

**STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL**

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

January 6, 2025

Kenneth C. Baldwin, Esq.
Robinson & Cole LLP
One State Street
Hartford, CT 06103
kbaldwin@rc.com

RE: **SUBPETITION NO. 1133-VER-20241129** - Cellco Partnership d/b/a Verizon Wireless eligible facility request for modifications to an existing telecommunications facility located at 208 Valley Road, New Canaan, Connecticut. **Acknowledgement of Complete Eligible Facilities Request.**

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) is in receipt of your correspondence of January 3, 2025 submitted in response to the Council's December 18, 2024 notification of an incomplete Eligible Facility Request (EFR) with regard to the above-referenced matter.

The submission renders the EFR complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie Bachman
Executive Director

MAB/ANM/dll

KENNETH C. BALDWIN

One State Street
Hartford, CT 06103
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts
and New York

January 3, 2025

Via Electronic and U.S. Mail

Melanie A. Bachman, Esq.
Executive Director/Staff Attorney
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: **SUB-PETITION NO. 1133-VER-20241129 – Cellco Partnership dba Verizon Wireless, 208 Valley Road, New Canaan, Connecticut**

Dear Attorney Bachman:

In accordance with the Council's December 18, 2024 Incomplete Notice, attached is an updated Calculated Radio Frequency Emissions Report for the Silver Hill Hospital facility including the RF Emissions for AT&T, Dish and T-Mobile together with the proposed facility modifications proposed by Verizon Wireless in the above-referenced Sub-Petition filing.

Please feel free to contact me if you have any questions or need any additional information.

Sincerely,

Kenneth C. Baldwin

Enclosures

C Squared Systems, LLC
65 Dartmouth Drive
Auburn, NH 03032
(603) 644-2800
support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

Silver Hill
208 Valley Road, New Canaan, CT 06840

January 3, 2025

Table of Contents

1. Introduction	1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits.....	1
3. RF Exposure Prediction Methods.....	2
4. Antenna Inventory.....	3
5. Calculation Results	4
6. Conclusion.....	6
7. Statement of Certification.....	6
Attachment A: References	7
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	8
Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns	10

List of Figures

Figure 1: Graph of General Population % MPE vs. Distance.....	4
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE).....	9

List of Tables

Table 1: Proposed Antenna Inventory	3
Table 2: Maximum Percent of General Population Exposure Values	5
Table 3: FCC Limits for Maximum Permissible Exposure	8

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed installation of Verizon's antenna arrays to be mounted at 98' and 106' AGL on an existing monopole tower located at 208 Valley Road in New Canaan, CT. The coordinates of the monopole tower are 41° 09' 58.45" N, 73° 28' 13.72" W.

Verizon is proposing the following:

- 1) Install six (6) multi-band antennas (two (2) per sector) to support its 4G LTE and 5G NR network.
- 2) Remove six (6) directional panel antennas.

This report considers the antenna configuration for Verizon's¹ proposed installation as well as existing antenna configuration for AT&T², DISH³ and T-Mobile⁴ to calculate the resulting % Maximum Permissible Exposure (MPE) at ground level around the existing facility. It should be noted that this report is an update to a previously issued report (dated 2/15/2023) to now include AT&T and DISH in the overall analysis.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the documents referenced in Attachment A of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

¹ As referenced to Verizon's Radio Frequency Design Sheet updated 9/28/2022.

² As referenced to DISH's Connecticut Siting Council Tower Share Application – 208 Valley Road, New Canaan, CT, dated 8/23/2023.

³ As referenced to DISH's Connecticut Siting Council Tower Share Application – 208 Valley Road, New Canaan, CT, dated 8/23/2023

⁴ As referenced to Fox Hill Telecom's Radio Frequency Emissions Analysis Report dated 7/12/2022).

