

April 1, 2021

**VIA E-MAIL ([SITING.COUNCIL@CT.GOV](mailto:SITING.COUNCIL@CT.GOV)) & ([MELANIE.BACHMAN@CT.GOV](mailto:MELANIE.BACHMAN@CT.GOV))  
& OVERNIGHT MAIL**

Connecticut Siting Council  
Attn: Melanie A. Bachman, Esq., Executive Director  
Ten Franklin Square  
New Britain, CT 06051

**RE: Sub-Petition for Declaratory Ruling – Danbury, CT**

Dear Executive Director Bachman:

Please find enclosed for filing one copy of New Cingular Wireless PCS LLC d/b/a AT&T's ("AT&T") Sub-Petition for a Declaratory Ruling for the approval of an eligible facilities request for collocation, modification and extension of an existing wireless telecommunications facility without substantial physical change to the existing tower at 15 Great Pasture Road, Danbury, Connecticut. Also enclosed is a check in the amount of \$625.00 representing the required filing fee.

A complete copy of the filing will be provided in PDF format electronically via One Drive.

Sincerely,

**BROWN RUDNICK LLP**

*Thomas Regan*

**THOMAS J. REGAN**



cc: Mayor Joseph M. Cavo, City of Danbury, cover letter only (copy of petition provided with notice)

Sharon B. Calitro, AICP, Director of Planning & Zoning, City of Danbury, cover letter only (copy of petition provided with notice)

Janice R. Giegler, City Clerk, City of Danbury, cover letter only (copy of petition provided with notice)

Matt Knickerbocker, First Selectman, Town of Bethel, cover letter only (copy of petition provided with notice)

Beth Cavagna, Director/Town Planner, Town of Bethel, cover letter only (copy of petition provided with notice)

Lisa Bergh, Town Clerk, Town of Bethel, cover letter only (copy of petition provided with notice)

AT&T

Centerline Communications

Edward D. Pare, Jr., Esq.

**STATE OF CONNECTICUT  
CONNECTICUT SITING COUNCIL**

IN RE:

NEW CINGULAR WIRELESS PCS, LLC (AT&T) SUB-PETITION NO. \_\_\_\_\_  
SUB-PETITION FOR A DECLARATORY RULING FOR  
COLLOCATION, MODIFICATION AND EXTENSION  
OF THE EXISTING TELECOMMUNICATIONS  
FACILITY ON PROPERTY LOCATED AT  
15 GREAT PASTURE ROAD, DANBURY,  
CONNECTICUT.  
April 1, 2021

**SUB-PETITION FOR A DECLARATORY RULING:  
APPROVAL OF AN ELIGIBLE FACILITIES REQUEST FOR COLLOCATION,  
MODIFICATION AND EXTENSION OF AN EXISTING WIRELESS  
TELECOMMUNICATIONS FACILITY WITHOUT SUBSTANTIAL PHYSICAL  
CHANGE TO THE EXISTING TOWER AT 15 GREAT PASTURE ROAD, DANBURY,  
CONNECTICUT**

## I. INTRODUCTION

On behalf of New Cingular Wireless PCS LLC d/b/a AT&T (“AT&T”), we respectfully submit this sub-petition (the “Sub-Petition”) to the Connecticut Siting Council (the “Council”) for an administrative approval of a modification to an existing wireless telecommunications facility qualifying as an eligible facility request pursuant to Section 6409(a) of the Federal Middle Class Tax Relief and Job Creation Act of 2012 (the “Spectrum Act”, codified at 47 U.S.C. §1455) and the Council’s ruling in Petition 1133 (the “Ruling”) to collocate a wireless telecommunications facility consisting of six (6) panel antennas at 140’ above tower baseplate (“ATB”) antenna centerline height on a twenty foot (20’) tall extension (the “Extension”) of the existing monopole (the “Monopole”), located on property with an address of 15 Great Pasture Road, Danbury, Connecticut (the “Site”). **Attachment 1** contains Celco Partnership’s (“Verizon Wireless”) authorization permitting AT&T to file this Sub-Petition. The modifications and collocation will allow AT&T to provide its enhanced, state-of-the-art services, including 5G services, to its customers.

## II. HISTORY OF EXISTING TELECOMMUNICATIONS FACILITY

The 120' Monopole is owned by Verizon Wireless and was approved by the Council on December 10, 2015 in Docket No. 462. As noted in the Findings of Fact and Opinion in Docket 462, the Monopole was designed to be extended by twenty feet (20') to provide collocation opportunities for other wireless providers.

### III. PROPOSED MODIFICATIONS

AT&T proposes to extend the existing 120' Monopole with the Extension to a height of 140' ATB and collocate six (6) panel antennas at the 140' ATB antenna centerline height, together

with related amplifiers, cables, fiber and other associated antenna equipment, including, without limitation, remote radio heads, surge arrestors, and global positioning system antenna with associated electronic equipment in a walk-in-cabinet, an emergency backup power propane-fueled generator, and other appurtenances on a proposed equipment pad and propane tank all located within an existing compound enclosed by a chain link fence (the "Facility"). The Site is located within the IL-40 (Light Industrial) zoning district. The surrounding area is a mix of industrial, commercial and residential uses.

**Attachment 2** contains a copy of the structural report evidencing that the proposed modifications can be supported in accordance with applicable codes. Notice to the FAA is not required for the proposed modifications as provided in **Attachment 3**. **Attachment 4** contains a viewshed analysis characterizing the visibility of the proposed Extension to the Monopole and also includes photographs and photo simulations evidencing the minimal impact on visibility.

The backup power generator will be supported with a 500-gallon propane fuel tank. The generator typically exercises once a week and will otherwise operate during power outages to support continuity of telecommunications services. Based on estimated fuel consumption and assuming 500 gallons of propane, while operating at full loading the generator should be able to provide electrical power to the Facility for approximately 160 hours before refueling. **Attachment 5** contains the equipment specifications for the proposed generator.

Once AT&T receives all required approvals, the installation of the Facility will take approximately three (3) to four (4) weeks and will be constructed during normal business hours. Construction is scheduled to commence in June of this year.

While there is a state and federal listed species area within a quarter-mile to the southwest of the Site, given that AT&T's proposed Facility will be located on a Monopole on land which has previously been disturbed, AT&T respectfully asserts that the Proposed Facility will not impact any state listed species. Please refer to the DEEP Map submitted as **Attachment 6**.

#### **IV. SECTION 6409 OF THE SPECTRUM ACT**

Section 6409(a) of the Spectrum Act mandates that state and local governments "may not deny, and shall approve, any eligible facilities request for a modification of an existing wireless tower or base station that does not substantially change the physical dimensions of such tower or base station."<sup>1</sup> An eligible facilities request is defined in the Spectrum Act as any request to modify a Tower or Base Station that involves "collocations of new Transmission Equipment," "removal," or "replacement" of Transmission Equipment.<sup>2</sup>

Under this eligible facilities request, AT&T is proposing to extend the existing 120' Monopole with a twenty-foot (20') tower extension to a total height of 140' ATB and collocate six (6) panel antennas at a 140' ATB antenna centerline height, together with related amplifiers, cables, fiber and other associated antenna equipment, including, without limitation, remote radio

---

<sup>1</sup> 47 U.S.C. §1455(a)(1).

<sup>2</sup> 47 U.S.C. §1455(a)(2).

heads, surge arrestors, and global positioning system antennas with associated electronic equipment in a walk-in-cabinet, an emergency backup power propane-fueled generator, and other appurtenances on a proposed equipment pad and propane tank, all located within an existing compound enclosed by a chain link fence and all as depicted on the plans submitted with this application as **Attachment 7** (the "Plans"). The modifications proposed by AT&T in this Sub-Petition do not substantially change the physical dimensions of the Monopole in accordance with the Spectrum Act and as interpreted and implemented by regulations (the "Regulations")<sup>3</sup> promulgated by the Federal Communications Commission ("FCC").

The equipment identified in this eligible facilities request to be collocated at the Site qualifies as transmission equipment pursuant to the FCC definition. The FCC has defined transmission equipment as "any equipment that facilitates transmission for any Commission-licensed or authorized wireless communication service, including, but not limited to, radio transceivers, antennas and other relevant equipment associated with and necessary to their operation, including coaxial or fiber-optic cable, and regular and back-up power supply. This definition includes equipment used in any technological configuration associated with any Commission-authorized wireless transmission, licensed or unlicensed, terrestrial or satellite, including commercial mobile, private mobile, broadcast and public safety services, as well as fixed wireless services such as microwave backhaul or fixed broadband."<sup>4</sup>

Pursuant to the Regulations, the FCC determined that any modification to an existing telecommunications tower that meets six (6) specified criteria does not substantially change the physical dimensions of the existing tower and, therefore, is an eligible facilities request, approval of which must be granted.<sup>5</sup> These six criteria and analysis of how this eligible facilities request satisfies each of the six (6) review criteria identified by the FCC are discussed below.

- 1. For towers not in the public rights-of-way, in this case the Monopole, the modification increases the height of the Monopole by more than 10% or by the height of one additional antenna array with separation from the nearest existing antenna not to exceed twenty feet (20'), whichever is greater;**

As depicted on the Plans, AT&T's proposed modifications do not increase the height of the Monopole by more than twenty feet (20') from the nearest existing antenna. Additionally, the FCC clarified in its recent Declaratory Ruling<sup>6</sup> that for purposes of the analysis, the height increase is measured from the top of the existing antenna to the bottom of the proposed antenna, which in this case is fourteen feet (14').

- 2. For towers not in the public rights-of-way, in this case the Monopole, the modification involves adding an appurtenance to the body of the Monopole that would protrude from the edge of the monopole by twenty feet (20') or**

---

<sup>3</sup> 47 C.F.R. §1.6100(b)

<sup>4</sup> 47 C.F.R. §1.6100(b)(8)

<sup>5</sup> 47 C.F.R. §1.6100(b)(7)

<sup>6</sup> *Declaratory Ruling and Notice of Proposed Rulemaking* –WT Docket No. 19-250 and RM-11849

**more than the width of the Monopole at the level of the appurtenance, whichever is greater;**

As depicted on the Plans, AT&T's antennas and appurtenances will not protrude from the edge of the Monopole by more than twenty feet (20'). The outside face of the antenna is approximately six feet (6') from the edge of the Monopole and consistent with the existing antenna installation on the Monopole.

- 3. For any eligible support structure, in this case the Monopole, the modification involves installation of more than the standard number of new equipment cabinets for the technology involved, but not to exceed four cabinets;**

AT&T proposes one walk-in equipment cabinet.

- 4. The modification entails any excavation or deployment outside the current Site;**

AT&T does not propose excavation or deployment outside the current Site.

- 5. The modification would defeat the concealment elements of the eligible support structure; or**

The Monopole does not incorporate concealment elements. The new panel antennas will be mounted in a similar fashion to the existing panel antennas.

- 6. The modification does not comply with conditions associated with the siting approval of the construction or modification of the eligible support structure or base station equipment, provided however that this limitation does not apply to any modification that is non-compliant only in a manner that would not exceed the thresholds identified in § 1.40001(b)(7)(i) through (iv).**

The modifications are consistent with all applicable terms and conditions of the Council's approval in Docket 462, including the anticipated design for a twenty-foot (20') extension of the Monopole.

#### **IV. MAXIMUM PERMISSIBLE EXPOSURE COMPLIANCE**

The power density levels for AT&T's proposed Facility will not exceed .06% of the federally permitted emission standards for the public. Please refer to the Radio Frequency Emissions analysis submitted as Attachment 8. The total radio frequency power density will comply with the standards adopted by the Connecticut Department of Environmental Protection and the Maximum Permissible Exposure limits of the FCC.

## VI. NOTICE TO MUNICIPAL OFFICIALS AND ABUTTING PROPERTY OWNERS

Pursuant to the Ruling, AT&T sent notice of its filing of this Sub-Petition to the City of Danbury and to each abutting property owner as listed in the City of Danbury's Assessor records. The notice indicates that comments or concerns should be submitted to the Council within thirty (30) days of the date the notice was sent. A certification of such notice, a copy of the notice, the list of City officials and abutting property owners, and a map produced from the City of Danbury's GIS mapping data are submitted herewith as **Attachment 9**.

## V. CONCLUSION

AT&T respectfully asserts that its proposed modifications do not substantially change the physical dimensions of the Monopole at the Site as enumerated in the Spectrum Act and the Regulations, and therefore qualifies as an eligible facilities request. For the foregoing reasons, AT&T respectfully requests that the Council issue an order approving AT&T's proposed wireless telecommunications facility.

Respectfully submitted,

*/s/ Thomas J. Regan*  
Thomas J. Regan, Esq.

## **ATTACHMENT 1**



Verizon Wireless  
1515 E. Woodfield Rd.  
Suite 1400  
Schaumburg, IL 60173

## LETTER OF AUTHORIZATION

Site Location: **New England**  
Coordinates: **41° 22' 58.8" N, 73° 25' 19.8" W**  
Site Address: **15 Great Pasture Road, Danbury, CT 06810**  
County: **Fairfield**  
Elevation **387** Feet AMSL      Tower Height: **120** Feet AGL

Tower Type: **MonoPole**  
Verizon Site Name: **Bethel West 2 / LC: 467694**  
Tenant Site Name: **Bethel West 2 / S2873**  
KGI Tower #: **28493**

### RE: Authorization of Agent – Jeff DelliColli, Attachment to Verizon Wireless Tower

**Celco Partnership** (“Verizon Wireless”), FCC licensee and owner of the cellular tower located on the property referenced, hereby appoints and authorizes **Jeff DelliColli**, representing **AT&T** (“Tenant”) to act, execute and deliver on behalf of and with full authority of Verizon Wireless, any documentation required by Federal, State or Local authorities to secure zoning or permitting approvals related to Tenant’s application to attach to the above-referenced tower.

This authorization applies solely to the zoning and permitting process and shall not be used for any other purpose. The term of this Letter of Authorization shall be for six (6) months from the date of this letter.

**Celco Partnership**  
**d/b/a Verizon Wireless**

By: \_\_\_\_\_

Name: Joseph McCarty

Title: Manager-Network Engineering & Operations

Date: 11 16 20

## **ATTACHMENT 2**



## Monopole Extension Package

Prepared for:

**KGI**

**805 Las Cimas Parkway, Building Three, Suite 370  
Austin, TX 78746**

**ATTN: Ms. Stephanie Oswald**

**Structure** : 119 ft Monopole w/ Proposed 20 ft Extension  
**Site ID** : 28493  
**Proposed Carrier** : AT&T Wireless  
**Site Name** : Bethel West 2  
**Site Location** : 15 Great Pasture Road  
Danbury, CT  
41.383, -73.4222  
**County** : Fairfield  
**Date** : September 2, 2020  
**Max Usage** : 69%  
**Result** : Pass

Prepared By:

Thomas Taylor, P.E., S.E.  
Engineering Manager

*Thomas L. Taylor*





Site ID 28493  
September 2, 2020

## Table of Contents

|                                       |          |
|---------------------------------------|----------|
| Introduction -----                    | 1        |
| Supporting Documents -----            | 1        |
| Analysis -----                        | 1        |
| Conclusion -----                      | 1        |
| Existing and Reserved Equipment ----- | 2        |
| Equipment to be Removed -----         | 2        |
| Proposed Equipment -----              | 2        |
| Structure Usages -----                | 3        |
| Foundations -----                     | 3        |
| Standard Conditions -----             | 4        |
| Calculations -----                    | Attached |

## Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 119 ft Monopole w/ Proposed 20 ft Extension to reflect the change in loading by AT&T Wireless.

## Supporting Documents

|                            |                                                               |
|----------------------------|---------------------------------------------------------------|
| <b>Tower Drawing</b>       | Sabre Job #16-7133-SCB, dated July 13, 2016                   |
| <b>Foundation Drawing</b>  | Centek Engineering Job #14216.000, dated July 28, 2016        |
| <b>Geotechnical Report</b> | DET Job #2015.13, dated February 19, 2016                     |
| <b>Foundation Analysis</b> | Centek Engineering Project #14216.00, dated March 12, 2020    |
| <b>Mount Analysis</b>      | Hudson Design Group Site #S2873 (NSB), dated October 10, 2019 |

## Analysis

The tower was analyzed using TNX tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

|                               |                                                                  |
|-------------------------------|------------------------------------------------------------------|
| <b>Basic Wind Speed</b>       | 91 mph (3-Second Gust) Vasd / 117 mph (3-Second Gust) Vult       |
| <b>Basic Wind Speed w/Ice</b> | 50 mph (3-Second Gust) w/ 3/4" radial ice concurrent             |
| <b>Code</b>                   | ANSI/TIA-222-G / 2015 IBC / 2018 Connecticut State Building Code |
| <b>Structure Class</b>        | II                                                               |
| <b>Exposure Category</b>      | B                                                                |
| <b>Topographic Category</b>   | 1                                                                |
| <b>Crest Height</b>           | 0 ft                                                             |
| <b>Spectral Response</b>      | $S_s = 0.22^*$ , $S_1 = 0.07$                                    |
| <b>Site Class</b>             | D - Stiff Soil                                                   |

\* Seismic analysis is not included in this analysis due to the value of  $S_s$  less than 1.

## Conclusion

Based on the analysis results, the monopole with the proposed extension meets the requirements per the applicable codes listed above. The monopole and foundation can support the equipment as described in this report. If you have any questions or require additional information, please contact Semaan Engineering Solutions at 402-289-1888.

## Attachments

1. Drawing T-1, Revision1, dated 09/02/2020.
2. Drawing N-1, Revision 1, dated 09/02/2020.
3. Drawing N-2, Revision 0, dated 05/15/2020.
4. Drawing S-1, Revision 0, dated 05/15/2020.
5. Drawing S-2, Revision 0, dated 05/15/2020.
6. Drawing S-3, Revision 0, dated 05/15/2020.

### Existing and Reserved Equipment

This loading is included in the analysis.

| Centerline Elevation (ft) |        | Qty. | Antenna          | Mount Type      | Coax (in)                 | Carrier |
|---------------------------|--------|------|------------------|-----------------|---------------------------|---------|
| Mount                     | Equip. |      |                  |                 |                           |         |
| 120.0                     | 120.0  | 12   | BXA-70080/8CF    | Platform w/Rail | (12) 1 5/8"<br>(3) Hybrid | Verizon |
|                           |        | 12   | RRUS A2 Module   |                 |                           |         |
|                           |        | 6    | 3JR52709AA       |                 |                           |         |
|                           |        | 3    | RRH 4x30-4R B13  |                 |                           |         |
|                           |        | 3    | RRH 4x30-4R B25  |                 |                           |         |
|                           |        | 12   | 10"x7"x2" TMA    |                 |                           |         |
|                           |        | 3    | OVP Junction Box |                 |                           |         |

### Equipment to be Removed

This loading is not included in the analysis.

| Centerline Elevation (ft)              |        | Qty. | Antenna | Mount Type | Coax (in) | Carrier |
|----------------------------------------|--------|------|---------|------------|-----------|---------|
| Mount                                  | Equip. |      |         |            |           |         |
| No loading considered as to be removed |        |      |         |            |           |         |

### Proposed Equipment

This loading is included in the analysis.

| Centerline Elevation (ft) |        | Qty. | Antenna          | Mount Type                    | Coax (in)                                 | Carrier |
|---------------------------|--------|------|------------------|-------------------------------|-------------------------------------------|---------|
| Mount                     | Equip. |      |                  |                               |                                           |         |
| 140.0                     | 140.0  | 9    | TPA65R-BU6D      | C10855721C<br>Platform w/Rail | (6) 7/8" DC<br>(2) 3/8" Fiber<br>(2) 1/2" | AT&T    |
|                           |        | 3    | 4478 B14 RRU     |                               |                                           |         |
|                           |        | 3    | 8843 B2/B66A RRU |                               |                                           |         |
|                           |        | 3    | 4415 B30 RRU     |                               |                                           |         |
|                           |        | 3    | 4449 B5/B12 RRU  |                               |                                           |         |
|                           |        | 3    | DC6-48-60-18-8F  |                               |                                           |         |
|                           |        | 2    | GPS              |                               |                                           |         |

Install proposed coax anywhere on tower.

### Structure Usages

| Structural Component | Controlling Usage | Pass/Fail |
|----------------------|-------------------|-----------|
| Shaft                | 41%               | Pass      |
| Anchor Bolts         | 39%               | Pass      |
| Baseplate            | 40%               | Pass      |
| Flange               | 52%               | Pass      |

### Foundations

| Reaction Component | Original Design Reactions | Analysis Reactions | % of Design |
|--------------------|---------------------------|--------------------|-------------|
| Moment (Kips-Ft)   | 4,952.3                   | 2,024.9            | 41%         |
| Axial (Kips)       | 57.2                      | 39.1               | 68%         |
| Shear (Kips)       | 48.9                      | 19.9               | 41%         |

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings.

The attached foundation analysis by Centek Engineering also shows that the existing mat foundation is acceptable without considering the center (4) overloaded micropiles, therefore no modification or reinforcement of the foundation will be required.



### **Standard Conditions**

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited, to:

- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
- Information from drawings in the possession of Semaan Engineering Solutions, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Semaan Engineering Solutions Holdings and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

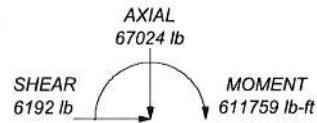
Unless explicitly agreed by both the client and Semaan Engineering Solutions, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

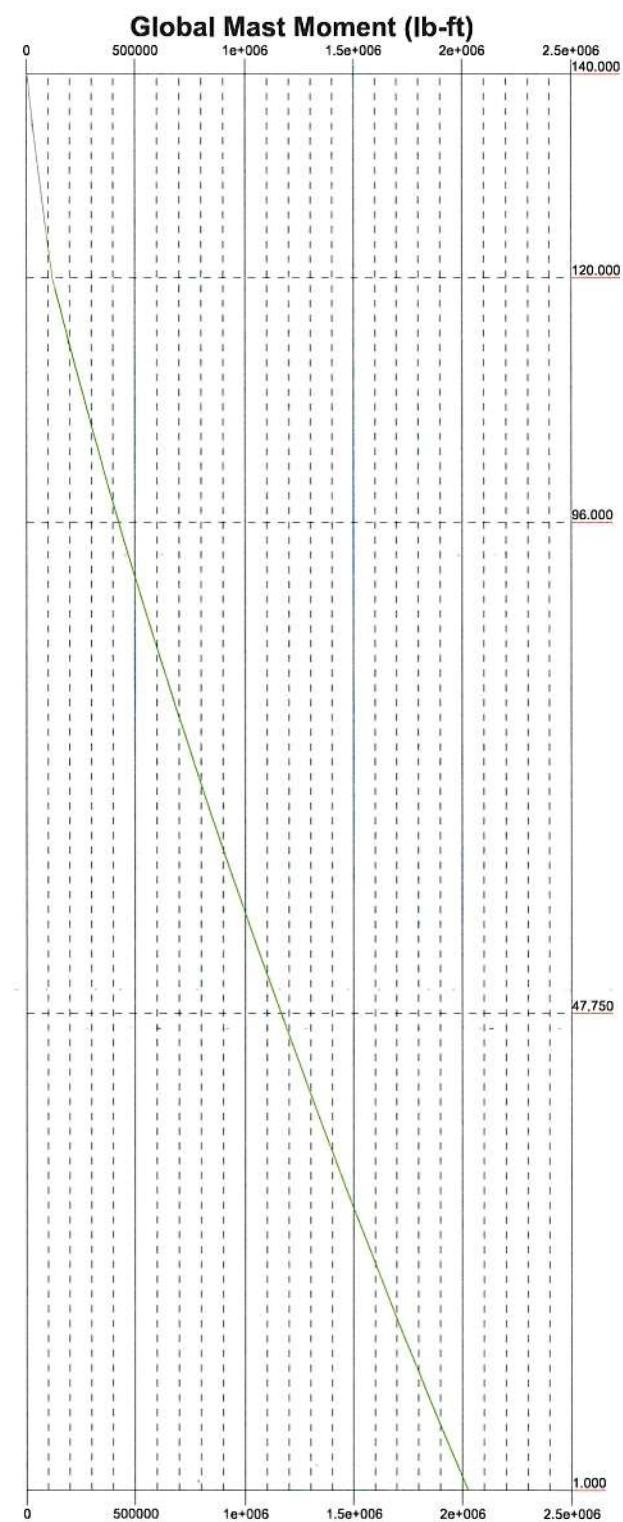
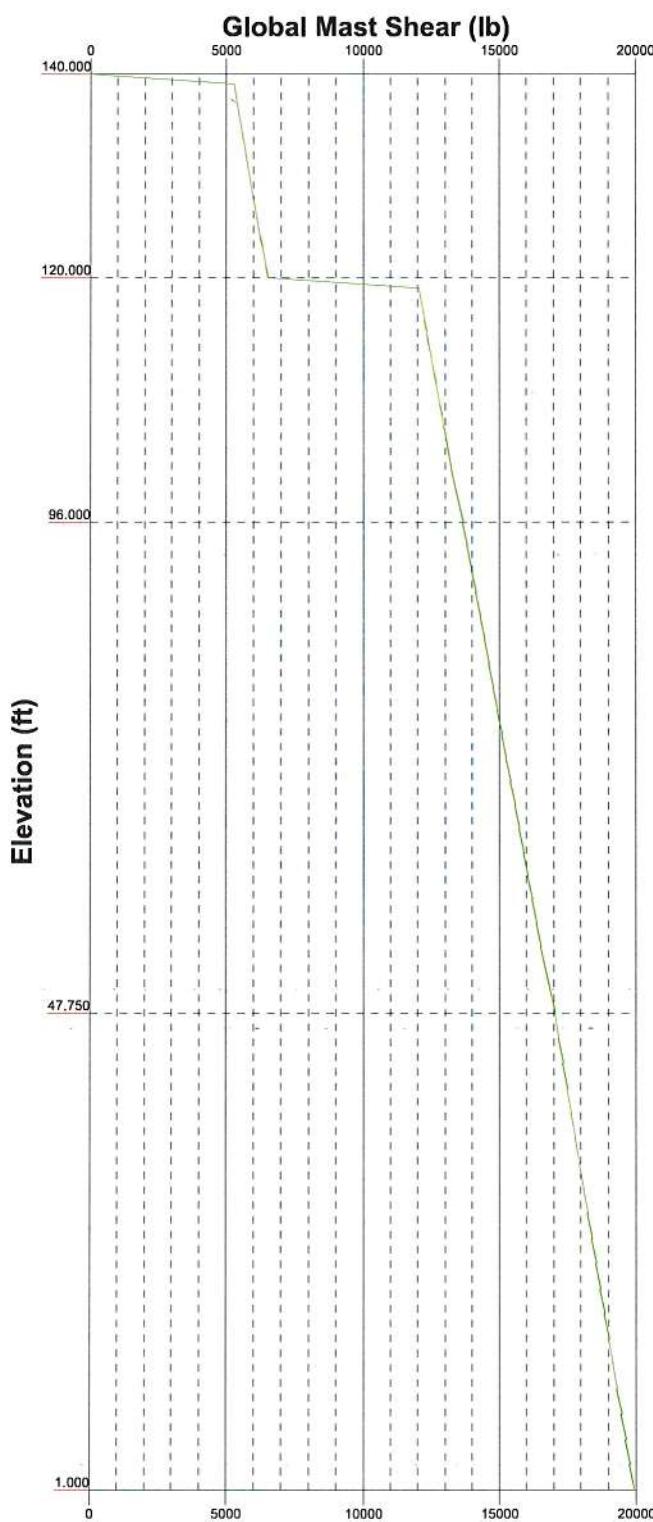
All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Semaan Engineering Solutions Holdings is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

|                    |         |         |        |         |
|--------------------|---------|---------|--------|---------|
| Section            | 1       | 2       | 3      | 4       |
| Length (ft)        | 20,000  | 24,000  | 53,500 | 53,250  |
| Number of Sides    | 18      | 18      | 18     | 18      |
| Thickness (in)     | 0.313   | 0.313   | 0.375  | 0.375   |
| Socket Length (ft) | 5.250   | 5.250   | 6.500  | 6.500   |
| Top Dia (in)       | 31.419  | 31.419  | 46.885 | 44.823  |
| Bot Dia (in)       | 36.723  | 36.723  | 56.590 | 56.590  |
| Grade              | A572-65 | A572-65 | 7342.2 | 10855.1 |
| Weight (lb)        | 1563.9  | 21917   | 7342.2 | 10855.1 |

### DESIGNED APPURTENANCE LOADING

| TYPE                             | ELEVATION | TYPE                         | ELEVATION |
|----------------------------------|-----------|------------------------------|-----------|
| C10855721C Platform w/Rail (ATT) | 140       | (4) BXA-70080/8CF (Verizon)  | 120       |
| (3) TPA65R-BU6D (ATT)            | 140       | (4) BXA-70080/8CF (Verizon)  | 120       |
| (3) TPA65R-BU6D (ATT)            | 140       | (4) BXA-70080/8CF (Verizon)  | 120       |
| (3) TPA65R-BU6D (ATT)            | 140       | (4) RRUS A2 Module (Verizon) | 120       |
| 4478 B14 RRU (ATT)               | 140       | (4) RRUS A2 Module (Verizon) | 120       |
| 4478 B14 RRU (ATT)               | 140       | (4) RRUS A2 Module (Verizon) | 120       |
| 4478 B14 RRU (ATT)               | 140       | (2) 3JR52709AA (Verizon)     | 120       |
| 8843 B2/B66A RRU (ATT)           | 140       | (2) 3JR52709AA (Verizon)     | 120       |
| 8843 B2/B66A RRU (ATT)           | 140       | RRH 4x30-4R B13 (Verizon)    | 120       |
| 8843 B2/B66A RRU (ATT)           | 140       | RRH 4x30-4R B13 (Verizon)    | 120       |
| 4415 B30 RRU (ATT)               | 140       | RRH 4x30-4R B13 (Verizon)    | 120       |
| 4415 B30 RRU (ATT)               | 140       | RRH 4x30-4R B25 (Verizon)    | 120       |
| 4415 B30 RRU (ATT)               | 140       | RRH 4x30-4R B25 (Verizon)    | 120       |
| 4449 B5/B12 RRU (ATT)            | 140       | RRH 4x30-4R B25 (Verizon)    | 120       |
| 4449 B5/B12 RRU (ATT)            | 140       | RRH 4x30-4R B25 (Verizon)    | 120       |
| 4449 B5/B12 RRU (ATT)            | 140       | (4) 10"x7"x2" TMA (Verizon)  | 120       |
| DC6-48-60-18-8F (ATT)            | 140       | (4) 10"x7"x2" TMA (Verizon)  | 120       |
| DC6-48-60-18-8F (ATT)            | 140       | (4) 10"x7"x2" TMA (Verizon)  | 120       |
| DC6-48-60-18-8F (ATT)            | 140       | OVP Junction Box (Verizon)   | 120       |
| (2) GPS (ATT)                    | 140       | OVP Junction Box (Verizon)   | 120       |
| Platform w/Rail (Verizon)        | 120       | OVP Junction Box (Verizon)   | 120       |


### MATERIAL STRENGTH



| GRADE   | Fy     | Fu     | GRADE | Fy | Fu |
|---------|--------|--------|-------|----|----|
| A572-65 | 65 ksi | 80 ksi |       |    |    |

### TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 91 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.000 ft
8. Weld together tower sections have flange connections.
9. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.
10. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
11. Welds are fabricated with ER-70S-6 electrodes.
12. TOWER RATING: 41.1%

ALL REACTIONS  
ARE FACTORED



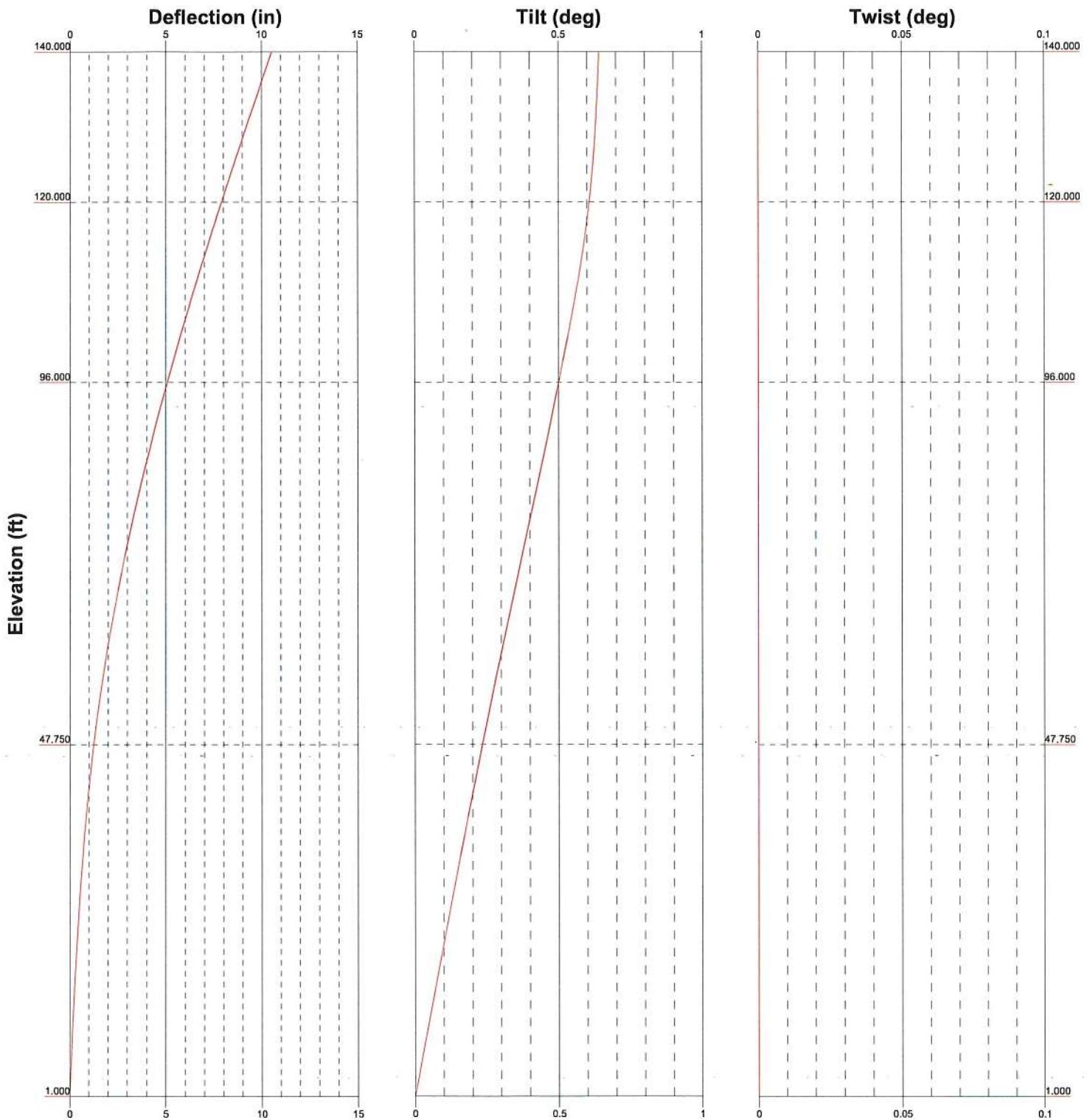


**Semaan Engineering Solutions LLC** Job: **28493\_Bethel West 2**

1047 N. 205th St.

Elkhorn, NE 68022

Phone: 402-289-1888


FAX:

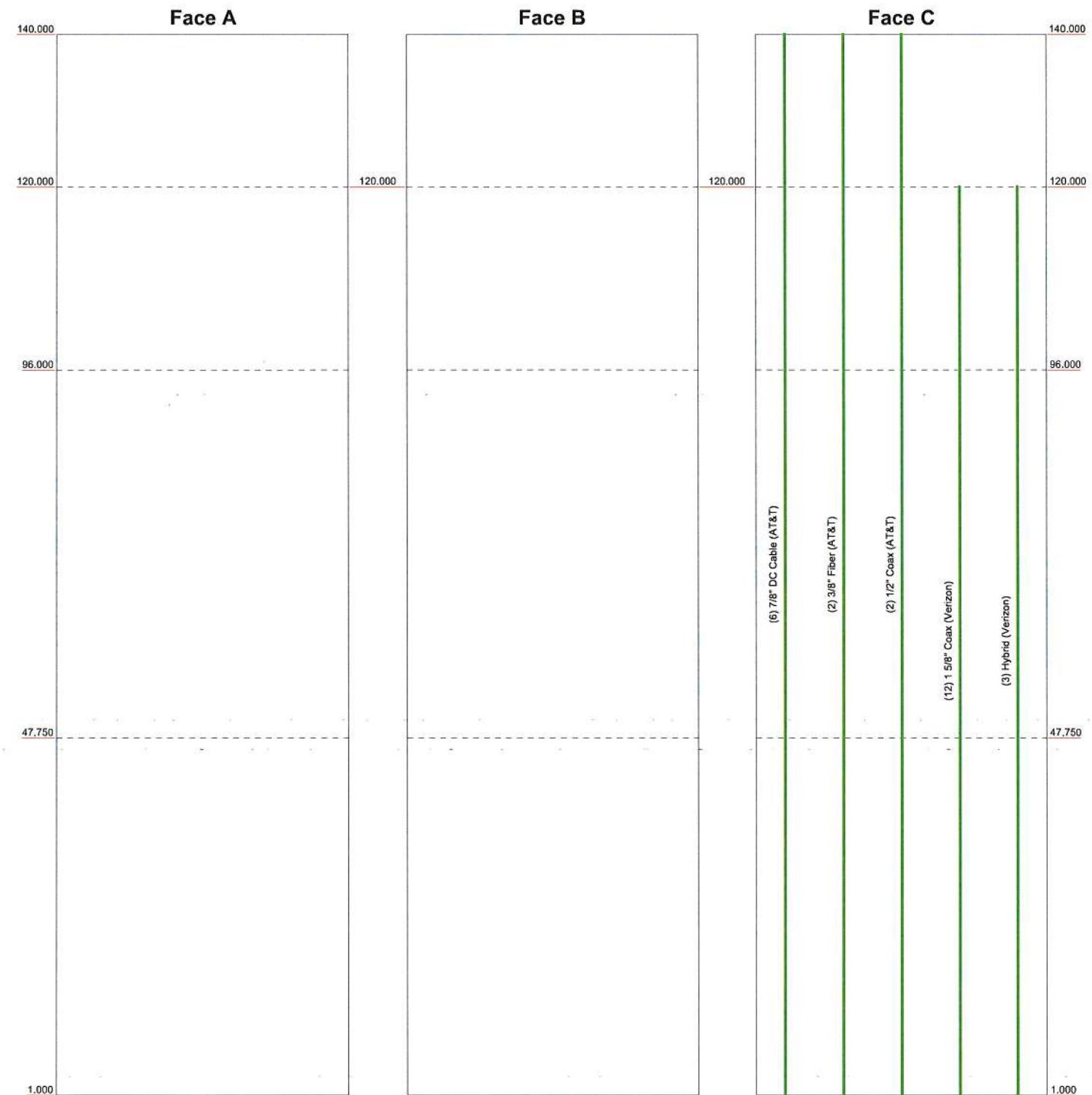
Project: **REV03**

Client: **KGI** Drawn by: **TLT** App'd:

Code: **TIA-222-G** Date: **09/02/20** Scale: **NTS**

Path: **\DMZ\SESSERVER01\Common\TNX files\28493\REV03\28493\_REV03.erf** Dwg No. **E-4**




**Semaan Engineering Solutions LLC**  
 1047 N. 205th St.  
 Elkhorn, NE 68022  
 Phone: 402-289-1888  
 FAX:

Job: 28493\_Bethel West 2  
 Project: REV03  
 Client: KGI Drawn by: TLT App'd:  
 Code: TIA-222-G Date: 09/02/20 Scale: NTS  
 Path: \DMZSESSERVER01\Common\TNX files\28493\REV03\28493\_REV03.erf  
 Dwg No. E-5

# Feed Line Distribution Chart

1" - 140'

Round Flat App In Face App Out Face Truss Leg



**Semaan Engineering Solutions LLC**  
 1047 N. 205th St.  
 Elkhorn, NE 68022  
 Phone: 402-289-1888  
 FAX:

Job: 28493\_Bethel West 2

Project: REV03


Client: KGI Drawn by: TLT App'd:

Code: TIA-222-G Date: 09/02/20 Scale: NTS

Path: \\DMZSESSERVER01\Common\TNX files\28493\REV03\28493\_REV03.dwg Dwg No. E-7

# Feed Line Plan

Round \_\_\_\_\_ Flat \_\_\_\_\_ App In Face \_\_\_\_\_ App Out Face \_\_\_\_\_



**Semaan Engineering Solutions LLC**

1047 N. 205th St.

Elkhorn, NE 68022

Phone: 402-289-1888

FAX:

Job: **28493\_Bethel West 2**

Project: **REV03**

Client: KGI Drawn by: TLT App'd:

Code: TIA-222-G Date: 09/02/20 Scale: NTS

Path: \DMZSESSERVER01\Common\TNX files\28493\REV03\28493\_REV03.dwg Dwg No. E-7

|                                                                                                                                         |                |                     |                    |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|--------------------|-------------------|
| <b>tnxTower</b><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | <b>Job</b>     | 28493_Bethel West 2 | <b>Page</b>        | 1 of 20           |
|                                                                                                                                         | <b>Project</b> | REV03               | <b>Date</b>        | 11:30:21 09/02/20 |
|                                                                                                                                         | <b>Client</b>  | KGI                 | <b>Designed by</b> | TLT               |

## Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

Basic wind speed of 91 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.000 ft.

Nominal ice thickness of 0.750 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards..

Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Options

|                                     |                                       |                                           |
|-------------------------------------|---------------------------------------|-------------------------------------------|
| Consider Moments - Legs             | Distribute Leg Loads As Uniform       | ✓ Use ASCE 10 X-Brace Ly Rules            |
| Consider Moments - Horizontals      | Assume Legs Pinned                    | ✓ Calculate Redundant Bracing Forces      |
| Consider Moments - Diagonals        | ✓ Assume Rigid Index Plate            | ✓ Ignore Redundant Members in FEA         |
| Use Moment Magnification            | ✓ Use Clear Spans For Wind Area       | ✓ SR Leg Bolts Resist Compression         |
| ✓ Use Code Stress Ratios            | ✓ Use Clear Spans For KL/r            | ✓ All Leg Panels Have Same Allowable      |
| Use Code Safety Factors - Guys      | ✓ Retension Guys To Initial Tension   | Offset Girt At Foundation                 |
| Escalate Ice                        | ✓ Bypass Mast Stability Checks        | ✓ Consider Feed Line Torque               |
| Always Use Max Kz                   | ✓ Use Azimuth Dish Coefficients       | ✓ Include Angle Block Shear Check         |
| Use Special Wind Profile            | ✓ Project Wind Area of Appurt.        | Use TIA-222-G Bracing Resist. Exemption   |
| ✓ Include Bolts In Member Capacity  | ✓ Autocalc Torque Arm Areas           | Use TIA-222-G Tension Splice Exemption    |
| Leg Bolts Are At Top Of Section     | Add IBC .6D+W Combination             | Poles                                     |
| Secondary Horizontal Braces Leg     | Sort Capacity Reports By Component    | ✓ Include Shear-Torsion Interaction       |
| Use Diamond Inner Bracing (4 Sided) | Triangulate Diamond Inner Bracing     | Always Use Sub-Critical Flow              |
| SR Members Have Cut Ends            | Treat Feed Line Bundles As Cylinder   | Use Top Mounted Sockets                   |
| SR Members Are Concentric           | ✓ Ignore KL/ry For 60 Deg. Angle Legs | ✓ Pole Without Linear Attachments         |
|                                     |                                       | Pole With Shroud Or No Appurtenances      |
|                                     |                                       | Outside and Inside Corner Radii Are Known |

|                                                                                                                                                   |                            |  |  |  |  |  |  |  |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|---------------------------|
| <b>tnxTower</b><br><br><b>Semaan Engineering Solutions</b><br><b>LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job<br>28493_Bethel West 2 |  |  |  |  |  |  |  | Page<br>2 of 20           |
|                                                                                                                                                   | Project<br>REV03           |  |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                                   | Client<br>KGI              |  |  |  |  |  |  |  | Designed by<br>TLT        |

### Tapered Pole Section Geometry

| Section | Elevation<br>ft     | Section<br>Length<br>ft | Splice<br>Length<br>ft | Number<br>of<br>Sides | Top<br>Diameter<br>in | Bottom<br>Diameter<br>in | Wall<br>Thickness<br>in | Bend<br>Radius<br>in | Pole Grade          |
|---------|---------------------|-------------------------|------------------------|-----------------------|-----------------------|--------------------------|-------------------------|----------------------|---------------------|
| L1      | 140.000-120.00<br>0 | 20.000                  | 0.000                  | 18                    | 27.000                | 31.419                   | 0.250                   | 1.000                | A572-65<br>(65 ksi) |
| L2      | 120.000-96.000      | 24.000                  | 5.250                  | 18                    | 31.419                | 36.723                   | 0.250                   | 1.000                | A572-65<br>(65 ksi) |
| L3      | 96.000-47.750       | 53.500                  | 6.500                  | 18                    | 35.063                | 46.885                   | 0.313                   | 1.250                | A572-65<br>(65 ksi) |
| L4      | 47.750-1.000        | 53.250                  |                        | 18                    | 44.823                | 56.590                   | 0.375                   | 1.500                | A572-65<br>(65 ksi) |

### Tapered Pole Properties

| Section | Tip Dia.<br>in | Area<br>in <sup>2</sup> | I<br>in <sup>4</sup> | r<br>in | C<br>in | I/C<br>in <sup>3</sup> | J<br>in <sup>4</sup> | I <sub>u</sub> /Q<br>in <sup>2</sup> | w<br>in | w/t    |
|---------|----------------|-------------------------|----------------------|---------|---------|------------------------|----------------------|--------------------------------------|---------|--------|
| L1      | 27.378         | 21.226                  | 1918.915             | 9.496   | 13.716  | 139.903                | 3840.355             | 10.615                               | 4.312   | 17.248 |
|         | 31.866         | 24.733                  | 3035.783             | 11.065  | 15.961  | 190.199                | 6075.561             | 12.369                               | 5.090   | 20.359 |
| L2      | 31.866         | 24.733                  | 3035.783             | 11.065  | 15.961  | 190.199                | 6075.561             | 12.369                               | 5.090   | 20.359 |
|         | 37.251         | 28.941                  | 4863.953             | 12.948  | 18.655  | 260.730                | 9734.306             | 14.473                               | 6.023   | 24.093 |
| L3      | 36.733         | 34.468                  | 5258.525             | 12.336  | 17.812  | 295.227                | 10523.969            | 17.237                               | 5.621   | 17.987 |
|         | 47.560         | 46.194                  | 12658.196            | 16.533  | 23.817  | 531.469                | 25333.047            | 23.101                               | 7.702   | 24.645 |
| L4      | 46.915         | 52.905                  | 13205.069            | 15.779  | 22.770  | 579.927                | 26427.513            | 26.457                               | 7.229   | 19.277 |
|         | 57.405         | 66.910                  | 26713.597            | 19.956  | 28.748  | 929.242                | 53462.345            | 33.461                               | 9.300   | 24.8   |

| Tower<br>Elevation<br>ft | Gusset<br>Area<br>(per face)<br>ft <sup>2</sup> | Gusset<br>Thickness<br>in | Gusset Grade | Adjust. Factor<br><i>A<sub>f</sub></i> | Adjust. Factor<br><i>A<sub>r</sub></i> | Weight Mult. | Double Angle<br>Stitch Bolt<br>Spacing<br>Diagonals<br>in | Double Angle<br>Stitch Bolt<br>Spacing<br>Horizontals<br>in | Double Angle<br>Stitch Bolt<br>Spacing<br>Redundants<br>in |
|--------------------------|-------------------------------------------------|---------------------------|--------------|----------------------------------------|----------------------------------------|--------------|-----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| L1<br>140.000-120.00     |                                                 |                           |              | 1                                      | 1                                      | 1            |                                                           |                                                             |                                                            |
| L2<br>120.000-96.000     |                                                 |                           |              | 1                                      | 1                                      | 1            |                                                           |                                                             |                                                            |
| L3<br>96.000-47.750      |                                                 |                           |              | 1                                      | 1                                      | 1            |                                                           |                                                             |                                                            |
| L4<br>47.750-1.000       |                                                 |                           |              | 1                                      | 1                                      | 1            |                                                           |                                                             |                                                            |

### Feed Line/Linear Appurtenances - Entered As Area

| Description             | Face<br>or<br>Leg | Allow<br>Shield | Exclude<br>From<br>Torque<br>Calculation | Component<br>Type | Placement<br>ft | Total<br>Number | <i>C<sub>A</sub>A<sub>A</sub></i> | Weight                  |
|-------------------------|-------------------|-----------------|------------------------------------------|-------------------|-----------------|-----------------|-----------------------------------|-------------------------|
|                         |                   |                 |                                          |                   |                 |                 | ft <sup>2</sup> /ft               | klf                     |
| 7/8" DC Cable<br>(AT&T) | C                 | No              | No                                       | Inside Pole       | 140.000 - 1.000 | 6               | No Ice<br>1/2" Ice<br>1" Ice      | 0.000<br>0.000<br>0.000 |
| 3/8" Fiber<br>(AT&T)    | C                 | No              | No                                       | Inside Pole       | 140.000 - 1.000 | 2               | No Ice<br>1/2" Ice                | 0.000<br>0.000          |

|                                                                                                                                                                               |                |                     |                    |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|--------------------|-------------------|
| <b><i>tnxTower</i></b><br><b><i>Semaan Engineering Solutions LLC</i></b><br><i>1047 N. 205th St.</i><br><i>Elkhorn, NE 68022</i><br><i>Phone: 402-289-1888</i><br><i>FAX:</i> | <b>Job</b>     | 28493_Bethel West 2 | <b>Page</b>        | 3 of 20           |
|                                                                                                                                                                               | <b>Project</b> | REV03               | <b>Date</b>        | 11:30:21 09/02/20 |
|                                                                                                                                                                               | <b>Client</b>  | KGI                 | <b>Designed by</b> | TLT               |

| Description           | Face or Leg | Allow Shield | Exclude From Torque Calculation | Component Type | Placement       | Total Number | CA_A                         | Weight                  |
|-----------------------|-------------|--------------|---------------------------------|----------------|-----------------|--------------|------------------------------|-------------------------|
|                       |             |              |                                 |                | ft              |              | ft^2/ft                      | klf                     |
| 1/2" Coax (AT&T)      | C           | No           | No                              | Inside Pole    | 140.000 - 1.000 | 2            | 1" Ice<br>No Ice<br>1/2" Ice | 0.000<br>0.000<br>0.000 |
| 1 5/8" Coax (Verizon) | C           | No           | No                              | Inside Pole    | 120.000 - 1.000 | 12           | No Ice<br>1/2" Ice<br>1" Ice | 0.000<br>0.000<br>0.001 |
| Hybrid (Verizon)      | C           | No           | No                              | Inside Pole    | 120.000 - 1.000 | 3            | No Ice<br>1/2" Ice<br>1" Ice | 0.000<br>0.000<br>0.002 |

## Feed Line/Linear Appurtenances Section Areas

| Tower Section | Tower Elevation ft | Face | $A_R$           | $A_F$           | $C_A A_{\text{In Face}}$ | $C_A A_{\text{Out Face}}$ | Weight   |
|---------------|--------------------|------|-----------------|-----------------|--------------------------|---------------------------|----------|
|               |                    |      | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>          | ft <sup>2</sup>           | lb       |
| L1            | 140.000-120.000    | A    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | B    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | C    | 0.000           | 0.000           | 0.000                    | 0.000                     | 79.600   |
| L2            | 120.000-96.000     | A    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | B    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | C    | 0.000           | 0.000           | 0.000                    | 0.000                     | 523.200  |
| L3            | 96.000-47.750      | A    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | B    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | C    | 0.000           | 0.000           | 0.000                    | 0.000                     | 1051.850 |
| L4            | 47.750-1.000       | A    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | B    | 0.000           | 0.000           | 0.000                    | 0.000                     | 0.000    |
|               |                    | C    | 0.000           | 0.000           | 0.000                    | 0.000                     | 1019.150 |

## Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower Section | Tower Elevation ft | Face or Leg | Ice Thickness in | $A_R$ | $A_F$ | $C_{AA}$ In Face $ft^2$ | $C_{AA}$ Out Face $ft^2$ | Weight lb |
|---------------|--------------------|-------------|------------------|-------|-------|-------------------------|--------------------------|-----------|
| L1            | 140.000-120.000    | A           | 1.720            | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | B           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | C           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 79.600    |
| L2            | 120.000-96.000     | A           | 1.688            | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | B           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | C           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 523.200   |
| L3            | 96.000-47.750      | A           | 1.620            | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | B           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | C           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 1051.850  |
| L4            | 47.750-1.000       | A           | 1.452            | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | B           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 0.000     |
|               |                    | C           |                  | 0.000 | 0.000 | 0.000                   | 0.000                    | 1019.150  |

|                                                                                                                                         |         |                     |             |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-------------|-------------------|
| <i>tnxTower</i><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job     | 28493_Bethel West 2 | Page        | 4 of 20           |
|                                                                                                                                         | Project | REV03               | Date        | 11:30:21 09/02/20 |
|                                                                                                                                         | Client  | KGI                 | Designed by | TLT               |

## Feed Line Center of Pressure

| Section | Elevation       | CP <sub>X</sub> | CP <sub>Z</sub> | CP <sub>X</sub> | CP <sub>Z</sub> |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|
|         |                 | ft              | in              | in              | in              |
| L1      | 140.000-120.000 | 0.000           | 0.000           | 0.000           | 0.000           |
| L2      | 120.000-96.000  | 0.000           | 0.000           | 0.000           | 0.000           |
| L3      | 96.000-47.750   | 0.000           | 0.000           | 0.000           | 0.000           |
| L4      | 47.750-1.000    | 0.000           | 0.000           | 0.000           | 0.000           |

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

## Discrete Tower Loads

| Description                       | Face or Leg | Offset Type | Offsets: Horz | Azimuth    | Placement | C <sub>A4</sub> Front | C <sub>A4</sub> Side | Weight |          |
|-----------------------------------|-------------|-------------|---------------|------------|-----------|-----------------------|----------------------|--------|----------|
|                                   |             |             | Lateral       | Adjustment |           | ft <sup>2</sup>       | ft <sup>2</sup>      | lb     |          |
|                                   |             |             | Vert          |            | ft        |                       |                      |        |          |
|                                   |             |             | ft            | ft         | ft        |                       |                      |        |          |
| C10855721C Platform w/Rail (AT&T) | A           | None        |               | 0.000      | 140.000   | No Ice                | 35.850               | 35.850 | 2500.000 |
|                                   |             |             |               |            |           | 1/2" Ice              | 40.460               | 40.460 | 3500.000 |
|                                   |             |             |               |            |           | 1" Ice                | 45.070               | 45.070 | 4500.000 |
| (3) TPA65R-BU6D (AT&T)            | A           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 12.709               | 5.615  | 69.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 13.206               | 6.067  | 142.956  |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 13.709               | 6.526  | 223.562  |
| (3) TPA65R-BU6D (AT&T)            | B           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 12.709               | 5.615  | 69.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 13.206               | 6.067  | 142.956  |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 13.709               | 6.526  | 223.562  |
| (3) TPA65R-BU6D (AT&T)            | C           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 12.709               | 5.615  | 69.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 13.206               | 6.067  | 142.956  |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 13.709               | 6.526  | 223.562  |
| 4478 B14 RRU (AT&T)               | A           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 2.021                | 1.246  | 59.400   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 2.200                | 1.396  | 77.013   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 2.386                | 1.554  | 97.398   |
| 4478 B14 RRU (AT&T)               | B           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 2.021                | 1.246  | 59.400   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 2.200                | 1.396  | 77.013   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 2.386                | 1.554  | 97.398   |
| 4478 B14 RRU (AT&T)               | C           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 2.021                | 1.246  | 59.400   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 2.200                | 1.396  | 77.013   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 2.386                | 1.554  | 97.398   |
| 8843 B2/B66A RRU (AT&T)           | A           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 1.639                | 1.353  | 72.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 1.799                | 1.500  | 89.596   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 1.966                | 1.655  | 109.915  |
| 8843 B2/B66A RRU (AT&T)           | B           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 1.639                | 1.353  | 72.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 1.799                | 1.500  | 89.596   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 1.966                | 1.655  | 109.915  |
| 8843 B2/B66A RRU (AT&T)           | C           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 1.639                | 1.353  | 72.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 1.799                | 1.500  | 89.596   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 1.966                | 1.655  | 109.915  |
| 4415 B30 RRU (AT&T)               | A           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 1.843                | 0.820  | 46.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 2.012                | 0.943  | 60.075   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 2.190                | 1.075  | 76.665   |
| 4415 B30 RRU (AT&T)               | B           | From Face   | 3.500         | 0.000      | 140.000   | No Ice                | 1.843                | 0.820  | 46.000   |
|                                   |             |             | 0.000         |            |           | 1/2" Ice              | 2.012                | 0.943  | 60.075   |
|                                   |             |             | 0.000         |            |           | 1" Ice                | 2.190                | 1.075  | 76.665   |

|                                                                                                                                         |                            |  |  |  |  |  |  |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|---------------------------|
| <i>tnxTower</i><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job<br>28493_Bethel West 2 |  |  |  |  |  |  | Page<br>5 of 20           |
|                                                                                                                                         | Project<br>REV03           |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                         | Client<br>KGI              |  |  |  |  |  |  | Designed by<br>TLT        |

| Description                  | Face or Leg | Offset Type | Offsets: | Azimuth Adjustment | Placement | C <sub>AA</sub> Front | C <sub>AA</sub> Side | Weight |          |
|------------------------------|-------------|-------------|----------|--------------------|-----------|-----------------------|----------------------|--------|----------|
|                              |             |             | Horz     |                    |           |                       |                      |        |          |
|                              |             |             | Vert     |                    |           |                       |                      |        |          |
|                              |             |             | ft       | °                  | ft        | ft <sup>2</sup>       | ft <sup>2</sup>      | lb     |          |
|                              |             |             | ft       |                    |           |                       |                      |        |          |
| 4415 B30 RRU (AT&T)          | C           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 1.843                | 0.820  | 46.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 2.012                | 0.943  | 60.075   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 2.190                | 1.075  | 76.665   |
| 4449 B5/B12 RRU (AT&T)       | A           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 1.968                | 1.408  | 71.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 2.144                | 1.564  | 89.509   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 2.328                | 1.727  | 110.838  |
| 4449 B5/B12 RRU (AT&T)       | B           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 1.968                | 1.408  | 71.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 2.144                | 1.564  | 89.509   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 2.328                | 1.727  | 110.838  |
| 4449 B5/B12 RRU (AT&T)       | C           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 1.968                | 1.408  | 71.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 2.144                | 1.564  | 89.509   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 2.328                | 1.727  | 110.838  |
| DC6-48-60-18-8F (AT&T)       | A           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 0.917                | 0.917  | 32.800   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 1.458                | 1.458  | 50.515   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 1.643                | 1.643  | 70.725   |
| DC6-48-60-18-8F (AT&T)       | B           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 0.917                | 0.917  | 32.800   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 1.458                | 1.458  | 50.515   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 1.643                | 1.643  | 70.725   |
| DC6-48-60-18-8F (AT&T)       | C           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 0.917                | 0.917  | 32.800   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 1.458                | 1.458  | 50.515   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 1.643                | 1.643  | 70.725   |
| (2) GPS (AT&T)               | A           | From Face   | 3.500    | 0.000              | 140.000   | No Ice                | 0.267                | 0.267  | 15.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 0.337                | 0.337  | 19.829   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 0.415                | 0.415  | 26.148   |
| Platform w/Rail (Verizon)    | A           | None        |          | 0.000              | 120.000   | No Ice                | 35.850               | 35.850 | 2500.000 |
|                              |             |             |          |                    |           | 1/2" Ice              | 40.460               | 40.460 | 3500.000 |
|                              |             |             |          |                    |           | 1" Ice                | 45.070               | 45.070 | 4500.000 |
| (4) BXA-70080/8CF (Verizon)  | A           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 8.291                | 6.449  | 23.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 8.879                | 7.024  | 70.397   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 9.474                | 7.607  | 125.021  |
| (4) BXA-70080/8CF (Verizon)  | B           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 8.291                | 6.449  | 23.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 8.879                | 7.024  | 70.397   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 9.474                | 7.607  | 125.021  |
| (4) BXA-70080/8CF (Verizon)  | C           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 8.291                | 6.449  | 23.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 8.879                | 7.024  | 70.397   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 9.474                | 7.607  | 125.021  |
| (4) RRUS A2 Module (Verizon) | A           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 1.600                | 0.455  | 21.160   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 1.758                | 0.558  | 31.489   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 1.924                | 0.667  | 44.034   |
| (4) RRUS A2 Module (Verizon) | B           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 1.600                | 0.455  | 21.160   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 1.758                | 0.558  | 31.489   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 1.924                | 0.667  | 44.034   |
| (4) RRUS A2 Module (Verizon) | C           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 1.600                | 0.455  | 21.160   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 1.758                | 0.558  | 31.489   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 1.924                | 0.667  | 44.034   |
| (2) 3JR52709AA (Verizon)     | A           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 3.355                | 2.005  | 55.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 3.612                | 2.237  | 78.159   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 3.876                | 2.476  | 104.946  |
| (2) 3JR52709AA (Verizon)     | B           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 3.355                | 2.005  | 55.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 3.612                | 2.237  | 78.159   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 3.876                | 2.476  | 104.946  |
| (2) 3JR52709AA (Verizon)     | C           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 3.355                | 2.005  | 55.000   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 3.612                | 2.237  | 78.159   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 3.876                | 2.476  | 104.946  |
| RRH 4x30-4R B13 (Verizon)    | A           | From Face   | 3.500    | 0.000              | 120.000   | No Ice                | 2.160                | 1.620  | 57.200   |
|                              |             |             | 0.000    |                    |           | 1/2" Ice              | 2.350                | 1.794  | 76.813   |
|                              |             |             | 0.000    |                    |           | 1" Ice                | 2.548                | 1.975  | 99.381   |

|                                                                                                                                     |                            |  |  |  |  |  |  |                           |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|---------------------------|
| <b>inxTower</b><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job<br>28493_Bethel West 2 |  |  |  |  |  |  | Page<br>6 of 20           |
|                                                                                                                                     | Project<br>REV03           |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                     | Client<br>KGI              |  |  |  |  |  |  | Designed by<br>TLT        |

| Description                 | Face or Leg | Offset Type | Offsets: Horz<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment ° | Placement ft | C <sub>A</sub> A <sub>A</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> Side ft <sup>2</sup> | Weight lb               |
|-----------------------------|-------------|-------------|-----------------------------------------|----------------------|--------------|-----------------------------------------------------|----------------------------------------------------|-------------------------|
|                             |             |             |                                         |                      |              |                                                     |                                                    |                         |
| RRH 4x30-4R B13 (Verizon)   | B           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 2.160<br>2.350<br>2.548                            | 1.620<br>1.794<br>1.975 |
| RRH 4x30-4R B13 (Verizon)   | C           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 2.160<br>2.350<br>2.548                            | 1.620<br>1.794<br>1.975 |
| RRH 4x30-4R B25 (Verizon)   | A           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 2.136<br>2.325<br>2.521                            | 1.304<br>1.460<br>1.623 |
| RRH 4x30-4R B25 (Verizon)   | B           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 2.136<br>2.325<br>2.521                            | 1.304<br>1.460<br>1.623 |
| RRH 4x30-4R B25 (Verizon)   | C           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 2.136<br>2.325<br>2.521                            | 1.304<br>1.460<br>1.623 |
| (4) 10"x7"x2" TMA (Verizon) | A           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 0.583<br>0.681<br>0.787                            | 0.182<br>0.250<br>0.325 |
| (4) 10"x7"x2" TMA (Verizon) | B           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 0.583<br>0.681<br>0.787                            | 0.182<br>0.250<br>0.325 |
| (4) 10"x7"x2" TMA (Verizon) | C           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 0.583<br>0.681<br>0.787                            | 0.182<br>0.250<br>0.325 |
| OVP Junction Box (Verizon)  | A           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 3.791<br>4.043<br>4.302                            | 2.511<br>2.724<br>2.944 |
| OVP Junction Box (Verizon)  | B           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 3.791<br>4.043<br>4.302                            | 2.511<br>2.724<br>2.944 |
| OVP Junction Box (Verizon)  | C           | From Face   | 3.500<br>0.000<br>0.000                 | 0.000                | 120.000      | No Ice<br>1/2" Ice<br>1" Ice                        | 3.791<br>4.043<br>4.302                            | 2.511<br>2.724<br>2.944 |

