINAGE AREA MAP (EDA-1) & HYDROLOGIC COMPUTATION (HYDROCAD) APPENDIX C: PROPOSED DRAINAGE AREA MAP (PDA-1) & HYDROLOGIC COMPUTATION (HYDROCAD) APPENDIX D: NOAA ATLAS 14 PRECIPITATION FREQUENCY TABLE APPENDIX E: GEOTECHNICAL REPORT APPENDIX F: WATER QUALITY VOLUME CALCULATIONS

Introduction

At the request of East Windsor Solar One, LLC, All-Points Technology Corporation, P.C. ("APT") has undertaken analysis of and design to address stormwater impacts resulting from development of a proposed five (4.95±) MW alternating current (AC) solar electric generating facility in East Windsor, Connecticut (the "Project"). The Project, known as the East Windsor Solar One, LLC project, involves the installation of solar panels and associated equipment on a parcel at 341 East Road in both East Windsor and Ellington, Connecticut. The proposed solar array will be located specifically in the northwestern corner of the parcel and isolated in the Town of East Windsor ("Site").

The purpose of this report is to provide an analysis of the potential stormwater drainage impacts associated with the Project, as well as a description of the design to mitigate such potential stormwater drainage impacts. The design is intended to be in full compliance with the State and Town regulations while taking prevailing site conditions and practical factors into account.

Existing Site Conditions

The property is a privately-owned irregular shaped parcel located at 341 East Road in both East Windsor and Ellington, Connecticut, that consists of approximately $147.81\pm$ acres of undeveloped land. The parcel is bisected by the town boundary between East Windsor and Ellington in a north/south direction. An existing CL&P right-of-way also bisects the property on the Ellington side in the north/south direction as well.

The Site's existing topography generally slopes downward from northwest to southeast, and the topography includes slopes that range from approximately 0 to 5 percent throughout. Elevations within the project area of the Site range from approximately 206 feet AMSL near the northwestern corner of the site at the corner of Middle and East Road to approximately 192 feet AMSL along the southern limits of disturbance.

Developed Site Conditions

The Project will be constructed in the northwestern area of the property. Proposed access to the Site will off of East Road, approximately 554 feet south of the intersection of East Road and Middle Road. The Project includes the installation of 19,344 solar panels (15,990 Trina Solar TSM-DEG15MC.20(II) 395W modules and 3,354 Risen Solar RSM144-6-380BMDG 380W modules) and associated fencing, access road, utility, and stormwater management features, within $29.13\pm$ acres of the property. The $29.13\pm$ acres within the Project limits of disturbance is in an existing agricultural field that has been and is currently being tended to as an agricultural field. The project area has recently been turned and planted with a cover legume crop.

The proposed solar panels will be installed on a post driven ground mounted racking system, with minimal changes to the existing grades. As a result, the post-development site conditions will mimic the pre-developed site conditions. Areas of clearing and grubbing and any existing ground cover that is disturbed during construction will be reseeded with a low growth seed mix. A grass-lined stormwater management basin/temporary sediment basin is proposed along the

Stormwater Management Report East Windsor Solar One, LLC, East Windsor, CT July 2020

southern limits of the Project area to treat the WQV and provide sediment laden runoff control during construction.

Stormwater Management

Analysis Methodology

The hydrologic analysis was performed using the HydroCAD stormwater modeling system computer program developed by HydroCAD Software Solutions, LLC.

Hydrographs for each watershed were developed using the SCS Synthetic Unit Hydrograph Method with a Type III rainfall distribution. Hydrographs were developed for the NOAA Atlas 14, Volume 10, Version 3 Precipitation 2-, 25-, 50-, and 100-year storm event with rainfall depths of 3.17, 6.17, 7.01, and 7.95 inches respectively.

The existing and proposed drainage areas used in the calculations are illustrated on the Existing and Proposed Drainage Area Plans (EDA-1 & PDA-1). These maps and the corresponding HydroCAD output are attached.

Utilizing Appendix I, Stormwater Management at Solar Array Construction Projects, provided by Connecticut Department of Energy & Environmental Projection ("CT DEEP"), this hydrologic analysis will reflect a reduction of the Hydrologic Soil Group ("HSG") present onsite by one (1) step (e.g. soils of HSG B shall be considered HSG C). This reduction, as indicated by CT DEEP, is intended to account for the compaction of soils that results from extensive machinery traffic during construction of the array. The Water Quality Volume ("WQV") for the site will be calculated assuming that the roadways, gravel surfaces, and transformer pads are effectively impervious cover, see Appendix F. The solar panels are not considered effective impervious cover for this site because the post construction slopes are less than 15% and conditions (a)-(e) are being met.

Existing Drainage Patterns

The proposed Project area drains typically from the northwest to the southeast, ultimately into either the wooded area to the south of the property or the existing wetland and watercourse system to the east. The Site is modeled at the two (2) Analysis Points ("AP-1" and "AP-2") associated with same, with AP-1 representing the wooded area to the south of the property and AP-2 representing the existing wetland and watercourse system to the east. Peak discharges have been computed at the points of study for the 2-, 25-, 50-, and 100-year storm events.

The Project Site soils identified by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) consist of Map Unit Symbol 37C, named "Manchester gravelly sandy loam, 3 to 15 percent slopes", 704A, named "Enfield silt loam, 0 to 3 percent slopes", and 704B, named "Enfield silt loam, 3 to 8 percent slopes". Map Unit Symbol 37C is classified in the HSG rating of "A", while 704A and 704B are classified in the HSG rating of "B". A site-specific soil survey has been conducted to verify the NRCS soil classifications and resulted in a classification of the site soils to be a mix of Manchester, Haven and Enfield, and

Ninigret and Tisbury soils. Manchester soils have an HSG rating of "A" while Haven and Enfield and Ninigret and Tisbury soils have an HSG rating of "B", which do align with the NRCS classifications. The site-specific soil survey boundaries are used, when applicable, for modeling purposes.

The pre-developed discharges at the Analysis Point are tabulated in Table 1-1.

Analysis Point	Pre-developed Peak Storm Runoff (Q), cubic feet per second (cfs)				
	2-year	25-year	50-year	100-year	
AP-1	0.52	1.95	2.39	2.90	
AP-2	8.58	45.13	57.34	71.62	

Table 1-1

Proposed Drainage Patterns

The Project will require little to no clearing and grubbing within the existing agricultural field in the immediate area for the proposed solar installation, including the necessary utilities, access road, and stormwater management features, resulting in approximately $29.13\pm$ acres of disturbance. Earthwork will principally be associated with the installation of the proposed stormwater basin, B-1. The surface flow paths are designed to mimic existing conditions hydrologically so the proposed condition is modeled with the same catchment areas and two (2) analysis points ("AP-1" and "AP-2").

The overall curve number associated with the proposed condition cover type of meadow when dropped an HSG rating within areas of extensive machinery during construction per Appendix I is lower in comparison to the existing condition cover type of straight row legumes. However, in order to provide treatment for the WQV as well as potential sediment runoff generated during construction, one (1) grass-lined stormwater management infiltration basin/temporary sediment basin (B-1/TSB-1) is proposed along the southern project area. Basin B-1 is conservatively modeled with the maximum allowable infiltration rate of 5 inches/hour and an overflow weir to provide the necessary WQV, calculations provided in Appendix F. In comparison, a geotechnical evaluation with associated boring (B-6) and lab testing resulted in an infiltration rate of 25.4 inches/hour for the soils located within the proposed Basin B-1, see Appendix E. The overflow from Basin B-1 will discharge to Analysis Point AP-2.

Since the proposed development is designed mimic existing conditions with the addition of Basin B-1, the post-development condition is modeled with the same three (3) catchment areas and two (2) Analysis Points ("AP-1" and "AP-2"). Peak discharges have been computed at the point of study for the 2-year, 25-year, 50-year, and 100-year storm events. The post-development discharges at each point of study are tabulated in Table 1-2.

Table 1-2

Analysis Point	Post-developed Peak Storm Runoff (Q), cubic feet per second (cfs)				
-	2-year	25-year	50-year	100-year	
AP-1	0.42	1.65	2.03	2.47	
AP-2	2.16	8.43	17.70	29.02	

Conclusion

The stormwater management for the proposed site has been designed such that the postdevelopment peak discharges to the waters of the State of Connecticut for the 2-, 25-, 50-, and 100- year storm events are less than the pre-development peak discharges. As a result, the proposed solar array will not result in any adverse conditions to the surrounding areas and properties. APPENDIX A: NRCS SOIL SURVEY

Page 1 of 4

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut Survey Area Data: Version 18, Dec 6, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 27, 2016—Oct 30, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
12	Raypol silt loam	C/D	10.3	5.0%
15	Scarboro muck, 0 to 3 percent slopes	A/D	3.6	1.8%
23A	Sudbury sandy loam, 0 to 5 percent slopes	В	13.1	6.4%
29A	Agawam fine sandy loam, 0 to 3 percent slopes	В	1.9	0.9%
29B	Agawam fine sandy loam, 3 to 8 percent slopes	В	2.7	1.3%
35B	Penwood loamy sand, 3 to 8 percent slopes	A	1.2	0.6%
37C	Manchester gravelly sandy loam, 3 to 15 percent slopes	A	21.4	10.4%
108	Saco silt loam	B/D	8.1	3.9%
701A	Ninigret fine sandy loam, 0 to 3 percent slopes	С	3.4	1.6%
702A	Tisbury silt loam, 0 to 3 percent slopes	С	10.9	5.3%
702B	Tisbury silt loam, 3 to 8 percent slopes	С	2.6	1.3%
704A	Enfield silt loam, 0 to 3 percent slopes	В	92.5	45.1%
704B	Enfield silt loam, 3 to 8 percent slopes	В	30.1	14.7%
W	Water		3.5	1.7%
Totals for Area of Intere	est		205.3	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX B: EXISTING DRAINAGE AREA MAP (EDA-1) & Hydrologic Computation (HydroCAD)

EXISTING DRAINAGE AREAS

WATERSHED	TOTAL AREA (ACRES)	COMPOSITE CN	TC (MINS.)
EDA-1	0.632	72	11.2
EDA-2	25.372	64	30.2
EDA-3	3.609	72	15.0

EXISTING CONDITION PEAK FLOWS

ANALYSIS POINT	2-YEAR (CFS)	25-YEAR (CFS)	50-YEAR (CFS)	100-YEAR (CFS)
AP-1	0.52	1.95	2.39	2.90
AP-2	8.58	45.13	57.34	71.62

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
13.849	58	Legumes, straight row, Good, HSG A (EDA-2)
15.646	72	Legumes, straight row, Good, HSG B (EDA-1, EDA-2, EDA-3)
0.118	98	Unconnected roofs, HSG A (EDA-2)
29.613	66	TOTAL AREA
	Area (acres) 13.849 15.646 0.118 29.613	Area CN (acres) 13.849 58 15.646 72 0.118 98 29.613 66 66

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
13.967	HSG A	EDA-2
15.646	HSG B	EDA-1, EDA-2, EDA-3
0.000	HSG C	
0.000	HSG D	
0.000	Other	
29.613		TOTAL AREA

CT590210_EastWindsorSolarOne - EX - Rev0	
Prepared by Microsoft	l
HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC	

0.000

0.000

0.118

13.967

0.000

15.646

0.000

0.000

Printed 7/22/2020 Page 4

EDA-

2

Ground Covers (all nodes)							
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
13.849	15.646	0.000	0.000	0.000	29.495	Legumes, straight row, Good	EDA- 1, EDA- 2, EDA- 3

0.000

0.000

0.118 Unconnected roofs

29.613 TOTAL AREA

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Page 5

Subcatchment EDA-1: EDA-1	Runoff Area=0.632 ac 0.00% Impervious Runoff Depth=0.91" Flow Length=156' Tc=11.2 min CN=72 Runoff=0.52 cfs 0.048 af
Subcatchment EDA-2: EDA-2	Runoff Area=25.372 ac 0.47% Impervious Runoff Depth=0.55" Flow Length=1,414' Tc=30.2 min CN=64 Runoff=6.99 cfs 1.153 af
Subcatchment EDA-3: EDA-3	Runoff Area=3.609 ac 0.00% Impervious Runoff Depth=0.91" Flow Length=292' Tc=15.0 min CN=72 Runoff=2.66 cfs 0.274 af
Link AP-1: AP-1	Inflow=0.52 cfs 0.048 af Primary=0.52 cfs 0.048 af
Link AP-2: AP-2	Inflow=8.58 cfs 1.427 af Primary=8.58 cfs 1.427 af
Total Runoff Area = 29.6	13 ac Runoff Volume = 1.475 af Average Runoff Depth = 0.60"

9.013 99.60% Pervious = 29.495 ac 0.40% Impervious = 0.118 ac

Summary for Subcatchment EDA-1: EDA-1

Runoff = 0.52 cfs @ 12.17 hrs, Volume= 0.048 af, Depth= 0.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=3.17"

_	Area	(ac) C	N Dese	cription				
	0.632 72 Legumes, straight row, Good, HSG B							
	0.	632	100.	00% Pervi	ous Area			
	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
	10.8	100	0.0158	0.15		Sheet Flow, A-B		
	0.4	56	0.0234	2.29		Grass: Short n= 0.150 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Ky= 15.0 fps		
-	11.2	156	Total					

Subcatchment EDA-1: EDA-1

Summary for Subcatchment EDA-2: EDA-2

Runoff = 6.99 cfs @ 12.52 hrs, Volume= 1.153 af, Depth= 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=3.17"

Area (ac) C	N Des	cription					
13.8	349 5	58 Legi	egumes, straight row, Good, HSG A					
0.1	118 9	98 Unc	onnected r	oofs, HSG	A			
11.4	405 7	2 Legi	umes, strai	ight row, Go	bod, HSG B			
25.3	372 6	64 Wei	ghted Aver	rage				
25.2	254	99.5	3% Pervio	us Area				
0.1	118	0.47	% Impervi	ous Area				
0.1	118	100.	.00% Unco	nnected				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
15.8	100	0.0061	0.11		Sheet Flow, A-B			
					Grass: Short n= 0.150 P2= 3.17"			
5.8	637	0.0147	1.82		Shallow Concentrated Flow, B-C			
					Grassed Waterway Kv= 15.0 fps			
8.6	677	0.0076	1.31		Shallow Concentrated Flow, C-D			
					Grassed Waterway Kv= 15.0 fps			

30.2 1,414 Total

Subcatchment EDA-2: EDA-2

Summary for Subcatchment EDA-3: EDA-3

Runoff = 2.66 cfs @ 12.22 hrs, Volume= 0.274 af, Depth= 0.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=3.17"

_	Area	(ac) C	N Dese	cription			
	3.	609 7	'2 Legu	umes, strai	ght row, Go	bod, HSG B	
	3.	609	100.	00% Pervi	ous Area		
	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
	13.4	100	0.0092	0.12		Sheet Flow, A-B	
	1.6	192	0.0169	1.95		Grass: Short n= 0.150 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	15.0	292	Total				

Subcatchment EDA-3: EDA-3

Summary for Link AP-1: AP-1

Inflow A	\rea =	0.632 ac,	0.00% Impervious,	Inflow Depth = 0.9	91" for 2 YR event
Inflow	=	0.52 cfs @	12.17 hrs, Volume	= 0.048 af	
Primary	· =	0.52 cfs @	12.17 hrs, Volume	= 0.048 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow A	Area =	28.981 ac,	0.41% Impervious,	Inflow Depth = 0.5	59" for 2 YR event
Inflow	=	8.58 cfs @	12.48 hrs, Volume	= 1.427 af	
Primary	y =	8.58 cfs @	12.48 hrs, Volume	= 1.427 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

