STATE OF CONNECTICUT SITING COUNCIL

PETITION OF LSE PICTOR LLC
FOR A DECLARATORY RULING
THAT NO CERTIFICATE OF ENVIRONMENTAL
COMPATIBILITY AND PUBLIC NEED IS
REQUIRED FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF A 1.99 MW AC SOLAR PHOTOVOLTAIC FACILITY IN WINCHESTER, CONNECTICUT

PETITIONER LSE PICTOR LLC'S RESPONSES TO SITING COUNCIL INTERROGATORIES DATED MARCH 23, 2021 AND SUPPLEMENTAL SUBMISSION

1. What is the output of the revised facility at the point of interconnection?

The output of the Facility remains unchanged at 1.99 MW AC.
2. Referring to the Wetland Impact Assessment report, p. 11, it appears Table 3 - Fish and Shellfish Habitat, contains incomplete information. Please revise.

RESPONSE: Please see the table attached hereto as Exhibit 1.
3. Referring to the Wetland Impact Assessment report, p. 15:
a. What types of wildlife are expected to use the 18 -inch diameter HDPE pipes for wildlife passage?
b. What type of substrate would be installed within the pipe?
c. Would the pipes serve to transfer water during flood events and thus cause erosion on the downstream side?
d. What is the maintenance interval of the wildlife passages?

RESPONSE: The Petitioner has updated the proposed Site plans, attached hereto as Exhibit 2, to utilize open-bottom box culverts in lieu of the proposed pipes to allow for the existing substrate to remain and increase wildlife passage. Small mammals and reptiles are anticipated to use these open-bottom areas. Larger wildlife can travel across the access road. The use of large open-bottom box culverts in lieu of closed-bottom circular pipes means that the natural stream course bottom will be maintained as it exists today, requiring no new substrate and maintaining current flows during flood events and alleviating any erosion impacts downstream. Quarterly maintenance will be conducted along with the planned maintenance of the stormwater basins.
4. Has any consideration been given to spanning both access road wetland crossings with a bridge structure to limit wetland disturbance? If not, why not?

RESPONSE: The Petitioner has updated the proposed Site plans, attached hereto as Exhibit 2, to utilize open-bottom box culverts in lieu of the originally-proposed pipes to allow for the existing substrate to remain and increase wildlife passage. Utilizing a bridge structure would result in a substantial increase in overall Site disturbance with the large foundations required to construct such a structure. Given the very limited use of the access drive once the Facility is constructed, Petitioner believes that the open-bottom box culverts proposed appropriately balance any potential impact of the access drive on wetlands disturbance and overall Site disturbance and vehicular requirements at the Site.
5. The July 5, 2005 Wetland letter from Penelope C. Sharp mentions the potential for vernal pools with the red maple swamp in the eastern portion of the property. Was the red maple swamp surveyed for the presence of vernal pools? If so, submit survey results. If not, why not?

RESPONSE: The Petitioner conducted a vernal pool investigation of the Site on April 1, 2021, a copy of which is attached hereto as Exhibit 3. As can be seen from Exhibit 3, four (4) areas of the Site were found to support breeding by obligate vernal species. However, only three (3) of those areas exhibited physical and biological vernal pool indicators. Two cryptic vernal pools determined as tier III breeding areas were identified specifically within the red maple shrub swamp. As noted in Exhibit 3, the vernal pools identified within the red maple swamp has suboptimal breeding conditions and breeding attempts within areas that may contain fish or within areas with insufficient water depths are unlikely to be successful. Due to the location of the two (2) vernal pools within the red maple swamp-on the eastern property boundary, no portion of the Project will have any impact on the vernal pool or any portion of the vernal pool envelopes nor the 750 -foot Critical Terrestrial Habitat ("CTH") associated with those two (2) cryptic vernal pools.

The remaining vernal pool, Vernal Pool 1, was already noted and assumed to be a vernal pool on Petitioner's Site plans and Wetland Impact Assessment prepared by VHB. Therefore, confirmation of this pool does not require any changes to the Site Plan. The Project will have an impact on 5\% of the CTH, which is well-within best management practices.
6. Referring to the Stormwater Management Report p. 2, it states the solar array would be placed on slopes less than 15 percent. The response to Petition 1398 interrogatory 78 stated 1.25 acres of the solar array was located on slopes greater than 15 percent, please clarify.

RESPONSE: The Stormwater Management Report has been corrected, in the attached Exhibit 4, to confirm that 1.25 acres of the array are on slopes of 15% or greater.
7. Referring to The Council on Environmental Quality letter dated May 27, 2020, discuss the feasibility of accessing the project site from Dayton Road to avoid the proposed wetland crossing.

RESPONSE: Dayton Road (also referred to as Forest Avenue) at certain segments, is an unimproved road, with the area adjacent to the Site being dirt with significant washout channels making the existing road unusable for construction vehicles. Therefore, significant improvements would be required to Dayton Road itself in order for it to be utilized for primary access to the Site. The length of road requiring upgrades, from Platt Hill Road to the project Site, would be over 2,200 feet. In addition, the access drive on the Site from Dayton Road would be in close proximity to wetland areas and one (1) identified vernal pool in the northeast corner of the Site, including in the 750 -foot CTH surrounding that vernal pool. As noted in Exhibit 3, this tier I rated vernal pool did have observed obligate vernal pool indicators. The driveway would also have to cross steeper slopes to access the Site, thus requiring more site disturbance and additional stormwater management systems than the current access driveway, which follows the natural slope.

In addition, utilizing Dayton Road for vehicular access will result in a significant increase in the total cleared and disturbed area at the Site. The Project's point of interconnection with Eversource's distribution grid is on Platt Hill Road, so the proposed clearing and access drive from Platt Hill Road to the Site would still be required to access interconnection equipment for construction and ongoing maintenance, even if vehicular access was moved to Dayton Road. The point of interconnection is dictated by Eversource and cannot be relocated to Dayton Road.

For all the reasons outlined above, Petitioner does not consider access from Dayton Road to be a feasible alternative for access to the Site.

8. \quad Referring to the Stormwater Management Report p. 10:

a. How will mounting posts be installed at the site?
b. To what depth will the mounting posts be installed?
c. How will the installation of hundreds of mounting posts impact the existing perched seasonal high groundwater table, and hydrology of the site in respect to seeps, wetlands, and the proposed "wet practice" detention basins?

RESPONSE: It is currently anticipated that the foundation system will consist of 6 inch by 9 inch H-piles which would be installed by the use of piledriver equipment. An estimated embedment depth of ten (10) to fourteen (14) feet has been assumed until structural pull testing is performed at the Site to confirm the structural design. In the event that shallow ledge is encountered at any of the pile locations, ground screws may be substituted for those specific H-piles.

The 6 inch by 9 inch H-pile has a cross-sectional area of approximately 2.68 square inches and the Project will utilize approximately eight hundred (800) piles to construct the array, it is anticipated that the entire foundation design of the proposed array will disturb approximately 2,144 square inches - or approximately fifteen (15) total square feet at the Site. This fifteen (15) square feet represents only about $1 / 22,360(0.0045 \%)$ of the total area of the proposed solar array area of the

Project. Accordingly, the Site disturbance resulting from the installation of mounting posts is insignificant and potential impact, if any, to the groundwater table will likewise be de minimis.
9. Due to the low height of the berms within the pond stormwater basins, what maintenance is required to prevent the berms from being covered in leaf matter/other organic matter so that the flow path is not impeded?

RESPONSE: The earthen berms/baffles were included into the design of the stormwater basins as a conservative, recommended measure to increase flow paths during low-flow storms across the bottoms of the basins. These baffles do not extend from one side of the basin to the other but instead have a gap at each end to allow stormwater to pass naturally. Accordingly, in the event that leaf little or debris accumulates in the bottom of the basin, the stormwater basins as a whole will continue to function as intended. That understanding aside, it is intended in the long-term operations \& maintenance of the Facility to check the basins at least quarterly to ensure that proper functioning is maintained and any accumulated debris will be removed at that time.

10. Is a pre-treatment basin required for the southeast detention basin?

RESPONSE: Based upon this inquiry/request and out of an abundance of caution, the Petitioner has added a pre-treatment basin to the southeast detention basin, as shown in Exhibit 2 and Exhibit 4.
11. According to the site plans, the southern stormwater basin is located within 100 feet of a tributary to Taylor Brook, a cold water stream. Can the southern stormwater basin be relocated out of the 100-foot buffer to this cold water stream habitat, as recommended by the 2004 Connecticut Stormwater Quality Manual and the DEEP General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities?

RESPONSE: Yes and the revised Site Plans and Stormwater Report confirm that the Petitioner has relocated the southern stormwater basin outside of the one hundred (100) foot buffer to the western wetland boundary.
12. Has the manufacturer of the selected solar panels conducted Toxicity Characteristic Leaching Procedure (TCLP) testing to determine if the panels would be characterized as hazardous waste at the time of disposal? If so, please submit relevant information. If the project is approved, would the Petitioner commit to the installation of solar modules that are not classified as hazardous waste through TCLP testing?

RESPONSE:

TCLP testing has been conducted on Phono Sumec modules. These are standard polycrystalline silicon (PolySi) module types utilized throughout the solar industry and Petitioner anticipates
utilizing this make/model of module for this Project. The associated TCLP report is attached as Exhibit 5. Within this report hazardous materials were tested and ultimately not detected. This includes arsenic, barium, chromium, selenium, cadmium, and mercury. Trace amounts of lead from the soldering process were found however the $4.3 \mathrm{mg} / \mathrm{L}$ result is below the level that qualifies a substance as "toxic" and does not require the material to be disposed of as "hazardous waste." Thin-film solar modules are composed on cadmium telluride (CdTe) and have been a source of concern with respect to disposal. If the Project is approved, the Petitioner commits to the installation of standard polycrystalline silicon (PolySi) modules that are not considered toxic or hazardous waste and align with the results of the Phono Sumec TCLP report.
13. The Greenhouse Gas (GHG) Assessment in Appendix M of Council Petition No. 1352 compared the life cycle GHG emissions from a solar project to a scenario where the solar project is avoided and an equivalent amount of natural gas-fired electric generation operated for the estimated life of the solar facility. For the proposed project, how would the net GHG emissions (or reduction) over the life of the solar facility and carbon debt payback be affected under this natural gas-fired generation versus proposed solar generation scenario?

RESPONSE:

See table below. Assuming a one-half percent (0.5\%) degradation of solar output per year and a starting yearly output of $3,625 \mathrm{MWh}$ for this Project, it is anticipated that approximately 71,956 MWh will be generated over a twenty (20) year period. Utilizing the conversion ratio described in Appendix M of Council Petition No. 1352 relating 744,038 MWh to 1,273,861 MT of CO2eq from natural gas generation emissions, it can be expected that $123,195 \mathrm{MT}$ CO2eq would be generated by a natural gas-fired facility with this Project's 20 -year MWh output. Utilizing the conversion ratio as described in appendix M of Council Petition No. 1352 we can equate the projects 1.99 MW array to produce 19,649 MT CO2e GHG emissions. Comparing this to the emissions of the natural gas-powered facility, emissions can be reduced by 103,546 MT or 84% with the installation of the proposed solar Project over the life of the Project.

	Solar	Natural Gas	Difference
Energy Output (MWh)	71,956	71,956	
CO2 (MT)	19,649	123,195	103,546

SUPPLEMENTAL INFORMATION

As noted in Petitioner's motion to re-open this Petition, Petitioner submitted a selfverification to the Army Corps of Engineers. The Army Corps' authorization of the Project is attached hereto as Exhibit 6.

As also noted in Petitioner's motion to re-open this Petition, Petitioner submitted the Project details to the Dam Safety division of DEEP to determine if the berms should be classified as dams and therefore require registration. As evidenced by the attached correspondence from the Dam Safety division and calculations prepared by Petitioner, no classification will be required. See Exhibit 7 attached hereto.

Finally, Petitioner submitted its Site plans included in its motion to re-open dated January 15, 2021 to the DEEP stormwater division to determine if Petitioner needs to re-file a stormwater permit for this Site or if the Project could move forward under the previously approved stormwater permit. The correspondence attached hereto as Exhibit 8 demonstrates that DEEP stormwater concurs that no new filing is required and the stormwater permit is ready to be issued upon receipt of the letter of credit required thereunder.

In the event the Petition is approved in accordance with the Site Plans and Stormwater Report attached hereto as Exhibits 2 and $\underline{4}$ respectively, Petitioner will re-submit those revisions to these agencies to confirm that these revisions comply with the previously-issued decisions.

Respectfully submitted,

Petitioner

LSE PICTOR LLC

By: Carrie Larson Ortolano
Jeffrey J. Macel, Manager
Carrie Larson Ortolano, Associate General Counsel
\% Lodestar Energy LLC
40 Tower Lane, Suite 201
Avon, CT 06001

EXHIBIT 1

Table 3 Site Wetland Functions and Values based on Army Corps Highway Methodology

Function/Value	Wetland 1
Groundwater Discharge/ Recharge	\mathbf{P} - Wetland 1 primarily provides groundwater discharge as this wetland is associated with intermittent streams. Hillside seeps also provide groundwater discharge.
Floodflow Alteration	SC - The wetland receives and retains overland sheet flow from surrounding areas. However, there are reductions in the wetland's capabilities due to the intermittent watercourse functions.
Fish and Shellfish Habitat	Due to the lack of suitable habitat, the majority of wetlands on site do not support habitat for finfish, except for the farm pond in the northwest corner of the site, far removed from the proposed development. The majority of the development site drains southerly and easterly off the site to Taylor Brook ultimately reaching Highland Lake. The wetlands onsite contribute to the quality and functions of Taylor Brook as they are directly connected. While the majority of onsite wetlands do not provide this habitat function onsite, the wetlands do have the capacity to provide nutrients and food sources (detritus) to support the food web downstream influencing the quality of downstream fish and shellfish habitat.
Sediment/ Toxicant Retention	SC - The farm pond in the northwestern corner provides the capacity to provide this function from receiving and retaining drainage. Otherwise, there is limited capabilities to contribute to this function since the watercourses do not allow for slowing and much retention of sediment down gradient of the farm pond.
Nutrient Removal	SC - The farm pond in the northwestern corner provides an opportunity for nutrient trapping, however, the watercourses down-stream carry nutrients off site.
Production Export	\mathbf{P} - Vegetation abundance and diversity within the wetland provides food sources for wildlife to support the food web. Because of the associated watercourses present there is direct connection to transport food sources.
Sediment/ Shoreline Stabilization	The wetland does not provide the capacity to contribute to this function, as shorelines do not exist for example.
Wildlife Habitat	\mathbf{P} - The wetland is largely not degraded by human activity. Areas dense vegetation in areas of the wetland can provide habitat for small and medium sized animals. The wetland is bordered by large tracts of undeveloped woodland on and off site.
Recreation	Limited, private property, no off-road parking and accessibility to public
Educational/ Scientific Value	Limited, private property, no off-road parking and accessibility to public
Uniqueness/ Heritage	There are no cultural and archaeological resources of concern, based on the Raber Associates July 2020 report.

Function/Value	Wetland 1 (continued)
Visual Quality/ Aesthetics	While the forested environment does provide some visual quality, there is a limited capacity to contribute to this function due to the lack of multiple wetland classification types able to be viewed from primary viewing locations due to the density of the forested community for example.
Endangered Species Habitat	There were no rare species previously observed or an NDDB polygon is within the project site development.
$\mathbf{P = P r i m a r y ~ F u n c t i o n ~}$	

EXHIBIT 2

$\mathscr{P H S E}$

AS NeEDED.

