

222 South 9th Street Minneapolis, MN 55402 Phone: 860.932.3086

E-mail: steve.broyer@ecosrenewable.com

November 11, 2020

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Petition No. 1323 – Development & Management Plan Modification and Deadline Extension

Dear Melanie:

On January 18th, 2018 the Connecticut Siting Council ("Council") ruled that petition 1323 submitted by Windham Solar LLC ("Windham") for (3) 2.0 MW AC and (2) 1.0 MW AC (8MW AC in total) solar photovoltaic electrical generation facilities located off Bilton Road in Somers, Connecticut met the air and water quality standards of the Department of Energy and Environmental Protection, and would not have an substantial adverse environmental affect. On November 8th, 2018 the Council then approved the Development and Management ("D&M") Plan submitted for some of the facilities. The D&M plan approval requires that Windham provide the number of solar panels, final inverter design and electrical interconnection information for constructed projects, and results of any soil surveys conducted on site for the Phase II Environmental.

This letter requests an extension of the construction deadline for the unconstructed facilities and provides the information related to the number of the solar modules per generating facility, final inverter design and electrical interconnection for the constructed facilities. It also includes the results of soil surveys conducted on site for the Phase II Environmental review.

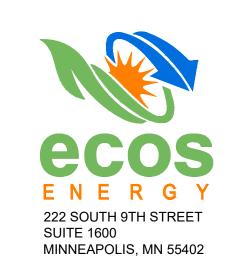
When Petition 1323 was submitted to the Council for the declaratory ruling, Windham was estimating the facility sizes and the Renewable Energy Contracts ("REC") for the site. Since the approval of the D&M plan Windham has designed and constructed (3) 1.0 MW AC facilities on the site and is currently constructing (1) 2.0 MW AC facility. Another (1) 2.0 MW facility is slated for construction in the Spring/Summer of 2021. An overall site plan of the separate facilities has been attached as [Exhibit A - Overall Site Plan - 10-27-20]. Windham Solar is requesting that the approved declaratory ruling for the site be revised from (3) 2.0 MW AC and (2) 1.0 MW AC to (2) 2.0 MW AC and (4) 1.0 MW AC facilities.

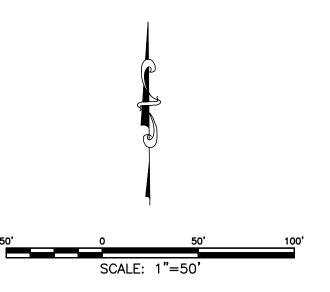
The initial (3) 1.0 MW AC facilities are Blair, Madison and Few Solar. Construction began in the Fall of 2019 and continued through the spring of 2020, with the three facilities achieving permission to operate in March of 2020 from Eversource Energy. Each 1.0 MW AC project contains 3,000, 400W solar modules, for a DC size of 1,200,000 Watts, at a 1.2 AC/DC ratio. The projects are utilizing six ABB 166.6 kW string inverters per facility. Pertinent documents from the electrical design plans are attached as [Exhibit B - Blair Madison Few Solar - Electrical.pdf].

One 2.0 MW AC facility is currently under construction. The remaining future projects are expected to begin construction in 2021. Additional information pertaining to the final electrical design of those projects will be submitted to the Council when completed.

The construction deadline for Petition 1323 is January of 2021. Given the timeline presented Windham is requesting an extension of the construction deadline for the projects that are not in operation to April 1, 2022, which is the current delivery term start date under the ZREC/LREC contracts for those projects. Upon completion of construction of the projects, Windham solar will submit a vegetative maintenance plan. Until construction completion the site groundcover and maintenance will be maintained under the requirements of the Construction General permit, and the SWPCP.

Windham submitted a Phase 1 ESA with the initial petition submission in 2017. Since that time Windham has performed additional subsurface explorations. On May 21st, 2018, a phase 2 ESA was prepared for locations identified in the phase 1 and is attached as *[Exhibit C – Bilton – Phase 2 Report.pdf]*. Several areas were recommended to be remediated due to the findings in the Phase 2. Windham has performed the appropriate remediation, and on November 21, 2019, NorthStar Environmental Management, LLC issued a Phase 3 Report outlining the remediation steps and soil sampling preformed during the remediation and is attached as *[Exhibit D - Bilton - Environmental Phase III Report - 11.25.19]*. Windham has performed the appropriate steps to ensure that the site was cleaned, and will continue to monitor the location, as recommended in the Phase 3.


Please consider this updated information and review and respond the minor revision requests to the granted approvals of Petition 1323.


Thank you,

Steven J. Broyer

Exhibit A Overall Site Plan 11-4-20

PETITION No #1323 CSC D&M OVERALL SITE PLAN 11 - 4 - 20

Exhibit B Blair Madison Few Solar Electrical

						Bil	ton Design	n Summar	y							
Project AC Capacity:		2997 kW-AC														
Project DC Capacity:		3600kW-DC														
	INVERTER			MODU	LE RACK		MODULE					ARRA	ΛΥ			
Block #	MAKE	MODEL	KW/KVA	MAKE	MODEL	MAKE	MODEL	WATTAGE (W)	QUANTITY OF MODULES PER	QUANTITY OF STRINGS PER	QUANTITY OF STRINGS	QUANTITY OF MODULES	QUANTITY OF INVERTERS	CAPACITY (kW-AC)	NAMEPLATE (kW-DC)	DC:AC RATIO

MADISON

	INVERTE	₹		MODU	JLE RACK		MODULE					ARRA	·Υ			
Block #	MAKE	MODEL	KW/KVA	MAKE	MODEL	MAKE	MODEL	WATTAGE (W)	QUANTITY OF MODULES PER STRING	QUANTITY OF STRINGS PER INVERTER	QUANTITY OF STRINGS	QUANTITY OF MODULES	QUANTITY OF INVERTERS	CAPACITY (kW-AC)	NAMEPLATE (kW-DC)	DC:AC RATIO
1	ABB	PVS-166-TL-US	166.5	RBI	25° FIX TILT	LG	LG400N2W	400	25	20	120	3000	6	999	1200.0	1.201
2	ABB	PVS-166-TL-US	166.5	RBI	25° FIX TILT	LG	LG400N2W	400	25	20	120	3000	6	999	1200.0	1.201
3	ABB	PVS-166-TL-US	166.5	RBI	25° FIX TILT	LG	LG400N2W	400	25	20	120	3000	6	999	1200.0	1.201

SITE TOTALS	360	9000	18	2997.00	3600.00	1.201

Phone (952) 937-5150 12701 Whitewater Drive, Suite #300 Fax (952) 937-5822 Minnetonka, MN 55343 Toll Free (888) 937-5150 westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

BLAIR

REVISIONS:
DATE COMMENT
A 06/11/2019 90% SUBMITTAL
...

Bilton Solar

Somers, Connecticut

Project Design Summary

NOT FOR CONSTRUCTION

TF·

06/11/2019

SHEET: E.106

NOTES: 1. PROVIDE EXTERNAL SURGE ARRESTERS AT TRANSFORMERS, ELBOW (952) 937-5150 12701 Whitewater Drive, Suite #300 (952) 937-5822 Minnetonka, MN 55343 (888) 937-5150 westwoodps.com CONNECTED ON THE HIGH VOLTAGE SIDE OF TRANSFORMER WHERE 2. INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, Westwood Professional Services, Inc. NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION. 3. REFER TO SHEET E.103 MVAC EQUIPMENT LABELING REQUIREMENTS. 4. REFER TO SHEETS E.210 FOR LVAC SINGLE LINE DIAGRAM. 5. REFER TO SHEET E.220 FOR DC SINGLE LINE DIAGRAM 6. REFER TO SHEET E.800 FOR MVAC SCHEDULE. **KEY NOTES:** 1) 1000 KVA, 23,000V GROUNDED WYE/800V GROUNDED WYE, Z=5.75%, 3 PHASE, 4W, 125KV BIL, TWO-WINDING PAD MOUNTED STEP-UP TRANSFORMER. 2 CURRENT LIMITING FUSE, RATING TBD. 3 EXPULSION FUSE, RATING TBD. PAD MOUNTED DISCONNECT AND METER. UTILITY APPROVED MULTY FEEDER/METERED EQUIPMENT. 222 South 9th St., Suite 1600 Minneapolis, MN 55402 MAIN SWTICHGEAR AND TRANSFORMER TO BE CLOSE COUPLED WITH PROVIDED FLEX BUSS. REVISIONS: # DATE COMMENT A 06/11/2019 90% SUBMITTAL SINGLE PAD MOUNTED SWITCHGEAR TO BE SUBMITTED AND APPROVED BY UTILITY. FEW MADISON BLAIR METER METER WIRING SCHEDULE **WIRING ID NOTES** REFER TO MVAC SCHEDULES ON SHEET E.800 FOR MV00 CONDUCTOR SIZE AND SPECS. OVHD00 REFER TO MVAC SCHEDULES ON SHEET E.800 FOR CONDUCTOR SIZE AND SPECS. MORE INTERCONNECTION DETAIL ON SHEET E.270

MV00

1000 KVA

FEW

TO 1.SWG ON SHEET E.210

TRANSFORMER

 $\langle 1 \rangle$

MV00

N-L ²

1000 KVA

BLAIR

TO 3.SWG ON SHEET E.210

TRANSFORMER

MV00

1000 KVA

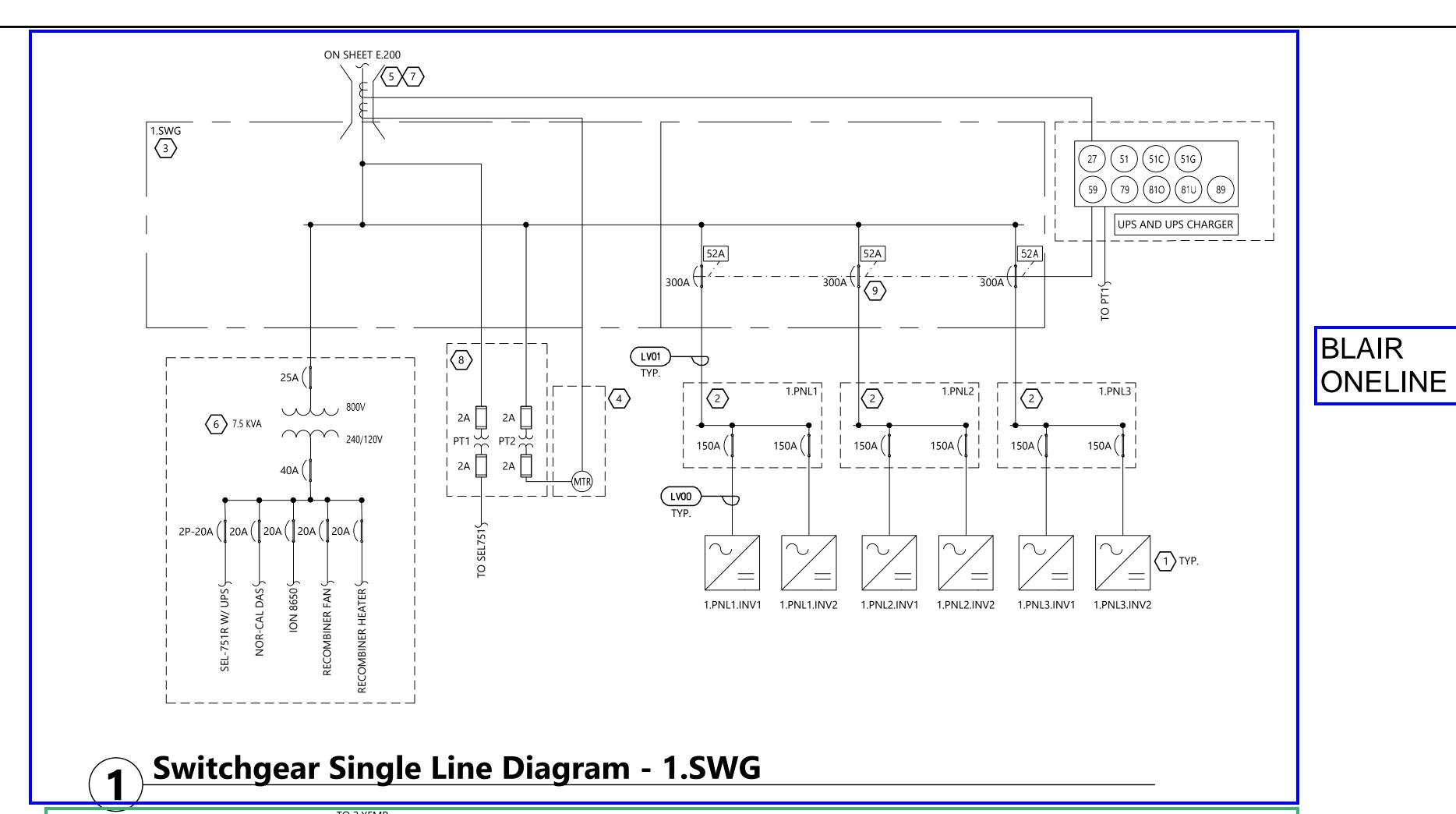
MADISON

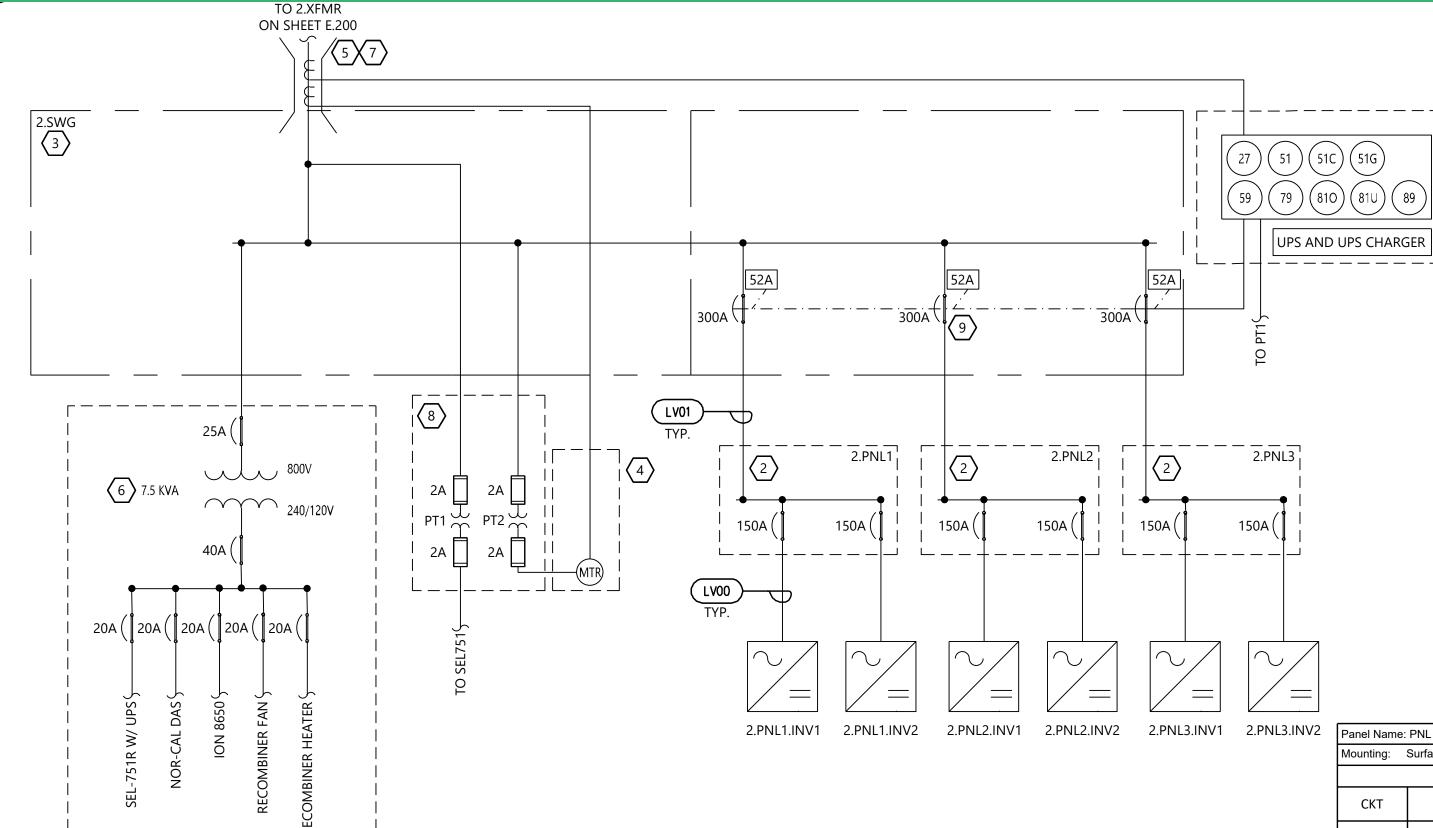
TO 2.SWG ON SHEET E.210

TRANSFORMER

Bilton Solar

Somers, Connecticut


MVAC Oneline Diagram


NOT FOR CONSTRUCTION

06/11/2019

SHEET:

E.200

Switchgear Single Line Diagram - 2.SWG

NOTES:

- 1. INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY
- 2. REFER TO SHEET E.103 FOR EQUIPMENT LABELING REQUIREMENTS.
- 3. REFER TO SHEETS E.200 FOR MVAC SINGLE LINE DIAGRAM.
- 1500 Vdc. 800Vac. DC SWITCHES. ARC FAULT. SPD TYPE 2 PLUGGABLE CARTRIDGES (DC&AC)
- NEMA4X (NEMA3R FANS)
- 5 YEAR WARRANTY FOR INSTALLATION WORLDWIDE
- (3x300A), 3P3W
- 800V SHUNT TRIP BREAKERS W/POSITION CONTACTS.
- 4 ION 8650 METER, MILLBANK 7445 ENCLOSURE
- PRIMARY MCCB 480V @ 25A, SECONDARY MCCB 240V @ 40A
- 72x25"x12" AUX CABINET, INCLUDING (6) PTS, (6) SHORTING TERM BLOCKS
- TO CURRENT TRANSFORMERS: 125-102, 1000:5 CT, 600VAC, 10kV BIL.

 PART NO. PTG3-1-60-841F
- BUSSMAN KTK-2.

W	WIRING SCHEDULE						
WIRING ID	NOTES						
LV00	REFER TO LVAC SCHEDULES ON SHEET E.810 FOR CONDUCTOR SIZE AND SPECS.						
LV01	REFER TO LVAC SCHEDULES ON SHEET E.810 FOR CONDUCTOR SIZE AND SPECS.						

- COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION.
- 4. REFER TO SHEET E.220 FOR DC SINGLE LINE DIAGRAM
- 5. REFER TO SHEET E.810 FOR LVAC SCHEDULE.

KEY NOTES:

- STRING INVERTER: ABB PVS-166.5/175-TL • PVS-166.5-TL-POWER MODULE - 166500 Wac - 24 STRING, 12 MPPT (2 PER MPPT)

- PANEL BOARD (AC COMBINER) : BACKFEED RATED, 800V, 400A, 3PH, 3W

 (2) X 150A, 800V ABB BREAKERS
- AC RECOMBINER: 2500A SWITCHBOARD, 3PH, 4W, 35k AIC BACKFEED RATED. 3 BREAKER
- NEMA 3R WIREWAY BETWEEN XFMR AND SWITCHBOARD. HEATER & FAN.
- 6 7.5kVA POWER CENTER 462:120 (INTALLED ON OUTSIDE)
- (1) 2-POLE BREAKER, (4) 1-POLE BREAKER
- 8 VOLTAGE TRANSFORMERS: 840:120 (7:1), 0.3WXMY, 1.2Z @ 100%, PC&S MODEL PTG3-1-60-841F

 METER FUSE 5.5kV, 45kA, 2.0E, VT FUSES PRIMARY 2A BUSSMAN JCD-2E. SECONDARY 2A
- 9 SHUNT TRIP FOR BREAKERS KT5S2

STATUS MONITORING FOR BREAKERS 1SDA064518R1

Bilton Solar

Somers, Connecticut

LVAC Oneline Diagram

NOT FOR CONSTRUCTION

(952) 937-5822 Minnetonka, MN 55343 (888) 937-5150 westwoodps.com

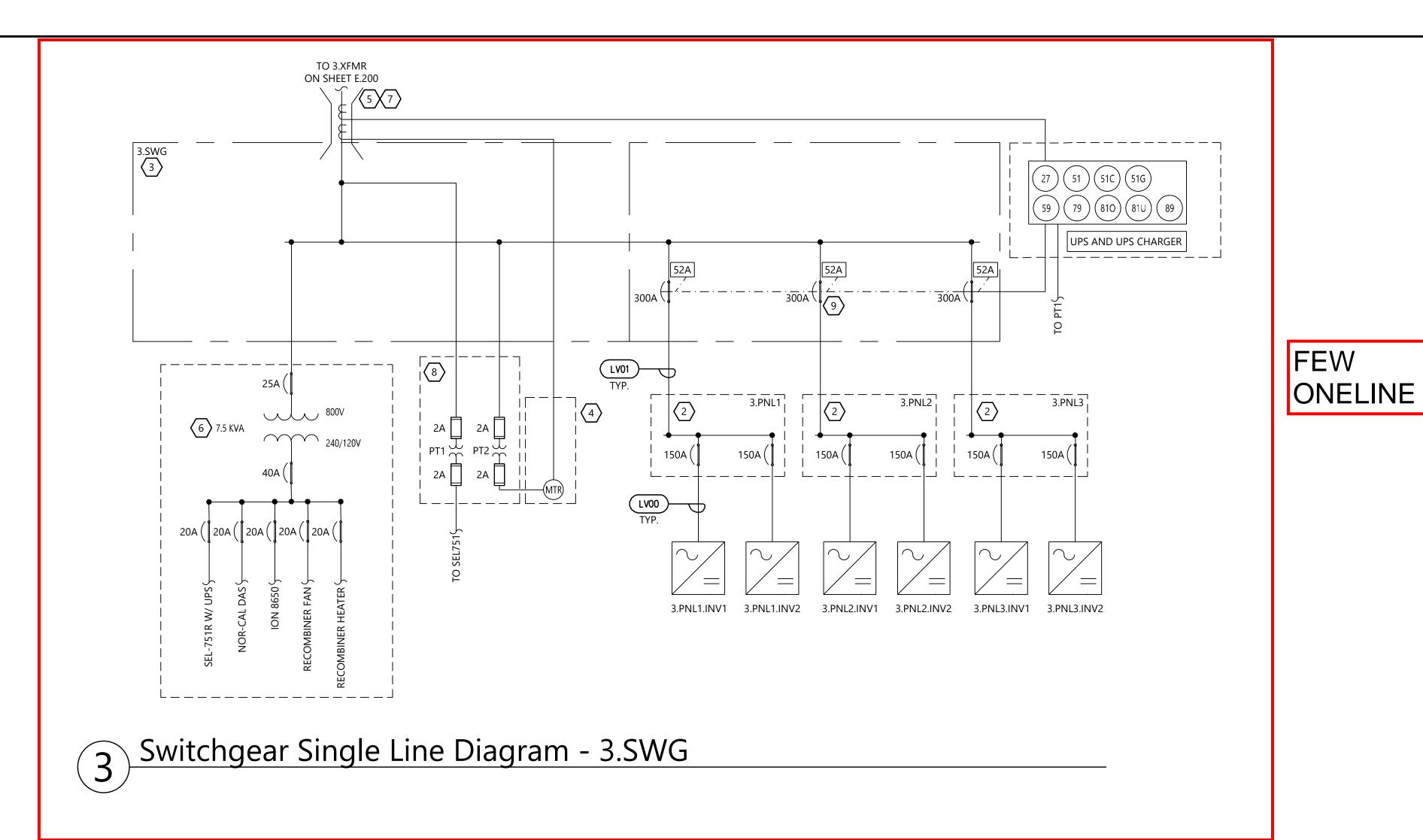
222 South 9th St., Suite 1600

Minneapolis, MN 55402

COMMENT

A 06/11/2019 90% SUBMITTAL

DATE


Westwood Professional Services, Inc.

06/11/2019 DATE:

E.210

MADISON ONELINE

Panel Name: PNL AUX.01	l Name: PNL AUX.01		Voltage: 120/240				3Wire	Bus Rating (A): 60	
Mounting: Surface		Main CB:	Main CB: YES				Main CB Rating (A) 40			
	Manufacturer/N							AIC Rating: 35	KAIC	
СКТ	Load Description	Breaker	Connected Load (kVA)	Phase	Connected Load (kVA)	Breaker	Load Description CK		СКТ	
1	CEL 754D W/ LIDS /240V/	20/2	1.00	Α	1.00	20/1	SEL-751R W/ UPS (240V) 1		1	
1	SEL-751R W/ UPS (240V)	-		В	1.00	20/1	SEL-751R W/ UPS (240V) 1		1	
2	Nor-Cal DAS	20/1	0.50	Α	0.50	20/1	Nor-Cal DAS 2		2	
3	ION 8650	20/1	0.50	Α	0.50	20/1	ION 8650 3		3	
4	Re-Combiner Fan	20/1	0.05	В	0.50	20/1	Re-Combiner Fan 4		4	
5	Re-Combiner Heater	20/1	0.50	В	0.50	20/1	Re-Cor	nbiner Heater	5	
		Total kVA		6.55	-					

NOTES:

 INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION.

2. REFER TO SHEET E.103 FOR EQUIPMENT LABELING REQUIREMENTS.

REFER TO SHEETS E.200 FOR MVAC SINGLE LINE DIAGRAM.
 REFER TO SHEET E.220 FOR DC SINGLE LINE DIAGRAM
 REFER TO SHEET E.810 FOR LVAC SCHEDULE.

KEY NOTES:

STRING INVERTER: ABB PVS-166.5/175-TL

PVS-166.5-TL-POWER MODULE - 166500 Wac - 24 STRING, 12 MPPT (2 PER MPPT)
 1500 Vdc. 800Vac. DC SWITCHES. ARC FAULT. SPD TYPE 2 PLUGGABLE CARTRIDGES (DC&AC)

NEMA4X (NEMA3R FANS)

5 YEAR WARRANTY FOR INSTALLATION WORLDWIDE

PANEL BOARD (AC COMBINER) : BACKFEED RATED, 800V, 400A, 3PH, 3W

(2) X 150A, 800V ABB BREAKERS

AC RECOMBINER: 2500A SWITCHBOARD, 3PH, 4W, 35k AIC BACKFEED RATED. 3 BREAKER (3x300A), 3P3W

800V SHUNT TRIP BREAKERS W/POSITION CONTACTS.
NEMA 3R WIREWAY BETWEEN XFMR AND SWITCHBOARD. HEATER & FAN.

4 ION 8650 METER, MILLBANK 7445 ENCLOSURE

7.5kVA POWER CENTER 462:120 (INTALLED ON OUTSIDE)
• PRIMARY MCCB 480V @ 25A, SECONDARY MCCB 240V @ 40A

PRIMARY MCCB 480V @ 25A, SECONDARY MCCB 240V @ 40A
(1) 2-POLE BREAKER, (4) 1-POLE BREAKER
72x25"x12" AUX CABINET, INCLUDING (6) PTS, (6) SHORTING TERM BLOCKS

(7) CURRENT TRANSFORMERS: 125-102, 1000:5 CT, 600VAC, 10kV BIL.

PART NO. PTG3-1-60-841F

VOLTAGE TRANSFORMERS: 840:120 (7:1), 0.3WXMY, 1.2Z @ 100%, PC&S MODEL PTG3-1-60-841F

METER FUSE 5.5kV, 45kA, 2.0E, VT FUSES PRIMARY 2A BUSSMAN JCD-2E. SECONDARY 2A BUSSMAN KTK-2.

9 SHUNT TRIP FOR BREAKERS KT5S2

STATUS MONITORING FOR BREAKERS 1SDA064518R1

WIF	WIRING SCHEDULE							
WIRING ID	NOTES							
LV00	REFER TO LVAC SCHEDULES ON SHEET E.810 FOR CONDUCTOR SIZE AND SPECS.							
LV01	REFER TO LVAC SCHEDULES ON SHEET E.810 FOR CONDUCTOR SIZE AND SPECS.							

Westwood

Phone (952) 937-5150 12701 Whitewater Drive, Sui Fax (952) 937-5822 Minnetonka, MN 55343 Toll Free (888) 937-5150 westwoodps.com Westwood Professional Services, Inc.