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

$$\text{PowerDensity} = \left(\frac{EIRP}{\pi \times R^2} \right) \times \text{Off BeamLoss}$$

Where:

EIRP = Effective Isotropic Radiated Power

$R = \sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor of 1.6

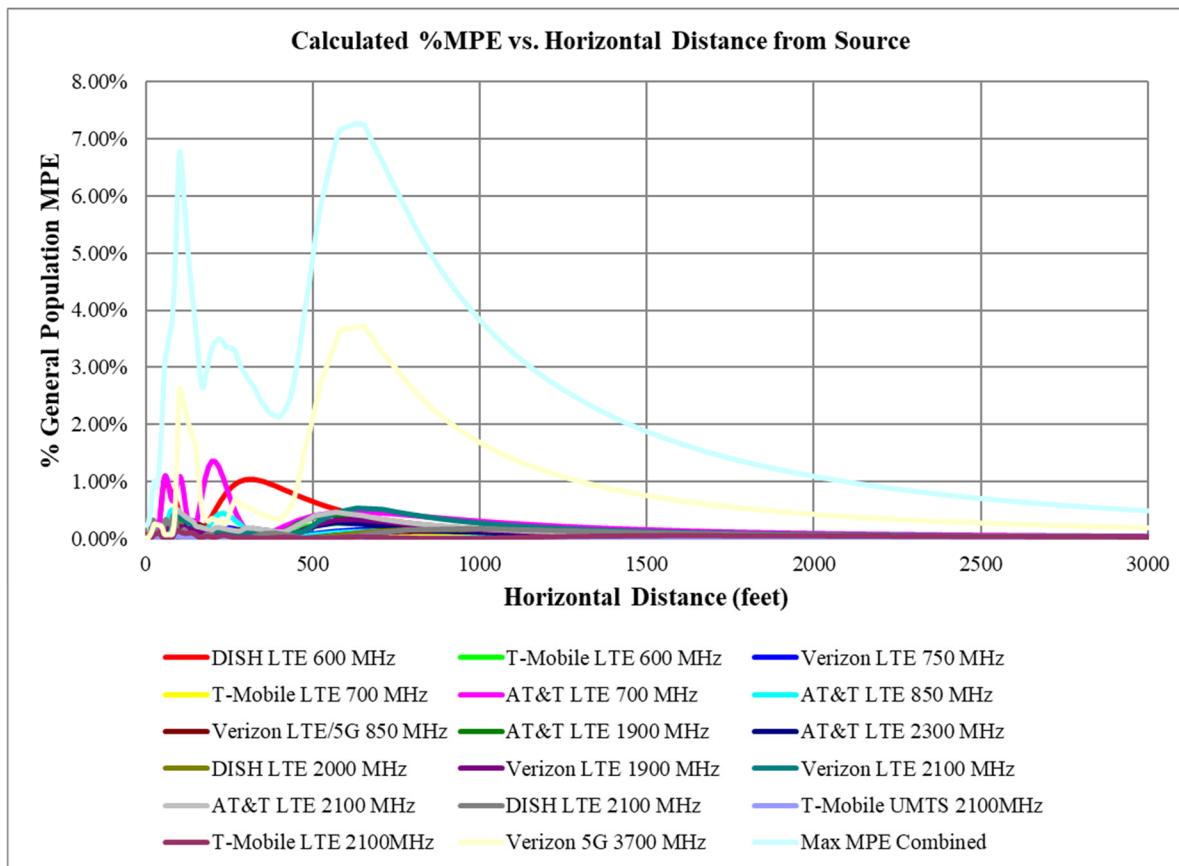
These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

The percent of MPE values presented in this report reflect levels that one may encounter from one sector of a carrier's antennas. Most carriers use 3 or 4 sectors per site with azimuths approximately 90 or 120 degrees apart, respectively; therefore, one could not be standing in the main beam of all sectors at the same time. In cases where antenna models are not uniform across all sectors, the antenna model with the highest gain was used for the calculations. This results in a conservative or "worst case" assumption for percent of MPE calculations.