PHㅕㅕㄹ

WITH S PECI FIED SEED MIXT URE ON APPRO VED PLANS

PHASE III \mathfrak{A}

INSTALL S OLAR PAVELS OX RACXING SYS TEM.

PHASE III B

 SSTEM チOR SOLAR PAVELS PER MANUFACTURER'S SPECIFICATIONS.

EXHIBIT 3

Carrie Larson Ortolano. Esq., Associate General Counsel
LSE Pictor LLC
40 Tower Lane, Suite 201
Avon, CT 06001

Re: 2021 Vernal Pool Breeding Habitat Evaluation
1.99+/-MW Solar Development Project

Platt Hill Road, Winchester, CT

Dear Attorney Ortolano,

As requested by LSE Pictor LLC ("Lodestar"), Vanasse Hangen Brustlin, Inc. (VHB) investigated wetlands on Lodestar's Platt Hill Road project site in Winchester, Connecticut (the "Site") for vernal pool breeding habitat. As you know, the March 23, 2021 interrogatory letter from the Connecticut Siting Council ("CSC") Petition No. 1398A requested investigation of vernal pools specifically within the red maple swamp located along the eastern boundary of the Site. VHB reviewed wetlands on the Site, which were previously flagged by other parties, and prepared a Wetland Verification Letter (dated October 23, 2020). However, that field work was conducted during the fall, outside of the typical season for identification of biological vernal pool indicators. This letter summarizes the findings of VHB's spring 2021 vernal pool breeding habitat evaluation on the Site.

Vernal Pool Identification and Assessment

The Connecticut Department of Energy and Environmental Protection (CT DEEP) generally describes vernal pools as "seasonal depressional wetlands, which in the northeast occur in glaciated areas that are covered by shallow water for variable periods from winter to spring but may be completely dry during the summer and fall" (CT DEEP 2021). And although Connecticut's municipal inland wetlands agencies regulate vernal pools, the CT DEEP does not provide a regulatory definition of vernal pool. Acknowledging the lack of an official definition for vernal pools in Connecticut, in a technical paper addressing vernal pool considerations for site development, Calhoun and Klemens (2002) note that vernal pools generally occupy less than 2 acres and recommend following guidance provided by Donahue (1996), which is includes the following factors:
a) presence of one or more obligate species,
b) water for approximately 2 months during the growing season,
c) a confined depression that lacks a permanent outlet stream,
d) no fish, and
e) dries out in most years.

Vernal Pool Habitat Evaluation
Platt Hill Road, Winchester, CT
April 5, 2021
Page 2

In addition, the Connecticut Association of Wetland Scientist (CAWS) Vernal Pool Monitoring webpage (CAWS 2020) cites the following vernal pool definition:

Vernal pool means a seasonal watercourse in a defined depression or basin, that lacks a fish population and supports or is capable of supporting breeding and development of amphibian or invertebrate species recognized as obligate to such watercourses. These species include spotted salamander, Jefferson salamander complex, marbled salamander, wood frog, and fairy shrimp.

These criteria are similar, although the CAWS do not require the pool to dry in most years. The common and specific names for Connecticut species considered by Calhoun and Klemens (2002) to be obligate biological indicators of vernal pool habitat are listed within Table 1.

Table 1 Obligate Vernal Pool Species

Common Name	Scientific name
Jefferson Salamander	Ambystoma jeffersonianum
Blue-spotted Salamander complex	Ambystoma laterale
Spotted Salamander	Ambystoma maculatum
Marbled Salamander	Ambystoma opacum
Wood Frog	Lithobates sylvaticus
Eastern Spadefoot Toad	Scaphiopus holbrookii
Fairy Shrimp	Eubranchipus spp.

Furthermore, because vernal pool-breeding amphibians depend on terrestrial habitats as well as aquatic breeding habitats for survival, Calhoun and Klemens (2002) emphasize the importance of considering the surrounding upland areas, up to 750 feet from breeding pools. One hundred feet from the edge of the pool is considered the "vernal pool envelope" and the zone between 100 feet to 750 feet has been termed "critical upland habitat." The authors go on to provide a ranking methodology to assess the quality of each breeding area based on biological indicators and surrounding land use. This tool- a one-page form titled "Vernal Pool Assessment Sheet"- is specifically intended to be used for development planning purposes. Therefore, the purview of Connecticut's municipal inland wetlands agencies encompasses wetland vernal pool habitat and surrounding upland areas.

Survey Methodology

On April 1, 2021, VHB senior ecologist, Brett Trowbridge investigated wetlands on the Site and portions of the proposed development area for biological vernal pool indicators. This investigation occurred during overcast weather conditions with occasional snow flurries and a high temperature of approximately $38^{\circ} \mathrm{F}$. The ArcGIS Collector application was used to navigate to each of the wetlands that were previously identified during delineation of wetlands on the Site. Wading surveys were conducted within inundated depressions on the Site while wearing polarized glasses to increase subsurface visibility. Meandering, visual surveys were conducted within the larger wetland systems. A dip net was used to sample for
biological indicators within inundated areas as well. Discretion was used during dipnet sweeps, such that small, shallow areas containing obligate vernal pool indicators were not substantially disrupted (i.e., increasing turbidity in areas containing egg masses or spermatophores). Field notes and supporting photographs were taken for areas that were found to meet the vernal pool criteria presented above. Geographic information system (GIS) tools and aerial imagery were used to determine land use surrounding breeding areas and calculate percentages for terrestrial habitat impacts associated with Site development.

Survey Findings

Four areas on the Site were found to support breeding by obligate vernal species. However, only three areas exhibited physical and biological vernal pool indicators. Table 2 provides a summary of obligate vernal pool biological observations.

Vernal Pool 1 is an isolated depression approximately 40 feet long by 20 feet wide, with a firm leafy bottom located in the northeastern portion of the Site. At the time of the investigation, the estimated average and maximum water depths for Vernal Pool 1 were 12 inches and 18 inches, respectively (see Photo 1). Based on its hillside landscape position, the pool appears to have a perched hydrology. However, based on the firm bottom, it is likely that Vernal Pool 1 dries down completely during most years. Observed obligate vernal pool indicators included wood frog (Lithobates sylvaticus) egg masses (see Photo 2) and Ambystomatid salamander spermatophores (see Photo 3).

Vernal Pools 2 and 3 are shallow, cryptic pools formed by the void from the roots of fallen trees (i.e., tree tip-ups) located within the red maple shrub swamp in the southeastern portion of the Site (see Photos 4 and 5). Vernal Pool 2 is approximately 40 feet long by 10 feet wide and Vernal Pool 3 is approximately 30 feet long by 20 feet wide. Both pools have soft, mucky bottoms and during the investigation, the maximum and estimated average water depths in each pool were 9 inches and 6 inches, respectively. Based on their lower landscape position and rich organic surface materials Vernal Pools 2 and 3 likely exhibit seasonal inundation and long-term soil saturation. Observed obligate vernal pool indicators included wood frog egg masses in Vernal Pool 2 (see Photo 6) and Ambystomatid salamander spermatophores within Vernal Pool 3 (see Photo 7).

Ambystomatid salamander spermatophores and three wood frog egg masses were observed within the channel of an unnamed stream located along the eastern Site boundary within the red maple shrub swamp (see Photo 8). The stream has a silty bottom and exhibited approximately 12 inches of flow during the investigation (see Photo 9). Additional Ambystomatid salamander spermatophores were observed in approximately 1 inch of standing water within the red maple shrub swamp beyond the stream channel (see Photo 10). These observations, all occurred within 100 feet of Vernal Pools 2 and 3. Although these areas exhibited biological vernal pool indicators during 2021, they do not conform to the physical and/or hydrological requirements for vernal pools. Specifically, the stream area exhibits a permanent inlet and outlet, which allows potential fish passage. The area with shallow spermatophores, some of which were

Vernal Pool Habitat Evaluation
Platt Hill Road, Winchester, CT
April 5, 2021
Page 4
above the water line, does not have appropriate hydrology for larval development of obligate vernal pool breeding amphibians. Therefore, these two areas are not recognized as viable vernal pools.

Table 2 Obligate Vernal Pool Biological Observations

Location	Wood Frog Egg Masses	Ambystomatid Salamander Spermatophores
Vernal Pool 1	10	Present
Vernal Pool 2	17	Absent
Vernal Pool 3	0	Present
Eastern Unnamed Stream	3	Present

Two small areas that were previously identified as vernal pools indicated by wetland flags MB 352 through MB 355 and MB 356 through MB 359 on the Site Development Plans from Trinkaus Engineering, LLC (dated March 6, 2020) did not contain vernal pool indicators during VHB's 2021 investigation. The former area does not have suitable hydrology to support larval development of obligate vernal pool breeding amphibians. This small area is a hillside seep and no surface water was present at the time of the inspection. Furthermore, the topography is not suitable for flooding and this area did not contain surface water indicators such as water stained leaves or waterlines on rocks or woody vegetation (see Photo 11). The latter previously identified vernal pool area does appear to have suitable physical conditions and hydrology to support larval development of obligate vernal pool breeding amphibians. This approximately 10-feet wide by 40-feet long, well-defined depression contained a maximum water depth of 20 inches and average depth was estimated to be 16 inches and had a firm leafy bottom (see Photo 12). However, no evidence of vernal pool breeding of was observed despite a thorough visual survey and multiple dipnettings.

Several isolated hillside seeps exist on the Site (see Figure 1). These areas are generally cobbly or bouldery side slope features where groundwater is near the soil surface or groundwater breakout areas with shallow sheet flow (see Photos 9 and 10). The isolated hillside seeps do not contain appropriate topography for surface flooding and therefore do not provide suitable breeding habitat for obligate vernal pool species.

Terrestrial Vernal Pool Habitat

Figure 1 shows 100 -foot "vernal pool envelopes" and 750 -feet "critical upland habitats" surrounding vernal pool breeding areas. GIS aerial imagery were used to determine the land uses surrounding the breeding areas and GIS analysis were used to quantify potential habitat areas within 750 feet of the pools. Table 3 presents approximate land use percentages for each habitat zone. Overall, the existing suitable terrestrial habitat is extensive around each vernal pool, with only sparse residential development near Vernal Pools 2 and 3.

Vernal Pool Habitat Evaluation
Platt Hill Road, Winchester, CT
April 5, 2021
Page 5

Table 3 Upland Vernal Pool Habitat Percentages

Habitat Zone	Development Category	Vernal Pool 1	Vernal Pool 2	Vernal Pool 3
Vernal Pool Envelope (0-100 ft)	Undeveloped	Proposed Solar Development	0%	0%
Critical Terrestrial Habitat (100-750 ft)	UndevelopedProposed Solar Development	95%	0%	0%
		5%	100%	100%

Table 4 Summary of Onsite Vernal Pools

Pool ID	Approximate Breeding Area $\left(\right.$ Ft $\left.^{2}\right)$	Permanent Outlet	Hydrology	Obligate Species	Fish Present	Vernal Pool Classification
Tier Rating*						

Notes: *Tier ratings determined via completing Vernal Pool Assessment Sheets (Calhoun and Klemens 2002) for each vernal pool.

The proposed solar development will not alter any vernal pool envelopes. However, 4.7 percent of the critical upland area associated with Vernal Pool 1 will be altered. No critical upland areas associated with Vernal Pools 2 and 3 will be altered.

The attached Vernal Pool Assessment Sheets (Calhoun and Klemens 2002) present biological values, habitat conditions, and tier rankings for Vernal Pools 1-3. Table 4 lists square footages for each breeding area, summarizes vernal pool criteria, and lists tier rankings according to the Calhoun and Klemens (2002) Vernal Pool Assessment Sheets. Based on those sheets, Vernal Pool 1 is considered a Tier I breeding area, while cryptic Vernal Pools 2, and 3 are classified as Tier III breeding areas.

Conclusions

During an April 2, 2021 evaluation, VHB identified one classic, isolated vernal pool and two cryptic vernal pools on or near the Project Site. These areas appear to have suitable hydrology for full larval development and metamorphosis of vernal pool breeding amphibians. Table 2 summarizes biological observations for each pool. Another pool that exhibits suitable physical and hydrological conditions did not exhibit biological indicators during 2021 (wetland flags MB 356 through MB 359).

Portions of red maple shrub swamp located in the southern portion of the Site provide diffuse cryptic vernal pool breeding habitat where vernal pool amphibian opportunistically breed within the deeper pockets of the forested wetland system. However, vernal pool breeding conditions within the red maple shrub swamp are sub-optimal and portions of this wetland appear to serve as sinks for vernal pool breeding amphibians. As noted above, breeding attempts within areas that may contain fish or within areas with insufficient water depths are unlikely to be successful.

Please feel free to contact me at (860) 807-4388 or jshamas@vhb.com with any questions or comments.
Sincerely,

Jeffrey Shamas, CE, CSS, PWS
Director of Environmental Services

Vernal Pool Habitat Evaluation
Platt Hill Road, Winchester, CT
April 5, 2021
Page 7

References:

Calhoun, A. J. K. and M. W. Klemens. 2002. Best development practices: Conserving pool-breeding amphibians in residential and commercial developments in the northeastern United States. MCA Technical Paper No. 5, Metropolitan Conservation Alliance, Wildlife Conservation Society, Bronx, New York.

Connecticut Association of Wetland Scientists (CAWS). 2020. Vernal Pool Monitoring webpage: http://ctwetlands.org/vernal-pool-monitoring.html; last accessed 23 April 2020.

Connecticut Department of Energy and Environmental Protection (CT DEEP). 2020. Vernal Pools webpage: https://portal.ct.gov/DEEP/Water/Wetlands/Vernal-Pools; last accessed 23 April 2021.

Donahue, D. F. 1996. A guide to the identification and protection of vernal pool wetlands in Connecticut. University of Connecticut Cooperative Extension Program.

Klemens, M. W. 1993. Amphibians and reptiles of Connecticut and adjacent regions. State Geological and Natural History Survey of Connecticut, Bulletin No. 112, Connecticut Department of Environmental Protection, Hartford, CT.

Figure
Figure $1 \quad 2021$ Wetland and Vernal Pool Resources

Attachments

Attachment 1 Vernal Pool Evaluation Photographs
Attachment 2 Vernal Pool Assessment Sheets (Calhoun and Klemens 2002; 3 sheets: VPs 1-3)

Figure 1

Wetland and Vernal Pool Resources

Evhb April 05, 202

Attachment 1
 Vernal Pool Evaluation Photographs

Photo 2.

Description:
Southerly view of Vernal Pool 1, perched on a side slope in the northeastern portion of the Site.

Description:

Fresh wood frog egg masses observed within Vernal Pool 1.

Photo 4.

Description:

Ambystomatid salamander spermatophores observed within the southern end of Vernal Pool 1.

Description:

Westerly view of Vernal Pool 2 located within the red maple shrub swamp in the southeastern portion of the Site. Seventeen wood frog egg masses were observed within this tree tip-up pool.

Photo 8.

Description:
Ambystomatid salamander spermatophores observed within Vernal Pool 3.

Description:

Wood frog egg masses observed within the channel of an unnamed stream located along the eastern Site boundary within the red maple shrub swamp.

