Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

November 9, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Sub-Petition No. 1133-VER-20220228 – Approved Modifications to the Flagpole Tower at 541 Broadbridge Road, Bridgeport, Connecticut

Dear Attorney Bachman:

On April 8, 2022, the Siting Council ("Council") approved the Cellco Partnership d/b/a Verizon Wireless ("Cellco") Eligible Facilities Request ("EFR") for modifications to the existing wireless base station at 541 Broadridge Road in Bridgeport. The modifications involved the replacement Cellco's antennas and the expansion of the antenna screening shroud around the antennas at the top of the tower.

Following the Council's approval of the EFR and the hand-off of the project to Cellco's construction team, project construction engineers discovered that the diameter of the antenna mounting shaft and certain antenna mount designs referenced in the original November 19, 2021 Structural Analysis ("SA") and January 12, 2022 Mounts Analysis ("MA") were incorrect. Upon discovery of this error, Centek Engineering completed a new SA, dated November 1, 2022, and a new MA, dated October 21, 2022. The new SA and MA came to the same overall conclusion, confirming that the tower can accommodate the proposed facility modifications.

To avoid confusion during the Council's "close out" of this project, I am enclosing copies of the November 1, 2022 corrected SA and the October 21, 2022 corrected MA for your records. Also enclosed is a set of Construction Drawings for the proposed facility modifications and facility improvements.

Melanie A. Bachman, Esq. November 9, 2022 Page 2

We respectfully request that Council staff acknowledge receipt of this modified information and, according to Condition No. 1 of the April 8, 2022 Council approval, approve this minor project change.

Please contact me with any questions.

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Joseph Ganim, Bridgeport Mayor Lynn Haig, Director of Planning Aleksey Tyurin

Centered on Solutions[™]

Structural Analysis Report

98-ft Existing Flagpole

Proposed Verizon Antenna Upgrade

Site Ref: Bridgeport NE CT

541 Broadbridge Road Bridgeport, CT

Centek Project No. 21007.69

Date: November 19, 2021
Rev 1: November 1, 2022

Max Stress Ratio = 93%

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492 CENTEK Engineering, Inc.

Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- FOUNDATION AND ANCHORS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY FLAGPOLE
- tnxTower DETAILED OUTPUT FLAGPOLE
- ANCHOR BOLT AND BASE PLATE ANALYSIS
- FOUNDATION ANALYSIS

SECTION 4 - REFERENCE MATERIAL

RF DATA SHEET

TABLE OF CONTENTS TOC-1

CENTEK Engineering, Inc. Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

Introduction

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the antenna upgrade proposed by Verizon on the existing flagpole (tower) located in Bridgeport, Connecticut.

The host tower consists of three (3) 10-ft concealment canister sections supported on a 68.0-ft tall, two-section, eighteen sided, tapered monopole original designed by EEI jo no. 18280-D01 dated 04/25/2018. The tower geometry and structure member sizes were obtained the original design documents.

Antenna and appurtenance information were obtained from a Verizon RF data sheet.

The tower is made up of two (2) tapered vertical sections consisting of A572-65 sections. The vertical tower sections are slip joint connected. The diameter of the pole (flat-flat) is 35.5-in at the top and 45.00-in at the base.

Antenna and Appurtenance Summary

The existing, proposed and future loads considered in this analysis consist of the following:

- VERIZON(EXISTING TO REMOVE):
 - <u>Antennas</u>: Six (6) Commscope SBJAHH-1D65B-DL panel antennas with rad center elevation of ±92&82-ft above grade level.
 - Appurtenances: Three(3) Nokia B13 RRH 4x30 radio head units, three (3) Nokia B25 RRH 4x30 radio head units, three (3) Nokia B66A RRH 4x45 radio head units and twenty four (24) Kaelus QBC0002F1V51-1 Quadplexer.
- VERIZON (Proposed):
 - Antennas: Three (3) Commscope NNH4-65B-R6 panel antennas and three (3) JMA MX08FIT265-01 panel antennas mounted within a concealment canister with rad center elevations of ±92&82-ft above grade level.
 - <u>Appurtenances:</u> Three(3) Samsung RT-8808-77A radio head units, six (6) Commscope CBC61923T-DS-43 diplexers and one 6 OVP box.

REPORT SECTION 1-1

CENTEK Engineering, Inc.

Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents or reinforcement drawings.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables to be installed as indicated in this report.

REPORT SECTION 1-2

CENTEK Engineering, Inc. Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

Analysis

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-H entitled "Structural Standard for Antenna Support Structures, Antennas and Small Wind Turbine Support Structures", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix P of the CSBC¹ and the wind speed data available in the TIA-222-H Standard.

Tower Loading

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-H, gravity loads of the tower structure and its components, and the application of 1.0" radial ice on the tower structure and its components.

Load Cases: Load Case 1; 120 mph (Risk Cat II)

wind speed w/ no ice plus gravity load – used in calculation of tower

stresses and rotation.

Load Case 2; 50 mph wind speed w/

1.00" radial ice plus gravity load – used in calculation of tower stresses.

[Appendix P of the 2022 CT

Building Code]

[Annex B of TIA-222-H]

REPORT SECTION 1-3

_

¹ The 2021 International Building Code as amended by the 2022 Connecticut State Building Code (CSBC).

CENTEK Engineering, Inc. Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

Tower Capacity

Calculated stresses were found to be within allowable limits.

Tower Section	Elevation (AGL)	Stress Ratio (percentage of capacity)	Result
Antenna Pole (Inside Canister – L3)	68.5' - 78.0'	93.1%	PASS
Pole Shaft (L6)	1.0' - 38.3'	35.5%	PASS

Foundation and Anchors

The existing foundation consists of a one (1) 6-ft \emptyset round x 18.75-ft tall pier. The existing foundation properties were obtained from the aforementioned design documents. The base of the tower is connected to the foundation by means of (6) 1.75" \emptyset , ASTM A615-75 anchor bolts embedded approximately 5.17-ft into the concrete foundation structure.

The tower base reactions developed from the governing Load Case were used in the verification of the foundation and its anchors:

Location	Vector	Proposed Reactions		
	Shear	12 kips		
Base	Compression	14 kips		
	Moment	668 kip-ft		

The foundation was found to be within allowable limits.

Foundation	Design Limit	Proposed Loading	Result
Reinforced Concrete	Moment Capacity	23.2%	PASS
Caisson	Lateral Deflection	0.27 in.	PASS

The anchor bolts and base plate were found to be within allowable limits.

Tower Component	Component Design Limit		Result
Anchor Bolts	Combined Axial and Bending	63.5%	PASS
Base Plate	Bending	60.8%	PASS

REPORT SECTION 1-4

CENTEK Engineering, Inc.

Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

Conclusion

This analysis shows that the subject tower **is adequate** to support the proposed modified antenna configuration.

• Replacement of the top two (2) 10-ft concealment canisters with 10-ft x 48" diameter canisters (designed by others) is required to accommodate the proposed antennas.

The analysis is based, in part, on the information provided to this office by Verizon. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Prepared by:

Timothy J. Lynn, PE Structural Engineer

Pablo Perez-Gomez Engineer

REPORT SECTION 1-5

CENTEK Engineering, Inc. Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

Standard Conditions for Furnishing of Professional Engineering Services on Existing Structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
 with generally accepted engineering principles and practices. Centek Engineering, Inc.
 is not responsible for the conclusions, opinions and recommendations made by others
 based on the information we supply.

REPORT SECTION 2-1

CENTEK Engineering, Inc.

Structural Analysis – 98-ft Flagpole Verizon Antenna Upgrade – Bridgeport NE CT Bridgeport, CT Rev 1 ~ November 1, 2022

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly ERITower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

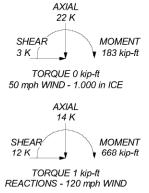
tnxTower Features:

- tnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, quy anchor and stress plots.
- tnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

REPORT SECTION 2-2

Section	G	ß		4	3	8	-	
Length (ft)	42.750	29.750	09	0.500	9.500	0.500	19.500	
Number of Sides	18	18		-	-	-	-	
Thickness (in)	0.250	0.250	0	0.465	0.465	0.465	0.403	
Socket Length (ft)		9:500	0					
Top Dia (in)	38.684	35.500		10.750	10.750	6.625	6.625	
Bot Dia (in)	45.000	40.020		35.500	10.750	10.750	6.625	
Grade	A572-65			A500-42	42			
Weight (K) 8.9	9	3.0		0.1	0.5	0.0	0.5	
	1.0 ft	38.3 ft		68.5 ft		78.5 ft		98.0 ft

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION	
10'x48" Canister	98 - 88	RRFDC-3315-PF-48 (Verizon -	92	
NNH4-65B-R6 (Verizon - Proposed)	92	Proposed)		
NNH4-65B-R6 (Verizon - Proposed)	92	10'x48" Canister	88 - 78	
NNH4-65B-R6 (Verizon - Proposed)	92	RT-8808-77A (Verizon - Proposed)	82	
(2) CBC61923T-DS-43 - Diplexer	92	RT-8808-77A (Verizon - Proposed)	82	
(Verizon - Proposed)		RT-8808-77A (Verizon - Proposed)	82	
(2) CBC61923T-DS-43 - Diplexer	92	MX08FIT265-01 (Verizon - Proposed)	82	
(Verizon - Proposed)		MX08FIT265-01 (Verizon - Proposed)	82	
(2) CBC61923T-DS-43 - Diplexer (Verizon - Proposed)	92	MX08FIT265-01 (Verizon - Proposed)	82	
(venzon - Fioposed)		10'x36" Canister	78 - 68	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A500-42	42 ksi	58 ksi	A572-65	65 ksi	80 ksi	

TOWER DESIGN NOTES

- 1. Tower designed for Exposure C to the TIA-222-H Standard.
 2. Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
 3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
 4. Deflections are based upon a 60 mph wind.
 5. Tower Risk Category II.
 6. Topographic Category 1 with Crest Height of 0.000 ft
 7. TOWER RATING: 93.1%

ALL REACTIONS ARE FACTORED

Centek Engineering Inc.			
63-2 North Branford Rd.	Project: 98-ft Flag pole- 54:	1 Broadbridge R	oad Bridgeport, CT 06610
	Client: Verizon Wireless	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA-222-H	Date: 11/01/22	Scale: NTS
	Path:	na DonamentaliseETE Fieshill-Rappels - Distances NE. Rev. Co.	Dwg No. E-1

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	1 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 71.000 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.000 ft.

Nominal ice thickness of 1.000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

Use Code Stress Ratios

Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)

SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension

Bypass Mast Stability Checks Use Azimuth Dish Coefficients

Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination

Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	2 of 32
Project 98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	Date 15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	98.000-78.500	19.500	0.000	Round	6.625	6.625	0.403		A500-42
									(42 ksi)
L2	78.500-78.000	0.500	0.000	Round	6.625	10.750	0.465		A500-42
									(42 ksi)
L3	78.000-68.500	9.500	0.000	Round	10.750	10.750	0.465		A500-42
									(42 ksi)
L4	68.500-68.000	0.500	0.000	Round	10.750	35.500	0.465		A500-42
									(42 ksi)
L5	68.000-38.250	29.750	5.500	18	35.500	40.020	0.250	1.000	A572-65
									(65 ksi)
L6	38.250-1.000	42.750		18	38.684	45.000	0.250	1.000	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	C	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in^3	in^4	in^2	in	
L1	6.625	7.877	38.280	2.204	3.313	11.556	76.560	3.936	0.000	0
	6.625	7.877	38.280	2.204	3.313	11.556	76.560	3.936	0.000	0
L2	6.625	8.999	42.926	2.184	3.313	12.959	85.852	4.497	0.000	0
	10.750	15.025	199.073	3.640	5.375	37.037	398.146	7.508	0.000	0
L3	10.750	15.025	199.073	3.640	5.375	37.037	398.146	7.508	0.000	0
	10.750	15.025	199.073	3.640	5.375	37.037	398.146	7.508	0.000	0
L4	10.750	15.025	199.073	3.640	5.375	37.037	398.146	7.508	0.000	0
	35.500	51.181	7854.087	12.388	17.750	442.484	15708.174	25.575	0.000	0
L5	36.009	27.971	4390.983	12.514	18.034	243.484	8787.744	13.988	5.808	23.232
	40.599	31.557	6305.959	14.118	20.330	310.178	12620.216	15.782	6.604	26.414
L6	40.068	30.498	5691.722	13.644	19.652	289.631	11390.933	15.252	6.368	25.474
	45.656	35.509	8983.871	15.886	22.860	392.995	17979.563	17.758	7.480	29.92

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
						Diagonals	Horizontals	Redundants
ft	ft ²	in				in	in	in
L1			0	1	1			
98.000-78.500								
L2			0	1	1			
78.500-78.000								
L3			0	1	1			
78.000-68.500								
L4			0	1	1			
68.500-68.000								
L5			1	1	1			
68.000-38.250								
L6			1	1	1			
38.250-1.000								

Feed Line/Linear Appurtenances - Entered As Area

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	3 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	-5/F-	ft			ft²/ft	klf
LDF5-50A (7/8	С	No	Yes	Inside Pole	93.000 - 5.000	18	No Ice	0.000	0.000
FOAM)							1/2" Ice	0.000	0.000
(Verizon)							1" Ice	0.000	0.000
LDF5-50A (7/8	C	No	Yes	Inside Pole	83.000 - 5.000	18	No Ice	0.000	0.000
FOAM)							1/2" Ice	0.000	0.000
(Verizon)							1" Ice	0.000	0.000
LDF5-50A (7/8	C	No	Yes	Inside Pole	73.000 - 5.000	18	No Ice	0.000	0.000
FOAM)							1/2" Ice	0.000	0.000
(Verizon)							1" Ice	0.000	0.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft ²	ft²	ft ²	K
L1	98.000-78.500	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.113
L2	78.500-78.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.006
L3	78.000-68.500	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.140
L4	68.500-68.000	Λ	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.009
L5	68.000-38.250	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.530
L6	38.250-1.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.593

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	C_AA_A	Weight
Section	Elevation	or	Thickness	-	•	In Face	Out Face	8
	ft	Leg	in	ft^2	ft ²	ft^2	ft²	K
L1	98.000-78.500	A	1.103	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.113
L2	78.500-78.000	A	1.090	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.006
L3	78.000-68.500	A	1.083	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.140
L4	68.500-68.000	A	1.075	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.009

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	4 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L5	68.000-38.250	A	1.048	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.530
L6	38.250-1.000	A	0.950	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.593

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	98.000-78.500	0.000	0.000	0.000	0.000
L2	78.500-78.000	0.000	0.000	0.000	0.000
L3	78.000-68.500	0.000	0.000	0.000	0.000
L4	68.500-68.000	0.000	0.000	0.000	0.000
L5	68.000-38.250	0.000	0.000	0.000	0.000
L6	38.250-1.000	0.000	0.000	0.000	0.000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Туре	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert	0			02	02	**
			ft	Ü	ft		ft^2	ft^2	K
			ft						
			ft						
MX08FIT265-01	Α	From Face	0.500	0.000	82.000	No Ice	3.123	1.411	0.027
(Verizon - Proposed)			0.000			1/2" Ice	3.359	1.613	0.047
			0.000			1" Ice	3.603	1.821	0.070
MX08FIT265-01	В	From Face	0.500	0.000	82.000	No Ice	3.123	1.411	0.027
(Verizon - Proposed)			0.000			1/2" Ice	3.359	1.613	0.047
			0.000			1" Ice	3.603	1.821	0.070
MX08FIT265-01	C	From Face	0.500	0.000	82.000	No Ice	3.123	1.411	0.027
(Verizon - Proposed)			0.000			1/2" Ice	3.359	1.613	0.047
			0.000			1" Ice	3.603	1.821	0.070
NNH4-65B-R6	Α	From Face	0.500	0.000	92.000	No Ice	12.268	5.721	0.083
(Verizon - Proposed)			0.000			1/2" Ice	12.763	6.178	0.155
			0.000			1" Ice	13.265	6.642	0.234
NNH4-65B-R6	В	From Face	0.500	0.000	92.000	No Ice	12.268	5.721	0.083
(Verizon - Proposed)			0.000			1/2" Ice	12.763	6.178	0.155
			0.000			1" Ice	13.265	6.642	0.234
NNH4-65B-R6	C	From Face	0.500	0.000	92.000	No Ice	12.268	5.721	0.083
(Verizon - Proposed)			0.000			1/2" Ice	12.763	6.178	0.155
			0.000			1" Ice	13.265	6.642	0.234
(2) CBC61923T-DS-43 -	A	From Face	0.500	0.000	92.000	No Ice	0.449	0.265	0.014
Diplexer			0.000			1/2" Ice	0.534	0.332	0.019
(Verizon - Proposed)			0.000			1" Ice	0.627	0.407	0.025

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	5 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Туре	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert	0			0.2	0.2	7.5
			ft	0	ft		ft^2	ft^2	K
			ft ft						
(2) CBC61923T-DS-43 -	В	From Face	0.500	0.000	92.000	No Ice	0.449	0.265	0.014
Diplexer			0.000			1/2" Ice	0.534	0.332	0.019
(Verizon - Proposed)			0.000			1" Ice	0.627	0.407	0.025
(2) CBC61923T-DS-43 -	C	From Face	0.500	0.000	92.000	No Ice	0.449	0.265	0.014
Diplexer			0.000			1/2" Ice	0.534	0.332	0.019
(Verizon - Proposed)			0.000			1" Ice	0.627	0.407	0.025
RT-8808-77A	A	From Face	0.500	0.000	82.000	No Ice	1.875	0.850	0.060
(Verizon - Proposed)			0.000			1/2" Ice	2.045	0.975	0.075
•			0.000			1" Ice	2.223	1.107	0.092
RT-8808-77A	В	From Face	0.500	0.000	82.000	No Ice	1.875	0.850	0.060
(Verizon - Proposed)			0.000			1/2" Ice	2.045	0.975	0.075
			0.000			1" Ice	2.223	1.107	0.092
RT-8808-77A	C	From Face	0.500	0.000	82.000	No Ice	1.875	0.850	0.060
(Verizon - Proposed)			0.000			1/2" Ice	2.045	0.975	0.075
			0.000			1" Ice	2.223	1.107	0.092
10'x48" Canister	C	From Face	0.000	0.000	98.000 - 88.000	No Ice	20.000	20.000	0.400
			0.000			1/2" Ice	28.822	28.822	0.757
			0.000			1" Ice	29.653	29.653	1.126
10'x48" Canister	C	From Face	0.000	0.000	88.000 - 78.000	No Ice	20.000	20.000	0.400
			0.000			1/2" Ice	28.822	28.822	0.757
			0.000			1" Ice	29.653	29.653	1.126
10'x36" Canister	C	From Face	0.000	0.000	78.000 - 68.000	No Ice	15.556	15.556	0.350
			0.000			1/2" Ice	22.295	22.295	0.608
			0.000			1" Ice	23.044	23.044	0.876
RRFDC-3315-PF-48	C	From Face	0.500	0.000	92.000	No Ice	3.015	1.965	0.025
(Verizon - Proposed)			0.000			1/2" Ice	3.234	2.153	0.051
			0.000			1" Ice	3.460	2.349	0.081

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft ²	e	ft ²	ft ²	ft ²		ft ²	ft ²
L1	88.250	1.233	0.043	10.766	Α	0.000	10.766	10.766	100.00	0.000	0.000
98.000-78.500					В	0.000	10.766		100.00	0.000	0.000
					C	0.000	10.766		100.00	0.000	0.000
L2	78.230	1.202	0.042	0.362	A	0.000	0.362	0.362	100.00	0.000	0.000
78.500-78.000					В	0.000	0.362		100.00	0.000	0.000
					C	0.000	0.362		100.00	0.000	0.000
L3	73.250	1.185	0.041	8.510	Α	0.000	8.510	8.510	100.00	0.000	0.000
78.000-68.500					В	0.000	8.510		100.00	0.000	0.000
					C	0.000	8.510		100.00	0.000	0.000
L4	68.205	1.168	0.041	0.964	Α	0.000	0.964	0.964	100.00	0.000	0.000
68.500-68.000					В	0.000	0.964		100.00	0.000	0.000
					C	0.000	0.964		100.00	0.000	0.000
L5	52.828	1.107	0.039	94.962	Α	0.000	94.962	94.962	100.00	0.000	0.000
68.000-38.250					В	0.000	94.962		100.00	0.000	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	6 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft ²	e	ft ²	ft ²	ft ²		ft ²	ft ²
					С	0.000	94.962		100.00	0.000	0.000
L6	19.854	0.9	0.032	133.050	Α	0.000	133.050	133.050	100.00	0.000	0.000
38.250-1.000					В	0.000	133.050		100.00	0.000	0.000
					С	0.000	133.050		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_H = 1.100$

Section	Z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						a				%	In	Out
						c		_			Face	Face
ft	ft		ksf	in	ft^2	e	ft ²	ft ²	ft^2		ft^2	ft^2
L1	88.250	1.233	0.007	1.103	14.352	Α	0.000	14.352	14.352	100.00	0.000	0.000
98.000-78.500						В	0.000	14.352		100.00	0.000	0.000
						C	0.000	14.352		100.00	0.000	0.000
L2	78.230	1.202	0.007	1.090	0.453	Α	0.000	0.453	0.453	100.00	0.000	0.000
78.500-78.000						В	0.000	0.453		100.00	0.000	0.000
						C	0.000	0.453		100.00	0.000	0.000
L3	73.250	1.185	0.007	1.083	10.225	Α	0.000	10.225	10.225	100.00	0.000	0.000
78.000-68.500						В	0.000	10.225		100.00	0.000	0.000
						C	0.000	10.225		100.00	0.000	0.000
L4	68.205	1.168	0.007	1.075	1.053	Α	0.000	1.053	1.053	100.00	0.000	0.000
68.500-68.000						В	0.000	1.053		100.00	0.000	0.000
						C	0.000	1.053		100.00	0.000	0.000
L5	52.828	1.107	0.007	1.048	100.159	Α	0.000	100.159	100.159	100.00	0.000	0.000
68.000-38.250						В	0.000	100.159		100.00	0.000	0.000
						C	0.000	100.159		100.00	0.000	0.000
L6 38.250-1.000	19.854	0.9	0.006	0.950	139.557	Α	0.000	139.557	139.557	100.00	0.000	0.000
						В	0.000	139.557		100.00	0.000	0.000
						C	0.000	139.557		100.00	0.000	0.000

Tower Pressure - Service

 $G_H = 1.100$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					c					Face	Face
ft	ft		ksf	ft^2	е	ft ²	ft ²	ft^2		ft ²	ft ²
L1	88.250	1.233	0.010	10.766	Α	0.000	10.766	10.766	100.00	0.000	0.000
98.000-78.500					В	0.000	10.766		100.00	0.000	0.000
					C	0.000	10.766		100.00	0.000	0.000
L2	78.230	1.202	0.009	0.362	Α	0.000	0.362	0.362	100.00	0.000	0.000
78.500-78.000					В	0.000	0.362		100.00	0.000	0.000
					C	0.000	0.362		100.00	0.000	0.000
L3	73.250	1.185	0.009	8.510	Α	0.000	8.510	8.510	100.00	0.000	0.000
78.000-68.500					В	0.000	8.510		100.00	0.000	0.000
					C	0.000	8.510		100.00	0.000	0.000
L4	68.205	1.168	0.009	0.964	Α	0.000	0.964	0.964	100.00	0.000	0.000
68.500-68.000					В	0.000	0.964		100.00	0.000	0.000
					C	0.000	0.964		100.00	0.000	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	7 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					c					Face	Face
ft	ft		ksf	ft ²	e	ft ²	ft ²	ft ²		ft ²	ft^2
L5	52.828	1.107	0.009	94.962	Α	0.000	94.962	94.962	100.00	0.000	0.000
68.000-38.250					В	0.000	94.962		100.00	0.000	0.000
					C	0.000	94.962		100.00	0.000	0.000
L6	19.854	0.9	0.007	133.050	Α	0.000	133.050	133.050	100.00	0.000	0.000
38.250-1.000					В	0.000	133.050		100.00	0.000	0.000
					С	0.000	133.050		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf			_			
ft	K	K	е						ft ²	K	klf	
L1	0.113	0.523	Α	1	0.637	0.043	1	1	10.766	0.325	0.017	C
98.000-78.500			В	1	0.637		1	1	10.766			
			C	1	0.637		1	1	10.766			
L2	0.006	0.020	Α	1	0.6	0.042	1	1	0.362	0.010	0.020	C
78.500-78.000			В	1	0.6		1	1	0.362			
			С	1	0.6		1	1	0.362			
L3	0.140	0.486	Α	1	0.6	0.041	1	1	8.510	0.233	0.024	C
78.000-68.500			В	1	0.6		1	1	8.510			
			C	1	0.6		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.041	1	1	0.964	0.026	0.052	C
68.500-68.000			В	1	0.6		1	1	0.964			
			С	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.039	1	1	94.962	2.947	0.099	C
68.000-38.250			В	1	0.73		1	1	94.962			
			С	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.032	1	1	133.050	3.396	0.091	C
38.250-1.000			В	1	0.73		1	1	133.050			
			C	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	264.463	6.937		
									kip-ft			

Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			ksf						
ft	K	K	e						ft^2	K	klf	
L1	0.113	0.523	Α	1	0.637	0.043	1	1	10.766	0.325	0.017	C
98.000-78.500			В	1	0.637		1	1	10.766			
			C	1	0.637		1	1	10.766			
L2	0.006	0.020	Α	1	0.6	0.042	1	1	0.362	0.010	0.020	C
78.500-78.000			В	1	0.6		1	1	0.362			
			C	1	0.6		1	1	0.362			
L3	0.140	0.486	Α	1	0.6	0.041	1	1	8.510	0.233	0.024	C
78.000-68.500			В	1	0.6		1	1	8.510			
			С	1	0.6		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.041	1	1	0.964	0.026	0.052	C
68.500-68.000			В	1	0.6		1	1	0.964			

