STORMWATER MANAGEMENT PLAN WITH STORMWATER POLLUTION PREVENTION PLAN (SWPPP) VOLUME 2

WIND COLEBROOK SOUTH COLEBROOK, CONNECTICUT

Prepared for:

BNE Energy 29 South Main Street Town Center, Suite 200 West Hartford, CT 06107

by:

CIVIL 1 43 Sherman Hill Road Woodbury, CT 06798

AUGUST 2011 REVISED AUGUST 2012 Existing Flows – DL3

Table of Contents

Table of Contents

******	***** MASTER SUMMARY ************	* *
Watershed	Master Network Summary 1.0	1
**********	** DESIGN STORMS SUMMARY ***********	* *
Litchfield Co	Design Storms 2.0	1
Litchfield Co	2 YR Design Storms 2.0	2
*********	***** TC CALCULATIONS *************	* *
EXDA 3	Tc Calcs 3.0	1
*******	***** CN CALCULATIONS ************	* *
EXDA 3	Runoff CN-Area 4.0	1
*******	**** RUNOFF HYDROGRAPHS ************	* *
	Unit Hyd. Equations 5.0	1
EXDA 3	2 YR Unit Hyd. Summary 5.03	3
EXDA 3.,	10 YR Unit Hyd. Summary 5.0	4

Table of Contents (continued)

EXDA 3	25 YR Unit Hyd. Summary 5.0	5
EXDA 3	50 YR Unit Hyd. Summary 5.0	6
EXDA 3	100 YR Unit Hyd. Summary 5.0	7
******	****** HYG ADDITION ************	* *
DP 3	2 YR Node: Addition Summary 6.0	1
DP 3,	10 YR Node: Addition Summary 6.0	4
DP 3	25 YR Node: Addition Summary 6.0	7
DP 3	50 YR Node: Addition Summary 6.1	0
DP 3	100 YR Node: Addition Summary 6.1	3

Type.... Master Network Summary

Page 1.01

Name.... Watershed Files... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return I		Total Depth in	Rainfa. Type		RNF	'ID
2 1	YR	3,2000	Synthetic	Curve	TypeIII	24hr
10 1	YR	4.7000	Synthetic	Curve	TypeIII	24hr
25 1	YR	5.5000	Synthetic	Curve	TypeIII	24hr
50 1	YR.	6.2000	Synthetic	Curve	TypeIII	24hr
100 1	YR.	7.0000	Synthetic	Curve	TypeIII	24hr

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node	ID	Туре	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
*DP 3		JCT	2	.146		12.4000	.73		
*DP 3		JCT	10	.448		12.3000	3.49		
*DP 3		JCT	25	.653		12.2500	5.53		
*DP 3		JCT	50	.850		12.2500	7.49		
*DP 3		JCT	100	1.093		12.2500	9.90		
EXDA	3	AREA	2	.146		12.4000	.73		
EXDA	3	AREA	10	.448		12.3000	3.49		
EXDA	3	AREA	25	.653		12.2500	5.53		
EXDA	3	AREA	50	.850		12.2500	7.49		
EXDA	3	AREA	100	1.093		12,2500	9.90		

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 1:58 PM

Type.... Design Storms Page 2.01 Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Title... Project Date: 4/16/2009 Project Engineer: Curtis Jones Project Title: Watershed

Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in = 2 yr

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 25 yr

Total Rainfall Depth= 5.5000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yrTotal Rainfall Depth= 7.0000 in

Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 1.58 pm

Type.... Design Storms Page 2.02 Name.... Litchfield Co. Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\

Storm... TypeIII 24hr Tag: 2 YR

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr Total Rainfall Depth= 3.2000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr Total Rainfall Depth= 4.7000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr Total Rainfall Depth= 5.5000 in Duration Multiplier = 1 Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yrTotal Rainfall Depth= 6.2000 in Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 100 yr Total Rainfall Depth= 7,0000 in

Duration Multiplier = 1

Resulting Duration = 24,0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 1.50 Date: 8/25/2011

Type.... Tc Calcs Page 3.01 Name.... EXDA 3

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n .3000 Mannings n .3000

Hydraulic Length 250.00 ft

2yr, 24hr P 3.2000 in

Slope .120000 ft/ft

Avg. Velocity .24 ft/sec

Segment #1 Time: .2890 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 335.00 ft Slope .131000 ft/ft

Unpaved

Avg. Velocity 5.84 ft/sec

Segment #2 Time: .0159 hrs

> _______ Total Tc: .3049 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates
Time: 1:58 PM Date: 8/25/2011

```
Type.... Tc Calcs
                                                   Page 3.02
Name.... EXDA 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Tc Equations used...
Tc = (.007 * ((n * Lf) **0.8)) / ((P**.5) * (Sf**.4))
    Where: Tc = Time of concentration, hrs
           n = Mannings n
           Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
           Sf = Slope, %
Unpaved surface:
    V = 16.1345 * (Sf**0.5)
    Paved surface:
V = 20.3282 * (Sf**0.5)
    Tc = (Lf / V) / (3600sec/hr)
    Where: V = Velocity, ft/sec
           Sf = Slope, ft/ft
           Tc = Time of concentration, hrs
           Lf = Flow length, ft
```

Page 4.01 Type.... Runoff CN-Area Name..., EXDA 3 File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW RUNOFF CURVE NUMBER DATA

		Area	Imper Adjus		Adjusted
Soil/Surface Description	CN	acres	%C	%UC	CN
Soil Type B - Wooded	55	4.710			55.00
Soil Type B - Grass/Meadow	60	.820			60.00
Impervious	98	.140			98.00
COMPOSITE AREA & WEIGHTED CN>		5.670			56.78 (57)
***************************************				:::::	

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 1:58 PM

Name....

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

Page 5.01

DEFINITION OF TERMS: -----= Total area (acres): At = Ai+Ap Ai = Impervious area (acres) = Pervious area (acres) = Runoff curve number for impervious area = Runoff curve number for pervious area fLoss = f loss constant infiltration (depth/time) gKs = Saturated Hydraulic Conductivity (depth/time) = Volumetric Moisture Deficit Psi = Capillary Suction (length) = Horton Infiltration Decay Rate (time^-1) fo = Initial Infiltration Rate (depth/time) fc = Ultimate(capacity)Infiltration Rate (depth/time) = Initial Abstraction (length) Ta = Computational increment (duration of unit excess rainfall) Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) UDdt = User specified override computational main time increment (only used if UDdt is => .1333Tc) D(t) = Point on distribution curve (fraction of P) for time step t = 2 / (1 + (Tr/Tp)); default K = 0.75: (for Tr/Tp = 1.67) = Hydrograph shape factor Ks = Unit Conversions * K: = ((1hr/3600sec) * (1ft/12in) * ((5280ft) **2/sq.mi)) * K Default Ks = 645.333 * 0.75 = 484= Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc = Total precipitation depth, inches Pa(t) = Accumulated rainfall at time step t Pi(t) = Incremental rainfall at time step t = Peak discharge (cfs) for lin. runoff, for lhr, for 1 sq.mi. = (Ks * A * Q) / Tp (where Q = 1in. runoff, A=sq.mi.) Qu(t) = Unit hydrograph ordinate (cfs) at time step t Q(t) = Final hydrograph ordinate (cfs) at time step t Rai(t) = Accumulated runoff (inches) at time step t for impervious area R(t) = Incremental weighted total runoff (inches) = Time increment for rainfall table Si = S for impervious area: Si = (1000/CNi) - 10 Sp = S for pervious area: Sp = (1000/CNp) - 10= Time step (row) number TC = Time of concentration = Time (hrs) of entire unit hydrograph; Tb = Tp + Tr Tb = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + LagTp = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp Tr

 Type.... Unit Hyd. Equations Page 5.02

Name...

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

PRECIPITATION: -----Column (1): Time for time step t
Column (2): D(t) = Point on distribution curve for time step t
Column (3): Pi(t) = Pa(t) - Pa(t-1): Col. (4) - Preceding Col. (4) Column (4): $Pa(t) = D(t) \times P$: Col.(2) x P PERVIOUS AREA RUNOFF (using SCS Runoff CN Method) -----Column (5): Rap(t) = Accumulated pervious runoff for time step t If (Pa(t) is \leq 0.2Sp) then use: Rap(t) = 0.0 If (Pa(t) is > 0.2Sp) then use: Rap(t) = (Col.(4)-0.2Sp)**2 / (Col.(4)+0.8Sp)Column (6): Rip(t) = Incremental pervious runoff for time step tRap(t-1)IMPERVIOUS AREA RUNOFF -----Column (7 & 8)... Did not specify to use impervious areas. INCREMENTAL WEIGHTED RUNOFF: -----Column (9): $R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$ $R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$ SCS UNIT HYDROGRAPH METHOD: -----Column (10): Q(t) is computed with the SCS unit hydrograph method using R() and Qu().

Type.... Unit Hyd. Summary
Tag: 2 YR Page 5.03 Event: 2 vr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 2 YR

= .3049 hrs TC

Drainage Area = 5,670 acres Runoff CN= 57

Computational Time Increment = .04066 hrs Computed Peak Time = 12.4414 hrs Computed Peak Flow =

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.4500 hrsPeak Flow, Interpolated Output = .73 cfs ------

DRAINAGE AREA ------

ID:EXDA 3

CN = 57 Area = 5.670 acres S = 7.5439 in

0.2S = 1.5088 in

Cumulative Runoff

.3097 in .146 ac-ft

HYG Volume... .146 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3) Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfsUnit peak time Tp = .20329 hrsUnit receding limb, Tr = .81316 hrsTotal unit time, Tb = 1.01645 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 1.59 Dec.

Type.... Unit Hyd. Summary
Tag: 10 YR Page 5.04 Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 4.7000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 3 10 YR

= .3049 hrs TC

Drainage Area = 5.670 acres Runoff CN= 57

Computational Time Increment = .04066 hrs Computed Peak Time = 12.2788 hrs = 3.52 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 3.49 cfs

DRAINAGE AREA

ID: EXDA 3

CN = 57 Area = 5.670 acres S = 7.5439 in

0.2S = 1.5088 in

Cumulative Runoff

.9487 in .448 ac-ft

HYG Volume... .448 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3) Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfs Unit peak time Tp = .20329 hrs Unit receding limb, Tr = .81316 hrs Total unit time, Tb = 1.01645 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 1.58 BM

Type.... Unit Hyd. Summary
Name.... EXDA 3 Tag: 25 YR Page 5.05 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 25 YR

= .3049 hrsTC

Drainage Area = 5.670 acres Runoff CN= 57

Computational Time Increment = .04066 hrs Computed Peak Time = 12.2381 hrs = 5.53 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.2500 hrsPeak Flow, Interpolated Output = 5.53 cfs

DRAINAGE AREA

ID:EXDA 3

CN = 57 Area = 5.670 acres S = 7.5439 in

0.2S = 1.5088 in

Cumulative Runoff -----

1.3810 in .653 ac-ft

HYG Volume... .653 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3) Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

qp = 21.07 cfs Unit peak, Unit peak, qp = 21.07 cfsUnit peak time Tp = .20329 hrsUnit receding limb, Tr = .81316 hrsTotal unit time, Tb = 1.01645 hrs

Curtis Jones & Associates S/N: A215014070C4 PondPack Ver. 8.0068 Time: 1:58 PM Date: 8/25/2011 Type.... Unit Hyd. Summary
Name.... EXDA 3 Tag: 50 YR Page 5.06 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Drainage Area = 5.670 acres Runoff CN= 57

Computational Time Increment = .04066 hrs Computed Peak Time = 12.2381 hrs Computed Peak Flow = 7.51 cfs

Time Increment for HYG File = .0500 hrs

Peak Time, Interpolated Output = 12.2500 hrs Peak Flow, Interpolated Output = 7.49 cfs

DRAINAGE AREA

------ID:EXDA 3

CN = 57 Area = 5.670 acres S = 7.5439 in 0.2S = 1.5088 in

Cumulative Runoff _______

1.7987 in

.850 ac-ft

HYG Volume850 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS ****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3) Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfs Unit peak time Tp = .20329 hrs Unit receding limb, Tr = .81316 hrs Total unit time, Tb = 1.01645 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates

Time: 1.50 Time: 1:58 PM Date: 8/25/2011 Type.... Unit Hyd. Summary Page 5.07 Name.... EXDA 3 Tag: 100 YR Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 3 100 YR

Tc = .3049 hrs

Drainage Area = 5.670 acres Runoff CN= 57

Computational Time Increment = .04066 hrs Computed Peak Time = 12.2381 hrs Computed Peak Flow 9.95 cfs

Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.2500 hrs
Peak Flow, Interpolated Output = 9.90 cfs -----

DRAINAGE AREA

ID:EXDA 3

CN = 57 Area = 5.670 acres

S = 7.5439 in 0.2S = 1.5088 in

Cumulative Runoff

2.3133 in 1.093 ac-ft

HYG Volume ...

1.093 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30494 hrs (ID: EXDA 3)Computational Incr, Tm = .04066 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 21.07 cfsUnit peak time Tp = .20329 hrsUnit receding limb, Tr = .81316 hrsTotal unit time, Tb = 1.01645 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Name.... DP 3Page 6.01 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW Storm... TypeIII 24hr Tag: 2 YR

SUMMARY FOR HYDROGRAPH ADDITION

at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

was a first a Control of Pro-		The same of the same of	14	40.1	220020	414	all back		70000	
Upstream Lin	K ID U	pstream	Node	ID	HYG	file	HYG	ID	HYG	tag
							ترك كالترك	عادت فالكام الأسالة		1225
TO DP 3	E.	XDA 3					EXI)A 3	2 YI)

		easseassassa			
INFLOWS TO:	DP 3				
HYG file	HYG ID	HYG tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	EXDA 3	2 YR	.146	12.4000	.73
TOTAL FLOW	INTO: DP 3		Z GODONIA	North	2000 200
HYG file	HYG ID	HYG tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 3	2 YR	.146	12.4000	.73

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Page 6.02 Event: 2 yr Name.... DP 3

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW Storm... TypeIII 24hr Tag: 2 YR

TOTAL NODE INFLOW...

HYG file = HYG ID = DP 3 HYG Tag = 2 YR

Peak Discharge = .73 cfs
Time to Peak = 12.4000 hrs
HYG Volume = .146 ac-ft

A				YDROGRAPH O				
Time hrs	Ì	Time on				= .0500 hrs first value	in each ro	w.
11.9500	1	.0	0	.00	.03	.09	.2	2
12.2000	II.	.3	8	.53	.64	.70	. 7	
12.4500	The second	.7	3	.71	. 67	.61	.5	
12.7000	1	. 5	0	. 45	.42	.39		
12.9500	L	. 3!	5	.34	.32	.31	. 3	
13.2000	1	. 2	9	.28	.27	.27	.2	
13.4500	1	. 2	6	.26	.26	.25	. 2	
13.7000	1	. 2	5	, 24	.24	.24	. 2	
13.9500	T	. 2	3	.23	.23	.22	. 2:	
14.2000	1	. 23	2	.21	.21	.21	. 2	
14.4500		. 2	1	.20	.20	.20	. 21	0
14.7000	1	. 20)	.20	.19	.19	.13	9
14.9500	1	. 19	9	.19	.19	.18	.13	8
15.2000	1	.18	3	.18	.18	.17	. 1	
15.4500		, 1	7	.17	.16	.16	.1	6
15.7000	1	.1	5	.16	.15	.15	. 1	5
15.9500	1	.15	5	. 14	.14	.14	.1	4
16.2000		. 13	3	.13	.13	.13	.13	3
16.4500	1	. 13	3	.13	.13	.12	. 13	2
16.7000	1	. 12		.12	.12	,12	. 13	2
16.9500	1	.12		.12	.12	.11	. 1	1
17,2000	1	,13		.11	. 11	.11	.13	1
17.4500	1	.1		.11	.10	.10	.10	0
17.7000	1	.10)	.10	.10	.10	.10	0
17.9500	1	.09	9	.09	.09	.09	.09	9
18.2000	1	.09		.09	.09	.09	. 0 9	9
18.4500	I	.09	3	.09	.09	.09	. 08	8
18.7000	1	.08	3	.08	.08	.08	.08	8
18.9500	1	.08		.08	.08	.08	.08	8
19.2000		.08		.08	.08	.08	.08	8
19.4500	L	.08	3	.08	.08	.08	.08	8

Type.... Node: Addition Summary Page 6.03 Event: 2 yr Name... DP 3
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

Time		YDROGRAPH ORDI		(cfs) = .0500 hrs	
hrs		represents ti			in each row,
19.7000	.08	.08	.08	.08	.08
19.9500	.08	.08	.08	.08	.07
20.2000	.07	.07	.07	.07	.07
20.4500	.07	.07	.07	.07	.07
20.7000	.07	.07	.07	.07	.07
20.9500	.07	.07	.07	.07	.07
21.2000	.07	.07	.07	.07	.07
21.4500	.07	.07	.07	.07	.07
21.7000	.07	.07	.07	.07	.07
21.9500	.07	.07	.06	.06	.06
22.2000	.06	.06	.06	.06	.06
22.4500	.06	.06	.06	.06	.06
22.7000	.06	.06	.06	.06	.06
22.9500	.06	.06	.06	.06	.06
23.2000	.06	.06	.06	.06	.06
23.4500	.06	.06	.06	.06	.06
23.7000 [.06	.05	.05	.05	.05
23.9500	.05	.05	.05	.05	.04
24.2000	.03	.02	.01	.01	.01
24.4500	.00	.00	.00	.00	.00

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Page 6.04 Name.... DP 3 Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW Storm... TypeIII 24hr Tag: 10 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID	HYG file HYG I	D HYG tag
TO DP 3	EXDA 3	EXDA	3 10 YR

10 DF 3	EXDA 3				EXDA 3	10 YR
INFLOWS TO:	DP 3					
HYG file	HYG ID		tag	Volume ac-ft	Peak Time hrs	Peak Flow
nig lile	піб ір	nig		ac-it	nrs	CIS
	EXDA 3	10	YR	.448	12.3000	3.49
TOTAL FLOW 1	INTO: DP 3					
				Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG	tag	ac-ft	hrs	cfs
	DP 3	10	YR	. 448	12.3000	3.49

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Page 6.05 Event: 10 yr

Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 10 YR

TOTAL NODE INFLOW...

HYG file =

HYG II = HYG ID = DP 3
HYG Tag = 10 YR

Peak Discharge = 3.49 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .448 ac-ft Time to Peak = 12.3000 hrs
HYG Volume = .448 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	l I Ti	me on	O	rDROGRAPH O utput Time represents	incremer	t = .05		in each rou	.7
11.6500	I	. 0		.00	. (.05	.13	3
11.9000	1	. 2.	5	. 44	4.7	78	1.31	1.98	В
12.1500	Ĭ	2.6	В	3,23	3.4	18	3.49	3.3	5
12.4000	Ì	3.1	5	2.91	2.6	66	2.38	2.10	0
12.6500	1	1.83	3	1.61	1.4	13	1.29	1.18	3
12.9000	Į.	1.1	0	1.03	. 9	9.7	.92	. 8	7
13.1500		. 8	3	.80	20	7	.75	.74	4
13.4000	I	. 7:	2	.71		0	.69	. 68	3
13.6500	1	. 6	7	.66	. 6	55	. 64	. 63	3
13.9000	I	. 63	2	.61	. 6	50	.59	.58	3
14.1500	1	. 5	7.	.56	. 5	5	.54	. 5	4
14.4000	L	. 5	3	.53	. 5	2	.51	.53	L
14.6500	Ĭ.	.50	0	.50	. 4	19	.49	. 48	3
14.9000	Î	. 48	3	. 47	. 4	17	.46	. 46	
15.1500	L	. 4	5	. 44	. 4	4	. 43	. 43	2.
15.4000	Í	. 42		.42	. 4		.40	. 40	
15.6500		. 39	9	.39	. 3		.37	. 3	
15.9000	1	.30	6	.35	. 3		.34	.34	
16.1500	r .	.33		.32	./3		.32	.31	
16.4000	Ĭ.	.3	D	.31	. 3		.30	.30	
16,6500	l l	. 29	9	.29	. 2		.29	. 28	
16,9000	Ľ	. 28	3	.28	. 2	8	.27	. 27	
17.1500	Ĭ.	. 2	7	.26	. 2		- 26	. 26	
17.4000	L	. 25	5	.25	. 2		.24	. 24	
17.6500	1	. 24		.24	. 2		.23	. 23	
17.9000	ĺ	. 22		.22	. 2		.22	.21	
18.1500	1	. 2		.21	. 2		.20	.20	
18.4000	Ĺ	.20		.20	. 2		.20	.20	
18.6500	1	.20		.20	. 2		.19	.19	
18.9000	ĺ	.19		.19	. 1		.19	.19	
19.1500	Ĺ	.19		.19	. 1		.19	.19	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM Date: 8/25/2011

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 10 YR Page 6.06 Event: 10 yr

Time hrs	0	YDROGRAPH ORD utput Time in represents t	crement = .	0500 hrs	each row.
19.4000	.18	.18	.18	.18	.18
19.6500	.18	.18	.18	.18	.18
19.9000	.18	.18	.17	.17	.17
20.1500	.17	.17	.17	.17	.17
20.4000	.17	.17	.17	.17	.17
20.6500	.16	.16	.16	.16	.16
20.9000	.16	.16	.16	.16	.16
21.1500	.16	.16	.16	.16	.16
21.4000	.16	.15	.15	.15	.15
21.6500	.15	.15	.15	.15	.15
21.9000	.15	.15	.15	.15	.15
22.1500	.15	.14	.14	.14	.14
22.4000	.14	.14	.14	.14	.14
22.6500	.14	. 14	.14	.14	.14
22.9000	.13	.13	.13	.13	.13
23.1500	.13	.13	.13	.13	.13
23.4000	.13	.13	.13	.13	.12
23.6500	.12	.12	.12	.12	.12
23.9000	.12	.12	.12	.11	.10
24.1500	.09	.07	.05	.03	.02
24.4000	.01	.01	.01	.00	.00
24.6500	.00	.00	.00		

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Name.... DP 3 Page 6.07 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW Storm... TypeIII 24hr Tag: 25 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

=======================================		=====	====	-====					====
Upstream Link	D Upstream	Node	ID	HYG	file	HYG	ID	HYG	tag
TO DP 3	EXDA 3					EXI	OA 3	25	YR

INFLOWS TO: HYG file	DP 3 HYG ID	НҮС		Volume ac-ft	Peak Time hrs	Peak Flow
nig ille	nig ib	n1G		ac-10	111.9	
	EXDA 3	25	YR	.653	12.2500	5.53

			Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG t	ag ac-ft	hrs	cfs
	DP 3	25 Y	R .653	12.2500	5.53

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Page 6.08 Name.... DP 3 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 25 YR

TOTAL NODE INFLOW ...