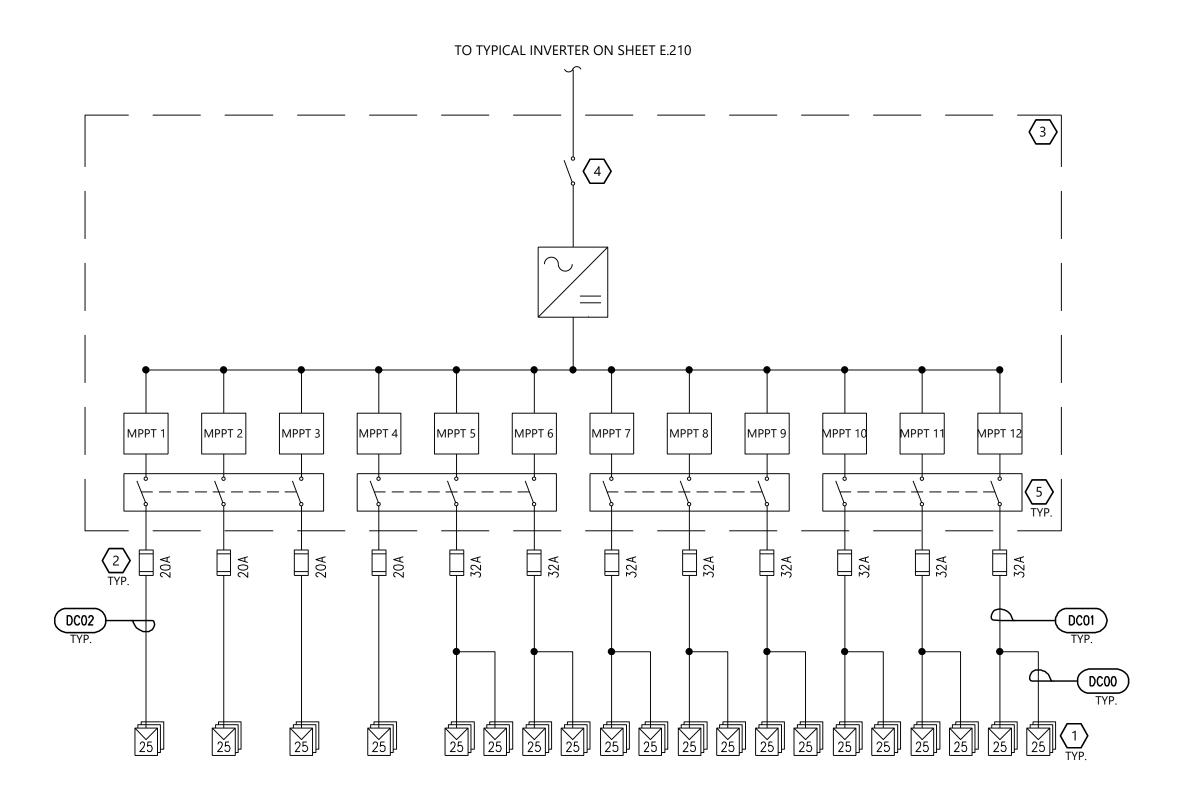
PREPARED FOR

222 South 9th St., Suite 1600 Minneapolis, MN 55402

#	DATE	COMMENT
Α	06/11/2019	90% SUBMITTAL
-		

Bilton Solar

Somers, Connecticut


LVAC Oneline Diagram

NOT FOR CONSTRUCTION

DATE: 06/11/2019

SHEET: E.211

Voltage: 120/240 Bus Rating (A): 60 Panel Name: PNL AUX.01 1 Phase Mounting: Surface Main CB: YES Main CB Rating (A) 40 Manufacturer/Model: General Electric AIC Rating: 35KAIC Connected Load Description Load Description Breaker CKT Breaker Phase Load (kVA) Load (kVA) 1.00 20/1 SEL-751R W/ UPS (240V) 1.00 SEL-751R W/ UPS (240V) 20/1 SEL-751R W/ UPS (240V) 1.00 Nor-Cal DAS 20/1 0.50 Α 0.50 20/1 Nor-Cal DAS 2 20/1 0.50 0.50 20/1 ION 8650 ION 8650 Re-Combiner Fan 20/1 0.05 0.50 20/1 Re-Combiner Fan 4 20/1 0.50 0.50 20/1 Re-Combiner Heater В Re-Combiner Heater Total kVA 6.55

String Inverter Single Line Diagram

DC INVERTER WIRING ONELINE - IDENTICAL TO ALL PROJECTS

NOTES:

KEY NOTES:

4 DC DISCONNECT

- 1. INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION.
- 2. REFER TO SHEET E.103 FOR EQUIPMENT LABELING REQUIREMENTS. 3. REFER TO SHEETS E.210 FOR LVAC SINGLE LINE DIAGRAM.
- 4. REFER TO SHEET E.230 FOR INVERTER COMMUNICATION DIAGRAM. 5. REFER TO SHEET E.820-E.822 FOR DC SCHEDULES.

SOLAR MODULE: LG LG400N2W-V5, 1500V, 400W, 25 CONNECT IN SERIES FOR ONE STRING.

STRING INVERTER: ABB PVS-166-TL-US, 3 PHASE, 3W, 800V OUTPUT. CSA TO UL 1741SA & IEEE1547 CERTIFIED.

2 FUSE ON POSITIVE CONDUCTOR ONLY.

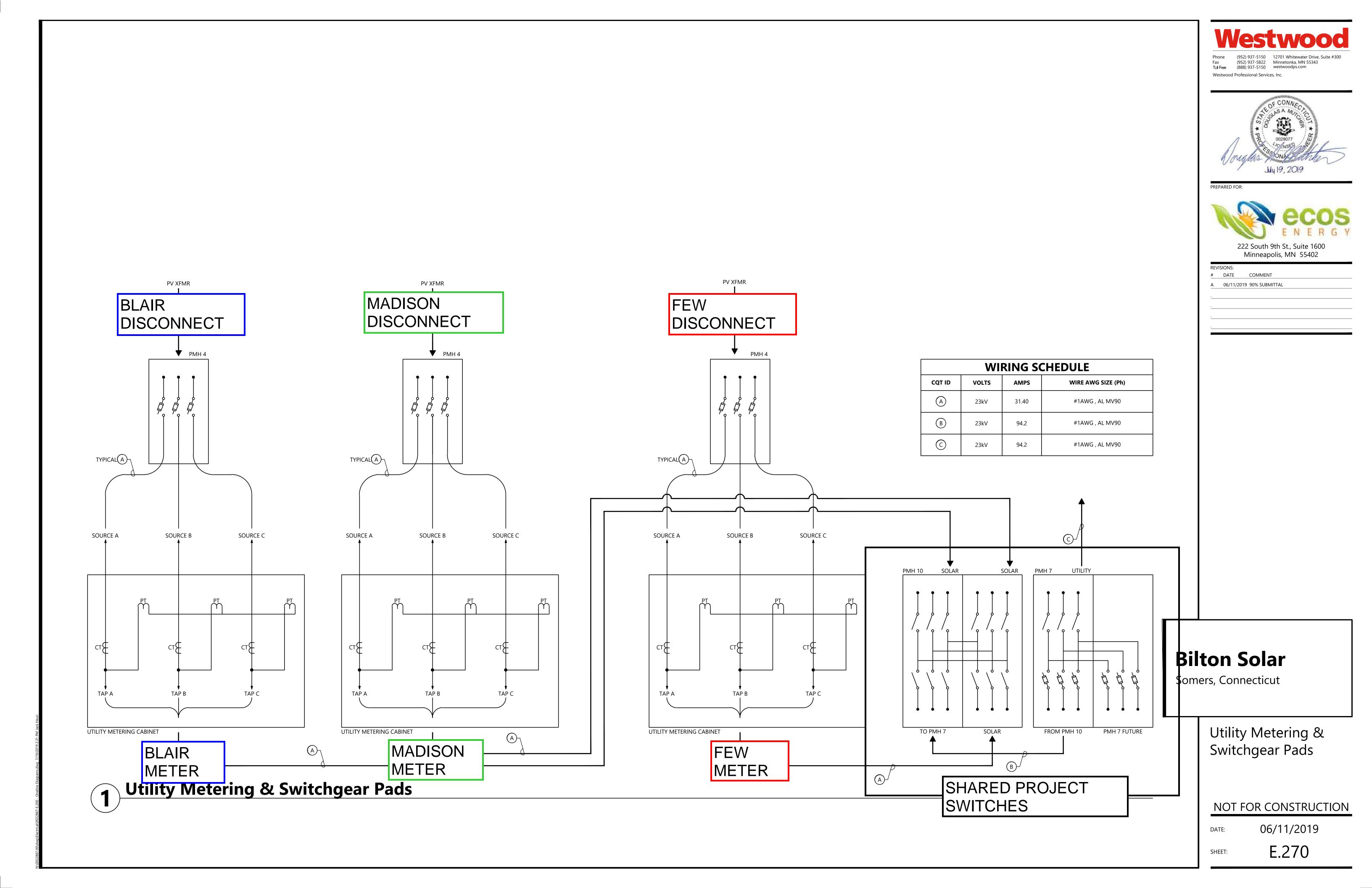
Phone (952) 937-5150 12701 Whitewater Drive, Suite #300 Fax (952) 937-5822 Minnetonka, MN 55343 westwoodps.com

Westwood Professional Services, Inc.

	N	linneapolis,	MIN	55402	
REV	ISIONS:				
#	DATE	COMMENT			
Α	06/11/2019	90% SUBMITTAL			
_					

WIF	WIRING SCHEDULE					
WIRING ID	NOTES					
DC00	BACK OF MODULE CONDUCTORS. REFER TO MODULE SPEC SHEET FOR SIZE AND CONNECTOR TYPE.					
DC01	REFER TO DC SCHEDULES ON SHEET E.820 - E.822 FOR CONDUCTOR SIZE AND SPECS.					
DC02	REFER TO DC SCHEDULES ON SHEET E.820 - E.822 FOR CONDUCTOR SIZE AND SPECS.					

Bilton Solar


Somers, Connecticut

DC Oneline Diagram

NOT FOR CONSTRUCTION

06/11/2019

E.220 SHEET:

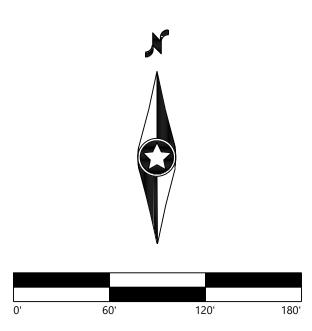
PROJECT MADISON PROJECT FEW PROJECT

NOTES:

з.хғмг rosoft Corpor³SW⁶n © 2019 DigitalGlobe ©CNES (2019) Distribution A

- 1. INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION.
- 2. REFER TO SHEET E.103 FOR EQUIPMENT LABELING
- REQUIREMENTS.
- REFER TO SHEETS E.200 FOR MVAC SINGLE LINE DIAGRAM.
 REFER TO SHEET E.800 FOR MVAC SCHEDULES.
 REFER TO SHEET E.650 FOR TRENCH DETAILS.

Westwood


Phone (952) 937-5150 12701 Whitewater Drive, Suite #300 Fax (952) 937-5822 Minnetonka, MN 55343 Toll Free (888) 937-5150 westwoodps.com Westwood Professional Services, Inc.

222 South 9th St., Suite 1600 Minneapolis, MN 55402

#	DATE	COMMENT
Α	06/11/2019	90% SUBMITTAL

Bilton Solar

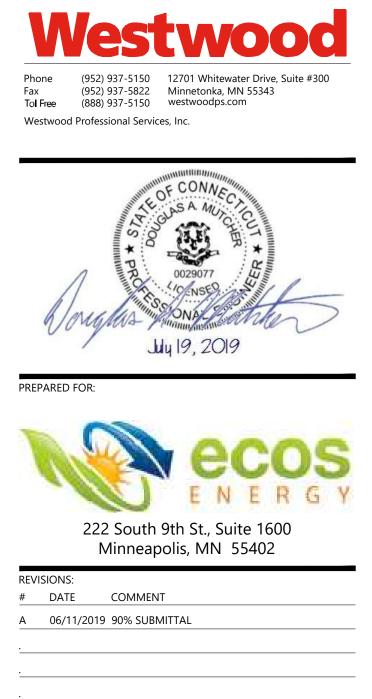
Somers, Connecticut

MVAC Site Plan

NOT FOR CONSTRUCTION

06/11/2019

E.300 SHEET:


MVAC Routing Site Plan

1" = 60'

FOR REFERENCE ONLY. EQUIPMENT DESIGNED BY OTHERS AND REVIEWED FOR CONFORMANCE WITH THE ELECTRICAL ENGINEERING DESIGN FOR THE PROJECT

DETAILS - IDENTICAL TO ALL PROJECTS

Bilton Solar

Somers, Connecticut

Specification Sheet - Module

NOT FOR CONSTRUCTION

. 06.

06/11/2019

SHEET: **E.900**

FOR REFERENCE ONLY. EQUIPMENT DESIGNED BY OTHERS AND REVIEWED FOR CONFORMANCE WITH THE ELECTRICAL ENGINEERING DESIGN FOR THE PROJECT

SOLAR INVERTERS

PVS-166/175-TL-US

ABB string inverters

PVS-166/175-TL-US

This new high-power string inverter, within the 1500 advanced inverter configuration settings. Vdc segment, delivers up to 185 kVA at 800 Vac. This not only maximizes the ROI for ground mounted configuration wizard enable a quick multi-inverter utility-scale applications but also reduces Balance of installation and commissioning reducing the time System costs (i.e. AC side cabling) for small to large spent on site. scale, free field ground mounted PV installations.

The inverter comes equipped with 24 inputs and 12 MPPT, the highest available in the market, enabling maximum PV plant design flexibility and increasing communication for PV plants. yields also in case of complex installations.

Installer friendly design

connectors, as the existing PV module's mounting and thanks to the state-of-the-art cybersecurity and systems can be used to install the inverters, thus saving time and cost on site preparation. The fuse and combiner free design eliminates the need for external components, such as separate DC Highlights combiner boxes, thanks to the integrated DC disconnect and AC wiring compartment. The Advanced Cooling Concept preserves the lifetime of the system and minimizes O&M costs thanks to internal heavy-duty cooling fans. These can be easily removed during scheduled maintenance cycles whilst the power module can be • WLAN interface for commissioning and easily replaced without removing the wiring box.

Advanced communication for O&M

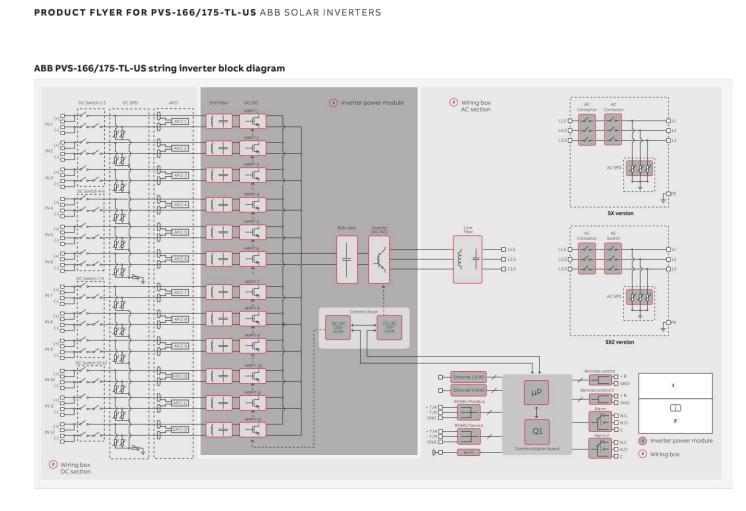
Standard wireless access from any mobile device makes the configuration of inverter and plant easier and faster. An improved user experience thanks to a

The PVS-166/175-TL-US is ABB's innovative three-phase string inverter, delivering a solution to enhance and optimize solar power generation for ground mounted utility scale applications.

built-in User Interface (UI) enables access to The Installer for Solar Inverters mobile app and

Industry standard Modbus (RTU/TCP)/SUNSPEC protocol enables fast system integration. Two Ethernet ports enable fast and future-proof

Monitoring your assets is made easy, as every Quick and easy installation, thanks to plug and play inverter is capable to connect to ABB cloud platform Arc Fault Detection option, your assets and profitability are secure in the long term.


- Up to 185 kW power rating, highest in class All-in-one combiner and fuse free design Separate power module and wiring compartment
- for fast swap and replacement 12 MPPT and wide input voltage range for
- maximum energy yield
- Remote monitoring and firmware upgrade via ABB
- cloud platform (logger free) Free of charge standard access to Aurora Vision®

PRODUCT FLYER FOR PVS-166/175-TL-US ABB SOLAR INVERTERS

ABB string inverters PVS-166/175-TL-US 166.5 to 185 kW

Type code	PVS-166-TL US	PVS-175-TL U				
Input side						
Absolute maximum DC input voltage (V _{max,abs})	1500 V					
Start-up DC input voltage (V _{start})	750 V (65010	00 V)				
Operating DC input voltage range (V _{dcmin} V _{dcmax})	0.7 x V _{start} 1500 V (min 600 V)					
Rated DC input voltage (V _{dcr})	1150 V					
Rated DC input power (Pdcr)	169 000 W @ 40°C	188 000 W @ 30°C (177 kW @ 40°C				
Number of independent MPPT	12					
MPPT input DC voltage range (VMPPTminVMPPTmax) at Pacr	8501350 \	V				
Maximum DC input current for each MPPT (I _{MPPTmax})	22 A	*				
Maximum input short circuit current for each MPPT (I _{SCmax})	30 A					
Number of DC input pairs for each MPPT	2 DC inputs per	MPPT				
DC connection type	PV quick fit conn					
Input protection	T T Service The Service					
DC Series Arc Fault Circuit Interrupter	Type I acc. to UL 1699B 2) with single	e-MPPT sensing capability				
Reverse polarity protection	Yes, from limited curr					
Input over voltage protection for each MPPT - replaceable						
surge arrester	Type 2 with mon	itoring				
Photovoltaic array isolation control (Insulation Resistance, R-iso)	Yes (pre start-up R-iso n	neasurement)				
Residual Current Monitoring Unit (leakage current protection)	Yes (dynamic G	GFDI)				
DC Load Breaking Disconnect Switch (rating for each MPPT)	30A/1500 V					
Fuse rating	N/A, No fuses re	quired				
String current monitoring	MPPT-level curren	nt sense				
Output side						
AC Grid connection type	Three phase 3V	N+PE				
Rated AC power (P _{acr} @cosφ=1)	166 500 W @ 40°C	175 000 W @ 40°				
Maximum AC output power (P _{acmax} @cosφ=1)	166 500 W @ 30°C	185 000 W @≤ 30°				
Maximum apparent power (S _{max})	166 500 VA	185 000 V				
Rated AC grid voltage (Vac,r)	800 V					
AC voltage range	552960 ³	0				
Maximum AC output current (Iac,max)	134 A					
Rated output frequency (f _r)	50 Hz / 60 H	łz				
Output frequency range (fminfmax)	4555 Hz / 556	65 Hz ³⁾				
Nominal power factor and adjustable range	> 0.995, 01 inductive/capaciti	ve with maximum S _{max}				
Total current harmonic distortion	< 3%					
Max DC current injection (% of In)	< 0.5%*In					
AC wire range	4x1x2/0 AWG to 4x1x400	0 kcmil, Cu/Al ⁴⁾				
AC plate	Opening for Trade siz					
AC connection type	Copper Busbar for ring terminal lug connection (bolts include					
Output protection	(20.20.112.00					
Anti-islanding protection	Meets UL1741 / IEEE1547	7 requirements				
Output overvoltage protection - replaceable surge protection device	Type 2 with mon					
Operating performance						
Maximum efficiency (η _{max})	98.6 %					
Weighted CEC efficiency (η _{CEC})	98.4 %					
Communication						
Embedded communication interfaces	Dual port Ethernet, WL	AN 5), RS-485				
User interface	4 LEDs, Web User Interfa	ice, Mobile APP				
Communication protocol	Modbus RTU/TCP (SunSp	pec compliant)				
Commissioning tool	Web User Interface, N	Mobile APP				
Monitoring	Plant Portfolio Manager	r. Plant Viewer				

Type code	PVS-166-TL US	PVS-175-TL US		
FW update	Remote inverter FW upgrade via Ethernet/WL	AN interface locally/remotely		
Parameter upgrade	Remote inverter parameter upgrade via Ethernet/W protocol	LAN according to SunSpec Modbus		
Environmental				
Operating ambient temperature range	-13+140°F (-25+60°C) with deratin	g above 104°F (40°C)		
Relative humidity	0100% condensir	ng		
Sound pressure level, typical	<65 dB(A)@ 1m			
Maximum operating altitude without derating	2000 m / 6560 ft	:		
Physical				
Environmental protection rating	Cert. to UL 50E Type 4X – meets or exceeds NEMA 4X			
Cooling	Forced air cooling with variable speed cooling fan			
Dimension (H x W x D)	34.2x42.7x16.5 in (867 x 1086 x 419 mm) / -SX model 34.2x42.7x18 in (867 x 1086 x 458 mm) / -SX2 model			
Weight	~76.5kg / 168 lbs for power module ~76.8kg / 169 lbs for wiring box Overall max 153 kg / 338 lbs			
Mounting system	Bracket (included, vertical mounting only)			
Safety				
Isolation level	Transformer-less (floatin	ng array)		
Marking (Pending)	_c TUV _{us}			
Safety and EMC standard (Pending)	UL1741, IEEE1547, IEEE1547.1, CSA-C22.2 No. 107.1- Part 15B Class A Lim	-01, UL1998, UL 1699B, FCC 47 CFR nits		
Grid standard (Pending)	UL 1741 SA, IEEE1547, IEEE 1547a, R	Rule 21, Rule 14 (HI)		
Available products variants				
Inverter power module	PVS-166-TL-POWER MODULE	PVS-175-TL-POWER MODULE		
24 quick fit connector pairs (2 each mppt) + DC switches + SPD Type 2 Pluggable Cartridges (DC & AC)	WB-SX-PVS-166-TL-US	WB-SX-PVS-175-TL-US		
24 quick fit connector pairs (2 each mppt) + DC switches + AC disconnection switch + SPD Type 2 Pluggable Cartridges (DC & AC)	s WB-SX2-PVS-166-TL-US WB-SX2-PVS-175-TL-U			
Optional available				
DC link recharge circuit	Night time operation with rest	art capability		
Anti-PID 6)	Based on night time polarization	on of the array		

1) Multicontact MC4-Evo2. Cable couplers may accept up to 10mm² (AWG8) 2) Performance in line with the relevant requirements of the Draft IEC 63027 standard 3) The AC voltage and frequency range may vary depending on specific country grid standard 6) Cannot operate simultaneously when installed in conjunction with the DC link recharge

4) Aluminum cable requires bi-metallic compression lug or bi-metallic adapter 5) as per IEEE 802.11 b/g/n standard, 2.4 GHz

DETAILS - IDENTICAL TO ALL PROJECTS

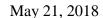
(952) 937-5822 Minnetonka, MN 55343 (888) 937-5150 westwoodps.com Westwood Professional Services, Inc.

Minneapolis, MN 55402

DATE COMMENT A 06/11/2019 90% SUBMITTAL

Bilton Solar

Somers, Connecticut


Specification Sheet -Inverter

NOT FOR CONSTRUCTION

06/11/2019

E.901 SHEET:

Exhibit C Bilton Phase 2 Report

Mr. Christopher Little Ecos Energy 222 South 9th Street, Suite 1600 Minneapolis, MN 55402

> RE: Subsurface Explorations 134 Bilton Rd, Somers, CT NorthStar Project No. 180101A

Dear Mr. Little:

NorthStar Environmental Management, LLC (NorthStar) is pleased to present the results of our subsurface explorations conducted at the above-referenced property. Subsurface explorations were conducted at the subject property to assess soil and groundwater at three areas of concern: 1) the farm shed where herbicides and pesticides had been stored for use at the orchard on the property, 2) in the area of a former above ground fuel oil storage tank which was located directly adjacent to the farm shed, and 3) in the area of two underground storage tanks (believed to be 500 to 1,000 gallon diesel and gasoline USTs) located between the farm shed and the dwelling.

Test boring B1 was conducted through a hole in the concrete floor of the farm shed. The shed had been used to store pesticides and herbicides used by the orchard, as well as, small tools and other maintenance supplies. NorthStar had been informed by the occupant of the property that the former property owner had disposed of pesticides into the hole in the concrete floor. The hole was located approximately 3 feet from the north wall of the shed at approximately 16 feet from the eastern wall. Soil samples at this location were collected directly in the hole at depths of 1-3 feet, 4-4.5 feet, 7.5-8 feet and 11-12 feet below grade. Refusal was encountered by the Geoprobe on apparent Till material at 14.5 feet below grade. Sample B1 1-3' was analyzed for Pesticides (SW8081B)/Chlorinated Herbicides (SW8151A), Arsenic, Cyanide, Volatile Organic Compounds by EPA Method 8260C (VOCs) and Extractable Total Petroleum Hydrocarbons (ETPH). Sample B1 4-4.5 was analyzed for pesticides/herbicides, Arsenic, Cyanide, and ETPH. The remaining samples at this location were analyzed only for pesticides/herbicides, Arsenic, Cyanide.

Test boring B2 was conducted just off the concrete slab on the north side of the shed. The boring was advanced to 4 feet below grade and a soil sample was collected at 3-4 feet. This bare soil area was at one time covered by a roof and was used to storage bulky items such as wood. Test borings B3 and B4 were conducted just north of the main shed in a bare soil area that was at one time covered by a roof and was used to store wooden crates for collecting fruit. Both borings were advanced to 4 feet below grade in this area. The samples from both borings were collected at 2-2.5 feet below grade. Test boring B5 was collected at the base of a concrete ramp that led into the farm shed. The sample at this location was collected at 1.5-2 feet below grade. Samples collected from borings B2, B3, B4, and B5 were all analyzed for pesticides/herbicides, Arsenic, Cyanide, and ETPH.

Test boring B6 was collected east of the shed in an area where an above ground fuel oil storage tank had been located. Soil at this location had a petroleum-like odor. Boring B-6 was advance to 12 feet below grade. Samples were collected at 0-0.5 feet, 5.5-6 feet, 7.5-8 feet and 11-12 feet below grade. Sample 0-0.5 was analyzed for pesticides/herbicides, Arsenic, Cyanide, and ETPH. The other three samples at this location were analyzed only for ETPH.

There are two USTs and the remnants of a former dispenser pump located approximately midway between the farm shed and the house. Neither the size nor the content of the two USTs is known for certain; however, it is thought that they are likely 500-gallon to 1000-gallon diesel and gasoline USTs. Test boring B7 was conducted about 6-8 feet east of the two USTs on their down gradient side. Test boring B7 was advanced to 12 feet below grade at which point refusal to the Geoprobe was encountered. Samples were collected at this location at 5.5-6 feet, 7.5-8 feet and 10-10.5 feet below grade.

Although, NorthStar had intended to install groundwater monitoring wells on the property, groundwater was not encountered above Geoprobe refusal at 12 to 14 feet below grade.

Pesticides were detected in samples B1 1-3', B1 4-4.5', B4 2-2.5', and B6 0-0.5'. Laboratory data reports are included in Appendix A and summarized in Table 1. In sample B1 1-3 feet, concentrations of the pesticides 4,4' –DDD, 4,4' –DDE, 4,4' –DDT, and Dieldrin exceeded the GA PMC (APS) but not the Residential Direct Exposure Criterion. At 4-4.5 feet below grade the concertation of these substances were either non detected or were below the GA PMC indicating that the pesticides have not yet migrated deep into the subsurface. At 7.5 – 8 feet below grade, no pesticides were detected. Most of this area had until recently been covered by a roof and the existing concrete pad.

Sample B4 2-2.5 feet contained the highest concentrations of pesticides. Once again, 4,4' – DDD, 4,4'–DDE, 4,4'–DDT, and Dieldrin exceeded the GA PMC (APS) but not the Residential Direct Exposure Criterion. Also, Total Arsenic (10.1 mg/kg) exceeded the applicable standard of 10 mg/kg. This was the location where wood crates that were used to collect fruit had been stored. Nearby sample B3 2-2.5 collected in this same area contained no detectable pesticides. No pesticides were detected in Samples B5 1.5-2 collected at the front door to the shed and none where detected in Sample B2 3-4 feet collected outside the back door of the shed.

Samples B6 0-0.5, B6 5.5-6 and B6 7.5-8 collected in the area of the former fuel oil above ground storage tank contained ETPH concentrations of 7,800 mg/kg, 5,300 mg/kg and 2,700 mg/kg. All three concentrations exceed the Residential Direct Exposure Criterion and the GA Pollutant Mobility Criterion. The data suggest that there was a release of heating oil at this location.