Photo 10.

Description:

Ambystomatid salamander spermatophores observed within the red maple shrub swamp. Given their unusually shallow or emergent positions, these male reproductive structures are non-likely to be functional and will become desiccated. The spermatophores were most likely deposited during a brief period when the water was deeper.

Photo 12.

Description:

Southwesterly view of a small hillside seep that was previously delineated by wetland flags MB 352 through MB 355. This area was previously identified as a potential vernal pool by others. However, this wetland does not have suitable hydrology to support vernal pool breeding, because the topography does not allow flooding. No surface water indicators such as water stained leaves or waterlines were observed either

Description:

Southwesterly view of the isolated wetland that was delineated with wetland flags MB 356 through MB 359. This wetland appears to have suitable physical and hydrological conditions to support larval development of obligate vernal pool breeding amphibians. However, no biological vernal pool indicators were observed.

Photo 14.

Description:

Westerly view of the isolated hillside seep delineated by wetland flags MB 660- MB 665. This is one of several hillside seeps on the Site. These areas do not contain appropriate topography for surface flooding and therefore do not provide suitable breeding habitat for obligate vernal pool species.

Description:

Northwesterly view of the isolated hillside seep delineated by wetland flags MB 600- MB 613. This area does not contain appropriate topography for surface flooding and does not provide suitable vernal pool breeding habitat.

Attachment 2
 Vernal Pool Assessment Sheets

VERNAL POOL ASSESSMENT SHEET

A. Biological Value of the Vernal Pool

(1) Are there any state-listed species (Endangered, Threatened, or Special Concern) present or breeding in the pool?
Yes \qquad No \qquad
(2) Are there two or more vernal pool indicator species breeding (i.e., evidence of egg masses, spermatophores [sperm packets], mating, larvae) in the pool?
Yes \qquad x No \qquad
(3) Are there 25 or more egg masses (regardless of species) present in the pool by the conclusion of the breeding season?
Yes \qquad No \qquad

B. Condition of the Critical Terrestrial Habitat

(1) Is at least 75% of the vernal pool envelope (100 feet from pool) undeveloped? Yes \qquad X No \qquad
(2) Is at least 50% of the critical terrestrial habitat (100-750 feet) undeveloped?

Yes \qquad No \qquad
NOTE: For these purposes, "undeveloped" means open land largely free of roads, structures, and other infrastructure. It can be forested, partially forested, or open agricultural land.

Cumulative Assessment

Number of questions answered YES in category A	Number of questions answered YES in category B	Tier Rating
$1-3$	2	Tier I
$1-3$	1	Tier II
0	$1-2$	Tier III
$1-3$	0	Tier III

CAUTION! This rating system is designed strictly as a planning tool, not as an official assessment tool. It will enable you to determine the relative ecological value of pools within your community. A Tier I rating-which will most likely apply to only a minority of sites-denotes exemplary pools; Management Recommendations should be applied at these sites. For pools rated as Tier II, proceed with care; you need more information! Tier II pools will probably constitute the majority of your vernal pool resources; Management Recommendations should be applied at these sites to the maximum extent practicable. Tier II pools might also be likely candidates for restoration efforts (e.g., reforestation of the critical terrestrial habitat).

VERNAL POOL ASSESSMENT SHEET

A. Biological Value of the Vernal Pool

(1) Are there any state-listed species (Endangered, Threatened, or Special Concern) present or breeding in the pool?
Yes \qquad No \qquad
(2) Are there two or more vernal pool indicator species breeding (i.e., evidence of egg masses, spermatophores [sperm packets], mating, larvae) in the pool?
Yes \qquad No \qquad
(3) Are there 25 or more egg masses (regardless of species) present in the pool by the conclusion of the breeding season?
Yes \qquad No \qquad

B. Condition of the Critical Terrestrial Habitat

(1) Is at least 75% of the vernal pool envelope (100 feet from pool) undeveloped? Yes \qquad X No \qquad
(2) Is at least 50% of the critical terrestrial habitat (100-750 feet) undeveloped?

Yes \qquad No \qquad
NOTE: For these purposes, "undeveloped" means open land largely free of roads, structures, and other infrastructure. It can be forested, partially forested, or open agricultural land.

Cumulative Assessment

Number of questions answered YES in category A	Number of questions answered YES in category B	Tier Rating
$1-3$	2	Tier I
$1-3$	1	Tier II
0	$1-2$	Tier III
$1-3$	0	Tier III

CAUTION! This rating system is designed strictly as a planning tool, not as an official assessment tool. It will enable you to determine the relative ecological value of pools within your community. A Tier I rating - which will most likely apply to only a minority of sites-denotes exemplary pools; Management Recommendations should be applied at these sites. For pools rated as Tier II, proceed with care; you need more information! Tier II pools will probably constitute the majority of your vernal pool resources; Management Recommendations should be applied at these sites to the maximum extent practicable. Tier II pools might also be likely candidates for restoration efforts (e.g., reforestation of the critical terrestrial habitat).

VERNAL POOL ASSESSMENT SHEET

A. Biological Value of the Vernal Pool

(1) Are there any state-listed species (Endangered, Threatened, or Special Concern) present or breeding in the pool?
Yes \qquad No \qquad
(2) Are there two or more vernal pool indicator species breeding (i.e., evidence of egg masses, spermatophores [sperm packets], mating, larvae) in the pool?
Yes \qquad No \qquad
(3) Are there 25 or more egg masses (regardless of species) present in the pool by the conclusion of the breeding season?
Yes \qquad No \qquad

B. Condition of the Critical Terrestrial Habitat

(1) Is at least 75% of the vernal pool envelope (100 feet from pool) undeveloped? Yes \qquad X No \qquad
(2) Is at least 50% of the critical terrestrial habitat (100-750 feet) undeveloped?

Yes \qquad No \qquad
NOTE: For these purposes, "undeveloped" means open land largely free of roads, structures, and other infrastructure. It can be forested, partially forested, or open agricultural land.

Cumulative Assessment

Number of questions answered YES in category A	Number of questions answered YES in category B	Tier Rating
$1-3$	2	Tier I
$1-3$	1	Tier II
0	$1-2$	Tier III
$1-3$	0	Tier III

CAUTION! This rating system is designed strictly as a planning tool, not as an official assessment tool. It will enable you to determine the relative ecological value of pools within your community. A Tier I rating-which will most likely apply to only a minority of sites-denotes exemplary pools; Management Recommendations should be applied at these sites. For pools rated as Tier II, proceed with care; you need more information! Tier II pools will probably constitute the majority of your vernal pool resources; Management Recommendations should be applied at these sites to the maximum extent practicable. Tier II pools might also be likely candidates for restoration efforts (e.g., reforestation of the critical terrestrial habitat).

EXHIBIT 4

STORMWATER MANAGEMENT REPORT 1.99 MW SOLAR ARRAY PLATT HILL ROAD WINCHESTER - CONNECTICUT PREPARED FOR LSE PICTOR LLC DECEMBER 22, 2020 Revised: 3/25/21

Trinkaus Engineering, LLC
114 Hunters Ridge Road
Southbury, Connecticut 06488
203-264-4558 (office)
+1-203-525-5153 (mobile)
E-mail: strinkaus@earthlink.net
http://www.trinkausengineering.com

Trinkaus Engineering, LLC
114 Hunters Ridge Road Southbury, Connecticut 06488 203-264-4558 (office) +1-203-525-5153 (mobile)
E-mail: strinkaus@earthlink.net

Stormwater Management Report - Lodestar Energy - Platt Hill Road - Winchester, Connecticut
Date: December 22, 2020, Revised: 3/25/21

Existing Conditions

The site of the proposed solar array is located on the former Trade Winds Farm Subdivision, which contained 24 lots developed under the Open Space regulations of the Town of Winchester. Trade Winds Farm, LLC is maintaining ownership of the three approved lots which front on Platt Hill Road. The remaining portion of the site is being sold to Maitland Energy, LLC which will then lease a portion of the site to Lodestar Energy for the solar array.

The site consists of overgrown meadow, brush area mostly located in the western portion of the site. The balance of the site is wooded with a mixture of northern hardwood species and a small concentration of white pines in the southeastern portion of the site.

Proposed Conditions

A parcel containing 20.8 acres for the solar array is being created with the required minimum lot width onto Platt Hill Road. An open space parcel of 75.0 acres will surround the solar array and will be given to the Winchester Land Trust for preservation in perpetuity.

The solar array will be in the south-central portion of the site. A gravel driveway, 12 ' in width will provide access to the array from Platt Hill Road. The driveway will cross two small intermittent streams, found in the western portion of the site in the same locations as the road for the subdivision was approved. The initial 900 '+ of the driveway will have a 2.5% cross slope to allow runoff from the gravel driveway to sheet off as overland flow into the adjacent upland areas where it will infiltrate into the undisturbed soils.

A " T " intersection is proposed just to the west of the solar array to allow for the turning movements of trailer trucks which will deliver the photovoltaic panels and support systems for installation. The driveway will then go south to a smaller parking area of approximately 900 square feet (gravel surface).

There are 1.25 acres if 15% slopes on the site in the area of the array. The proposed solar array, consisting of 24 rows of panels, containing 7,288 panels is located on the west and east sides of the central ridgeline/slope on slopes less than 15.0%. There is a 15 ' spacing between the panel rows. The area of the solar array is 8.0 acres. The cleared areas to the west, east and south of the actual array is 5.6 acres.

Stumps will be removed from the area of the actual array. The areas under and between the solar panels will be seeded with "New England Semi-Shade Grass and Forbs Mix" from New England Wetland Plants (www.newp.com/catalog/seed-mixes/\#erosionDry). This seed mix is a low mow and maintenance species. The stumps will remain in the cleared areas. The ground within the cleared areas outside the area of the array will be seeded with "New England Wildflower Mix" by New England Wetland Plants ((www.newp.com/catalog/seedmixes/\#erosionDry) to provide a food source for pollinator species. Both seed mixtures are provided on the project plan set.

The soil types as determined by Mr. Beroz in the area of the solar array are Paxton, which are Hydrologic Soil Class C in TR-55. As part of the subdivision, 150 deep test holes were done to determine the suitability for on-site sewage disposal systems. Many of these test holes are in the area of the solar array and are approximately 7 ' in depth. The results of the test holes in and near the proposed solar array are shown in Appendix " A " of this report

Stormwater Management

The design of the stormwater management collection, treatment and detention system fully complies with the requirements found in Appendix "l" of the Connecticut General Permit by the CT DEEP. First, the solar panels are considered impervious (RCN of 98), the gravel driveway is also considered impervious with a slightly lower RCN as the top 4" layer of gravel will be washed (RCN of 96) and thus porous, while the 8 " base of the driveway will be compacted processed stone.

The ground cover under and between the rows of panels were considered as Lawn, Fair Condition on Class D soils (required by Appendix " 1 " by CT DEEP) as there will be some disturbance of the soil surface (removal of stumps, debris) even though no other grading of these soils being proposed for this solar array. The Fair condition was used to be conservative as it takes a minimum of two full years for the vegetation to become fully established and thus initially after the installation of the array, the rate and volume of runoff will be higher.

Runoff from the area of the solar array will drain as overland flow in two directions. Runoff from the center of the array will follow the ridgeline to the south and then will taper to the southwest toward the western grass swale or to the southeast toward the eastern grass swale. Both swale systems will direct runoff to one or two constructed wetland stormwater management practices as shown on the site plan.

The parabolic grass swales will have stone check dams at variable intervals (dependent upon the slope) which will reduce flow velocities while safely conveying the peak rate of runoff generated by the 10-year rainfall event as required by the CT DEP 2004 Storm Water Quality Manual "2004 Manual". Manning's Equation was used to compute the depth of flow and velocity in the swales. Computations are provided later in this report.

Intermittent Stream Crossings

$6^{\prime} \times 3^{\prime}$ bottomless box culverts will be used to cross the two intermittent stream crossing to provide access from Platt Hill Road to the solar array.

Stormwater Treatment/Detention

To maintain the natural hydrologic conditions on the site, two stormwater basins are being provided. Basin \#1 is located downhill and south of the southwest corner of the solar array and will accept runoff from the western grass swale. The discharge from Basin \#1, the spillway, and outlet level spreader are located more than 50^{\prime} from the delineated inland wetland boundary. The level spreader consists of a $4^{\prime} \times 4^{\prime}$ trench filled with native field stones. A concrete lip (level spreader) is proposed on the downhill side of the trench and will ensure that any runoff which does not infiltrate into the underlying soils will occur as uniform flow over the entire length of the concrete spreader (100^{\prime}).

Basin \#2 is located downhill of the southeast corner of the solar array and will accept runoff from the eastern grass swale. The discharge from this basin will be directed to a stone filled trench with a level, uniform concrete lip to ensure that the concentrated flow to the stone filled trench will be discharged as overland flow onto the undisturbed forested slope below the stone filled trench. Basin \#2 will maintain hydrologic drainage area which is tributary to the wetland system located at the bottom of the slope along the eastern perimeter boundary of the site. Both Basins will be Constructed Wetland systems which have been designed in compliance with CT DEP 2004 Storm Water Quality Manual.

Basin \#1 has a 6 ' deep forebay providing 2,057 cubic feet of storage which is 39% of the calculated Water Quality Volume (WQV) per the 2004 Manual. The forebay, located in the northeast corner of the system will trap any sediment which is not trapped within the west grassed swale. Basin \#1 will have a permanent pool which is $12^{\prime \prime}$ in depth and will provide 4,352 cubic feet of storage below the lowest outlet orifice. When combined with the forebay volume, 121% of the calculated WQV will be provided, thus exceeding the requirements of the 2004 Manual. The outlet structure is in the southwest corner of the system. In order to provide a higher level of treatment of the runoff, a series of 3^{\prime} wide by $8^{\prime \prime}$ high earth berms will be installed in the bottom of the system to increase the flow path from inlet to outlet, thus increasing the contact time between the runoff and vegetation within the bottom of the basin.

Basin \#2 also has a forebay in addition to the two grassed depressed areas along the eastern swale which will also function as traps for any fine sediments. Similar to Basin \#1, low earth berms will be constructed across the bottom of Basin \#2 to enhance the pollutant removal. Also, like Basin \#1, there will be a permanent pool which is $12^{\prime \prime}$ in depth and will provide a volume of 4,922 cubic feet which exceeds the WQV of 4,693 cubic feet.

Appendix " I " requires that a zero increase in the peak rate of runoff is achieved for all design storms. The criteria has been achieved and the results are provided in Tables 3 and 4 below.

Literature and other solar arrays in Connecticut have shown that runoff volumes are significantly increased over pre-development conditions. These increased runoff volumes when discharged to receiving streams have caused erosion of the native channel and downstream sedimentation of the eroded material. To address the increased runoff volumes, the outlet structure of both Basin \#1 and Basin \#2 been designed to provide the Channel Protection Volume (CPV) found in the 2004 Manual. The CPV requires the reduction of the post-development peak rate for the 2 -year storm to be reduced to 50% of the pre-development peak rate for the 2-year storm.

The bottom of the basin and berms will be seeded with New England Wetmix by New England Wetland Plants (www.newp.com/catalog/seed-mixes/\#erosionDry). The side slopes of the basin shall be seeded with New England Erosion Control/Restoration Mix for Detention Basins and Moist sites by New England Wetland Plants(www.newp.com/catalog/seedmixes/\#erosionDry).