Subcatchment EDA-1: EDA-1	Runoff Area=0.632 ac 0.00% Impervious Runoff Depth=3.13"
	Flow Length=156' Tc=11.2 min CN=72 Runoff=1.95 cfs 0.165 af
Subcatchment EDA-2: EDA-2	Runoff Area=25.372 ac 0.47% Impervious Runoff Depth=2.39"
	Flow Length=1,414' Tc=30.2 min CN=64 Runoff=38.94 cfs 5.043 af
Subcatchment EDA-3: EDA-3	Runoff Area=3.609 ac 0.00% Impervious Runoff Depth=3.13"
	Flow Length=292' Tc=15.0 min CN=72 Runoff=10.00 cfs 0.942 af
Link AP-1: AP-1	Inflow=1.95 cfs 0.165 af
	Primary=1.95 cfs 0.165 af
Link AP-2: AP-2	Inflow=45.13 cfs 5.986 af
	Primary=45.13 cfs 5.986 af
Total Runoff Area = 29	613 ac Runoff Volume = 6 151 af Average Runoff Depth = 2 49"

Total Runoff Area = 29.613 acRunoff Volume = 6.151 afAverage Runoff Depth = 2.49"99.60% Pervious = 29.495 ac0.40% Impervious = 0.118 ac

Summary for Subcatchment EDA-1: EDA-1

Runoff = 1.95 cfs @ 12.16 hrs, Volume= 0.165 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YR Rainfall=6.17"

_	Area	(ac) C	N Dese	cription				
	0.632 72 Legumes, straight row, Good, HSG B							
	0.	632	100.	00% Pervi	ous Area			
	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
	10.8	100	0.0158	0.15		Sheet Flow, A-B		
	0.4	56	0.0234	2.29		Grass: Short n= 0.150 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps		
-	11.2	156	Total			· · ·		

Subcatchment EDA-1: EDA-1

Summary for Subcatchment EDA-2: EDA-2

Runoff = 38.94 cfs @ 12.45 hrs, Volume= 5.043 af, Depth= 2.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YR Rainfall=6.17"

Area	(ac) (N Des	scription		
13.	849	58 Leo	umes, stra	ight row, Go	bod, HSG A
0.	118	98 Un	connected r	oofs, HSG	A
11.4	405	72 Leg	umes, stra	ight row, Go	bod, HSG B
25.	372	64 We	ighted Ave	rage	
25.	254	99.	53% Pervio	us Area	
0.	118	0.4	7% Impervi	ous Area	
0.	118	100	.00% Ünco	nnected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	100	0.0061	0.11		Sheet Flow, A-B
					Grass: Short n= 0.150 P2= 3.17"
5.8	637	0.0147	1.82		Shallow Concentrated Flow, B-C
					Grassed Waterway Kv= 15.0 fps
8.6	677	0.0076	1.31		Shallow Concentrated Flow, C-D
					Grassed Waterway Kv= 15.0 fps

30.2 1,414 Total

Subcatchment EDA-2: EDA-2

Summary for Subcatchment EDA-3: EDA-3

Runoff = 10.00 cfs @ 12.21 hrs, Volume= 0.942 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YR Rainfall=6.17"

_	Area	(ac) C	N Dese	cription					
	3.	3.609 72 Legumes, straight row, Good, HSG B							
	3.	609	100.	00% Pervi	ous Area				
	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
	13.4	100	0.0092	0.12		Sheet Flow, A-B			
_	1.6	192	0.0169	1.95		Grass: Short n= 0.150 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps			
	15.0	292	Total						

Subcatchment EDA-3: EDA-3

Summary for Link AP-1: AP-1

Inflow Area	a =	0.632 ac,	0.00% Impervious,	Inflow Depth = $3.^{\circ}$	13" for 25 YR event
Inflow	=	1.95 cfs @	12.16 hrs, Volume	= 0.165 af	
Primary	=	1.95 cfs @	12.16 hrs, Volume	= 0.165 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow A	rea =	28.981 ac,	0.41% Impervious,	Inflow Depth = 2.4	48" for 25 YR event
Inflow	=	45.13 cfs @	12.41 hrs, Volume	= 5.986 af	
Primary	· =	45.13 cfs @	12.41 hrs, Volume	= 5.986 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=0.632 ac 0.00% Impervious Runoff Depth=3.84" Flow Length=156' Tc=11.2 min CN=72 Runoff=2.39 cfs 0.202 af
Subcatchment EDA-2: EDA-2	Runoff Area=25.372 ac 0.47% Impervious Runoff Depth=3.01" Flow Length=1,414' Tc=30.2 min CN=64 Runoff=49.70 cfs 6.362 af
Subcatchment EDA-3: EDA-3	Runoff Area=3.609 ac 0.00% Impervious Runoff Depth=3.84" Flow Length=292' Tc=15.0 min CN=72 Runoff=12.28 cfs 1.154 af
Link AP-1: AP-1	Inflow=2.39 cfs 0.202 af Primary=2.39 cfs 0.202 af
Link AP-2: AP-2	Inflow=57.34 cfs 7.516 af Primary=57.34 cfs 7.516 af
Total Runoff Area = 29	.613 ac Runoff Volume = 7.718 af Average Runoff Depth = 3.13"

= 29.613 ac Runoff Volume = 7.718 af Average Runoff Depth = 3.13" 99.60% Pervious = 29.495 ac 0.40% Impervious = 0.118 ac

Summary for Subcatchment EDA-1: EDA-1

Runoff = 2.39 cfs @ 12.16 hrs, Volume= 0.202 af, Depth= 3.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=7.01"

_	Area	(ac) C	N Dese	cription				
	0.632 72 Legumes, straight row, Good, HSG B							
	0.632 100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	10.8	100	0.0158	0.15		Sheet Flow, A-B		
	0.4	50	0.0004	0.00		Grass: Short n= 0.150 P2= 3.17"		
	0.4	96	0.0234	2.29		Grassed Waterway Ky= 15.0 fps		
-	11.2	156	Total					

Subcatchment EDA-1: EDA-1

Summary for Subcatchment EDA-2: EDA-2

Runoff = 49.70 cfs @ 12.45 hrs, Volume= 6.362 af, Depth= 3.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=7.01"

Area ((ac) C	CN Des	scription				
13.8	849	58 Leg	_ egumes, straight row, Good, HSG A				
0.1	118	98 Uno	connected r	oofs, HSG	A		
11.4	405	72 Leg	umes, stra	ight row, Go	bod, HSG B		
25.3	372	64 We	ighted Ave	rage			
25.2	254	99.	53% Pervio	us Area			
0.	118	0.4	7% Impervi	ous Area			
0.118 100.00% Unconnected							
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·		
15.8	100	0.0061	0.11		Sheet Flow, A-B		
					Grass: Short n= 0.150 P2= 3.17"		
5.8	637	0.0147	1.82		Shallow Concentrated Flow, B-C		
					Grassed Waterway Kv= 15.0 fps		
8.6	677	0.0076	1.31		Shallow Concentrated Flow, C-D		
					Grassed Waterway Kv= 15.0 fps		

30.2 1,414 Total

Subcatchment EDA-2: EDA-2

Summary for Subcatchment EDA-3: EDA-3

Runoff = 12.28 cfs @ 12.21 hrs, Volume= 1.154 af, Depth= 3.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=7.01"

_	Area	(ac) C	N Dese	cription				
	3.609 72 Legumes, straight row, Good, HSG B							
	3.609 100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	13.4	100	0.0092	0.12		Sheet Flow, A-B		
	1.6	192	0.0169	1.95		Grass: Short n= 0.150 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps		
	15.0	292	Total					

Subcatchment EDA-3: EDA-3

Summary for Link AP-1: AP-1

Inflow Ar	ea =	0.632 ac,	0.00% Impervious,	Inflow Depth = 3.8	34" for 50 YR event
Inflow	=	2.39 cfs @	12.16 hrs, Volume	= 0.202 af	
Primary	=	2.39 cfs @	12.16 hrs, Volume	= 0.202 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow A	Area =	28.981 ac,	0.41% Impervious,	Inflow Depth = $3.^{\circ}$	11" for 50 YR event
Inflow	=	57.34 cfs @	12.41 hrs, Volume	= 7.516 af	
Primary	y =	57.34 cfs @	12.41 hrs, Volume	= 7.516 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

CT590210_EastWindsorSolarOne -	· EX - Rev0	Type III 24-hr	100 YR Rainfall=7.95"				
Prepared by Microsoft			Printed 7/22/2020				
HydroCAD® 10.00-25 s/n 07402 © 2019 Hy	droCAD Software S	olutions LLC	Page 23				
Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method							
Subcatchment EDA-1: EDA-1	Runoff Area=(Flow Length=156'	0.632 ac 0.00% Imperv Tc=11.2 min CN=72	rious Runoff Depth=4.65" Runoff=2.90 cfs 0.245 af				

Subcatchment EDA-2: EDA-2Runoff Area=25.372 ac0.47% ImperviousRunoff Depth=3.74"Flow Length=1,414'Tc=30.2 minCN=64Runoff=62.23 cfs7.911 af

Subcatchment EDA-3: EDA-3Runoff Area=3.609 ac0.00% ImperviousRunoff Depth=4.65"Flow Length=292'Tc=15.0 minCN=72Runoff=14.89 cfs1.399 af

Link AP-1: AP-1

Link AP-2: AP-2

Inflow=2.90 cfs 0.245 af Primary=2.90 cfs 0.245 af

Inflow=71.62 cfs 9.309 af Primary=71.62 cfs 9.309 af

Total Runoff Area = 29.613 ac Runoff Volume = 9.554 af Average Runoff Depth = 3.87" 99.60% Pervious = 29.495 ac 0.40% Impervious = 0.118 ac
Summary for Subcatchment EDA-1: EDA-1

Runoff = 2.90 cfs @ 12.16 hrs, Volume= 0.245 af, Depth= 4.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 YR Rainfall=7.95"

	Area	(ac) C	N Dese	cription			
	0.	632 7	'2 Legu	umes, strai	ght row, Go	bod, HSG B	
_	0.	632	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	10.8	100	0.0158	0.15		Sheet Flow, A-B	
	0.4	56	0.0234	2.29		Grass: Short n= 0.150 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	11.2	156	Total				

Subcatchment EDA-1: EDA-1

Summary for Subcatchment EDA-2: EDA-2

Runoff = 62.23 cfs @ 12.44 hrs, Volume= 7.911 af, Depth= 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 YR Rainfall=7.95"

Area (a	ac) C	N Des	cription							
13.8	849 5	58 Legu	egumes, straight row, Good, HSG A							
0.1	18 9	8 Unc	onnected r	oofs, HSG	A					
11.4	05 7	'2 Legi	umes, strai	ght row, Go	bod, HSG B					
25.3	872 6	64 Wei	ghted Aver	age						
25.2	254	99.5	3% Pervio	us Area						
0.1	18	0.47	% Impervi	ous Area						
0.1	18	100.	00% Unco	nnected						
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
15.8	100	0.0061	0.11		Sheet Flow, A-B					
					Grass: Short n= 0.150 P2= 3.17"					
5.8	637	0.0147	1.82		Shallow Concentrated Flow, B-C					
					Grassed Waterway Kv= 15.0 fps					
8.6	677	0.0076	1.31		Shallow Concentrated Flow, C-D					
					Grassed Waterway Kv= 15.0 fps					

30.2 1,414 Total

Subcatchment EDA-2: EDA-2

Summary for Subcatchment EDA-3: EDA-3

Runoff = 14.89 cfs @ 12.21 hrs, Volume= 1.399 af, Depth= 4.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 YR Rainfall=7.95"

_	Area	(ac) C	N Dese	cription				
	3.609 72 Legumes, straight row, Good, HSG B							
	3.	609	100.	00% Pervi	ous Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	13.4	100	0.0092	0.12		Sheet Flow, A-B		
_	1.6	192	0.0169	1.95		Grass: Short n= 0.150 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps		
	15.0	292	Total					

Subcatchment EDA-3: EDA-3

Summary for Link AP-1: AP-1

Inflow Are	a =	0.632 ac,	0.00% Impervious,	Inflow Depth = 4.6	65" for 100 YR event
Inflow	=	2.90 cfs @	12.16 hrs, Volume	= 0.245 af	
Primary	=	2.90 cfs @	12.16 hrs, Volume	= 0.245 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow A	Area =	28.981 ac,	0.41% Impervious,	Inflow Depth = 3.8	35" for 100 YR event
Inflow	=	71.62 cfs @	12.39 hrs, Volume	= 9.309 af	
Primary	/ =	71.62 cfs @	12.39 hrs, Volume	= 9.309 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

APPENDIX C: PROPOSED DRAINAGE AREA MAP (PDA-1) & Hydrologic Computation (HydroCAD)

PROPOSED DRAINAGE AREAS

	TOTAL AREA (ACRES)	COMPOSITE CN	TC (MINS.)
PDA-1	0.632	71	16.2
PDA-2	25.372	65	37.5
PDA-3	3.609	71	21.2

PROPOSED CONDITION PEAK FLOWS

ANALYSIS POINT	2-YEAR (CFS)	25-YEAR (CFS)	50-YEAR (CFS)	100-YEAR (CFS)
AP-1	0.42	1.65	2.03	2.47
AP-2	2.16	8.43	17.70	29.02

CT590210_EastWindsorSolarOne - PR - Rev0 Prepared by Microsoft HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.495	96	Gravel surface, HSG B (PDA-2)
0.361	96	Gravel surface, HSG C (PDA-2)
13.355	58	Meadow, non-grazed, HSG B (PDA-2)
15.284	71	Meadow, non-grazed, HSG C (PDA-1, PDA-2, PDA-3)
0.118	98	Unconnected roofs, HSG A (PDA-2)
29.613	66	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.118	HSG A	PDA-2
13.850	HSG B	PDA-2
15.645	HSG C	PDA-1, PDA-2, PDA-3
0.000	HSG D	
0.000	Other	
29.613		TOTAL AREA

				•	,		
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.495	0.361	0.000	0.000	0.856	Gravel surface	PDA-2
0.000	13.355	15.284	0.000	0.000	28.639	Meadow, non-grazed	PDA-1,
							PDA-2,
							PDA-3
0.118	0.000	0.000	0.000	0.000	0.118	Unconnected roofs	PDA-2
0.118	13.850	15.645	0.000	0.000	29.613	TOTAL AREA	

Ground Covers (all nodes)

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1: PD/	A-1 Runoff Area=0.632 ac 0.00% Impervious Runoff Depth=0.86" Flow Length=156' Tc=16.2 min CN=71 Runoff=0.42 cfs 0.045 af
Subcatchment PDA-2: PD	A-2 Runoff Area=25.372 ac 0.47% Impervious Runoff Depth=0.59" Flow Length=1,414' Tc=37.5 min CN=65 Runoff=7.04 cfs 1.239 af
Subcatchment PDA-3: PD	A-3 Runoff Area=3.609 ac 0.00% Impervious Runoff Depth=0.86" Flow Length=292' Tc=21.2 min CN=71 Runoff=2.16 cfs 0.259 af
Pond B-1: B-1	Peak Elev=192.28' Storage=7,203 cf Inflow=7.04 cfs 1.239 af Discarded=3.84 cfs 1.239 af Primary=0.00 cfs 0.000 af Outflow=3.84 cfs 1.239 af
Link AP-1: AP-1	Inflow=0.42 cfs 0.045 af Primary=0.42 cfs 0.045 af
Link AP-2: AP-2	Inflow=2.16 cfs 0.259 af Primary=2.16 cfs 0.259 af
Total Pupot	ff Area = 20 612 ac Bunoff Volume = 1 542 af Average Bunoff Denth = 0.62"

Total Runoff Area = 29.613 ac Runoff Volume = 1.543 af Average Runoff Depth = 0.63" 99.60% Pervious = 29.495 ac 0.40% Impervious = 0.118 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 0.42 cfs @ 12.25 hrs, Volume= 0.045 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=3.17"

 Area	(ac) C	N Dese	cription				
0.632 71 Meadow, non-grazed, HSG C							
 0.	632	100.	00% Pervi	ous Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
15.8	100	0.0158	0.11		Sheet Flow, A-B		
 0.4	56	0.0234	2.29		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps		
16.2	156	Total					

Subcatchment PDA-1: PDA-1

Summary for Subcatchment PDA-2: PDA-2

Runoff = 7.04 cfs @ 12.63 hrs, Volume= 1.239 af, Depth= 0.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=3.17"