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	8 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			ksf			_			
ft	K	K	е						ft^2	K	klf	
			С	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.039	1	1	94.962	2.947	0.099	C
68.000-38.250			В	1	0.73		1	1	94.962			
			С	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.032	1	1	133.050	3.396	0.091	C
38.250-1.000			В	1	0.73		1	1	133.050			
			С	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	264.463	6.937		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			c			ksf						
ft	K	K	е						ft^2	K	klf	
L1	0.113	0.523	Α	1	0.637	0.043	1	1	10.766	0.325	0.017	C
98.000-78.500			В	1	0.637		1	1	10.766			
			С	1	0.637		1	1	10.766			
L2	0.006	0.020	Α	1	0.6	0.042	1	1	0.362	0.010	0.020	C
78.500-78.000			В	1	0.6		1	1	0.362			
			C	1	0.6		1	1	0.362			
L3	0.140	0.486	Α	1	0.6	0.041	1	1	8.510	0.233	0.024	С
78.000-68.500			В	1	0.6		1	1	8.510			
			C	1	0.6		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.041	1	1	0.964	0.026	0.052	C
68.500-68.000			В	1	0.6		1	1	0.964			
			С	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.039	1	1	94.962	2.947	0.099	C
68.000-38.250			В	1	0.73		1	1	94.962			
			C	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.032	1	1	133.050	3.396	0.091	C
38.250-1.000			В	1	0.73		1	1	133.050			
			C	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	264.463	6.937		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf						
ft	K	K	е						ft ²	K	klf	
L1	0.113	0.523	Α	1	0.637	0.043	1	1	10.766	0.325	0.017	C
98.000-78.500			В	1	0.637		1	1	10.766			
			С	1	0.637		1	1	10.766			
L2	0.006	0.020	Α	1	0.6	0.042	1	1	0.362	0.010	0.020	C
78.500-78.000			В	1	0.6		1	1	0.362			
			С	1	0.6		1	1	0.362			

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	9 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			ksf			_			
ft	K	K	е						ft ²	K	klf	
L3	0.140	0.486	Α	1	0.6	0.041	1	1	8.510	0.233	0.024	C
78.000-68.500			В	1	0.6		1	1	8.510			
			С	1	0.6		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.041	1	1	0.964	0.026	0.052	C
68.500-68.000			В	1	0.6		1	1	0.964			
			С	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.039	1	1	94.962	2.947	0.099	C
68.000-38.250			В	1	0.73		1	1	94.962			
			C	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.032	1	1	133.050	3.396	0.091	C
38.250-1.000			В	1	0.73		1	1	133.050			
			С	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	264.463	6.937		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			ksf						
ft	K	K	е						ft ²	K	klf	
L1	0.113	0.726	Α	1	1.2	0.007	1	1	14.352	0.142	0.007	C
98.000-78.500			В	1	1.2		1	1	14.352			
			C	1	1.2		1	1	14.352			
L2	0.006	0.027	Α	1	1.2	0.007	1	1	0.453	0.004	0.009	C
78.500-78.000			В	1	1.2		1	1	0.453			
			С	1	1.2		1	1	0.453			
L3	0.140	0.634	Α	1	1.2	0.007	1	1	10.225	0.097	0.010	С
78.000-68.500			В	1	1.2		1	1	10.225			
			C	1	1.2		1	1	10.225			
L4	0.009	0.072	Α	1	1.2	0.007	1	1	1.053	0.010	0.020	C
68.500-68.000			В	1	1.2		1	1	1.053			
			C	1	1.2		1	1	1.053			
L5	0.530	4.507	Α	1	1.2	0.007	1	1	100.159	0.887	0.030	C
68.000-38.250			В	1	1.2		1	1	100.159			
			С	1	1.2		1	1	100.159			
L6	0.593	6.689	Α	1	1.2	0.006	1	1	138.950	1.012	0.027	С
38.250-1.000			В	1	1.2		1	1	138.950			
			С	1	1.2		1	1	138.950			
Sum Weight:	1.390	12.655						OTM	85.433	2.152		
									kip-ft			

Tower Forces - With Ice - Wind 45 To Face

I	Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
ı	Elevation	Weight	Weight	а									Face
ı				c			ksf						
ı	ft	K	K	e						ft ²	K	klf	
1	L1	0.113	0.726	Α	1	1.2	0.007	1	1	14.352	0.142	0.007	С

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	10 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
_			С			ksf			- 2			
ft	K	K	е						ft ²	K	klf	
98.000-78.500			В	1	1.2		1	1	14.352			
			С	1	1.2		1	1	14.352			
L2	0.006	0.027	Α	1	1.2	0.007	1	1	0.453	0.004	0.009	C
78.500-78.000			В	1	1.2		1	1	0.453			
			C	1	1.2		1	1	0.453			
L3	0.140	0.634	Α	1	1.2	0.007	1	1	10.225	0.097	0.010	C
78.000-68.500			В	1	1.2		1	1	10.225			
			C	1	1.2		1	1	10.225			
L4	0.009	0.072	Α	1	1.2	0.007	1	1	1.053	0.010	0.020	C
68.500-68.000			В	1	1.2		1	1	1.053			
			С	1	1.2		1	1	1.053			
L5	0.530	4.507	A	1	1.2	0.007	1	1	100.159	0.887	0.030	С
68.000-38.250			В	1	1.2		1	1	100.159			
			C	1	1.2		1	l îl	100.159			
L6	0.593	6.689	Ā	1	1.2	0.006	1	1	138.950	1.012	0.027	С
38.250-1.000	0.000	0.007	В	1	1.2	0.000	1	1	138.950		0.10_	
23.220 1.300			Č	1	1.2		i	l îl	138.950			
Sum Weight:	1.390	12.655		1	1.2			ОТМ	85.433	2.152		
Bulli Weight.	1.570	12.055						OIM	kip-ft	2.132		l

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf			,			
ft	K	K	е						ft²	K	klf	
L1	0.113	0.726	Α	1	1.2	0.007	1	1	14.352	0.142	0.007	C
98.000-78.500			В	1	1.2		1	1	14.352			
			С	1	1.2		1	1	14.352			
L2	0.006	0.027	Α	1	1.2	0.007	1	1	0.453	0.004	0.009	C
78.500-78.000			В	1	1.2		1	1	0.453			
			С	1	1.2		1	1	0.453			
L3	0.140	0.634	Α	1	1.2	0.007	1	1	10.225	0.097	0.010	C
78.000-68.500			В	1	1.2		1	1	10.225			
			C	1	1.2		1	1	10.225			
L4	0.009	0.072	Α	1	1.2	0.007	1	1	1.053	0.010	0.020	C
68.500-68.000			В	1	1.2		1	1	1.053			
			С	1	1.2		1	1	1.053			
L5	0.530	4.507	Α	1	1.2	0.007	1	1	100.159	0.887	0.030	C
68.000-38.250			В	1	1.2		1	1	100.159			
			С	1	1.2		1	1	100.159			
L6	0.593	6.689	Α	1	1.2	0.006	1	1	138.950	1.012	0.027	C
38.250-1.000			В	1	1.2		1	1	138.950			
			С	1	1.2		1	1	138.950			
Sum Weight:	1.390	12.655						OTM	85.433	2.152		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	11 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			_						Face
			c			ksf			- 3			
ft	K	K	е						ft ²	K	klf	
L1	0.113	0.726	Α	1	1.2	0.007	1	1	14.352	0.142	0.007	C
98.000-78.500			В	1	1.2		1	1	14.352			
			C	1	1.2		1	1	14.352			
L2	0.006	0.027	Α	1	1.2	0.007	1	1	0.453	0.004	0.009	C
78.500-78.000			В	1	1.2		1	1	0.453			
			С	1	1.2		1	1	0.453			
L3	0.140	0.634	Α	1	1.2	0.007	1	1	10.225	0.097	0.010	C
78.000-68.500			В	1	1.2		1	1	10.225			
			C	1	1.2		1	1	10.225			
L4	0.009	0.072	Α	1	1.2	0.007	1	1	1.053	0.010	0.020	C
68.500-68.000			В	1	1.2		1	1	1.053			
			C	1	1.2		1	1	1.053			
L5	0.530	4.507	Α	1	1.2	0.007	1	1	100.159	0.887	0.030	C
68.000-38.250			В	1	1.2		1	1	100.159			
			С	1	1.2		1	1	100.159			
L6	0.593	6.689	Α	1	1.2	0.006	1	1	138.950	1.012	0.027	C
38.250-1.000			В	1	1.2		1	1	138.950			
1			C	1	1.2		1	1	138.950			
Sum Weight:	1.390	12.655						OTM	85.433	2.152		
									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf			2			
ft	K	K	е						ft ²	K	klf	
L1	0.113	0.523	Α	1	1.2	0.010	1	1	10.766	0.137	0.007	C
98.000-78.500			В	1	1.2		1	1	10.766			
			C	1	1.2		1	1	10.766			
L2	0.006	0.020	Α	1	0.984	0.009	1	1	0.362	0.004	0.007	C
78.500-78.000			В	1	0.984		1	1	0.362			
			C	1	0.984		1	1	0.362			
L3	0.140	0.486	Α	1	0.801	0.009	1	1	8.510	0.069	0.007	C
78.000-68.500			В	1	0.801		1	1	8.510			
			C	1	0.801		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.009	1	1	0.964	0.006	0.012	C
68.500-68.000			В	1	0.6		1	1	0.964			
			C	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.009	1	1	94.962	0.659	0.022	C
68.000-38.250			В	1	0.73		1	1	94.962			
			C	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.007	1	1	133.050	0.760	0.020	C
38.250-1.000			В	1	0.73		1	1	133.050			
			C	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	66.127	1.635		
									kip-ft			

Tower Forces - Service - Wind 45 To Face

4 7	7
tuvi	ower
uuai	UNCI

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

-	Job	Page
	21007.69 vZw Bridgeport NE CT	12 of 32
	Project	Date
	98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
	Client	Designed by
	Verizon Wireless	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf						
ft	K	K	е						ft²	K	klf	
L1	0.113	0.523	Α	1	1.2	0.010	1	1	10.766	0.137	0.007	C
98.000-78.500			В	1	1.2		1	1	10.766			
			С	1	1.2		1	1	10.766			
L2	0.006	0.020	Α	1	0.984	0.009	1	1	0.362	0.004	0.007	C
78.500-78.000			В	1	0.984		1	1	0.362			
			С	1	0.984		1	1	0.362			
L3	0.140	0.486	Α	1	0.801	0.009	1	1	8.510	0.069	0.007	C
78.000-68.500			В	1	0.801		1	1	8.510			
			С	1	0.801		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.009	1	1	0.964	0.006	0.012	С
68.500-68.000			В	1	0.6		1	1	0.964			
			С	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.009	1	1	94.962	0.659	0.022	C
68.000-38.250			В	1	0.73		1	1	94.962			
			С	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.007	1	1	133.050	0.760	0.020	C
38.250-1.000			В	1	0.73		1	1	133.050			
			С	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	66.127	1.635		
,									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf						
ft	K	K	е						ft ²	K	klf	
L1	0.113	0.523	Α	1	1.2	0.010	1	1	10.766	0.137	0.007	C
98.000-78.500			В	1	1.2		1	1	10.766			
			C	1	1.2		1	1	10.766			
L2	0.006	0.020	Α	1	0.984	0.009	1	1	0.362	0.004	0.007	C
78.500-78.000			В	1	0.984		1	1	0.362			
			C	1	0.984		1	1	0.362			
L3	0.140	0.486	Α	1	0.801	0.009	1	1	8.510	0.069	0.007	C
78.000-68.500			В	1	0.801		1	1	8.510			
			С	1	0.801		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.009	1	1	0.964	0.006	0.012	C
68.500-68.000			В	1	0.6		1	1	0.964			
			С	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.009	1	1	94.962	0.659	0.022	C
68.000-38.250			В	1	0.73		1	1	94.962			
			С	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.007	1	1	133.050	0.760	0.020	C
38.250-1.000			В	1	0.73		1	1	133.050			
			С	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	66.127	1.635		
									kip-ft			

4	7
<i>tnx 1</i>	<i>ower</i>

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.69 vZw Bridgeport NE CT	13 of 32
	Project	Date
	98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
	Client	Designed by
	Verizon Wireless	TJL

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf						
ft	K	K	е						ft ²	K	klf	
L1	0.113	0.523	Α	1	1.2	0.010	1	1	10.766	0.137	0.007	C
98.000-78.500			В	1	1.2		1	1	10.766			
			C	1	1.2		1	1	10.766			
L2	0.006	0.020	Α	1	0.984	0.009	1	1	0.362	0.004	0.007	C
78.500-78.000			В	1	0.984		1	1	0.362			
			C	1	0.984		1	1	0.362			
L3	0.140	0.486	Α	1	0.801	0.009	1	1	8.510	0.069	0.007	C
78.000-68.500			В	1	0.801		1	1	8.510			
			C	1	0.801		1	1	8.510			
L4	0.009	0.056	Α	1	0.6	0.009	1	1	0.964	0.006	0.012	C
68.500-68.000			В	1	0.6		1	1	0.964			
			C	1	0.6		1	1	0.964			
L5	0.530	3.013	Α	1	0.73	0.009	1	1	94.962	0.659	0.022	C
68.000-38.250			В	1	0.73		1	1	94.962			
			С	1	0.73		1	1	94.962			
L6	0.593	4.801	Α	1	0.73	0.007	1	1	133.050	0.760	0.020	C
38.250-1.000			В	1	0.73		1	1	133.050			
			С	1	0.73		1	1	133.050			
Sum Weight:	1.390	8.899						OTM	66.127	1.635		
									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	, ,
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	8.899					
Bracing Weight	0.000					
Total Member Self-Weight	8.899			0.408	0.000	
Total Weight	12.058			0.408	0.000	
Wind 0 deg - No Ice		0.000	-11.582	-660.739	0.000	0.000
Wind 30 deg - No Ice		5.766	-10.030	-572.162	-328.290	0.467
Wind 45 deg - No Ice		8.154	- 8.190	- 467.093	- 464.272	0.661
Wind 60 deg - No Ice		9.987	-5.791	-330.165	-568.614	0.810
Wind 90 deg - No Ice		11.532	0.000	0.408	-656.579	0.935
Wind 120 deg - No Ice		9.987	5.791	330.981	-568.614	0.810
Wind 135 deg - No Ice		8.154	8.190	467.909	-464.272	0.661
Wind 150 deg - No Ice		5.766	10.030	572.977	-328.290	0.467
Wind 180 deg - No Ice		0.000	11.582	661.554	0.000	0.000
Wind 210 deg - No Ice		-5.766	10.030	572.977	328.290	-0.467
Wind 225 deg - No Ice		-8.154	8.190	467.909	464.272	- 0.661
Wind 240 deg - No Ice		- 9.987	5.791	330.981	568.614	-0.810
Wind 270 deg - No Ice		-11.532	0.000	0.408	656.579	-0.935
Wind 300 deg - No Ice		-9.987	-5.791	-330.165	568.614	-0.810
Wind 315 deg - No Ice		-8.154	-8.190	- 467.093	464.272	-0.661
Wind 330 deg - No Ice		-5.766	-10.030	-572.162	328.290	-0.467
Member Ice	3.756					
Total Weight Ice	18.901			1.176	0.000	
Wind 0 deg - Ice		0.000	-3.240	-176.747	0.000	0.000
Wind 30 deg - Ice		1.615	-2.806	-152.910	-88.539	0.119

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	14 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by
VEHZOH VVIICICSS	TJL

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 45 deg - Ice		2.284	-2.291	-124.634	-125.214	0.169
Wind 60 deg - Ice		2.798	-1.620	-87.785	-153.355	0.207
Wind 90 deg - Ice		3.231	0.000	1.176	-177.079	0.238
Wind 120 deg - Ice		2.798	1.620	90.137	-153.355	0.207
Wind 135 deg - Ice		2.284	2.291	126.986	-125.214	0.169
Wind 150 deg - Ice		1.615	2.806	155.262	-88.539	0.119
Wind 180 deg - Ice		0.000	3.240	179.099	0.000	0.000
Wind 210 deg - Ice		-1.615	2.806	155.262	88.539	- 0.119
Wind 225 deg - Ice		-2.284	2.291	126.986	125.214	- 0.169
Wind 240 deg - Ice		-2.798	1.620	90.137	153.355	-0.207
Wind 270 deg - Ice		-3.231	0.000	1.176	177.079	-0.238
Wind 300 deg - Ice		-2.798	-1.620	-87.785	153.355	-0.207
Wind 315 deg - Ice		-2.284	-2.291	-124.634	125.214	- 0.169
Wind 330 deg - Ice		-1.615	-2.806	-152.910	88.539	- 0.119
Total Weight	12.058			0.408	0.000	
Wind 0 deg - Service		0.000	-2.674	-154.452	0.000	0.000
Wind 30 deg - Service		1.331	-2.316	-133.704	- 76.919	0.105
Wind 45 deg - Service		1.883	-1.891	-109.094	-108.780	0.148
Wind 60 deg - Service		2.306	-1.337	-77.022	-133.227	0.181
Wind 90 deg - Service		2.663	0.000	0.408	-153.838	0.209
Wind 120 deg - Service		2.306	1.337	77.837	-133.227	0.181
Wind 135 deg - Service		1.883	1.891	109.910	-108.780	0.148
Wind 150 deg - Service		1.331	2.316	134.520	-76.919	0.105
Wind 180 deg - Service		0.000	2.674	155.267	0.000	0.000
Wind 210 deg - Service		-1.331	2.316	134.520	76.919	-0.105
Wind 225 deg - Service		-1.883	1.891	109.910	108.780	-0.148
Wind 240 deg - Service		-2.306	1.337	77.837	133.227	-0.181
Wind 270 deg - Service		-2.663	0.000	0.408	153.838	-0.209
Wind 300 deg - Service		-2.306	-1.337	-77.022	133.227	-0.181
Wind 315 deg - Service		-1.883	-1.891	-109.094	108.780	-0.148
Wind 330 deg - Service		-1.331	-2.316	-133.704	76.919	-0.105

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 45 deg - No Ice
7	0.9 Dead+1.0 Wind 45 deg - No Ice
8	1.2 Dead+1.0 Wind 60 deg - No Ice
9	0.9 Dead+1.0 Wind 60 deg - No Ice
10	1.2 Dead+1.0 Wind 90 deg - No Ice
11	0.9 Dead+1.0 Wind 90 deg - No Ice
12	1.2 Dead+1.0 Wind 120 deg - No Ice
13	0.9 Dead+1.0 Wind 120 deg - No Ice
14	1.2 Dead+1.0 Wind 135 deg - No Ice
15	0.9 Dead+1.0 Wind 135 deg - No Ice
16	1.2 Dead+1.0 Wind 150 deg - No Ice
17	0.9 Dead+1.0 Wind 150 deg - No Ice
18	1.2 Dead+1.0 Wind 180 deg - No Ice
19	0.9 Dead+1.0 Wind 180 deg - No Ice
20	1.2 Dead+1.0 Wind 210 deg - No Ice

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	15 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

No.	Comb.	Description
21		Description
22		0.9 Dead+1.0 Wind 210 deg - No Ice
23		
24 1.2 Dead+1.0 Wind 240 deg - No Ice 25 0.9 Dead+1.0 Wind 270 deg - No Ice 26 1.2 Dead+1.0 Wind 270 deg - No Ice 27 0.9 Dead+1.0 Wind 270 deg - No Ice 28 1.2 Dead+1.0 Wind 300 deg - No Ice 29 0.9 Dead+1.0 Wind 300 deg - No Ice 30 1.2 Dead+1.0 Wind 315 deg - No Ice 31 0.9 Dead+1.0 Wind 315 deg - No Ice 32 1.2 Dead+1.0 Wind 315 deg - No Ice 33 0.9 Dead+1.0 Wind 330 deg - No Ice 34 1.2 Dead+1.0 Wind 330 deg - No Ice 35 1.2 Dead+1.0 Wind 330 deg - No Ice 36 1.2 Dead+1.0 Wind 330 deg - No Ice 37 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp 38 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp 39 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp 39 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp 40 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp 41 1.2 Dead+1.0 Wind 156 deg+1.0 Ice+1.0 Temp 42 1.2 Dead+1.0 Wind 156 deg+1.0 Ice+1.0 Temp 43 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 44 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 45 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 46 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 47 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 48 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 49 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 40 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 41 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 42 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 43 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 44 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 45 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 46 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 47 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 48 1.2 Dead+1.0 Wind 350 deg+1.0 Ice+1.0 Temp 49 1.2 Dead+1.0 Wind 350 deg+1.0 Ice+1.0 Temp 50 1.2 Dead+1.0 Wind 350 deg+1.0 Ice+1.0 Temp 51 Dead+Wind 30 deg - Service 52 Dead+Wind 315 deg - Service 53 Dead+Wind 315 deg - Service 54 Dead+Wind 315 deg - Service 55 Dead+Wind 315 deg - Service 66 Dead+Wind 315 deg - Service 67 Dead+Wind 315 deg - Service 68 Dead+Wind 316 deg - Service 60 Dead+Wind 240 deg - Service 60 Dead+Wind 240 deg - Service		· ·
1.2 Dead+1.0 Wind 270 deg - No Ice 27	24	· ·
1.2 Dead+1.0 Wind 300 deg - No Ice	25	0.9 Dead+1.0 Wind 240 deg - No Ice
1.2 Dead+1.0 Wind 300 deg - No Ice 9	26	1.2 Dead+1.0 Wind 270 deg - No Ice
99 0.9 Dead+1.0 Wind 300 deg - No Ice 30 1.2 Dead+1.0 Wind 315 deg - No Ice 31 0.9 Dead+1.0 Wind 315 deg - No Ice 32 1.2 Dead+1.0 Wind 330 deg - No Ice 33 0.9 Dead+1.0 Wind 330 deg - No Ice 34 1.2 Dead+1.0 Ice+1.0 Temp 35 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp 36 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp 37 1.2 Dead+1.0 Wind 40 deg+1.0 Ice+1.0 Temp 38 1.2 Dead+1.0 Wind 40 deg+1.0 Ice+1.0 Temp 39 1.2 Dead+1.0 Wind 40 deg+1.0 Ice+1.0 Temp 40 1.2 Dead+1.0 Wind 40 deg+1.0 Ice+1.0 Temp 41 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 42 1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp 43 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 44 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 45 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 46 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 47 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 48 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 49 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 40 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 41 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 42 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 43 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 44 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 45 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 46 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 47 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 48 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 49 1.2 Dead+Wind 10 Wind 310 deg+1.0 Ice+1.0 Temp 50 1.2 Dead+Wind 350 deg - Service 51 Dead+Wind 350 deg - Service 52 Dead+Wind 350 deg - Service 53 Dead+Wind 350 deg - Service 54 Dead+Wind 150 deg - Service 55 Dead+Wind 150 deg - Service 56 Dead+Wind 150 deg - Service 57 Dead+Wind 150 deg - Service 58 Dead+Wind 150 deg - Service 59 Dead+Wind 150 deg - Service 60 Dead+Wind 210 deg - Service 61 Dead+Wind 210 deg - Service 62 Dead+Wind 210 deg - Service 63 Dead+Wind 210 deg - Service 64 Dead+Wind 210 deg - Service	27	0.9 Dead+1.0 Wind 270 deg - No Ice
30	28	1.2 Dead+1.0 Wind 300 deg - No Ice
31	29	0.9 Dead+1.0 Wind 300 deg - No Ice
1.2 Dead+1.0 Wind 330 deg - No Ice 33	30	1.2 Dead+1.0 Wind 315 deg - No Ice
33	31	0.9 Dead+1.0 Wind 315 deg - No Ice
1.2 Dead+1.0 Vind 0 deg+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.3 Dead+Wind 30 deg - Service 1.4 Dead+Wind 30 deg - Service 1.5 Dead+Wind 30 deg - Service 2.5 Dead+Wind 30 deg - Service 3.5 Dead+Wind 30 deg - Service 3.6 Dead+Wind 30 deg - Service 3.7 Dead+Wind 30 deg - Service 3.8 Dead+Wind 30 deg - Service 3.9 Dead+Wind 30 deg - Service 3.0 Dead+Wind 30 deg - Service	32	1.2 Dead+1.0 Wind 330 deg - No Ice
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp 37	33	0.9 Dead+1.0 Wind 330 deg - No Ice
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp 38	34	
1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 226 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 360 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 370 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 380 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 380 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 380 deg-1.0 Ice+1.0 Temp 1.2 Dead+Wind		
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 125 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 0 deg - Service 1.2 Dead+Wind 0 deg - Service 1.3 Dead+Wind 0 deg - Service 1.4 Dead+Wind 0 deg - Service 1.5 Dead+Wind 0 deg - Service 1.5 Dead+Wind 120 deg - Service 1.5 Dead+Wind 150 deg - Service 1.5 Dead+Wind 210 deg - Service 1.5 Dead+Wind 210 deg - Service 2.5 Dead+Wind 150 deg - Service 3. Dead+Wind 150 deg - Service 3. Dead+Wind 210 deg - Service		
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 30 deg - Service Dead+Wind 60 deg - Service Dead+Wind 60 deg - Service Dead+Wind 60 deg - Service Dead+Wind 135 deg - Service Dead+Wind 135 deg - Service Dead+Wind 100 deg - Service Dead+Wind 200 deg - Service		
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 30 deg - Service Dead+Wind 45 deg - Service Dead+Wind 46 deg - Service Dead+Wind 40 deg - Service Dead+Wind 40 deg - Service Dead+Wind 40 deg - Service Dead+Wind 120 deg - Service Dead+Wind 135 deg - Service Dead+Wind 180 deg - Service Dead+Wind 225 deg - Service Dead+Wind 225 deg - Service		
1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 30 deg - Service Dead+Wind 45 deg - Service Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service Dead+Wind 185 deg - Service Dead+Wind 180 deg - Service Dead+Wind 180 deg - Service Dead+Wind 180 deg - Service Dead+Wind 190 deg - Service Dead+Wind 225 deg - Service Dead+Wind 225 deg - Service		
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 0 deg - Service 1.2 Dead+Wind 30 deg - Service 1.2 Dead+Wind 30 deg - Service 1.3 Dead+Wind 45 deg - Service 1.4 Dead+Wind 40 deg - Service 1.5 Dead+Wind 90 deg - Service 1.5 Dead+Wind 120 deg - Service 1.5 Dead+Wind 150 deg - Service 1.5 Dead+Wind 150 deg - Service 1.5 Dead+Wind 180 deg - Service 1.5 Dead+Wind 180 deg - Service 1.5 Dead+Wind 210 deg - Service 1.5 Dead+Wind 225 deg - Service 1.5 Dead+Wind 225 deg - Service 2.5 Dead+Wind 225 deg - Service 3.5 Dead+Wind 225 deg - Service		·
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 30 deg - Service Dead+Wind 0 deg - Service 12 Dead+Wind 30 deg - Service 13 Dead+Wind 45 deg - Service 14 Dead+Wind 60 deg - Service 15 Dead+Wind 120 deg - Service 16 Dead+Wind 135 deg - Service 17 Dead+Wind 135 deg - Service 18 Dead+Wind 150 deg - Service 19 Dead+Wind 150 deg - Service 19 Dead+Wind 150 deg - Service 10 Dead+Wind 150 deg - Service 11 Dead+Wind 210 deg - Service 12 Dead+Wind 210 deg - Service 13 Dead+Wind 225 deg - Service 14 Dead+Wind 225 deg - Service 15 Dead+Wind 240 deg - Service		
1.2 Dead+1.0 Wind 210 deg+1.0 Temp 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 0 deg - Service Dead+Wind 45 deg - Service Dead+Wind 45 deg - Service Dead+Wind 45 deg - Service Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service Dead+Wind 135 deg - Service Dead+Wind 120 deg - Service Dead+Wind 210 deg - Service Dead+Wind 225 deg - Service		
1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 0 deg - Service 1.2 Dead+Wind 30 deg - Service 1.2 Dead+Wind 30 deg - Service 1.3 Dead+Wind 45 deg - Service 1.4 Dead+Wind 60 deg - Service 1.5 Dead+Wind 90 deg - Service 1.5 Dead+Wind 120 deg - Service 1.5 Dead+Wind 120 deg - Service 1.5 Dead+Wind 135 deg - Service 1.5 Dead+Wind 180 deg - Service 1.5 Dead+Wind 180 deg - Service 1.5 Dead+Wind 180 deg - Service 1.5 Dead+Wind 210 deg - Service 2.5 Dead+Wind 210 deg - Service 3.5 Dead+Wind 210 deg - Service		·
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 0 deg - Service 1.2 Dead+Wind 0 deg - Service 1.2 Dead+Wind 0 deg - Service 1.3 Dead+Wind 0 deg - Service 1.4 Dead+Wind 0 deg - Service 1.5 Dead+Wind 0 deg - Service 1.5 Dead+Wind 0 deg - Service 1.5 Dead+Wind 120 deg - Service 1.5 Dead+Wind 120 deg - Service 1.5 Dead+Wind 135 deg - Service 1.5 Dead+Wind 130 deg - Service 1.5 Dead+Wind 150 deg - Service 1.5 Dead+Wind 150 deg - Service 1.5 Dead+Wind 150 deg - Service 1.5 Dead+Wind 210 deg - Service		·
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service Dead+Wind 45 deg - Service Dead+Wind 46 deg - Service Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service Dead+Wind 135 deg - Service Dead+Wind 136 deg - Service Dead+Wind 120 deg - Service Dead+Wind 225 deg - Service Dead+Wind 210 deg - Service Dead+Wind 240 deg - Service		
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp 1.2 Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service Dead+Wind 45 deg - Service Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service Dead+Wind 135 deg - Service Dead+Wind 136 deg - Service Dead+Wind 150 deg - Service Dead+Wind 150 deg - Service Dead+Wind 210 deg - Service		
1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service Dead+Wind 45 deg - Service Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service Dead+Wind 135 deg - Service Dead+Wind 130 deg - Service Dead+Wind 130 deg - Service Dead+Wind 120 deg - Service Dead+Wind 150 deg - Service Dead+Wind 150 deg - Service Dead+Wind 210 deg - Service Dead+Wind 210 deg - Service Dead+Wind 210 deg - Service Dead+Wind 240 deg - Service		
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service Dead+Wind 45 deg - Service Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service Dead+Wind 135 deg - Service Dead+Wind 130 deg - Service Dead+Wind 150 deg - Service Dead+Wind 150 deg - Service Dead+Wind 150 deg - Service Dead+Wind 210 deg - Service		
Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service Dead+Wind 45 deg - Service Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service Dead+Wind 135 deg - Service Dead+Wind 136 deg - Service Dead+Wind 150 deg - Service Dead+Wind 20 deg - Service Dead+Wind 210 deg - Service Dead+Wind 210 deg - Service Dead+Wind 225 deg - Service		· ·
52 Dead+Wind 30 deg - Service 53 Dead+Wind 45 deg - Service 54 Dead+Wind 60 deg - Service 55 Dead+Wind 90 deg - Service 56 Dead+Wind 120 deg - Service 57 Dead+Wind 135 deg - Service 58 Dead+Wind 150 deg - Service 59 Dead+Wind 180 deg - Service 59 Dead+Wind 180 deg - Service 60 Dead+Wind 210 deg - Service 61 Dead+Wind 225 deg - Service 62 Dead+Wind 240 deg - Service		
53		
54		
55		
56		e
57 Dead+Wind 135 deg - Service 58 Dead+Wind 150 deg - Service 59 Dead+Wind 180 deg - Service 60 Dead+Wind 210 deg - Service 61 Dead+Wind 225 deg - Service 62 Dead+Wind 240 deg - Service		
58		
59 Dead+Wind 180 deg - Service 60 Dead+Wind 210 deg - Service 61 Dead+Wind 225 deg - Service 62 Dead+Wind 240 deg - Service		e e e e e e e e e e e e e e e e e e e
60 Dead+Wind 210 deg - Service 61 Dead+Wind 225 deg - Service 62 Dead+Wind 240 deg - Service		· ·
61 Dead+Wind 225 deg - Service 62 Dead+Wind 240 deg - Service		· ·
62 Dead+Wind 240 deg - Service		E Company of the Comp
05 Dead: Willia 270 deg - Del Vice	63	Dead+Wind 270 deg - Service
64 Dead+Wind 300 deg - Service		
65 Dead+Wind 315 deg - Service	65	Dead+Wind 315 deg - Service
66 Dead+Wind 330 deg - Service	66	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
L1	98 - 78.5	Pole	Max Tension	35	0.000	0.000	-0.000
			Max. Compression	34	-5.120	0.000	-0.807
			Max. Mx	10	-2.292	-44.335	-0.282
			Max. My	18	-2.288	0.000	-45.314
			Max. Vy	10	4.249	-44.335	-0.282
			Max. Vx	18	4.300	0.000	-45.314
			Max. Torque	10			-0.580