The design of the constructed wetland will provide the following aspects:
a. Reduction of non-point source pollutants loads by having a permanent pool, vegetated bottom and long flow paths,
b. The peak rate for the 2 -year event will be reduced from 9.13 cfs to 2.16 cfs in Basin \#1 and from 8.10 cfs to 1.36 cfs in Basin \#2, thus exceeding the requirements of the Channel Protection Volume found in the 2004 Manual.
c. Zero increase in the peak rate of runoff is provided for the WQ Storm, 1-year, 2year, 5 -year, 10-year, 25-year, 50 -year, and 100-year rainfall events. It is important to understand that 90% of the annual rainfall events are less than 1 " of rainfall in 24 hours and that 98% of the annual rainfall events are less than 3.48 " of rainfall in 24 hours (2-year storm) when long term rainfall events are evaluated. It is most important from a peak rate and runoff volume perspective to focus on those storms equal to or less than the 2-year event to prevent adverse environmental impacts to receiving streams.

Table 1 shows the increase in peak rates of runoff from the solar array

Storm Event	Pre- development	Post- development	Net Change
WQ storm	0.03 cfs	0.73 cfs	+0.70 cfs
1 -year	5.30 cfs	12.89 cfs	+7.59 cfs
2-year	9.38 cfs	19.59 cfs	+10.21 cfs
5 -year	17.00 cfs	31.16 cfs	+14.16 cfs
10 -year	23.92 cfs	41.10 cfs	+17.18 cfs
25 -year	33.90 cfs	54.91 cfs	+21.01 cfs
50 -year	41.28 cfs	64.87 cfs	+23.59 cfs
100 -year	49.72 cfs	76.11 cfs	+26.39 cfs

Table 2 shows the increase in runoff volumes from the solar array

Storm Event	Pre- development	Post- development	Net Change
WQ storm	0.019 acre-feet	0.129 acre-feet	+0.11 acre-feet
1-year	0.790 acre-feet	1.333 acre-feet	+0.543 acre-feet
2-year	1.313 acre-feet	1.959 acre-feet	+0.646 acre-feet
5-year	2.300 acre-feet	3.175 acre-feet	+0.875 acre-feet
10-year	3.205 acre-feet	4.205 acre-feet	+1.000 acre-feet
25-year	4.528 acre-feet	5.665 acre-feet	+1.137 acre-feet
50-year	5.519 acre-feet	6.736 acre-feet	+1.217 acre-feet
100 -year	6.666 acre-feet	7.959 acre-feet	+1.293 acre-feet

Table 3 shows the reductions of peak rates of runoff from Constructed Wetlands - Basin \#1

Storm Event	Post to CW	CW Discharge	Net Change
WQ storm	0.79 cfs	0.05 cfs	-0.74 cfs
1-year	6.40 cfs	2.83 cfs	-3.57 cfs
2-year	$\mathbf{9 . 1 3 ~ c f s}$	$\mathbf{4 . 7 8} \mathrm{cfs}$	-4.35 cfs
5-year	13.68 cfs	8.02 cfs	-5.66 cfs
10-year	17.49 cfs	10.49 cfs	-7.00 cfs
25-year	22.72 cfs	17.07 cfs	-5.65 cfs
50-year	26.46 cfs	21.80 cfs	-4.66 cfs
100 -year	30.67 cfs	27.20 cfs	-3.47 cfs

Table 4 shows the reductions of peak rates of runoff from Constructed Wetlands - Basin \#2

Storm Event	Post to CW	CW Discharge	Net Change
WQ storm	0.61 cfs	0.00 cfs	-0.61 cfs
1-year	5.61 cfs	0.71 cfs	-4.90 cfs
2-year	$\mathbf{8 . 1 0 \mathrm { cfs }}$	$\mathbf{1 . 3 6 \mathrm { cfs }}$	-6.74 cfs
5-year	12.28 cfs	2.68 cfs	-9.60 cfs
10-year	15.79 cfs	3.89 cfs	-11.90 cfs
25-year	20.62 cfs	9.06 cfs	-11.56 cfs
50 -year	24.08 cfs	14.62 cfs	-9.46 cfs
100 -year	27.97 cfs	17.35 cfs	-10.62 cfs

Table 5 Post-development Peak Rates of runoff at Taylor Brook

Storm Event	Pre- development	Post- development	Net Change
WQ storm	0.03 cfs	0.05 cfs	+0.02 cfs
1-year	5.30 cfs	3.33 cfs	-1.97 cfs
2-year	$\mathbf{9 . 3 8 \mathrm { cfs }}$	$\mathbf{5 . 9 9 \mathrm { cfs }}$	$\mathbf{- 3 . 3 9 \mathrm { cfs }}$
5-year	17.00 cfs	10.42 cfs	-6.58 cfs
10-year	23.92 cfs	13.94 cfs	-9.98 cfs
25-year	33.90 cfs	22.93 cfs	-10.97 cfs
50-year	41.28 cfs	34.54 cfs	-6.74 cfs
100 -year	49.72 cfs	43.55 cfs	-6.17 cfs

WATER QUALITY VOLUME CALCULATION:

BASIN \#1:

WQV $=\left(1^{\prime \prime}\right)(\mathrm{Rv})(\mathrm{A}) / 12$, WHERE Rv $=0.05+0.009$ (I)
$\mathrm{A}=4.68$ acres
I = 1.37 acres (29.2\%)
$R v=0.05+0.009(29.2)=0.31$
WQV $=(1)(0.31)(4.68) / 12=0.1209$ acre-feet $=5,266$ cubic feet

WATER QUALITY VOLUME CALCULATION:

BASIN \#2:

WQV $=\left(1^{\prime \prime}\right)(\mathrm{Rv})(\mathrm{A}) / 12$, WHERE Rv $=0.05+0.009$ (I)
$\mathrm{A}=4.31$ acres
I = 1.22 acres (28.3\%)
$R v=0.05+0.009(28.3)=0.30$
WQV $=(1)(0.30)(4.31) / 12=0.1077$ acre-feet $=4,693$ cubic feet

GROUNDWATER RECHARGE VOLUME CALCULATION (WEST SWALE):

GRV $=(\mathrm{D})(\mathrm{A})(\mathrm{I}) / 12$
A $=4.68$ acres
I = 1.37 acres (0.292)
D $=0.10$ (Class C soils)
GRV $=(0.10)(4.68)(0.292) / 12=0.0113$ acre-feet $=496$ cubic feet

GROUNDWATER RECHARGE VOLUME CALCULATION (EAST SWALE):

GRV = (D)(A)(I)/12
$\mathrm{A}=4.31$ acres
I = 1.22 acres (0.283)
D $=0.10$ (Class C soils)
GRV $=(0.10)(4.31)(0.283) / 12=0.0101$ acre-feet $=443$ cubic feet

CAPACITY CALCULATION OF PARABOLIC GRASS AND RIPRAP SWALES:

AVERAGE SLOPE - WEST SWALE $=3.06 \%$, Q = 17.49 CFS (10-year storm)
Depth of flow $=0.92^{\prime}$, Flow velocity $=3.63$ fps, Full flow capacity $=115.35$ cfs
Flow rate for Water Quality Storm $=0.79 \mathrm{cfs}$
Depth of flow $=0.28$ ', Flow velocity $=0.53 \mathrm{fps}$

AVERAGE SLOPE - EAST SWALE $=2.50 \%, \mathrm{Q}=15.79$ CFS (10-year storm)
Depth of flow $=0.91^{\prime}$, Flow velocity $=3.22 \mathrm{fps}$, Full flow capacity $=104.27$ cfs
Flow rate for Water Quality Storm $=0.61$ cfs
Depth of flow $=0.27$ ', Flow velocity $=0.45 \mathrm{fps}$

Discussion of Water Quality Systems:

There are many types of stormwater treatment systems found in the CT DEP 2004 Storm Water Manual to reduce non-point source pollutant loads. The practices can be divided into two general categories; those systems which are dry and will fully infiltrate the required Water Quality Volume (WQV) and those which have a wetland or open water component.

Infiltration practices include infiltration basins, underground gallery systems, infiltration trenches, Sand Filters, Bioretention systems, Bioswales, and dry detention ponds. With the exception of a dry detention pond, the key commonality for all other dry systems is that they must be located in deep, very well drained soils where a minimum of $30^{\prime \prime}$ can be provided between the bottom of the practice and seasonal high ground water to allow for the WQV to fully infiltrate. Infiltration practices are only suitable for the treatment and infiltration of the WQV and are not designed to handle runoff from rainfall events which are larger than the water quality storm ($1^{\prime \prime} / 24$ hours). Other practices must be used after an infiltration practice to provide peak rate and runoff attenuations per the 2004 Manual.

Dry detention ponds are not effective at reducing non-point source pollutant loads but can be used for the reduction in the peak rate and volume of runoff. All other infiltration practices are used primarily to reduce non-point source pollutant loads by treating the WQV only and meeting the Groundwater Recharge Volume (GRV) for the water quality storm event.

Wet practices consist of various types of ponds, such as micro-pool extended detention ponds, wet pond, wet extended detention pond, pocket pond, and multiple pond systems and wetland systems, such as shallow wetlands, extended detention wetlands, pond/wetland system. The key commonality of these wet practices is that the bottom of these practices must be located below the seasonal high groundwater table in order to maintain the saturated conditions in the practice.

All types of wet practices are very effective at reducing non-point source pollutant loads as well as meeting peak rate and volume reduction requirements. The most commonly used wet practices are the wetland systems as require very little maintenance and do not have large, deep open water components. Wet ponds and other pond systems have a permanent pool of open water with variable depths as their primary treatment component. However, the water found in the permanent pool will become heated by the sun and when discharged has a higher temperature than the receiving wetland or watercourse and this will increase the temperature
of the water in the wetland or watercourse which will adversely affect aquatic species which live in these systems.

On this site there are not deep well drained soils found in the area of the proposed array so infiltration practices are not appropriate to treat the runoff from the proposed solar array. If they were to be proposed on this site, they would not function properly as there would not be an unsaturated zone under the practice into which runoff could infiltrate.

The soils in the area of the array have a hardpan layer approximately 24 " below the ground surface. The presence of the hardpan layer creates a perched seasonal high groundwater table on top of the hardpan layer. The material in the hardpan layer consist of silts, clay and sometimes, fine gravel which is highly compacted and is simply impermeable to the vertical or horizontal movement of water within this soil layer which causes the perched groundwater table.

Because of the high seasonal groundwater table, only wet practices are suitable on this site to reduce non-point source pollutant loads.

The two constructed wetland systems proposed here have a forebay to trap sediments, a shallow permanent pool ($<12^{\prime \prime}$ in depth), low earth berms to lengthen the flow path within the bottom of the basin and increase the contact time between the runoff and the vegetation and soils on the bottom of the basin and is densely planted with native wetland plants which provides an environmental which not only greatly reducing non-point source pollutant loads but does not allow the water in the constructed wetland to heat up and the water surface is covered with the native plants.

This project proposes to use both wet swales (on both sides of the array) and a constructed wetland system at the end of both swales to treat the runoff from the area of the array. There will be minimal sediment loads under post-development conditions as no sand will be applied to any impervious surface. The primary pollutants are nutrients (nitrogen and phosphorous) from both atmospheric deposition on the solar panels and the decomposition of vegetation under and around the array as well as small amounts of metals which may leach from the metal components of the racking system if any rainfall is slightly acidic. The CT DEP goal of reducing the TSS concentration in post-development runoff by 80% will easily be achieved as the TSS removal efficiency for a wet swale is 73% and 75% for the constructed wetland as standalone treatment system.

SOLAR ARRAY - PRE-DEVELOPMENT

WQ STORM

Summary for Subcatchment 3S: Solar Array Area - PRE

Runoff $=0.03$ cfs @ 15.55 hrs, Volume $=\quad 0.019 \mathrm{af}$, Depth> $0.02{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Storm Rainfall=1.00"

Area (sf)	CN	Description
593,934	73	Woods, Fair, HSG C
593,934		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
20.6	100	0.0200	0.08	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.48 "$ 6.5	483
0.0620	1.24	Shallow Concentrated Fow,			
7.5	631	0.0790	1.41	Woodland Kv=5.0 fps Shallow Concentrated Fow, Woodland Kv=5.0 fps	
34.6	1,214	Total			

1-YEAR STORM

Summary for Subcatchment 3S: Solar Array Area - PRE
Runoff $=\quad 5.30$ cfs @ 12.55 hrs, Volume $=\quad 0.790 \mathrm{af}$, Depth> 0.69"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 1-year Rainfall=2.74"

Area (sf) CN Description			
593,934	73 Woods, Fair, HSG C		
593,934	100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/tt)	Velocity Capacity (ft/sec) (cfs)	Description
20.6100	0.0200	0.08	Sheet Fow, Woods: Light underbrush $n=0.400$ P2 $=3.48$ "
6.5483	0.0620	- 1.24	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
7.5631	0.0790	- 1.41	Shallow Concentrated Fow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$

2-YEAR STORM

Summary for Subcatchment 3S: Solar Array Area - PRE

Runoff $=\quad 9.38$ cfs @ 12.52 hrs, Volume $=\quad 1.313 \mathrm{af}$, Depth> $1.16{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.48"

Area (sf)			Description			
593,934		73	Woods, Fair, HSG C			
	3,934		00.00\%	Pervious Ar		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
20.6	100	0.0200	0.08		Sheet Fow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.48{ }^{\prime \prime}$
6.5	483	0.0620	1.24		Shallow Concentrated Fow, Woodland Kv= 5.0 fps	
7.5	631	0.0790	1.41		Shallow Concentrated Fow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

5-YEAR STORM

Summary for Subcatchment 3S: Solar Array Area - PRE

Runoff $=\quad 17.00$ cfs @ 12.50 hrs, Volume $=\quad 2.300$ af, Depth> 2.02"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 5-year Rainfall=4.69"

Area (sf)	CN	Description
593,934	73	Woods, Fair, HSG C
593,934		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{tt})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description		
20.6	100	0.0200	0.08	Sheet Fow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.48 "$			
6.5	483	0.0620	1.24	Shallow Concentrated Fow, 7.5	631	$0.0790 \quad 1.41 \quad$	Woodland Kv=5.0 fps
:---							
Shallow Concentrated Fow,							
Woodland Kv=5.0 fps							

34.6 1,214 Total

10-YEAR STORM

Summary for Subcatchment 3S: Solar Array Area - PRE

Runoff $=\quad 23.92$ cfs @ 12.49 hrs, Volume $=\quad 3.205$ af, Depth> 2.82"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10-year Rainfall=5.70"

Area (sf)	CN	Description			
593,934	73	Woods, Fair, HSG C			
593,934		100.00% Pervious Area			
Tc	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Capacity
---:					
(cfs)	\quad	Description			
:---					

34.6 1,214 Total

25-YEAR STORM

Summary for Subcatchment 3S: Solar Array Area - PRE

Runoff $=33.90$ cfs @ 12.48 hrs, Volume $=\quad 4.528$ af, Depth> 3.99"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 25-year Rainfall=7.09"

Area (sf)	CN	Description
593,934	73	Woods, Fair, HSG C
593,934		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{tt})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description		
20.6	100	0.0200	0.08	Sheet Fow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.48 "$			
6.5	483	0.0620	1.24	Shallow Concentrated Fow, 7.5	631	$0.0790 \quad 1.41 \quad$	Woodland Kv=5.0 fps
:---							
Shallow Concentrated Fow,							
Woodland Kv=5.0 fps							