Area (ac) C	N Des	cription		
13.3	355 \$	58 Mea	dow, non-g	grazed, HS	G B
0.4	495 9	96 Gra	vel surface	, HSG B	
0.1	118 9	98 Unc	onnected r	oofs, HSG	A
11.0)43	71 Mea	dow, non-g	grazed, HS	GC
0.3	361 9	96 Gra	vel surface	, HSG C	
25.3	372 (65 Wei	ghted Aver	rage	
25.2	254	99.5	53% Pervio	us Area	
0.1	118	0.47	7% Impervi	ous Area	
0.1	118	100	.00% Unco	nnected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
23.1	100	0.0061	0.07		Sheet Flow, A-B
					Grass: Dense n= 0.240 P2= 3.17"
5.8	637	0.0147	1.82		Shallow Concentrated Flow, B-C
					Grassed Waterway Kv= 15.0 fps
8.6	677	0.0076	1.31		Shallow Concentrated Flow, C-D
					Grassed Waterway Kv= 15.0 fps
37.5	1,414	Total			

Hydrograph Runoff 7.04 cfs Type III 24-hr 7. 2 YR Rainfall=3.17" 6-Runoff Area=25.372 ac 5-Runoff Volume=1.239 af Flow (cfs) Runoff Depth=0.59" 4 Flow Length=1,414' Tc=37.5 min 3-**CN=65** 2-1 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Subcatchment PDA-2: PDA-2

Summary for Subcatchment PDA-3: PDA-3

Runoff = 2.16 cfs @ 12.32 hrs, Volume= 0.259 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=3.17"

_	Area	(ac) C	N Dese	cription			
	3.	609 7	'1 Mea	dow, non-g	grazed, HS	GC	
	3.	609	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	19.6	100	0.0092	0.09		Sheet Flow, A-B	
	1.6	192	0.0169	1.95		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	21.2	292	Total				

Subcatchment PDA-3: PDA-3

Summary for Pond B-1: B-1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=509)

Inflow Area	=	25.372 ac,	0.47% Impervious,	Inflow Depth = 0.59	9" for 2 YR event
Inflow	=	7.04 cfs @	12.63 hrs, Volume	= 1.239 af	
Outflow	=	3.84 cfs @	13.13 hrs, Volume	= 1.239 af, <i>I</i>	Atten= 45%, Lag= 30.4 min
Discarded	=	3.84 cfs @	13.13 hrs, Volume	= 1.239 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 192.28' @ 13.13 hrs Surf.Area= 33,219 sf Storage= 7,203 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 11.9 min (937.5 - 925.5)

Volume	Inver	t Avail.S	torage	Storage Descriptio	n					
#1	192.00)' 166	,735 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)				
Elevatio	on S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
192.0 193.0 194.0	50 50 50 50	19,648 85,795 153,247	581.0 1,132.6 1,536.5	0 48,833 117,902	0 48,833 166,735	<u>19,648</u> 94,871 180,670				
Device #1 #2	Routing Discardec Primary	Inve I 192.00 193.00	rt Outle D' 5.00 D' 41.0 Head Coef	et Devices 0 in/hr Exfiltration ' long x 11.0' bread d (feet) 0.20 0.40 f. (English) 2.53 2.	over Surface area ath Broad-Crested 0.60 0.80 1.00 1 59 2.70 2.68 2.6	l Rectangular Weir .20 1.40 1.60 7 2.68 2.66 2.64				
Discard	Discarded OutElow Max = 3.84 efc @ 13.13 brs HW = 102.28' (Erec Discharge)									

Discarded OutFlow Max=3.84 cfs @ 13.13 hrs HW=192.28' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 3.84 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=192.00' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond B-1: B-1

Summary for Link AP-1: AP-1

Inflow A	rea =	0.632 ac,	0.00% Impervious,	Inflow Depth = 0.	86" for 2 YR event
Inflow	=	0.42 cfs @	12.25 hrs, Volume	= 0.045 af	
Primary	/ =	0.42 cfs @	12.25 hrs, Volume	= 0.045 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow Are	ea =	28.981 ac,	0.41% Impervious,	Inflow Depth = 0.1	11" for 2 YR event
Inflow	=	2.16 cfs @	12.32 hrs, Volume	= 0.259 af	
Primary	=	2.16 cfs @	12.32 hrs, Volume	= 0.259 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1: P	DA-1 FI	Runoff Area ow Length=15	a=0.632 ac 6' Tc=16.2	0.00% Imp = 2 min CN	pervious 71 Runo	Runoff D off=1.65 c	epth=3.04" fs_0.160 af
Subcatchment PDA-2: P	DA-2 Flow	Runoff Area= Length=1,414	=25.372 ac ' Tc=37.5	0.47% lmp min CN=6	pervious 5 Runot	Runoff D ff=36.69 c	epth=2.48" fs_5.234 af
Subcatchment PDA-3: P	DA-3 FI	Runoff Area ow Length=29	a=3.609 ac 2' Tc=21./	0.00% lmp 2 min CN=	pervious 71 Rune	Runoff D off=8.41 c	epth=3.04" fs_0.913 af
Pond B-1: B-1	Discarded=11.03 cfs	Peak Elev=19 4.837 af Prin	3.16' Stora nary=6.66 (age=63,353 cfs_0.398 at	cf Inflov Outflov	v=36.69 c v=17.70 c	fs 5.234 af fs 5.234 af
Link AP-1: AP-1					Inflo Prima	ow=1.65 c ary=1.65 c	fs 0.160 af fs 0.160 af
Link AP-2: AP-2					Inflo Prima	ow=8.43 c ary=8.43 c	fs 1.311 af fs 1.311 af
Total Run	off Area = 29 613 a	c Runoff Vo	lume = 6	308 af 🗛 🗤	erage Ri	unoff De	oth = 2 56"

"Total Runoff Area = 29.613 ac Runoff Volume = 6.308 af Average Runoff Depth = 2.56 99.60% Pervious = 29.495 ac 0.40% Impervious = 0.118 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 1.65 cfs @ 12.22 hrs, Volume= 0.160 af, Depth= 3.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YR Rainfall=6.17"

_	Area	(ac) C	N Dese	cription			
	0.	632 7	'1 Mea	dow, non-g	grazed, HS	GC	
	0.	632	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	15.8	100	0.0158	0.11		Sheet Flow, A-B	
	0.4	56	0.0234	2.29		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	16.2	156	Total				

Subcatchment PDA-1: PDA-1

Summary for Subcatchment PDA-2: PDA-2

Runoff = 36.69 cfs @ 12.54 hrs, Volume= 5.234 af, Depth= 2.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YR Rainfall=6.17"

Area ((ac) (CN [Desc	cription		
13.3	355	58 N	Mea	dow, non-g	grazed, HS	G B
0.4	495	96 (Grav	el surface	, HSG B	
0.1	118	98 l	Jnco	onnected r	oofs, HSG	A
11.0	043	71 N	Mea	dow, non-g	grazed, HS	GC
0.3	361	96 (Grav	el surface	, HSG C	
25.3	372	65 \	Neig	ghted Aver	age	
25.2	254	ç	99.5	3% Pervio	us Area	
0.118 0.47% Impervious Area						
0.	118	1	100.	00% Unco	nnected	
Tc	Length	Slo	pe	Velocity	Capacity	Description
(min)	(feet)	(ft	:/ft)	(ft/sec)	(cfs)	
23.1	100	0.00)61	0.07		Sheet Flow, A-B
						Grass: Dense n= 0.240 P2= 3.17"
5.8	637	0.01	47	1.82		Shallow Concentrated Flow, B-C
						Grassed Waterway Kv= 15.0 fps
8.6	677	0.00)76	1.31		Shallow Concentrated Flow, C-D
						Grassed Waterway Kv= 15.0 fps
37.5	1,414	Tota	al			

Hydrograph Runoff 40 38 36.69 cfs Type III 24-hr 36-34-25 YR Rainfall=6.17" 32-30-Runoff Area=25.372 ac 28 26-Runoff Volume=5.234 af 24 (classification) (class Runoff Depth=2.48" Flow Length=1,414' 16 Tc=37.5 min 14 **CN=65** 12 10-8-6-4 2 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Subcatchment PDA-2: PDA-2

Summary for Subcatchment PDA-3: PDA-3

Runoff = 8.41 cfs @ 12.30 hrs, Volume= 0.913 af, Depth= 3.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YR Rainfall=6.17"

_	Area	(ac) C	N Dese	cription			
	3.	609 7	'1 Mea	dow, non-g	grazed, HS	GC	
	3.	609	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	19.6	100	0.0092	0.09		Sheet Flow, A-B	
	1.6	192	0.0169	1.95		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	21.2	292	Total				

Subcatchment PDA-3: PDA-3

Summary for Pond B-1: B-1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=271)

Inflow Area	ı =	25.372 ac,	0.47% Impervious, Inflow I	Depth = 2.48" for 25 YR event
Inflow	=	36.69 cfs @	12.54 hrs, Volume=	5.234 af
Outflow	=	17.70 cfs @	13.06 hrs, Volume=	5.234 af, Atten= 52%, Lag= 31.0 min
Discarded	=	11.03 cfs @	13.06 hrs, Volume=	4.837 af
Primary	=	6.66 cfs @	13.06 hrs, Volume=	0.398 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 193.16' @ 13.06 hrs Surf.Area= 95,307 sf Storage= 63,353 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 52.4 min (930.2 - 877.8)

Volume	Invert	Avail.	Storage	Storage Descriptio	n				
#1	192.00'	16	6,735 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)			
Elevatio	on S et)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
192.0 193.0 194.0	00 00 00	19,648 85,795 153,247	581.0 1,132.6 1,536.5	0 48,833 117,902	0 48,833 166,735	19,648 94,871 180,670			
Device	Routing	Inv	ert Outle	et Devices					
#1 #2	Discarded Primary	192.(193.(00' 5.00 00' 41.0 ' Head Coef	0 in/hr Exfiltration ' long x 11.0' bread d (feet) 0.20 0.40 f. (English) 2.53 2.	over Surface area oth Broad-Crested 0.60 0.80 1.00 1. 59 2.70 2.68 2.6	Rectangular Weir .20 1.40 1.60 7 2.68 2.66 2.64			
Discard	Discarded OutFlow Max=11.03 cfs @ 13.06 hrs HW=193.16' (Free Discharge)								

1=Exfiltration (Exfiltration Controls 11.03 cfs)

Primary OutFlow Max=6.66 cfs @ 13.06 hrs HW=193.16' TW=0.00' (Dynamic Tailwater) **2=Broad-Crested Rectangular Weir** (Weir Controls 6.66 cfs @ 1.01 fps)

Pond B-1: B-1

Summary for Link AP-1: AP-1

Inflow Area	a =	0.632 ac,	0.00% Impervious,	Inflow Depth = 3.	04" for 25 YR event
Inflow	=	1.65 cfs @	12.22 hrs, Volume	= 0.160 af	
Primary	=	1.65 cfs @	12.22 hrs, Volume	= 0.160 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow A	rea =	28.981 ac,	0.41% Impervious,	Inflow Depth = 0.5	54" for 25 YR event
Inflow	=	8.43 cfs @	13.03 hrs, Volume	= 1.311 af	
Primary	=	8.43 cfs @	13.03 hrs, Volume	= 1.311 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

Printed 7/22/2020 Page 23

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1:	PDA-1	Runof	f Area=	0.632 ac Tc=16 2	0.00 ⁹	% Imper	vious Runo	Runoff I	Dep cfs	th=3.73" 0 197 af
		Tiow Long		10 10.2			Tuno	2.00	010	0.107 ui
Subcatchment PDA-2:	PDA-2	Runoff	Area=2	5.372 ac	0.47	% Imper	vious	Runoff I	Dep	th=3.11"
	Fl	ow Length=	1,414'	Tc=37.5 r	min (CN=65	Runoff	f=46.59	cfs	6.576 af
Subcatchment PDA-3:	PDA-3	Runof	f Area=	3.609 ac	0.00	% Imper	vious	Runoff I	Dep	th=3.73"
		-low Length	1=292'	Tc=21.2 ı	min (CN=71	Runoff	f=10.37	cfs	1.122 af
Pond B-1: B-1		Peak Ele	ev=193.	28' Stora	ge=74	1,767 cf	Inflow	=46.59	cfs	6.576 af
	Discarded=11.86 cf	s 5.533 af	Primar	y=15.17 c	fs 1.0	043 af (Outflow	=27.02	cfs	6.576 af
Link AP-1: AP-1							Inflo	w=2.03	cfs	0.197 af
							Prima	ry=2.03	cfs	0.197 af
Link AP-2: AP-2							Inflow	/=17.70	cfs	2.165 af
						F	Primary	/=17.70	cfs	2.165 af
Total D	upoff Area = 20.64°		ff Valu	umo - 7 9					nth	- 2 20"

Total Runoff Area = 29.613 ac Runoff Volume = 7.895 af Average Runoff Depth = 3.20' 99.60% Pervious = 29.495 ac 0.40% Impervious = 0.118 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 2.03 cfs @ 12.22 hrs, Volume= 0.197 af, Depth= 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=7.01"

_	Area	(ac) C	N Dese	cription			
	0.	632 7	'1 Mea	dow, non-g	grazed, HS	GC	
	0.	632	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	15.8	100	0.0158	0.11		Sheet Flow, A-B	
	0.4	56	0.0234	2.29		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	16.2	156	Total				

Subcatchment PDA-1: PDA-1

Summary for Subcatchment PDA-2: PDA-2

Runoff = 46.59 cfs @ 12.54 hrs, Volume= 6.576 af, Depth= 3.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=7.01"

Area ((ac) C	N Des	scription		
13.3	355 క	58 Mea	adow, non-g	grazed, HS	GB
0.4	495 9	96 Gra	vel surface	, HSG B	
0.1	118 9	98 Uno	connected r	oofs, HSG	A
11.0	043	71 Mea	adow, non-g	grazed, HS	GC
0.3	361 9	96 Gra	vel surface	, HSG C	
25.3	372 (65 We	ighted Avei	age	
25.2	254	99.5	53% Pervio	us Area	
0.1	118	0.4	7% Impervi	ous Area	
0.1	118	100	.00% Unco	nnected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
23.1	100	0.0061	0.07		Sheet Flow, A-B
					Grass: Dense n= 0.240 P2= 3.17"
5.8	637	0.0147	1.82		Shallow Concentrated Flow, B-C
					Grassed Waterway Kv= 15.0 fps
8.6	677	0.0076	1.31		Shallow Concentrated Flow, C-D
					Grassed Waterway Kv= 15.0 fps
37.5	1,414	Total			

Hydrograph 52-50-48-Runoff 46.59 cfs Type III 24-hr 46 44-50 YR Rainfall=7.01" Runoff Area=25.372 ac Runoff Volume=6.576 af Runoff Depth=3.11" Flow Length=1,414' 20 18 16 Tc=37.5 min CN=65 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Subcatchment PDA-2: PDA-2

Summary for Subcatchment PDA-3: PDA-3

Runoff = 10.37 cfs @ 12.29 hrs, Volume= 1.122 af, Depth= 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=7.01"

_	Area	(ac) C	N Dese	cription			
	3.	609 7	'1 Mea	dow, non-g	grazed, HS	GC	
	3.	609	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	19.6	100	0.0092	0.09		Sheet Flow, A-B	
	1.6	192	0.0169	1.95		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	21.2	292	Total				

Subcatchment PDA-3: PDA-3

Summary for Pond B-1: B-1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=221)

Inflow Area	a =	25.372 ac,	0.47% Impervious,	Inflow Depth = 3.11"	for 50 YR event
Inflow	=	46.59 cfs @	12.54 hrs, Volume	= 6.576 af	
Outflow	=	27.02 cfs @	12.95 hrs, Volume	= 6.576 af, At	tten= 42%, Lag= 24.5 min
Discarded	=	11.86 cfs @	12.95 hrs, Volume	= 5.533 af	
Primary	=	15.17 cfs @	12.95 hrs, Volume	= 1.043 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 193.28' @ 12.95 hrs Surf.Area= 102,463 sf Storage= 74,767 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 50.8 min (921.9 - 871.1)