HYG file =
HYG ID = DP 3
HYG Tag = 25 YR

Peak Discharge = 5.53 cfs
Time to Peak = 12.2500 hrs
HYG Volume = .653 ac-ft

Time		HYDROGRAPH OF		AND THE PARTY OF T	
hrs	Time on 1	eft represents			in each row
11.3500	.00	.00	.01	.02	.04
11.6000	.06	.11	.17	.26	.39
11.8500	.57	.82	1.17	1.73	2.56
12.1000	3.56	4.55	5.28	5.53	5.43
12.3500	5.12	4.73	4.33	3.91	3.47
12,6000 I	3.04	2.64	2.30	2.03	1.83
12.8500 I	1.67	1.55	1.45	1.36	1.29
13.1000 J	1.22	1.16	1.12	1.08	1.05
13.3500	1.02	1.00	.99	.97	.95
13.6000	.94	.92	.91	.90	.88
13.8500	.87	.85	.84	.82	.81
14.1000	.79	.78	.76	.75	.74
14.3500	.73	.73	.72	.71	.70
14.6000	.70	.69	.68	. 67	. 67
14.8500	.66	. 65	. 64	.63	.63
15.1000	. 62	.61	.60	.60	.59
15.3500	.58	.57	.56	.55	.55
15.6000	.54	.53	.52	.51	.50
15.8500	.50	.49	.48	. 47	.46
16,1000	. 45	. 44	.44	. 43	. 43
16.3500	. 42	.42	.41	. 41	.40
16.6000	. 40	.40	.39	.39	.39
16.8500	.38	.38	.37	.37	.37
17.1000	.36	.36	.36	. 35	.35
17.3500	.34	.34	.34	.33	.33
17.6000	.32	.32	.32	.31	.31
17.8500 I	.30	.30	.30	.29	.29
18.1000	.28	.28	.28	.27	.27
18.3500	.27	.27	.27	.27	.27
18.6000 J	.26	.26	.26	.26	.26
18,8500	.26	.26	.26	.26	.25

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM Date: 8/25/2011

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR Page 6.09 Event: 25 yr

Time hrs	0	YDROGRAPH ORD utput Time in represents t	crement =	.0500 hrs	n each row.
19.1000	.25	. 25	.25	.25	. 25
19.3500	.25	.25	. 25	.24	. 24
19,6000	. 24	. 24	.24	.24	.24
19.8500	. 24	. 23	.23	.23	.23
20.1000	.23	.23	.23	.23	.23
20.3500	.23	. 22	.22	.22	.22
20.6000	.22	.22	.22	, 22	.22
20.8500	.22	.21	.21	.21	.21
21.1000	.21	.21	.21	.21	.21
21.3500	.21	.21	.21	.20	.20
21.6000	.20	.20	.20	.20	.20
21.8500	.20	.20	.20	.20	.19
22.1000	.19	.19	.19	.19	.19
22.3500	.19	.19	.19	.19	.18
22.6000	.18	.18	.18	.18	.18
22.8500	.18	.18	.18	.18	.18
23.1000	.17	.17	.17	.17	.17
23.3500	.17	.17	.17	.17	.17
23.6000	.17	.16	.16	.16	.16
23.8500	.16	.16	.16	116	.15
24.1000	.14	.12	.09	.06	.04
24.3500	.03	.02	.01	.01	.01
24.6000	.00	.00	.00	.00	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Page 6.10 Name.... DP 3 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 50 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream	Link	ID	Upstream	Node	ID	HYG	file	HYG	ID	HYG	tag
TO DP 3			EXDA 3					EXD	A 3	50	YR

INFLOWS TO					
			Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs

EXDA 3 50 YR .850 12.2500 7.49

TOTAL FLOW INTO: DP 3

HYG file HYG ID HYG tag ac-ft hrs cfs DP 3 50 YR .850 12.2500 7.49

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 1:58 PM Date: 8/25/2011

Type.... Node: Addition Summary Page 6.11 Event: 50 yr

Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 50 YR

TOTAL NODE INFLOW... HYG file =

HYG file =
HYG ID = DP 3
HYG Tag = 50 YR

Peak Discharge = 7.49 cfs
Time to Peak = 12.2500 hrs
HYG Volume = .850 ac-ft

HYDROGRAPH ORDINATES (cfs) Output Time increment = .0500 hrs

Time hrs	Time on l	Output Time eft represents			in each row.	
11.0000	.00	.00	.01	,02	.03	
11.2500	.04	.06	.08	.11	, 14	
11.5000	.17	.21	.26	.33	.44	
11.7500	.59	.80	1.07	1.43	1.92	
12.0000	2.69	3.80	5.11	6.37	7.25	
12.2500	7.49	7.28	6.80	6.24	5.67	
12.5000	5.09	4.50	3.92	3.40	2.95	
12.7500	2.60	2.33	2.13	1.97	1.84	
13.0000	1.73	1.63	1.54	1.47	1.41	
13.2500	1.36	1.32	1.29	1,26	1.24	
13.5000	1.22	1.20	1.18	1,16	1.14	
13.7500	1.12	1.10	1.08	1.06	1.05	
14.0000	1.03	1.01	.99	.97	.95	
14.2500	.94	.93	.92	.90	.89	
14.5000	.88	.87	.87	.86	. 85	
14.7500	.84	.83	.82	.81	.80	
15.0000	.79	. 78	.77	.76	. 75	
15.2500	.74	.73	.72	.71	.70	
15.5000	.69	. 68	.67	.66	. 64	
15.7500	, 63	. 62	.61	.60	.59	
16.0000	.58	.57	.56	.55	.54	
16.2500	.53	.53	.52	.51	.51	
16.5000	.50	.50	.49	.49	. 48	
16.7500	. 48	. 48	.47	.47	. 46	
17.0000	.46	. 45	.45	. 44	, 44	
17.2500	.43	. 43	.42	.42	.41	
17.5000	, 41	. 40	.40	.39	.39	
17.7500 [.38	.38	.37	.37	.36	
18.0000	.36	.35	.35	.34	.34	
18.2500	.34	.34	.33	.33	.33	
18.5000	.33	.33	.33	.32	.32	
The second secon						

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM Date: 8/25/2011

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR Page 6.12 Event: 50 yr

		H	YDROGRAPH ORI	DINATES (c	fs)	
Time	1		utput Time ir			
hrs	1	Time on left	represents t	time for f	irst value i	in each row.
18.7500	1	.32	.32	.32	.32	, 32
19.0000	1	.31	.31	.31	.31	.31
19.2500	1	.31	.31	.30	.30	.30
19.5000	1	.30	.30	.30	.30	.29
19.7500	-1	.29	.29	.29	.29	.29
20.0000	1	.28	.28	.28	.28	.28
20.2500	1	.28	.28	.28	.27	.27
20.5000	T	.27	.27	.27	.27	.27
20.7500	1	.27	.27	.26	.26	.26
21.0000	A.	.26	.26	.26	.26	.26
21.2500	1	.26	.25	.25	.25	.25
21.5000	1	.25	.25	.25	.25	.25
21.7500	(file	. 24	.24	.24	. 24	. 24
22.0000	1	.24	.24	.24	.24	.23
22.2500		.23	.23	.23	.23	.23
22.5000	1	.23	.23	.23	.22	.22
22.7500	1	.22	.22	.22	.22	.22
23.0000	1	.22	.21	.21	.21	.21
23.2500	1	.21	.21	.21	.21	.21
23.5000	1	.20	.20	.20	.20	.20
23.7500	1	.20	.20	.20	.19	.19
24.0000	1	.19	.19	.17	.14	.11
24.2500	T	.08	.05	.03	.02	.01
24.5000	1	.01	.01	.00	.00	.00
24.7500	T	.00	.00			

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time; 1:58 PM Date: 8/25/2011

Type.... Node: Addition Summary Page 6.13 Event: 100 yr

Name... DP 3
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW
Storm.. TypeIII 24hr Tag: 100 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID Upstream Node ID HYG file HYG ID HYG ta													
	Upstream	Link	ID	Upstre	am	Node	ID	HYG	file	HYG	ID	HYG	tag
TO DP 3 EXDA 3 EXDA 3 100 YE	TO DP 3			EXDA 3						EVE	ν 3 	100	VD

INFLOWS TO:	DP 3		- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	EXDA 3	100 YR	1.093	12.2500	9.90

TOTAL FLO	W INTO: DP 3				
			- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 3	100 YR	1.093	12.2500	9.90

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Page 6.14
Name.... DP 3 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 100 YR

TOTAL NODE INFLOW...
HYG file =
HYG ID = DP 3
HYG Tag = 100 YR

 Peak Discharge =
 9.90 cfs

 Time to Peak =
 12.2500 hrs

 HYG Volume =
 1.093 ac-ft

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 1:58 PM

Type.... Node: Addition Summary Page 6.15 Name.... DP 3 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 3.PPW

Storm... TypeIII 24hr Tag: 100 YR

HYDROGRAPH ORDINATES (cfs) Output Time increment = .0500 hrs hrs | Time on left represents time for first value in each row.

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 1:58 PM Date: 8/25/2011

Appendix A A-1

Index of Starting Page Numbers for ID Names

---- D ----DP 3 2 YR... 6.01, 6.04, 6.07, 6.10, 6.13

---- E ----EXDA 3... 3.01, 4.01, 5.03, 5.04, 5.05, 5.06, 5.07

----- L -----Litchfield Co.... 2.01, 2.02

---- W -----Watershed... 1.01

Proposed Flows - DL3

Table of Contents

Table of Contents

* * * * * * * * * * * * * *	***** MASTER SUMMARY **************
Watershed	. Master Network Summary 1.01
*********	*** DESIGN STORMS SUMMARY *************
Litchfield Co	. Design Storms 2.01
Litchfield Co	. 2 YR Design Storms 2.02
******	****** TC CALCULATIONS *************
PRDA 3D	. Tc Calcs 3.01
PRDA 3ND	. Tc Calcs 3.03
******	****** CN CALCULATIONS *************
PRDA 3D	. Runoff CN-Area 4.01
PRDA 3ND	. Runoff CN-Area 4.02
******	***** RUNOFF HYDROGRAPHS *************
	Unit Hyd. Equations 5.01
PRDA 3D	. 2 YR Unit Hyd Summary 5.03

Table of Contents (continued)

	10 YR Unit Hyd. Summary 5.0	4
PRDA 3D		5
PRDA 3D	50 YR Unit Hyd. Summary 5.0	6
PRDA 3D	100 YR Unit Hyd. Summary 5.0	
PRDA 3ND	2 YR Unit Hyd. Summary 5.0	8
PRDA 3ND	10 YR Unit Hyd. Summary 5.0	9
PRDA 3ND	25 YR Unit Hyd. Summary 5.1	0
PRDA 3ND	50 YR Unit Hyd. Summary 5.1	1
PRDA 3ND	100 YR Unit Hyd. Summary 5.1	2
******	***** HYG ADDITION ************	**
	2 YR Node: Addition Summary 6.0	1
DP 3	10 YR Node: Addition Summary 6.0	
DP 3	25 YR Node: Addition Summary 6.0	
DP 3	50 YR Node: Addition Summary 6.0	
DP 3	100 YR Node: Addition Summary 6.1	
	***** POND VOLUMES *************	
POND 1	Vol: Elev-Area 7.0	1

Table of Contents

Table of Contents (continued)

111

******	***** OUTLET STRUCTURES **************
Outlet 1	Outlet Input Data 8.01 Individual Outlet Curves 8.03 Composite Rating Curve 8.07
*******	****** POND ROUTING **************
POND 1	Pond Infiltration Calcs 9.01 Pond E-V-Q Table 9.02
POND 1 OU	F 2 YR Pond Routing Summary 9.05
POND 1 OU	F 10 YR Pond Routing Summary 9.06
POND 1 OU	I 25 YR Pond Routing Summary 9.07
POND 1 OU	F 50 YR Pond Routing Summary 9.08
POND 1 OU	r 100 YR Pond Routing Summary 9.09

Type.... Master Network Summary Name.... Watershed

Page 1.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return E	vent	Total Depth in	Rainfal Type	L1	RNE	' ID
2 Y	R	3.2000	Synthetic	Curve	TypeIII	24hr
10 Y	R	4.7000	Synthetic	Curve	TypeIII	24hr
25 Y	R	5.5000	Synthetic	Curve	TypeIII	24hr
50 Y	R	6.2000	Synthetic	Curve	TypeIII	24hr
100 Y	R	7.0000	Synthetic	Curve	TypeIII	24hr

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Туре	Return Event	HYG Vol ac-ft Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
*DP 3	JCT	2	.162	12.4000	.95	(2200000	
*DP 3	JCT	10	.507	12.3000	3.41		
*DP 3	JCT	25	.737	12.3000	5.00		
*DP 3	JCT	50	.958	12.3000	6.73		
*DP 3	JCT	100	1.231	12.3000	9.19		
JUNCTION	JCT	2	.162	12.4000	.95		
JUNCTION	JCT	10	.507	12.3000	3.41		
JUNCTION	JCT	25	.737	12.3000	5.00		
JUNCTION	JCT	50	.958	12.3000	6.73		
JUNCTION	JCT	100	1.231	12.3000	9.19		
POND 1 IN	POND	2	.133	12.1000	1.36		
POND 1 IN	POND	10	.297	12.1000	3.38		
POND 1 IN	POND	25	.397	12.1000	4.60		
POND 1 IN	POND	50	.490	12.1000	5.71		
POND 1 IN	POND	100	.600	12.1000	7.03		

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:12 PM Date: 8/25/2011 Type.... Master Network Summary Name.... Watershed

Page 1.02

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node	ID		Туре	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
POND	1 0	UT	POND	2	.056		12.5000	. 43	1443.97	.030
POND	1 0	UT	POND	10	.182		12.5000	.92	1444.69	.084
POND	1 0	UT	POND	25	.263		12.5000	1,15	1445.12	.122
POND	1 0	UT	POND	50	.341		12.5000	1.70	1445.43	.151
POND	1 0	UT	POND	100	.437		12.4000	2,47	1445.71	.180
PRDA	3D		AREA	2	.133		12.1000	1.36		
PRDA	3D		AREA	10	.297		12.1000	3.38		
PRDA	3 D		AREA	25	.397		12.1000	4.60		
PRDA	3D		AREA	50	.490		12.1000	5.71		
PRDA	3D		AREA	100	.600		12.1000	7.03		
PRDA	3ND		AREA	2	.106		12.4000	.54		
PRDA	3ND		AREA	10	.326		12.3000	2.55		
PRDA	3ND		AREA	25	.474		12.3000	3.95		
PRDA	3ND		AREA	50	.618		12.2000	5.33		
PRDA	3ND		AREA	100	,794		12.2000	7.11		

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM

Date: 8/25/2011

Type... Design Storms Page 2.01
Name... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Title... Project Date: 4/16/2009

Project Engineer: Curtis Jones Project Title: Watershed

Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 25 yr

Total Rainfall Depth= 5.5000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Storm Tay Traine 50 TA

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

 Type.... Design Storms Page 2.02 Event: 2 yr Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Storm... TypeIII 24hr Tag: 2 YR

DESIGN STORMS SUMMARY

Litchfield Co. Design Storm File, ID =

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 10 yr

Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1
Resulting Duration = 24,0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr Total Rainfall Depth= 5.5000 in Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr

Total Rainfall Depth= 6.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

........... Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr Total Rainfall Depth= 7.0000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 2:12 Date: 8/25/2011

Type.... Tc Calcs Name.... PRDA 3D Page 3.01 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: User Defined Segment #1 Time: .1300 hrs Total Tc: .1300 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates

Time: 2:12 2:12 Time: 2:12 PM Date: 8/25/2011

Type.... Tc Calcs Name.... PRDA 3D Page 3.02 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Tc Equations used... Tc = Value entered by user Where: Tc = Time of concentration

Type Tc Calcs Jame PRDA 3ND	Page	3.03
File C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW		
TIME OF CONCENTRATION CALCULATOR		
***************************************		11111
Segment #1: Tc: User Defined		
Segment #1 Time:	.3000	0 hrs
Ephanis Ephanis		
Total Tc:	.3000	0 hrs

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Tc Calcs Name.... PRDA 3ND Page 3.04 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Tc Equations used... Tc = Value entered by user

Where: Tc = Time of concentration

Type Runoff CN-Area Name PRDA 3D					Page 4.01
File C:\Program Files\Haestad	d\PPKW\P	PW\3092 PR	RDA 3.E	PW	
RUNOFF CURVE NUMBER DATA					
			::::::		
			نينين	كيردود	
	دينينيد		Imper	vious	,
		Area	Adjus	tment	Adjusted
Soil/Surface Description	CN		Adjus		Adjusted CN
	7.84	Area	Adjus	tment	the second section of the second section is a second section of the section of the second section of the section
Soil/Surface Description	CN	Area acres	Adjus	tment	

COMPOSITE AREA & WEIGHTED CN ---> 2.050 69.20 (69)

S/N: A215014070C4 PondPack Ver. 8.0068

Type Runoff CN-Area Name PRDA 3ND					Page 4.02	
File C:\Program Files\Haestad	\PPKW\F	PW\3092 PF	DA 3.PPW			
RUNOFF CURVE NUMBER DATA						
***********************	::::::	1111111111		::::	*********	: :
		Area	Impervi Adjustm	ent	Adjusted	
Soil/Surface Description	CN	acres	%C	%UC	CN	
Soil Type B - Wooded	55	2.730	7777	7775	55.00	
Soil Type B - Grass/Meadow	58	1.320			58.00	
Impervious	98	.070			98,00	

COMPOSITE AREA & WEIGHTED CN ---> 4.120 56.69 (57)

S/N: A215014070C4 PondPack Ver. 8.0068

Page 5.01

Date: 8/25/2011

Name....

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

DEFINITION OF TERMS: -----= Total area (acres): At = Ai+Ap = Impervious area (acres) = Pervious area (acres) = Runoff curve number for impervious area = Runoff curve number for pervious area CNp fLoss = f loss constant infiltration (depth/time) = Saturated Hydraulic Conductivity (depth/time) = Volumetric Moisture Deficit Md = Capillary Suction (length) = Horton Infiltration Decay Rate (time^-1) hK = Initial Infiltration Rate (depth/time) = Ultimate(capacity)Infiltration Rate (depth/time) fc Ia = Initial Abstraction (length) = Computational increment (duration of unit excess rainfall) dt Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) Hodi = User specified override computational main time increment (only used if UDdt is => .1333Tc) D(t) = Point on distribution curve (fraction of P) for time step t = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67) K = Hydrograph shape factor Ks = Unit Conversions * K: = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * KDefault Ks = 645.333 * 0.75 = 484= Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc = Total precipitation depth, inches Pa(t) = Accumulated rainfall at time step tPi(t) = Incremental rainfall at time step t= Peak discharge (cfs) for lin. runoff, for lhr, for l sq.mi. = (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.) Qu(t) = Unit hydrograph ordinate (cfs) at time step tQ(t) = Final hydrograph ordinate (cfs) at time step t Rai(t) = Accumulated runoff (inches) at time step t for impervious area Rap(t) = Accumulated runoff (inches) at time step t for pervious areaRii(t) = Incremental runoff (inches) at time step t for impervious area Rip(t) = Incremental runoff (inches) at time step t for pervious area R(t) = Incremental weighted total runoff (inches) = Time increment for rainfall table Rtm = S for impervious area: Si = (1000/CNi) - 10 = S for pervious area: Sp = (1000/CNp) - 10= Time step (row) number t Tc = Time of concentration = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag Tp = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2:12 PM

Type.... Unit Hyd. Equations Page 5.02

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

PRECIPITATION: -----Column (1): Time for time step t Column (2): D(t) = Point on distribution curve for time step t Column (3): Pi(t) = Pa(t) - Pa(t-1): Col.(4) - Preceding Col.(4) Column (4): Pa(t) = D(t) x P: Col.(2) x PPERVIOUS AREA RUNOFF (using SCS Runoff CN Method) -----Column (5): Rap(t) = Accumulated pervious runoff for time step t If $(Pa(t) \text{ is } \le 0.2Sp)$ then use: Rap(t) = 0.0If (Pa(t) is > 0.2Sp) then use: Rap(t) = (Col.(4) - 0.2Sp) **2 / (Col.(4) + 0.8Sp)Column (6): Rip(t) = Incremental pervious runoff for time step t IMPERVIOUS AREA RUNOFF ------Column (7 & 8)... Did not specify to use impervious areas. INCREMENTAL WEIGHTED RUNOFF: -----Column (9): $R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$ $R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$ SCS UNIT HYDROGRAPH METHOD: ------Column (10): Q(t) is computed with the SCS unit hydrograph method using R() and Qu().

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM

Date: 8/25/2011

Page 5.03 Event: 2 yr

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm Duration = 24.0000 hrs Rain Depth = 3.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3D 2 YR
TC = .1300 hrs

Drainage Area = 2.050 acres Runoff CN= 69

Computational Time Increment = .01733 hrsComputed Peak Time = 12.1333 hrs

Computed Peak Time = 12.1333 hrsComputed Peak Flow = 1.45 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 1.36 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID: PRDA 3D

CN = 69 Area = 2.050 acres

S = 4.4928 in0.2s =.8986 in

Cumulative Runoff

.7796 in

.133 ac-ft

HYG Volume ...

.133 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D) Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfsUnit peak time Tp = .08667 hrsUnit receding limb, Tr = .34667 hrsTotal unit time, Tb = .43333 hrs

S/N; A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:12 PM Date: 8/25/2011 Type.... Unit Hyd. Summary
Name.... PRDA 3D Tag: 10 YR Page 5.04 Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 4.7000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3D 10 YR

= .1300 hrs

Drainage Area = 2.050 acres Runoff CN= 69

Computational Time Increment = .01733 hrsComputed Peak Time = 12.1333 hrsComputed Peak Time = 12.1333 hrs Computed Peak Flow = 3.50 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.1000 hrs
Peak Flow, Interpolated Output = 3.38 cfs WARNING: The difference between calculated peak flow

and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID: PRDA 3D CN = 69

2.050 acres Area =

S = 4.4928 in0.2S = .8986 in

Cumulative Runoff

1.7423 in .298 ac-ft

.297 ac-ft (area under HYG curve) HYG Volume...

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D) Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs Unit peak time Tp = .08667 hrs Unit receding limb, Tr = .34667 hrs Total unit time, Tb = .43333 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011 Type.... Unit Hyd. Summary
Name.... PRDA 3D Tag: 25 YR Page 5.05 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 3D 25 YR

= .1300 hrs

Drainage Area = 2.050 acres Runoff CN= 69

Computational Time Increment = .01733 hrs Computed Peak Time = 12.1333 hrs Computed Peak Time = 1 4.72 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 4.60 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID: PRDA 3D

CN = 69 Area = 2.050 acres

S = 4.4928 in.8986 in 0.2s =

Cumulative Runoff ------

2.3282 in

.398 ac-ft

.397 ac-ft (area under HYG curve) HYG Volume...