### Tower Pressures - No Ice

$$G_H = 1.100$$

| Section Elevation<br>ft | z<br>ft | K <sub>Z</sub> | q <sub>z</sub> | A <sub>G</sub><br>ft <sup>2</sup> | F<br>a<br>c<br>e | A <sub>F</sub><br>ft <sup>2</sup> | A <sub>R</sub><br>ft <sup>2</sup> | A <sub>leg</sub><br>ft <sup>2</sup> | Leg %  | C <sub>A</sub> A <sub>A</sub><br>In Face<br>ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub><br>Out Face<br>ft <sup>2</sup> |
|-------------------------|---------|----------------|----------------|-----------------------------------|------------------|-----------------------------------|-----------------------------------|-------------------------------------|--------|-------------------------------------------------------------|--------------------------------------------------------------|
| 140.000-120.00          | L1      | 129.748        | 1.065          | 0.021                             | A                | 0.000                             | 49.370                            | 49.370                              | 100.00 | 0.000                                                       | 0.000                                                        |
|                         |         |                |                |                                   |                  | 0.000                             | 49.370                            |                                     | 100.00 | 0.000                                                       | 0.000                                                        |
|                         |         |                |                |                                   |                  | 0.000                             | 49.370                            |                                     | 100.00 | 0.000                                                       | 0.000                                                        |
| 120.000-96.00           | L2      | 107.689        | 1.009          | 0.020                             | A                | 0.000                             | 69.116                            | 69.116                              | 100.00 | 0.000                                                       | 0.000                                                        |
|                         |         |                |                |                                   |                  | 0.000                             | 69.116                            |                                     | 100.00 | 0.000                                                       | 0.000                                                        |
|                         |         |                |                |                                   |                  | 0.000                             | 69.116                            |                                     | 100.00 | 0.000                                                       | 0.000                                                        |
| 96.000-47.750           | L3      | 71.426         | 0.898          | 0.018                             | A                | 0.000                             | 169.464                           | 169.464                             | 100.00 | 0.000                                                       | 0.000                                                        |
|                         |         |                |                |                                   |                  | 0.000                             | 169.464                           |                                     | 100.00 | 0.000                                                       | 0.000                                                        |

|                                                                                                                                                                 |                            |  |  |  |  |  |  |  |  |  |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|---------------------------|
| <i>tnxTower</i><br><i>Semaan Engineering Solutions LLC</i><br><i>1047 N. 205th St.</i><br><i>Elkhorn, NE 68022</i><br><i>Phone: 402-289-1888</i><br><i>FAX:</i> | Job<br>28493_Bethel West 2 |  |  |  |  |  |  |  |  |  | Page<br>7 of 20           |
|                                                                                                                                                                 | Project<br>REV03           |  |  |  |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                                                 | Client<br>KGI              |  |  |  |  |  |  |  |  |  | Designed by<br>TLT        |

| Section<br>Elevation | z      | K <sub>z</sub> | q <sub>z</sub> | A <sub>G</sub>  | F<br>a<br>c<br>e | A <sub>F</sub>  | A <sub>R</sub>  | A <sub>leg</sub> | Leg<br>% | C <sub>A</sub> A <sub>A</sub><br>In<br>Face<br>ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub><br>Out<br>Face<br>ft <sup>2</sup> |
|----------------------|--------|----------------|----------------|-----------------|------------------|-----------------|-----------------|------------------|----------|----------------------------------------------------------------|-----------------------------------------------------------------|
| ft                   | ft     |                | ksf            | ft <sup>2</sup> |                  | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>  |          |                                                                |                                                                 |
| L4<br>47.750-1.000   | 23.893 | 0.7            | 0.014          | 203.208         | C                | 0.000           | 169.464         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                      |        |                |                |                 | A                | 0.000           | 203.208         | 203.208          | 100.00   | 0.000                                                          | 0.000                                                           |
|                      |        |                |                |                 | B                | 0.000           | 203.208         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                      |        |                |                |                 | C                | 0.000           | 203.208         |                  | 100.00   | 0.000                                                          | 0.000                                                           |

### Tower Pressure - With Ice

G<sub>H</sub> = 1.100

| Section<br>Elevation  | z       | K <sub>z</sub> | q <sub>z</sub> | t <sub>z</sub> | A <sub>G</sub>  | F<br>a<br>c<br>e | A <sub>F</sub>  | A <sub>R</sub>  | A <sub>leg</sub> | Leg<br>% | C <sub>A</sub> A <sub>A</sub><br>In<br>Face<br>ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub><br>Out<br>Face<br>ft <sup>2</sup> |
|-----------------------|---------|----------------|----------------|----------------|-----------------|------------------|-----------------|-----------------|------------------|----------|----------------------------------------------------------------|-----------------------------------------------------------------|
| ft                    | ft      |                | ksf            | in             | ft <sup>2</sup> |                  | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>  |          |                                                                |                                                                 |
| L1<br>140.000-120.000 | 129.748 | 1.065          | 0.006          | 1.720          | 55.103          | A                | 0.000           | 55.103          | 55.103           | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | B                | 0.000           | 55.103          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | C                | 0.000           | 55.103          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
| L2<br>120.000-96.000  | 107.689 | 1.009          | 0.006          | 1.688          | 75.870          | A                | 0.000           | 75.870          | 75.870           | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | B                | 0.000           | 75.870          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | C                | 0.000           | 75.870          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
| L3<br>96.000-47.750   | 71.426  | 0.898          | 0.005          | 1.620          | 183.041         | A                | 0.000           | 183.041         | 183.041          | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | B                | 0.000           | 183.041         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | C                | 0.000           | 183.041         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
| L4 47.750-1.000       | 23.893  | 0.7            | 0.004          | 1.452          | 215.833         | A                | 0.000           | 215.833         | 215.833          | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | B                | 0.000           | 215.833         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                |                 | C                | 0.000           | 215.833         |                  | 100.00   | 0.000                                                          | 0.000                                                           |

### Tower Pressure - Service

G<sub>H</sub> = 1.100

| Section<br>Elevation  | z       | K <sub>z</sub> | q <sub>z</sub> | A <sub>G</sub>  | F<br>a<br>c<br>e | A <sub>F</sub>  | A <sub>R</sub>  | A <sub>leg</sub> | Leg<br>% | C <sub>A</sub> A <sub>A</sub><br>In<br>Face<br>ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub><br>Out<br>Face<br>ft <sup>2</sup> |
|-----------------------|---------|----------------|----------------|-----------------|------------------|-----------------|-----------------|------------------|----------|----------------------------------------------------------------|-----------------------------------------------------------------|
| ft                    | ft      |                | ksf            | ft <sup>2</sup> |                  | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>  |          |                                                                |                                                                 |
| L1<br>140.000-120.000 | 129.748 | 1.065          | 0.008          | 49.370          | A                | 0.000           | 49.370          | 49.370           | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | B                | 0.000           | 49.370          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | C                | 0.000           | 49.370          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
| L2<br>120.000-96.000  | 107.689 | 1.009          | 0.008          | 69.116          | A                | 0.000           | 69.116          | 69.116           | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | B                | 0.000           | 69.116          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | C                | 0.000           | 69.116          |                  | 100.00   | 0.000                                                          | 0.000                                                           |
| L3<br>96.000-47.750   | 71.426  | 0.898          | 0.007          | 169.464         | A                | 0.000           | 169.464         | 169.464          | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | B                | 0.000           | 169.464         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | C                | 0.000           | 169.464         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
| L4<br>47.750-1.000    | 23.893  | 0.7            | 0.006          | 203.208         | A                | 0.000           | 203.208         | 203.208          | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | B                | 0.000           | 203.208         |                  | 100.00   | 0.000                                                          | 0.000                                                           |
|                       |         |                |                |                 | C                | 0.000           | 203.208         |                  | 100.00   | 0.000                                                          | 0.000                                                           |

### Tower Forces - No Ice - Wind Normal To Face

|                                                                                                                                                                 |                            |  |  |  |  |  |  |  |  |  |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|---------------------------|
| <i>tnxTower</i><br><i>Semaan Engineering Solutions LLC</i><br><i>1047 N. 205th St.</i><br><i>Elkhorn, NE 68022</i><br><i>Phone: 402-289-1888</i><br><i>FAX:</i> | Job<br>28493_Bethel West 2 |  |  |  |  |  |  |  |  |  | Page<br>8 of 20           |
|                                                                                                                                                                 | Project<br>REV03           |  |  |  |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                                                 | Client<br>KGI              |  |  |  |  |  |  |  |  |  | Designed by<br>TLT        |

| Section Elevation<br>ft   | Add Weight<br>lb | Self Weight<br>lb | F a<br>c<br>e | e           | C <sub>F</sub>       | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>       | F        | w     | Ctrl. Face |
|---------------------------|------------------|-------------------|---------------|-------------|----------------------|-----------------------|----------------|----------------|----------------------|----------|-------|------------|
|                           |                  |                   |               |             |                      |                       |                |                | ft <sup>2</sup>      | lb       | klf   |            |
| L1<br>140.000-120.0<br>00 | 79.600           | 1563.891          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.021                 | 1              | 1              | 49.370               | 756.806  | 0.038 | C          |
| L2<br>120.000-96.00<br>0  | 523.200          | 2191.700          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.020                 | 1              | 1              | 49.370               | 1004.575 | 0.042 | C          |
| L3<br>96.000-47.750       | 1051.850         | 7342.187          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.018                 | 1              | 1              | 69.116               | 2178.906 | 0.045 | C          |
| L4<br>47.750-1.000        | 1019.150         | 10855.112         | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.014                 | 1              | 1              | 169.464              | 2099.990 | 0.045 | C          |
| Sum Weight:               | 2673.800         | 21952.890         |               |             |                      |                       |                | OTM            | 406140.72<br>7 lb-ft | 6040.277 |       |            |

### Tower Forces - No Ice - Wind 60 To Face

| Section Elevation<br>ft   | Add Weight<br>lb | Self Weight<br>lb | F a<br>c<br>e | e           | C <sub>F</sub>       | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>       | F        | w     | Ctrl. Face |
|---------------------------|------------------|-------------------|---------------|-------------|----------------------|-----------------------|----------------|----------------|----------------------|----------|-------|------------|
|                           |                  |                   |               |             |                      |                       |                |                | ft <sup>2</sup>      | lb       | klf   |            |
| L1<br>140.000-120.0<br>00 | 79.600           | 1563.891          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.021                 | 1              | 1              | 49.370               | 756.806  | 0.038 | C          |
| L2<br>120.000-96.00<br>0  | 523.200          | 2191.700          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.020                 | 1              | 1              | 49.370               | 1004.575 | 0.042 | C          |
| L3<br>96.000-47.750       | 1051.850         | 7342.187          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.018                 | 1              | 1              | 69.116               | 2178.906 | 0.045 | C          |
| L4<br>47.750-1.000        | 1019.150         | 10855.112         | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.014                 | 1              | 1              | 169.464              | 2099.990 | 0.045 | C          |
| Sum Weight:               | 2673.800         | 21952.890         |               |             |                      |                       |                | OTM            | 406140.72<br>7 lb-ft | 6040.277 |       |            |

### Tower Forces - No Ice - Wind 90 To Face

| Section Elevation<br>ft   | Add Weight<br>lb | Self Weight<br>lb | F a<br>c<br>e | e           | C <sub>F</sub>       | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>  | F        | w     | Ctrl. Face |
|---------------------------|------------------|-------------------|---------------|-------------|----------------------|-----------------------|----------------|----------------|-----------------|----------|-------|------------|
|                           |                  |                   |               |             |                      |                       |                |                | ft <sup>2</sup> | lb       | klf   |            |
| L1<br>140.000-120.0<br>00 | 79.600           | 1563.891          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.021                 | 1              | 1              | 49.370          | 756.806  | 0.038 | C          |
| L2<br>120.000-96.00<br>0  | 523.200          | 2191.700          | A<br>B<br>C   | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.020                 | 1              | 1              | 49.370          | 1004.575 | 0.042 | C          |
| L3<br>96.000-47.750       | 1051.850         | 7342.187          | A             | 1           | 0.65                 | 0.018                 | 1              | 1              | 69.116          | 2178.906 | 0.045 | C          |

|                                                                                                                                     |                            |  |  |  |  |  |  |  |  |  |                           |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|---------------------------|
| <i>tnxTower</i><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job<br>28493_Bethel West 2 |  |  |  |  |  |  |  |  |  | Page<br>9 of 20           |
|                                                                                                                                     | Project<br>REV03           |  |  |  |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                     | Client<br>KGI              |  |  |  |  |  |  |  |  |  | Designed by<br>TLT        |

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a<br>c<br>c<br>e | e | C <sub>F</sub> | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub>       | A <sub>E</sub> | F        | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|--------------------|---|----------------|-----------------------|----------------|----------------------|----------------|----------|-------|------------|
| 96.000-47.750           |                  |                   | B                  | 1 | 0.65           |                       | 1              | 1                    | 169.464        |          |       |            |
| L4                      | 1019.150         | 10855.112         | C                  | 1 | 0.65           |                       | 1              | 1                    | 169.464        |          |       |            |
| 47.750-1.000            |                  |                   | A                  | 1 | 0.65           | 0.014                 | 1              | 1                    | 203.208        |          |       |            |
|                         |                  |                   | B                  | 1 | 0.65           |                       | 1              | 1                    | 203.208        | 2099.990 | 0.045 | C          |
|                         |                  |                   | C                  | 1 | 0.65           |                       | 1              | 1                    | 203.208        |          |       |            |
| Sum Weight:             | 2673.800         | 21952.890         |                    |   |                |                       | OTM            | 406140.72<br>7 lb-ft |                | 6040.277 |       |            |

### Tower Forces - With Ice - Wind Normal To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a<br>c<br>c<br>e | e | C <sub>F</sub> | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub>       | A <sub>E</sub> | F        | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|--------------------|---|----------------|-----------------------|----------------|----------------------|----------------|----------|-------|------------|
| L1                      | 79.600           | 2877.268          | A                  | 1 | 1.2            | 0.006                 | 1              | 1                    | 55.103         | 470.790  | 0.024 | C          |
| 140.000-120.00          |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 55.103         |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 55.103         |          |       |            |
| L2                      | 523.200          | 3980.208          | A                  | 1 | 1.2            | 0.006                 | 1              | 1                    | 75.870         | 614.603  | 0.026 | C          |
| 120.000-96.000          |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 75.870         |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 75.870         |          |       |            |
| L3                      | 1051.850         | 11508.751         | A                  | 1 | 1.2            | 0.005                 | 1              | 1                    | 182.495        | 1307.786 | 0.027 | C          |
| 96.000-47.750           |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 182.495        |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 182.495        |          |       |            |
| L4                      | 1019.150         | 15286.603         | A                  | 1 | 1.2            | 0.004                 | 1              | 1                    | 214.524        | 1235.599 | 0.026 | C          |
| 47.750-1.000            |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 214.524        |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 214.524        |          |       |            |
| Sum Weight:             | 2673.800         | 33652.830         |                    |   |                |                       | OTM            | 246573.14<br>9 lb-ft |                | 3628.779 |       |            |

### Tower Forces - With Ice - Wind 60 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a<br>c<br>c<br>e | e | C <sub>F</sub> | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub>       | A <sub>E</sub> | F        | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|--------------------|---|----------------|-----------------------|----------------|----------------------|----------------|----------|-------|------------|
| L1                      | 79.600           | 2877.268          | A                  | 1 | 1.2            | 0.006                 | 1              | 1                    | 55.103         | 470.790  | 0.024 | C          |
| 140.000-120.00          |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 55.103         |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 55.103         |          |       |            |
| L2                      | 523.200          | 3980.208          | A                  | 1 | 1.2            | 0.006                 | 1              | 1                    | 75.870         | 614.603  | 0.026 | C          |
| 120.000-96.000          |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 75.870         |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 75.870         |          |       |            |
| L3                      | 1051.850         | 11508.751         | A                  | 1 | 1.2            | 0.005                 | 1              | 1                    | 182.495        | 1307.786 | 0.027 | C          |
| 96.000-47.750           |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 182.495        |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 182.495        |          |       |            |
| L4                      | 1019.150         | 15286.603         | A                  | 1 | 1.2            | 0.004                 | 1              | 1                    | 214.524        | 1235.599 | 0.026 | C          |
| 47.750-1.000            |                  |                   | B                  | 1 | 1.2            |                       | 1              | 1                    | 214.524        |          |       |            |
|                         |                  |                   | C                  | 1 | 1.2            |                       | 1              | 1                    | 214.524        |          |       |            |
| Sum Weight:             | 2673.800         | 33652.830         |                    |   |                |                       | OTM            | 246573.14<br>9 lb-ft |                | 3628.779 |       |            |

|                                                                                                                                     |                            |  |  |  |  |  |  |  |  |  |                           |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|---------------------------|
| <i>tnxTower</i><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job<br>28493_Bethel West 2 |  |  |  |  |  |  |  |  |  | Page<br>10 of 20          |
|                                                                                                                                     | Project<br>REV03           |  |  |  |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                     | Client<br>KGI              |  |  |  |  |  |  |  |  |  | Designed by<br>TLT        |

### Tower Forces - With Ice - Wind 90 To Face

| Section Elevation<br>ft   | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>    | q <sub>z</sub><br>ksf   | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub><br>ft <sup>2</sup> | F<br>lb  | w<br>klf | Ctrl. Face |
|---------------------------|------------------|-------------------|-------------|-------------|-------------------|-------------------------|----------------|----------------|-----------------------------------|----------|----------|------------|
| L1<br>140.000-120.0<br>00 | 79.600           | 2877.268          | A<br>B<br>C | 1<br>1<br>1 | 1.2<br>1.2<br>1.2 | 0.006<br>0.006<br>0.006 | 1<br>1<br>1    | 1<br>1<br>1    | 55.103<br>55.103<br>55.103        | 470.790  | 0.024    | C          |
| L2<br>120.000-96.00<br>0  | 523.200          | 3980.208          | A<br>B<br>C | 1<br>1<br>1 | 1.2<br>1.2<br>1.2 | 0.006<br>0.005<br>0.005 | 1<br>1<br>1    | 1<br>1<br>1    | 75.870<br>75.870<br>75.870        | 614.603  | 0.026    | C          |
| L3<br>96.000-47.750       | 1051.850         | 11508.751         | A<br>B<br>C | 1<br>1<br>1 | 1.2<br>1.2<br>1.2 | 0.005<br>0.005<br>0.004 | 1<br>1<br>1    | 1<br>1<br>1    | 182.495<br>182.495<br>214.524     | 1307.786 | 0.027    | C          |
| L4<br>47.750-1.000        | 1019.150         | 15286.603         | A<br>B<br>C | 1<br>1<br>1 | 1.2<br>1.2<br>1.2 | 0.004<br>0.004<br>0.004 | 1<br>1<br>1    | 1<br>1<br>1    | 214.524<br>214.524<br>214.524     | 1235.599 | 0.026    | C          |
| Sum Weight:               | 2673.800         | 33652.830         |             |             |                   |                         |                | OTM            | 246573.14<br>9 lb-ft              | 3628.779 |          |            |

### Tower Forces - Service - Wind Normal To Face

| Section Elevation<br>ft   | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>       | q <sub>z</sub><br>ksf   | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub><br>ft <sup>2</sup> | F<br>lb  | w<br>klf | Ctrl. Face |
|---------------------------|------------------|-------------------|-------------|-------------|----------------------|-------------------------|----------------|----------------|-----------------------------------|----------|----------|------------|
| L1<br>140.000-120.0<br>00 | 79.600           | 1563.891          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.008<br>0.008<br>0.008 | 1<br>1<br>1    | 1<br>1<br>1    | 49.370<br>49.370<br>49.370        | 294.374  | 0.015    | C          |
| L2<br>120.000-96.00<br>0  | 523.200          | 2191.700          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.008<br>0.007<br>0.007 | 1<br>1<br>1    | 1<br>1<br>1    | 69.116<br>69.116<br>69.116        | 390.749  | 0.016    | C          |
| L3<br>96.000-47.750       | 1051.850         | 7342.187          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.007<br>0.006<br>0.006 | 1<br>1<br>1    | 1<br>1<br>1    | 169.464<br>169.464<br>203.208     | 847.527  | 0.018    | C          |
| L4<br>47.750-1.000        | 1019.150         | 10855.112         | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.006<br>0.006<br>0.006 | 1<br>1<br>1    | 1<br>1<br>1    | 169.464<br>203.208<br>203.208     | 816.831  | 0.017    | C          |
| Sum Weight:               | 2673.800         | 21952.890         |             |             |                      |                         |                | OTM            | 157976.16<br>9 lb-ft              | 2349.481 |          |            |

### Tower Forces - Service - Wind 60 To Face

|                                                                                                                                         |                            |  |  |  |  |  |  |  |  |  |  |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|--|---------------------------|
| <b>tnxTower</b><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job<br>28493_Bethel West 2 |  |  |  |  |  |  |  |  |  |  | Page<br>11 of 20          |
|                                                                                                                                         | Project<br>REV03           |  |  |  |  |  |  |  |  |  |  | Date<br>11:30:21 09/02/20 |
|                                                                                                                                         | Client<br>KGI              |  |  |  |  |  |  |  |  |  |  | Designed by<br>TLT        |

| Section Elevation<br>ft   | Add Weight<br>lb | Self Weight<br>lb | F a<br>c e  | e           | C <sub>F</sub>       | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>                | F        | w     | Ctrl. Face |
|---------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|-------------------------------|----------|-------|------------|
|                           |                  |                   |             |             |                      |                       |                |                | ft <sup>2</sup>               | lb       | klf   |            |
| L1<br>140.000-120.0<br>00 | 79.600           | 1563.891          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.008<br>0.008        | 1<br>1<br>1    | 1<br>1<br>1    | 49.370<br>49.370<br>49.370    | 294.374  | 0.015 | C          |
| L2<br>120.000-96.00<br>0  | 523.200          | 2191.700          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.008<br>0.007        | 1<br>1<br>1    | 1<br>1<br>1    | 69.116<br>69.116<br>69.116    | 390.749  | 0.016 | C          |
| L3<br>96.000-47.750       | 1051.850         | 7342.187          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.007<br>0.006        | 1<br>1<br>1    | 1<br>1<br>1    | 169.464<br>169.464<br>169.464 | 847.527  | 0.018 | C          |
| L4<br>47.750-1.000        | 1019.150         | 10855.112         | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.006<br>0.006        | 1<br>1<br>1    | 1<br>1<br>1    | 203.208<br>203.208<br>203.208 | 816.831  | 0.017 | C          |
| Sum Weight:               | 2673.800         | 21952.890         |             |             |                      |                       |                | OTM            | 157976.16<br>9 lb-ft          | 2349.481 |       |            |

### Tower Forces - Service - Wind 90 To Face

| Section Elevation<br>ft   | Add Weight<br>lb | Self Weight<br>lb | F a<br>c e  | e           | C <sub>F</sub>       | q <sub>z</sub><br>ksf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>                | F        | w     | Ctrl. Face |
|---------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|-------------------------------|----------|-------|------------|
|                           |                  |                   |             |             |                      |                       |                |                | ft <sup>2</sup>               | lb       | klf   |            |
| L1<br>140.000-120.0<br>00 | 79.600           | 1563.891          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.008<br>0.008        | 1<br>1<br>1    | 1<br>1<br>1    | 49.370<br>49.370<br>49.370    | 294.374  | 0.015 | C          |
| L2<br>120.000-96.00<br>0  | 523.200          | 2191.700          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.008<br>0.007        | 1<br>1<br>1    | 1<br>1<br>1    | 69.116<br>69.116<br>69.116    | 390.749  | 0.016 | C          |
| L3<br>96.000-47.750       | 1051.850         | 7342.187          | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.007<br>0.006        | 1<br>1<br>1    | 1<br>1<br>1    | 169.464<br>169.464<br>169.464 | 847.527  | 0.018 | C          |
| L4<br>47.750-1.000        | 1019.150         | 10855.112         | A<br>B<br>C | 1<br>1<br>1 | 0.65<br>0.65<br>0.65 | 0.006<br>0.006        | 1<br>1<br>1    | 1<br>1<br>1    | 203.208<br>203.208<br>203.208 | 816.831  | 0.017 | C          |
| Sum Weight:               | 2673.800         | 21952.890         |             |             |                      |                       |                | OTM            | 157976.16<br>9 lb-ft          | 2349.481 |       |            |

### Force Totals

| Load Case                | Vertical Forces<br>lb | Sum of Forces<br>X<br>lb | Sum of Forces<br>Z<br>lb | Sum of Overturning Moments, M <sub>x</sub><br>lb-ft | Sum of Overturning Moments, M <sub>z</sub><br>lb-ft | Sum of Torques<br>lb-ft |
|--------------------------|-----------------------|--------------------------|--------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------|
| Leg Weight               | 21952.890             |                          |                          |                                                     |                                                     |                         |
| Bracing Weight           | 0.000                 |                          |                          |                                                     |                                                     |                         |
| Total Member Self-Weight | 21952.890             |                          |                          | -69.375                                             | 120.161                                             |                         |
| Total Weight             | 32581.810             |                          |                          | -69.375                                             | 120.161                                             |                         |
| Wind 0 deg - No Ice      |                       | 0.000                    | -12442.688               | -1230579.307                                        | 120.161                                             | -46.338                 |
| Wind 30 deg - No Ice     |                       | 6221.344                 | -10775.684               | -1065722.236                                        | -615134.805                                         | -53.506                 |
| Wind 60 deg - No Ice     |                       | 10775.684                | -6221.344                | -615324.341                                         | -1065532.700                                        | -46.338                 |

|                                                                                                                                               |         |                     |             |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-------------|-------------------|
| <b>inxTower</b><br><b>Semaan Engineering Solutions</b><br><b>LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job     | 28493_Bethel West 2 | Page        | 12 of 20          |
|                                                                                                                                               | Project | REV03               | Date        | 11:30:21 09/02/20 |
|                                                                                                                                               | Client  | KGI                 | Designed by | TLT               |

| Load Case              | Vertical Forces<br>lb | Sum of Forces<br>X<br>lb | Sum of Forces<br>Z<br>lb | Sum of Overturning<br>Moments, $M_x$<br>lb-ft | Sum of Overturning<br>Moments, $M_z$<br>lb-ft | Sum of Torques<br>lb-ft |
|------------------------|-----------------------|--------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------|
| Wind 90 deg - No Ice   |                       | 12442.688                | 0.000                    | -69.375                                       | -1230389.771                                  | -26.753                 |
| Wind 120 deg - No Ice  |                       | 10775.684                | 6221.344                 | 615185.591                                    | -1065532.700                                  | 0.000                   |
| Wind 150 deg - No Ice  |                       | 6221.344                 | 10775.684                | 1065583.486                                   | -615134.805                                   | 26.753                  |
| Wind 180 deg - No Ice  |                       | 0.000                    | 12442.688                | 1230440.557                                   | 120.161                                       | 46.338                  |
| Wind 210 deg - No Ice  |                       | -6221.344                | 10775.684                | 1065583.486                                   | 615375.127                                    | 53.506                  |
| Wind 240 deg - No Ice  |                       | -10775.684               | 6221.344                 | 615185.591                                    | 1065773.022                                   | 46.338                  |
| Wind 270 deg - No Ice  |                       | -12442.688               | 0.000                    | -69.375                                       | 1230630.093                                   | 26.753                  |
| Wind 300 deg - No Ice  |                       | -10775.684               | -6221.344                | -615324.341                                   | 1065773.022                                   | 0.000                   |
| Wind 330 deg - No Ice  |                       | -6221.344                | -10775.684               | -1065722.236                                  | 615375.127                                    | -26.753                 |
| Member Ice             | 11699.940             |                          |                          |                                               |                                               |                         |
| Total Weight Ice       | 59438.393             |                          |                          | -181.598                                      | 314.538                                       |                         |
| Wind 0 deg - Ice       |                       | 0.000                    | -6192.090                | -576341.429                                   | 314.538                                       | -28.599                 |
| Wind 30 deg - Ice      |                       | 3096.045                 | -5362.508                | -499150.648                                   | -287765.378                                   | -33.023                 |
| Wind 60 deg - Ice      |                       | 5362.508                 | -3096.045                | -288261.513                                   | -498654.512                                   | -28.599                 |
| Wind 90 deg - Ice      |                       | 6192.090                 | 0.000                    | -181.598                                      | -575845.293                                   | -16.512                 |
| Wind 120 deg - Ice     |                       | 5362.508                 | 3096.045                 | 287898.317                                    | -498654.512                                   | 0.000                   |
| Wind 150 deg - Ice     |                       | 3096.045                 | 5362.508                 | 498787.451                                    | -287765.378                                   | 16.512                  |
| Wind 180 deg - Ice     |                       | 0.000                    | 6192.090                 | 575978.232                                    | 314.538                                       | 28.599                  |
| Wind 210 deg - Ice     |                       | -3096.045                | 5362.508                 | 498787.451                                    | 288394.453                                    | 33.023                  |
| Wind 240 deg - Ice     |                       | -5362.508                | 3096.045                 | 287898.317                                    | 499283.587                                    | 28.599                  |
| Wind 270 deg - Ice     |                       | -6192.090                | 0.000                    | -181.598                                      | 576474.368                                    | 16.512                  |
| Wind 300 deg - Ice     |                       | -5362.508                | -3096.045                | -288261.513                                   | 499283.587                                    | 0.000                   |
| Wind 330 deg - Ice     |                       | -3096.045                | -5362.508                | -499150.648                                   | 288394.453                                    | -16.512                 |
| Total Weight           | 32581.810             |                          |                          | -69.375                                       | 120.161                                       |                         |
| Wind 0 deg - Service   |                       | 0.000                    | -4839.821                | -478699.644                                   | 120.161                                       | -18.024                 |
| Wind 30 deg - Service  |                       | 2419.910                 | -4191.408                | -414575.347                                   | -239194.973                                   | -20.812                 |
| Wind 60 deg - Service  |                       | 4191.408                 | -2419.910                | -239384.509                                   | -414385.811                                   | -18.024                 |
| Wind 90 deg - Service  |                       | 4839.821                 | 0.000                    | -69.375                                       | -478510.108                                   | -10.406                 |
| Wind 120 deg - Service |                       | 4191.408                 | 2419.910                 | 239245.759                                    | -414385.811                                   | 0.000                   |
| Wind 150 deg - Service |                       | 2419.910                 | 4191.408                 | 414436.597                                    | -239194.973                                   | 10.406                  |
| Wind 180 deg - Service |                       | 0.000                    | 4839.821                 | 478560.894                                    | 120.161                                       | 18.024                  |
| Wind 210 deg - Service |                       | -2419.910                | 4191.408                 | 414436.597                                    | 239435.295                                    | 20.812                  |
| Wind 240 deg - Service |                       | -4191.408                | 2419.910                 | 239245.759                                    | 414626.133                                    | 18.024                  |
| Wind 270 deg - Service |                       | -4839.821                | 0.000                    | -69.375                                       | 478750.430                                    | 10.406                  |
| Wind 300 deg - Service |                       | -4191.408                | -2419.910                | -239384.509                                   | 414626.133                                    | 0.000                   |
| Wind 330 deg - Service |                       | -2419.910                | -4191.408                | -414575.347                                   | 239435.295                                    | -10.406                 |

## Load Combinations

| Comb. No. | Description                        |
|-----------|------------------------------------|
| 1         | Dead Only                          |
| 2         | 1.2 Dead+1.6 Wind 0 deg - No Ice   |
| 3         | 0.9 Dead+1.6 Wind 0 deg - No Ice   |
| 4         | 1.2 Dead+1.6 Wind 30 deg - No Ice  |
| 5         | 0.9 Dead+1.6 Wind 30 deg - No Ice  |
| 6         | 1.2 Dead+1.6 Wind 60 deg - No Ice  |
| 7         | 0.9 Dead+1.6 Wind 60 deg - No Ice  |
| 8         | 1.2 Dead+1.6 Wind 90 deg - No Ice  |
| 9         | 0.9 Dead+1.6 Wind 90 deg - No Ice  |
| 10        | 1.2 Dead+1.6 Wind 120 deg - No Ice |
| 11        | 0.9 Dead+1.6 Wind 120 deg - No Ice |
| 12        | 1.2 Dead+1.6 Wind 150 deg - No Ice |
| 13        | 0.9 Dead+1.6 Wind 150 deg - No Ice |
| 14        | 1.2 Dead+1.6 Wind 180 deg - No Ice |
| 15        | 0.9 Dead+1.6 Wind 180 deg - No Ice |

|                                                                                                                                                   |                |                     |                    |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|--------------------|-------------------|
| <b>tnxTower</b><br><br><b>Semaan Engineering Solutions</b><br><b>LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | <b>Job</b>     | 28493_Bethel West 2 | <b>Page</b>        | 13 of 20          |
|                                                                                                                                                   | <b>Project</b> | REV03               | <b>Date</b>        | 11:30:21 09/02/20 |
|                                                                                                                                                   | <b>Client</b>  | KGI                 | <b>Designed by</b> | TLT               |

| <i>Comb.<br/>No.</i> | <i>Description</i>                         |
|----------------------|--------------------------------------------|
| 16                   | 1.2 Dead+1.6 Wind 210 deg - No Ice         |
| 17                   | 0.9 Dead+1.6 Wind 210 deg - No Ice         |
| 18                   | 1.2 Dead+1.6 Wind 240 deg - No Ice         |
| 19                   | 0.9 Dead+1.6 Wind 240 deg - No Ice         |
| 20                   | 1.2 Dead+1.6 Wind 270 deg - No Ice         |
| 21                   | 0.9 Dead+1.6 Wind 270 deg - No Ice         |
| 22                   | 1.2 Dead+1.6 Wind 300 deg - No Ice         |
| 23                   | 0.9 Dead+1.6 Wind 300 deg - No Ice         |
| 24                   | 1.2 Dead+1.6 Wind 330 deg - No Ice         |
| 25                   | 0.9 Dead+1.6 Wind 330 deg - No Ice         |
| 26                   | 1.2 Dead+1.0 Ice+1.0 Temp                  |
| 27                   | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp   |
| 28                   | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp  |
| 29                   | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp  |
| 30                   | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp  |
| 31                   | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp |
| 32                   | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp |
| 33                   | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp |
| 34                   | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp |
| 35                   | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp |
| 36                   | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp |
| 37                   | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp |
| 38                   | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp |
| 39                   | Dead+Wind 0 deg - Service                  |
| 40                   | Dead+Wind 30 deg - Service                 |
| 41                   | Dead+Wind 60 deg - Service                 |
| 42                   | Dead+Wind 90 deg - Service                 |
| 43                   | Dead+Wind 120 deg - Service                |
| 44                   | Dead+Wind 150 deg - Service                |
| 45                   | Dead+Wind 180 deg - Service                |
| 46                   | Dead+Wind 210 deg - Service                |
| 47                   | Dead+Wind 240 deg - Service                |
| 48                   | Dead+Wind 270 deg - Service                |
| 49                   | Dead+Wind 300 deg - Service                |
| 50                   | Dead+Wind 330 deg - Service                |

### Maximum Member Forces

| <i>Section<br/>No.</i> | <i>Elevation<br/>ft</i> | <i>Component<br/>Type</i> | <i>Condition</i> | <i>Gov.<br/>Load<br/>Comb.</i> | <i>Axial</i> | <i>Major Axis<br/>Moment</i> | <i>Minor Axis<br/>Moment</i> |
|------------------------|-------------------------|---------------------------|------------------|--------------------------------|--------------|------------------------------|------------------------------|
| L1                     | 140 - 120               | Pole                      | Max Tension      | 26                             | 0.000        | 0.000                        | 0.000                        |
|                        |                         |                           | Max. Compression | 26                             | -15269.640   | 338.570                      | 195.473                      |
|                        |                         |                           | Max. Mx          | 20                             | -6485.401    | 117020.547                   | 82.552                       |
|                        |                         |                           | Max. My          | 2                              | -6485.428    | 142.985                      | 116959.024                   |
|                        |                         |                           | Max. Vy          | 20                             | -6501.820    | 117020.547                   | 82.552                       |
|                        |                         |                           | Max. Vx          | 2                              | -6501.792    | 142.985                      | 116959.024                   |
| L2                     | 120 - 96                | Pole                      | Max. Torque      | 16                             |              |                              | -93.196                      |
|                        |                         |                           | Max Tension      | 1                              | 0.000        | 0.000                        | 0.000                        |
|                        |                         |                           | Max. Compression | 26                             | -31895.604   | 338.570                      | 195.473                      |
|                        |                         |                           | Max. Mx          | 20                             | -13530.045   | 352821.008                   | 84.233                       |
|                        |                         |                           | Max. My          | 2                              | -13530.080   | 145.897                      | 352758.722                   |
|                        |                         |                           | Max. Vy          | 20                             | -13219.374   | 352821.008                   | 84.233                       |
| L3                     | 96 - 47.75              | Pole                      | Max. Vx          | 2                              | -13219.338   | 145.897                      | 352758.722                   |
|                        |                         |                           | Max. Torque      | 16                             |              |                              | -93.189                      |
|                        |                         |                           | Max Tension      | 1                              | 0.000        | 0.000                        | 0.000                        |
|                        |                         |                           | Max. Compression | 26                             | -45789.011   | 338.570                      | 195.473                      |
|                        |                         |                           | Max. Mx          | 20                             | -23143.998   | 1052606.56                   | 86.889                       |

|                                                                                                                                         |         |                     |             |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-------------|-------------------|
| <b>inxTower</b><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job     | 28493_Bethel West 2 | Page        | 14 of 20          |
|                                                                                                                                         | Project | REV03               | Date        | 11:30:21 09/02/20 |
|                                                                                                                                         | Client  | KGI                 | Designed by | TLT               |

| Section No. | Elevation ft | Component Type | Condition        | Gov. Load Comb. | Axial lb   | Major Axis Moment lb-ft | Minor Axis Moment lb-ft |
|-------------|--------------|----------------|------------------|-----------------|------------|-------------------------|-------------------------|
| L4          | 47.75 - 1    | Pole           | Max. My          | 2               | -23144.012 | 150.496                 | 1052542.90              |
|             |              |                | Max. Vy          | 20              | -16525.124 | 1052606.56              | 86.889                  |
|             |              |                | Max. Vx          | 2               | -16525.103 | 150.496                 | 1052542.90              |
|             |              |                | Max. Torque      | 16              |            |                         | -93.156                 |
|             |              |                | Max Tension      | 1               | 0.000      | 0.000                   | 0.000                   |
|             |              |                | Max. Compression | 26              | -67024.255 | 338.570                 | 195.473                 |
|             |              |                | Max. Mx          | 20              | -39088.891 | 2024921.33              | 87.788                  |
|             |              |                | Max. My          | 2               | -39088.891 | 152.053                 | 2024857.06              |
|             |              |                | Max. Vy          | 20              | -19926.523 | 2024921.33              | 87.788                  |
|             |              |                | Max. Vx          | 2               | -19926.522 | 152.053                 | 2024857.06              |
|             |              |                | Max. Torque      | 16              |            |                         | -93.071                 |

## Maximum Reactions

| Location | Condition           | Gov. Load Comb. | Vertical lb  | Horizontal, X lb | Horizontal, Z lb |
|----------|---------------------|-----------------|--------------|------------------|------------------|
| Pole     | Max. Vert           | 36              | 67024.255    | 6192.104         | 0.000            |
|          | Max. H <sub>x</sub> | 20              | 39098.173    | 19908.304        | 0.000            |
|          | Max. H <sub>z</sub> | 2               | 39098.173    | 0.000            | 19908.304        |
|          | Max. M <sub>x</sub> | 2               | 2024857.066  | 0.000            | 19908.304        |
|          | Max. M <sub>z</sub> | 8               | 2024617.225  | -19908.304       | 0.000            |
|          | Max. Torsion        | 4               | 93.036       | -9954.151        | 17241.095        |
|          | Min. Vert           | 11              | 29323.629    | -17241.095       | -9954.151        |
|          | Min. H <sub>x</sub> | 8               | 39098.173    | -19908.304       | 0.000            |
|          | Min. H <sub>z</sub> | 14              | 39098.173    | 0.000            | -19908.304       |
|          | Min. M <sub>x</sub> | 14              | -2024681.491 | 0.000            | -19908.304       |
|          | Min. M <sub>z</sub> | 20              | -2024921.331 | 19908.304        | 0.000            |
|          | Min. Torsion        | 16              | -93.039      | 9954.151         | -17241.095       |

## Tower Mast Reaction Summary

| Load Combination                  | Vertical lb | Shear <sub>x</sub> lb | Shear <sub>z</sub> lb | Overshoring Moment, M <sub>x</sub> lb-ft | Overshoring Moment, M <sub>z</sub> lb-ft | Torque lb-ft |
|-----------------------------------|-------------|-----------------------|-----------------------|------------------------------------------|------------------------------------------|--------------|
| Dead Only                         | 32581.810   | 0.000                 | 0.000                 | -69.375                                  | 120.161                                  | 0.000        |
| 1.2 Dead+1.6 Wind 0 deg - No Ice  | 39098.173   | -0.000                | -19908.304            | -2024857.066                             | 152.042                                  | -80.573      |
| 0.9 Dead+1.6 Wind 0 deg - No Ice  | 29323.629   | -0.000                | -19908.302            | -2010305.141                             | 112.472                                  | -78.868      |
| 1.2 Dead+1.6 Wind 30 deg - No Ice | 39098.172   | 9954.151              | -17241.095            | -1753591.442                             | -1012233.771                             | -93.036      |
| 0.9 Dead+1.6 Wind 30 deg - No Ice | 29323.629   | 9954.151              | -17241.095            | -1740984.641                             | -1005007.990                             | -91.068      |
| 1.2 Dead+1.6 Wind 60 deg - No Ice | 39098.172   | 17241.095             | -9954.151             | -1012473.591                             | -1753351.613                             | -80.575      |

|                                                                                                                                         |         |                     |             |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-------------|-------------------|
| <b>tnxTower</b><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job     | 28493_Bethel West 2 | Page        | 15 of 20          |
|                                                                                                                                         | Project | REV03               | Date        | 11:30:21 09/02/20 |
|                                                                                                                                         | Client  | KGI                 | Designed by | TLT               |

| Load Combination                           | Vertical  | Shear <sub>x</sub> | Shear <sub>z</sub> | Overshooting Moment, M <sub>x</sub> | Overshooting Moment, M <sub>z</sub> | Torque  |
|--------------------------------------------|-----------|--------------------|--------------------|-------------------------------------|-------------------------------------|---------|
|                                            | lb        | lb                 | lb                 | lb-ft                               | lb-ft                               | lb-ft   |
| 0.9 Dead+1.6 Wind 60 deg - No Ice          | 29323.629 | 17241.095          | -9954.151          | -1005185.395                        | -1740807.230                        | -78.869 |
| 1.2 Dead+1.6 Wind 90 deg - No Ice          | 39098.173 | 19908.304          | -0.000             | -87.781                             | -2024617.225                        | -46.519 |
| 0.9 Dead+1.6 Wind 90 deg - No Ice          | 29323.629 | 19908.302          | -0.000             | -64.936                             | -2010127.722                        | -45.535 |
| 1.2 Dead+1.6 Wind 120 deg - No Ice         | 39098.172 | 17241.095          | 9954.151           | 1012298.025                         | -1753351.607                        | 0.002   |
| 0.9 Dead+1.6 Wind 120 deg - No Ice         | 29323.629 | 17241.095          | 9954.151           | 1005055.521                         | -1740807.226                        | 0.001   |
| 1.2 Dead+1.6 Wind 150 deg - No Ice         | 39098.172 | 9954.151           | 17241.095          | 1753415.869                         | -1012233.766                        | 46.517  |
| 0.9 Dead+1.6 Wind 150 deg - No Ice         | 29323.629 | 9954.151           | 17241.095          | 1740854.763                         | -1005007.986                        | 45.534  |
| 1.2 Dead+1.6 Wind 180 deg - No Ice         | 39098.173 | -0.000             | 19908.304          | 2024681.491                         | 152.042                             | 80.573  |
| 0.9 Dead+1.6 Wind 180 deg - No Ice         | 29323.629 | -0.000             | 19908.302          | 2010175.261                         | 112.472                             | 78.868  |
| 1.2 Dead+1.6 Wind 210 deg - No Ice         | 39098.172 | -9954.151          | 17241.095          | 1753415.880                         | 1012537.855                         | 93.039  |
| 0.9 Dead+1.6 Wind 210 deg - No Ice         | 29323.629 | -9954.151          | 17241.095          | 1740854.770                         | 1005232.933                         | 91.069  |
| 1.2 Dead+1.6 Wind 240 deg - No Ice         | 39098.172 | -17241.095         | 9954.151           | 1012298.035                         | 1753655.708                         | 80.571  |
| 0.9 Dead+1.6 Wind 240 deg - No Ice         | 29323.629 | -17241.095         | 9954.151           | 1005055.528                         | 1741032.181                         | 78.867  |
| 1.2 Dead+1.6 Wind 270 deg - No Ice         | 39098.173 | -19908.304         | -0.000             | -87.781                             | 2024921.331                         | 46.519  |
| 0.9 Dead+1.6 Wind 270 deg - No Ice         | 29323.629 | -19908.302         | -0.000             | -64.936                             | 2010352.681                         | 45.534  |
| 1.2 Dead+1.6 Wind 300 deg - No Ice         | 39098.172 | -17241.095         | -9954.151          | -1012473.601                        | 1753655.714                         | 0.002   |
| 0.9 Dead+1.6 Wind 300 deg - No Ice         | 29323.629 | -17241.095         | -9954.151          | -1005185.402                        | 1741032.185                         | 0.001   |
| 1.2 Dead+1.6 Wind 330 deg - No Ice         | 39098.172 | -9954.151          | -17241.095         | -1753591.452                        | 1012537.860                         | -46.520 |
| 0.9 Dead+1.6 Wind 330 deg - No Ice         | 29323.629 | -9954.151          | -17241.095         | -1740984.648                        | 1005232.937                         | -45.535 |
| 1.2 Dead+1.0 Ice+1.0 Temp                  | 67024.255 | 0.000              | 0.000              | -195.473                            | 338.570                             | 0.000   |
| 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp   | 67024.255 | -0.000             | -6192.104          | -611539.026                         | 381.823                             | -33.169 |
| 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp  | 67024.255 | 3096.052           | -5362.519          | -529637.858                         | -305277.464                         | -38.300 |
| 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp  | 67024.255 | 5362.519           | -3096.052          | -305879.727                         | -529035.579                         | -33.169 |
| 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp  | 67024.255 | 6192.104           | -0.000             | -220.446                            | -610936.727                         | -19.150 |
| 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp | 67024.255 | 5362.519           | 3096.052           | 305438.830                          | -529035.570                         | 0.000   |
| 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp | 67024.255 | 3096.052           | 5362.519           | 529196.950                          | -305277.454                         | 19.150  |
| 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp | 67024.255 | -0.000             | 6192.104           | 611098.112                          | 381.823                             | 33.169  |
| 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp | 67024.255 | -3096.052          | 5362.519           | 529196.967                          | 306041.110                          | 38.300  |
| 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp | 67024.255 | -5362.519          | 3096.052           | 305438.847                          | 529799.245                          | 33.168  |
| 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp | 67024.255 | -6192.104          | -0.000             | -220.446                            | 611700.412                          | 19.150  |
| 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp | 67024.255 | -5362.519          | -3096.052          | -305879.744                         | 529799.255                          | 0.000   |

|                                                                                                                                     |         |                     |             |                   |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-------------|-------------------|
| <i>tnxTower</i><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job     | 28493_Bethel West 2 | Page        | 16 of 20          |
|                                                                                                                                     | Project | REV03               | Date        | 11:30:21 09/02/20 |
|                                                                                                                                     | Client  | KGI                 | Designed by | TLT               |

| Load Combination                           | Vertical  | Shear <sub>x</sub> | Shear <sub>z</sub> | Overturning Moment, M <sub>x</sub> | Overturning Moment, M <sub>z</sub> | Torque  |
|--------------------------------------------|-----------|--------------------|--------------------|------------------------------------|------------------------------------|---------|
|                                            | lb        | lb                 | lb                 | lb-ft                              | lb-ft                              | lb-ft   |
| 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp | 67024.255 | -3096.052          | -5362.519          | -529637.875                        | 306041.120                         | -19.150 |
| Dcad+Wind 0 deg - Service                  | 32581.810 | -0.000             | -4839.821          | -490103.015                        | 125.740                            | -19.360 |
| Dead+Wind 30 deg - Service                 | 32581.810 | 2419.910           | -4191.408          | -424451.388                        | -244889.471                        | -22.355 |
| Dead+Wind 60 deg - Service                 | 32581.810 | 4191.408           | -2419.910          | -245087.806                        | -424253.052                        | -19.360 |
| Dead+Wind 90 deg - Service                 | 32581.810 | 4839.821           | -0.000             | -72.596                            | -489904.679                        | -11.178 |
| Dead+Wind 120 deg - Service                | 32581.810 | 4191.408           | 2419.910           | 244942.614                         | -424253.052                        | 0.000   |
| Dead+Wind 150 deg - Service                | 32581.810 | 2419.910           | 4191.408           | 424306.196                         | -244889.470                        | 11.178  |
| Dead+Wind 180 deg - Service                | 32581.810 | -0.000             | 4839.821           | 489957.823                         | 125.740                            | 19.360  |
| Dead+Wind 210 deg - Service                | 32581.810 | -2419.910          | 4191.408           | 424306.196                         | 245140.950                         | 22.355  |
| Dead+Wind 240 deg - Service                | 32581.810 | -4191.408          | 2419.910           | 244942.615                         | 424504.532                         | 19.360  |
| Dead+Wind 270 deg - Service                | 32581.810 | -4839.821          | -0.000             | -72.596                            | 490156.159                         | 11.178  |
| Dead+Wind 300 deg - Service                | 32581.810 | -4191.408          | -2419.910          | -245087.806                        | 424504.532                         | 0.000   |
| Dead+Wind 330 deg - Service                | 32581.810 | -2419.910          | -4191.408          | -424451.388                        | 245140.950                         | -11.178 |

## Solution Summary

| Load Comb. | Sum of Applied Forces |            |            | Sum of Reactions |           |            | % Error |
|------------|-----------------------|------------|------------|------------------|-----------|------------|---------|
|            | PX<br>lb              | PY<br>lb   | PZ<br>lb   | PX<br>lb         | PY<br>lb  | PZ<br>lb   |         |
| 1          | 0.000                 | -32581.810 | 0.000      | 0.000            | 32581.810 | 0.000      | 0.000%  |
| 2          | 0.000                 | -39098.172 | -19908.301 | 0.000            | 39098.173 | 19908.304  | 0.000%  |
| 3          | 0.000                 | -29323.629 | -19908.301 | 0.000            | 29323.629 | 19908.302  | 0.000%  |
| 4          | 9954.151              | -39098.172 | -17241.095 | -9954.151        | 39098.172 | 17241.095  | 0.000%  |
| 5          | 9954.151              | -29323.629 | -17241.095 | -9954.151        | 29323.629 | 17241.095  | 0.000%  |
| 6          | 17241.095             | -39098.172 | -9954.151  | -17241.095       | 39098.172 | 9954.151   | 0.000%  |
| 7          | 17241.095             | -29323.629 | -9954.151  | -17241.095       | 29323.629 | 9954.151   | 0.000%  |
| 8          | 19908.301             | -39098.172 | 0.000      | -19908.304       | 39098.173 | 0.000      | 0.000%  |
| 9          | 19908.301             | -29323.629 | 0.000      | -19908.302       | 29323.629 | 0.000      | 0.000%  |
| 10         | 17241.095             | -39098.172 | 9954.151   | -17241.095       | 39098.172 | -9954.151  | 0.000%  |
| 11         | 17241.095             | -29323.629 | 9954.151   | -17241.095       | 29323.629 | -9954.151  | 0.000%  |
| 12         | 9954.151              | -39098.172 | 17241.095  | -9954.151        | 39098.172 | -17241.095 | 0.000%  |
| 13         | 9954.151              | -29323.629 | 17241.095  | -9954.151        | 29323.629 | -17241.095 | 0.000%  |
| 14         | 0.000                 | -39098.172 | 19908.301  | 0.000            | 39098.173 | -19908.304 | 0.000%  |
| 15         | 0.000                 | -29323.629 | 19908.301  | 0.000            | 29323.629 | -19908.302 | 0.000%  |
| 16         | -9954.151             | -39098.172 | 17241.095  | 9954.151         | 39098.172 | -17241.095 | 0.000%  |
| 17         | -9954.151             | -29323.629 | 17241.095  | 9954.151         | 29323.629 | -17241.095 | 0.000%  |
| 18         | -17241.095            | -39098.172 | 9954.151   | 17241.095        | 39098.172 | -9954.151  | 0.000%  |
| 19         | -17241.095            | -29323.629 | 9954.151   | 17241.095        | 29323.629 | -9954.151  | 0.000%  |
| 20         | -19908.301            | -39098.172 | 0.000      | 19908.304        | 39098.173 | 0.000      | 0.000%  |
| 21         | -19908.301            | -29323.629 | 0.000      | 19908.302        | 29323.629 | 0.000      | 0.000%  |
| 22         | -17241.095            | -39098.172 | -9954.151  | 17241.095        | 39098.172 | 9954.151   | 0.000%  |
| 23         | -17241.095            | -29323.629 | -9954.151  | 17241.095        | 29323.629 | 9954.151   | 0.000%  |
| 24         | -9954.151             | -39098.172 | -17241.095 | 9954.151         | 39098.172 | 17241.095  | 0.000%  |
| 25         | -9954.151             | -29323.629 | -17241.095 | 9954.151         | 29323.629 | 17241.095  | 0.000%  |
| 26         | 0.000                 | -67024.255 | 0.000      | 0.000            | 67024.255 | 0.000      | 0.000%  |
| 27         | 0.000                 | -67024.255 | -6192.090  | 0.000            | 67024.255 | 6192.104   | 0.000%  |
| 28         | 3096.045              | -67024.255 | -5362.508  | -3096.052        | 67024.255 | 5362.519   | 0.000%  |
| 29         | 5362.508              | -67024.255 | -3096.045  | -5362.519        | 67024.255 | 3096.052   | 0.000%  |
| 30         | 6192.090              | -67024.255 | 0.000      | -6192.104        | 67024.255 | 0.000      | 0.000%  |
| 31         | 5362.508              | -67024.255 | 3096.045   | -5362.519        | 67024.255 | -3096.052  | 0.000%  |
| 32         | 3096.045              | -67024.255 | 5362.508   | -3096.052        | 67024.255 | -5362.519  | 0.000%  |
| 33         | 0.000                 | -67024.255 | 6192.090   | 0.000            | 67024.255 | -6192.104  | 0.000%  |
| 34         | -3096.045             | -67024.255 | 5362.508   | 3096.052         | 67024.255 | -5362.519  | 0.000%  |
| 35         | -5362.508             | -67024.255 | 3096.045   | 5362.519         | 67024.255 | -3096.052  | 0.000%  |
| 36         | -6192.090             | -67024.255 | 0.000      | 6192.104         | 67024.255 | 0.000      | 0.000%  |
| 37         | -5362.508             | -67024.255 | -3096.045  | 5362.519         | 67024.255 | 3096.052   | 0.000%  |
| 38         | -3096.045             | -67024.255 | -5362.508  | 3096.052         | 67024.255 | 5362.519   | 0.000%  |

|                                                                                                                                                                 |         |                     |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|--------------------|
| <i>tnxTower</i><br><i>Semaan Engineering Solutions LLC</i><br><i>1047 N. 205th St.</i><br><i>Elkhorn, NE 68022</i><br><i>Phone: 402-289-1888</i><br><i>FAX:</i> | Job     | 28493_Bethel West 2 | Page               |
|                                                                                                                                                                 | Project | REV03               | Date               |
|                                                                                                                                                                 | Client  | KGI                 | Designed by<br>TLT |

| Load Comb. | Sum of Applied Forces |            |           | Sum of Reactions |           |           | % Error |
|------------|-----------------------|------------|-----------|------------------|-----------|-----------|---------|
|            | PX<br>lb              | PY<br>lb   | PZ<br>lb  | PX<br>lb         | PY<br>lb  | PZ<br>lb  |         |
| 39         | 0.000                 | -32581.810 | -4839.821 | 0.000            | 32581.810 | 4839.821  | 0.000%  |
| 40         | 2419.910              | -32581.810 | -4191.408 | -2419.910        | 32581.810 | 4191.408  | 0.000%  |
| 41         | 4191.408              | -32581.810 | -2419.910 | -4191.408        | 32581.810 | 2419.910  | 0.000%  |
| 42         | 4839.821              | -32581.810 | 0.000     | -4839.821        | 32581.810 | 0.000     | 0.000%  |
| 43         | 4191.408              | -32581.810 | 2419.910  | -4191.408        | 32581.810 | -2419.910 | 0.000%  |
| 44         | 2419.910              | -32581.810 | 4191.408  | -2419.910        | 32581.810 | -4191.408 | 0.000%  |
| 45         | 0.000                 | -32581.810 | 4839.821  | 0.000            | 32581.810 | -4839.821 | 0.000%  |
| 46         | -2419.910             | -32581.810 | 4191.408  | 2419.910         | 32581.810 | -4191.408 | 0.000%  |
| 47         | -4191.408             | -32581.810 | 2419.910  | 4191.408         | 32581.810 | -2419.910 | 0.000%  |
| 48         | -4839.821             | -32581.810 | 0.000     | 4839.821         | 32581.810 | 0.000     | 0.000%  |
| 49         | -4191.408             | -32581.810 | -2419.910 | 4191.408         | 32581.810 | 2419.910  | 0.000%  |
| 50         | -2419.910             | -32581.810 | -4191.408 | 2419.910         | 32581.810 | 4191.408  | 0.000%  |

## Non-Linear Convergence Results

| Load Combination | Converged? | Number of Cycles | Displacement Tolerance | Force Tolerance |
|------------------|------------|------------------|------------------------|-----------------|
| 1                | Yes        | 4                | 0.00000001             | 0.00000001      |
| 2                | Yes        | 4                | 0.00000001             | 0.00016283      |
| 3                | Yes        | 4                | 0.00000001             | 0.00008784      |
| 4                | Yes        | 5                | 0.00000001             | 0.00031213      |
| 5                | Yes        | 5                | 0.00000001             | 0.00015056      |
| 6                | Yes        | 5                | 0.00000001             | 0.00031517      |
| 7                | Yes        | 5                | 0.00000001             | 0.00015207      |
| 8                | Yes        | 4                | 0.00000001             | 0.00014838      |
| 9                | Yes        | 4                | 0.00000001             | 0.00007615      |
| 10               | Yes        | 5                | 0.00000001             | 0.00031359      |
| 11               | Yes        | 5                | 0.00000001             | 0.00015130      |
| 12               | Yes        | 5                | 0.00000001             | 0.00031278      |
| 13               | Yes        | 5                | 0.00000001             | 0.00015090      |
| 14               | Yes        | 4                | 0.00000001             | 0.00016280      |
| 15               | Yes        | 4                | 0.00000001             | 0.00008782      |
| 16               | Yes        | 5                | 0.00000001             | 0.00031551      |
| 17               | Yes        | 5                | 0.00000001             | 0.00015222      |
| 18               | Yes        | 5                | 0.00000001             | 0.00031246      |
| 19               | Yes        | 5                | 0.00000001             | 0.00015070      |
| 20               | Yes        | 4                | 0.00000001             | 0.00014843      |
| 21               | Yes        | 4                | 0.00000001             | 0.00007617      |
| 22               | Yes        | 5                | 0.00000001             | 0.00031402      |
| 23               | Yes        | 5                | 0.00000001             | 0.00015146      |
| 24               | Yes        | 5                | 0.00000001             | 0.00031484      |
| 25               | Yes        | 5                | 0.00000001             | 0.00015186      |
| 26               | Yes        | 4                | 0.00000001             | 0.00000001      |
| 27               | Yes        | 5                | 0.00000001             | 0.00027439      |
| 28               | Yes        | 5                | 0.00000001             | 0.00031943      |
| 29               | Yes        | 5                | 0.00000001             | 0.00031977      |
| 30               | Yes        | 5                | 0.00000001             | 0.00027376      |
| 31               | Yes        | 5                | 0.00000001             | 0.00031907      |
| 32               | Yes        | 5                | 0.00000001             | 0.00031898      |
| 33               | Yes        | 5                | 0.00000001             | 0.00027394      |
| 34               | Yes        | 5                | 0.00000001             | 0.00032019      |
| 35               | Yes        | 5                | 0.00000001             | 0.00031984      |
| 36               | Yes        | 5                | 0.00000001             | 0.00027455      |
| 37               | Yes        | 5                | 0.00000001             | 0.00032053      |
| 38               | Yes        | 5                | 0.00000001             | 0.00032063      |
| 39               | Yes        | 4                | 0.00000001             | 0.00003022      |

|                                                                                                                                         |         |                     |             |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-------------|-------------------|
| <i>tnxTower</i><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job     | 28493_Bethel West 2 | Page        | 18 of 20          |
|                                                                                                                                         | Project | REV03               | Date        | 11:30:21 09/02/20 |
|                                                                                                                                         | Client  | KGI                 | Designed by | TLT               |

|    |     |   |            |            |
|----|-----|---|------------|------------|
| 40 | Yes | 4 | 0.00000001 | 0.00015321 |
| 41 | Yes | 4 | 0.00000001 | 0.00015744 |
| 42 | Yes | 4 | 0.00000001 | 0.00002993 |
| 43 | Yes | 4 | 0.00000001 | 0.00015517 |
| 44 | Yes | 4 | 0.00000001 | 0.00015405 |
| 45 | Yes | 4 | 0.00000001 | 0.00003020 |
| 46 | Yes | 4 | 0.00000001 | 0.00015794 |
| 47 | Yes | 4 | 0.00000001 | 0.00015368 |
| 48 | Yes | 4 | 0.00000001 | 0.00002997 |
| 49 | Yes | 4 | 0.00000001 | 0.00015585 |
| 50 | Yes | 4 | 0.00000001 | 0.00015700 |

### Maximum Tower Deflections - Service Wind

| Section No. | Elevation ft   | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|----------------|---------------------|-----------------|--------|---------|
| L1          | 140 - 120      | 10.529              | 49              | 0.640  | 0.000   |
| L2          | 120 - 96       | 7.894               | 49              | 0.610  | 0.000   |
| L3          | 101.25 - 47.75 | 5.639               | 49              | 0.530  | 0.000   |
| L4          | 54.25 - 1      | 1.582               | 49              | 0.272  | 0.000   |

### Critical Deflections and Radius of Curvature - Service Wind

| Elevation ft | Appurtenance               | Gov. Load Comb. | Deflection in | Tilt ° | Twist ° | Radius of Curvature ft |
|--------------|----------------------------|-----------------|---------------|--------|---------|------------------------|
| 140.000      | C10855721C Platform w/Rail | 49              | 10.529        | 0.640  | 0.000   | 72323                  |
| 120.000      | Platform w/Rail            | 49              | 7.894         | 0.610  | 0.000   | 18526                  |

### Maximum Tower Deflections - Design Wind

| Section No. | Elevation ft   | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|----------------|---------------------|-----------------|--------|---------|
| L1          | 140 - 120      | 43.527              | 20              | 2.644  | 0.001   |
| L2          | 120 - 96       | 32.637              | 20              | 2.521  | 0.000   |
| L3          | 101.25 - 47.75 | 23.314              | 20              | 2.192  | 0.000   |
| L4          | 54.25 - 1      | 6.541               | 20              | 1.123  | 0.000   |

### Critical Deflections and Radius of Curvature - Design Wind

| Elevation ft | Appurtenance               | Gov. Load Comb. | Deflection in | Tilt ° | Twist ° | Radius of Curvature ft |
|--------------|----------------------------|-----------------|---------------|--------|---------|------------------------|
| 140.000      | C10855721C Platform w/Rail | 20              | 43.527        | 2.644  | 0.001   | 17612                  |
| 120.000      | Platform w/Rail            | 20              | 32.637        | 2.521  | 0.000   | 4509                   |

|                                                                                                                                         |                            |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|
| <i>tnxTower</i><br><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job<br>28493_Bethel West 2 | Page<br>19 of 20          |
|                                                                                                                                         | Project<br>REV03           | Date<br>11:30:21 09/02/20 |
|                                                                                                                                         | Client<br>KGI              | Designed by<br>TLT        |

## Compression Checks

### Pole Design Data

| Section No. | Elevation      | Size                  | L      | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio P <sub>u</sub> /ϕP <sub>n</sub> |
|-------------|----------------|-----------------------|--------|----------------|------|-----------------|----------------|-----------------|---------------------------------------|
|             | ft             |                       | ft     | ft             |      | in <sup>2</sup> | lb             | lb              |                                       |
| L1          | 140 - 120 (1)  | TP31.419x27x0.25      | 20.000 | 0.000          | 0.0  | 24.733          | -6485.380      | 1724110.000     | 0.004                                 |
| L2          | 120 - 96 (2)   | TP36.723x31.419x0.25  | 24.000 | 0.000          | 0.0  | 28.021          | -13530.000     | 1866770.000     | 0.007                                 |
| L3          | 96 - 47.75 (3) | TP46.885x35.063x0.313 | 53.500 | 0.000          | 0.0  | 44.769          | -23144.000     | 2956030.000     | 0.008                                 |
| L4          | 47.75 - 1 (4)  | TP56.59x44.823x0.375  | 53.250 | 0.000          | 0.0  | 66.910          | -39088.898     | 4349740.000     | 0.009                                 |

### Pole Bending Design Data

| Section No. | Elevation      | Size                  | M <sub>ux</sub> | ϕM <sub>nx</sub> | Ratio M <sub>ux</sub> /ϕM <sub>nx</sub> | M <sub>uy</sub> | ϕM <sub>ny</sub> | Ratio M <sub>uy</sub> /ϕM <sub>ny</sub> |
|-------------|----------------|-----------------------|-----------------|------------------|-----------------------------------------|-----------------|------------------|-----------------------------------------|
|             | ft             |                       | lb-ft           | lb-ft            |                                         | lb-ft           | lb-ft            |                                         |
| L1          | 140 - 120 (1)  | TP31.419x27x0.25      | 117043.333      | 1104883.333      | 0.106                                   | 0.000           | 1104883.333      | 0.000                                   |
| L2          | 120 - 96 (2)   | TP36.723x31.419x0.25  | 352844.167      | 1356591.667      | 0.260                                   | 0.000           | 1356591.667      | 0.000                                   |
| L3          | 96 - 47.75 (3) | TP46.885x35.063x0.313 | 1052633.333     | 2746158.333      | 0.383                                   | 0.000           | 2746158.333      | 0.000                                   |
| L4          | 47.75 - 1 (4)  | TP56.59x44.823x0.375  | 2024950.000     | 5034083.333      | 0.402                                   | 0.000           | 5034083.333      | 0.000                                   |

### Pole Shear Design Data

| Section No. | Elevation      | Size                  | Actual V <sub>u</sub> | ϕV <sub>n</sub> | Ratio V <sub>u</sub> /ϕV <sub>n</sub> | Actual T <sub>u</sub> | ϕT <sub>n</sub> | Ratio T <sub>u</sub> /ϕT <sub>n</sub> |
|-------------|----------------|-----------------------|-----------------------|-----------------|---------------------------------------|-----------------------|-----------------|---------------------------------------|
|             | ft             |                       | lb                    | lb              |                                       | lb-ft                 | lb-ft           |                                       |
| L1          | 140 - 120 (1)  | TP31.419x27x0.25      | 6502.070              | 862055.000      | 0.008                                 | 0.000                 | 2215150.000     | 0.000                                 |
| L2          | 120 - 96 (2)   | TP36.723x31.419x0.25  | 13219.500             | 933386.000      | 0.014                                 | 0.001                 | 2719416.667     | 0.000                                 |
| L3          | 96 - 47.75 (3) | TP46.885x35.063x0.313 | 16525.100             | 1478010.000     | 0.011                                 | 0.001                 | 5504775.000     | 0.000                                 |
| L4          | 47.75 - 1 (4)  | TP56.59x44.823x0.375  | 19926.500             | 2174870.000     | 0.009                                 | 0.002                 | 10090666.667    | 0.000                                 |