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job	Page
	21007.69 vZw Bridgeport NE CT	16 of 32
ļ	Project	Date
	98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
	Client	Designed by
	Verizon Wireless	TJL

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
	-			Comb.	K	kip-ft	kip-ft
L2	78.5 - 78	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	34	-5.222	0.000	-0.831
			Max. Mx	10	-2.359	-46.470	-0.290
			Max. My	18	-2.355	0.000	-47.484
			Max. Vy	10	4.300	- 46.470	-0.290
			Max. Vx	18	4.352	0.000	-47.484
			Max. Torque	10			-0.597
L3	78 - 68.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	34	-7.064	0.000	-1.264
			Max. Mx	10	-3.558	-91.573	-0.468
			Max. My	18	-3.556	0.000	-93.252
			Max. Vy	10	5.188	-91.573	-0.468
			Max. Vx	18	5.239	0.000	-93.252
			Max. Torque	10			-0.898
L4	68.5 - 68	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	34	-7.207	0.000	-1.312
			Max. Mx	10	-3.662	-94.180	-0.487
			Max. My	18	-3.661	0.000	-95.904
			Max. Vy	10	5.247	- 94.180	-0.487
			Max. Vx	18	5.298	0.000	-95.904
			Max. Torque	10			-0.932
L5	68 - 38.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	34	-11.858	0.000	-1.312
			Max. Mx	10	-7.086	-250.157	-0.496
			Max. My	18	-7.084	0.000	-253.116
			Max. Vy	10	7.651	-250.157	-0.496
			Max. Vx	18	7.702	0.000	-253.116
			Max. Torque	10			-0.932
L6	38.25 - 1	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	34	-21.592	0.000	-1.312
			Max. Mx	10	-14.466	-663.331	-0.502
			Max. My	18	-14.466	0.000	-668.460
			Max. Vy	10	11.537	-663.331	-0.502
			Max. Vx	18	11.587	0.000	-668.460
			Max. Torque	10			-0.932

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	34	21.592	0.000	-0.000
	$Max. H_x$	27	10.852	11.532	0.000
	$Max. H_z$	2	14.470	0.000	11.582
	Max. M_x	2	667.455	0.000	11.582
	Max. M _z	10	663.331	-11.532	0.000
	Max. Torsion	26	0.932	11.532	0.000
	Min. Vert	31	10.852	8.154	8.190
	Min. H _x	10	14.470	-11.532	0.000
	Min. Hz	18	14.470	0.000	-11.582
	Min. M _x	18	-668.460	0.000	-11.582
	Min. Mz	26	-663.331	11.532	0.000
	Min. Torsion	10	-0.932	-11.532	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	17 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	12.058	0.000	0.000	0.413	0.000	0.000
1.2 Dead+1.0 Wind 0 deg - No Ice	14.470	0.000	-11.582	-667.455	0.000	0.000
0.9 Dead+1.0 Wind 0 deg - No Ice	10.852	0.000	-11.582	-665.833	0.000	0.000
1.2 Dead+1.0 Wind 30 deg - No Ice	14.470	5.766	-10.030	-577.966	-331.664	0.466
0.9 Dead+1.0 Wind 30 deg - No Ice	10.852	5.766	-10.030	-576.579	-330.797	0.466
1.2 Dead+1.0 Wind 45 deg - No Ice	14.470	8.154	-8.190	-471.816	-469.044	0.659
0.9 Dead+1.0 Wind 45 deg - No Ice	10.852	8.154	-8.190	-470.707	-467.818	0.659
1.2 Dead+1.0 Wind 60 deg - No Ice	14.470	9.987	-5.791	-333.478	-574.460	0.807
0.9 Dead+1.0 Wind 60 deg - No Ice	10.852	9.987	-5.791	-332.731	-572.958	0.807
1.2 Dead+1.0 Wind 90 deg - No Ice	14.470	11.532	0.000	0.502	-663.331	0.932
0.9 Dead+1.0 Wind 90 deg - No Ice	10.852	11.532	0.000	0.373	-661.596	0.932
1.2 Dead+1.0 Wind 120 deg - No Ice	14.470	9.987	5.791	334.482	-574.461	0.807
0.9 Dead+1.0 Wind 120 deg - No Ice	10.852	9.987	5.791	333.478	-572.959	0.807
1.2 Dead+1.0 Wind 135 deg - No Ice	14.470	8.154	8.190	472.820	-469.045	0.659
0.9 Dead+1.0 Wind 135 deg - No Ice	10.852	8.154	8.190	471.454	-467.818	0.659
1.2 Dead+1.0 Wind 150 deg - No Ice	14.470	5.766	10.030	578.971	-331.665	0.466
0.9 Dead+1.0 Wind 150 deg - No Ice	10.852	5.766	10.030	577.326	-330.797	0.466
1.2 Dead+1.0 Wind 180 deg - No Ice	14.470	0.000	11.582	668.460	0.000	0.000
0.9 Dead+1.0 Wind 180 deg - No Ice	10.852	0.000	11.582	666.581	0.000	0.000
1.2 Dead+1.0 Wind 210 deg - No Ice	14.470	-5.766	10.030	578.971	331.665	-0.466
0.9 Dead+1.0 Wind 210 deg - No Ice	10.852	-5.766	10.030	577.326	330.797	-0.466
1.2 Dead+1.0 Wind 225 deg - No Ice	14.470	-8.154	8.190	472.820	469.045	-0.659
0.9 Dead+1.0 Wind 225 deg -	10.852	-8.154	8.190	471.454	467.818	-0.659
No Ice 1.2 Dead+1.0 Wind 240 deg -	14.470	- 9.987	5.791	334.482	574.461	-0.807
No Ice 0.9 Dead+1.0 Wind 240 deg -	10.852	-9.987	5.791	333.478	572.959	-0.807
No Ice 1.2 Dead+1.0 Wind 270 deg -	14.470	-11.532	0.000	0.502	663.331	-0.932
No Ice 0.9 Dead+1.0 Wind 270 deg -	10.852	-11.532	0.000	0.373	661.596	-0.932
No Ice 1.2 Dead+1.0 Wind 300 deg -	14.470	-9.987	-5.791	-333.478	574.460	-0.807
No Ice 0.9 Dead+1.0 Wind 300 deg - No Ice	10.852	-9.987	-5.791	-332.731	572.958	-0.807
1.2 Dead+1.0 Wind 315 deg -	14.470	-8.154	-8.190	-471.816	469.044	-0.659

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	18 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by
VCHZOH VVIICIC33	TJL

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
No Ice						
0.9 Dead+1.0 Wind 315 deg -	10.852	-8.154	-8.190	-470.707	467.818	-0.659
No Ice						
1.2 Dead+1.0 Wind 330 deg -	14.470	-5.766	-10.030	- 577.966	331.664	-0.466
No Ice	10.052	5.766	10.020	577 570	220 707	0.466
0.9 Dead+1.0 Wind 330 deg -	10.852	-5.766	-10.030	-576.579	330.797	-0.466
No Ice 1.2 Dead+1.0 Ice+1.0 Temp	21.592	0.000	0.000	1.312	0.000	0.000
1.2 Dead+1.0 Vind 0 deg+1.0	21.592	0.000	-3.240	-179.838	0.000	0.000
Ice+1.0 Temp	21.372	0.000	-5.240	-177.050	0.000	0.000
1.2 Dead+1.0 Wind 30 deg+1.0	21.592	1.615	-2.806	-155.565	-90.154	0.119
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 45 deg+1.0	21.592	2.284	-2.291	-126.773	-127.497	0.169
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	21.592	2.798	-1.620	-89.251	-156.151	0.207
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	21.592	3.231	0.000	1.336	-180.308	0.239
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	21.592	2.798	1.620	91.923	-156.151	0.207
deg+1.0 Ice+1.0 Temp	21.502	2.204	2.201	120 445	127.407	0.160
1.2 Dead+1.0 Wind 135	21.592	2.284	2.291	129.445	-127.497	0.169
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	21.592	1.615	2.806	158.237	-90.154	0.119
deg+1.0 Ice+1.0 Temp	21.572	1.015	2.000	136.237	-50.154	0.115
1.2 Dead+1.0 Wind 180	21.592	0.000	3.240	182.510	0.000	0.000
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	21.592	-1.615	2.806	158.237	90.154	-0.119
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 225	21.592	-2.284	2.291	129.445	127.497	-0.169
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	21.592	-2.798	1.620	91.923	156.151	-0.207
deg+1.0 Ice+1.0 Temp	21.502	2 221	0.000	1 227	100 200	0.220
1.2 Dead+1.0 Wind 270	21.592	-3.231	0.000	1.336	180.308	-0.239
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	21.592	-2.798	-1.620	-89.251	156.151	-0.207
deg+1.0 Ice+1.0 Temp	21.392	-2.790	-1.020	-09.231	150.151	-0.207
1.2 Dead+1.0 Wind 315	21.592	-2.284	-2.291	-126.773	127.497	-0.169
deg+1.0 Ice+1.0 Temp	21.092	2.201	2.271	120.773	127.157	0.103
1.2 Dead+1.0 Wind 330	21.592	-1.615	-2.806	-155.565	90.154	-0.119
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	12.058	0.000	-2.674	-155.797	0.000	0.000
Dead+Wind 30 deg - Service	12.058	1.331	-2.316	-134.868	-77.591	0.105
Dead+Wind 45 deg - Service	12.058	1.883	-1.891	-110.043	-109.730	0.148
Dead+Wind 60 deg - Service	12.058	2.306	-1.337	-77.690	-134.391	0.181
Dead+Wind 90 deg - Service	12.058	2.663	0.000	0.418	-155.181	0.209
Dead+Wind 120 deg - Service	12.058	2.306	1.337	78.525	-134.391	0.181
Dead+Wind 135 deg - Service	12.058	1.883	1.891	110.879	-109.730	0.148
Dead+Wind 150 deg - Service	12.058	1.331	2.316	135.704	-77.591	0.105
Dead+Wind 180 deg - Service	12.058	0.000	2.674	156.633	0.000	0.000
Dead+Wind 210 deg - Service	12.058	-1.331	2.316	135.704	77.591 109.730	-0.105
Dead+Wind 225 deg - Service Dead+Wind 240 deg - Service	12.058 12.058	-1.883 -2.306	1.891 1.337	110.879 78.525	134.391	-0.148 -0.181
Dead+Wind 270 deg - Service	12.058	-2.663	0.000	0.418	155.181	-0.181
Dead+Wind 300 deg - Service	12.058	-2.306	-1.337	-77.690	134.391	-0.181
Dead+Wind 315 deg - Service	12.058	-1.883	-1.891	-110.043	109.730	-0.148
Dead+Wind 330 deg - Service	12.058	-1.331	-2.316	-134.868	77.591	-0.105

Solution Summary

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	19 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

	Sum of Applied Forces						
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
1	0.000	-12.058	0.000	0.000	12.058	0.000	0.000%
2	0.000	-14.470	-11.582	0.000	14.470	11.582	0.000%
3	0.000	-10.852	-11.582	0.000	10.852	11.582	0.000%
4	5.766	-14.470	-10.030	-5.766	14.470	10.030	0.000%
5	5.766	-10.852	-10.030	-5.766	10.852	10.030	0.000%
6	8.154	-14.470	-8.190	-8.154	14.470	8.190	0.000%
7	8.154	-10.852	-8.190	-8.154	10.852	8.190	0.000%
8	9.987	-14.470	-5.791	-9.987	14.470	5.791	0.000%
9	9.987	-10.852	-5.791	-9.987	10.852	5.791	0.000%
10	11.532	-14.470	0.000	-11.532	14.470	0.000	0.000%
11	11.532	-10.852	0.000	-11.532	10.852	0.000	0.000%
12	9.987	-14.470	5.791	-9.987	14.470	-5.791	0.000%
13	9.987	-10.852	5.791	-9.987	10.852	-5.791	0.000%
14	8.154	-14.470	8.190	-8.154	14.470	-8.190	0.000%
15	8.154	-10.852	8.190	-8.154	10.852	-8.190	0.000%
16	5.766	-14.470	10.030	-5.766	14.470	-10.030	0.000%
17	5.766	-10.852	10.030	-5.766	10.852	-10.030	0.000%
18	0.000	-14.470	11.582	0.000	14.470	-11.582	0.000%
19	0.000	-10.852	11.582	0.000	10.852	-11.582	0.000%
20	-5.766	-14.470	10.030	5.766	14.470	-10.030	0.000%
21	-5.766	-10.852	10.030	5.766	10.852	-10.030	0.000%
22	-8.154	-14.470	8.190	8.154	14.470	-8.190	0.000%
23	-8.154	-10.852	8.190	8.154	10.852	-8.190	0.0009
24	-9.987	-14.470	5.791	9.987	14.470	-5.791	0.000%
25	-9.987	-10.852	5.791	9.987	10.852	-5.791	0.000%
26	-11.532	-14.470	0.000	11.532	14.470	0.000	0.000%
27	-11.532	-10.852	0.000	11.532	10.852	0.000	0.0009
28	-9.987	-14.470	-5.791	9.987	14.470	5.791	0.0009
29	-9.987	-10.852	-5.791	9.987	10.852	5.791	0.0009
30	-8.154	-14.470	-8.190	8.154	14.470	8.190	0.000%
31	-8.154	-10.852	-8.190	8.154	10.852	8.190	0.000%
32	-5.766	-14.470	-10.030	5.766	14.470	10.030	0.000%
33	-5.766	-10.852	-10.030	5.766	10.852	10.030	0.000%
34	0.000	-21.592	0.000	0.000	21.592	-0.000	0.000%
35	0.000	-21.592	-3.240	0.000	21.592	3.240	0.000%
36	1.615	-21.592	-2.806	-1.615	21.592	2.806	0.000%
37	2.284	-21.592	-2.291	-2.284	21.592	2.291	0.000%
38	2.798	-21.592	-1.620	-2.798	21.592	1.620	0.000%
39	3.231	-21.592	0.000	-3.231	21.592	0.000	0.000%
40	2.798	-21.592	1.620	-2.798	21.592	-1.620	0.000%
41	2.284	-21.592 21.592	2.291	-2.284 1.615	21.592	-2.291 2.806	0.000%
42 43	1.615 0.000	-21.592 -21.592	2.806 3.240	-1.615 0.000	21.592 21.592	-2.806 -3.240	0.000% 0.000%
44	-1.615	-21.592	2.806	1.615	21.592	-2.806	0.0009
45	-2.284	-21.592	2.291	2.284	21.592	-2.291	0.000%
46	-2.798	-21.592	1.620	2.798	21.592	-1.620	0.0009
47	-3.231	-21.592	0.000	3.231	21.592	0.000	0.0009
48	-2.798	-21.592	-1.620	2.798	21.592	1.620	0.0009
49	-2.284	-21.592	-2.291	2.284	21.592	2.291	0.0009
50	-1.615	-21.592	-2.806	1.615	21.592	2.806	0.0009
51 52	0.000 1.331	-12.058 -12.058	-2.674 -2.316	0.000 -1.331	12.058 12.058	2.674 2.316	0.000%
52	1.883	-12.058 -12.058	-2.316 -1.891	-1.883	12.058	2.316 1.891	0.000%
53 54			-1.337	-1.883 -2.306		1.337	0.000%
	2.306	-12.058			12.058		
55 56	2.663	-12.058	0.000	-2.663 -2.306	12.058	0.000	0.0009
56	2.306	-12.058	1.337		12.058	-1.337	0.000%
57	1.883	-12.058	1.891	-1.883	12.058	-1.891	0.000%
58	1.331	-12.058	2.316	-1.331	12.058	-2.316	0.000%
59	0.000	-12.058	2.674	0.000	12.058	-2.674	0.000%
60	-1.331	-12.058	2.316	1.331	12.058	-2.316	0.000%

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	20 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

	Sum of Applied Forces						
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
61	-1.883	-12.058	1.891	1.883	12.058	-1.891	0.000%
62	-2.306	-12.058	1.337	2.306	12.058	-1.337	0.000%
63	-2.663	-12.058	0.000	2.663	12.058	0.000	0.000%
64	-2.306	-12.058	-1.337	2.306	12.058	1.337	0.000%
65	-1.883	-12.058	-1.891	1.883	12.058	1.891	0.000%
66	-1.331	-12.058	-2.316	1.331	12.058	2.316	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00001204
3	Yes	4	0.00000001	0.00000001
4	Yes	4	0.00000001	0.00058211
5	Yes	4	0.00000001	0.00035768
6	Yes	4	0.00000001	0.00060299
7	Yes	4	0.00000001	0.00036894
8	Yes	4	0.00000001	0.00043194
9	Yes	4	0.00000001	0.00026469
10	Yes	4	0.00000001	0.00029062
11	Yes	4	0.00000001	0.00018099
12	Yes	4	0.00000001	0.00066378
13	Yes	4	0.00000001	0.00040924
14	Yes	4	0.00000001	0.00060442
15	Yes	4	0.00000001	0.00036830
16	Yes	4	0.00000001	0.00044238
17	Yes	4	0.00000001	0.00026782
18	Yes	4	0.00000001	0.00001210
19	Yes	4	0.00000001	0.00000001
20	Yes	4	0.00000001	0.00044238
21	Yes	4	0.00000001	0.00026782
22	Yes	4	0.00000001	0.00060442
23	Yes	4	0.00000001	0.00036830
24	Yes	4	0.00000001	0.00066378
25	Yes	4	0.00000001	0.00040924
26	Yes	4	0.00000001	0.00029062
27	Yes	4	0.00000001	0.00018099
28	Yes	4	0.00000001	0.00043194
29	Yes	4	0.00000001	0.00026469
30	Yes	4	0.00000001	0.00060299
31	Yes	4	0.00000001	0.00036894
32	Yes	4	0.00000001	0.00058211
33	Yes	4	0.00000001	0.00035768
34	Yes	4	0.00000001	0.00003414
35	Yes	4	0.00000001	0.00098302
36	Yes	5	0.00000001	0.00096302
37	Yes	5	0.00000001	0.00004215
38	Yes	5	0.00000001	0.00004269
39	Yes	5	0.00000001	0.00004296
40	Yes	5	0.0000001	0.00004290
41	Yes	5	0.0000001	0.00004581
42	Yes	5	0.0000001	0.00004584
43	Yes	5	0.00000001	0.00004528
44	Yes	5	0.0000001	0.00004584
44	1 68	5	0.0000001	0.00004384

4 7	7
tuvi	ower
	UIVE

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

1	Job	Page
	21007.69 vZw Bridgeport NE CT	21 of 32
	Project	Date
	98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
	Client	Designed by
	Verizon Wireless	TJL

46	Yes	5	0.00000001	0.00004509
47	Yes	5	0.00000001	0.00004296
48	Yes	5	0.00000001	0.00004269
49	Yes	5	0.0000001	0.00004266
50	Yes	5	0.00000001	0.00004215
51	Yes	4	0.00000001	0.00000001
52	Yes	4	0.00000001	0.00001584
53	Yes	4	0.00000001	0.00001703
54	Yes	4	0.00000001	0.00001480
55	Yes	4	0.00000001	0.00001892
56	Yes	4	0.00000001	0.00002221
57	Yes	4	0.00000001	0.00001739
58	Yes	4	0.00000001	0.00000001
59	Yes	4	0.00000001	0.00000001
60	Yes	4	0.00000001	0.00000001
61	Yes	4	0.00000001	0.00001739
62	Yes	4	0.00000001	0.00002221
63	Yes	4	0.00000001	0.00001892
64	Yes	4	0.00000001	0.00001480
65	Yes	4	0.00000001	0.00001703
66	Yes	4	0.00000001	0.00001584

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	98 - 78.5	6.075	59	0.985	0.017
L2	78.5 - 78	2.578	59	0.455	0.004
L3	78 - 68.5	2.531	59	0.447	0.004
L4	68.5 - 68	1.844	59	0.219	0.001
L5	68 - 38.25	1.821	59	0.218	0.001
L6	43.75 - 1	0.834	59	0.165	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
98.000	10'x48" Canister	59	6.075	0.985	0.017	3688
93.000	10'x48" Canister	59	4.986	0.822	0.012	3688
92.000	NNH4-65B-R6	59	4.775	0.791	0.012	3073
88.000	10'x48" Canister	59	3.978	0.671	0.009	1844
83.000	10'x48" Canister	59	3.133	0.542	0.006	1231
82.000	MX08FIT265-01	59	2.990	0.520	0.005	1188
78.000	10'x48" Canister	59	2.531	0.447	0.004	1620
73.000	10'x36" Canister	59	2.115	0.308	0.002	2445
68.000	10'x36" Canister	59	1.821	0.218	0.001	4329

Maximum Tower Deflections - Design Wind

4	1 h	,	
tnx	• 7	A1	vor
ulua	u 💻 🐧	v	

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	22 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	98 - 78.5	25.438	18	4.085	0.074
L2	78.5 - 78	10.902	18	1.904	0.017
L3	78 - 68.5	10.705	18	1.871	0.017
L4	68.5 - 68	7.821	18	0.925	0.004
L5	68 - 38.25	7.724	18	0.923	0.004
L6	43.75 - 1	3.545	18	0.699	0.002