4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data model and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Azimuth	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
Verizon	Alpha / 320°	700	160	14.2	4208	NNH4-65B-R6H4	68	0	6	106
		850	160	14.8	4831		64			
		1900	160	17.3	8592		67			
		2100	240	17.9	14798		61			
		3700	320	17.1	16411		85	0	2.67	98
	Beta / 80°	700	160	14.2	4208	NNH4-65B-R6H4	68	0	6	106
		850	160	14.8	4831		64			
		1900	160	17.3	8592		67			
		2100	240	17.9	14798		61			
		3700	320	17.1	16411		85	0	2.67	98
	Gamma / 200°	700	160	14.2	4208	NNH4-65B-R6H4	68	0	6	106
		850	160	14.8	4831		64			
		1900	160	17.3	8592		67			
		2100	240	17.9	14798		61			
		3700	320	17.1	16411		85	0	2.67	98


Table 1: Proposed Antenna Inventory^{5 6}

⁵ Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 9/25/2021.

⁶ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within ± 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (7.28% of the General Population limit) is calculated to occur at a horizontal distance of 631 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1200 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 631 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm ²)	Limit (mW/cm ²)	% MPE
AT&T LTE 1900 MHz	1	160.0	86.0	631	0.003616	1.000	0.36%
AT&T LTE 2100 MHz	1	160.0	86.0	631	0.004132	1.000	0.41%
AT&T LTE 2300 MHz	1	100.0	86.0	631	0.002564	1.000	0.26%
AT&T LTE 700 MHz	1	360.0	86.0	631	0.002162	0.467	0.46%
AT&T LTE 850 MHz	1	160.0	86.0	631	0.000677	0.567	0.12%
DISH LTE 2000 MHz	1	160.0	75.0	631	0.000926	1.000	0.09%
DISH LTE 2100 MHz	1	160.0	75.0	631	0.000480	1.000	0.05%
DISH LTE 600 MHz	1	120.0	75.0	631	0.001678	0.400	0.42%
T-Mobile LTE 2100MHz	1	160.0	117.0	631	0.000266	1.000	0.03%
T-Mobile LTE 600 MHz	1	80.0	117.0	631	0.001047	0.400	0.26%
T-Mobile LTE 700 MHz	1	40.0	117.0	631	0.000034	0.500	0.01%
T-Mobile UMTS 2100MHz	1	40.0	117.0	631	0.000067	1.000	0.01%
Verizon 5G 3700 MHz	1	320.0	98.0	631	0.037008	1.000	3.70%
Verizon LTE 1900 MHz	1	160.0	106.0	631	0.003332	1.000	0.33%
Verizon LTE 2100 MHz	1	240.0	106.0	631	0.005303	1.000	0.53%
Verizon LTE 750 MHz	1	160.0	106.0	631	0.000747	0.497	0.15%
Verizon LTE/5G 850 MHz	1	160.0	106.0	631	0.000479	0.567	0.08%
						Total	7.28%

Table 2: Maximum Percent of General Population Exposure Values^{7 8 9 10}

⁷ Frequencies listed are representative of the operating band and are not the specific operating frequency.

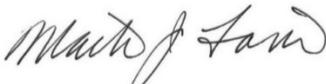
⁸ The total % MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not reflect the total value listed in the table.

⁹ Transmit Power assumes 0 dB of cable loss.

¹⁰ The power out of the base station per transmitter for AT&T was taken from DISH's Connecticut Siting Council Tower Share Application – 208 Valley Road, New Canaan, CT, dated 8/23/2023.

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be **7.28% of the FCC limit (General Population/Uncontrolled)**. This maximum cumulative percent of MPE value is calculated to occur 631 feet away from the site.


7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By: _____
Ram Acharya
RF Engineer 1
C Squared Systems, LLC

January 2, 2025
Date

Reviewed/Approved By: _____
Martin J. Lavin
Senior RF Engineer
C Squared Systems, LLC

January 3, 2025
Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2019, IEEE Standard Safety Levels With Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2021, IEEE Recommended Practice for Measurements and Computations of Electric, Magnetic, and Electromagnetic Fields With Respect to Human Exposure to Such Fields, 0 Hz-300 GHz IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure¹¹