### Pole Interaction Design Data

| Section No. | Elevation     | Ratio P <sub>u</sub> | Ratio M <sub>ux</sub> | Ratio M <sub>ny</sub> | Ratio V <sub>u</sub> | Ratio T <sub>u</sub> | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|---------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|--------------------|---------------------|----------|
|             | ft            | ϕP <sub>n</sub>      | ϕM <sub>nx</sub>      | ϕM <sub>ny</sub>      | ϕV <sub>n</sub>      | ϕT <sub>n</sub>      |                    |                     |          |
| L1          | 140 - 120 (1) | 0.004                | 0.106                 | 0.000                 | 0.008                | 0.000                | 0.110              | 1.000               | 4.8.2 ✓  |
| L2          | 120 - 96 (2)  | 0.007                | 0.260                 | 0.000                 | 0.014                | 0.000                | 0.268              | 1.000               | 4.8.2 ✓  |

|                                                                                                                                     |         |                     |                    |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|--------------------|
| <i>tnxTower</i><br><b>Semaan Engineering Solutions LLC</b><br>1047 N. 205th St.<br>Elkhorn, NE 68022<br>Phone: 402-289-1888<br>FAX: | Job     | 28493_Bethel West 2 | Page               |
|                                                                                                                                     | Project | REV03               | Date               |
|                                                                                                                                     | Client  | KGI                 | Designed by<br>TLT |

| Section No. | Elevation ft   | Ratio $\frac{P_u}{\phi P_n}$ | Ratio $\frac{M_{ux}}{\phi M_{nx}}$ | Ratio $\frac{M_{uy}}{\phi M_{ny}}$ | Ratio $\frac{V_u}{\phi V_n}$ | Ratio $\frac{T_u}{\phi T_n}$ | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|----------------|------------------------------|------------------------------------|------------------------------------|------------------------------|------------------------------|--------------------|---------------------|----------|
| L3          | 96 - 47.75 (3) | 0.008                        | 0.383                              | 0.000                              | 0.011                        | 0.000                        | 0.391              | 1.000               | 4.8.2 ✓  |
| L4          | 47.75 - 1 (4)  | 0.009                        | 0.402                              | 0.000                              | 0.009                        | 0.000                        | 0.411              | 1.000               | 4.8.2 ✓  |

### Section Capacity Table

| Section No. | Elevation ft | Component Type | Size                  | Critical Element | P lb            | $\phi P_{allow}$ lb | % Capacity  | Pass Fail |
|-------------|--------------|----------------|-----------------------|------------------|-----------------|---------------------|-------------|-----------|
| L1          | 140 - 120    | Pole           | TP31.419x27x0.25      | 1                | -6485.380       | 1724110.00          | 11.0        | Pass      |
| L2          | 120 - 96     | Pole           | TP36.723x31.419x0.25  | 2                | -13530.000      | 1866770.00          | 26.8        | Pass      |
| L3          | 96 - 47.75   | Pole           | TP46.885x35.063x0.313 | 3                | -23144.000      | 2956030.00          | 39.1        | Pass      |
| L4          | 47.75 - 1    | Pole           | TP56.59x44.823x0.375  | 4                | -39088.898      | 4349740.00          | 41.1        | Pass      |
| Summary     |              |                |                       |                  |                 |                     |             |           |
|             |              |                |                       |                  | Pole (L4)       | 41.1                | Pass        |           |
|             |              |                |                       |                  | <b>RATING =</b> | <b>41.1</b>         | <b>Pass</b> |           |

Site Number: **28493**  
 Site Name: **Bethel West 2**  
 Job Number: **REV03**  
 Engineer: **CRB**  
 Date: **9/2/2020**

**Base Plate and Bolt Analysis**

Moment: **2024.9 k-ft**  
 Shear/Leg: **19.9 k**  
 Compression/Leg: **39.1 k**

|                                             |                 |                                                |
|---------------------------------------------|-----------------|------------------------------------------------|
| TIA-222 Code Revision:                      | <b>G</b>        | <b>Anchor Bolts</b>                            |
| Anchor Bolt Arrangement:                    | <b>Round</b>    | Anchor Bolt Yield Strength: <b>75 ksi</b>      |
| Monopole Shaft Diameter (Across Flats):     | <b>56.6 in</b>  | Anchor Bolt Ultimate Strength: <b>100 ksi</b>  |
| Lower Monopole Thickness:                   | <b>0.375 in</b> | Anchor Bolt Diameter: <b>2.25 in</b>           |
| # of Sides of Pole:                         | <b>18</b>       | Anchor Bolt Circle: <b>63.25 in</b>            |
| Monopole Shaft Yield Strength:              | <b>65 ksi</b>   | # of Anchor Bolts: <b>16</b>                   |
| Baseplate Diameter / Length:                | <b>69.00</b>    | Minimum Anchor Bolt Separation: <b>6.00 in</b> |
| Base Plate Thickness:                       | <b>2.25 in</b>  | Additional Anchor Bolts Installed: <b>N</b>    |
| Base Plate Yield Strength:                  | <b>50 ksi</b>   |                                                |
| Baseplate Detail Type:                      | <b>D</b>        |                                                |
| Include Plate Thickness Beyond Bolt Circle: | <b>Y</b>        |                                                |
| Stress Increase:                            | <b>1.00</b>     |                                                |
| Fillet Weld Size:                           | <b>0.375 in</b> |                                                |
| Weld Type (CJP or F/F):                     | <b>CJP</b>      |                                                |
| Weld Strength:                              | <b>70 ksi</b>   |                                                |

| <b>Baseplate Flexural Capacity</b> |                      |               |                         |                 |       | <b>Baseplate Shear Capacity</b> |                          |              |       |
|------------------------------------|----------------------|---------------|-------------------------|-----------------|-------|---------------------------------|--------------------------|--------------|-------|
| Failure Mode:                      | Effective Width (in) | Moment (k-in) | S/Z (in <sup>-1</sup> ) | Capacity (k-in) | Usage | Shear (k)                       | Area (in <sup>-1</sup> ) | Capacity (k) | Usage |
| AA                                 | 32.75                | 496.0         | 41.5                    | 1865.3          | 0.27  | 280.7                           | 73.7                     | 1989.6       | 0.14  |
| AB                                 | 40.66                | 929.2         | 51.5                    | 2315.6          | 0.40  | 280.7                           | 91.5                     | 2469.9       | 0.11  |
| BA                                 | 30.93                | 373.4         | 39.1                    | 1761.6          | 0.21  | 280.7                           | 69.6                     | 1879.0       | 0.15  |
| BB                                 | 37.05                | 755.1         | 46.9                    | 2110.0          | 0.36  | 280.7                           | 83.4                     | 2250.7       | 0.12  |

**Anchor Bolt Capacity**

Area of Bolt: **3.25 in<sup>2</sup>**  
 Inertia of Bolt: **0.84 in<sup>4</sup>**  
 Total Bolt Inertia: **25998.5 in<sup>4</sup>**  
 Maximum Bolt Tension: **93.5 k**  
 Maximum Bolt Compression: **98.4 k**  
 Bolt Shear: **1.2 k**  
 Tensile Bolt Capacity: **259.8 k**  
 Compressive Bolt Capacity: **259.8 k**  
 Shear Bolt Capacity: **140.3 k**  
 Interaction Equation: **0.39 Result: OK**

**Base Weld Capacity**

Force / Weld: **7.7 k/in**  
 Weld Capacity: **26.6 k/in**  
 Interaction Equation: **0.29 Result: OK**  
 SES Base Plate Design Moment: **327.8 k-in**  
 Design Stress: **23.3 ksi**  
 SES Base Plate Allowable Stress / Moment Capacity: **632.8 ksi / k-in**  
 Usage: **0.52**  
 Moment Factor: **2.83**  
 Length Factor: **3.66**

Site Number: **28493**  
 Site Name: **Bethel West 2**  
 Job Number: **REV03**  
 Engineer: **CRB**  
 Date: **9/2/2020**

**Flange @ 120'**

Moment: **117.0 k-ft**  
 Shear/Leg: **6.5 k**  
 Compression/Leg: **6.5 k**

|                                             |                 |                                                |
|---------------------------------------------|-----------------|------------------------------------------------|
| TIA-222 Code Revision:                      | <b>G</b>        | <b>Anchor Bolts</b>                            |
| Anchor Bolt Arrangement:                    | <b>Round</b>    | Anchor Bolt Yield Strength: <b>92 ksi</b>      |
| Monopole Shaft Diameter (Across Flats):     | <b>31.4 in</b>  | Anchor Bolt Ultimate Strength: <b>120 ksi</b>  |
| Lower Monopole Thickness:                   | <b>0.250 in</b> | Anchor Bolt Diameter: <b>1.00 in</b>           |
| # of Sides of Pole:                         | <b>18</b>       | Anchor Bolt Circle: <b>35.00 in</b>            |
| Monopole Shaft Yield Strength:              | <b>65 ksi</b>   | # of Anchor Bolts: <b>6</b>                    |
| Baseplate Diameter / Length:                | <b>37.50</b>    | Minimum Anchor Bolt Separation: <b>2.67 in</b> |
| Base Plate Thickness:                       | <b>1.50 in</b>  | Additional Anchor Bolts Installed: <b>N</b>    |
| Base Plate Yield Strength:                  | <b>50 ksi</b>   |                                                |
| Baseplate Detail Type:                      | <b>D</b>        |                                                |
| Include Plate Thickness Beyond Bolt Circle: | <b>Y</b>        |                                                |
| Stress Increase:                            | <b>1.00</b>     |                                                |
| Fillet Weld Size:                           | <b>0.375 in</b> |                                                |
| Weld Type (CJP or F/F):                     | <b>CJP</b>      |                                                |
| Weld Strength:                              | <b>70 ksi</b>   |                                                |

| Failure Mode: | Effective Width (in) | Baseplate Flexural Capacity |                         |                 |       | Baseplate Shear Capacity |                          |              |       |
|---------------|----------------------|-----------------------------|-------------------------|-----------------|-------|--------------------------|--------------------------|--------------|-------|
|               |                      | Moment (k-in)               | S/Z (in <sup>-1</sup> ) | Capacity (k-in) | Usage | Shear (k)                | Area (in <sup>-1</sup> ) | Capacity (k) | Usage |
| AA            | 18.42                | 49.8                        | 10.4                    | 466.3           | 0.11  | 27.8                     | 27.6                     | 746.0        | 0.04  |
| AB            | 13.61                | 49.8                        | 7.7                     | 344.4           | 0.14  | 27.8                     | 20.4                     | 551.1        | 0.05  |
| BA            | 17.39                | 43.1                        | 9.8                     | 440.2           | 0.10  | 27.8                     | 26.1                     | 704.3        | 0.04  |
| BB            | 10.55                | 43.1                        | 5.9                     | 267.1           | 0.16  | 27.8                     | 15.8                     | 427.3        | 0.07  |

**Anchor Bolt Capacity**

Area of Bolt: **0.61 in<sup>2</sup>**  
 Inertia of Bolt: **0.03 in<sup>4</sup>**  
 Total Bolt Inertia: **556.7 in<sup>4</sup>**  
 Maximum Bolt Tension: **25.7 k**  
 Maximum Bolt Compression: **27.8 k**  
 Bolt Shear: **1.1 k**  
 Tensile Bolt Capacity: **58.2 k**  
 Compressive Bolt Capacity: **58.2 k**  
 Shear Bolt Capacity: **26.2 k**  
 Interaction Equation: **0.52 Result: OK**

**Base Weld Capacity**

Force / Weld: **1.4 k/in**  
 Weld Capacity: **21.9 k/in**  
 Interaction Equation: **0.07 Result: OK**  
 SES Base Plate Design Moment: **49.8 k-in**  
 Design Stress: **5.4 ksi**  
 SES Base Plate Allowable Stress / Moment Capacity: **416.4 ksi / k-in**  
 Usage: **0.12**

Moment Factor: **0.86**  
 Length Factor: **0.64**



**Project**

**Tower Foundation  
Structural Analysis Report**

**Bethel W 2**

**15 Great Pasture Road  
Danbury, CT**

**Centek Project No. 14216.00**

**Prepared For**

**Verizon Wireless  
99 East River Road  
East Hartford, CT 06108**

**Attn: Joseph McCarty  
CC: Scott Kisting, Shirley Rock**

**Prepared By**

**Centek Engineering, Inc.  
63 North Branford Road  
Branford, CT 06405  
T: 203.488.0580  
F: 203.488.8587  
[www.centekeng.com](http://www.centekeng.com)**



**March 12, 2020**

**TABLE OF CONTENTS**

|             |                                                                    |           |
|-------------|--------------------------------------------------------------------|-----------|
| <b>1.00</b> | <b>EXECUTIVE SUMMARY</b>                                           | <b>3</b>  |
| 1.01        | INTRODUCTION .....                                                 | 3         |
| 1.02        | REFERENCE MATERIALS .....                                          | 3         |
| 1.03        | FOUNDATION ANALYSIS RESULTS .....                                  | 3         |
| i.          | Table 1 – Component Capacity Check .....                           | 3         |
| 1.04        | CONCLUSION.....                                                    | 4         |
| <b>2.00</b> | <b>CALCULATIONS .....</b>                                          | <b>5</b>  |
| 2.01        | MICROPILE AS-BUILT CAPACITY .....                                  | 6         |
| 2.02        | LOADING ON MICROPILE .....                                         | 7         |
| 2.03        | REINFORCED CONCRETE MAT .....                                      | 9         |
| <b>3.00</b> | <b>SUPPORTING DOCUMENTATION .....</b>                              | <b>18</b> |
| 3.01        | MONOPOLE TOWER DESIGN (BASE REACTIONS).....                        | 19        |
| 3.02        | FOUNDATION DESIGN DRAWINGS .....                                   | 22        |
| 3.03        | MICROPILE DESIGN SUBMITTAL (SHEET MP-1.0).....                     | 23        |
| 3.04        | GEOTECHNICAL REPORT (PAGE 4).....                                  | 24        |
| 3.05        | GROUT COMPRESSION TEST REPORTS (S-1000A, S-1001A AND S-1002A)..... | 25        |
| 3.06        | 2015 IBC (TABLE 1810.3.2.6).....                                   | 28        |

**1.00 EXECUTIVE SUMMARY****1.01 INTRODUCTION**

This report was prepared on behalf of our client, Verizon Wireless, for the purpose of verifying the structural adequacy of the existing (As-Built) micropile supported tower mat foundation.

The tower foundation was originally designed by Centek in 2017. Upon re-analysis of the foundation by Thomas Taylor of Semaan engineering, a design deficiency in the micropiles was discovered. The deficiency identified consists of an overload condition of the inner (4) piles. Due to the placement of the aforementioned piles they receive the full tower axial load, the weight of the thickened portion of the mat and the associated mat weight. This combined loading exceeds the micro-pile allowable capacity.

Our reanalysis assumes the subject (4) inner micropiles to be failed and re-evaluates the system with the reinforced concrete mat supported by the remaining (40) micropiles. The reinforced concrete mat was conservatively analyzed as a one-way slab for its ability to span to the middle row of piles (31'-4"). The max pile loading was recalculated and compared to the as-built micropile capacity.

**1.02 REFERENCE MATERIALS**

The following documents were referenced in the structural analysis of the tower foundation:

- Monopole Tower Design Report prepared by Sabre Industries project no. 16-7133-SCB dated 7/13/16.
- Foundation Design Drawings prepared by Centek Engineering, Inc. project no. 14216.00 dated 5/3/17 Rev.2.
- Geotechnical Report prepared by Design Earth Technology project no. 2015.13, dated 2/19/16.
- Drilled Micropile Design submittal prepared by Helical Drilling Inc. dated 3/21/17.
- Grout Compression Tests prepared by Materials Testing, Inc. S-1000A, S-1001A and S-1002A dated 5/3/17.
- 2015 International Building Code (Section 1810 Deep Foundations)
- ACI 318-14 "Building Code Requirements for Structural Concrete"

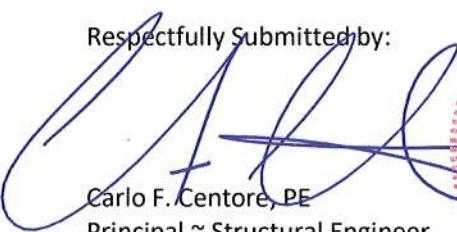
**1.03 FOUNDATION ANALYSIS RESULTS**

A structural check was made of the tower foundation. Calculations are provided in Section 2.00 of this report. Refer to the following tables for a summary of the analysis results:

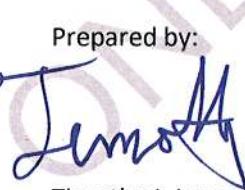
**i. Table 1**

| Component Capacity Check |             |              |        |
|--------------------------|-------------|--------------|--------|
| Component                | Type        | Stress Ratio | Result |
| Reinforced Concrete Mat  | Bending     | 77.4%        | PASS   |
|                          | Shear       | 72.3%        | PASS   |
| Micropile                | Compression | 87.9%        | PASS   |
|                          | Rock Socket | 99.2%        | PASS   |

**1.04 CONCLUSION**


This analysis finds the micropile supported tower foundation in the as-built condition to be structurally adequate to accommodate the tower reactions from the Monopole Tower Design Report prepared by Sabre Industries project no. 16-7133-SCB dated 7/13/16 Sabre.

As discussed with Scott Kisting consultant to Verizon Wireless, the maintenance and condition assessment program that Verizon has in place would identify potential issues with the foundation should they present.


The analysis is based, in part, on the original foundation design documents, Helical micropile design documents and the tower installation field inspection documents, including material testing reports. The field inspection documents compiled during construction of the subject foundation alleviate any concerns with potential installation errors.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

  
Carlo F. Centore, PE  
Principal ~ Structural Engineer

Prepared by:

  
Timothy J. Lynn, PE  
Structural Engineer



**Section 2.0**  
**Calculations**

REFERENCE ONLY

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 6 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

**MICRO PILE CAPACITY**

• CHECK CASED PORTION

$$\text{AREA OF STEEL PILE} = \frac{1}{4}\pi[(5.5)^2 - (5.5 - (2)(0.50))^2] = 5.83 \text{ m}^2$$

$$\text{ALLOWABLE COMPRESSION STRESS} = 0.4F_y \leq 32,000 \quad (\text{IRC } 1810.3.2.6)$$

$$0.4(80) = 32 \text{ ksi}$$

$$P_{\text{ALL}} = (5.83 \text{ m}^2)(32 \text{ ksi}) = 186.6 \text{ k} \quad * \text{ADDITIONAL STRENGTH PROVIDED BY Grout/REBAR}$$

• CHECK UNCASED PORTION

$$\text{AREA OF REBAR} = 1.27 \text{ m}^2 \quad (\#10 \text{ BARS})$$

$$\text{ALLOWABLE COMP STRESS} = 0.5F_y \leq 32,000 \quad (\text{IRC } 1810.3.2.6)$$

$$0.5(75) = 37.5 \text{ ksi}$$

$$\text{Area of Grout} = \frac{1}{4}\pi(4)^2 - 1.27 \text{ m}^2 = 11.3 \text{ m}^2$$

$$\text{ALLOWABLE COMP STRESS} = 0.33 f' e \quad (\text{IRC } 1810.3.2.6)$$

$$= (0.33)(7210 \text{ psi})$$

$$= 2379 \text{ psi}$$

$$P_{\text{ALL}} = (1.27 \text{ m}^2)(32 \text{ ksi}) + (11.3 \text{ m}^2)(2.38 \text{ ksi}) = 67.5 \text{ k}$$

• CHECK END BEARING / Grout Bond (Rock Socket)

$$\text{ALLOWABLE BOND LOAD} = \pi(4") (5' \times 12) (75 \text{ psi}) = 56.5 \text{ k}$$

$$\text{ALLOWABLE END BEARING} = \frac{1}{4}\pi(5.5)^2 (10 \text{ tons/ft}^2) \left(\frac{2000}{144}\right) = 3.3 \text{ k}$$

$$P_{\text{ALL}} = 56.5 \text{ k} + 3.3 \text{ k} = 59.8 \text{ k} \quad * \text{CONTROLS}$$

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

**CENTEK** engineering

Centered on Solutions<sup>SM</sup> [www.centekeng.com](http://www.centekeng.com)  
63-2 North Branford Road  
Branford, CT 06405

P: (203) 488-0580  
F: (203) 488-8587

JOB BETHEL WEST 2

SHEET NO. \_\_\_\_\_ OF \_\_\_\_\_

CALCULATED BY \_\_\_\_\_ DATE \_\_\_\_\_

CHECKED BY \_\_\_\_\_ DATE \_\_\_\_\_

SCALE \_\_\_\_\_

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

■ UNFACTORED TOWER BASE REACTIONS

$$\text{SHEAR} = 36^k$$

FROM SABRE TOWER DESIGN

$$\text{AXIAL} = 47.6^k$$

CALCS. TIA-222-F LOADING

$$\text{MOMENT} = 3941^k\text{-ft}$$

■ WEIGHT OF CONCRETE

$$\text{PIER} = (8')^2 (1') (0.15\text{-kcf}) = 9.6^k$$

$$\text{THICKED HAUNCH} = \frac{1}{3} (4.5) \sqrt{(8')^2 + (17')^2 + (18)(17)(0.15)} = 110^k$$

$$\text{TRIB AREA MAT}$$

$$\text{INNER (16') PILES} = (39.15)^2 = 1533 \text{ ft}^2$$

$$\text{WEIGHT MAT} = (1533 \text{ ft}^2) (2.25) (0.15) = 517.5^k$$

$$\text{INNER (16')}$$

$$\text{TRIB AREA MAT} = (50)^2 - 1533 = 967 \text{ ft}^2$$

$$\text{OUTTER (24')}$$

$$\text{WEIGHT MAT} = (967 \text{ ft}^2) (2.25) (0.15) = 326.5^k$$

$$\text{OUTTER (24')} = (9.6^k + 110^k + 517.5^k) / 16 = 39.8^k \quad \leftarrow$$

$$\text{Pconc. (INNER)} = 326.5^k / 24 = 13.6^k \quad \leftarrow$$

■ LOADS FROM TOWER

PILE POLAR MOMENT OF INERTIA

$$I_p = (23.5')^2 (14) + (15.67')^2 (14) + (7.83')^2 (8) = 11660 \text{ ft}^2$$

$$M_{pl} = (36^k)(3.5') + 3941^k\text{-ft} = 4067^k\text{-ft}$$

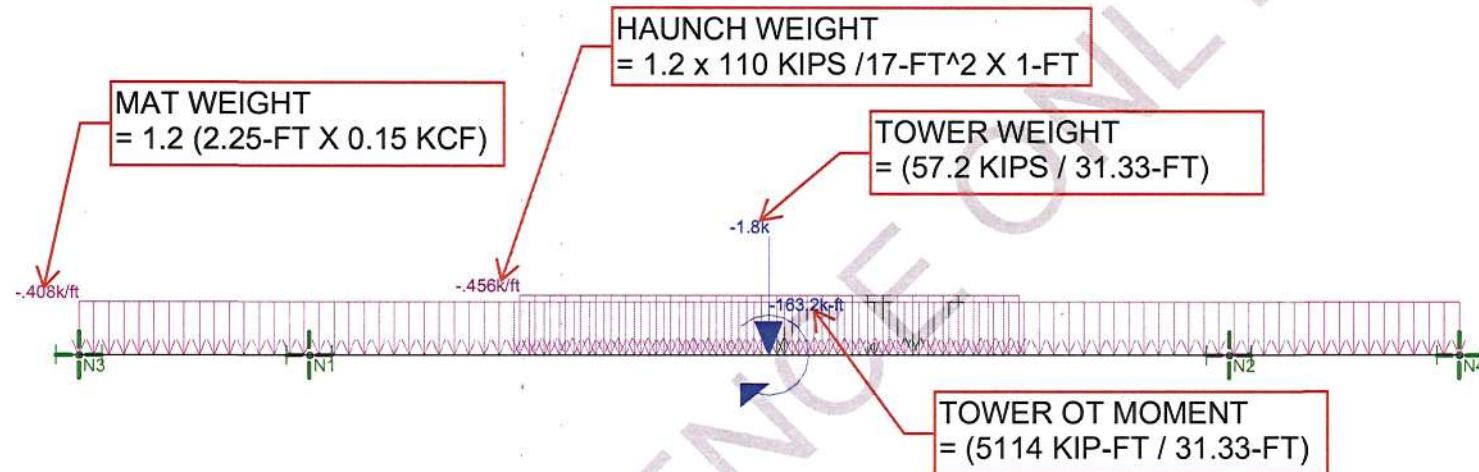
$$\text{POWER (INNER)} = \frac{4067^k\text{-ft} (15.67')}{11660 \text{ ft}^2} + \frac{47.6^k}{16} = 8.5^k \quad \leftarrow$$

$$\text{POWER (OUTTER)} = \frac{4067^k\text{-ft} (23.5')}{11660 \text{ ft}^2} = 8.2^k \quad \leftarrow$$

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

## Equipment Description

$$17,000 \pm \text{tot. } / 4 = 4,250 \pm \text{ (COMMSCOPE VZWA-9-4x16-GLSP-3)}$$

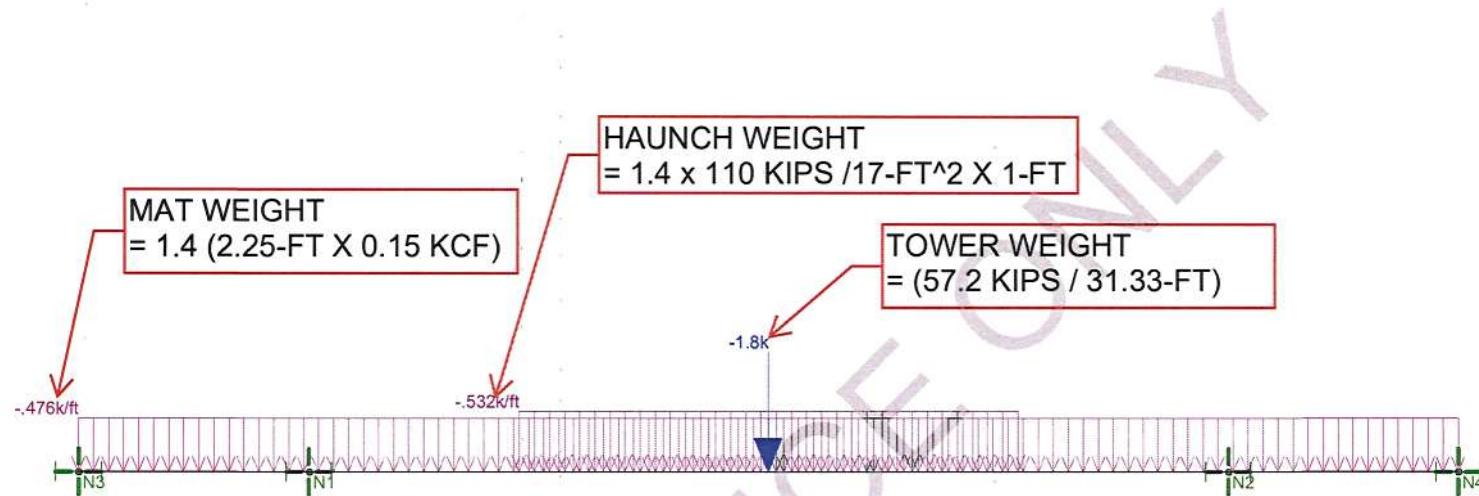

## TOTAL LOADS ON PILES

$$P_{TOT\ (INNER)} = 39.8^u + 8.5^u + 4.3^u + 6.7^u = 59.3^u < 59.8\ (ok)$$

$$P_{\text{tot. (outer)}} = 13.6'' + 8.2'' + 4.3'' + 6.7'' = 32.8'' < 59.8 \text{ (ok)}$$

$$\frac{P_{\text{TOT}}}{\text{Part Comp.}} = \frac{59,3^k}{59,8^k} = 99,2 \text{ } \%$$

$$\frac{P_{TOT}}{P_{ALL \text{ } RS}} = \frac{59.3}{67.5}^K \approx 87.9 \%$$




Loads: LC 4, IBC 16-4 (a)  
Envelope Only Solution

SK - 2

Mar 10, 2020 at 3:43 PM

12-in Strip.r3d

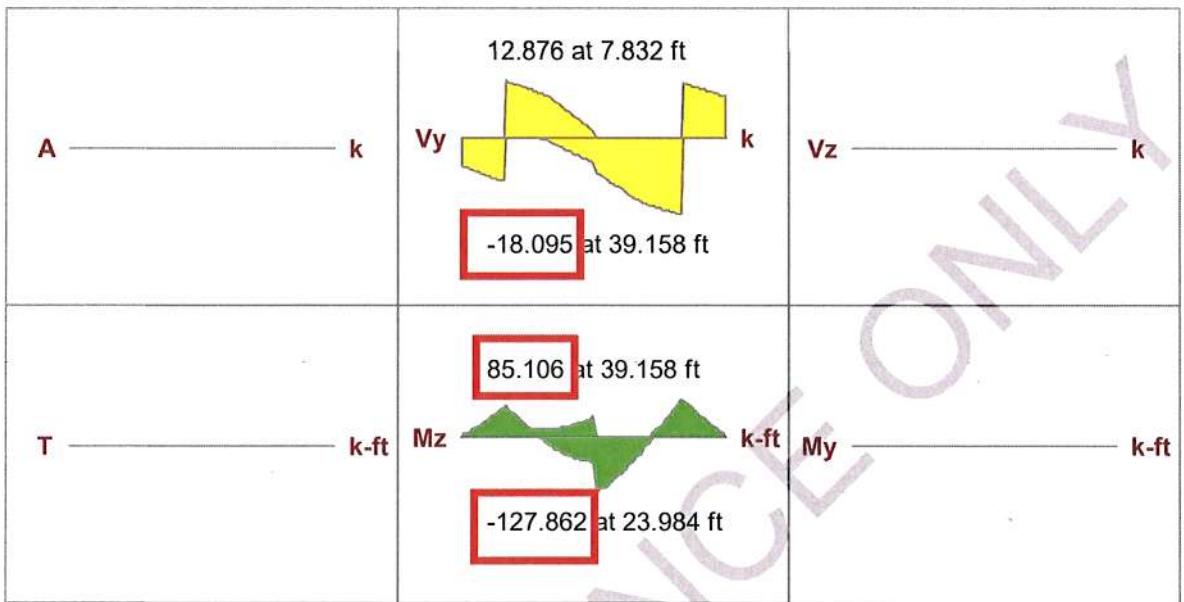


Loads: LC 1, IBC 16-1  
Envelope Only Solution

SK - 1

Mar 10, 2020 at 3:43 PM

12-in Strip.r3d

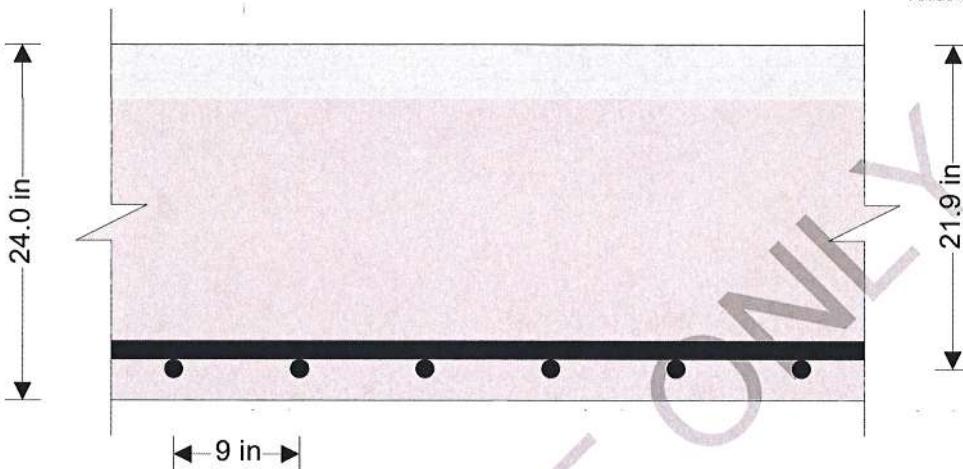

Beam: **M1**

Shape: **CRECT24X12**  
Material: **Conc4000NW**  
Length: **46.99 ft**  
I Joint: **N3**  
J Joint: **N4**

Concrete Stress Block: **Rectangular**

Code Check: **No Calc**

Report Based On 97 Sections




**No Calc**

- Concrete code check not calculated -

**RC ONE-WAY SLAB DESIGN (ACI318-11)**

Tedd's calculation version 1.1.04



**Slab definition**

Slab type

One-way continuous

Overall thickness of slab

$h = 24.000$  in

Clear shorter span of slab

$l_n = 31.33$  ft

Clear cover to tension reinforcement

$c_c = 1.50$  in

**Materials**

Specified compressive strength of concrete

$f_c = 4000$  psi

Specified yield strength of reinforcement

$f_y = 60000$  psi

Modulus of elasticity

$E_{ACI} = 29000000$  psi

Concrete modification factor

$\lambda = 1.00$

**Maximum design moment and shear in span (per 12 in width of slab)**

Maximum ultimate positive moment

$M_{us} = 128.000$  kip $\cdot$ ft/ft

Maximum ultimate shear force

$V_u = 18.000$  kips/ft

**Reinforcement calculation - positive moments**

Tension steel provided

No. 10 @ 8.5 in o.c.

Depth to tension steel

$d = (h - c_c - D / 2) = 21.87$  in

Stress block depth factor

$\beta^1 = 0.85$

Reinforcement ratio at strain of 0.004

$\rho^b = 0.85 \times \beta^1 \times f_c / f_y \times (0.003 / (0.003 + 0.004)) = 0.021$

Maximum reinforcement ratio

$\rho^{max} = \rho^b = 0.021$

Maximum area of tension steel

$A_{s\_max} = \rho^{max} \times d = 5.416$  in $^2$ /ft

Min ratio of transverse reinforcement (cl. 7.12.2.1)

$\rho^t = 0.0018$

Min area tension steel req'd (cl. 10.5.4 & 7.12.2.1)

$A_{s\_min} = \rho^t \times h = 0.518$  in $^2$ /ft

Area of tension steel provided

$A_{s\_prov} = 1.788$  in $^2$ /ft

**PASS - Area of steel provided - OK**

Steel stress (cl. 10.6.4)

$f_s = 2/3 \times f_y = 40000$  psi

Max allowable spacing (cl. 10.5.4 & 10.6.4)

$s_{max} = \min(3 \times h, 18\text{in}, 15\text{in} \times (40000 \text{ psi} / f_s) - 2.5 \times c_c, 12\text{in} \times (40000 \text{ psi} / f_s))$

|                                                                                                                                                                       |               |                   |         |      |                |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------|------|----------------|------|
| <br><b>Centek Engineering, Inc.</b><br>63-2 North Branford Road<br>Branford, CT 06405 | Project       |                   |         |      | Job Ref.       |      |
|                                                                                                                                                                       | Section       |                   |         |      | Sheet no./rev. |      |
|                                                                                                                                                                       | Calc. by<br>T | Date<br>3/11/2020 | Chkd by | Date | App'd by       | Date |

Actual tensile bar spacing provided

$$s_{max} = 11.250 \text{ in}$$

$$s = 8.500 \text{ in}$$

**PASS - Spacing of bars (+ve moment steel) less than maximum allowable**

**Check for section - positive moments**

Depth of equivalent rectangular stress block

$$a = (A_{s\_prov} \times f_y) / (0.85 \times f'_c) = 2.63 \text{ in}$$

Depth of neutral axis

$$c = a / \beta_1 = 3.094 \text{ in}$$

Net tensile strain in long. steel at nominal strength

$$\varepsilon_l = 0.003 \times [(d - c) / c] = 0.0182$$

**Section is tension controlled, design OK**

Strength reduction factor

$$\phi = 0.9$$

Revised required nominal flexural strength

$$M_{ns} = M_{us} / \phi = 142.222 \text{ kip\_ft/ft}$$

Actual nominal flexural strength

$$M_{ns\_prov} = A_{s\_prov} \times f_y \times (d - a / 2) = 183.756 \text{ kip\_ft/ft}$$

**PASS - Actual flexural strength exceeds required nominal flexural strength**

**Transverse reinforcement - (for shrinkage and temperature)**

Transverse reinforcement provided

**No. 10 @ 8.5 in o.c.**

Area of reinforcement provided

$$A_{t\_prov} = 1.788 \text{ in}^2/\text{ft}$$

Min ratio of transverse reinforcement (cl. 7.12.2.1)  $\rho_t = 0.0018$

Minimum area of transverse reinforcement required  $A_{t\_req} = \rho_t \times h = 0.518 \text{ in}^2/\text{ft}$

**PASS - Area of transverse steel provided OK**

Maximum allowable spacing of bars

$$s_{max\_t} = \min (5 \times h, 18 \text{ in}) = 18.000 \text{ in}$$

Actual transverse bar spacing provided

$$s_t = 8.500 \text{ in}$$

**PASS - Spacing of transverse bars is less than allowable**

**Check for shear**

Nominal shear strength required

$$V_n = \text{abs}(V_u) / 0.75 = 24.000 \text{ kips/ft}$$

Shear strength provided by concrete

$$V_c = 2 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi}) \times d} = 33.189 \text{ kips/ft}$$

Shear strength provided by shear steel (assumed)

$$V_s = 0 \text{ kips/ft}$$

Shear capacity of section

$$V = V_c + V_s = 33.189 \text{ kips/ft}$$

**PASS - One-way shear capacity**

**Check of clear cover (ACI 7.7.1)**

Permissible min nominal cover to all reinforcement  $c_{min} = 0.75 \text{ in}$

Clear cover to tension reinforcement (+ve mnt)  $c_c = h - d - D/2 = 1.500 \text{ in}$

**PASS - Cover to steel resisting positive moment exceeds allowable minimum cover**

**Deflection**

Support condition

**Both ends continuous**

Basic span-to-thickness ratio (Table 9.5(a))

$$\text{ratio}_{basic} = 28$$

Type of concrete

**Normal weight**

Concrete density factor (Table 9.5(a))

$$f_{density} = 1.00$$

Allowable span-to-thickness ratio

$$\text{ratio}_{allow} = \text{ratio}_{basic} / (f_{density} \times (0.4 + f_y / 100000 \text{ psi})) = 28.000$$

Actual span-to-thickness ratio

$$\text{ratio}_{actual} = l_n / h = 15.665$$

**PASS - The slab thickness is adequate to control deflection**

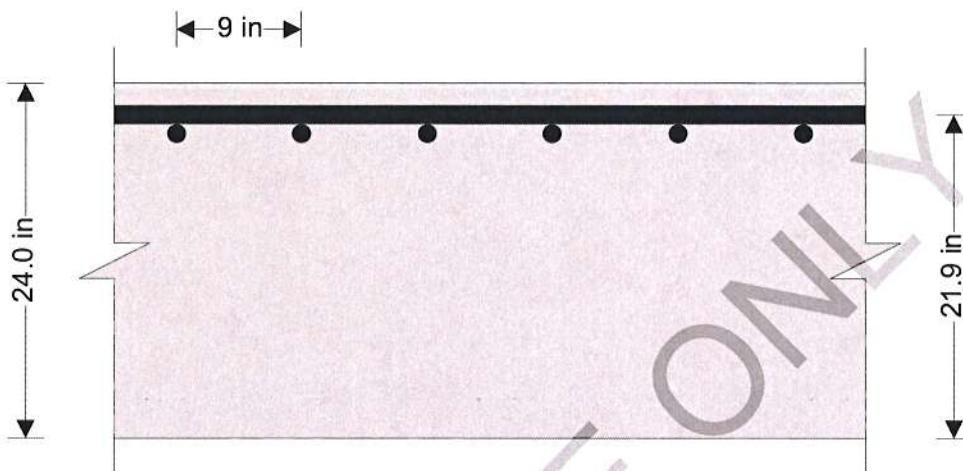
**Design summary**

Slab is 24.0 in thick in 4000 psi concrete



Centek Engineering, Inc,  
63-2 North Branford Road  
Branford, CT 06405

|               |                   |         |      |          |                |   |
|---------------|-------------------|---------|------|----------|----------------|---|
| Project       |                   |         |      |          | Job Ref.       |   |
| Section       |                   |         |      |          | Sheet no./rev. |   |
| Calc. by<br>T | Date<br>3/11/2020 | Chkd by | Date | App'd by | Date           | 3 |


Tension steel provided - positive moment, No. 10 @ 8.5 in o.c. in 60000 psi steel

Transverse steel provided , No. 10 @ 8.5 in o.c. in 60000 psi steel

REFERENCE ONLY

### RC ONE-WAY SLAB DESIGN (ACI318-11)

Tedds calculation version 1.1.04



#### **Slab definition**

Slab type

One-way continuous

Overall thickness of slab

$h = 24.00$  in

Clear shorter span of slab

$l_n = 31.33$  ft

Clear cover to tension reinforcement

$c_{c\_hog} = 1.50$  in

#### **Materials**

Specified compressive strength of concrete

$f_c = 4000$  psi

Specified yield strength of reinforcement

$f_y = 60000$  psi

Modulus of elasticity

$E_{ACI} = 29000000$  psi

Concrete modification factor

$\lambda = 1.00$

#### **Maximum design moment and shear in span (per 12 in width of slab)**

Maximum ultimate negative moment

$M_{uh} = 86.000$  kip $\cdot$ ft/ft

Maximum ultimate shear force

$V_u = 18.000$  kips/ft

#### **Reinforcement calculations - negative moment**

Tension steel provided

No. 10 @ 8.5 in o.c.

Depth to tension steel

$d_{hog} = (h - c_{c\_hog} - D_{hog} / 2) = 21.87$  in

Stress block depth factor

$\beta^1 = 0.85$

Reinforcement ratio at strain of 0.004

$\rho^b = 0.85 \times \beta^1 \times f_c / f_y \times (0.003 / (0.003 + 0.004)) = 0.021$

Maximum reinforcement ratio

$\rho^{max} = \rho^b = 0.021$

Maximum area of tension steel

$A_{s\_max\_hog} = \rho^{max} \times d_{hog} = 5.416$  in $^2$ /ft

Min ratio of transverse reinforcement (cl. 7.12.2.1)

$\rho^t = 0.0018$

Min area tension steel req'd (cl. 10.5.4 & 7.12.2.1)

$A_{s\_min\_hog} = \rho^t \times h = 0.518$  in $^2$ /ft

Area of tension steel provided

$A_{s\_prov\_hog} = 1.788$  in $^2$ /ft

**PASS - Area of steel provided - OK**

Steel stress (cl. 10.6.4)

$f_s = 2/3 \times f_y = 40000$  psi

Max allowable spacing (cl. 10.5.4 & 10.6.4)

$s_{max} = \min(3 \times h, 18\text{in}, 15\text{in} \times (40000 \text{ psi} / f_s) - 2.5 \times c_{c\_hog}, 12\text{in} \times (40000 \text{ psi} / f_s))$



Centek Engineering, Inc,  
63-2 North Branford Road  
Branford, CT 06405

|               |                   |                     |      |
|---------------|-------------------|---------------------|------|
| Project       |                   | Job Ref.            |      |
| Section       |                   | Sheet no./rev.<br>2 |      |
| Calc. by<br>T | Date<br>3/11/2020 | Chk'd by            | Date |
| App'd by      | Date              |                     |      |

Actual tensile bar spacing provided

$$S_{max} = 11.250 \text{ in}$$

$$S_{hog} = 8.500 \text{ in}$$

**PASS - Spacing of bars (-ve mnt) less than maximum allowable**

**Check for section - negative moment**

Depth of equivalent rectangular stress block

$$a_{hog} = (A_{s\_prov\_hog} \times f_y) / (0.85 \times f_c) = 2.63 \text{ in}$$

Depth of neutral axis

$$Chog = a_{hog} / \beta_1 = 3.094 \text{ in}$$

Net tensile strain in long. steel at nominal strength

$$\epsilon_{L\_hog} = 0.003 \times [(d_{hog} - Chog) / Chog] = 0.0182$$

**Section is tension controlled, Design OK**

Strength reduction factor

$$\phi_{hog} = 0.9$$

Revised required nominal flexural strength

$$M_{nh} = M_{uh} / \phi_{hog} = 95.556 \text{ kip\_ft/ft}$$

Actual nominal flexural strength

$$M_{nh\_prov} = A_{s\_prov\_hog} \times f_y \times (d_{hog} - a_{hog} / 2) = 183.756 \text{ kip\_ft/ft}$$

**PASS - Actual flexural strength exceeds required nominal flexural strength**

**Transverse reinforcement - (for shrinkage and temperature)**

Transverse reinforcement provided

**No. 10 @ 8.5 in o.c.**

Area of reinforcement provided

$$A_{t\_prov} = 1.788 \text{ in}^2/\text{ft}$$

Min ratio of transverse reinforcement (cl. 7.12.2.1)

$$p_t = 0.0018$$

Minimum area of transverse reinforcement required

$$A_{t\_req} = p_t \times h = 0.518 \text{ in}^2/\text{ft}$$

**PASS - Area of transverse steel provided OK**

Maximum allowable spacing of bars

$$S_{max\_t} = \min (5 \times h, 18 \text{ in}) = 18.000 \text{ in}$$

Actual transverse bar spacing provided

$$S_t = 8.500 \text{ in}$$

**PASS - Spacing of transverse bars is less than allowable**

**Check for shear**

Nominal shear strength required

$$V_n = \text{abs}(V_u) / 0.75 = 24.000 \text{ kips/ft}$$

Shear strength provided by concrete

$$V_c = 2 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times d_{hog} = 33.189 \text{ kips/ft}$$

Shear strength provided by shear steel (assumed)

$$V_s = 0 \text{ kips/ft}$$

Shear capacity of section

$$V = V_c + V_s = 33.189 \text{ kips/ft}$$

**PASS - One-way shear capacity**

**Check of clear cover (ACI 7.7.1)**

Permissible min nominal cover to all reinforcement

$$c_{min} = 0.75 \text{ in}$$

Clear cover to tension reinforcement (-ve mnt)

$$c_{c\_hog} = h - d_{hog} - D_{hog}/2 = 1.500 \text{ in}$$

**PASS - Cover to steel resisting negative moment exceeds allowable minimum cover**

**Deflection**

Support condition

**Both ends continuous**

Basic span-to-thickness ratio (Table 9.5(a))

$$ratio_{basic} = 28$$

Type of concrete

**Normal weight**

Concrete density factor (Table 9.5(a))

$$f_{density} = 1.00$$

Allowable span-to-thickness ratio

$$ratio_{allow} = ratio_{basic} / (f_{density} \times (0.4 + f_y / 100000 \text{ psi})) = 28.000$$

Actual span-to-thickness ratio

$$ratio_{actual} = l_n / h = 15.665$$

**PASS - The slab thickness is adequate to control deflection**

**Design summary**

Slab is 24.0 in thick in 4000 psi concrete

Tension steel provided - negative moment, No. 10 @ 8.5 in o.c. in 60000 psi steel



Centek Engineering, Inc.  
63-2 North Branford Road  
Branford, CT 06405

|               |                   |         |  |      |                |      |  |
|---------------|-------------------|---------|--|------|----------------|------|--|
| Project       |                   |         |  |      | Job Ref.       |      |  |
| Section       |                   |         |  |      | Sheet no./rev. |      |  |
| Calc. by<br>T | Date<br>3/11/2020 | Chkd by |  | Date | App'd by       | Date |  |

Transverse steel provided , No. 10 @ 8.5 in o.c. in 60000 psi steel

REFERENCE ONLY

**Section 3.0**  
**Supporting Documentation**



**Structural Design Report**  
120' Extendible to 140' Monopole  
Site: Bethel W2, CT  
Site Number: 5-0157

Prepared for: VERIZON WIRELESS  
by: Sabre Towers & Poles™

Job Number: 16-7133-SCB

July 13, 2016

|                        |      |
|------------------------|------|
| Monopole Profile.....  | 1    |
| Pole Calculations..... | 2-27 |



7/13/16

## Designed Appurtenance Loading

| Elev   | Description                                     |  | Tx-Line             |
|--------|-------------------------------------------------|--|---------------------|
| 140*** | (3) 800 10510                                   |  | (3) 1 5/8"          |
| 140*** | (18) TMA                                        |  |                     |
| 140*** | (2) DB-B1-6C-12AB-0Z                            |  | (2) DC/Fiber Trunks |
| 140*** | (12) RRH2x40-AWS                                |  |                     |
| 140*** | (9) 800 10766                                   |  | (9) 1 5/8"          |
| 138*** | L.P. Platform (Monopole Only) - 12' w/ Handrail |  |                     |
| 130*** | L.P. Platform (Monopole Only) - 12' w/ Handrail |  |                     |
| 130*** | (12) RRH2x40-AWS                                |  |                     |
| 130*** | (18) TMA                                        |  |                     |
| 130*** | (3) 800 10510                                   |  | (3) 1 5/8"          |
| 130*** | (9) 800 10766                                   |  | (9) 1 5/8"          |
| 130*** | (2) DB-B1-6C-12AB-0Z                            |  | (2) DC/Fiber Trunks |
| 120    | (6) HBX-6517DS-VTM                              |  | (9) 1 5/8"          |
| 120    | (3) RRH2x60-AWS                                 |  |                     |
| 120    | (3) RRH2x60-1900A-4R                            |  |                     |
| 120    | (2) DB-B1-6C-12AB-0Z                            |  | (2) DC/Fiber Trunks |
| 120    | (6) 800 10766                                   |  | (9) 1 5/8"          |
| 120    | (3) RRH2x60-700                                 |  |                     |
| 118    | L.P. Platform (Monopole Only) - 14' w/ Handrail |  |                     |
| 110    | L.P. Platform (Monopole Only) - 12' w/ Handrail |  |                     |
| 110    | (12) RRH2x40-AWS                                |  |                     |
| 110    | (18) TMA                                        |  |                     |
| 110    | (3) 800 10510                                   |  | (3) 1 5/8"          |
| 110    | (9) 800 10766                                   |  | (9) 1 5/8"          |
| 110    | (2) DB-B1-6C-12AB-0Z                            |  | (2) DC/Fiber Trunks |
| 100    | L.P. Platform (Monopole Only) - 12' w/ Handrail |  |                     |
| 100    | (12) RRH2x40-AWS                                |  |                     |
| 100    | (18) TMA                                        |  |                     |
| 100    | (3) 800 10510                                   |  | (3) 1 5/8"          |
| 100    | (9) 800 10766                                   |  | (9) 1 5/8"          |
| 100    | (2) DB-B1-6C-12AB-0Z                            |  | (2) DC/Fiber Trunks |

## Load Case Reactions

| Description             | Axial (kips) | Shear (kips) | Moment (ft-k) | Deflection (ft) | Sway (deg) |
|-------------------------|--------------|--------------|---------------|-----------------|------------|
| 3s Gusted Wind          | 57.21        | 45.89        | 4952.27       | 9.02            | 6.45       |
| 3s Gusted Wind 0.9 Dead | 42.95        | 45.76        | 4867.79       | 8.82            | 6.3        |
| 3s Gusted Wind&Ice      | 81.12        | 14.08        | 1566.09       | 2.91            | 2.07       |
| Service Loads           | 47.65        | 9.22         | 988.59        | 1.81            | 1.29       |

## Base Plate Dimensions

| Shape | Diameter | Thickness | Bolt Circle | Bolt Qty | Bolt Diameter |
|-------|----------|-----------|-------------|----------|---------------|
| Round | 69"      | 2.25"     | 63.25"      | 16       | 2.25"         |

## Anchor Bolt Dimensions

| Length | Diameter | Hole Diameter | Weight | Type    | Finish   |
|--------|----------|---------------|--------|---------|----------|
| 84"    | 2.25"    | 2.625"        | 1937.6 | A615-75 | Galv-18" |

## Notes

- 1) Antenna Feed Lines Run Inside Pole
- 2) All dimensions are above ground level, unless otherwise specified.
- 3) Weights shown are estimates. Final weights may vary.
- 4) The Monopole was designed for a basic wind speed of 100 mph with 0" of radial ice, and 50 mph with 3/4" of radial ice, in accordance with ANSI/TIA-222-G, Structure Class II, Exposure Category C, Topographic Category 1.
- 5) Full Height Step Bolts
- 6) The Monopole was designed for a basic wind speed of 85 mph with 1/2" radial ice with reduction, in accordance with EIA/TIA-222-F.
- 7) ANSI/TIA-222-G load case reactions are shown in the table above. EIA/TIA-222-F load case reactions can be found in the calculations toward the end of this design report.

\*\*\* These Appurtenances cannot be installed until the Monopole has been extended.

|                           |          |
|---------------------------|----------|
| Length (ft)               | 53' - 3" |
| Number Of Sides           |          |
| Thickness (in)            | 3/8"     |
| Lap Splice (ft)           | 44.83"   |
| Top Diameter (in)         | 56.59"   |
| Bottom Diameter (in)      |          |
| Taper (in/in)             | 0.221    |
| Grade                     | A572-55  |
| Weight (lbs)              | 13314    |
| Overall Steel Height (ft) | 119      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <p><b>Sabre Communications Corporation</b><br/>7101 Southbridge Drive<br/>P.O. Box 658<br/>Sioux City, IA 51102-0658<br/>Phone (712) 258-6690<br/>Fax (712) 279-0814</p> <p>Information contained herein is the sole property of Sabre Communications Corporation, constitutes a trade secret as defined by Iowa Code Ch. 559 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Communications Corporation.</p> | <p>Job: 16-7133-SCB</p> <p>Customer: VERIZON WIRELESS</p> <p>Site Name: Bethel W2, CT 5-0157</p> <p>Description: 120' ext. 140' Monopole</p> <p>Date: 7/13/2016</p> <p>By: REB</p> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## 16-7133-SCB - Extension

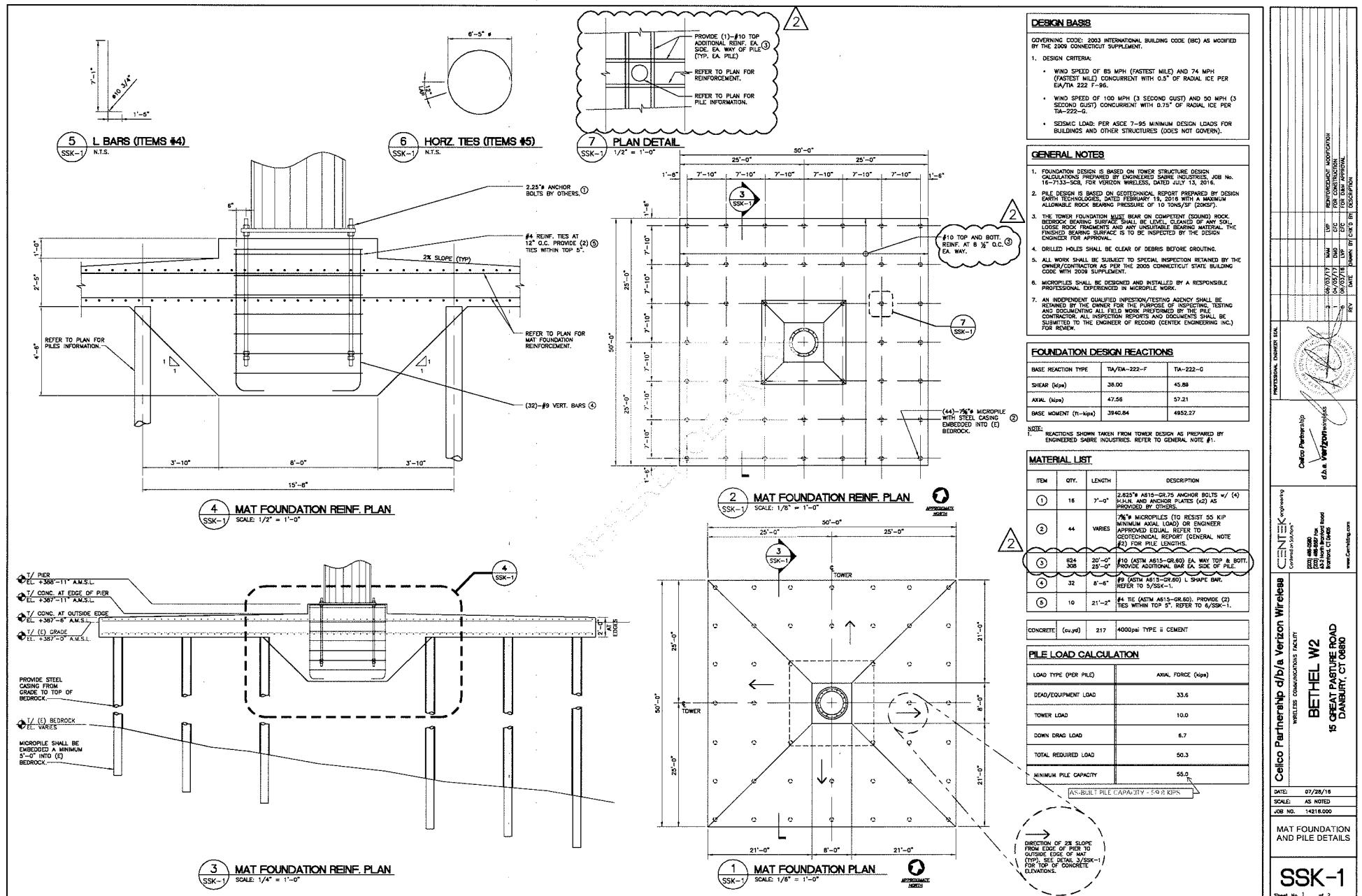
|       |      |      |      |       |      |      |      |      |
|-------|------|------|------|-------|------|------|------|------|
| 95.00 | 0.02 | 0.54 | 0.55 | 180.0 | 0.04 | 0.00 | 0.04 | 90.0 |
|       | 0.02 | 0.55 | 0.57 | 180.0 | 0.04 | 0.00 | 0.04 | 90.0 |
| 81.08 | 0.02 | 0.74 | 0.75 | 180.0 | 0.04 | 0.00 | 0.04 | 90.0 |
|       | 0.02 | 0.74 | 0.75 | 180.0 | 0.04 | 0.00 | 0.04 | 90.0 |
| 67.17 | 0.02 | 0.87 | 0.89 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
|       | 0.02 | 0.87 | 0.89 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
| 53.25 | 0.02 | 0.97 | 0.98 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
|       | 0.01 | 0.81 | 0.82 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
| 46.75 | 0.01 | 0.84 | 0.85 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
|       | 0.01 | 0.86 | 0.87 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
| 35.06 | 0.01 | 0.90 | 0.92 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
|       | 0.01 | 0.90 | 0.92 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
| 23.37 | 0.01 | 0.94 | 0.95 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
|       | 0.01 | 0.94 | 0.95 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
| 11.69 | 0.01 | 0.96 | 0.97 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
|       | 0.01 | 0.96 | 0.98 | 180.0 | 0.03 | 0.00 | 0.03 | 90.0 |
| 0.00  | 0.01 | 0.98 | 0.99 | 180.0 | 0.02 | 0.00 | 0.02 | 90.0 |

## EXTREME FIBRE STRESSES IN LAP SPLICE

=====

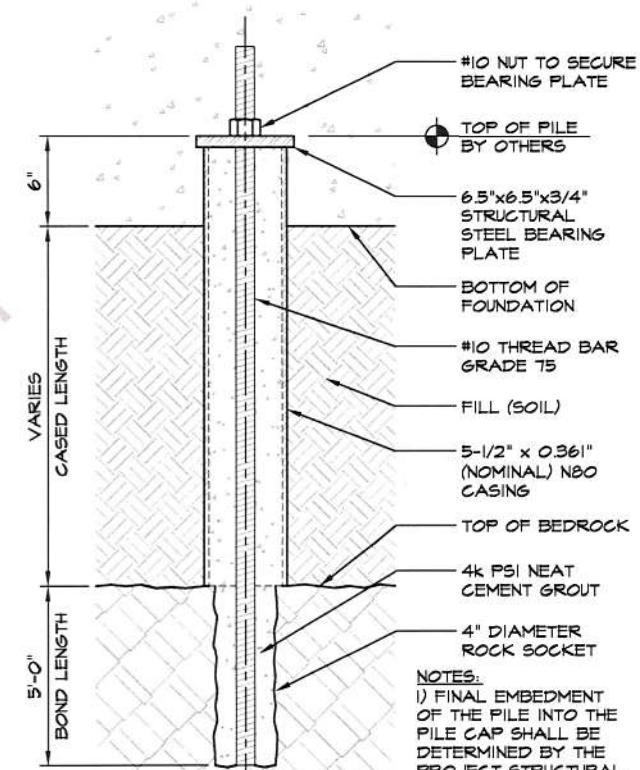
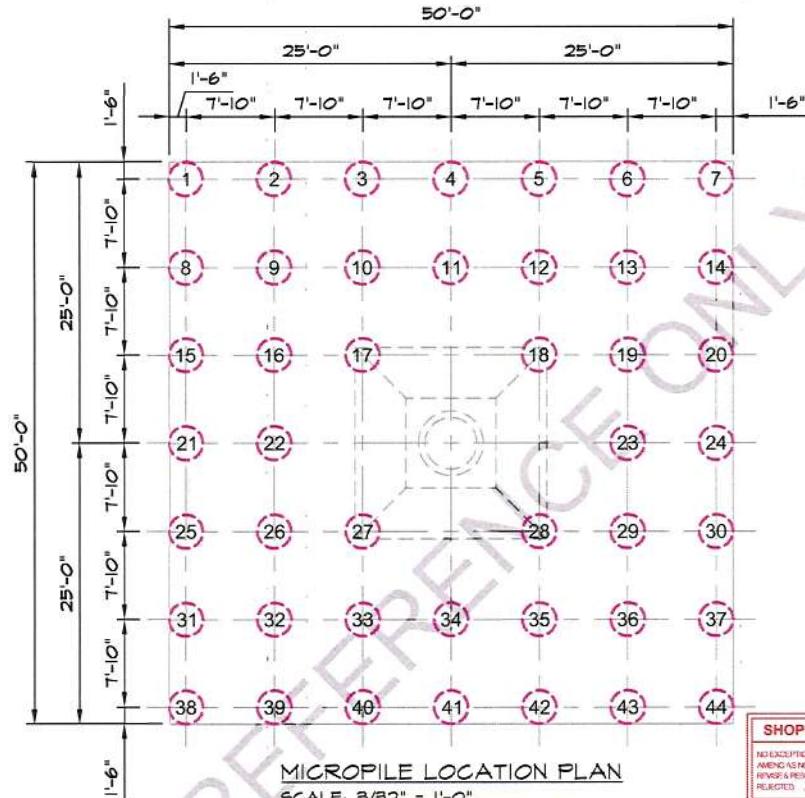
| ELEV<br>ft | CONTACT.<br>MAX<br>ksi | PRESSURE<br>AZI<br>deg | HOOP.<br>MAX<br>ksi | STRESSES<br>AZI<br>deg | BENDING.<br>MAX<br>ksi | STRESSES<br>AZI<br>deg |
|------------|------------------------|------------------------|---------------------|------------------------|------------------------|------------------------|
| 100.25     | 0.30                   | 0.0                    | 21.55               | 90.0                   | 29.57                  | 180.0                  |
| 95.00      | 0.29                   | 180.0                  | 21.56               | 90.0                   | 28.76                  | 180.0                  |
| 53.25      | 0.54                   | 0.0                    | 39.05               | 90.0                   | 50.24                  | 180.0                  |
| 46.75      | 0.52                   | 180.0                  | 39.06               | 90.0                   | 44.78                  | 180.0                  |

## LOADS ONTO FOUNDATION(w.r.t. NORTH-EAST-DOWN coordinates)


| TOTAL<br>AXIAL<br>kip | SHEAR.....   |             | MOMENT.....     |                | TORSION<br>ft-kip |
|-----------------------|--------------|-------------|-----------------|----------------|-------------------|
|                       | NORTH<br>kip | EAST<br>kip | NORTH<br>ft-kip | EAST<br>ft-kip |                   |
| 47.56                 | -36.16       | 0.00        | 3940.84         | 0.00           | 0.00              |

## LOADS ONTO FOUNDATION(w.r.t. wind direction)

| DOWN<br>kip | SHEAR.w.r.t.WIND.DIR<br>ALONG<br>kip | MOMENT.w.r.t.WIND.DIR<br>ALONG<br>ft-kip | TORSION<br>ft-kip |
|-------------|--------------------------------------|------------------------------------------|-------------------|
| 47.56       | 36.16                                | 0.00                                     | -3940.84          |



LOADING CONDITION B ===== Iterations: Mast 5 =====

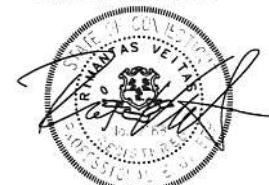
85 mph + 0.5" ice (Reduction Allowed)



NOTES:

1. Micropiles shall be advanced through the fill soil and bonded into bedrock at an average maximum depth of 25.0' below working grade.
2. Micropiles shall consist of steel casing, with an outside diameter of 5.5" and a wall thickness of 0.361" as manufactured by PennDrill Manufacturing (Punxsutawney, PA) with N80 flush joint casing. The lead section of casing shall be fitted with carbide "J" teeth. Beyond that a 4.0" rock socket will be drilled for the bond zone. The borehole will be filled with a minimum 4.0 ksi neat cement grout and a #10 (GR-75) thread bar. The thread bar will be centered using PVC centralizers. A minimum bond length of 5'-0" is required.
3. All Micropiles will be designed for 55 kips (allowable) axial compression.
4. Pile cap plates will be a minimum of 6.5" x 6.5" x .75" structural steel plates. Structural Engineer of Record to verify depth/height of bearing plates in pile cap.
5. Concrete pile caps and grade beams, including pile embedment into concrete, shall be sized and designed by the Structural Engineer of Record. We have schematically shown the pile caps. Pile layout will be the responsibility of others along with any as-built information. Minimum pile spacing shall be 3 times the pile diameter.




SHOP DRAWING REVIEW

NO CHANGES TAKEN   
AMENDS AS NOTED   
REVISE & RESUBMIT   
REJECTED

Review is for general compliance with the Contract Documents. The contractor is responsible for construction methods, coordination of work, quantities and dimensions.

Certek Engineering, Inc. LVP  
Date: 03/23/17 checked by  
Certek Project # 7000.0 17000.0

MICROPILE DETAIL  
SCALE: N.T.S.



#1 Indicates Micropile location and designation as indicated on Sheet SSK-1, dated 8/3/16.  
Micropile layouts, survey locations, and any as-builts are the responsibility of others.

| SCALE AS NOTED  | DATE 3/21/17   | SHEET 1 of 1   | PLAN #     | HELICAL Geotechnical Design/Build | 639 GRANITE ST.<br>BRAINTREE, MA<br>02184<br>(781) 848-2110 | MICROPILE LOCATION PLAN AND DETAILS<br>Bethel W2 Verizon<br>15 Great Pasture Road<br>Danbury, CT | SHEET NO.<br>MP-1.0 |
|-----------------|----------------|----------------|------------|-----------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------|
| DRAWN BY<br>MJP | CHKD BY<br>PJY | APPD BY<br>RMV | DISK REF # |                                   |                                                             |                                                                                                  |                     |

accomplished by rotary percussive methods, which can address obstructions (i.e. cobbles, boulders, wood/stumps, debris). It is estimated that these mini-piles would be about 30 to 40 feet deep. Static load tests would be required to verify load capacity. These rock-socketed mini-piles would achieve capacity through side friction in the rock socket and end bearing.