Test boring B7 was conducted in the area of the two underground storage tanks suspected to have contained and may still contain diesel and gasoline for the farm tractors and trucks. Test boring B7 was conducted approximately 6 -8 feet east of the northern most tank and former dispenser. An ETPH concentration of 390 mg/kg was detected at 5.5 to 6 feet below grade. No ETPH concentrations were detected in boring B7 at 7.5-8 or 10–10.5 feet below grade. Boring

134 Bilton Road, Somers CT Project 180101A, Issued May 21, 2018

B7 hit refusal at approximately 12 feet below grade on what was believed to be compact till material. No groundwater was encountered above refusal. The data suggest that a release has occurred from one of both tanks at this location.

No chlorinated herbicides or total cyanide were detected in any of the samples.

NorthStar recommends that the following three areas be remediated:

- 1. pesticide contaminated soil in the area of the farm shed;
- 2. fuel oil contamination in the area of the former fuel oil AST located adjacent to the east wall of the farm shed near it southeast corner;
- 3. abandoned gasoline and diesel USTs located between the shed and dwelling.

The two underground storage tanks should be removed in accordance with local, state, and federal guidelines. Any associated contaminated soil should be excavated and properly disposed of. The fuel oil contaminated soil in the area of the former AST should be excavated and disposed of along with the diesel and gasoline contaminated soil. The concrete foundation to the former farm shed should be removed and the pesticide contaminated soil beneath and around the foundation should be excavated to a depth of approximately 3-4 feet. Confirmatory soil samples should be collected in all remedial areas to confirm adequate contaminated soil removal. Upon completion of remediation a groundwater monitoring well should be installed down gradient of the remedial area utilizing air rotary drilling techniques. Groundwater should be sampled to determine if there has been any impact from the above mention areas of environmental concern.

We trust that the report presented herein will satisfy your current requirements. We appreciate the opportunity to be of continued service to your office. Should you have any questions or comments, please do not hesitate to contact the undersigned.

Very truly yours,

NorthStar Environmental Management, LLC

Ferreira

Kristie Ferreira, MS, LEP

Principal

Table 2
Contaminant Concentrations in Soil (mg/kg) (Detected Substances Only)

						0 0 \			· · · J			
Parameter	B1	B1	B1	B1	B2	В3	B4	B5	RES	RES DEC	GA	GA PMC
	1-3'	4-4.5'	7.5-8'	11-12'	3-4'	2-2.5'	2-2.5'	1.5-2'	DEC	(APS)	PMC	(APS)
ETPH (mg/kg)	ND	ND							500		500	
Total Arsenic (mg/kg)	1.73	1.73	1.6	1.59	1.29	2.3	10.1	2.8				
Total Cyanide (mg/kg)	ND	ND	ND	ND	ND	ND	ND	ND				
Volatile Organic Compounds	ND											
Pesticides/Herbicides (µg/kg)												
4,4' -DDD	37	ND	ND	ND	ND	ND	32	ND		1,800		3
4,4' -DDE	14	ND	ND	ND	ND	ND	23	ND		1,800		3
4,4' -DDT	120	2.4	ND	ND	ND	ND	440	ND		1,800		3
Dieldrin	22	ND	ND	ND	ND	ND	30	ND	38		7	
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	9.9	ND		41,000		84
Endrin	ND	ND	ND	ND	ND	ND	13	ND	20,000	20,000		40

Parameter	В6	В6	В6	В6	В7	В7	В7	DEC	DEC RES	GA	GA PMC
	0-0.5	5.5-6'	7.5-8'	11-12'	5.5-6'	7.5-8'	10-10.5	RES	(APS)	PMC	(APS)
ETPH (mg/kg)	7,800	5,300	2,700	ND	390	ND	ND	500		500	
Total Arsenic (mg/kg)	3.29										
Total Cyanide (mg/kg)	ND										
Volatile Organic Compounds											
Pesticides/Herbicides (µg/kg)											
4,4' -DDD	ND								1,800		3
4,4' -DDE	8.6								1,800		3
4,4' -DDT	71								1,800		3
Dieldrin	ND							38		7	
Endosulfan sulfate	ND								41,000		84
Endrin	ND							20,000	20,000		40

Note: ---= not analyzed, ND = Not Detected, RDEC = Residential Direct Exposure Criteria, I/C DEC= Industrial/Commercial Direct Exposure Criteria, GA PMC = GA Pollutant Mobility Criteria, mg/kg = milligrams/kilogram (parts per million), µg/kg = micrograms per kilogram (parts per billion).

= Substance exceeds standard

FIGURES

Figure 1 Sample Locations 134 Bilton Road, Somers, CT

APPENDIX A Laboratory Results

																	(Coolant		oler: K 🔽	Yes I	No No	7
	(٨		CH	IAIN	0	F Cl	JST	ODY	RE	CO	RD						Tem	4.9	۰c	Pg	of	
PHC	IFNIY		E	87 East Mi	ddle T	urne	ika D	O P	ov 270	Mana	-heet	ar CT 0	160 <i>4</i> 0			ן ∏Fax:	Data	Deliv	ery/Co	ontact	Optic	ns:	
			5	enail:								15-0823			-	_ Fax: Phon	e: –					_	
Environme	ntal Laboratories,	Inc.	•		Clier	nt Se	ervic	es (860)	645-	8726	; 		,		Emai	_						
Customer:	WartSt	ZL A			-	-	ect:	_	180	210	7/_	134	Bi	to	$\mathcal{L}\mathcal{R}_{a}$	_	Proj	ect P	.O <u>:</u>				
Address: _	· · · · · · · · · · · · · · · · · · ·		<u>.</u>						No			7) —				_		7				UST b	е
-			· <u>-</u>		. '	nvo	ice t	o: 🖊	No	12	4 <u>5</u>	TAA				_		-		ompl #Io (with tities.	
-	<u> </u>				-			_				<u> </u>	,			-		1	,	<i>tue</i> (↓ ↓		↓
	Client Samp - Information -	Identific	ation	11					$\overline{}$	7	$\overline{\lambda}$	4/	∇	7,	77	$\overline{/}$	/	//	7	$\overline{}$	//		$\overline{\overline{}}$
Sampler's Signature	Liste F	SMOL	Date:	5/11/18		naly:		/	14	1	19		Y /	/,	//		140	//	//	ر ناکد	04 VOZ		
Matrix Code:			Bate.	110		eque	5 51	1() ⁶	//		AS .	70° /	//	/	//		1 21	/2/	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4/201	//	
	· GW =Ground Water SW =Surl = Sediment SL= Sludge S =So							X			S)		//		wikisho	Tretrari	W					//,	
B =Bulk L =Liquid	·		·			1		\mathcal{N}		He		//	//	/	01/1/05	" differ	taine	100	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		150m) 15	Tri Kile William	ile de le
PHOENIX USE ONLY SAMPLE #	Customer Sample	Sample Matrix	1 1	Time Sampled	1		gX	0 60		<i>y</i> /				Ariber of	11.18 / 13.18	Strainer of	Raines /	Arige 100		6, 14 6, 16 6, 16 7, 16	Pacie Ascie	Agrica Artico	′
46335	B1 1-3	5	5/11/18	830	V	V	V	VV	/					V	V								
46336	BI 4-4,5	1	1	840	1	✓	V	V	$\sqrt{}$						1								
46337	BI 7.5-8			850				V	V						V								
46338	BI 11-12			900			V	V .	$\sqrt{}$						\overline{V}								
46339	B2 3-4			910			V	1							V								
46340	R3 2-25			920			V	1/1							V								
46341	B4 2-25			930			V	1	7						V								
46342	B5 1.5-2			940			V	V	7						$\sqrt{}$								
46343	Bb 0-0.5	17		950		V	V	/ \															
46344	B6 5.5-6			955											$\sqrt{}$								
46345	B6 7.5-8		/	1000											V								
410346	B6 11-12	1		1005											V								
Relinquished by:	Accepted by:				Date:		T	ime:		<u>RI</u>			СТ			MA					Forma	<u>ıt</u>	
Kitor	rona		en		51	410	9	13	<u>`55\</u>		irect E Reside	Exposure ential)	;	RCP C	ert tection	1-	MCP C 3W-1	Certifica	tion		Excel		
Dale	- Trava	dir	e_		5/1	<u>41</u>		15	<u> 10</u>			,		VV Pro	tection		3W-1 GW-2				PDF GIS/Ke	,	
											Other		1	A Mol		1	GW-3				EQuIS Other		
Comments, Special	Requirements or Regulations	s:			Turna	roun	<u></u>							B Mol	-						otner Packa	ge	
						1 Day							1		tial DEC							hecklist ta Packag	
						2 Da 3 Da							I	/C DE	0			A eŞM	4RT			tа Раскад x Std Rep	
I						Stand	dard							Other			Other				Other		
1						Othe		APPLIE	ES	Sta	ate w	here s	ample	es we	re coll	ected	:	<u>C</u> ,		. * sı	JRCHAI	RGE APPL	LIES

Friday, May 18, 2018

Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Project ID: 180101 134 BILTON RD Sample ID#s: CA46335 - CA46346

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 8:30 Received by: CP Location Code: **NORTHSTR** 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46335

Project ID: 180101 134 BILTON RD

Client ID: B1 1-3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	1.73	0.78	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	89		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.56	0.56	mg/Kg	1	05/16/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Extraction of CT ETPH	Completed				05/15/18	JC/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicides	<u> </u>						
2,4,5-T	ND	93	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	93	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	190	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1900	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	93	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	93	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	190	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	190	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	53		%	10	05/17/18	CW	30 - 150 %
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	55	mg/Kg	1	05/16/18	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/16/18	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	67		%	1	05/16/18	JRB	50 - 150 %
<u>Pesticides</u>							
4,4' -DDD	37	7.4	ug/Kg	2	05/16/18	CW	SW8081B

Client ID: B1 1-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4,4' -DDE	14	7.4	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	120	74	ug/Kg	20	05/18/18	CW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	2.0	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	37	ug/Kg	2	05/16/18	CW	SW8081B
d-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	22	3.7	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	37	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	150	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	103		%	2	05/16/18	CW	30 - 150 %
% TCMX	74		%	2	05/16/18	CW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	2.9	ug/Kg	1	05/16/18	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,1-Dichloroethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,1-Dichloroethene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,1-Dichloropropene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2-Dibromoethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2-Dichloroethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,2-Dichloropropane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,3-Dichloropropane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
2,2-Dichloropropane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
2-Chlorotoluene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
2-Hexanone	ND	24	ug/Kg	1	05/16/18	JLI	SW8260C
2-Isopropyltoluene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
4-Chlorotoluene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C

Client ID: B1 1-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	24	ug/Kg	1	05/16/18	JLI	SW8260C
Acetone	ND	240	ug/Kg	1	05/16/18	JLI	SW8260C
Acrylonitrile	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Benzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Bromobenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Bromochloromethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Bromodichloromethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Bromoform	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Bromomethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Carbon Disulfide	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Carbon tetrachloride	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Chlorobenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Chloroethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Chloroform	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Chloromethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Dibromochloromethane	ND	2.9	ug/Kg	1	05/16/18	JLI	SW8260C
Dibromomethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Dichlorodifluoromethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Ethylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Hexachlorobutadiene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Isopropylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
m&p-Xylene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Methyl Ethyl Ketone	ND	29	ug/Kg	1	05/16/18	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.6	ug/Kg	1	05/16/18	JLI	SW8260C
Methylene chloride	ND	9.6	ug/Kg	1	05/16/18	JLI	SW8260C
Naphthalene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
n-Butylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
n-Propylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
o-Xylene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
p-Isopropyltoluene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
sec-Butylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Styrene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
tert-Butylbenzene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Tetrachloroethene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.6	ug/Kg	1	05/16/18	JLI	SW8260C
Toluene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Total Xylenes	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.6	ug/Kg	1	05/16/18	JLI	SW8260C
Trichloroethene	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Trichlorofluoromethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
Vinyl chloride	ND	4.8	ug/Kg	1	05/16/18	JLI	SW8260C
QA/QC Surrogates			5 5		-		
% 1,2-dichlorobenzene-d4	101		%	1	05/16/18	JLI	70 - 130 %
% Bromofluorobenzene	97		%	1	05/16/18	JLI	70 - 130 %

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46335

Client ID: B1 1-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	96		%	1	05/16/18	JLI	70 - 130 %
% Toluene-d8	98		%	1	05/16/18	JLI	70 - 130 %
Field Extraction	Completed				05/11/18		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

Reviewed and Released by: Helen Geoghegan, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 8:40 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46336

Project ID: 180101 134 BILTON RD

Client ID: B1 4-4.5

	.	RL/		5	.	_	5 (
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	1.73	0.72	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	91		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.55	0.55	mg/Kg	1	05/16/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Extraction of CT ETPH	Completed				05/15/18	JC/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicides	<u>5</u>						
2,4,5-T	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1800	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	60		%	10	05/17/18	CW	30 - 150 %
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	54	mg/Kg	1	05/16/18	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/16/18	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	65		%	1	05/16/18	JRB	50 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46336

Client ID: B1 4-4.5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
4,4' -DDE	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	2.3	1.5	ug/Kg	2	05/16/18	CW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	36	ug/Kg	2	05/16/18	CW	SW8081B
d-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	ND	3.6	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	36	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	150	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	91		%	2	05/16/18	CW	30 - 150 %
% TCMX	69		%	2	05/16/18	CW	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

Reviewed and Released by: Helen Geoghegan, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 8:50 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46337

Project ID: 180101 134 BILTON RD

Client ID: B1 7.5-8

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	1.60	0.65	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	91		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.55	0.55	mg/Kg	1	05/17/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicide	es es						
2,4,5-T	 ND	91	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1800	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	54		%	10	05/17/18	CW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDE	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	37	ug/Kg	2	05/16/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46337

Client ID: B1 7.5-8

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
d-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	ND	3.7	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	37	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	150	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	100		%	2	05/16/18	CW	30 - 150 %
% TCMX	63		%	2	05/16/18	CW	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

Reviewed and Released by: Helen Geoghegan, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 9:00 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46338

Project ID: 180101 134 BILTON RD

Client ID: B1 11-12

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	1.59	0.76	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	91		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.55	0.55	mg/Kg	1	05/17/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	AA/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicides	<u>s</u>						
2,4,5-T	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1800	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	91	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	54		%	10	05/17/18	CW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDE	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	36	ug/Kg	2	05/16/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46338

Client ID: B1 11-12

	RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
d-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	ND	3.6	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	7.3	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	36	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	150	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	86		%	2	05/16/18	CW	30 - 150 %
% TCMX	66		%	2	05/16/18	CW	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

Reviewed and Released by: Helen Geoghegan, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 9:10 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46339

Project ID: 180101 134 BILTON RD

Client ID: B2 3-4

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	1.29	0.72	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	90		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.56	0.56	mg/Kg	1	05/17/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicides	<u>s</u>						
2,4,5-T	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1800	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	54		%	10	05/17/18	CW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDE	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	37	ug/Kg	2	05/16/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46339

Client ID: B2 3-4

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
d-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	ND	3.7	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	37	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	150	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	86		%	2	05/16/18	CW	30 - 150 %
% TCMX	59		%	2	05/16/18	CW	30 - 150 %
	59		%	2	05/16/18	CW	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

Reviewed and Released by: Helen Geoghegan, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 9:20 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46340

Project ID: 180101 134 BILTON RD

Client ID: B3 2-2.5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	2.30	0.69	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	90		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.51	0.51	mg/Kg	1	05/17/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicide	es es						
2,4,5-T	 ND	92	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1800	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	40		%	10	05/17/18	CW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDE	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	37	ug/Kg	2	05/16/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46340

Client ID: B3 2-2.5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
d-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	ND	3.7	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.5	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	7.4	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	37	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	150	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	83		%	2	05/16/18	CW	30 - 150 %
% TCMX	61		%	2	05/16/18	CW	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 9:30 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46341

Project ID: 180101 134 BILTON RD

Client ID: B4 2-2.5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	10.1	0.72	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	89		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.56	0.56	mg/Kg	1	05/17/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicides	<u>s</u>						
2,4,5-T	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1800	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	92	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	180	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	50		%	10	05/17/18	CW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	32	7.4	ug/Kg	2	05/18/18	CW	SW8081B
4,4' -DDE	23	7.4	ug/Kg	2	05/18/18	CW	SW8081B
4,4' -DDT	440	74	ug/Kg	20	05/18/18	CW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	05/18/18	CW	SW8081B
Alachlor	ND	7.4	ug/Kg	2	05/18/18	CW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	05/18/18	CW	SW8081B
b-BHC	ND	1.5	ug/Kg	2	05/18/18	CW	SW8081B
Chlordane	ND	37	ug/Kg	2	05/18/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46341

Client ID: B4 2-2.5

PQL	Units	Dilution	Date/Time	By	Deference
1.5			Bato, Time	Бу	Reference
1.5	ug/Kg	2	05/18/18	CW	SW8081B
3.7	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
1.5	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
7.4	ug/Kg	2	05/18/18	CW	SW8081B
37	ug/Kg	2	05/18/18	CW	SW8081B
150	ug/Kg	2	05/18/18	CW	SW8081B
	%	2	05/18/18	CW	30 - 150 %
	%	2	05/18/18	CW	30 - 150 %
	7.4 7.4 7.4 7.4 7.4 1.5 7.4 7.4 37	3.7 ug/Kg 7.4 ug/Kg 1.5 ug/Kg 7.4 ug/Kg	3.7	3.7	3.7

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 9:40 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46342

Project ID: 180101 134 BILTON RD

Client ID: B5 1.5-2

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	2.80	0.83	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	85		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.59	0.59	mg/Kg	1	05/17/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicide	es es						
2,4,5-T	 ND	97	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	97	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	190	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	1900	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	97	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	97	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	190	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	190	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	50		%	10	05/17/18	CW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDE	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
а-ВНС	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	39	ug/Kg	2	05/16/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46342

Client ID: B5 1.5-2

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
d-BHC	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	ND	3.9	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	7.8	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	39	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	160	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	68		%	2	05/16/18	CW	30 - 150 %
% TCMX	50		%	2	05/16/18	CW	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information Custody Information Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 9:50 Received by: Location Code: **NORTHSTR** CP 05/14/18 15:40

Rush Request: Standard Analyzed by: see "By" below

D. /

P.O.#:

Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46343

Project ID: 180101 134 BILTON RD

Client ID: B6 0-0.5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	3.29	0.81	mg/Kg	1	05/15/18	MA	SW6010C
Percent Solid	82		%		05/14/18	AP	SW846-%Solid
Total Cyanide (SW9010C Distill.)	< 0.61	0.61	mg/Kg	1	05/17/18	O/GD	SW9012B
Soil Extraction for Pesticide	Completed				05/15/18	JD/V	SW3545A
Extraction of CT ETPH	Completed				05/15/18	JC/V	SW3545A
Soil Extraction for Herbicide	Completed				05/16/18	S/D	SW8151A
Total Metals Digest	Completed				05/14/18	B/AG	SW3050B
Chlorinated Herbicides	<u>.</u>						
2,4,5-T	ND	100	ug/Kg	10	05/17/18	CW	SW8151A
2,4,5-TP (Silvex)	ND	100	ug/Kg	10	05/17/18	CW	SW8151A
2,4-D	ND	200	ug/Kg	10	05/17/18	CW	SW8151A
2,4-DB	ND	2000	ug/Kg	10	05/17/18	CW	SW8151A
Dalapon	ND	100	ug/Kg	10	05/17/18	CW	SW8151A
Dicamba	ND	100	ug/Kg	10	05/17/18	CW	SW8151A
Dichloroprop	ND	200	ug/Kg	10	05/17/18	CW	SW8151A
Dinoseb	ND	200	ug/Kg	10	05/17/18	CW	SW8151A
QA/QC Surrogates							
% DCAA	39		%	10	05/17/18	CW	30 - 150 %
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	7800	300	mg/Kg	5	05/17/18	JRB	CTETPH 8015D
Identification	**		mg/Kg	5	05/17/18	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	62		%	5	05/17/18	JRB	50 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	7.0	ug/Kg	2	05/16/18	CW	SW8081B

Project ID: 180101 134 BILTON RD Phoenix I.D.: CA46343

Client ID: B6 0-0.5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
4,4' -DDE	8.6	8.1	ug/Kg	2	05/16/18	CW	SW8081B
4,4' -DDT	71	8.1	ug/Kg	2	05/16/18	CW	SW8081B
a-BHC	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Alachlor	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Aldrin	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
b-BHC	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Chlordane	ND	40	ug/Kg	2	05/16/18	CW	SW8081B
d-BHC	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Dieldrin	ND	4.0	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan I	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan II	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Endosulfan sulfate	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Endrin	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Endrin aldehyde	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Endrin ketone	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
g-BHC	ND	1.6	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Heptachlor epoxide	ND	8.1	ug/Kg	2	05/16/18	CW	SW8081B
Methoxychlor	ND	40	ug/Kg	2	05/16/18	CW	SW8081B
Toxaphene	ND	160	ug/Kg	2	05/16/18	CW	SW8081B
QA/QC Surrogates							
% DCBP	72		%	2	05/16/18	CW	30 - 150 %
% TCMX	78		%	2	05/16/18	CW	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information **Custody Information** Date Time KF Matrix: SOIL Collected by: 05/11/18 9:55 Received by: CP **NORTHSTR** 05/14/18 Location Code: 15:40 Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCA46335

Phoenix ID: CA46344

Project ID: 180101 134 BILTON RD

Client ID: B6 5.5-6

RL/ Parameter **PQL** Units Dilution Date/Time Result Βy Reference Percent Solid 88 05/14/18 SW846-%Solid Completed 05/15/18 JC/V SW3545A Extraction of CT ETPH TPH by GC (Extractable Products) Ext. Petroleum H.C. (C9-C36) 5300 mg/Kg 10 05/17/18 JRB CTETPH 8015D 560 Identification mg/Kg 10 05/17/18 JRB CTETPH 8015D **QA/QC Surrogates Diluted Out** 05/17/18 JRB 50 - 150 % % n-Pentacosane % 10

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C24. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

SDG ID: GCA46335

Phoenix ID: CA46345

Sample Information **Custody Information** Date Time KF Matrix: SOIL Collected by: 05/11/18 10:00 Received by: CP **NORTHSTR** 05/14/18 Location Code: 15:40 Rush Request: Standard Analyzed by: see "By" below

aboratory Data

P.O.#:

180101 134 BILTON RD

Client ID: B6 7.5-8

Project ID:

RL/ Parameter **PQL** Units Dilution Date/Time Result Βy Reference Percent Solid 91 05/14/18 SW846-%Solid Completed 05/15/18 JC/V SW3545A Extraction of CT ETPH TPH by GC (Extractable Products) Ext. Petroleum H.C. (C9-C36) 2700 270 mg/Kg 5 05/17/18 JRB CTETPH 8015D Identification mg/Kg 5 05/17/18 JRB CTETPH 8015D **QA/QC Surrogates** 5 05/17/18 % n-Pentacosane 71 % JRB 50 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C24. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 18, 2018

FOR: Attn:

> Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information **Custody Information** Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 10:05 Received by: CP **NORTHSTR** 05/14/18 15:40 **Location Code:** Standard

Rush Request: Analyzed by: see "By" below

P.O.#:

SDG ID: GCA46335 aboratory Data

Phoenix ID: CA46346

180101 134 BILTON RD Project ID:

B6 11-12 Client ID:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		05/14/18	AP	SW846-%Solid
Extraction of CT ETPH	Completed				05/15/18	JC/V	SW3545A
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	54	mg/Kg	1	05/16/18	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/16/18	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	64		%	1	05/16/18	JRB	50 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 18, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 18, 2018

QA/QC Data

SDG I.D.: GCA46335

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 430391 (mg/kg CA46342, CA46343) ICP Metals - Soil), QC Sam	nple No:	: CA4647	4 (CA46	335, C	A46336	, CA463	37, C <i>i</i>	A46338,	CA4633	9, CA	46340,	CA46341,	,
Arsenic	BRL	0.67	2.92	3.20	NC	97.2			82.6			75 - 125	30	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 18, 2018

QA/QC Data

SDG I.D.: GCA46335

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 430383 (mg/Kg)	, QC San	nple No	c CA4336	1 50X (0	CA4633	5, CA4	6336)						
Total Cyanide (SW9010C Distill.) Comment:	BRL	0.50	<0.48	<0.48	NC	87.9			109			80 - 120	30
Additional: LCS acceptance rang	e is 80-12	0% for s	soils MS ac	ceptance	range :	75-125%	for soils						
QA/QC Batch 430694 (mg/Kg), CA46343)	, QC San	nple No): CA4633	8 50X (C	CA4633	7, CA4	6338, C	A46339	9, CA46	6340, C	A46341	, CA463	342,
Total Cyanide (SW9010C Distill.) Comment:	BRL	0.50	<0.55	<0.55	NC	91.4			108			80 - 120	30

Additional: LCS acceptance range is 80-120% for soils MS acceptance range 75-125% for soils

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

Bromochloromethane

Bromodichloromethane

ND

ND

5.0

5.0

ON/OC Data

May 18, 2018		<u>QA/QC Data</u>					SDG I.D.: GCA46335						
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits		
QA/QC Batch 430565 (mg/Kg), QC Sam	ple No: CA4	6167 (CA46335, CA	446336	, CA463	343, CA	46344	, CA463	45, CA	46346)			
TPH by GC (Extractable	Produc	ts) - Soil											
Ext. Petroleum H.C. (C9-C36)	ND	50		83	85	2.4				60 - 120	30		
% n-Pentacosane	75	%		74	76	2.7				50 - 150	30		
Comment:													
*The MS/MSD could not be repo	orted due to	the presence	of ETPH in the origina	l sample	e. The L	CS was	within C	A/QC cr	iteria.				
Additional surrogate criteria: LC normalized based on the alkane			-120% MS acceptance	erange	50-150%	5. The E	TPH/DF	O LCS P	nas bee	n			
QA/QC Batch 430859 (ug/kg)	, QC Sam	ole No: CA46	335 (CA46335)										
Volatiles - Soil													
1,1,1,2-Tetrachloroethane	ND	5.0		96	98	2.1	99	100	1.0	70 - 130	30		
1,1,1-Trichloroethane	ND	5.0		90	90	0.0	89	88	1.1	70 - 130	30		
1,1,2,2-Tetrachloroethane	ND	3.0		103	99	4.0	103	106	2.9	70 - 130	30		
1,1,2-Trichloroethane	ND	5.0		95	93	2.1	89	94	5.5	70 - 130	30		
1,1-Dichloroethane	ND	5.0		88	90	2.2	89	89	0.0	70 - 130	30		
1,1-Dichloroethene	ND	5.0		88	91	3.4	86	86	0.0	70 - 130	30		

1,1,1,2-Tetrachloroethane	ND	5.0	96	98	2.1	99	100	1.0	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	90	90	0.0	89	88	1.1	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	103	99	4.0	103	106	2.9	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	95	93	2.1	89	94	5.5	70 - 130	30	
1,1-Dichloroethane	ND	5.0	88	90	2.2	89	89	0.0	70 - 130	30	
1,1-Dichloroethene	ND	5.0	88	91	3.4	86	86	0.0	70 - 130	30	
1,1-Dichloropropene	ND	5.0	92	92	0.0	91	92	1.1	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	104	100	3.9	86	86	0.0	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0	95	93	2.1	94	98	4.2	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	99	94	5.2	85	86	1.2	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	92	91	1.1	92	92	0.0	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	104	98	5.9	94	100	6.2	70 - 130	30	
1,2-Dibromoethane	ND	5.0	96	96	0.0	94	97	3.1	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	91	92	1.1	91	92	1.1	70 - 130	30	
1,2-Dichloroethane	ND	5.0	95	93	2.1	92	95	3.2	70 - 130	30	
1,2-Dichloropropane	ND	5.0	93	93	0.0	90	95	5.4	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	90	91	1.1	92	92	0.0	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	93	91	2.2	93	91	2.2	70 - 130	30	
1,3-Dichloropropane	ND	5.0	92	94	2.2	92	96	4.3	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	91	89	2.2	91	90	1.1	70 - 130	30	
2,2-Dichloropropane	ND	5.0	90	91	1.1	87	88	1.1	70 - 130	30	
2-Chlorotoluene	ND	5.0	92	91	1.1	93	95	2.1	70 - 130	30	
2-Hexanone	ND	25	95	89	6.5	86	89	3.4	70 - 130	30	
2-Isopropyltoluene	ND	5.0	100	100	0.0	99	100	1.0	70 - 130	30	
4-Chlorotoluene	ND	5.0	91	90	1.1	92	93	1.1	70 - 130	30	
4-Methyl-2-pentanone	ND	25	101	96	5.1	92	98	6.3	70 - 130	30	
Acetone	ND	10	75	77	2.6	54	58	7.1	70 - 130	30	m
Acrylonitrile	ND	5.0	101	95	6.1	99	99	0.0	70 - 130	30	
Benzene	ND	1.0	92	92	0.0	91	95	4.3	70 - 130	30	
Bromobenzene	ND	5.0	94	96	2.1	97	97	0.0	70 - 130	30	
D 11 11	NID	F 0	00	~ 4			~ ′	0.4	70 400		