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure¹²

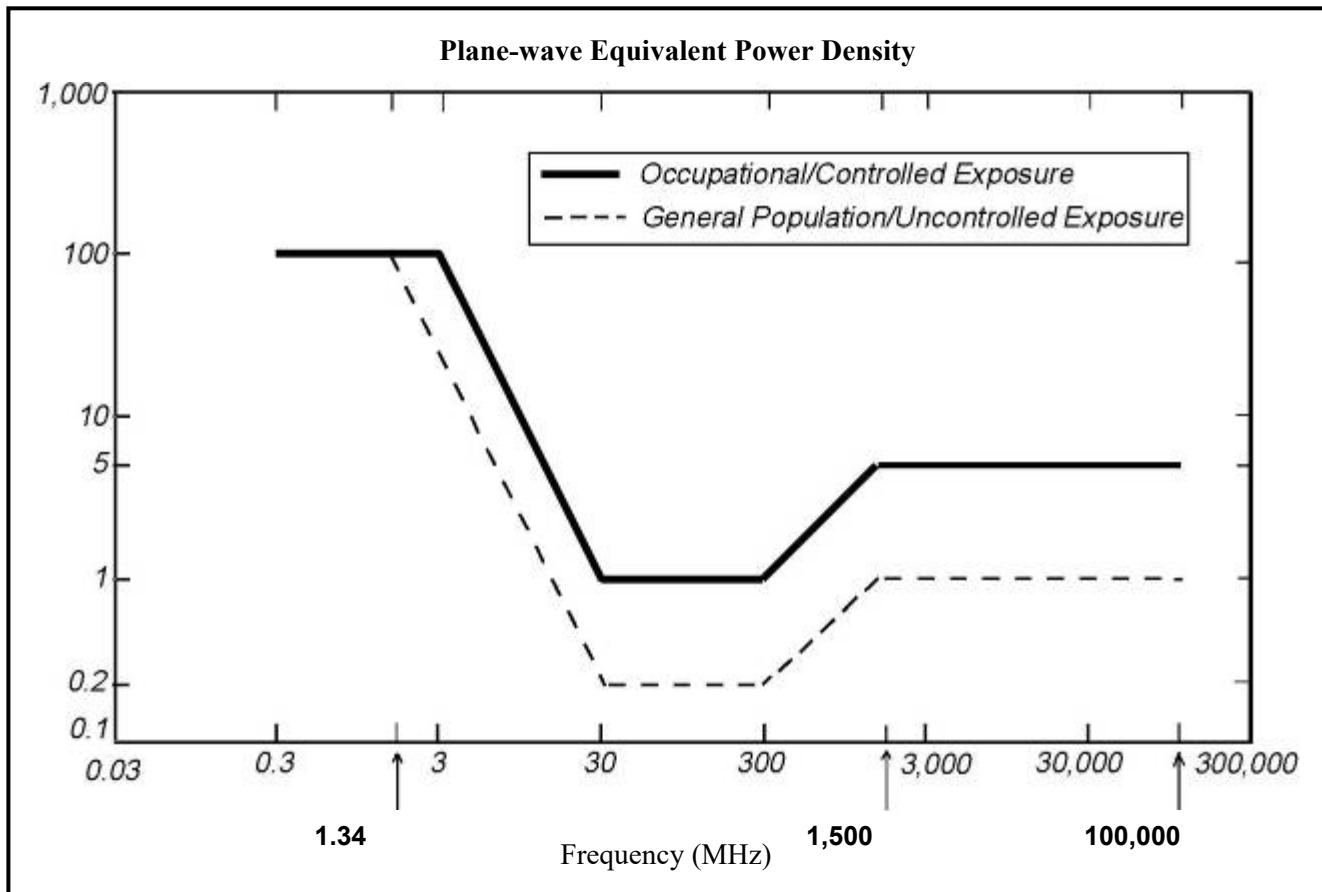
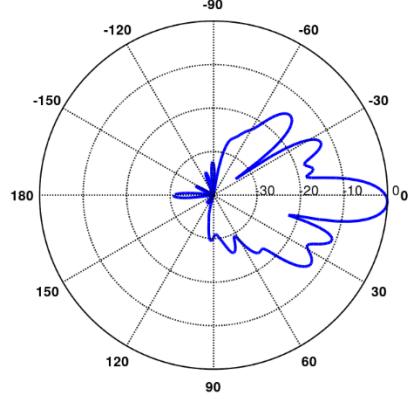
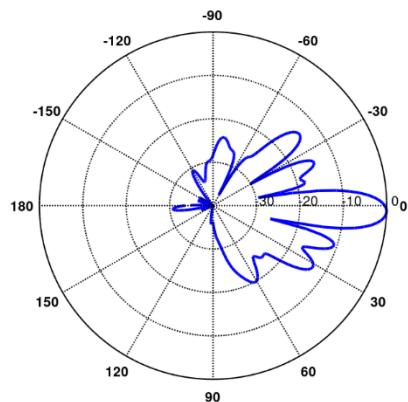
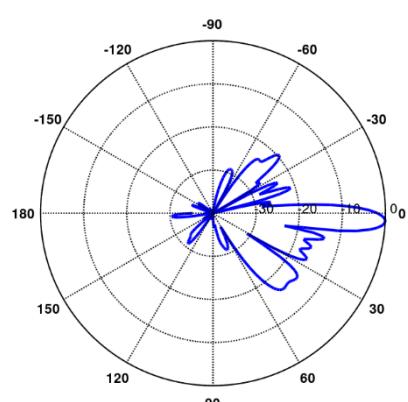
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