There are a few considerations when the mini-piles are designed by the structural engineer. The design load shall be distributed into the bedrock using the bond strength between the bedrock and the grout. This bond strength value can be estimated from the bedrock core samples at

Ultim [REDACTED] A minimum of 5' shall be used as the uncased bond length into bedrock. Due to the relatively small cross sectional area of the mini-pile, load carrying capacity results in [REDACTED] 0.0 tons/consi

[REDACTED] d un-bonded zones. It is recommended in the un-bonded zone to have steel installation casing left in-place (from top of bedrock to within the upper horizontal foundation component). This produces a superior mini-pile that has a higher quality of installation. Mini-piles are very slender elements that can not resist lateral load effectively. The use of battered mini-piles is recommended for the lateral loads. The mini-piles shall not be designed to carry tensile or uplift loads. Because the fill material will continue to settle, the mini-pile design must address "negative" skin friction.

Negative skin friction develops along the contact surface between pile and soil when the soil settles relative to the pile. The negative skin friction must be added into the dead load of the pile. A preliminary estimate of this negative skin friction load could be as much as 20 tons per pile.

At least one verification load test should be performed to confirm the ultimate bond stress. A minimum of one proof test should also be performed on one of the production pile.

#### ***Equipment Shelter***

If the shelter is allowed to settle because of the deep fill material, a spread footing is considered appropriate, if minimal settlement is allowed for the shelter, a deep foundation with a mini-pile foundation system is to be used.

#### **EARTHQUAKE DESIGN (SEISMIC)**

Seismic design requirements for the State of Connecticut are based on the Connecticut State Building Code, which incorporates the Seismic design Category approach from the International Building Code. The seismic design Category determination is based on a few category factors. One such category is the "Site Classification (soil type)". From our test borings, we consider that the site subsurface conditions match the General Description of "Very Dense Soil and Soft Rock". The site classification is therefore "C".

The proposed deep foundation is to bear on bedrock. This bedrock will not liquefy during a seismic event and needs not be addressed in the foundation design.



# MATERIALS TESTING, INC.

55 LAURA STREET • NEW HAVEN, CONNECTICUT 06512 • (203)468-5216  
42 BOSTON POST ROAD • WILLIMANTIC, CONNECTICUT 06226 • (860)423-1972  
materialtestinginc.com

## COMPRESSION TESTS (MASONRY)

**CLIENT:** Centek Engineering S-1001A  
63-2 North Branford Road  
Branford, CT 06405  
Attn: Erik Armas

**PROJECT:** 17000.01 Bethel West 2

**LOCATION:** Pile #36

**MATERIAL:** Type II Portland Cement

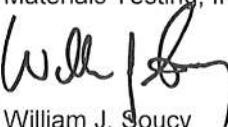
**DATE CAST:** 04-18-17

**DATE RECEIVED:** 05-03-17

**TEMPERATURE-AMBIENT:**

**MIX:**

**SAMPLES CAST BY:** Contractor


**SAMPLING TIME:**

**REQUIRED STRENGTH:** 5000 PSI

|                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <b>SAMPLE TYPE:</b><br><input type="checkbox"/> 3½" x 3½" x 7" GROUT - ASTM C1019<br><input type="checkbox"/> 6" x 12" CYLINDERS - COARSE GROUT - ASTM C31<br><input type="checkbox"/> 2" x 2" CUBES - MORTAR - ASTM C109 MODIFIED<br><input checked="" type="checkbox"/> 2" x 2" CUBES - GROUT USED FOR SUPPORT - ASTM C1107<br><input type="checkbox"/> OTHER: _____ | <b>SLUMP:</b> _____<br><b>FLOW RATE:</b> _____<br>_____<br>_____ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|

| SAMPLE NUMBER | AGE DAYS | DATE TESTED | LOAD LBS. | COMPRESSIVE STRENGTH- PSI |
|---------------|----------|-------------|-----------|---------------------------|
| S-50746       | 21       | 05-09-17    | 31,660    | 7920                      |
| S-50747       | 28       | 05-16-17    | 32,510    | 8130                      |
| S-50748       | 28       | 05-16-17    | 28,840    | 7210                      |

Materials Testing, Inc.

  
William J. Soucy

1cc: Client

SW

Test reports may not be reproduced without the express permission of Materials Testing, Inc. Results only relate to items tested.





# MATERIALS TESTING, INC.

55 LAURA STREET • NEW HAVEN, CONNECTICUT 06512 • (203)468-5216  
42 BOSTON POST ROAD • WILLIMANTIC, CONNECTICUT 06226 • (860)423-1972  
materialtestinginc.com

## COMPRESSION TESTS (MASONRY)

CLIENT: Centek Engineering S-1000A  
63-2 North Branford Road  
Branford, CT 06405  
Attn: Erik Armas

PROJECT: 17000.01 Bethel West 2

LOCATION: Pile #3

MATERIAL: Type II Portland Cement

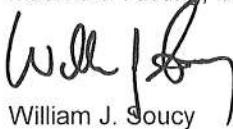
DATE CAST: 04-18-17

DATE RECEIVED: 05-03-17

TEMPERATURE-AMBIENT:

MIX:

SAMPLES CAST BY: Contractor


SAMPLING TIME:

REQUIRED STRENGTH: 5000 PSI

|                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| SAMPLE TYPE:<br><input type="checkbox"/> 3½" x 3½" x 7" GROUT - ASTM C1019<br><input type="checkbox"/> 6" x 12" CYLINDERS - COARSE GROUT - ASTM C31<br><input type="checkbox"/> 2" x 2" CUBES - MORTAR - ASTM C109 MODIFIED<br><input checked="" type="checkbox"/> 2" x 2" CUBES - GROUT USED FOR SUPPORT - ASTM C1107<br><input type="checkbox"/> OTHER: _____ | SLUMP: _____<br>FLOW RATE: _____<br>_____<br>_____ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|

| SAMPLE NUMBER | AGE DAYS | DATE TESTED | LOAD LBS. | COMPRESSIVE STRENGTH- PSI |
|---------------|----------|-------------|-----------|---------------------------|
| S-50743       | 21       | 05-09-17    | 42,980    | 10,720                    |
| S-50744       | 28       | 05-16-17    | 39,580    | 9900                      |
| S-50745       | 28       | 05-16-17    | 45,380    | 11350                     |

Materials Testing, Inc.

  
William J. Soucy

1cc: Client

SW





# MATERIALS TESTING, INC.

55 LAURA STREET • NEW HAVEN, CONNECTICUT 06512 • (203)468-5216  
42 BOSTON POST ROAD • WILLIMANTIC, CONNECTICUT 06226 • (860)423-1972  
materialtestinginc.com

## COMPRESSION TESTS (MASONRY)

CLIENT: Centek Engineering S-1002A  
63-2 North Branford Road  
Branford, CT 06405  
Attn: Erik Armas

PROJECT: 17000.01 Bethel West 2

LOCATION: Pile #25

MATERIAL: Type II Portland Cement

DATE CAST: 04-18-17

DATE RECEIVED: 05-03-17

TEMPERATURE-AMBIENT:

MIX:

SAMPLES CAST BY: Contractor


SAMPLING TIME:

REQUIRED STRENGTH: 5000 PSI

|                                                                                                                                                                                                                                                                                                                                                                 |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| SAMPLE TYPE:<br><input type="checkbox"/> 3½" x 3½" x 7" GROUT - ASTM C1019<br><input type="checkbox"/> 6" x 12" CYLINDERS - COARSE GROUT - ASTM C31<br><input type="checkbox"/> 2" x 2" CUBES - MORTAR - ASTM C109 MODIFIED<br><input checked="" type="checkbox"/> 2" x 2" CUBES - GROUT USED FOR SUPPORT - ASTM C1107<br><input type="checkbox"/> OTHER: _____ | SLUMP: _____<br>FLOW RATE: _____<br>_____ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|

| SAMPLE NUMBER | AGE DAYS | DATE TESTED | LOAD LBS. | COMPRESSIVE STRENGTH- PSI |
|---------------|----------|-------------|-----------|---------------------------|
| S-50749       | 21       | 05-09-17    | 28,840    | 7210                      |
| S-50750       | 28       | 05-16-17    | 30,750    | 7690                      |
| S-50751       | 28       | 05-16-17    | 30,690    | 7670                      |

Materials Testing, Inc.

  
William J. Soucy

1cc: Client

SW



**1810.3.2.6 Allowable stresses.** The allowable stresses for materials used in deep foundation elements shall not exceed those specified in Table 1810.3.2.6.

❖ This section refers the code user to the table of allowable stresses in order to identify the correct values that apply to various types of deep foundations. Note that Section 1810.1.4 allows "special types of piles" using the allowable stresses for materials that are specified herein.

**TABLE 1810.3.2.6.** See below.

❖ This table provides a complete list of the relevant allowable stresses for deep foundation element materials including concrete, reinforcing steel and structural steel.

**1810.3.2.7 Increased allowable compressive stress for cased cast-in-place elements.** The allowable compressive stress in the concrete shall be permitted to be increased as specified in Table 1810.3.2.6 for those portions of permanently cased cast-in-place elements that satisfy all of the following conditions:

1. The design shall not use the casing to resist any portion of the axial load imposed.
2. The casing shall have a sealed tip and be mandrel driven.
3. The thickness of the casing shall not be less than manufacturer's standard gage No.14 (0.068 inch) (1.75 mm).

4. The casing shall be seamless or provided with seams of strength equal to the basic material and be of a configuration that will provide confinement to the cast-in-place concrete.

5. The ratio of steel yield strength ( $F_y$ ) to specified compressive strength ( $f'_c$ ) shall not be less than six.

6. The nominal diameter of the element shall not be greater than 16 inches (406 mm).

❖ For cased cast-in-place concrete elements formed by driving permanent steel casings, the allowable design compressive stress in Table 1810.3.2.6 is generally not to exceed  $0.33f'_c$ . When the permanent casing complies with the requirements of this section, the allowable concrete compressive stress may be increased to  $0.40f'_c$ . The basis for this increase in allowable concrete stress is the added strength given to the concrete by the confining action of the steel casing. The general formula for increased allowable stress caused by confinement is:

$$f_c = 0.33f'_c \left( \frac{1 + 7.5tf_y}{Df'_c} \right)$$

where:

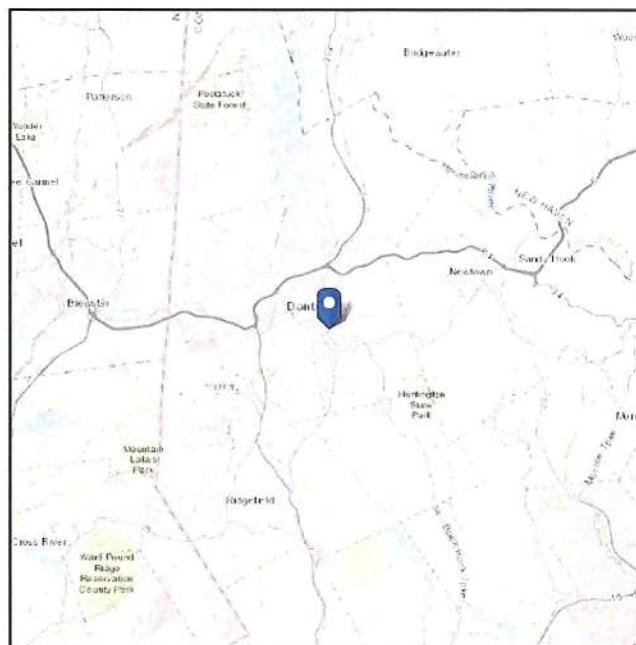
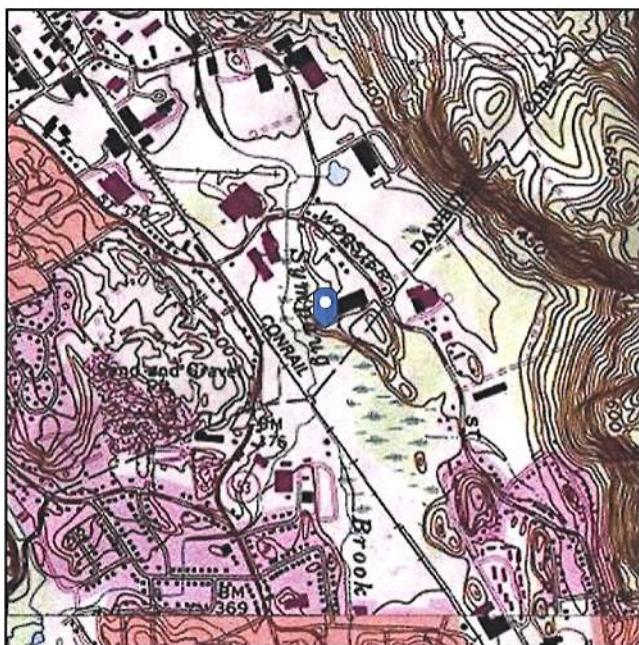
$f_c$  = Allowable concrete stress.

$f'_c$  = Specified concrete strength.

**TABLE 1810.3.2.6**  
ALLOWABLE STRESSES FOR MATERIALS USED IN DEEP FOUNDATION ELEMENTS

| MATERIAL TYPE AND CONDITION                                                                                                                                                                                                  | MAXIMUM ALLOWABLE STRESS <sup>a</sup>                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1. Concrete or grout in compression <sup>b</sup><br>Cast-in-place with a permanent casing in accordance with Section 1810.3.2.7<br>Cast-in-place without a permanent casing<br>Precast nonprestressed<br>Precast prestressed | $0.4f'_c$<br>$0.3f'_c$<br>$0.33f'_c$<br>$0.33f'_c - 0.27f_{pc}$                  |
| 2. Nonprestressed reinforcement in compression                                                                                                                                                                               | $0.4f_y \leq 30,000$ psi                                                         |
| 3. Steel in compression<br>Cores within<br>Pipes, tubes or H-piles, where justified in accordance with Section 1810.3.2.8<br>Pipes or tub<br>Other pipes, tubes or H-piles<br>Helical piles                                  | $0.35f'_c \leq 32,000$ psi<br>$0.35f'_c \leq 16,000$ psi<br>$0.6F_y \leq 0.5F_u$ |
| 4. Nonprestressed reinforcement in tension<br>Within micropiles<br>Other conditions                                                                                                                                          | $0.6f_y$<br>$0.5f_y \leq 24,000$ psi                                             |
| 5. Steel in tension<br>Pipes, tubes or H-piles, where justified in accordance with Section 1810.3.2.8<br>Other pipes, tubes or H-piles<br>Helical piles                                                                      | $0.5F_u \leq 32,000$ psi<br>$0.35F'_c \leq 16,000$ psi<br>$0.6F'_c \leq 0.5F_u$  |
| 6. Timber                                                                                                                                                                                                                    | In accordance with the AWC NDS                                                   |

a.  $f'_c$  is the specified compressive strength of the concrete or grout;  $f_{pc}$  is the compressive stress on the gross concrete section due to effective prestress forces only;  $f_y$  is the specified yield strength of reinforcement;  $F_y$  is the specified minimum yield stress of steel;  $F_u$  is the specified minimum tensile stress of structural steel.



b. The stresses specified apply to the gross cross-sectional area within the concrete surface. Where a temporary or permanent casing is used, the inside face of the casing shall be considered the concrete surface.

# ASCE 7 Hazards Report

**Address:**  
No Address at This Location

**Standard:** ASCE/SEI 7-10  
**Risk Category:** II  
**Soil Class:** D - Stiff Soil

**Elevation:** 386.01 ft (NAVD 88)  
**Latitude:** 41.383  
**Longitude:** -73.4222



## Wind

### Results:

|              |          |
|--------------|----------|
| Wind Speed:  | 117 Vmph |
| 10-year MRI  | 76 Vmph  |
| 25-year MRI  | 85 Vmph  |
| 50-year MRI  | 90 Vmph  |
| 100-year MRI | 96 Vmph  |

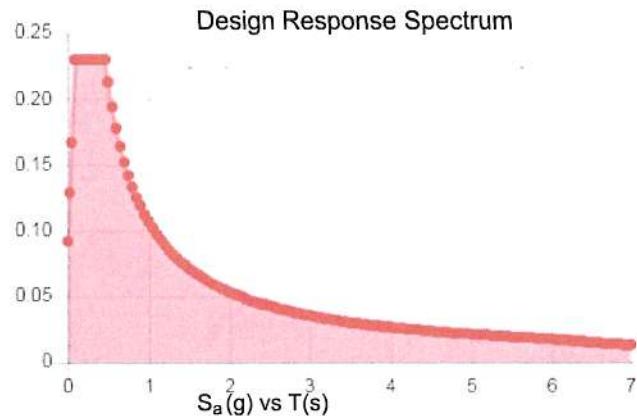
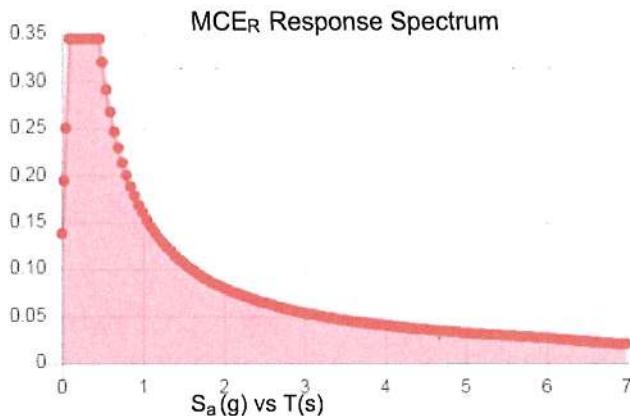
**Data Source:** ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014

**Date Accessed:** Mon Feb 10 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



## Seismic

**Site Soil Class:** D - Stiff Soil

**Results:**

|            |       |             |       |
|------------|-------|-------------|-------|
| $S_s$ :    | 0.216 | $S_{DS}$ :  | 0.23  |
| $S_1$ :    | 0.067 | $S_{D1}$ :  | 0.107 |
| $F_a$ :    | 1.6   | $T_L$ :     | 6     |
| $F_v$ :    | 2.4   | $PGA$ :     | 0.118 |
| $S_{MS}$ : | 0.345 | $PGA_M$ :   | 0.184 |
| $S_{M1}$ : | 0.16  | $F_{PGA}$ : | 1.565 |
|            |       | $I_e$ :     | 1     |

**Seismic Design Category** B



**Data Accessed:**

Mon Feb 10 2020

**Date Source:**

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

## Ice

---

### Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

**Data Source:** Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

**Date Accessed:** Mon Feb 10 2020

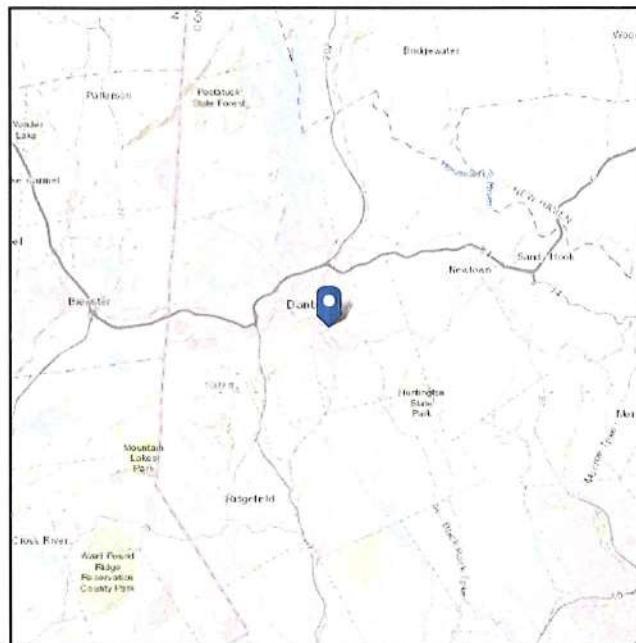
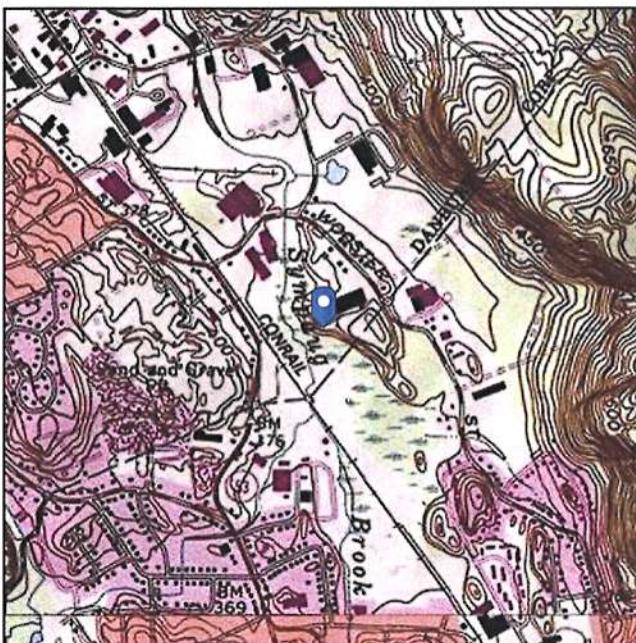
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

---

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.



In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

## ASCE 7 Hazards Report

**Address:**  
No Address at This Location

**Standard:** ASCE/SEI 7-10  
**Risk Category:** II  
**Soil Class:** D - Stiff Soil

**Elevation:** 386.01 ft (NAVD 88)  
**Latitude:** 41.383  
**Longitude:** -73.4222



## Wind

## Results:

|              |          |
|--------------|----------|
| Wind Speed:  | 117 Vmph |
| 10-year MRI  | 76 Vmph  |
| 25-year MRI  | 85 Vmph  |
| 50-year MRI  | 90 Vmph  |
| 100-year MRI | 96 Vmph  |

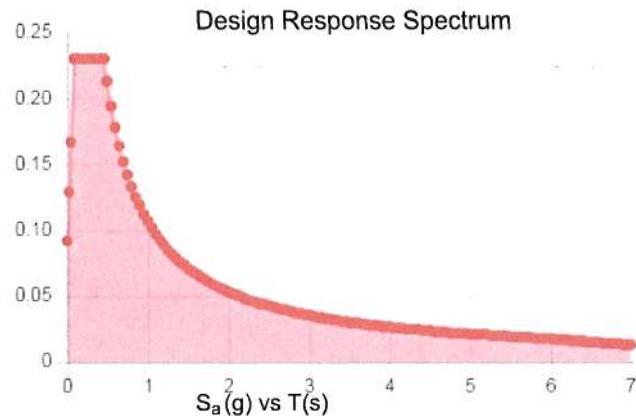
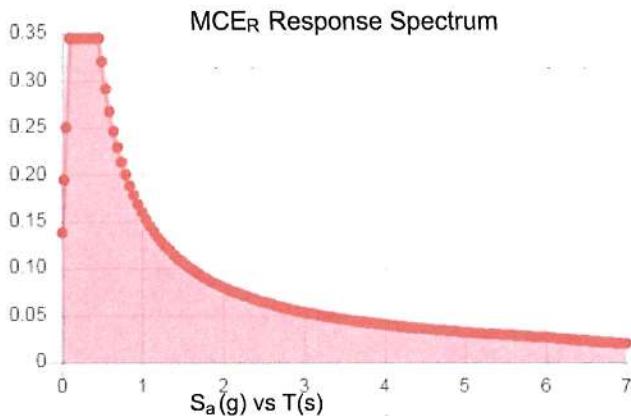
**Data Source:** ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014

**Date Accessed:** Mon Feb 10 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



## Seismic

**Site Soil Class:** D - Stiff Soil

**Results:**

|            |       |                    |       |
|------------|-------|--------------------|-------|
| $S_s$ :    | 0.216 | $S_{DS}$ :         | 0.23  |
| $S_1$ :    | 0.067 | $S_{D1}$ :         | 0.107 |
| $F_a$ :    | 1.6   | $T_L$ :            | 6     |
| $F_v$ :    | 2.4   | PGA :              | 0.118 |
| $S_{MS}$ : | 0.345 | PGA <sub>M</sub> : | 0.184 |
| $S_{M1}$ : | 0.16  | $F_{PGA}$ :        | 1.565 |
|            |       | $I_e$ :            | 1     |

**Seismic Design Category** B



**Data Accessed:**

Mon Feb 10 2020

**Date Source:**

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

**Results:**

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

**Data Source:** Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

**Date Accessed:** Mon Feb 10 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

---

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

PREPARED FOR



## MODIFICATION PACKAGE FOR A 119 FT 18-SIDED SABRE MONOPOLE WITH A PROPOSED 20 FT EXTENSION

PREPARED BY



CLIENT SITE NAME/NUMBER

28493

PROPOSED CARRIER / SITE NAME

AT&T / BETHEL WEST 2

SITE ADDRESS

15 GREAT PASTURE ROAD  
DANBURY, CT 06810  
FAIRFIELD COUNTY  
N41°22'58.8", W73°25'19.92"

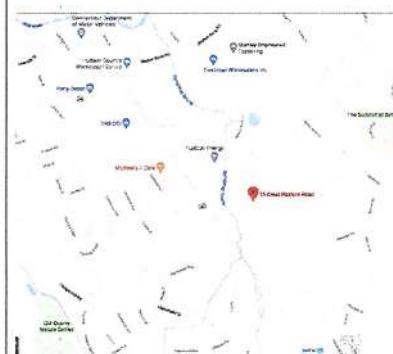
DATE:

09/02/2020

### CONTACT INFORMATION

#### ENGINEER OF RECORD

NAME: SEMAN ENGINEERING SOLUTIONS HOLDINGS, LLC  
ADDRESS: 1047 N 205TH STREET  
ELKHORN, NE 68022  
CONTACT: THOMAS TAYLOR —  
(402) 289-1888 x1  
EMAIL: TOMT@SEMAANENG.COM


### SHEET INDEX

| SHEET # | SHEET TITLE                 | REV # |
|---------|-----------------------------|-------|
| T-1     | TITLE SHEET                 | 1     |
| N-1     | GENERAL NOTES               | 1     |
| N-2     | SITE SPECIFIC NOTES         | 0     |
| S-1     | MONOPOLE ELEVATION VIEW     | 0     |
| S-2     | MONOPOLE EXTENSION DETAILS  | 0     |
| S-3     | MONOPOLE EXTENSION SECTIONS | 0     |

### STAMP



### VICINITY MAP



### MODIFICATION OUTLINE

THE MODIFICATIONS PROVIDED IN THESE DRAWINGS ARE BASED ON THE RECOMMENDATIONS OUTLINED IN THE STRUCTURAL MODIFICATIONS ANALYSIS REPORT COMPLETED BY SEMAAN ENGINEERING SOLUTIONS HOLDINGS, LLC (SES) DATED 09/02/2020. THIS REPORT IS BASED ON A SPECIFIC ANTENNA LOADING AND COAX CONFIGURATION AS DEFINED IN THE REPORT. ANY OTHER ANTENNA OR COAX CONFIGURATION REQUIRES REVIEW BY SES.

CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, QUANTITIES, PART NUMBERS AND COAX/ANTENNA PLACEMENTS PRIOR TO BIDDING, ORDERING MATERIALS, AND CONSTRUCTION.

I HEREBY CERTIFY THAT THIS ENGINEERING DOCUMENT WAS PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF CONNECTICUT.

## GENERAL NOTES:

- REFERENCE THE SEMAAN ENGINEERING SOLUTIONS ANALYSIS DATED 09/02/2020 FOR THE PROPOSED AND EXISTING LOADS CONSIDERED. THIS DRAWING IS NOT VALID IF LOADS OTHER THAN THOSE CONSIDERED IN THE ANALYSIS ARE ADDED TO OR REMOVED FROM THE STRUCTURE UNLESS APPROVED IN WRITING BY SEMAAN ENGINEERING SOLUTIONS HOLDINGS, LLC.
- THE PROPOSED LOADS SHALL NOT BE ADDED TO THE STRUCTURE UNTIL ALL MODIFICATIONS HAVE BEEN COMPLETED, INSPECTED BY A 3RD PARTY, AND APPROVED BY THE ENGINEER OF RECORD.
- ALL METHODS, MATERIALS AND WORKMANSHIP SHALL FOLLOW THE DICTATES OF GOOD CONSTRUCTION PRACTICE.
- ALL WORK INDICATED ON THESE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TOWER AND FOUNDATION CONSTRUCTION.
- THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS, ELEVATIONS AND CONDITIONS PRIOR TO FABRICATION. THE CONTRACTOR WILL BE SOLELY RESPONSIBLE FOR THE PROPER FIT AND CLEARANCE IN THE FIELD. CONTACT SEMAAN ENGINEERING IF ANY DISCREPANCIES EXIST.
- THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY OF ANY INSTALLATION INTERFERENCES. ALL NEW WORK SHALL ACCOMMODATE EXISTING CONDITIONS. DETAILS NOT SPECIFICALLY SHOWN ON THE DRAWINGS SHALL FOLLOW SIMILAR DETAILS FOR THIS JOB.
- THIS DRAWING DOES NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND INSPECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, TECHNIQUES, SEQUENCES AND PROCEDURES.
- ALL WORK SHALL BE DONE IN ACCORDANCE WITH LOCAL CODES AND OSHA SAFETY REGULATIONS. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE ON-SITE SAFETY ASSOCIATED WITH THE WORK TO BE PERFORMED AS WELL AS THE PUBLIC AFFECTED BY THE WORK IN THE VICINITY OF THE JOB SITE.
- THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND EXECUTION OF ALL MISCELLANEOUS SHORING, BRACING, TEMPORARY SUPPORTS, ETC. NECESSARY, PER TIA-322-A, TO PROVIDE A COMPLETE AND STABLE STRUCTURE AS SHOWN ON THESE DRAWINGS.
- THE CONTRACTOR'S PROPOSED INSTALLATION SHALL NOT INTERFERE, NOR DENY ACCESS TO, ANY EXISTING OPERATIONAL AND SAFETY EQUIPMENT.
- THE CONTRACTOR SHALL ALSO BE RESPONSIBLE FOR THE PROTECTION OF THE PROPERTY IN THE VICINITY OF THE JOB SITE. THE CONTRACTOR SHALL USE THE PRECAUTIONARY MEANS NECESSARY FOR ADEQUATE PROTECTION.
- ALL WORK SHALL BE PERFORMED IN CALM WIND CONDITIONS, WHERE SPEED DOES NOT EXCEED 10 MPH.
- ALL MATERIALS AND WORKMANSHIP SHALL BE WARRANTED FOR ONE YEAR FROM ACCEPTANCE DATE.
- ALL TOWER MODIFICATION WORK SHALL BE IN ACCORDANCE WITH TIA-322-A STANDARDS FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS.

## APPLICABLE CODES AND STANDARDS:

- ANSI/TIA-222 STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES, REV G.
- 2015 INTERNATIONAL BUILDING CODE, WITH CONNECTICUT STATE AMENDMENTS.
- ACI 318: AMERICAN CONCRETE INSTITUTE, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE, 318-14 (LATEST EDITION).
- CRSI: CONCRETE REINFORCEMENT STEEL INSTITUTE, MANUAL OF STANDARD PRACTICE, 318-14.
- AISC: AMERICAN INSTITUTE OF STEEL CONSTRUCTION, MANUAL OF STEEL CONSTRUCTION, 15TH EDITION - 2017 (LATEST EDITION).
- AWS: AMERICAN WELDING SOCIETY D1.1, STRUCTURAL WELDING CODE - 2015, (LATEST EDITION).

## STEEL CONSTRUCTION:

- STRUCTURAL STEEL SHALL CONFORM TO THE AISC MANUAL OF STEEL CONSTRUCTION, 14TH EDITION, FOR THE DESIGN, FABRICATION, AND ERECTION OF STEEL COMPONENTS.
- UNLESS NOTED OTHERWISE, ALL STRUCTURAL ELEMENTS SHALL CONFORM TO THE FOLLOWING REQUIREMENTS.
  - ANGLE: ASTM A36
  - PIPE/TUBE: ASTM A500 (46 ksi YIELD)
  - PLATE: ASTM A36
  - A. ALL BOLTS: ASTM A325 GALVANIZED HIGH STRENGTH BOLTS.
  - B. ALL U-BOLTS: ASTM A36
  - C. ALL NUTS: A963 CARBON AND STEEL ALLOY NUTS.
  - D. ALL WASHERS: ASTM F436 HARDENED STEEL WASHERS
- SHOP DRAWINGS SHALL BE SUBMITTED TO SES FOR APPROVAL PRIOR TO FABRICATION. SHOP DRAWINGS SHALL INCLUDE ALL FABRICATED STEEL ASSEMBLIES INCLUDING MONOPOLE/TOWER EXTENSIONS

## STEEL CONSTRUCTION (CONT.):

- ALL EXTERIOR STEEL WORK SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A123 FOR COMPONENTS AND ASTM A153 FOR HARDWARE, AND AS FOLLOWS, UNLESS OTHERWISE NOTED.
  - GALVANIZING SHALL BE PERFORMED AFTER SHOP FABRICATION AND WELDING TO THE GREATEST EXTENT POSSIBLE
  - ALL DINGS, SCRAPES, MARS AND WELDS IN THE GALVANIZED AREA SHALL BE COATED WITH (3) BRUSH COATS OF ZRC COLD GALVANIZING COMPOUND OR APPROVED EQUAL. THE COATING SHALL BE APPLIED IN STRICT ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
  - IF THE STRUCTURE WAS ORIGINALLY PAINTED, AFTER ZINC-RICH COATING IS DRY, OVERCOAT WITH AN APPROPRIATE PAINT WITH THE SAME COLOR AS THE EXISTING.
- NO TORCH CUTTING SHALL BE PERMITTED UNLESS APPROVED BY THE ENGINEER.
- DO NOT PLACE HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON DRAWINGS.

## WELDING NOTES:

- ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- CONTRACTOR SHALL RETAIN AN AWS CERTIFIED WELD INSPECTOR TO PERFORM VISUAL INSPECTIONS ON ALL FIELD WELDS. A REPORT SHALL BE SUBMITTED TO SEMAAN ENGINEERING FOR FINAL APPROVAL.
- ALL ELECTRODES SHALL BE LOW HYDROGEN E70XX ELECTRODES, PER AWS D1.1, UNLESS NOTED OTHERWISE.
- MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.
- PRIOR TO FIELD WELDING GALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING AND ANY OTHER CONTAMINANTS 2' BEYOND ALL FIELD WELD SURFACES. AFTER WELDING, REPAIR ALL GROUND AND WELDED SURFACES WITH (3) BRUSH COATS OF ZRC COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS REQUIREMENTS.
- ALL FULL PENETRATION WELDS ARE REQUIRED TO BE 100% NDE INSPECTED BY ULTRASONIC TESTING (UT) IN ACCORDANCE WITH AWS D1.1.
- ALL PARTIAL PENETRATION AND FILLET WELDS ARE REQUIRED TO BE 100% VISUALLY INSPECTED IN ACCORDANCE WITH AWS D1.1.

## BOLTING NOTES:

- STRUCTURAL CONNECTIONS TO BE ASSEMBLED AND INSPECTED IN ACCORDANCE WITH RCSC-2009 (SPECIFICATIONS FOR STRUCTURAL JOINTS USING ASTM A325 OR ASTM A490 BOLTS.)
- ALL CONNECTION BOLTS SHALL BE ASTM A325N (GALVANIZED). UNLESS NOTED OTHERWISE.
- SPICE/FLANGE BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION 8.2.1 OF THE AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING A325 OR A490 BOLTS". LOCATED IN THE AISC MANUAL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHRASED AS FOLLOWS:

FASTENERS SHALL BE INSTALLED IN PROPERLY ALIGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBSECTION 8.2.1 THROUGH 8.2.4.

8.2.1 TURN-OF-NUT PRETENSIONING  
BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1, UNTIL ALL THE BOLTS ARE SIMULTANEOUSLY SNUG TIGHT AND THE CONNECTION IS FULLY COMPACTED. FOLLOWING THIS INITIAL OPERATION ALL BOLTS IN THE CONNECTION SHALL BE TIGHTENED FURTHER BY THE APPLICABLE AMOUNT OF ROTATION SPECIFIED IN THE TABLE PROVIDED. DURING THE TIGHTENING OPERATION THERE SHALL BE NO ROTATION OF THE PART NOT TURNED BY THE WRENCH. TIGHTENING SHALL PROGRESS SYSTEMATICALLY.

| BOLT LENGTH<br>UNDER SIDE<br>OF HEAD TO<br>END OF BOLT) | BOTH FACES NORMAL TO BOLT AXIS |                                                                                      |                                                                                      |
|---------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                         | NUT<br>ROTATION                | INITIAL<br>MARKING<br>POSITION                                                       | FINAL<br>MARKING<br>POSITION                                                         |
| UP TO AND<br>INCLUDING 4 DIAMETERS                      | 1/3 TURN                       |  |  |
| OVER 4 DIAMETERS BUT<br>NOT EXCEEDING 8 DIA.            | 1/2 TURN                       |  |  |
| OVER 8 DIAMETERS BUT<br>NOT EXCEEDING 12 DIA.           | 2/3 TURN                       |  |  |

USE A WATERPROOF BLACK MARKER TO MARK THE BOLT  
AND NUT AS SHOWN ON THE TABLE.

## BOLTING NOTES (CONT.):

- ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1 OF THE SPECIFICATION.
- ALL BOLT HOLES SHALL BE ALIGNED TO PERMIT INSERTION OF THE BOLTS WITHOUT UNDUE DAMAGE TO THE THREADS. BOLTS SHALL BE PLACED IN ALL HOLES WITH WASHERS POSITIONED AS REQUIRED AND NUTS THREADED TO COMPLETE THE ASSEMBLY. COMPACTING THE JOINT TO THE SNUG-TIGHT CONDITION SHALL PROGRESS SYSTEMATICALLY FROM THE MOST RIGID PART OF THE JOINT. THE SNUG-TIGHTENED CONDITION IS THE TIGHTNESS THAT IS ATTAINED WITH A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRONWORKER USING AN ORDINARY SPUD WRENCH TO BRING THE CONNECTED PLIES INTO FIRM CONTACT.
- A NUT LOCKING DEVICE SHALL BE INSTALLED ON ALL PROPOSED AND/OR REPLACED BOLTS.
- ALL NEW BOLTS SHALL BE LONG ENOUGH TO FULLY ENGAGE THE FULL DEPTH OF THE NUT AND LOCKING DEVICE.
- ALL GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.

## CONCRETE CONSTRUCTION:

- ALL CONCRETE SHALL CONFORM TO THE SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS, ACI 301
- ALL CONCRETE SHALL BE MADE WITH STONE AGGREGATE & SHALL DEVELOP 4000 PSI MIN. COMPRESSIVE STRENGTH IN 28 DAYS. CONCRETE MIX DESIGN: 6 1/2 SACKS OF CEMENT MINIMUM PER CUBIC YARD, 3/4" MAXIMUM AGGREGATE. AIR ENTRAINMENT = 6% ± 1% AND SLUMP = 4" ± 1" (WITHOUT PLASTICIZER)
- ALL REINFORCING SHALL BE HIGH STRENGTH DEFORMED BARS, GRADE 60, ASTM A615, WITH 60,000 PSI MINIMUM YIELD POINT.
- REINFORCING PROTECTION: CONCRETE Poured AGAINST EARTH.....3"
- ALL BAR LENGTHS ARE NOT DRAWN TO SCALE. NO SPLICES OF REINFORCEMENT SHALL BE MADE EXCEPT AS DETAILED OR AS AUTHORIZED BY THE STRUCTURAL ENGINEER. LAP SPLICES, WHERE PERMITTED, SHALL BE A MINIMUM OF 40 BAR DIAMETERS UNLESS NOTED.
- DETAIL BARS IN ACCORDANCE WITH ACI DETAILING MANUAL & ACI BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE.
- PROVIDE ALL ACCESSORIES NECESSARY TO SUPPORT REINFORCING AT THE POSITIONS SHOWN ON THE PLANS.
- BACKFILL AND COMPACT SOIL TO A MINIMUM 95% OF STANDARD PROCTOR DENSITY PER ASTM D 698. THE COMPACTED SOIL SHALL PROVIDE A MINIMUM UNIT WEIGHT OF 120 POUNDS PER CUBIC FOOT FOR THE FILL MATERIAL.
- AS APPLICABLE, ORIENT NEW ANCHORS IN LINE WITH EXISTING ANCHORS.
- AS APPLICABLE, ANCHOR RODS TO PASS THROUGH CENTROID OF BLOCK.

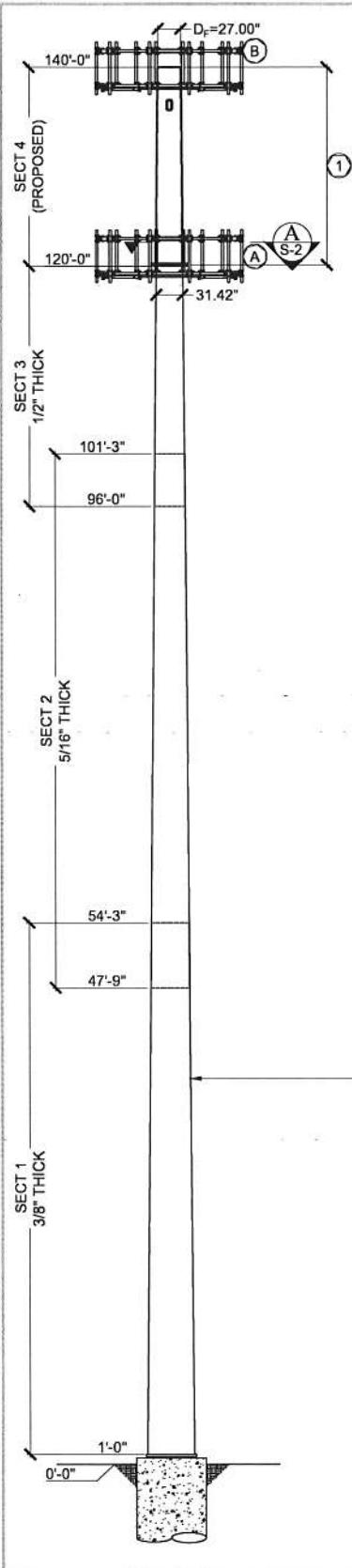
## EOXY-GROUTED FASTENER INSTALLATION:

- CONTRACTOR SHALL VERIFY THAT DRILLING CLEARANCE IS ADEQUATE PRIOR TO CONSTRUCTION. NOTIFY THE ENGINEER IF A CLEARANCE PROBLEM EXISTS.
- ALL HOLES SHALL BE WIRE-BRUSHED TO PROFILE THE CONCRETE SURFACE, ALL CORED HOLES WITH SMOOTH WALLS SHALL BE ROUGHENED.
- USE COMPRESSED AIR TO BLOW ANY REMAINING DEBRIS OUT OF THE NEWLY DRILLED HOLES.
- EPOXY GROUT THE NEW ANCHOR BOLTS OR REBAR IN PLACE PER THE MANUFACTURER'S INSTRUCTIONS.

## CONTINUOUS INSPECTION AND MAINTENANCE:

CONTINUOUS INSPECTION OF THE STRUCTURE AND THE ADDED REINFORCING CONSISTENT WITH THE CURRENT REQUIREMENTS OF THE LATEST TIA 222 STANDARD SHALL BE IMPLEMENTED BY THE OWNER, ANY FUTURE CORROSION OR OTHER DETERIORATION OF THE STRUCTURE OR ITS REINFORCING WILL REDUCE ITS CAPACITY TO WITHSTAND THE REQUIRED LOADS. ANY DEFECTS SHALL BE REPAIRED TO ENSURE THE STRUCTURAL INTEGRITY FOR THE LIFE OF THE STRUCTURE.

|                                                                                                                        |          |
|------------------------------------------------------------------------------------------------------------------------|----------|
| CLIENT                                                                                                                 |          |
| <b>KGI</b> WIRELESS                                                                                                    |          |
| SITE NAME/NUMBER<br><b>28493</b>                                                                                       |          |
| SITE ADDRESS<br>15 GREAT PASTURE ROAD<br>DANBURY, CT 06810<br>N41°22'58.8", W73°25'19.9"                               |          |
| DRAWINGS PREPARED BY:<br><b>SEMAAN</b><br>SEMAAN ENGINEERING SOLUTIONS HOLDINGS LLC                                    |          |
| 1047 NORTH 205TH STREET<br>OMAHA, NEBRASKA 68022<br>PHONE: (402) 289-1888<br>FAX: (402) 289-1861                       |          |
| STAMP                                                                                                                  |          |
| <br>No. 28130<br>EXPIRED 01/31/2021 |          |
| DRAWN BY:                                                                                                              | KRC      |
| APPROVED BY:                                                                                                           | TLT      |
| 1 ANALYSIS REVISION<br>REV DESCRIPTION DATE<br>DRAWING DESCRIPTION                                                     |          |
| GENERAL NOTES                                                                                                          |          |
| SHEET NUMBER                                                                                                           | REVISION |
| <b>N-1</b>                                                                                                             | <b>0</b> |


**SPECIAL INSPECTION:**

1. A QUALIFIED INDEPENDENT INSPECTION FIRM, EMPLOYED BY THE OWNER, SHALL PERFORM INSPECTION AND TESTING IN ACCORDANCE WITH THE IBC 2015, SECTION 1704 AS REQUIRED BY PROJECT SPECIFICATIONS FOR THE FOLLOWING CONSTRUCTION WORK TO BE INCLUDED IN THE POST-MODIFICATION INSPECTION (PMI) REPORT.

| <b>SPECIAL INSPECTION REQUIREMENTS<br/>(TO BE INCLUDED IN PMI REPORT)</b> |                                                                                    |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| REQUIRED<br>(Y,N,NA)                                                      | REPORT ITEM                                                                        |
| <b>PRE-CONSTRUCTION</b>                                                   |                                                                                    |
| N                                                                         | PRE-APPROVED INSPECTION AGENCY APPROVED BY LOCAL JURISDICTION                      |
| N                                                                         | PRE-APPROVED FABRICATOR APPROVED BY LOCAL JURISDICTION                             |
| Y                                                                         | GC SITE VISIT TO FIELD VERIFY MODIFICATION INSTALLATION(S)                         |
| Y                                                                         | EOR APPROVED SHOP DRAWINGS                                                         |
| Y                                                                         | FABRICATOR CERTIFIED WELD INSPECTION/QA PROGRAM                                    |
| Y                                                                         | MATERIAL CERTIFICATIONS                                                            |
| <b>CONSTRUCTION</b>                                                       |                                                                                    |
| Y                                                                         | CONSTRUCTION INSPECTIONS                                                           |
| NA                                                                        | CONTINUOUS FOUNDATION INSPECTIONS                                                  |
| NA                                                                        | CONCRETE COMPRESSIVE STRENGTH, AIR, AND SLUMP TESTS (SEE CONCRETE NOTES FOR TESTS) |
| Y                                                                         | CONTINUOUS VISUAL WELD INSPECTION (FIELD WELDS)                                    |
| Y                                                                         | WELD NON-DESTRUCTIVE EVALUATION (NDE) REQUIRED                                     |
| Y                                                                         | HIGH STRENGTH BOLT INSPECTION (VERIFY TURN-OF-NUT INSTALLATION)                    |
| NA                                                                        | EARTHWORK, LIFT, AND DENSITY                                                       |
| Y                                                                         | ON-SITE COLD GALVANIZING VERIFICATIONS                                             |
| NA                                                                        | GUY CABLE TENSION VERIFICATIONS                                                    |
| Y                                                                         | GC AS-BUILT DOCUMENTS                                                              |
| <b>POST-CONSTRUCTION</b>                                                  |                                                                                    |
| Y                                                                         | SPECIAL INSPECTION NOTED DEVIATIONS                                                |
| NA                                                                        | POST-INSTALLED ANCHOR ROD PULL-OUT TESTS                                           |
| Y                                                                         | PHOTOGRAPHS (CLOSE-UP ON STRUCTURES)                                               |

2. THE INSPECTION AGENCY SHALL SUBMIT INSPECTION AND TEST REPORTS TO THE BUILDING DEPARTMENT, THE ENGINEER OF RECORD, AND THE OWNER IN ACCORDANCE WITH IBC 2015, 1704. THE INSPECTION FIRM SHALL ALSO PROVIDE A REDLINE SET OF THE AS-BUILT DRAWINGS AND COMPLETE PHOTO DOCUMENTATION OF THE MODIFICATIONS COMPLETED AT THE SITE.

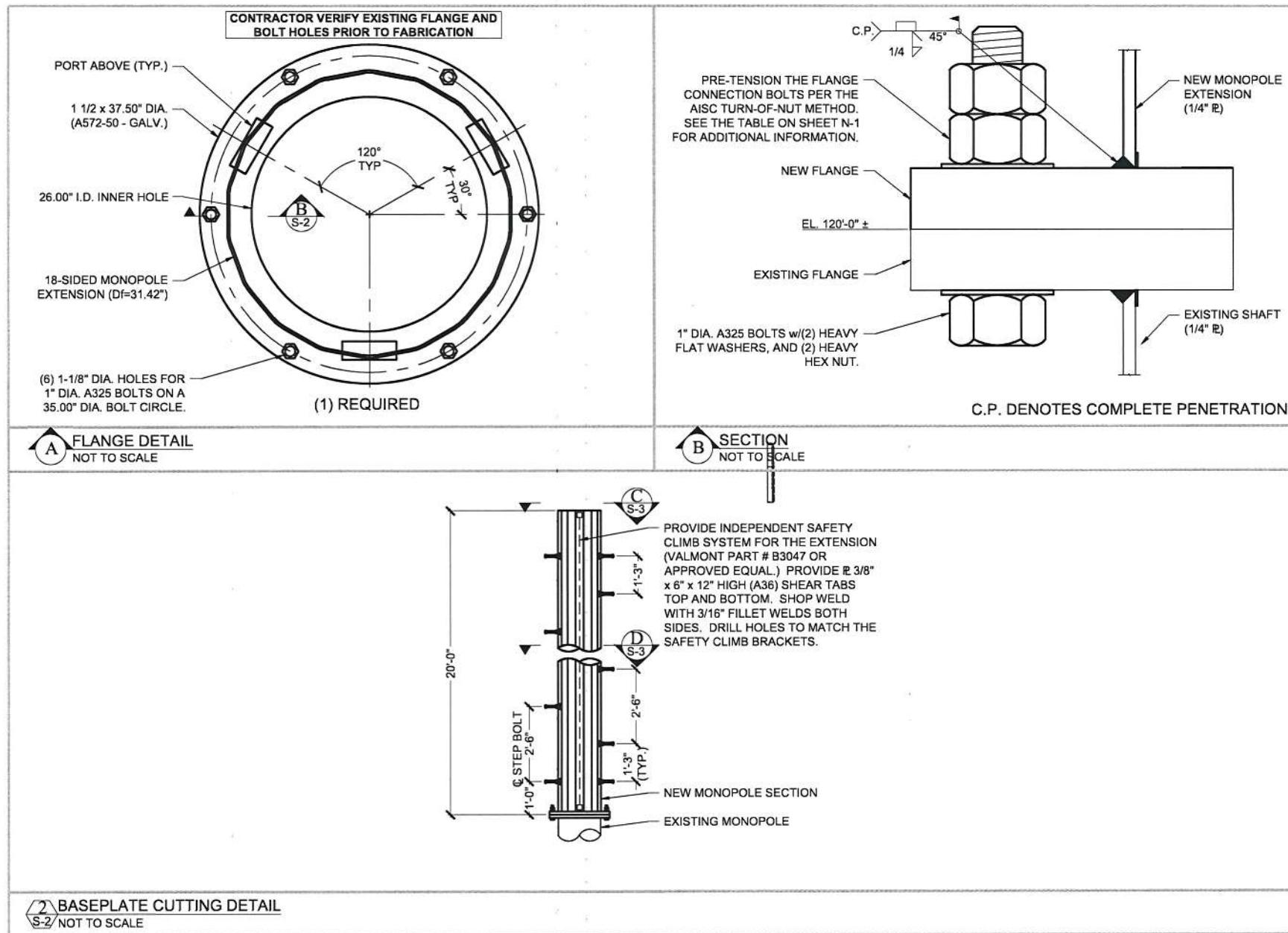
| CLIENT                                                                                                                                      |          |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <br><b>KGI</b> WIRELESS                                  |          |
| SITE NAME/NUMBER                                                                                                                            |          |
| <b>28493</b>                                                                                                                                |          |
| SITE ADDRESS                                                                                                                                |          |
| 15 GREAT PASTURE ROAD<br>DANBURY, CT 06810<br>N41°22'58.8", W73°25'19.92"                                                                   |          |
| DRAWINGS PREPARED BY:                                                                                                                       |          |
| <br><b>SEMAAN</b> ENGINEERING SOLUTIONS HOLDINGS, LLC    |          |
| 1047 NORTH 205TH STREET<br>OMAHA, NEBRASKA 68022<br>PHONE: (402) 289-1888<br>FAX: (402) 289-1861                                            |          |
| STAMP                                                                                                                                       |          |
| <br>STATE OF CONNECTICUT<br>No. 28130<br>EXP. 01/31/2021 |          |
| DRAWN BY: KRC                                                                                                                               |          |
| APPROVED BY: TLT                                                                                                                            |          |
| REV. DESCRIPTION DATE                                                                                                                       |          |
| DRAWING DESCRIPTION                                                                                                                         |          |
| SITE SPECIFIC NOTES                                                                                                                         |          |
| SHEET NUMBER                                                                                                                                | REVISION |
| <b>N-2</b>                                                                                                                                  | <b>0</b> |

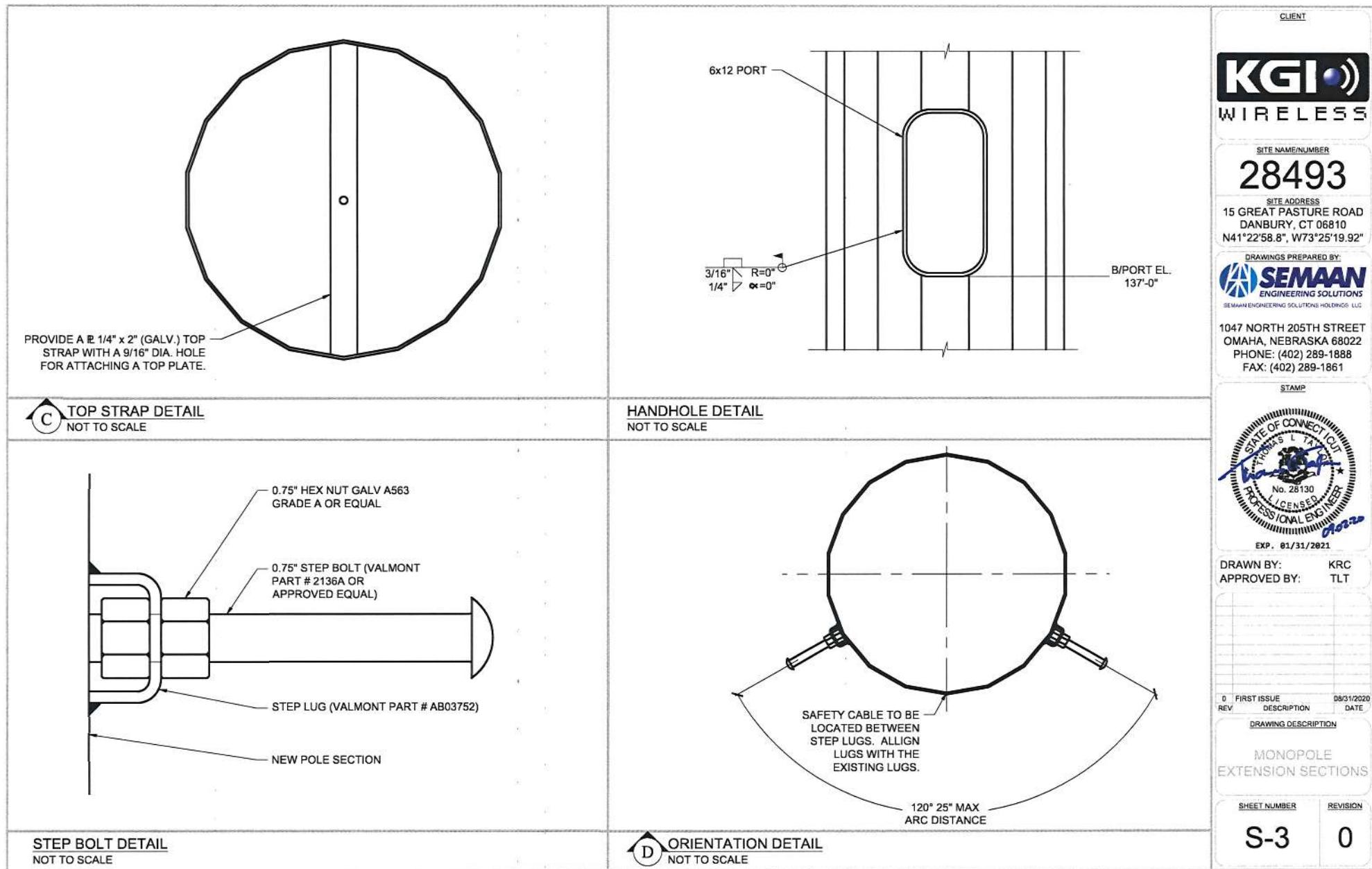


| MODIFICATION SCHEDULE |                               |                   |        |         |
|-----------------------|-------------------------------|-------------------|--------|---------|
| NO.                   | MODIFICATION DESCRIPTION      | ELEVATIONS (FT)   | SHEETS | DETAILS |
| ①                     | INSTALL NEW MONPOLE EXTENSION | 120'-0" - 140'-0" | S-2    | -       |

| CARRIER SCHEDULE |         |                |             |
|------------------|---------|----------------|-------------|
| NO.              | CARRIER | ELEVATION (FT) | DESCRIPTION |
| (A)              | VERIZON | 120            | EXISTING    |
| (B)              | AT&T    | 140            | PROPOSED    |

| BILL OF MATERIALS |                                                                                    |          |
|-------------------|------------------------------------------------------------------------------------|----------|
| NO.               | ITEM DESCRIPTION                                                                   | QUANTITY |
| 1                 | NEW 18 SIDED x 20'-0" GALVANIZED MONPOLE EXTENSION (F <sub>Y</sub> =65 ksi t=1/4") | 1        |
| 2                 | 37.5" DIA x 1.5" FLANGE PLATE (A572-50)                                            | 1        |
| 3                 | 6 x 12"PORTS (SABRE PART #C30-138-001 OR APPROVED EQUAL)                           | 3        |
| 4                 | NEW 1" DIA. A325 BOLTS                                                             | 6        |
| 5                 | NEW 1" DIA. A325 HEAVY HEX NUTS                                                    | 12       |
| 6                 | NEW 1" DIA. A325 FLAT WASHERS                                                      | 12       |


**SABRE CONTACT INFORMATION:**  
PHONE: (800) 369-6690  
(721) 258-6690


**TOWER ELEVATION**  
NOT TO SCALE

|                                                       |                        |   |
|-------------------------------------------------------|------------------------|---|
| S-1                                                   | MONPOLE ELEVATION VIEW | 0 |
| SHEET NUMBER                                          | REV. 0                 | 0 |
| DRAWING DESCRIPTION                                   |                        |   |
| 0 FIRST ISSUE<br>0 REV. DESCRIPTION<br>0 DRAWING DATE |                        |   |



|                             |                  |
|-----------------------------|------------------|
| 28493                       | SITE NAME/NUMBER |
| 15 GREAT PASTURE ROAD       | SITE ADDRESS     |
| DANBURY, CT 06810           |                  |
| N41°22'58.8", W73°25'19.92" |                  |
| DRAWINGS PREPARED BY:       |                  |
| <b>KCGI</b> WIRELESS        | CLIENT           |





October 10, 2019

**August 10, 2020 (Rev. 1)**



Centerline Communications  
750 West Center Street, Suite #301  
West Bridgewater, MA 02379

RE: Site Number: S2873 (NSB)  
FA Number: 12684101  
PACE Number: MRCTB036632  
PT Number: 2051A0LAWW  
Site Name: DANBURY GREAT PASTURE ROAD  
Site Address: 15 Great Pasture Road  
Danbury, CT 06810

To Whom It May Concern:

Hudson Design Group LLC (HDG) has been authorized by Centerline Communications to perform a mount analysis on the proposed AT&T antenna/RRH mounts to determine their capability of supporting the following additional loading:

- **(9) TPA65R-BU6DA-K Antennas (71.2"x20.7"x7.7" – Wt. = 69 lbs. /each)**
- **(3) B14 4478 RRH's (18.1"x13.4"x8.3" – Wt. = 60 lbs. /each)**
- **(3) 4415 B30 RRH's (16.5"x13.4"x5.9" – Wt. = 46 lbs. /each)**
- **(3) 4449 B5/B12 RRH's (17.9"x13.2"x9.5" – Wt. = 71 lbs. /each)**
- **(3) B2/B66A 8843 RRH's (14.9"x13.2"x10.9" – Wt. = 72 lbs. /each)**
- **(3) Squid Surge Arrestors (24.0"x9.7" Ø – Wt. = 33 lbs.)**

*\*Proposed equipment shown in bold*

Mount fabrication drawings prepared by Sabre Industries Towers and Poles, P/N C10855721C, dated October 18, 2017 were available for the proposed mounts.

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT&T Mount Technical Directive – R13.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the max basic wind speed for this site is equal to 120 mph with a max basic wind speed with ice of 50 mph and a max ice thickness of 1.0 in. An escalated ice thickness of 1.16 in was used for this analysis.
- HDG considers this site to be exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions.
- HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom of a hill or ridge.
- The mount has been analyzed with load combinations consisting of 250 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 4.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst case location on the mount.

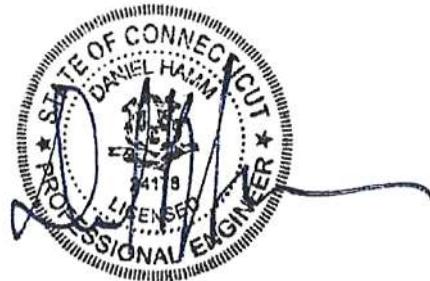
Based on our evaluation, we have determined that the New Sabre Industries C10855721C mounts **ARE CAPABLE** of supporting the proposed installation.

|                                        | Component | Controlling Load Case | Stress Ratio | Pass/Fail   |
|----------------------------------------|-----------|-----------------------|--------------|-------------|
| <b>Proposed (NSB)<br/>Mount Rating</b> | 69        | LC10                  | 47%          | <b>PASS</b> |

Reference Documents:

- Fabrication drawings prepared by Sabre Industries Towers and Poles, P/N C10855721C, dated October 18, 2017.

This determination was based on the following limitations and assumptions:


1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
4. The proposed mount will be adequately secured to the tower structure per the mount manufacturer's specifications.
5. All components pertaining to AT&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.