92

98

94

100

2.2

2.0

94

96

96

98

2.1 70 - 130 30

2.1 70 - 130

c D	\supseteq I Γ	١.	GCA	163	ひと

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Bromoform	ND	5.0	103	102	1.0	98	106	7.8	70 - 130	30	
Bromomethane	ND	5.0	95	96	1.0	91	88	3.4	70 - 130	30	
Carbon Disulfide	ND	5.0	97	99	2.0	91	92	1.1	70 - 130	30	
Carbon tetrachloride	ND	5.0	92	95	3.2	91	92	1.1	70 - 130	30	
Chlorobenzene	ND	5.0	89	92	3.3	90	93	3.3	70 - 130	30	
Chloroethane	ND	5.0	92	92	0.0	91	90	1.1	70 - 130	30	
Chloroform	ND	5.0	88	89	1.1	90	91	1.1	70 - 130	30	
Chloromethane	ND	5.0	75	76	1.3	63	64	1.6	70 - 130	30	m
cis-1,2-Dichloroethene	ND	5.0	91	91	0.0	92	96	4.3	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	96	96	0.0	93	94	1.1	70 - 130	30	
Dibromochloromethane	ND	3.0	104	106	1.9	105	107	1.9	70 - 130	30	
Dibromomethane	ND	5.0	98	95	3.1	94	96	2.1	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	63	63	0.0	45	45	0.0	70 - 130	30	I,m
Ethylbenzene	ND	1.0	91	93	2.2	92	94	2.2	70 - 130	30	
Hexachlorobutadiene	ND	5.0	95	90	5.4	69	72	4.3	70 - 130	30	m
Isopropylbenzene	ND	1.0	93	92	1.1	95	94	1.1	70 - 130	30	
m&p-Xylene	ND	2.0	88	89	1.1	90	91	1.1	70 - 130	30	
Methyl ethyl ketone	ND	5.0	85	83	2.4	83	85	2.4	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	101	102	1.0	98	100	2.0	70 - 130	30	
Methylene chloride	ND	5.0	87	87	0.0	85	88	3.5	70 - 130	30	
Naphthalene	ND	5.0	111	107	3.7	98	99	1.0	70 - 130	30	
n-Butylbenzene	ND	1.0	94	90	4.3	89	89	0.0	70 - 130	30	
n-Propylbenzene	ND	1.0	93	90	3.3	93	92	1.1	70 - 130	30	
o-Xylene	ND	2.0	93	94	1.1	94	95	1.1	70 - 130	30	
p-Isopropyltoluene	ND	1.0	94	91	3.2	90	91	1.1	70 - 130	30	
sec-Butylbenzene	ND	1.0	95	93	2.1	92	94	2.2	70 - 130	30	
Styrene	ND	5.0	91	92	1.1	91	93	2.2	70 - 130	30	
tert-Butylbenzene	ND	1.0	90	90	0.0	91	92	1.1	70 - 130	30	
Tetrachloroethene	ND	5.0	93	92	1.1	92	95	3.2	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	95	90	5.4	87	91	4.5	70 - 130	30	
Toluene	ND	1.0	94	93	1.1	92	95	3.2	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	91	91	0.0	90	92	2.2	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	95	95	0.0	92	93	1.1	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	115	110	4.4	107	110	2.8	70 - 130	30	
Trichloroethene	ND	5.0	89	92	3.3	90	94	4.3	70 - 130	30	
Trichlorofluoromethane	ND	5.0	91	91	0.0	86	86	0.0	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0	98	99	1.0	93	94	1.1	70 - 130	30	
Vinyl chloride	ND	5.0	82	81	1.2	70	70	0.0	70 - 130	30	
% 1,2-dichlorobenzene-d4	98	%	102	100	2.0	101	101	0.0	70 - 130	30	
% Bromofluorobenzene	99	%	101	100	1.0	99	98	1.0	70 - 130	30	
% Dibromofluoromethane	97	%	100	97	3.0	99	101	2.0	70 - 130	30	
% Toluene-d8	97	%	103	103	0.0	100	101	1.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 430483 (ug/Kg), QC Sample No: CA47073 2X (CA46335, CA46336, CA46337, CA46338, CA46339, CA46340, CA46341, CA46342, CA46343)

Pesticides - Soil											
4,4' -DDD	ND	1.7	70	98	33.3	66	72	8.7	40 - 140	30	r
4,4' -DDE	ND	1.7	76	93	20.1	96	117	19.7	40 - 140	30	
4,4' -DDT	ND	1.7	75	97	25.6	NC	NC	NC	40 - 140	30	
a-BHC	ND	1.0	66	82	21.6	55	57	3.6	40 - 140	30	
Alachlor	ND	3.3	NA	NA	NC	NA	NA	NC	40 - 140	30	

QA/QC Data

% % Blk LCS **LCSD** LCS **RPD** MS **MSD** MS Rec Blank RL % % **RPD** % % RPD Limits Limits Parameter Aldrin ND 1.0 71 85 17.9 59 64 8.1 40 - 140 30 b-BHC ND 1.0 82 89 8.2 63 0.0 40 - 140 30 63 Chlordane ND 33 67 79 16.4 64 69 7.5 40 - 140 30 69 d-BHC ND 77 90 15.6 74 40 - 140 30 3.3 7.0 Dieldrin ND 1.0 70 87 21.7 59 63 6.6 40 - 140 30 ND 3.3 74 91 20.6 61 65 6.3 40 - 140 30 Endosulfan I ND 3.3 75 92 20.4 61 65 6.3 40 - 140 30 Endosulfan II ND 73 90 20.9 57 40 - 140 Endosulfan sulfate 3.3 76 28.6 30 ND 87 69 40 - 140 30 Endrin 3.3 76 13.5 68 1.5 Endrin aldehyde ND 3.3 74 86 15.0 55 57 3.6 40 - 140 30 Endrin ketone ND 3.3 75 93 21.4 60 66 9.5 40 - 140 30 ND 84 40 - 140 g-BHC 1.0 69 19.6 55 62 12.0 30 ND 3.3 79 91 14.1 70 75 6.9 40 - 140 30 Heptachlor Heptachlor epoxide ND 3.3 75 93 21.4 65 72 10.2 40 - 140 30 Methoxychlor ND 3.3 76 92 19.0 65 71 8.8 40 - 140 30 Toxaphene ND 130 NA NA NC NA NA NC 40 - 140 30 % DCBP 94 87 % 87 101 14.9 84 3.5 30 - 150 30 % TCMX 76 % 74 85 13.8 61 63 3.2 30 - 150 30 QA/QC Batch 430665 (ug/Kg), QC Sample No: CA47632 10X (CA46335, CA46336, CA46337, CA46338, CA46339, CA46340, CA46341, CA46342, CA46343) Chlorinated Herbicides - Soil 2,4,5-T ND 83 60 72 18.2 51 63 21.1 40 - 140 30 ND 9.2 50 2,4,5-TP (Silvex) 83 62 68 61 19.8 40 - 140 30 2,4-D ND 170 69 67 2.9 60 68 12.5 40 - 140 30 ND 1700 74 70 54 2,4-DB 5.6 67 21.5 40 - 140 30 ND 52 14.3 39 Dalapon 83 60 46 16.5 40 - 140 30 Dicamba ND 83 63 65 3.1 62 71 13.5 40 - 140 30 Dichloroprop ND 170 70 78 10.8 63 76 18.7 40 - 140 30 Dinoseb ND 170 54 58 7.1 48 62 25.5 40 - 140 30

53

51

3.8

48

%

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

% DCAA (Surrogate Rec)

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director May 18, 2018

47

56

17.5

30 - 150

30

SDG I.D.: GCA46335

Page 29 of 32

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

Friday, May 18, 2018

Criteria: CT: GAM, RC

Sample Criteria Exceedances Report GCA46335 - NORTHSTR

State: CT

State:	CT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CA46335	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	14	7.4	3	3	ug/Kg
CA46335	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	120	74	3	3	ug/Kg
CA46335	\$PEST_SMR	4,4' -DDD	CT / RSR GA,GAA (mg/kg) / APS Organics	37	7.4	3	3	ug/Kg
CA46335	\$PEST_SMR	Dieldrin	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	22	3.7	7	7	ug/Kg
CA46341	\$PEST_SMR	4,4' -DDD	CT / RSR GA,GAA (mg/kg) / APS Organics	32	7.4	3	3	ug/Kg
CA46341	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	23	7.4	3	3	ug/Kg
CA46341	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	440	74	3	3	ug/Kg
CA46341	\$PEST_SMR	Dieldrin	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	30	3.7	7	7	ug/Kg
CA46341	AS-SM	Arsenic	CT / RSR DEC RES (mg/kg) / Inorganics	10.1	0.72	10	10	mg/Kg
CA46343	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	7800	300	500	500	mg/Kg
CA46343	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	7800	300	500	500	mg/Kg
CA46343	\$PEST_SMR	4,4' -DDD	CT / RSR GA,GAA (mg/kg) / APS Organics	ND	7.0	3	3	ug/Kg
CA46343	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	8.6	8.1	3	3	ug/Kg
CA46343	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	71	8.1	3	3	ug/Kg
CA46344	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	5300	560	500	500	mg/Kg
CA46344	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	5300	560	500	500	mg/Kg
CA46345	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	2700	270	500	500	mg/Kg
CA46345	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	2700	270	500	500	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

May 18, 2018 SDG I.D.: GCA46335

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

PEST Narration

AU-ECD4 05/17/18-1: CA46335, CA46341

The following Continuing Calibration compounds did not meet % deviation criteria: Samples: CA46335, CA46341

Preceding CC 517A026 - % DCBP 28%L (20%)

Succeeding CC 517A052 - None.

VOA Narration

CHEM14 05/16/18-1: CA46335

The following Initial Calibration compounds did not meet RSD% criteria: Acetone 25% (20%), Bromoform 23% (20%) The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than

Thursday, May 17, 2018

Attn:

Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Project ID: 180101 134 BILTON RD Sample ID#s: CA46332 - CA46334

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618 MA Lab Registration #M-CT007

ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 **UT Lab Registration #CT00007**

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 17, 2018

FOR: Attn:

> Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information **Custody Information** Date Time KF 05/11/18 Matrix: SOIL Collected by: 10:10 Received by: CP **NORTHSTR** 05/14/18 Location Code: 15:40 Rush Request: Standard Analyzed by: see "By" below

aboratory Data

P.O.#:

SDG ID: GCA46332

Phoenix ID: CA46332

180101 134 BILTON RD Project ID:

B7 5.5-6 Client ID:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	89		%		05/14/18	AP	SW846-%Solid
Extraction of CT ETPH	Completed				05/15/18	JC/T	SW3545A
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	390	56	mg/Kg	1	05/16/18	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	05/16/18	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	81		%	1	05/16/18	JRB	50 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2018

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C24. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 17, 2018

FOR: Attn:

> Northstar Environmental 800 Village Walk No.325 Guilford, CT 06437

Sample Information **Custody Information** Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 10:15 Received by: CP **NORTHSTR** 05/14/18 15:40 **Location Code:** Rush Request: Standard Analyzed by: see "By" below

P.O.#:

SDG ID: GCA46332 aboratory Data

Phoenix ID: CA46333

180101 134 BILTON RD Project ID:

B7 7.5-8 Client ID:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		05/14/18	AP	SW846-%Solid
Extraction of CT ETPH	Completed				05/15/18	JC/V	SW3545A
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	54	mg/Kg	1	05/16/18	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/16/18	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	76		%	1	05/16/18	JRB	50 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 17, 2018

FOR: Attn:

> Northstar Environmental 800 Village Walk No.325

Guilford, CT 06437

Sample Information **Custody Information** Date <u>Time</u> Collected by: KF 05/11/18 Matrix: SOIL 10:20 Received by: CP **NORTHSTR** 05/14/18 15:40 **Location Code:** Analyzed by: see "By" below

Rush Request: Standard

P.O.#:

SDG ID: GCA46332 aboratory Data

Phoenix ID: CA46334

180101 134 BILTON RD Project ID:

B7 10-10.5 Client ID:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		05/14/18	AP	SW846-%Solid
Extraction of CT ETPH	Completed				05/15/18	JC/V	SW3545A
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	55	mg/Kg	1	05/16/18	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/16/18	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	64		%	1	05/16/18	JRB	50 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 17, 2018

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits			
QA/QC Batch 430565 (mg/Kg), QC Sam	ple No: CA46167 (CA46332,	CA46333	, CA463	334)								
TPH by GC (Extractable	<u>Produc</u>	ts) - Soil											
Ext. Petroleum H.C. (C9-C36)	ND	50	83	85	2.4				60 - 120	30			
% n-Pentacosane	75	%	74	76	2.7				50 - 150	30			
Comment:													
*The MS/MSD could not be repo	orted due to	the presence of ETPH in the orig	jinal sampl	e. The L	CS was	within Q	A/QC cr	teria.					
Additional surrogate criteria: LC	acosane 75 % 74 76 2.7 50 - 150 30												

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

normalized based on the alkane calibration.

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

May 17, 2018

Thursday, May 17, 2018

Criteria: CT: GAM, RC

Sample Criteria Exceedances Report GCA46332 - NORTHSTR

State: CT

State: C1

RL Analysis
SampNo Acode Phoenix Analyte Criteria Units
Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

May 17, 2018 SDG I.D.: GCA46332

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

Coolant: IPK No Tempt Order: Yes No Data Delivery/Contact Options:	This section MUST be completed with Bottle Quantities.	20 1406 1406 100 200 100 100 100 100 100 100 100 100	2 2		Data Format Cation Carel Carel Carel Carel Carel Carel Carel		* SURCHARGE APPLIES
Fax. Phone Email:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(S)		CT MA ure □ RCP Cert □ MCP Certification □ GW Protection □ GW-1 □ SW Protection □ GW-2 □ GA Mobility □ GW-3	GB Mobility GB Mobility GB Mobility GB C	samples were collected.
CHAIN OF CUSTODY RECORD East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726 Project: 180101 134 137	; to :	Request			Date: Time: RI S (4) (な 13 x 5 5 x 5 0 0 0 0 0 0 0 0 0		RGE APPLIES
287 S	formation - I	Signature Signat	Matrix Sampled S S 5//////////////////////////////////		Accepted by:	or Regulations:	
Environmental Laboratories, Inc.	SS:	Signature Matrix Code: DW=Drinking Water SE=Sediment SL=Sludge B=Bulk L=Liquid	B 7 B 7 B 7 B 7 B 7 B 7 B 7 B 7 B 7 B 7		Relinquished by	Comments, Special Requirements or Regulations:	

Exhibit D Bilton Phase 3 Report

November 21, 2019

Mr. Christopher Little Ecos Energy 222 South 9th Street, Suite 1600 Minneapolis, MN 55402

RE: Petroleum Storage Tank Removal

and Soil Remediation

134 Bilton Road, Somers, CT NorthStar Project No. 180101D

Dear Mr. Little:

NorthStar Environmental Management, LLC (NorthStar) is pleased to present herewith this underground storage tank closure and soil remediation report for the above-referenced property.

A 550-gallon gasoline UST and a 350-gallon diesel UST were removed from the subject property on October 8, 2018. The tanks had been improperly abandoned on the property by the former property owner. Holes were apparent in the gasoline UST and obvious soil contamination was present. The diesel UST appeared to be intact. An initial excavation of approximately 30 feet long by 3 feet wide by 10 feet deep reveal substantial petroleum contamination beyond the extents excavated. A small area of superficial ETPH contamination in the area of a former heating oil AST was also excavated at this time. Approximately 50 tons of soil was excavated and stock piled on site before rainy weather precluded further excavation. The stock piled soil was placed on plastic and covered with plastic.

Frequent heavy rains hindered work at the site for the next five to six months. The excavation eventually filled with rain water and the ground on the property became saturated and nearly impossible to work on. On April 1, 2019 the water in the excavation hole was sampled to determine if it was impacted from the contaminated soil. No odors or sheen were observed on the water and no VOCs were detected in the water based on an EPA Method 8260C analysis. The water was pumped out of the excavation hole to a drainage area and the excavation was continued.

On April 10, 2019 an additional 100 tons of contaminated soil were excavate. The excavation averaged 8 to 10 feet deep with one area up to 20 feet deep.

By April 18, 2019, NorthStar reached relatively clean soil to the east and west sides of the excavation but still needed to further explore contaminated soil to the north and south. At this

point the excavation was 50 feet long (east/west axis) by 20 feet wide (N/S axis) by 14 feet deep on average with a maximum depth of 20 feet. Approximately 200 tons of soil had been excavated and stock piled on site.

NorthStar recommended that augur test borings and monitoring wells be conducted to better characterize soil and groundwater contamination in the area.

NorthStar conducted six test borings around the area of the former underground storage tanks using a auger drill rig operated by Martin Geoenvironmental LLC in order to better characterized petroleum contamination on the subject property as a result of historic leaking of gasoline and diesel underground storage tanks. Test boring locations are illustrated in Figure 1. Monitoring wells were installed in borings AB-2 north of the tank grave and AB-6 located south of the tank grave. The other borings were conducted across the groundwater table thus provide additional information on groundwater quality. The groundwater table was encountered at approximately 13 feet below grade. Soil encountered in the test borings is a tightly packed till consisting predominantly of fines such as fine sand, silt and clay with 25 to 30% medium to course grave, cobbles and boulders. Test boring logs are included in Appendix A.

Soil samples were collected in various borings at 10-12 feet, 15-17 feet and 20-22 feet below grade. In test boring AB-6 where a petroleum odor was very noticeable, samples were also collected at 24-26 feet below grade. Temporary monitoring wells were installed in test borings AB-2 (MW-1) and AB-6 (MW-2).

Soil and groundwater sample results are presented in Table 1 and the laboratory data reports are included in Appendix B. No petroleum contamination was detected in test borings AB-1, AB-2, AB-3, and AB-4, or in monitoring well MW-1 all located north, east, and west of the tank grave. This was unexpected as area topography slopes toward the northeast. Petroleum contamination (mostly gasoline) was encountered in test borings AB-5, AB-6 and monitoring well MW-2 located south of the tank grave. Although petroleum contamination in soil was detected in test borings AB-5 and AB-6, it did not exceed an applicable remediation standard and was only detected in soil samples collected below the groundwater table. The groundwater sample from monitoring well MW-2 on the other hand contained volatile organic compounds consistent with gasoline that exceed the Groundwater Protection Criteria, the Surface Water Protection Criteria and the Residential Groundwater Volatilization Criteria. NorthStar collected a sample from the property's drinking water well which is about 40 feet from monitoring well MW-2 and it contained no detectable volatile organic compounds indicating that the contaminant plume had not yet reached that location.

NorthStar opined that the bulk of the soil contamination had been effectively excavated. Additional excavation would not likely improve groundwater quality to a notable degree and could mobilize the contamination. The groundwater contamination did not appear to be migrating off site. Given that the source of contamination has been removed, petroleum constituents in groundwater should diminish over time as a result of natural attenuation (i.e., natural biological, physical and chemical remediation processes). NorthStar recommends that monitoring well MW-2 be sampled once a year to monitor the natural attenuation process. In addition, the drinking water well for the residence should be tested for VOCs on an annual basis. Finally, because certain VOCs exceeded the Groundwater Volatilization Criterion, air samples should be collected inside the house on an annual basis and analyzed for volatile organic compounds to ensure that the occupants are not exposed to VOCs as a result of vapor intrusion. Air quality should be tested during the winter when doors and windows are kept closed.

The final extents of the soil excavation are shown in Figure 1. The AST surficial soil excavation was excavated to approximately 12 feet below grade at which point an ETPH concentration of 130 mg/kg was detected. The AST confirmatory sample result is included in Appendix C. The Residential Direct Exposure Criterion and GA Pollutant Mobility Criterion for ETPH in soil is 500 mg/kg.

On July 8, 2019 NorthStar collected samples from the stockpiled soil to characterize it for disposal. After communicating with several disposal firms, Ondrick Material and Recycling was selected as the best place to ship the soil. On October 1, 2019 Ondrick approved the soil for shipment to their facility (19-09-M-6385CT). A total of 237 tons of soil were loaded and transported to Ondrick on October 16 and 17, 2019. Shipping logs and weight tickets from Ordrick is included in Appendix D.

We trust that this report will be responsive to your needs and appreciate the opportunity to be of continued service to your office. Please feel free to call if you have any questions or if you would like to discuss this report.

Very truly yours,

NorthStar Environmental Management, LLC

Kristie Ferreira, LEP

Principal

Jean Bissonnette Project Manager

Figures

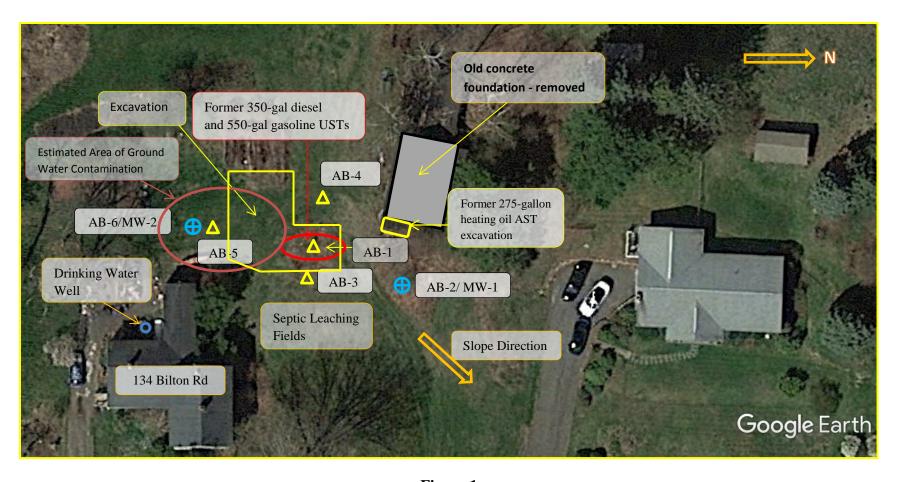


Figure 1
Test Boring Locations and Area of Soil Excavation
134 Bilton Road, Somers, CT
1 inch = 40 feet

Tables

Table 1. Soil Sample Results

Client:	Northstar E	nvironmenta	l Mgt LLC											
Project:		4 Bilton Rd, S	_											
ProjectNumber:	[none]		,0111013											
Matrix:	Soil													
Collect Dates:		ru 5/9/2019												
concer pares.	5/5/2015													
Lab Number					90503	05-01	90503	305-02	90503	305-03	90503	805-04	90503	305-05
Sampled Name					AB:	1 20	AB	1 30	AB	2 20	AB:	3 15	AB	3 20
Sampled Date					5/9/	2019	5/9/	2019	5/9/	2019	5/9/	2019	5/9/	/2019
•	01.01.10		./0.550	250 250										
Parameter	GA PMC	GB PMC	I/C DEC	RES DEC	Value	Qual	Value	Qual	Value	Qual	Value	Qual	Value	Qual
CT-ETPH (mg/kg)														
ETPH	500	2500	2500	500	<58		<56		<56		<55		<58	
EPA 8260C (ug/Kg)	·													
Benzene	20	200	200000	21000	<4.0		<3.0		<4.4		<5.2		<4.1	
Bromobenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	
n-Butylbenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	
sec-Butylbenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	
tert-Butylbenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	
Chlorobenzene	2000	20000	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	
2-Chlorotoluene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
4-Chlorotoluene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
1,2-Dichlorobenzene	3100	3100	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
1,3-Dichlorobenzene	12000	120000	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
1,4-Dichlorobenzene	1500	15000	240000	26000	<4.0		<3.0		<4.4		<5.2		<4.1	1
Ethylbenzene	10100	10100	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
Hexachlorobutadiene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
isopropylbenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
4-Isopropyltoluene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
Methyl-t-Butyl Ether (MTBE)	2000	20000	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
Naphthalene	5600	56000	2500000	1000000	<4.0		<3.0		<4.4		<5.2		<4.1	1
n-Propylbenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
Styrene	2000	20000	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
Toluene	20000	67000	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
1,2,3-Trichlorobenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
1,2,4-Trichlorobenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
1,2,4-Trimethylbenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
1,3,5-Trimethylbenzene	NA	NA	NA	NA	<4.0		<3.0		<4.4		<5.2		<4.1	1
m+p Xylenes	19500	19500	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
o-Xylene	19500	19500	1000000	500000	<4.0		<3.0		<4.4		<5.2		<4.1	1
SM 2540 G (%)							•							
Percent Solids	NA	NA	NA	NA	85		88		88		89		84	
Notes:														
Report Generated on: 5/15/20	019 5:11:47 PI	M												
Qualifiers:														

Table 1. Continued Soil Sample Results

Client:	Northstar E	nvironmenta	al Mgt LLC							
Project:	AB Bilton R	d								
ProjectNumber:	[none]									
Matrix:	Soil									
Collect Dates:	5/10/2019 T									
Lab Number					9050355-01		9050355-02		9050355-03	
Sampled Name					AB4 15-17ft		AB4 20-22ft		AB5 10-12ft	
Sampled Date					5/10/2019		5/10/2019		5/10/2019	
	CA DN4C	CD DMAC	L/C DEC	DEC DEC						
Parameter	GA PMC	GB PMC	I/C DEC	RES DEC	Value	Qual	Value	Qual	Value	Qual
CT-ETPH (mg/kg)										
ETPH	500	2500	2500	500	<55		<58		<55	
EPA 8260C (ug/Kg)										
Benzene	20	200	200000	21000	<3.7		<3.7		<4.1	
Bromobenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
n-Butylbenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
sec-Butylbenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
tert-Butylbenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
Chlorobenzene	2000	20000	1000000	500000	<3.7		<3.7		<4.1	
2-Chlorotoluene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
4-Chlorotoluene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
1,2-Dichlorobenzene	3100	3100	1000000	500000	<3.7		<3.7		<4.1	
1,3-Dichlorobenzene	12000	120000	1000000	500000	<3.7		<3.7		<4.1	
1,4-Dichlorobenzene	1500	15000	240000	26000	<3.7		<3.7		<4.1	
Ethylbenzene	10100	10100	1000000	500000	<3.7		<3.7		<4.1	
Hexachlorobutadiene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
isopropylbenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
4-Isopropyltoluene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
Methyl-t-Butyl Ether (MTBE)	2000	20000	1000000	500000	<3.7		<3.7		<4.1	
Naphthalene	5600	56000	2500000	1000000	<7.4		<7.3		<8.2	
n-Propylbenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
Styrene	2000	20000	1000000	500000	<3.7		<3.7		<4.1	
Toluene	20000	67000	1000000	500000	<3.7		<3.7		<4.1	
1,2,3-Trichlorobenzene	NA	NA	NA	NA	<7.4		<7.3		<8.2	
1,2,4-Trichlorobenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
1,2,4-Trimethylbenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
1,3,5-Trimethylbenzene	NA	NA	NA	NA	<3.7		<3.7		<4.1	
m+p Xylenes	19500	19500	1000000	500000	<3.7		<3.7		<4.1	
o-Xylene	19500	19500	1000000	500000	<3.7		<3.7		<4.1	
SM 2540 G (%)										
Percent Solids	NA	NA	NA	NA	90		86		90	
Notes:										
Report Generated on: 5/17/20	019 1:52:39 PI	М								
Qualifiers:										