Volume	Invert	Avail.	Storage	Storage Descriptio	n				
#1	192.00	16	6,735 cf	Custom Stage Dat	t a (Irregular) Listeo	l below (Recalc)			
Elevatio	on S et)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
192.0 193.0 194.0	00 00 00	19,648 85,795 153,247	581.0 1,132.6 1,536.5	0 48,833 117,902	0 48,833 166,735	19,648 94,871 180,670			
Device	Routing	Inv	ert Outle	et Devices					
#1 #2	Discarded Primary	192.(193.(00' 5.00 00' 41.0 ' Head Coef	0 in/hr Exfiltration (1 long x 11.0' breac d (feet) 0.20 0.40 f. (English) 2.53 2.4	over Surface area ith Broad-Crested 0.60 0.80 1.00 1. 59 2.70 2.68 2.67	Rectangular Weir 20 1.40 1.60 7 2.68 2.66 2.64			
Discard	Discarded OutFlow Max=11.86 cfs @ 12.95 hrs HW=193.28' (Free Discharge)								

1=Exfiltration (Exfiltration Controls 11.86 cfs)

Primary OutFlow Max=15.16 cfs @ 12.95 hrs HW=193.28' TW=0.00' (Dynamic Tailwater) **2=Broad-Crested Rectangular Weir** (Weir Controls 15.16 cfs @ 1.34 fps)

Pond B-1: B-1
Summary for Link AP-1: AP-1

Inflow Ar	ea =	0.632 ac,	0.00% Impervious,	Inflow Depth = 3.7	73" for 50 YR event
Inflow	=	2.03 cfs @	12.22 hrs, Volume	= 0.197 af	
Primary	=	2.03 cfs @	12.22 hrs, Volume	= 0.197 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow Ar	ea =	28.981 ac,	0.41% Impervious,	Inflow Depth = 0.9	90" for 50 YR event
Inflow	=	17.70 cfs @	12.92 hrs, Volume	= 2.165 af	
Primary	=	17.70 cfs @	12.92 hrs, Volume	= 2.165 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1:	PDA-1	Runof Flow Leng	ff Area= th=156'	0.632 ac Tc=16.2	0.00 [°] 2 min	% Imper CN=71	vious Runo	Runoff E)ept :fs (h=4.54").239 af
Subcatchment PDA-2:	P DA-2 F	Runoff low Length=	Area=2 1,414'	5.372 ac Tc=37.5 i	0.47 min (% Imper CN=65	rvious Runoff	Runoff [=58.10 c	Dept	h=3.85" 3.148 af
Subcatchment PDA-3:	PDA-3	Runof Flow Length	ff Area= 1=292'	3.609 ac Tc=21.2 i	0.00 min (% Imper CN=71	vious Runoff	Runoff [=12.62 c)ept ;fs ´	h=4.54" 1.364 af
Pond B-1: B-1	Discarded=12.68 c	Peak Ele fs 6.254 af	ev=193. Primar	39' Stora y=25.50 c	ge=86 fs 1.8	6,514 cf 894 af (Inflow Outflow	r=58.10 c r=38.18 c	fs 8 fs 8	3.148 af 3.148 af
Link AP-1: AP-1							Inflo Primai	w=2.47 c ry=2.47 c	cfs (cfs (0.239 af 0.239 af
Link AP-2: AP-2						I	Inflow Primary	/=29.02 c /=29.02 c	ofs (fs (3.259 af 3.259 af
Total R	unoff Area = 29.6 ⁴	3 ac Runo	off Volu	ıme = 9.7	751 af	f Avera	age Ru	noff De	pth	= 3.95"

99.60% Pervious = 29.495 ac 0.40% Impervious = 0.118 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 2.47 cfs @ 12.22 hrs, Volume= 0.239 af, Depth= 4.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 YR Rainfall=7.95"

_	Area	(ac) C	N Dese	cription				
	0.	632 7	'1 Mea	dow, non-g	grazed, HS	GC		
0.632 100.00% Pervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	15.8	100	0.0158	0.11		Sheet Flow, A-B		
	0.4	56	0.0234	2.29		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps		
	16.2	156	Total					

Subcatchment PDA-1: PDA-1

Summary for Subcatchment PDA-2: PDA-2

Runoff = 58.10 cfs @ 12.54 hrs, Volume= 8.148 af, Depth= 3.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 YR Rainfall=7.95"

Area (ac) C	N Des	cription		
13.3	355 \$	58 Mea	dow, non-g	grazed, HS	G B
0.4	495 9	96 Gra	vel surface	, HSG B	
0.1	118 9	98 Unc	onnected r	oofs, HSG	A
11.0)43	71 Mea	dow, non-g	grazed, HS	GC
0.3	361 9	96 Gra	vel surface	, HSG C	
25.3	372 (65 Wei	ghted Aver	rage	
25.2	254	99.5	53% Pervio	us Area	
0.1	118	0.47	7% Impervi	ous Area	
0.1	118	100	.00% Unco	nnected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
23.1	100	0.0061	0.07		Sheet Flow, A-B
					Grass: Dense n= 0.240 P2= 3.17"
5.8	637	0.0147	1.82		Shallow Concentrated Flow, B-C
					Grassed Waterway Kv= 15.0 fps
8.6	677	0.0076	1.31		Shallow Concentrated Flow, C-D
					Grassed Waterway Kv= 15.0 fps
37.5	1,414	Total			

Hydrograph 65 Runoff 58.10 cfs 60 Type III 24-hr 55-100 YR Rainfall=7.95" 50-Runoff Area=25.372 ac 45 Runoff Volume=8.148 af 40-Elow (cfs) 32 30 Runoff Depth=3.85" Flow Length=1,414' 25-Tc=37.5 min 20 CN=65 15-10-5-0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Time (hours)

Subcatchment PDA-2: PDA-2

Summary for Subcatchment PDA-3: PDA-3

Runoff = 12.62 cfs @ 12.29 hrs, Volume= 1.364 af, Depth= 4.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 YR Rainfall=7.95"

_	Area	(ac) C	N Dese	cription			
	3.	609 7	'1 Mea	dow, non-g	grazed, HS	GC	
	3.	609	100.				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	19.6	100	0.0092	0.09		Sheet Flow, A-B	
	1.6	192	0.0169	1.95		Grass: Dense n= 0.240 P2= 3.17" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps	
	21.2	292	Total				

Subcatchment PDA-3: PDA-3

Summary for Pond B-1: B-1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area	ı =	25.372 ac,	0.47% Impervious, Inflow	Depth = 3.85" for 100 YR event
Inflow	=	58.10 cfs @	12.54 hrs, Volume=	8.148 af
Outflow	=	38.18 cfs @	12.87 hrs, Volume=	8.148 af, Atten= 34%, Lag= 20.1 min
Discarded	=	12.68 cfs @	12.87 hrs, Volume=	6.254 af
Primary	=	25.50 cfs @	12.87 hrs, Volume=	1.894 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 193.39' @ 12.87 hrs Surf.Area= 109,574 sf Storage= 86,514 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 48.8 min (913.7 - 864.9)

Volume	Inve	rt Avail.	Storage	Storage Description	on				
#1	192.0	0' 16	6,735 cf	Custom Stage Da	ita (Irregular) List	ed below (Recalc)			
Elevatio (fee	on s et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
192.0 193.0 194.0)0)0)0	19,648 85,795 153,247	581.0 1,132.6 1,536.5	0 48,833 117,902	0 48,833 166,735	19,648 94,871 180,670			
Device #1	Routing	Inv	ert Outle	et Devices	ovor Surfaco aro	2			
#1 Discarded 192.00* 5.000 in/nr Extititation over Surface area #2 Primary 193.00' 41.0' long x 11.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.53 2.59 2.70 2.68 2.66 2.64									
Discard	Discarded OutFlow Max=12.68 cfs @ 12.87 hrs HW=193.39' (Free Discharge) 								

Primary OutElow Move 25.40 of (0.12.07 km + 10.12.20) TM/=0.00'. (Dynamia Ta

Primary OutFlow Max=25.49 cfs @ 12.87 hrs HW=193.39' TW=0.00' (Dynamic Tailwater) **2=Broad-Crested Rectangular Weir** (Weir Controls 25.49 cfs @ 1.61 fps)

Pond B-1: B-1

Summary for Link AP-1: AP-1

Inflow Area	a =	0.632 ac,	0.00% Impervious,	Inflow Depth = 4.5	54" for 100 YR event
Inflow	=	2.47 cfs @	12.22 hrs, Volume	= 0.239 af	
Primary	=	2.47 cfs @	12.22 hrs, Volume	= 0.239 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow /	Area =	28.981 ac,	0.41% Impervious,	Inflow Depth = 1.3	35" for 100 YR event
Inflow	=	29.02 cfs @	12.84 hrs, Volume	= 3.259 af	
Primary	y =	29.02 cfs @	12.84 hrs, Volume	= 3.259 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP-2: AP-2

APPENDIX D: NOAA ATLAS 14 PRECIPITATION FREQUENCY TABLE

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Broad Brook, Connecticut, USA* Latitude: 41.8903°, Longitude: -72.5185° Elevation: 197.28 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average	recurrence	interval (y	ears)			
Buration	1	2	5	10	25	50	100	200	500	1000
5-min	0.335 (0.256-0.438)	0.406 (0.310-0.531)	0.522 (0.397-0.685)	0.617 (0.467-0.815)	0.749 (0.551-1.03)	0.848 (0.613-1.20)	0.952 (0.670-1.39)	1.07 (0.716-1.60)	1.24 (0.801-1.91)	1.38 (0.870-2.17)
10-min	0.475 (0.363-0.621)	0.575 (0.439-0.752)	0.738 (0.562-0.969)	0.874 (0.661-1.15)	1.06 (0.780-1.46)	1.20 (0.867-1.69)	1.35 (0.950-1.97)	1.51 (1.01-2.26)	1.75 (1.13-2.71)	1.95 (1.23-3.07)
15-min	0.559 (0.427-0.730)	0.676 (0.516-0.885)	0.868 (0.661-1.14)	1.03 (0.778-1.36)	1.25 (0.918-1.72)	1.41 (1.02-1.99)	1.59 (1.12-2.32)	1.78 (1.19-2.66)	2.06 (1.33-3.19)	2.29 (1.45-3.61)
30-min	0.754 (0.576-0.985)	0.914 (0.698-1.20)	1.18 (0.896-1.55)	1.40 (1.06-1.84)	1.70 (1.25-2.34)	1.92 (1.39-2.71)	2.16 (1.52-3.15)	2.42 (1.62-3.62)	2.81 (1.82-4.34)	3.12 (1.97-4.92)
60-min	0.949 (0.725-1.24)	1.15 (0.880-1.51)	1.49 (1.13-1.95)	1.76 (1.34-2.33)	2.14 (1.58-2.96)	2.43 (1.76-3.42)	2.73 (1.92-3.99)	3.07 (2.05-4.58)	3.55 (2.30-5.49)	3.95 (2.50-6.23)
2-hr	1.22 (0.936-1.59)	1.47 (1.13-1.92)	1.89 (1.44-2.47)	2.23 (1.70-2.93)	2.70 (2.00-3.72)	3.05 (2.22-4.30)	3.43 (2.44-5.03)	3.88 (2.61-5.76)	4.55 (2.95-7.00)	5.12 (3.25-8.03)
3-hr	1.40 (1.08-1.82)	1.69 (1.30-2.20)	2.17 (1.66-2.82)	2.56 (1.95-3.36)	3.10 (2.31-4.26)	3.50 (2.56-4.93)	3.94 (2.82-5.78)	4.47 (3.01-6.62)	5.28 (3.43-8.09)	5.98 (3.80-9.34)
6-hr	1.77 (1.37-2.28)	2.14 (1.66-2.77)	2.75 (2.12-3.57)	3.26 (2.50-4.25)	3.96 (2.96-5.43)	4.47 (3.30-6.28)	5.04 (3.64-7.38)	5.75 (3.88-8.46)	6.85 (4.46-10.4)	7.81 (4.98-12.1)
12-hr	2.17 (1.69-2.79)	2.66 (2.07-3.42)	3.47 (2.68-4.47)	4.13 (3.18-5.35)	5.05 (3.79-6.88)	5.72 (4.23-7.99)	6.46 (4.68-9.42)	7.39 (5.00-10.8)	8.85 (5.78-13.4)	10.1 (6.48-15.6)
24-hr	2.55 (1.99-3.26)	<mark>3.17</mark> (2.47-4.05)	4.18 (3.25-5.36)	5.01 (3.88-6.47)	<mark>6.17</mark> (4.66-8.38)	<mark>7.01</mark> (5.22-9.76)	7.95 (5.80-11.6)	9.14 (6.21-13.3)	11.0 (7.23-16.6)	12.7 (8.16-19.5)
2-day	2.87 (2.25-3.64)	3.60 (2.83-4.58)	4.81 (3.76-6.14)	5.81 (4.52-7.46)	7.19 (5.47-9.74)	8.19 (6.14-11.4)	9.32 (6.86-13.6)	10.8 (7.35-15.6)	13.2 (8.67-19.7)	15.3 (9.87-23.3)
3-day	3.12 (2.46-3.96)	3.93 (3.09-4.98)	5.25 (4.12-6.68)	6.35 (4.95-8.12)	7.85 (5.99-10.6)	8.95 (6.73-12.4)	10.2 (7.53-14.8)	11.8 (8.06-17.0)	14.5 (9.52-21.6)	16.8 (10.9-25.5)
4-day	3.36 (2.65-4.25)	4.22 (3.33-5.34)	5.63 (4.42-7.14)	6.79 (5.31-8.67)	8.40 (6.42-11.3)	9.57 (7.20-13.2)	10.9 (8.05-15.8)	12.6 (8.62-18.1)	15.4 (10.2-22.9)	18.0 (11.6-27.2)
7-day	4.01 (3.18-5.05)	4.98 (3.95-6.28)	6.57 (5.19-8.30)	7.89 (6.19-10.0)	9.70 (7.43-13.0)	11.0 (8.32-15.1)	12.5 (9.26-18.0)	14.4 (9.89-20.6)	17.5 (11.6-25.9)	20.3 (13.1-30.5)
10-day	4.66 (3.70-5.85)	5.69 (4.52-7.15)	7.38 (5.84-9.30)	8.78 (6.91-11.1)	10.7 (8.21-14.3)	12.1 (9.14-16.5)	13.7 (10.1-19.5)	15.7 (10.8-22.3)	18.8 (12.5-27.8)	21.6 (14.0-32.4)
20-day	6.70 (5.36-8.37)	7.80 (6.23-9.75)	9.60 (7.64-12.0)	11.1 (8.77-14.0)	13.1 (10.1-17.3)	14.7 (11.0-19.7)	16.3 (12.0-22.7)	18.2 (12.6-25.8)	21.1 (14.1-30.9)	23.6 (15.4-35.2)
30-day	8.44 (6.77-10.5)	9.56 (7.66-11.9)	11.4 (9.10-14.2)	12.9 (10.3-16.2)	15.0 (11.5-19.6)	16.6 (12.5-22.1)	18.3 (13.3-25.1)	20.1 (13.9-28.3)	22.7 (15.1-33.0)	24.7 (16.1-36.7)
45-day	10.6 (8.53-13.2)	11.8 (9.45-14.6)	13.7 (10.9-17.0)	15.2 (12.1-19.1)	17.4 (13.4-22.5)	19.0 (14.3-25.1)	20.7 (15.0-28.1)	22.4 (15.6-31.3)	24.6 (16.5-35.6)	26.2 (17.1-38.8)
60-day	12.4 (10.0-15.4)	13.6 (11.0-16.9)	15.6 (12.5-19.4)	17.2 (13.7-21.5)	19.4 (14.9-25.0)	21.1 (15.9-27.7)	22.8 (16.5-30.6)	24.4 (17.0-34.0)	26.3 (17.7-38.0)	27.7 (18.1-40.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Created (GMT): Thu May 30 16:13:56 2019

Back to Top

Maps & aerials

Small scale terrain

interval

(years)

1

2 5 10

25 50

100 200 500

- 1000

2-day

3-day

4-day

7-day

10-day

20-day

30-day

45-day

60-day

Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX E: GEOTECHNICAL REPORT

GEOTECHNICAL ENGINEERING REPORT PROPOSED SOLAR ARRAY EAST WINDSOR SOLAR ONE 341 EAST ROAD EAST WINDSOR, CONNECTICUT

Prepared for:

All-Points Technology Corporation, P.C. 567 Vauxhaul Street Extension – Suite 311 Waterford, Connecticut 06385

Prepared by:

Down To Earth Consulting, LLC 122 Church Street Naugatuck, Connecticut 06770

> File No. 0032-034.00 May 2020

Down To Earth Consulting, LLC 122 Church Street, Naugatuck, CT 06770 (203) 683-4155

May 18, 2020 File No. 0032-034.00

Mr. Bradley J. Parsons, PE All-Points Technology Corporation 567 Vauxhaul Street Extension – Suite 311 Waterford, Connecticut 06385

Via email: <u>bparsons@allpointstech.com</u>

Re: Geotechnical Engineering Report East Windsor Solar One 341 East Road, East Windsor, Connecticut

Down To Earth Consulting, LLC (DTE) is pleased to submit this geotechnical engineering report for the East Windsor Solar One Project that will be located at 341 East Road in East Windsor, Connecticut (Site) for All-Points Technology Corporation (Client). Our services were completed in general accordance with our current Master Services Agreement. We appreciate this opportunity to work with you and look forward to our continued involvement. Please call if you have any questions.