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D) Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs Unit peak time Tp = .08667 hrs Unit receding limb, Tr = .34667 hrs Total unit time, Tb = .43333 hrs

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Unit Hyd. Summary
Name.... PRDA 3D Tag: 50 YR Event: 50 yr Page 5.06

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm Duration = 24.0000 hrs Rain Depth = 6.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear HYG Dir = C:\Program Files\Haestad\PPKW\PPW\ HYG File - ID = - PRDA 3D 50 YR

= .1300 hrs

Drainage Area = 2.050 acres Runoff CN= 69

Computational Time Increment = .01733 hrs Computed Peak Time = 12.1333 hrs Computed Peak Flow = 5.84 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 5.71 cfs WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID: PRDA 3D

CN = 69 Area = 2.050 acres

S = 4.4928 in0.2S = .8986 in

Cumulative Runoff

2.8696 in .490 ac-ft

HYG Volume ...

.490 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D) Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs Unit peak time Tp = .08667 hrs Unit receding limb, Tr = .34667 hrs Total unit time, Tb = .43333 hrs

PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011 Type.... Unit Hyd. Summary
Tag: 100 YR Page 5.07 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3D 100 YR

= .1300 hrs Tc

Drainage Area = 2.050 acres Runoff CN= 69

Computational Time Increment = .01733 hrs Computed Peak Time = 12.1160 hrs Computed Peak Time = 12.1160 hrsComputed Peak Flow = 7.16 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.1000 hrs Peak Flow, Interpolated Output = 7.03 cfs WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

-----ID:PRDA 3D

CN = 69 Area =

2.050 acres

S = 4.4928 in0.2S = .8986 in

Cumulative Runoff

3.5140 in .600 ac-ft

HYG Volume600 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .13000 hrs (ID: PRDA 3D)Computational Incr, Tm = .01733 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483,432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 17.87 cfs Unit peak time Tp = .08667 hrs Unit receding limb, Tr = .34667 hrs Total unit time, Tb = .43333 hrs

PondPack Ver. 8.0068

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 2 YR Page 5.08 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3ND 2 YR
Tc = .3000 hrs

Drainage Area = 4.120 acres Runoff CN= 57

Computational Time Increment = .04000 hrs Computed Peak Time = 12.4400 hrs
Computed Peak Flow = .54 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.4000 hrs Peak Flow, Interpolated Output = .54 cfs

DRAINAGE AREA

ID:PRDA 3ND

CN = 57

CN = 57 Area = 4.120 acres S = 7.5439 in 0.2S = 1.5088 in

Cumulative Runoff -----

.3097 in .106 ac-ft

HYG Volume... .106 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND) Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs Unit peak, qp = 15.56 cfs Unit peak time Tp = .20000 hrs Unit receding limb, Tr = .80000 hrs Total unit time, Tb = 1.00000 hrs

S/N: A215014070C4 PondPack Ver. 8,0068

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 10 YR Event: 10 yr

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\ HYG File - ID = - PRDA 3ND 10 YR

= .3000 hrs TC

Drainage Area = 4.120 acres Runoff CN= 57

Computational Time Increment = .04000 hrs Computed Peak Time = 12,2800 hrsComputed Peak Flow = 2.57 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 2.55 cfs

DRAINAGE AREA

ID:PRDA 3ND

CN = 57

Area = 4.120 acres S = 7.5439 in 0.2S = 1.5088 in

Cumulative Runoff -----

.9487 in .326 ac-ft

HYG Volume326 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND) Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs Unit peak time Tp = .20000 hrs Unit receding limb, Tr = .80000 hrs Total unit time, Tb = 1.00000 hrs

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time 2:12 Time

Date: 8/25/2011

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 25 YR Page 5.10 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3ND 25 YR

= .3000 hrs

Drainage Area = 4.120 acres Runoff CN= 57

Computational Time Increment = .04000 hrs Computed Peak Time = 12.2400 hrs Computed Peak Flow = 4.05 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.3000 hrs
Peak Flow, Interpolated Output = 3.95 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:PRDA 3ND

CN = 57

Area = 4.120 acres S = 7.5439 in

0.2S = 1.5088 in

Cumulative Runoff

1.3810 in .474 ac-ft

HYG Volume...

.474 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND) Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs Unit peak time Tp = .20000 hrs Unit receding limb, Tr = .80000 hrs Total unit time, Tb = 1.00000 hrs

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011 PondPack Ver. 8.0068

Type.... Unit Hyd. Summary
Tag: 50 YR Page 5.11 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3ND 50 YR

= .3000 hrs

Drainage Area = 4.120 acres Runoff CN= 57

Computational Time Increment = .04000 hrs Computed Peak Time = 12.2400 hrs Computed Peak Flow = 5.50 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.2000 hrs Peak Flow, Interpolated Output = 5.33 cfs WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50% ---------

DRAINAGE AREA

ID: PRDA 3ND

CN = 57 Area = 4.120 acres S = 7.5439 in

0.2S = 1.5088 in

Cumulative Runoff -----

1.7987 in .618 ac-ft

.618 ac-ft (area under HYG curve) HYG Volume ...

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND) Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 15.56 cfs Unit peak time Tp = .20000 hrs Unit receding limb, Tr = .80000 hrs Total unit time, Tb = 1.00000 hrs

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011 PondPack Ver. 8.0068

Type.... Unit Hyd. Summary
Name.... PRDA 3ND Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Page 5.12 Event: 100 yr

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Rain Depth = 7.0000 in Duration = 24.0000 hrs Rain Depth = 7.0000
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 3ND 100 YR

= .3000 hrs Tc

Drainage Area = 4.120 acres Runoff CN= 57

Computational Time Increment = .04000 hrs Computed Peak Time = 12.2400 hrs Computed Peak Time = 7.27 cfs Computed Peak Flow

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.2000 hrs Peak Flow, Interpolated Output = 7.11 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID: PRDA 3ND

CN = 57Area = 4.120 acres

S = 7.5439 in0.2S = 1.5088 in

Cumulative Runoff _____

2.3133 in

.794 ac-ft

HYG Volume...

.794 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .30000 hrs (ID: PRDA 3ND)Computational Incr, Tm = .04000 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

Unit peak, qp = 15.56 cfs Unit peak time Tp = .20000 hrs Unit receding limb, Tr = .80000 hrs Total unit time, Tb = 1.00000 hrs

S/N: A215014070C4 PondPack Ver. 8.0068

Page 6.01 Event: 2 yr Type.... Node: Addition Summary Name... DP 3
File... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 2 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

============				
Upstream Link ID	Upstream Node ID	HYG file H	YG ID	HYG tag
TO DP3	JUNCTION		JUNCTION	2 YR

,				=========	
INFLOWS TO	: DP 3		- Authors	David make	Death His
HYG file	HYG ID	HYG tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	2 YR	.162	12.4000	. 95
TOTAL FLOW	INTO: DP 3			Davido milar	Davis Blass
HYG file	HYG ID	HYG tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 3	2 YR	. 162	12.4000	95

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM PondPack Ver. 8.0068 Date: 8/25/2011

Page 6.02 Event: 2 yr Type.... Node: Addition Summary Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 2 YR

TOTAL NODE INFLOW ... HYG file =

HYG ID = DP 3 HYG Tag = 2 YR

Peak Discharge = .95 cfs
Time to Peak = 12,4000 hrs
HYG Volume = .162 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	01	stput Time incre	ment	= .1000 hrs	
hrs	Time on left	represents time	for	first value i	n each row.
11.6000	.00	.00	.00	.01	.03
12.1000	.18	.53	.82	.95	.95
12.6000	.86	.74	.64	.57	.52
13.1000	. 47	.43	.40	.38	.36
13.6000	.34	.32	.31	.29	.28
14.1000	.26	.25	.24	.23	.22
14.6000	.22	.21	.20	.19	.19
15.1000	.18	.17	.17	.16	.15
15.6000	.14	.14	.13	.13	.12
16.1000	.12	.12	.11	.11	.11
16.6000 I	.11	.10	.10	.10	.10
17.1000	.10	.09	.09	.09	.09
17.6000	.09	.08	.08	.08	.08
18.1000	.08	.07	.07	.07	.07
18.6000	.07	.07	.07	.07	.07
19.1000	.07	.07	.07	.07	.07
19.6000	.07	.06	.06	.06	.06
20.1000	.06	.06	.06	.06	.06
20.6000	.06	.06	.06	.06	.06
21.1000	.06	.06	.06	.06	.06
21.6000	.06	.06	.05	.05	.05
22.1000	.05	.05	.05	.05	.05
22.6000	.05	.05	.05	.05	.05
23.1000	.05	.05	.05	.05	.05
23.6000	.05	.05	.05	.04	.04
24.1000	.04	.03	.01	.01	.00
24.6000	.00	.00	.00	.00	.00

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011

Page 6.03 Event: 10 yr Type.... Node: Addition Summary Name.... DP 3

File..., C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Storm... TypeIII 24hr Tag: 10 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link	ID	Upstream	Node	ID	HYG	file	HYG	ID	HYG	tag
TO DP3		JUNCTION					JUI	OCTION	10	YR

INFLOWS TO:	DP 3			- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG	tag	ac-ft	hrs	cfs
	JUNCTION	10	YR	.507	12.3000	3.41

TOTAL FLOW	INTO: DP 3				
			Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 3	10 YR	.507	12.3000	3.41

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM PondPack Ver. 8.0068

Date: 8/25/2011

Page 6.04 Type.... Node: Addition Summary Event: 10 yr

Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 10 YR

TOTAL NODE INFLOW ... HYG file = HYG ID = DP 3 HYG Tag = 10 YR

Peak Discharge = 3.41 cfs Time to Peak = 12.3000 hrs HYG Volume = .507 ac-ft

HYDDOCDADH ODDINATES (cfs)

Time		YDROGRAPH O utput Time		(cfs) = .1000 hrs	
hrs				first value	in each row.
10.5000	.00	.00	.00	.00	.00
11.0000	.01	.01	.01	.01	.01
11.5000	.01	.02	.03	.10	.32
12.0000	.92	2.09	3.16	3.41	3.18
12,5000	2.84	2.42	2.05	1.79	1.64
13.0000 I	1.52	1.42	1.34	1.27	1.22
13.5000	1.17	1.12	1.07	1.03	. 97
14.0000	.93	.87	.81	.75	.71
14.5000	. 67	.64	.61	.59	.56
15.0000	. 54	.52	.50	. 48	.46
15.5000	. 45	. 43	.41	.39	.38
16.0000	.36	.34	.33	.32	.31
16.5000	.30	.29	.28	.27	.27
17.0000	.26	.25	.24	.23	.23
17.5000	. 22	.21	.20	.20	.19
18.0000	.18	.18	.17	.17	.17
18.5000	.16	.16	.16	.16	.16
19.0000	.16	.15	.15	.15	.15
19.5000	.15	.15	.15	.14	.14
20.0000	.14	.14	.14	. 14	.14
20.5000	.14	.13	.13	.13	.13
21.0000	.13	.13	.13	.13	.13
21.5000	.12	.12	.12	.12	.12
22.0000	.12	.12	.12	,12	.11
22.5000	,11	.11	.11	.11	.11
23.0000	.11	.11	.11	.10	.10
23.5000	.10	.10	.10	.10	.10
24.0000	.10	.09	.05	.03	.01
24.5000	.01	.01	.00	.00	.00
25.0000	.00	.00	.00	.00	

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:12 PM

Time: 2:12 PM Date: 8/25/2011

Type.... Node: Addition Summary Page 6.05 Name.... DP 3 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Storm... TypeIII 24hr Tag: 25 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

=======================================				
Upstream Link ID	Upstream Node ID	HYG file	HYG ID	HYG tag
TO DP3	JUNCTION		JUNCTION	25 YR

INFLOWS TO	: DP 3					
HYG file	HYG ID	HYG	tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	25	YR	.737	12.3000	5.00
TOTAL FLOW	INTO: DP 3			- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG	tag	ac-ft	hrs	cfs
7277272	DP 3	25	YR	.737	12.3000	5.00

Curtis Jones & Associates S/N: A215014070C4 PondPack Ver. 8.0068 Time: 2:12 PM

Date: 8/25/2011

Type.... Node: Addition Summary Page 6.06 Name.... DP 3 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Storm... TypeIII 24hr Tag: 25 YR

TOTAL NODE INFLOW... HYG file =

HYG ID = DP 3 HYG Tag = 25 YR

Peak Discharge = 5.00 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .737 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	î			YDROGRAPH O utput Time		(CIS) = .1000 hrs	
hrs	Ì	Time on					in each row.
9.9000	1==	.0	0	.00	.00	.00	.00
10.4000	Ŷ	.0	0	.01	.01	.01	.01
10.9000	1	. 0	1	.01	.01	.02	.02
11,4000	1	.0	2	.05	.10	.21	. 45
11.9000	1	. 9	2	1.85	3.43	4.84	5.00
12.4000	1	4.5	4	3.97	3.33	2.76	2.39
12.9000	1	2.1	7	2.01	1.88	1,78	1.71
13.4000	1	1.6	5	1.59	1.54	1.49	1.44
13.9000	1	1.3	9	1.33	1.28	1.23	1.18
14.4000	1	1.1	3	1.09	1.04	1.00	.96
14.9000	1	. 9	0	.84	.79	.75	.72
15.4000	1	. 6	8	. 65	.62	.59	.57
15.9000	I.	.5	4	.52	.49	. 47	.45
16.4000	1	. 4	4	. 43	.41	.40	.39
16.9000	Î	.3	В	.36	.35	.34	.33
17.4000	I	.3	2	.31	.31	.30	.29
17.9000	1	. 2	В	.27	.26	.25	.24
18.4000	1	. 2	4	. 23	.23	.22	.22
18.9000	1	.2	1	.21	.21	.20	.20
19.4000	1	. 2	0	.20	.20	.19	.19
19.9000	1	. 1	9	.19	.19	.18	.18
20.4000	1	. 1	3	.18	.18	.18	.17
20.9000		.1	7	.17	.17	.17	.17
21.4000	1	.1	7	.16	.16	.16	.16
21.9000	Î	.1	6	.16	.16	.15	.15
22.4000	1	. 1	5	.15	.15	.15	.15
22.9000	1	.1	4	.14	.14	.14	.14
23.4000	Î	. 1	4	.13	.13	.13	.13
23.9000	I	. 1	3	.13	.11	.07	.04
24.4000	T -	. 0	2	.01	.01	.00	.00
24.9000	J.	.0)	.00	.00	.00	.00

S/N: A215014070C4 PondPack Ver. 8.0068

Type... Node: Addition Summary Page 6.07
Name... DP 3 Event: 25 yr
File... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 25 YR

Time	HYDROGRAPH ORDINATES (cfs) Output Time increment = .1000 hrs
hrs	Time on left represents time for first value in each row.
25.4000	.00

 Type.... Node: Addition Summary Page 6.08 Event: 50 yr Name.... DP 3

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Storm... TypeIII 24hr Tag: 50 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Jpstream Link ID	Upstream Node ID HYG	file	HYG ID	HYG tag
ro dp3	JUNCTION		JUNCTION	50 YR
INFLOWS TO: DP 3				
		Volume	Peak Time	Peak Flow

HYG file	HYG ID		tag	ac-ft	hrs	cfs
	JUNCTION	50	YR	.958	12.3000	6.73

TOTA.	L FLOW	INTO:	DP	3					
							- Volume	Peak Time	Peak Flow
HYG	file	HYG	ID		HYG	tag	ac-ft	hrs	cfs
		DP 3	3		50	YR	.958	12.3000	6.73

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.09 Name.... DP 3 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Storm... TypeIII 24hr Tag: 50 YR

TOTAL NODE INFLOW ...

HYG file = HYG ID = DP 3 HYG Tag = 50 YR

Peak Discharge = 6.73 cfs Time to Peak = 12,3000 hrs
HYG Volume = .958 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time hrs	1	Time on	01		increment	= .1000 hrs	in each row.
9.4000	1	.0	0	.00	.00	.00	.00
9.9000	T	. 0	0	.00	.01	.01	.01
10.4000	1	. 0	1	.01	.01	.01	.02
10.9000	1	. 0	2	.02	.03	.05	.09
11.4000	1	. 1	4	.20	.29	.49	.88
11.9000	1	1.5	5	2.68	4.70	6.45	6.73
12.4000	1	6.1	6	5.38	4.45	3.63	3.07
12.9000	T	2,7	1	2.45	2.25	2.11	2.01
13.4000	1	1.9	4	1.89	1.83	1.78	1.72
13.9000	1	1.6	7	1.61	1.55	1.50	1.45
14.4000	1	1.4)	1.36	1.31	1.27	1.22
14,9000	1	1.1	3	1.13	1.09	1.04	1.00
15.4000	1	. 9:	3	.88	.83	.78	.74
15,9000	1	. 7)	.67	.64	.61	.58
16.4000	1	. 5	5	.54	.53	.51	.50
16,9000	T	. 4	3	. 47	.45	.44	. 43
17.4000	1	. 4	L.	.40	.39	.37	.36
17.9000	1	. 3	ō	.34	.33	.32	.31
18,4000	1	. 3	L	.30	.29	.29	.29
18.9000	1	. 2	3	.28	.27	.27	.26
19.4000	1	. 2	5	.25	.25	.25	.24
19,9000	1	. 2		.23	.23	.23	.22
20.4000	(T)	. 2:		.22	.22	.22	.21
20.9000	1	. 2	L	.21	.21	.21	.20
21.4000	1	. 2)	.20	.20	.20	.20
21.9000	90	. 1	9	.19	.19	.19	.19
22.4000	1	.1	3	.18	.18	.18	.18
22,9000	T	. 1	7	.17	.17	.17	.17
23.4000	1	. 1	7	.16	.16	.16	.16
23.9000	T.	. 1	5	.15	.14	.09	.04
24.4000	L	. 02	2	.01	.01	.01	.00

D/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2:12 Difference of the control of the co

Date: 8/25/2011

Type.... Node: Addition Summary
Name.... DP 3
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 50 YR Page 6.10 Event: 50 yr

Time on left	represents tim	ne for fir	st value in	each row.
.00	.00	.00	.00	.00
.00	.00			
	Time on left	Output Time income Time on left represents time .00 .00	Output Time increment = . Time on left represents time for fir .00 .00 .00	

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.11 Event: 100 yr

Name... DP 3
File... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 3

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

The second second second		Upstream		HYG	file	HYG	ID	HYG	tag
TO DP3	 	JUNCTION	 	3540		JUL	NCTION	100	YR

INFLOWS TO:	DP 3		Volume	Peak Time	Peak Flow	
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs	
	JUNCTION	100 YR	1,231	12.3000	9.19	

TOTAL FLOW	INTO: DP 3				
			Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 3	100 YR	1.231	12.3000	9.19

Curtis Jones & Associates S/N: A215014070C4 Time: 2:12 PM Date: 8/25/2011 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.12 Name.... DP 3 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW Storm... TypeIII 24hr Tag: 100 YR

TOTAL NODE INFLOW...

HYG file = HYG ID = DP 3 HYG Tag = 100 YR

_____ Peak Discharge = 9.19 cfs Time to Peak = 12,3000 hrs HYG Volume = 1.231 ac-ft ------

HYDROGRAPH ORDINATES (cfs)

Time		HYDROGRAPH ORDINATES (cfs) Output Time increment = .1000 hrs						
hrs	Time on left	represents	time for	first value	in each row.	_		
8.9000	.00	.00	.00	.00	.00			
9.4000 1	.00	.00	.01	.01	.01			
9.9000	.01	.01	.01	.01	.01			
10.4000	.02	.02	.02	.03	. 05			
10.9000	.08	.11	.15	.20	.25			
11.4000	.34	. 44	.58	.88	1.45			
11.9000	2.25	3.69	6.25	8.80	9.19			
12.4000	8.30	7.15	5.85	4.72	3.93			
12.9000	3,41	3.04	2.75	2.52	2.37			
13.4000	2.26	2.18	2.11	2.05	1.99			
13.9000	1.94	1.87	1.81	1.76	1.70			
14.4000	1.66	1.61	1.57	1.52	1.47			
14.9000	1.43	1.38	1.34	1.29	1.24			
15.4000	1.19	1.14	1.09	1.05	.98			
15.9000	.92	.87	.81	.77	.74			
16.4000	.71	.69	.66	. 64	. 62			
16.9000	.60	.59	.57	.55	.54			
17.4000	.52	.51	.49	. 47	.46			
17.9000 I	. 44	.43	.41	.40	.39			
18,4000	.38	.38	.37	.37	.36			
18.9000	.35	.35	.34	. 34	.33			
19,4000	.33	.33	.32	.32	.31			
19.9000	.31	.30	.30	.29	.29			
20.4000	.29	.28	.28	.27	.27			
20.9000	. 27	.26	.26	.26	. 25			
21.4000	.25	.25	.24	.24	.24			
21.9000	.23	.23	.23	.23	.23			
22.4000	.22	.22	.22	.22	.21			
22.9000	.21	.21	.21	.20	.20			
23.4000	.20	.20	.20	.19	.19			
23.9000	.19	.19	.17	.11	.05			

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2:12 PM

Date: 8/25/2011

Page 6.13 Event: 100 yr Type.... Node: Addition Summary Name.... DP 3
File... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
Storm... TypeIII 24hr Tag: 100 YR

Time	J.	HYDROGRAPH ORDINATES (cfs) Output Time increment = .1000 hrs								
hrs	1	Time on	left	represents	time fo	r first	value	in	each	row.
24.4000	1	,03		.02	. 0	1	.01		2000	.00
24.9000	T	.00	Č	.00	. 0	0	.00			.00
25.4000	1	.00		.00	.0	0				

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:12 PM Date: 8/25/2011 Type.... Vol: Elev-Area Page 7.01

Name.... POND 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Elevation	Planimeter	Area	A1+A2+sqr(A1*A2)	Volume	Volume Sum
(ft)	(sq.in)	(acres	· New York	(ac-ft)	(ac-ft)
1443.50		.0600	.0000	.000	.000
1445.50		.1000	.2375	.158	.158
1447.50		.1400	.3583	.239	.397

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Area1 + Area2 + sq.rt.(Area1*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment Area1, Area2 = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011

Type.... Outlet Input Data Page 8.01

Name.... Outlet 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

REQUESTED POND WS ELEVATIONS:

Min. Elev. = 1443.50 ft Increment = .10 ft Max. Elev. = 1447.50 ft

---> Forward Flow Only (UpStream to DnStream)
<--- Reverse Flow Only (DnStream to UpStream)
<---> Forward and Reverse Both Allowed

Structure	No.		Outfall	E1, ft	E2, ft
Orifice-Circular	2	>	TW	1445.000	1447.500
Orifice-Circular	1	>	TW	1443.500	1447.500
TW SETUP, DS Channel	L				

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID = TW
Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...