Table 1. Continued Soil Sample Results

Client:	Northstar E	nvironmenta	l Mgt LLC							
Project:	180101C, 13									
ProjectNumber:	[none]									
Matrix:	Soil									
Collect Dates:		hru 5/13/201	q							
Concet Bates.	3/ 13/ 2013 1	111 0 3/ 13/ 201								
Lab Number					9050382-01		9050382-02		9050382-03	
Sampled Name					AB5 15-17ft		AB6 15-17ft		AB6 24-26ft	
Sampled Date					5/13	/2019	5/13	/2019	5/13	/2019
Parameter	GA PMC	GB PMC	I/C DEC	RES DEC	Value	Qual	Value	Qual	Value	Qual
CT-ETPH (mg/kg)						•		•		•
ETPH	500	2500	2500	500			<55		<55	
EPA 8260C (ug/Kg)										
Benzene	20	200	200000	21000	<3.7		<3.3		<3.5	
Bromobenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
n-Butylbenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
sec-Butylbenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
tert-Butylbenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
Chlorobenzene	2000	20000	1000000	500000	<3.7		<3.3		<3.5	
2-Chlorotoluene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
4-Chlorotoluene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
1,2-Dichlorobenzene	3100	3100	1000000	500000	<3.7		<3.3		<3.5	
1,3-Dichlorobenzene	12000	120000	1000000	500000	<3.7		<3.3		<3.5	
1,4-Dichlorobenzene	1500	15000	240000	26000	<3.7		<3.3		<3.5	
Ethylbenzene	10100	10100	1000000	500000	<3.7		<3.3		4.9	
Hexachlorobutadiene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
isopropylbenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
4-Isopropyltoluene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
Methyl-t-Butyl Ether (MTBE)	2000	20000	1000000	500000	<3.7		<3.3		<3.5	
Naphthalene	5600	56000	2500000	1000000	7.8		<3.3		4	
n-Propylbenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
Styrene	2000	20000	1000000	500000	<3.7		<3.3		<3.5	
Toluene	20000	67000	1000000	500000	<3.7		<3.3		9.5	
1,2,3-Trichlorobenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
1,2,4-Trichlorobenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
1,2,4-Trimethylbenzene	NA	NA	NA	NA	<3.7		<3.3		4.1	
1,3,5-Trimethylbenzene	NA	NA	NA	NA	<3.7		<3.3		<3.5	
m+p Xylenes	19500	19500	1000000	500000	<3.7		<3.3		15	
o-Xylene	19500	19500	1000000	500000	<3.7		<3.3		3.5	
SM 2540 G (%)										
Percent Solids	NA	NA	NA	NA	90		90		90	
Notes:										
Report Generated on: 5/22/20)19 4:41:19 PI	M								
Qualifiers:										

Table 2 Groundwater Sample Results MW-1

Client:	Northstar E	nvironmenta	al Mgt LLC			
Project:	AB Bilton Ro	t				
ProjectNumber:	[none]					
Matrix:	Water					
Collect Dates:	5/10/2019 T	hru 5/10/201	19			
Lab Number	-	•	•	•	90503	55-04
Sampled Name					MV	V-1
Sampled Date					5/10,	/2019
Parameter	GWPC	SWPC	I/C GWVC	Res GWVC	Value	Qual
EPA 8260C (ug/L)					•	
Benzene	1	710	530	215	<1.0	
Bromobenzene	NA	NA	NA	NA	<1.0	
n-Butylbenzene	NA	NA	NA	NA	<1.0	
sec-Butylbenzene	NA	NA	NA	NA	<1.0	
tert-Butylbenzene	NA	NA	NA	NA	<1.0	
Chlorobenzene	100	420000	6150	1800	<1.0	
2-Chlorotoluene	NA	NA	NA	NA	<1.0	
4-Chlorotoluene	NA	NA	NA	NA	<1.0	
1,2-Dichlorobenzene	600	170000	50000	30500	<1.0	
1,3-Dichlorobenzene	600	26000	50000	24200	<1.0	
1,4-Dichlorobenzene	75	26000	50000	50000	<1.0	
Ethylbenzene	700	580000	50000	50000	<1.0	
Hexachlorobutadiene	NA	NA	NA	NA	<0.45	
isopropylbenzene	NA	NA	NA	NA	<1.0	
4-Isopropyltoluene	NA	NA	NA	NA	<1.0	
Methyl-t-Butyl Ether (MTBE)	100	NE	50000	50000	<5.0	
Naphthalene	280	NE	NE	NE	<1.0	
n-Propylbenzene	NA	NA	NA	NA	<1.0	
Styrene	100	NE	2065	580	<1.0	
Toluene	1000	4000000	50000	23500	<1.0	
1,2,3-Trichlorobenzene	NA	NA	NA	NA	<1.0	
1,2,4-Trichlorobenzene	NA	NA	NA	NA	<1.0	
1,2,4-Trimethylbenzene	NA	NA	NA	NA	<1.0	
1,3,5-Trimethylbenzene	NA	NA	NA	NA	<1.0	
m+p Xylenes	530	NE	50000	21300	<1.0	
o-Xylene	530	NE	50000	21300	<1.0	
					<u> </u>	
Notes:						
Report Generated on: 5/17/20)19 1:52:39 PI	M				
Ovalifia ma						
Qualifiers:						

Table 2 (Continued) MW-2 and Dug Well

Client: Project: ProjectNumber:	180101C, 13	nvironmenta 34 Bilton Rd, : 34 Bilton Rd, :	Somers							
Matrix:	Water									
Collect Dates:	5/13/2019 7	hru 5/13/201	19							
ab Number						382-04	_	32-04RE1	+	382-05
Sampled Name						IW-2		W-2		Well
Sampled Date					5/13	3/2019	5/13	/2019	5/13	/2019
Parameter	GWPC	SWPC	I/C GWVC	Res GWVC	Value	Qual	Value	Qual	Value	Qual
EPA 524.2 (ug/L)	1 .	T	l	1	1			1	1	
Benzene	1	710	530	215					<0.50	
Bromobenzene	NA	NA	NA	NA				+	<0.50	
n-Butylbenzene sec-Butylbenzene	NA NA	NA NA	NA NA	NA NA					<0.50 <0.50	
ert-Butylbenzene	NA NA	NA NA	NA NA	NA NA				1	<0.50	
Chlorobenzene	100	420000	6150	1800					<0.50	
2-Chlorotoluene	NA	NA	NA	NA					<0.50	
I-Chlorotoluene	NA	NA	NA	NA					<0.50	
I,2-Dichlorobenzene	600	170000	50000	30500					<0.50	
L,3-Dichlorobenzene	600	26000	50000	24200				1	<0.50	
l,4-Dichlorobenzene	75	26000	50000	50000					<0.50	
Ethylbenzene	700	580000	50000	50000					<0.50	L
Hexachlorobutadiene	NA	NA	NA	NA					<0.50	
sopropylbenzene	NA	NA	NA	NA					<0.50	
1-Isopropyltoluene	NA	NA	NA	NA					<0.50	
Methyl-t-Butyl Ether (MTBE)	100	NE	50000	50000					<1.0	
Naphthalene	280	NE	NE	NE					<0.50	
n-Propylbenzene	NA	NA	NA	NA					<0.50	
Styrene	100	NE	2065	580					<0.50	
Toluene	1000	4000000	50000	23500					<0.50	<u> </u>
1,2,3-Trichlorobenzene	NA	NA	NA	NA					<0.50	
1,2,4-Trichlorobenzene	NA	NA	NA	NA					<0.50	-
1,2,4-Trimethylbenzene	NA	NA	NA	NA					<0.50	
1,3,5-Trimethylbenzene	NA F20	NA	NA F0000	NA				+	<0.50	
n+p Xylenes	530 530	NE NE	50000	21300					<0.50 <0.50	
p-Xylene EPA 524.2 TICs (ug/L)	530	INE	50000	21300					<0.50	
No Tentatively Identified Con	NA	NA	NA	NA	I	1	T	Т	<2.0	Т
EPA 8260C (ug/L)	IVA	IVA	IVA	IVA					\Z.0	
Benzene	1	710	530	215	840	E	1000			Т
Bromobenzene	NA	NA	NA	NA	<1.0	_	<200			
n-Butylbenzene	NA	NA	NA	NA	24		<200			
ec-Butylbenzene	NA	NA	NA	NA	12		<200			
ert-Butylbenzene	NA	NA	NA	NA	<1.0		<200			
Chlorobenzene	100	420000	6150	1800	<1.0	<u> </u>	<200			
2-Chlorotoluene	NA	NA	NA	NA	<1.0		<200			
I-Chlorotoluene	NA	NA	NA	NA	<1.0		<200			
1,2-Dichlorobenzene	600	170000	50000	30500	<1.0		<200			
1,3-Dichlorobenzene	600	26000	50000	24200	<1.0		<200	1		
1,4-Dichlorobenzene	75	26000	50000	50000	<1.0	\perp	<200			
thylbenzene	700	580000	50000	50000	590	E	3500			
Hexachlorobutadiene	NA	NA	NA	NA	<0.45	\perp	<90	1		_
sopropylbenzene	NA	NA	NA	NA	110		<200	1		1
1-Isopropyltoluene	NA 100	NA	NA	NA	6.3	-	<200	1	1	1
Methyl-t-Butyl Ether (MTBE)	100	NE	50000	50000	<5.0	-	<1000	1		-
Naphthalene	280	NE	NE	NE	370	E	1100			
n-Propylbenzene	NA 100	NA NE	NA 2065	NA E90	240	E	320			
tyrene	100 1000	NE 4000000	2065	580 23500	26 1900	E	<200 22000	+	+	1
oluene ,2,3-Trichlorobenzene	NA	1	50000 NA	23500 NA		E	<200			1
,2,3-Trichlorobenzene ,2,4-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	<1.0 <1.0	+	<200	1		
L,2,4-Trimethylbenzene	NA NA	NA NA	NA NA	NA NA	500	E	2400			1
1,3,5-Trimethylbenzene	NA NA	NA NA	NA NA	NA NA	380	E	740		+	+
n+p Xylenes	530	NE NE	50000	21300	1700	E	13000		1	
o-Xylene	530	NE	50000	21300	620	E	2400			+
)-Aylelle	,					_	_,	1	+	1
хутепе										
Notes:										+-

Appendices

Appendix A Test Boring Logs

Martin

Geo-Environmental, LLC **Drilling Contractors**

Tel: (413) 323-8700

P.O. Box 646

Belchertown, MA 01007

Sheet: 1 of 1

Client: NorthStar Env. Inspector: J.B.

Boring #: <u>AB-1</u> <u>Start</u>: <u>5-9-2019</u> Finish: <u>5-9-2019</u>

Project: Residence #:

Location: 134 Bilton Rd. Somers CT

Well Locus: _____
Drill/Crew: J.M.

Au 4.25	ger 5 ID	C	Casing Si	ze	S	ampling 5'		Core Barrel	T U	tility Clearance #: own Permit #:	
Sample No.	Depth Range	0-6	Blows 6-12	per 6 " 12-18	18-24	REC.	Strata Change		•	Sample Descriptions	
								No Sampling req	quire to	20"	
0.1	20	21	<i>5</i> 1	<i>C</i> 1	60	22"		D-1 CH T 1 C	C A N	ID 1:4411 41 (4:11) W/E/T	
S-1	20- 22'	31	51	61	68	22"		Red SIL1 and fin	ne SAN	ND, little gravel, trace clay. (till) WET	
								EOB 22' Water	r @ 13	No odors	
S-2	30-	23	34	49	58	24"		Red SILT, little	e fine-	medium sand, trace gravel, trace cl	av.
	32'							(till) WET		, 5 ,	
								EOB 32' Water	r @ 14-	15' No odors	
F	ield Obs	Only	L	ocation:	1	ı	1			Rig: Mobile I	3-53
	Portions	Used								Hammer: 140	
	Trace: 0-									Hammer, 140	
	Little: 10 Some: 20										
	And: 35		W	eather:							

Martin

Geo-Environmental, LLC **Drilling Contractors**

Tel: (413) 323-8700

P.O. Box 646

Belchertown, MA 01007

Boring #: <u>AB-2</u> <u>Start</u>: <u>5-9-2019</u> Finish: <u>5-9-2019</u>

Sheet: <u>1</u> of <u>1</u>

Client: NorthStar Env. Inspector: J.B.

Project: Residence #:

Location: 134 Bilton Rd. Somers CT

Well Locus: _____ Drill/Crew: <u>J.M.</u>

Au 4.25	ger 5 ID	(Casing		S	ampling 5'	mpling Core Barre		Utility Clearance #: Town Permit #:
Sample	Depth			ws per 6 "		REC.	Strata		Sample Descriptions
No.	Range	0-6	6-12	2 12-18	18-24		Change		[
)	153
								No Sampling rec	quire to 15
S-1	15-	17	23	100/5"		17"		Red SILT and f	fine SAND, little gravel, little clay. (till) WET
	17'								
S-1	20-	49				6"		Red TILL WET	
	22'							(hammer broke)	
								EOD 201 W.	© 12 14? N. I
								EOB 20° Water	@ 13-14' No odors
								Set 2" PVC well	at 20'
								Screen 10-20'	
								Riser +2'-10'	
								Sand pack 8-2	
								Bentonite seal Native 0-	6-8'
								Trative 0	
г	iald Ob-	Onles		Location:	1	<u> </u>	<u> </u>	<u> </u>	Rig: Mobile B-53
	ield Obs. Portions			Location:					
	Trace: 0-								Hammer: 140#
	Little: 10	-20%							
	Some: 20			Weather:					
	And: 35	5-50%							

Martin

Geo-Environmental, LLC **Drilling Contractors**

Tel: (413) 323-8700

P.O. Box 646

Belchertown, MA 01007

Sheet: <u>1</u> of <u>1</u> Client: NorthStar Env. Inspector: J.B.

Boring #: <u>AB-3</u> <u>Start</u>: <u>5-9-2019</u> Finish: <u>5-9-2019</u>

Project: Residence #:

Location: 134 Bilton Rd. Somers CT

Well Locus: _____ Drill/Crew: J.M.

Au 4.25	ger 5 ID	C	Casing Si		S	ampling 5'		Core Barrel		Utility Clearance #: Town Permit #:	
Sample No.	Depth Range	0-6	Blows 6-12	s per 6 "	18-24	REC.	Strata Change			Sample Description	ns
110.	Kange	0-6	0-12	12-18	16-24		Change				
								No Sampling	roguis	ro to 15'	
								No Sampling	requii	10 13	
				<u> </u>							
S-1	15-	22	34	68	45	20"		Red fine-med	dium	SAND and SILT, little	gravel. (till) WET
	17'										
S-2	20-	23	38	44	41	18"		Red SILT and	l fine	SAND, little medium san	d. little gravel, little clay.
52	22'	23	30	1 ''	- 11	10		(till) WET		or in (2) interest of the same	a, nuio gravos, nuio osaj:
								EOB 22' Wa	ter @	13 No odors	
F	ield Obs.	. Onlv	1.	ocation:	l	l	1				Rig: Mobile B-53
	Portions 1			- 34420111							
	Trace: 0-	-10%									Hammer: 140#
	Little: 10										
	Some: 20		W	/eather:							
	And: 35	o-5U%									

Appendix B Laboratory Data Reports

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Kristie Ferreira

Northstar Environmental Mgt LLC

1100 Boston Post Road Guilford, CT 06437

Analytical Report CET# 9050305

Report Date:May 15, 2019

Project: 180101C, 134 Bilton Rd, Somers

Connecticut Laboratory Certificate: PH 0116 Massachusetts Laboratory Certificate: M-CT903 Rhode Island Laboratory Certificate: 199

New York NELAP Accreditation: 11982 Pennsylvania Laboratory Certificate: 68-02927

Project: 180101C, 134 Bilton Rd, Somers

SAMPLE SUMMARY

The sample(s) were received at 2.6°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
AB1 20	9050305-01	Soil	5/09/2019	05/10/2019
AB1 30	9050305-02	Soil	5/09/2019	05/10/2019
AB2 20	9050305-03	Soil	5/09/2019	05/10/2019
AB3 15	9050305-04	Soil	5/09/2019	05/10/2019
AB3 20	9050305-05	Soil	5/09/2019	05/10/2019

Analyte: Percent Solids [SM 2540 G] Analyst: JRO

Matrix: Soil

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
9050305-01	AB1 20	85	1.0	%	1	B9E1416	05/14/2019	05/15/2019 12:00	
9050305-02	AB1 30	88	1.0	%	1	B9E1416	05/14/2019	05/15/2019 12:00	
9050305-03	AB2 20	88	1.0	%	1	B9E1416	05/14/2019	05/15/2019 12:00	
9050305-04	AB3 15	89	1.0	%	1	B9E1416	05/14/2019	05/15/2019 12:00	
9050305-05	AB3 20	84	1.0	%	1	B9E1416	05/14/2019	05/15/2019 12:00	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB1 20 Lab ID: 9050305-01

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER

Matrix:	Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	58	1	EPA 3550C	B9E1103	05/11/2019	05/12/2019 18:26	
Surrogate: Octacosane	105 %	50	- 150		B9E1103	05/11/2019	05/12/2019 18:26	

Volatile Organics Method: EPA 8260C Analyst: ALM

Matrix: Soil

	Result	RL					Date/Time	
Analyte	(ug/kg dry)	(ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Benzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Toluene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Chlorobenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Ethylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
m+p Xylenes	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
o-Xylene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Styrene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Isopropylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Bromobenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
n-Propylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
2-Chlorotoluene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
4-Chlorotoluene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
1,3,5-Trimethylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
tert-Butylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
1,2,4-Trimethylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
sec-Butylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
1,3-Dichlorobenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
4-Isopropyltoluene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
1,4-Dichlorobenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
1,2-Dichlorobenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
n-Butylbenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
1,2,4-Trichlorobenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Hexachlorobutadiene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
Naphthalene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	
1,2,3-Trichlorobenzene	ND	4.0	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:03	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB1 20

Lab ID: 9050305-01

Volatile Organics

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	92.3 %	70	0 - 130		B9E1348	05/14/2019	05/14/2019 13:03	
Surrogate: Toluene-d8	95.7 %	70	0 - 130		B9E1348	05/14/2019	05/14/2019 13:03	
Surrogate: 4-Bromofluorobenzene	118 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 13:03	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB1 30 Lab ID: 9050305-02

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	56	1	EPA 3550C	B9E1336	05/13/2019	05/13/2019 22:12	
Surrogate: Octacosane	85.0 %	50	- 150		B9E1336	05/13/2019	05/13/2019 22:12	

Volatile Organics Method: EPA 8260C

Analyst: ALM
Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Benzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Toluene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Chlorobenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Ethylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
m+p Xylenes	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
o-Xylene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Styrene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Isopropylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Bromobenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
n-Propylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
2-Chlorotoluene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
4-Chlorotoluene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
1,3,5-Trimethylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
tert-Butylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
1,2,4-Trimethylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
sec-Butylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
1,3-Dichlorobenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
4-Isopropyltoluene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
1,4-Dichlorobenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
1,2-Dichlorobenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
n-Butylbenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
1,2,4-Trichlorobenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Hexachlorobutadiene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
Naphthalene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	
1,2,3-Trichlorobenzene	ND	3.0	1.07	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:25	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB1 30

Lab ID: 9050305-02

Volatile Organics

Method: EPA 8260C

Metrice Soil

Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	85.5 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 13:25	
Surrogate: Toluene-d8	95.5 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 13:25	
Surrogate: 4-Bromofluorobenzene	117 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 13:25	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB2 20 Lab ID: 9050305-03

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	56	1	EPA 3550C	B9E1336	05/13/2019	05/13/2019 23:43	
Surrogate: Octacosane	107 %	50	- 150		B9E1336	05/13/2019	05/13/2019 23:43	-

Volatile Organics Method: EPA 8260C Analyst: ALM
Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Benzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Toluene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Chlorobenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Ethylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
m+p Xylenes	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
o-Xylene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Styrene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Isopropylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Bromobenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
n-Propylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
2-Chlorotoluene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
4-Chlorotoluene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
1,3,5-Trimethylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
tert-Butylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
1,2,4-Trimethylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
sec-Butylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
1,3-Dichlorobenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
4-Isopropyltoluene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
1,4-Dichlorobenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
1,2-Dichlorobenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
n-Butylbenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
1,2,4-Trichlorobenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Hexachlorobutadiene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
Naphthalene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	
1,2,3-Trichlorobenzene	ND	4.4	1.56	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 13:48	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB2 20

Lab ID: 9050305-03

Volatile Organics Analyst: ALM

Method: EPA 8260C Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	83.9 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 13:48	
Surrogate: Toluene-d8	96.0 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 13:48	
Surrogate: 4-Bromofluorobenzene	117 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 13:48	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB3 15 Lab ID: 9050305-04

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER

Matrix:	Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	55	1	EPA 3550C	B9E1336	05/13/2019	05/14/2019 00:06	
Surrogate: Octacosane	92.5 %	50	- 150		B9E1336	05/13/2019	05/14/2019 00:06	

Volatile Organics Method: EPA 8260C Analyst: ALM
Matrix: Soil

Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ND	5.2	1.86	EDA 5035 A I	D0E1249	05/14/2010	05/14/2010 19.59	
ND	5.2			B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
ND	5.2	1.86	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 18:58	
		1.86	EPA 5035A-L				
	ND N	ND 5.2 ND 5.2	ND 5.2 1.86 ND 5.2 1.86	ND 5.2 1.86 EPA 5035A-L ND 5.2 </td <td>ND 5.2 1.86 EPA 5035A-L B9E1348 ND 5.2 1.86 EPA 5035A-L B9E1348</td> <td> ND 5.2 1.86 EPA 5035A-L B9E1348 05/14/2019 ND 5.2 1.86 EPA 5035A-L B9E1348 05/14/2</td> <td> ND 5.2 1.86 EPA 5035A-L B9E1348 O5/14/2019 O5/14/2019 18:58 </td>	ND 5.2 1.86 EPA 5035A-L B9E1348 ND 5.2 1.86 EPA 5035A-L B9E1348	ND 5.2 1.86 EPA 5035A-L B9E1348 05/14/2019 ND 5.2 1.86 EPA 5035A-L B9E1348 05/14/2	ND 5.2 1.86 EPA 5035A-L B9E1348 O5/14/2019 O5/14/2019 18:58

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB3 15

Lab ID: 9050305-04

Volatile Organics Analyst: ALM

Method: EPA 8260C Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	79.7 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 18:58	
Surrogate: Toluene-d8	95.8 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 18:58	
Surrogate: 4-Bromofluorobenzene	114 %	7	0 - 130		B9E1348	05/14/2019	05/14/2019 18:58	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB3 20 Lab ID: 9050305-05

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	58	1	EPA 3550C	B9E1336	05/13/2019	05/14/2019 00:29	
Surrogate: Octacosane	126 %	50	- 150		B9E1336	05/13/2019	05/14/2019 00:29	

Volatile Organics Method: EPA 8260C Analyst: ALM
Matrix: Soil

	Result	RL					Date/Time	
Analyte	(ug/kg dry)	(ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Benzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Toluene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Chlorobenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Ethylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
m+p Xylenes	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
o-Xylene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Styrene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Isopropylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Bromobenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
n-Propylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
2-Chlorotoluene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
4-Chlorotoluene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
1,3,5-Trimethylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
tert-Butylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
1,2,4-Trimethylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
sec-Butylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
1,3-Dichlorobenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
4-Isopropyltoluene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
1,4-Dichlorobenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
1,2-Dichlorobenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
n-Butylbenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
1,2,4-Trichlorobenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Hexachlorobutadiene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
Naphthalene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	
1,2,3-Trichlorobenzene	ND	4.1	1.37	EPA 5035A-L	B9E1348	05/14/2019	05/14/2019 14:32	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB3 20

Lab ID: 9050305-05

Volatile Organics Analyst: ALM Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	94.7 %	70	0 - 130		B9E1348	05/14/2019	05/14/2019 14:32	
Surrogate: Toluene-d8	97.4 %	70	0 - 130		B9E1348	05/14/2019	05/14/2019 14:32	
Surrogate: 4-Bromofluorobenzene	117 %	70	0 - 130		B9E1348	05/14/2019	05/14/2019 14:32	

Project: 180101C, 134 Bilton Rd, Somers

QUALITY CONTROL SECTION

Batch B9E1103 - CT-ETPH

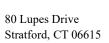
Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B9E1103-BLK1)					Prepared: 5/	11/2019 Analy:	zed: 5/12/20	19	
ЕТРН	ND	50							
Surrogate: Octacosane					97.5	50 - 150			
LCS (B9E1103-BS1)					Prepared: 5/	11/2019 Analy	zed: 5/12/20	19	
ЕТРН	1790	50	1,500.000		119	60 - 120			
Surrogate: Octacosane					115	50 - 150			

Project: 180101C, 134 Bilton Rd, Somers

Batch B9E1336 - CT-ETPH

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B9E1336-BLK1)					Prepared: 5	/13/2019 Analy2	zed: 5/13/201	9	
ЕТРН	ND	50							
Surrogate: Octacosane					122	50 - 150			
LCS (B9E1336-BS1)					Prepared: 5	/13/2019 Analyz	zed: 5/14/201	9	
ЕТРН	1380	50	1,500.000		92.2	60 - 120			
Surrogate: Octacosane					99.6	50 - 150			
Duplicate (B9E1336-DUP1)		Source: 9050	305-02		Prepared: 5/13/2019 Analyzed: 5/13/2019				
ЕТРН	ND	56		ND				30	
Surrogate: Octacosane					114	50 - 150			
Matrix Spike (B9E1336-MS1)		Source: 9050	305-02		Prepared: 5	/13/2019 Analyz	zed: 5/14/201	9	
ЕТРН	1630	56	1,679.348	ND	97.3	50 - 150			
Surrogate: Octacosane					99.0	50 - 150			
Matrix Spike Dup (B9E1336-MSD1)		Source: 9050	305-02		Prepared: 5/13/2019 Analyzed: 5/14/2019				
ЕТРН	1910	56	1,687.703	ND	113	50 - 150	15.6	30	
Surrogate: Octacosane					115	50 - 150			

Project: 180101C, 134 Bilton Rd, Somers


Batch B9E1348 - EPA 8260C

Batch B9E1348 - EPA 8260C											
Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes		
Blank (B9E1348-BLK1)					Prepared: 5/	/14/2019 Analyz	zed: 5/14/201	9			
Methyl-t-Butyl Ether (MTBE)	ND	2.5									
Benzene	ND	2.5									
Toluene	ND	2.5									
Chlorobenzene	ND	2.5									
Ethylbenzene	ND	2.5									
n+p Xylenes	ND	2.5									
-Xylene	ND	2.5									
tyrene	ND	2.5									
sopropylbenzene	ND	2.5									
Bromobenzene	ND	2.5									
-Propylbenzene	ND	2.5									
-Chlorotoluene	ND	2.5									
-Chlorotoluene	ND	2.5									
,3,5-Trimethylbenzene	ND	2.5									
ert-Butylbenzene	ND	2.5									
,2,4-Trimethylbenzene	ND	2.5									
ec-Butylbenzene	ND	2.5									
,3-Dichlorobenzene	ND	2.5									
-Isopropyltoluene	ND	2.5									
,4-Dichlorobenzene	ND	2.5									
,2-Dichlorobenzene	ND	2.5									
-Butylbenzene	ND	2.5									
,2,4-Trichlorobenzene	ND	2.5									
Iexachlorobutadiene	ND	2.5									
Vaphthalene	ND	2.5									
,2,3-Trichlorobenzene	ND	2.5									
urrogate: 1,2-Dichloroethane-d4					94.0	70 - 130					
iurrogate: Toluene-d8					98.7	70 - 130					
urrogate: 4-Bromofluorobenzene					117	70 - 130					
LCS (B9E1348-BS1)					Prepared: 5/	/14/2019 Analyz	zed: 5/14/201	9			
Methyl-t-Butyl Ether (MTBE)	50.7	2.5	50.000		101	70 - 130					
Benzene	45.2	2.5	50.000		90.4	70 - 130					
Coluene	45.5	2.5	50.000		90.9	70 - 130					
Chlorobenzene	46.3	2.5	50.000		92.5	70 - 130					
Ethylbenzene	46.7	2.5	50.000		93.5	70 - 130					
n+p Xylenes	94.7	2.5	100.000		94.7	70 - 130					
-Xylene	49.7	2.5	50.000		99.4	70 - 130					
tyrene	46.4	2.5	50.000		92.9	70 - 130					
sopropylbenzene	51.2	2.5	50.000		102	70 - 130					
Bromobenzene	43.5	2.5	50.000		86.9	70 - 130					
-Propylbenzene	44.6	2.5	50.000		89.2	70 - 130					
-Chlorotoluene	45.3	2.5	50.000		90.6	70 - 130					
-Chlorotoluene	45.6	2.5	50.000		91.3	70 - 130					
,3,5-Trimethylbenzene	46.4	2.5	50.000		92.9	70 - 130					
ert-Butylbenzene	49.4	2.5	50.000		98.8	70 - 130					
,2,4-Trimethylbenzene	47.5	2.5	50.000		95.0	70 - 130					
ec-Butylbenzene	47.3	2.5	50.000		94.5	70 - 130					
,3-Dichlorobenzene	50.0	2.5	50.000		99.9	70 - 130					
-Isopropyltoluene	50.7	2.5	50.000		101	70 - 130					
,4-Dichlorobenzene	47.0	2.5	50.000		93.9	70 - 130					

Project: 180101C, 134 Bilton Rd, Somers

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E1348-BS1) - Continued					Prepared: 5	/14/2019 Analyz	zed: 5/14/20	19	
1,2-Dichlorobenzene	50.6	2.5	50.000		101	70 - 130			
n-Butylbenzene	47.4	2.5	50.000		94.8	70 - 130			
1,2,4-Trichlorobenzene	59.2	2.5	50.000		118	70 - 130			
Hexachlorobutadiene	62.6	2.5	50.000		125	70 - 130			
Naphthalene	55.5	2.5	50.000		111	70 - 130			
1,2,3-Trichlorobenzene	59.0	2.5	50.000		118	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					86.1	70 - 130			
Surrogate: Toluene-d8					97.0	70 - 130			
Surrogate: 4-Bromofluorobenzene					117	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS) An Analyte added to each sample or sample extract. An internal standard is used to monitor retention

time, calculate relative response, and quantify analytes of interest.