Sincerely,

Down To Earth Consulting, LLC

Raymond P. Janeiro, P.E. Principal

TABLE OF CONTENTS

1.0	INTRODUCTION	,1
2.0	BACKGROUND	1
3.0	SUBSURFACE DATA	1
	3.1 GENERAL SITE GEOLOGY	1
	3.2 TEST BORINGS	1
4.0	SUBSURFACE CONDITIONS	.2
	4.1 SUBSURFACE PROFILE	2
	4.1.1 Subsoil	2
	4.1.2 Deltaic Deposits (Sand, Silty Sand, Silt)	2
	4.1.3 Weathered Rock	2
	4.2 GROUNDWATER	2
5.0	SOILS TESTING	3
	5.1 LABORATORY TESTING	3
	5.2 ESTIMATED HYDRAULIC CONDUCTIVITY	3
	5.3 SOIL RESISTIVITY TESTING	3
6.0	ENGINEERING IMPLICATIONS OF SUBSURFACE CONDITIONS	4
7.0	GEOTECHNICAL ENGINEERING RECOMMENDATIONS	4
	7.1 SEISMIC DESIGN	4
	7.2 DRIVEN PILE FOUNDATIONS	4
	7.2.1 Load Testing and Drivability	5
	7.3 GROUND SCREW FOUNDATION ALTERNATIVE	<u>6</u>
	7.4 EQUIPMENT FOUNDATIONS	6
8.0	MATERIALS RECOMMENDATIONS	.6
	8.1 COMPACTED GRANULAR FILL	<u>6</u>
	8.2 CRUSHED STONE	<u>7</u>
	8.3 COMPACTION REQUIRMENTS	<u>_</u>
9.0		.7
	9.1 DRIVEN PILES	<u>_</u>
	9.2 GROUND SCREW FOUNDATION ALTERNATIVE	<u>/</u>
	9.3 SHALLOW FOUNDATIONS - EQUIPMENT PADS	8
	9.4 TEMPORARY EXCAVATIONS	8
40.0	9.5 IEMPUKAKY GRUUNDWATER CONTROL	8
10.0	REVIEW OF FINAL DESIGN, PLANS, AND SPECIFICATIONS	8
11.0		.9
12.0		.9

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 – TEST BORING LOGS

APPENDIX 3 – LABORATORY TEST RESULTS

APPENDIX 4 – KOZENY-CARMAN ANALYSES

APPENDIX 5 – LIMITATIONS

1.0 INTRODUCTION

Down To Earth Consulting, LLC, completed a subsurface exploration program and geotechnical engineering evaluation for the proposed solar array foundations. Our geotechnical engineering services included: reviewing provided project plans, completing borings and soils testing, characterizing subsurface conditions within the proposed solar array limits, performing geotechnical engineering analyses, and providing geotechnical design and construction recommendations for the project. Refer to Figures 1 and 2 (in Appendix 1) for an area plan and site plan, respectively. Our services were based, in part, on a provided *Concept Plan*, prepared by the Client, revision dated November 15, 2019.

2.0 BACKGROUND

The East Windsor Solar One parcel is generally bordered by Middle Road to the north, East Road to the west, Pecks Brook to the east, and an open field to the south. A proposed ground-mount solar array will be constructed that will consist of about 19,500 modules. Nominal cuts on the order of 2-feet or less are anticipated to achieve design grades, as the solar array structures will generally conform to existing Site topography. We understand that deeper cuts will be required to accommodate proposed detention basins. Refer to Figure 2 (Appendix 1) for existing site features and the proposed solar array location.

3.0 SUBSURFACE DATA

3.1 GENERAL SITE GEOLOGY

Published surficial and bedrock geological map data (*1:125,000 scale, Surficial Materials Map of Connecticut, Janet Radway Stone, 1992 and 1:125,000 scale, Bedrock Geological Map of Connecticut, John Rodgers, 1985*) was reviewed. The Site surficial material is mapped as deltaic deposits (Sand and Silt) of the Windsorville Formation. The underlying bedrock is classified as reddish-brown arkose (brownstone) of the Portland Formation.

3.2 TEST BORINGS

We observed and logged six test borings (B-1 through B-6) drilled by our subcontractor General Borings, Inc. on April 29, 2020. Boring locations are depicted on Figure 2 (Appendix 1) and the logs are included in Appendix 2. Borings were located in the field by taping/pacing from existing site features, thus their locations should be considered approximate.

The borings were drilled to explore the soil, bedrock, and groundwater conditions in the proposed solar array areas. Hollow-stem auger drilling methods were used to advance borings to depths ranging from approximately 10 to 22 feet below existing grades.

Representative soil samples were obtained in the borings for soil classification and laboratory testing by split barrel sampling procedures in general accordance with ASTM D-1586. The split-spoon sampling procedure utilizes a standard 2-inch O.D. split-barrel sampler that is driven into the bottom of the boring with a 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampler the middle 12-inches of a normal 24-inch penetration is

recorded as the Standard Penetration Resistance Value (N). The blows (i.e., "N-Value") are indicated on the boring logs at their depth of occurrence and provide an indication of the relative consistency of the material.

Groundwater levels were measured using a weighted tape in open drill holes and/or inferred from wet soil samples during drilling.

4.0 SUBSURFACE CONDITIONS

4.1 SUBSURFACE PROFILE

The generalized subsurface profile, as inferred from the subsurface data, consists of Subsoil overlying Deltaic Deposits and Bedrock. An approximate 12- to 15-inch layer of Topsoil was encountered at the surface of the explorations. The following is a more detailed description of the subsurface materials encountered:

4.1.1 Subsoil

Subsoil was encountered at some of the boring locations (B-2, B-3 and B-4) directly below the Topsoil. This stratum ranged in thickness from about 1 to 2 feet and generally consisted of loose, light-brown, silt with varying amounts of fine sand (about 20 to 35%). The subsoil did not have an organic odor, but trace (0 to 5%) amounts of organic material (e.g., rootlets) was observed in many samples.

4.1.2 Deltaic Deposits (Sand, Silty Sand, Silt)

Deltaic Deposits was observed below the Topsoil and/or Subsoil in the borings. This material generally consisted of fine sand with trace amounts of silt at higher elevations with an increasing silt content at depth. Silt with minor (about 10 to 20%) amounts of fine sand was encountered at about 5 to 15 feet below grade. In some instances, the presence of cobbles and boulders were inferred by "rig chatter" and refusal during drilling and sampling. Two of the explorations (B-1 and B-5) were terminated upon split spoon or auger refusal on inferred bedrock.

4.1.3 Weathered Rock

Weathered Rock was observed in split spoon samples at Borings B-1, B-3, and B-5 at about 5 to 11 feet below existing grades. Bedrock was inferred from split spoon and/or auger refusal at those borings at depths ranging at about 10 to 17 feet below existing grades. Inferred Bedrock was classified in the boring logs as Arkose Sandstone based on auger cuttings and retrieved samples.

4.2 GROUNDWATER

Groundwater was measured in the boreholes during drilling or inferred from wet soil samples and ranged from about 4.5 to 15 feet below existing grades. Groundwater levels measured in the boreholes may not have had sufficient time to stabilize and should be considered approximate. Groundwater levels will vary depending on factors such as temperature, season, precipitation, construction activity, and other conditions, which may be different from those at the time of these measurements.

5.0 SOILS TESTING

5.1 LABORATORY TESTING

Soils laboratory testing was completed on samples obtained from the borings. Two soil samples were collected within the proposed detention basins (at proposed cut depths indicated by the Client) for grain size distribution testing. This data was used to estimate hydraulic conductivity values for the sampled materials (see Section 5.2).

Soil samples were also collected from 0 to 4 feet below grade at Borings B-1 and B-4 to evaluate the corrosivity potential of sampled soils. Samples were analyzed for pH, Sulfates, Chlorides, and Electrical Resistivity. Based on the laboratory test results, the soil samples are not considered to be corrosive. The results of the laboratory testing are included in Appendix 3.

5.2 ESTIMATED HYDRAULIC CONDUCTIVITY

Kozeny-Carman methodology was used to estimate the hydraulic conductivity (permeability) of the two soil samples submitted for gradation testing. The estimated hydraulic conductivity of the sample from B-5 was about 0.002 feet per day, while the sample from B-6 was about 50 feet per day. Details of the analyses are provided in Appendix 4. Note that the Kozeny-Carman methodology provides estimated hydraulic conductivity values; field infiltration tests may be required to obtain a more accurate permeability estimate of subsurface soils.

5.3 SOIL RESISTIVITY TESTING

On April 29, 2020, DTE field personnel conducted in-situ soil resistivity testing in accordance with accepted engineering practices using the Wenner electrode configuration. Electrodes were spaced at 5, 10, 20, 30, and 40 feet. One set of two approximately perpendicular resistivity lines were completed in the general vicinity of the proposed solar array area. The approximate locations and orientations of the resistivity lines are shown on the attached Figure 2. The results of the resistivity tests are as follows:

	<u>Resistivity</u>	<u>(ohm-cm)</u>
Electrode Spacing (ft)	Line 1	Line 2
5	267,908	187,287
10	171,392	163,924
20	51,935	67,982
30	11,088	14,707
40	4,290	0

Field resistivity results may be influenced by boulders, shallow groundwater, and bedrock. Resistivity results will fluctuate depending on the degree of compaction, moisture content, constituent solubility, and temperature. Field resistivity values may also vary depending upon season, precipitation, and other conditions that may differ from those at the time of testing.

6.0 ENGINEERING IMPLICATIONS OF SUBSURFACE CONDITIONS

Subsurface conditions generally consist of medium dense deltaic deposits. In some instances, these deposits were observed to contain cobbles and boulders. Relatively shallow bedrock was also encountered at the northeast corner of the proposed solar array (B-1, B-3 and B-5). Due to the presence of obstructions (e.g., cobbles, boulders, and shallow bedrock), pile driving refusal should be expected in localized areas of the proposed solar array.

In areas of pile driving difficulties, predrilling of pilot holes (up to 2/3 of the pile diameter) may be required to accommodate pile installation. The pilot holes would then be backfilled with drill cuttings (absent any cobble-sized material) prior to driving piles. Ground screws (e.g., Krinner) may also be used to support the racking systems, but similarly we recommend predrilling a pilot hole to accommodate ground screw installation in the vicinity of Borings B-1, B-3 and B-5.

Piles will need to be designed to resist compression, tension, and lateral loads. Preliminary geotechnical design parameters are provided below. The pile design capacities will need to be verified in the field based on the results of pile load testing completed at the Site.

7.0 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

We offer the following geotechnical design recommendations based on the subsurface conditions encountered at the Site, available project information, and the proposed construction.

7.1 SEISMIC DESIGN

The site class is "C" per the Building Code. Based on the standard penetration test results, visual soil classification, and design peak ground acceleration at this locale, the site soils are not susceptible to liquefaction.

7.2 DRIVEN PILE FOUNDATIONS

The proposed racking systems may be supported on driven steel piles end bearing in natural Deltaic Deposits, Weathered Rock, or Bedrock. The steel piles should conform to ASTM A 572, Grade 50 and have hardened pile tips (e.g., pile driving shoes) to minimize pile damage on potential obstructions (e.g., boulders and bedrock). A minimum steel section corrosion loss of 1/16-inch all around the piles should be used. DTE recommends the following preliminary static design parameters for a driven pile foundation alternative:

DESCRIPTION	VALUE					
Maximum Net Allowable Bearing Capacity ¹						
Soil/Weathered Rock	4 kips per square foot (ksf)					
Bedrock	8 ksf					
Ultimate Skin Friction Value ²						
Soil (>3.5 fbg)	300 pounds per square foot (psf)					
Weathered Rock	500 psf					

Modulus of Lateral Subgrade Reaction ³											
Soil (>2.5 fbg) – dry	90 pounds per cubic inch (pci)										
Soil – wet	60 pci										
Weathered Rock	150 pci										
Angle of Internal Friction											
Soil	30										
Weathered Rock	34										
Total Soil Unit Weight											
Soil	120 pounds per cubic foot (pcf)										
Weathered Rock	130 pcf										
 End-bearing should be neglected for uplif safety of 3. 	t calculations. Provided value assumes a factor of										
2. Contribution to pile capacity within the frost depth (i.e., above depths of 3.5 feet) should be ignored. The uplift capacity should be based on the dead weight of the pile and side resistance											

- provided by the subsurface soils (i.e., end bearing should be neglected).
- 3. To analyze foundation under lateral loading (e.g., Ensoft LPILE).
- 4. All values provided in this table are preliminary and must be verified in the field by load testing.

Center-to-center pile spacing should not be less than 30 inches or 3 pile diameters. Final pile order lengths should be established based on the results of pile testing and the contractor should be prepared to increase anticipated pile lengths as conditions are exposed in the field.

Piles should be installed to a minimum ultimate geotechnical axial capacity of the structural load multiplied by 2 (assuming load testing is performed). Based on the recommended pile type, bearing material, and anticipated loads, we estimate negligible pile settlements.

The lateral capacity of the upper 30 inches of soil should be neglected due to loss of strength from frost action and the presence of loose surficial soils. Appropriate lateral capacity reductions associated with group effects should be used for piles having a center-to-center spacing of less than 5 times their largest cross-sectional dimension.

7.2.1 Load Testing and Drivability

Tension and lateral load tests should be performed on test piles to finalize foundation design for uplift and lateral load capacity. Compression load tests should also be completed if end bearing capacity of piles is used. Load tests should be completed near the boring explorations in order to corroborate the load test and subsurface exploration data and develop final design recommendations. The testing results should be provided to DTE to reevaluate the above design parameters.

We recommend that a drivability analysis (i.e., Wave Equation Analysis for Piles (WEAP)) be performed for the site-specific conditions and selected pile driving hammer to evaluate the proposed pile driving equipment and development of stresses in the piles. The maximum allowable driving stress in both tension and compression should not exceed 45 ksi, which is based on applying a reduction factor of 0.9 to the yield strength of Grade 50 Steel.

7.3 GROUND SCREW FOUNDATION ALTERNATIVE

The proposed racking systems may also be supported on a ground screw foundation system (Krinner or similar) that derive their capacity in the natural Deltaic Deposits and/or Weathered Rock. Tension and lateral load tests should also be performed if a ground screw foundation system is selected to assess uplift and lateral capacities. Ground screw foundations are typically designed by a design-build contractor.