34.6 1,214 Total

50-YEAR STORM

Summary for Subcatchment 3S: Solar Array Area - PRE

Runoff $=\quad 41.28$ cfs @ 12.48 hrs, Volume $=\quad 5.519 \mathrm{af}$, Depth $>4.86{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 50-year Rainfall=8.09"

Area (sf)		CN	Description			
593,934		73 Woods, Fair, HSG C				
593,934		100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
20.6	100	0.0200	0.08		Sheet Fow, Woods: Light underbrush $\mathrm{n}=0.400$	P2=3.48"
6.5	483	0.0620	1.24		Shallow Concentrated Fow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
7.5	631	0.0790	1.41		Shallow Concentrated Fow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

34.6 1,214 Total

100-YEAR STORM

Summary for Subcatchment 3S: Solar Array Area - PRE

Runoff $=\quad 49.72$ cfs @ 12.48 hrs, Volume $=\quad 6.666$ af, Depth $>5.87{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=9.22"

Area (sf)	CN	Description
593,934	73	Woods, Fair, HSG C
593,934		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{t})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description		
20.6	100	0.0200	0.08	Sheet Fow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.48 "$			
6.5	483	0.0620	1.24	Whallow Concentrated Fow, 7.5	631	$0.0790 \quad 1.41 \quad$	Woodland Kv=5.0 fps
:---							
Shallow Concentrated Fow,							
Woodland Kv=5.0 fps							

34.6 1,214 Total

SOLAR ARRAY - POST-DEVELOPMENT WQ STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=0.73$ cfs @ 12.43 hrs, Volume $=0.129 \mathrm{af}$, Depth> $0.11^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$
Type III 24-hr WQ Storm Rainfall=1.00"

Area (sf)		CN	dj Description		
	10,000	96	Gravel surface, HSG D		
	42,952	98	Unconnected pavement, HSG D		
	70,008	84	50-75\% Grass cover, Fair, HSG D		
	70,974	71	Meadow, non-grazed, HSG C		
	53,934	84	82 Weighted Average, UI Adjusted		
	50,982		75.93\% Pervious Area		
	42,952		24.07\% Impervious Area		
	42,952		100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/t)	Velocity (ftsec)	Capacity (cfs)	Description
13.7	100	0.0200	0.12		Sheet Fow, Grass: Dense n=0.240 P2=3.48"
2.2	483	0.0620	3.73		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
2.5	631	0.0790	4.22		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps

1-YEAR STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=12.89$ cfs @ 12.26 hrs, Volume= $\quad 1.333$ af, Depth> 1.17"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 1-year Rainfall=2.74"

2-YEAR STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=19.59$ cfs @ 12.26 hrs, Volume $=\quad 1.999$ af, Depth> $1.76{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 2-year Rainfall=3.48"

5-YEAR STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=31.16$ cfs @ 12.25 hrs, Volume $=3.175$ af, Depth> 2.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 5-year Rainfall=4.69"

	rea (sf)	CN	j Description		
	10,000	96	Gravel surface, HSG D		
	42,952	98	Unconnected pavement, HSG D		
	70,008	84	50-75\% Grass cover, Fair, HSG D		
	70,974	71	Meadow, non-grazed, HSG C		
	93,934	84	2 Weighted Average, UI Adjusted		
	50,982		75.93\% Pervious Area		
	42,952		24.07\% Impervious Area		
	42,952		100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/tt)	Velocity ($\mathrm{ft} / \mathrm{sec}$)	Capacity (cfs)	Description
13.7	100	0.0200	0.12		Sheet Pow, Grass:Dense n=0.240 P2=3.48"
2.2	483	0.0620	3.73		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
2.5	631	0.0790	4.22		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps

[^0]
10-YEAR STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=41.10$ cfs @ 12.25 hrs, Volume $=\quad 4.205$ af, Depth> 3.70"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10-year Rainfall=5.70"

25-YEAR STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=54.91$ cfs @ 12.25 hrs, Volume $=\quad 5.665$ af, Depth> 4.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 25-year Rainfall=7.09"

50-YEAR STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=64.87$ cfs @ 12.25 hrs, Volume $=\quad 6.736$ af, Depth> 5.93"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 50-year Rainfall=8.09"

	Area (sf)	CN	dj Description		
	10,000	96	Gravel surface, HSG D		
	142,952	98	Unconnected pavement, HSG D		
	270,008	84	50-75\% Grass cover, Fair, HSG D		
	170,974	71	Meadow, non-grazed, HSG C		
	593,934	84	Weighted Average, UI Adjusted		
	450,982		75.93\% Pervious Area		
	142,952		24.07\% Impervious Area		
	142,952		100.00\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/tt)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
13.7	100	0.0200	0.12		Sheet How, Grass:Dense n=0.240 P2=3.48"
2.2	483	0.0620	3.73		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
2.5	631	0.0790	4.22		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
18.4	1,214	Total			

100-YEAR STORM

Summary for Subcatchment 4S: Solar Array Area - POST

Runoff $=76.11$ cfs @ 12.25 hrs, Volume $=7.959$ af, Depth> 7.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 100-year Rainfall=9.22"

Area (sf)	CN	Description		
10,000	96	Gravel surface, HSG D		
142,952	98	Unconnected pavement, HSG D		
270,008	84	50-75\% Grass cover, Fair, HSG D		
170,974	71	Meadow, non-grazed, HSG C		
593,934	84	2 Weighted Average, UI Adjusted		
450,982		75.93\% Pervious Area		
142,952		24.07\% Impervious Area		
142,952		100.00\% Unconnected		
$\begin{array}{rr} \text { Tc } & \begin{array}{l} \text { Length } \\ (\mathrm{min}) \end{array} \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.7100	0.0200	0.12		Sheet How, Grass: Dense $\mathrm{n}=0.240 \quad \mathrm{P} 2=3.48^{\prime \prime}$
2.2483	0.0620	3.73		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
2.5631	0.0790	4.22		Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps

SOLAR ARRAY WEST SWALE

WQ STORM

Summary for Subcatchment 7S: Solar Array - West Swale

Runoff $=0.79$ cfs @ 12.23 hrs, Volume $=0.087$ af, Depth> 0.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Storm Rainfall=1.00"

1-YEAR STORM

Summary for Subcatchment 7S: Solar Array - West Swale

Runoff $=\quad 6.40$ cfs @ 12.20 hrs, Volume $=\quad 0.589$ af, Depth> $1.51^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 1-year Rainfall=2.74"

Area (sf)	CN	Adj	Description
	9,000	96	
59,557	98		Gravel surface, HSG D
*	Unconnected pavement, HSG D		
135,419	84		Meadow in array area, Fair, HSG D

2-YEAR STORM

Summary for Subcatchment 7S: Solar Array - West Swale
Runoff $=\quad 9.13$ cfs @ 12.20 hrs, Volume $=\quad 0.843$ af, Depth> $2.16{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span=0.00-24.00 hrs, dt=0.05 hrs
Type III 24-hr 2-year Rainfall=3.48"

Area (sf)	CN	Description	
9,000	96	Gravel surface, HSG D	
59,557	98	Unconnected pavement, HSG D	
135,419	84	Meadow in array area, Fair, HSG D	
203,976	89	87 Weighted Average, UI Adjusted	
144,419	70.80\% Pervious Area		
59,557	29.20\% Impervious Area		
59,557	100.00\% Unconnected		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity (ft/sec) (cfs)	Description
9.4100	0.0200	0.18	Sheet Pow, Grass:Short n=0.150 P2=3.48"
2.2483	0.0620	3.73	Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
2.5631	0.0790	4.22	Shallow Concentrated How, Grassed Waterway Kv=15.0 fps

5-YEAR STORM

Summary for Subcatchment 7S: Solar Array - West Swale

Runoff $=13.68$ cfs @ 12.19 hrs, Volume $=1.276 \mathrm{af}$, Depth> $3.27^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span=0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 5-year Rainfall=4.69"

Area (sf)	CN	Description	
9,000	96	Gravel surface, HSG D	
59,557	98	Unconnected pavement, HSG D	
135,419	84	Meadow in array area, Fair, HSG D	
203,976	89	7 Weighted Average, UI Adjusted	
144,419		70.80\% Pervious Area	
59,557		29.20\% Impervious Area	
59,557		100.00\% Unconnected	
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity (ft/sec) (cfs)	Description
9.4100	0.0200	0.18	Sheet Fow, Grass:Short n=0.150 P2=3.48"
2.2483	0.0620	3.73	Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
2.5631	0.0790	4.22	Shallow Concentrated Fow, Grassed Waterway $\mathrm{Kv}=15.0 \mathrm{fps}$

10-YEAR STORM

Summary for Subcatchment 7S: Solar Array - West Swale
Runoff $=\quad 17.49$ cfs @ 12.19 hrs, Volume $=1.647$ af, Depth> 4.22"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$
Type III 24-hr 10-year Rainfall=5.70"

25-YEAR STORM

Summary for Subcatchment 7S: Solar Array - West Swale

Runoff $=\quad 22.72$ cfs @ 12.19 hrs, Volume $=\quad 2.168 \mathrm{af}$, Depth> $5.55^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span=0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 25-year Rainfall=7.09"

50-YEAR STORM

Summary for Subcatchment 7S: Solar Array - West Swale
Runoff $=\quad 26.46$ cfs @ 12.19 hrs, Volume $=\quad 2.546$ af, Depth> 6.52"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$
Type III 24-hr 50-year Rainfall=8.09"

100-YEAR STORM

Summary for Subcatchment 7S: Solar Array - West Swale
Runoff $=\quad 30.67$ cfs @ 12.19 hrs, Volume $=2.976$ af, Depth> 7.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 100-year Rainfall=9.22"

SOLAR ARRAY EAST SWALE

WQ STORM

Summary for Subcatchment 8S: Solar Array - East Swale

Runoff $=0.61$ cfs @ 12.24 hrs, Volume $=0.071$ af, Depth> $0.20 "$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Storm Rainfall=1.00"

Area (sf)	CN	Adj Description	
53,395	98	Unconnected pavement, HSG D	
134,589	84	50-75\% Grass cover, Fair, HSG D	
187,984	88	86 Weighted Average, UI Adjusted	
134,589	71.60\% Pervious Area		
53,395	28.40\% Impervious Area		
53,395	100.00\% Unconnected		
Tc Length (min) (feet)	Slope $(\mathrm{ft} / \mathrm{tt})$	Velocity Capacity (ft/sec) (cfs)	Description
9.4100	0.0200	0.18	Sheet Fow, Grass: Short n=0.150 P2=3.48"
2.2483	0.0620	3.73	Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
2.5631	0.0790	4.22	Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
14.1 1,214	Total		

1-YEAR STORM

Summary for Subcatchment 8S: Solar Array - East Swale

Runoff $=\quad 5.61$ cfs @ 12.20 hrs, Volume $=\quad 0.517$ af, Depth> $1.44^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 1-year Rainfall=2.74"

Area (sf)	CN	Adj Description	
53,395	98	Unconnected pavement, HSG D	
134,589	84	50-75\% Grass cover, Fair, HSG D	
187,984	88	86 Weighted Average, UI Adjusted	
134,589	71.60\% Pervious Area		
53,395	28.40\% Impervious Area		
53,395	100.00\% Unconnected		
Tc Length (min) (feet)	Slope (ft/tt)	Velocity Capacity (ft/sec) (cfs)	Description
9.4100	0.0200	0.18	Sheet Fow, Grass: Short n=0.150 P2=3.48"
2.2483	0.0620	3.73	Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps
2.5631	0.0790	4.22	Shallow Concentrated Fow, Grassed Waterway Kv= 15.0 fps

2-YEAR STORM

Summary for Subcatchment 8S: Solar Array - East Swale

Runoff $=\quad 8.10$ cfs @ 12.20 hrs, Volume $=\quad 0.746 \mathrm{af}$, Depth $>2.08{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.48"

5-YEAR STORM

Summary for Subcatchment 8S: Solar Array - East Swale

Runoff $=12.28$ cfs @ 12.19 hrs, Volume $=1.141$ af, Depth> 3.17"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 5 -year Rainfall=4.69"

Area (sf)		CN	Adj D	Description	
	53,395	98		onnected	pavement, HSG D
	34,589	84		5\% Grass	cover, Fair, HSG D
	87,984	88	86 We	ghted Aver	age, UI Adjusted
	34,589			0\% Pervio	us Area
	53,395			0\% Imper	vious Area
	53,395			.00\% Unco	nnected
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/t)	Velocity (ft/sec)	Capacity (cfs)	Description
9.4	100	0.0200	0.18		Sheet Fow, Grass: Short $n=0.150 \quad$ P2 $=3.48^{\prime \prime}$
2.2	483	0.0620	3.73		Shallow Concentrated Fow, Grassed Waterway $\mathrm{Kv}=15.0 \mathrm{fps}$
2.5	631	0.0790	4.22		Shallow Concentrated How, Grassed Waterway $\mathrm{Kv}=15.0 \mathrm{fps}$

[^1]
10-YEAR STORM

Summary for Subcatchment 8S: Solar Array - East Swale
Runoff $=\quad 15.79$ cfs @ 12.19 hrs, Volume $=1.480$ af, Depth> 4.12"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10-year Rainfall=5.70"

Area (sf)	CN	Adj	Description
53,395	98		Unconnected pavement, HSG D
134,589	84		50-75\% Grass cover, Fair, HSG D

25-YEAR STORM

Summary for Subcatchment 8S: Solar Array - East Swale

Runoff $=\quad 20.62$ cfs @ 12.19 hrs, Volume $=\quad 1.957$ af, Depth $>5.44{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt=0.05 hrs Type III 24-hr 25-year Rainfall=7.09"

Area (sf)	CN	Adj	Description
53,395	98		Unconnected pavement, HSG D
134,589	84		50-75\% Grass cover, Fair, HSG D

50-YEAR STORM

Summary for Subcatchment 8S: Solar Array - East Swale
Runoff $=\quad 24.08$ cfs @ 12.19 hrs, Volume $=\quad 2.304$ af, Depth $>6.41^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 50-year Rainfall=8.09"

Area (sf)	CN	Adj Description	
53,395	98	Unconnected pavement, HSG D 50-75\% Grass cover, Fair, HSG D	
134,589	84		
187,984	88	86 Weighted Average, UI Adjusted	
134,589	71.60\% Pervious Area		
53,395	28.40\% Impervious Area		
53,395	100.00\% Unconnected		
Tc Length (min) (feet)	Slope ($\mathrm{ft} / \mathrm{ft}$)	Velocity Capacity (ft/sec) (cfs)	Description
9.4100	0.0200	0.18	Sheet Fow, Grass: Short $\mathrm{n}=0.150 \mathrm{P} 2=3.48^{\prime \prime}$
2.2483	0.0620	3.73	Shallow Concentrated Fow, Grassed Waterway $\mathrm{Kv}=15.0 \mathrm{fps}$
2.5631	0.0790	4.22	Shallow Concentrated How, Grassed Waterway Kv= 15.0 fps

100-YEAR STORM

Summary for Subcatchment 8S: Solar Array - East Swale
Runoff $=\quad 27.97$ cfs @ 12.19 hrs, Volume $=2.698$ af, Depth> 7.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 100-year Rainfall=9.22"