Maximum Iterations= 30

Min. TW tolerance = .01 ft

Max. TW tolerance = .01 ft

Min. HW tolerance = .01 ft

Max. HW tolerance = .01 ft

Min. Q tolerance = .10 cfs

Max. Q tolerance = .10 cfs

 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface)

DNstream ID = TW (Pond Outfall)

WS Elev, D	evice Q	Tail Water	Notes
WS Elev. ft	Q cfs	TW Elev Conver ft +/-ft	
1443.50	.00	Free Outfall	HW & TW below invert
1443.60	.00	Free Outfall	HW & TW below invert
1443.70	.00	Free Outfall	HW & TW below invert
1443.80	.00	Free Outfall	HW & TW below invert
1443.90	.00	Free Outfall	HW & TW below invert
1444.00	.00	Free Outfall	HW & TW below invert
1444.10	.00	Free Outfall	HW & TW below invert
1444.20	.00	Free Outfall	HW & TW below invert
1444.30	.00	Free Outfall	HW & TW below invert
1444.40	.00	Free Outfall	HW & TW below invert
1444.50	.00	Free Outfall	HW & TW below invert
1444.60	.00	Free Outfall	HW & TW below invert
1444.70	.00	Free Outfall	HW & TW below invert
1444.80	.00	Free Outfall	HW & TW below invert
1444.90	.00	Free Outfall	HW & TW below invert
1445.00	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El
1445.10	.03	Free Outfall	CRIT.DEPTH CONTROL Vh= .024ft Dcr= .076ft CRIT.DEPTH
1445.20	.11	Free Outfall	CRIT.DEPTH CONTROL Vh= .053ft Dcr= .146ft CRIT.DEPTH
1445.30	.24	Free Outfall	CRIT.DEPTH CONTROL Vh= .080ft Dcr= .220ft CRIT.DEPTH
1445.40	.42	Free Outfall	CRIT.DEPTH CONTROL Vh= .109ft Dcr= .291ft CRIT.DEPTH
1445.50	.63	Free Outfall	CRIT.DEPTH CONTROL Vh= .140ft Dcr= .360ft CRIT.DEPTH
1445.60	.86	Free Outfall	CRIT.DEPTH CONTROL Vh= .175ft Dcr= .425ft CRIT.DEPTH
1445.70	1.12	Free Outfall	CRIT.DEPTH CONTROL Vh= .212ft Dcr= .488ft CRIT.DEPTH
1445.80	1.39	Free Outfall	H = .43
1445.90	1.54	Free Outfall	H = .53
1446.00	1.68	Free Outfall	H = .63
1446.10	1.81	Free Outfall	H = .72
1446.20	1.93	Free Outfall	H = .82
1446.30	2.05	Free Outfall	H = .93
1446.40	2.15	Free Outfall	H = 1.03
1446.50	2.26	Free Outfall	H = 1.13
1446.60	2.35	Free Outfall	H =1.22
1446.70	2.45	Free Outfall	H =1.32
1446.80	2.54	Free Outfall	H = 1.43

Type.... Individual Outlet Curves Name.... Outlet 1 Page 8.04

RATING TABLE FOR ONE OUTLET TYPE

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Structure ID = 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, Device Q	Tail Water	Notes	
WS Elev. Q ft cfs	TW Elev Converg	ge Computation Messages	
1446.90 2.63	Free Outfall	н =1.53	
1447.00 2.71 1447.10 2.79	Free Outfall Free Outfall	H =1.63 H =1.72	
1447.20 2.87		H =1.82	
1447.30 2.95 1447.40 3.03	Free Outfall Free Outfall	H = 1.93 H = 2.03	
1447.50 3.10	Free Outfall	H =2.13	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

CRIT.DEPTH CRIT.DEPTH CRIT.DEPTH CRIT.DEPTH
CRIT.DEPTH CRIT.DEPTH
CRIT.DEPTH CRIT.DEPTH
CRIT. DEPTH
CRIT. DEPTH

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011 PondPack Ver. 8.0068

Page 8.06

Type.... Individual Outlet Curves Name.... Outlet 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular)

WS Elev, Device Q		Tail Water	Notes
WS Elev. ft	Q cfs	TW Elev Converge ft +/-ft	e Computation Messages
1446.90 1447.00 1447.10 1447.20 1447.30 1447.40 1447.50	1.68 1.70 1.73 1.76 1.78 1.81	Free Outfall	H = 3.15 H = 3.25 H = 3.35 H = 3.45 H = 3.55 H = 3.65 H = 3.75

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM

Date: 8/25/2011

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

**** COMPOSITE OUTFLOW SUMMARY ****

WS Elev,	Total Q	33554332	Converg		Notes
Elev.	Q	TW Elev		C	
ft	cfs	ft	+/-ft	Con	tributing Structures
1443.50	.00	Free Out	fall	None	contributing
1443.60	.02	Free Out		1	
1443.70	.09	Free Out	fall	1	
1443.80	.19	Free Out	fall	1	
1443.90	.31	Free Out	fall	1	
1444.00	.47	Free Out	fall	1	
1444.10	.56	Free Out	fall	1	
1444.20	.63	Free Out	fall	1	
1444.30	.70	Free Out	fall	1	
1444.40	.76	Free Out	fall	1	
1444.50	.82	Free Out	fall	1	
1444.60	.87	Free Out	fall	1	
1444.70	.92	Free Out	fall	1	
1444.80	.97	Free Out	fall	1	
1444.90	1.01	Free Out	fall	1	
1445.00	1.06	Free Out	fall	1	
1445.10	1.13	Free Out	fall	2 +1	
1445.20	1.25	Free Out	fall	2 +1	
1445.30	1.42	Free Out	fall	2 +1	
1445.40	1.63	Free Out	fall	2 +1	
1445.50	1.88	Free Out	fall	2 +1	
1445.60	2.15	Free Out	fall	2 +1	
1445.70	2.44	Free Out	fall	2 +1	
1445.80	2.74	Free Out		2 +1	
1445.90	2.93	Free Out	fall	2 +1	
1446.00	3.10	Free Out	fall	2 +1	
1446.10	3.26	Free Out		2 +1	
1446.20	3.41	Free Out		2 +1	
1446.30	3.55	Free Out		2 +1	
1446.40	3.69	Free Out		2 +1	
1446.50	3.82	Free Out		2 +1	
1446.60	3.95	Free Out	fall	2 +1	
1446.70	4.07	Free Out	fall	2 +1	
1446.80	4.19	Free Out		2 +1	
1446.90	4.30	Free Out		2 +1	
1447.00	4.41	Free Out		2 +1	
1447.10	4.52	Free Out		2 +1	
1447.20	4.63	Free Out	fall	2 +1	

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM PondPack Ver. 8.0068

Type.... Composite Rating Curve Name.... Outlet 1 Page 8.08

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

**** COMPOSITE OUTFLOW SUMMARY ****

WS Elev,	Total Q		Notes
		Converge	
Elev. ft	Q cfs	TW Elev Error ft +/-ft Con	tributing Structures
		LARABARA ARABA ARABA	
1447.30	4.73	Free Outfall 2 +1	
1447.40	4.83	Free Outfall 2 +1	
1447.50	4.93	Free Outfall 2 +1	

S/N: A215014070C4 Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011 PondPack Ver. 8.0068

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

INFILTRATION RATING TABLE CALCULATIONS

Infilt.(cfs) = (2.0000 (in/hr) * Area) * KuWhere: Ku = units conversion factor

		,,,,,,	. Ku sunitos		40002	
			W.S.Elev	Total Area	Infilt.	
			ft	acres	cfs	
No storage	at	this	elevation	. infiltratio		zero.
			1443.50	.0600	.00	
			1443.60	.0618	.12	
			1443.70	.0635	.13	
			1443.80	.0654	.13	
			1443.90	.0672	.14	
			1444.00	.0690	.14	
			1444.10	.0709	.14	
			1444.20	.0728	.15	
			1444.30	.0748	.15	
			1444.40	.0767	.15	
			1444.50	.0787	.16	
			1444.60	.0807	.16	
			1444.70	.0828	.17	
			1444.80	.0848	.17	
			1444.90	.0869	.18	
			1445.00	.0890	.18	
			1445.10	.0912	.18	
			1445.20	.0934	.19	
			1445.30	.0955	.19	
			1445.40	.0978	.20	
			1445.50	.1000	.20	
			1445.60	.1018	.21	
			1445.70	.1037	.21	
			1445.80	.1056	.21	
			1445.90	.1075	.22	
			1446.00	.1094	.22	
			1446.10	.1113	.22	
			1446.20	.1132	.23	
			1446.30	.1152	.23	
			1446.40	.1172	.24	
			1446.50	.1192	.24	
			1446.60	.1212	.24	
			1446.70	.1232	.25	
			1446.80	.1252	.25	
			1446.90	.1273	.26	
			1447.00	.1294	.26	
			1447.10	.1315	.27	
			1447.20	.1315	.27	
			1447.30	.1357	.27	
			1447.40	.1378	.28	
			1447.40	.1400	.28	
			1447.30	.1400	. 20	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:12 PM

Type.... Pond E-V-Q Table Page 9.02

Name.... POND 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

2S/t + 0 cfs	Q Total cfs	Infilt, cfs	Area acres	Storage ac-ft	Outflow cfs	Elevation ft
.00	.00	.00	.0600	.000	.00	1443.50
1.62	.15	.12	.0618	.006	.02	1443.60
3.21	.22	.13	.0635	.012	.09	1443.70
4.87	.32	.13	.0654	.019	.19	1443.80
6.60	. 45	.14	.0672	.025	.31	1443.90
8.41	.61	.14	.0690	.032	. 47	1444.00
10.20	.70	.14	.0709	.039	.56	1444.10
12.01	.78	.15	.0728	.046	.63	1444.20
13.87	.85	.15	.0748	.054	.70	1444.30
15.77	.92	.15	.0767	.061	.76	1444.40
17.71	.98	.16	.0787	.069	.82	1444.50
19.70	1.03	.16	.0807	.077	.87	1444.60
21.73	1.09	.17	.0828	.085	.92	1444.70
23.81	1.14	.17	.0848	.094	.97	1444.80
25.94	1.19	.18	.0869	.102	1.01	1444.90
28.12	1.24	.18	.0890	.111	1.06	1445.00
30.37	1.31	.18	.0912	.120	1.13	1445.10
32,73	1.44	.19	.0934	.129	1.25	1445.20
35.19	1.61	.19	.0955	.139	1.42	1445.30
37.75	1.83	.20	.0978	.148	1.63	1445.40

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates
Time: 2:12 PM Date: 8/25/2011

Name.... POND 1
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

----------Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + 0 cfs
1445.50	1.88	.158	.1000	.20	2.08	40.39
1445.60	2.15	.168	.1018	.21	2.36	43.11
1445.70	2.44	.179	.1037	.21	2.65	45.89
1445.80	2.74	.189	.1056	.21	2.95	48.73
1445.90	2.93	.200	.1075	.22	3.14	51,49
1446.00	3.10	.211	.1094	.22	3.32	54.29
1446.10	3.26	.222	.1113	.22	3.48	57.13
1446.20	3.41	.233	.1132	.23	3.64	60.00
1446.30	3.55	.244	.1152	.23	3.79	62.91
1446.40	3.69	.256	.1172	.24	3.93	65.86
1446.50	3.82	.268	.1192	.24	4.06	68.86
1446.60	3.95	.280	.1212	.24	4.19	71.90
1446.70	4.07	.292	.1232	.25	4.32	74.98
1446.80	4.19	.304	.1252	.25	4.44	78.11
1446.90	4.30	.317	.1273	.26	4.56	81.28
1447.00	4.41	.330	.1294	.26	4.68	84.50
1447.10	4.52	.343	.1315	.27	4.79	87.77
1447.20	4.63	.356	.1336	.27	4.90	91.09
1447.30	4.73	.370	.1357	.27	5.00	94.45
1447,40	4.83	.383	.1378	.28	5.11	97.87

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:12 PM

Type.... Pond E-V-Q Table Page 9.04

Name.... POND 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

LEVEL POOL ROUTING DATA

= C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - POND 1 IN 2 YR Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation	Outflow	Storage	Area	Infilt.	Q Total	2S/t + 0
ft	cfs	ac-ft	acres	cfs	cfs	cfs
1447.50	4.93	.397	.1400	.28	5.21	101.33

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates
Time: 2:12 PM Date: 8/25/2011

Type.... Pond Routing Summary

Name.... POND 1 OUT Tag: 2 YR

Page 9.05

Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 2 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

====	-=========	===:					
Peak	Inflow	=	1.36	cfs	at	12.1000	hrs
Peak	Outflow	=	.43	cfs	at	12.5000	
Peak	Infiltration	÷	.14	cfs	at	12.5000	hrs
Peak	Elevation	=	1443.97	ft			
Peak	Storage =		.030	ac-ft			

MASS BALANCE (ac-ft)

		-,-,-		
+	Initial Vol	=	.000	
+	HYG Vol IN	=	.133	
-	Infiltration	=	.077	
+	HYG Vol OUT	=	.056	
-	Retained Vol	=	.000	

Unrouted Vol = -.000 ac-ft (.000% of Inflow Volume)

Type.... Pond Routing Summary Page 9.06 Name.... POND 1 OUT Tag: 10 YR Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 10 YR

LEVEL POOL ROUTING SUMMARY

= C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - POND 1 IN 10 YR OUT 10 YR Outflow HYG file = NONE STORED - POND 1

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

______ Starting WS Elev = 1443.50 ft Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

 Peak Inflow
 =
 3.38 cfs
 at
 12.1000 hrs

 Peak Outflow
 =
 .92 cfs
 at
 12.5000 hrs

 Peak Infiltration
 =
 .17 cfs
 at
 12.5000 hrs

 Peak Elevation = 1444.69 ft Peak Storage = .084 ac-

.084 ac-ft _______________

MASS BALANCE (ac-ft)

.000 .297 .116 .182 + Initial Vol = + HYG Vol IN = - Infiltration = - HYG Vol OUT = .000 - Retained Vol =

Unrouted Vol = -.000 ac-ft (.001% of Inflow Volume)

PondPack Ver. 8.0068

Curtis Jones & Associates

Time: 2.10 Time: 2:12 PM Date: 8/25/2011

```
Type.... Pond Routing Summary
Name.... POND 1 OUT Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
                                                                                                         Page 9.07
                                                                                                   Event: 25 yr
```

Storm... TypeIII 24hr Tag: 25 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - POND 1 IN 25 YR
Outflow HYG file = NONE STORED - POND 1 OUT 25 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft Starting WS Elev = 1443.30 ft

Starting Volume = .000 ac-ft

Starting Outflow = .00 cfs

Starting Infiltr. = .00 cfs

Starting Total Qout= .00 cfs

Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 4.60 cfs at 12.1000 hrs
Peak Outflow = 1.15 cfs at 12.5000 hrs
Peak Infiltration = .18 cfs at 12.5000 hrs Peak Elevation = 1445.12 ft Peak Storage = .122 ac-.122 ac-ft

MASS BALANCE (ac-ft) _____

+ Initial Vol = .000 + HYG Vol IN = .397 .135 - Infiltration = .263 - HYG Vol OUT = - Retained Vol =

-.000 ac-ft (.001% of Inflow Volume) Unrouted Vol =

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:12 PM Date: 8/25/2011

```
Type... Pond Routing Summary Page 9.08
Name... POND 1 OUT Tag: 50 YR Event: 50 yr
File... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW
```

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 50 YR
Outflow HYG file = NONE STORED - POND 1 OUT 50 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

Storm... TypeIII 24hr Tag: 50 YR

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 5.71 cfs at 12.1000 hrs
Peak Outflow = 1.70 cfs at 12.5000 hrs
Peak Infiltration = .20 cfs at 12.5000 hrs

Peak Elevation = 1445.43 ft
Peak Storage = .151 ac-ft

MASS BALANCE (ac-ft)

+ Initial Vol = .000 + HYG Vol IN = .490 - Infiltration = .149 - HYG Vol OUT = .341 - Retained Vol = .000

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

```
Type... Pond Routing Summary Page 9.09
Name... POND 1 OUT Tag: 100 YR Event: 100 yr
```

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 3.PPW

Storm... TypeIII 24hr Tag: 100 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 100 YR
Outflow HYG file = NONE STORED - POND 1 OUT 100 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 2.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1443.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak	Inflow	=	7.03	cfs	at	12.1000	hrs
Peak	Outflow	=	2.47	cfs	at	12.4000	hrs
Peak	Infiltration	=	.21	cfs	at	12.4000	hrs
 Peak	Elevation	=	1445.71	ft			
	Storage =			ac-ft			

MASS BALANCE (ac-ft)

+ Initial Vol = .000 + HYG Vol IN = .600 - Infiltration = .163 - HYG Vol OUT = .437 - Retained Vol = .000

Unrouted Vol = -.000 ac-ft (.001% of Inflow Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates
Time: 2:12 PM Date: 8/25/2011

Appendix A A-1

Index of Starting Page Numbers for ID Names

DP 3 2 YR... 6.01, 6.03, 6.05, 6.08, 6.11

---- L -----Litchfield Co.... 2.01, 2.02

---- 0 -----Outlet 1... 8.01, 8.03, 8.07

POND 1... 7.01, 9.01, 9.02

POND 1 OUT 2 YR... 9.05, 9.06, 9.07, 9.08, 9.09

PRDA 3D... 3.01, 4.01, 5.03, 5.04, 5.05, 5.06, 5.07

PRDA 3ND... 3.03, 4.02, 5.08, 5.09, 5.10, 5.11, 5.12

---- W ----Watershed... 1.01 Existing Flows – DL4

Table of Contents

**********	***** MASTER SUMMARY ***********	***
Watershed	Master Network Summary 1	.01
******	** DESIGN STORMS SUMMARY **********	***
Litchfield Co	Design Storms 2	.01
Litchfield Co	2 YR Design Storms 2	.02
******	***** TC CALCULATIONS ***********	***
EXDA 4	Tc Calcs 3	.01
******	***** CN CALCULATIONS ***********	***
EXDA 4	Runoff CN-Area 4	.01
*******	**** RUNOFF HYDROGRAPHS ***********	***
	Unit Hyd. Equations 5	.01
EXDA 4	2 YR Unit Hyd, Summary 5	.03
EXDA 4	10 YR Unit Hyd Summary 5	0.4

Table of Contents

Table of Contents (continued)

ii

EXDA 4	25 YR Unit Hyd. Summary	5.05
EXDA 4	50 YR Unit Hyd. Summary	5.06
EXDA 4	100 YR Unit Hyd. Summary	5.07
******	****** HYG ADDITION **********	. * * * *
DP 4	2 YR Node: Addition Summary	6.01
DP 4	10 YR Node: Addition Summary	6.04
DP 4	25 YR Node: Addition Summary	6.07
DP 4	50 YR Node: Addition Summary	6.10
DP 4	100 YR Node: Addition Summary	6.13

Page 1,01

Type.... Master Network Summary Name.... Watershed

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return E	lvent	Total Depth in	Rainfal Type		RNF	'ID
2 Y	R	3.2000	Synthetic	Curve	TypeIII	24hr
10 Y	R	4.7000	Synthetic	Curve	TypeIII	24hr
25 Y	R.	5.5000	Synthetic	Curve	TypeIII	24hr
50 Y	R	6.2000	Synthetic	Curve	TypeIII	24hr
100 Y	R	7.0000	Synthetic	Curve	TypeIII	24hr

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft T	Qpeak Trun hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
*DP 4	JCT	2	.167	12,5000	. 68		-yearenactics.
*DP 4	JCT	10	.554	12.3500	3.90		
*DP 4	JCT	25	.823	12.3000	6.44		
*DP 4	JCT	50	1.085	12.3000	8.91		
*DP 4	JCT	100	1.411	12.2500	11.96		
EXDA 4	AREA	2	.167	12.5000	. 68		
EXDA 4	AREA	10	.554	12.3500	3.90		
EXDA 4	AREA	25	.823	12.3000	6.44		
EXDA 4	AREA	50	1.085	12.3000	8.91		
EXDA 4	AREA	100	1.411	12.2500	11.96		

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:20 PM Date: 8/25/2011 Type.... Design Storms Page 2.01

Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Title... Project Date: 4/16/2009

Project Engineer: Curtis Jones Project Title: Watershed Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr Total Rainfall Depth= 5.5000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr Total Rainfall Depth= 6.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr Total Rainfall Depth= 7.0000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates

Time: 2:20 Time: Time: 2:20 PM Date: 8/25/2011 Type... Design Storms Page 2.02 Name... Litchfield Co. Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\

Storm... TypeIII 24hr Tag: 2 YR

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 2 yr

Total Rainfall Depth= 3.2000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in
Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr

Total Rainfall Depth= 5.5000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr
Total Rainfall Depth= 6.2000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr
Total Rainfall Depth= 7.0000 in
Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Page 3.01 Type.... Tc Calcs Name.... EXDA 4 File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: TR-55 Sheet Mannings n .4000 Hydraulic Length 225.00 ft 2yr, 24hr P 3.2000 in Slope .132000 ft/ft .19 ft/sec Avg. Velocity Segment #1 Time: .3219 hrs Segment #2: Tc: TR-55 Shallow Hydraulic Length 365.00 ft Slope .082000 ft/ft Unpaved

Avg. Velocity 4.62 ft/sec

Segment #2 Time: .0219 hrs

Total Tc: .3438 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:20 PM

Type.... Tc Calcs Page 3.02 Name.... EXDA 4 File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW Tc Equations used... Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))Where: Tc = Time of concentration, hrs n = Mannings n Lf = Flow length, ft P = 2yr, 24hr Rain depth, inches Sf = Slope, % Unpaved surface: V = 16.1345 * (Sf**0.5)Paved surface: V = 20.3282 * (Sf**0.5)Tc = (Lf / V) / (3600sec/hr)Where: V = Velocity, ft/sec Sf = Slope, ft/ft Tc = Time of concentration, hrs Lf = Flow length, ft

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates
Time: 2:20 PM Date: 8/25/2011

Page 4.01 Type.... Runoff CN-Area Name.... EXDA 4 File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW RUNOFF CURVE NUMBER DATA Soil/Surface Description CN acres %C %UC CN
Soil Type B - Wooded 55 7.770 55.00
Soil Type B - Grass/Meadow 60 .200 60.00 Impervious COMPOSITE AREA & WEIGHTED CN ---> 7.970 55.13 (55)

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:20 PM Date: 8/25/2011

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

DEFINITION OF TERMS: -----= Total area (acres): At = Ai+Ap = Impervious area (acres) = Pervious area (acres) = Runoff curve number for impervious area = Runoff curve number for pervious area fLoss = f loss constant infiltration (depth/time) = Saturated Hydraulic Conductivity (depth/time) = Volumetric Moisture Deficit = Capillary Suction (length) Psi = Horton Infiltration Decay Rate (time^-1) hK = Initial Infiltration Rate (depth/time) fo fc = Ultimate(capacity)Infiltration Rate (depth/time) = Initial Abstraction (length) Ia = Computational increment (duration of unit excess rainfall) dt Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) UDdt = User specified override computational main time increment (only used if UDdt is => .1333Tc) D(t) = Point on distribution curve (fraction of P) for time step t = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67) = Hydrograph shape factor Ks = Unit Conversions * K: = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * KDefault Ks = 645.333 * 0.75 = 484Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc= Total precipitation depth, inches Pa(t) = Accumulated rainfall at time step t Pi(t) = Incremental rainfall at time step t = Peak discharge (cfs) for lin. runoff, for lhr, for 1 sq.mi. = (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.) Qu(t) = Unit hydrograph ordinate (cfs) at time step t Q(t) = Final hydrograph ordinate (cfs) at time step t Rai(t) = Accumulated runoff (inches) at time step t for impervious area Rap(t) = Accumulated runoff (inches) at time step t for pervious area Rii(t) = Incremental runoff (inches) at time step t for impervious area Rip(t) = Incremental runoff (inches) at time step t for pervious area R(t) = Incremental weighted total runoff (inches) = Time increment for rainfall table = S for impervious area: Si = (1000/CNi) - 10 Si Sp = S for pervious area: Sp = (1000/CNp) - 10= Time step (row) number = Time of concentration = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag Th Tp = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

 Type.... Unit Hyd. Equations Page 5.02 Name....