Respectfully Submitted,  
Hudson Design Group LLC



Michael Cabral  
Vice President



Daniel P. Hamm, PE  
Principal



**HUDSON**  
Design Group LLC

## **Wind & Ice Calculations**

Date: 8/10/2020  
 Project Name: DANBURY GREAT PASTURE ROAD  
 Project No.: S2873  
 Designed By: RL Checked By: MSC



**HUDSON**  
 Design Group LLC

**2.6.5.2 Velocity Pressure Coeff:**

$$K_z = 2.01 (z/z_g)^{2/\alpha}$$

|         |              |                        |
|---------|--------------|------------------------|
| $K_z =$ | <b>1.088</b> | $z = 140 \text{ (ft)}$ |
| $z_g =$ | 1200 (ft)    | $\alpha = 7.0$         |

$$K_{z\min} \leq K_z \leq 2.01$$

**Table 2-4**

| Exposure | $Z_g$   | $\alpha$ | $K_{z\min}$ | $K_c$ |
|----------|---------|----------|-------------|-------|
| B        | 1200 ft | 7.0      | 0.70        | 0.9   |
| C        | 900 ft  | 9.5      | 0.85        | 1.0   |
| D        | 700 ft  | 11.5     | 1.03        | 1.1   |

**2.6.6.2 Topographic Factor:**

**Table 2-5**

| Topo. Category | $K_t$ | $f$  |
|----------------|-------|------|
| 2              | 0.43  | 1.25 |
| 3              | 0.53  | 2.0  |
| 4              | 0.72  | 1.5  |

$$K_{zt} = [1 + (K_c K_t / K_h)]^2$$

$$K_h = e^{(f * z / H)}$$

|                                                       |                |                                                                           |
|-------------------------------------------------------|----------------|---------------------------------------------------------------------------|
| $K_{zt} =$                                            | <b>#DIV/0!</b> | $K_h =$ #DIV/0!                                                           |
| <i>(If Category 1 then <math>K_{zt} = 1.0</math>)</i> |                | $K_c = 0.9 \text{ (from Table 2-4)}$                                      |
| <b>Category= 1</b>                                    |                | $K_t =$ (from Table 2-5)                                                  |
|                                                       |                | $f =$ (from Table 2-5)                                                    |
|                                                       |                | $z = 140$                                                                 |
|                                                       |                | $z_s = 390 \text{ (Mean elevation of base of structure above sea level)}$ |
|                                                       |                | $H = \text{(Ht. of the crest above surrounding terrain)}$                 |
|                                                       |                | $K_{zt} = 1.00 \text{ (from 2.6.6.2.1)}$                                  |
|                                                       |                | $K_e = 0.99 \text{ (from 2.6.8)}$                                         |

**2.6.10 Design Ice Thickness**

|                     |                                            |
|---------------------|--------------------------------------------|
| Max Ice Thickness = | $t_i = 1.00 \text{ in}$                    |
| Importance Factor = | $I = 1.00 \text{ (from Table 2-3)}$        |
|                     | $K_{iz} = 1.16 \text{ (from Sec. 2.6.10)}$ |

$$t_{iz} = t_i * I * K_{iz} * (K_{zt})^{0.35}$$

|            |                |
|------------|----------------|
| $t_{iz} =$ | <b>1.16 in</b> |
|------------|----------------|

Date: 8/10/2020  
 Project Name: DANBURY GREAT PASTURE ROAD  
 Project No.: S2873  
 Designed By: RL Checked By: MSC



### **2.6.9 Gust Effect Factor**

#### **2.6.9.1 Self Supporting Lattice Structures**

$G_h = 1.0$  Latticed Structures > 600 ft

$G_h = 0.85$  Latticed Structures 450 ft or less

$$G_h = 0.85 + 0.15 [h/150 - 3.0] \quad h = \text{ht. of structure}$$

$$h = 140 \quad G_h = 0.85$$

$$2.6.9.2 Guyed Masts \quad G_h = 0.85$$

$$2.6.9.3 Pole Structures \quad G_h = 1.1$$

$$2.6.9 Appurtenances \quad G_h = 1.0$$

#### **2.6.9.4 Structures Supported on Other Structures**

(Cantilevered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

$$G_h = 1.35 \quad G_h = 1.00$$

### **2.6.11.2 Design Wind Force on Appurtenances**

$$F = q_z * G_h * (EPA)_A$$

$$q_z = 0.00256 * K_z * K_{zt} * K_s * K_e * K_d * V_{max}^2 \quad K_z = 1.088 \text{ (from 2.6.5.2)}$$

$$K_{zt} = 1.0 \text{ (from 2.6.6.2.1)}$$

$$K_s = 1.0 \text{ (from 2.6.7)}$$

$$q_z = 37.57 \quad K_e = 0.99 \text{ (from 2.6.8)}$$

$$q_z (ice) = 6.52 \quad K_d = 0.95 \text{ (from Table 2-2)}$$

$$q_z (30) = 2.35 \quad V_{max} = 120 \text{ mph (Ultimate Wind Speed)}$$

$$V_{max (ice)} = 50 \text{ mph}$$

$$V_{30} = 30 \text{ mph}$$

**Table 2-2**

| Structure Type                                                                        | Wind Direction Probability Factor, Kd |
|---------------------------------------------------------------------------------------|---------------------------------------|
| Latticed structures with triangular, square or rectangular cross sections             | 0.85                                  |
| Tubular pole structures, latticed structures with other cross sections, appurtenances | 0.95                                  |
| Tubular pole structures supporting antennas enclosed within a cylindrical shroud      | 1.00                                  |



Determine Ca:

Table 2-9

| Member Type                                                                                  |                               | Force Coefficients (Ca) for Appurtenances |                            |                           |
|----------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|----------------------------|---------------------------|
|                                                                                              |                               | Aspect Ratio ≤ 2.5                        | Aspect Ratio = 7           | Aspect Ratio ≥ 25         |
| Flat                                                                                         |                               | 1.2                                       | 1.4                        | 2.0                       |
| Square/Rectangular HSS                                                                       |                               | 1.2 - 2.8( $r_s$ ) ≥ 0.85                 | 1.4 - 4.0( $r_s$ ) ≥ 0.90  | 2.0 - 6.0( $r_s$ ) ≥ 1.25 |
| Round                                                                                        | C < 39<br>(Subcritical)       | 0.7                                       | 0.8                        | 1.2                       |
|                                                                                              | 39 ≤ C ≤ 78<br>(Transitional) | 4.14/(C <sup>0.485</sup> )                | 3.66/(C <sup>0.415</sup> ) | 46.8/(C <sup>1.0</sup> )  |
|                                                                                              | C > 78<br>(Supercritical)     | 0.5                                       | 0.6                        | 0.6                       |
| Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction.    |                               |                                           |                            |                           |
| (Aspect ratio is independent of the spacing between support points of a linear appurtenance, |                               |                                           |                            |                           |
| Note: Linear interpolation may be used for aspect ratios other than those shown.             |                               |                                           |                            |                           |

| Appurtenances           | Height | Width | Depth | Flat Area | Aspect Ratio | Ca   | Force (lbs) | Force (lbs)<br>(w/ Ice) | Force (lbs)<br>(30 mph) |
|-------------------------|--------|-------|-------|-----------|--------------|------|-------------|-------------------------|-------------------------|
| TPA65R-BU6DA-K Antenna  | 71.2   | 20.7  | 7.7   | 10.24     | 3.44         | 1.24 | 477         | 95                      | 30                      |
| B14 4478 RRH            | 18.1   | 13.4  | 8.3   | 1.68      | 1.35         | 1.20 | 76          | 17                      | 5                       |
| B14 4478 RRH (Side)     | 18.1   | 8.3   | 13.4  | 1.04      | 2.18         | 1.20 | 47          | 12                      | 3                       |
| 4415 B30 RRH            | 16.5   | 13.4  | 5.9   | 1.54      | 1.23         | 1.20 | 69          | 16                      | 4                       |
| 4415 B30 RRH (Side)     | 16.5   | 5.9   | 13.4  | 0.68      | 2.80         | 1.21 | 31          | 8                       | 2                       |
| 4449 B5/B12 RRH         | 17.9   | 13.2  | 9.5   | 1.64      | 1.36         | 1.20 | 74          | 17                      | 5                       |
| 4449 B5/B12 RRH (Side)  | 17.9   | 9.5   | 13.2  | 1.18      | 1.88         | 1.20 | 53          | 13                      | 3                       |
| B2/B66A 8843 RRH        | 14.9   | 13.2  | 10.9  | 1.37      | 1.13         | 1.20 | 62          | 15                      | 4                       |
| B2/B66A 8843 RRH (Side) | 14.9   | 10.9  | 13.2  | 1.13      | 1.37         | 1.20 | 51          | 12                      | 3                       |
| Surge Arrestor          | 24.0   | 9.7   | 9.7   | 1.62      | 2.47         | 0.70 | 43          | 10                      | 3                       |
| HSS 6x3                 | 3.0    | 12.0  | -     | 0.25      | 0.25         | 1.25 | 12          |                         |                         |
| HSS 3x3                 | 3.0    | 12.0  | -     | 0.25      | 0.25         | 1.25 | 12          |                         |                         |
| L 2x2 Angles            | 2.0    | 12.0  | -     | 0.17      | 0.17         | 2.00 | 13          |                         |                         |
| PL 2x1/8                | 0.1    | 12.0  | -     | 0.01      | 0.01         | 2.00 | 1           |                         |                         |
| 2-1/2" Pipe             | 2.9    | 12.0  | -     | 0.24      | 0.24         | 1.20 | 11          |                         |                         |
| 2" Pipe                 | 2.4    | 12.0  | -     | 0.20      | 0.20         | 1.20 | 9           |                         |                         |

Date: 8/10/2020  
 Project Name: DANBURY GREAT PASTURE ROAD  
 Project No.: S2873  
 Designed By: RL Checked By: MSC



| WIND LOADS                     |        |       |                          |                    |                  |              |                              |             |           |                      |                    |                     |  |
|--------------------------------|--------|-------|--------------------------|--------------------|------------------|--------------|------------------------------|-------------|-----------|----------------------|--------------------|---------------------|--|
| Angle = 30 (deg)               |        |       | Ice Thickness = 1.16 in. |                    |                  |              | Equivalent Angle = 210 (deg) |             |           |                      |                    |                     |  |
| <b>WIND LOADS WITH NO ICE:</b> |        |       |                          |                    |                  |              |                              |             |           |                      |                    |                     |  |
| Appurtenances                  | Height | Width | Depth                    | Flat Area (normal) | Flat Area (side) | Aspect Ratio | Aspect Ratio                 | Ca (normal) | Ca (side) | Force (lbs) (normal) | Force (lbs) (side) | Force (lbs) (angle) |  |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44         | 9.25                         | 1.24        | 1.47      | 477                  | 211                | 411                 |  |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35         | 2.18                         | 1.20        | 1.20      | 76                   | 47                 | 69                  |  |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18         | 1.35                         | 1.20        | 1.20      | 47                   | 76                 | 54                  |  |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23         | 2.80                         | 1.20        | 1.21      | 69                   | 31                 | 60                  |  |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80         | 1.23                         | 1.21        | 1.20      | 31                   | 69                 | 40                  |  |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36         | 1.88                         | 1.20        | 1.20      | 74                   | 53                 | 69                  |  |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88         | 1.36                         | 1.20        | 1.20      | 53                   | 74                 | 58                  |  |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13         | 1.37                         | 1.20        | 1.20      | 62                   | 51                 | 59                  |  |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37         | 1.13                         | 1.20        | 1.20      | 51                   | 62                 | 54                  |  |
| <b>WIND LOADS WITH ICE:</b>    |        |       |                          |                    |                  |              |                              |             |           |                      |                    |                     |  |
| TPA65R-BU6DA-K Antenna         | 73.5   | 23.0  | 10.0                     | 11.75              | 5.11             | 3.19         | 7.34                         | 1.23        | 1.41      | 94                   | 47                 | 82                  |  |
| B14 4478 RRH                   | 20.4   | 15.7  | 10.6                     | 2.23               | 1.50             | 1.30         | 1.92                         | 1.20        | 1.20      | 17                   | 12                 | 16                  |  |
| B14 4478 RRH (Side)            | 20.4   | 10.6  | 15.7                     | 1.50               | 2.23             | 1.92         | 1.30                         | 1.20        | 1.20      | 12                   | 17                 | 13                  |  |
| 4415 B30 RRH                   | 18.8   | 15.7  | 8.2                      | 2.05               | 1.07             | 1.20         | 2.29                         | 1.20        | 1.20      | 16                   | 8                  | 14                  |  |
| 4415 B30 RRH (Side)            | 18.8   | 8.2   | 15.7                     | 1.07               | 2.05             | 2.29         | 1.20                         | 1.20        | 1.20      | 8                    | 16                 | 10                  |  |
| 4449 B5/B12 RRH                | 20.2   | 15.5  | 11.8                     | 2.18               | 1.66             | 1.30         | 1.71                         | 1.20        | 1.20      | 17                   | 13                 | 16                  |  |
| 4449 B5/B12 RRH (Side)         | 20.2   | 11.8  | 15.5                     | 1.66               | 2.18             | 1.71         | 1.30                         | 1.20        | 1.20      | 13                   | 17                 | 14                  |  |
| B2/B66A 8843 RRH               | 17.2   | 15.5  | 13.2                     | 1.85               | 1.58             | 1.11         | 1.30                         | 1.20        | 1.20      | 15                   | 12                 | 14                  |  |
| B2/B66A 8843 RRH (Side)        | 17.2   | 13.2  | 15.5                     | 1.58               | 1.85             | 1.30         | 1.11                         | 1.20        | 1.20      | 12                   | 15                 | 13                  |  |
| <b>WIND LOADS AT 30 MPH:</b>   |        |       |                          |                    |                  |              |                              |             |           |                      |                    |                     |  |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44         | 9.25                         | 1.24        | 1.47      | 30                   | 13                 | 26                  |  |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35         | 2.18                         | 1.20        | 1.20      | 5                    | 3                  | 4                   |  |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18         | 1.35                         | 1.20        | 1.20      | 3                    | 5                  | 3                   |  |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23         | 2.80                         | 1.20        | 1.21      | 4                    | 2                  | 4                   |  |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80         | 1.23                         | 1.21        | 1.20      | 2                    | 4                  | 3                   |  |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36         | 1.88                         | 1.20        | 1.20      | 5                    | 3                  | 4                   |  |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88         | 1.36                         | 1.20        | 1.20      | 3                    | 5                  | 4                   |  |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13         | 1.37                         | 1.20        | 1.20      | 4                    | 3                  | 4                   |  |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37         | 1.13                         | 1.20        | 1.20      | 3                    | 4                  | 3                   |  |

Date: 8/10/2020  
 Project Name: DANBURY GREAT PASTURE ROAD  
 Project No.: S2873  
 Designed By: RL Checked By: MSC



| WIND LOADS                     |        |       |                          |                    |                  |                |                              |             |           |             |             |             |  |
|--------------------------------|--------|-------|--------------------------|--------------------|------------------|----------------|------------------------------|-------------|-----------|-------------|-------------|-------------|--|
| Angle = 60 (deg)               |        |       | Ice Thickness = 1.16 in. |                    |                  |                | Equivalent Angle = 240 (deg) |             |           |             |             |             |  |
| <b>WIND LOADS WITH NO ICE:</b> |        |       |                          |                    |                  |                |                              |             |           |             |             |             |  |
| Appurtenances                  | Height | Width | Depth                    | Flat Area (normal) | Flat Area (side) | Ratio (normal) | Ratio (side)                 | Ca (normal) | Ca (side) | Force (lbs) | Force (lbs) | Force (lbs) |  |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25                         | 1.24        | 1.47      | 477         | 211         | 278         |  |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18                         | 1.20        | 1.20      | 76          | 47          | 54          |  |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35                         | 1.20        | 1.20      | 47          | 76          | 69          |  |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80                         | 1.20        | 1.21      | 69          | 31          | 40          |  |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23                         | 1.21        | 1.20      | 31          | 69          | 60          |  |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88                         | 1.20        | 1.20      | 74          | 53          | 58          |  |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36                         | 1.20        | 1.20      | 53          | 74          | 69          |  |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37                         | 1.20        | 1.20      | 62          | 51          | 54          |  |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13                         | 1.20        | 1.20      | 51          | 62          | 59          |  |
| <b>WIND LOADS WITH ICE:</b>    |        |       |                          |                    |                  |                |                              |             |           |             |             |             |  |
| TPA65R-BU6DA-K Antenna         | 73.5   | 23.0  | 10.0                     | 11.75              | 5.11             | 3.19           | 7.34                         | 1.23        | 1.41      | 94          | 47          | 59          |  |
| B14 4478 RRH                   | 20.4   | 15.7  | 10.6                     | 2.23               | 1.50             | 1.30           | 1.92                         | 1.20        | 1.20      | 17          | 12          | 13          |  |
| B14 4478 RRH (Side)            | 20.4   | 10.6  | 15.7                     | 1.50               | 2.23             | 1.92           | 1.30                         | 1.20        | 1.20      | 12          | 17          | 16          |  |
| 4415 B30 RRH                   | 18.8   | 15.7  | 8.2                      | 2.05               | 1.07             | 1.20           | 2.29                         | 1.20        | 1.20      | 16          | 8           | 10          |  |
| 4415 B30 RRH (Side)            | 18.8   | 8.2   | 15.7                     | 1.07               | 2.05             | 2.29           | 1.20                         | 1.20        | 1.20      | 8           | 16          | 14          |  |
| 4449 B5/B12 RRH                | 20.2   | 15.5  | 11.8                     | 2.18               | 1.66             | 1.30           | 1.71                         | 1.20        | 1.20      | 17          | 13          | 14          |  |
| 4449 B5/B12 RRH (Side)         | 20.2   | 11.8  | 15.5                     | 1.66               | 2.18             | 1.71           | 1.30                         | 1.20        | 1.20      | 13          | 17          | 16          |  |
| B2/B66A 8843 RRH               | 17.2   | 15.5  | 13.2                     | 1.85               | 1.58             | 1.11           | 1.30                         | 1.20        | 1.20      | 15          | 12          | 13          |  |
| B2/B66A 8843 RRH (Side)        | 17.2   | 13.2  | 15.5                     | 1.58               | 1.85             | 1.30           | 1.11                         | 1.20        | 1.20      | 12          | 15          | 14          |  |
| <b>WIND LOADS AT 30 MPH:</b>   |        |       |                          |                    |                  |                |                              |             |           |             |             |             |  |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25                         | 1.24        | 1.47      | 30          | 13          | 17          |  |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18                         | 1.20        | 1.20      | 5           | 3           | 3           |  |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35                         | 1.20        | 1.20      | 3           | 5           | 4           |  |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80                         | 1.20        | 1.21      | 4           | 2           | 3           |  |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23                         | 1.21        | 1.20      | 2           | 4           | 4           |  |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88                         | 1.20        | 1.20      | 5           | 3           | 4           |  |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36                         | 1.20        | 1.20      | 3           | 5           | 4           |  |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37                         | 1.20        | 1.20      | 4           | 3           | 3           |  |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13                         | 1.20        | 1.20      | 3           | 4           | 4           |  |

Date: 8/10/2020  
 Project Name: DANBURY GREAT PASTURE ROAD  
 Project No.: S2873  
 Designed By: RL Checked By: MSC



| WIND LOADS                     |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
|--------------------------------|--------|-------|--------------------------|--------------------|------------------|----------------|------------------------------|-------------|-----------|-------------|-------------|-------------|
| Angle = 90 (deg)               |        |       | Ice Thickness = 1.16 in. |                    |                  |                | Equivalent Angle = 270 (deg) |             |           |             |             |             |
| <b>WIND LOADS WITH NO ICE:</b> |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
| Appurtenances                  | Height | Width | Depth                    | Flat Area (normal) | Flat Area (side) | Ratio (normal) | Ratio (side)                 | Ca (normal) | Ca (side) | Force (lbs) | Force (lbs) | Force (lbs) |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25                         | 1.24        | 1.47      | 477         | 211         | 211         |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18                         | 1.20        | 1.20      | 76          | 47          | 47          |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35                         | 1.20        | 1.20      | 47          | 76          | 76          |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80                         | 1.20        | 1.21      | 69          | 31          | 31          |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23                         | 1.21        | 1.20      | 31          | 69          | 69          |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88                         | 1.20        | 1.20      | 74          | 53          | 53          |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36                         | 1.20        | 1.20      | 53          | 74          | 74          |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37                         | 1.20        | 1.20      | 62          | 51          | 51          |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13                         | 1.20        | 1.20      | 51          | 62          | 62          |
| <b>WIND LOADS WITH ICE:</b>    |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
| TPA65R-BU6DA-K Antenna         | 73.5   | 23.0  | 10.0                     | 11.75              | 5.11             | 3.19           | 7.34                         | 1.23        | 1.41      | 94          | 47          | 47          |
| B14 4478 RRH                   | 20.4   | 15.7  | 10.6                     | 2.23               | 1.50             | 1.30           | 1.92                         | 1.20        | 1.20      | 17          | 12          | 12          |
| B14 4478 RRH (Side)            | 20.4   | 10.6  | 15.7                     | 1.50               | 2.23             | 1.92           | 1.30                         | 1.20        | 1.20      | 12          | 17          | 17          |
| 4415 B30 RRH                   | 18.8   | 15.7  | 8.2                      | 2.05               | 1.07             | 1.20           | 2.29                         | 1.20        | 1.20      | 16          | 8           | 8           |
| 4415 B30 RRH (Side)            | 18.8   | 8.2   | 15.7                     | 1.07               | 2.05             | 2.29           | 1.20                         | 1.20        | 1.20      | 8           | 16          | 16          |
| 4449 B5/B12 RRH                | 20.2   | 15.5  | 11.8                     | 2.18               | 1.66             | 1.30           | 1.71                         | 1.20        | 1.20      | 17          | 13          | 13          |
| 4449 B5/B12 RRH (Side)         | 20.2   | 11.8  | 15.5                     | 1.66               | 2.18             | 1.71           | 1.30                         | 1.20        | 1.20      | 13          | 17          | 17          |
| B2/B66A 8843 RRH               | 17.2   | 15.5  | 13.2                     | 1.85               | 1.58             | 1.11           | 1.30                         | 1.20        | 1.20      | 15          | 12          | 12          |
| B2/B66A 8843 RRH (Side)        | 17.2   | 13.2  | 15.5                     | 1.58               | 1.85             | 1.30           | 1.11                         | 1.20        | 1.20      | 12          | 15          | 15          |
| <b>WIND LOADS AT 30 MPH:</b>   |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25                         | 1.24        | 1.47      | 30          | 13          | 13          |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18                         | 1.20        | 1.20      | 5           | 3           | 3           |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35                         | 1.20        | 1.20      | 3           | 5           | 5           |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80                         | 1.20        | 1.21      | 4           | 2           | 2           |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23                         | 1.21        | 1.20      | 2           | 4           | 4           |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88                         | 1.20        | 1.20      | 5           | 3           | 3           |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36                         | 1.20        | 1.20      | 3           | 5           | 5           |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37                         | 1.20        | 1.20      | 4           | 3           | 3           |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13                         | 1.20        | 1.20      | 3           | 4           | 4           |

Date: 8/10/2020  
 Project Name: DANBURY GREAT PASTURE ROAD  
 Project No.: S2873  
 Designed By: RL Checked By: MSC



| WIND LOADS                     |        |       |                          |                    |                  |                |              |                              |           |             |             |             |  |
|--------------------------------|--------|-------|--------------------------|--------------------|------------------|----------------|--------------|------------------------------|-----------|-------------|-------------|-------------|--|
| Angle = 120 (deg)              |        |       | Ice Thickness = 1.16 in. |                    |                  |                |              | Equivalent Angle = 300 (deg) |           |             |             |             |  |
| <b>WIND LOADS WITH NO ICE:</b> |        |       |                          |                    |                  |                |              |                              |           |             |             |             |  |
| Appurtenances                  | Height | Width | Depth                    | Flat Area (normal) | Flat Area (side) | Ratio (normal) | Ratio (side) | Ca (normal)                  | Ca (side) | Force (lbs) | Force (lbs) | Force (lbs) |  |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25         | 1.24                         | 1.47      | 477         | 211         | 278         |  |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18         | 1.20                         | 1.20      | 76          | 47          | 54          |  |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35         | 1.20                         | 1.20      | 47          | 76          | 69          |  |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80         | 1.20                         | 1.21      | 69          | 31          | 40          |  |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23         | 1.21                         | 1.20      | 31          | 69          | 60          |  |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88         | 1.20                         | 1.20      | 74          | 53          | 58          |  |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36         | 1.20                         | 1.20      | 53          | 74          | 69          |  |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37         | 1.20                         | 1.20      | 62          | 51          | 54          |  |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13         | 1.20                         | 1.20      | 51          | 62          | 59          |  |
| <b>WIND LOADS WITH ICE:</b>    |        |       |                          |                    |                  |                |              |                              |           |             |             |             |  |
| TPA65R-BU6DA-K Antenna         | 73.5   | 23.0  | 10.0                     | 11.75              | 5.11             | 3.19           | 7.34         | 1.23                         | 1.41      | 94          | 47          | 59          |  |
| B14 4478 RRH                   | 20.4   | 15.7  | 10.6                     | 2.23               | 1.50             | 1.30           | 1.92         | 1.20                         | 1.20      | 17          | 12          | 13          |  |
| B14 4478 RRH (Side)            | 20.4   | 10.6  | 15.7                     | 1.50               | 2.23             | 1.92           | 1.30         | 1.20                         | 1.20      | 12          | 17          | 16          |  |
| 4415 B30 RRH                   | 18.8   | 15.7  | 8.2                      | 2.05               | 1.07             | 1.20           | 2.29         | 1.20                         | 1.20      | 16          | 8           | 10          |  |
| 4415 B30 RRH (Side)            | 18.8   | 8.2   | 15.7                     | 1.07               | 2.05             | 2.29           | 1.20         | 1.20                         | 1.20      | 8           | 16          | 14          |  |
| 4449 B5/B12 RRH                | 20.2   | 15.5  | 11.8                     | 2.18               | 1.66             | 1.30           | 1.71         | 1.20                         | 1.20      | 17          | 13          | 14          |  |
| 4449 B5/B12 RRH (Side)         | 20.2   | 11.8  | 15.5                     | 1.66               | 2.18             | 1.71           | 1.30         | 1.20                         | 1.20      | 13          | 17          | 16          |  |
| B2/B66A 8843 RRH               | 17.2   | 15.5  | 13.2                     | 1.85               | 1.58             | 1.11           | 1.30         | 1.20                         | 1.20      | 15          | 12          | 13          |  |
| B2/B66A 8843 RRH (Side)        | 17.2   | 13.2  | 15.5                     | 1.58               | 1.85             | 1.30           | 1.11         | 1.20                         | 1.20      | 12          | 15          | 14          |  |
| <b>WIND LOADS AT 30 MPH:</b>   |        |       |                          |                    |                  |                |              |                              |           |             |             |             |  |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25         | 1.24                         | 1.47      | 30          | 13          | 17          |  |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18         | 1.20                         | 1.20      | 5           | 3           | 3           |  |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35         | 1.20                         | 1.20      | 3           | 5           | 4           |  |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80         | 1.20                         | 1.21      | 4           | 2           | 3           |  |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23         | 1.21                         | 1.20      | 2           | 4           | 4           |  |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88         | 1.20                         | 1.20      | 5           | 3           | 4           |  |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36         | 1.20                         | 1.20      | 3           | 5           | 4           |  |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37         | 1.20                         | 1.20      | 4           | 3           | 3           |  |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13         | 1.20                         | 1.20      | 3           | 4           | 4           |  |

Date: 8/10/2020  
 Project Name: DANBURY GREAT PASTURE ROAD  
 Project No.: S2873  
 Designed By: RL Checked By: MSC



| WIND LOADS                     |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
|--------------------------------|--------|-------|--------------------------|--------------------|------------------|----------------|------------------------------|-------------|-----------|-------------|-------------|-------------|
| Angle = 150 (deg)              |        |       | Ice Thickness = 1.16 in. |                    |                  |                | Equivalent Angle = 330 (deg) |             |           |             |             |             |
| <b>WIND LOADS WITH NO ICE:</b> |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
| Appurtenances                  | Height | Width | Depth                    | Flat Area (normal) | Flat Area (side) | Ratio (normal) | Ratio (side)                 | Ca (normal) | Ca (side) | Force (lbs) | Force (lbs) | Force (lbs) |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25                         | 1.24        | 1.47      | 477         | 211         | 411         |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18                         | 1.20        | 1.20      | 76          | 47          | 69          |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35                         | 1.20        | 1.20      | 47          | 76          | 54          |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80                         | 1.20        | 1.21      | 69          | 31          | 60          |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23                         | 1.21        | 1.20      | 31          | 69          | 40          |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88                         | 1.20        | 1.20      | 74          | 53          | 69          |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36                         | 1.20        | 1.20      | 53          | 74          | 58          |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37                         | 1.20        | 1.20      | 62          | 51          | 59          |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13                         | 1.20        | 1.20      | 51          | 62          | 54          |
| <b>WIND LOADS WITH ICE:</b>    |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
| TPA65R-BU6DA-K Antenna         | 73.5   | 23.0  | 10.0                     | 11.75              | 5.11             | 3.19           | 7.34                         | 1.23        | 1.41      | 94          | 47          | 82          |
| B14 4478 RRH                   | 20.4   | 15.7  | 10.6                     | 2.23               | 1.50             | 1.30           | 1.92                         | 1.20        | 1.20      | 17          | 12          | 16          |
| B14 4478 RRH (Side)            | 20.4   | 10.6  | 15.7                     | 1.50               | 2.23             | 1.92           | 1.30                         | 1.20        | 1.20      | 12          | 17          | 13          |
| 4415 B30 RRH                   | 18.8   | 15.7  | 8.2                      | 2.05               | 1.07             | 1.20           | 2.29                         | 1.20        | 1.20      | 16          | 8           | 14          |
| 4415 B30 RRH (Side)            | 18.8   | 8.2   | 15.7                     | 1.07               | 2.05             | 2.29           | 1.20                         | 1.20        | 1.20      | 8           | 16          | 10          |
| 4449 B5/B12 RRH                | 20.2   | 15.5  | 11.8                     | 2.18               | 1.66             | 1.30           | 1.71                         | 1.20        | 1.20      | 17          | 13          | 16          |
| 4449 B5/B12 RRH (Side)         | 20.2   | 11.8  | 15.5                     | 1.66               | 2.18             | 1.71           | 1.30                         | 1.20        | 1.20      | 13          | 17          | 14          |
| B2/B66A 8843 RRH               | 17.2   | 15.5  | 13.2                     | 1.85               | 1.58             | 1.11           | 1.30                         | 1.20        | 1.20      | 15          | 12          | 14          |
| B2/B66A 8843 RRH (Side)        | 17.2   | 13.2  | 15.5                     | 1.58               | 1.85             | 1.30           | 1.11                         | 1.20        | 1.20      | 12          | 15          | 13          |
| <b>WIND LOADS AT 30 MPH:</b>   |        |       |                          |                    |                  |                |                              |             |           |             |             |             |
| TPA65R-BU6DA-K Antenna         | 71.2   | 20.7  | 7.7                      | 10.24              | 3.81             | 3.44           | 9.25                         | 1.24        | 1.47      | 30          | 13          | 26          |
| B14 4478 RRH                   | 18.1   | 13.4  | 8.3                      | 1.68               | 1.04             | 1.35           | 2.18                         | 1.20        | 1.20      | 5           | 3           | 4           |
| B14 4478 RRH (Side)            | 18.1   | 8.3   | 13.4                     | 1.04               | 1.68             | 2.18           | 1.35                         | 1.20        | 1.20      | 3           | 5           | 3           |
| 4415 B30 RRH                   | 16.5   | 13.4  | 5.9                      | 1.54               | 0.68             | 1.23           | 2.80                         | 1.20        | 1.21      | 4           | 2           | 4           |
| 4415 B30 RRH (Side)            | 16.5   | 5.9   | 13.4                     | 0.68               | 1.54             | 2.80           | 1.23                         | 1.21        | 1.20      | 2           | 4           | 3           |
| 4449 B5/B12 RRH                | 17.9   | 13.2  | 9.5                      | 1.64               | 1.18             | 1.36           | 1.88                         | 1.20        | 1.20      | 5           | 3           | 4           |
| 4449 B5/B12 RRH (Side)         | 17.9   | 9.5   | 13.2                     | 1.18               | 1.64             | 1.88           | 1.36                         | 1.20        | 1.20      | 3           | 5           | 4           |
| B2/B66A 8843 RRH               | 14.9   | 13.2  | 10.9                     | 1.37               | 1.13             | 1.13           | 1.37                         | 1.20        | 1.20      | 4           | 3           | 4           |
| B2/B66A 8843 RRH (Side)        | 14.9   | 10.9  | 13.2                     | 1.13               | 1.37             | 1.37           | 1.13                         | 1.20        | 1.20      | 3           | 4           | 3           |

**Date:** 8/10/2020  
**Project Name:** DANBURY GREAT PASTURE ROAD  
**Project No.:** S2873  
**Designed By:** RL **Checked By:** MSC



**HUDSON**  
 Design Group LLC

### ICE WEIGHT CALCULATIONS

**Thickness of ice:** 1.16 in.  
**Density of ice:** 56 pcf

#### TPA65R-BU6DA-K Antenna

Weight of ice based on total radial SF area:  
 Height (in): 71.2  
 Width (in): 20.7  
 Depth (in): 7.7  
 Total weight of ice on object: 195 lbs  
 Weight of object: 69.0 lbs  
 Combined weight of ice and object: 264 lbs

#### B14 4478 RRH

Weight of ice based on total radial SF area:  
 Height (in): 18.1  
 Width (in): 13.4  
 Depth (in): 8.3  
 Total weight of ice on object: 36 lbs  
 Weight of object: 60.0 lbs  
 Combined weight of ice and object: 96 lbs

#### 4415 B30 RRH

Weight of ice based on total radial SF area:  
 Height (in): 16.5  
 Width (in): 13.4  
 Depth (in): 5.9  
 Total weight of ice on object: 31 lbs  
 Weight of object: 46.0 lbs  
 Combined weight of ice and object: 77 lbs

#### 4449 B5/B12 RRH

Weight of ice based on total radial SF area:  
 Height (in): 17.9  
 Width (in): 13.2  
 Depth (in): 9.5  
 Total weight of ice on object: 37 lbs  
 Weight of object: 71.0 lbs  
 Combined weight of ice and object: 108 lbs

#### B2/B66A 8843 RRH

Weight of ice based on total radial SF area:  
 Height (in): 14.9  
 Width (in): 13.2  
 Depth (in): 10.9  
 Total weight of ice on object: 32 lbs  
 Weight of object: 72.0 lbs  
 Combined weight of ice and object: 104 lbs

#### Squid Surge Arrestor

Weight of ice based on total radial SF area:  
 Depth (in): 24.0  
 Diameter(in): 9.7  
 Total weight of ice on object: 31 lbs  
 Weight of object: 33 lbs  
 Combined weight of ice and object: 64 lbs

#### HSS 6x3

Weight of ice based on total radial SF area:  
 Height (in): 6  
 Width (in): 3  
 Per foot weight of ice on object: 11 plf

#### HSS 3x3

Weight of ice based on total radial SF area:  
 Height (in): 3  
 Width (in): 3  
 Per foot weight of ice on object: 8 plf

#### L 2x2 Angles

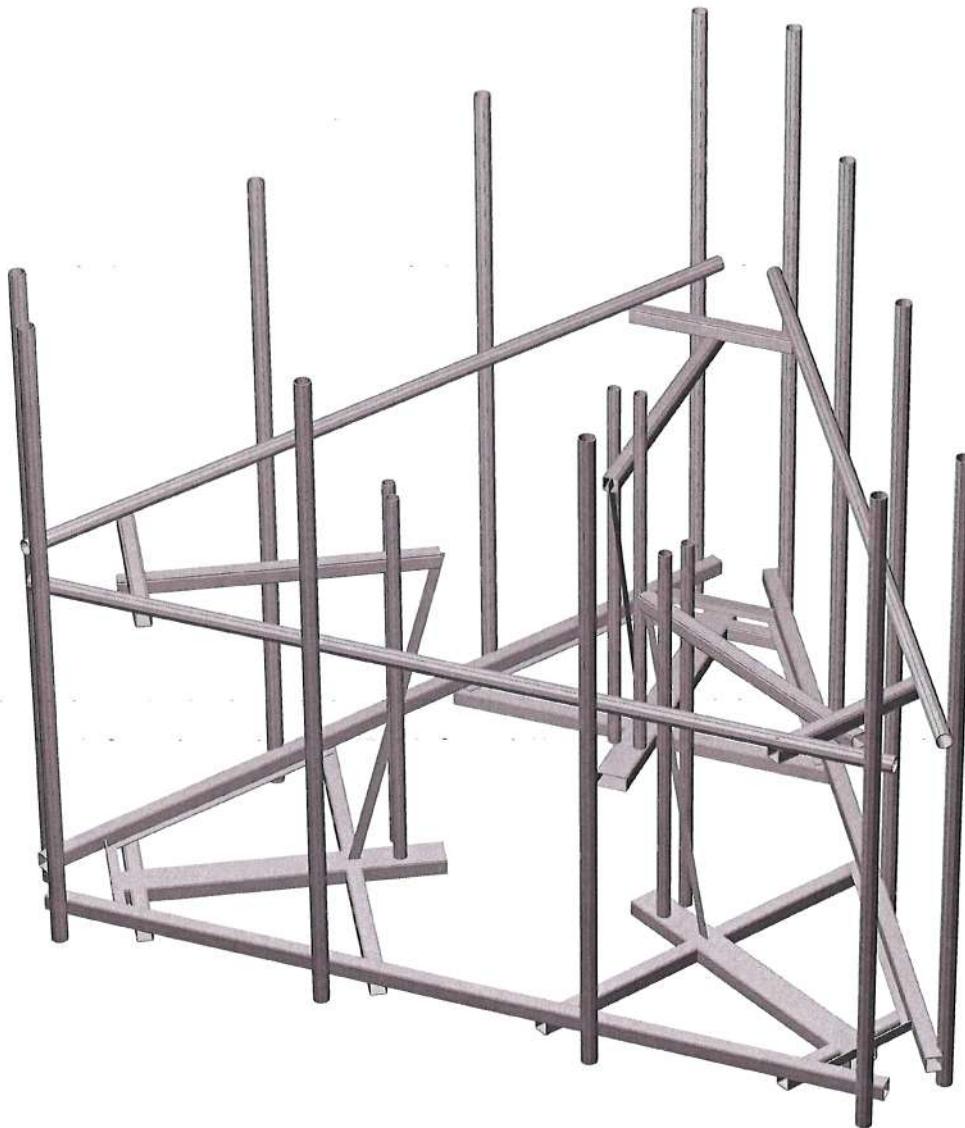
Weight of ice based on total radial SF area:  
 Height (in): 2  
 Width (in): 2  
 Per foot weight of ice on object: 6 plf

#### PL 2x1/8

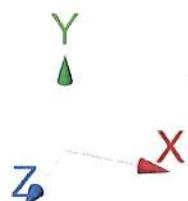
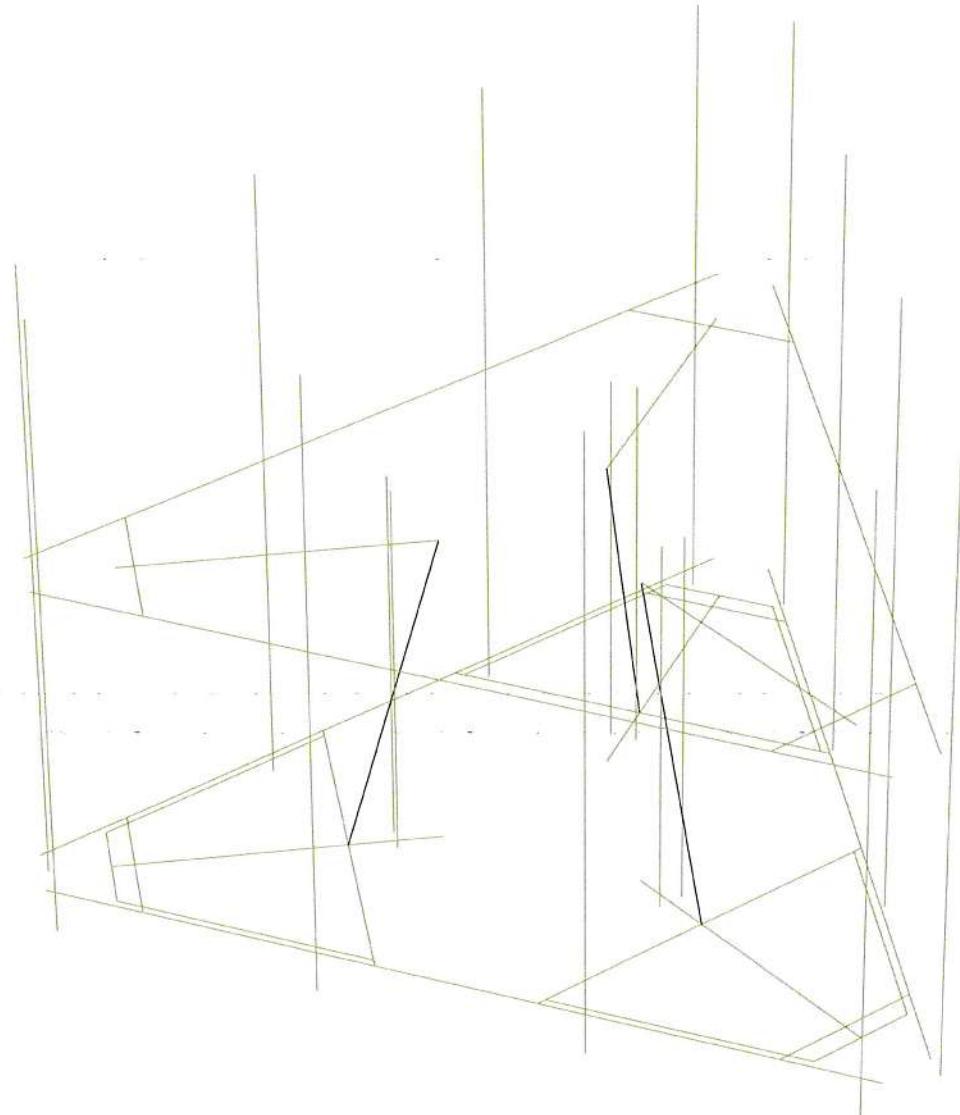
Weight of ice based on total radial SF area:  
 Height (in): 2  
 Width (in): 0.13  
 Per foot weight of ice on object: 4 plf

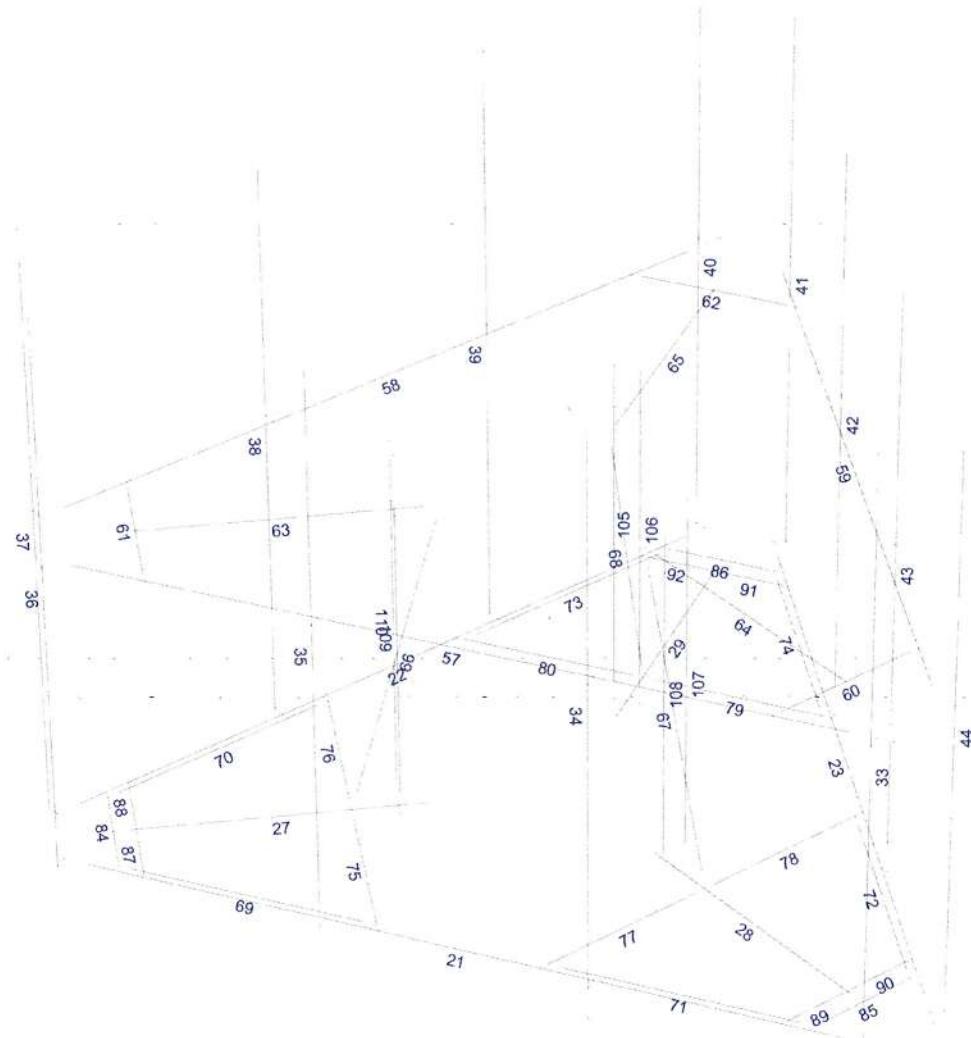
#### 2-1/2" Pipe

Per foot weight of ice:  
 diameter (in): 2.88  
 Per foot weight of ice on object: 6 plf


#### 2" Pipe

Per foot weight of ice:  
 diameter (in): 2.38  
 Per foot weight of ice on object: 5 plf



**HUDSON**  
Design Group LLC

**Mount Calculations  
(Existing Conditions)**

YZX





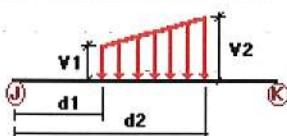


Current Date: 8/10/2020 1:16 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

## Load data


### GLOSSARY

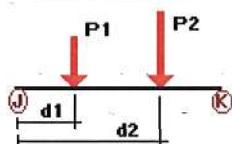
Comb : Indicates if load condition is a load combination

### Load Conditions

| Condition | Description                      | Comb. | Category |
|-----------|----------------------------------|-------|----------|
| DL        | Dead Load                        | No    | DL       |
| W0        | Wind Load 0/60/120 deg           | No    | WIND     |
| W30       | Wind Load 30/90/150 deg          | No    | WIND     |
| Di        | Ice Load                         | No    | LL       |
| Wi0       | Ice Wind Load 0/60/120 deg       | No    | WIND     |
| Wi30      | Ice Wind Load 30/90/150 deg      | No    | WIND     |
| WL0       | WL 30 mph 0/60/120 deg           | No    | WIND     |
| WL30      | WL 30 mph 30/90/150 deg          | No    | WIND     |
| LL1       | 250 lb Live Load Center of Mount | No    | LL       |
| LL2       | 250 lb Live Load End of Mount    | No    | LL       |
| LLa1      | 250 lb Live Load Antenna 1       | No    | LL       |
| LLa2      | 250 lb Live Load Antenna 2       | No    | LL       |
| LLa3      | 250 lb Live Load Antenna 3       | No    | LL       |
| LLa4      | 250 lb Live Load Antenna 4       | No    | LL       |

### Distributed force on members




| Condition | Member | Dir1 | Val1<br>[Kip/ft] | Val2<br>[Kip/ft] | Dist1<br>[ft] | %   | Dist2<br>[ft] | %   |
|-----------|--------|------|------------------|------------------|---------------|-----|---------------|-----|
| DL        | 71     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 69     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 74     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 72     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 70     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 73     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 84     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 75     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 76     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 86     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 80     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 79     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 77     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 78     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |
|           | 85     | Y    | -0.01            | -0.01            | 0.00          | Yes | 100.00        | Yes |

|     |     |   |        |        |      |    |        |     |
|-----|-----|---|--------|--------|------|----|--------|-----|
| W0  | 35  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 37  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 38  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 39  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 40  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 41  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 42  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 43  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 44  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 66  | z | -0.001 | -0.001 | 0.00 | No | 100.00 | Yes |
|     | 67  | z | -0.001 | -0.001 | 0.00 | No | 100.00 | Yes |
|     | 68  | z | -0.001 | -0.001 | 0.00 | No | 100.00 | Yes |
|     | 105 | z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
|     | 106 | z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
|     | 107 | z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
|     | 108 | z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
|     | 109 | z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
|     | 110 | z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
|     | 71  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 69  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 21  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 57  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 74  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 72  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 23  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 59  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 70  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 73  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 22  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 58  | z | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 84  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 88  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 61  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 87  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 27  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 63  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 75  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 76  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 62  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 91  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 86  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 92  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 80  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 79  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 28  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 64  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 77  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 78  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 60  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 85  | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
|     | 89  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
|     | 90  | z | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| W30 | 33  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 34  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 35  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 36  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 37  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 38  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 39  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
|     | 40  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |

|     |   |        |        |      |    |        |     |
|-----|---|--------|--------|------|----|--------|-----|
| 43  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
| 66  | x | -0.001 | -0.001 | 0.00 | No | 100.00 | Yes |
| 67  | x | -0.001 | -0.001 | 0.00 | No | 100.00 | Yes |
| 68  | x | -0.001 | -0.001 | 0.00 | No | 100.00 | Yes |
| 105 | x | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
| 106 | x | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
| 107 | x | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
| 108 | x | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
| 109 | x | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
| 110 | x | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes |
| 57  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
| 74  | x | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
| 72  | x | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
| 23  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 59  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
| 70  | x | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
| 73  | x | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
| 22  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 58  | x | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
| 84  | x | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
| 88  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 61  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 87  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 27  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 63  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 75  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 76  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 29  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 65  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 28  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 64  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 77  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 78  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 60  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 85  | x | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes |
| 89  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| 90  | x | -0.012 | -0.012 | 0.00 | No | 100.00 | Yes |
| Di  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 33  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 34  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 35  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 36  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 37  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 38  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 39  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 40  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 41  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 42  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 43  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 44  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 66  | y | -0.004 | -0.004 | 0.00 | No | 100.00 | Yes |
| 67  | y | -0.004 | -0.004 | 0.00 | No | 100.00 | Yes |
| 68  | y | -0.004 | -0.004 | 0.00 | No | 100.00 | Yes |
| 105 | y | -0.005 | -0.005 | 0.00 | No | 100.00 | Yes |
| 106 | y | -0.005 | -0.005 | 0.00 | No | 100.00 | Yes |
| 107 | y | -0.005 | -0.005 | 0.00 | No | 100.00 | Yes |
| 108 | y | -0.005 | -0.005 | 0.00 | No | 100.00 | Yes |
| 109 | y | -0.005 | -0.005 | 0.00 | No | 100.00 | Yes |
| 110 | y | -0.005 | -0.005 | 0.00 | No | 100.00 | Yes |
| 71  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 69  | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |

|    |   |        |        |      |    |        |     |
|----|---|--------|--------|------|----|--------|-----|
| 21 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 57 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 74 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 72 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 23 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 59 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 70 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 73 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 22 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 58 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 84 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 88 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 61 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 87 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 27 | y | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
| 63 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 75 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 76 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 62 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 91 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 86 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 92 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 80 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 79 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 29 | y | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
| 65 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 28 | y | -0.011 | -0.011 | 0.00 | No | 100.00 | Yes |
| 64 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 77 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 78 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 60 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 85 | y | -0.006 | -0.006 | 0.00 | No | 100.00 | Yes |
| 89 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |
| 90 | y | -0.008 | -0.008 | 0.00 | No | 100.00 | Yes |

#### Concentrated forces on members



| Condition | Member | Dir1   | Value1<br>[Kip] | Dist1<br>[ft] | %  |
|-----------|--------|--------|-----------------|---------------|----|
| DL        | 33     | y      | -0.035          | 1.50          | No |
|           |        | y      | -0.035          | 6.50          | No |
| 34        | y      | -0.035 | 1.50            | No            |    |
|           |        | y      | -0.035          | 6.50          | No |
| 35        | y      | -0.033 | 6.00            | No            |    |
| 36        | y      | -0.035 | 1.50            | No            |    |
|           |        | y      | -0.035          | 6.50          | No |
| 37        | y      | -0.035 | 1.50            | No            |    |
|           |        | y      | -0.035          | 6.50          | No |
| 38        | y      | -0.035 | 1.50            | No            |    |
|           |        | y      | -0.035          | 6.50          | No |

|     |     |        |        |      |    |
|-----|-----|--------|--------|------|----|
| 39  | y   | -0.033 | 6.00   | No   |    |
| 40  | y   | -0.035 | 1.50   | No   |    |
|     | y   | -0.035 | 6.50   | No   |    |
| 41  | y   | -0.035 | 1.50   | No   |    |
|     | y   | -0.035 | 6.50   | No   |    |
| 42  | y   | -0.035 | 1.50   | No   |    |
|     | y   | -0.035 | 6.50   | No   |    |
| 43  | y   | -0.033 | 6.00   | No   |    |
| 44  | y   | -0.035 | 1.50   | No   |    |
|     | y   | -0.035 | 6.50   | No   |    |
| 105 | y   | -0.06  | 2.00   | No   |    |
|     | y   | -0.071 | 4.00   | No   |    |
| 106 | y   | -0.046 | 2.00   | No   |    |
|     | y   | -0.072 | 4.00   | No   |    |
| 107 | y   | -0.06  | 2.00   | No   |    |
|     | y   | -0.071 | 4.00   | No   |    |
| 108 | y   | -0.046 | 2.00   | No   |    |
|     | y   | -0.072 | 4.00   | No   |    |
| 109 | y   | -0.06  | 2.00   | No   |    |
|     | y   | -0.071 | 4.00   | No   |    |
| 110 | y   | -0.046 | 2.00   | No   |    |
|     | y   | -0.072 | 4.00   | No   |    |
| W0  | 33  | z      | -0.239 | 1.50 | No |
|     |     | z      | -0.239 | 6.50 | No |
|     | 34  | z      | -0.239 | 1.50 | No |
|     |     | z      | -0.239 | 6.50 | No |
|     | 35  | z      | -0.043 | 6.00 | No |
|     | 36  | z      | -0.239 | 1.50 | No |
|     |     | z      | -0.239 | 6.50 | No |
|     | 37  | z      | -0.139 | 1.50 | No |
|     |     | z      | -0.139 | 6.50 | No |
|     | 38  | z      | -0.139 | 1.50 | No |
|     |     | z      | -0.139 | 6.50 | No |
|     | 39  | z      | -0.043 | 6.00 | No |
|     | 40  | z      | -0.139 | 1.50 | No |
|     |     | z      | -0.139 | 6.50 | No |
|     | 41  | z      | -0.139 | 1.50 | No |
|     |     | z      | -0.139 | 6.50 | No |
|     | 42  | z      | -0.139 | 1.50 | No |
|     |     | z      | -0.139 | 6.50 | No |
|     | 43  | z      | -0.043 | 6.00 | No |
|     | 44  | z      | -0.139 | 1.50 | No |
|     |     | z      | -0.139 | 6.50 | No |
|     | 105 | z      | -0.047 | 2.00 | No |
|     |     | z      | -0.053 | 4.00 | No |
|     | 106 | z      | -0.031 | 2.00 | No |
|     |     | z      | -0.051 | 4.00 | No |
|     | 107 | z      | -0.069 | 2.00 | No |
|     |     | z      | -0.069 | 4.00 | No |
|     | 108 | z      | -0.06  | 2.00 | No |
|     |     | z      | -0.059 | 4.00 | No |
|     | 109 | z      | -0.069 | 2.00 | No |
|     |     | z      | -0.069 | 4.00 | No |
|     | 110 | z      | -0.06  | 2.00 | No |
|     |     | z      | -0.059 | 4.00 | No |
| W30 | 33  | x      | -0.106 | 1.50 | No |
|     |     | x      | -0.106 | 6.50 | No |
|     | 34  | x      | -0.106 | 1.50 | No |
|     | 35  | x      | -0.043 | 6.00 | No |

|     |    |        |        |      |    |
|-----|----|--------|--------|------|----|
| 36  | x  | -0.106 | 1.50   | No   |    |
|     | x  | -0.106 | 6.50   | No   |    |
| 37  | x  | -0.206 | 1.50   | No   |    |
|     | x  | -0.206 | 6.50   | No   |    |
| 38  | x  | -0.206 | 1.50   | No   |    |
|     | x  | -0.206 | 6.50   | No   |    |
| 39  | x  | -0.043 | 6.00   | No   |    |
| 40  | x  | -0.206 | 1.50   | No   |    |
|     | x  | -0.206 | 6.50   | No   |    |
| 41  | x  | -0.206 | 1.50   | No   |    |
|     | x  | -0.206 | 6.50   | No   |    |
| 42  | x  | -0.206 | 1.50   | No   |    |
|     | x  | -0.206 | 6.50   | No   |    |
| 43  | x  | -0.043 | 6.00   | No   |    |
| 44  | x  | -0.206 | 1.50   | No   |    |
|     | x  | -0.206 | 6.50   | No   |    |
| 105 | x  | -0.076 | 2.00   | No   |    |
|     | x  | -0.074 | 4.00   | No   |    |
| 106 | x  | -0.069 | 2.00   | No   |    |
|     | x  | -0.062 | 4.00   | No   |    |
| 107 | x  | -0.054 | 2.00   | No   |    |
|     | x  | -0.058 | 4.00   | No   |    |
| 108 | x  | -0.04  | 2.00   | No   |    |
|     | x  | -0.054 | 4.00   | No   |    |
| 109 | x  | -0.054 | 2.00   | No   |    |
|     | x  | -0.058 | 4.00   | No   |    |
| 110 | x  | -0.04  | 2.00   | No   |    |
|     | x  | -0.054 | 4.00   | No   |    |
| Di  | 33 | y      | -0.098 | 1.50 | No |
|     |    | y      | -0.098 | 6.50 | No |
| 34  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 35  | y  | -0.031 | 6.00   | No   |    |
| 36  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 37  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 38  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 39  | y  | -0.031 | 6.00   | No   |    |
| 40  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 41  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 42  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 43  | y  | -0.031 | 6.00   | No   |    |
| 44  | y  | -0.098 | 1.50   | No   |    |
|     | y  | -0.098 | 6.50   | No   |    |
| 105 | y  | -0.036 | 2.00   | No   |    |
|     | y  | -0.037 | 4.00   | No   |    |
| 106 | y  | -0.031 | 2.00   | No   |    |
|     | y  | -0.032 | 4.00   | No   |    |
| 107 | y  | -0.036 | 2.00   | No   |    |
|     | y  | -0.037 | 4.00   | No   |    |
| 108 | y  | -0.031 | 2.00   | No   |    |
|     | y  | -0.032 | 4.00   | No   |    |
| 109 | y  | -0.036 | 2.00   | No   |    |
|     | y  | -0.037 | 4.00   | No   |    |
| 110 | y  | -0.031 | 2.00   | No   |    |

|      |     |   |        |      |    |
|------|-----|---|--------|------|----|
| Wi0  | 33  | y | -0.032 | 4.00 | No |
|      |     | z | -0.048 | 1.50 | No |
|      |     | z | -0.048 | 6.50 | No |
|      | 34  | z | -0.048 | 1.50 | No |
|      |     | z | -0.048 | 6.50 | No |
|      | 35  | z | -0.01  | 6.00 | No |
|      | 36  | z | -0.048 | 1.50 | No |
|      |     | z | -0.048 | 6.50 | No |
|      | 37  | z | -0.03  | 1.50 | No |
|      |     | z | -0.03  | 6.50 | No |
|      | 38  | z | -0.03  | 1.50 | No |
|      |     | z | -0.03  | 6.50 | No |
|      | 39  | z | -0.01  | 6.00 | No |
|      | 40  | z | -0.03  | 1.50 | No |
|      |     | z | -0.03  | 6.50 | No |
|      | 41  | z | -0.03  | 1.50 | No |
|      |     | z | -0.03  | 6.50 | No |
|      | 42  | z | -0.03  | 1.50 | No |
|      |     | z | -0.03  | 6.50 | No |
|      | 43  | z | -0.01  | 6.00 | No |
|      | 44  | z | -0.03  | 1.50 | No |
|      |     | z | -0.03  | 6.50 | No |
|      | 105 | z | -0.012 | 2.00 | No |
|      |     | z | -0.013 | 4.00 | No |
|      | 106 | z | -0.008 | 2.00 | No |
|      |     | z | -0.012 | 4.00 | No |
|      | 107 | z | -0.016 | 2.00 | No |
|      |     | z | -0.016 | 4.00 | No |
|      | 108 | z | -0.014 | 2.00 | No |
|      |     | z | -0.014 | 4.00 | No |
|      | 109 | z | -0.016 | 2.00 | No |
|      |     | z | -0.016 | 4.00 | No |
|      | 110 | z | -0.014 | 2.00 | No |
|      |     | z | -0.014 | 4.00 | No |
| Wi30 | 33  | x | -0.024 | 1.50 | No |
|      |     | x | -0.024 | 6.50 | No |
|      | 34  | x | -0.024 | 1.50 | No |
|      |     | x | -0.024 | 6.50 | No |
|      | 35  | x | -0.01  | 6.00 | No |
|      | 36  | x | -0.024 | 1.50 | No |
|      |     | x | -0.024 | 6.50 | No |
|      | 37  | x | -0.042 | 1.50 | No |
|      |     | x | -0.042 | 6.50 | No |
|      | 38  | x | -0.042 | 1.50 | No |
|      |     | x | -0.042 | 6.50 | No |
|      | 39  | x | -0.01  | 6.00 | No |
|      | 40  | x | -0.042 | 1.50 | No |
|      |     | x | -0.042 | 6.50 | No |
|      | 41  | x | -0.042 | 1.50 | No |
|      |     | x | -0.042 | 6.50 | No |
|      | 42  | x | -0.042 | 1.50 | No |
|      |     | x | -0.042 | 6.50 | No |
|      | 43  | x | -0.01  | 6.00 | No |
|      | 44  | x | -0.042 | 1.50 | No |
|      |     | x | -0.042 | 6.50 | No |
|      | 105 | x | -0.017 | 2.00 | No |
|      |     | x | -0.017 | 4.00 | No |
|      | 106 | x | -0.016 | 2.00 | No |
|      |     | x | -0.015 | 4.00 | No |
|      | 107 | x | -0.013 | 2.00 | No |

|      |    |   |        |      |    |
|------|----|---|--------|------|----|
|      |    | x | -0.014 | 4.00 | No |
| 108  |    | x | -0.01  | 2.00 | No |
|      |    | x | -0.013 | 4.00 | No |
| 109  |    | x | -0.013 | 2.00 | No |
|      |    | x | -0.014 | 4.00 | No |
| 110  |    | x | -0.01  | 2.00 | No |
|      |    | x | -0.013 | 4.00 | No |
| WL0  | 33 | z | -0.015 | 1.50 | No |
|      |    | z | -0.015 | 6.50 | No |
| 34   |    | z | -0.015 | 1.50 | No |
|      |    | z | -0.015 | 6.50 | No |
| 35   |    | z | -0.003 | 6.00 | No |
| 36   |    | z | -0.015 | 1.50 | No |
|      |    | z | -0.015 | 6.50 | No |
| 37   |    | z | -0.009 | 1.50 | No |
|      |    | z | -0.009 | 6.50 | No |
| 38   |    | z | -0.009 | 1.50 | No |
|      |    | z | -0.009 | 6.50 | No |
| 39   |    | z | -0.003 | 6.00 | No |
| 40   |    | z | -0.009 | 1.50 | No |
|      |    | z | -0.009 | 6.50 | No |
| 41   |    | z | -0.009 | 1.50 | No |
|      |    | z | -0.009 | 6.50 | No |
| 42   |    | z | -0.009 | 1.50 | No |
|      |    | z | -0.009 | 6.50 | No |
| 43   |    | z | -0.003 | 6.00 | No |
|      |    | z | -0.009 | 1.50 | No |
| 44   |    | z | -0.009 | 6.50 | No |
|      |    | z | -0.009 | 1.50 | No |
| 105  |    | z | -0.003 | 2.00 | No |
|      |    | z | -0.003 | 4.00 | No |
| 106  |    | z | -0.002 | 2.00 | No |
|      |    | z | -0.003 | 4.00 | No |
| 107  |    | z | -0.004 | 2.00 | No |
|      |    | z | -0.004 | 4.00 | No |
| 108  |    | z | -0.004 | 2.00 | No |
|      |    | z | -0.004 | 4.00 | No |
| 109  |    | z | -0.004 | 2.00 | No |
|      |    | z | -0.004 | 4.00 | No |
| 110  |    | z | -0.004 | 2.00 | No |
|      |    | z | -0.004 | 4.00 | No |
| WL30 | 33 | x | -0.007 | 1.50 | No |
|      |    | x | -0.007 | 6.50 | No |
| 34   |    | x | -0.007 | 1.50 | No |
|      |    | x | -0.007 | 6.50 | No |
| 35   |    | x | -0.003 | 6.00 | No |
| 36   |    | x | -0.007 | 1.50 | No |
|      |    | x | -0.007 | 6.50 | No |
| 37   |    | x | -0.013 | 1.50 | No |
|      |    | x | -0.013 | 6.50 | No |
| 38   |    | x | -0.013 | 1.50 | No |
|      |    | x | -0.013 | 6.50 | No |
| 39   |    | x | -0.003 | 6.00 | No |
| 40   |    | x | -0.013 | 1.50 | No |
|      |    | x | -0.013 | 6.50 | No |
| 41   |    | x | -0.013 | 1.50 | No |
|      |    | x | -0.013 | 6.50 | No |
| 42   |    | x | -0.013 | 1.50 | No |
|      |    | x | -0.013 | 6.50 | No |
| 43   |    | x | -0.003 | 6.00 | No |
|      |    | x | -0.013 | 1.50 | No |
| 44   |    | x | -0.013 | 6.50 | No |

|      |    |   |        |        |     |
|------|----|---|--------|--------|-----|
|      |    | x | -0.013 | 6.50   | No  |
| 105  |    | x | -0.005 | 2.00   | No  |
|      |    | x | -0.005 | 4.00   | No  |
| 106  |    | x | -0.004 | 2.00   | No  |
|      |    | x | -0.004 | 4.00   | No  |
| 107  |    | x | -0.003 | 2.00   | No  |
|      |    | x | -0.004 | 4.00   | No  |
| 108  |    | x | -0.003 | 2.00   | No  |
|      |    | x | -0.003 | 4.00   | No  |
| 109  |    | x | -0.003 | 2.00   | No  |
|      |    | x | -0.004 | 4.00   | No  |
| 110  |    | x | -0.003 | 2.00   | No  |
|      |    | x | -0.003 | 4.00   | No  |
| LL1  | 57 | y | -0.25  | 50.00  | Yes |
| LL2  | 57 | y | -0.25  | 100.00 | Yes |
| LLa1 | 33 | y | -0.25  | 50.00  | Yes |
| LLa2 | 34 | y | -0.25  | 50.00  | Yes |
| LLa3 | 35 | y | -0.25  | 50.00  | Yes |
| LLa4 | 36 | y | -0.25  | 50.00  | Yes |

### Self weight multipliers for load conditions

| Condition | Description                      | Self weight multiplier |       |       |      |
|-----------|----------------------------------|------------------------|-------|-------|------|
|           |                                  | Comb.                  | MultX | MultY |      |
| DL        | Dead Load                        | No                     | 0.00  | -1.00 | 0.00 |
| W0        | Wind Load 0/60/120 deg           | No                     | 0.00  | 0.00  | 0.00 |
| W30       | Wind Load 30/90/150 deg          | No                     | 0.00  | 0.00  | 0.00 |
| Di        | Ice Load                         | No                     | 0.00  | 0.00  | 0.00 |
| Wi0       | Ice Wind Load 0/60/120 deg       | No                     | 0.00  | 0.00  | 0.00 |
| Wi30      | Ice Wind Load 30/90/150 deg      | No                     | 0.00  | 0.00  | 0.00 |
| WL0       | WL 30 mph 0/60/120 deg           | No                     | 0.00  | 0.00  | 0.00 |
| WL30      | WL 30 mph 30/90/150 deg          | No                     | 0.00  | 0.00  | 0.00 |
| LL1       | 250 lb Live Load Center of Mount | No                     | 0.00  | 0.00  | 0.00 |
| LL2       | 250 lb Live Load End of Mount    | No                     | 0.00  | 0.00  | 0.00 |
| LLa1      | 250 lb Live Load Antenna 1       | No                     | 0.00  | 0.00  | 0.00 |
| LLa2      | 250 lb Live Load Antenna 2       | No                     | 0.00  | 0.00  | 0.00 |
| LLa3      | 250 lb Live Load Antenna 3       | No                     | 0.00  | 0.00  | 0.00 |
| LLa4      | 250 lb Live Load Antenna 4       | No                     | 0.00  | 0.00  | 0.00 |

### Earthquake (Dynamic analysis only)

| Condition | a/g  | Ang.  | Damp. |
|-----------|------|-------|-------|
|           |      | [Deg] | [%]   |
| DL        | 0.00 | 0.00  | 0.00  |
| W0        | 0.00 | 0.00  | 0.00  |
| W30       | 0.00 | 0.00  | 0.00  |
| Di        | 0.00 | 0.00  | 0.00  |
| Wi0       | 0.00 | 0.00  | 0.00  |
| Wi30      | 0.00 | 0.00  | 0.00  |
| WL0       | 0.00 | 0.00  | 0.00  |
| WL30      | 0.00 | 0.00  | 0.00  |

|      |      |      |      |
|------|------|------|------|
| LL1  | 0.00 | 0.00 | 0.00 |
| LL2  | 0.00 | 0.00 | 0.00 |
| LLa1 | 0.00 | 0.00 | 0.00 |
| LLa2 | 0.00 | 0.00 | 0.00 |
| LLa3 | 0.00 | 0.00 | 0.00 |
| LLa4 | 0.00 | 0.00 | 0.00 |