14.1 1,214 Total

BASIN \#1 - CONSTRUCTED WETLAND ROUTING RESULTS:

WQ STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

Primary OutFlow Max=0.05 cfs @ 17.18 hrs HW=1,287.13' (Free Discharge)
-1=Culvert (Passes 0.05 cfs of 4.21 cfs potential flow)
-2=Orifice/Grate (Orifice Controls $0.05 \mathrm{cfs} @ 1.22 \mathrm{fps}$)

- $\mathbf{3 =}$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)
-5=Orifice/Grate (Controls 0.00 cfs)
6=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
—7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

1-YEAR STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

| Inflow Area $=$ | $4.683 \mathrm{ac}, 29.20 \%$ Impervious, Inflow Depth $>1.51^{\prime \prime}$ for 1 -year event | |
| :--- | :--- | :--- | :--- |
| Inflow $=$ | $6.40 \mathrm{cfs} @ 12.20 \mathrm{hrs}$, Volume $=$ | 0.589 af |
| Outflow $=$ | $2.83 \mathrm{cfs} @ 12.53 \mathrm{hrs}$, Volume $=$ | 0.523 af, Atten= 56%, Lag $=19.9 \mathrm{~min}$ |
| Primary $=$ | $2.83 \mathrm{cfs} @ 12.53 \mathrm{hrs}$, Volume $=$ | 0.523 af |

Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$
Peak Elev=1,288.98' @ 12.53 hrs Surf.Area=4,048 sf Storage=8,965 cf
Plug-Flow detention time $=104.7$ min calculated for 0.522 af (89% of inflow)
Center-of-Mass det. time $=53.0 \mathrm{~min}(884.5-831.5)$

Primary OutFow Max=2.83 cfs @ 12.53 hrs HW=1,288.98' (Free Discharge)
-1 = Culvert (Passes 2.83 cfs of 9.06 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 2.22 cfs @ 5.64 fps)
-3=Orifice/Grate (Orifice Controls 0.61 cfs @ 3.51 fps)
-4=Orifice/Grate (Controls 0.00 cfs)
-5=Orifice/Grate (Controls 0.00 cfs)
$6=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)
-7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

2-YEAR STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

5-YEAR STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

Inflow Area $=$	$4.683 \mathrm{ac}, 29.20 \%$ Impervious, Inflow Depth $>3.27^{\prime \prime}$	for 5 -year event	
Inflow	$=$	$13.68 \mathrm{cfs} @ 12.19 \mathrm{hrs}$, Volume $=$	1.276 af
Outflow	$=$	$8.02 \mathrm{cfs} @ 12.41 \mathrm{hrs}$, Volume $=$	1.204 af , Atten $=41 \%$, Lag $=13.3 \mathrm{~min}$
Primary	$=$	$8.02 \mathrm{cfs} @ 12.41 \mathrm{hrs}$, Volume $=$	1.204 af

Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.05 \mathrm{hrs}$
Peak Elev=1,290.43' @ 12.41 hrs Surf.Area= 5,184 sf Storage= $15,643 \mathrm{cf}$
Plug-Flow detention time $=73.8 \mathrm{~min}$ calculated for 1.204 af (94% of inflow) Center-of-Mass det. time= $43.8 \mathrm{~min}(853.5-809.7$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$1,286.00$	24,829 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Primary OutFlow Max=7.99 cfs @ 12.41 hrs HW=1,290.43' (Free Discharge)
-1 - Culvert (Passes 7.99 cfs of 11.52 cfs potential flow)
中-2=Orifice/Grate (Orifice Controls 3.18 cfs @ 8.11 fps)
-3=Orifice/Grate (Orifice Controls 1.66 cfs @ 6.35 fps)
-4=Orifice/Grate (Orifice Controls 2.62 cfs @ 3.87 fps)
-5=Orifice/Grate (Orifice Controls 0.53 cfs @ 2.23 fps)
6=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
$\zeta_{7=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

10-YEAR STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

25-YEAR STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

50-YEAR STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

100-YEAR STORM

Summary for Pond 9P: Constructed Wetland (Basin \#1)

BASIN \#2 - CONSTRUCTED WETLANDS ROUTING RESULTS:

WQ STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

Inflow Area $=$	$4.316 \mathrm{ac}, 28.40 \%$ Impervious, Inflow Depth $>0.20 "$ for WQ Storm event			
Inflow	$=$	$0.61 \mathrm{cfs} @ 12.24 \mathrm{hrs}$, Volume $=$	0.071 af	
Outflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0.000 af, Atten $=100 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 1,316.75' @ 24.00 hrs Surf.Area $=4,593 \mathrm{sf}$ Storage $=3,079 \mathrm{cf}$
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$1,316.00$	46,822 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Primary OutFow Max=0.00 cfs @ 0.00 hrs HW=1,316.00' (Free Discharge)
-1=Culvert (Passes 0.00 cfs of 6.93 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Controls 0.00 cfs)
4=Orifice/Grate (Controls 0.00 cfs)
-5=Orifice/Grate (Controls 0.00 cfs)
7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
-6=Orifice/Grate (Controls 0.00 cfs)
$8=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

1-YEAR STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

Inflow Area	$=$	$4.316 \mathrm{ac}, 28.40 \%$ Impervious, Inflow Depth $>1.44 "$ for 1 -year event
Inflow	$=$	$5.61 \mathrm{cfs} @ 12.20 \mathrm{hrs}$, Volume $=$
Outtlow	$=$	$0.71 \mathrm{cfs} @ 13.19 \mathrm{hrs}$, Volume $=$
Primary	$=$	$0.71 \mathrm{cfs} @ 13.19 \mathrm{hrs}$, Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.05 \mathrm{hrs}$
Peak Elev=1,318.32' @ 13.19 hrs Surf.Area=6,720 sf Storage= $11,916 \mathrm{cf}$
Plug-Flow detention time $=268.7$ min calculated for 0.379 af (73% of inflow)
Center-of-Mass det. time $=178.3 \mathrm{~min}(1,013.7-835.4)$

[^2]
2-YEAR STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

5-YEAR STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

Inflow Area =	$4.316 \mathrm{ac}, 28$	3.17 " for 5-year event
Inflow	12.28 cfs @ 12.19 hrs, Volume=	1.141 af
Outflow	2.68 cfs @ 12.72 hrs, Volume=	0.958 af, Atten $=78 \%$, Lag= 31.8 min
Primary	2.68 cfs @ 12.72 hrs, Volume=	0.958 af

Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.05 \mathrm{hrs}$
Peak Elev=1,319.91' @ 12.72 hrs Surf.Area=9,045 sf Storage= $=24,416$ cf
Plug-Flow detention time $=190.5 \mathrm{~min}$ calculated for 0.956 af (84% of inflow) Center-of-Mass det. time $=125.4 \mathrm{~min}(938.4-812.9)$

[^3]
10-YEAR STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

25-YEAR STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

50-YEAR STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

Inflow Area =	$4.316 \mathrm{ac}, 28$	41" for 50-year event
Inflow	24.08 cfs @ 12.19 hrs, Volume=	2.304 af
Outflow	14.62 cfs @ 12.40 hrs , Volume=	2.073 af , Atten $=39 \%$, Lag $=12.6 \mathrm{~min}$
Primary	14.62 cfs @ 12.40 hrs, Volume=	2.073 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 1,321.34' @ 12.40 hrs Surf.Area= $11,308 \mathrm{sf}$ Storage $=38,995 \mathrm{cf}$

Plug-Flow detention time= 141.8 min calculated for 2.073 af (90% of inflow) Center-of-Mass det. time $=94.1 \mathrm{~min}(887.6-793.6)$

Primary OutFow Max=14.61 cfs @ 12.40 hrs HW=1,321.34' (Free Discharge)
-1=Culvert (Passes 13.42 cfs of 15.31 cfs potential flow)
中-2=Orifice/Grate (Orifice Controls 0.86 cfs @ 9.83 fps)
-3=Orifice/Grate (Orifice Controls 1.66 cfs @ 8.46 fps)
4=Orifice/Grate (Orifice Controls 1.37 cfs @ 6.96 fps)
-5=Orifice/Grate (Orifice Controls 0.99 cfs @ 5.02 fps)
7=Broad-Crested Rectangular Weir (Weir Controls 8.55 cfs @ 1.58 fps)
-6=Orifice/Grate (Orifice Controls 1.19 cfs @ 3.42 fps)
-8=Broad-Crested Rectangular Weir (Controls 0.00 cfs

100-YEAR STORM

Summary for Pond 11P: Constructed Wetland (Basin \#2)

TAYLOR BROOK DESIGN POINT WQ STORM

Summary for Link 12L: Taylor Brook

| Inflow Area $=$ | $8.998 \mathrm{ac}, 28.82 \%$ Impervious, Inflow Depth $>0.04 "$ for WQ Storm event | | |
| :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $0.05 \mathrm{cfs} @ 17.18 \mathrm{hrs}$, Volume $=$ | 0.027 af |
| Primary | $=$ | $0.05 \mathrm{cfs} @ 17.18 \mathrm{hrs}$, Volume $=$ | 0.027 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

1-YEAR STORM

Summary for Link 12L: Taylor Brook

| Inflow Area $=$ | $8.998 \mathrm{ac}, 28.82 \%$ Impervious, Inflow Depth $>1.20 "$ for 1 -year event | |
| :--- | :--- | :--- | :--- |
| Inflow $=$ | $3.33 \mathrm{cfs} @ 12.62 \mathrm{hrs}$, Volume $=$ | 0.902 af |
| Primary $=$ | $3.33 \mathrm{cfs} @ 12.62 \mathrm{hrs}$, Volume $=$ | 0.902 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Primary oufflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

2-YEAR STORM

Summary for Link 12L: Taylor Brook

Inflow Area $=$	$8.998 \mathrm{ac}, 28.82 \%$ Impervious, Inflow Depth $>1.82^{\prime \prime}$ for 2 -year event	
Inflow $=$	$5.99 \mathrm{cfs} @ 12.50 \mathrm{hrs}$, Volume $=$	1.364 af
Primary $=$	$5.99 \mathrm{cfs} @ 12.50 \mathrm{hrs}$, Volume $=$	1.364 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

5-YEAR STORM

Summary for Link 12L: Taylor Brook
Inflow Area $=$
Inflow $=$
Primary $=$

Primary outflow = Inflow, Time Span $=0.998 \mathrm{ac}, 28.82 \%$ Impervious, Inflow Depth $>2.88^{\prime \prime}$ for 5 - 24.00 hrs , $\mathrm{dt}=0.05 \mathrm{hrs}$

10-YEAR STORM

Summary for Link 12L: Taylor Brook

Inflow Area	$=$	$8.998 \mathrm{ac}, 28.82 \%$	Impervious, Inflow Depth $>3.80 "$
Inflow	$=$	$13.94 \mathrm{cfs} @ 12.45 \mathrm{hrs}$, Volume $=$	2.852 af
Primary	$=$	$13.94 \mathrm{cts} @$	12.45 hrs, Volum event
		2.852 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$
25-YEAR STORM

Summary for Link 12L: Taylor Brook

Inflow Area	$=$	$8.998 \mathrm{ac}, 28.82 \%$ Impervious, Inflow Depth $>5.10 "$ for 25 -year event	
Inflow	$=$	$22.93 \mathrm{cfs} @ 12.44 \mathrm{hrs}$, Volume $=$	3.826 af
Primary	$=$	$22.93 \mathrm{cfs} @ 12.44 \mathrm{hrs}$, Volume $=$	3.826 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

50-YEAR STORM

Summary for Link 12L: Taylor Brook

Inflow Area	$=$	$8.998 \mathrm{ac}, 28.82 \%$ Impervious, Inflow Depth $>6.05 "$	for 50 -year event
Inflow	$=$	$34.54 \mathrm{cfs} @ 12.35 \mathrm{hrs}$, Volume $=$	4.539 af
Primary	$=$	$34.54 \mathrm{cfs} @ 12.35 \mathrm{hrs}$, Volume $=$	4.539 af , Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

100-YEAR STORM

Summary for Link 12L: Taylor Brook

Inflow Area =	8.998 ac, 28.82\% Impervious,	th > 7.14" for 100-year event
Inflow	43.55 cfs @ 12.28 hrs, Volume=	5.352 af
Primary	43.55 cfs @ 12.28 hrs, Volume=	5.352 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Taylor Brook

HydroCAD Diagram

CONCLUSION

The analysis and design of the stormwater conveyance system exceeds the requirements found in Appendix " 1 " from the CT DEP. The design of the Constructed Wetland conforms to the standards found in the CT DEEP 2004 Storm Water Quality Manual in order to reduce non-point source pollutants from the site. The design provides the Channel Protection Volume per the 2004 Manual which will prevent adverse impacts to the receiving streams on this site. Peak rate attenuation is provided for the 1-year, 2-year, 5 -year and 10-year, 25-year, 50-year, and 100-year rainfall events.

Flows directed to the existing wetland system from the Constructed Wetlands will have velocities less than 3 fps , which are non-erosive for this type of soil, so there will be no erosion of the receiving inland wetlands.

While there will be some filling of wetlands for the access driveway, it is unavoidable and has been minimized to the maximum extent possible through using a narrow driveway and boulder retaining wall to limit the extent of fill within the wetland area.

There will be no impact on any of the other wetlands on this site as a result of the construction of the access driveway, stormwater management system and solar array.