7.4 EQUIPMENT FOUNDATIONS

The proposed accessory structures may be designed as mat foundations bearing on a base course of at least 12-inches of Compacted Granular Fill (CGF) or Crushed Stone overlying proof-rolled natural Deltaic Deposits, or CGF or Crushed Stone placed above a proof-rolled natural soil subgrade. Soils with appreciable organic content (i.e., Topsoil) are not considered suitable bearing materials and must be excavated from foundation areas during site preparation.

When CGF is used beneath the foundations (e.g., in fill areas, if needed), we recommend that it be placed one foot beyond the edge of the foundations and at a one horizontal to one vertical slope away and down from the bottom outside edge of the foundations (i.e., foundation zone of influence). Crushed Stone can be used in place of CGF as it is much easier to compact.

We recommend a maximum allowable design bearing pressure of four kips per square foot (4 ksf) for foundations bearing on the recommended bearing materials. Shallow foundations should be embedded 42-inches below finished grades to account for frost. Based on the recommended bearing strata and anticipated loads, we anticipate that foundations will undergo less than one inch of total settlement and less than a half inch of differential settlement. Settlements will occur as the loads are applied and are expected to be complete at the end of construction.

We recommend an ultimate coefficient of sliding friction of 0.45. A factor of safety of at least 1.5 should be applied to calculated sliding resistance.

8.0 MATERIALS RECOMMENDATIONS

8.1 COMPACTED GRANULAR FILL

Compacted Granular Fill (CGF) for use as structural fill shall consist of inorganic soil free of clay, loam, ice and snow, tree stumps, roots, and other organic matter; graded within the following limits:

Sieve Size	Percent finer by weight
4-inches	100%
No. 10	30 - 100
No. 40	10 - 90
No. 200	0 - 12*

* To be considered non-frost susceptible, granular fill should have a maximum of 3 percent of particles by weight smaller than 0.02mm in effective diameter.

8.2 CRUSHED STONE

Crushed Stone for use below foundations shall consist of sound, tough, durable, rock that is graded within the following:

Sieve Size	Percent finer by weight
5/8-inches	100%
1/2-inch	85 - 100
3/8 inch	15 - 45
No. 4	0 - 15
No. 8	0 - 5

8.3 COMPACTION REQUIRMENTS

CGF should be placed in loose lifts not exceeding 8-inches in depth and compacted to at least 95 percent of its maximum dry density, and within 2% of optimum moisture content, as determined by ASTM D1557, Method C (Modified Proctor) below foundations and other structures.

Crushed Stone is considered to be "self-compacting" and would negate the need to run laboratory proctor testing and have field density testing of in-place lifts. The crushed stone should be plate compacted to "chink up" the working surface in lifts. We recommend placing Crushed Stone in maximum 12-inch lifts and compacting the lifts with a minimum of four passes with a vibratory plate compactor weighing a minimum of 1,000 pounds and with a minimum centrifugal force of 10,000 pounds.

9.0 CONSTRUCTION RECOMMENDATIONS

9.1 DRIVEN PILES

Technical specifications should be prepared by the design team that require detailed material and construction submittals and proof of experience in pile installation. The installation method or combination of methods selected by the contractor should be submitted for review by the design team, prior to mobilization of equipment. Specifications should include provisions for removing encountered cobbles, boulders, and other obstructions as a contingency. Any pile driving refusal remedies (pre-drilling, etc.) that are adopted by the Contractor during construction will require that those piles be load tested.

9.2 GROUND SCREW FOUNDATION ALTERNATIVE

Ground screws should be designed and installed by a specialty contractor with a minimum of 5 years of experience with designing and installing ground screw systems. The specialty contractor should also be licensed by the manufacturer of the selected ground screw system. The axial capacity of the ground screws must be confirmed during installation using the designer's recommended torque resistance. Predrilling may be required to install the ground screws in areas with cobbles, boulders, and shallow bedrock.

9.3 SHALLOW FOUNDATIONS – EQUIPMENT PADS

The proposed equipment areas should be cleared of existing vegetation and topsoil. Cobbles, boulders, and any identifiable compressible or deleterious materials should be removed. Existing fill (including re-worked parent materials), and other unsuitable materials, must be removed from beneath bearing zones of influence to the top of firm, natural Deltaic Deposits prior to construction. Over-excavation below bearing areas should include the zone of influence, defined as the area beneath 1 horizontal to 1 vertical (1H:1V) lines extending downward and outward from pad areas. Equipment pads shall bear on a prepared subgrade of firm natural Deltaic Deposits, or CGF or Crushed Stone (over firm natural soils). Refer to Section 8.0 for material and placement recommendations.

Earthwork should be performed in dry conditions so that disturbance to foundation subgrades is limited. During earthwork, the Contractor should be responsible for protecting subgrades from the elements and maintaining the soils in a suitable state until completion of the project. Backfill should not be placed over a subgrade with standing water or that is frozen. Standing water, if present, should be removed and any soft and yielding soil should be removed prior to backfill placement. Excavations to subgrade levels should be performed using a smooth-edged bucket to minimize possible disturbance to the in-place subgrade soils.

Soil subgrades should be proof-rolled under the observation of a qualified Geotechnical Engineer with at least four (4) passes of a smooth-drum vibratory roller (minimum 8,000 pounds, minimum centrifugal force of 12,500 pounds) or, where approved by the geotechnical engineer, a vibratory plate compactor with a minimum of 2,500 pounds of centrifugal force. Any soft or loose zones identified during proof-rolling should be excavated and replaced with CGF, as necessary, and as required by the Geotechnical Engineer.

9.4 TEMPORARY EXCAVATIONS

The site soils are classified as OSHA Class "C" soil and can be cut at a maximum one vertical to one and a half horizontal (1V:1.5H) slope up to a maximum excavation depth of 20 feet. These maximum slope and excavation depths assume no surcharge load (i.e., stockpiles, construction equipment, etc.) at the top of the excavations or groundwater seepage.

9.5 TEMPORARY GROUNDWATER CONTROL

Based on information obtained from the subsurface exploration program, groundwater may be encountered during construction. We anticipate that water can be managed with conventional sump pumps and trenches in the excavations. Stormwater runoff should not be permitted to accumulate on/within exposed subgrades and the runoff should be directed away from the exposed subgrade areas.

10.0 REVIEW OF FINAL DESIGN, PLANS, AND SPECIFICATIONS

When project plans are finalized, and specifications are available, they should be provided to DTE for review of conformance with our preliminary geotechnical recommendations. If any changes are made to the proposed structure locations or bearing levels, the recommendations provided in this report will need to be verified by DTE for applicability.

11.0 CONSTRUCTION QUALITY CONTROL

We further recommend that DTE be retained during earthwork construction to observe excavation to subgrade, fill placement and compaction, subgrade preparation, and deep foundation installation. The geotechnical engineer in the field should observe the work for compliance with the recommendations in this report, identify changes in subsurface conditions from those observed in the explorations should they become apparent, and assist in the development of design changes should subsurface conditions differ from those anticipated prior to the start of construction.

12.0 CLOSURE

We trust the information presented herein is sufficient for your use to progress design of the proposed solar array. We have enjoyed working with you on this project and look forward to our continued involvement. Please do not hesitate to call us if you have any questions.

This report is subject to the limitations included in Appendix 5.

APPENDIX 1 -

FIGURES

RPJ

APPROVED BY RPJ

REVISIONS

NOTES: 1"=80'.

NAUGATUCK, CONNECTICUT 06770

PROJECT AST WINDSOR SOLAR ONE	FILE NO. 0032-034.00
EAST KUAD	SCALE DATE
EAST WINDSOR, CONNECTICUT	AS NOTED 5/18/20
DWG. TITLE.	FIGURE NO.
SITE AND EXPLORATION	2
I OCATION PLAN	Z

4) THE LOCATIONS OF THE EXPLORATIONS WERE DETERMINED BY TAPING AND VISUAL ESTIMATES FROM EXISTING SITE FEATURES. THESE LOCATIONS SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.

a) BORINGS WERE COMPLETED BY GENERAL BORINGS, INC. AND OBSERVED BY DOWN TO EARTH CONSULTING, LLC.
 B) RESISTIVITY TESTING WAS PERFORMED ON APRIL 29, 2020 BY DOWN TO EARTH CONSULTING, LLC.

1) BASE MAP DEVELOPED FROM AN ELECTRONIC FILE PREPARED BY ALL-POINTS TECHNOLOGY, ENTITLED "CONCEPT PLAN", DATED NOVEMBER 15, 2020. ORIGINAL SCALE

APPENDIX 2 -

TEST BORING LOGS

	Z	DO	WN TO	D EARTH	1 		EAST EAST W	PROJECT WINDSOR SC 341 EAST RC VINDSOR, COI	DLAR ONE DAD NNECTICUT			BORING NO. SHEET 1 FILE NO. CHKD. BY		B-1 	
Bori Drill	Boring Co. General Borings, Inc. Driller Jim Caisson							Boring Location See Boring Location Plan Ground Surface El. Not Available Datum Not					ion Plan Not /	Available	
LUY	geu Dy	/		IV	lateusz rekiela			Date Start		4/29/20/	20			1/29/2020	
Han San	nmer T Inler S	ype:			Automatic H	lammer	<u>ו</u>		Date	Groundwat Time	Depth (f	gs (fro	m ground St	surface)	
Тур	e Drill	Rig:			Trac	k	I		4/29/20	-	-	-	N	ot Encountered	
Drill D	ing Me	thod:		3	25-inch I.D. Hollo	w-Stem	Augers								
E P	Casing		SA	MPLE INFO	RMATION				SAMPL	E DESCRIP	TION			STRATA DESCRIPTION	
т н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)									
1		S-1	18/24	0 to 2	2-2-5-11		Loose,	Top 10": dark b	prown to brov	vn SILT, som	ne fine to n	nedium Sand, t	race (-)	12"+/- Topsoil	
2 3		S-2	17/24	2 to 4	14-14-15-17		Medium de	Roots; Bot	tom 6": brown	se SAND and	SILT, trace), trace Silt fine Gravel, trace	e (-) Roots;	SAND	
4							Bottom 12			e SAND, illie (ayments		
6		S-3	16/24	5 to 7	19-15-16-14		Dei	nse reddish bi	rown fine to c	oarse SAND	some Sil	t little fine Gra	vel		
7 8		S-4	13/19	7 to 8.6	16-17-25-50/1"		Den	se, reddish bro	own fine to co	parse SAND.	some Silt	some fine Gra	avel	WEATHERED	
9										,				ROCK	
11		S-5	1/1	10 to 10.1	50/1"		Very dense, reddish brown fractured ARKOSE fragments								
12							ENI	O OF EXPLOR	ATION AT 1	0.1 FEET BE	LOW GR	OUND SURFA	CE		
13 14															
15															
16															
17															
19															
20															
22															
23															
24															
26															
27															
29															
30															
31															
33															
34															
36															
37															
38															
40	40														
	SPT 0 to 4 -	• Very L	Jes .oose	SP1 0 to 1	2 - Very Soft	Prop Trace	oortions = 0 to 10%	1. S denotes sp	olit-barrel samp	oler.	SYMBO	L KEY 7. WH denote	s weight of	hammer	
5 to 4 - Very Loose 0 5 to 10 - Loose 11 to 30 - Medium Dense 31 to 50 - Dense 5 to Over 50 - Very Dense 16			3 5 to 8 9 t 16 to Ove	to 4 - Soft - Medium Stiff o 15 - Stiff 30 - Very Stiff er 30 - Hard	Little = Some = And =	10 to 20% = 20 to 35% 35 to 50%	0 to 20% 2. ST denotes 3-inch O.D. undisturbed sample. 7. WH denotes 20 to 20% 3. UO denotes 3-inch O.D. undisturbed sample. 8. WR denotes 30 to 50% 3. UO denotes 3-inch Osterberg undisturbed sample. 9. PP denotes 5 to 50% 4. PEN denotes penetration length of sample. 10. FVST d 5. REC denotes recovered length of sample. 11. RQD de 6. SPT denotes recovered length of sample. 12. Q denotes			 8. WR denote 9. PP denotes 10. FVST den 11. RQD denotes 12. C denotes 	s weight of rods ; Pocket Penetrometer. iotes field vane shear test. ites Rock Quality Designation. ; core run number.				
<u>FIEL</u> 2) W 3) A	IELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.) Auger chatter observed from about 6 to 10 feet below ground surface on inferred decomposed Arkose.														

											B-2				
5	2	0				EAST WINDSOR SOLAR ONE SHEET								1 of 1	
V		co	NSUL	FING, LL	C			341 EAST RO	DAD			FILE NO.	0032-034.00		
							EAST WINDSOR, CONNECTICUT					CHKD. BY		RPJ	
Bori	ing Co.			Ger	neral Borings, Inc			Boring Lo	cation		Se	e Boring Locat	ion Plan		
Drill	er				Jim Caisson			Ground St	urface El.	Not Availa	able	Datum	Not	Available	
Log	Logged By Mateusz Fekieta							_ Date Start		4/29/202	20	Date End	2	4/29/2020	
Hammer Type: Automatic Hammer							1		Date	Groundwat	er Readin	gs (fro	m ground St	I surface) abilization Time	
Тур	Type Drill Rig: Track								4/29/20	-	15	-		wet sample	
Drill D	ing Me	thod:		3	.25-inch I.D. Hollo	ow-Stem /	Augers		4/29/20	3:15 PM	15	-		end of boring	
E P	Casing		SA		RMATION				SAMPL	E DESCRIP	TION			STRATA DESCRIPTION	
т н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)									
1		S-1	16/24	0 to 2	2-2-2-6		Medium	n dense, Top 1 avel. trace (-)	2": dark brov Roots: Bottor	vn SILT and f m 4": light bro	ine to med wn SILT. s	ium SAND, tra some fine SAN	ice fine D	15"+/- Topsoil	
3		S-2	12/24	2 to 4	12-16-16-14		Der		own fine to c		some fine	Gravel trace	Silt		
4							Dei				Some line		OII	-	
5 6		S-3	15/24	5 to 7	10-9-12-11		Modium	donao roddio	h brown fino	to modium S		fine Cravel tr	inco Silt		
7							wealum	dense, reduis			AND, liace	e lille Glavel, li			
8		S-4	19/24	7 to 9	6-5-5-6			Loose to me	dium dense,	reddish brow	n fine SAN	ID, trace Silt		SAND	
10														ļ	
11		S-5	18/24	10 to 12	5-5-6-7			Medium dense, reddish brown fine SAND, some Silt							
13															
14															
15		S-6	16/24	15 to 17	3-8-14-10			Madiumad	anaa raddial		litta fina (Cond wat			
17								wealum a	ense, reduisi	n brown SIL I	, ille line (Sand, wet		-	
18 19														SILT	
20														-	
21		S-7	24/24	20 to 22	7-8-8-10			Medium de	ense, reddish	brown SILT,	trace fine	Sand, wet			
23							EN	ID OF EXPLO	RATION AT 2						
24															
25															
27															
28 29															
30															
31															
33															
34															
35 36															
37															
38 39	-														
	SPT	N-Val	ues	SPT	N-Values	Prop	ortions	1. Sidenotes s	olit-barrel sam	bler	SYMBO	7 WH denote	s weight of	hammer	
	5 to 1	10 - Loo	ose	3	to 4 - Soft	Little =	10 to 20%	2. ST denotes	3-inch O.D. un	disturbed samp	ole.	8. WR denote	s weight of	rods	
11	to 30 - 31 to	wediur 50 - De	n Dense ense	5 to 8 9 t	- Meaium Stiff 10 15 - Stiff	Some = And =	= 20 to 35% 35 to 50%	 UO denotes PEN denotes 	ა-incn Osterbe s penetration le	erg undisturbed ength of sample	i sample. er.	9. PP denotes 10. FVST den	netrometer. ane shear test.		
(Over 50	- Very	Dense	16 to Ove	30 - Very Stiff er 30 - Hard			5. REC denote 6. SPT denotes	s recovered ler s Standard Per	ngth of sample netration_Test.		11. RQD deno 12. C denotes	otes Rock C	Quality Designation.	
FIEL 2) W	Coversor - nard D. Sr denotes standard Penetration rest. 12. C denotes core fun humber.														