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
98.000	10'x48" Canister	18	25.438	4.085	0.074	901
93.000	10'x48" Canister	18	20.916	3.416	0.055	901
92.000	NNH4-65B-R6	18	20.041	3.286	0.052	751
88.000	10'x48" Canister	18	16.730	2.794	0.038	450
83.000	10'x48" Canister	18	13.215	2.264	0.025	300
82.000	MX08FIT265-01	18	12.622	2.173	0.023	289
78.000	10'x48" Canister	18	10.705	1.871	0.017	393
73.000	10'x36" Canister	18	8.960	1.294	0.008	590
68.000	10'x36" Canister	18	7.724	0.923	0.004	1045

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	98 - 96.9737	TP6.625x6.625x0.403	19.500	0.000	0.0	7.877	-0.081	297.767	0.000
	96.9737 -					7.877	-0.162	297.767	0.001
	95.9474								
	95.9474 -					7.877	-0.243	297.767	0.001
	94.9211						0.224	207.767	0.001
	94.9211 -					7.877	-0.324	297.767	0.001
	93.8947 93.8947 -					7.877	-0.405	207.767	0.001
	92.8684					7.877	-0.403	297.767	0.001
	92.8684 -					7.877	-0.806	297.767	0.003
	91.8421					7.077	-0.800	297.707	0.005
	91.8421 -					7.877	-0.888	297.767	0.003
	90.8158					,,,,,,	0.000		0.002
	90.8158 -					7.877	-0.971	297.767	0.003
	89.7895								
	89.7895 -					7.877	-1.054	297.767	0.004
	88.7632								
	88.7632 -					7.877	-1.140	297.767	0.004
	87.7368								
	87.7368 -					7.877	-1.226	297.767	0.004
	86.7105								

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	23 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by
V CHZOH VVII CIC33	TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
IVO.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
	86.7105 -					7.877	-1.314	297.767	0.004
	85.6842 -					7.877	-1.404	297.767	0.005
	84.6579 84.6579 -					7.877	-1.496	297.767	0.005
	83.6316 83.6316 -					7.877	-1.590	297.767	0.005
	82.6053 82.6053 - 81.5789					7.877	-1.974	297.767	0.007
	81.5789 - 80.5526					7.877	-2.075	297.767	0.007
	80.5526 - 79.5263					7.877	-2.179	297.767	0.007
	79.5263 - 78.5					7.877	-2.288	297.767	0.008
L2	78.5 - 78 (2)	TP10.75x6.625x0.465	0.500	0.000	0.0	8.999	-2.328	340.154	0.007
L3	78 - 76.9444	TP10.75x10.75x0.465	9.500	0.000	0.0	15.025	-2.484	567.935	0.004
23	76.9444 - 75.8889	11 101/2/1101/2/101102	<i>y.</i> 200	0.000	0.0	15.025	-2.614	567.935	0.005
	75.8889 - 74.8333					15.025	-2.746	567.935	0.005
	74.8333 - 73.7778					15.025	-2.878	567.935	0.005
	73.7778 - 72.7222					15.025	-3.012	567.935	0.005
	72.7222 - 71.6667					15.025	-3.146	567.935	0.006
	71.6667 - 70.6111					15.025	-3.282	567.935	0.006
	70.6111 - 69.5556					15.025	-3.418	567.935	0.006
	69.5556 - 68.5					15.025	-3.556	567.935	0.006
L4	68.5 - 68 (4)	TP35.5x10.75x0.465	0.500	0.000	0.0	15.025	-3.612	567.935	0.006
L5	68 - 66.7237	TP40.02x35.5x0.25	29.750	0.000	0.0	28.125	-3.833	1645.300	0.002
	66.7237 - 65.4474					28.279	-4.006	1654.300	0.002
	65.4474 - 64.1711					28.433	-4.180	1663.300	0.003
	64.1711 - 62.8947					28.586	-4.355	1672.300	0.003
	62.8947 - 61.6184					28.740	-4.531	1681.300	0.003
	61.6184 - 60.3421					28.894	-4.707	1690.300	0.003
	60.3421 - 59.0658					29.048	-4.885	1699.310	0.003
	59.0658 - 57.7895					29.202	-5.063	1708.310	0.003
	57.7895 - 56.5132					29.356	-5.242	1717.310	0.003
	56.5132 - 55.2368					29.510	-5.422	1726.310	0.003
	55.2368 - 53.9605 53.9605 -					29.663 29.817	-5.604 -5.785	1735.310 1744.310	0.003
	52.6842 52.6842 -					29.971	-5.968	1753.320	0.003
	51.4079 51.4079 -					30.125	-6.152	1762.320	0.003
	50.1316								

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	24 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	$\frac{-1}{\phi P_n}$
	50.1316 -					30.279	-6.337	1771.320	0.004
	48.8553								
	48.8553 -					30.433	-6.522	1780.320	0.004
	47.5789								
	47.5789 -					30.587	- 6.709	1789.320	0.004
	46.3026								
	46.3026 -					30.741	-6.896	1798.320	0.004
	45.0263					20.004	7 00 4	1007.000	0.004
	45.0263 -					30.894	-7.084	1807.320	0.004
	43.75					21.550	1.252	1046 110	0.003
L6	43.75 - 38.25 43.75 - 38.25	TP45x38.684x0.25	42.750	0.000	0.0	31.558 31.142	-4.352 -4.240	1846.110 1821.830	0.002 0.002
LO	38.25 -	1143x36.064x0.23	42.730	0.000	0.0	31.142	-8.882	1835.280	0.002
	36.2895					31.3/2	-0.002	1655.260	0.003
	36.2895 -					31.602	- 9.174	1848.720	0.005
	34.3289					31.002	-5.17-1	10-10.720	0.002
	34.3289 -					31.832	-9.468	1862.170	0.005
	32.3684								
	32.3684 -					32.062	- 9.764	1875.610	0.005
	30.4079								
	30.4079 -					32.292	-10.062	1889.060	0.005
	28.4474								
	28.4474 -					32.521	-10.362	1902.500	0.005
	26.4868								
	26.4868 -					32.751	-10.665	1915.950	0.006
	24.5263					22.001	10.060	1020 200	0.006
	24.5263 -					32.981	-10.969	1929.390	0.006
	22.5658					22 211	11 276	1042 840	0.006
	22.5658 - 20.6053					33.211	-11.276	1942.840	0.006
	20.6053 -					33.441	-11.585	1956.280	0.006
	18.6447					33.441	-11.565	1750.200	0.000
	18.6447 -					33.671	-11.897	1969.730	0.006
	16.6842								
	16.6842 -					33.900	-12.210	1983.170	0.006
	14.7237								
	14.7237 -					34.130	-12.526	1996.610	0.006
	12.7632								
	12.7632 -					34.360	-12.843	2010.060	0.006
	10.8026								
	10.8026 -					34.590	-13.164	2023.500	0.007
	8.84211					24.920	12 496	2026.050	0.007
	8.84211 - 6.88158					34.820	-13.486	2036.950	0.007
	6.88158 -					35.049	-13.810	2050.390	0.007
	4.92105					33.049	-13.010	2030.370	0.007
	4.92105 -					35.279	-14.137	2063.840	0.007
	2.96053					55.219	11.157	2005.010	0.007
	2.96053 - 1					35.509	-14.466	2077.280	0.007

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uv}	$\phi M_{n\nu}$	Ratio
No.				4	M_{ux}		+ <i>ny</i>	M_{uv}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	98 - 96.9737	TP6.625x6.625x0.403	0.076	49.213	0.002	0.000	49.213	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.69 vZw Bridgeport NE CT	25 of 32
Project		Date
98-ft Flag po	le- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Verizon Wireless	Designed by

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M_{ux}	M_{uy}	ϕM_{ny}	Ratio M_{uy}
110.	ft		kip-ft	kip-ft	$\frac{1M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	ϕM_{ny}
	96.9737 -		0.276	49.213	0.006	0.000	49.213	0.000
	95,9474		0.270	17.213	0.000	0.000	17.213	0.000
	95.9474 -		0.602	49.213	0.012	0.000	49.213	0.000
	94.9211							
	94.9211 -		1.052	49.213	0.021	0.000	49.213	0.000
	93.8947							
	93.8947 -		1.626	49.213	0.033	0.000	49.213	0.000
	92.8684							
	92.8684 -		2.596	49.213	0.053	0.000	49.213	0.000
	91.8421		5.000	40.212	0.102	0.000	40.212	0.000
	91.8421 - 90.8158		5.022	49.213	0.102	0.000	49.213	0.000
	90.8158 -		7.573	49.213	0.154	0.000	49.213	0.000
	89.7895		7.575	79.213	0.154	0.000	49.213	0.000
	89.7895 -		10.247	49.213	0.208	0.000	49.213	0.000
	88.7632		10.2.	131210	0.200	0.000		0,000
	88.7632 -		13.045	49.213	0.265	0.000	49.213	0.000
	87.7368							
	87.7368 -		15.962	49.213	0.324	0.000	49.213	0.000
	86.7105							
	86.7105 -		18.999	49.213	0.386	0.000	49.213	0.000
	85.6842		22.154	40.212	0.450	0.000	40.212	0.000
	85.6842 -		22.154	49.213	0.450	0.000	49.213	0.000
	84.6579 84.6579 -		25 426	40.212	0.517	0.000	40.212	0.000
	83.6316		25.426	49.213	0.517	0.000	49.213	0.000
	83.6316 -		28.814	49.213	0.585	0.000	49.213	0.000
	82.6053		20.011	17.213	0.505	0.000	17.215	0.000
	82.6053 -		32.536	49.213	0.661	0.000	49.213	0.000
	81.5789							
	81.5789 -		36.687	49.213	0.745	0.000	49.213	0.000
	80.5526							
	80.5526 -		40.947	49.213	0.832	0.000	49.213	0.000
	79.5263							
	79.5263 - 78.5		45.314	49.213	0.921	0.000	49.213	0.000
L2	78.5 - 78 (2)	TP10.75x6.625x0.465	45.314	55.686	0.814	0.000	55.686	0.000
L3	78 - 76.9444	TP10.75x10.75x0.465	52.150	155.048	0.336	0.000	155.048	0.000
	76.9444 -		56.923	155.048	0.367	0.000	155.048	0.000
	75.8889		61.801	155 049	0.200	0.000	155.048	0.000
	75.8889 - 74.8333		01.801	155.048	0.399	0.000	155.048	0.000
	74.8333 -		66.786	155.048	0.431	0.000	155.048	0.000
	73.7778		00.700	155.040	0.451	0.000	155.040	0.000
	73.7778 -		71.874	155.048	0.464	0.000	155.048	0.000
	72.7222							
	72.7222 -		77.066	155.048	0.497	0.000	155.048	0.000
	71.6667							
	71.6667 -		82.360	155.048	0.531	0.000	155.048	0.000
	70.6111							
	70.6111 -		87.756	155.048	0.566	0.000	155.048	0.000
	69.5556		02.252	155.040	0.601	0.000	155.040	0.000
τ.4	69.5556 - 68.5	TD25 5 10 75 10 465	93.252	155.048	0.601	0.000	155.048	0.000
L4	68.5 - 68 (4)	TP35.5x10.75x0.465	93.252	155.048 1345.617	0.601	0.000	155.048	0.000
L5	68 - 66.7237 66.7237 -	TP40.02x35.5x0.25	102.743 109.738	1345.617	$0.076 \\ 0.081$	0.000 0.000	1345.617 1357.442	0.000
	65.4474		109./38	155/.442	0.081	0.000	1337.442	0.000
	65.4474 -		116.888	1369.275	0.085	0.000	1369.275	0.000
	64.1711		110.000	1507.275	0.002	0.000	1507.215	0.000
			124.196	1381.125	0.090	0.000	1201 125	0.000
	64.1711 -		124.190	1301.123	0.090	0.000	1381.125	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jol	b	Page
	21007.69 vZw Bridgeport NE CT	26 of 32
Pr	roject	Date
9	8-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
CI	lient Verizon Wireless	Designed by

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M_{ux}	M_{uy}	ϕM_{ny}	Ratio Muy
110.	ft		kip-ft	kip-ft	$\frac{1M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	ϕM_{n_3}
	62.8947 -		131.661	1392.983	0.095	0.000	1392.983	0.000
	61.6184							
	61.6184 -		139.284	1404.867	0.099	0.000	1404.867	0.000
	60.3421							
	60.3421 -		147.067	1416.750	0.104	0.000	1416.750	0.000
	59.0658 59.0658 -		155.009	1428.658	0.108	0.000	1428.658	0.00
	57.7895		155.007	1420.050	0.100	0.000	1420.030	0.00
	57.7895 -		163.112	1440.575	0.113	0.000	1440.575	0.00
	56.5132							
	56.5132 -		171.375	1452.500	0.118	0.000	1452.500	0.00
	55.2368 55.2368 -		179.801	1464.442	0.123	0.000	1464.442	0.00
	53.9605		1/9.001	1404.442	0.123	0.000	1404.442	0.00
	53.9605 -		188.389	1476.392	0.128	0.000	1476.392	0.00
	52.6842							
	52.6842 -		197.141	1488.350	0.132	0.000	1488.350	0.00
	51.4079		206.056	1500 217	0.127	0.000	1500 217	0.00
	51.4079 - 50.1316		206.056	1500.317	0.137	0.000	1500.317	0.00
	50.1316 -		215.136	1512.292	0.142	0.000	1512.292	0.00
	48.8553							
	48.8553 -		224.382	1524.283	0.147	0.000	1524.283	0.00
	47.5789		222 702	1506.055	0.150	0.000	1526 255	0.00
	47.5789 - 46.3026		233.792	1536.275	0.152	0.000	1536.275	0.00
	46.3026 -		243.371	1548.283	0.157	0.000	1548.283	0.00
	45.0263		213.371	12 10.202	0.157	0.000	15 10.205	0.00
	45.0263 -		253.116	1560.292	0.162	0.000	1560.292	0.00
	43.75						1612100	
L6	43.75 - 38.25 43.75 - 38.25	TP45x38.684x0.25	151.582 145.493	1612.108 1579.658	$0.094 \\ 0.092$	0.000 0.000	1612.108 1579.658	0.00
LU	38.25 -	1143336.06430.23	313.500	1597.617	0.196	0.000	1597.617	0.00
	36.2895		2121200	10371017	0.130	0.000	10371017	0.00
	36.2895 -		330.284	1615.592	0.204	0.000	1615.592	0.00
	34.3289							
	34.3289 -		347.426	1633.575	0.213	0.000	1633.575	0.00
	32.3684 32.3684 -		364.923	1651.558	0.221	0.000	1651.558	0.00
	30.4079		304.923	1051.550	0.221	0.000	1051.550	0.00
	30.4079 -		382.774	1669.558	0.229	0.000	1669.558	0.00
	28.4474							
	28.4474 -		400.975	1687.550	0.238	0.000	1687.550	0.00
	26.4868 26.4868 -		419.525	1705.550	0.246	0.000	1705.550	0.00
	24.5263		419.323	1705.550	0.240	0.000	1705.550	0.00
	24.5263 -		438.422	1723.550	0.254	0.000	1723.550	0.00
	22.5658							
	22.5658 -		457.662	1741.542	0.263	0.000	1741.542	0.00
	20.6053 20.6053 -		477 244	1750 522	0.271	0.000	1759.533	0.00
	20.6055 - 18.6447		477.244	1759.533	0.271	0.000	1/39.333	0.00
	18.6447 -		497.165	1777.525	0.280	0.000	1777.525	0.00
	16.6842							
	16.6842 -		517.423	1795.500	0.288	0.000	1795.500	0.00
	14.7237		529.017	1012 475	0.207	0.000	1012 475	0.00
	14.7237 - 12.7632		538.017	1813.475	0.297	0.000	1813.475	0.00
			559 042	1021 422	0.205	0.000	1021 422	0.00
	12.7632 -		558.942	1831.433	0.305	0.000	1831.433	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	27 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Elevation	Size	M_{ux}	ϕM_{nx}	$Ratio \ M_{ux}$	M_{uy}	ϕM_{ny}	Ratio M_{uy}
ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
10.8026 -		580.196	1849.375	0.314	0.000	1849.375	0.000
8.84211							
8.84211 -		601.778	1867.308	0.322	0.000	1867.308	0.000
6.88158							
6.88158 -		623.683	1885.225	0.331	0.000	1885.225	0.000
4.92105							
4.92105 -		645.912	1903.125	0.339	0.000	1903.125	0.000
2.96053							
2.96053 - 1		668.460	1921.000	0.348	0.000	1921.000	0.000
	ft 10.8026 - 8.84211 8.84211 - 6.88158 6.88158 - 4.92105 4.92105 - 2.96053	ft 10.8026 - 8.84211 8.84211 - 6.88158 6.88158 - 4.92105 4.92105 - 2.96053	ft kip-ft 10.8026 - 580.196 8.84211 8.84211 601.778 6.88158 6.88158 623.683 4.92105 4.92105 492105 645.912 2.96053	ft kip-ft kip-ft 10.8026 - 580.196 1849.375 8.84211 601.778 1867.308 6.88158 623.683 1885.225 4.92105 4.92105 - 2.96053	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	ΦT_n
L1	98 - 96.9737	TP6.625x6.625x0.403	0.121	89.330	0.001	0.000	48.866	0.000
	96.9737 -		0.243	89.330	0.003	0.000	48.866	0.000
	95.9474							
	95.9474 -		0.364	89.330	0.004	0.000	48.866	0.000
	94.9211							
	94.9211 -		0.486	89.330	0.005	0.000	48.866	0.000
	93.8947							
	93.8947 -		0.607	89.330	0.007	0.000	48.866	0.000
	92.8684							
	92.8684 -		2.291	89.330	0.026	0.000	48.866	0.000
	91.8421							
	91.8421 -		2.412	89.330	0.027	0.000	48.866	0.000
	90.8158							
	90.8158 -		2.533	89.330	0.028	0.000	48.866	0.000
	89.7895		2.652	00.220	0.020	0.000	10.066	0.000
	89.7895 -		2.653	89.330	0.030	0.000	48.866	0.000
	88.7632		2.772	00.220	0.021	0.000	40.066	0.000
	88.7632 -		2.772	89.330	0.031	0.000	48.866	0.000
	87.7368		2.889	90.220	0.022	0.000	10.000	0.000
	87.7368 - 86.7105		2.889	89.330	0.032	0.000	48.866	0.000
	86.7105 -		3.005	89.330	0.034	0.000	48.866	0.000
	85.6842		3.003	69.550	0.034	0.000	46.600	0.000
	85.6842 -		3.120	89.330	0.035	0.000	48.866	0.000
	84.6579		5.120	69.550	0.055	0.000	40.000	0.000
	84.6579 -		3.234	89.330	0.036	0.000	48.866	0.000
	83.6316		5.254	07.550	0.050	0.000	40.000	0.000
	83.6316 -		3.347	89.330	0.037	0.000	48.866	0.000
	82.6053		2.2 .,	0,1000	0.02 /	0,000	101000	0.000
	82.6053 -		3.981	89.330	0.045	0.000	48.866	0.000
	81.5789							
	81.5789 -		4.090	89.330	0.046	0.000	48.866	0.000
	80.5526							
	80.5526 -		4.196	89.330	0.047	0.000	48.866	0.000
	79.5263							
	79.5263 - 78.5		4.300	89.330	0.048	0.000	48.866	0.000
L2	78.5 - 78 (2)	TP10.75x6.625x0.465	4.352	170.381	0.026	0.000	55.266	0.000
L3	78 - 76.9444	TP10.75x10.75x0.465	4.454	170.381	0.026	0.000	154.065	0.000
	76.9444 -		4.555	170.381	0.027	0.000	154.065	0.000
	75.8889							
	75.8889 -		4.655	170.381	0.027	0.000	154.065	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	28 of 32
1	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client Verizon Wireless	Designed by

Section No.	Elevation	Size	Actual V_u	ϕV_n	Ratio V_u	$Actual \ T_u$	ϕT_n	Ratio T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
	74.8333 74.8333 -		4.755	170.381	0.028	0.000	154.065	0.000
	73.7778		4.755	170.561	0.026	0.000	134.003	0.000
	73.7778 -		4.854	170.381	0.028	0.000	154.065	0.000
	72.7222							
	72.7222 -		4.952	170.381	0.029	0.000	154.065	0.000
	71.6667							
	71.6667 -		5.049	170.381	0.030	0.000	154.065	0.000
	70.6111		5 144	170 201	0.020	0.000	154.065	0.000
	70.6111 - 69.5556		5.144	170.381	0.030	0.000	154.065	0.000
	69.5556 - 68.5		5.239	170.381	0.031	0.000	154.065	0.000
L4	68.5 - 68 (4)	TP35.5x10.75x0.465	5.298	580.387	0.009	0.000	154.065	0.000
L5	68 - 66.7237	TP40.02x35.5x0.25	5.420	493.589	0.011	0.000	1532.100	0.000
	66.7237 -		5.542	496.290	0.011	0.000	1548.908	0.000
	65.4474							
	65.4474 -		5.664	498.990	0.011	0.000	1565.817	0.000
	64.1711							
	64.1711 -		5.787	501.691	0.012	0.000	1582.808	0.000
	62.8947 62.8947 -		5.911	504.391	0.012	0.000	1599.892	0.000
	61.6184		3.911	504.591	0.012	0.000	1399.092	0.000
	61.6184 -		6.036	507.091	0.012	0.000	1617.067	0.000
	60.3421							
	60.3421 -		6.161	509.792	0.012	0.000	1634.342	0.000
	59.0658							
	59.0658 -		6.286	512.492	0.012	0.000	1651.700	0.000
	57.7895		6.410	515 102	0.012	0.000	1660 150	0.000
	57.7895 -		6.412	515.193	0.012	0.000	1669.150	0.000
	56.5132 56.5132 -		6.539	517.893	0.013	0.000	1686.692	0.000
	55.2368		0.557	317.673	0.015	0.000	1000.072	0.000
	55.2368 -		6.666	520.594	0.013	0.000	1704.333	0.000
	53.9605							
	53.9605 -		6.793	523.294	0.013	0.000	1722.058	0.000
	52.6842							
	52.6842 -		6.922	525.995	0.013	0.000	1739.875	0.000
	51.4079		7.050	520 605	0.012	0.000	1757 702	0.000
	51.4079 - 50.1316		7.050	528.695	0.013	0.000	1757.783	0.000
	50.1316 -		7.180	531.395	0.014	0.000	1775.792	0.000
	48.8553		7.160	331.393	0.014	0.000	1773.792	0.000
	48.8553 -		7.309	534.096	0.014	0.000	1793.883	0.000
	47.5789							
	47.5789 -		7.440	536.796	0.014	0.000	1812.067	0.000
	46.3026							
	46.3026 -		7.571	539.497	0.014	0.000	1830.350	0.000
	45.0263		7.702	542 107	0.014	0.000	1040 717	0.000
	45.0263 - 43.75		7.702	542.197	0.014	0.000	1848.717	0.000
	43.75 - 38.25		4.366	553.834	0.008	0.000	1928.925	0.000
L6	43.75 - 38.25	TP45x38.684x0.25	3.922	546.550	0.007	0.000	1878.517	0.000
	38.25 -		8.472	550.583	0.015	0.000	1906.342	0.000
	36.2895							
	36.2895 -		8.655	554.616	0.016	0.000	1934.375	0.000
	34.3289							
	34.3289 -		8.837	558.650	0.016	0.000	1962.617	0.000
	32.3684		0.010	560 600	0.017	0.000	1001.050	0.000
	32.3684 - 30.4079		9.018	562.683	0.016	0.000	1991.058	0.000
	30.40/9							

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	29 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
	30.4079 -		9.197	566.717	0.016	0.000	2019.708	0.000
	28.4474							
	28.4474 -		9.376	570.750	0.016	0.000	2048.558	0.000
	26.4868							
	26.4868 -		9.553	574.784	0.017	0.000	2077.617	0.000
	24.5263							
	24.5263 -		9.730	578.817	0.017	0.000	2106.875	0.000
	22.5658							
	22.5658 -		9.905	582.851	0.017	0.000	2136.342	0.000
	20.6053							
	20.6053 -		10.078	586.884	0.017	0.000	2166.008	0.000
	18.6447							
	18.6447 -		10.251	590.918	0.017	0.000	2195.883	0.000
	16.6842							
	16.6842 -		10.422	594.951	0.018	0.000	2225.967	0.000
	14.7237		10.500	#00.004	0.010	0.000	2256 250	0.000
	14.7237 -		10.593	598.984	0.018	0.000	2256.250	0.000
	12.7632		10.760	602.010	0.010	0.000	2207.742	0.000
	12.7632 -		10.762	603.018	0.018	0.000	2286.742	0.000
	10.8026 10.8026 -		10.020	(07.051	0.010	0.000	2217 422	0.000
	8.84211		10.929	607.051	0.018	0.000	2317.433	0.000
	8.84211 -		11.096	611.085	0.018	0.000	2348.325	0.000
	6.88158		11.090	011.065	0.018	0.000	2340.323	0.000
	6.88158 -		11.261	615,118	0.018	0.000	2379.433	0.000
	4.92105		11.201	015.116	0.016	0.000	2317.733	0.000
	4.92105 -		11.425	619.152	0.018	0.000	2410.742	0.000
	2.96053		11,723	017.132	0.010	0.000	2710./72	0.000
	2.96053 - 1		11.587	623.185	0.019	0.000	2442.250	0.000

Pole Interaction Design Da

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	M_{ux}	M_{uy}	V_u	T_u	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	98 - 96.9737	0.000	0.002	0.000	0.001	0.000	0.002	1.000	4.8.2
	96.9737 - 95.9474	0.001	0.006	0.000	0.003	0.000	0.006	1.000	4.8.2
	95.9474 - 94.9211	0.001	0.012	0.000	0.004	0.000	0.013	1.000	4.8.2
	94.9211 - 93.8947	0.001	0.021	0.000	0.005	0.000	0.022	1.000	4.8.2
	93.8947 - 92.8684	0.001	0.033	0.000	0.007	0.000	0.034	1.000	4.8.2
	92.8684 - 91.8421	0.003	0.053	0.000	0.026	0.000	0.056	1.000	4.8.2
	91.8421 - 90.8158	0.003	0.102	0.000	0.027	0.000	0.106	1.000	4.8.2
	90.8158 - 89.7895	0.003	0.154	0.000	0.028	0.000	0.158	1.000	4.8.2
	89.7895 -	0.004	0.208	0.000	0.030	0.000	0.213	1.000	4.8.2