---

## Steel Code Check

---

**Report: Summary - Group by member**
**Load conditions to be included in design :**

LC1=1.2DL+W0  
 LC2=1.2DL+W30  
 LC3=1.2DL-W0  
 LC4=1.2DL-W30  
 LC5=0.9DL+W0  
 LC6=0.9DL+W30  
 LC7=0.9DL-W0  
 LC8=0.9DL-W30  
 LC9=1.2DL+Di+Wi0  
 LC10=1.2DL+Di+Wi30  
 LC11=1.2DL+Di-Wi0  
 LC12=1.2DL+Di-Wi30  
 LC13=1.2DL  
 LC15=1.2DL+1.5LL1  
 LC16=1.2DL+1.5LL2  
 LC17=1.2DL+WL0+1.5LLa1  
 LC18=1.2DL+WL30+1.5LLa1  
 LC19=1.2DL-WL0+1.5LLa1  
 LC20=1.2DL-WL30+1.5LLa1  
 LC21=1.2DL+WL0+1.5LLa2  
 LC22=1.2DL+WL30+1.5LLa2  
 LC23=1.2DL-WL0+1.5LLa2  
 LC24=1.2DL-WL30+1.5LLa2  
 LC25=1.2DL+WL0+1.5LLa3  
 LC26=1.2DL+WL30+1.5LLa3  
 LC27=1.2DL-WL0+1.5LLa3  
 LC28=1.2DL-WL30+1.5LLa3  
 LC29=1.2DL+WL0+1.5LLa4  
 LC30=1.2DL+WL30+1.5LLa4  
 LC31=1.2DL-WL0+1.5LLa4  
 LC32=1.2DL-WL30+1.5LLa4

| Description              | Section | Member          | Ctrl Eq.    | Ratio | Status    | Reference |
|--------------------------|---------|-----------------|-------------|-------|-----------|-----------|
| <i>HSS_RECT 6X3X3_16</i> | 27      | LC10 at 0.00%   | <b>0.20</b> | OK    | Eq. H1-1b |           |
|                          | 28      | LC12 at 0.00%   | 0.20        | OK    | Eq. H1-1b |           |
|                          | 29      | LC10 at 0.00%   | 0.20        | OK    | Eq. H1-1b |           |
| <i>HSS_SQR 3X3X1_4</i>   | 87      | LC11 at 100.00% | 0.11        | OK    | Eq. H1-1b |           |
|                          | 88      | LC10 at 0.00%   | <b>0.12</b> | OK    | Eq. H1-1b |           |
|                          | 89      | LC11 at 100.00% | 0.12        | OK    | Eq. H1-1b |           |
|                          | 90      | LC12 at 0.00%   | 0.11        | OK    | Eq. H1-1b |           |
|                          | 91      | LC9 at 100.00%  | 0.12        | OK    | Eq. H1-1b |           |
|                          | 92      | LC9 at 0.00%    | 0.11        | OK    | Eq. H1-1b |           |
| <i>HSS_SQR 3X3X3_16</i>  | 21      | LC10 at 40.28%  | 0.10        | OK    | Eq. H1-1b |           |
|                          | 22      | LC9 at 59.72%   | 0.10        | OK    | Eq. H1-1b |           |
|                          | 23      | LC12 at 59.72%  | 0.10        | OK    | Eq. H1-1b |           |
|                          | 75      | LC10 at 100.00% | 0.22        | OK    | Eq. H1-1b |           |
|                          | 76      | LC10 at 0.00%   | 0.22        | OK    | Eq. H1-1b |           |
|                          | 77      | LC11 at 100.00% | 0.22        | OK    | Eq. H1-1b |           |
|                          | 78      | LC12 at 0.00%   | 0.22        | OK    | Eq. H1-1b |           |

|                                |     |                 |             |                      |           |
|--------------------------------|-----|-----------------|-------------|----------------------|-----------|
|                                | 79  | LC9 at 100.00%  | <b>0.22</b> | <b>OK</b>            | Eq. H1-1b |
|                                | 80  | LC9 at 100.00%  | 0.22        | OK                   | Eq. H1-1b |
| <hr/>                          |     |                 |             |                      |           |
| <b><i>HSS_SQR 3X3X5_16</i></b> | 60  | LC2 at 50.00%   | 0.26        | OK                   | Eq. H1-1b |
|                                | 61  | LC4 at 50.00%   | 0.30        | OK                   | Eq. H1-1b |
|                                | 62  | LC3 at 50.00%   | 0.25        | OK                   | Eq. H1-1b |
|                                | 63  | LC3 at 0.00%    | 0.27        | OK                   | Eq. H1-1b |
|                                | 64  | LC1 at 93.75%   | 0.29        | OK                   | Eq. H1-1b |
|                                | 65  | LC2 at 0.00%    | <b>0.34</b> | <b>OK</b>            | Eq. H1-1b |
| <hr/>                          |     |                 |             |                      |           |
| <b><i>L 2X2X1_4</i></b>        | 69  | LC10 at 90.63%  | <b>0.47</b> | <b>OK</b>            | Eq. H3-8  |
|                                | 70  | LC11 at 90.63%  | 0.25        | OK                   | Eq. H2-1  |
|                                | 71  | LC12 at 90.63%  | 0.25        | OK                   | Eq. H2-1  |
|                                | 72  | LC12 at 9.38%   | 0.25        | OK                   | Eq. H2-1  |
|                                | 73  | LC9 at 90.63%   | 0.46        | OK                   | Eq. H3-8  |
|                                | 74  | LC9 at 9.38%    | 0.46        | OK                   | Eq. H3-8  |
|                                | 84  | LC10 at 50.00%  | 0.26        | OK                   | Eq. H2-1  |
|                                | 85  | LC11 at 50.00%  | 0.26        | OK                   | Eq. H2-1  |
|                                | 86  | LC9 at 50.00%   | 0.26        | OK                   | Eq. H2-1  |
| <hr/>                          |     |                 |             |                      |           |
| <b><i>PIPE 2-1_2x0.203</i></b> | 33  | LC1 at 43.75%   | 0.29        | OK                   | Eq. H1-1b |
|                                | 34  | LC1 at 43.75%   | 0.29        | OK                   | Eq. H1-1b |
|                                | 35  | LC10 at 93.75%  | 0.13        | OK                   | Eq. H1-1b |
|                                | 36  | LC3 at 43.75%   | 0.29        | OK                   | Eq. H1-1b |
|                                | 37  | LC2 at 43.75%   | 0.29        | OK                   | Eq. H1-1b |
|                                | 38  | LC4 at 43.75%   | 0.29        | OK                   | Eq. H1-1b |
|                                | 39  | LC12 at 93.75%  | 0.15        | OK                   | Eq. H1-1b |
|                                | 40  | LC2 at 43.75%   | 0.29        | OK                   | Eq. H1-1b |
|                                | 41  | LC4 at 43.75%   | 0.25        | OK                   | Eq. H1-1b |
|                                | 42  | LC4 at 43.75%   | 0.25        | OK                   | Eq. H1-1b |
|                                | 43  | LC11 at 93.75%  | 0.12        | OK                   | Eq. H1-1b |
|                                | 44  | LC2 at 43.75%   | 0.25        | OK                   | Eq. H1-1b |
|                                | 57  | LC1 at 86.61%   | <b>0.42</b> | <b>OK</b>            | Eq. H1-1b |
|                                | 58  | LC4 at 13.39%   | 0.39        | OK                   | Eq. H1-1b |
|                                | 59  | LC2 at 13.39%   | 0.33        | OK                   | Eq. H1-1b |
| <hr/>                          |     |                 |             |                      |           |
| <b><i>PIPE 2x0.154</i></b>     | 105 | LC2 at 18.75%   | 0.11        | OK                   | Eq. H1-1b |
|                                | 106 | LC4 at 18.75%   | 0.11        | OK                   | Eq. H1-1b |
|                                | 107 | LC3 at 18.75%   | 0.11        | OK                   | Eq. H1-1b |
|                                | 108 | LC3 at 18.75%   | 0.12        | OK                   | Eq. H1-1b |
|                                | 109 | LC3 at 18.75%   | <b>0.12</b> | <b>OK</b>            | Eq. H1-1b |
|                                | 110 | LC3 at 18.75%   | 0.11        | OK                   | Eq. H1-1b |
| <hr/>                          |     |                 |             |                      |           |
| <b><i>PL 2x1/8</i></b>         | 66  | LC10 at 100.00% | 0.29        | With warnings        | Eq. H1-1a |
|                                | 67  | LC12 at 100.00% | 0.28        | With warnings        | Eq. H1-1a |
|                                | 68  | LC9 at 100.00%  | <b>0.29</b> | <b>With warnings</b> | Eq. H1-1a |
| <hr/>                          |     |                 |             |                      |           |

Current Date: 8/10/2020 1:17 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

## Geometry data

### GLOSSARY

|            |                                                                                              |
|------------|----------------------------------------------------------------------------------------------|
| Cb22, Cb33 | : Moment gradient coefficients                                                               |
| Cm22, Cm33 | : Coefficients applied to bending term in interaction formula                                |
| d0         | : Tapered member section depth at J end of member                                            |
| DJX        | : Rigid end offset distance measured from J node in axis X                                   |
| DJY        | : Rigid end offset distance measured from J node in axis Y                                   |
| DJZ        | : Rigid end offset distance measured from J node in axis Z                                   |
| DKX        | : Rigid end offset distance measured from K node in axis X                                   |
| DKY        | : Rigid end offset distance measured from K node in axis Y                                   |
| DKZ        | : Rigid end offset distance measured from K node in axis Z                                   |
| dL         | : Tapered member section depth at K end of member                                            |
| Ig factor  | : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members |
| K22        | : Effective length factor about axis 2                                                       |
| K33        | : Effective length factor about axis 3                                                       |
| L22        | : Member length for calculation of axial capacity                                            |
| L33        | : Member length for calculation of axial capacity                                            |
| LB pos     | : Lateral unbraced length of the compression flange in the positive side of local axis 2     |
| LB neg     | : Lateral unbraced length of the compression flange in the negative side of local axis 2     |
| RX         | : Rotation about X                                                                           |
| RY         | : Rotation about Y                                                                           |
| RZ         | : Rotation about Z                                                                           |
| TO         | : 1 = Tension only member 0 = Normal member                                                  |
| TX         | : Translation in X                                                                           |
| TY         | : Translation in Y                                                                           |
| TZ         | : Translation in Z                                                                           |

### Nodes

| Node | X<br>[ft] | Y<br>[ft] | Z<br>[ft] | Rigid Floor |
|------|-----------|-----------|-----------|-------------|
| 9    | 0.00      | 0.00      | -1.75     | 0           |
| 216  | 0.00      | 5.00      | -1.75     | 0           |
| 172  | 1.5155    | 0.00      | 0.875     | 0           |
| 214  | 1.5155    | 5.00      | 0.875     | 0           |
| 174  | -1.5155   | 0.00      | 0.875     | 0           |
| 215  | -1.5155   | 5.00      | 0.875     | 0           |

### Restraints

| Node | TX | TY | TZ | RX | RY | RZ |
|------|----|----|----|----|----|----|
| 9    | 1  | 1  | 1  | 1  | 1  | 1  |
| 216  | 1  | 1  | 1  | 1  | 1  | 1  |
| 172  | 1  | 1  | 1  | 1  | 1  | 1  |
| 214  | 1  | 1  | 1  | 1  | 1  | 1  |
| 174  | 1  | 1  | 1  | 1  | 1  | 1  |
| 215  | 1  | 1  | 1  | 1  | 1  | 1  |

## Members

| Member | NJ  | NK  | Description | Section           | Material            | d0<br>[in] | dL<br>[in] | Ig factor |
|--------|-----|-----|-------------|-------------------|---------------------|------------|------------|-----------|
| 33     | 239 | 227 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 34     | 240 | 228 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 35     | 242 | 230 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 36     | 241 | 229 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 37     | 243 | 231 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 38     | 244 | 232 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 39     | 245 | 233 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 40     | 246 | 234 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 41     | 247 | 235 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 42     | 248 | 236 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 43     | 249 | 237 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 44     | 250 | 238 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 66     | 215 | 211 |             | PL 2x1/8          | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 67     | 214 | 212 |             | PL 2x1/8          | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 68     | 216 | 213 |             | PL 2x1/8          | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 105    | 380 | 377 |             | PIPE 2x0.154      | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 106    | 379 | 375 |             | PIPE 2x0.154      | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 107    | 384 | 371 |             | PIPE 2x0.154      | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 108    | 383 | 369 |             | PIPE 2x0.154      | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 109    | 382 | 365 |             | PIPE 2x0.154      | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 110    | 381 | 363 |             | PIPE 2x0.154      | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 71     | 288 | 286 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 69     | 289 | 287 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 21     | 29  | 28  |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 57     | 314 | 315 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 74     | 273 | 272 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 72     | 271 | 270 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 23     | 4   | 5   |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 59     | 318 | 319 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 70     | 284 | 282 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 73     | 285 | 283 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 22     | 25  | 26  |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 58     | 316 | 317 |             | PIPE 2-1_2x0.203  | A53 GrB             | 0.00       | 0.00       | 0.00      |
| 84     | 287 | 282 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 88     | 359 | 354 |             | HSS_SQR 3X3X1_4   | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 61     | 334 | 331 |             | HSS_SQR 3X3X5_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 87     | 357 | 359 |             | HSS_SQR 3X3X1_4   | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 27     | 174 | 208 |             | HSS_RECT 6X3X3_16 | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 63     | 215 | 217 |             | HSS_SQR 3X3X5_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 75     | 206 | 211 |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 76     | 211 | 201 |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 62     | 326 | 332 |             | HSS_SQR 3X3X5_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 91     | 349 | 358 |             | HSS_SQR 3X3X1_4   | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 86     | 273 | 283 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 92     | 358 | 355 |             | HSS_SQR 3X3X1_4   | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 80     | 202 | 213 |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 79     | 189 | 213 |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 29     | 9   | 210 |             | HSS_RECT 6X3X3_16 | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 65     | 216 | 225 |             | HSS_SQR 3X3X5_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 28     | 172 | 209 |             | HSS_RECT 6X3X3_16 | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 64     | 214 | 223 |             | HSS_SQR 3X3X5_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 77     | 205 | 212 |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 78     | 212 | 180 |             | HSS_SQR 3X3X3_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 60     | 333 | 321 |             | HSS_SQR 3X3X5_16  | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 85     | 286 | 271 |             | L 2X2X1_4         | A36                 | 0.00       | 0.00       | 0.00      |
| 89     | 356 | 360 |             | HSS_SQR 3X3X1_4   | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |
| 90     | 360 | 348 |             | HSS_SQR 3X3X1_4   | A53 GrB SABRE 50... | 0.00       | 0.00       | 0.00      |

## Orientation of local axes

| Member | Rotation<br>[Deg] | Axes23 | NX   | NY   | NZ   |
|--------|-------------------|--------|------|------|------|
| 71     | 270.00            | 0      | 0.00 | 0.00 | 0.00 |
| 72     | 270.00            | 0      | 0.00 | 0.00 | 0.00 |
| 70     | 270.00            | 0      | 0.00 | 0.00 | 0.00 |
| 27     | 90.00             | 0      | 0.00 | 0.00 | 0.00 |
| 86     | 270.00            | 0      | 0.00 | 0.00 | 0.00 |
| 29     | 90.00             | 0      | 0.00 | 0.00 | 0.00 |
| 28     | 90.00             | 0      | 0.00 | 0.00 | 0.00 |
| 85     | 270.00            | 0      | 0.00 | 0.00 | 0.00 |

## Rigid end offsets

| Member | DJX<br>[in] | DJY<br>[in] | DJZ<br>[in] | DKX<br>[in] | DKY<br>[in] | DKZ<br>[in] |
|--------|-------------|-------------|-------------|-------------|-------------|-------------|
| 66     | 0.00        | -1.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 67     | 0.00        | -1.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 68     | 0.00        | -1.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 71     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 69     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 57     | 0.00        | 3.50        | 0.00        | 0.00        | 3.50        | 0.00        |
| 74     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 72     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 59     | 0.00        | 3.50        | 0.00        | 0.00        | 3.50        | 0.00        |
| 70     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 73     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 58     | 0.00        | 3.50        | 0.00        | 0.00        | 3.50        | 0.00        |
| 84     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 88     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 61     | 0.00        | 0.75        | 0.00        | 0.00        | 0.75        | 0.00        |
| 87     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 27     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 63     | 0.00        | -2.00       | 0.00        | 0.00        | -2.00       | 0.00        |
| 75     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 76     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 62     | 0.00        | 0.75        | 0.00        | 0.00        | 0.75        | 0.00        |
| 91     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 86     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 92     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 80     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 79     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 29     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 65     | 0.00        | -2.00       | 0.00        | 0.00        | -2.00       | 0.00        |
| 28     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 64     | 0.00        | -2.00       | 0.00        | 0.00        | -2.00       | 0.00        |
| 77     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 78     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 60     | 0.00        | 0.75        | 0.00        | 0.00        | 0.75        | 0.00        |
| 85     | 0.00        | -1.00       | 0.00        | 0.00        | -1.00       | 0.00        |
| 89     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |
| 90     | 0.00        | -3.00       | 0.00        | 0.00        | -3.00       | 0.00        |

## Hinges

| Member | Node-J |     |    |    | Node-K |     |    |    | TOR | AXL | Axial rigidity |
|--------|--------|-----|----|----|--------|-----|----|----|-----|-----|----------------|
|        | M33    | M22 | V3 | V2 | M33    | M22 | V3 | V2 |     |     |                |
| 66     | 0      | 0   | 0  | 0  | 0      | 0   | 0  | 0  | 0   | 0   | Tension only   |
| 67     | 0      | 0   | 0  | 0  | 0      | 0   | 0  | 0  | 0   | 0   | Tension only   |
| 68     | 0      | 0   | 0  | 0  | 0      | 0   | 0  | 0  | 0   | 0   | Tension only   |

## **ATTACHMENT 3**

SITE ELEVATION AMSL.....387 ft.  
STRUCTURE HEIGHT.....143 ft.  
OVERALL HEIGHT AMSL.....530 ft.

NOTICE CRITERIA

FAR 77.9(a): NNR (DNE 200 ft AGL)  
FAR 77.9(b): NNR (DNE Notice Slope)  
FAR 77.9(c): NNR (Not a Traverse Way)  
FAR 77.9: NNR FAR 77.9 IFR Straight-In Notice Criteria  
for PSF  
FAR 77.9: NNR FAR 77.9 IFR Straight-In Notice Criteria  
for NY1  
FAR 77.9(d): NNR (Off Airport Construction)

NR = Notice Required  
NNR = Notice Not Required  
PNR = Possible Notice Required (depends upon actual IFR procedure)  
For new construction review Air Navigation Facilities at bottom of this report.

Notice to the FAA is not required at the analyzed location and height for slope, height or Straight-In procedures. Please review the 'Air Navigation' section for notice requirements for offset IFR procedures and EMI.

OBSTRUCTION STANDARDS  
FAR 77.17(a)(1): DNE 499 ft AGL

FAR 77.17(a)(2): DNE - Airport Surface  
FAR 77.19(a): DNE - Horizontal Surface  
FAR 77.19(b): DNE - Conical Surface  
FAR 77.19(c): DNE - Primary Surface  
FAR 77.19(d): DNE - Approach Surface  
FAR 77.19(e): DNE - Approach Transitional Surface  
FAR 77.19(e): DNE - Abeam Transitional Surface

VFR TRAFFIC PATTERN AIRSPACE FOR: PSF: PITTSFIELD MUNI  
Type: A RD: 36250.88 RE: 1188.4

|                           |                             |
|---------------------------|-----------------------------|
| FAR 77.17(a)(1):          | DNE                         |
| FAR 77.17(a)(2):          | DNE - Greater Than 5.99 NM. |
| VFR Horizontal Surface:   | DNE                         |
| VFR Conical Surface:      | DNE                         |
| VFR Primary Surface:      | DNE                         |
| VFR Approach Surface:     | DNE                         |
| VFR Transitional Surface: | DNE                         |

VFR TRAFFIC PATTERN AIRSPACE FOR: NY1: KLINE KILL  
Type: A RD: 58797.53 RE: 356

FAR 77.17(a)(1): DNE  
FAR 77.17(a)(2): DNE - Greater Than 5.99 NM.  
VFR Horizontal Surface: DNE  
VFR Conical Surface: DNE  
VFR Primary Surface: DNE  
VFR Approach Surface: DNE  
VFR Transitional Surface: DNE

TERPS DEPARTURE PROCEDURE (FAA Order 8260.3, Volume 4)  
FAR 77.17(a)(3) Departure Surface Criteria (40:1)  
DNE Departure Surface

MINIMUM OBSTACLE CLEARANCE ALTITUDE (MOCA)  
FAR 77.17(a)(4) MOCA Altitude Enroute Criteria  
The Maximum Height Permitted is 2400 ft AMSL

PRIVATE LANDING FACILITIES  
No Private Landing Facilities Are Within 6 NM

## AIR NAVIGATION ELECTRONIC FACILITIES

FAC ST DIST DELT

| AIR NAVIGATION ELECTRONIC FACILITIES |      |         |      |    |       |        |        |          |    |       |
|--------------------------------------|------|---------|------|----|-------|--------|--------|----------|----|-------|
|                                      | FAC  |         | ST   |    |       | DIST   | DELTA  |          |    |       |
| GRND                                 | APCH | IDNT    | TYPE | AT | FREQ  | VECTOR | (ft)   | ELEVA    |    |       |
| ANGLE                                | BEAR |         |      |    |       |        | ST     | LOCATION |    |       |
| BARRINGTON                           | GBR  | NDB     |      | R  | 39    | 176.15 | 73061  | -196     | MA | GREAT |
|                                      |      |         | -.15 |    |       |        |        |          |    |       |
| Cummington                           | QHA  | RADAR   | ARSR | Y  | 1320. | 74.6   | 127111 | -1623    | MA | West  |
|                                      |      |         | -.73 |    |       |        |        |          |    |       |
| CHESTER                              | CTR  | VOR/DME |      | R  | 115.1 | 104.81 | 132129 | -1070    | MA |       |
|                                      |      |         | -.46 |    |       |        |        |          |    |       |

|        |      |        |     |       |        |        |        |           |
|--------|------|--------|-----|-------|--------|--------|--------|-----------|
| ALBANY | ALB  | VORTAC | R   | 115.3 | 322.42 | 167810 | +258   | NY        |
|        |      |        |     | .09   |        |        |        |           |
| INT'L  | ALB  | RADAR  | ON  |       | 320.75 | 169056 | +95    | NY ALBANY |
|        |      |        |     | .03   |        |        |        |           |
| ALBANY | KENX | RADAR  | WXL | Y     |        | 293.41 | 188358 | -1406 NY  |
|        |      |        |     | -.43  |        |        |        |           |
| BARNES | BAF  | VORTAC | R   | 113.0 | 113.1  | 207368 | +263   | MA        |
|        |      |        |     | .07   |        |        |        |           |

CFR Title 47, §1.30000-§1.30004

AM STUDY NOT REQUIRED: Structure is not near a FCC licensed AM station.

Movement Method Proof as specified in §73.151(c) is not required.

Please review 'AM Station Report' for details.

Nearest AM Station: WUPE @ 12478 meters.

Airspace® Summary Version 19.11.545

AIRSPACE® and TERPS® are registered ® trademarks of Federal Airways & Airspace®  
Copyright © 1989 - 2019

01-17-2020  
14:18:16

## **ATTACHMENT 4**

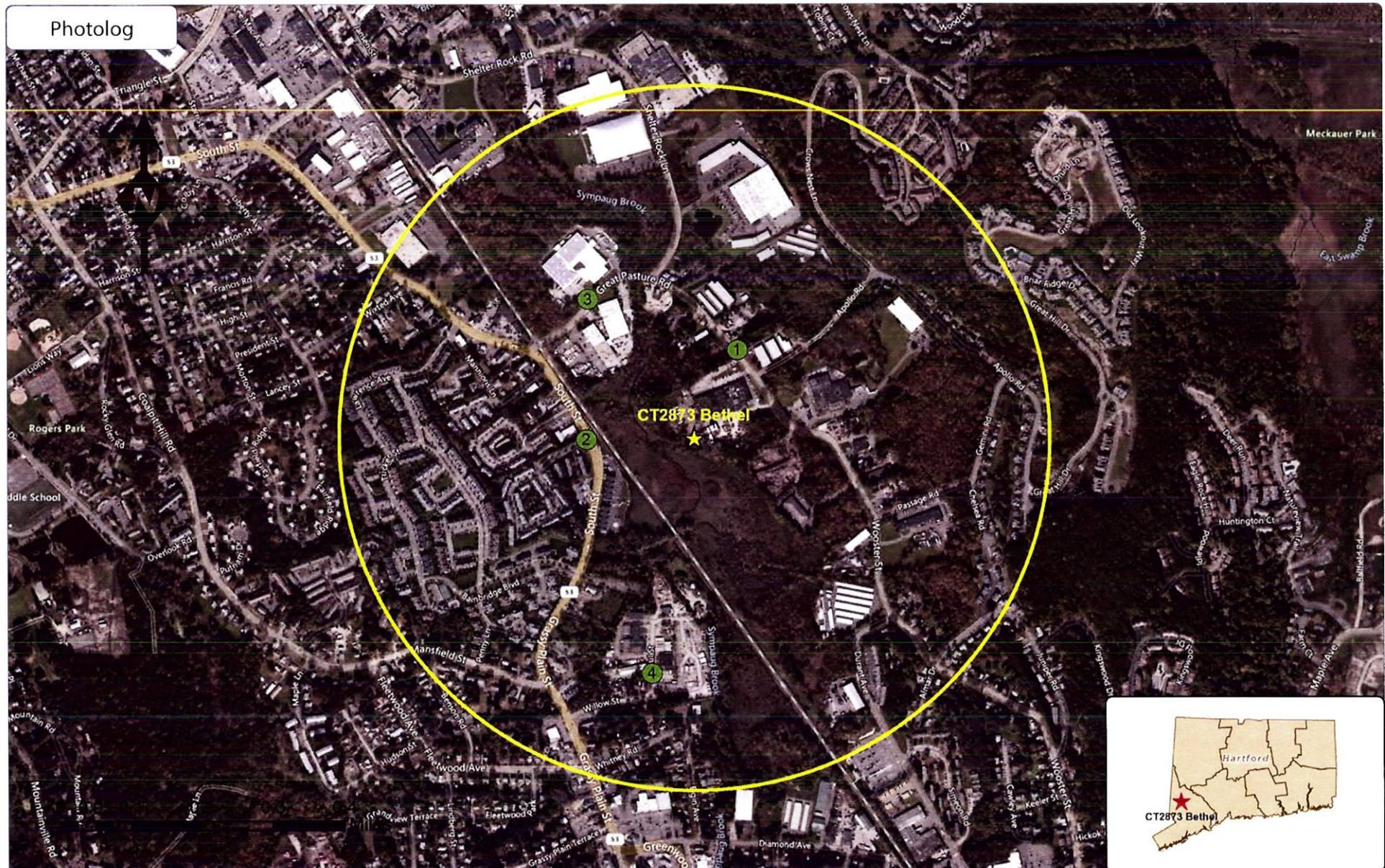
# Photographic Simulation Package

Proposed Upgrade to Existing Wireless Telecommunications Facility:

CT2873 Bethel  
15 Great Pasture Road  
Danbury, CT 06810

- Proposed 20ft extension to existing 119ft tower




Package prepared by:

Virtual Site Simulations, LLC  
24 Salt Pond Road  
Suite C3  
South Kingstown, Rhode Island 02879

[www.VirtualSiteSimulations.com](http://www.VirtualSiteSimulations.com)  
[www.ThinkVSSFirst.com](http://www.ThinkVSSFirst.com)

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution





Wireless Telecommunications Facility:

CT2873 Bethel

15 Great Pasture Road  
Danbury, CT 06810

Legend:

- ★ Facility Location ○ 2640 Ft Radius
- Photo location - Year Round Visibility
- Photo location- Obscured Visibility
- Photo location - NOT visible

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution



Existing



| Photo # | Approximate Location | Gps Coordinates    | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|--------------------|------------------|-------------|-----------------|------------|
| 1       | Great Pasture Rd     | 41.38483 -73.42102 | 0.14 Miles       | North-East  | 205             | Year Round |

Site: CT2873 Bethel

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution



## Simulation



| Photo # | Approximate Location | Gps Coordinates    | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|--------------------|------------------|-------------|-----------------|------------|
| 1       | Great Pasture Rd     | 41.38483 -73.42102 | 0.14 Miles       | North-East  | 205             | Year Round |

**Site: CT2873 Bethel**

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution



Existing



| Photo # | Approximate Location | Gps Coordinates         | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|-------------------------|------------------|-------------|-----------------|------------|
| 2       | South St             | 41.38297      -73.42508 | 0.15 Miles       | West        | 89              | Year Round |

Site: CT2873 Bethel

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution



## Simulation



| Photo # | Approximate Location | Gps Coordinates         | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|-------------------------|------------------|-------------|-----------------|------------|
| 2       | South St             | 41.38297      -73.42508 | 0.15 Miles       | West        | 89              | Year Round |

**Site: CT2873 Bethel**

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution



Existing



| Photo # | Approximate Location | Gps Coordinates         | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|-------------------------|------------------|-------------|-----------------|------------|
| 3       | Great Pasture Rd     | 41.38585      -73.42505 | 0.25 Miles       | North-West  | 143             | Year Round |

Site: CT2873 Bethel

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution



## Simulation



| Photo # | Approximate Location | Gps Coordinates         | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|-------------------------|------------------|-------------|-----------------|------------|
| 3       | Great Pasture Rd     | 41.38585      -73.42505 | 0.25 Miles       | North-West  | 143             | Year Round |

Site: CT2873 Bethel

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution





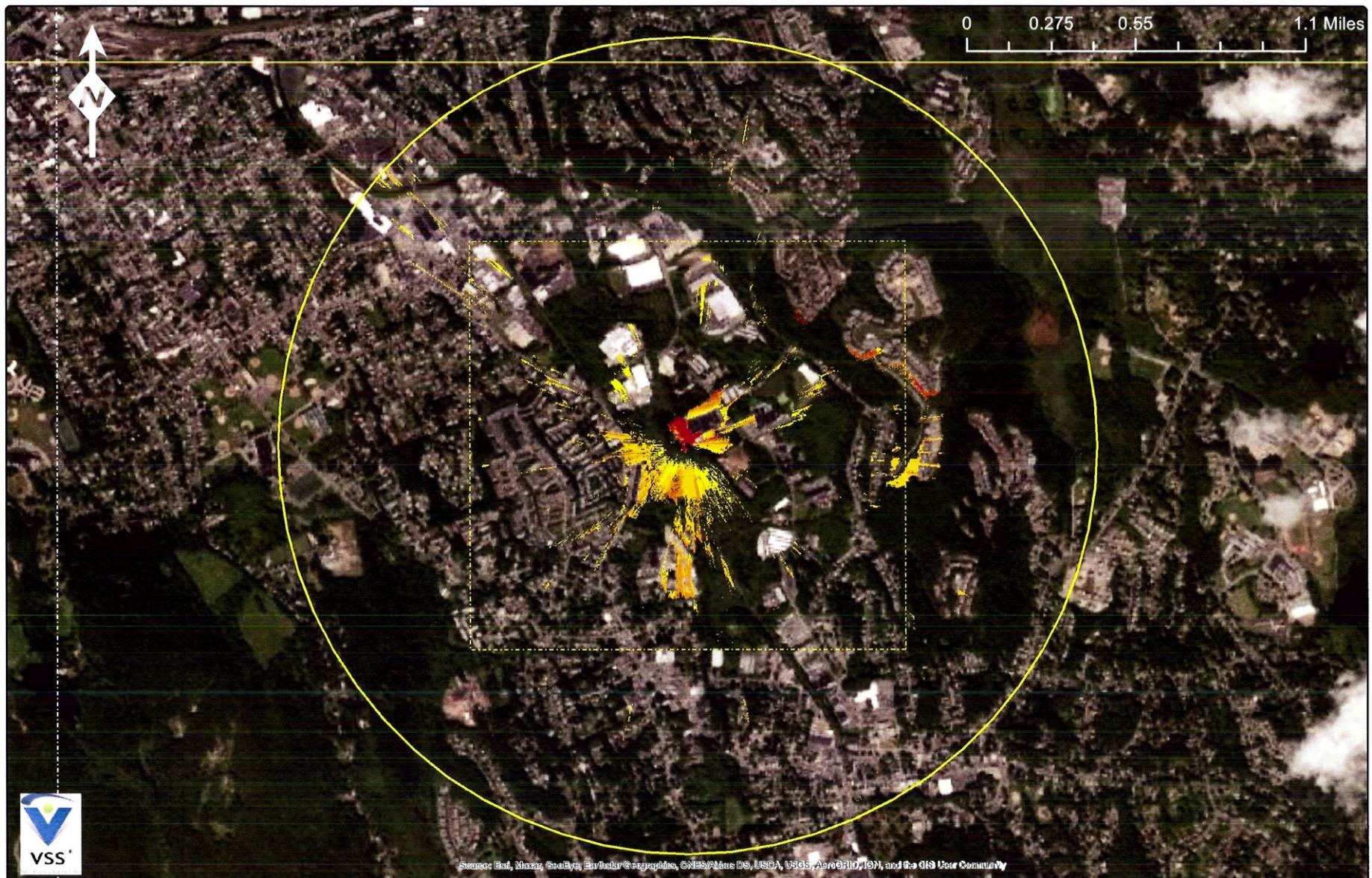
| Photo # | Approximate Location | Gps Coordinates       | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|-----------------------|------------------|-------------|-----------------|------------|
| 4       | Paul St              | 41.37817    -73.42328 | 0.34 Miles       | South       | 10              | Year Round |

Site: CT2873 Bethel

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution



Simulation




| Photo # | Approximate Location | Gps Coordinates    | Distance to site | Orientation | Bearing to site | Visibility |
|---------|----------------------|--------------------|------------------|-------------|-----------------|------------|
| 4       | Paul St              | 41.37817 -73.42328 | 0.34 Miles       | South       | 10              | Year Round |

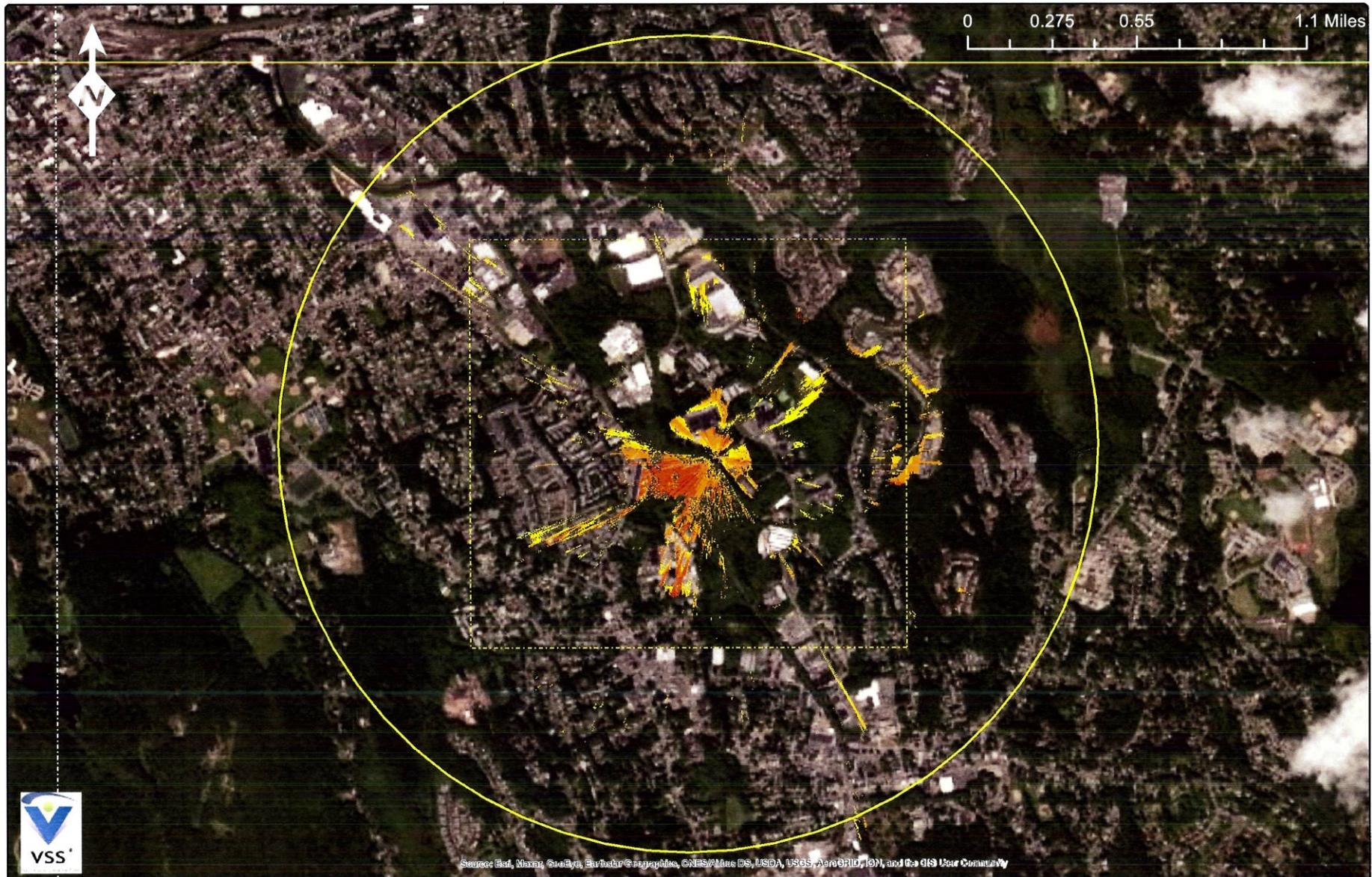
Site: CT2873 Bethel

Photo Simulations are for demonstration purposes only. It should not be used in any other fashion or with any other intent. The accuracy of the resulting data is not guaranteed and is not for redistribution





### Tower Visibility


Tower Height: 120 ft  
Lat, Lon: 41.383003 -73.422169  
Ring Range: 1 mi  
Color Bands: 4 equal + base

| Color    | Location | % Vis | Acres      |
|----------|----------|-------|------------|
| Yellow   | Top 25%  | 0.56% | 11.2       |
| Orange   | Top 50%  | 0.78% | 15.7       |
| Red      | Top 75%  | 0.38% | 7.7        |
| Dark Red | Top 100% | 0.08% | 1.7        |
| Black    | Base     | 0.09% | 1.9        |
|          | TOTAL    | 1.90% | 38.2 Acres |

Created by: VSS, LLC using VSS-IVS Interactive Viewshed Analysis Tool

Important Note:

Visibility percentages and acreages based on range parameter.



### Tower Visibility

Tower Height: 140 ft  
Lat, Lon: 41.383003 -73.422169  
Ring Range: 1 mi  
Color Bands: 4 equal - base

| Color    | Location | % Vis      | Acres |
|----------|----------|------------|-------|
| Top 25%  | 0.61%    | 12.2       |       |
| Top 50%  | 0.56%    | 11.3       |       |
| Top 75%  | 0.66%    | 13.2       |       |
| Top 100% | 0.47%    | 9.4        |       |
| Base     | 0.01%    | 0.3        |       |
| TOTAL    | 2.30%    | 46.3 Acres |       |

Created by: VSS, LLC using VSS-IVS Interactive Viewshed Analysis Tool

Important Note:

Visibility percentages and acreages based on range parameter.

## **ATTACHMENT 5**



## RE027, EH&S Notification

## Template Form for EH310, Generator and Engine Manufacturer Documents

Version 2.0

### Instructions:

For RE027, EH&S Notification related to Generator and Fuel Storage Tank projects, the vendor is to attach the manufacturer specification sheet, manufacturer emissions data sheet, and manufacturer certificate of conformity for the associated Generator and Engine to each respective section below. When attached, the completed Template Form is to be uploaded into CCN/FileNet under Document ID EH310, Generator and Engine Manufacturer Documents.

Please contact Ron Houser, Sr. Project Manager, at [rh037s@att.com](mailto:rh037s@att.com) or 330-509-6543 with questions.

### Document Attachments:

1. Generator Manufacturer Specification Sheet
2. Generator Manufacturer Emissions Data Sheet
3. Generator Manufacturer Certificate of Conformity



## The Kohler® Advantage

- **High Quality Power**

Kohler home generators provide advanced voltage and frequency regulation along with ultra-low levels of harmonic distortion for excellent generator power quality to protect your valuable electronics.

- **Extraordinary Reliability**

Kohler is known for extraordinary reliability and performance and backs that up with a premium five-year or 2000 hour limited warranty.

- **All-Aluminum Sound Enclosure**

- **Quiet Operation**

Kohler home generators provide quiet, neighborhood-friendly performance.

## Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The generator set accepts rated load in one step.
- A standard five-year or 2000 hour limited warranty covers all systems and components.
- Quick-ship (QS) models with selected features are available. See your Kohler distributor for details.
- Meets 291 kph (181 mph) wind load rating.
- RDC2 Controller
  - One digital controller manages both the generator set and transfer switch functions (with optional Model RXT transfer switch).
  - Designed for today's most sophisticated electronics.
  - Electronic speed control responds quickly to varying household demand.
  - Digital voltage regulation protects your valuable electronics from harmonic distortion and unstable power quality.
  - Two-line, backlit LCD screen is easy to read in all lighting conditions, including direct sunlight and low light.
- Engine Features
  - Powerful and reliable 2.2 L liquid-cooled engine
  - Electronic engine management system.
  - Simple field conversion between natural gas and LPG fuels while maintaining emission certification.
- Innovative Cooling System
  - Electronically controlled fan speeds minimize generator set sound signature.
- Certifications
  - The 60 Hz generator set engine is certified by the Environmental Protection Agency (EPA) to conform to the New Source Performance Standard (NSPS) for stationary spark-ignited emissions.
  - UL 2200/cUL listing is available (60 Hz only).
  - CSA certification is available (60 Hz only).
  - Accepted by the Massachusetts Board of Registration of Plumbers and Gas Fitters.
- Approved for stationary standby applications in locations served by a reliable utility source.

## Generator Set Ratings

| Alternator | Voltage  | Standby Ratings |    |        |      | LPG   |     |
|------------|----------|-----------------|----|--------|------|-------|-----|
|            |          | Natural Gas     |    |        |      |       |     |
|            |          | Ph              | Hz | kW/kVA | Amps |       |     |
| 4E5.0      | 120/240  | 1               | 60 | 21/21  | 87   | 24/24 | 100 |
|            | 120/208  | 3               | 60 | 21/26  | 73   | 23/28 | 80  |
|            | 127/220  | 3               | 60 | 21/26  | 69   | 23/28 | 75  |
|            | 120/240  | 3               | 60 | 21/26  | 63   | 23/28 | 69  |
|            | 277/480  | 3               | 60 | 21/26  | 32   | 23/28 | 35  |
|            | 220/380* | 3               | 50 | 16/20  | 30   | 17/22 | 33  |
|            | 230/400  | 3               | 50 | 16/21  | 30   | 18/23 | 33  |
|            | 240/416* | 3               | 50 | 16/21  | 29   | 18/23 | 32  |

\* 50 Hz models are factory-connected as 230/400 volts. Field-adjustable to 220/380 or 240/416 volts by an authorized service technician.

**RATINGS:** All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor. Due to manufacturing variations, the ratings tolerance is  $\pm 5\%$ . **Standby Ratings:** Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads with an average load factor of 80% for the duration of a power outage. No overload capacity is specified for this rating. Ratings are in accordance with ISO-3046/1, BS 5514, AS 2789, and DIN 6271. **GENERAL GUIDELINES FOR DERATING:** *Altitude:* Derate 1.3% per 100 m (328 ft.) elevation above 200 m (656 ft.). *Temperature:* Derate 3.0% per 10°C (18°F) temperature above 25°C (77°F). Availability is subject to change without notice. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler generator distributor for availability.

## Alternator Specifications

| Specifications                           | Alternator                    |
|------------------------------------------|-------------------------------|
| Manufacturer                             | Kohler                        |
| Type                                     | 4-Pole, Rotating Field        |
| Exciter type                             | Brushless, Wound-Field        |
| Leads: quantity, type                    |                               |
| 4E5.0                                    | 4, 120/240                    |
| 4D5.0                                    | 12, Reconnectable             |
| Voltage regulator                        | Solid State, Volts/Hz         |
| Insulation:                              | NEMA MG1                      |
| Material                                 | Class H                       |
| Temperature rise                         | 130°C, Standby                |
| Bearing: quantity, type                  | 1, Sealed                     |
| Coupling                                 | Flexible Disc                 |
| Voltage regulation, no-load to full-load | ±1.0% Maximum                 |
| Unbalanced load capability               | 100% of Rated Standby Current |
| One-step load acceptance                 | 100% of Rating                |
| Peak motor starting kVA:                 | (35% dip for voltages below)  |
| 240 V                                    | 4E5.0 (4 lead)                |
| 480 V, 400 V                             | 4D5.0 (12 lead)               |
|                                          | 37 (60 Hz)                    |
|                                          | 59 (60 Hz)      44 (50 Hz)    |

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and drip-proof construction.
- Windings are vacuum-impregnated with epoxy varnish for dependability and long life.
- Superior voltage waveform from a two-thirds pitch stator and skewed rotor.
- Total harmonic distortion (THD) from no load to full load with a linear load is less than 5%.

## Application Data

### Engine

| Engine Specifications                      | 60 Hz                                                                  | 50 Hz     |
|--------------------------------------------|------------------------------------------------------------------------|-----------|
| Manufacturer                               | Kohler                                                                 |           |
| Engine: model, type                        | Residential Powertrain<br>KG2204, 2.2 L, 4-Cycle<br>Natural Aspiration |           |
| Cylinder arrangement                       | In-line 4                                                              |           |
| Displacement, L (cu. in.)                  | 2.2 (134.25)                                                           |           |
| Bore and stroke, mm (in.)                  | 91 x 86 (3.5 x 3.4)                                                    |           |
| Compression ratio                          | 10.5:1                                                                 |           |
| Piston speed, m/min. (ft./min.)            | 310 (1016)                                                             | 258 (847) |
| Main bearings: quantity, type              | 5, plain alloy steel                                                   |           |
| Rated rpm                                  | 1800                                                                   | 1500      |
| Max. power at rated rpm, kW (HP)           |                                                                        |           |
| LPG                                        | 30 (40)                                                                | NA        |
| Natural Gas                                | 27 (36)                                                                | NA        |
| Cylinder head material                     | Cast Iron                                                              |           |
| Piston type and material                   | High Silicon Aluminum                                                  |           |
| Crankshaft material                        | Nodular Iron                                                           |           |
| Valve (exhaust) material                   | Forged Steel                                                           |           |
| Governor type                              | Electronic                                                             |           |
| Frequency regulation, no-load to full-load | Isochronous                                                            |           |
| Frequency regulation, steady state         | ±1.0%                                                                  |           |
| Frequency                                  | Fixed                                                                  |           |
| Air cleaner type                           | Dry                                                                    |           |

### Engine Electrical

| Engine Electrical System                     |            |
|----------------------------------------------|------------|
| Ignition system                              | Electronic |
| Battery charging alternator:                 |            |
| Ground (negative/positive)                   | Negative   |
| Volts (DC)                                   | 14         |
| Ampere rating                                | 90         |
| Starter motor rated voltage (DC)             | 12         |
| Battery, recommended rating for -18°C (0°F): |            |
| Qty., cold cranking amps (CCA)               | One, 630   |
| Battery voltage (DC)                         | 12         |
| Battery group size                           | 24         |

### Exhaust

| Exhaust System                                        | 60 Hz      | 50 Hz |
|-------------------------------------------------------|------------|-------|
| Exhaust manifold type                                 | Dry        |       |
| Exhaust temperature at rated kW, dry exhaust, °C (°F) | 633 (1171) |       |
| Maximum allowable back pressure, kPa (in. Hg)         | 7.5 (2.2)  |       |

### Fuel

| Fuel System                                                           |                    |
|-----------------------------------------------------------------------|--------------------|
| Fuel type                                                             | Natural Gas or LPG |
| Fuel supply line inlet                                                | 1 in. NPT          |
| Natural gas fuel supply pressure, kPa (in. H <sub>2</sub> O)          | 1.24-2.74 (5-11)   |
| LPG vapor withdrawal fuel supply pressure, kPa (in. H <sub>2</sub> O) | 1.24-2.74 (5-11)   |

| Fuel Composition Limits *                                           | Nat. Gas   | LP Gas      |
|---------------------------------------------------------------------|------------|-------------|
| Methane, % by volume                                                | 90 min.    | —           |
| Ethane, % by volume                                                 | 4.0 max.   | —           |
| Propane, % by volume                                                | 1.0 max.   | 85 min.     |
| Propene, % by volume                                                | 0.1 max.   | 5.0 max.    |
| C <sub>4</sub> and higher, % by volume                              | 0.3 max.   | 2.5 max.    |
| Sulfur, ppm mass                                                    |            | 25 max.     |
| Lower heating value, MJ/m <sup>3</sup> (Btu/ft <sup>3</sup> ), min. | 33.2 (890) | 84.2 (2260) |

\* Fuels with other compositions may be acceptable. If your fuel is outside the listed specifications, contact your local distributor for further analysis and advice.

### Lubrication

| Lubricating System                                |               |
|---------------------------------------------------|---------------|
| Type                                              | Full Pressure |
| Oil pan capacity, L (qt.)                         | 4.2 (4.4)     |
| Oil added during oil change (on average), L (qt.) | 3.3 (3.5)     |
| Oil filter: quantity, type                        | 1, Cartridge  |

## Application Data

### Cooling

| Radiator System                                                        | 60 Hz               | 50 Hz |
|------------------------------------------------------------------------|---------------------|-------|
| Ambient temperature, °C (°F)                                           | 45 (113)            |       |
| Engine jacket water capacity, L (gal.)                                 | 2.65 (0.7)          |       |
| Radiator system capacity, including engine, L (gal.)                   | 13.2 (3.5)          |       |
| Water pump type                                                        | Centrifugal         |       |
| Fan diameter, mm (in.)                                                 | qty. 3 @ 406 (16)   |       |
| Fan power requirements (powered by engine battery charging alternator) | 12VDC, 18 amps each |       |

### Operation Requirements

| Air Requirements                                                               | 60 Hz     | 50 Hz     |
|--------------------------------------------------------------------------------|-----------|-----------|
| Radiator-cooled cooling air, m <sup>3</sup> /min. (scfm) <sup>†</sup>          | 51 (1800) | 51 (1800) |
| Combustion air, m <sup>3</sup> /min. (cfm)                                     | 1.4 (49)  | 1.2 (42)  |
| Air over engine, m <sup>3</sup> /min. (cfm)                                    | 25 (900)  | 25 (900)  |
| <sup>†</sup> Air density = 1.20 kg/m <sup>3</sup> (0.075 lbm/ft <sup>3</sup> ) |           |           |

### Fuel Consumption<sup>‡</sup>

| Natural Gas, m <sup>3</sup> /hr. (cfh) at % load | 60 Hz     | 50 Hz     |
|--------------------------------------------------|-----------|-----------|
| 100%                                             | 8.5 (301) | 7.8 (275) |
| 75%                                              | 6.3 (223) | 6.4 (225) |
| 50%                                              | 5.6 (199) | 5.4 (192) |
| 25%                                              | 4.0 (140) | 3.3 (116) |
| Exercise                                         | 2.8 (97)  | 2.9 (103) |
| LP Gas, m <sup>3</sup> /hr. (cfh) at % load      | 60 Hz     | 50 Hz     |
| 100%                                             | 3.2 (113) | 2.7 (96)  |
| 75%                                              | 2.8 (97)  | 2.3 (81)  |
| 50%                                              | 2.4 (84)  | 2.0 (72)  |
| 25%                                              | 1.8 (63)  | 1.7 (60)  |
| Exercise                                         | 1.4 (51)  | 1.4 (48)  |

<sup>‡</sup> Nominal Fuel Rating:

Natural gas, 37 MJ/m<sup>3</sup> (1000 Btu/ft<sup>3</sup>)

LP Vapor, 93 MJ/m<sup>3</sup> (2500 Btu/ft<sup>3</sup>)

LP vapor conversion factors:

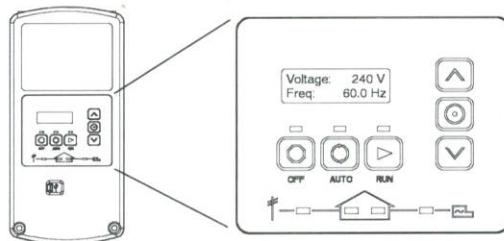
8.58 ft.<sup>3</sup> = 1 lb.

0.535 m<sup>3</sup> = 1 kg.

36.39 ft.<sup>3</sup> = 1 gal.

### Sound Enclosure Features

- Sound-attenuating enclosure uses acoustic insulation that meets UL 94 HF1 flammability classification and repels moisture absorption.
- Internally mounted critical silencer.
- Skid-mounted, aluminum construction with two removable access panels.
- Fade-, scratch-, and corrosion-resistant Kohler® cashmere powder-baked finish.


### Sound Data

Model 24RCL 8 point logarithmic average sound levels are 54 dB(A) during weekly engine exercise and 61 dB(A) during full-speed generator diagnostics and normal operation. For comparison to competitor ratings, the lowest point sound levels are 52 dB(A) and 60 dB(A) respectively.\*

All sound levels are measured at 7 meters with no load.

\* Lowest of 8 points measured around the generator. Sound levels at other points around generator may vary depending on installation parameters.

### RDC2 Controller



The RDC2 controller provides integrated control for the generator set, Kohler® Model RXT transfer switch, programmable interface module (PIM), and load management.

The RDC2 controller's 2-line LCD screen displays status messages and system settings that are clear and easy to read, even in direct sunlight or low light.

### RDC2 Controller Features

- Membrane keypad
  - OFF, AUTO, and RUN push buttons
  - Select and arrow buttons for access to system configuration and adjustment menus
- LED indicators for OFF, AUTO, and RUN modes
- LED indicators for utility power and generator set source availability and ATS position (Model RXT transfer switch required)
- LCD screen
  - Two lines x 16 characters per line
  - Backlit display with adjustable contrast for excellent visibility in all lighting conditions
- Scrolling system status display
  - Generator set status
  - Voltage and frequency
  - Engine temperature
  - Oil pressure
  - Battery voltage
  - Engine runtime hours
- Date and time displays
- Smart engine cooldown senses engine temperature
- Digital isochronous governor to maintain steady-state speed at all loads
- Digital voltage regulation:  $\pm 1.0\%$  RMS no-load to full-load
- Automatic start with programmed cranking cycle
- Programmable exerciser can be set to start automatically on any future day and time, and to run every week or every two weeks
- Exercise modes
  - Unloaded exercise with complete system diagnostics
  - Unloaded full-speed exercise
  - Loaded full-speed exercise (Model RXT ATS required)
- Front-access mini USB connector for SiteTech™ connection
- Integral Ethernet connector for Kohler® OnCue® Plus
- Built-in 2.5 amp battery charger
- Remote two-wire start/stop capability for optional connection of a Model RDT transfer switch

See additional controller features on the next page.

## Additional RDC2 Controller Features

- Diagnostic messages
  - Displays diagnostic messages for the engine, generator, Model RXT transfer switch, programmable interface module (PIM), and load management device
  - Over 70 diagnostic messages can be displayed
- Maintenance reminders
- System settings
  - System voltage, frequency, and phase
  - Voltage adjustment
  - Measurement system, English or metric
- ATS status (Model RXT ATS required)
  - Source availability
  - ATS position (normal/utility or emergency/generator)
  - Source voltage and frequency
- ATS control (Model RXT ATS required)
  - Source voltage and frequency settings
  - Engine start time delay
  - Transfer time delays
  - Fixed pickup and dropout settings
  - Voltage calibration
- Programmable interface module (PIM) status displays
  - Input status (active/inactive)
  - Output status (active/inactive)
- Load control menus
  - Load status
  - Test function

## Generator Set Standard Features

- Aluminum sound enclosure with enclosed silencer
- Battery rack and cables
- Electronic, isochronous governor
- Flexible fuel line
- Gas fuel system (includes fuel mixer, electronic secondary gas regulator, two gas solenoid valves, and flexible fuel line between the engine and the skid-mounted fuel system components)
- Integral vibration isolation
- Line circuit breaker
- Oil drain extension
- OnCue® Plus Generator Management System
- Operation and installation literature
- RDC2 controller with built-in battery charger
- Standard five-year or 2000 hour limited warranty

## Available Options

### Approvals and Listings

- UL 2200/cUL Listing (60 Hz only)
- CSA Approval (60 Hz only)

### Controller Accessories

- Lockable Emergency Stop (lockout/tagout)
- Programmable Interface Module (PIM)  
(provides 2 digital inputs and 6 relay outputs)

### Electrical System

- Battery
- Battery Heater

## Available Options, Continued

### Starting Aids

- Oil Pan Heater, 120 V, 1 Ph
- Oil Pan Heater, 240 V, 1 Ph

Recommended for ambient temperatures below 0°C (32°F).

### Automatic Transfer Switches and Accessories

- Model RDT Automatic Transfer Switch
- Model RXT Automatic Transfer Switch
- Model RXT Automatic Transfer Switch with Combined Interface/Load Management Board
- Load Shed Kit for RDT or RXT
- Power Relay Modules (use up to 4 relay modules for each load management device)

### Miscellaneous

- Rated Power Factor Testing

### Literature

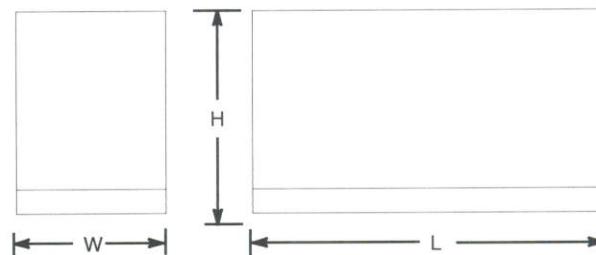
- General Maintenance Literature Kit
- Overhaul Literature Kit
- Production Literature Kit

### Warranty

- Extended 5-Year/2000 Hour Comprehensive Limited Warranty

### Other Options

- \_\_\_\_\_
- \_\_\_\_\_


## Dimensions and Weights

Overall Size, L x W x H, mm (in.):

1880 x 836 x 1169  
(74 x 32.9 x 46.0)

Shipping Weight, wet, kg (lb.): 572 (1260)

Weight includes generator set with engine fluids, sound enclosure, silencer, and packaging.



NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

### DISTRIBUTED BY:



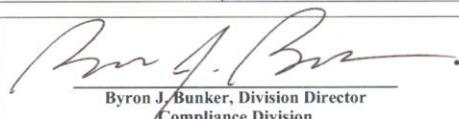
| 2019 Stationary 60 Hz Emergency Standby Certified Power Generation Rating Data |        |       |      |      |            |                |    |               |                 |                 |                  |          |
|--------------------------------------------------------------------------------|--------|-------|------|------|------------|----------------|----|---------------|-----------------|-----------------|------------------|----------|
| Generator Model                                                                | Engine | Speed | Freq | Fuel | Duty Cycle | Flywheel power |    | Engine Family | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | Catalyst |
|                                                                                |        | RPM   | Hz   |      |            | HP             | kW |               | (g/kW-hr)       | (g/kW-hr)       | (g/kW-hr)        |          |
| 24RCL                                                                          | KG2204 | 1800  | 60   | LPG  | Emergency  | 40             | 30 | KKHXB2.237NA  | 728.6           | 0.305           | -                | No       |
|                                                                                | KG2204 | 1800  | 60   | NG   | Emergency  | 36             | 27 | KKHXB2.237DA  | 678.2           | 1.421           | -                | No       |

<sup>1</sup> Standby and overload ratings based on ISO3046. Continuous ratings based on ISO 8528.

<sup>2</sup> All ratings are gross flywheel horsepower corrected to 77°F at an altitude of 328 feet with no cooling fan or alternator losses using heating value for NG of 1015 BTU/SCF.

<sup>3</sup> Production tolerances in engines and installed components can account for power variations of +/- 5%. Altitude, temperature and excessive exhaust and intake restrictions should be applied to power calculations.

<sup>4</sup> Electrical ratings are an estimated based on assumed fan and generator losses and may vary depending on actual equipment losses.




UNITED STATES ENVIRONMENTAL PROTECTION AGENCY  
2019 MODEL YEAR  
CERTIFICATE OF CONFORMITY  
WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION  
AND AIR QUALITY  
ANN ARBOR, MICHIGAN 48105

**Certificate Issued To:** Kohler Co.  
(U.S. Manufacturer or Importer)  
**Certificate Number:** KKHB2.237NA-004

**Effective Date:**  
12/14/2018  
**Expiration Date:**  
12/31/2019



Byron J. Bunker, Division Director  
Compliance Division

**Issue Date:**  
12/14/2018  
**Revision Date:**  
N/A

**Manufacturer:** Kohler Co.  
**Engine Family:** KKHB2.237NA  
**Mobile/Stationary Certification Type:** Stationary  
**Fuel :** LPG/Propane  
**Emission Standards :**  
Part 90 Phase 1  
CO ( g/kW-hr ) : 519.0  
HC + NOx ( g/kW-hr ) : 13.4  
**Emergency Use Only :** Y

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 1065, 1068, and 60 ( stationary only and combined stationary and mobile ) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

## **ATTACHMENT 6**

# Natural Diversity Data Base

## Areas

### DANBURY, CT

December 2020

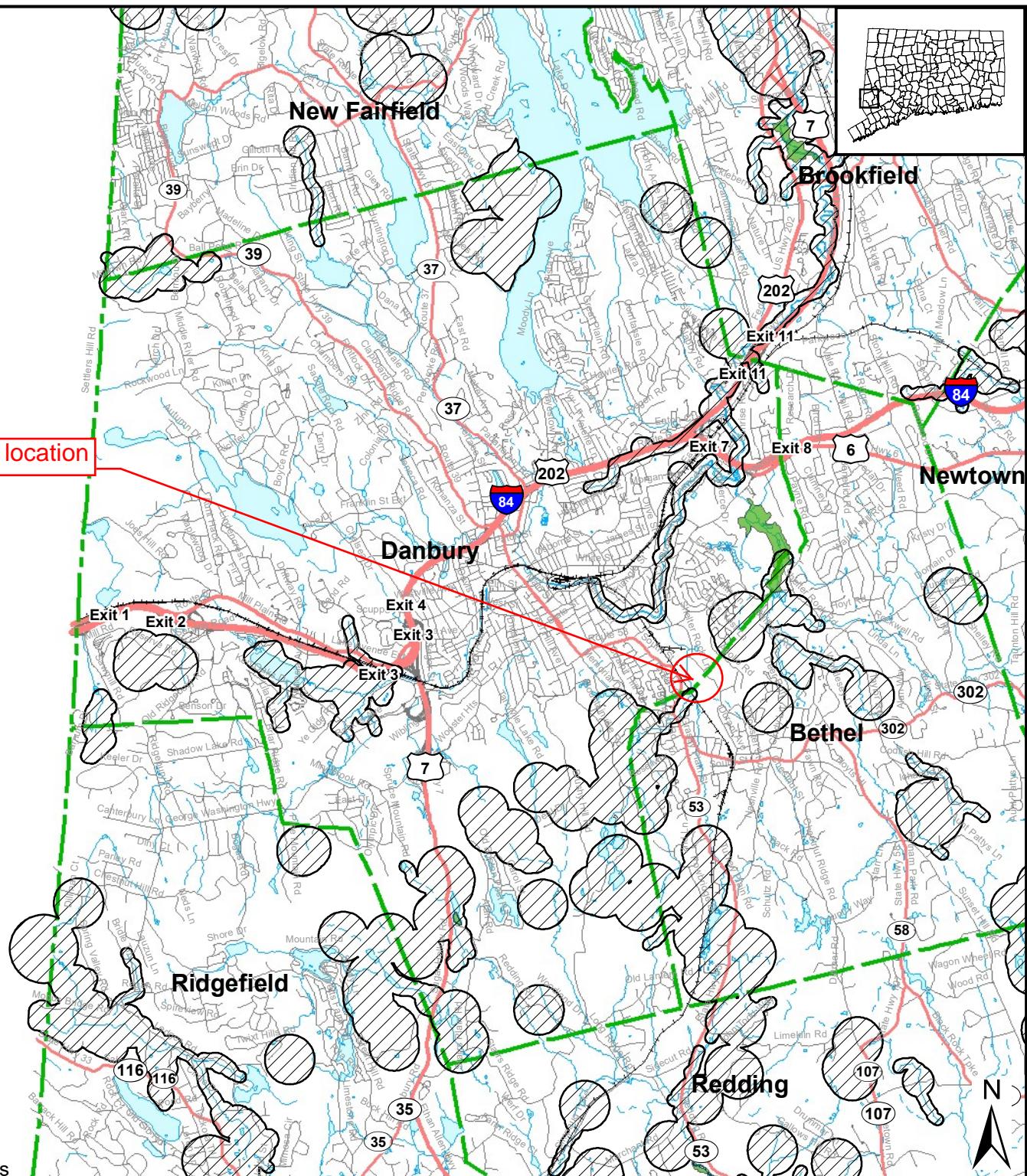
-  State and Federal Listed Species
-  Critical Habitat
-  Town Boundary

NOTE: This map shows general locations of State and Federal Listed Species and Critical Habitats. Information on listed species is collected and compiled by the Natural Diversity Data Base (NDDB) from a variety of data sources. Exact locations of species have been buffered to produce the generalized locations.

This map is intended for use as a preliminary screening tool for conducting a Natural Diversity Data Base Review Request. To use the map, locate the project boundaries and any additional affected areas. If the project is within a hatched area there may be a potential conflict with a listed species. For more information, complete a Request for Natural Diversity Data Base State Listed Species Review form (DEP-APP-007), and submit it to the NDDB along with the required maps and information. More detailed instructions are provided with the request form on our website.

[www.ct.gov/dep/nddbrequest](http://www.ct.gov/dep/nddbrequest)

Use the CTECO Interactive Map Viewers at <http://cteco.uconn.edu> to more precisely search for and locate a site and to view aerial imagery with NDDB Areas.