Surrogate Recovery The % recovery for non-target organic compounds that are spiked into all samples. Used to determine

method performance.

Continuing Calibration An analytical standard analyzed with each set of samples to verify initial calibration of the system.

Batch Samples that are analyzed together with the same method, sequence and lot of reagents within the same

time period.

ND Not detected at or above the specified reporting limit.

RL RL is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.

Dilution Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high

concentration of target compounds.

Duplicate Result from the duplicate analysis of a sample.

Result Amount of analyte found in a sample.

Spike Level Amount of analyte added to a sample

Matrix Spike Result Amount of analyte found including amount that was spiked.

Matrix Spike Dup Amount of analyte found in duplicate spikes including amount that was spike.

Matrix Spike % Recovery % Recovery of spiked amount in sample.

Matrix Spike Dup % Recovery % Recovery of spiked duplicate amount in sample.

RPD Relative percent difference between Matrix Spike and Matrix Spike Duplicate.

Blank Method Blank that has been taken through all steps of the analysis.

LCS % Recovery Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.

Recovery Limits A range within which specified measurements results must fall to be compliant.

CC Calibration Verification

Flags:

H- Recovery is above the control limitsL- Recovery is below the control limitsB- Compound detected in the Blank

P- RPD of dual column results exceeds 40%

#- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903 New York NELAP Accreditation 11982 Rhode Island Certification 199

Project: 180101C, 134 Bilton Rd, Somers

CASE NARRATIVE

No collection times provided by client on chain of custody for the following samples: 9050305-01 through -05.

Project: 180101C, 134 Bilton Rd, Somers

All questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

This technical report was reviewed by Robert Blake

R Blah I

Project Manager

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

Danid Sitta

- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogeneity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- *I- Analyte exceeds method limits from second source standard in Initial Calibration Verification (ICV). No directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

For Percent Solids, if any of the following prep methods (3050B, 3540C, 3545A, 3550C, 5035 and 9013A) were used for samples pertaining to this report, the percent solids procedure is within that prep method.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at or above the specified reporting limit

RL is the Reporting Limit

All analyses were performed in house unless a Reference Laboratory is listed.

Samples will be disposed of 30 days after the report date.

Percent Solids

Project: 180101C, 134 Bilton Rd, Somers

CERTIFICATIONS

Certified Analyses included in this Report	CERTIFICATIONS
Analyte	Certifications
CT-ETPH in Soil	
ЕТРН	CT
EPA 8260C in Soil	
Methyl-t-Butyl Ether (MTBE)	CT,NY,PA
Benzene	CT,NY,PA
Toluene	CT,NY,PA
Chlorobenzene	CT,NY,PA
Ethylbenzene	CT,NY,PA
m+p Xylenes	CT,NY,PA
o-Xylene	CT,NY,PA
Styrene	CT,NY,PA
Isopropylbenzene	CT,NY,PA
Bromobenzene	CT,NY,PA
n-Propylbenzene	CT,NY,PA
2-Chlorotoluene	CT,NY,PA
4-Chlorotoluene	CT,NY,PA
1,3,5-Trimethylbenzene	CT,NY,PA
tert-Butylbenzene	CT,NY,PA
1,2,4-Trimethylbenzene	CT,NY,PA
sec-Butylbenzene	CT,NY,PA
1,3-Dichlorobenzene	CT,NY,PA
4-Isopropyltoluene	CT,NY,PA
1,4-Dichlorobenzene	CT,NY,PA
1,2-Dichlorobenzene	CT,NY,PA
n-Butylbenzene	CT,NY,PA
1,2,4-Trichlorobenzene	CT,NY,PA
Hexachlorobutadiene	CT,NY,PA
Naphthalene	CT,NY,PA
1,2,3-Trichlorobenzene	CT
SM 2540 G in Soil	

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires
CT	Connecticut Public Health	PH0116	09/30/2020
NY	New York Certification (NELAC)	11982	04/01/2020
PA	Pennsylvania DEP	68-02927	05/31/2019

CT

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952

Turnaround Time (check one)

e-mail: cet1@cetlabs.com Bottle Request e-mail: bottleorders@cetlabs.com

(include Units for any sample depths provided) Sample ID/Sample Depths

Date/Time Collection

(Specify)

Same Day

Next Day

Two Day Three Day Std (5-7 Days)

8260 CT List

8270 CT List 8270 PNAs

PCBs

Pesticides

15 CT DEP Total

SPLP

8 RCRA 13 Priority Poli

☐ SOX ☐ ASE

Metals

8260 Aromatics 8260 Halogens CT ETPH

COMPLETE ENVIRONMENTAL TESTING, INC.

CHAIN OF CUSTODY

	_
1	0
	~
	<u> </u>
	I≡
7	1 =
,	ਜ
)	-
۰	18
)	0
	≌.
1	퍐
i	, ,,
-	
1	
1	=
Ō	~

Client:	Date and Time in Freezer	Volatile Colle Cilly.
	reezer	

☐ EDD - Specify Format XCCC ☐ Site Specific (MS/MSD) * Prøject Information TCLP Dissolved Project #: Collector(s): Field Filtered Lab to Filter CET ☐ RCP Pkg * Additional Analysis Other DQAW という。 TOTAL # OF CONT. NOTE # Page 21 of 21

Soil VOCs Only

B=Bisulfate DATE/TIN

W=Water F= Empty E=Encore)

ECEIVED BY

NOTES

RELINQUISHE

RELINQUISHED BY

S 7049 93

RECEIVED BY:

DATE/TIME

222

RECEIVED BY:

Company Name

Client / Reporting Information

CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)

PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)

start on the next business day. All samples picked up by courier service will be considered next business day receipt for TAT purposes. Additional charge may apply. ** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will S. P. S. uodn dual Evidence of N PAGE 잍

Phone #

north star environmenta

30

QA/QC CET Quote #

St St

Data Report

Laboratory Certification Needed (check one)

RSR Reporting Limits (check one)

D GA

□GB

☐ SWP

☐ Other

7

¥

<u>...</u>

₹ N

REV. 10/16

Fax #

Report To

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Kristie Ferreira

Northstar Environmental Mgt LLC

1100 Boston Post Road Guilford, CT 06437

Analytical Report CET# 9050355

Report Date:May 17, 2019 Project: AB Bilton Rd

Connecticut Laboratory Certificate: PH 0116 Massachusetts Laboratory Certificate: M-CT903 Rhode Island Laboratory Certificate: 199

New York NELAP Accreditation: 11982 Pennsylvania Laboratory Certificate: 68-02927

SAMPLE SUMMARY

The sample(s) were received at 2.3°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
AB4 15-17ft	9050355-01	Soil	5/10/2019	05/13/2019
AB4 20-22ft	9050355-02	Soil	5/10/2019	05/13/2019
AB5 10-12ft	9050355-03	Soil	5/10/2019	05/13/2019
MW-1	9050355-04	Water	5/10/2019	05/13/2019

Analyte: Percent Solids [SM 2540 G] Analyst: RAJ

Matrix: Soil

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
9050355-01	AB4 15-17ft	90	1.0	%	1	B9E1444	05/14/2019	05/15/2019 09:58	
9050355-02	AB4 20-22ft	86	1.0	%	1	B9E1444	05/14/2019	05/15/2019 09:58	
9050355-03	AB5 10-12ft	90	1.0	%	1	B9E1444	05/14/2019	05/15/2019 09:58	

Client Sample ID AB4 15-17ft Lab ID: 9050355-01

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	55	1	EPA 3550C	B9E1515	05/15/2019	05/17/2019 07:41	
Surrogate: Octacosane	115 %	50	- 150		B9E1515	05/15/2019	05/17/2019 07:41	

Volatile Organics Method: EPA 8260C Analyst: TWF

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
•								
Methyl-t-Butyl Ether (MTBE)	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
Benzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
Toluene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
Chlorobenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
Ethylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
m+p Xylenes	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
o-Xylene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
Styrene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
Isopropylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
Bromobenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
n-Propylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
2-Chlorotoluene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
4-Chlorotoluene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
1,3,5-Trimethylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
tert-Butylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
1,2,4-Trimethylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
sec-Butylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
1,3-Dichlorobenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
4-Isopropyltoluene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
1,4-Dichlorobenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
1,2-Dichlorobenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
n-Butylbenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
1,2,4-Trichlorobenzene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	*C2
Hexachlorobutadiene	ND	3.7	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	*F2
Naphthalene	ND	7.4	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	
1,2,3-Trichlorobenzene	ND	7.4	1.34	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:03	

Surrogate: 4-Bromofluorobenzene

Client Sample ID AB4 15-17ft Lab ID: 9050355-01

Volatile Organics

Method: EPA 8260C

Method: EPA 8260C

Result RL Date/Time (ug/kg) Dilution Prep Method Prepared Notes (ug/kg) Batch Analyzed Analyte 05/14/2019 14:03 96.8 % 70 - 130 Surrogate: 1,2-Dichloroethane-d4 B9E1446 05/14/2019 Surrogate: Toluene-d8 95.2 % 70 - 130 B9E1446 05/14/2019 05/14/2019 14:03

B9E1446

05/14/2019

05/14/2019 14:03

70 - 130

102 %

Matrix: Soil

Client Sample ID AB4 20-22ft Lab ID: 9050355-02

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER
Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	58	1	EPA 3550C	B9E1515	05/15/2019	05/17/2019 08:04	
Surrogate: Octacosane	101 %	50	- 150		B9E1515	05/15/2019	05/17/2019 08:04	

Volatile Organics Method: EPA 8260C Analyst: TWF

Matrix: Soil

	Result	RL					Date/Time	
Analyte	(ug/kg dry)	(ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
Benzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
Toluene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
Chlorobenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
Ethylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
m+p Xylenes	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
o-Xylene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
Styrene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
Isopropylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
Bromobenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
n-Propylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
2-Chlorotoluene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
4-Chlorotoluene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
1,3,5-Trimethylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
tert-Butylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
1,2,4-Trimethylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
sec-Butylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
1,3-Dichlorobenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
4-Isopropyltoluene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
1,4-Dichlorobenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
1,2-Dichlorobenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
n-Butylbenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
1,2,4-Trichlorobenzene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	*C2
Hexachlorobutadiene	ND	3.7	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	*F2
Naphthalene	ND	7.3	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	
1,2,3-Trichlorobenzene	ND	7.3	1.27	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:24	

Client Sample ID AB4 20-22ft Lab ID: 9050355-02

Volatile Organics
Method: EPA 8260C
Metwice Soil

etnod: EPA 8260C Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	99.7 %	70 - 130			B9E1446	05/14/2019	05/14/2019 14:24	
Surrogate: Toluene-d8	97.2 %	70 - 130			B9E1446	05/14/2019	05/14/2019 14:24	
Surrogate: 4-Bromofluorobenzene	101 %	70 - 130			B9E1446	05/14/2019	05/14/2019 14:24	

Client Sample ID AB5 10-12ft Lab ID: 9050355-03

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER
Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	55	1	EPA 3550C	B9E1515	05/15/2019	05/17/2019 08:27	
Surrogate: Octacosane	116 %	50	- 150		B9E1515	05/15/2019	05/17/2019 08:27	

Volatile Organics Method: EPA 8260C Analyst: TWF

Matrix: Soil

	Result	RL					Date/Time	
Analyte	(ug/kg dry)	(ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
Benzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
Toluene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
Chlorobenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
Ethylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
m+p Xylenes	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
o-Xylene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
Styrene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
Isopropylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
Bromobenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
n-Propylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
2-Chlorotoluene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
4-Chlorotoluene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
1,3,5-Trimethylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
tert-Butylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
1,2,4-Trimethylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
sec-Butylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
1,3-Dichlorobenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
4-Isopropyltoluene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
1,4-Dichlorobenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
1,2-Dichlorobenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
n-Butylbenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
1,2,4-Trichlorobenzene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	*C2
Hexachlorobutadiene	ND	4.1	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	*F2
Naphthalene	ND	8.2	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	
1,2,3-Trichlorobenzene	ND	8.2	1.48	EPA 5035A-L	B9E1446	05/14/2019	05/14/2019 14:46	

Client Sample ID AB5 10-12ft Lab ID: 9050355-03

Volatile Organics
Method: EPA 8260C
Metwice Soil

etnod: EPA 8260C Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	94.0 %	7	0 - 130		B9E1446	05/14/2019	05/14/2019 14:46	
Surrogate: Toluene-d8	96.3 %	70 - 130			B9E1446	05/14/2019	05/14/2019 14:46	
Surrogate: 4-Bromofluorobenzene	103 %	7	0 - 130		B9E1446	05/14/2019	05/14/2019 14:46	

Client Sample ID MW-1 Lab ID: 9050355-04

Volatile Organics
Method: EPA 8260C
Analyst: TWF
Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Benzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Toluene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Chlorobenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Ethylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
m+p Xylenes	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
o-Xylene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Styrene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Bromobenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Naphthalene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B9E1535	05/15/2019	05/15/2019 18:42	
Surrogate: 1,2-Dichloroethane-d4	93.1 %	7	0 - 130		B9E1535	05/15/2019	05/15/2019 18:42	
Surrogate: Toluene-d8	102 %	7	0 - 130		B9E1535	05/15/2019	05/15/2019 18:42	
Surrogate: 4-Bromofluorobenzene	98.6 %	7	0 - 130		B9E1535	05/15/2019	05/15/2019 18:42	

QUALITY CONTROL SECTION

Batch B9E1446 - EPA 8260C

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B9E1446-BLK1)					Prepared: 5/	14/2019 Analyz	ed: 5/14/201	9	
Methyl-t-Butyl Ether (MTBE)	ND	2.5							
Benzene	ND	2.5							
Toluene	ND	2.5							
Chlorobenzene	ND	2.5							
Ethylbenzene	ND	2.5							
m+p Xylenes	ND	2.5							
o-Xylene	ND	2.5							
Styrene	ND	2.5							
Isopropylbenzene	ND	2.5							
Bromobenzene	ND	2.5							
n-Propylbenzene	ND	2.5							
2-Chlorotoluene	ND	2.5							
4-Chlorotoluene	ND	2.5							
1,3,5-Trimethylbenzene	ND	2.5							
tert-Butylbenzene	ND	2.5							
1,2,4-Trimethylbenzene	ND	2.5							
sec-Butylbenzene	ND	2.5							
1,3-Dichlorobenzene	ND	2.5							
4-Isopropyltoluene	ND	2.5							
1,4-Dichlorobenzene	ND	2.5							
1,2-Dichlorobenzene	ND	2.5							
n-Butylbenzene	ND	2.5							
1,2,4-Trichlorobenzene	ND	2.5							
Hexachlorobutadiene	ND	2.5							
Naphthalene	ND	5.0							
1,2,3-Trichlorobenzene	ND	5.0							
Surrogate: 1,2-Dichloroethane-d4					83.5	70 - 130			
Surrogate: Toluene-d8					95.9	70 - 130			
Surrogate: 4-Bromofluorobenzene					99.9	70 - 130			
LCS (B9E1446-BS1)					Prepared: 5/	14/2019 Analyz	ed: 5/14/201	9	
Methyl-t-Butyl Ether (MTBE)	49.1	2.5	50.000		98.1	70 - 130			
Benzene	58.5	2.5	50.000		117	70 - 130			
Toluene	58.5	2.5	50.000		117	70 - 130			
Chlorobenzene	58.5	2.5	50.000		117	70 - 130			
Ethylbenzene	59.8	2.5	50.000		120	70 - 130			
m+p Xylenes	124	2.5	100.000		124	70 - 130			
o-Xylene	58.6	2.5	50.000		117	70 - 130			
Styrene	58.7	2.5	50.000		117	70 - 130			
Isopropylbenzene	63.9	2.5	50.000		128	70 - 130			
Bromobenzene	52.6	2.5	50.000		105	70 - 130			
n-Propylbenzene	60.0	2.5	50.000		120	70 - 130			
2-Chlorotoluene	56.9	2.5	50.000		114	70 - 130			
4-Chlorotoluene	57.1	2.5	50.000		114	70 - 130			
1,3,5-Trimethylbenzene	59.5	2.5	50.000		119	70 - 130			
tert-Butylbenzene	61.6	2.5	50.000		123	70 - 130			
1,2,4-Trimethylbenzene	57.8	2.5	50.000		116	70 - 130			
sec-Butylbenzene	63.9	2.5	50.000		128	70 - 130			
1,3-Dichlorobenzene	57.7	2.5	50.000		115	70 - 130			

Complete Environmental Testing, Inc.

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E1446-BS1) - Continued					Prepared: 5	/14/2019 Analy	zed: 5/14/201	19	
4-Isopropyltoluene	63.3	2.5	50.000		127	70 - 130			
1,4-Dichlorobenzene	56.4	2.5	50.000		113	70 - 130			
1,2-Dichlorobenzene	55.2	2.5	50.000		110	70 - 130			
n-Butylbenzene	63.5	2.5	50.000		127	70 - 130			
1,2,4-Trichlorobenzene	59.6	2.5	50.000		119	70 - 130			
Hexachlorobutadiene	66.3	2.5	50.000		133	70 - 130			H
Naphthalene	54.6	5.0	50.000		109	70 - 130			
1,2,3-Trichlorobenzene	55.1	5.0	50.000		110	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					89.1	70 - 130			
Surrogate: Toluene-d8					96.9	70 - 130			
Surrogate: 4-Bromofluorobenzene					104	70 - 130			

Batch B9E1515 - CT-ETPH

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B9E1515-BLK1)					Prepared: 5/	/15/2019 Analy	zed: 5/15/20	19	
ЕТРН	ND	50							
Surrogate: Octacosane					101	50 - 150			
LCS (B9E1515-BS1)					Prepared: 5/	/15/2019 Analy	zed: 5/15/20	19	
ЕТРН	1640	50	1,500.000		109	60 - 120			
Surrogate: Octacosane					114	50 - 150			

Batch B9E1535 - EPA 8260C

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B9E1535-BLK1)					Prepared: 5	/15/2019 Analy	zed: 5/15/20	19	
Methyl-t-Butyl Ether (MTBE)	ND	5.0				,			
Benzene	ND	1.0							
Гoluene	ND	1.0							
Chlorobenzene	ND	1.0							
Ethylbenzene	ND	1.0							
n+p Xylenes	ND	1.0							
-Xylene	ND	1.0							
Styrene	ND	1.0							
sopropylbenzene	ND ND	1.0							
Bromobenzene	ND ND	1.0							
-Propylbenzene	ND ND	1.0							
-Propyroenzene -Chlorotoluene	ND ND	1.0							
-Chlorotoluene	ND ND	1.0							
,3,5-Trimethylbenzene	ND ND	1.0							
,5,5-17imethyroenzene ert-Butylbenzene	ND ND	1.0							
,2,4-Trimethylbenzene	ND ND	1.0							
ec-Butylbenzene	ND ND	1.0							
,3-Dichlorobenzene	ND ND	1.0							
-Isopropyltoluene ,4-Dichlorobenzene	ND ND	1.0 1.0							
<i>'</i>									
,2-Dichlorobenzene	ND ND	1.0							
-Butylbenzene	ND ND	1.0							
,2,4-Trichlorobenzene	ND ND	1.0							
Iexachlorobutadiene	ND ND	0.45							
Naphthalene ,2,3-Trichlorobenzene	ND ND	1.0 1.0							
Surrogate: 1,2-Dichloroethane-d4					86.4	70 - 130			
'urrogate: Toluene-d8					98.6	70 - 130			
urrogate: 4-Bromofluorobenzene					114	70 - 130			
LCS (B9E1535-BS1)					Prepared: 5	//15/2019 Analy:	zed: 5/15/20	19	
Methyl-t-Butyl Ether (MTBE)	43.1	5.0	50.000		86.1	70 - 130			
Benzene	47.2	1.0	50.000		94.4	70 - 130			
Coluene	47.8	1.0	50.000		95.5	70 - 130			
Chlorobenzene	47.6	1.0	50.000		95.3	70 - 130			
Ethylbenzene	47.9	1.0	50.000		95.7	70 - 130			
n+p Xylenes	93.6	1.0	100.000		93.6	70 - 130			
-Xylene	48.4	1.0	50.000		96.9	70 - 130			
Styrene	49.2	1.0	50.000		98.3	70 - 130			
sopropylbenzene	49.3	1.0	50.000		98.7	70 - 130			
Bromobenzene	46.1	1.0	50.000		92.2	70 - 130			
-Propylbenzene	48.2	1.0	50.000		96.3	70 - 130			
-Propyroenzene -Chlorotoluene	47.5	1.0	50.000		94.9	70 - 130			
-Chlorotoluene	48.4	1.0	50.000		94.9 96.8	70 - 130			
,3,5-Trimethylbenzene	48.4 47.0	1.0	50.000		94.0	70 - 130			
•	46.8	1.0	50.000		94.0 93.5	70 - 130 70 - 130			
ert-Butylbenzene									
,2,4-Trimethylbenzene	48.2	1.0	50.000		96.4	70 - 130			
ec-Butylbenzene	46.7	1.0	50.000		93.4	70 - 130			
3-Dichlorobenzene	48.7	1.0	50.000		97.3	70 - 130			
-Isopropyltoluene	48.5	1.0	50.000		97.0	70 - 130			
4-Dichlorobenzene	47.7	1.0	50.000		95.4	70 - 130			

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E1535-BS1) - Continued					Prepared: 5	/15/2019 Analyz	zed: 5/15/20	19	
1,2-Dichlorobenzene	48.2	1.0	50.000		96.4	70 - 130			
n-Butylbenzene	47.7	1.0	50.000		95.3	70 - 130			
1,2,4-Trichlorobenzene	46.5	1.0	50.000		93.0	70 - 130			
Hexachlorobutadiene	47.0	0.45	50.000		94.0	70 - 130			
Naphthalene	46.8	1.0	50.000		93.5	70 - 130			
1,2,3-Trichlorobenzene	46.5	1.0	50.000		92.9	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					79.1	70 - 130			
Surrogate: Toluene-d8					103	70 - 130			
Surrogate: 4-Bromofluorobenzene					108	70 - 130			

80 Lupes Drive Stratford, CT 06615 Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS) An Analyte added to each sample or sample extract. An internal standard is used to monitor retention

time, calculate relative response, and quantify analytes of interest.

Surrogate Recovery The % recovery for non-target organic compounds that are spiked into all samples. Used to determine

method performance.

Continuing Calibration An analytical standard analyzed with each set of samples to verify initial calibration of the system.

Batch Samples that are analyzed together with the same method, sequence and lot of reagents within the same

time period.

ND Not detected at or above the specified reporting limit.

RL RL is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.

Dilution Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high

concentration of target compounds.

Duplicate Result from the duplicate analysis of a sample.

Result Amount of analyte found in a sample.

Spike Level Amount of analyte added to a sample

Matrix Spike Result Amount of analyte found including amount that was spiked.

Matrix Spike Dup Amount of analyte found in duplicate spikes including amount that was spike.

Matrix Spike % Recovery % Recovery of spiked amount in sample.

Matrix Spike Dup % Recovery % Recovery of spiked duplicate amount in sample.

RPD Relative percent difference between Matrix Spike and Matrix Spike Duplicate.

Blank Method Blank that has been taken through all steps of the analysis.

LCS % Recovery Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.

Recovery Limits A range within which specified measurements results must fall to be compliant.

CC Calibration Verification

Flags:

H- Recovery is above the control limits
L- Recovery is below the control limits
B- Compound detected in the Blank

P- RPD of dual column results exceeds 40%

#- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903 New York NELAP Accreditation 11982 Rhode Island Certification 199

CET #: 9050355		
Project: AB Bilton Rd		

CASE NARRATIVE

No collection times provided by client on chain of custody for the following samples: 9050355-01 through -04.

All questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

This technical report was reviewed by Robert Blake

R Blah J

David Ditta Laboratory Director Project Manager

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

Danid Sitta

- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogeneity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- *I- Analyte exceeds method limits from second source standard in Initial Calibration Verification (ICV). No directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

For Percent Solids, if any of the following prep methods (3050B, 3540C, 3545A, 3550C, 5035 and 9013A) were used for samples pertaining to this report, the percent solids procedure is within that prep method.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at or above the specified reporting limit

RL is the Reporting Limit

All analyses were performed in house unless a Reference Laboratory is listed.

Samples will be disposed of 30 days after the report date.