Steven Trinkaus, PE
Trinkaus Engineering, LLC

APPENDIX "A"
 SOIL TEST RESULTS WITHIN AREA OF PROPOSED SOLAR ARRAY

DT-28	
0-9"	TOPSOIL
9-22"	YELLOW BROWN FINE SANDY LOAM
22-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 22", MOTTLING AT 22"
DT-29	
0-6"	TOPSOIL
6-26"	YELLOW BROWN FINE SANDY LOAM, SOME SILT
26-77"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 77", ROOTS TO 26", MOTTLING AT 26"
DT-32	
0-6"	TOPSOIL
6-20"	YELLOW BROWN FINE SANDY LOAM, SOME SILT
20-75"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 75", ROOTS TO 22", MOTTLING AT 22"
DT-33	
0-6"	TOPSOIL
6-15"	YELLOW BROWN FINE SANDY LOAM
15-22"	LIGHT YELLOW BROWN SANDY LOAM
22-77"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 77", ROOTS TO 22", MOTTLING AT 22"
DT-35	
0-6"	TOPSOIL
6-20"	ORANGE BROWN FINE SANDY LOAM
20-30"	YELLOW BROWN FINE SANDY LOAM
30-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 30", MOTTLING AT 30"
DT-71	
0-6"	TOPSOIL
6-23"	ORANGE BROWN FINE SAND \& SILT LOAM
23-81"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 81", ROOTS TO 23", MOTTLING AT 23", WATER
	BLEEDING AT 27"
DT - 72	
0-6"	TOPSOIL
6-26"	OORANGE BROWN FINE SANDY LOAM, SOME SILT
26-84"	GREY BROWN MEDIUM COMPACT SAND AND SILT
	LEDGE > 84", ROOTS TO 26", MOTTLING AT 26", WATER BLEEDING AT 24"
DT-73	
0-6"	TOPSOIL
6-24"	ORANGE BROWN FINE SANDY LOAM, SOME SILT
24-81"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 81", ROOTS TO 24", MOTTLING AT 24", WATER
	BLEEDING AT $28{ }^{\prime \prime}$

DT-74
0-6" TOPSOIL
6-24" ORANGE BROWN FINE SAND \& SILT LOAM
24-75" GREY BROWN MEDIUM COMPACT SILTY SAND
LEDGE > 75", ROOTS TO 24", MOTTLING AT 24", WATER BLEEDING AT 28"
DT - 75
0-6" TOPSOIL
6-23" PALE YELLOW BROWN FINE SAND \& SILT LOAM
23-84" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 84", ROOTS TO 23", MOTTLING AT 23", WATER BLEEDING AT 28"
DT - 76
0-6" TOPSOIL
6-24" ORANGE BROWN FINE SAND \& SILT LOAM
24-84" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 84", ROOTS TO 24", MOTTLING AT 24", WATER BLEEDING AT 27"
DT - 77
0-5" TOPSOIL
$5-23^{\prime \prime} \quad$ ORANGE BROWN FINE SAND AND SILT LOAM
23-77" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 77", ROOTS TO 23", MOTTLING AT 23", WATER BLEEDING AT 28"
DT - 78
0-3" TOPSOIL
3-19" ORANGE BROWN FINE SAND \& SILT LOAM
19-84" GREY BROWN MEDIUM COMPACT SILTY SAND
LEDGE > 84", ROOTS TO 19", MOTTLING AT 19", WATER BLEEDING AT 23"
DT - 79
0-5" TOPSOIL
5-20" YELLOW BROWN SILT LOAM
20-84" GREY BROWN MEDIUM COMPACT SILTY SAND
LEDGE > 84", ROOTS TO 20", MOTTLING AT 20", WATER BLEEDING AT 24"
DT - 80
0-6" TOPSOIL
6-20" YELLOW BROWN FINE SAND \& SILT LOAM
20-84" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 84", ROOTS TO 20", MOTTLING AT 20", WATER BLEEDING AT 23"

DT-81
0-5" TOPSOIL
5-20" PALE YELLOW BROWN FINE SAND \& SILT LOAM
20-81" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 81", ROOTS TO 20", MOTTLING AT 20", WATER BLEEDING AT 23"
DT-82

0-5" TOPSOIL
5-22" PALE YELLOW BROWN FINE SAND \& SILT LOAM
22-77" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 77", ROOTS TO 19", MOTTLING AT 19", WATER BLEEDING AT 22"
DT - 83
0-6"
TOPSOIL
6-23" PALE YELLOW BROWN FINE SAND \& SILT LOAM
23-84" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 84", ROOTS TO 23", MOTTLING AT 23", WATER BLEEDING AT 28"
DT - 84
0-6"
TOPSOIL
6-21" PALE YELLOW BROWN FINE SAND \& SILT LOAM
21-84" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 84", ROOTS TO 21", MOTTLING AT 21", WATER BLEEDING AT 22"
DT - 85
0-6"
TOPSOIL
6-24" PALE YELLOW BROWN FINE SAND \& SILT LOAM
24-84" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 84", ROOTS TO 24", MOTTLING AT 24", WATER BLEEDING AT 27"
DT - 86
0-5" TOPSOIL
5-23" YELLOW BROWN FINE SAND \& SILT LOAM
23-84" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 84", ROOTS TO 23", MOTTLING AT 23", WATER BLEEDING AT 27"
DT - 87
0-3" TOPSOIL
3-21" YELLOW BROWN FINE SAND \& SILT LOAM
21-80" GREY BROWN MEDIUM COMPACT SILTY SAND LEDGE > 80", ROOTS TO 21", MOTTLING AT 21", WATER BLEEDING AT 24"

DT-88	
0-4"	TOPSOIL
4-21"	YELLOW BROWN FINE SAND \& SILT LOAM
21-83"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 83", ROOTS TO 21", MOTTLING AT 21", WATER
	BLEEDING AT 24"
DT-89	
0-6"	TOPSOIL
6-21"	YELLOW BROWN FINE SAND \& SILT LOAM
21-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 21", MOTTLING AT 21", WATER
	BLEEDING AT 24"
DT-102	
0-3"	TOPSOIL
3-24"	YELLOW BROWN FINE SANDY LOAM
24-36"	GREY BROWN MEDIUM COARSE SAND
36-84"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 84", ROOTS TO 36", LIGHT MOTTLING AT 36",
DT-103	
0-3"	TOPSOIL
3-22"	YELLOW BROWN FINE SANDY LOAM
22-361"	GREY BROWN MEDIUM COARSE SAND
31-81"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 81", ROOTS TO 31", LIGHT MOTTLING AT 31",
DT-104	
0-3"	TOPSOIL
3-24"	YELLOW BROWN FINE SANDY LOAM
24-36"	GREY BROWN MEDIUM COARSE SAND
36-84"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 84", ROOTS TO 36", LIGHT MOTTLING AT 36",
DT-105	
0-3"	TOPSOIL
3-19"	YELLOW BROWN FINE SANDY LOAM
19-31"	GREY BROWN MEDIUM COARSE SAND
$31-84^{\prime \prime}$	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 84", ROOTS TO 31", LIGHT MOTTLING AT 31",
DT-106	
0-3"	TOPSOIL
3-19"	YELLOW BROWN FINE SANDY LOAM
19-30"	GREY BROWN MEDIUM COARSE SAND
30-83"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 84", ROOTS TO 30", LIGHT MOTTLING AT 30",
DT-107	
0-3"	TOPSOIL

3-21"	YELLOW BROWN FINE SANDY LOAM
21-33"	GREY BROWN MEDIUM COARSE SAND
$33-84^{\prime \prime}$	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 84", ROOTS TO 33", LIGHT MOTTLING AT 33",
DT-108	
0-4"	TOPSOIL
3-24"	YELLOW BROWN FINE SANDY LOAM
26-84"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 84", ROOTS TO 26", LIGHT MOTTLING AT 26",
DT-109	
0-8"	TOPSOIL
8-26"	YELLOW BROWN FINE SANDY LOAM
26-84"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL
	LEDGE > 84", ROOTS TO 26", LIGHT MOTTLING AT 26",
DT-111	
0-6"	TOPSOIL
6-28"	ORANGE BROWN FINE SAND \& SILT LOAM
28-77"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 77", ROOTS TO 28", LIGHT MOTTLING AT 28"
DT-112	
0-3"	TOPSOIL
3-22"	ORANGE BROWN FINE SANDY LOAM
22-32"	YELLOW BROWN FINE SANDY LOAM
32-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 32", LIGHT MOTTLING AT 32",
	NO WATER
DT-113	
0-4"	TOPSOIL
4-18"	ORANGE BROWN FINE SANDY LOAM
18-27"	YELLOW BROWN FINE SANDY LOAM
27-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 27", LIGHT MOTTLING AT 27",
	NO WATER
DT-114	
0-3"	TOPSOIL
3-18"	ORANGE BROWN FINE SANDY LOAM
18-25"	YELLOW BROWN FINE SANDY LOAM
25-81"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 81", ROOTS TO 25", LIGHT MOTTLING AT 25",
	NO WATER

DT-115	
0-6"	TOPSOIL
6-21"	YELLOW BROWN FINE SANDY LOAM, SOME SILT
21-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 21", MOTTLING AT 21", NO
	WATER
DT-116	
0-6"	TOPSOIL
6-25"	YELLOW BROWN FINE SANDY LOAM, SOME SILT
25-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 25", MOTTLING AT 25", NO
	WATER
DT-117	
0-4"	TOPSOIL
4-14"	ORANGE BROWN FINE SANDY LOAM
14-23"	YELLOW BROWN FINE SANDY LOAM
$23-81^{\prime \prime}$	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 81", ROOTS TO 23", MOTTLING AT 23',
	NO WATER
DT-118	
0-5"	TOPSOIL
5-21"	YELLOW BROWN FINE SANDY LOAM
21-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 21", MOTTLING AT 21",
	NO WATER
DT-119	
0-7"	TOPSOIL
7-21"	YELLOW BROWN FINE SANDY LOAM
21-84"	GREY BROWN MEDIUM COMPACT SAND AND SILT
	LEDGE > 84", ROOTS TO 21", MOTTINGH AT 21"
DT-120	
0-5"	TOPSOIL
5-20"	YELLOW BROWN FINE SANDY LOAM
20-81"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 81", ROOTS TO 20", MOTTLING AT 20",
	NO WATER
DT-121	
0-6"	TOPSOIL
6-21"	YELLOW BROWN FINE SANDY LOAM
21-84"	GREY BROWN MEDIUM COMPACT SILTY SAND
	LEDGE > 84", ROOTS TO 21", MOTTLING AT 21"

DT-122	
0-7"	TOPSOIL
7-27"	YELLOW BROWN FINE SANDY LOAM
27-33"	GREY BROWN LIGHTLY COMPACT SAND AND GRAVEL
33-84"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL, SOME SILT
	LEDGE > 84", ROOTS TO 33", MOTTLING AT 33"
DT-123	
0-6"	TOPSOIL
6-26"	YELLOW BROWN FINE SANDY LOAM
26-31"	GREY BROWN LIGHTLY COMPACT SAND \& GRAVEL
31-72"	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL,
	LEDGE > 72", ROOTS TO 31", MOTTLING AT 31"
DT-124	
0-7"	TOPSOIL
7-23"	ORANGE BROWN FINE SANDY LOAM
23-31"	GREY BROWN LIGHTLY COMPACT SAND \& GRAVEL
$31-80^{\prime \prime}$	GREY BROWN MEDIUM COMPACT SAND \& GRAVEL,
	LEDGE > 80", ROOTS TO 31", MOTTLING AT 31"
DT-133	
0-6"	TOPSOIL
6-24"	YELLOW BROWN FINE SANDY LOAM, SOME SILT
24-78"	GREY BROWN COMPACT SILTY SAND, SOME GRAVEL
	LEDGE > 78", ROOTS TO 24", MOTTLING AT 24"
DT-134	
0-6"	TOPSOIL
6-23"	YELLOW BROWN FINE SANDY LOAM, SOME SILT
23-73"	GREY BROWN COMPACT SILTY SAND, SOME GRAVEL
	LEDGE > 73", ROOTS TO 23", MOTTLING AT 23"
DT-135	
0-9"	TOPSOIL
9-23"	YELLOW BROWN FINE SAND \& SILT LOAM
23-78"	GREY BROWN COMPACT SILTY SAND, SOME GRAVEL
	LEDGE > 78", ROOTS TO 23", MOTTLING AT 23"
DT-136	
0-8"	TOPSOIL
8-25"	YELLOW BROWN FINE SAND \& SILT LOAM
25-81"	GREY BROWN COMPACT SILTY SAND, SOME GRAVEL
	LEDGE > 81", ROOTS TO 25", MOTTLING AT 25"

DT - 137
0-5" TOPSOIL
5-24" YELLOW BROWN FINE SANDY LOAM, SOME SILT
24-77" GREY BROWN COMPACT SILTY SAND, SOME GRAVEL LEDGE > 77", ROOTS TO 24", MOTTLING AT 24"
DT-138
0-6" TOPSOIL
6-23" YELLOW BROWN FINE SANDY LOAM, SOME SILT
23-73" GREY BROWN COMPACT SILTY SAND, SOME GRAVEL
LEDGE > 73", ROOTS TO 23", MOTTLING AT 23"

APPENDIX "B"
 ASSESSMENT OF PRIME FARMLAND SOILS NATURAL RESOURCE CONSERVATION SERVICE

EXHIBIT 5

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Canton

4101 Shuffel Street NW
North Canton, OH 44720
Tel: (330)497-9396
Laboratory Job ID: 240-122464-1
Client Project/Site: Solar Module TCLP
For:
SUMEC Energy Holdings Co. Ltd.
No. 1 Xinghuo Road
Nanjing Hi-tesh Zone
Nanjing, China 210061
Attn: Mr. Chester Chen

Authorized for release by: 12/3/2019 7:25:49 PM
Michael DelMonico, Project Manager I (330)497-9396
michael.delmonico@testamericainc.com

LINKs
Review your project results through
TotalAccess

Have a Question?

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 4
Method Summary 5
Sample Summary 6
Detection Summary 7
Client Sample Results 8
QC Sample Results 9
QC Association Summary 11
Lab Chronicle 12
Certification Summary 13
Chain of Custody 14

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 240-122464-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: SUMEC Energy Holdings Co. Ltd.

Project: Solar Module TCLP

Report Number: 240-122464-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.
All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a \% solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The sample was received on 11/18/2019 11:10 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was $13.8^{\circ} \mathrm{C}$.

TCLP METALS (ICP)

Sample SOLAR PANEL (240-122464-1) was analyzed for TCLP metals (ICP) in accordance with EPA SW-846 Methods 1311/6010B. The sample was leached on 11/25/2019, prepared on 11/26/2019 and analyzed on 11/27/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP MERCURY

Sample SOLAR PANEL (240-122464-1) was analyzed for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. The sample was leached on 11/25/2019, prepared on 11/26/2019 and analyzed on 11/27/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: SUMEC Energy Holdings Co. Ltd.