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

PRECIPITATION: -----Column (1): Time for time step t
Column (2): D(t) = Point on distribution curve for time step t
Column (3): Pi(t) = Pa(t) - Pa(t-1): Col.(4) - Preceding Col.(4) Column (4): $Pa(t) = D(t) \times P$: Col.(2) x P PERVIOUS AREA RUNOFF (using SCS Runoff CN Method) ------Column (5): Rap(t) = Accumulated pervious runoff for time step t If $(Pa(t) \text{ is } \le 0.2Sp)$ then use: Rap(t) = 0.0If (Pa(t) is > 0.2Sp) then use: Rap(t) = (Col.(4) - 0.2Sp) **2 / (Col.(4) + 0.8Sp)Column (6): Rip(t) = Incremental pervious runoff for time step t $\hat{Rip}(t) = Rap(t)$ - Rap(t-1) Rip(t) = Col.(5) for current row - Col.(5) for preceding row. IMPERVIOUS AREA RUNOFF -----Column (7 & 8)... Did not specify to use impervious areas. INCREMENTAL WEIGHTED RUNOFF: -----Column (9): $R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$ $R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$ SCS UNIT HYDROGRAPH METHOD: -----Column (10): Q(t) is computed with the SCS unit hydrograph method using R() and Qu().

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:20 PM

Type.... Unit Hyd. Summary
Tag: 2 YR Page 5.03 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 2 YR Tc = .3438 hrs

Drainage Area = 7.970 acres Runoff CN= 55

Computational Time Increment = .04584 hrs Computed Peak Time = 12.5150 hrs
Computed Peak Flow = 69 cfs Computed Peak Flow .69 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.5000 hrs Peak Flow, Interpolated Output = .68 cfs

DRAINAGE AREA

ID:EXDA 4

CN = 55 Area = 7.970 acres S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff -----

.2509 in

.167 ac-ft

HYG Volume167 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4) Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs Unit peak time Tp = .22921 hrs Unit receding limb, Tr = .91685 hrs Total unit time, Tb = 1.14607 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:20 PM

Type..., Unit Hyd. Summary
Tag: 10 YR Page 5.04 Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 10 YR
Tc = .3438 hrs

Drainage Area = 7.970 acres Runoff CN= 55

Computational Time Increment = .04584 hrs Computed Peak Time = 12.3317 hrsComputed Peak Flow = 3.93 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.3500 hrs Peak Flow, Interpolated Output = 3.90 cfs ______

DRAINAGE AREA

ID: EXDA 4

CN = 55 Area = 7.970 acres

S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff -----

.8346 in .554 ac-ft

HYG Volume554 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4) Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs Unit peak time Tp = .22921 hrs Unit receding limb, Tr = .91685 hrs Total unit time, Tb = 1.14607 hrs

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:20 PM Date: 8/25/2011 Type.... Unit Hyd. Summary Page 5.05 Tag: 25 YR Name.... EXDA 4 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 25 YR
TC = .3438 hrs

Drainage Area = 7.970 acres Runoff CN= 55

Computational Time Increment = .04584 hrs
Computed Peak Time = 12.2858 hrs
Computed Peak Flow = 6.46 cfs 6.46 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 6.44 cfs ______

DRAINAGE AREA

ID: EXDA 4

CN = 55 Area = 7.970 acres

S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff

1.2393 in .823 ac-ft

HYG Volume823 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4) Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs Unit peak time Tp = .22921 hrs Unit receding limb, Tr = .91685 hrs Total unit time, Tb = 1.14607 hrs

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:20 PM Date: 8/25/2011

Page 5.06 Type.... Unit Hyd. Summary Tag: 50 YR Name... EXDA 4 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 50 YR Tc = .3438 hrs

Drainage Area = 7.970 acres Runoff CN= 55

Computed Peak Flow = 0.04584 hrs

Computed Peak Flow = 8.97 cfs Computed Peak Flow 8.97 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 8.91 cfs

DRAINAGE AREA

ID: EXDA 4

CN = 55 Area = 7.970 acres

S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff

1.6341 in 1.085 ac-ft

1.085 ac-ft (area under HYG curve) HYG Volume ...

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4) Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs Unit peak time Tp = .22921 hrs Unit receding limb, Tr = .91685 hrs Total unit time, Tb = 1.14607 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:20 PM

Type.... Unit Hyd. Summary
Tag: 100 YR Page 5.07 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 4 100 YR

= .3438 hrsTc

Drainage Area = 7.970 acres Runoff CN= 55

Computational Time Increment = .04584 hrs Computed Peak Time = 12.2858 hrsComputed Peak Flow = 12.06 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.2500 hrs Peak Flow, Interpolated Output = 11.96 cfs

DRAINAGE AREA

ID: EXDA 4

CN = 55 Area = 7.970 acres

S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff

2.1239 in 1.411 ac-ft

HYG Volume... 1.411 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34382 hrs (ID: EXDA 4) Computational Incr, Tm = .04584 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 26.26 cfs Unit peak time Tp = .22921 hrs Unit receding limb, Tr = .91685 hrs Total unit time, Tb = 1.14607 hrs

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:20 PM Date: 8/25/2011 Type.... Node: Addition Summary Page 6.01 Name.... DP 4 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW Storm... TypeIII 24hr Tag: 2 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node	ID HYG file	HYG ID	HYG tag
TO DP 4	EXDA 4		EXDA 4	2 YR

INFLOWS TO:	DP 4		- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	EXDA 4	2 YR	.167	12.5000	. 68

TOTAL FLOW	INTO: DP 4				
			Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 4	2 YR	.167	12.5000	.68

S/N: A215014070C4 Curtis Jones & Associates Time: 2:20 PM PondPack Ver. 8.0068 Date: 8/25/2011 Type... Node: Addition Summary Page 6.02
Name... DP 4 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 2 YR

TOTAL NODE INFLOW... HYG file =

HYG ID = DP 4HYG Tag = 2 YR

Peak Discharge = .68 cfs Time to Peak = 12.5000 hrs HYG Volume = .167 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	į.	HYDROGRAPH O Output Time		cfs) = .0500 hrs	
hrs	Time on	left represents			in each row.
12.0000	.00	.00	.03	.08	.18
12.2500	1 .33	.43	.54	.62	. 67
12.5000	. 68	. 68	. 65	.60	.56
12.7500	.5	.48	.45	.43	.41
13.0000	.39	.37	.36	.35	.34
13.2500	.33	.32	.31	. 31	.31
13.5000	1 .30		.30	.29	.29
13.7500	1 .29		.28	.28	.28
14.0000	.2		.26	.26	.26
14.2500	.25		.25	. 25	.25
14.5000	.24		.24	.24	.24
14,7500	.24		.23	.23	.23
15.0000	.23	.22	.22	.22	.22
15.2500	. 22	.21	.21	.21	.21
15.5000	.20		.20	.20	.19
15.7500	.19	.19	.18	.18	.18
16.0000	.18		.17	.17	.17
16.2500	.16		.16	.16	.16
16.5000	.16		.15	. 15	.15
16.7500	1 .15		.15	.15	.14
17.0000	.14		.14	.14	.14
17.2500	.14		.13	.13	.13
17.5000	.13		.13	.13	.12
17.7500	.12		.12	.12	.12
18.0000	.12		.11	.11	.11
18.2500	.11		.11	.11	.11
18.5000	.11		.11	.10	.10
18.7500	.10		.10	.10	.10
19.0000	,10		.10	.10	.10
19.2500	.10		.10	.10	.10
19,5000	.10	.10	.10	.10	.10

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.03 Name... DP 4
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 2 YR Event: 2 yr

Time	Ť.		YDROGRAPH ORDINA'		The control of the co			
hrs	Time		represents time			in each	row.	
19.7500	1220	.10	.10	.10	.09		.09	-
20.0000	1	.09	.09	.09	.09		.09	
20.2500	P	.09	.09	.09	.09		.09	
20.5000	T	.09	.09	.09	.09		.09	
20.7500	1	.09	.09	.09	.09		.09	
21.0000	T	.09	.09	.09	.09		.09	
21.2500	1	.09	.09	.09	-08		.08	
21.5000	1	.08	.08	.08	.08		.08	
21.7500	I .	.08	.08	.08	.08		.08	
22.0000		.08	.08	.08	.08		.08	
22.2500	I	.08	.08	.08	.08		.08	
22.5000	1	.08	.08	.08	.08		.08	
22.7500	T.	.08	.08	.08	.07		.07	
23.0000	1	.07	.07	.07	.07		.07	
23.2500	9	.07	.07	.07	.07		.07	
23.5000	1	.07	.07	.07	.07		.07	
23.7500	I	.07	.07	.07	.07		.07	
24.0000	1	.07	.06	.06	.05		.04	
24.2500	d .	.03	.02	.02	.01		.01	
24.5000	1	.01	.00	.00	.00		.00	
24,7500	1	.00						
and the factor of the								

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:20 PM

Type.... Node: Addition Summary

Name.... DP 4

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW Storm... TypeIII 24hr Tag: 10 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node I	D HYG file HYG	ID HY	G tag
TO DP 4	EXDA 4	EXI	DA 4 10	YR

Page 6.04

Event: 10 yr

INFLOWS TO:	DP 4				
			- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs

	EXDA	4	10	YR	.554	12,3500	3.90
TOTAL FLOW HYG file	INTO:	DP 4	 НҮG	 tag	- Volume	Peak Time	Peak Flow cfs
	DP 4		10	YR	.554	12.3500	3.90

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:20 PM Date: 8/25/2011

Type.... Node: Addition Summary Page 6.05 Event: 10 yr Name... DP 4

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

TOTAL NODE INFLOW ...

HYG file =

HYG ID = DP 4 HYG Tag = 10 YR

 Peak Discharge =
 3.90 cfs

 Time to Peak =
 12.3500 hrs

 HYG Volume =
 .554 ac-ft

HYDDOCDADH ODDINAMES /-f-)

Time			Output Time	increment	= .0500 hrs	
hrs	į.,	Time on	left represents			in each row.
11.7500	122	.00	.01	.03	.10	.25
12.0000	1	.54	1.02	1.70	2.49	3.20
12.2500	1	3.68	3.89	3.90	3.78	3.57
12.5000		3.33	3.05	2.74	2.44	2.16
12.7500	1	1.92	1.73	1.58	1.47	1.37
13.0000	1	1.29	1.21	1.15	1.10	1.05
13.2500	1	1.01		.95	.93	.92
13.5000	1	.90		.87	.86	.85
13.7500	1	.84		.81	.80	.78
14.0000	1	.77		.74	.73	.72
14,2500	1	.71		. 69	.68	. 68
14.5000	1	. 67	.66	.66	.65	. 64
14.7500	1	. 64	.63	.62	.62	.61
15.0000	1	.60	.60	.59	.58	.58
15.2500	1	.57	.56	.55	.55	.54
15.5000	1	.53		.52	.51	.50
15.7500	1	. 49	.49	.48	. 47	.46
16.0000	1	. 45		. 44	.43	.42
16.2500		. 42		.41	. 40	. 40
16.5000	1	.39		.39	.38	.38
16.7500	1	. 38		.37	.37	.36
17.0000	1	.36		.35	.35	.34
17.2500	J	.34		.33	_33	.33
17.5000	1	.32	.32	.32	.31	.31
17.7500	1	.30	.30	.30	.29	.29
18.0000	1	.29	.28	.28	.27	.27
18.2500	1	.27	.27	.26	.26	.26
18.5000	1	.26	.26	.26	.26	.26
18.7500	i	.25	.25	.25	.25	.25
19.0000	1	.25		.25	.25	.25
19.2500	1	.24	.24	.24	.24	. 24

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.06 Event: 10 yr Name... DP 4
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 10 YR

Time	(HYDROGRAPH O Output Time			
hrs	Time on	left represents	time for	first value	in each row.
19.5000	.24	.24	.24	.24	.23
19.7500	.23	.23	.23	.23	.23
20.0000	.23	.23	.23	.22	.22
20.2500	,22	.22	.22	.22	.22
20.5000	.22	.22	.22	.22	.21
20.7500	.21	.21	.21	.21	.21
21.0000	.21	.21	.21	.21	.21
21.2500	.21	.20	.20	.20	.20
21.5000	.20	.20	.20	.20	.20
21.7500	.20	.20	.20	,19	.19
22.0000	1 .19	.19	.19	.19	.19
22.2500	.19	.19	.19	.19	.18
22.5000	.18	.18	.18	.18	.18
22.7500	.18	.18	.18	.18	.18
23.0000	.17	.17	.17	.17	.17
23.2500	.17	.17	.17	.17	.17
23.5000	.17	.16	.16	.16	.16
23.7500	.16	.16	.16	.16	.16
24.0000	.16	.15	.14	.12	.10
24.2500	.08	.05	.04	.03	.02
24.5000	.01	.01	.01	.00	.00
24,7500	.00	.00	.00		

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Name.... DP 4 Page 6.07 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW Storm... TypeIII 24hr Tag: 25 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link II	Upstream Node	ID HYG file	HYG ID	HYG tag
TO DP 4	EXDA 4		EXDA 4	25 YR
=================				

INFLOWS TO:	DP 4			- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG	tag	ac-ft	hrs	cfs
	EXDA 4	25	YR	.823	12.3000	6.44

TOTAL FLOW	INTO: DP 4		Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
330000000	DP 4	25 YR	.823	12,3000	6.44

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068

Time: 2:20 PM Date: 8/25/2011

Type.... Node: Addition Summary Name.... DP 4 Page 6.08 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW Storm... TypeIII 24hr Tag: 25 YR

TOTAL NODE INFLOW ... HYG file =

HYG ID = DP 4 HYG Tag = 25 YR

Peak Discharge = 6.44 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .823 ac-ft

Time hrs	01	YDROGRAPH ORI utput Time in represents	ncrement	= .0500 hrs	in each row.
11.5500	.00	.00	.02	.05	.12
11.8000	.23	.39	.63	1.00	1.57
12.0500	2.41	3.51	4.69	5.70	6,28
12.3000	6.44	6.30	5.97	5,55	5.10
12.5500	4.62	4.12	3.64	3.20	2.83
12.8000	2.54	2.31	2.13	1.98	1.85
13.0500	1.74	1.65	1.56	1.49	1.44
13.3000	1.39	1.35	1.32	1.29	1.27
13.5500	1.25	1.23	1.21	1.19	1.17
13.8000	1.15	1.14	1.12	1.10	1.08
14.0500	1.06	1.04	1.02	1.00	.99
14.3000	.98	.96	.95	.94	. 93
14.5500	.92	.91	.90	.89	.88
14.8000	.87	.86	.85	.84	.83
15.0500	.82	.81	.80	.79	.78
15.3000	.77	.76	.75	.74	.73
15.5500 [.72	.71	.70	.69	.68
15.8000	. 67	.66	.64	.63	. 62
16.0500	.61	.60	.59	.58	.57
16.3000	.56	.56	.55	.54	.54
16.5500	.53	.53	.52	.52	.51
16.8000	.51	.50	.50	.49	.49
17.0500	. 48	.48	. 47	. 47	.46
17.3000	. 46	. 45	.45	. 44	. 44
17.5500	.43	. 43	.42	.42	.41
17,8000	.41	.40	.40	.39	.39
18.0500	.38	.38	.37	.37	.36
18.3000	.36	.36	.36	. 35	.35
18.5500	. 35	.35	.35	.35	.34
18,8000	.34	.34	.34	.34	.34
19.0500	.34	.33	.33	.33	.33

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.09 Event: 25 yr Name.... DP 4

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 25 YR

HYDROGRAPH ORDINATES (cfs) Output Time increment = .0500 hrs Time | Output Time increment = .0500 hrs hrs | Time on left represents time for first value in each row.

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Name.... DP 4

Page 6.10

Event: 50 yr File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW Storm... TypeIII 24hr Tag: 50 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID Upstream Node ID HYG file HYG	TD HVC	
	10	tag
MO DR 4		
TO DP 4 EXDA 4 EXD.	A 4 50	YR

HYG file	HYG ID	HYG	tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	EXDA 4	50	YR	1.085	12.3000	8.91

TOTAL FLOW	INTO: DP 4		Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 4	50 YR	1.085	12.3000	8.91

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068

Time: 2:20 PM Date: 8/25/2011

Type... Node: Addition Summary Page 6.11
Name... DP 4 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

TOTAL NODE INFLOW...

HYG file =

HYG ID = DP 4 HYG Tag = 50 YR

 Type... Node: Addition Summary
Name... DP 4
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW
Storm... TypeIII 24hr Tag: 50 YR Page 6.12 Event: 50 yr

Time hrs	l T	ime on	0		increment	(cfs) = .0500 hrs first value	in and	****	
						value			
18.9500	1	. 42	2	.42	.42	.41		.41	
19.2000	T	. 41	7	.41	.41	.40		.40	
19.4500	1	. 40	1	. 40	.40	.40		.39	
19.7000	Î	.39)	.39	.39	.39		.38	
19.9500	1	.38		.38	.38	.38		.37	
20.2000	1	.37		.37	.37	.37		.37	
20.4500	1	.36	5	.36	.36	.36		.36	
20.7000	1	.36	5	.36	.35	.35		.35	
20.9500	4	.35		.35	.35	.35		.34	
21,2000	1	.34		.34	.34	.34		.34	
21.4500	1	.34		.33	.33	.33		.33	
21.7000	Î	. 33		.33	.32	.32		.32	
21.9500	1.	.32		.32	.32	.32		.31	
22.2000	T.	.31		.31	.31	.31		.31	
22.4500	1	.31		.30	.30	.30		.30	
22.7000	Î	.30		.30	.29	.29		.29	
22.9500	1	.29		.29	.29	.29		.28	
23,2000	T	.28		.28	.28	-28		.28	
23.4500	Î'	.27		.27	.27	.27		.27	
23.7000	1	.27		.27	.26	.26		.26	
23.9500	E	.26		.26	.25	.23		.20	
24.2000	T.	.16		.12	.09	.06		.04	
24.4500	1	.03		.02	.01	.01		.01	
24.7000	Ì	.00		.00	.00	.00		.00	

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.13 Event: 100 yr

Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID Upstream Node ID HYG file HYG ID		
	HYG	tag
TO DP 4 EXDA 4 EXDA 4	100	YR

INFLOWS TO:	DP 4					
HYG file	HYG ID	HYG	tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	EXDA 4	100	YR	1.411	12.2500	11.96

TOTAL FLOW	INTO: DP 4				
			Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 4	100 YR	1.411	12,2500	11.96

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6.14 Name.... DP 4 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW Storm... TypeIII 24hr Tag: 100 YR

TOTAL NODE INFLOW ... HYG file =

HYG ID = DP 4 HYG Tag = 100 YR

 Peak Discharge =
 11.96 cfs

 Time to Peak =
 12.2500 hrs

 HYG Volume =
 1.411 ac-ft

Time	I	HYDROGRAPH O Output Time			
hrs	Time on le	ft represents			in each row.
10.8500	.00	.00	,01	.02	.03
11.1000	.05	.07	.09	.12	.15
11.3500	1 .19	.23	.28	.33	.39
11.6000	.47	.58	.75	.98	1.30
11.8500	1.72	2.27	3.02	4.13	5.70
12.1000	7.65	9.64	11.20	11.96	11.95
12.3500	11.44	10.65	9.76	8.85	7.93
12.6000	7.01	6.14	5.36	4.72	4.21
12.8500	3.80	3.49	3.23	3.01	2.83
13.1000	1 2.66	2.52	2.40	2.31	2.23
13.3500	2.16	2.11	2.07	2.03	1.99
13.6000	1.96	1.92	1.89	1.86	1.83
13.8500	1.80	1.76	1.73	1.70	1.67
14.1000	1.64	1.61	1.58	1.55	1.53
14.3500	1.51	1.49	1.48	1.46	1.44
14.6000	1.43	1.41	1.39	1.38	1.36
14.8500	1.35	1.33	1.31	1.30	1.28
15.1000	1.27	1.25	1.23	1.22	1.20
15.3500	1.18	1.17	1.15	1.13	1.12
15.6000	1.10	1.08	1.06	1.05	1.03
15.8500	1.01	.99	.98	.96	.94
16.1000	.92	.91	.89	.88	.87
16.3500	.86	.85	. 84	.83	.82
16.6000	.81	.80	.80	.79	.78
16.8500	.77	.77	.76	.75	.74
17.1000	.73	.73	.72	. 71	.70
17.3500	. 69	. 69	.68	.67	.66
17.6000	.66	.65	.64	.63	. 62
17.8500	.61	.61	.60	.59	.58
18.1000	.57	.57	.56	.55	.55
18.3500	.55	. 54	.54	. 54	.53

S/N: A215014070C4 PondPack Ver. 8.0068

Type... Node: Addition Summary Fage 5.15
Event: 100 yr Page 6.15

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

HYDROGRAPH ORDINATES (cfs) Output Time increment = .0500 hrs Time | Output Time increment = .0500 hrs hrs | Time on left represents time for first value in each row.