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	30 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section No.	Elevation	Ratio P_u	$Ratio \ M_{ux}$	$Ratio \ M_{uv}$	$Ratio$ V_u	$Ratio$ T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	$ \phi V_n$	ϕT_n	Ratio	Ratio	
	88.7632						~		
	88.7632 - 87.7368	0.004	0.265	0.000	0.031	0.000	0.270	1.000	4.8.2
	87.7368 - 86.7105	0.004	0.324	0.000	0.032	0.000	0.330	1.000	4.8.2
	86.7105 - 85.6842	0.004	0.386	0.000	0.034	0.000	0.392	1.000	4.8.2
	85.6842 - 84.6579	0.005	0.450	0.000	0.035	0.000	0.456	1.000	4.8.2
	84.6579 - 83.6316	0.005	0.517	0.000	0.036	0.000	0.523	1.000	4.8.2
	83.6316 - 82.6053	0.005	0.585	0.000	0.037	0.000	0.592	1.000	4.8.2
	82.6053 - 81.5789	0.007	0.661	0.000	0.045	0.000	0.670	1.000	4.8.2
	81.5789 - 80.5526	0.007	0.745	0.000	0.046	0.000	0.755	1.000	4.8.2
	80.5526 - 79.5263	0.007	0.832	0.000	0.047	0.000	0.842	1.000	4.8.2
	79.5263 - 78.5	0.008	0.921	0.000	0.048	0.000	0.931	1.000	4.8.2
L2	78.5 - 78 (2)	0.007	0.814	0.000	0.026	0.000	0.821	1.000	4.8.2
L3	78 - 76.9444	0.004	0.336	0.000	0.026	0.000	0.341	1.000	4.8.2
	76.9444 - 75.8889	0.005	0.367	0.000	0.027	0.000	0.372	1.000	4.8.2
	75.8889 - 74.8333	0.005	0.399	0.000	0.027	0.000	0.404	1.000	4.8.2
	74.8333 - 73.7778	0.005	0.431	0.000	0.028	0.000	0.437	1.000	4.8.2
	73.7778 - 72.7222	0.005	0.464	0.000	0.028	0.000	0.470	1.000	4.8.2
	72.7222 - 71.6667	0.006	0.497	0.000	0.029	0.000	0.503	1.000	4.8.2
	71.6667 - 70.6111	0.006	0.531	0.000	0.030	0.000	0.538	1.000	4.8.2
	70.6111 - 69.5556	0.006	0.566	0.000	0.030	0.000	0.573	1.000	4.8.2
	69.5556 - 68.5	0.006	0.601	0.000	0.031	0.000	0.609	1.000	4.8.2
L4	68.5 - 68 (4)	0.006	0.601	0.000	0.009	0.000	0.608	1.000	4.8.2
L5	68 - 66.7237	0.002	0.076	0.000	0.011	0.000	0.079	1.000	4.8.2
	66.7237 - 65.4474	0.002	0.081	0.000	0.011	0.000	0.083	1.000	4.8.2
	65.4474 - 64.1711	0.003	0.085	0.000	0.011	0.000	0.088	1.000	4.8.2
	64.1711 - 62.8947	0.003	0.090	0.000	0.012	0.000	0.093	1.000	4.8.2
	62.8947 -	0.003	0.095	0.000	0.012	0.000	0.097	1.000	4.8.2

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	31 of 32
Project	Date
98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	15:30:06 11/01/22
Client	Designed by
Verizon Wireless	TJL

Section No.	Elevation	Ratio P_u	$Ratio \ M_{ux}$	$Ratio \ M_{uy}$	$Ratio$ V_u	$Ratio$ T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
	61.6184						~		
	61.6184 - 60.3421	0.003	0.099	0.000	0.012	0.000	0.102	1.000	4.8.2
	60.3421 - 59.0658	0.003	0.104	0.000	0.012	0.000	0.107	1.000	4.8.2
	59.0658 - 57.7895	0.003	0.108	0.000	0.012	0.000	0.112	1.000	4.8.2
	57.7895 - 56.5132	0.003	0.113	0.000	0.012	0.000	0.116	1.000	4.8.2
	56.5132 - 55.2368	0.003	0.118	0.000	0.013	0.000	0.121	1.000	4.8.2
	55.2368 - 53.9605	0.003	0.123	0.000	0.013	0.000	0.126	1.000	4.8.2
	53.9605 - 52.6842	0.003	0.128	0.000	0.013	0.000	0.131	1.000	4.8.2
	52.6842 - 51.4079	0.003	0.132	0.000	0.013	0.000	0.136	1.000	4.8.2
	51.4079 - 50.1316	0.003	0.137	0.000	0.013	0.000	0.141	1.000	4.8.2
	50.1316 - 48.8553	0.004	0.142	0.000	0.014	0.000	0.146	1.000	4.8.2
	48.8553 - 47.5789	0.004	0.147	0.000	0.014	0.000	0.151	1.000	4.8.2
	47.5789 - 46.3026	0.004	0.152	0.000	0.014	0.000	0.156	1.000	4.8.2
	46.3026 - 45.0263	0.004	0.157	0.000	0.014	0.000	0.161	1.000	4.8.2
	45.0263 - 43.75	0.004	0.162	0.000	0.014	0.000	0.166	1.000	4.8.2
	43.75 - 38.25	0.002	0.094	0.000	0.008	0.000	0.096	1.000	4.8.2
L6	43.75 - 38.25	0.002	0.092	0.000	0.007	0.000	0.094	1.000	4.8.2
	38.25 - 36.2895	0.005	0.196	0.000	0.015	0.000	0.201	1.000	4.8.2
	36.2895 - 34.3289	0.005	0.204	0.000	0.016	0.000	0.210	1.000	4.8.2
	34.3289 - 32.3684	0.005	0.213	0.000	0.016	0.000	0.218	1.000	4.8.2
	32.3684 - 30.4079	0.005	0.221	0.000	0.016	0.000	0.226	1.000	4.8.2
	30.4079 - 28.4474	0.005	0.229	0.000	0.016	0.000	0.235	1.000	4.8.2
	28.4474 - 26.4868	0.005	0.238	0.000	0.016	0.000	0.243	1.000	4.8.2
	26.4868 - 24.5263	0.006	0.246	0.000	0.017	0.000	0.252	1.000	4.8.2
	24.5263 - 22.5658	0.006	0.254	0.000	0.017	0.000	0.260	1.000	4.8.2
	22.5658 - 20.6053	0.006	0.263	0.000	0.017	0.000	0.269	1.000	4.8.2
	20.6053 -	0.006	0.271	0.000	0.017	0.000	0.277	1.000	4.8.2

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.69 vZw Bridgeport NE CT	32 of 32
Project 98-ft Flag pole- 541 Broadbridge Road Bridgeport, CT 06610	Date 15:30:06 11/01/22
Client Verizon Wireless	Designed by TJL

Section No.	Elevation	Ratio P_u	Ratio M_{ux}	$Ratio \ M_{uv}$	$Ratio$ V_u	$Ratio$ T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
	18.6447					·	~		
	18.6447 - 16.6842	0.006	0.280	0.000	0.017	0.000	0.286	1.000	4.8.2
	16.6842 - 14.7237	0.006	0.288	0.000	0.018	0.000	0.295	1.000	4.8.2
	14.7237 - 12.7632	0.006	0.297	0.000	0.018	0.000	0.303	1.000	4.8.2
	12.7632 - 10.8026	0.006	0.305	0.000	0.018	0.000	0.312	1.000	4.8.2
	10.8026 - 8.84211	0.007	0.314	0.000	0.018	0.000	0.321	1.000	4.8.2
	8.84211 - 6.88158	0.007	0.322	0.000	0.018	0.000	0.329	1.000	4.8.2
	6.88158 - 4.92105	0.007	0.331	0.000	0.018	0.000	0.338	1.000	4.8.2
	4.92105 - 2.96053	0.007	0.339	0.000	0.018	0.000	0.347	1.000	4.8.2
	2.96053 - 1	0.007	0.348	0.000	0.019	0.000	0.355	1.000	4.8.2

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ olimits P_{allow} $	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
L1	98 - 78.5	Pole	TP6.625x6.625x0.403	1	-2.288	297.767	93.1	Pass
L2	78.5 - 78	Pole	TP10.75x6.625x0.465	2	-2.328	340.154	82.1	Pass
L3	78 - 68.5	Pole	TP10.75x10.75x0.465	3	-3.556	567.935	60.9	Pass
L4	68.5 - 68	Pole	TP35.5x10.75x0.465	4	-3.612	567.935	60.8	Pass
L5	68 - 38.25	Pole	TP40.02x35.5x0.25	5	-7.084	1807.320	16.6	Pass
L6	38.25 - 1	Pole	TP45x38.684x0.25	6	-14.466	2077.280	35.5	Pass
							Summary	
						Pole (L1)	93.1	Pass
						RATING =	93.1	Pass

 $Program\ Version\ 8.1.1.0\ -\ 6/3/2021\ File: \ J: \ Jobs/2100700. WI/69\ Bridgeport\ NE\ CT/05\ Structural/Tower\ Analysis/Rev\ 1/Backup\ Documentation/ERI\ Files/98-Flagpole_Bridgeport\ NE_Rev.0. eri$

Location:

Subject: Anchor Bolt and Baseplate Analysis

> 98-FT Flagpole Bridgeport, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.69

ford, CT 06405 F: (203) 488-858:			no. 21007.69
Anchor Bolt and Base Pl	ate Analysis :		
	Input Data:		
	Tower Reactions :		
Ove	erturning Moment =	$M_u := 668 \cdot ft \cdot kips$	(Input From tnxTower)
	Shear Force =	Shear≔ 12 • kips	(Input From tnxTower)
	Axial Force =	$R_u = 14 \cdot kips$	(Input From tnxTower)
	Anchor Bolt Data :		
ASTI	M A615 Grade 75		
Numbe	r of Anchor Bolts =	<i>N</i> := 6	(User Input)
Diame	ter of Bolt Circle =	<i>D_{BC}</i> := 51.25 • <i>in</i>	(User Input)
Bolt "C	olumn" Distance =	<i>I</i> := 3.0 • <i>in</i>	(User Input)
Bolt (JItimate Strength =	$F_u \coloneqq 100 \cdot ksi$	(User Input)
Во	olt Yield Strength =	F _y := 75 • ksí	(User Input)
	Bolt Modulus =	E := 29000 ∙ ksi	(User Input)
Diamete	r of Anchor Bolts =	<i>D</i> := 1.75 • <i>in</i>	(User Input)
	Threads per Inch =	<i>n</i> := 5	(User Input)
Top of Concrete to	Bot Leveling Nut =	$I_{ar} \coloneqq 2 \cdot in$	(User Input)
Anchor Rod Force C	Correction Factor =	$n_c := 1.1$	
	Base Plate Data:		
Use AST	M A572 Grade 50		
Pla	te Yield Strength =	F _{yf} := 50 • ksi	(User Input)
Base	Plate Thickness =	$t_{TP} := 1.75 \cdot in$	(User Input)
Bas	e Plate Diameter =	<i>D_{OD}</i> := 56.25 ∙ in	(User Input)
Out	er Pole Diameter =	$D_T \coloneqq 45.5 \cdot in$	(User Input)
Pol	e Wall Thickness =	$t_T \coloneqq 0.25 \cdot in$	(User Input)
Pole Desi	gn Yield Strength =	F _{yp} := 65 ⋅ ksi	(User Input)
		$\eta := 0.5$	For Ungrouted Base Plate per TIA-222-G Section 4.9.9

Subject:

Location:

Anchor Bolt and Baseplate Analysis

98-FT Flagpole Bridgeport, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.69

Rev. 1: 10/21/21

Anchor	Bolt	Analysis	:
---------------	------	-----------------	---

Net Area of Bolt =

et Area of Bolt =
$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n}\right)^2 = 1.899 in^2$$

Tensile Root Diameter =
$$d_n := D - \frac{0.9743 \cdot in}{n} = 1.555 in$$

Plastic Section Modulus =
$$Z = \frac{d_{rl}^3}{6} = 0.627 \text{ in}^3$$

Maximum Anchor Rod Force =
$$P_u := \frac{n_c \cdot \pi \cdot M_u}{N \cdot D_{RC}} + \frac{R_u}{N} = 92.4 \text{ kip}$$

Maximum Shear Force =
$$V_u := \frac{Shear}{N} = 2 \text{ kip}$$

Design Tensile Strength =
$$\Phi R_{nt} = 0.8 \cdot F_u \cdot A_n = 151.956$$
 kip

Bolt % of Capacity =
$$\frac{\left(P_u + \frac{V_u}{\eta}\right)}{\Phi R_{nt}} = 63.5\%$$

Condition1 =
$$Condition1 := if \left(\frac{\left(P_u + \frac{V_u}{\eta} \right)}{\Phi R_{nt}} \le 1.00, \text{ "OK"}, \text{ "Overstressed"} \right)$$

 $A_g := \frac{\pi}{4} \cdot D^2 = 2.405 \text{ in}^2$

Condition1 = "OK"

Design Shear Strength =
$$\Phi R_{nv} = 0.75 \cdot 0.45 \cdot F_v \cdot A_q = 81.178 \text{ kip}$$

Design Flexural Strength =
$$\Phi R_{nm} = 0.9 \cdot F_v \cdot Z = 42.312 \text{ in } \cdot \text{kip}$$

$$M_{u} := \left| \begin{array}{c} \text{if } I_{ar} < D \\ \parallel 0 \\ \text{else} \\ \parallel 0.65 \cdot I_{ar} \cdot V_{u} \end{array} \right| = 2.6 \text{ in } \cdot \text{kip}$$

Bolt % of Capacity =
$$\left(\left(\frac{V_u}{\Phi R_{nv}} \right)^2 + \left(\frac{P_u}{\Phi R_{nt}} + \frac{M_u}{\Phi R_{nm}} \right)^2 \right) = 44.9\%$$

$$Condition 2 = \int \frac{V_u}{\Phi R_{nv}} + \left(\frac{P_u}{\Phi R_{nt}} + \frac{M_u}{\Phi R_{nm}}\right)^2 \le 1.00 \text{ , "OK" , "OS"}$$

Condition2 = "OK"

Base Plate Analysis:

Strength Resistance Factor for Yielding due to Bending =
$$\phi_b := 0.9$$

Strength Resistance Factor for Yielding due to Shear =
$$\phi_v := 1.0$$

Outside Fillet Horizontal Leg Dimension =
$$w_1 = 0.25 \cdot in$$

Effective Pole Outside Diameter =
$$D_e = D_T + w_1 = 45.75$$
 in

Subject:

Location:

Anchor Bolt and Baseplate Analysis

98-FT Flagpole Bridgeport, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 1: 10/21/21

a, C1 06405 F:	(203) 488-8387	Rev. 1: 10/21/21	Job No. 21007.69
Effective I	Base Plate Outs	side Diameter =	$D_{oe} := \left\ \begin{array}{l} \text{if } D_{OD} \leq \left(D_{BC} + 6 \cdot t_{TP} \right) \\ \left\ D_{OD} \\ \text{else} \\ \left\ \left(D_{BC} + 6 \cdot t_{TP} \right) \right\ \end{array} \right\ = 56.25 \ \textbf{in}$
Half-Angle Between Ra Centerline Through Midpo		3	$\theta_1 := \frac{\pi}{N} = 0.524$
Angle Defining Limiting Effe		te Width Based te Thickness =	$\theta_2 \coloneqq \operatorname{asin}\left(\frac{12 \cdot t_{TP}}{D_{BC}}\right) = 0.422$
Angle Defining Limiting Efform Distance Between Anchor	or Rod Bolt Circ		$\theta_3 \coloneqq \operatorname{acos}\left(\frac{D_{BC} + D_e}{2 \cdot D_{BC}}\right) = 0.329$
Governing Angle Defir		ase Plate Width sting Bending =	$\theta \coloneqq min\left(\theta_1, \theta_2, \theta_3\right) = 0.329$
Effective Mome	ent Arm of Anch	or Rod Force =	$x := 0.5 \cdot (D_{BC} - D_{\theta}) = 2.75 \text{ in}$
Effective Base Plate		g Bending from se Bend Line =	$B_{el} \coloneqq D_{BC} \cdot \sin(\theta) = 16.562$ in
Effective Base Plate Width	Resisting Bend	ing from Radial Bend Lines =	$B_{\mathrm{er}} \coloneqq \left(D_{\mathrm{oe}} - D_{\mathrm{e}}\right) \cdot \sin\left(\theta\right) = 3.393 \ \textit{in}$
Total Effective Base P	late Width Resi	sting Bending =	$B_{\text{eff}} := B_{\text{et}} + B_{\text{er}} = 19.956 \ \textit{in}$
Re	quired Base Pla	ate Thickness =	$t_{TP.Req} := \sqrt{\frac{4 \cdot P_u \cdot x}{\phi_b \cdot F_{yf} \cdot B_{eff}}} = 1.064 \ in$

$$t_{TP.Req} := \frac{\phi_b \cdot t_T \cdot F_{yp}}{\phi_v \cdot 0.6 \cdot F_{yf}} = 0.488$$
 in

$$\frac{t_{\mathit{TP.Req}}}{t_{\mathit{TP}}} = 27.9\%$$

 $\frac{t_{TP.Req}}{}=60.8\%$

Condition3 = "Ok"

Condition4 := if
$$\left(\frac{t_{TP,Req}}{t_{TP}} < 1.00, \text{"Ok"}, \text{"Overstressed"}\right)$$

Condition3 := if $\left(\frac{t_{TP,Req}}{t_{TP}} < 1.00, \text{ "Ok"}, \text{ "Overstressed"}\right)$

Condition4 = "Ok"

Centered on Solutions www.centekeng.com 63-3 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 1: 11/1/22

CAISSON FOUNDATION

98-ft EEI Flagpole Bridgeport, CT

Prepared by: TJL Checked by: C.F.C.

Job No. 21007.69

Caisson Foundation:

Input Data:

Shear Force = USER INPUT-FROM tnxTower S := 12k

Overturning Moment = USER INPUT-FROM tnxTower $M := 668 ft \cdot k$

Applied Axial Load= USER INPUT-FROM tnxTower A1 := 14k

Bending Moment = $Mu := 701ft \cdot k$ USER INPUT-FROM LPILE

Moment Capacity = $Mn := 3322ft \cdot k$ USER INPUT-FROM LPILE

Foundation Diameter = d := 6ft**USER INPUT**

Overall Length of Caisson = **USER INPUT** $L_c := 18.75 \text{ft}$

Depth From Top of Caisson to Grade = **USER INPUT** $L_{pag} := 0.75 ft$

> Number of Rebar = n:= 26 **USER INPUT**

 $\mathsf{Ar} \coloneqq \mathsf{0.785in}^2$ Area of Rebar = **USER INPUT**

Rebar Yield Strength = fy:= 60ksi **USER INPUT**

Concrete Comp Strength = **USER INPUT** fc := 4ksi

Check Moment Capacity.

 $FS:=\frac{0.9Mn}{Mu}=4.3$ Factor of Safety =

Factor of Safety Required = $FS_{reqd} := 1$

 $FOSCheck := if(FS \ge FS_{reqd}, "OK", "NO GOOD")$

FOSCheck = "OK"

LPILE Plus for Windows, Version 5.0 (5.0.47)

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method

> (c) 1985-2010 by Ensoft, Inc. All Rights Reserved

This program is licensed to:
TJL Centek Engineering
Files Used for Analysis
Path to file locations: J:\Jobs\2100700.WI\69_Bridgeport NE CT\05_Structural\Tower Analysis\Rev 1\Backup Documentation\LPile\ Name of input data file: Caisson.lpd Name of output file: Caisson.lpo Name of plot output file: Caisson.lpp Name of runtime file: Caisson.lpr
Time and Date of Analysis
Date: November 1, 2022 Time: 15:33:50
Problem Title
21007.69 Bridgeport NE
Program Options
Units Used in Computations - US Customary Units: Inches, Pounds

Basic Program Options:

Analysis Type 3:

- Computation of Nonlinear Bending Stiffness and Ultimate Bending Moment Capacity with Pile Response Computed Using Nonlinear EI

Computation Options:

- Only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis for fixed-length pile or shaft only
- No computation of foundation stiffness matrix elements
- Output summary table of values for pile-head deflection, maximum bending moment, and shear force only
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths

Solution Control Parameters:

- Number of pile increments = 100 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in

Printing Options:

- Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.

Pile Structural Properties and Geometry

Pile Length = 225.00 in

Depth of ground surface below top of pile = 9.00 in

Slope angle of ground surface = 0.00 deg.

Structural properties of pile defined using 2 points

Point	Point	Pile	Moment of	Pile	Modulus of
No.	Depth	Diameter	Inertia	Area	Elasticity
	in	in	in**4	Sq.in	lbs/Sq.in
1	0.0000	72.00000000	1319167.	4071.5000	3604996.
2	225.0000	72.00000000	1319167.	4071.5000	3604996.

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of moment of inertia and modulus of are not used for any computations other than total stress due to combined axial loading and bending.

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

```
Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer = 9.000 in

Distance from top of pile to bottom of layer = 210.000 in

p-y subgrade modulus k for top of soil layer = 0.000 lbs/in**3

p-y subgrade modulus k for bottom of layer = 0.000 lbs/in**3
```

NOTE: Internal default values for p-y subgrade modulus will be computed for the above soil layer.

```
Layer 2 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer = 210.000 in

Distance from top of pile to bottom of layer = 240.000 in

p-y subgrade modulus k for top of soil layer = 0.000 lbs/in**3

p-y subgrade modulus k for bottom of layer = 0.000 lbs/in**3
```

NOTE: Internal default values for p-y subgrade modulus will be computed for the above soil layer.

(Depth of lowest layer extends 15.00 in below pile tip)

```
Effective Unit Weight of Soil vs. Depth
```

Effective unit weight of soil with depth defined using 4 points

Point	Depth X	Eff. Unit Weight
No.	in	lbs/in**3
1	9.00	0.07200
2	210.00	0.07200
3	210.00	0.08100
4	240.00	0.08100

Shear Strength of Soils

Shear strength parameters with depth defined using 4 points

Point No.	Depth X in	Cohesion c lbs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
1	9.000	0.00000	32.00		
2	210.000	0.00000	32.00		
3	210.000	0.00000	40.00		
4	240.000	0.00000	40.00		

Notes:

- (1) Cohesion = uniaxial compressive strength for rock materials.
- (2) Values of E50 are reported for clay strata.
- (3) Default values will be generated for E50 when input values are 0.
- (4) RQD and k_rm are reported only for weak rock strata.

Loading Type
Static loading criteria was used for computation of p-y curves.
Pile-head Loading and Pile-head Fixity Conditions
Number of loads specified = 1
Load Case Number 1
Pile-head boundary conditions are Shear and Moment (BC Type 1)

12000.000 lbs

Bending moment at pile head = 8016000.000 in-lbs

Axial load at pile head = 14000.000 lbs

Non-zero moment at pile head for this load case indicates the pile-head

may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Number of sections = 1

Shear force at pile head =

Pile Section No. 1

The sectional shape is a circular drilled shaft (bored pile).