CERTIFICATIONS

Certified Analyses included in this Report		
Analyte	Certifications	
CT-ETPH in Soil		
ЕТРН	CT	
EPA 8260C in Soil		
Methyl-t-Butyl Ether (MTBE)	CT,NY,PA	
Benzene	CT,NY,PA	
Toluene	CT,NY,PA	
Chlorobenzene	CT,NY,PA	
Ethylbenzene	CT,NY,PA	
m+p Xylenes	CT,NY,PA	
o-Xylene	CT,NY,PA	
Styrene	CT,NY,PA	
Isopropylbenzene	CT,NY,PA	
Bromobenzene	CT,NY,PA	
n-Propylbenzene	CT,NY,PA	
2-Chlorotoluene	CT,NY,PA	
4-Chlorotoluene	CT,NY,PA	
1,3,5-Trimethylbenzene	CT,NY,PA	
tert-Butylbenzene	CT,NY,PA	
1,2,4-Trimethylbenzene	CT,NY,PA	
sec-Butylbenzene	CT,NY,PA	
1,3-Dichlorobenzene	CT,NY,PA	
4-Isopropyltoluene	CT,NY,PA	
1,4-Dichlorobenzene	CT,NY,PA	
1,2-Dichlorobenzene	CT,NY,PA	
n-Butylbenzene	CT,NY,PA	
1,2,4-Trichlorobenzene Hexachlorobutadiene	CT,NY,PA	
Naphthalene	CT,NY,PA CT,NY,PA	
1,2,3-Trichlorobenzene	CT	
EPA 8260C in Water		
Methyl-t-Butyl Ether (MTBE)	CT,NY	
Benzene	CT,NY	
Toluene Chlorobenzene	CT,NY CT,NY	
Ethylbenzene	CT,NY	
m+p Xylenes	CT,NY	
o-Xylene	CT,NY	
Styrene	CT,NY	
Isopropylbenzene	CT,NY	
Bromobenzene	CT,NY	
n-Propylbenzene	CT,NY	
2-Chlorotoluene	CT,NY	
4-Chlorotoluene	CT,NY	
1,3,5-Trimethylbenzene	CT,NY	
tert-Butylbenzene	CT,NY	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 8260C in Water	
1,2,4-Trimethylbenzene	CT,NY
sec-Butylbenzene	CT,NY
1,3-Dichlorobenzene	CT,NY
4-Isopropyltoluene	CT,NY
1,4-Dichlorobenzene	CT,NY
1,2-Dichlorobenzene	CT,NY
n-Butylbenzene	CT,NY
1,2,4-Trichlorobenzene	CT,NY
Hexachlorobutadiene	CT,NY
Naphthalene	CT,NY
1,2,3-Trichlorobenzene	CT,NY
SM 2540 G in Soil	
Percent Solids	СТ

 $Complete\ Environmental\ Testing\ operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
CT	Connecticut Public Health	PH0116	09/30/2020
NY	New York Certification (NELAC)	11982	04/01/2020
PA	Pennsylvania DEP	68-02927	05/31/2020

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952

Turnaround Time **

(check one)

☐ SOX ☐ ASE

Metals

e-mail: cet1 @ cetlabs.com Bottle Request e-mail: bottleorders@cetlabs.com

DW=Drinking

(include Units for any sample depths provided) Sample ID/Sample Depths

Date/Time Collection

Same Day

Next Day * Two Day * Three Day * Std (5-7 Days)

8260 CT List 8260 Aromatics 8260 Halogens CT ETPH 8270 CT List 8270 PNAs PCBs

Pesticides 8 RCRA 13 Priority Poll 15 CT DEP Total

SPLP TCLP Dissolved Field Filtered Lab to Filter

CHAIN OF CUSTODY

-	l
Date and Time in E	Volatile Soils Only:

		40
•	Date a	Clarifo Collo Clary.
	and T	0
	ime in	у.
	Date and Time in Freez	

Client:	Date and Time in Freezer
	ezer

TOTAL # OF CONT.	Additional Analysis	Client: CET:	Date and Time in Freezer	Volatile Soils Only:	
NOTE #	\bot	Page	20	of 2	20

S.

rione # rax #	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Report To: E-mail		City State Zip	Address	Worth Stan Environ Mat	Client / Reporting Information		RELINQUISHED BY: DATE/TIME RECEIVED BY:	2 5/13/19 too	WALLO FORM 3/13/19 A Y	RELINQUISHED BY: DATE/TIME RECEIVED BY:	(<u>X</u>	CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)	PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)
Temp Upon 2 3 Cooling C) N PAGE / OF /	Laboratory Certification Needed (check one) [DCT NY RI MA	RSR Reporting Limits (check one) A GA GB SWP GOther	Data Report DPDF DEDD - Specify Format Scell Other	QAYQC TIVStd Stee Specific (MS/MSD) * RCP Pkg * DQAW *	CET Quote # Collector(s):	Location: Project #:	Project:PO#:	Project Information		47		NOTES:			

* Additional charge may apply. All eamnles niebed iin his consiler consiles will be considered next bissiness day receipt for TAT nisposes ** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will

REV. 10/16

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Kristie Ferreira

Northstar Environmental Mgt LLC

1100 Boston Post Road Guilford, CT 06437

Analytical Report CET# 9050382

Report Date:May 22, 2019

Project: 180101C, 134 Bilton Rd, Somers

Connecticut Laboratory Certificate: PH 0116 Massachusetts Laboratory Certificate: M-CT903 Rhode Island Laboratory Certificate: 199

New York NELAP Accreditation: 11982 Pennsylvania Laboratory Certificate: 68-02927

Project: 180101C, 134 Bilton Rd, Somers

SAMPLE SUMMARY

The sample(s) were received at 3.4°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
AB5 15-17ft	9050382-01	Soil	5/13/2019	05/14/2019
AB6 15-17ft	9050382-02	Soil	5/13/2019	05/14/2019
AB6 24-26ft	9050382-03	Soil	5/13/2019	05/14/2019
MW-2	9050382-04	Water	5/13/2019	05/14/2019
Dug Well	9050382-05	Drinking Water	5/13/2019	05/14/2019

Analyte: Percent Solids [SM 2540 G] Analyst: KRG

Matrix: Soil

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
9050382-01	AB5 15-17ft	90	1.0	%	1	B9E1518	05/15/2019	05/15/2019 03:45	
9050382-02	AB6 15-17ft	90	1.0	%	1	B9E1518	05/15/2019	05/15/2019 03:45	
9050382-03	AB6 24-26ft	90	1.0	%	1	B9E1518	05/15/2019	05/15/2019 03:45	

Analyte: No Tentatively Identified Compounds [EPA 524.2 TICs]

Matrix: Drinking Water

Analyst: TWF

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
9050382-05	Dug Well	ND	2.0	ug/L	1	B9E2145	05/21/2019	05/21/2019 14:11	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB5 15-17ft Lab ID: 9050382-01

Volatile Organics Analyst: ALM Method: EPA 8260C

Matrix: Soil

							IV	iatrix: Soii
Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Benzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Toluene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Chlorobenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Ethylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
m+p Xylenes	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
o-Xylene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Styrene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Isopropylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Bromobenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
n-Propylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
2-Chlorotoluene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
4-Chlorotoluene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
1,3,5-Trimethylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
tert-Butylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
1,2,4-Trimethylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
sec-Butylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
1,3-Dichlorobenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
4-Isopropyltoluene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
1,4-Dichlorobenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
1,2-Dichlorobenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
n-Butylbenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
1,2,4-Trichlorobenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Hexachlorobutadiene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Naphthalene	7.8	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
1,2,3-Trichlorobenzene	ND	3.7	1.33	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:15	
Surrogate: 1,2-Dichloroethane-d4	110 %	70	- 130		B9E1750	05/17/2019	05/17/2019 15:15	
Surrogate: Toluene-d8	101 %	70	- 130		B9E1750	05/17/2019	05/17/2019 15:15	
Surrogate: 4-Bromofluorobenzene	106 %	70	- 130		B9E1750	05/17/2019	05/17/2019 15:15	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB6 15-17ft Lab ID: 9050382-02

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER
Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	55	1	EPA 3550C	B9E1623	05/16/2019	05/18/2019 07:22	
Surrogate: Octacosane	108 %	50	- 150		B9E1623	05/16/2019	05/18/2019 07:22	

Volatile Organics Method: EPA 8260C Analyst: ALM
Matrix: Soil

	ъ .	DI					D (//T:	
Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Benzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Toluene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Chlorobenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Ethylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
m+p Xylenes	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
o-Xylene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Styrene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Isopropylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Bromobenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
n-Propylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
2-Chlorotoluene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
4-Chlorotoluene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
1,3,5-Trimethylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
tert-Butylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
1,2,4-Trimethylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
sec-Butylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
1,3-Dichlorobenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
4-Isopropyltoluene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
1,4-Dichlorobenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
1,2-Dichlorobenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
n-Butylbenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
1,2,4-Trichlorobenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Hexachlorobutadiene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
Naphthalene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	
1,2,3-Trichlorobenzene	ND	3.3	1.2	EPA 5035A-L	B9E1750	05/17/2019	05/17/2019 15:38	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB6 15-17ft Lab ID: 9050382-02

Volatile Organics Analyst: ALM

Method: EPA 8260C

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	109 %	7	0 - 130		B9E1750	05/17/2019	05/17/2019 15:38	
Surrogate: Toluene-d8	101 %	7	0 - 130		B9E1750	05/17/2019	05/17/2019 15:38	
Surrogate: 4-Bromofluorobenzene	106 %	7	0 - 130		B9E1750	05/17/2019	05/17/2019 15:38	

Matrix: Soil

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB6 24-26ft Lab ID: 9050382-03

Conn. Extractable TPH Method: CT-ETPH

Analyst: KER
Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	ND	55	1	EPA 3550C	B9E1623	05/16/2019	05/18/2019 07:45	
Surrogate: Octacosane	111 %	50	- 150		B9E1623	05/16/2019	05/18/2019 07:45	

Volatile Organics Method: EPA 8260C

Analyst: ALM
Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Benzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Toluene	9.5	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Chlorobenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Ethylbenzene	4.9	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
m+p Xylenes	15	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
o-Xylene	3.5	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Styrene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Isopropylbenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Bromobenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
n-Propylbenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
2-Chlorotoluene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
4-Chlorotoluene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
1,3,5-Trimethylbenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
tert-Butylbenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
1,2,4-Trimethylbenzene	4.1	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
sec-Butylbenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
1,3-Dichlorobenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
4-Isopropyltoluene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
1,4-Dichlorobenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
1,2-Dichlorobenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
n-Butylbenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
1,2,4-Trichlorobenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Hexachlorobutadiene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
Naphthalene	4.0	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	
1,2,3-Trichlorobenzene	ND	3.5	1.24	EPA 5035A-L	B9E2149	05/21/2019	05/21/2019 16:09	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID AB6 24-26ft

Lab ID: 9050382-03

Volatile Organics

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg)	RL (ug/kg)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichloroethane-d4	98.3 %	70	0 - 130		B9E2149	05/21/2019	05/21/2019 16:09	
Surrogate: Toluene-d8	95.6 %	70	0 - 130		B9E2149	05/21/2019	05/21/2019 16:09	
Surrogate: 4-Bromofluorobenzene	101 %	7	0 - 130		B9E2149	05/21/2019	05/21/2019 16:09	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID MW-2 Lab ID: 9050382-04

Volatile Organics
Method: EPA 8260C
Analyst: TWF
Matrix: Water

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
Benzene	840	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
Toluene	1900	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
Chlorobenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
Ethylbenzene	590	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
m+p Xylenes	1700	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
o-Xylene	620	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
Styrene	26	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
Isopropylbenzene	110	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
Bromobenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
n-Propylbenzene	240	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
1,3,5-Trimethylbenzene	380	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
1,2,4-Trimethylbenzene	500	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E
sec-Butylbenzene	12	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
4-Isopropyltoluene	6.3	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
n-Butylbenzene	24	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
Naphthalene	370	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	E*C2
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B9E1633	05/16/2019	05/16/2019 17:23	
Surrogate: 1,2-Dichloroethane-d4	99.4 %	7	70 - 130		B9E1633	05/16/2019	05/16/2019 17:23	
Surrogate: Toluene-d8	125 %	7	70 - 130		B9E1633	05/16/2019	05/16/2019 17:23	
Surrogate: 4-Bromofluorobenzene	109 %	7	70 - 130		B9E1633	05/16/2019	05/16/2019 17:23	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID MW-2 Lab ID: 9050382-04RE1(Dilution)

Volatile Organics
Method: EPA 8260C
Analyst: TWF
Matrix: Water

	Result	RL (T)	D.1 - :	D 164 1	D : 1	D i	Date/Time	NI 4
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Methyl-t-Butyl Ether (MTBE)	ND	1000	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Benzene	1000	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Toluene	22000	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Chlorobenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Ethylbenzene	3500	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
m+p Xylenes	13000	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
o-Xylene	2400	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Styrene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Isopropylbenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Bromobenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
n-Propylbenzene	320	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
2-Chlorotoluene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
4-Chlorotoluene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
1,3,5-Trimethylbenzene	740	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
tert-Butylbenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
1,2,4-Trimethylbenzene	2400	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
sec-Butylbenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
1,3-Dichlorobenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
4-Isopropyltoluene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
1,4-Dichlorobenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
1,2-Dichlorobenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
n-Butylbenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
1,2,4-Trichlorobenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Hexachlorobutadiene	ND	90	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Naphthalene	1100	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
1,2,3-Trichlorobenzene	ND	200	200	EPA 5030C	B9E2035	05/17/2019	05/17/2019 16:38	
Surrogate: 1,2-Dichloroethane-d4	97.8 %	7	70 - 130		B9E2035	05/17/2019	05/17/2019 16:38	
Surrogate: Toluene-d8	101 %	7	70 - 130		B9E2035	05/17/2019	05/17/2019 16:38	
Surrogate: 4-Bromofluorobenzene	104 %	7	70 - 130		B9E2035	05/17/2019	05/17/2019 16:38	

Project: 180101C, 134 Bilton Rd, Somers

Client Sample ID Dug Well Lab ID: 9050382-05

Volatile Organics by 524.2 Method: EPA 524.2

Matrix: Drinking Water

Analyst: TWF

							Matrix: Drinking water			
Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes		
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Benzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Toluene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Chlorobenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Ethylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
m+p Xylenes	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
o-Xylene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Styrene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Isopropylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Bromobenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
n-Propylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
2-Chlorotoluene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
4-Chlorotoluene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
1,3,5-Trimethylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
tert-Butylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
1,2,4-Trimethylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
sec-Butylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
1,3-Dichlorobenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
4-Isopropyltoluene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
1,4-Dichlorobenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
1,2-Dichlorobenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
n-Butylbenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
1,2,4-Trichlorobenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Hexachlorobutadiene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Naphthalene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
1,2,3-Trichlorobenzene	ND	0.50	1	EPA 5030C	B9E2145	05/21/2019	05/21/2019 14:11			
Surrogate: 1,2-Dichloroethane-d4	104 %	7	0 - 130		B9E2145	05/21/2019	05/21/2019 14:11			
Surrogate: Toluene-d8	96.6 %	7	0 - 130		B9E2145	05/21/2019	05/21/2019 14:11			
Surrogate: 4-Bromofluorobenzene	95.9 %	7	0 - 130		B9E2145	05/21/2019	05/21/2019 14:11			

Project: 180101C, 134 Bilton Rd, Somers

QUALITY CONTROL SECTION

Batch B9E1623 - CT-ETPH

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B9E1623-BLK1)					Prepared: 5/	/16/2019 Analy	zed: 5/16/20	19	
ЕТРН	ND	50							
Surrogate: Octacosane					108	50 - 150			
LCS (B9E1623-BS1)					Prepared: 5/	/16/2019 Analy	zed: 5/16/20	19	
ЕТРН	1450	50	1,500.000		96.5	60 - 120			
Surrogate: Octacosane					96.5	50 - 150			

Project: 180101C, 134 Bilton Rd, Somers

Batch B9E1633 - EPA 8260C

	Result	RL	Spike	Source	0/ 5	% Rec	B.5.5	RPD	N
Analyte	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Blank (B9E1633-BLK1)					Prepared: 5	/16/2019 Analy	zed: 5/16/20	19	
Methyl-t-Butyl Ether (MTBE)	ND	5.0							
Benzene	ND	1.0							
oluene	ND	1.0							
Chlorobenzene	ND	1.0							
thylbenzene	ND	1.0							
n+p Xylenes	ND	1.0							
-Xylene	ND	1.0							
yrene	ND	1.0							
opropylbenzene	ND	1.0							
romobenzene	ND	1.0							
Propylbenzene	ND	1.0							
Chlorotoluene	ND	1.0							
Chlorotoluene	ND	1.0							
3,5-Trimethylbenzene	ND	1.0							
rt-Butylbenzene	ND	1.0							
2,4-Trimethylbenzene	ND	1.0							
ec-Butylbenzene	ND	1.0							
3-Dichlorobenzene	ND	1.0							
Isopropyltoluene	ND	1.0							
4-Dichlorobenzene	ND	1.0							
2-Dichlorobenzene	ND	1.0							
Butylbenzene	ND	1.0							
2,4-Trichlorobenzene	ND	1.0							
exachlorobutadiene	ND	0.45							
aphthalene	ND	1.0							
2,3-Trichlorobenzene	ND	1.0							
urrogate: 1,2-Dichloroethane-d4					102	70 - 130			
urrogate: Toluene-d8					103	70 - 130			
urrogate: 4-Bromofluorobenzene					99.4	70 - 130			
CS (B9E1633-BS1)					Prepared: 5	/16/2019 Analy:	zed: 5/16/20	19	
lethyl-t-Butyl Ether (MTBE)	55.8	5.0	50.000		112	70 - 130			
enzene	54.2	1.0	50.000		108	70 - 130			
oluene	54.1	1.0	50.000		108	70 - 130			
hlorobenzene	53.2	1.0	50.000		106	70 - 130			
thylbenzene	56.1	1.0	50.000		112	70 - 130			
+p Xylenes	110	1.0	100.000		110	70 - 130			
Xylene	56.3	1.0	50.000		113	70 - 130			
yrene	57.0	1.0	50.000		114	70 - 130			
opropylbenzene	59.4	1.0	50.000		119	70 - 130			
romobenzene	54.4	1.0	50.000		109	70 - 130			
Propylbenzene	58.9	1.0	50.000		118	70 - 130			
Chlorotoluene	55.3	1.0	50.000		111	70 - 130			
Chlorotoluene	56.3	1.0	50.000		113	70 - 130			
3,5-Trimethylbenzene	57.5	1.0	50.000		115	70 - 130			
rt-Butylbenzene	55.0	1.0	50.000		110	70 - 130			
2,4-Trimethylbenzene	57.0	1.0	50.000		114	70 - 130			
ec-Butylbenzene	57.5	1.0	50.000		115	70 - 130			
3-Dichlorobenzene	54.4	1.0	50.000		109	70 - 130			
Isopropyltoluene	58.1	1.0	50.000		116	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E1633-BS1) - Continued					Prepared: 5	/16/2019 Analyz	red: 5/16/201	19	
1,2-Dichlorobenzene	54.3	1.0	50.000		109	70 - 130			
n-Butylbenzene	58.0	1.0	50.000		116	70 - 130			
1,2,4-Trichlorobenzene	48.8	1.0	50.000		97.6	70 - 130			
Hexachlorobutadiene	47.4	0.45	50.000		94.9	70 - 130			
Naphthalene	46.4	1.0	50.000		92.7	70 - 130			
1,2,3-Trichlorobenzene	43.6	1.0	50.000		87.1	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					104	70 - 130			
Surrogate: Toluene-d8					101	70 - 130			
Surrogate: 4-Bromofluorobenzene					101	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

Batch B9E1750 - EPA 8260C

Datcii D7E1/30 - E1A 0200C												
Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes			
Blank (B9E1750-BLK1)					Prepared: 5	/17/2019 Analy:	zed: 5/17/201	19				
Methyl-t-Butyl Ether (MTBE)	ND	2.5										
Benzene	ND	2.5										
Toluene	ND	2.5										
Chlorobenzene	ND	2.5										
Ethylbenzene	ND	2.5										
n+p Xylenes	ND	2.5										
o-Xylene	ND	2.5										
Styrene	ND	2.5										
sopropylbenzene	ND	2.5										
Bromobenzene	ND	2.5										
-Propylbenzene	ND	2.5										
-Chlorotoluene	ND	2.5										
-Chlorotoluene	ND	2.5										
,3,5-Trimethylbenzene	ND	2.5										
ert-Butylbenzene	ND	2.5										
,2,4-Trimethylbenzene	ND	2.5										
ec-Butylbenzene	ND	2.5										
,3-Dichlorobenzene	ND	2.5										
-Isopropyltoluene	ND	2.5										
,4-Dichlorobenzene	ND ND	2.5										
,2-Dichlorobenzene	ND ND	2.5										
-Butylbenzene	ND ND	2.5										
,2,4-Trichlorobenzene	ND ND	2.5										
Iexachlorobutadiene	ND ND	2.5										
Vaphthalene	ND ND	2.5										
,2,3-Trichlorobenzene	ND	2.5										
Surrogate: 1,2-Dichloroethane-d4					106	70 - 130						
Surrogate: Toluene-d8					97.6	70 - 130						
Surrogate: 4-Bromofluorobenzene					108	70 - 130						
LCS (B9E1750-BS1)					Prepared: 5	/17/2019 Analy:	zed: 5/17/201	9				
Methyl-t-Butyl Ether (MTBE)	52.5	2.5	50.000		105	70 - 130	204. 3/1//20					
Benzene	48.8	2.5	50.000		97.6	70 - 130						
Senzene Foluene	48.8 50.5	2.5	50.000		97.6 101	70 - 130 70 - 130						
Chlorobenzene	49.5	2.5	50.000		98.9	70 - 130						
Ethylbenzene	50.5	2.5	50.000		101	70 - 130						
n+p Xylenes	104	2.5	100.000		104	70 - 130						
ž - Č	50.8	2.5	50.000		104	70 - 130						
-Xylene	50.8 50.5											
styrene		2.5	50.000		101	70 - 130						
sopropylbenzene	51.4	2.5	50.000		103	70 - 130						
Bromobenzene	46.3	2.5	50.000		92.6	70 - 130						
n-Propylbenzene	48.4	2.5	50.000		96.9	70 - 130						
2-Chlorotoluene	48.3	2.5	50.000		96.6	70 - 130						
-Chlorotoluene	48.2	2.5	50.000		96.4	70 - 130						
,3,5-Trimethylbenzene	49.2	2.5	50.000		98.4	70 - 130						
ert-Butylbenzene	48.9	2.5	50.000		97.7	70 - 130						
,2,4-Trimethylbenzene	48.9	2.5	50.000		97.8	70 - 130						
ec-Butylbenzene	47.5	2.5	50.000		95.0	70 - 130						
,3-Dichlorobenzene	48.5	2.5	50.000		97.0	70 - 130						
1-Isopropyltoluene	48.6	2.5	50.000		97.2	70 - 130						
,4-Dichlorobenzene	48.0	2.5	50.000		96.0	70 - 130						

Project: 180101C, 134 Bilton Rd, Somers

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E1750-BS1) - Continued					Prepared: 5	/17/2019 Analyz	zed: 5/17/201	19	
1,2-Dichlorobenzene	48.0	2.5	50.000		96.0	70 - 130			
n-Butylbenzene	46.3	2.5	50.000		92.6	70 - 130			
1,2,4-Trichlorobenzene	48.2	2.5	50.000		96.3	70 - 130			
Hexachlorobutadiene	45.8	2.5	50.000		91.6	70 - 130			
Naphthalene	47.1	2.5	50.000		94.2	70 - 130			
1,2,3-Trichlorobenzene	47.4	2.5	50.000		94.8	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					99.0	70 - 130			
Surrogate: Toluene-d8					98.5	70 - 130			
Surrogate: 4-Bromofluorobenzene					111	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

Batch B9E2035 - EPA 8260C

Batch ByE2035 - EPA 8200C												
Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes			
Blank (B9E2035-BLK1)					Prepared: 5/	/17/2019 Analyz	zed: 5/17/201	9				
Methyl-t-Butyl Ether (MTBE)	ND	5.0										
Benzene	ND	1.0										
Toluene	ND	1.0										
Chlorobenzene	ND	1.0										
Ethylbenzene	ND	1.0										
n+p Xylenes	ND	1.0										
-Xylene	ND	1.0										
Styrene	ND	1.0										
sopropylbenzene	ND	1.0										
Bromobenzene	ND	1.0										
-Propylbenzene	ND	1.0										
-Chlorotoluene	ND	1.0										
-Chlorotoluene	ND	1.0										
,3,5-Trimethylbenzene	ND	1.0										
ert-Butylbenzene	ND	1.0										
,2,4-Trimethylbenzene	ND	1.0										
ec-Butylbenzene	ND	1.0										
,3-Dichlorobenzene	ND	1.0										
-Isopropyltoluene	ND	1.0										
4-Dichlorobenzene	ND	1.0										
,2-Dichlorobenzene	ND	1.0										
-Butylbenzene	ND	1.0										
,2,4-Trichlorobenzene	ND	1.0										
Iexachlorobutadiene	ND	0.45										
Vaphthalene	ND	1.0										
,2,3-Trichlorobenzene	ND	1.0										
urrogate: 1,2-Dichloroethane-d4					102	70 - 130						
urrogate: Toluene-d8					103	70 - 130						
urrogate: 4-Bromofluorobenzene					99.2	70 - 130						
LCS (B9E2035-BS1)					Prepared: 5/	/17/2019 Analyz	zed: 5/17/201	9				
Methyl-t-Butyl Ether (MTBE)	56.2	5.0	50.000		112	70 - 130						
Benzene	56.1	1.0	50.000		112	70 - 130						
Coluene	55.9	1.0	50.000		112	70 - 130						
Chlorobenzene	55.8	1.0	50.000		112	70 - 130						
thylbenzene	57.5	1.0	50.000		115	70 - 130						
n+p Xylenes	115	1.0	100.000		115	70 - 130						
-Xylene	58.3	1.0	50.000		117	70 - 130						
tyrene	58.6	1.0	50.000		117	70 - 130						
sopropylbenzene	60.1	1.0	50.000		120	70 - 130						
Bromobenzene	55.2	1.0	50.000		110	70 - 130						
-Propylbenzene	59.5	1.0	50.000		119	70 - 130						
-Chlorotoluene	56.3	1.0	50.000		113	70 - 130						
-Chlorotoluene	56.6	1.0	50.000		113	70 - 130						
,3,5-Trimethylbenzene	58.7	1.0	50.000		117	70 - 130						
ert-Butylbenzene	55.7	1.0	50.000		111	70 - 130						
,2,4-Trimethylbenzene	57.9	1.0	50.000		116	70 - 130						
ec-Butylbenzene	57.6	1.0	50.000		115	70 - 130						
,3-Dichlorobenzene	54.7	1.0	50.000		109	70 - 130						
-Isopropyltoluene	58.7	1.0	50.000		117	70 - 130						
- **	53.6	1.0	50.000		107	70 - 130						

Project: 180101C, 134 Bilton Rd, Somers

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E2035-BS1) - Continued					Prepared: 5	/17/2019 Analyz	red: 5/17/20	19	
1,2-Dichlorobenzene	55.4	1.0	50.000		111	70 - 130			
n-Butylbenzene	57.2	1.0	50.000		114	70 - 130			
1,2,4-Trichlorobenzene	49.3	1.0	50.000		98.6	70 - 130			
Hexachlorobutadiene	48.3	0.45	50.000		96.6	70 - 130			
Naphthalene	48.4	1.0	50.000		96.9	70 - 130			
1,2,3-Trichlorobenzene	45.5	1.0	50.000		91.0	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					101	70 - 130			
Surrogate: Toluene-d8					99.8	70 - 130			
Surrogate: 4-Bromofluorobenzene					98.9	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

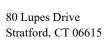
Batch B9E2145 - EPA 524.2 TICs

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
	(6 -)								
Blank (B9E2145-BLK1)					Prepared: 5/	/21/2019 Analyz	ea: 5/21/201	9	
No Tentatively Identified Compounds	ND	2.0							
Methyl-t-Butyl Ether (MTBE)	ND	1.0							
enzene	ND	0.50							
Coluene	ND	0.50							
Chlorobenzene	ND	0.50							
thylbenzene	ND	0.50							
+p Xylenes	ND	0.50							
-Xylene	ND	0.50							
tyrene	ND	0.50							
opropylbenzene	ND	0.50							
romobenzene	ND	0.50							
Propylbenzene	ND	0.50							
Chlorotoluene	ND	0.50							
Chlorotoluene	ND	0.50							
3,5-Trimethylbenzene	ND	0.50							
ert-Butylbenzene	ND	0.50							
2,4-Trimethylbenzene	ND	0.50							
c-Butylbenzene	ND	0.50							
3-Dichlorobenzene	ND	0.50							
Isopropyltoluene	ND	0.50							
4-Dichlorobenzene	ND	0.50							
2-Dichlorobenzene	ND	0.50							
Butylbenzene	ND	0.50							
2,4-Trichlorobenzene	ND	0.50							
exachlorobutadiene	ND	0.50							
aphthalene	ND ND	0.50							
2,3-Trichlorobenzene	ND	0.50							
urrogate: 1,2-Dichloroethane-d4					78.4	70 - 130			
urrogate: Toluene-d8					107	70 - 130			
urrogate: 4-Bromofluorobenzene					109	70 - 130			
CS (B9E2145-BS1)					Prepared: 5/	/21/2019 Analyz	ed: 5/21/201	9	
lethyl-t-Butyl Ether (MTBE)	29.3	1.0	30.000		97.7	70 - 130			
enzene	33.6	0.50	30.000		112	70 - 130			
oluene	34.1	0.50	30.000		114	70 - 130			
hlorobenzene	33.6	0.50	30.000		112	70 - 130			
thylbenzene	33.1	0.50	30.000		110	70 - 130			
+p Xylenes	68.7	0.50	60.000		115	70 - 130			
Xylene	33.3	0.50	30.000		111	70 - 130			
tyrene	34.0	0.50	30.000		113	70 - 130			
opropylbenzene	34.3	0.50	30.000		114	70 - 130			
romobenzene	34.1	0.50	30.000		114	70 - 130			
Propylbenzene	34.9	0.50	30.000		116	70 - 130			
Chlorotoluene	33.9	0.50	30.000		113	70 - 130			
Chlorotoluene	33.7	0.50	30.000		112	70 - 130			
3,5-Trimethylbenzene	35.4	0.50	30.000		118	70 - 130			
rt-Butylbenzene	34.2	0.50	30.000		114	70 - 130			
2,4-Trimethylbenzene	34.4	0.50	30.000		115	70 - 130			
ec-Butylbenzene	34.1	0.50	30.000		114	70 - 130			
3-Dichlorobenzene	33.3	0.50	30.000		111	70 - 130			
-Isopropyltoluene	34.6	0.50	30.000		115	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E2145-BS1) - Continued					Prepared: 5/	/21/2019 Analyz	zed: 5/21/20	19	
1,4-Dichlorobenzene	34.4	0.50	30.000		115	70 - 130			
1,2-Dichlorobenzene	34.7	0.50	30.000		116	70 - 130			
n-Butylbenzene	33.9	0.50	30.000		113	70 - 130			
1,2,4-Trichlorobenzene	35.8	0.50	30.000		119	70 - 130			
Hexachlorobutadiene	34.5	0.50	30.000		115	70 - 130			
Naphthalene	35.0	0.50	30.000		117	70 - 130			
1,2,3-Trichlorobenzene	34.8	0.50	30.000		116	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					97.5	70 - 130			
Surrogate: Toluene-d8					99.9	70 - 130			
Surrogate: 4-Bromofluorobenzene					99.0	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers


Batch B9E2149 - EPA 8260C

		Daten D	9E2149 - E	111102000					
Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B9E2149-BLK1)					Prepared: 5/	21/2019 Analyz	zed: 5/21/201	.9	
Methyl-t-Butyl Ether (MTBE)	ND	2.5							
Benzene	ND	2.5							
Toluene	ND	2.5							
Chlorobenzene	ND	2.5							
Ethylbenzene	ND	2.5							
n+p Xylenes	ND	2.5							
-Xylene	ND	2.5							
Styrene	ND	2.5							
sopropylbenzene	ND	2.5							
Bromobenzene	ND	2.5							
-Propylbenzene	ND	2.5							
-Chlorotoluene	ND	2.5							
-Chlorotoluene	ND	2.5							
,3,5-Trimethylbenzene	ND	2.5							
ert-Butylbenzene	ND	2.5							
,2,4-Trimethylbenzene	ND	2.5							
ec-Butylbenzene	ND	2.5							
,3-Dichlorobenzene	ND	2.5							
-Isopropyltoluene	ND	2.5							
,4-Dichlorobenzene	ND	2.5							
,2-Dichlorobenzene	ND	2.5							
-Butylbenzene	ND	2.5							
,2,4-Trichlorobenzene	ND	2.5							
Iexachlorobutadiene	ND	2.5							
Vaphthalene	ND	2.5							
,2,3-Trichlorobenzene	ND	2.5							
Surrogate: 1,2-Dichloroethane-d4					99.9	70 - 130			
urrogate: Toluene-d8					97.3	70 - 130			
urrogate: 4-Bromofluorobenzene					101	70 - 130			
LCS (B9E2149-BS1)					Prepared: 5/	21/2019 Analyz	zed: 5/21/201	.9	
Methyl-t-Butyl Ether (MTBE)	60.7	2.5	50.000		121	70 - 130			
Benzene	56.5	2.5	50.000		113	70 - 130			
Coluene	58.9	2.5	50.000		118	70 - 130			
Chlorobenzene	60.7	2.5	50.000		121	70 - 130			
Ethylbenzene	59.4	2.5	50.000		119	70 - 130			
n+p Xylenes	126	2.5	100.000		126	70 - 130			
-Xylene	61.3	2.5	50.000		123	70 - 130			
Styrene	63.2	2.5	50.000		126	70 - 130			
sopropylbenzene	60.9	2.5	50.000		122	70 - 130			
Bromobenzene	56.8	2.5	50.000		114	70 - 130			
-Propylbenzene	57.4	2.5	50.000		115	70 - 130			
-Chlorotoluene	57.4	2.5	50.000		115	70 - 130			
-Chlorotoluene	57.3	2.5	50.000		115	70 - 130			
,3,5-Trimethylbenzene	59.3	2.5	50.000		119	70 - 130			
ert-Butylbenzene	58.6	2.5	50.000		117	70 - 130			
,2,4-Trimethylbenzene	59.1	2.5	50.000		118	70 - 130			
ec-Butylbenzene	57.9	2.5	50.000		116	70 - 130			
,3-Dichlorobenzene	59.3	2.5	50.000		119	70 - 130			
-Isopropyltoluene	60.1	2.5	50.000		120	70 - 130			
,4-Dichlorobenzene	58.9	2.5	50.000		118	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B9E2149-BS1) - Continued					Prepared: 5	/21/2019 Analyz	ed: 5/21/201	19	
1,2-Dichlorobenzene	59.3	2.5	50.000		119	70 - 130			
n-Butylbenzene	59.3	2.5	50.000		119	70 - 130			
1,2,4-Trichlorobenzene	64.1	2.5	50.000		128	70 - 130			
Hexachlorobutadiene	62.8	2.5	50.000		126	70 - 130			
Naphthalene	61.4	2.5	50.000		123	70 - 130			
1,2,3-Trichlorobenzene	62.7	2.5	50.000		125	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					103	70 - 130			
Surrogate: Toluene-d8					98.4	70 - 130			
Surrogate: 4-Bromofluorobenzene					103	70 - 130			

Project: 180101C, 134 Bilton Rd, Somers

Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS) An Analyte added to each sample or sample extract. An internal standard is used to monitor retention

time, calculate relative response, and quantify analytes of interest.