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CAN
7470A	Mercury (CVAA)	SW846	TAL CAN
1311	TCLP Extraction	SW846	TAL CAN
3010A	Preparation, Total Metals	SW846	TAL CAN
7470A	Preparation, Mercury	SW846	TAL CAN
Part Size Red	Particle Size Reduction Preparation	None	TAL CAN

Protocol References:
None $=$ None SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Client: SUMEC Energy Holdings Co. Ltd.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-122464-1	SOLAR PANEL	Solid	11/14/19 00:00	1/18/19 11:10	

Client Sample ID: SOLAR PANEL						Lab Sample ID: 240-122464-1			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	4.3		0.050		mg/L	1		6010B	TCLP

Client Sample ID: SOLAR PANEL	Lab Sample ID: 240-122464-1
Date Collected: 11/14/19 00:00	Matrix: Solid

Date Received: 11/18/19 11:10

Method: 6010B - Metals (ICP) - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.050		mg/L		11/26/19 14:00	11/27/19 10:08	1
Barium	ND		0.50		mg / L		11/26/19 14:00	11/27/19 10:08	1
Cadmium	ND		0.050		mg / L		11/26/19 14:00	11/27/19 10:08	1
Chromium	ND		0.050		mg / L		11/26/19 14:00	11/27/19 10:08	1
Lead	4.3		0.050		mg / L		11/26/19 14:00	11/27/19 10:08	1
Selenium	ND		0.050		mg / L		11/26/19 14:00	11/27/19 10:08	1
Silver	ND		0.050		mg / L		11/26/19 14:00	11/27/19 10:08	1
Method: 7470A - Mercury (CVAA) - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.0020		mg/L		11/26/19 14:00	11/27/19 18:19	1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-412722/2-A
Matrix: Solid
Analysis Batch: 412928

Lab Sample ID: LCS 240-412722/3-A
Matrix: Solid
Analysis Batch: 412928
Analyte

Lab Sample ID: LB 240-412574/1-B
Matrix: Solid
Analysis Batch: 412928

Lab Sample ID: 240-122464-1 MS
Matrix: Solid
Analysis Batch: 412928

Analyte	Sample Result	Sample Qualifier	Spike Added	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	MS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Arsenic	ND		5.00	5.46		mg/L		109	75-125
Barium	ND		50.0	51.9		mg / L		103	75-125
Cadmium	ND		1.00	1.12		mg / L		112	75-125
Chromium	ND		5.00	5.38		mg / L		108	75-125
Lead	4.3		5.00	9.84		mg / L		110	75-125
Selenium	ND		1.00	1.14		mg / L		114	75-125
Silver	ND		1.00	1.07		mg / L		107	75-125

Client: SUMEC Energy Holdings Co. Ltd. Project/Site: Solar Module TCLP
Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 240-122464-1 MSD
Matrix: Solid
Analysis Batch: 412928

Analyte	Sample Result	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
Arsenic	ND		5.00	5.59		mg/L		112	75-125	2	20
Barium	ND		50.0	54.0		mg / L		108	75-125	4	20
Cadmium	ND		1.00	1.14		mg / L		114	75-125	2	20
Chromium	ND		5.00	5.43		mg / L		109	75-125	1	20
Lead	4.3		5.00	9.95		mg / L		112	75-125	1	20
Selenium	ND		1.00	1.16		mg / L		116	75-125	2	20
Silver	ND		1.00	1.09		mg / L		109	75-125	2	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-412725/2-A Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 412725
Analysis Batch: 413058

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.0020		mg/L		/26/19 14:00	1/27/19 18:15	1

Lab Sample ID: LCS 240-412725/3-A Client Sample ID: Lab Control Sample
Matrix: Solid
Analysis Batch: 413058

崖	Spike	LCS	LCS				\%Rec.
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits
Mercury	0.00500	0.00549		mg/L		110	80-120

Lab Sample ID: LB 240-412574/1-D
Matrix: Solid
Analysis Batch: 413058

Lab Sample ID: 240-122464-1 MS
Matrix: Solid
Client Sample ID: SOLAR PANEL
Analysis Batch: 413058
Analyte

Lab Sample ID: 240-122464-1 MSD
Matrix: Solid
Analysis Batch: 413058
Analyte

Metals

Processed Batch: 412195

Lab Sample ID
$240-122464-1$
$240-122464-1$ MS
$240-122464-1$ MSD
Leach Batch: 412574

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
SOLAR PANEL	TCLP	Solid	Part Size Red	
SOLAR PANEL	TCLP	Solid	Part Size Red	
SOLAR PANEL	TCLP	Solid	Part Size Red	

Lab Sample ID	
240-122464-1	S
LB 240-412574/1-B	M
LB 240-412574/1-D	M
$240-122464-1$ MS	S
$240-122464-1$ MSD	S

Prep Batch: 412722

Lab Sample ID
240-122464-1
LB 240-412574/1-B
MB 240-412722/2-A
LCS 240-412722/3-A
$240-122464-1$ MS
$240-122464-1$ MSD

Prep Batch: 412725

Analysis Batch: 412928
$\left[\begin{array}{ll}\text { Lab Sample ID } & \\\right.$\cline { 1 - 2 } \& 240-122464-1
 LB 240-412574/1-B \& SB
 MB 240-412722/2-A \& LCS 240-412722/3-A\end{array}

Analysis Batch: 413058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-122464-1	SOLAR PANEL	TCLP	Solid	7470A	412725
LB 240-412574/1-D	Method Blank	TCLP	Solid	7470A	412725
MB 240-412725/2-A	Method Blank	Total/NA	Solid	7470A	412725
LCS 240-412725/3-A	Lab Control Sample	Total/NA	Solid	7470A	412725
240-122464-1 MS	SOLAR PANEL	TCLP	Solid	7470A	412725
240-122464-1 MSD	SOLAR PANEL	TCLP	Solid	7470A	412725

Client Sample ID: SOLAR PANEL
Date Collected: 11/14/19 $\mathbf{0 0 : 0 0}$
Date Received: 11/18/19 11:10

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: SUMEC Energy Holdings Co. Ltd.
Job ID: 240-122464-1
Project/Site: Solar Module TCLP

Laboratory: Eurofins TestAmerica, Canton

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
California		State Program	2927	02-23-20
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.				
Analysis Method	Prep Method	Matrix	Analyte	
7470A	7470A	Solid	Mercury	

17. CHAIN OF CUSTODY \& SAMPLE DISCREPANCIES

Samples processed by:

18. SAMPLE CONDITION

Samples) were received after the recommended holding time had expired.
Samples) \qquad were received in a broken container.
Sample (s) \qquad were received with bubble $>6 \mathrm{~mm}$ in diameter. (Notify PM)

19. SAMPLE PRESERVATION

Sample (s) \qquad Preservatives) added/Lot numbers):

VOA Sample Preservation - Date/Time VOAs Frozen: \qquad

EXHIBIT 6

DEPARTMENT OF THE ARMY
NEW ENGLAND DISTRICT, CORPS OF ENGINEERS
696 VIRGINIA ROAD
CONCORD, MASSACHUSETTS 01742-2751
REPLY TO ATTENTION OF

Regulatory Division

File Number: NAE-2021-00176

Carrie Larson Ortolano Esq.
LSE Pictor, LLC
40 Tower Lane, Suite 201
Avon, CT 06001
Dear Ms. Larson Ortolano:

PROPOSED WORK/LOCATION: Construct a Gravel Access Road, Winchester, CT.

We have reviewed your proposal to perform work within Corps of Engineers jurisdiction. We have assigned this file number NAE-2021-00176. Please reference this number in any future correspondence with us.

Since your project may have only minimal individual and cumulative impacts on waters and wetlands of the United States, it is authorized by the Corps of Engineers under the Connecticut General Permits (GPs). This authorization does not obviate the need to obtain other federal, state, or local approvals. You are responsible for ensuring that the work meets the terms and conditions of the CT GPs. We have recorded this project as permitter self-verification of the CT GPs in our database.

Please contact me at (978) 318-8703 if you have any questions.
Sincerely,

Kevin R. Kotelly, P.E.
Chief, Permits \& Enforcement Branch Regulatory Division
Enclosure (plans)

whb

\square

$0 \quad 1000 \quad 2000$
Project Location Platt Hill Road
4000 Feet

Town Boundary

EXHIBIT 7

Ref: 42701.00

Ms. Carrie Larson Ortolano
Associate General Counsel
LSE Pictor LLC
40 Tower Lane, Suite 201
Avon, CT 06001

Re: CTDEEP Dam Safety Determination
Petition \#1389A - LSE Pictor, LLC
Platt Hill Road, Winchester, CT

Dear Ms. Ortolano:

This letter is written in support of the above-referenced Petition. Correspondence from the Project team to CTDEEP Dam Safety Division began with an email from LSE Pictor LLC on January 13, 2021 and concluded with an email from Mr. Kartik Parekh at CTDEEP Dam Safety Division on January 27, 2021. In this email from Mr. Parekh, it is stated that the department intends to follow Connecticut General Statute Section 22a-409(c) regarding solar development projects, which indicates that dams impounding less than three (3) acre-feet of water would not require a CTDEEP Dam Safety Permit.

We have enclosed a copy of the email correspondence with CTDEEP Dam Safety Division with this letter for reference, and also have provided herewith a table of the proposed stormwater basins' criteria for the LSE Pictor, LLC site plans and Stormwater Management Report prepared by Trinkaus Engineering, LLC, revised through March 25, 2021. No proposed stormwater basin exceeds three (3) acre-feet of impounded water as indicated. We trust that this satisfactorily concludes the necessary correspondence with this department unless proposed conditions are altered to necessitate a new determination.

Basin \#	Lowest Existing Grade @ Berm	Proposed Grade of Spillway Crest	Maximum Height of Impoundment	Volume of Impounded Water
Constructed Wetland Basin 1	± 1290.0	1291.1	± 1.1 feet	± 0.1 acre-feet
Constructed Wetland Basin 2	± 1318.0	1321.5	± 3.5 feet	± 0.8 acre-feet
East Settling Basin	± 1323.5	1326.0	± 2.5 feet	± 0.2 acre-feet
Northeast Settling Basin	± 1329.0	1330.0	± 1.0 feet	± 0.1 acre-feet

Sincerely,
Eteven Y. Rochis
Steven J. Kochis, PE
Senior Project Engineer

From:	Parekh, Kartik Kartik.Parekh@ct.gov
Sent:	Wednesday, January 27, 2021 7:37 AM
To:	cortolano@lodestarenergy.com
Cc:	alifland@lodestarenergy.com; strinkaus@earthlink.net; Kochis, Steve; Hall, Ivonne
Subject:	[External] RE: dam safety request for classification -- Platt Hill Road, Winchester

Carrie
We have received new guidance on when new solar power development proposals should be submitted to the DEEP Dam Safety program for permit need determination review. Solar sites' stormwater basins that are designed to impound less than 3 acre-feet of water at maximum storage elevation (assume water level at the crest of the dam) would not need a DEEP Dam Safety Permit to construct. Please check with the local inland wetlands agency for permit requirements.

Stormwater basins that are designed to store more than 3 acre-feet of water would require a request for a permit need determination that provides supplemental information.

This determination applies to the stormwater basins associated with development of new solar power sites. Once the dams are constructed you must contact the DEEP Dam Safety Program to receive dam registration forms and have the dams registered with the State.

Please feel free to contact me or my supervisor, Ivonne Hall at Ivonne.Hall@ct.gov if you have any questions. Thank you.

Kartik Parekh
Dam Safety Section
Water Planning \& Management Division
Bureau of Water Protection \& Land Reuse
Connecticut Department of Energy and Environmental Protection
79 Elm Street, Hartford, CT 06106-5127
P: 860.424.3615 | F: 860.424.4075 | E: kartik.parekh@ct.gov

Connecticut Department of

ENERGY \&
ENVIRONMENTAL
PROTECTION

www.ct.gov/deep/dams

Conserving, improving and protecting our natural resources and environment; Ensuring a clean, affordable, reliable, and sustainable energy supply.

From: Hall, Ivonne Ivonne.Hall@ct.gov
Sent: Wednesday, January 13, 2021 4:31 PM
To: Parekh, Kartik Kartik.Parekh@ct.gov
Subject: FW: dam safety request for classification -- Platt Hill Road, Winchester

Ivonne Grajko Hall, P.E.
Supervising Civil Engineer
Dam Safety Program
Water Planning \& Management Division
Bureau of Water Protection \& Land Reuse
Connecticut Department of Energy and Environmental Protection
79 Elm Street, Hartford, CT 06106-5127
P: 860.424.3754 | E: Ivonne.hall@ct.gov
https://portal.ct.gov/DEEP/Water/Dams/Dams-Safety
https://portal.ct.gov/DEEP/Water/Dams/State-Dams-and-Dam-Safety
www.ct.gov/deep

From: Carrie Ortolano cortolano@lodestarenergy.com
Sent: Wednesday, January 13, 2021 11:49 AM
To: Laskin, Anna Anna.Laskin@ct.gov; Hall, Ivonne lvonne.Hall@ct.gov
Cc: Anna Lifland alifland@lodestarenergy.com; Steve Trinkaus strinkaus@earthlink.net; Kochis, Steve skochis@vhb.com
Subject: dam safety request for classification -- Platt Hill Road, Winchester

EXTERNAL EMAIL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Good morning-
LSE Pictor LLC ("Lodestar") is the developer of a proposed solar photovoltaic generating facility located at Platt Hill Road in Winchester, On behalf of Lodestar, I am submitting the attached for a determination from dam safety. I enclose the proposed site plans and stormwater report, prepared in connection with a Siting Council petition for declaratory ruling, which will be filed in January, 2021. Steve Trinkaus, the project engineer at Trinkaus Engineering and Steve Kochis, Lodestar's consulting engineer from VHB, are copied on this correspondence. As you will see, the project includes two proposed detention basins, the berms of which are shown as 2.5 feet above ground level.

Lodestar respectfully requests a classification of the proposed berms/detention basins.
Please let us know if you need any more information or if you have any questions.
Respectfully submitted on behalf of Lodestar.

Carrie Larson Ortolano
Associate General Counsel
860.539.5137
cortolano@lodestarenergy.com
www.lodestarenergy.com

EXHIBIT 8

Platt Hill - Updated Site Plans and Stormwater Report

Stone, Chris Chris.Stone@ct.gov
Tue, Feb 2, 2021 at 12:54 PM
To: Anna Lifland alifland@lodestarenergy.com, "Williams, Neal" Neal.Williams@ct.gov, Carrie Ortolano cortolano@lodestarenergy.com

Anna,

I have reviewed the revisions and they look fine. They reduced the developed footprint and pulled the stormwater basins and outfalls back 50+ feet from the wetlands in accordance with the new general permit Appendix I. The final step for approving the registration is the submission of the Letter of Credit in accordance with Appendix I. The amount of the letter of credit for sites disturbing less than 20 acres is $\$ 7,500$ per acre of disturbance. You can find the template for the LOC in Appendix J of the new permit.

Since the new permit was reissued on December 31, be aware that you will be required to follow all of the elements of the new permit including the inspection requirements that involve the designing qualified professional and the local Conservation District. Let me know if you have any questions.

Thanks,
Chris

Christopher Stone, P.E.
Stormwater Section
Water Permitting \& Enforcement Division
Bureau of Materials Management \& Compliance Assurance
Connecticut Department of Energy and Environmental Protection
79 Elm Street, Hartford, CT 06106-5127
Phone: (860) 424-3850 | Fax: (860) 424-4074. | Email: Chris.Stone@ct.gov
www.ct.gov/deep/stormwater

www.ct.gov/deep

Conserving, improving and protecting our natural resources and environment;
Ensuring a clean, affordable, reliable, and sustainable energy supply.

From: Anna Lifland alifland@lodestarenergy.com
Sent: Monday, February 1, 2021 4:11 PM
To: Williams, Neal Neal.Williams@ct.gov; Stone, Chris Chris.Stone@ct.gov; Carrie Ortolano cortolano@lodestarenergy.com
Subject: Re: Platt Hill - Updated Site Plans and Stormwater Report

EXTERNAL EMAIL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe.
[Quoted text hidden]

[^0]: 18.4 1,214 Total

[^1]: 14.1 1,214 Total

[^2]: Primary OutFlow Max=0.71 cfs @ 13.19 hrs HW=1,318.32' (Free Discharge)
 -1=Culvert (Passes 0.71 cfs of 11.36 cfs potential flow)
 -2=Orifice/Grate (Orifice Controls 0.45 cfs @ 5.17 fps)
 -3=Orifice/Grate (Orifice Controls 0.25 cfs @ 1.92 fps)
 -4=Orifice/Grate (Controls 0.00 cfs)
 -5=Orifice/Grate (Controls 0.00 cfs)
 7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
 -6=Orifice/Grate (Controls 0.00 cfs)
 $\zeta_{8=B r o a d}$ Crested Rectangular Weir (Controls 0.00 cfs)

[^3]: Primary OutFlow Max=2.68 cfs @ 12.72 hrs HW=1,319.90' (Free Discharge)
 -1=Culvert (Passes 2.68 cfs of 13.58 cfs potential flow)
 -2=Orifice/Grate (Orifice Controls 0.70 cfs @ 7.97 fps)
 -3=Orifice/Grate (Orifice Controls 1.22 cfs @ 6.19 fps)
 4=Orifice/Grate (Orifice Controls 0.76 cfs @ 3.89 fps)
 $-5=$ Orifice/Grate (Controls 0.00 cfs)
 7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
 -6=Orifice/Grate (Controls 0.00 cfs)
 8=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