3) Auger refusal encounterd at 5 feet below grade (fbg) on inferred boulder. Boring relocated about 5 feet south and advanced to 5 fbg prior to collecting subsequent sample.

	J	DO CO	WN TO	D EARTH	1. .c.	PROJECT BORING NO. EAST WINDSOR SOLAR ONE SHEET 1 341 EAST ROAD FILE NO. 00 EAST WINDSOR, CONNECTICUT CHKD. BY							B-3 of <u>1</u> 0032-034.00 RPJ	
Bor Drill Log	Boring Co. General Borings, Inc. Driller Jim Caisson Logged By Mateusz Fekieta							Boring Location See Boring Location Plan Ground Surface El. Not Available Datum Not Available					Available	
Lor		·			Automatic I	'ammor		-		Oreundwat	Deadin	(fror	eround	
nar San	nmer 1 npler S	ize:			1-3/8" I.D. S	plit Spoor	า		Date	Time	Depth (ft) Elev.	n ground St	abilization Time
Тур	e Drill	Rig:		2	Trac	sk Stam	A		4/29/20	- 2:24 DM	15	-		wet sample
Driii E P	Casing		SA	MPLE INFO	RMATION	ow-stem.	Augers		SAMPL	E DESCRIP	TION	-		STRATA
Т Н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)								
1		S-1	12/24	0 to 2	2-1-2-4	. ,	Loose, da	rk brown to ligi	nt brown SILT	r, some fine t	to medium	Sand, trace fin	e Gravel,	12"+/- Topsoil
2		S-2	11/24	2 to 4	5-4-4-6			Loc	tra ose, reddish l	orown fine SA	AND, little	Silt		SUBSOIL
5														
6		S-3	15/24	5 to 7	5-7-7-10			Medium de	nse, reddish	brown fine S/	AND, some	e Silt, moist		
7 8 9		S-4	18/24	7 to 9	7-7-8-6			Medium de	nse, reddish	brown fine S	AND, some	e Silt, moist		SILTI SAND
10														•
11		S-5	13/24	10 to 12	7-14-26-22		Dense, reddish brown Top 8": fine SAND, some Silt; Bottom 5": fractured ARKOSE fragments							
13														+
14						-								WEATHERED ROCK
16		S-6	10/24	15 to 17	21-12-50-32		Vervid	lense reddish	brown fine to	coarse SAN	D some fi	ne Gravel som	e Silt	
17													=	
18 19									RATIONAT			UND SURFACE	-	
20														
21														
23														
24 25														
26														
27														
29														
30														
32														
33														
34 35														
36														
37 38														
39														
40	SPT	N-Valı	ues	SPT	N-Values	Pro	outions SYMBOL KEY							
Or 1 revalues SP 1 N-Vi 0 to 4 - Very Loose 0 to 2 - Ve 5 to 10 - Loose 3 to 4 - 3 11 to 30 - Medium Dense 5 to 8 - Medi 31 to 50 - Dense 9 to 15 - Over 50 - Very Dense 16 to 30 - V FIELD NOTES: 1) Stratification lines represent a			2 - Very Soft to 4 - Soft - Medium Stiff o 15 - Stiff 30 - Very Stiff er 30 - Hard sent approximate b	Trace Little = Some = And = oundaries	= 0 to 10% 10 to 20% = 20 to 35% 35 to 50% between soil	 S denotes sp ST denotes i UO denotes i PEN denotes i REC denotes i SPT denotes i types, transition 	Dit-barrel samp 3-inch O.D. un 3-inch Osterbe s penetration le s recovered ler s Standard Per ns may be grad	mpler. 7. WH denotes weight of hammer undisturbed sample. 8. WR denotes weight of rods rberg undisturbed sample. 9. PP denotes Pocket Penetrometer. n length of sample. 10. FVST denotes field vane shear test. length of sample. 11. RQD denotes Rock Quality Designation. Penetration Test. 12. C denotes core run number.						
2) W	<u>IELD NOTES</u> : 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual. ?) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.													
	Z	DO	PROJECT BORING NO. EAST WINDSOR SOLAR ONE SHEET 1 341 EAST ROAD FILE NO. 00 EAST WINDSOR, CONNECTICUT CHKD. BY 00							B-4 of <u>1</u> 0032-034.00 RPJ				
--	---	---	---	--	--	--------------------------------------	---	---	--	--	--------------------------	---	--	--
Bori Drill Log	ng Co. er ged By			Ger	neral Borings, Inc. Jim Caisson /lateusz Fekieta			Boring Loo Ground Su Date Start	cation urface El.	Not Availa 4/29/202	Se able	e Boring Locat Datum Date End	ion Plan Not / 4	Available 4/29/2020
Har	nmer T	ype:			Automatic I	lammer				Groundwat	er Readin	gs (fro	m ground	surface)
San Typ	ıpler S e Drill '	ize: Ria:			1-3/8" I.D. Sp Trac	olit Spoor	1		Date 4/29/20	Time -	Depth (fl 7) Elev.	St	abilization Time
Drill	ing Me	thod:		3	.25-inch I.D. Hollc	w-Stem	Augers		4/29/20		6 hours			
E P	Casing		SA	MPLE INFO	RMATION				SAMPL	E DESCRIP	STRATA DESCRIPTION			
Н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)								
1		S-1	12/24	0 to 2	2-3-4-2	+	Loose, da	ark brown fine t	to coarse SA	ND and SILT	, trace fine	Gravel, trace	(-) Roots	12"+/- Topsoil
3		S-2	11/24	2 to 4	2-3-9-10		Mediu	um dense, Top Bottom 1":	o 10": light bro reddish brow	own SILT, so n fine to meo	me fine Sa lium SANI	ind, trace (-) Ro), trace Silt	oots;	SUBSOIL
5 6 7		S-3	22/24	5 to 7	6-8-9-11			Medium de	ense, reddish	brown fine S	AND, little	Silt, moist		
, 8 9		S-4	20/24	7 to 9	11-12-12-12		 	Medium d	lense, reddisl	n brown fine	SAND, littl	e Silt, wet		SAND
10 11		S-5	16/24	10 to 12	5-6-7-8			Medium	dense, reddi	ish brown fin	e SAND, ti	ace Silt		
12 13 14														
15														
16 17		S-6	16/24	15 to 17	4-5-6-8	+		Medium	n dense, redd	ish brown SII	LT, little fir	e Sand		SILT
18 19							EN	ID OF EXPLO	RATION AT 1	17 FEET BEL	_OW GRO	UND SURFAC	E	
20 21														
22 23 24							- - -							
25														
26 27														
28 29						+	-							
30						<u> </u>								
31 32														
33 34														
35							-							
36 37		<u> </u>												
38														
39 40														
	SPT	N-Valu	Jes	SPT	N-Values	Prop	oortions				SYMBO	LKEY		
11	0 to 4 - 5 to 7 to 30 - 31 to Over 50	Very L 10 - Loo Mediur 50 - De - Very	oose ose n Dense mse Dense	0 to 2 3 1 5 to 8 9 t 16 to Ove	2 - Very Soft to 4 - Soft - Medium Stiff to 15 - Stiff 30 - Very Stiff er 30 - Hard	Trace Little = Some = And =	= 0 to 10% 10 to 20% = 20 to 35% 35 to 50%	 S denotes sp ST denotes 3 UO denotes 4 PEN denotes 5 REC denotes 6 SPT denotes 6 	blit-barrel samp 3-inch O.D. und 3-inch Osterbe s penetration le s recovered ler s Standard Per	eler. disturbed samp org undisturbed ongth of sample ngth of sample netration Test.	ple. I sample. er.	 7. WH denotes 8. WR denotes 9. PP denotes 10. FVST denotes 11. RQD denotes 12. C denotes 	s weight of s weight of Pocket Pe otes field va otes Rock Q core run nu	hammer rods netrometer. ane shear test. luality Designation. umber.
<u>FIELD NOTES</u> : 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual. 2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.														

		DO	DOWN TO EARTH CONSULTING, LLC General Borings Inc						DLAR ONE DAD			BORING NO SHEET FILE NO. CHKD. BY). 1	B-5 of <u>1</u> 0032-034.00 RPJ
Bori Drill Log	ng Co. er aed By			Ger	neral Borings, Inc. Jim Caisson Iateusz Fekieta			Boring Loc Ground Su Date Start	ation Irface El.	Not Availa 4/29/202	Se able	e Boring Locat Datum Date End	ion Plan Not A 4	Available
Lan	0 0				Automatic H	ammer				Groundwat	or Poadir	(fro		curfaco)
San	npler S	ize:			1-3/8" I.D. Sp	olit Spoor	า		Date	Time	Depth (f	t) Elev.	Sta	abilization Time
Typ Drill	e Drill ing Me	Rig:		3	Trac	k w-Stom	Augers		4/29/20	-	5	-		wet sample
D E P	Casing		SA		RMATION	W Oten I	lugers		SAMPL		ΓΙΟΝ			STRATA DESCRIPTION
т н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)								
1		S-1	16/24	0 to 2	2-2-3-4		Loose, Top	o 10": dark bro	wn SILT, son	ne fine to coa	arse SANE), trace fine Gra	avel, trace	14"+/- Topsoil
2 3 4		S-2	20/24	2 to 4	5-6-9-9		. (-,	Medium dens	e, reddish bro	own fine to m	edium SA	ND, trace Silt		SAND
5 6		S-3	20/24	5 to 7	11-14-13-18		Medium d	lense, reddish	brown SILT,	some fine to	medium S	SAND, trace fine	e Gravel,	SII T
7		S-4	11/24	7 to 9	20-19-17-10					wet				
9 10					20.00.00		Den	se, reddish bro	own fine to co	barse SAND a	and fine G	RAVEL, some	Silt	
11 12		S-5	1/24	10 to 12	10-21-8-9			Medium den	se, reddish b	rown fracture	d ARKOS	E fragments		WEATHERED
13 14														NOOK
15 16		S-6	1/1	15 to 15.1	50/1"			Very dense	e, reddish bro	wn fractured	ARKOSE	fragments		
17							EN	O OF EXPLOR	ATION AT 1	5.1 FEET BE	LOW GR	OUND SURFAC	CE	
19														
20 21														
22 23														
24														
25 26														
27 28														
29														
30 31														
32 33														
34														
35 36														
37														
30 39														
40	SPT	N-Valı	195	SPT	N-Values	Pror	ortions				SYMBO			
11	0 to 4 - 5 to - to 30 - 31 to Over 50	- Very L 10 - Loo Mediur 50 - De - Very	oose ose n Dense ense Dense	0 to 2 3 5 to 8 9 t 16 to 2 Ove	2 - Very Soft to 4 - Soft - Medium Stiff o 15 - Stiff 30 - Very Stiff er 30 - Hard	Trace Little = Some = And =	= 0 to 10% 10 to 20% = 20 to 35% 35 to 50%	 S denotes sp ST denotes 3 UO denotes PEN denotes REC denotes SPT denotes 	olit-barrel samp 3-inch O.D. und 3-inch Osterbe s penetration le s recovered ler s Standard Pen	ength of sample netration Test.	ble. I sample. er.	7. WH denote 8. WR denote 9. PP denotes 10. FVST den 11. RQD deno 12. C denotes	s weight of s weight of Pocket Per otes field va otes Rock Q	hammer rods netrometer. ane shear test. uality Designation. umber.
<u>FIEL</u> 2) W 3) A	<u>D NOT</u> ater lev uger ch	<u>ES</u> : 1) vel reac atter ot	Stratificati lings have oserved fro	on lines repre been made a om about 9 to	sent approximate bo it times and under c 10 and 14 to 15 fee	oundaries onditions t below gr	between soil stated, fluctua ound surface	types, transition ations may occu on inferred bou	is may be grad r due to other f lders/decompo	ual. actors. sed Arkose.				

	ring Co. General Borings, Inc.						EAST EAST V	PROJECT WINDSOR SC 341 EAST RC VINDSOR, CO	DLAR ONE DAD			BORING NC SHEET FILE NO. CHKD. BY)1	B-6 of <u>1</u> 0032-034.00 RPJ
Bori Dril Log	ing Co. Ier Iged By			Gen	ıeral Borings, Inc Jim Caisson /ateusz Fekieta	»		Boring Loo Ground Si Date Start	cation urface El.	Not Availa 4/29/202	See able 1 20	∋ Boring Locat Datum Date End	ion Plan Not A	Available 1/29/2020
Har	nmer T	уре:			Automatic	Hammer				Groundwat	er Reading	js (fro	m ground	surface)
San Tvn	npler S	ize: Ria:			<u>1-3/8" I.D. S</u> Tra	plit Spoo	<u>n</u>		Date	Time	Depth (ft)	Elev.	Sta	abilization Time
Dril	ling Me	thod:		3.	.25-inch I.D. Holl	ow-Stem	Augers		4/29/20	10:25 AM	4.5	-		15 minutes
D E P	Casing		SA	MPLE INFO	RMATION				SAMPL	E DESCRIPT	ΓΙΟΝ			STRATA DESCRIPTION
T H	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)	1							
1	-	S-1	18/24	0 to 2	2-2-2-2		Loose, T	op 9": dark bro	wn SILT, little	e fine to medi	um Sand, 1	race (-) Roots	; Bottom	15"+/- Topsoil
3		S-2	20/24	2 to 4	4-5-6-10	<u>+</u>	Med	ium dense, To Bottom 12"	p 8": light bro	wn SILT, son	ne fine Sar	id, trace (-) Ro	oots;	
4 5					í									
6 7	<u> </u>	S-3	16/24	5 to 7	3-8-10-15	+	Medium de	ense, reddish ł	orown fine to	medium SAN	ID, trace Si	lt, trace fine G	Fravel, wet	SAND
8		S-4	19/24	7 to 9	6-8-8-8		Mec	Jium dense, re	ddish brown [¬]	Top 14": fine	to medium	SAND, trace s	Silt;	
9 10								Bollom				iu, wei		
11		S-5	18/24	10 to 12	3-5-6-5	1		Medium de	ense, reddish	brown SILT,	trace fine	Sand, wet		
12 13	┣──	<u> </u>	<u> </u>			+			,			,		
14	·													
15			04/04	15 4- 47	4546	$\overline{-}$	 							SILT
16 17		S-6	24/24	15 to 17	4-5-4-6	+	1	Loc	ose, reddish b	orown SILT, lit	ttle fine Sa	nd		
18	<u> </u>					1	1							
19 20	-		<u> </u>			+	+							
21		S-7	24/24	20 to 22	9-12-20-11			Medium	dense reddi	eh brown SII	T trace fin	e Sand		
22	<u> </u>	<u> </u>	<u> </u>		ŀ								<u>، د</u>	
23	•			<u> </u>	[-				2 FEEI DLL	.Uw Groc		E	
25						1	1							
26 27				┨───┤		+	+							
28						1	1							
<u>29</u> 30	-		 				4							
31	<u> </u>		<u> </u>		<u> </u>									
32		[—	—	 	Ţ	ļ							
33 34	•		<u> </u>	<u> </u>	[+	+							
35						1	1							
36 37				┨───┤		+	+							
38							1							
39	-	<u> </u>	 	 	 		4							
40	SPT	N-Val	ues	SPT	N-Values	Pro	portions				SYMBOL	KEY		
11	0 to 4 - 5 to 7 to 30 - 31 to Over 50	· Very L 10 - Loo Mediur 50 - De	.oose ose n Dense ense Dense	0 to 2 3 t 5 to 8 - 9 to 16 to 3 Ove	2 - Very Soft to 4 - Soft - Medium Stiff o 15 - Stiff 30 - Very Stiff er 30 - Hard	Trace Little = Some And =	= 0 to 10% = 10 to 20% = 20 to 35% : 35 to 50%	1. S denotes sp 2. ST denotes 3 3. UO denotes 4. PEN denote 5. REC denote 6. SPT denote	olit-barrel samp 3-inch O.D. und 3-inch Osterbe s penetration le s recovered ler s Standard Per	Ner. disturbed samp arg undisturbed angth of sample ngth of sample. netration Test.	ble. I sample. er.	7. WH denote 8. WR denote 9. PP denotes 10. FVST den 11. RQD deno 12. C denotes	s weight of l s weight of l Pocket Per lotes field va otes Rock Q s core run nu	hammer rods netrometer. ane shear test. uality Designation. umber.
<u>FIEL</u> 2) W	<u>_D NOT</u> /ater lev	<u>'ES</u> : 1) vel reac	Stratificati lings have	been made a	sent approximate b	oundaries	between soil stated, fluctu	I types, transitior lations may occu	is may be grad ir due to other f	ual. factors.				