Surrogate Recovery The % recovery for non-target organic compounds that are spiked into all samples. Used to determine

method performance.

Continuing Calibration An analytical standard analyzed with each set of samples to verify initial calibration of the system.

Batch Samples that are analyzed together with the same method, sequence and lot of reagents within the same

time period.

ND Not detected at or above the specified reporting limit.

RL RL is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.

Dilution Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high

concentration of target compounds.

Duplicate Result from the duplicate analysis of a sample.

Result Amount of analyte found in a sample.

Spike Level Amount of analyte added to a sample

Matrix Spike Result Amount of analyte found including amount that was spiked.

Matrix Spike Dup Amount of analyte found in duplicate spikes including amount that was spike.

Matrix Spike % Recovery % Recovery of spiked amount in sample.

Matrix Spike Dup % Recovery % Recovery of spiked duplicate amount in sample.

RPD Relative percent difference between Matrix Spike and Matrix Spike Duplicate.

Blank Method Blank that has been taken through all steps of the analysis.

LCS % Recovery Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.

Recovery Limits A range within which specified measurements results must fall to be compliant.

CC Calibration Verification

Flags:

H- Recovery is above the control limitsL- Recovery is below the control limits

B- Compound detected in the Blank

P- RPD of dual column results exceeds 40%

#- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903 New York NELAP Accreditation 11982 Rhode Island Certification 199

Project: 180101C, 134 Bilton Rd, Somers

CASE NARRATIVE

No collection times provided by client on chain of custody for the following samples: 9050382-01 through -05.

CET#: 9050382

Project: 180101C, 134 Bilton Rd, Somers

All questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

This technical report was reviewed by Robert Blake

R Blah T

David Ditta Laboratory Director Project Manager

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

Danid Sitta

- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogeneity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- *I- Analyte exceeds method limits from second source standard in Initial Calibration Verification (ICV). No directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

For Percent Solids, if any of the following prep methods (3050B, 3540C, 3545A, 3550C, 5035 and 9013A) were used for samples pertaining to this report, the percent solids procedure is within that prep method.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at or above the specified reporting limit

RL is the Reporting Limit

All analyses were performed in house unless a Reference Laboratory is listed.

Samples will be disposed of 30 days after the report date.

CET #: 9050382

Project: 180101C, 134 Bilton Rd, Somers

CERTIFICATIONS

Certified Analyses included in this Report	CERTIFICATIONS
Analyte	Certifications
CT-ETPH in Soil	
ЕТРН	СТ
EPA 524.2 in Water	CI
EPA 524.2 in water	
Methyl-t-Butyl Ether (MTBE)	CT,MA,RI
Benzene	CT,MA,RI
Toluene	CT,MA,RI
Chlorobenzene	CT,MA,RI
Ethylbenzene	CT,MA,RI
m+p Xylenes	CT,MA,RI
o-Xylene	CT,MA,RI
Styrene	CT,MA,RI
Isopropylbenzene	CT,MA,RI
Bromobenzene	CT,MA,RI
n-Propylbenzene	CT,MA,RI
2-Chlorotoluene	CT,MA,RI
4-Chlorotoluene	CT,MA,RI
1,3,5-Trimethylbenzene	CT,MA,RI
tert-Butylbenzene	CT,MA,RI
1,2,4-Trimethylbenzene	CT,MA,RI
sec-Butylbenzene	CT,MA,RI
1,3-Dichlorobenzene	CT,MA,RI
4-Isopropyltoluene	CT,MA,RI
1,4-Dichlorobenzene	CT,MA,RI
1,2-Dichlorobenzene	CT,MA,RI
n-Butylbenzene	CT,MA,RI
1,2,4-Trichlorobenzene	CT,MA,RI
Hexachlorobutadiene	CT,MA,RI
Naphthalene	CT,MA,RI
1,2,3-Trichlorobenzene	CT,MA,RI
EPA 8260C in Soil	
Methyl-t-Butyl Ether (MTBE)	CT,NY,PA
Benzene	CT,NY,PA
Toluene	CT,NY,PA
Chlorobenzene	CT,NY,PA
Ethylbenzene	CT,NY,PA
m+p Xylenes	CT,NY,PA
o-Xylene	CT,NY,PA
Styrene	CT,NY,PA
Isopropylbenzene	CT,NY,PA
Bromobenzene	CT,NY,PA
n-Propylbenzene	CT,NY,PA
2-Chlorotoluene	CT,NY,PA
4-Chlorotoluene	CT,NY,PA
1,3,5-Trimethylbenzene	CT,NY,PA
tert-Butylbenzene	CT,NY,PA

CET #: 9050382

Project: 180101C, 134 Bilton Rd, Somers

CERTIFICATIONS

Certified .	Analyses	included	in	this	Report
-------------	----------	----------	----	------	--------

Analyte	Certifications
EPA 8260C in Soil	
1,2,4-Trimethylbenzene	CT,NY,PA
sec-Butylbenzene	CT,NY,PA
1,3-Dichlorobenzene	CT,NY,PA
4-Isopropyltoluene	CT,NY,PA
1,4-Dichlorobenzene	CT,NY,PA
1,2-Dichlorobenzene	CT,NY,PA
n-Butylbenzene	CT,NY,PA
1,2,4-Trichlorobenzene	CT,NY,PA
Hexachlorobutadiene	CT,NY,PA
Naphthalene	CT,NY,PA
1,2,3-Trichlorobenzene	CT
EPA 8260C in Water	
Methyl-t-Butyl Ether (MTBE)	CT,NY
Benzene	CT,NY
Toluene	CT,NY
Chlorobenzene	CT,NY
Ethylbenzene	CT,NY
m+p Xylenes	CT,NY
o-Xylene	CT,NY
Styrene	CT,NY
Isopropylbenzene	CT,NY
Bromobenzene	CT,NY
n-Propylbenzene	CT,NY
2-Chlorotoluene	CT,NY
4-Chlorotoluene	CT,NY
1,3,5-Trimethylbenzene	CT,NY
tert-Butylbenzene	CT,NY
1,2,4-Trimethylbenzene	CT,NY
sec-Butylbenzene	CT,NY
1,3-Dichlorobenzene	CT,NY
4-Isopropyltoluene	CT,NY
1,4-Dichlorobenzene	CT,NY
1,2-Dichlorobenzene	CT,NY
n-Butylbenzene	CT,NY
1,2,4-Trichlorobenzene	CT,NY
Hexachlorobutadiene	CT,NY
Naphthalene	CT,NY
1,2,3-Trichlorobenzene	CT,NY
SM 2540 G in Soil	
Percent Solids	CT

CET #: 9050382

Project: 180101C, 134 Bilton Rd, Somers

 $Complete\ Environmental\ Testing\ operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
CT	Connecticut Public Health	PH0116	09/30/2020
MA	Massachusetts Laboratory Certification	M-CT903	06/30/2019
NY	New York Certification (NELAC)	11982	04/01/2020
PA	Pennsylvania DEP	68-02927	05/31/2020
RI	Rhode Island Certification	LAO 00227	12/30/2019

80 Lupes Drive Stratford, CT 06615

Bottle Request e-mail: bottleorders@cetlabs.com

e-mail: cet1@cetlabs.com

DW=Drinking

Tel: (203) 377-9984 Fax: (203) 377-9952

Matrix

Turnaround Time **

(check one)

☐ SOX ☐ ASE

(include Units for any sample depths provided) Sample ID/Sample Depths

Date/Time Collection

Solid Wipe Other (Specify)

Same Day

Next Day Two Day Three Day * Std (5-7 Days)

8260 CT List

CT ETPH

PCBs

Pesticides

8 RCRA 13 Priority Poll

8270 CT List 8270 PNAs

8260 Aromatics 8260 Halogens

COMPLETE ENVIRONMENTAL TESTING, INC. CHAIN OF CUSTODY

כ	Volatile
ato an	Soils
d Timo	Only:

CET:	Client:	Date and Time in Freezer	Volatile Soils Only:
age	28	3 o	f 28

one k	Spe	"		\vdash		_													15 CT DEP		
ē ½	ı <	Site		(P														Total	3	
	For	Spe) je														SPLP	Metals	
	Format	cific			5														TCLP	s	
		(<u>S</u>	0	-D	្		1												Dissolved]	
7,	X	M		roje	form .														Field Filtered		
		Site Specific (MS/MSD) *	Collector(s):	Project #:	Project Information														Lab to Filter		
_ S	0		(s):		3																C
` `	X	\mathcal{A}		_																	CET:
	11	7		$\not\sim$									1	T						\	
ᆔ			KZ	0				-					\vdash	\vdash		 				Additional	
Other	']'	RCP F	12					\vdash		\dashv	-	+-	\vdash	_						tior	
1 1		Pkg	1	1				<u> </u> -	\vdash			+	┿	-						⊣a l	
	Other	*	1/					<u> </u>			_		ļ.,				<u> </u>			Analysis	
MA				1,)				<u></u>	<u> </u>				_		<u> </u>					Jys	
- 11		B											L.] isi	
- 11	П	DQAW																			
- []		*		İ			1													1	ı
Ш	-	l .										T-	1	476	٥٧	ζ٠,	المرا	4	TOTAL # OF CONT.		ı
- []				1					f				1	<i>،ر</i>		 	1	70	NOTE# r		
								Ь					Ц	J	Щ.	Щ.	Ь			P	age

CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)

PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)

Soil VOCs Only

(M=MeOH

B= Sodium Bisulfate

W=Water F= Empty E=Encore)

RECEIVED BY:

NOTES:

200

7 B

1. E. O.

RELINQUISHED BY:

* Additional charge may apply. start on the next business day. All samples picked up by courier service will be considered next business day receipt for TAT purposes. ** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will

Temp Upon

Evidence of (**)
Cooling:

z

PAGE

유

REV. 10/16

RSR Reporting Limits (check one)

Laboratory Certification Needed (check

Data Report QA/QC CET Quote #

☐ EDD-

PIS/D

Location: _

Project:

윥

State

Ζįρ

Phone #

Fax#

E-mail

Report To:

Company Name

Client / Reporting Information

RELINQUISHED BY:

DATE/TIME

57479

-0

RECEIVED BY:

RELINQUISHED BY:

DATE/TIME

RECEIVED BY:

Address

Appendix C AST Confirmatory Sample

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Kristie Ferreira

Northstar Environmental Mgt LLC

1100 Boston Post Road Guilford, CT 06437

Analytical Report CET# 9100474

Report Date:October 24, 2019

Project: Bilton Rd

Connecticut Laboratory Certificate: PH 0116 Massachusetts Laboratory Certificate: M-CT903 Rhode Island Laboratory Certificate: 199

New York NELAP Accreditation: 11982 Pennsylvania Certificate: 68-02927 CET # : 9100474 Project: Bilton Rd

Client Sample ID AST-2 Lab ID: 9100474-03

Conn. Extractable TPH

Analyst: ACS

Method: CT-ETPH

Method: CT-ETPH

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ЕТРН	130	55	1	EPA 3550C	B9J1718	10/17/2019	10/17/2019 21:39	R
Surrogate: Octacosane	110 %	50	- 150		B9J1718	10/17/2019	10/17/2019 21:39	

R C14-C36 Unknown

CASE NARRATIVE

No collection times provided by client on chain of custody for the following samples: 9100474-01 through -03.

CET #: 9100474 Project: Bilton Rd

All questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

This technical report was reviewed by Robert Blake

RBlah T

David Ditta Laboratory Director Project Manager

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

David Litta

- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogeneity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- *I- Analyte exceeds method limits from second source standard in Initial Calibration Verification (ICV). No directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

For Percent Solids, if any of the following prep methods (3050B, 3540C, 3545A, 3550C, 5035 and 9013A) were used for samples pertaining to this report, the percent solids procedure is within that prep method.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at or above the specified reporting limit

Reporting Limit (RL) is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.

All analyses were performed in house unless a Reference Laboratory is listed.

Samples will be disposed of 30 days after the report date.

Appendix D Shipping Logs and Weight Tickets

ZZ IIIQI	ustry Road, Chicop	ee, MA 01020			10/16/19	2:10 PM
Truck ID	SCOOBY	SCOOBY.		Gross	81760 Lb	
Customer	10590	Ecos Energy	os Energy Tare	l are	27200 Lb	*
Order	19-09-M-6385CT	134 Bilton Road, Somers, CT		Net	27.28 Ton	
P.O.						
Product	GAS/OIL/PETRO	LEUM		-	Today	To Date
Site Addr.	134 Bilton Road Somers, CT			Loads Qty	6 158.10	2 62.10
Driver:		W				
Customer:						
Arrival Time):	Depart Time:				

321518

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, IT'S REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF IT'S PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Fumes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

Truck ID	SCOOBY	SCOOBY.		Gross	79660 Lb	*
Customer Order	10590 19-09-M-6385CT	Ecos Energy 134 Bilton Road, Somers	s, CT	Tare – Net	27200 Lb 26.23 Ton	·
P.O.						
Product	GAS/OIL/PETRO	I ELINA	i		Today	To Date
Toduct	OAG/OIL/FETRO	LEUW		Loads	5	1
Site Addr.	134 Bilton Road Somers, CT			Qty	130.82	34.82
Driver:		W				
Customer:						
Arrival Time):	Depart Time:				

10/16/19

321502

12:40 PM

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eves - Thermal Burns could result. Furnes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

Truck ID	SCOOBY	SCOOBY.	Gross	80440		m
Customer Order	10590 19-09-M-6385CT	Ecos Energy 134 Bilton Road, Somers, CT	Tare Net	27200		m
P.O.						
Product	GAS/OIL/PETRO	LEUM		Today	-	To Date
Site Addr.	134 Bilton Road Somers, CT		Loads Qty	4 104.59		0 8.59
Driver:	-	M				
Customer:	-					
Arrival Time):	Depart Time:				
NOTICE TO PURCHA	SERS: The Durchaser, through th	sair officer principal ampleyee as accel basely also be the				

10/16/19

321487

11:22 AM

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FUNCHED IN THE PURCHASE AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VENICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result; Funges count cause any irritation.

Truck ID	SCOOBY	SCOOBY.		Gross	78900 Lb	m
Customer Order	10590 19-09-M-6385CT	Ecos Energy 134 Bilton Road, Somers, C	т	Tare –	27200 Lb 25.85 Ton	- m
P.O.						
Product	CACIOU IDETRO	I ELINA			Today	To Date
Product	GAS/OIL/PETRO	LEUM		Loads	3	-1
Site Addr.	134 Bilton Road Somers, CT			Qty	77.97	-18.03
		_	1			
Driver:		W				
Customer:						
Arrival Time	:	Depart Time:				
NOTICE TO PURCHA	SERS: The Purchaser, through the	eir officer, principal, employee or agent, hereby acknowledge	owledges that in co	onsideration of the pure	hase and loading of graduat fra	m Tad Oadriel Oar I

10/16/19

321476

10:07 AM

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PORCHASSERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result Furnes could result from the contract of the contract

Truck ID	SCOOBY	SCOOBY.	Gros
Customer Order	10590 19-09-M-6385CT	Ecos Energy 134 Bilton Road, Somers, CT	Tare
P.O.			
Product	GAS/OIL/PETRO	LEUM	Load
Site Addr.	134 Bilton Road Somers, CT		Qty
Driver:		Mur	
Customer:	-		
Arrival Time	e:	Depart Time:	
NOTICE TO PURCH	ASERS: The Purchaser, through th	seir officer principal ampleyee or agent basely calcounted at the	.,

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

Gross Tare	79360 Lb 27200 Lb	m *
Net	26.08 Ton	m
	Today	To Date
Loads Qty	2 52.12	-2 -43.88

Ticket

10/16/19

321464

8:55 AM

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity, Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275'F-325'F) Avoid contact with skin & eyes - Thermal Burns could result Furnes could result former or institution.

							_
Truck ID	SCOOBY	SCOOBY.		Gross	79280 Lb	m ¹	
Customer Order	10590	Ecos Energy		Tare	27200 Lb	*	
	19-09-101-036501	134 Bilton Road, Somers	, CT	Net	26.04 Ton	m	
P.O.							
Product	GAS/OIL/PETRO	LEUM			Today	To Date	_
12 2 3 3 3 3 3 3				Loads	1	-3	
Site Addr.	134 Bilton Road Somers, CT			Qty	26.04	-69.96	_
Driver:		Un					
Customer:							
Arrival Time	:	Depart Time:					
NOTICE TO DUDCHA	SEDS: The Direction of the Con-						-

10/16/19

321454

7:38 AM

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Furnes count cause nausea or irritation. Seek proper medical assistance in all emergencies

Note: Make additional copies of this page as necessary.

Massachusetts Department of Environmental Protection Bureau of Air & Waste

Material Shipping Record & Log For the shipment of contaminated soil, urban fill, and dredge

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

1909 M 6385 CT Tracking Number

Scooly

J. Load Information	
Load#:	
Robert Acqu	ondricks (DWS
Signature of transporter 10/16/19 737 PM	Receiving facility 7:00 AW
Date received YUSSUM Time received	Date of shipment Time of shipment
Truck/Tractor registration	Trailer registration
Load size (cubic yards tons)	
Load#:	10
Misch Augu	undrocks/ DWS
Signature of transporter	Receiving facility 10/16/19 825 AM
Date received Wos 80% Time received	Date of shipment Time of shipment
Truck/Tractor registration	Trailer registration
Load size (cubic yard (tons)	
Load#:	
Rose, & Roge	Receiving facility DWS
Signature of transporter 10/16/18 1007 am	Receiving facility 935 AM
Date received Time received	Date of shipment Time of shipment
Truck/Tractor registration	Trailer registration
25.85 Load size (cubic yards/fons))	
	*
K. Log Sheet Volume Information	
og onoot rolanio information	
Total volume this page (cubic yards/tons)	Page of
Total carried forward (cubic yards/tons)	Page/ of
Total carried forward and this page (cubic varde/lone)	

Note: Make additional copies of this page as necessary.

Massachusetts Department of Environmental Protection Bureau of Air & Waste

Material Shipping Record & Log For the shipment of contaminated soil, urban fill, and dredge

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

1909 M 6385 CT Tracking Number

Scooby

J. Load Information	
Signature of transporter Date received Truck/Tractor registration Load size (cubic yards/tons)	Receiving facility 10/16/18 Date of shipment Trailer registration
Signature of transporter Date received Truck/Tractor registration Load size (cubic yards/kons)	Receiving facility 10 16 18 1210 pm Date of shipment Trailer registration
Signature of transporter, Louis 209 pm Time received Truck/Tractor registration 27.28 Load size (cubic yards/lone)	Receiving facility 10/16/19 Date of shipment Trailer registration
K. Log Sheet Volume Information Total volume this page (cubic yards/tons) Total carried forward (cubic yards/tons) Total carried forward and this page (cubic yards/tons)	Page of

Truck ID	SCOOBY	SCOOBY.		Gross	79420 Lb	m
Customer Order	10590 19-09-M-6385CT	Ecos Energy 134 Bilton Road, Somers,	СТ	Tare Net	27200 Lb 26.11 Ton	* m
P.O.					65	
Product	GAS/OIL/PETRO	LELIM			Today	To Date
Toduct	OAG/OIL/FETRO	LEOW		Loads	3	5
Site Addr.	134 Bilton Road Somers, CT			Qty	79.25	141.35
Driver:		ru				
Customer:						
Arrival Time):	Depart Time:				
NOTICE TO PURCHA	SERS: The Purchaser, through th	eir officer, principal, employee or agent, hereby ac	knowledges that in co	onsideration of the pur	chase and loading of product	from Ted Ondrick Construction

10/17/19

321610

12:57 PM

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, IT'S REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER FURTHER IN LAW OR IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Furnes count cause agus or irritation. Seek proper medical assistance in all empergencies.

							_
Truck ID	SCOOBY	SCOOBY.		Gross Tare	81040 Lb 27200 Lb	m *	
Customer Order	10590 19-09-M-6385CT	Ecos Energy 134 Bilton Road, Somers, C	ст	Net	26.92 Ton	m	
P.O.							
Product	GAS/OIL/PETRO	LELINA		,	Today	To Date	_
Froduct	GASIOILIFETRO	LEUM		Loads	2	4	
Site Addr.	134 Bilton Road Somers, CT			Qty	53.14	115.24	_
Driver:	-	M					
Customer:	, 						
Arrival Time):	Depart Time:					
NOTICE TO PURCHA	ASERS: The Purchaser, through the	eir officer principal employee or agent horoby self-	noulodoon that is as	anidosettan of the con-			

10/17/19

321588

11:21 AM

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBLITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, ITS REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

Truck ID	SCOOBY	SCOOBY.		Gross Tare	79640 Lb 27200 Lb	m *
Customer Order	10590 19-09-M-6385CT	Ecos Energy 134 Bilton Road, Somer	s, CT	Net -	26.22 Ton	m
P.O.						
Product	GAS/OIL/PETRO	LELIM			Today	To Date
rioduct	OAS/OIL/FLING	LEOW	1	Loads	1	3
Site Addr.	134 Bilton Road Somers, CT			Qty	26.22	88.32
Driver:	(u				
Customer:	8					
Arrival Time	:	Depart Time:				
NOTICE TO PURCHA	SERS: The Purchaser, through th	eir officer, principal, employee or agent, here	by acknowledges that in co	onsideration of the pure	chase and loading of produc	t from Ted Ondrick Construction

10/17/19

321568

10:00 AM

Ondrick Materials & Recycling, LLC

22 Industry Road, Chicopee, MA 01020

NOTICE TO PURCHASERS: The Purchaser, through their officer, principal, employee or agent, hereby acknowledges that in consideration of the purchase and loading of product from Ted Ondrick Construction Company, hereafter referred to as Seller, the Purchaser agrees that SELLER'S LIABBILITY, IN TORT, IN NEGLIGENCE OR OTHERWISE SHALL BE LIMITED TO THE AMOUNT OF THE PURCHASE PRICE OF THE SELLER'S PRODUCT AND UNDER NO CIRCUMSTANCE SHALL SELLER BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES arising out of the fact that the vehicle loaded by the seller for the purchaser was loaded in excess of its permitted and certified capacity. Purchaser, through their officer, principal, employee or agent, further agrees in consideration of the purchase and loading of Seller's product, TO RELEASE, REMISE AND FOREVER DISCHARGE THE SELLER, IT'S REPRESENTATIVES, SUCCESSORS AND ASSIGNS OF AND FROM ANY AND ALL DEBTS, DEMANDS, ACTIONS, CAUSES OF ACTION, SUITS, PRECEEDINGS, AGREEMENTS, CONTRACTS, JUDGEMENTS, DAMAGES, EXECUTIONS, CLAIMS AND LIABILITIES WHATSOEVER OF EVERY NATURE AND NAME, WHETHER KNOWN OR UNKNOWN, WHETHER IN LAW OR IN EQUITY, WHICH THE PURCHASER HAS OR MAY HAVE FOR ANY REASON, MATTER OR CAUSE, AND PURCHASER FURTHER INDEMNIFIES AND HOLDS SELLER HARMLESS FROM ANY LOSS, COST, EXPENSE, DAMAGE, OR ATTORNEY'S FEES ARISING OUT OF THE SELLER'S LOADING OF ANY VEHICLE FOR THE PURCHASER FURTHER IN EXCESS OF ITS PERMITTED AND CERTIFIED CAPACITY

CAUTION: HOT MATERIAL (275°F-325°F) Avoid contact with skin & eyes - Thermal Burns could result. Furnes count cause nausea or irritation. Seek proper medical assistance in all emergencies.

Note: Make additional coples of this

page as necessary.

Material Shipping Record & Log
For the shipment of contaminated soil, urban fill, and dredge materials
not subject to management under section 310 CMR 40.0035 nor
manifesting under 310 CMR 30.000

1909m6385CT Tracking Number

5	Scooly
J. Load Information	
Load#;	
_ When the	onderves/Dus
Signature of transporter	Receiving facility
Date received Time received	Date of shipment Time of shipment
Truck/Tractor registration	
26.22	Traffer registration
Load size (cubic yard clons)	8
Load#:	/
- Noto Che	onderchs/DWD
Signature of transporter	Receiving facility
Date received Time received	Date of shipment Time of shipment
70580AA	
Truck/Tractor registration 26.92	Trailer registration
Load size (cubic yardenons)	
3	
Load#:	/
- The Che	a rens ondricht Sows
Signature of transporter, 10/17/18 1256 pm	Receiving facility
Date received . Time received	Date of shipment Time of shipment
Truck/Tractor registration	
26.11	Trailer registration
Load size (cubic yard floor)	
Log Sheet Volume Information	
er en	. The second second second
Total volume this page (cubic yards/tons)	/
Total carried forward (cubic yards/tons)	Page of
Total carried forward and this page (cubic yards/lons)	

WIN FOREVIASHICAGE FORE

Material Shipping Record and Log • Page 6 of 6