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2.20 PM Time: 2:20 PM Date: 8/25/2011

Appendix A A-1

Index of Starting Page Numbers for ID Names

---- D ----DP 4 2 YR... 6.01, 6.04, 6.07, 6.10, 6.13

EXDA 4... 3.01, 4.01, 5.03, 5.04, 5.05, 5.06, 5.07

---- L -----Litchfield Co.... 2.01, 2.02

---- W -----Watershed... 1.01 Proposed Flows - DL4

Table of Contents

***	*****	*****	*****	MASTER	SUMMA	ARY **	***	* * *	***	* * *	***	****
Wat	ershed.		Master	Netwo	rk Sum	nmary			GP.		•	1.01
***	****	*****	** DESI	GN STO	RMS SU	IMMARY	Z **	* * *	* * *	* * *	***	****
Lit	chfield	d Co	Design	Storm	s			. 5 2		60-3	c	2.01
Lit	chfield	i Co	2 YR Design	Storm	s				٠.			2.02
***	* * * * * * *	*****	****	TC CAL	CULATI	ONS *	***	***	* * *	* * *	***	****
PRD	A 4D		Tc Cal	cs					2,9 3)			3.01
PRDA	A 4ND		Tc Cal	cs	,, i,,,,		•••					3.04
***	* * * * * *	*****	*****	CN CAL	CULATI	ONS *	***	* * *	* * *	* * *	***	****
PRDA	A 4D		Runoff	CN-Ar	ea			(6.5)	. (* 5)			4.01
PRDA	A 4ND	*****	Runoff	CN-Ar	ea	20227	• • •				•	4.02
***	*****	*****	**** RU	NOFF H	YDROGR	APHS	***	***	* * *	* * *	***	****
			Unit H	yd. Eq	uation	s					9,1	5.01
PRDA	4 4D	*****	2 YR Unit H	vd Su	mmarv							5 03

Table of Contents (continued)

PRDA	4D	10 YR Unit Hyd. Summary	5.04
PRDA	4D	25 YR Unit Hyd. Summary	5,05
PRDA	4D	50 YR Unit Hyd. Summary	5.06
PRDA	4D	100 YR Unit Hyd. Summary	5.07
PRDA	4ND	2 YR Unit Hyd. Summary	5.08
PRDA	4ND	10 YR Unit Hyd. Summary	5.09
PRDA	4ND		5.10
PRDA	4ND		5.11
PRDA	4ND		5.12
****	*****	****** HYG ADDITION **********	*****
DP 4.		2 YR Node: Addition Summary	6.01
DP 4.		Vil. 148	
DP 4.			6.05
DP 4.	******		
DP 4.			
****	*****	****** POND VOLUMES ************	****
POND	1	Vol: Elev-Area	7.01

Table of Contents (continued)

******	**** OUTLET STRUCTURES **************
Outlet 1	Outlet Input Data 8.01 Individual Outlet Curves 8.03 Composite Rating Curve 8.05
*******	****** POND ROUTING **************
POND 1	Pond Infiltration Calcs 9.01 Pond E-V-Q Table 9.02
POND 1 OUT	2 YR Pond Routing Summary 9.04
POND 1 OUT	10 YR Pond Routing Summary 9.05
POND 1 OUT	25 YR Pond Routing Summary 9.06
POND 1 OUT	50 YR Pond Routing Summary 9.07
POND 1 OUT	100 YR Pond Routing Summary 9.08

Type.... Master Network Summary

Page 1.01

Name.... Watershed
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return E	100.4	Total Depth in	Rainfal Type	(1	RNF	'ID
2 Y	R :	3.2000	Synthetic	Curve	TypeIII	24hr
10 Y	R	4.7000	Synthetic	Curve	TypeIII	24hr
25 Y	R !	5.5000	Synthetic	Curve	TypeIII	24hr
50 Y	R	6.2000	Synthetic	Curve	TypeIII	24hr
100 Y	R	7.0000	Synthetic	Curve	TypeIII	24hr

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Туре	Return Event	HYG Vol	Qpeak Trun hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
*DP 4	JCT	2	.162	12 5000			
*DP 4	JCT			12.5000	. 67		
		10	.590	12.3000	3.80		
*DP 4	JCT	25	.913	12.3000	6.39		
*DP 4	JCT	50	1.234	12.3000	8.92		
*DP 4	JCT	100	1.638	12.3000	11.97		
JUNCTION	JCT	2	.162	12.5000	. 67		
JUNCTION	JCT	10	.590	12.3000	3.80		
JUNCTION	JCT	25	,913	12.3000	6.39		
JUNCTION	JCT	50	1.234	12.3000	8.92		
JUNCTION	JCT	100	1.638	12.3000	11.97		
POND 1 IN	POND	2	.142	12.3000	1.14		
POND 1 IN	POND	10	.317	12.3000	2.77		
POND 1 IN	POND	25	.423	12.3000	3.74		
POND 1 IN	POND	50	.522	12.3000	4.63		
POND 1 IN	POND	100	.639	12.3000	5.67		

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Master Network Summary

Page 1.02

Name.... Watershed File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node	ID		Туре	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
POND	1 0	TUC	POND	2	.000	100	11.5000	.00	1432.82	.036
POND	1 0	TUC	POND	10	.051		13.1000	. 25	1433.52	.115
POND	1 0	TUC	POND	25	.114		13.0000	.37	1433.95	.164
POND	1 0	TUC	POND	5.0	.180		13.0000	.69	1434.31	.205
POND	1 0	TUC	POND	100	.268		12.8000	1.37	1434.63	.241
PRDA	4 D		AREA	2	.142		12.3000	1.14		
PRDA	4 D		AREA	10	.317		12.3000	2.77		
PRDA	4 D		AREA	25	.423		12,3000	3.74		
PRDA	4 D		AREA	50	.522		12.3000	4.63		
PRDA	4D		AREA	100	.639		12.3000	5.67		
PRDA	4ND		AREA	2	.162		12.5000	.67		
PRDA	4ND		AREA	10	.538		12.3000	3.80		
PRDA	4ND		AREA	25	.799		12.3000	6.28		
PRDA	4ND		AREA	50	1.054		12.3000	8.68		
PRDA	4ND		AREA	100	1.370		12.3000	11.64		

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Design Storms Page 2.01 Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Title... Project Date: 4/16/2009

Project Engineer: Curtis Jones Project Title: Watershed

Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = $1\overline{0}$ yr Total Rainfall Depth= 4,7000 in Duration Multiplier = 1 Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr Total Rainfall Depth= 5.5000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

= 50 YRStorm Tag Name

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 50 yr

Total Rainfall Depth= 6.2000 in

Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr Total Rainfall Depth= 7.0000 in

Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Design Storms Page 2.02 Event: 2 yr Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Storm... TypeIII 24hr Tag: 2 YR

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr Total Rainfall Depth= 3.2000 in

Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr Total Rainfall Depth= 5.5000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yrTotal Rainfall Depth= 6.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 100 yr

Total Rainfall Depth= 7.0000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Date: 8/25/2011 Type.... Tc Calcs Name.... PRDA 4D Page 3.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n ,3000 Hydraulic Length 225.00 ft 2yr, 24hr P 3.2000 in Slope .110000 ft/ft

Avg. Velocity .23 ft/sec

Segment #1 Time: .2750 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 50.00 ft Slope .300000 ft/ft

Unpaved

Avg. Velocity 8.84 ft/sec

Segment #2 Time: .0016 hrs

Segment #3: Tc: TR-55 Channel

rlow Area 2.5000 sq.ft
Wetted Perimeter 5.50 ft
Hydraulic Radius .45 ft
Slope .035000 ft/ft
Mannings n
Hydraulic .0400 Hydraulic Length 1040.00 ft

Avg. Velocity 4.12 ft/sec

Segment #3 Time: .0701 hrs

Total Tc: .3467 hrs -----

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Tc Calcs Page 3.02 Name.... PRDA 4D File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW Tc Equations used ... Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))Where: Tc = Time of concentration, hrs n = Mannings n Lf = Flow length, ft P = 2yr, 24hr Rain depth, inches Sf = Slope, % Unpaved surface: V = 16.1345 * (Sf**0.5)Paved surface: V = 20.3282 * (Sf**0.5)Tc = (Lf / V) / (3600 sec/hr)Where: V = Velocity, ft/sec Sf = Slope, ft/ft
Tc = Time of concentration, hrs Lf = Flow length, ft

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Tc Calcs Name.... PRDA 4D Page 3.03

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

R = Aq / WpV = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Tc = (Lf / V) / (3600sec/hr)

Where: R = Hydraulic radius

Aq = Flow area, sq.ft.
Wp = Wetted perimeter, ft
V = Velocity, ft/sec
Sf = Slope, ft/ft

n = Mannings n
Tc = Time of concentration, hrs
Lf = Flow length, ft

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Tc Calcs Name.... PRDA 4ND Page 3.04 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: User Defined Segment #1 Time: .3400 hrs Total Tc: .3400 hrs ------

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Tc Calcs Name.... PRDA 4ND Page 3.05 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW Tc Equations used... Tc = Value entered by user

Where: Tc = Time of concentration

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Runoff CN-Area Name.... PRDA 4D

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

RUNOFF CURVE NUMBER DATA

Page 4.01

Soil/Surface Description	CN	Area acres	Impervious Adjustment %C %UC		Adjusted CN
Soil Type B - Grass/Meadow	60	1.620			60.00
Soil Type B - Wooded	55	.030			55.00
Impervious Area	98	.530			98.00
COMPOSITE AREA & WEIGHTED CN>		2 190			60 17 /60

69.17 (69)

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Runoff CN-Area Page 4.02 Name.... PRDA 4ND File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW RUNOFF CURVE NUMBER DATA

Soil/Surface Description	CN	Area acres	Impervious Adjustment %C %UC		Adjusted CN
Soil Type B - Wooded	55	7.370			55.00
Soil Type B - Grass/Meadow	60	.320			60.00
Impervious	98	.050			98.00

COMPOSITE AREA & WEIGHTED CN ---> 7.740 55.48 (55)

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Unit Hyd. Equations

Page 5.01

Name....

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

DEFINITION OF TERMS: -----= Total area (acres): At = Ai+Ap = Impervious area (acres) Ai Ap = Pervious area (acres) = Runoff curve number for impervious area = Runoff curve number for pervious area fLoss = f loss constant infiltration (depth/time) gKs = Saturated Hydraulic Conductivity (depth/time) = Volumetric Moisture Deficit Md = Capillary Suction (length) hK = Horton Infiltration Decay Rate (time^-1) fo = Initial Infiltration Rate (depth/time) = Ultimate(capacity)Infiltration Rate (depth/time) fc Ia = Initial Abstraction (length) = Computational increment (duration of unit excess rainfall) Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) = User specified override computational main time increment UDdt (only used if UDdt is => .1333Tc) D(t) = Point on distribution curve (fraction of P) for time step t = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67) = Hydrograph shape factor Ks = Unit Conversions * K: = ((lhr/3600sec) * (lft/12in) * ((5280ft) **2/sq.mi)) * K Default Ks = 645.333 * 0.75 = 484= Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc = Total precipitation depth, inches Pa(t) = Accumulated rainfall at time step t Pi(t) = Incremental rainfall at time step t = Peak discharge (cfs) for lin. runoff, for lhr, for 1 sq.mi. = (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.) Qu(t) = Unit hydrograph ordinate (cfs) at time step t Q(t) = Final hydrograph ordinate (cfs) at time step t Rai(t) = Accumulated runoff (inches) at time step t for impervious area Rap(t) = Accumulated runoff (inches) at time step t for pervious area Rii(t) = Incremental runoff (inches) at time step t for impervious area Rip(t) = Incremental runoff (inches) at time step t for pervious area R(t) = Incremental weighted total runoff (inches) = Time increment for rainfall table Si = S for impervious area: Si = (1000/CNi) - 10 Sp = S for pervious area: Sp = (1000/CNp) - 10= Time step (row) number = Time of concentration TC = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag Th Tp = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type..., Unit Hyd. Equations Page 5.02

Name....

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

PRECIPITATION: -----Column (1): Time for time step t

Column (2): D(t) = Point on distribution curve for time step t

Column (3): Pi(t) = Pa(t) - Pa(t-1): Col.(4) - Preceding Col.(4)

Column (4): Pa(t) = D(t) x P: Col.(2) x P PERVIOUS AREA RUNOFF (using SCS Runoff CN Method) -----Column (5): Rap(t) = Accumulated pervious runoff for time step t If $(Pa(t) \text{ is } \le 0.2Sp)$ then use: Rap(t) = 0.0If (Pa(t) is > 0.2Sp) then use: Rap(t) = (Col.(4)-0.2Sp)**2 / (Col.(4)+0.8Sp)Column (6): Rip(t) = Incremental pervious runoff for time step t Rip(t) = Rap(t)Rap(t-1) Rip(t) = Col.(5) for current row - Col.(5) for preceding row. IMPERVIOUS AREA RUNOFF -----Column (7 & 8)... Did not specify to use impervious areas. INCREMENTAL WEIGHTED RUNOFF: -----Column (9): $R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$ $R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$ SCS UNIT HYDROGRAPH METHOD: -----Column (10): Q(t) is computed with the SCS unit hydrograph method using R() and Qu().

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Unit Hyd. Summary Page 5.03 Tag: 2 YR Name.... PRDA 4D Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 3.2000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG Dir = C:\Program Files HYG File - ID = - PRDA 4D 2 YR Tc = .3467 hrs

Drainage Area = 2.180 acres Runoff CN= 69

Computational Time Increment = .04623 hrs Computed Peak Time = 12.2978 hrs = 1.14 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 1.14 cfs

DRAINAGE AREA

ID: PRDA 4D

CN = 69 Area = 2.180 acres

s = 4.4928 in0.2S = .8986 in

Cumulative Runoff

.7796 in

.142 ac-ft

HYG Volume ...

.142 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D)
Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs Unit peak time Tp = .23116 hrs Unit receding limb, Tr = .92464 hrs Total unit time, Tb = 1.15581 hrs

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Unit Hyd. Summary Page 5.04 Tag: 10 YR Name.... PRDA 4D Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 4.7000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 4D 10 YR Tc = .3467 hrs

Drainage Area = 2.180 acres Runoff CN= 69

Computational Time Increment = .04623 hrs Computed Peak Time = 12.2515 hrs

Computed Peak Flow 2.80 cfs

Time Increment for HYG File = Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 2.77 cfs

DRAINAGE AREA

------ID:PRDA 4D

CN = 69 Area = 2.180 acres

S = 4.4928 in0.2S = .8986 in

Cumulative Runoff

1.7423 in

.317 ac-ft

HYG Volume ...

.317 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D) Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37,46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs Unit peak time Tp = .23116 hrs Unit receding limb, Tr = .92464 hrs Total unit time, Tb = 1.15581 hrs

S/N: A215014070C4 PondPack Ver. 8.0068

Type.... Unit Hyd. Summary Page 5.05 Name.... PRDA 4D Tag: 25 YR Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4D 25 YR
TC = .3467 hrs

Drainage Area = 2.180 acres Runoff CN= 69

Computational Time Increment = .04623 hrs Computed Peak Time = 12.2515 hrs

Computed Peak Flow 3.81 cfs

.1000 hrs Time Increment for HYG File Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 3.74 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:PRDA 4D

CN = 69 Area = 2.180 acres

S = 4.4928 in 0.2S = .8986 in

Cumulative Runoff

_____ 2.3282 in

.423 ac-ft

HYG Volume423 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D) Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfs Unit peak time Tp = .23116 hrs Unit receding limb, Tr = .92464 hrs Total unit time, Tb = 1.15581 hrs

Type.... Unit Hyd. Summary Page 5.06 Name.... PRDA 4D Tag: 50 YR Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm Duration = 24.0000 hrs Rain Depth = 6.2000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 6.2000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 4D 50 YR
Tc = .3467 hrs

Drainage Area = 2.180 acres Runoff CN= 69

Computational Time Increment = .04623 hrs Computed Peak Time = 12.2515 hrs

Computed Peak Flow 4.73 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.3000 hrsPeak Flow, Interpolated Output = 4.63 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

------ID: PRDA 4D

CN = 69 Area = 2.180 acres

S = 4.4928 in0.2S = .8986 in

Cumulative Runoff

2.8696 in

.521 ac-ft

HYG Volume...

.522 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D) Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 7.12 cfsUnit peak time Tp = .23116 hrsUnit receding limb, Tr = .92464 hrsTotal unit time, Tb = 1.15581 hrs

S/N: A215014070C4 PondPack Ver. 8,0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Unit Hyd. Summary Page 5.07 Tag: 100 YR Name.... PRDA 4D Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm Duration = 24.0000 hrs Rain Depth = 7.0000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

Drainage Area = 2.180 acres Runoff CN= 69

Computational Time Increment = .04623 hrsComputed Peak Time = 12.2515 hrsComputed Peak Time Computed Peak Flow 5.82 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 5.67 cfs WARNING: The difference between calculated peak flow

and interpolated peak flow is greater than 1.50%

DRAINAGE AREA -----

ID:PRDA 4D

CN = 69 Area = 2.180 acres S = 4.4928 in

0.2S = .8986 in

Cumulative Runoff

3.5140 in

.638 ac-ft

HYG Volume...

.639 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34674 hrs (ID: PRDA 4D) Computational Incr, Tm = .04623 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)

Unit peak, qp = 7.12 cfs Unit peak time Tp = .23116 hrs Unit receding limb, Tr = .92464 hrs Total unit time, Tb = 1.15581 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Unit Hyd. Summary Page 5.08 Name.... PRDA 4ND Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW Event: 2 yr

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 3.2000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 4ND 2 YR
Tc = .3400 hrs

Drainage Area = 7.740 acres Runoff CN= 55

Computational Time Increment = .04533 hrs Computed Peak Time Computed Peak Flow = 12.5120 hrs .67 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.5000 hrs Peak Flow, Interpolated Output = .67 cfs

DRAINAGE AREA

ID: PRDA 4ND

CN = 55 Area = 7.740 acres S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff

.2509 in

.162 ac-ft

HYG Volume ...

.162 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (TD: PRDA 4ND) Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs Unit peak time Tp = .22667 hrs Unit receding limb, Tr = .90667 hrs Total unit time, Tb = 1.13333 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Unit Hyd. Summary Page 5.09 Tag: 10 YR Name.... PRDA 4ND Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 4.7000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 10 YR
Tc = .3400 hrs

Drainage Area = 7.740 acres Runoff CN= 55

Computational Time Increment = .04533 hrs Computed Peak Time = 12.3307 hrsComputed Peak Flow 3.84 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 3.80 cfs -----

DRAINAGE AREA

ID: PRDA 4ND

CN = 55 Area = 7.740 acres S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff

.8346 in .538 ac-ft

HYG Volume ...

.538 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, To = .34000 hrs (ID: PRDA 4ND) Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs Unit peak time Tp = .22667 hrs Unit receding limb, Tr = .90667 hrs Total unit time, Tb = 1.13333 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Unit Hyd. Summary Page 5.10 Tag: 25 YR Name.... PRDA 4ND Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 25 YR
TC = .3400 hrs
Drainage Area = 7.740 acres Runoff CN= 55

Computational Time Increment = .04533 hrs Computed Peak Time = 12.2853 hrs Computed Peak Flow

Time Increment for HYG File = Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 6.28 cfs

DRAINAGE AREA

ID: PRDA 4ND

CN = 55 Area = 7.740 acres S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff

1.2393 in

.799 ac-ft

HYG Volume ...

.799 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND) Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs Unit peak time Tp = .22667 hrs Unit receding limb, Tr = .90667 hrs Total unit time, Tb = 1.13333 hrs

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:32 PM Date: 8/25/2011

Type.... Unit Hyd. Summary Page 5.11 Name.... PRDA 4ND Tag: 50 YR Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 6.2000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\n HYG File - ID = - PRDA 4ND 50 YR = C:\Program Files\Haestad\PPKW\PPW\

Tc = .3400 hrs

Drainage Area = 7.740 acres Runoff CN= 55

Computational Time Increment = .04533 hrs = 12.2853 hrs Computed Peak Time = 8.75 cfs Computed Peak Flow

Time Increment for HYG File .1000 hrs Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 8.68 cfs ______

DRAINAGE AREA

ID: PRDA 4ND

CN = 55 Area = 7.740 acres

 $S = 8.1818 \text{ in} \\ 0.2S = 1.6364 \text{ in}$

Cumulative Runoff

1.6341 in 1.054 ac-ft

HYG Volume...

1.054 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND) Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs Unit peak time Tp = .22667 hrs Unit receding limb, Tr = .90667 hrs Total unit time, Tb = 1.13333 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Unit Hyd. Summary Page 5.12 Name.... PRDA 4ND Tag: 100 YR Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrsRain Depth = 7.0000 in

= C:\Program Files\Haestad\PPKW\PPW\ Rain Dir

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 4ND 100 YR
Tc = .3400 hrs

Drainage Area = 7.740 acres Runoff CN= 55

Computational Time Increment = .04533 hrsComputed Peak Time = 12.2853 hrsComputed Peak Time Computed Peak Flow 11.75 cfs

Time Increment for HYG File = Peak Time, Interpolated Output = 12.3000 hrs Peak Flow, Interpolated Output = 11.64 cfs

DRAINAGE AREA

ID:PRDA 4ND

CN = 55 Area = 7.740 acres

S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff

2.1239 in

1.370 ac-ft

HYG Volume ...

1.370 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .34000 hrs (ID: PRDA 4ND) Computational Incr, Tm = .04533 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 25.79 cfs Unit peak time Tp = .22667 hrs Unit receding limb, Tr = .90667 hrs Total unit time, Tb = 1.13333 hrs

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:32 PM Date: 8/25/2011 Type.... Node: Addition Summary

Page 6.01 Name.... DP 4 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 2 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag _____ JUNCTION JUNCTION 2 YR

INFLOWS TO: DP 4

HYG file HYG ID HYG tag ac-ft hrs cfs HYG file HYG ID JUNCTION 2 YR .162 12.5000 .67

TOTAL FLOW INTO: DP 4

HYG file HYG ID HYG tag ac-ft hrs cfs DP 4 2 YR .162 12.5000 .67

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Node: Addition Summary Page 6.02 Name.... DP 4 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW Storm... TypeIII 24hr Tag: 2 YR

TOTAL NODE INFLOW...

HYG file = HYG ID = DP 4 HYG Tag = 2 YR

Peak Discharge = .67 cfs
Time to Peak = 12.5000 hrs
HYG Volume = .162 ac-ft

Time hrs	 Time	Oı	DROGRAPH OF tput Time i represents	increment		each row.
12.0000	1	,00	.02	.18	.43	.61
12.5000	1	. 67	.63	.54	.46	.41
13.0000	1	.38	.35	.33	.31	.30
13.5000	1	.29	.29	.28	.28	.27
14.0000	1	.26	.26	.25	.25	. 24
14.5000	1	.24	.23	.23	.23	.22
15.0000	1	.22	.22	.21	.21	.20
15.5000	T	.20	.19	.19	.18	.18
16.0000	1	.17	.17	.16	.16	.15
16.5000	1	.15	.15	.15	.14	. 14
17.0000	1	.14	. 14	.13	.13	.13
17.5000	1	.13	.12	.12	.12	.11
18.0000	Ĭ	.11	. 11	.11	.10	.10
18.5000	1	.10	.10	.10	.10	.10
19.0000	1	.10	.10	.10	.10	.10
19.5000	1	.10	.09	.09	.09	.09
20.0000	1	.09	.09	.09	.09	.09
20.5000	1	.09	.09	.09	.09	.09
21.0000	F	.08	.08	.08	.08	.08
21.5000	T .	.08	.08	.08	.08	.08
22.0000	1	.08	.08	.08	.08	.08
22,5000	T	.08	.07	.07	.07	.07
23,0000	T	.07	.07	.07	.07	.07
23.5000	1	.07	.07	.07	.07	.07
24.0000	L	.06	.06	.04	.02	.01
24.5000	1	.01	.00	.00	.00	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Page 6.03 Type.... Node: Addition Summary Event: 10 yr

Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

=======										*****	
Upstream	Link	ID	Upstream	Node	ID	HYG	file	HYG	ID	HYG	tag
TO DP4			JUNCTION					JUL	NCTION	10	YR

INFLOWS TO:	DP 4		Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	JUNCTION	10 YR	,590	12.3000	3.80

TOTAL FLO	W INTO: DP 4				
			Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	فعومهم فيميت بالترادين				
	DP 4	10 YR	590	12.3000	3.80

S/N: A215014070C4 Curtis Jones & Associates Time: 2:32 PM PondPack Ver. 8.0068

Type.... Node: Addition Summary Page 6,04 Name.... DP 4 Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW Storm... TypeIII 24hr Tag: 10 YR

TOTAL NODE INFLOW ...