Outside Diameter = 72.0000 in

Material Properties:

Compressive Strength of Concrete	=	4.000	kip/in**2
Yield Stress of Reinforcement	=	60.	kip/in**2
Modulus of Elasticity of Reinforcement	=	29000.	kip/in**2
Number of Reinforcing Bars	=	26	
Area of Single Bar	=	0.79000	in**2
Number of Rows of Reinforcing Bars	=	13	
Area of Steel	=	20.540	in**2
Area of Shaft	=	4071.504	in**2
Percentage of Steel Reinforcement	=	0.504	percent
Cover Thickness (edge to bar center)	=	3.000	in

Unfactored Axial Squash Load Capacity = 15005.68 kip

Distribution and Area of Steel Reinforcement

Row	Area of	Distance to
Number	Reinforcement	Centroidal Axis
	in**2	in
1	1.580	32.759
2	1.580	30.856
3	1.580	27.158
4	1.580	21.883
5	1.580	15.336
6	1.580	7.897
7	1.580	0.000
8	1.580	-7.897
9	1.580	-15.336
10	1.580	-21.883
11	1.580	-27.158
12	1.580	-30.856
13	1.580	-32.759

Axial Thrust Force = 14000.00 lbs

Bending Max. Steel	Bending	Bending	Maximum	Neutral Axis	Max. Concrete
Moment Stress	Stiffness	Curvature	Strain	Position	Stress
in-lbs	lb-in2	rad/in	in/in	inches	psi

4256294.	5.107553E+12	8.33333E-07	0.00003102	37.22090185	110.07460
821.19046					
8469486.	5.081691E+12	0.00000167	0.00006115	36.68742979	215.20931
1616.59643					
12638584.	5.055434E+12	0.00000250	0.00009125	36.50106347	318.56283
2411.38308					
16763960.	5.029188E+12	0.00000333	0.00012136	36.40777409	420.21034
3206.15947				44 0-0-0	
16763960.	4.023350E+12	0.00000417	0.00006697	16.07253349	230.40717
6366.32884	2 2527025.42	0 00000500	0.00007044	15 00707001	272 20007
16763960. 7666.37068	3.352792E+12	0.00000500	0.00007944	15.88787091	272.29897
16763960.	2.873822E+12	0.00000583	0.00009192	15.75834811	313.96017
8966.01007	2.0/30225+12	0.00000565	0.00009192	13./3034011	313.9001/
16763960.	2.514594E+12	0.00000667	0.00010442	15.66329706	355.39001
10265.24519	2.3143346112	0.0000007	0.00010442	13.00323700	333.33001
16763960.	2.235195E+12	0.00000750	0.00011700	15.59999907	396.81238
11562.16815					
16763960.	2.011675E+12	0.00000833	0.00012990	15.58800423	439.04401
12849.75225					
16763960.	1.828796E+12	0.00000917	0.00014245	15.53953135	479.78238
14147.61318					
16763960.	1.676396E+12	0.00001000	0.00015501	15.50071013	520.29120
15445.01799					
16763960.	1.547442E+12	0.00001083	0.00016758	15.46932399	560.56975
16741.96330					
16763960.	1.436911E+12	0.00001167	0.00018018	15.44378936	600.61728
18038.44584				45 40004000	- 40 4000-
16763960.	1.341117E+12	0.00001250	0.00019279	15.42294323	640.43296
19334.46298 16763960.	1 2572075,12	0.00001333	0 00020541	15 40501657	680.01609
20630.01083	1.257297E+12	0.00001333	0.00020541	15.40591657	000.01009
16763960.	1.183338E+12	0.00001417	0.00021805	15.39204204	719.36585
21925.08662	1.1055581+12	0.00001417	0.00021803	13.37204204	710.0000
16763960.	1.117597E+12	0.00001500	0.00023071	15.38080251	758.48146
23219.68679		010000_	0.000000.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
16763960.	1.058776E+12	0.00001583	0.00024339	15.37179029	797.36219
24513.80751					
16763960.	1.005838E+12	0.00001667	0.00025608	15.36467493	836.00706
25807.44699					
16763960.	9.579406E+ 11	0.00001750	0.00026879	15.35919678	874.41550
27100.59950					
16763960.	9.143978E+11	0.00001833	0.00028151	15.35513484	912.58645
28393.26384					
16763960.	8.746414E+11	0.00001917	0.00029425	15.35231316	950.51922
29685.43512	0. 2040005:44	0.00000000	0.00000704	45 35050453	000 24204
16763960.	8.381980E+11	0.00002000	0.00030701	15.35058153	988.21291
30977.11056					

16763960. 32268.28632	8.046701E+11	0.00002083	0.00031979	15.34981549	1025.66668
16763960. 33558.95845	7.737212E+11	0.00002167	0.00033258	15.34990990	1062.87971
16763960. 34849.12338	7.450649E+11	0.00002250	0.00034539	15.35077465	1099.85113
16978523. 36138.77752	7.276510E+11	0.00002333	0.00035822	15.35233247	1136.58005
17566049. 37427.91725	7.268710E+11	0.00002417	0.00037107	15.35451686	1173.06556
18152998. 38716.53915	7.261199E+11	0.00002500	0.00038393	15.35726988	1209.30674
18739371. 40004.63735	7.253950E+11	0.00002583	0.00039681	15.36054432	1245.30287
19325160. 41292.21056	7.246935E+11	0.00002667	0.00040971	15.36429298	1281.05279
19910366. 42579.25178	7.240133E+11	0.00002750	0.00042263	15.36848152	1316.55588
20494979. 43865.76086	7.233522E+11	0.00002833	0.00043557	15.37307131	1351.81081
21079001. 45151.73048	7.227086E+11	0.00002917	0.00044853	15.37803662	1386.81696
21662430. 46437.15581	7.220810E+11	0.00003000	0.00046150	15.38335168	1421.57345
22245256. 47722.03645	7.214678E+11	0.00003083	0.00047449	15.38898861	1456.07893
22827476. 49006.36679	7.208677E+11	0.00003167	0.00048751	15.39492810	1490.33258
23409094. 50290.13906	7.202798E+11	0.00003250	0.00050054	15.40115511	1524.33374
24570489. 52856.00253	7.191363E+11	0.00003417	0.00052666	15.41439450	1591.57354
25729408. 55419.59169	7.180300E+11	0.00003583	0.00055286	15.42859089	1657.79018
26885821. 57980.86813	7.169552E+11	0.00003750	0.00057914	15.44365203	1722.97551
27993152. 60000.00000	7.147188E+11	0.00003917	0.00060513	15.45009363	1786.19805
28847651. 60000.00000	7.064731E+11	0.00004083	0.00062918	15.40858161	1843.44422
29563825. 60000.00000	6.956194E+11	0.00004250	0.00065217	15.34514201	1897.06995
30172680. 60000.00000	6.831550E+11	0.00004417	0.00067426	15.26626790	1947.63357
30694204. 60000.00000	6.696917E+11	0.00004583	0.00069563	15.17729366	1995.63609
31214585. 60000.00000	6.571492E+11	0.00004750	0.00071703	15.09543908	2042.92754
31651760. 60000.00000	6.437646E+11	0.00004917	0.00073765	15.00314748	2087.63376
32010039.	6.297057E+11	0.00005083	0.00075752	14.90212691	2129.92175

60000.00000 32367445.	6.165228E+11	0.00005250	0.00077743	14.80815732	2171.59032
60000.00000	0.1032281+11	0.00003230	0.00077743	14.00013/32	21/1.39032
32723985.	6.041351E+11	0.00005417	0.00079737	14.72059715	2212.63686
60000.00000 33079647.	5.924713E+11	0.00005583	0.00081734	14.63887560	2253.05800
60000.00000					
33349431.	5.799901E+11	0.00005750	0.00083633	14.54483092	2290.74240
60000.00000 33581073.	5.675674E+11	0.00005917	0.00085490	14.44901597	2326.94307
60000.00000	3.0730742111	0.00003317	0.00005450	14.44501557	2320.34307
33941665.	5.579452E+11	0.00006083	0.00087600	14.40000021	2367.61443
60000.00000					
34068323.	5.450932E+11	0.00006250	0.00089618	14.33886945	2405.69048
60000.00000					
34293983.	5.344517E+11	0.00006417	0.00091426	14.24815500	2438.99129
60000.00000	E 2422065.44	0.00006503	0.00003336	1.4. 1.62.464.64	2474 77046
34519024.	5.243396E+11	0.00006583	0.00093236	14.16246164	2471.77846
60000.00000 34743442.	5.147177E+11	0.00006750	0.00095050	14.08142030	2504.04952
60000.00000	J.14/1//LT11	0.00000730	0.00093030	14.00142030	2304.04932
34967234.	5.055504E+11	0.00006917	0.00096866	14.00469840	2535.80212
60000.00000	3,03330,12,122			_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
35105858.	4.956121E+11	0.00007083	0.00098543	13.91190255	2564.47014
60000.00000					
35241826.	4.860942E+11	0.00007250	0.00100218	13.82318580	2592.63053
60000.00000					
35377329.	4.769977E+11	0.00007417	0.00101896	13.73877132	2620.34888
60000.00000					
35512352.	4.682947E+11	0.00007583	0.00103576	13.65837371	2647.62282
60000.00000	4 E00600E+11	0.00007750	0 00105350	13.58173764	2674 45070
35646898. 60000.00000	4.599600E+11	0.00007730	0.00105258	13.361/3/64	2674.45070
35780965.	4.519701E+11	0.00007917	0.00106943	13.50862706	2700.83055
60000.00000	4.515/012/11	0.00007317	0.00100545	13.30002700	2700.03033
35914556.	4.443038E+11	0.00008083	0.00108631	13.43882740	2726.76063
60000.00000					
36047658.	4.369413E+11	0.00008250	0.00110320	13.37213695	2752.23861
60000.00000					
36180270.	4.298646E+11	0.00008417	0.00112012	13.30837333	2777.26256
60000.00000	4 0005705 44	0.0000503	0 00443707	43 24726047	2004 22067
36312396.	4.230570E+11	0.00008583	0.00113707	13.24736917	2801.83067
60000.00000 36312396.	4.149988E+11	0.00008750	0.00115500	13.19999921	2827.38227
60000.00000	4.149988LT11	0.00008730	0.00113300	13.19999921	2027.30227
36545033.	4.098508E+11	0.00008917	0.00117700	13.19999921	2858.29423
60000.00000	.,	3.000 o a a ,	3.0022,,00		2020727.27
36732320.	4.043925E+11	0.00009083	0.00119495	13.15535867	2882.61220
60000.00000					
36804153.	3.978827E+11	0.00009250	0.00120994	13.08040917	2902.27224
60000.00000					

36875661. 60000.00000	3.915999E+11	0.00009417	0.00122495	13.00831783	2921.57783
36946843. 60000.00000	3.855323E+11	0.00009583	0.00123998	12.93893659	2940.52753
37017692. 60000.00000	3.796686E+11	0.00009750	0.00125503	12.87212598	2959.11967
37088214. 60000.00000	3.739988E+11	0.00009917	0.00127010	12.80775940	2977.35307
37228247. 60000.00000	3.632024E+11	0.00010250	0.00130030	12.68587983	3012.73693
37366925. 60000.00000	3.530733E+11	0.00010583	0.00133058	12.57242668	3046.66712
37504244. 60000.00000	3.435503E+11	0.00010917	0.00136094	12.46663821	3079.13179
37640188. 60000.00000	3.345794E+11	0.00011250	0.00139138	12.36784065	3110.11854
37774738. 60000.00000	3.261128E+11	0.00011583	0.00142190	12.27543747	3139.61471
37907873. 60000.00000	3.181080E+11	0.00011917	0.00145251	12.18889868	3167.60739
38039592. 60000.00000	3.105273E+11	0.00012250	0.00148320	12.10775650	3194.08397
38169862. 60000.00000	3.033366E+11	0.00012583	0.00151397	12.03158605	3219.03077
38489907. 60000.00000	2.979864E+11	0.00012917	0.00155000	12.00000036	3246.45226
38489907. 60000.00000	2.904899E+11	0.00013250	0.00158619	11.97128141	3271.74171
38489907. 60000.00000	2.833613E+11	0.00013583	0.00161312	11.87571752	3288.74162
38528336. 60000.00000	2.768503E+11	0.00013917	0.00164011	11.78521979	3304.57483
38587619. 60000.00000	2.707903E+11	0.00014250	0.00166717	11.69943631	3319.23171
38645936. 60000.00000	2.650007E+11	0.00014583	0.00169430	11.61805165	3332.70284
38703270. 60000.00000	2.594633E+11	0.00014917	0.00172150	11.54077399	3344.97822
38759604. 60000.00000	2.541613E+11	0.00015250	0.00174877	11.46733725	3356.04777
38814943. 60000.00000	2.490799E+11	0.00015583	0.00177611	11.39750326	3365.90154
38869269. 60000.00000	2.442048E+11	0.00015917	0.00180353	11.33104885	3374.52908
38922566. 60000.00000	2.395235E+11	0.00016250	0.00183101	11.26777017	3381.91983
38974824. 60000.00000	2.350241E+11	0.00016583	0.00185857	11.20748055	3388.06310
39026042. 60000.00000	2.306958E+11	0.00016917	0.00188621	11.15001047	3392.94809
39076195.	2.265287E+11	0.00017250	0.00191392	11.09519899	3396.56362

60000.00000 39125284.	2.225135E+11	0.00017583	0.00194171	11.04290235	3398.89845
60000.00000					
39173297.	2.186417E+11	0.00017917	0.00196958	10.99298537	3399.94105
60000.00000					
39217715.	2.148916E+11	0.00018250	0.00199752	10.94531929	3395.20383
60000.00000					
39260578.	2.112677E+11	0.00018583	0.00202554	10.89979255	3388.32749
60000.00000					
39303050.	2.077694E+11	0.00018917	0.00205365	10.85629570	3381.42988
60000.00000					
39345121.	2.043902E+11	0.00019250	0.00208184	10.81472790	3382.39990
60000.00000	2 0001125.11	0.00040503	0 00344500	40 70000036	2200 70002
39345121.	2.009113E+11	0.00019583	0.00211500	10.79999936	3388.78992
60000.00000	1 0754075.11	0.00010017	0 00315100	10 70000036	2204 17022
39345121. 60000.00000	1.975487E+11	0.00019917	0.00215100	10.79999936	3394.17923
39345121.	1.942969E+11	0.00020250	0.00218700	10.79999936	3397.81817
60000.00000	1.7427076411	0.00020250	0.00218700	10.7555550	3337.01017
39547297.	1.921326E+11	0.00020583	0.00222241	10.79714763	3399.68658
60000.00000		0.00020303	0.002222.2	20175721705	3377.00030
39582361.	1.892384E+11	0.00020917	0.00224951	10.75461638	3399.17086
60000.00000					
39593832.	1.863239E+11	0.00021250	0.00227434	10.70278108	3394.19441
60000.00000					
39605199.	1.834990E+11	0.00021583	0.00229922	10.65276325	3389.20563
60000.00000					
39616459.	1.807595E+11	0.00021917	0.00232415	10.60448134	3384.20442
60000.00000					
39627604.	1.781016E+11	0.00022250	0.00234912	10.55785811	3379.19075
60000.00000	4 7550475.44	0.00000500	0.00007445	40 54303400	2274 46422
39638648. 60000.00000	1.755217E+11	0.00022583	0.00237415	10.51282489	3374.16432
39649562.	1.730163E+11	0.00022917	0.00239922	10.46930873	3375.67771
60000.00000	1./301030+11	0.00022917	0.00239922	10.409306/3	33/3.0///1
39660370.	1.705822E+11	0.00023250	0.00242434	10.42725170	3380.10589
60000.00000	11,030222.11	0.00023230	0.00212131	10112723170	3300.20303
39681640.	1.659163E+11	0.00023917	0.00247472	10.34727466	3387.66099
60000.00000					
39702423.	1.615014E+11	0.00024583	0.00252531	10.27244961	3393.45224
60000.00000					
39722712.	1.573177E+11	0.00025250	0.00257610	10.20238602	3397.44435
60000.00000					
39742498.	1.533473E+11	0.00025917	0.00262710	10.13673413	3399.60075
60000.00000					
39761284.	1.495722E+11	0.00026583	0.00267847	10.07573640	3397.06776
60000.00000	1 4507755.11	0 00077750	0 00272026	10 01010042	2200 66720
39778863. 60000.00000	1.459775E+11	0.00027250	0.00273026	10.01929843	3388.66728
39796202.	1.425536E+11	0.00027917	0.00278218	9.96600187	3380.23391
60000.00000	1.7277ULTII	0.0002/91/	0.002/0210	J. J0000107	JJ00.2JJJ1
30000.00000					

39813313. 60000.00000	1.392886E+11	0.00028583	0.00283422	9.91563642	3371.76693
39830194. 60000.00000	1.361716E+11	0.00029250	0.00288639	9.86800897	3363.26577
39846821. 60000.00000	1.331927E+11	0.00029917	0.00293870	9.82293928	3365.75027
39863195. 60000.00000	1.303429E+11	0.00030583	0.00299113	9.78026855	3374.08869
39879316. 60000.00000	1.276138E+11	0.00031250	0.00304370	9.73985088	3381.30225
39895184. 60000.00000	1.249980E+11	0.00031917	0.00309641	9.70155323	3387.37216
39904814. 60000.00000	1.224700E+11	0.00032583	0.00315122	9.67126572	3392.61476
39912392. 60000.00000	1.200373E+11	0.00033250	0.00320677	9.64441144	3396.54568
399 1 9568.	1.176990E+11	0.00033917	0.00326251	9.61919224	3399.01307
39949765. 60000.00000	1.155174E+11	0.00034583	0.00332000	9.60000050	3399.99464
40062972.	1.136538E+11	0.00035250	0.00338400	9.60000050	3391.11370
60000.00000 40171630. 60000.00000	1.118468E+11	0.00035917	0.00344800	9.60000050	3381.60139
40276552.	1.100954E+11	0.00036583	0.00351200	9.60000050	3372.08908
60000.00000 40377738.	1.083966E+11	0.00037250	0.00357600	9.60000050	3362.57678
60000.00000 40475188.	1.067477E+11	0.00037917	0.00364000	9.60000050	3353.06447
60000.00000 40568901.	1.051462E+11	0.00038583	0.00370400	9.60000050	3343.55216
60000.00000 40658879.	1.035895E+11	0.00039250	0.00376800	9.60000050	3352.34735
60000.00000 40745120. 60000.00000	1.020755E+11	0.00039917	0.00383200	9.60000050	3363.63978
00000.00000					

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 39865.91434 in-kip

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear and Moment (Pile-head Condition Type 1)

Specified shear force at pile head = 12000.000 lbs

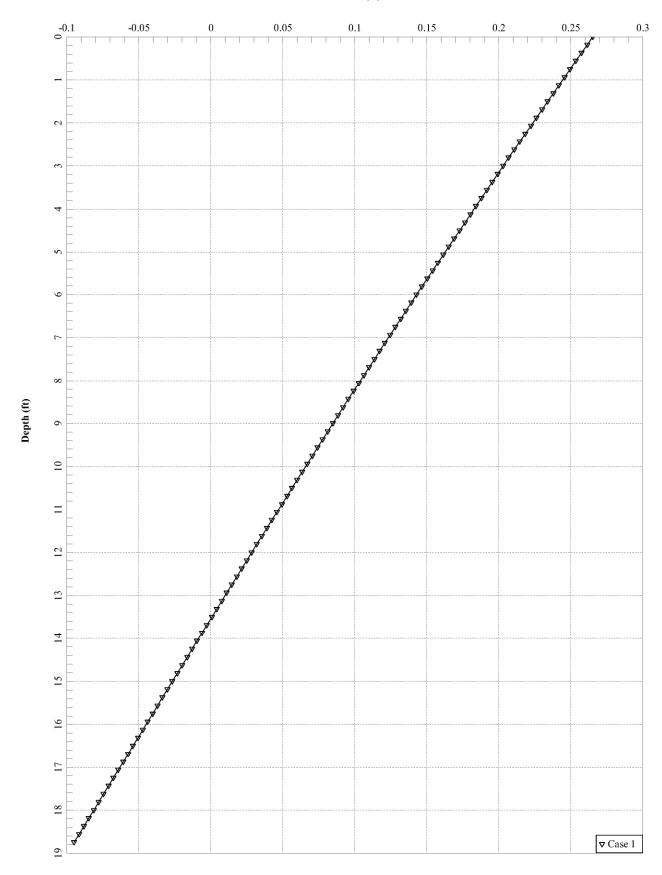
Specified moment at pile head = 8016000.000 in-lbs

Specified axial load at pile head = 14000.000 lbs

Output Verification:

Computed forces and moments are within specified convergence limits.

Summary of Pile Response(s)


Definition of Symbols for Pile-Head Loading Conditions:

Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Slope, M = Pile-head Moment lbs-in Type 3 = Shear and Rot. Stiffness, V = Pile-head Shear Force lbs
Type 4 = Deflection and Moment, S = Pile-head Slope, radians
Type 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-lbs/rad

Load Pile-Head Pile-Head Axial Pile-Head Maximum Type Condition Condition Load Deflection Moment Maximum Shear 2 lbs in in-lbs lbs

1 V= 12000. M= 8.02E+06 14000.0000 0.2651897 8404896. -73107.4055

The analysis ended normally.

Centered on Solutions^{5M}

Structural Analysis Report

Antenna Mount Analysis

Verizon Site Ref: Bridgeport NE CT

541 Broadbridge Road Bridgeport, CT

Centek Project No. 21007.69

Date: January 17, 2022

Rev. 1: October 21, 2022

CONVERTING CONVERTING

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492 CENTEK Engineering, Inc. Structural Analysis Report Verizon | Bridgeport NE CT October 21, 2022

Table of Contents

SECTION 1 - REPORT

- STRUCTURAL LETTER
- LOADING

SECTION 2 - CALCULATIONS

- GRAVITY AND LATERAL LOADS ON APPURTENANCES
- RISA3D OUTPUT REPORT
- CONNECTION TO HOST STRUCTURE

SECTION 3 - REFERENCE MATERIALS

RF DATA SHEET, DATED 11/19/2021

TABLE OF CONTENTS TOC-1

Centered on Solutions[™]

October 21, 2022

Mr. Andrew Leone Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Re: Structural Letter ~ Antenna Mount Rev. 1 Verizon – Site Ref: Bridgeport NE CT 541 Broadbridge Road Bridgeport, CT 06610

Centek Project No. 21007.69

Dear Mr. Leone,

Centek Engineering, Inc. has reviewed the Verizon antenna installation at the above-referenced site. The purpose of the review is to determine the structural adequacy of the proposed three (3) antenna masts, Pipe 2.0 STD X 8- FT and three (3) antenna masts, Pipe 2.0 STD X 3- FT as detailed on the Centek Engineering construction drawings entitled "Verizon, Bridgeport NE CT, 541 Broadbridge Road Bridgeport, CT" issued 10/21/2022 (Rev. 1). The antennas are being proposed inside concealment canisters in an existing flagpole. The review considered the effects of dead load and ice load in accordance with the 2021 International Building Code as modified by the 2022 Connecticut State Building Code (CSBC), including ASCE 7-16 and ANSI/TIA-222-H Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

Verizon:

<u>Antenna Masts:</u> Three (3) Commscope NNH4-65B-R6 panel antennas, three (3) JMA MX08FIT265-01 panel antenna, three(3) Samsung RT-8808-77A RRU's and six (6) Commscope CBC61923T-DS-43 diplexers the proposed antenna mounts inside concealments canisters with RAD center elevations of 92 ft \pm -8 82 ft \pm -8 AGL.

The antenna mount was analyzed per the requirements of the 2021 International Building Code as modified by the 2022 Connecticut State Building Code, considering a design ice thickness of 1.0 inch for Bridgeport as required in Annex B of the ANSI/TIA-222-H Structural Standards for Steel Antenna Towers and Supporting Structures.

Based on our review of the installation, it is our opinion that **the proposed antenna masts have sufficient capacity** to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Prepared by:

Carlo F. Centore, PE

Principal ~ Structural Engineer

Pablo Perez-Gomez Engineer CENTEK Engineering, Inc. Structural Analysis Report Verizon | Bridgeport NE CT October 21, 2022

Section 2 - Calculations

Subject: Loads on Equipment

Location: Bridgeport, CT

Rev. 1: 10/21/2022 Prepared by: PPG Checked by: T.J.L. Job No. 21007.69

Development of Design Heights of Ice on Equipment Per TIA-222-G

Input

Structure Type = $Structure_Type \coloneqq Pole$ (User Input)

Structure Category = $SC \coloneqq II$ (User Input) Height to Center of Antennas = z = 92ft (User Input)

Radial Ice Thickness = (User Input per Annex B of TIA-222-G) $t_i \coloneqq 1.0$ in

Radial Ice Density = (User Input) $Id \coloneqq 56.00$ pcf Topographic Factor = $K_{zt} = 1.0$ (User Input)

Output

Ice Importance factor= (TIA 222-G, Table 2-3)

 $I_{ice} \coloneqq \left\| \begin{array}{c} \text{if } SC = 1 \\ 0 \\ \text{if } SC = 2 \\ 1.00 \\ \text{if } SC = 3 \\ 1.25 \end{array} \right\|$

 $K_{iz} \coloneqq \left(\frac{z}{33}\right)^{0.1} = 1.108$ Height escalation factor for ice (TIA 222-G, Sec, 2.6.8) thickness=

 $t_{iz} \coloneqq t_i \cdot I_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 1.108$ in (TIA 222-G, Sec, 2.6.8) Nominal thickness of radial glaze ice at height z=

Subject: Loads on Equipment

Location: Bridgeport, CT

Rev. 1: 10/21/2022 Prepared by: PPG Checked by: T.J.L.

Job No. 21007.69

Development of Ice Load on Antennas

Antenna Data:

Antenna Model = Commscope NNH4-65B-R6

Antenna Shape = Flat (User Input)

Antenna Height = $L_{ant} = 72.0$ in (User Input)

Antenna Width = $W_{ant} = 19.6$ in (User Input)

Antenna Thickness = $T_{ant} = 7.8$ in (User Input)

Antenna Weight = $WT_{ant} = 83.1$ lbs (User Input)

Number of Antennas = $N_{ant} = 1$ (User Input)

Antenna Aspect Ratio = $Ar_{ant} = \frac{L_{ant}}{W_{ant}} = 3.7$

Gravity Load (without ice)

Weight of All Antennas = $WT_{ant} \cdot N_{ant} = 83$ lbs

Gravity Loads (ice only)

Volume of Each Antenna = $V_{ant} = L_{ant} \cdot W_{ant} \cdot T_{ant} = 1 \cdot 10^4$ cu in

Volume of Ice on Each Antenna = $V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right) - V_{ant} = 5209$

Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 169$ lbs

Weight of Ice on All Antennas = $W_{ICEant} \cdot N_{ant} = 169$

Development of Ice Load on Antennas

Antenna Data:

Antenna Model = JMA MX08FIT265-01

Antenna Shape = Flat (User Input)

Antenna Height = $L_{ant} = 33.1$ in (User Input)

Antenna Width = $W_{ant} = 11.6$ in (User Input)

Antenna Thickness = $T_{ant} = 4.5$ in (User Input)

Antenna Weight = $WT_{ant} = 26.5$ lbs (User Input)

Number of Antennas = $N_{ant} = 1$ (User Input)

Antenna Aspect Ratio = $Ar_{ant} := \frac{L_{ant}}{W_{out}} = 2.9$

Gravity Load (without ice)

Weight of All Antennas = $WT_{ant} \cdot N_{ant} = 27$ lbs

Gravity Loads (ice only)

 $\text{Volume of Each Antenna} = \qquad V_{ant} \coloneqq L_{ant} \cdot W_{ant} \cdot T_{ant} = 1728 \qquad \qquad \text{cu in}$

 $\text{Volume of Ice on Each Antenna} = V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right) - V_{ant} = 1549 \text{ cu in }$

Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 50$ lbs

Weight of Ice on All Antennas = $W_{ICEant} \cdot N_{ant} = 50$

F: (203) 488-8587

Branford, CT 06405

Subject:

Loads on Equipment

Location:

Bridgeport, CT

Rev. 1: 10/21/2022

Prepared by: PPG Checked by: T.J.L.