QUESTIONS: Department of Energy and Environmental Protection (DEEP)  
79 Elm St, Hartford, CT 06106  
email: [deep.nddbrequest@ct.gov](mailto:deep.nddbrequest@ct.gov)  
Phone: (860) 424-3011



Connecticut Department of  
Energy & Environmental Protection  
Bureau of Natural Resources  
Wildlife Division

0 0.5 1 Miles

Existing tower location



## **ATTACHMENT 7**

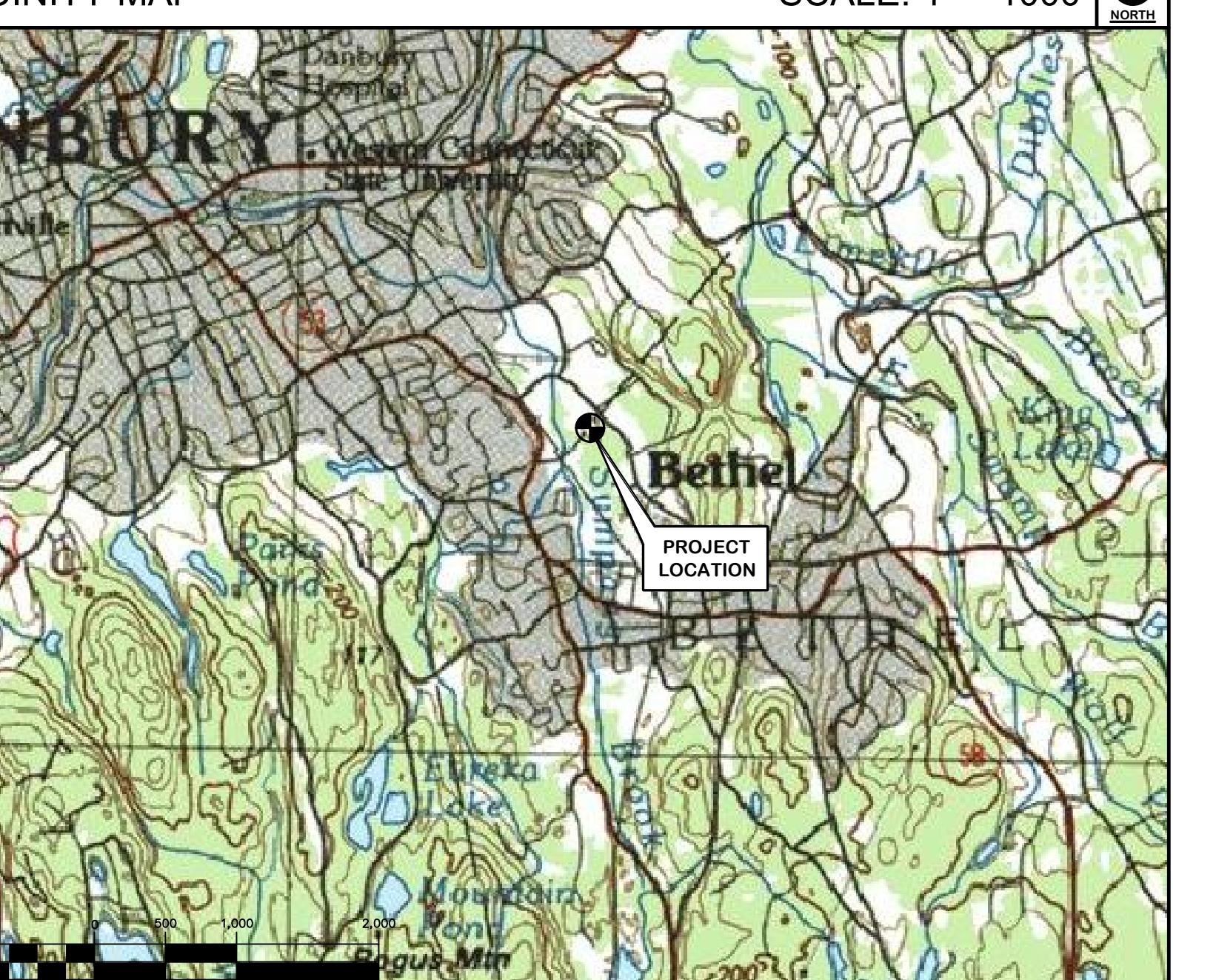


WIRELESS COMMUNICATIONS FACILITY  
CT2873 BETHEL  
15 GREAT PASTURE ROAD  
DANBURY, CT 06810

## GENERAL NOTES

1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE, INCLUDING THE TIA-222 REVISION "G" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2018 CONNECTICUT FIRE SAFETY CODE AND, 2017 NATIONAL ELECTRICAL CODE AND LOCAL CODES.
2. THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCTION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY Affected WORK.
3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
4. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
5. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
7. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

## ROUTE DIRECTIONS


FROM: 500 ENTERPRISE DRIVE  
ROCKY HILL, CONNECTICUT

TO: 15 GREAT PASTURE ROAD  
DANBURY, CONNECTICUT

HEAD NORTHEAST ON ENTERPRISE DRIVE TOWARD CAPITAL BLVD.  
TURN LEFT ONTO CAPITAL BLVD.  
TURN LEFT ONTO WEST STREET.  
MERGE ONTO I-91 S VIA RAMP ON THE LEFT TOWARD NEW HAVEN.  
MERGE ONTO I-691 W VIA EXIT 18 TOWARD MERIDEN/WATERBURY.  
MERGE ONTO I-84 W VIA EXIT 1 ON THE LEFT TOWARD WATERBURY/DANBURY.  
MERGE ONTO NEWTOWN ROAD VIA EXIT 8 TOWARD BETHEL.  
TURN LEFT ONTO OLD SHELTER ROCK ROAD.  
OLD SHELTER ROCK ROAD BECOMES CROSS STREET.  
TURN LEFT ONTO SHELTER ROCK ROAD.  
TURN SLIGHT RIGHT ONTO SHELTER ROCK LANE.  
TURN LEFT ONTO GREAT PASTURE ROAD.  
5 GREAT PASTURE ROAD IS ON THE RIGHT.

## SCINITY MAP

SCALE 1" = 1000'



## PROJECT SUMMARY

THE PROPOSED SCOPE OF WORK CONSISTS OF THE PROPOSED COLLOCATION OF AT&T AT AN EXISTING UNMANNED WIRELESS TELECOMMUNICATIONS FACILITY, GENERALLY INCLUDING THE FOLLOWING:

INSTALLATION OF A PROPOSED 20' MONOPOLE TOWER EXTENSION TO THE TOP OF THE EXISTING MONOPOLE TOWER. THE DESIGN OF THE PROPOSED EXTENSION IS BY OTHERS.

INSTALLATION OF A PROPOSED ANTENNA MOUNTING PLATFORM. THE PROPOSED PLATFORM TO ACCOMMODATE THE INSTALLATION OF A TOTAL OF (6) PANEL ANTENNAS, (12) RRU UNITS AND (3) SURGE ARRESTOR UNITS ALONG WITH ASSOCIATED CABLING.

THE PROPOSED AT&T GROUND MOUNTED EQUIPMENT TO CONSIST OF A "WALK-IN EQUIPMENT CABINET (WIC) AND A 24 KW PROPANE FUELED GENERATOR, AND A 500 GALLON PROPANE TANK LOCATED WITHIN THE EXISTING FENCED FACILITY COMPOUND. AN ANTENNA CABLE ICE BRIDGE IS PROPOSED TO FACILITATE AT&T ANTENNA CABLES FROM THE WIC TO THE EXISTING MONOPOLE

## PROJECT INFORMATION

CT SITE NUMBER: CT2873  
CT SITE NAME: BETHEL  
CT ADDRESS: 15 GREAT PASTURE ROAD  
DANBURY, CT 06810

SEE/APPLICANT: AT&T MOBILITY  
500 ENTERPRISE DRIVE, SUITE 3A  
ROCKY HILL, CT 06067

AT PACE JOB: PACE JOB 1 - MRCTB026223  
PACE JOB 2 - MRCTB047907  
PACE JOB 3 - MRCTB026243  
PACE JOB 4 - MRCTB026229  
PACE JOB 5 - MRCTB006512  
PACE JOB 6 - MRCTB026247

FA LOCATION CODE: 12684101

## FEET INDEX

| NO. | DESCRIPTION                                 | REV.                                                                                  |
|-----|---------------------------------------------|---------------------------------------------------------------------------------------|
| -1  | TITLE SHEET                                 |  |
| -1  | NOTES, SPECIFICATIONS AND ANTENNA SCHEDULE  | 0                                                                                     |
| -0  | ABUTTERS AND NATURAL DIVERSITY MAPS         |  |
| -1  | SITE LOCATION PLAN                          | 0                                                                                     |
| -2  | COMPOUND PLANS AND ELEVATION                |  |
| -3  | ANTENNA CONFIGURATION AND EQUIPMENT DETAILS |  |
| -4  | SITE AND EQUIPMENT DETAILS                  |  |
| -5  | RF PLUMBING DIAGRAM                         | 0                                                                                     |
| -1  | SITE UTILITY PLAN                           | 0                                                                                     |
| -2  | COMPOUND PLANS                              | 0                                                                                     |
| -3  | ELECTRICAL RISER DIAGRAM AND NOTES          | 0                                                                                     |
| -4  | SCHEMATIC RISER DIAGRAM AND NOTES           | 0                                                                                     |
| -5  | ELECTRICAL GROUNDING PLAN AND NOTES         | 0                                                                                     |
| -6  | ELECTRICAL DETAILS                          |  |
| -7  | ELECTRICAL DETAILS                          | 0                                                                                     |
| -8  | ELECTRICAL DETAILS                          | 0                                                                                     |
| -9  | ELECTRICAL SPECIFICATIONS                   | 0                                                                                     |



**CENTEK**  
en  
Centered on Solutions™

(203) 488-0580  
(203) 488-8587 Fax  
63-2 North Brantford Road  
Brantford, CT 06405  
[www.CentekEng.com](http://www.CentekEng.com)

AT&T MOBILITY

WIRELESS COMMUNICATIONS FACILITY

CT2873 BETHEL

5 GREAT PASTURE ROAD  
DANBURY, CT 06810

|         |          |
|---------|----------|
| DATE:   | 08/20/19 |
| SCALE:  | AS NOTED |
| JOB NO. | 19101.00 |

**T-1**

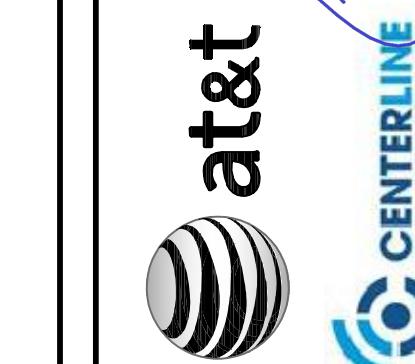
# STRUCTURAL SPECIFICATIONS

## **DESIGN BASIS:**

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CT STATE BUILDING CODE AND AMENDMENTS.

- DESIGN CRITERIA:
  - WIND LOAD: PER TIA 222 G (ANTENNA MOUNTS): 93 MPH (V<sub>asd</sub>)
  - RISK CATEGORY: II (BASED ON IBC TABLE 1604.5)
  - NOMINAL DESIGN SPEED (OTHER STRUCTURE): 118 MPH (V<sub>asd</sub>) (EXPOSURE B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2015 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.
  - SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES.

## **SPECIAL INSPECTIONS**



1. SPECIAL INSPECTIONS ARE TO BE PROVIDED BY AN APPROVED AGENCY HIRED BY AT&T.

## **GENERAL NOTES:**

1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.
2. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
5. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
6. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
7. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
8. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
13. NO DRILLING WELDING OR TAPING ON EVERSOURCE OWNED EQUIPMENT.
14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS

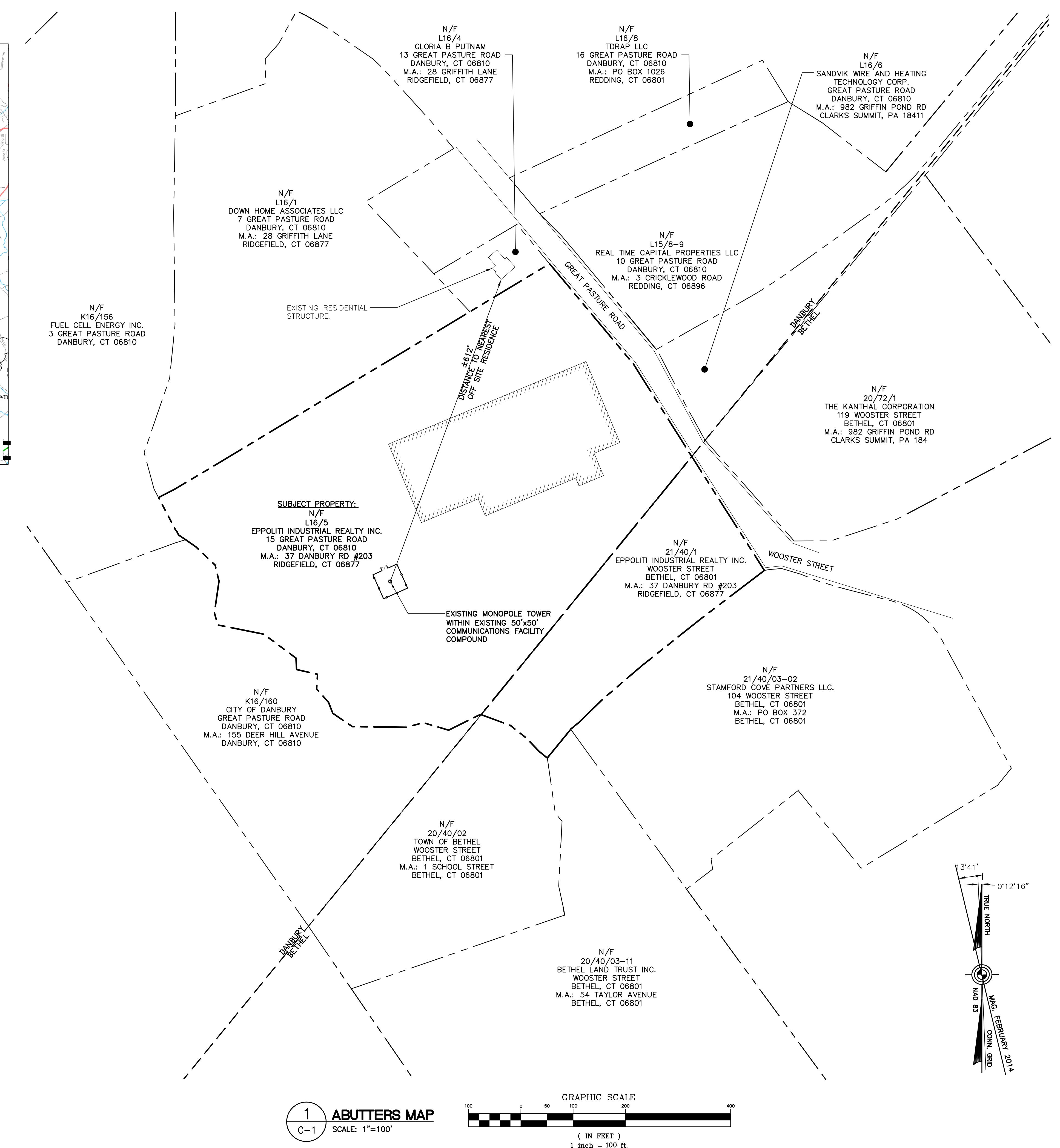
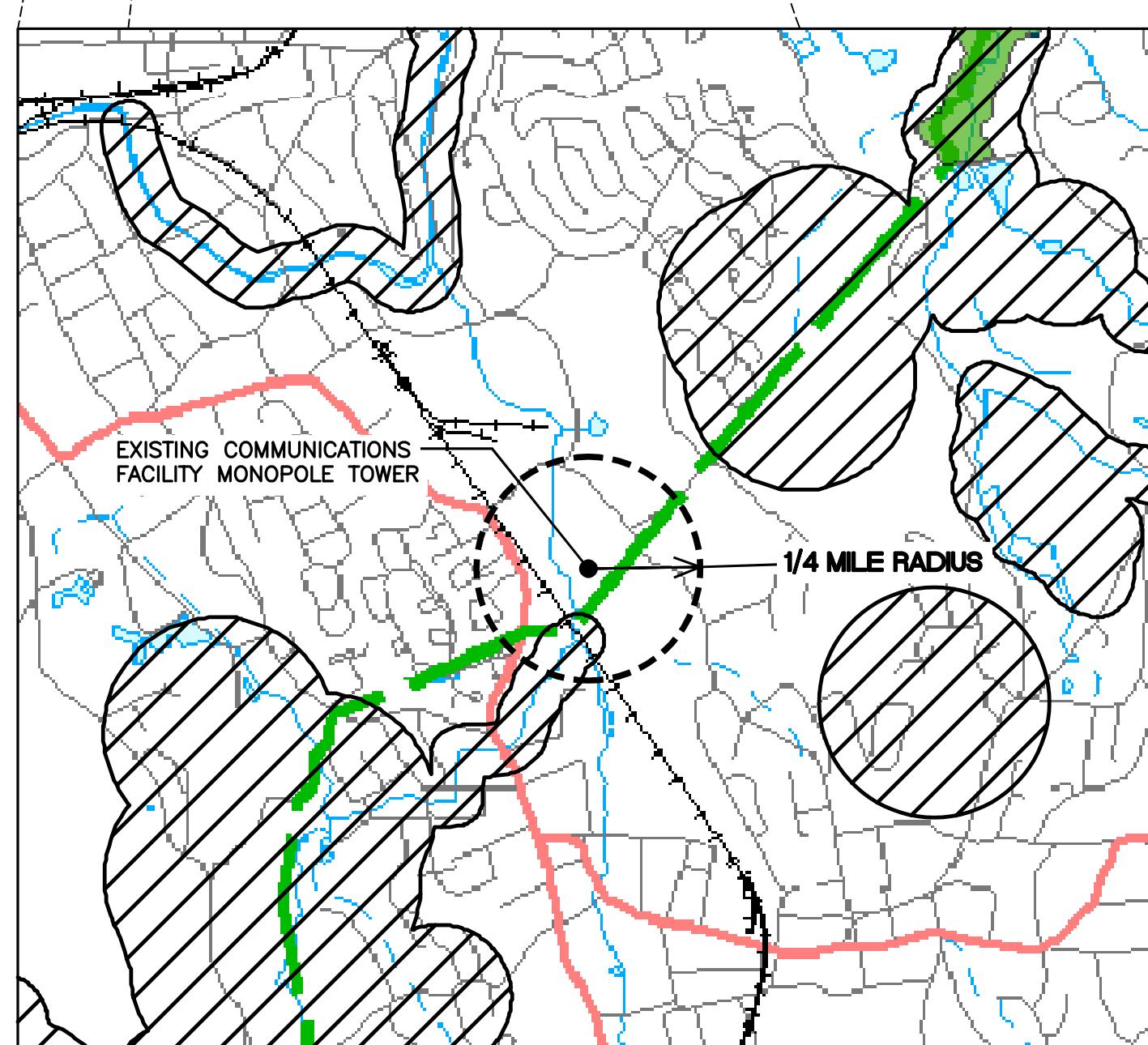
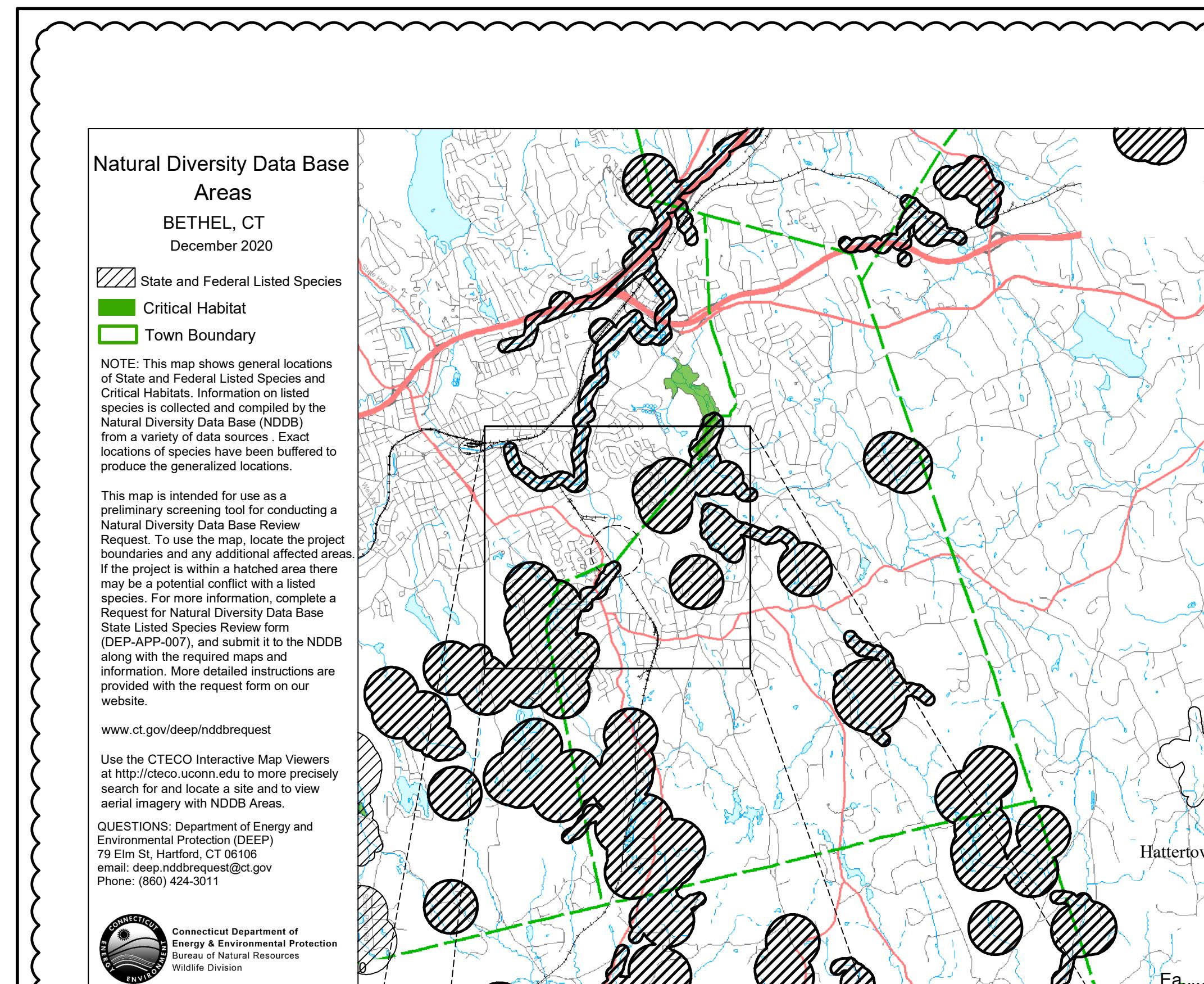
## **STRUCTURAL STEEL**

1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
  - A. STRUCTURAL STEEL (W SHAPES)---ASTM A992 (FY = 50 KSI)
  - B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36 (FY = 36 KSI)
  - C. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY = 46 KSI)
  - D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B, (FY = 42 KSI)
  - E. PIPE---ASTM A53 (FY = 35 KSI)
  - F. CONNECTION BOLTS---ASTM A325-N
  - G. U-BOLTS---ASTM A36
  - H. ANCHOR RODS---ASTM F 1554
  - I. WELDING ELECTRODE---ASTM E 70XX
2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
16. FABRICATE BEAMS WITH MILL CAMBER UP.
17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.



**ENTEK** engineering  
Centered on Solutions<sup>SM</sup>

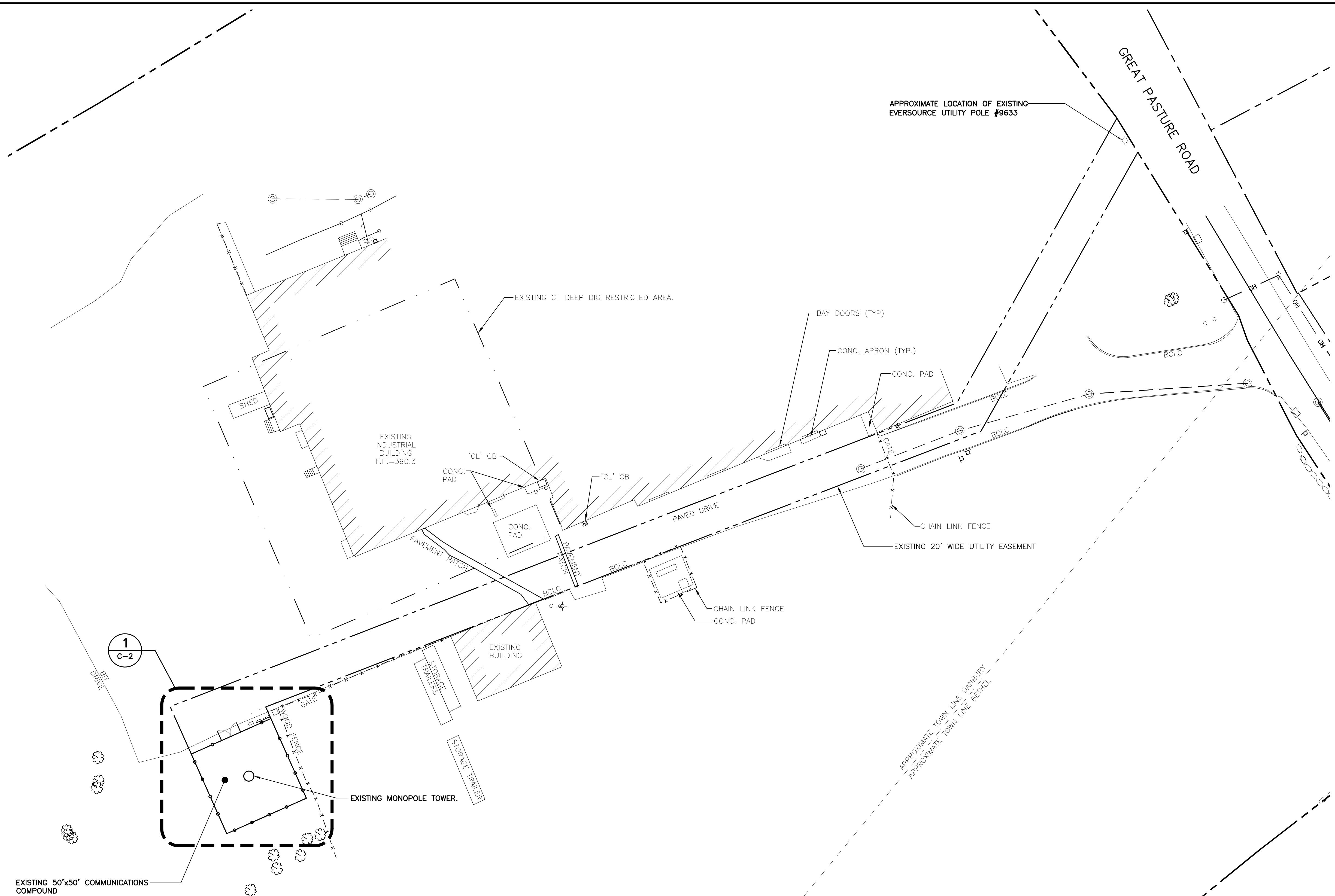
(33) 488-0580  
(33) 488-8587 Fax  
2 North Branford Road  
Branford, CT 06405




**T&T MOBILITY**  
RELESS COMMUNICATIONS FACILITY  
**CT2873 BETHEL**

| ANTENNA AND APPURTENANCE SCHEDULE |                   |                             |                    |                              |                   |         |          |                                           |                                                                                   |                    |                            |
|-----------------------------------|-------------------|-----------------------------|--------------------|------------------------------|-------------------|---------|----------|-------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------|
| Sector                            | Existing/Proposed | Band                        | Antenna            | Size (Inches)<br>(L x W x D) | Antenna<br>Height | Azimuth | Downtilt | (E/P) TMA/DIPLEXER<br>/TRIPLEXER<br>(Qty) | (E/P) RRU (Qty)                                                                   | Feeder             | (E/P) RAYCAP (Qty)         |
| A1                                | PROPOSED          | LTE 700 B14/LTE AWS/LTE WCS | CCI TPA65R-BU6DA-K | 71.2 x 21 x 7.8              | 140'              | 15°     | 0°       |                                           | (P) 4478 B14 (1 AT ANTENNA LOCATION), (P) 4415 B30 (1 AT ANTENNA LOCATION)        | FIBER AND DC POWER | DC-6-4-8-6-0-0-1-8-8-F (1) |
| A2                                | PROPOSED          | LTE 700/ 850 5G/LTE 1900    | CCI TPA65R-BU6DA-K | 71.2 x 21 x 7.8              | 140'              | 15°     | 0°       |                                           | (P) 4449 B5/B12 (1 AT ANTENNA LOCATION), (P) 8843 B2/B66A (1 AT ANTENNA LOCATION) | FIBER AND DC POWER |                            |
| A3                                |                   |                             |                    |                              |                   |         |          |                                           |                                                                                   |                    |                            |
| A4                                |                   |                             |                    |                              |                   |         |          |                                           |                                                                                   |                    |                            |
| B1                                | PROPOSED          | LTE 700 B14/LTE AWS/LTE WCS | CCI TPA65R-BU6DA-K | 71.2 x 21 x 7.8              | 140'              | 140°    | 0°       |                                           | (P) 4478 B14 (1 AT ANTENNA LOCATION), (P) 4415 B30 (1 AT ANTENNA LOCATION)        | FIBER AND DC POWER | DC-6-4-8-6-0-0-1-8-8-F (1) |
| B2                                | PROPOSED          | LTE 700/ 850 5G/LTE 1900    | CCI TPA65R-BU6DA-K | 71.2 x 21 x 7.8              | 140'              | 140°    | 0°       |                                           | (P) 4449 B5/B12 (1 AT ANTENNA LOCATION), (P) 8843 B2/B66A (1 AT ANTENNA LOCATION) | FIBER AND DC POWER |                            |
| B3                                |                   |                             |                    |                              |                   |         |          |                                           |                                                                                   |                    |                            |
| B4                                |                   |                             |                    |                              |                   |         |          |                                           |                                                                                   |                    |                            |
| C1                                | PROPOSED          | LTE 700 B14/LTE AWS/LTE WCS | CCI TPA65R-BU6DA-K | 71.2 x 21 x 7.8              | 140'              | 260°    | 0°       |                                           | (P) 4478 B14 (1 AT ANTENNA LOCATION), (P) 4415 B30 (1 AT ANTENNA LOCATION)        | FIBER AND DC POWER | DC-6-4-8-6-0-0-1-8-8-F (1) |
| C2                                | PROPOSED          | LTE 700/ 850 5G/LTE 1900    | CCI TPA65R-BU6DA-K | 71.2 x 21 x 7.8              | 140'              | 260°    | 0°       |                                           | (P) 4449 B5/B12 (1 AT ANTENNA LOCATION), (P) 8843 B2/B66A (1 AT ANTENNA LOCATION) | FIBER AND DC POWER |                            |
| C3                                |                   |                             |                    |                              |                   |         |          |                                           |                                                                                   |                    |                            |
| C4                                |                   |                             |                    |                              |                   |         |          |                                           |                                                                                   |                    |                            |

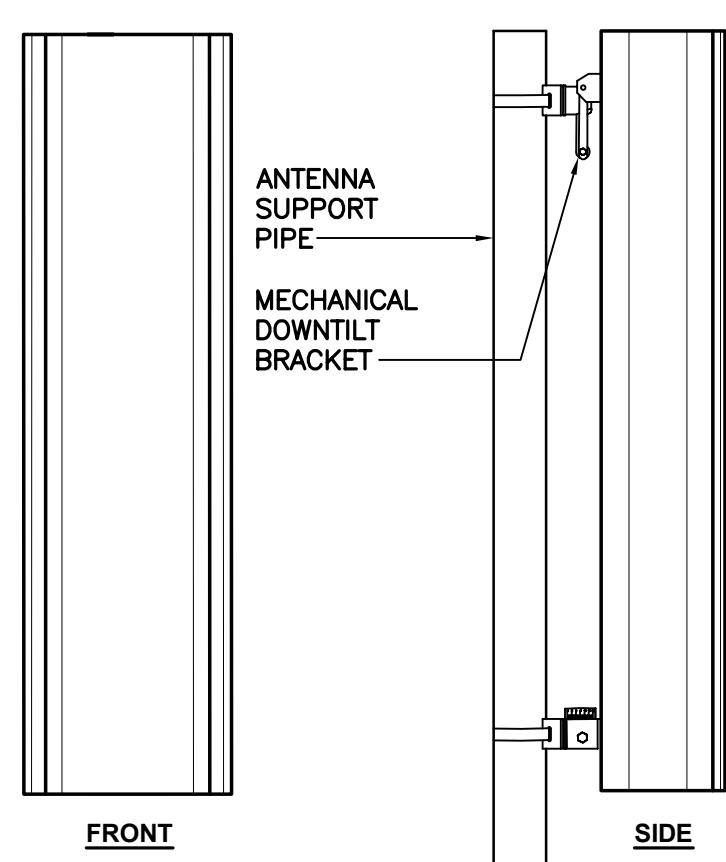
| RRU       | SIZE (INCHES)<br>(L x W x D) |
|-----------|------------------------------|
| 4478      | 14.9 x 13.1 x 7.3            |
| 5 B30     | 14.9 x 13.2 x 5.4            |
| B12 4449  | 17.9 x 13.2 x 9.4            |
| B66A 8843 | 14.9 x 13.2 x 10.9           |

|                                                   |          |
|---------------------------------------------------|----------|
| DATE:                                             | 08/20/19 |
| SCALE:                                            | AS NOTED |
| JOB NO.                                           | 19101.00 |
| NOTES,<br>SPECIFICATION<br>AND ANTENN<br>SCHEDULE |          |


N-



3


| AT&T MOBILITY                             |                 | CENTEK engineering<br>Centered on Solutions™                                      |                   | at&t<br>centerline |  |
|-------------------------------------------|-----------------|-----------------------------------------------------------------------------------|-------------------|--------------------|--|
| WIRELESS COMMUNICATIONS FACILITY          | CT2873 BETHEL   | (203) 484-5800<br>(203) 484-5801<br>632 North Branford Road<br>Branford, CT 06405 | www.CentekEng.com |                    |  |
| DATE: 08/20/19                            | SCALE: AS NOTED | JOB NO. 19101.00                                                                  |                   |                    |  |
| ABUTTERS AND<br>NATURAL DIVERSITY<br>MAPS |                 |                                                                                   |                   |                    |  |
| <b>C-0</b>                                |                 |                                                                                   |                   |                    |  |

Sheet No. 3 of 17

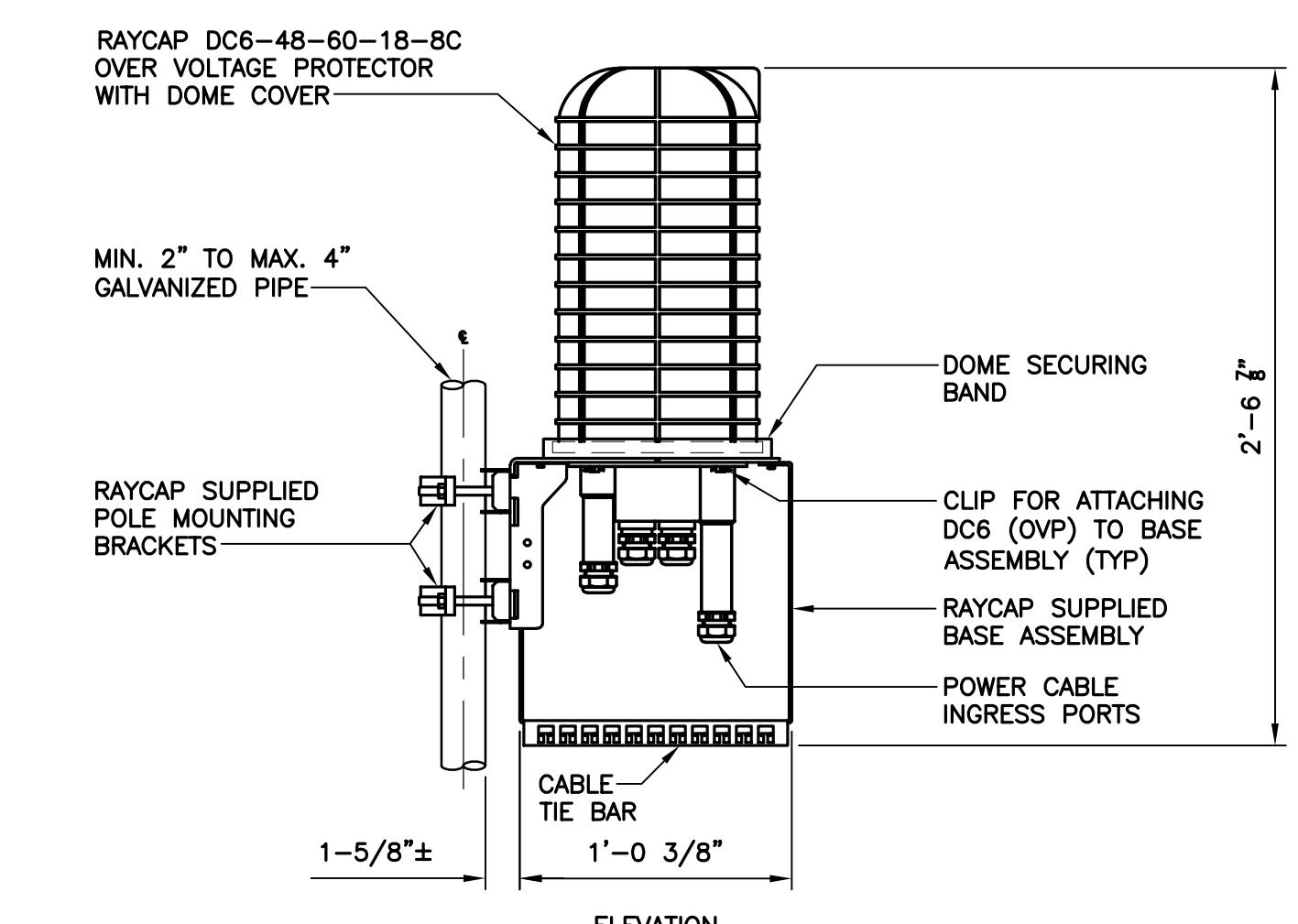


|                                              |          |                                                                                                                                                                             |          |                                                                                       |          |
|----------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|----------|
| AT & T MOBILITY                              |          | WIRELESS COMMUNICATIONS FACILITY                                                                                                                                            |          | 15 GREAT PASTURE ROAD<br>DANBURY, CT 06810                                            |          |
| CT2873 BETHEL                                |          | (203) 488-0580<br>(203) 488-8587 FAX<br>63-2 North Branford Road<br>Branford, CT 06405                                                                                      |          | www.CentekeEng.com                                                                    |          |
| CENTEK engineering<br>Centered on Solutions™ |          |   |          |  |          |
| DATE:                                        | 08/20/19 | SCALE:                                                                                                                                                                      | AS NOTED | REV.                                                                                  | 09/28/20 |
| JOB NO.                                      | 19101.00 |                                                                                                                                                                             |          | DMD                                                                                   | TJR      |
| SITE LOCATION PLAN                           |          |                                                                                                                                                                             |          |                                                                                       |          |
| C-1                                          |          |                                                                                                                                                                             |          |                                                                                       |          |
| Sheet No. 4 of 17                            |          |                                                                                                                                                                             |          |                                                                                       |          |





| ALPHA/BETA/GAMMA ANTENNA           |                            |         |
|------------------------------------|----------------------------|---------|
| EQUIPMENT                          | DIMENSIONS                 | WEIGHT  |
| MAKE: CCI<br>MODEL: TPA65R-BU6DA-K | 71.2" L x 21.0" W x 7.8" D | 87 LBS. |

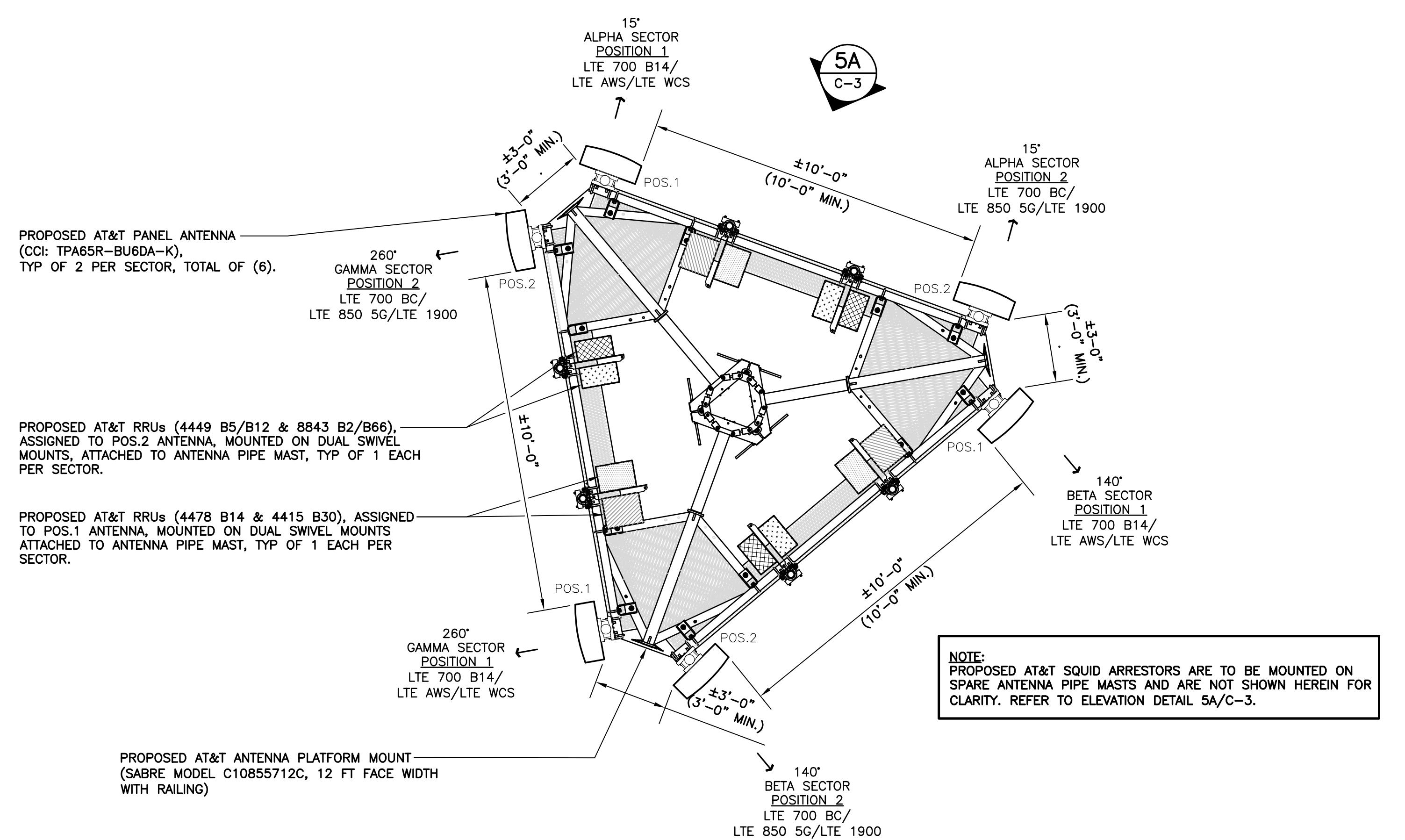

1 PROPOSED ANTENNA DETAIL  
C-3 NOT TO SCALE

| RRU DUAL SWIVEL MOUNT                                            |                            |           |
|------------------------------------------------------------------|----------------------------|-----------|
| EQUIPMENT                                                        | DIMENSIONS                 | WEIGHT    |
| MAKE: ERICSSON<br>MODEL: B14 4478<br>PART NO.: SITE PRO 1 RRUDSM | 27.75" L x 6.5" W x 4.7" D | 39.4 LBS. |
| NOTE: SWIVEL MOUNT KIT INCLUDES (2) SWIVEL MOUNTS.               |                            |           |

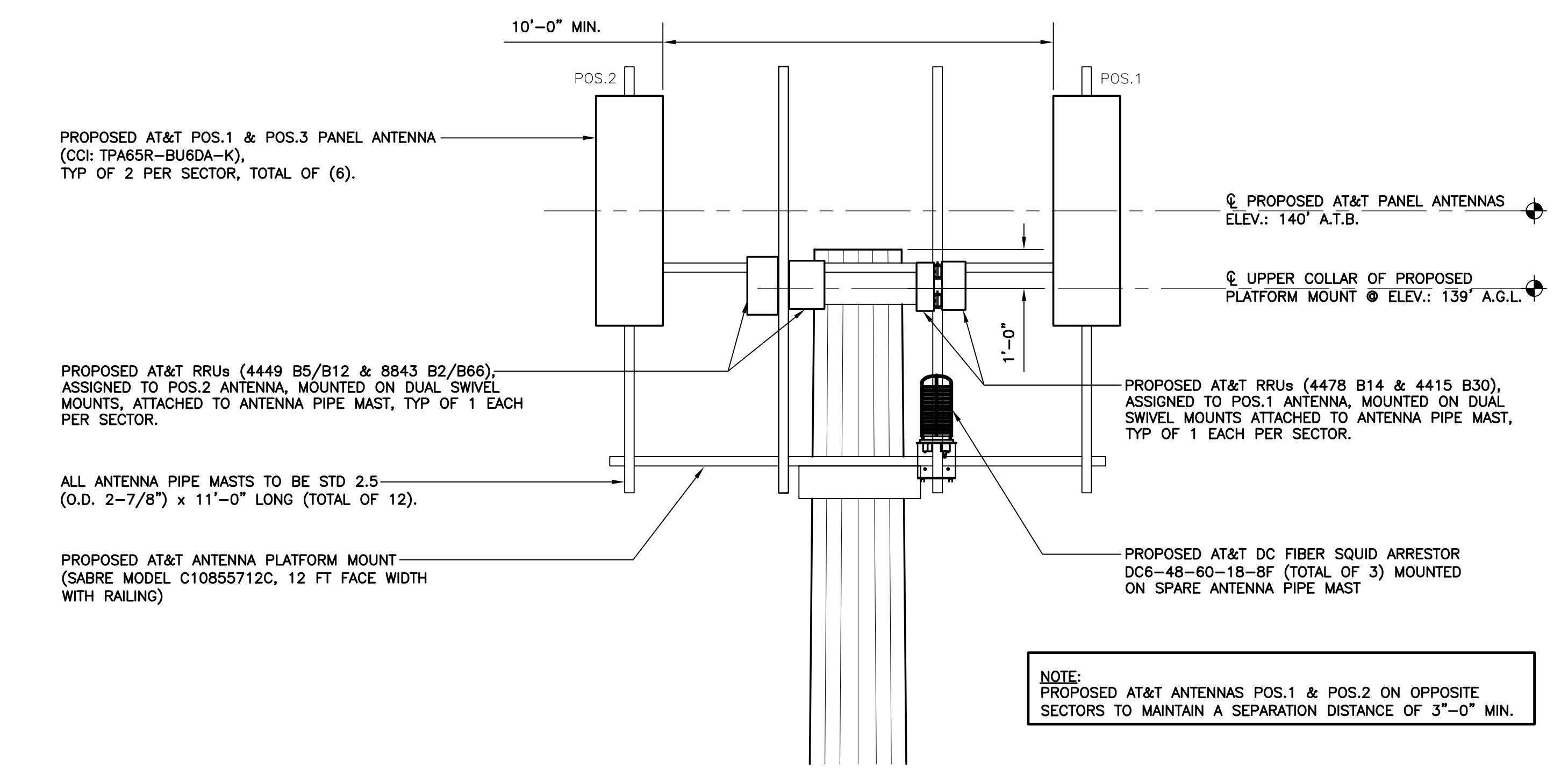
2 RRH DUAL SWIVEL MOUNT DETAIL  
C-3 NOT TO SCALE

| RRU (REMOTE RADIO UNIT)               |                             |                            |                                           |
|---------------------------------------|-----------------------------|----------------------------|-------------------------------------------|
| EQUIPMENT                             | DIMENSIONS                  | WEIGHT (W/O MOUNTING HDWR) | CLEARANCES                                |
| MAKE: ERICSSON<br>MODEL: B14 4478     | 14.9" L x 13.1" W x 7.3" D  | 60 LBS.                    | BELOW: 20" MIN.                           |
| MAKE: ERICSSON<br>MODEL: 4415 B30     | 14.9" L x 13.2" W x 5.4" D  | 44 LBS.                    | BELOW: 20" MIN.                           |
| MAKE: ERICSSON<br>MODEL: B5/B12 4449  | 17.9" L x 13.2" W x 9.4" D  | 71 LBS.                    | BELOW: 20" MIN.                           |
| MAKE: ERICSSON<br>MODEL: B2/B66A 8843 | 14.9" L x 13.2" W x 10.9" D | 72 LBS.                    | BELOW: 20" MIN.<br>TO EDGE OF ANTENNA: 8" |

NOTES:  
1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.  
2. CONTRACTOR TO INSTALL ARRESTOR IN CONFORMANCE WITH MANUFACTURERS RECOMMENDATIONS.  
3. RAYCAP VIA AT&T SUPPLIES THE DC6 OVER VOLTAGE PROTECTOR AND PIPE MOUNTING BRACKETS. SUBCONTRACTOR SHALL SUPPLY THE PIPE.




| SITE TYPE | ARRESTOR MAKE/MODEL                                     | QTY REQUIRED | ARRESTOR LOCATION                          | WEIGHT                     |
|-----------|---------------------------------------------------------|--------------|--------------------------------------------|----------------------------|
| MONOPOLE  | MAKE: RAYCAP (FIBER DC SQUID)<br>MODEL: DC6-48-60-18-8F | (3)          | TOWER, ADJACENT TO AT&T ANTENNAS AND RRUs. | 20 LBS.<br>(WITHOUT MOUNT) |


NOTES:  
1. CONTRACTOR TO COORDINATE FINAL SURGE ARRESTOR MODEL SELECTION(S) WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.  
2. CONTRACTOR TO INSTALL ARRESTOR IN CONFORMANCE WITH MANUFACTURERS RECOMMENDATIONS.  
3. RAYCAP VIA AT&T SUPPLIES THE DC6 OVER VOLTAGE PROTECTOR AND PIPE MOUNTING BRACKETS. SUBCONTRACTOR SHALL SUPPLY THE PIPE.

3 PROPOSED RRU SPECIFICATIONS  
C-3 NOT TO SCALE

4 PROPOSED SURGE ARRESTOR DETAIL  
C-3 NOT TO SCALE



5 ANTENNA MOUNTING CONFIG. PLAN  
C-3  
SCALE: 3/8" = 1' - 0"



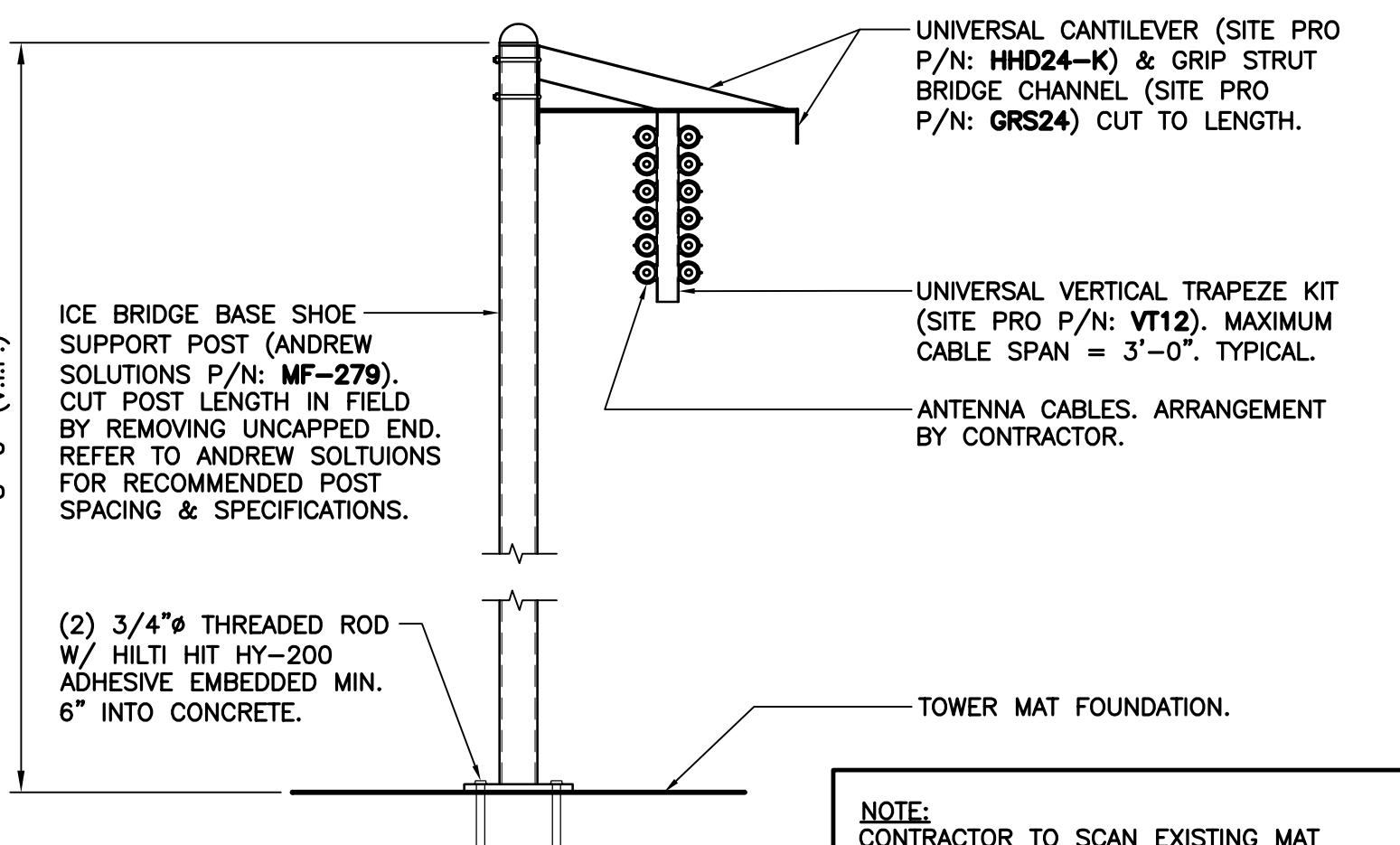
5A ANTENNA MOUNTING CONFIG. ELEVATION  
C-3  
SCALE: 3/8" = 1' - 0"

|                   |                                             |
|-------------------|---------------------------------------------|
| DATE: 08/20/19    | SCALE: AS NOTED                             |
| JOB NO. 19101.00  | ANTENNA CONFIGURATION AND EQUIPMENT DETAILS |
| C-3               |                                             |
| Sheet No. 6 of 17 |                                             |

CONTRACTOR CERTIFICATION  
I, the undersigned, certify that the plans and specifications contained in this document are my original work and have not been prepared by anyone else.

PROFESSIONAL ENGINEER SEAL

at&t


centerline

CT2873 BETHEL  
WIRELESS COMMUNICATIONS FACILITY  
15 GREAT PASTURE ROAD  
DANBURY, CT 06810  
(203) 484-5850  
(203) 484-5850  
632 North Branford Road  
Branford, CT 06405  
www.Centerline.com

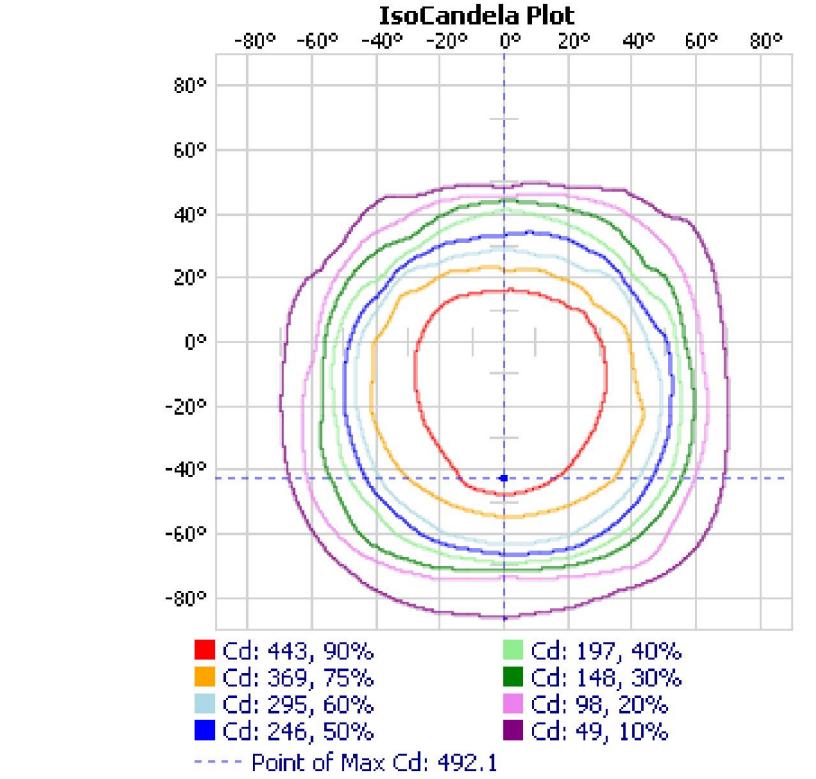
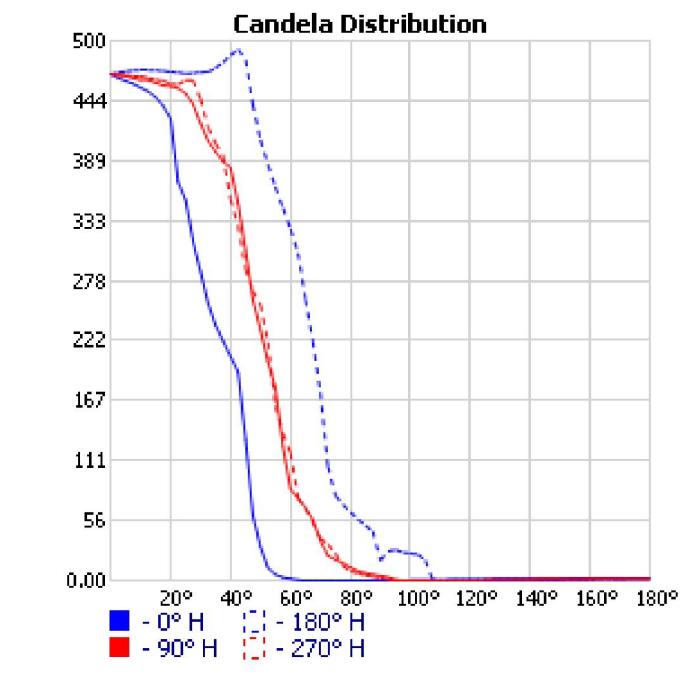


| PROPANE FUELED GENERATOR                                                                                                                                                                                                                                                                                                                                                                             |                          |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                            | POWER GENERATION (AC/DC) | DIMENSIONS               |
| MAKE: KOHLER<br>MODEL: 24RCL                                                                                                                                                                                                                                                                                                                                                                         | AC                       | 74.0'L x 32.9'W x 46.0'H |
| NOTES:                                                                                                                                                                                                                                                                                                                                                                                               |                          |                          |
| 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.                                                                                                                                                                                                                                                                                        |                          |                          |
| 2. THE RECOMMENDED DISTANCE FROM A STRUCTURE IS DEPENDENT ON STATE AND LOCAL CODES. NFPA 37 (STANDARDS FOR THE INSTALLATION AND USE OF STATIONARY COMBUSTION ENGINES AND GAS TURBINES) STATES THIS DISTANCE SHOULD BE AT LEAST 5 FEET FROM A COMBUSTIBLE MATERIAL. FOR INSTALLATIONS NEAR NON-COMBUSTIBLE MATERIAL BE SURE TO LEAVE A MINIMUM DISTANCE OF 3 FEET TO ENSURE PROPER GENERATOR COOLING. |                          |                          |

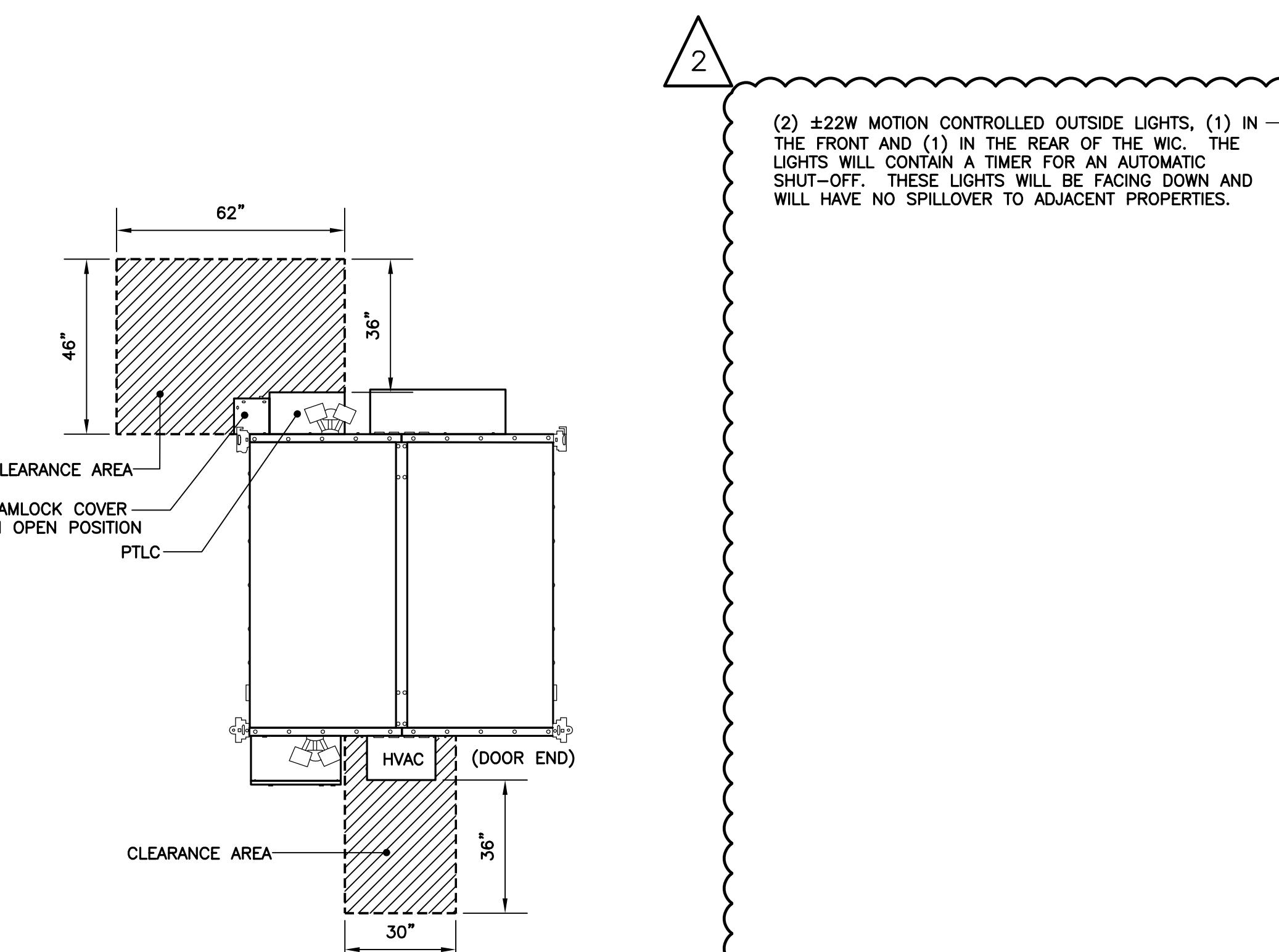
**1 BACK UP GENERATOR DETAIL**  
C-4 NOT TO SCALE



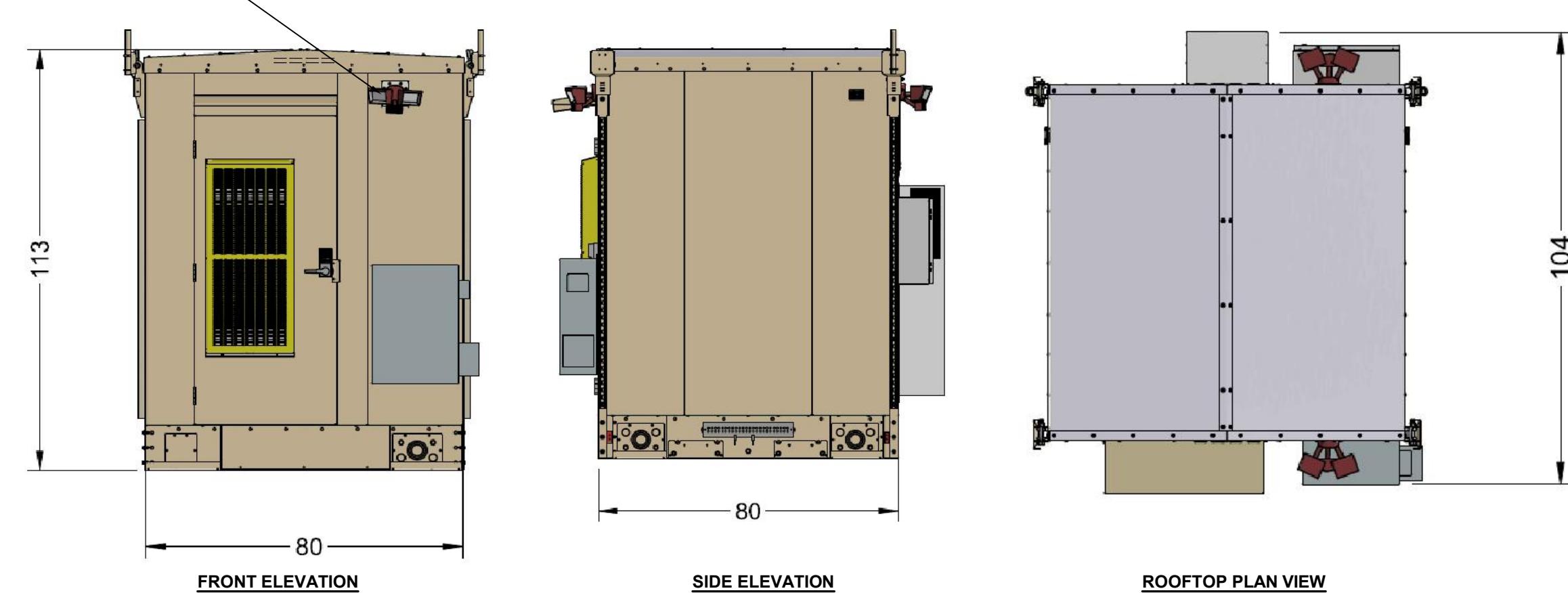
**2 ICE BRIDGE DETAIL**  
C-4 NOT TO SCALE



NOTE:  
CONTRACTOR TO SCAN EXISTING MAT FOUNDATION REBAR LOCATIONS PRIOR TO ICE BRIDGE BASE PLATE ANCHOR INSTALLATION SO AS TO AVOID REBAR.

| GPS ANTENNA                          |               |          |
|--------------------------------------|---------------|----------|
| EQUIPMENT                            | DIMENSIONS    | WEIGHT   |
| MAKE: PCTEL<br>MODEL: GPS-TMG-HR-26N | 5.0'H x 3.2"D | 0.6 LBS. |
| NOTES:                               |               |          |


**3 GPS UNIT DETAIL**  
C-4 NOT TO SCALE

| EXTERIOR LIGHT                              |         |         |
|---------------------------------------------|---------|---------|
| EQUIPMENT                                   | WATTAGE | VOLTAGE |
| MAKE: LITHONIA LIGHTING<br>MODEL: OFLR 6 MO | 21.89 W | 120 V   |
| NOTES:                                      |         |         |


1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.