APPENDIX 3 -

LABORATORY TEST RESULTS

THIELSCH	195 Frances Avenue	Client Information:	Project Info	mation:
	Cranston RI, 02910	Down to Earth Consulting, LLC	E. Windsor S	olar One
	Phone: (401)-467-6454	Naugatuck, CT	East Winds	sor, CT
	Fax: (401)-467-2398	PM: Ray Janeiro	DTE Project Numbe	er: 0032-034.00
ENGINEERING	thielsch.com	Assigned By: Ran Janeiro	Summary Page:	1 of 1
	Let's Build a Solid Foundation	Collected By: Client	Report Date:	05.15.2020

LABORATORY TESTING DATA SHEET, Report No.: 7420-E-124

Identification Tests Corrosivity Tests																		
Boring ID	Sample No.	Depth (ft)	Laboratory No.	As Received Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Resitivity (Mohms- cm)	Sulfate (mg/kg)	Chloride (mg/kg)	Sulfide (mg/kg)	Redox Potential (mv)	рН	Electrical Resist. As Received Ohm- cm @ 60°F	Electrial Resist. Saturated Ohm- cm @ 60°F	Laboratory Log and Soil Description
				D2216	D4	318		D6913		EPA	D4	327	I	EPA	D4972	G	57	
B-1	Grab	0-4	20-S-1255	9.7							52	ND			6.59	34000	12400	Corrosivity Only
B-4	Grab	0-4	20-S-1256	16.5							70	ND			6.60	14800	13000	Corrosivity Only
B-5	S-3	5-7	20-S-1257				0.5	33.9	65.6									Red Brown sandy silt
B-6	S-3	5-7	20-S-1258				0.2	97.6	2.2									Dark Red Brown poorly graded sand
		1		1			1	Elec	trical Ro	esistivity an	d pH was c	completed	by JM on 0	5.12.2020.	1	1	·	

Date Received: 05.07.2020

Stato

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Steve Accetta Thielsch Engineering, Inc. 195 Frances Avenue Cranston, RI 02910

RE: E Windsor Solar One Down to Earth (0032-034.00) ESS Laboratory Work Order Number: 20E0188

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 2:09 pm, May 15, 2020

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: E Windsor Solar One Down to Earth

ESS Laboratory Work Order: 20E0188

SAMPLE RECEIPT

The following samples were received on May 08, 2020 for the analyses specified on the enclosed Chain of Custody Record.

The client did not deliver the samples in a cooler.

<u>Lab Number</u>	Sample Name	<u>Matrix</u>	<u>Analysis</u>
20E0188-01	B-1 20-S-1255 0-4ft	Soil	D4327
20E0188-02	B-4 20-S-1256 0-4ft	Soil	D4327

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: E Windsor Solar One Down to Earth

ESS Laboratory Work Order: 20E0188

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: E Windsor Solar One Down to Earth

ESS Laboratory Work Order: 20E0188

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

CERTIFICATE OF ANALYSIS

Client Project ID: E Windsor Solar One Down to Earth

Client Name: Thielsch Engineering, Inc.

Client Sample ID: B-1 20-S-1255 0-4ft

Date Sampled: 05/08/20 10:00

Percent Solids: 91

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 20E0188 ESS Laboratory Sample ID: 20E0188-01 Sample Matrix: Soil

Classical Chemistry

Analyte Chloride	Results (MRL) WL ND (5)	<u>MDL</u>	<u>Method</u> D4327	<u>Limit</u>	<u>DF</u> 1	Analyst EEM	Analyzed 05/11/20 19:23	<u>Units</u> mg/kg dry	<u>Batch</u> DE01114
Sulfate	WL 52 (5)		D4327		1	EEM	05/11/20 19:23	mg/kg dry	DE01114

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: E Windsor Solar One Down to Earth Client Sample ID: B-4 20-S-1256 0-4ft Date Sampled: 05/08/20 10:00 Percent Solids: 85

ESS Laboratory Work Order: 20E0188 ESS Laboratory Sample ID: 20E0188-02 Sample Matrix: Soil

Classical Chemistry

<u>Analyte</u> Chloride	<u>Results (MRL)</u> WL ND (6)	<u>MDL</u>	<u>Method</u> D4327	<u>Limit</u>	<u>DF</u> 1	Analyst EEM	Analyzed 05/11/20 19:40	<u>Units</u> mg/kg dry	<u>Batch</u> DE01114
Sulfate	WL 70 (6)		D4327		1	EEM	05/11/20 19:40	mg/kg dry	DE01114

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc.

Client Project ID: E Windsor Solar One Down to Earth

ESS Laboratory Work Order: 20E0188

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Classical Chem	istry						
Batch DE01114 - General Preparation										
Blank										
Chloride	ND	0.5	mg/kg wet							
Sulfate	ND	0.5	mg/kg wet							
LCS										
Chloride	10		mg/L	10.00		98	85-115			
Sulfate	10		mg/L	10.00		98	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: E Windsor Solar One Down to Earth

ESS Laboratory Work Order: 20E0188

Notes and Definitions

WL	Results obtained from a deionized water leach of the sample.
U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD LOQ	Limit of Detection Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg NR	Results reported as a mathematical average. No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit
MF	Membrane Filtration
MPN	Most Probably Number
TNTC	Too numerous to Count
CFU	Colony Forming Units
010	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: E Windsor Solar One Down to Earth

ESS Laboratory Work Order: 20E0188

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

					ali Maria								••••• . <u>11</u>	
ESS Laborato	ry			CHAIN	OF CUSTO	DY		[B PRO		 ≸₽		٦
Division of Thielsch 1	Engineering, 1 Country DI	<i>nc.</i>	Turn Time:	Standard X	Rush	Approved By:			Reporti	ng Limi	its -			
185 Frances Avenue, Tel $(A01)A61-71811$	Cranston, KI (401) 461.	02910-2211 _4486	State wher	re samples were collected:	CT									
www.esslaboratory.ci	an (101) 101	-100	Is this proj	ject for any of the followin	g: (please circle)	Electoni	c Del	iveral	ole	Yes_	<u>X</u>	No	_	
			MA-MCP	CT-RCP RGP	DOD Other	Format:	Exce	el	Access	PI)F <u>X</u>	Other		
Project Manager:	Steve Acc	etta		Project #	0032-034.00)		ΠÏ	T	ГГ				٦
Company: Address:	Thielsch E 195 France Cranston,	ingineering es Ave RI 02910		Project Name E. Windsor S Down to Ear Contract Pricin	e / Client Name: Solar One rth	Analysis	4327)	D4327)				i	mment #	
				Special Pricing	gx WO#:		e,	ide (
ESS Lab Date	Collection Time	Grab -G Composite-C	Matrix	Sample Ic	lentification	# of Containe	Sulfat	Chlori						
05.08.202	0 10:00	G	s	B-1, 20-5	5-1255, 0-4'	1	\mathbb{X}	М						
2 05.08.202	0 10:00	G	S	B-4, 20-S	5-1256, 0-4'	1	X	М						
		<u> </u>												_
													\square	
		 					-				+		 	_
		<u> </u>					-		_					
		 					-					+	$\left \right $	-
I reservation Code: 1-NP, 2-H	 CI, 3-H2SO4, 4-H	L NO3, 5-NaOH, 6	-MeOH, 7-As	orbic Acid, 8-ZnAct, 9CH3OH		I	1	1			╁╁	+		-
Container Type: P-Poly G-Gla	iss AG-Amber Gla	uss S-Sterile V-V	/OA	· · ·			AG	AG						
Aatrix: S-Soil SD-Solid D-S	udge WW-Wastev	water GW-Groun	dwater SW-S	urface Water DW-Drinking Wat	ter O-Oil W-Wipes F-Fil	lter								
Cooler Present	Yes N	lo	Sampled b	y: J. McDaniel										
Seals Intact Yes	No N	A:	Comments	: Please send report to: Rro	oth@thielsch.com, Sa	accetta@thielsch.	com,	mcol	man@th	ielsch.	com			
Cooler Temperature:	20.2 r	will					-							
elinquished by (Simature)	5.08.2020	Date/Time 13:12	Received by: (She	nature) 5/8/20 1312	Relinquished by: (Signature)			Date/Time	Receiv	red by: (Sign	nature)			
eiinquished by: (Signature)		Date/Time	Received by: (Sig	nature)	Keunquished by: (Signature)			vater Time	Receiv	rea by: (Sigr	ature)			

APPENDIX 4 -

KOZENY-CARMAN ANALYSES

Table 1Kozeny - Carman Analysesto Estimate Hydraulic Conductivity

East Windsor Solar One East Windsor, Connecticut Project Number: 0032-034.00

Test Boring No.	Sample No.	Sample Depth	D 10	Descriptive Density	Est. Relative Density	in-situ void ratio	in-situ porosity	Coefficient of Permability	Coefficient of Permability
		(ft.)	(mm)		(%)	е	n	k (cm/sec)	k (ft/day)
B-5	S-3	5'-7'	0.001	Medium Dense	40	0.716	0.42	1.01E-06	2.85E-03
B-6	S-3	5'-7'	0.162	Medium Dense	60	0.620	0.38	1.81E-02	5.14E+01

SPT	Descriptive	Relative	
(bl/ ft)	Density	Density	
		(%)	
0 to 4	Very loose	0 to 15	
4 to 10	Loose	15 to 35	
10 to 30	Medium Dense	35 to 65	
30 to 50	Dense	65 to 85	
50 +	Very dense	85 to 100	

e min	emax	
0.5	0.8	sand
0.14	1.1	silt

APPENDIX 5 -

LIMITATIONS

LIMITATIONS

Explorations

- 1. The analyses and recommendations submitted in this report are based in part upon the data obtained from subsurface explorations by Down To Earth Consulting, LLC (DTE) and others. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more erratic. For specific information, refer to the boring logs.
- 3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, tidal, temperature, and other factors occurring since the time measurements were made.

<u>Review</u>

4. In the event that any changes in the nature, design or location of the proposed solar arrays are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by DTE. It is recommended that this firm be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications.

Construction

5. It is recommended that this firm be retained to provide soil engineering services during construction of the earthworks and foundation phases of the work. This is to observe compliance with the design concepts, specifications, and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to start of construction.

Use of Report

- 6. This report has been prepared for the exclusive use of All-Points Technology Corporation, PC for specific application to the project noted in this geotechnical report in accordance with generally accepted soil and foundation engineering practices. No other warranty, express or implied, is made.
- 7. This soil and foundation engineering report has been prepared for this project by DTE. This report is for design purposes only and is not sufficient to prepare an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to design considerations only.
- 8. This report may contain comparative cost estimates for the purpose of evaluating alternative foundation schemes. These estimates may also involve approximate quantity evaluations. It should be noted that quantity estimates may not be accurate enough for construction bids. Since DTE has no control over labor and materials cost and design, the estimates of construction costs have been made on the basis of experience. DTE does not guarantee the accuracy of cost estimates as compared to contractor's bids for construction costs.

APPENDIX F: WATER QUALITY VOLUME CALCULATIONS

WATER QUALITY VOLUME CALCULATIONS FOR EAST WINDSOR SOLAR ONE, LLC 341 EAST ROAD, EAST WINDSOR AND ELLINGTON, CT

 $WQV = \frac{(1")(R)(A)}{12}$

Ι

where: WQV = water quality volume (ac-ft) *R* = volumetric runoff coefficient $= 0.05 \pm 0.009(I)$

percent impervious cover

A = site area in acres

 $V = WQV + ((P)(A_b)/12)$

V=required basin storage volume (ac-ft) WQV=Water Quality Volume (ac-ft) P= design water quality precipitation (in) Ab=basin surface area (ac)

	Area (ac)	Pervious (ac)	Imperv. (ac)	I	R	WQV (ac-ft)	P (in)	Ab (ac)	V (ac-ft)	Total V Req. (cf)	V Provided (cf)
Basin B-1	29.61	28.73	0.88	3%	0.08	0.19	1	0.266531	0.21	9,217.13	48,833.00
Overall	29.61	28.73	0.88	3%	0.08	0.19	1	0.266531	0.21	9,217.13	-

Overal Total V Required = 9,217.13 cf Overal Total V Provided =

48,833.00 cf

CT590210_EastWindsorSolarOne - PR - Rev0

Prepared by Microsoft HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-1: B-1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
192.00	19,648	0	193.04	88,120	52,312
192.02	20,514	402	193.06	89,294	54,086
192.04	21,398	821	193.08	90,476	55,883
192.06	22,301	1,258	193.10	91,666	57,705
192.08	23,223	1,713	193.12	92,863	59,550
192.10	24,163	2,187	193.14	94,069	61,419
192.12	25,122	2,679	193.16	95,282	63,313
192.14	26,100	3,192	193.18	96,503	65,231
192.16	27,096	3,724	193.20	97,731	67,173
192.18	28,111	4,276	193.22	98,968	69,140
192.20	29,145	4,848	193.24	100,212	71,132
192.22	30,197	5,442	193.26	101,464	73,149
192.24	31,268	6,056	193.28	102,723	75,190
192.26	32,358	6,692	193.30	103,991	77,258
192.28	33,466	7,351	193.32	105,266	79,350
192.30	34,593	8,031	193.34	106,549	81,468
192.32	35,739	8,734	193.36	107,840	83,612
192.34	36,903	9,461	193.38	109,138	85,782
192.36	38,086	10,211	193.40	110,444	87,978
192.38	39,288	10,984	193.42	111,758	90,200
192.40	40,508	11,782	193.44	113,080	92,448
192.42	41,747	12,605	193.46	114,410	94,723
192.44	43,005	13,452	193.48	115,747	97,025
192.46	44,281	14,325	193.50	117,092	99,353
192.48	45,576	15,224	193.52	118,445	101,708
192.50	46,889	16,148	193.54	119,806	104,091
192.52	48,222	17,099	193.56	121,175	106,501
192.54	49,573	18,077	193.58	122,551	108,938
192.56	50,942	19,082	193.60	123,935	111,403
192.58	52,330	20,115	193.62	125,327	113,895
192.60	53,737	21,176	193.64	126,726	116,416
192.62	55,163	22,265	193.66	128,133	118,964
192.64	56,607	23,382	193.68	129,549	121,541
192.66	58,070	24,529	193.70	130,971	124,146
192.68	59,552	25,705	193.72	132,402	126,780
192.70	61,052	26,911	193.74	133,840	129,442
192.72	62,571	28,148	193.76	135,287	132,134
192.74	64,108	29,414	193.78	136,741	134,854
192.76	65,665	30,712	193.80	138,202	137,603
192.78	67,239	32,041	193.82	139,672	140,382
192.80	68,833	33,402	193.84	141,149	143,190
192.82	70,445	34,794	193.86	142,634	146,028
192.84	72,076	36,220	193.88	144,127	148,896
192.86	73,726	37,678	193.90	145,628	151,793
192.88	75,394	39,169	193.92	147,136	154,721
192.90	77,081	40,694	193.94	148,652	157,679
192.92	/8,786	42,252	193.96	150,176	160,667
192.94	80,510	43,845	193.98	151,708	163,686
192.96	82,253	45,473	194.00	153,247	166,735
192.98	84,015	47,135	1 8		
193.00	85,795	48,833	- DASIN	D-I WEIF E	, u u v = 143.00
193.02	80,954	50,561			