HYG file = HYG ID = DP 4 HYG Tag = 10 YR

Peak Discharge = 3.80 cfs
Time to Peak = 12.3000 hrs
HYG Volume = .590 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	Í			itput Time			000 hrs			
hrs	j - 1	Time on		represents				in each	n row.	
11.7000	Ť	.00)	.01		10	.53		1.68	
12.2000	T	3.15	i .	3.80	3.	72	3.37		2.85	
12.7000	T	2.31	9	1.91	1.	66	1.49		1.36	
13.2000	ľ	1.26	5	1.19	1.	15	1.11		1.08	
13.7000		1.05	i	1.02		99	.96		.93	
14.2000	1	.90)	.87		8 4	.82		.80	
14.7000	1	.78	}	.75		73	.71		. 69	
15.2000	1	. 66	5	.64		61	.59		.57	
15.7000	1	. 55	Ď	.52		50	.48		.46	
16,2000	1	. 44		. 42		41	.40		.39	
16.7000	1	.38		.37		36	.35		.34	
17.2000	T	.33	3	.33		32	.31		.31	
17.7000	T.	.30)	.29		28	.28		.27	
18.2000	1.	. 26		.26	- 2	26	.25		. 25	
18.7000	1	. 25		.25		24	. 24		. 24	
19,2000	T	. 24	1	.24		23	.23		.23	
19.7000	1	. 23		.23	. 2	22	.22		.22	
20.2000	1	. 22		.22	. 2	21	.21		.21	
20.7000	1	.21		.21	- 2	20	.20		.20	
21.2000	1	.20		.20		20	.20		.19	
21.7000	4	.19)	.19		19	.19		.19	
22.2000	T.	.18		.18		18	.18		.18	
22.7000	T	.15		.17	,	17	.17		.17	
23,2000	U	. 17		.16		16	.16		.16	
23.7000	1	.16	i	.16	4.7	15	.15		.14	
24.2000	L	.10	1	.05	. (02	.01		.01	
24.7000	T	.00	C	.00	. (0.0				

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM Date: 8/25/2011

Type.... Node: Addition Summary Page 6.05 Name.... DP 4 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 25 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

_______ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag

JUNCTION JUNCTION 25 YR

INFLOWS TO: DP 4

JUNCTION 25 YR .913 12.3000 6.39

TOTAL FLOW INTO: DP 4

HYG file HYG ID DP 4 25 YR .913 12.3000 6.39

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:32 PM

Type.... Node: Addition Summary Page 6.06 Name.... DP 4 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW Storm... TypeIII 24hr Tag: 25 YR

TOTAL NODE INFLOW... HYG file =

HYG ID = DP 4 HYG Tag = 25 YR

Peak Discharge = 6.39 cfs
Time to Peak = 12,3000 hrs
HYG Volume = .913 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time		YDROGRAPH O		(cfs) = .1000 hrs	
hrs	Time on left	The state of the s			in each row.
11.5000	.00	.00	.05	.22	.62
12.0000	1.55	3.46	5.59	6.39	6.03
12.5000	5.23	4.31	3.43	2.81	2.42
13.0000	2.16	1.96	1.82	1.72	1.65
13.5000	1.60	1.56	1.52	1.48	1.43
14.0000	1.39	1.35	1.31	1.28	1,25
14.5000	1.23	1.20	1.18	1.15	1.13
15.0000	1.10	1.08	1.05	1.02	1.00
15.5000	.97	.94	.91	.88	.85
16.0000	.82	.79	.76	.73	.70
16.5000	.68	.66	.63	.61	.59
17.0000 I	.57	.55	.52	.51	.49
17.5000	. 47	.45	. 44	.42	.40
18.0000	.39	.38	.37	.36	.35
18.5000	.34	.34	.34	.33	.33
19.0000	.33	.32	.32	.32	.32
19.5000	.31	.31	.31	.30	.30
20.0000	.30	.30	.29	.29	.29
20.5000	.29	.28	.28	.28	.28
21.0000	. 27	.27	.27	.27	.26
21.5000	.26	.26	.26	.26	.25
22.0000	. 25	.25	.25	.24	.24
22.5000	. 24	.24	.23	.23	.23
23.0000	,23	, 23	.22	.22	.22
23.5000	.22	.21	.21	.21	.21
24.0000	.20	.18	.13	+07	.03
24.5000	.02	.01	.00	.00	.00

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:32 PM Date: 8/25/2011

Type.... Node: Addition Summary

Name.... DP 4

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID Upstream Node ID HYG file HYG ID _______ JUNCTION JUNCTION 50 YR

Page 6.07

Event: 50 yr

Date: 8/25/2011

INFLOWS TO: DP 4

HYG file HYG ID HYG tag ac-ft hrs cfs HYG file HYG ID

JUNCTION 50 YR 1.234 12.3000 8.92

TOTAL FLOW INTO: DP 4

HYG file HYG ID DP 4 50 YR 1,234 12,3000 8.92

Curtis Jones & Associates S/N: A215014070C4 PondPack Ver. 8.0068 Time: 2:32 PM Type.... Node: Addition Summary Page 6.08 Name... DP 4 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

TOTAL NODE INFLOW ...

HYG file = HYG ID = DP 4 HYG Tag = 50 YR

-----Peak Discharge = 8.92 cfs
Time to Peak = 12.3000 hrs
HYG Volume = 1.234 ac-ft

HYDROGRAPH ORDINATES (cfs) Output Time increment = .1000 hrs hrs | Time on left represents time for first value in each row. _____

Page 6.09 Type.... Node: Addition Summary Event: 100 yr

Name.... DP 4
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 100 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 4

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

		-555								======	
Upstream :	Link	ID	Upstream	Node	ID	HYG	file	HYG	ID	HYG	tag
TO DP4			JUNCTION					JUL	NCTION	100	YR

INFLOWS TO:	DP 4	المناف والمناف والمنافق	Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	JUNCTION	100 YR	1.638	12,3000	11.97
TOTAL FLOW	INTO: DP 4		Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 4	100 YR	1.638	12.3000	11.97

Type.... Node: Addition Summary Page 6.10
Name.... DP 4 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

TOTAL NODE INFLOW...

HYG file = HYG ID = DP 4 HYG Tag = 100 YR

Peak Discharge = 11.97 cfs
Time to Peak = 12.3000 hrs
HYG Volume = 1.638 ac-ft

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:32 PM

Type.... Vol: Elev-Area Name.... POND 1 Page 7.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Elevation (ft)	Planimeter (sq.in)	Area (acres)	A1+A2+sqr(A1*A2) (acres)	Volume (ac-ft)	Volume Sum (ac-ft)
1432.50 1435.20		.1131	.0000	.000	.000

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt.(Areal*Area2))

= Lower and upper elevations of the increment where: EL1, EL2 Area1, Area2 = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2

Type.... Outlet Input Data Page 8.01

Name.... Outlet 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 1432.50 ft Increment = .10 ft Max. Elev.= 1435.20 ft

********** OUTLET CONNECTIVITY ***********

---> Forward Flow Only (UpStream to DnStream)
<--- Reverse Flow Only (DnStream to UpStream)
<---> Forward and Reverse Both Allowed

Structure No. Outfall E1, ft E2, ft

Orifice-Circular 2 ---> TW 1434.000 1435.200
Orifice-Circular 1 ---> TW 1433.000 1435.200 E2, ft TW SETUP, DS Channel

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Outlet Input Data Page 8.02

Name.... Outlet 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID = 1
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1433.00 ft
Diameter = .3330 ft
Orifice Coeff. = .600

Structure ID = TW
Structure Type = TW SETUP, DS Channel
FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...

Maximum Iterations= 30

Min. TW tolerance = .01 ft

Max. TW tolerance = .01 ft

Min. HW tolerance = .01 ft

Max. HW tolerance = .01 ft

Min. Q tolerance = .10 cfs

Max. Q tolerance = .10 cfs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 2 (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WO 131	0	mra =1 0		
WS Elev. ft	cfs	TW Elev Conve	Et Computation Messages	
1432.50	.00		HW & TW below invert	
1432.60	.00	Free Outfall	HW & TW below invert	
1432.70	.00	Free Outfall	HW & TW below invert	
1432.80	.00	Free Outfall	HW & TW below invert	
1432.90	.00	Free Outfall	HW & TW below invert	
1433.00	.00	Free Outfall	HW & TW below invert	
1433.10	.00	Free Outfall	HW & TW below invert	
1433,20	.00	Free Outfall	HW & TW below invert	
1433.30	.00	Free Outfall	HW & TW below invert	
1433.40	.00	Free Outfall	HW & TW below invert	
1433.50	.00	Free Outfall	HW & TW below invert	
1433.60	.00	Free Outfall	HW & TW below invert	
1433.70	.00	Free Outfall	HW & TW below invert	
1433.80	.00	Free Outfall	HW & TW below invert	
1433.90	.00	Free Outfall	HW & TW below invert	
	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El	
1434.10				RIT. DEPTH
1434.20	.11	Free Outfall	CRIT.DEPTH CONTROL Vh= .052ft Dcr= .148ft C	RIT.DEPTH
1434.30	.23	Free Outfall	CRIT.DEPTH CONTROL Vh= .081ft Dcr= .219ft C	RIT.DEPTH
1434.40	.39			RIT.DEPTH
1434.50	.58	Free Outfall	CRIT.DEPTH CONTROL Vh= .143ft Dcr= .357ft C	RIT.DEPTH
1434.60	.79		CRIT.DEPTH CONTROL Vh= .180ft Dcr= .421ft C	RIT.DEPTH
1434.70	1.02	Free Outfall		Warner General
1434.80	1.15	Free Outfall	H = .47	
1434.90	1.27	Free Outfall	H = .57	
1435.00	1.37	Free Outfall	H = .67	
1435.10	1.47	Free Outfall	H = .77	
1435,20	1.57	Free Outfall	H = .87	

S/N: A215014070C4 Curtis Jones & Associates Time: 2:32 PM PondPack Ver. 8.0068 Date: 8/25/2011 Type.... Individual Outlet Curves Page 8.04

Name..., Outlet 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev, D	evice Q	Tail Water	Notes
ft	Q cfs		ge Computation Messages
1432.50			HW & TW below invert
1432.60		Free Outfall	HW & TW below invert
			HW & TW below invert
1432.80	.00	Free Outfall	HW & TW below invert
1432.90	.00	Free Outfall	HW & TW below invert
1433.00	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El
1433.10	.02	Free Outfall	CRIT.DEPTH CONTROL Vh= .027ft Dcr= .073ft CRIT.DEPTH
1433.20	.07	Free Outfall	CRIT.DEPTH CONTROL Vh= .054ft Dcr= .146ft CRIT.DEPTH
1433.30	.14	Free Outfall	CRIT.DEPTH CONTROL Vh= .092ft Dcr= .208ft CRIT.DEPTH
1433.40	.20	Free Outfall	H = .23
1433.50	.24	Free Outfall	H =.33
1433.60	.28	Free Outfall	H = .43
1433.70	.31	Free Outfall	H = .53
1433.80	.33	Free Outfall	H = .63
1433.90	.36	Free Outfall Free Outfall	H = .73
1434.00	.38	Free Outfall	H = .83
1434.10	.40	Free Outfall	
	.43	Free Outfall	H =1.03
1434.30	. 45	Free Outfall	H =1.13
1434.40	. 47	Free Outfall	H = 1.23
1434.50	.48	Free Outfall	H = 1.33
	.50	Free Outfall	H = 1.43
1434.70	.52	Free Outfall	
1434.80	.54	Free Outfall	H =1.63
1434.90	.55	Free Outfall	H =1.73
1435.00	.57	Free Outfall	H =1.83
1435.10	.58	Free Outfall	
1435.20	.60	Free Outfall	H =2.03

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM Date: 8/25/2011

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

**** COMPOSITE OUTFLOW SUMMARY ****

WS Elev,	Total Q		Notes
Elev.	0	TW Elev Error	
ft	cfs		Contributing Structures
1432.50		Free Outfall	
1432.60	.00	Free Outfall	None contributing
1432.70	.00	Free Outfall	None contributing
1432.80		Free Outfall	
1432.90	.00	Free Outfall	None contributing
1433.00	.00	Free Outfall	None contributing
1433.10		Free Outfall	1
1433.20	.07	Free Outfall	1
1433.30	.14	Free Outfall	1
1433.40		Free Outfall	1
1433.50	.24	Free Outfall	1
1433.60		Free Outfall	1
1433.70	.31	Free Outfall	1
1433.80	.33	Free Outfall	1-
1433.90	.36	Free Outfall	1
1434.00	.38	Free Outfall	1
1434.10		Free Outfall	
1434.20	.53	Free Outfall	2 +1
1434.30	.67	Free Outfall	2 +1
1434.40	.85	Free Outfall	2 +1
1434.50	1.06	Free Outfall	2 +1
1434.60		Free Outfall	
1434.70	1.54	Free Outfall	2 +1
1434.80	1.68	Free Outfall Free Outfall	2 +1
1434.90	1.82	Free Outfall	2 +1
1435.00	1.94	Free Outfall	2 +1
1435.10		Free Outfall	
1435.20		Free Outfall	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Pond Infiltration Calcs
Name.... POND 1
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

INFILTRATION RATING TABLE CALCULATIONS

Page 9.01

Infilt.(cfs) = $(3.0000 \text{ (in/hr)} \times \text{Area}) \times \text{Ku}$ Where: Ku = units conversion factor

				W.S.Elev	Total Area	Infilt.	
				ft	acres	cfs	
			18/25				
No	storage	at	this	elevation			zero.
				1432.50	.1131	.00	
				1432.60	.1131	.34	
				1432.70	.1131	.34	
				1432.80	.1131	.34	
				1432.90	.1131	.34	
				1433.00	.1131	.34	
				1433.10	.1131	.34	
				1433.20	,1131	.34	
				1433.30	.1131	.34	
				1433.40	.1131	.34	
				1433.50	.1131	.34	
				1433.60	.1131	.34	
				1433.70	.1131	.34	
				1433.80	.1131	.34	
				1433.90	.1131	. 34	
				1434.00	.1131	.34	
				1434.10	.1131	. 34	
				1434.20	.1131	.34	
				1434.30	.1131	.34	
				1434.40	.1131	.34	
				1434.50	.1131	.34	
				1434.60	.1131	.34	
				1434.70	.1131	.34	
				1434.80	.1131	.34	
				1434.90	.1131	.34	
				1435.00	.1131	.34	
				1435.10	.1131	.34	
				1435.20	.1131	.34	

Type.... Pond E-V-Q Table Page 9.02

Name.... POND 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

LEVEL POOL ROUTING DATA

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

levation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + 0 cfs
1432.50	.00	.000	.1131	.00	.00	.00
1432.60	.00	.011	.1131	.34	.34	3.08
1432.70	.00	.023	.1131	.34	.34	5.81
1432.80	.00	.034	.1131	.34	.34	8.55
1432.90	.00	.045	.1131	.34	.34	11.29
1433.00	.00	.057	.1131	.34	.34	14.03
1433.10	.02	.068	.1131	.34	.36	16.78
1433.20	.07	.079	.1131	.34	.41	19.57
1433.30	.14	.090	.1131	.34	.48	22.38
1433.40	.20	.102	.1131	.34	.54	25.18
1433.50	.24	.113	.1131	.34	.58	27.95
1433.60	.28	.124	.1131	.34	.62	30.72
1433.70	.31	.136	.1131	.34	. 65	33.49
1433.80	.33	.147	.1131	. 34	. 68	36.26
1433.90	.36	.158	.1131	.34	.70	39.02
1434.00	.38	.170	.1131	.34	.72	41.78
1434.10	.43	.181	.1131	.34	.77	44.57
1434.20	.53	.192	.1131	.34	.87	47.40
1434.30	.67	.204	.1131	.34	1.02	50.28
1434.40	.85	.215	.1131	.34	1.19	53.20

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Pond E-V-Q Table Page 9.03

Name.... POND 1
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PFW

LEVEL POOL ROUTING DATA

= C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Oout= .00 cfs Starting Total Qout= .00 cfs Time Increment = .1000 hrs

Elevation ft	Outflow	Storage ac-ft	Area	Infilt.	Q Total	2S/t + 0
1434.50	1.06	.226	.1131	.34	1.40	56.14
1434.60	1.29	.238	.1131	. 34	1.63	59.11
1434.70	1.54	.249	.1131	.34	1.88	62.09
1434.80	1.68	.260	.1131	.34	2.03	64.98
1434.90	1.82	.271	.1131	.34	2.16	67.85
1435.00	1.94	.283	.1131	.34	2.28	70.71
1435.10	2.06	.294	.1131	. 34	2.40	73.56
1435.20	2.16	.305	.1131	.34	2.51	76.40

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:32 PM

Type.... Pond Routing Summary Page 9.04
Name.... POND 1 OUT Tag: 2 YR Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 2 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 2 YR
Outflow HYG file = NONE STORED - POND 1 OUT 2 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 1.14 cfs at 12.3000 hrs
Peak Outflow = .00 cfs at 11.5000 hrs
Peak Infiltration = .34 cfs at 12.3000 hrs

Peak Elevation = 1432.82 ft
Peak Storage = .036 ac-ft

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000
+	HYG Vol IN	=	.142
-	Infiltration	=	.142
-	HYG Vol OUT	=	.000
-	Retained Vol	=	.000

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

 Type.... Pond Routing Summary Page 9.05 Name.... POND 1 OUT Tag: 10 YR Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 10 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 10 YR
Outflow HYG file = NONE STORED - POND 1 OUT 10 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak	Inflow	=	2.77	cfs	at	12.3000	hrs
Peak	Outflow	=	. 25	cfs	at	13.1000	hrs
Peak	Infiltration	=	.34	cfs	at	12.0000	hrs
Peak	Elevation	=	1433.52	ft			
Peak	Storage =		.115	ac-ft			

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000	
+	HYG Vol IN	=	.317	
_=	Infiltration	=	.265	
1.4	HYG Vol OUT	=	.051	
-	Retained Vol	=	.000	

Unrouted Vol = -.000 ac-ft (.000% of Inflow Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

```
Type... Pond Routing Summary Page 9.06
Name... POND 1 OUT Tag: 25 YR Event: 25 yr
File... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW
Storm... TypeIII 24hr Tag: 25 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED = POND 1 IN 25 YR
```

Inflow HYG file = NONE STORED - POND 1 IN 25 YR
Outflow HYG file = NONE STORED - POND 1 OUT 25 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 3.74 cfs at 12.3000 hrs
Peak Outflow = .37 cfs at 13.0000 hrs
Peak Infiltration = .34 cfs at 11.9000 hrs

Peak Elevation = 1433.95 ft
Peak Storage = .164 ac-ft

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000	
+	HYG Vol IN	=	.423	
-	Infiltration	=	.310	
-	HYG Vol OUT	=	.114	
-	Retained Vol	=	.000	
			bacacaddaa	

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

 Type.... Pond Routing Summary Page 9.07
Name.... POND 1 OUT Tag; 50 YR Event; 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 50 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 50 YR
Outflow HYG file = NONE STORED - POND 1 OUT 50 YR

Pond Node Data = POND 1
Pond Volume Data = POND 1
Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 4.63 cfs at 12.3000 hrs
Peak Outflow = .69 cfs at 13.0000 hrs
Peak Infiltration = .34 cfs at 11.8000 hrs

Peak Elevation = 1434.31 ft
Peak Storage = .205 ac-ft

MASS BALANCE (ac-ft)

+ Initial Vol = .000 + HYG Vol IN = .522 - Infiltration = .342 - HYG Vol OUT = .180 - Retained Vol = .000

Unrouted Vol = -.000 ac-ft (.000% of Inflow Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Type.... Pond Routing Summary Page 9.08 Name.... POND 1 OUT Tag: 100 YR Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 4.PPW

Storm... TypeIII 24hr Tag: 100 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - POND 1 IN 100 YR
Outflow HYG file = NONE STORED - POND 1 OUT 100 YR

Pond Node Data = POND 1 Pond Volume Data = POND 1 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1432.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 5.67 cfs at 12.3000 hrs
Peak Outflow = 1.37 cfs at 12.8000 hrs
Peak Infiltration = .34 cfs at 11.6000 hrs

Peak Elevation = 1434.63 ft
Peak Storage = .241 ac-ft

MASS BALANCE (ac-ft)

+ Initial Vol = .000 + HYG Vol IN = .639 - Infiltration = .371 - HYG Vol OUT = .268 - Retained Vol = .000

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:32 PM

Appendix A A-1

Index of Starting Page Numbers for ID Names

---- D ----DP 4 2 YR... 6.01, 6.03, 6.05, 6.07, 6.09

---- L ----Litchfield Co.... 2.01, 2.02

---- O -----Outlet 1... 8.01, 8.03, 8.05

POND 1... 7.01, 9.01, 9.02

POND 1 OUT 2 YR... 9.04, 9.05, 9.06, 9.07, 9.08

PRDA 4D... 3.01, 4.01, 5.03, 5.04, 5.05, 5.06, 5.07

PRDA 4ND... 3.04, 4.02, 5.08, 5.09, 5.10, 5.11, 5.12

---- W ----Watershed... 1.01 Existing Flows – DL5

Table of Contents

i

Table of Contents

*	**	* *	* * *	* * *	* *	* *	* * :	* *	* *	* *	*	MA	ST	ER	S	UM	MA	RY	*	*	* *	*	* *	* 9	* *	*	* *	*	* *	* *	* *	***
W	ato	er:	she	ed.	4				Мa	st	er	N	et	wo	rk	S	um	ma	ry			•						9			1.	01
*	**	* * :	+++	* * *	* *	* *	* :	* *	*	DE	SI	GŅ	S	то	RM	S	SU	MM	AF	Y	*	* 1	r st	* *	* *	*	* *	*	* *	*	* *	***
L	it	ch:	£i∈	eld	C	ю.	•	b	De	si	gn	S	to	rm	s					٠			0		á	6		•	41		2.	01
L	ito	ch:	Eie	eld	C	0.	•		2 De	YR si	gn	S	to	rm	S							- 0.7	اجَي			à,		•	•		2.	02
*	**	k *k s	* * *	**	* *	* *	* * *	* *	* *	* *	*	TC	С	AL	CU:	LA	ΤI	ON	S	*	* *	* *	* *	* *	* *	*	* *	*	* *	*	* *	***
E	XDI	A į	i		٠,٠	2,4		4	Tc	С	al	C S			4,4			9.9													3.	01
*	**:	* * *	* * *	**	**	* *	**	* *	* *	**	*	CN	С	AL	CU	LA	ΤI	ON	S	*:	* *	* *	*	* *	* *	*	* *	*	* *	*	* *	***
E	ΧDA	. E	·				.,		Ru	no	ff	CI	N -	Ar	ea			2.2		200		.00	•	4.5							4.	01
*	***	₩ ₩ 9	**	* *	* *	* *	* 9	* *	* *	*	RU	NO:	FF	Н	YDI	RO	GR.	ΑP	HS		* *	* 4	*	* *	*	*	* *	*	* *	*	* *	***
												yd		Eq	ua	ti	on	S		5.3	,						i	•			5.	01
E	XDI	A 5			47				2 Un	YR it	Н	yd		Sui	nm	ar	У			e e						ė.		13			5.	03
E	XDA	A 5		.,					10 Un	Y:	R	vd		Sin	nm:	ar	V	0.5	4.0	2.4		32.5		245		2.3					5	04