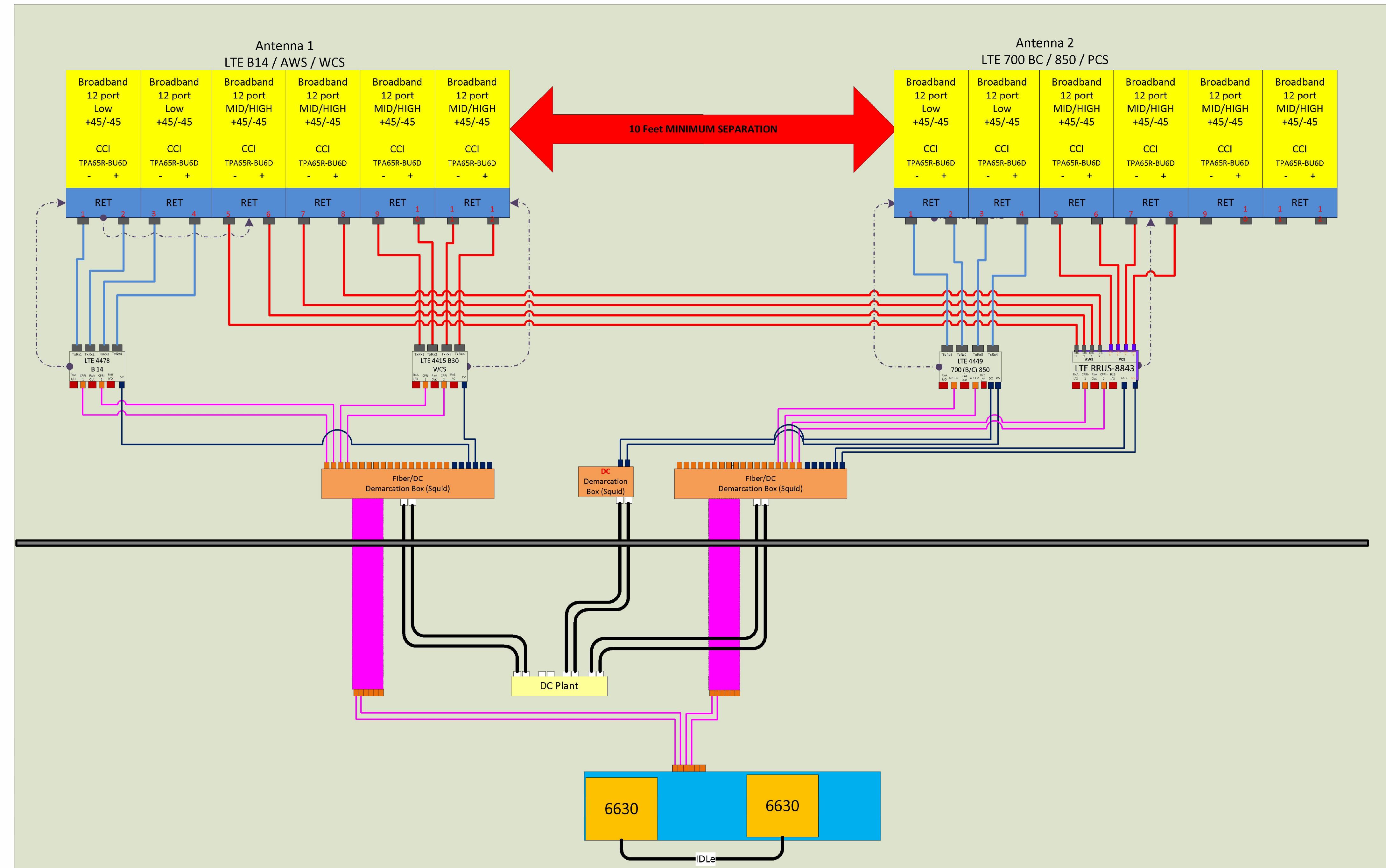
**6 EXTERIOR LIGHT DETAIL**  
C-4 NOT TO SCALE



**4 EQUIPMENT SHELTER CLEARANCES PLAN**  
C-4  
SCALE: 3/8" = 1'- 0"



| WALK-IN CABINET                                       |                                              |                       |                                                   |                                                                      |
|-------------------------------------------------------|----------------------------------------------|-----------------------|---------------------------------------------------|----------------------------------------------------------------------|
| EQUIPMENT                                             | CONSTRUCTION                                 | DIMENSIONS            | WEIGHTS                                           | WIC BASE OPTION                                                      |
| MAKE: VERTIV<br>MODEL: 6'x6' WIC<br>P/N: F2018001-WIC | 14 GA. INTERLOCKING STEEL PANEL CONSTRUCTION | 80'L x 80'W x 113.0'H | EMPTY: ±5500 LBS.<br>FULLY INTEGRATED: ±7500 LBS. | CONCRETE FOUNDATION KIT<br>P/N: D1007-0000-0012<br>(SEE NOTES BELOW) |
| NOTES:                                                |                                              |                       |                                                   |                                                                      |


**5 WALK-IN CABINET DETAIL**  
C-4 NOT TO SCALE



TYP. FOUNDATION WIC BASE ATTACHMENT KIT

|                            |                 |                  |     |            |  |
|----------------------------|-----------------|------------------|-----|------------|--|
| PROFESSIONAL ENGINEER SEAL |                 | at&t             |     | centerline |  |
|                            |                 |                  |     |            |  |
| DATE: 08/20/19             | SCALE: AS NOTED | JOB NO. 19101.00 | C-4 |            |  |
| SITE AND EQUIPMENT DETAILS |                 |                  |     |            |  |
| C-4                        |                 |                  |     |            |  |

Sheet No. 7 of 17



1  
C-5  
NOT TO SCALE

**RF PLUMBING DIAGRAM**

|                                                 |                  |                  |
|-------------------------------------------------|------------------|------------------|
| DATE: 08/20/19                                  | SCALE: AS NOTED  | JOB NO. 19101.00 |
| RF PLUMBING DIAGRAM                             |                  | C-5              |
| Sheet No. 8 of 17                               |                  |                  |
| CONSTRUCTION DRAWINGS – FINAL PER DESCOPED RFDS |                  |                  |
| 09/28/20                                        | DND              | TUR              |
| REV. DATE                                       | DRAWN BY CHKD BY | DESCRIPTION      |

**PROFESSIONAL ENGINEER SEAL**  
AT&T CENTERLINE

**at&t**  
**CENTEK** engineering  
Centered on Solutions™  
(231) 484-5580  
(231) 484-5580  
632 North Branford Road  
Branford, CT 06405  
www.CentekEng.com

## **ATTACHMENT 8**



# Radio Frequency Safety Survey Report Prediction (RFSSRP)

## AT&T Wireless Monopole Facility

|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b><u>Site ID:</u></b> CT2873</p> <p><b><u>Site Name:</u></b> DANBURY GREAT PASTURE ROAD</p> <p><b><u>Address:</u></b> 15 GREAT PASTURE ROAD, DANBURY, CT 06810</p> <p><b><u>Latitude:</u></b> 41.383003</p> <p><b><u>Longitude:</u></b> -73.422159</p> <p><b><u>USID:</u></b> 253157</p> <p><b><u>FA:</u></b> 12684101</p> | <p><b><u>Prepared for:</u></b><br/>AT&amp;T Mobility<br/>550 Cochituate Road, Suite 13<br/>Framingham, MA 01701</p> <p><b><u>Report Writer:</u></b> Dane Folie<br/><b><u>Date:</u></b> March 26, 2021<br/><b><u>Report Reviewer:</u></b> Brandon Green</p> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



### **Statement of Compliance**

AT&T will be compliant with FCC Regulations upon installation of recommended mitigation measures.

## TABLE OF CONTENTS

|                                                                        |    |
|------------------------------------------------------------------------|----|
| <b>1.0 GENERAL SUMMARY</b> .....                                       | 3  |
| <b>1.1 SITE SUMMARY</b> .....                                          | 3  |
| <b>2.0 SITE SCALE MAP</b> .....                                        | 5  |
| <b>3.0 ANTENNA INVENTORY</b> .....                                     | 6  |
| <b>4.0 PREDICTED EMISSION LEVELS AND DISCUSSION</b> .....              | 8  |
| <b>5.0 EMISSIONS DIAGRAMS</b> .....                                    | 9  |
| <b>6.0 STATEMENT OF COMPLIANCE</b> .....                               | 12 |
| <b>6.1 STATEMENT OF AT&amp;T MOBILITY COMPLIANCE</b> .....             | 12 |
| <b>6.2 RECOMMENDATIONS</b> .....                                       | 12 |
| <b>7.0 FALL ARREST AND PARAPET INFORMATION</b> .....                   | 13 |
| <b>APPENDIX A: RF SIGNAGE</b> .....                                    | 14 |
| <b>APPENDIX B: FCC GUIDELINES AND EMISSIONS THRESHOLD LIMITS</b> ..... | 15 |
| <b>APPENDIX C: CALCULATION METHODOLOGY</b> .....                       | 17 |
| <b>APPENDIX D: CERTIFICATIONS</b> .....                                | 18 |
| <b>APPENDIX E: PROPRIETARY STATEMENT</b> .....                         | 19 |

## 1.0 GENERAL SUMMARY

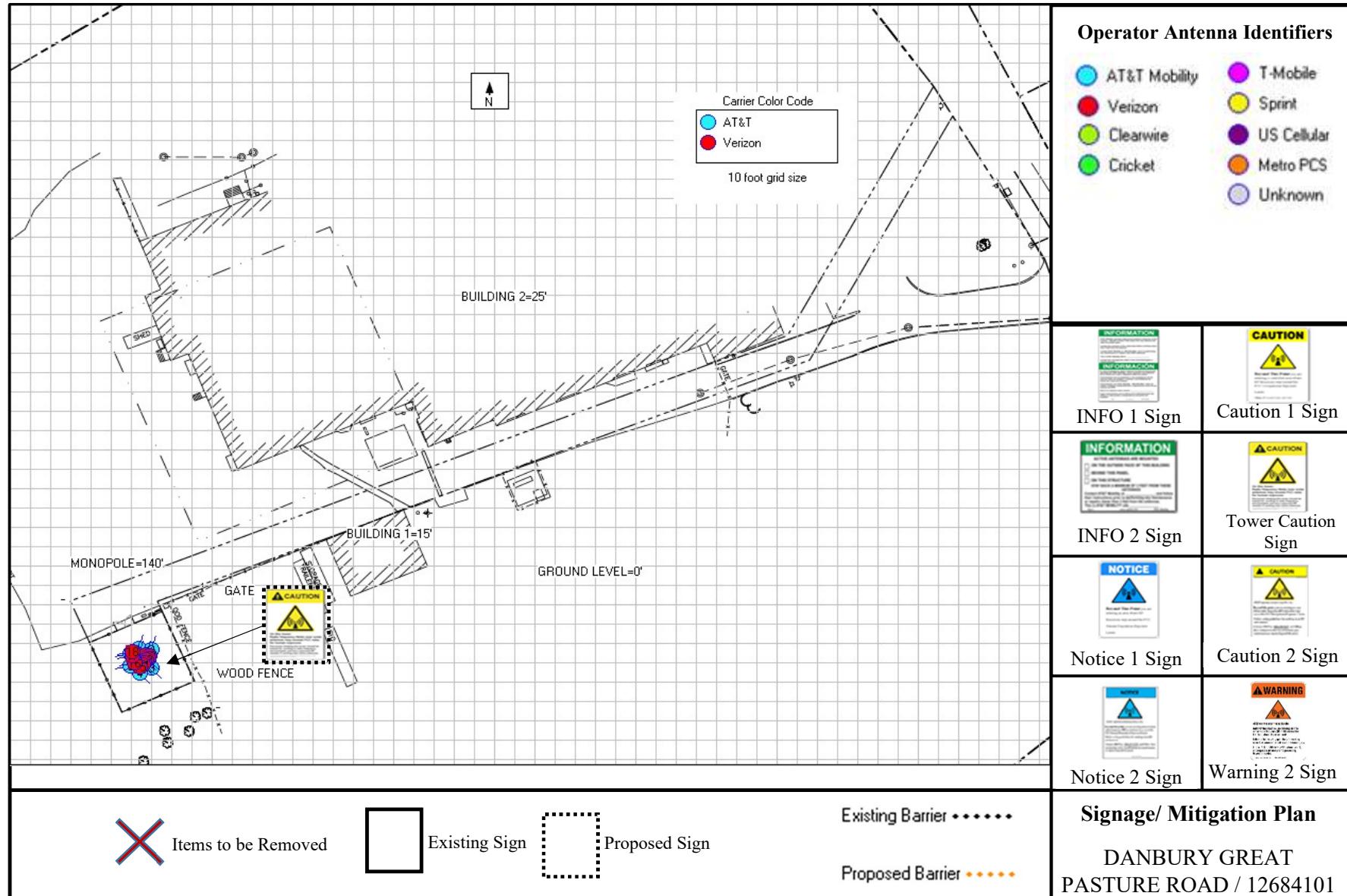
Centerline Communications, LLC (“Centerline”) has been contracted to provide a Radio Frequency (RF) Analysis for the following AT&T Mobility wireless monopole facility to determine whether the facility is in compliance with federal standards and regulations regarding RF emissions. This analysis includes theoretical emissions calculations, for all equipment for AT&T Mobility and any other wireless carriers on site.

### 1.1 SITE SUMMARY

| Analysis Site Data                                                      |                                                                                                                                 |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Site USID:                                                              | 253157                                                                                                                          |
| Site FA#:                                                               | 12684101                                                                                                                        |
| Site Name:                                                              | DANBURY GREAT PASTURE ROAD                                                                                                      |
| Site Address:                                                           | 15 GREAT PASTURE ROAD,<br>DANBURY CT 06810                                                                                      |
| Site Latitude:                                                          | 41.383003                                                                                                                       |
| Site Longitude:                                                         | -73.422159                                                                                                                      |
| Facility Type:                                                          | Monopole                                                                                                                        |
| Compliance Summary                                                      |                                                                                                                                 |
| Compliance Status:                                                      | Compliant Upon Mitigation Installation                                                                                          |
| Maximum Modeled AT&T MPE% on Walking Surface<br>(General Public Limit): | 0.09%                                                                                                                           |
| Maximum Modeled AT&T MPE% at Ground Level<br>(General Public Limit):    | 0.09%                                                                                                                           |
| Site Survey Data                                                        |                                                                                                                                 |
| Is Access Locked or Controlled? :                                       | Unknown                                                                                                                         |
| Lock or Control Measures if Present:                                    | Unknown                                                                                                                         |
| Parapet Height:                                                         | N/A                                                                                                                             |
| Site Data Information                                                   |                                                                                                                                 |
| CD:                                                                     | 2020-0928 CT2873 Bethel - CD Rev0_19101.00 (S&S).pdf                                                                            |
| RFDS:                                                                   | NEW-ENGLAND_CONNECTICUT_CT2873_2020-New-Site_New_ra9161_2051A0DQ2P_12684101_253157_03-18-2019_Preliminary-In-Progress_v3.00.pdf |



Signage and barriers are the primary means of mitigating access to accessible areas of exposure. Below is a summary of existing and recommended signage at this AT&T facility.


| Existing Signage and Barriers (AT&T Sectors) |             |        |          |         |           |            |            |         |           |          |
|----------------------------------------------|-------------|--------|----------|---------|-----------|------------|------------|---------|-----------|----------|
| Location                                     | Information | Notice | Notice 2 | Caution | Caution 2 | Caution 2B | Caution 2C | Warning | Warning 2 | Barriers |
| Gate                                         | 0           | 0      | 0        | 0       | 0         | 0          | 0          | 0       | 0         | 0        |
| Monopole Base                                | 0           | 0      | 0        | 0       | 0         | 0          | 0          | 0       | 0         | 0        |

| Recommended Signage and Barriers (AT&T Sectors) |          |           |            |            |           |          |
|-------------------------------------------------|----------|-----------|------------|------------|-----------|----------|
| Location                                        | Notice 2 | Caution 2 | Caution 2B | Caution 2C | Warning 2 | Barriers |
| Gate                                            | 0        | 0         | 0          | 0          | 0         | 0        |
| Monopole Base                                   | 0        | 0         | 1          | 0          | 0         | 0        |

#### Monopole Base:

- Install (1) Caution 2B sign at the base of the monopole.

## 2.0 SITE SCALE MAP



### 3.0 ANTENNA INVENTORY

| ANT ID | Operator | Antenna Make | Antenna Model | Type  | Freq (MHz) | TPO (Watts) | # of TX | Azimuth (°) | BW (°) | Gain (dBd) | Total ERP (Watts) | Length (ft.) | Antenna Z Value (ft.) AGL* |
|--------|----------|--------------|---------------|-------|------------|-------------|---------|-------------|--------|------------|-------------------|--------------|----------------------------|
| 1      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 700        | 40          | 4       | 15          | 68     | 11.75      | 2393.98           | 5.9          | 137.3                      |
| 1      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 2100       | 40          | 4       | 15          | 60     | 15.85      | 6153.47           | 5.9          | 137.3                      |
| 1      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 2300       | 25          | 4       | 15          | 52     | 14.75      | 2985.38           | 5.9          | 137.3                      |
| 2      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 700        | 40          | 2       | 15          | 68     | 11.75      | 1196.99           | 5.9          | 137.3                      |
| 2      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 850        | 40          | 2       | 15          | 65     | 12.45      | 1406.34           | 5.9          | 137.3                      |
| 2      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 1900       | 40          | 4       | 15          | 63     | 14.85      | 4887.87           | 5.9          | 137.3                      |
| 3      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 700        | 40          | 4       | 140         | 68     | 11.75      | 2393.98           | 5.9          | 137.3                      |
| 3      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 2100       | 40          | 4       | 140         | 60     | 15.85      | 6153.47           | 5.9          | 137.3                      |
| 3      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 2300       | 25          | 4       | 140         | 52     | 14.75      | 2985.38           | 5.9          | 137.3                      |
| 4      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 700        | 40          | 2       | 140         | 68     | 11.75      | 1196.99           | 5.9          | 137.3                      |
| 4      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 850        | 40          | 2       | 140         | 65     | 12.45      | 1406.34           | 5.9          | 137.3                      |
| 4      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 1900       | 40          | 4       | 140         | 63     | 14.85      | 4887.87           | 5.9          | 137.3                      |
| 5      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 700        | 40          | 4       | 260         | 68     | 11.75      | 2393.98           | 5.9          | 137.3                      |
| 5      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 2100       | 40          | 4       | 260         | 60     | 15.85      | 6153.47           | 5.9          | 137.3                      |
| 5      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 2300       | 25          | 4       | 260         | 52     | 14.75      | 2985.38           | 5.9          | 137.3                      |
| 6      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 700        | 40          | 2       | 260         | 68     | 11.75      | 1196.99           | 5.9          | 137.3                      |
| 6      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 850        | 40          | 2       | 260         | 65     | 12.45      | 1406.34           | 5.9          | 137.3                      |
| 6      | AT&T     | CCI          | TPA65R-BU6D   | Panel | 1900       | 40          | 4       | 260         | 63     | 14.85      | 4887.87           | 5.9          | 137.3                      |
| 7      | Verizon  | GENERIC      | PANEL 6FT     | Panel | 850        | 30          | 4       | 15          | 66     | 12.62      | 2193.72           | 6.0          | 117.0                      |
| 8      | Verizon  | GENERIC      | PANEL 6FT     | Panel | 1900       | 30          | 4       | 15          | 66     | 15.84      | 4604.49           | 6.0          | 117.0                      |
| 9      | Verizon  | GENERIC      | PANEL 6FT     | Panel | 2100       | 40          | 2       | 15          | 63     | 16.39      | 3484.09           | 6.0          | 117.0                      |
| 10     | Verizon  | GENERIC      | PANEL 6FT     | Panel | 700        | 60          | 1       | 15          | 68     | 12.33      | 1026.01           | 6.0          | 117.0                      |
| 11     | Verizon  | GENERIC      | PANEL 6FT     | Panel | 850        | 30          | 4       | 140         | 66     | 12.62      | 2193.72           | 6.0          | 117.0                      |
| 12     | Verizon  | GENERIC      | PANEL 6FT     | Panel | 1900       | 30          | 4       | 140         | 66     | 15.84      | 4604.49           | 6.0          | 117.0                      |
| 13     | Verizon  | GENERIC      | PANEL 6FT     | Panel | 2100       | 40          | 2       | 140         | 63     | 16.39      | 3484.09           | 6.0          | 117.0                      |

|    |         |         |           |       |      |    |   |     |    |       |         |     |       |
|----|---------|---------|-----------|-------|------|----|---|-----|----|-------|---------|-----|-------|
| 14 | Verizon | GENERIC | PANEL 6FT | Panel | 700  | 60 | 1 | 140 | 68 | 12.33 | 1026.01 | 6.0 | 117.0 |
| 15 | Verizon | GENERIC | PANEL 6FT | Panel | 850  | 30 | 4 | 260 | 66 | 12.62 | 2193.72 | 6.0 | 117.0 |
| 16 | Verizon | GENERIC | PANEL 6FT | Panel | 1900 | 30 | 4 | 260 | 66 | 15.84 | 4604.49 | 6.0 | 117.0 |
| 17 | Verizon | GENERIC | PANEL 6FT | Panel | 2100 | 40 | 2 | 260 | 63 | 16.39 | 3484.09 | 6.0 | 117.0 |
| 18 | Verizon | GENERIC | PANEL 6FT | Panel | 700  | 60 | 1 | 260 | 68 | 12.33 | 1026.01 | 6.0 | 117.0 |

*Table 1: Total Site Data Table (\*AGL = Above Ground Level)*

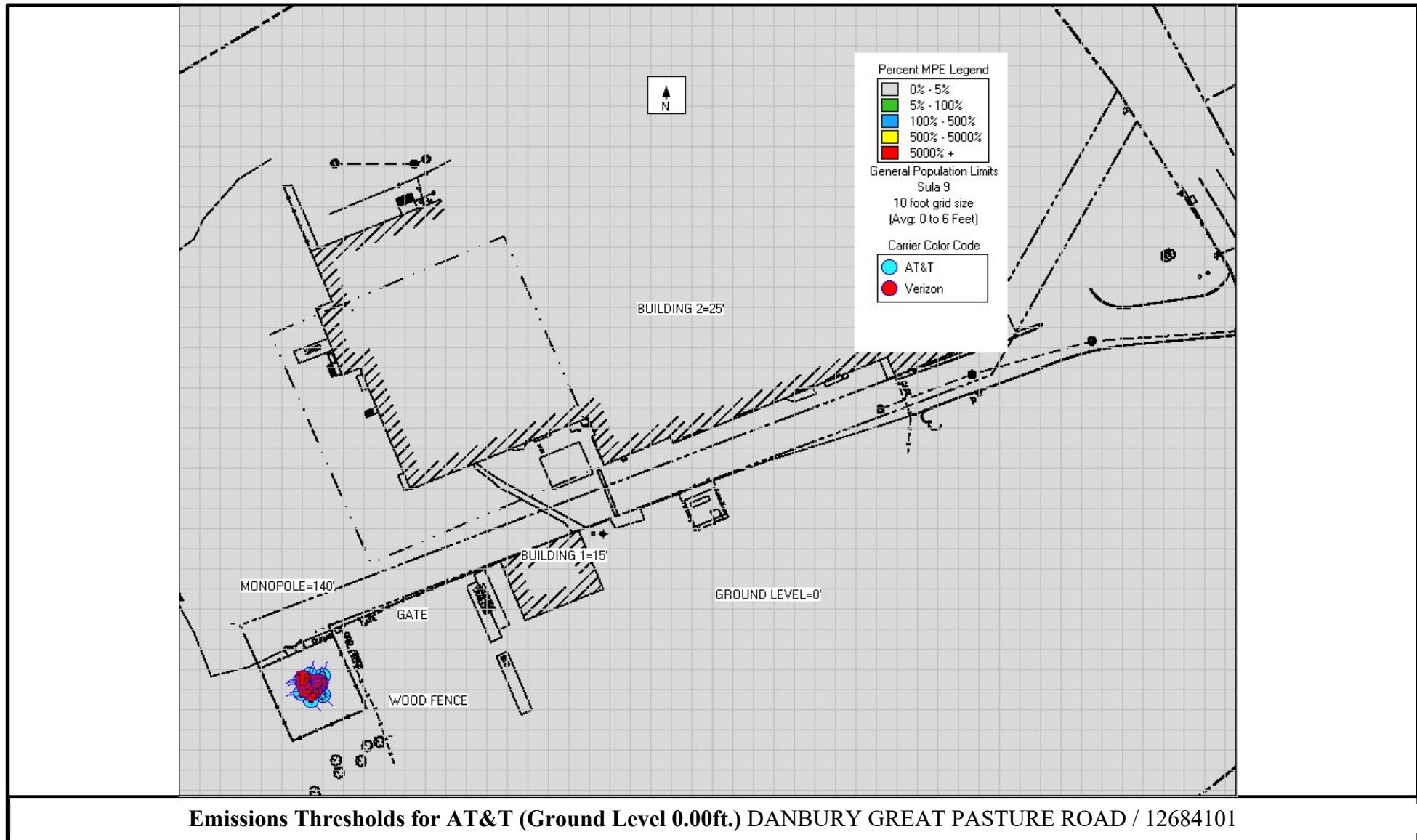
*Note: Z Value represents the bottom tip height of the antenna*

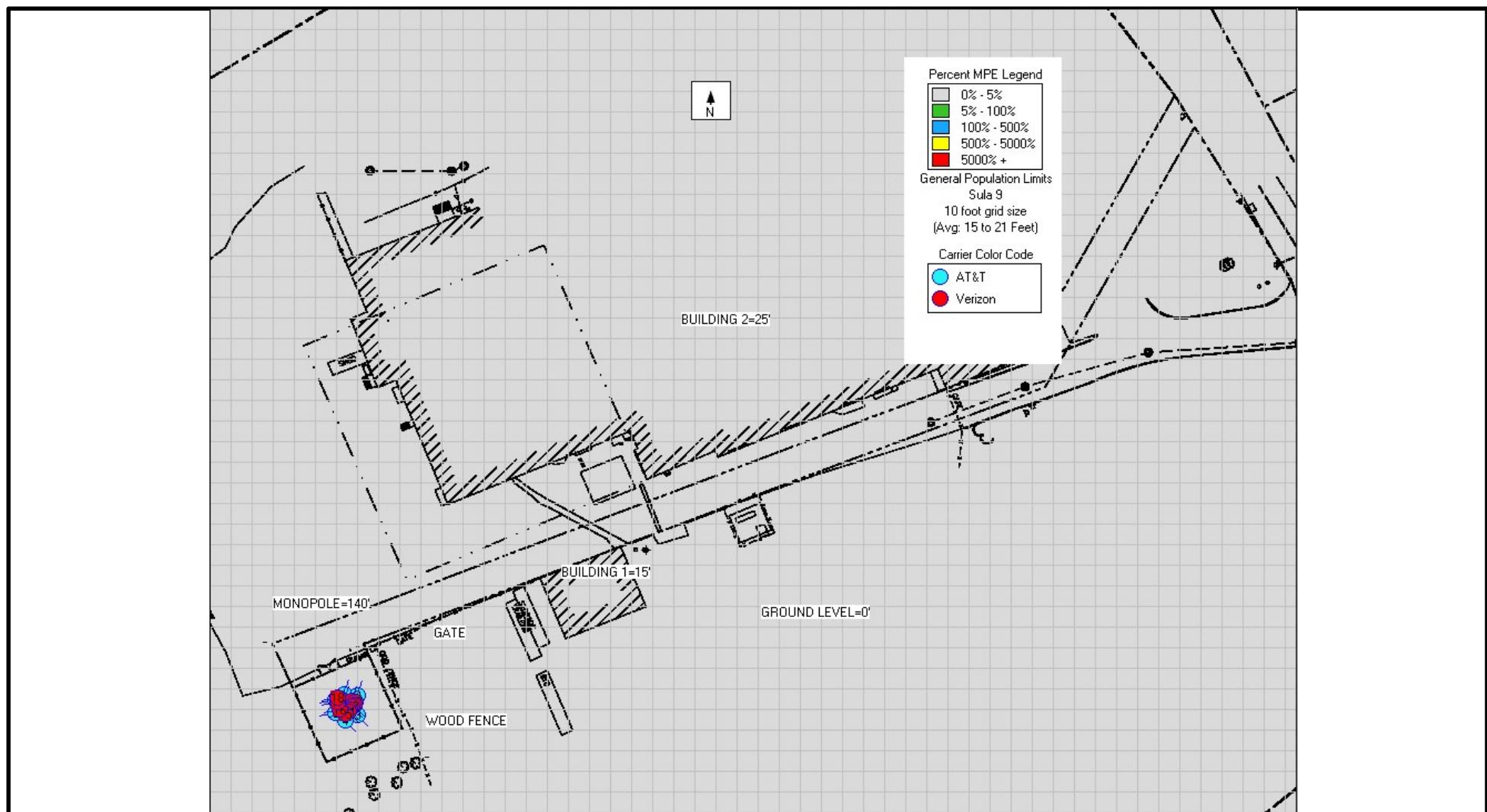
#### 4.0 PREDICTED EMISSION LEVELS AND DISCUSSION

All calculations performed based upon the data listed for this facility have produced results that are within allowable limits for General Population limits for exposure to RF emissions as specified by federal standards.

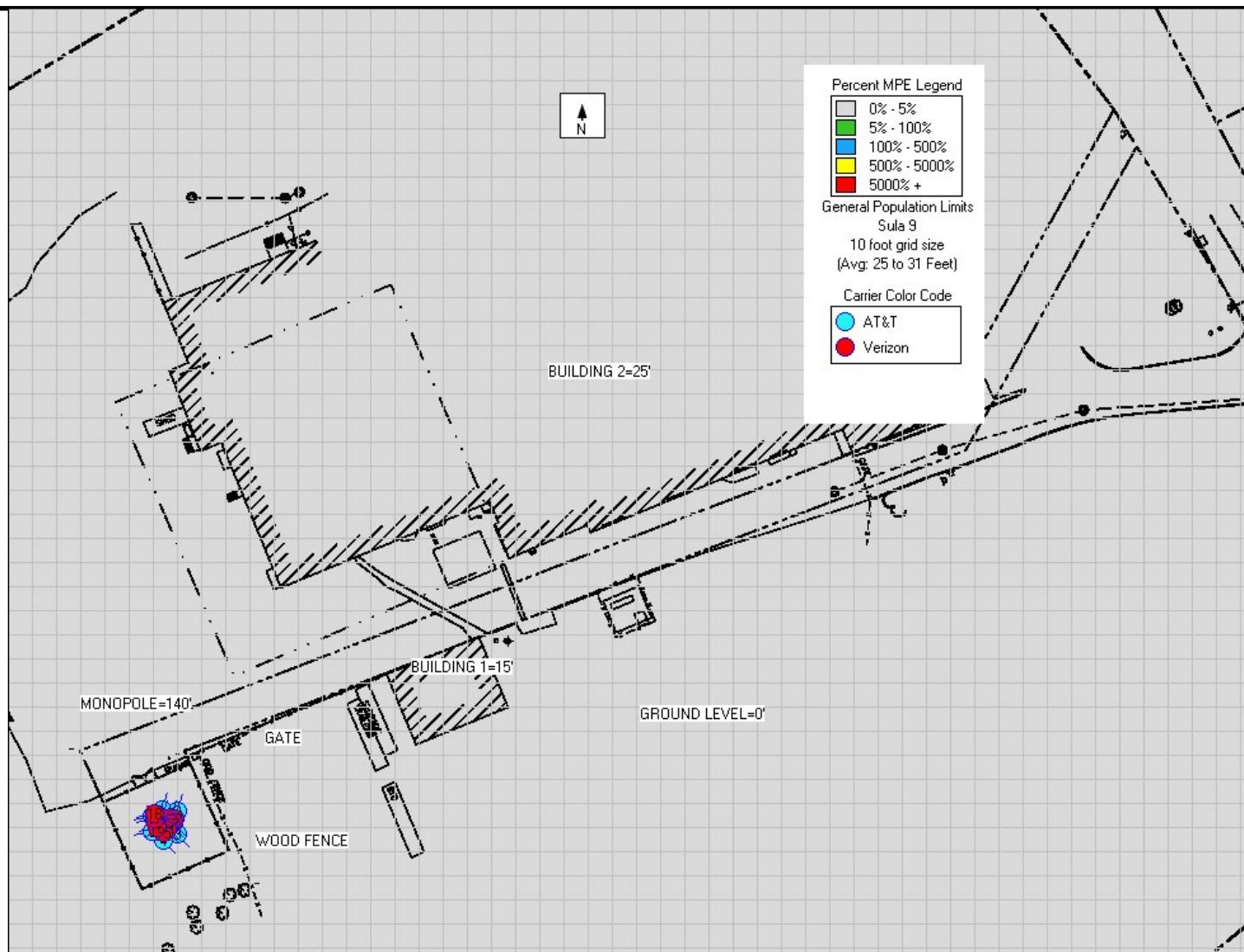
AT&T's RF Exposure: Responsibilities, Procedures & Guidelines document states that microwave dishes are compliant if they are mounted 20 feet or greater above any accessible walking or working surface.

| Maximum Predicted MPE Level on Site:             | % of MPE Limit: | Location: |
|--------------------------------------------------|-----------------|-----------|
| Accessible <b>General Population</b> MPE Limits: | <b>0.09%</b>    | Sector A  |
| Accessible <b>Occupational</b> MPE Limits:       | <b>0.02%</b>    |           |


| Ground Level Assessment:                           | % of MPE Limit: |
|----------------------------------------------------|-----------------|
| Ground Level <b>General Population</b> MPE Limits: | <b>0.09%</b>    |
| Ground Level <b>Occupational</b> MPE Limits:       | <b>0.02%</b>    |


| Sector A: Transmitting over Ground Level         | % of MPE Limit: | *Distance from Antenna: |
|--------------------------------------------------|-----------------|-------------------------|
| Accessible <b>General Population</b> MPE Limits: | <b>0.09%</b>    | <b>0</b>                |
| Accessible <b>Occupational</b> MPE Limits:       | <b>0.02%</b>    | <b>0</b>                |

| Sector B: Transmitting over Ground Level         | % of MPE Limit: | *Distance from Antenna: |
|--------------------------------------------------|-----------------|-------------------------|
| Accessible <b>General Population</b> MPE Limits: | <b>0.08%</b>    | <b>0</b>                |
| Accessible <b>Occupational</b> MPE Limits:       | <b>0.02%</b>    | <b>0</b>                |


| Sector C: Transmitting over Ground Level         | % of MPE Limit: | *Distance from Antenna: |
|--------------------------------------------------|-----------------|-------------------------|
| Accessible <b>General Population</b> MPE Limits: | <b>0.08%</b>    | <b>0</b>                |
| Accessible <b>Occupational</b> MPE Limits:       | <b>0.02%</b>    | <b>0</b>                |

*\*Distance from Antenna is the distance that the MPE limits are exceeded from the front face of the antenna, outward across an accessible area.*

**5.0 EMISSIONS DIAGRAMS**



**Emissions Thresholds for AT&T (Building 1 Level 15.00ft.) DANBURY GREAT PASTURE ROAD / 12684101**



**Emissions Thresholds for AT&T (Building 2 Level 25.00ft.) DANBURY GREAT PASTURE ROAD / 12684101**

## 6.0 STATEMENT OF COMPLIANCE

Centerline conducted worst case modeling to determine whether the monopole facility located at 15 GREAT PASTURE ROAD in DANBURY, Connecticut is in compliance with FCC Regulations.

## 6.1 STATEMENT OF AT&T MOBILITY COMPLIANCE

Based on the information analyzed, AT&T will be compliant with FCC Regulations once the mitigation measures recommended in this report are implemented.

## 6.2 RECOMMENDATIONS

| Recommended Signage and Barriers (AT&T Sectors) |          |           |            |            |           |          |
|-------------------------------------------------|----------|-----------|------------|------------|-----------|----------|
| Location                                        | Notice 2 | Caution 2 | Caution 2B | Caution 2C | Warning 2 | Barriers |
| Gate                                            | 0        | 0         | 0          | 0          | 0         | 0        |
| Monopole Base                                   | 0        | 0         | 1          | 0          | 0         | 0        |

### Monopole Base:

- Install (1) Caution 2B sign at the base of the monopole.

## 7.0 FALL ARREST AND PARAPET INFORMATION

As per AT&T barrier policy, rooftop edges that are protected with a 39-inch parapet wall or guardrail are safe for work activity within six (6) feet of the edge. OSHA has stated that an existing 39-inch guardrail or parapet provides sufficient protection for employees. The height of the top rail or equivalent component of guardrail systems in new construction shall be at least 42 inches above the walking or working surface. It should also be noted that the height of the parapet or guardrail may be reduced to no less than 30 inches at any point provided the sum of the depth (horizontal distance) of the top edge, and the height of the top edge (vertical distance from the work surface to the top edge of the top member, is at least 48 inches. If there is no reason for working atop the roof, then edge protection is not required. In addition, workers may use personnel lifts or temporary fall protection measures to perform work within 6 feet of the roof edge in place of permanent edge protection. Reference: 29 CFR 1910.28, 29 CFR 1910.23 (NPRM-1990); OSHA Letters of Interpretation 2/9/83 and 3/8/9

## APPENDIX A: RF SIGNAGE

## AT&amp;T RF Signage

| Sign                                                                                | Description                                                                                                                                                                                                                                                              | Sign                                                                                | Description                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <b>Information 1 Sign</b><br>Gives guidelines on how to proceed and who to contact regarding areas that may exceed either the FCC's General Population or Occupational emissions limits.                                                                                 |    | <b>Information 2 Sign</b><br>Gives specific information on how to proceed and who to contact regarding antennas that are façade mounted, concealed or on stand-alone structures.                                                                                                      |
|    | <b>Blue Notice 1 Sign</b><br>Used to alert individuals that they are entering an area that may exceed the FCC's General Population emissions limit. Must be positioned such that persons approaching from any angle have ample warning to avoid the marked areas.        |    | <b>Blue Notice 2 Sign</b><br>Used to alert individuals that they are entering an area that may exceed the FCC's General Population emissions limits. To be used on barriers or antenna sectors as a hybrid of the Information 1 and Blue Notice 1 signs.                              |
|  | <b>Yellow Caution 1 Sign- Rooftop</b><br>Used to inform individuals that they are entering an area that may exceed the FCC's Occupational emissions limit. Must be positioned such that persons approaching from any angle have ample warning to avoid the marked areas. |  | <b>Yellow Caution 2 Sign- Rooftop</b><br>Used to alert individuals that they are entering an area that may exceed the FCC's Occupational emissions limit. To be used on barriers or antenna sectors as a hybrid of the Information 1 and Yellow Caution 1 signs.                      |
|  | <b>Yellow Caution 1 Sign- Tower</b><br>Used to inform individuals that they are entering an area that may exceed the FCC's Occupational emissions limits. Must be placed at the base of the tower to warn tower climbers of potential for exposure.                      |  | <b>Warning 2 Sign</b><br>Used to inform individuals that they are entering an area that may exceed the FCC's Occupational emissions limit by a factor of 10 or greater. Must be positioned such that persons approaching from any angle have ample warning to avoid the marked areas. |

## APPENDIX B: FCC GUIDELINES AND EMISSIONS THRESHOLD LIMITS

All power density values used in this report were analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu\text{W}/\text{cm}^2$ ). The number of  $\mu\text{W}/\text{cm}^2$  calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General Population/Uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

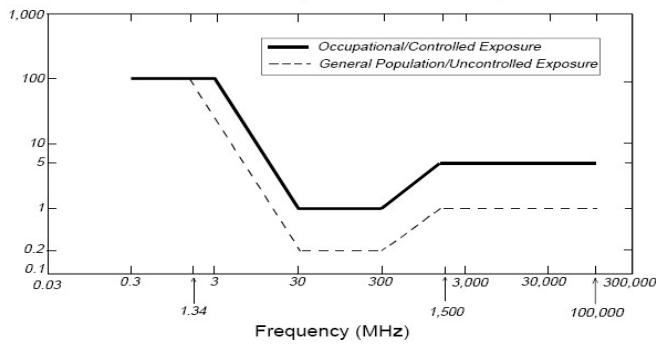
Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu\text{W}/\text{cm}^2$ ). The general population exposure limit for the 700 and 800 MHz Bands is approximately 467  $\mu\text{W}/\text{cm}^2$  and 567  $\mu\text{W}/\text{cm}^2$  respectively, and the general population exposure limit for the 1900 MHz PCS and 2100 MHz AWS bands is 1000  $\mu\text{W}/\text{cm}^2$ . Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/Controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure, have been properly trained in RF safety and can exercise control over their exposure. Occupational/Controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure, have been trained in RF safety and can exercise control over his or her exposure by leaving the area or by some other appropriate means. The Occupational/Controlled exposure limits all utilized frequency bands is five (5) times the FCC's General Public / Uncontrolled exposure limit.

The FCC Mandates that if a site is found to be out of compliance with regard to emissions that any system operator contributing 5% or more to areas exceeding the FCC's allowable limits will be responsible for bringing the site into compliance.

Additional details can be found in FCC OET 65.

**Table 1: Limits for Maximum Permissible Exposure (MPE)****(A) Limits for Occupational/Controlled Exposure**


| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (H) (A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> , [H] <sup>2</sup> , or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------------------------------------|
| 0.3-3.0               | 614                               | 1.63                              | (100)*                                  | 6                                                                   |
| 3.0-30                | 1842/f                            | 4.89/f                            | (900/f <sup>2</sup> )*                  | 6                                                                   |
| 30-300                | 61.4                              | 0.163                             | 1.0                                     | 6                                                                   |
| 300-1,500             | --                                | --                                | f/300                                   | 6                                                                   |
| 1,500-100,000         | --                                | --                                | 5                                       | 6                                                                   |

**(B) Limits for General Public/Uncontrolled Exposure**

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (H) (A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> , [H] <sup>2</sup> , or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------------------------------------|
| 0.3-1.34              | 614                               | 1.63                              | (100)*                                  | 30                                                                  |
| 1.34-30               | 824/f                             | 2.19/f                            | (180/f <sup>2</sup> )*                  | 30                                                                  |
| 30-300                | 27.5                              | 0.073                             | 0.2                                     | 30                                                                  |
| 300-1,500             | --                                | --                                | f/1,500                                 | 30                                                                  |
| 1,500-100,000         | --                                | --                                | 1.0                                     | 30                                                                  |

f = Frequency in (MHz)

\* Plane-wave equivalent power density

**Figure 1. FCC Limits for Maximum Permissible Exposure (MPE)**  
Plane-wave Equivalent Power Density

## APPENDIX C: CALCULATION METHODOLOGY

Centerline Communications, LLC has performed theoretical modeling using Waterford Consultants' RoofMaster™ 2020 Version 21.9.04.20 which uses a cylindrical model for conservative power density predictions within the near field of the antenna where the antenna pattern has not truly formed yet. Within this area power density values tend to decrease based upon an inverse distance function. At the point where it is appropriate for modeling to change from near-field calculations to far-field calculations the power decreases inversely with the square of the distance. This modeling technique is accurate with low antenna centerlines, such as rooftops, where persons can get close to the antennas and pass through fields in close proximity.

The modeling is based on worst-case assumptions for the number of antennas and transmitter power. No losses were included in the power calculations unless they were specifically provided for the project.

#### APPENDIX D: CERTIFICATIONS

I, Dane Folie, preparer of this report certify that I am fully trained and aware of the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation. I have been trained in the procedures and requirements outlined in AT&T's RF Exposure: Responsibilities, Procedures & Guidelines document.

Dane Folie

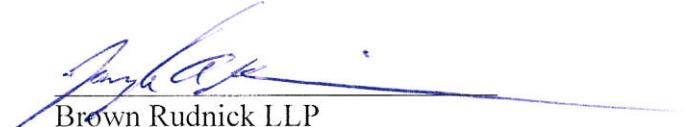
3/26/2021

I, Brandon Green, reviewer and approver of this report certify that I am fully trained and aware of the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation. I have been trained in the procedures and requirements outlined in AT&T's RF Exposure: Responsibilities, Procedures & Guidelines document.

Brandon Green

3/26/2021

**APPENDIX E: PROPRIETARY STATEMENT**


This report was prepared for the use of AT&T Mobility, LLC to meet requirements specified in AT&T's corporate RF safety guidelines. It was performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same locale under like circumstances. The conclusions provided by Centerline Communications, LLC are based solely on the information provided by AT&T Mobility and all observations in this report are valid on the date of the investigation. Any additional information that becomes available concerning the site should be provided to Centerline Communications, LLC so that our conclusions may be revised and modified, if necessary. This report has been prepared in accordance with Standard Conditions for Engagement and authorized proposal, both of which are integral parts of this report. No other warranty, expressed or implied, is made.

## **ATTACHMENT 9**

## CERTIFICATE OF SERVICE

I hereby certify that on the 31st day of March, 2021, a copy of the following letter and Sub-Petition for a declaratory ruling filed with the Connecticut Siting Council was sent by certified mail, return receipt requested, to the attached list of Town officials:

Dated: March 31, 2021



Brown Rudnick LLP  
Joseph A. Giammarco

### City of Danbury

|                                                                                                             |                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| JOSEPH M. CAVO, MAYOR<br>DANBURY CITY HALL<br>155 DEER HILL AVENUE<br>DANBURY, CT 06810                     | SHARON B. CALITRO, AICP<br>DIRECTOR OF PLANNING & ZONING<br>DANBURY CITY HALL<br>155 DEER HILL ROAD<br>DANBURY, CT 06810 |
| CONSERVATION COMMISSION<br>DANBURY CITY HALL<br>155 DEER HILL AVENUE<br>DANBURY, CT 06810                   | JANICE R. GIEGLER, TOWN CLERK<br>DANBURY CITY HALL<br>155 DEER HILL AVENUE<br>DANBURY, CT 06810                          |
| DANBURY HISTORIC PROPERTIES<br>COMMISSION<br>DANBURY CITY HALL<br>155 DEER HILL AVENUE<br>DANBURY, CT 06810 |                                                                                                                          |

**Town of Bethel**

|                                                                                                 |                                                                                                 |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| MATT KNICKERBOCKER,<br>FIRST SELECTMAN<br>TOWN OF BETHEL<br>1 SCHOOL STREET<br>BETHEL, CT 06801 | BETH CAVAGNA,<br>DIRECTOR/TOWN PLANNER<br>TOWN OF BETHEL<br>1 SCHOOL STREET<br>BETHEL, CT 06801 |
| TOWN OF BETHEL<br>INLAND WETLANDS COMMISSION<br>1 SCHOOL STREET<br>BETHEL, CT 06801             | LISA BERGH, CCTV, TOWN CLERK<br>TOWN OF BETHEL<br>1 SCHOOL STREET<br>BETHEL, CT 06801           |
|                                                                                                 |                                                                                                 |

## CERTIFICATE OF SERVICE

I hereby certify that on the 31st day of March, 2021, a copy of the following letter and Sub-Petition for a declaratory ruling filed with the Connecticut Siting Council was sent by certified mail, return receipt requested, to the attached list of abutting property owners:

Dated: March 31, 2021



\_\_\_\_\_  
Brown Rudnick LLP  
Joseph A. Giammarco

|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>EPPOLITI INDUSTRIAL REALTY INC.<br/>37 DANBURY ROAD<br/>RIDGEFIELD, CT 06877<br/><i>Parcel ID L160050000</i><br/><i>Map L16, Lot 5</i><br/><b>Subject Property:</b> 15 Great Pasture Road,<br/>Danbury, CT<br/><i>Identified as parcel A on Abutters Map</i></p> <p><i>Parcel ID: 20-40-01</i><br/><i>Map 20, Block 40, Lot 1</i><br/><i>Abutting Property: Wooster Street, Bethel, CT</i><br/><i>Identified as parcel K on Abutters Map</i></p> | <p>FUELCELL ENERGY INC.<br/>3 GREAT PASTURE ROAD<br/>DANBURY, CT 06810<br/><i>Parcel ID: K161560000</i><br/><i>Map K16, Lot 156</i><br/><i>Property Address: 3 Great Pasture Road,</i><br/><i>Danbury, CT</i><br/><i>Identified as parcel B on Abutters Map</i></p>  |
| <p>CITY OF DANBURY<br/>155 DEER HILL AVENUE<br/>DANBURY, CT 06810-7769<br/><i>Parcel ID: K161600000</i><br/><i>Map K16, Lot 160</i><br/><i>Property Address: Great Pasture Road,</i><br/><i>Danbury, CT</i><br/><i>Identified as parcel C on Abutters Map</i></p>                                                                                                                                                                                   | <p>DOWN HOME ASSOCIATES LLC<br/>28 GRIFFITH LANE<br/>RIDGEFIELD, CT 06877<br/><i>Parcel ID: L160010000</i><br/><i>Map L16, Lot 1</i><br/><i>Property Address: 7 Great Pasture Road,</i><br/><i>Danbury, CT</i><br/><i>Identified as parcel D on Abutters Map</i></p> |
| <p>KEATING PROPERTIES LC<br/>28 GRIFFITH LANE<br/>RIDGEFIELD, CT 06877<br/><i>Parcel ID: L160030000</i><br/><i>Map L16, Lot 3</i><br/><i>Property Address: 11 Great Pasture Road,</i><br/><i>Danbury, CT</i><br/><i>Identified as parcel E on Abutters Map</i></p>                                                                                                                                                                                  | <p>GLORIA B. PUTNAM<br/>28 GRIFFITH LANE<br/>RIDGEFIELD, CT 06877<br/><i>Parcel ID: L160040000</i><br/><i>Map L16, Lot 4</i><br/><i>Property Address: 13 Great Pasture Road,</i><br/><i>Danbury, CT</i><br/><i>Identified as parcel F on Abutters Map</i></p>        |

|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>SANDVIK WIRE AND HEATING<br/>TECHNOLOGY CORPORATION<br/>ATTENTION: ROGER F. ASSAD<br/>17-02 NEVINS ROAD<br/>FAIR LAWN, NJ 07410<br/>Parcel ID: L160060000<br/>Map L16, Lot 6<br/><i>Property Address: Great Pasture Road, Danbury, CT</i><br/><i>Identified as parcel G on Abutters Map</i></p> | <p>TDRAP LLC<br/>P.O. BOX 1026<br/>BETHEL, CT 06801<br/>Parcel ID: L160080000<br/>Map L16, Lot 8<br/><i>Property Address: 16 Great Pasture Road, Danbury, CT</i><br/><i>Identified as parcel H on Abutters Map</i></p>                                                                     |
| <p>DRAPER TIMOTHY<br/>P.O. BOX 1026<br/>BETHEL, CT 06801<br/>Parcel ID: L160090000<br/>Map L16, Lot 9<br/><i>Property Address: 14 Great Pasture Road, Danbury, CT</i><br/><i>Identified as parcel I on Abutters Map</i></p>                                                                        | <p>REAL TIME CAPITAL PROPERTIES LLC<br/>3 CRICKLEWOOD ROAD,<br/>REDDING, CT 06896<br/>Parcel ID: L150080009<br/>Map L15, Lot 8, Unit 009<br/><i>Property Address: 10 Great Pasture Road, Danbury, CT</i><br/><i>Identified as parcel J on Abutters Map</i></p>                             |
| <p>STAMFORD COVE PARTNERS LLC<br/>C/O ROBERT RYBNICK, JR.<br/>P.O.BOX 372<br/>BETHEL, CT 06801<br/>Parcel ID: 21-40-03-02<br/><i>Map 20, Block 40, Lot 1</i><br/><i>Property Address: 104 Wooster Street, Bethel, CT</i><br/><i>Identified as Parcel L on Abutters Map</i></p>                     | <p>SANDVIK WIRE AND HEATING<br/>TECHNOLOGY CORPORATION<br/>982 GRIFFIN POND ROAD,<br/>CLARKS SUMMIT, PA 18411<br/>Parcel ID: 20-72-01<br/><i>Map 20, Block 72, Lot 1</i><br/><i>Property Address: 119 Wooster Street, Bethel, CT</i><br/><i>Identified as parcel M on Abutters Map</i></p> |
| <p>TOWN OF BETHEL<br/>1 SCHOOL STREET<br/>BETHEL, CT 06801<br/>Parcel ID: 20-40-02<br/><i>Map 20, Block 40, Lot 2</i><br/><i>Property Address: Wooster Street, Bethel, CT</i><br/><i>Identified as parcel N on Abutters Map</i></p>                                                                | <p>BETHEL LAND TRUST INC.<br/>C/O JOHN O'NEILL<br/>54 TAYLOR AVENUE<br/>BETHEL, CT 06801<br/>Parcel ID: 21-40-03-11<br/><i>Map 21, Block 40, Lot 3-11</i><br/><i>Property Address: Wooster Street, Bethel, CT</i><br/><i>Identified as parcel O on Abutters Map.</i></p>                   |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |

March 31, 2021

**VIA CERTIFIED MAIL/  
RETURN RECEIPT REQUESTED**

[Insert Abutter/official  
Name and Address]

**Re: New Cingular Wireless PCS, LLC (“AT&T”) – Connecticut Siting Council  
Sub-Petition for a Declaratory Ruling – Modification and Extension of an  
Existing Monopole and Collocation of a Wireless Telecommunications  
Facility at 15 Great Pasture Road, Danbury, Connecticut**

To Whom it May Concern:

On behalf of our client New Cingular Wireless PCS, LLC (“AT&T”), we are providing this notice to you with respect to the above-referenced matter pursuant to the Connecticut Siting Council’s (the “Siting Council”) ruling in Petition No. 1133. AT&T is filing a sub-petition (the “Sub-Petition”) for a declaratory ruling with the Siting Council for approval to collocate a new wireless telecommunications facility (the “Facility”) on the existing monopole tower located at 15 Great Pasture Road, Danbury, Connecticut. The Facility consists of six (6) panel antennas at the 140’ antenna centerline height on a twenty-foot (20’) extension to the existing monopole tower (the “Monopole”) together with related amplifiers, cables, fiber and other associated antenna equipment, including, without limitation, remote radio heads, surge arrestors, and global positioning system antennas with associated electronic equipment in a walk-in-cabinet, an emergency backup power propane-fueled generator, and other appurtenances on a proposed equipment pad and propane tank located within an existing compound enclosed by a chain link fence, all as depicted on the plans submitted with the Sub-Petition. The Monopole is owned by Cellco Partnership (“Verizon Wireless”). The Monopole is currently 120’ tall and, after modification, will be 140’ tall.

The Sub-Petition is an eligible facilities request submitted pursuant to the Federal Middle Class Tax Relief and Job Creation Act of 2012, also known as the Spectrum Act and codified at 47 U.S.C. § 1455(a). AT&T's proposed modifications qualify as an eligible facilities request under the Spectrum Act and associated regulations promulgated by the Federal Communications Commission.

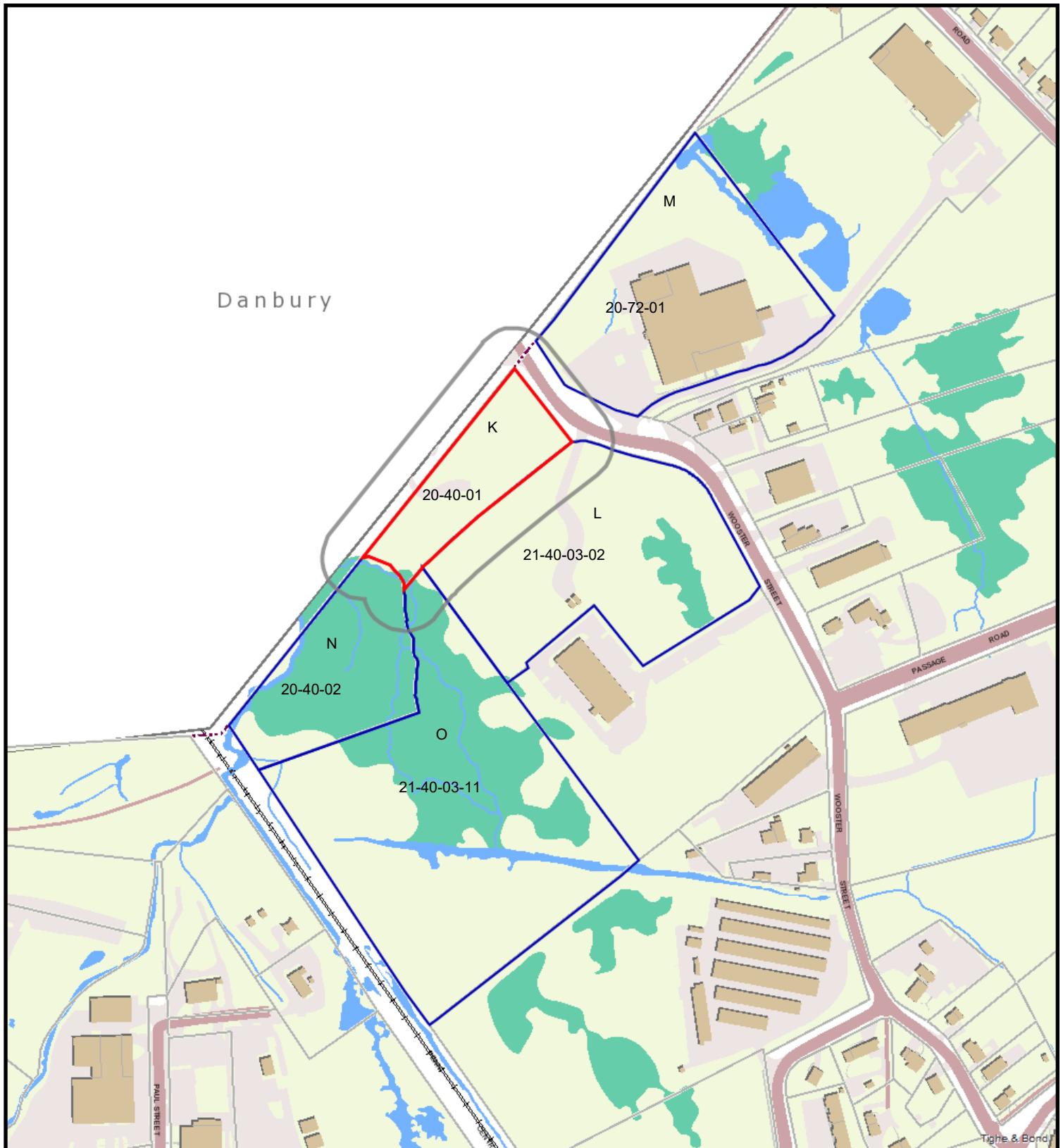
Any comments or concerns regarding this Sub-Petition should be submitted to the Siting Council within thirty (30) days of the date of this notice.

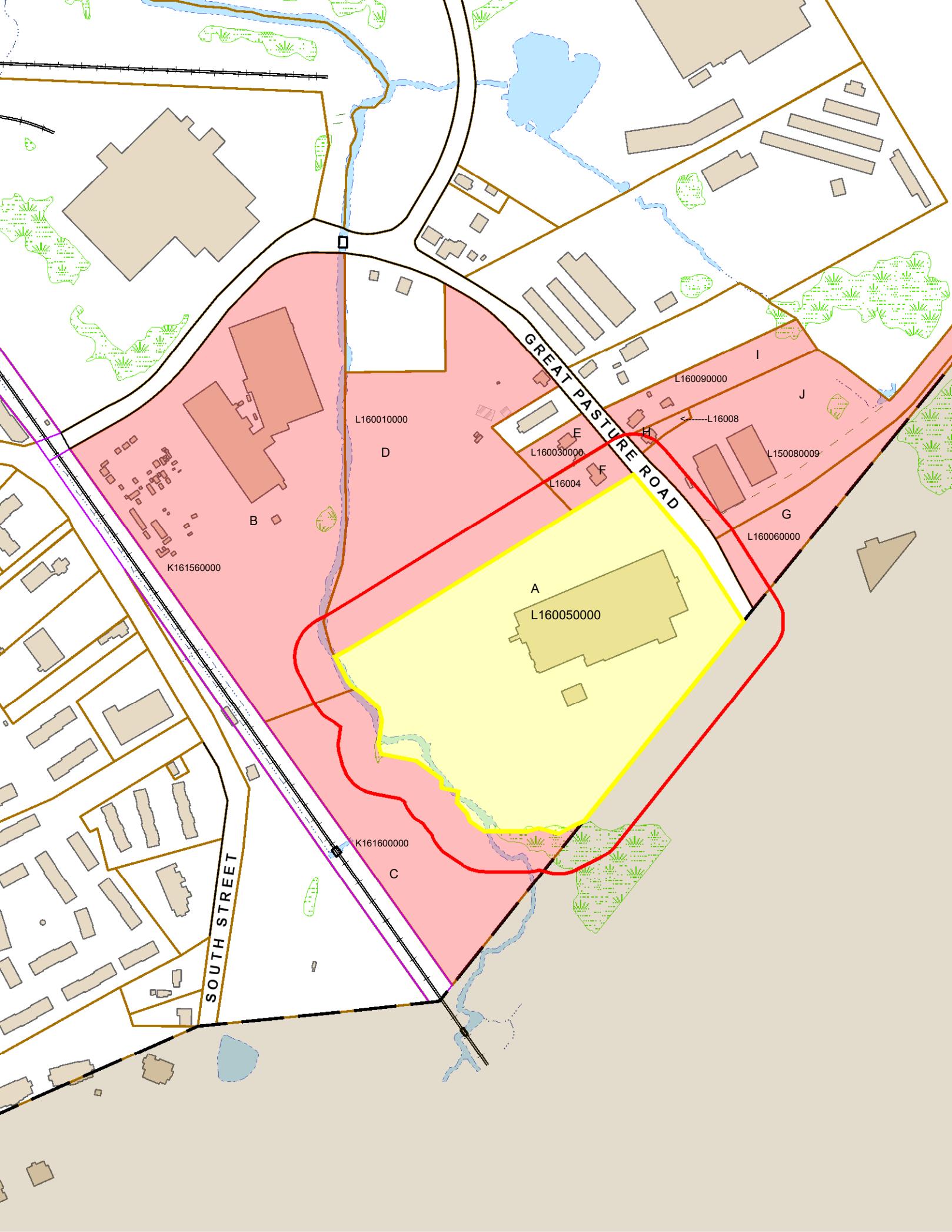
If you have any questions, please do not hesitate to contact us or the Council at 860.827.2935.

Sincerely,

---

Thomas J. Regan, Esq.


Enclosure.


### Abutters List

| Parcel ID  | Physical Address                           | Owner Name                                                                | Mailing Address      | City       | State | Zip Code |
|------------|--------------------------------------------|---------------------------------------------------------------------------|----------------------|------------|-------|----------|
| L150050000 | 15 Great Pasture Road<br>Danbury, CT 06810 | Eppolito Industrial Realty, Inc.                                          | 37 Danbury Road      | Ridgefield | CT    | 06877    |
| K161560000 | 3 Great Pasture Road<br>Danbury, CT 06810  | Fuelcell Energy, Inc.                                                     | 3 Great Pasture Road | Danbury    | CT    | 06810    |
| K161600000 | Great Pasture Road<br>Danbury, CT 06810    | City of Danbury                                                           | 155 Deer Hill Avenue | Danbury    | CT    | 06810-77 |
| L160010000 | 7 Great Pasture Road<br>Danbury, CT 06810  | Down Home Associates, LLC                                                 | 28 Griffith Lane     | Ridgefield | CT    | 06877    |
| L160030000 | 11 Great Pasture Road<br>Danbury, CT 06810 | Keating Properties, LC                                                    | 28 Griffith Lane     | Ridgefield | CT    | 06877    |
| L160040000 | 13 Great Pasture Road<br>Danbury, CT 06810 | Putnam, Gloria B.                                                         | 28 Griffith Lane     | Ridgefield | CT    | 06877    |
| L160060000 | Great Pasture Road                         | Sandvik Wire and Heating<br>Technology Corporation<br>Att: Roger F. Assad | 17-02 Nevins Road    | Fair Lawn  | NJ    | 07410    |
| L160080000 | 16 Great Pasture Road<br>Danbury, CT 06810 | TDRAP LLC                                                                 | P.O. Box 1026        | Bethel     | CT    | 06801    |
| L160090000 | 14 Great Pasture Road<br>Danbury, CT 06810 | Draper, Timothy                                                           | P.O. Box 1026        | Bethel     | CT    | 06801    |

|             |                                            |                                                        |                              |               |    |       |
|-------------|--------------------------------------------|--------------------------------------------------------|------------------------------|---------------|----|-------|
| L150080009  | 10 Great Pasture Road<br>Danbury, CT 06810 | Real Time Capital Properties LLC                       | 3 Cricklewood Road           | Redding       | CT | 06896 |
| 21-40-03-11 | Wooster Street,<br>Bethel, CT 06801        | Bethel Land Trust, Inc.                                | 54 Taylor Avenue             | Bethel        | CT | 06801 |
| 20-40-02    | Wooster Street<br>Bethel, CT 06801         | Bethel, Town of                                        | 1 School Street              | Bethel        | CT | 06801 |
| 20-40-01    | Wooster Street<br>Bethel, CT 06801         | Eppolito Industrial Realty, Inc.                       | 37 Danbury Road, Ste.<br>203 | Ridgefield    | CT | 06877 |
| 21-40-03    | 104 Wooster Street<br>Bethel, CT 06801     | Stamford Cove Partners, LLC<br>C/o Robert Rybnick, Jr. | P.O. Box 372                 | Bethel        | CT | 06801 |
| 20-72-01    | 119 Wooster Street<br>Bethel, CT 06801     | Sandvik Wire and Heating<br>Technology Corporation     | 982 Griffin Pond Road        | Clarks Summit | PA | 18411 |

63996253 v3-WorkSiteUS-024519/1603