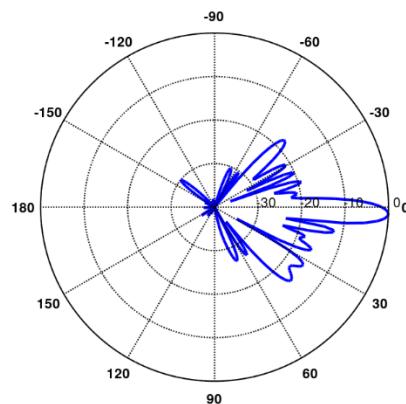
f = frequency in MHz * Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

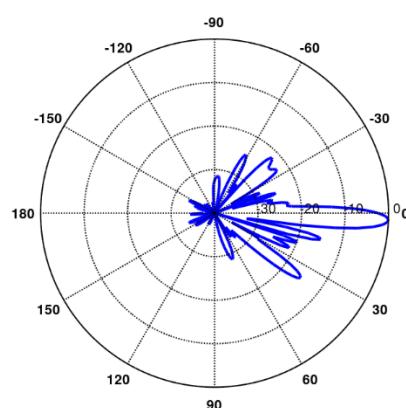
¹¹ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

¹² General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.


Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns


<p>750 MHz</p> <p>Manufacturer: COMMSCOPE Model #: NNH4-65B-R6H4 Frequency Band: 698-806 MHz Gain: 14.2 dBi Vertical Beamwidth: 11.5° Horizontal Beamwidth: 68° Polarization: ±45° Dimensions (L x W x D): 71.9" x 19.6" x 7.7"</p>	
<p>885 MHz</p> <p>Manufacturer: COMMSCOPE Model #: NNH4-65B-R6H4 Frequency Band: 806-896 MHz Gain: 14.8 dBi Vertical Beamwidth: 10.2° Horizontal Beamwidth: 68° Polarization: ±45° Dimensions (L x W x D): 71.9" x 19.6" x 7.7"</p>	
<p>1900 MHz</p> <p>Manufacturer: COMMSCOPE Model #: NNH4-65B-R6H4 Frequency Band: 1850-1990 MHz Gain: 17.3 dBi Vertical Beamwidth: 6.5° Horizontal Beamwidth: 67° Polarization: ±45° Dimensions (L x W x D): 71.9" x 19.6" x 7.7"</p>	

2100 MHz

Manufacturer: COMMSCOPE
Model #: NNH4-65B-R6H4
Frequency Band: 1920-2180 MHz
Gain: 17.9 dBi
Vertical Beamwidth: 6°
Horizontal Beamwidth: 61°
Polarization: ±45°
Dimensions (L x W x D): 71.9" x 19.6" x 7.7"

3700 MHz

Manufacturer: JMA
Model #: MX08FIT265-01
Frequency Band: 3700-4200 MHz
Gain: 17.1 dBi
Vertical Beamwidth: 5.5°
Horizontal Beamwidth: 85°
Polarization: ±45°
Dimensions (L x W x D): 32" x 11.6" x 4.53"