Job No. 21007.69

Development of Ice Load on RRUS's

RRUS Data:

RRUS Model = Samsung RT-8808-77A

RRUS Shape = Flat (User Input) RRUS Height = (User Input) $L_{RRUS} \coloneqq 15$ in RRUS Width = $W_{RRUS}\!\coloneqq\!15$ (User Input) RRUS Thickness = $T_{RRUS} \coloneqq 6.8$ (User Input)

RRUS Weight = $WT_{RRUS} = 59.5$ (User Input) lbs

Number of RRUS's = $N_{RRUS} := 1$

Gravity Load (without ice)

Weight of All RRUSs = $WT_{RRUS} \cdot N_{RRUS} = 60$

Gravity Loads (ice only)

Volume of Each RRUS = $V_{\mathit{RRUS}} \coloneqq L_{\mathit{RRUS}} \cdot W_{\mathit{RRUS}} \cdot T_{\mathit{RRUS}} = 1530$ cu in

Volume of Ice on Each RRUS = $V_{ice} \coloneqq \left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right) - V_{RRUS} = 1142 \quad \text{cu in}$

 $W_{ICERRUS} \coloneqq \frac{V_{ice}}{1728} \cdot Id = 37$ Weight of Ice on Each RRUS = lbs

Weight of Ice on All RRUSs = $W_{ICERRUS} \cdot N_{RRUS} = 37$

Development of Ice Load on Diplexers

Diplexer Data:

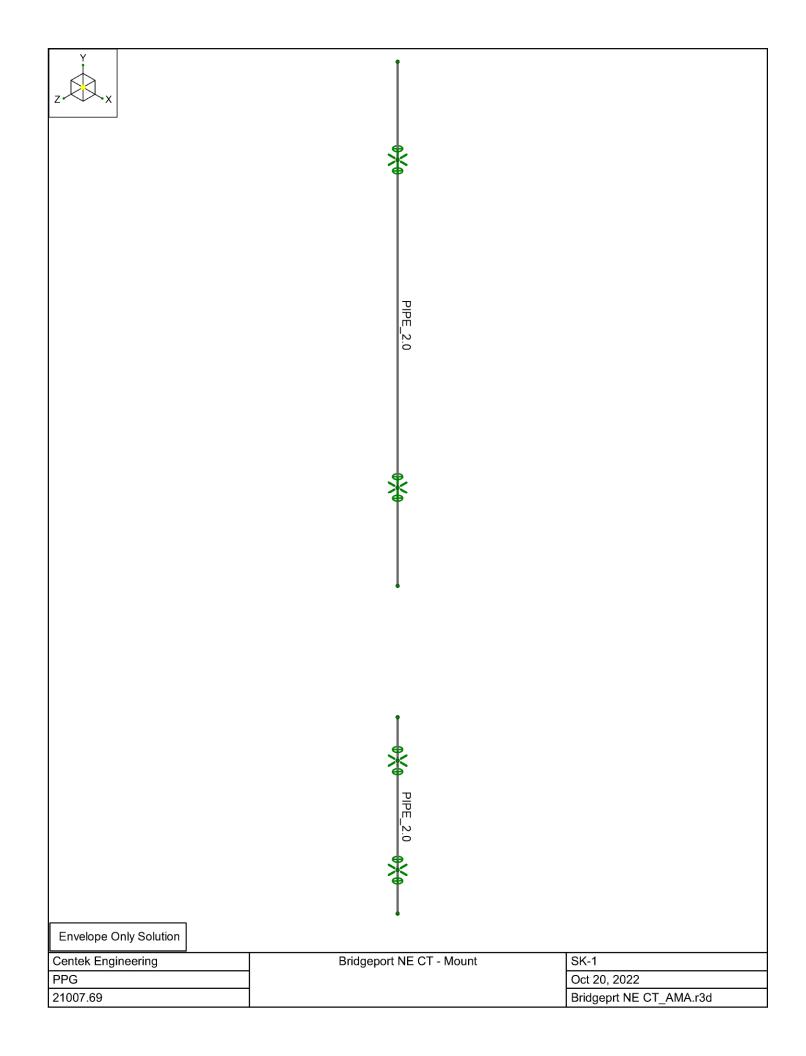
Diplexer Model = Commscope CBC61923T-DS-43

Diplexer Shape = Flat (User Input) Diplexer Height = $L_{Dipl} \coloneqq 6.9$ (User Input) Diplexer Width = $W_{Dipl} \coloneqq 7.8$ (User Input) Diplexer Thickness = $T_{Dinl} \coloneqq 4.6$ in (User Input) Diplexer Weight = $WT_{Dipl} \coloneqq 14.3$ (User Input)

Number of Diplexer = $N_{Dipl} \coloneqq 2$ (User Input)

Gravity Load (without ice)

Weight of All Diplexer = $WT_{Dipl} \bullet N_{Dipl} = 29$ lbs


Gravity Loads (ice only)

Volume of Each Diplexer = $V_{Dipl} \coloneqq L_{Dipl} \boldsymbol{\cdot} W_{Dipl} \boldsymbol{\cdot} T_{Dipl} = 248$ cu in

Volume of Ice on Each Diplexer = $V_{ice} \coloneqq \left(L_{Dipl} + 2 \cdot t_{iz}\right) \cdot \left(W_{Dipl} + 2 \cdot t_{iz}\right) \cdot \left(T_{Dipl} + 2 \cdot t_{iz}\right) - V_{Dipl} = 375 \quad \text{cu in}$

 $W_{ICEDipl} := \frac{V_{ice}}{1728} \cdot Id = 12$ Weight of Ice on Each Diplexer =

Weight of Ice on All Diplexer = $W_{ICEDipl} \cdot N_{Dipl} = 24$ lbs

: Centek Engineering

Model Name: Bridgeport NE CT - Mount

10/20/2022 3:10:11 PM

Checked By: TJL

Nodes

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Dia
1	N10	0	-8	-0.		
2	N12	0	0	-0.		
3	N3	0	-1.5	-0.		
4	N4	0	-6.5	-0.		
5	N5	0	-13	-0.		
6	N6	0	-10	-0.		
7	N7	0	-10.666667	-0.		
8	N8	0	-12.333333	-0.		

Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N3	Reaction	Reaction	Reaction		Reaction	
2	N4	Reaction	Reaction	Reaction		Reaction	
3	N7	Reaction	Reaction	Reaction		Reaction	
4	N8	Reaction	Reaction	Reaction		Reaction	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. C	Density [k	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
3	A992	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	0.3	0.65	0.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	0.3	0.65	0.49	46	1.2	58	1.1
6	A53 Grad	29000	11154	0.3	0.65	0.49	35	1.5	58	1.2

Hot Rolled Member Properties

	Label	Shape	Length [ft]	Lb y-y [ft]	Lb z-z [ft]	Lcomp t	Lcomp	L-Torqu	К у-у	K z-z	Cb	Function
1	M1	(P) Ante	. 8			Lbyy						Lateral
2	M2	(P) Ante	. 3									Lateral

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1	(P) Anten	PIPE_2.0	Column	None	A53 Grad	Typical	1.02	0.627	0.627	1.25
2	(P)Folded	Folded Pl	Column	None	A36 Gr.36	Typical	2.626	5.835	26.377	0.021
3	HR3	L3.5X3X4	Column	None	A36 Gr.36	Typical	1.58	1.3	1.92	0.036

General Section Sets

	Label	Shape	Type	Material	Area [in²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1	GEN1A	RE4X4	Beam	gen_Conc3NW	16	21.333	21.333	31.573
2	RIGID		None	RIGID	1e+06	1e+06	1e+06	1e+06

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in,
1	M1	Υ	-0.042	1	Active
2	M1	Υ	-0.042	7	Active
3	M2	Υ	-0.014	0.25	Active
4	M2	Y	-0.014	2.75	Active

Basic Load Cases

	BLC Desc	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Me	Surface(P
1	Self Weight	None		-1						
2	Dead Load	None					4			

Company: Centek Engineering
Designer: PPG
Job Number: 21007.69
Model Name: Bridgeport NE CT - Mount

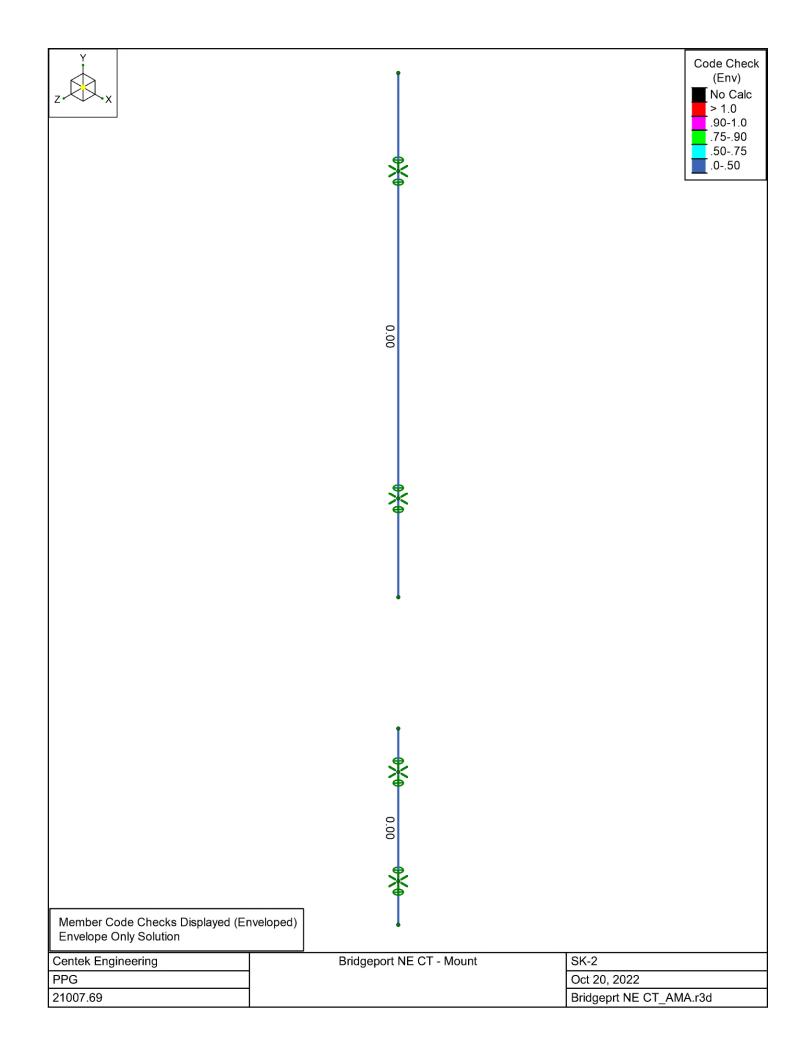
10/20/2022 3:10:11 PM

Checked By: TJL

Load Combinations

	De.	Sc	اا	PD	SR	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa
1	1.2	Ye	es	Υ		1	1.2	2	1.2	5	1.6														
2	0.9	Ye	es	Υ		1	0.9	2	0.9	5	1.6														
3	1.2	Ye	es	Υ		1	1.2	2	1.2	3	1	4	1												
4	1.2	Ye	es	Υ		1	1.2	2	1.2	7	1.6														
5	0.9	Ye	es	Υ		1	0.9	2	0.9	7	1.6														
6	1.2	Ye	es	Υ		1	1.2	2	1.2	3	1	6	1												

Node Reactions


	Node		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	0	6	0.067	6	0	6	0	6	0	6	0	6
2		min	0	1	0.05	2	0	1	0	1	0	1	0	1
3	N4	max	0	6	0.067	6	0	6	0	6	0	6	0	6
4		min	0	1	0.05	2	0	1	0	1	0	1	0	1
5	N7	max	0	6	0.023	6	0	6	0	6	0	6	0	6
6		min	0	1	0.017	2	0	1	0	1	0	1	0	1
7	N8	max	0	6	0.023	6	0	6	0	6	0	6	0	6
8		min	0	1	0.017	2	0	1	0	1	0	1	0	1
9	Totals:	max	0	6	0.18	6	0	6						
10		min	0	1	0.135	2	0	1						

Node Displacements

	Node		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rota	LC	Y Rota	LC	Z Rota	LC
1	N10	max	0	6	0	5	0	6	0	6	0	6	0	6
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N12	max	0	6	0	5	0	6	0	6	0	6	0	6
4		min	0	1	0	1	0	1	0	1	0	1	0	1
5	N3	max	0	6	0	5	0	6	0	6	0	6	0	6
6		min	0	1	0	1	0	1	0	1	0	1	0	1
7	N4	max	0	6	0	5	0	6	0	6	0	6	0	6
8		min	0	1	0	1	0	1	0	1	0	1	0	1
9	N5	max	0	6	0	5	0	6	0	6	0	6	0	6
10		min	0	1	0	1	0	1	0	1	0	1	0	1
11	N6	max	0	6	0	5	0	6	0	6	0	6	0	6
12		min	0	1	0	1	0	1	0	1	0	1	0	1
13	N7	max	0	6	0	5	0	6	0	6	0	6	0	6
14		min	0	1	0	1	0	1	0	1	0	1	0	1
15	N8	max	0	6	0	5	0	6	0	6	0	6	0	6
16		min	0	1	0	1	0	1	0	1	0	1	0	1

LRFD

	Member	Shape	Code	Loc [ft]	LC	Shear	Loc [ft]	Dir	LC	phi*P	phi*P	phi*M	phi*M	Cb	Eqn
1	M1	PIPE	0.004	1.5	6	0.000	8		6	14.916	32.13	1.872	1.872	1	H1-1b*
2	M2	PIPE	0.000	0.656	6	0.000	3		6	28.843	32.13	1.872	1.872	1	H1-1b

Location:

Rev. 1: 10/20/2022

Connection to Host Structure

Bridgeport, CT

Prepared by: PPG; Checked by: T.J.L. Job No. 21007.69

Proposed Connection to Host Structure for Mounts Supporting Antenna at 92 - ft Rad. Elevation

Bolts Grade A325Number of Bolts = $d\phi \coloneqq \frac{1}{2}$ in Bolt Diameter =

(User Input) (User Input)

 $F_{nt} \coloneqq 90 \ \textit{ksi}$

Nominal Tensile Strength=

(AISC, Steel construction manual 14th ed., Table J3.2)

Nominal Shear Strength=

 $F_{nv} = 54 \text{ ksi}$

(AISC, Steel construction manual 14th ed., Table J3.2)

Safety Factor=

 $\phi = 0.75$

(User Input)

Horizontal Spacing Between Bolts=

 $S \coloneqq 3$ in

(User Input)

Reactions at Connection:

Shear X = $Shear_x \coloneqq 0 \cdot kip$

(User Input)

 $Vertical := 0.067 \ kip$ Vertical=

(User Input)

Shear Z = $Shear_z := 0 \cdot kip$

(User Input)

Moment X= $M_X := 0 \cdot kip \cdot ft$

(User Input)

Moment Y= $M_Y := 0 \cdot kip \cdot ft$

(User Input)

 $M_Z \coloneqq 0 \ \textit{kip} \cdot \textit{ft}$ Moment Z=

(User Input)

Anchor Check: Bolt Area=

 $a_b \coloneqq oldsymbol{\pi} \cdot \left(rac{d\phi}{2}
ight)^2 = 0.196 \; oldsymbol{in}^2$

Shear Strength=

 $R_{nv} \coloneqq F_{nv} \cdot a_b \cdot \phi = 7.952 \ \textit{kip}$

(AISC, Steel construction manual 14th ed., Formula J3-1)

Shear Stress per Bolt=

$$V_{act} \coloneqq \frac{\sqrt{Shear_x^2 + Vertical^2}}{n_b} + \frac{M_Z}{S \cdot \frac{n_b}{2}} = 0.034 \; \textit{kip}$$

 $Condition1 := \mathbf{if} \left(V_{act} \leq R_{nv}, \text{"OK"}, \text{"Overstressed"} \right) = \text{"OK"}$

$$f_v \coloneqq rac{V_{act}}{a_b} = 0.171$$
 ksi

Tensile Stress Adjusted for Shear=

$$\begin{split} F'_{nt} \coloneqq \left\| & \text{ if } \left(1.3 \; F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right) \leq F_{nt} \\ & \left\| 1.3 \; F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right. \\ & \text{ else } \left\| F_{nt} \right. \end{split}$$

(AISC, Steel construction manual 14th ed., Formula J3-3A)

Tensile Strength=

 $R_{nt} \coloneqq F'_{nt} \cdot a_b \cdot \phi = 13.254 \text{ kip}$

(AISC, Steel construction manual 14th ed., Formula J3-2)

Tension Force Each Bolt=

$$T_{act} \coloneqq \frac{Shear_z}{n_b} + \frac{M_Y}{S \cdot \frac{n_b}{2}} + \frac{M_X}{S \cdot \frac{n_b}{2}} = 0 \ \textit{kip}$$

Tension Stress Each Bolt=

 $Condition2 \coloneqq \mathbf{if} \left(f_t \! \leq \! F'_{nt} \! \cdot \! \phi \; , \text{``OK''} \; , \text{``Overstressed''} \right) = \text{``OK''}$ Condition 2 = "OK"

Location:

Rev. 1: 10/20/2022

Connection to Host Structure

Bridgeport, CT

Prepared by: PPG; Checked by: T.J.L. Job No. 21007.69

Proposed Connection to Host Structure for Mounts Supporting Antenna at 82 - ft Rad. Elevation

Bolts Grade A325Number of Bolts = $n_b = 2$

 $d\phi \coloneqq \frac{1}{2}$ in

(User Input)

(User Input)

Nominal Tensile Strength= $F_{nt} = 90 \ \textit{ksi}$ (AISC, Steel construction manual 14th ed., Table J3.2)

Nominal Shear Strength= $F_{nv} \coloneqq 54 \text{ ksi}$ (AISC, Steel construction manual 14th ed., Table J3.2)

Safety Factor= $\phi = 0.75$ (User Input)

Horizontal Spacing Between Bolts= S := 3 in

Bolt Diameter =

(User Input)

Reactions at Connection:

Shear X = $Shear_x = 0 \cdot kip$

Vertical = 0.023 kipVertical=

(User Input) (User Input)

(User Input)

Shear Z = $Shear_z := 0 \cdot kip$

Moment X= $M_X = 0 \cdot kip \cdot ft$

(User Input)

Moment Y= $M_V := 0 \cdot kip \cdot ft$

(User Input)

Moment Z= $M_Z \coloneqq 0 \ kip \cdot ft$

Anchor Check:

(User Input)

Bolt Area=
$$a_b \coloneqq oldsymbol{\pi} \cdot \left(rac{d\phi}{2}
ight)^2 = 0.196 \; oldsymbol{in}^2$$

 $R_{nv} \coloneqq F_{nv} \cdot a_b \cdot \phi = 7.952 \ \textit{kip}$ Shear Strength=

(AISC, Steel construction manual 14th ed., Formula J3-1)

 $V_{act} \coloneqq \frac{\sqrt{Shear_z^2 + Vertical^2}}{n_b} + \frac{M_Z}{S \cdot \frac{n_b}{2}} = 0.012 \; \textit{kip}$ Shear Stress per Bolt=

 $Condition1 := \mathbf{if} (V_{act} \le R_{nv}, \text{"OK"}, \text{"Overstressed"}) = \text{"OK"}$

$$f_v \coloneqq rac{V_{act}}{a_b} = 0.059 \; extbf{ksi}$$

Tensile Stress Adjusted for Shear=

$$\begin{aligned} F_{nt} &\coloneqq \left\| \text{ if } \left(1.3 \; F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right) \leq F_{nt} \right\| = 90 \; \textit{ksi} \\ \left\| 1.3 \; F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right\| &\text{else} \\ \left\| F_{nt} \right\| \end{aligned}$$

(AISC, Steel construction manual 14th ed., Formula J3-3A)

Tensile Strength=

$$R_{nt} := F'_{nt} \cdot a_h \cdot \phi = 13.254$$
 kip

(AISC, Steel construction manual 14th ed., Formula J3-2)

Tension Force Each Bolt=

$$T_{act} \coloneqq \frac{Shear_x}{n_b} + \frac{M_Y}{S \cdot \frac{n_b}{2}} + \frac{M_X}{S \cdot \frac{n_b}{2}} = 0 \; \textit{kip}$$

Tension Stress Each Bolt=

$$f_t \coloneqq \frac{T_{act}}{a_b} = 0$$
 ksi

 $Condition 2 \coloneqq \mathbf{if} \left(f_t \! \le \! F_{nt} \! \cdot \! \phi \; , \text{``OK"'} \; , \text{``Overstressed''} \right) = \text{``OK''}$

Location:

Rev. 0: 01/31/22

Flange Bolts and Flange Plate Analysis

Bridgeport, CT

Prepared by: PPG Checked by: C.F.C. Job No. 21007.69

Flange Bolt and Flange Plate Analysis:

Input Data:

Tower Reactions:

Overturning Moment = $OM \coloneqq 93.272 \cdot \mathbf{ft} \cdot kips$ (Input From RisaTower)

Shear Force = $Shear \coloneqq 5.241 \cdot kips$ (Input From RisaTower)

Axial Force = $Axial := 7.153 \cdot kips$ (Input From RisaTower)

Flange Bolt Data:

Use ASTM A325

Number of Flange Bolts = $N \coloneqq 12$ (User Input)

Diameter of Bolt Circle = $D_{bc}\coloneqq 32 \cdot in$ (User Input)

Bolt Minimum Tensile Strength = $F_{ub} \coloneqq 120 \cdot ksi$ (User Input)

> $E \coloneqq 29000 \cdot ksi$ Bolt Modulus = (User Input)

Diameter of Flange Bolts = $D \coloneqq 1.00 \cdot in$ (User Input)

Threads per Inch = $n \coloneqq 8$ (User Input)

Flange Plate Data:

Use ASTM A572 Grade 50

Plate Yield Strength = $Fy_{bp} = 50 \cdot ksi$ (User Input)

Flange Plate Thickness = $t_{bn} \coloneqq 1.25 \cdot in$ (User Input)

Flange Plate Diameter = $D_{bn} \coloneqq 35 \cdot in$ (User Input)

Outer Pole Diameter = $D_{pole}\coloneqq 10.$ • in (User Input)

Flange Bolts and Flange Plate Analysis

Location:

Bridgeport, CT

Rev. 0: 01/31/22

Prepared by: PPG Checked by: C.F.C. Job No. 21007.69

Geometric Layout Data:

Distance from Bolts to Centroid of Pole:

Radius of Bolt Circle =
$$R_{bc} \coloneqq \frac{D_{bc}}{2} = 16$$
 in

$$\begin{aligned} d_{_{i}} \coloneqq \left\| \begin{array}{l} \theta \leftarrow 2 \cdot \pi \cdot \left(\frac{i}{N} \right) \\ d \leftarrow R_{bc} \cdot \sin \left(\theta \right) \end{array} \right| & \quad d_{_{1}} = 8.00 \ in \\ & \quad d_{_{2}} = 13.86 \ in \\ & \quad d_{_{8}} = -13.86 \ in \end{aligned}$$

$$\frac{u_2}{2} = 15.00 \text{ m}$$

$$d_{_{3}}\!=\!16.00\;in \qquad \qquad d_{_{9}}\!=\!-16.00\;in$$

$$d_{_{4}}\!=\!13.86\;in \qquad \qquad d_{_{10}}\!=\!-13.86\;in$$

$$d_{_{5}} = 8.00 \ in$$
 $d_{_{11}} = -8.00 \ in$

$$d_{_{6}}\!=\!0.00\;in \qquad \qquad d_{_{12}}\!=\!0.00\;in$$

$$d = \begin{bmatrix} 0 \\ \vdots \end{bmatrix} in$$

Critical Distances For Bending in Plate:

Outer Pole Radius =
$$R_{pole} = \frac{D_{pole}}{2} = 5$$
 in

$$\text{Moment Arms of Bolts about Neutral Axis = } \qquad MA_{i} \coloneqq \mathbf{if}\left(d_{i} \geq R_{pole}\,, d_{i} - R_{pole}\,, 0 \cdot \mathbf{in}\right)$$

$$MA_{_{1}} = 3.00 \ in$$
 $MA_{_{7}} = 0.00 \ in$

$$MA_{2} = 8.86 \ in$$
 $MA_{3} = 0.00 \ in$

$$MA_{_{3}} = 11.00 \ in$$
 $MA_{_{0}} = 0.00 \ in$

$$MA_{_{4}} = 8.86 \ in$$
 $MA_{_{10}} = 0.00 \ in$

$$MA_{_{5}} = 3.00 \; in$$
 $MA_{_{11}} = 0.00 \; in$

$$MA_{_{6}} = 0.00 \ in$$
 $MA_{_{12}} = 0.00 \ in$

$$MA = \begin{bmatrix} 0 \\ \vdots \end{bmatrix} in$$

$$\text{Effective Width of Flange plate for Bending = } \qquad B_{e\!f\!f}\!\coloneqq\!0.8 \cdot 2 \cdot \sqrt{\left(\frac{D_{bp}}{2}\right)^2 - \left(\frac{D_{pole}}{2}\right)^2} = 26.8 \; \textit{in}$$

Flange Bolts and Flange Plate Analysis

Location:

Bridgeport, CT

Rev. 0: 01/31/22

Prepared by: PPG Checked by: C.F.C. Job No. 21007.69

Flange Bolt Analysis:

Calculated Flange Bolt Properties:

Polar Moment of Inertia =
$$I_p \coloneqq \sum_i {d \choose i}^2 = \left(1.536 \cdot 10^3\right) \, \emph{in}^2$$

Gross Area of Bolt =
$$A_g \coloneqq \frac{\pi}{{}^4} \cdot D^2 = 0.785 \; \emph{in}^2$$

Net Area of Bolt =
$$A_n \coloneqq \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n}\right)^2 = 0.606 \ in^2$$

Net Diameter =
$$D_n\!\coloneqq\!\frac{2\cdot\sqrt{A_n}}{\sqrt{\pi}}\!=\!0.878\;in$$

Radius of Gyration of Bolt =
$$r := \frac{D_n}{4} = 0.22 \ in$$

Section Modulus of Bolt =
$$S_x = \frac{\boldsymbol{\pi} \cdot D_n^3}{32} = 0.066 \ in^3$$

Check Flange Bolt Tension Force:

$$\text{Maximum Tensile Force = } \qquad \qquad T_{Max} \coloneqq OM \cdot \frac{R_{bc}}{I_{p}} - \frac{Axial}{N} = 11.1 \; kips$$

$$\label{eq:max} \text{Maximum Shear Force = } V_{Max} \coloneqq \frac{Shear}{N} = 0.44 \; kips$$

Design Tensile Strength =
$$\Phi R_{nt} := (0.75 \cdot F_{ub} \cdot 0.75 \cdot A_q) = 53 \ kips$$

Bolt Tension % of Capacity =
$$\frac{T_{Max}}{\varPhi R_{nt}} = 20.87\%$$

$$\mbox{Condition1} = \mbox{ } \mbox{Condition1} \coloneqq \mbox{if} \left(\frac{T_{Max}}{\varPhi R_{nt}} \leq 1.00 \;, \mbox{"OK"} \;, \mbox{"Overstressed"} \right)$$

$$Condition 1 = "\mathrm{OK"}$$

Design Shear Strength =
$$\Phi R_{nv} := (0.75 \cdot 0.45 \cdot F_{ub} \cdot A_q) = 31.8 \ kips$$

Bolt Shear % of Capacity =
$$\frac{V_{Max}}{\varPhi R_{nv}}$$
 = 1.37%

$$\mbox{Condition2} = \qquad \qquad \mbox{Condition2} := \mbox{if} \left(\left(\frac{V_{Max}}{\Phi R_{nv}} \right)^2 + \left(\frac{T_{Max}}{\Phi R_{nt}} \right)^2 \leq 1.00 \; , \; \mbox{"OK"} \; , \; \mbox{"Overstressed"} \right) = \mbox{"OK"} \; , \; \mbox{"Overstressed"} = \mbox{"OK"} \; , \; \mbox{"OVERTRESSED"} = \mbox{"OVERTR$$

Condition2 = "OK"

Flange Bolts and Flange Plate Analysis

Bridgeport, CT

Location:

Prepared by: PPG Checked by: C.F.C. Job No. 21007.69

Rev. 0: 01/31/22

Flange Plate Analysis:

Force from Bolts =
$$C_i \coloneqq \frac{OM \cdot d_i}{I_p} + \frac{Axial}{N}$$

$$C = 6.4 \ kips$$

$$C_{_{1}}\!=\!6.4\;kips \qquad \qquad C_{_{7}}\!=\!-5.2\;kips$$

$$C_{_{2}}\!=\!10.7\;kips \qquad \qquad C_{_{8}}\!=\!-9.5\;kips$$

$$C = -9.5 \ kips$$

$$C_{_{_{3}}} = 12.3 \; kips$$

$$C_{_{\mathrm{q}}} = -11.1 \; kips$$

$$C = 10.7 \ kips$$

$$C_{10} = -9.5 \ kip$$

$$C_{_{4}}\!=\!10.7\;kips \qquad \qquad C_{_{10}}\!=\!-9.5\;kips \qquad \qquad C\!=\! \begin{bmatrix} 0 \\ \vdots \end{bmatrix} kips$$

$$C_{\perp} = 6.4 \; kips$$

$$C_{_{5}} = 6.4 \; kips$$
 $C_{_{11}} = -5.2 \; kips$

$$C_{c} = 0.6 \; kips$$

$$C_{_{12}} = 0.6 \; kips$$

$$f_{bp} \coloneqq \sum_{i} \frac{4 \cdot C_{i} \cdot MA_{i}}{\left(B_{eff} \cdot t_{bp}^{-2}\right)} = 34.6 \ ksi$$

$$F_{bp} \coloneqq 0.9 \cdot Fy_{bp} \!=\! 45~ksi$$

$$\frac{f_{bp}}{F_{bp}}\!=\!76.9\%$$

$$Condition 3 \coloneqq \mathbf{if} \left(\frac{f_{bp}}{F_{bp}} < 1.00 \text{ , "Ok" , "Overstressed"} \right)$$

$$Condition 3 = "Ok"$$

verizon


BRIDGEPORT NE CT 541 BROADBRIDGE RD BRIDGEPORT, CT 06610

GENERAL NOTES AND SPECIFICATIONS

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2021 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2022 CONNECTICUT SUPPLIENT, INCLUDING THE TAY EAR-222 REMISION "IT STRUCTURES, WANDAMES FOR STEEL ANTERNAT TOWNES AND SUPPORTING STRUCTURES, 2022 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE, AND LOCAL CODES.
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- 3. CONTRACTOR SHALL REVIEW ALL DEAWNINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT OF THE PROPERTY OF THE
- Contractor shall provide a complete build—out with all finishes, structural, mechanical, and electrical components and provide al items as shown or indicated on the drawings or in the written specifications.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDAN WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, AND ALL TRADES AS APPLICABLE PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTIONS.
- CONTRACTOR SHALL MARTAN A CURRENT SET OF DRAWNIGS AND SPECIFICATION OF STATE ALL THISE AND NEIGH DISTRIBUTION OF NEW DRAWNIGS TO SUBCONTRACTORS AND OTHER RELEAST PARTIES AS SOON AS THEY ARE MAD GAILED RAWNING SHALL BE MARKED VOID AND REBUYED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL PERMISH AN AS-BULL "SET OF DRAWNIGS TO OWNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DAGRAMMATICALLY INDICATED ON THE DRAWNINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 9. ME-COMPRETOR IS SOLELY RESPONSED TO DETERMINE CONSTRUCTION MICROSORIE WAS SERVICED, AND TO SIGNIZE THE SMETTY OF THE CONSTRUCTION STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORMS, BRACKING, MORPHANING, ETC. THAT MAY BE NECESSARY, MAINTAN DISSTRIG BULLON'S/PROPERTY'S OPERATIONS, COCROININE WORK WITH BUILDING-PROPERTY OWNER.
- 10. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO SUBSTANDARD TO ANY DROMANCES, LAWS, CODES, LAWS, CODES, AND SUBSTANDARD TO ANY DROMANCES, LAWS, CODES, LAWS, CODES, LAWS, CODES, RULES OR REQUILITIONS WITH NO MORE AND SUBSTANDARD SUBSTA
- ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 13. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VENIZON WIRELESS CONSTRUCTION MANAGER DURING THE BIODROR PROCESS BY THE CONTRACTOR, ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO "EXTRA" WILL BE ALLOWED FOR MISSED ITEMS.
- CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 16. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTEANACES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB—CONTRACTORS FOR MAY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO TOWNER OR CONSTRUCTION MANAGER.
- 19. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAMATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAMATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 21. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING
- 22. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAXING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SUFFACE AND SUBSURFACE) AT OR CONTIQUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 23. ALL DINDSKIANS, ELATIONS, AND OTHER REPERCISES TO DISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. IN GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETIBLESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL YERRY AND COORDINATE ALL DIMENSIONS, LECTIONS, ANGUE WITH DUSTING CONDITIONS AND WITH ACCURTICATIONAL AND STE DRAWINGS BEFORE SHOWN AND ACCURTICATION AND STED DRAWINGS BEFORE SHOWN AND ACCURTICATION AND STED DRAWINGS BEFORE SHOWN AS A STED ACCURTICATION AND ACCURTICATION ACCURTICATION ACCURTICATION AND ACCURTICATION ACCURTICATION
- 24. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE HOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOTI PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SAISFACTORLY RESOLVED.

SITE DIRECTIONS FROM: 30 ALDANGED DRIC MALINGROUP. TO SHI BROADBRIDGE RO SRIDEPORT, CT 0961 1. START OUT COORS NORTH ON ALEXANDER DR TOWARD BANNES INCUSTRAL RD. 1. START OUT COORS NORTH ON ALEXANDER DR TOWARD BANNES INCUSTRAL RD. 1. START FREE 1ST LIFT CATO CT-68. 2. TARE RIGHT CATO RAMP. 3. TARE RIGHT CATO RAMP. 4. TURN RIGHT CATO RAMP. 5. TURN RIGHT CATO RAMP. 6. TURN RIGHT CATO RAMP. 6. TURN RIGHT CATO RAMP. 6. TARE DIRECTION OF TOWARD CAR HAVE. 6. TARE DIRECTION OF TOWARD CAR HAVE. 6. TARE DIRECTION OF THE START ROUTE 1085/STATE ROUTE 8 S TOWARD BRIOGEPORT. 6. ASD M. 6. TARE DIRECTION CATO RAMP. 6. TARE DIREC

PROJECT SUMMARY

- 1. THE PROPOSED UPGRADE SCOPE OF WORK AT THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY GENERALLY INCLUDES THE FOLLOWING:
- A. AT THE EXISTING FLAGPOLE MOUNTED ANTENNA SECTORS:
- + REMOVE (6) EXISTING ANDREW SBJAHH-1065B-DL ANTENNAS.
- + REMOVE (9) EXISTING NOKIA RADIOS.
- REMOVE (24) EXISTING KAELUS QUADPLEXERS.
- REPLACE THE UPPER 20-FT SECTION OF THE EXISTING CONCEALMENT TOWER RADOME WITH THAT OF LARGER DUMETER AS DESCRIBED HEREIN (DESIGN BY OTHERS AS REFERENCE) HEREIN
- INSTALL ANTENNA MOUNT ASSEMBLIES AT THE UPPER AND LOWER TIER ANTENNA CANISTER LEVELS AS PER DESIGN HEREIN.
- INSTALL (6) COMMSCOPE CBC61923T-DS-43 DIPLEXERS.
- BETAIN (12) CONV CARLES
- INSTALL (3) COMMSCOPE NNH4-65B-R6 ANTENNAS.
- INSTALL (3) JMA MX08FTT265—01 ANTENNAS.
- + INSTALL (1) OVP-6 BOX.
- INSTALL (1) 6x12 HYBRID CABLE.
- INSTALL (1) PRE-FABRICATED SITE PRO UTSM-L UNIVERSAL TRI SECTOR MOUNT WIT AT THE UPPER TIER ANTENNA LEVEL.
- B. AT THE EXISTING VERIZON WIRELESS EQUIPMENT AREAS
- INSTALL (3) SAMSUNG B2/B66A RRH ORAN (RF4439d—25A).
- INSTALL (3) SAMSUNG B5/B13 B5/B13 RRH ORAN (RF4440d—
- INSTALL (3) SAMSUNG RT-8808-77A RRUE.
- INSTALL (6) COMMSCOPE CBC61923T—DS—43 DIPLEXERS

PROJECT INFORMATION

SITE NAME: BRIDGEPORT NE CT
SITE ADDRESS: 541 BROADBRIDGE R
BRIDGEPORT, CT 066

LESSEE/TENANT: CELLCO PARTNERSHIP
d.b.a. VERIZON WIRELES
20 ALEXANDER DRIVE
WALLINGEDER OF ORDER

VERIZON WIRELESS (860) 306-1806

RF DETAILS

(860) 306–1806

GINEER: CENTEK ENGINEERING, IN

PROJECT COORDINATES: LATITUDE: 41' 13' 19.494"N LONGTUDE: 73' 10' 2.504"N

COORDINATES REFERENCED FROM VERIZON

SHEET INDEX		
SHT. NO.	DESCRIPTION	RE
T-1	TITLE SHEET	1
N-1	NOTES AND SPECIFICATIONS	1
B-1	RF BILL OF MATERIALS	1
C-1	PARTIAL SITE PLAN AND ELEVATION	1
C-2	ANTENNA SECTOR CONFIGURATION DETAILS	1

ELECTRICAL DETAILS AND SPECIFICATIONS

1 10/21/22 TAR DMD
0 02/03/22 DMD ANC
8 11/22/21 ANC DMD

COUNTY OF THE PROPERTY OF THE

(200) 468-5567 Fax (5.2 North Branford Roar Branford, CT 06405

BRIDGEPORT NE

占

11/18/21

SCALE: AS NOTED

JOB NO. 21007.69

TITLE

T-1

| —]

NOTES AND SPECIFICATIONS

DESIGN BASIS

GOVERNING CODE: 2021 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2022 CT STATE BUILDING CODE AND AMENDMENTS.

- 1. DESIGN CRITERIA:
- · RISK CATEGORY: II (BASED ON TABLE 1604.5 OF THE 2015 IBC)
- NOMINAL DESIGN SPEED (TOWER): 125 MPH (Vond) (EXPOSURE B/MPORTANCE FACTOR 1.0 BASED ON ASCE 7-16) PER 2021 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2022 CONNECTICUT STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES,

- - STRUCTURAL STEEL (W SHAPES)——ASTM A692 (PY = 50 NS) STRUCTURAL STEEL (OTHER SHAPES)——ASTM A56 (PY = 3 NS) STRUCTURAL STEEL (OTHER SHAPES)——ASTM A500 GRADE B, STRUCTURAL HSS (ROUND SHAPES)——ASTM A500 GRADE B, STRUCTURAL HSS (ROUND SHAPES)——ASTM A500 GRADE B, PEPT—ROSTM A50, PY = 30 NS) STRUCTURAL HSS (ROUND SHAPES)—ASTM A50-N A25-N A00-OR ROUND SHAPES (AND A25-N A25-N A00-OR ROUND SHAPES)—ASTM A25-N AND A50-N A50-N

- CONTRACTOR TO REVIEW ALL SHOP DRAWNINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWNINGS MUST EAR THE CHECKET'S INTIMES ERFORT SUBMITTION TO THE DISABLES FOR ROMAN'S SPALE ROLLIE THE COLLIENT COLUMNINGS. SHALL ROLLIE THE COLUMNINGS. SEZ AND 17THE OF FASTERISTS AND ACCESSORIES. INCLIDE ERECTION DRAWNINGS, ELEVATIONS AND CETALS.
- STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.

- ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL. HARDWARE".
- THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- LEVEL AND PLUMB INDMIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.

i i nu	CII	URA	ᅜᇷ	ш

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)

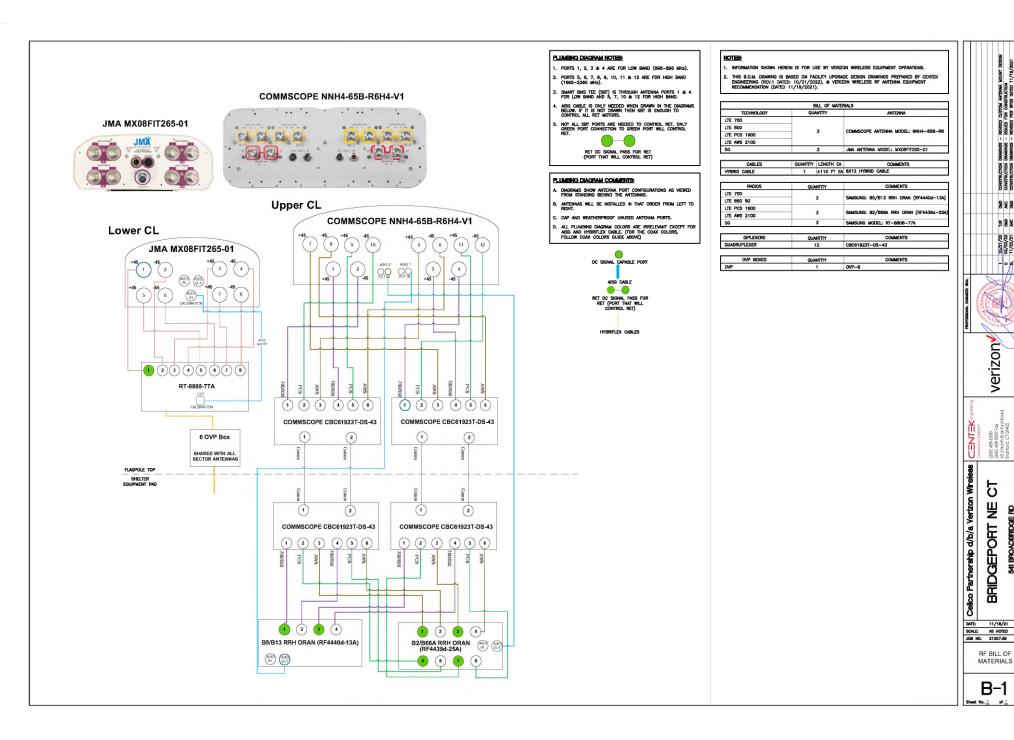
- AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALXANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.

- STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4* DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.

- FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

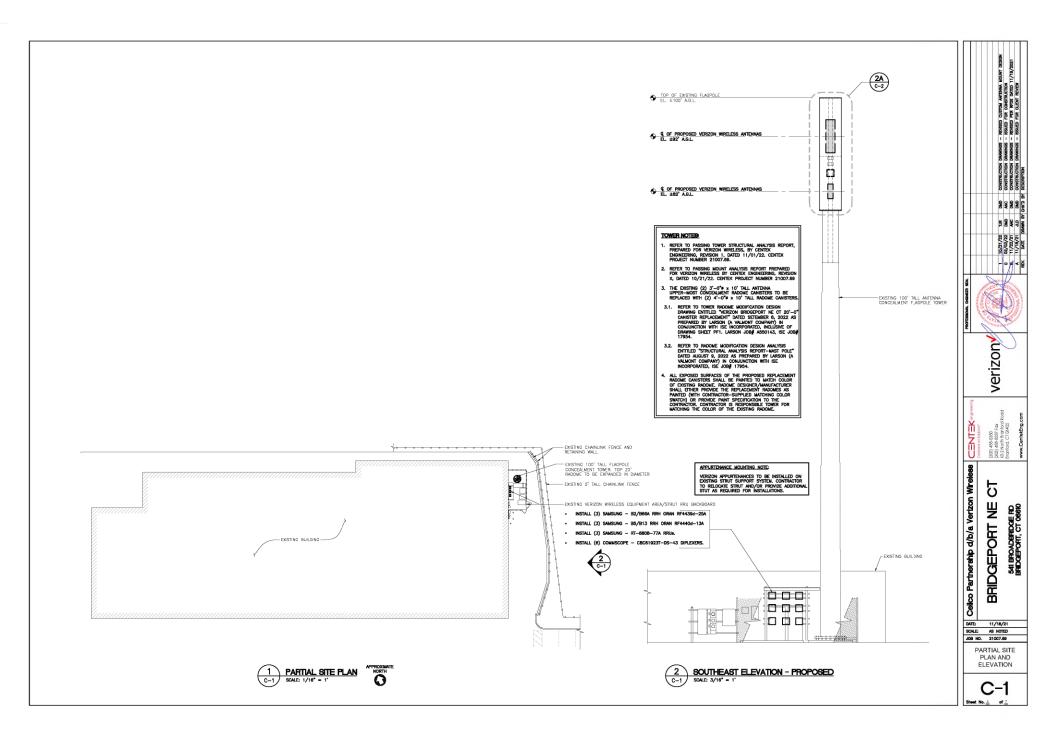
AND DAND S S S S

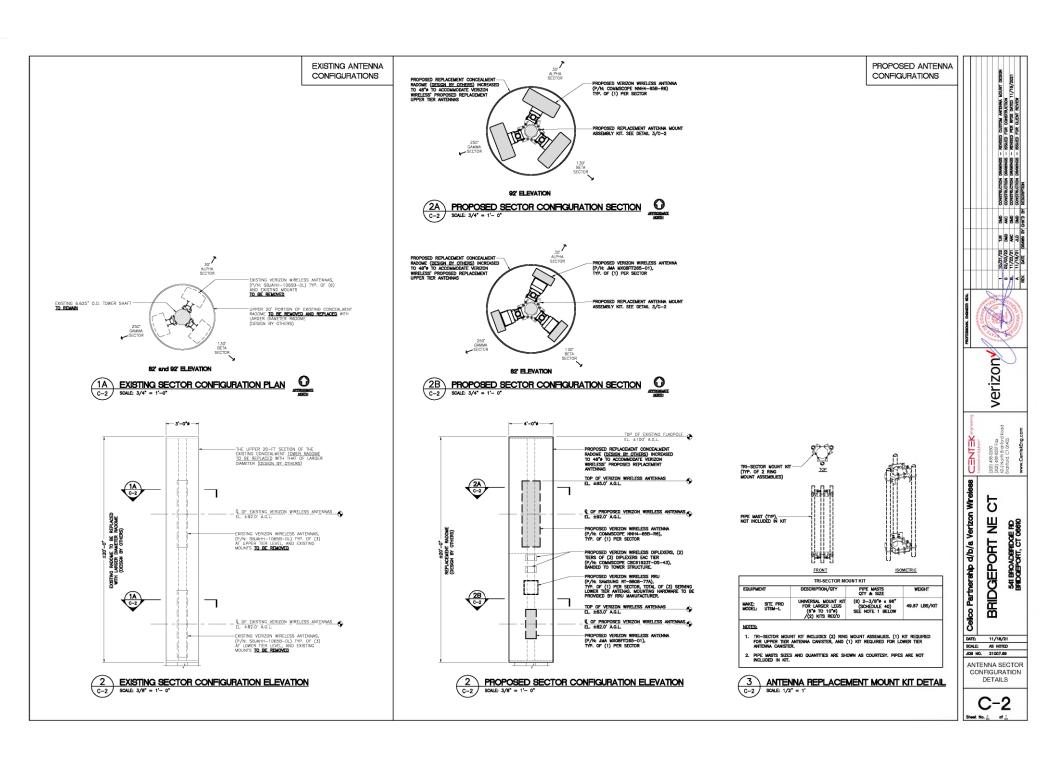
> verizon (203) 489-0380 (203) 489-6587 Fax 63-2 North Branford Ri Branford, CT 06405


占 **则** 541 BROADBRIDGE RD BRIDGEPORT, CT 06610

BRIDGEPORT

Cellco Partnership d/b/a Verizon Wireless DATE: 11/18/21 SCALE: AS NOTED JOB NO. 21007.89


> NOTES AND SPECIFICATIONS



DA D DA D

S S S S

		DIPLEXER		
EQUIPMENT		DESCRIPTION	DIMENSIONS	WEIGHT
MAKE: COMMSCOPE MODEL: CBC61923T-DS-43		DIPLEXER 700MHz/850MHz/1900MHz	6.9"H x 7.8"W x 4.6"D	14.3 LBS. (W/MNTG HDWR)
NOTES:				

DUAL BAND RRU (REMOTE RADIO UNIT)

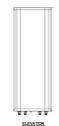
NOTES:

1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING. 4 DUAL-BAND AWS/PCS MACRO RADIO UNIT DETAIL
C-3 NOT TO SCALE

B25: PCS (1900 MHz) B66: AWS (2100 MHz) 15.0"H x 15.0"W x 10.0"D 74.7 LBS.

ELEVATION

		12-PORT SECTOR ANTENNA	
Ε	QUIPMENT	DIMENSIONS	WEIGHT
MAKE:	COMMSCOPE NNH4_65R_R6	72.0°L x 19.6°W x 7.8°D	83.1 LBS.

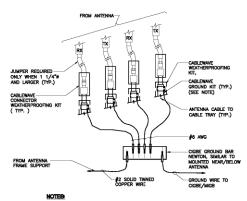


RRH - ISOMETRIC	RRH CLEARANCES		
	DUAL BAND RRU (REMO	TE RADIO UNIT)	
EQUIPMENT	BANDS	DIMENSIONS	WEIGHT
MAKE: SAMSUNG MODEL: RF440d-13A	B5: 850 MHz B13: 700 MHz	15.0°H x 15.0°W x 9.0°D	70.3 LBS.
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING.			

5 DUAL-BAND 700/850 MHZ MACRO RADIO UNIT DETAIL

C-3 NOT TO SCALE

8-PORT SECTOR ANTENNA			
EQUIPMENT		DIMENSIONS	WEIGHT
MAKE: MODEL:	JMA MX08FIT265-01	32.0°L × 11.6°W × 4.5°D	26.5 LBS.

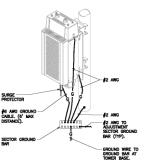


C BAND 818R 320W RRU (REMOTE RADIO UNIT)			
EQUIPMENT	BANDS	DIMENSIONS	WEIGHT
MAKE: SAMSUNG MODEL: RT-8808-77A	N77: 3700 MHz	15.0°H × 15.0°W × 6.8°D	59.5 LBS.

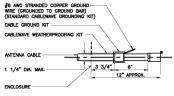
6	C-BAND 8T8R 320W RADIO UNIT DETAIL NOT TO SCALE
(C-3/	NOT TO SCALE

verizon Celico Partnership d/b/a Vertzon Wreless CENTENT Celico Partnership d/b/a Vertzon Wreless Celic

RF DETAILS

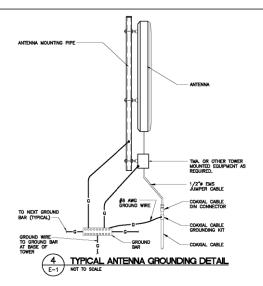


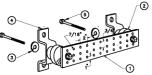
 DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE


1 CONNECTION OF GROUND WIRES TO GROUND BAR

EACH RRH CABINET SHALL BE GROUNDED IN THE FOLLOWING MANNER:

1. AT TOP OF THE CABINET
2. AT RIGHT SIDE OF THE CABINET.


2 RRH POLE MOUNT GROUNDING



NOTES

 DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.

3 ANTENNA CABLE GROUNDING DETAIL
E-1 NOT TO SCALE

NOTES

- 1 TINNED COPPER GROUND BAR, 1/4" x 4" x 20", NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4.
- 3 5/8" LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056.
- 5/8-11 x 1" STAINLESS STEEL TRUSS SPANNER MACHINE SCREWS.

5 GROUND BAR DETAIL
NOT TO SCALE

ELECTRICAL SPECIFICATIONS

SECTION 160

1.01 SCORE OF W

- A. WORK SHALL INCLUDE ALL LABOR, EQUIPMENT AND SERVICES REQUIRED TO COMPLETE (MAKE READY FOR OPERATION) ALL THE ELECTRICAL WORK INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING:
- CELLULAR GROUNDING SYSTEMS CONSISTING OF ANTENNA GROUNDING, GROUND BARS, ETC.

1.02. GENERAL REQUIREMEN

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIMITIES TO BE COORDINATION THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS" LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK, ALL WATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL CLARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OSTRIANIO WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DOMINICES INDICATE CEDERAL ARRANGEMENT OF ROOK INCLUDED IN CONTRACT.
 CONTRACTOR SHALL WITHOUT EXTRA CHARCE, MAKE MODIFICATIONS TO THE LANGUT OF
 THE WORK TO PROVENT CONFLOT WITH WORK OF OTHER TRACES AND FOR THE PROPER
 RISTALATION OF WORK, CHECK ALL DRAWNESS AND MIST ADD STO VERRY SPACE.
 AND THE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL
 OF BD.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWNINGS, DIGNEERING DATA, SHEETS, MANTENANCE AND OPPRATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPICTOR EQUIPMENT. THESE MANUALS SHALL BE NESERTED IN MINT, COVERED 3-MING BINDERS AND TURNED OVER TO OWNER'S REPRESENTANTE ONE (1) WERE FRORD TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGISLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING DIRECTION. IT IS THE CONTINCTION'S RESPONSAILITY TO CORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTINUED IN, OR OMITIZE THOM, HESE DOCUMENTS SHALL RELEVE CONTRINCTOR FROM THIS GRELATION.

<u>SECTION 16450</u>

01. GROUNDING

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PART TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- C. EQUIPMENT GROUNDING CONDUCTOR:
- EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.

 D. CELLULAR GROUNDING SYSTEM:
- PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:
- GROUND BARS
 ANTENNA GROUND CONNECTIONS AND PLATES.
- E. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

HINGS — REVISED CUSTOM ANTENIAN MC WINGS — ISSUED FOR CONSTRUCTION HINGS — REVISED FOR HIDS ONTED 11,

AD CONSTRUCTION DRAWINGS – R
C CONSTRUCTION DRAWINGS – R
AD CONSTRUCTION DRAWINGS – R
AD CONSTRUCTION DRAWINGS – R

10/21/22 TJR DMD CO 02/03/22 DMD ANC CO 11/22/21 ANC DMD CO 11/13/21 JJD DMD CO DMTE DRAWN BY CHICO FFT DE

The state of the s

verizon

(203) 489-0390 (203) 489-8587 Fax 63-2 North Branford Road Branford, CT 66405

Wireless

Partnership d/b/a Verizon

BRIDGEPORT NE CT

DATE: 11/18/21 SCALE: AS NOTED JOB NO. 21007-89

ELECTRICAL DETAILS AND SPECIFICATIONS

E-1