Table of Contents (continued)

EXDA 5	25 YR Unit Hyd. Summary 5.05
EXDA 5	50 YR Unit Hyd. Summary 5.06
EXDA 5	100 YR Unit Hyd. Summary 5.07
********	****** HYG ADDITION **************
DP 5	2 YR Node: Addition Summary 6.01
DP 5	10 YR Node: Addition Summary 6.04
DP 5	25 YR Node: Addition Summary 6.07
DP 5	50 YR Node: Addition Summary 6.10
DP 5	100 YR Node: Addition Summary 6.13

Type.... Master Network Summary

Page 1.01

Name.... Watershed Files... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return	Event	Total Depth in	Rainfal Type	11	RNI	F ID
2	YR	3.2000	Synthetic	Curve	TypeIII	24hr
10	YR	4.7000	Synthetic	Curve	TypeIII	24hr
25	YR	5.5000	Synthetic	Curve	TypeIII	24hr
50	YR	6.2000	Synthetic	Curve	TypeIII	24hr
100	YR	7.0000	Synthetic	Curve	TypeIII	24hr

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node	ID Typ	Return e Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
*DP 5	JCT	2	.140		12.7000	.45		~~~~~~~
*DP 5	JCT	10	.467		12.6000	2.51		
*DP 5	JCT	25	.693		12.5500	4.11		
*DP 5	JCT	50	.914		12.5500	5.67		
*DP 5	JCT	100	1.188		12.5000	7.64		
EXDA !	5 ARE	A 2	.140		12.7000	. 45		
EXDA	5 ARE	A 10	.467		12.6000	2.51		
EXDA !	5 ARE	A 25	.693		12.5500	4.11		
EXDA !	5 ARE	A 50	.914		12.5500	5.67		
EXDA !	5 ARE	A 100	1.188		12.5000	7.64		

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM

Type.... Design Storms Page 2.01 Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Title... Project Date: 4/16/2009

Project Engineer: Curtis Jones Project Title: Watershed

Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr
Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 25 yr

Total Rainfall Depth= 5.5000 in

Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 50 yr Total Rainfall Depth= 6.2000 in Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr Total Rainfall Depth= 7.0000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates

Time: 2:35

Time: 2:35 PM Date: 8/25/2011

Type.... Design Storms Page 2.02 Event: 2 yr Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Storm... TypeIII 24hr Tag: 2 YR

DESIGN STORMS SUMMARY

Litchfield Co. Design Storm File, ID =

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr
Total Rainfall Depth= 3.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 10 yr

Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr Total Rainfall Depth= 5.5000 in Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr

Total Rainfall Depth= 6.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr Total Rainfall Depth= 7.0000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 2.25 Time: 2:35 PM Date: 8/25/2011 Type..., Tc Calcs Name.... EXDA 5 Page 3.01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

.4000 Mannings n Hydraulic Length 250.00 ft 2yr, 24hr P 3.2000 in Slope .030000 ft/ft

Avg. Velocity .11 ft/sec

Segment #1 Time: .6334 hrs ------

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 265.00 ft .057000 ft/ft Slope

Unpaved

Avg.Velocity 3.85 ft/sec

Segment #2 Time: .0191 hrs ______

> _______ Total Tc: .6525 hrs

PondPack Ver. 8,0068

Curtis Jones & Associates
Time: 2,25

Time: 2:35 PM Date: 8/25/2011

```
Type... Tc Calcs
Name... EXDA 5
                                                    Page 3.02
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Tc Equations used...
Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))
     Where: Tc = Time of concentration, hrs
           n = Mannings n
           Lf = Flow length, ft
           P = 2yr, 24hr Rain depth, inches
Sf = Slope, %
Unpaved surface:
    V = 16.1345 * (Sf**0.5)
    Paved surface:
    V = 20.3282 * (Sf**0.5)
    Tc = (Lf / V) / (3600sec/hr)
    Where: V = Velocity, ft/sec
           Sf = Slope, ft/ft
Tc = Time of concentration, hrs
           Lf = Flow length, ft
```

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM

Type.... Runoff CN-Area Name.... EXDA 5 Page 4.01 File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW RUNOFF CURVE NUMBER DATA Impervious Area Adjustment Adjusted
Soil/Surface Description CN acres %C %UC CN %C %UC CN Soil Type B - Wooded 55 6.710 55.00 COMPOSITE AREA & WEIGHTED CN ---> 6.710 55.00 (55)

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2:35 PM

Name...

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

DEFINITION OF TERMS: -----= Total area (acres): At = Ai+Ap = Impervious area (acres) Ai = Pervious area (acres) = Runoff curve number for impervious area = Runoff curve number for pervious area CNp fLoss = f loss constant infiltration (depth/time) = Saturated Hydraulic Conductivity (depth/time) Md = Volumetric Moisture Deficit = Capillary Suction (length) Psi hK = Horton Infiltration Decay Rate (time^-1) fo = Initial Infiltration Rate (depth/time) fc = Ultimate(capacity) Infiltration Rate (depth/time) Ia = Initial Abstraction (length) = Computational increment (duration of unit excess rainfall) dt Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) HDdt = User specified override computational main time increment (only used if UDdt is => .1333Tc) D(t) = Point on distribution curve (fraction of P) for time step t K = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67) = Hydrograph shape factor Ks = Unit Conversions * K: = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * KDefault Ks = $645.333 \times 0.75 = 484$ = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc Lag = Total precipitation depth, inches Pa(t) = Accumulated rainfall at time step t Pi(t) = Incremental rainfall at time step tqp = Peak discharge (cfs) for lin. runoff, for lhr, for l sq.mi. = (Ks * A * Q) / Tp (where Q = lin. runoff, A=sq.mi.) Qu(t) = Unit hydrograph ordinate (cfs) at time step t Q(t) = Final hydrograph ordinate (cfs) at time step t Rai(t) = Accumulated runoff (inches) at time step t for impervious area Rap(t) = Accumulated runoff (inches) at time step t for pervious area Rii(t) = Incremental runoff (inches) at time step t for impervious area Rip(t) = Incremental runoff (inches) at time step t for pervious area = Incremental weighted total runoff (inches) R(t) = Time increment for rainfall table Rtm Si = S for impervious area: Si = (1000/CNi) - 10 Sp = (1000/CNp) - 10Sp = S for pervious area: t = Time step (row) number Tc = Time of concentration = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + LagTp = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:35 PM

Type.... Unit Hyd. Equations Page 5.02

Name...

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

PRECIPITATION: -----Column (1): Time for time step t Column (2): D(t) = Point on distribution curve for time step t Column (3): Pi(t) = Pa(t) - Pa(t-1): Col.(4) - Preceding Col.(4)Column (4): $Pa(t) = D(t) \times P$: $Col.(2) \times P$ PERVIOUS AREA RUNOFF (using SCS Runoff CN Method) ------Column (5): Rap(t) = Accumulated pervious runoff for time step t If $(Pa(t) \text{ is } \le 0.2Sp)$ then use: Rap(t) = 0.0If (Pa(t) is > 0.2Sp) then use: Rap(t) = (Col.(4)-0.2Sp)**2 / (Col.(4)+0.8Sp)Column (6): Rip(t) = Incremental pervious runoff for time step t Rip(t) = Rap(t)Rap(t-1)Rip(t) = Col.(5) for current row - Col.(5) for preceding row. IMPERVIOUS AREA RUNOFF -----Column (7 & 8)... Did not specify to use impervious areas. INCREMENTAL WEIGHTED RUNOFF: -----Column (9): $R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$ $R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$ SCS UNIT HYDROGRAPH METHOD: -----Column (10): Q(t) is computed with the SCS unit hydrograph method using R() and Qu().

S/N: A215014070C4 PondPack Ver. 8,0068 Curtis Jones & Associates Time: 2:35 PM

Type.... Unit Hyd. Summary Name.... EXDA 5 Tag: 2 YR Page 5.03 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 5 2 YR

= .6525 hrsTC

Drainage Area = 6,710 acres Runoff CN= 55

Computational Time Increment = .08700 hrs Computed Peak Time = 12.7891 hrs
Computed Peak Flow = .45 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.7500 hrs
Peak Flow, Interpolated Output = .45 cfs

DRAINAGE AREA

ID: EXDA 5

CN = 55 Area = 6.710 acres

 $S = 8.1818 \text{ in} \\ 0.2S = 1.6364 \text{ in}$

Cumulative Runoff

.2509 in .140 ac-ft

HYG Volume140 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5) Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfsUnit peak time Tp = .43500 hrsUnit receding limb, Tr = 1.74001 hrsTotal unit time, Tb = 2.17502 hrsTotal unit time,

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:35 PM Date: 8/25/2011

Type.... Unit Hyd. Summary
Name..., EXDA 5 Tag: 10 YR Page 5.04 Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 4.7000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - EXDA 5 10 YR
Tc = .6525 hrs

Drainage Area = 6.710 acres Runoff CN= 55

Computational Time Increment = .08700 hrs Computed Peak Time = 12.6151 hrs

= Computed Peak Flow 2.51 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.6000 hrs Peak Flow, Interpolated Output = 2.51 cfs

DRAINAGE AREA

ID:EXDA 5

CN = 55 Area = 6.710 acres

Area = 6.710 S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff ____

.8346 in

.467 ac-ft

HYG Volume... .467 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5)Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs Unit peak time Tp = .43500 hrs Unit receding limb, Tr = 1.74001 hrs Total unit time, Tb = 2.17502 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM Date: 8/25/2011

Type.... Unit Hyd. Summary
Name.... EXDA 5 Tag: 25 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW Page 5.05 Event: 25 yr

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

Drainage Area = 6.710 acres Runoff CN= 55

Computational Time Increment = .08700 hrs Computed Peak Time = 12.5281 hrs Computed Peak Time = 12.5281 hrs Computed Peak Flow = 4.13 cfs

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.5500 hrs Peak Flow, Interpolated Output = 4.11 cfs ______

DRAINAGE AREA

ID: EXDA 5

CN = 55

Area = 6.710 acres S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff

1.2393 in .693 ac-ft

HYG Volume...

.693 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5) Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs Unit peak time Tp = .43500 hrs Unit receding limb, Tr = 1.74001 hrs Total unit time, Tb = 2.17502 hrs Total unit time,

PondPack Ver. 8.0068 S/N: A215014070C4 Curtis Jones & Associates Time: 2:35 PM Date: 8/25/2011 Type.... Unit Hyd. Summary
Tag: 50 YR Page 5.06 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 5 50 YR

= .6525 hrs

Drainage Area = 6.710 acres Runoff CN= 55

Computational Time Increment = .08700 hrs Computed Peak Time = 12.5281 hrs = 5.72 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.5500 hrs Peak Flow, Interpolated Output = 5.67 cfs

DRAINAGE AREA

ID: EXDA 5

CN = 55 Area = 6.710 acres S = 8.1818 in 0.2S = 1.6364 in

Cumulative Runoff

1.6341 in .914 ac-ft

HYG Volume... .914 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5) Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfs Unit peak time Tp = .43500 hrs Unit receding limb, Tr = 1.74001 hrs Total unit time, Tb = 2.17502 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 2:35 Date: 8/25/2011 Page 5.07 Event: 100 yr

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 7.0000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - EXDA 5 100 YR

= .6525 hrsTC

Drainage Area = 6.710 acres Runoff CN= 55

Computational Time Increment = .08700 hrs Computed Peak Time = 12.5281 hrs = 7.69 cfs Computed Peak Flow

Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.5000 hrs

Peak Flow, Interpolated Output = 7.64 cfs

DRAINAGE AREA

ID: EXDA 5

CN = 55 Area = 6.710 acres S = 8.1818 in

0.2S = 1.6364 in

Cumulative Runoff

-----2.1239 in

1.188 ac-ft

HYG Volume ... 1.188 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .65250 hrs (ID: EXDA 5) Computational Incr, Tm = .08700 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.65 cfsUnit peak time Tp = .43500 hrsUnit receding limb, Tr = 1.74001 hrsTotal unit time, Tb = 2.17502 hrs

D/N: AZ15014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2:35 PM Date: 8/25/2011

Page 6.01 Event: 2 yr Type.... Node: Addition Summary Name.... DP 5

File..., C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW Storm... TypeIII 24hr Tag: 2 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Li	ink ID Upstream	Node ID HYG	file		HYG tag
TO DP 5	EXDA 5			EXDA 5	2 YR
INFLOWS TO:				Peak Time	
HYG file	HYG ID EXDA 5	HYG tag 2 YR		12.7000	cfs
TOTAL FLOW	INTO: DP 5		Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 5	2 YR	.140	12.7000	.45

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM

Type.... Node: Addition Summary Page 6.02 Event: 2 yr

Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 2 YR

TOTAL NODE INFLOW... HYG file =

HYG ID = DP 5 HYG Tag = 2 YR

Peak Discharge = .45 cfs Time to Peak = 12.7000 hrs HYG Volume = .140 ac-ft

HYDDOCDADU ODDINATES /ofa)

Time	Ŷ		HYDROGRAPH Output Time			
hrs	i	Time on	left represent			in each row.
12.0000	1	.00	.00	.01	.02	.04
12.2500	1	.07	7 .11	.16	.22	.27
12.5000	1	.32	.37	.40	.43	. 45
12.7500	1	. 4	.45	.44	.42	.41
13.0000	1	.39	.38	.37	.35	.34
13.2500	-1	. 33	.32	.31	.30	.29
13.5000	-1	. 29	.28	.28	.27	. 27
13.7500	1	.26	.26	.25	.25	. 25
14.0000	- [. 25	.24	.24	.24	.23
14.2500	1	. 23	.23	.22	.22	.22
14.5000	1	. 22	.21	.21	.21	.21
14.7500	1	.21	.21	.20	.20	.20
15.0000	1	. 20	.20	.20	.19	.19
15.2500	1	.19	.19	.19	.18	.18
15.5000	1	.18	.18	.18	.17	.17
15.7500	1	.17	.17	.17	.16	.16
16.0000	1	.16	.16	.15	.15	.15
16.2500	I.	.15	.15	.14	.14	.14
16.5000	1	. 1 4	.14	.14	.13	.13
16.7500	-1	.13	.13	.13	.13	.13
17.0000	1	.13	.12	.12	.12	.12
17.2500	1	.12	.12	.12	.12	.12
17.5000	1	.11	.11	.11	.11	.11
17.7500	1	.11	.11	.11	.11	.10
18,0000	T.	.10	.10	.10	.10	.10
18.2500	1	.10	.10	.10	.09	.09
18.5000	1	.09	.09	.09	.09	.09
18.7500	1	.09	.09	.09	.09	.09
19.0000	1	.09	.09	.09	.09	.09
19.2500	1	. 09	.09	.09	.08	.08
19.5000)	.08	.08	.08	.08	.08

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM Date: 8/25/2011

Type.... Node: Addition Summary Name.... DP 5 Page 6.03 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW Storm... TypeIII 24hr Tag: 2 YR

Time hrs	 Time on	HYDROGRAPH O Output Time left represents	increment	= .0500 hrs	in each row.
19.7500	.08	.08	.08	.08	.08
20.0000	.08		.08	.08	.08
20.2500	.08	.08	.08	.08	.08
20.5000	.08	.08	.08	.08	.08
20.7500	.08	.08	.08	.08	.08
21.0000	.07	.07	.07	.07	.07
21.2500	.07	.07	.07	.07	.07
21.5000	.07	.07	.07	.07	.07
21.7500	.07	.07	.07	.07	.07
22.0000	.07	.07	.07	.07	.07
22.2500	.07	.07	.07	.07	.07
22.5000	.07	.07	.07	.07	.07
22.7500	.07	.06	.06	.06	.06
23.0000	.06	.06	.06	.06	.06
23.2500	.06	.06	.06	.06	.06
23.5000	.06	.06	.06	.06	.06
23.7500	.06	.06	.06	.06	.06
24.0000	.06	.06	.06	.05	.05
24.2500	.05	.04	.04	.03	.03
24.5000	.03	.02	.02	.01	.01
24.7500	.01	.01	.01	.01	.00
25.0000	.00	.00	.00	.00	.00
25,2500	.00	.00	.00		

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM

Type.... Node: Addition Summary Name.... DP 5Page 6.04 Event: 10 yr

File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW Storm... TypeIII 24hr Tag: 10 YR

DP 5

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID HY	G file HYG	ID HY	G tag
TO DP 5	EXDA 5	EX	DA 5 10	YR

TO DP 5	EXDA 5			EXDA 5	10 YR ========
INFLOWS TO:	: DP 5		W-1	nest miss	Book Bloom
HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	EXDA 5	10 YR	.467	12.6000	2.51
TOTAL FLOW	INTO: DP 5				
HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs

10 YR

.467

12.6000

2.51

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:35 PM Date: 8/25/2011

Page 6.05 Type.... Node: Addition Summary Name.... DP 5 Event: 10 yr

File..., C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 10 YR

TOTAL NODE INFLOW... HYG file =

HYG ID = DP 5 HYG Tag = 10 YR

Peak Discharge = 2.51 cfs Time to Peak = 12.6000 hrs HYG Volume = .467 ac-ft

HYDDOCDADH ODDINATES (cfs)

Time		YDROGRAPH O utput Time		(cfs) = .0500 hrs		
hrs	Time on left				in each row.	
11.7500	.00	.00	.01	.03	.07	
12.0000	.13	.26	.42	. 67	. 95	
12.2500 I	1.27	1.58	1.89	2.12	2.32	
12.5000	2.44	2.51	2.51	2.45	2.37	
12.7500	2.24	2.12	1.98	1.85	1.72	
13.0000	1.61	1.50	1.40	1.32	1.24	
13.2500 I	1.17	1.11	1.06	1.01	.97	
13.5000	.93	.90	.87	.85	.82	
13.7500	.80	.79	.77	.75	.74	
14.0000	.72	.71	.69	.68	. 67	
14.2500	. 65	. 64	.63	,62	. 61	
14.5000	.60	.60	.59	.58	.57	
14.7500	.57	.56	.56	,55	.54	
15.0000	. 54	.53	.53	.52	.51	
15.2500 I	.51	.50	.50	.49	.48	
15.5000	.48	.47	.47	.46	. 45	
15.7500	.45	. 44	.43	. 43	.42	
16.0000	.41	.41	.40	.39	.39	
16.2500	.38	.38	.37	.36	.36	
16.5000	.35	.35	.35	.34	.34	
16.7500	.33	.33	.33	.32	.32	
17.0000	. 32	.31	.31	.31	.31	
17.2500	.30	.30	.30	.29	.29	
17.5000	.29	.28	.28	.28	.27	
17.7500	.27	.27	.27	.26	.26	
18.0000	.26	.25	.25	.25	.24	
18.2500	.24	.24	.23	.23	.23	
18.5000 I	.23	.23	.22	.22	.22	
18.7500 J	.22	.22	.22	.22	.22	
19.0000	.21	.21	.21	+21	.21	
19.2500	.21	.21	.21	.21	,21	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM Date: 8/25/2011

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR Page 6.06 Event: 10 yr

Time		HYDROGRAPH ORD		A Committee of the Comm	
hrs	Time on le	ft represents t	ime for fi	rst value in	each row.
19.5000	.21	.20	.20	.20	.20
19.7500	.20	.20	.20	.20	.20
20.0000	.20	.20	.19	.19	.19
20.2500	.19	.19	.19	.19	.19
20.5000	.19	.19	.19	.19	.18
20.7500	.18	.18	.18	.18	.18
21.0000	.18	.18	.18	.18	.18
21.2500	.18	.18	.17	.17	.17
21.5000	.17	, 17	.17	.17	.17
21.7500	.17	.17	.17	.17	.17
22.0000	.17	.16	.16	.16	.16
22.2500	.16	.16	.16	.16	.16
22.5000	.16	.16	.16	.16	.16
22.7500	.15	.15	.15	.15	.15
23.0000	.15	.15	.15	.15	.15
23.2500	.15	.15	.15	.14	.14
23.5000	.14	.14	.14	.14	.14
23.7500	.14	. 14	.14	.14	.14
24.0000	.14	.13	.13	.13	.12
24.2500	.11	.10	.09	.08	.07
24.5000	.06	.05	.04	.03	.03
24.7500	.02	.02	.02	.01	.01
25.0000	.01	.01	.01	.00	.00
25.2500	.00	.00	.00	.00	.00
25.5000	.00	.00			

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM Date: 8/25/2011

Page 6.07 Event: 25 yr Type.... Node: Addition Summary

Name... DP 5
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Li	nk ID	Upstream	Node I	D HYG	file	HYG ID	HYG tag
TO DP 5		EXDA 5		======		EXDA 5	25 YR
INFLOWS TO:					Volume		A COLUMN TO THE PARTY OF THE PA
HYG file						hrs	
	EXDA	5	25	YR	.693	12.5500	4.11
TOTAL FLOW	INTO:	DP 5			di Variere		18 - Ok. Durk.
HYG file	HYG	ID				Peak Time hrs	
	DP 5		25	YR	.693	12.5500	4.11

Curtis Jones & Associates S/N: A215014070C4 PondPack Ver. 8.0068 Time: 2:35 PM Date: 8/25/2011

Page 6.08 Event: 25 yr Type.... Node: Addition Summary Name.... DP 5

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW Storm... TypeIII 24hr Tag: 25 YR

TOTAL NODE INFLOW... HYG file =
HYG ID = DP 5
HYG Tag = 25 YR

------Peak Discharge = 4.11 cfs Time to Peak = 12.5500 hrs HYG Volume = .693 ac-ft _----

HYDROGRAPH ORDINATES (cfs)

Time	T			YDROGRAPH O utput Time		(cfs) = .0500 hrs			
hrs	İ	Time on				first value	in each	row.	
11.5500	I I	.00)	.00	.01	.01		.03	
11.8000	A.	.06	6	.10	.17	.29		. 45	
12.0500	1	. 72	2	1.03	1.47	1.94	2	.46	
12.3000		2.93	3	3.38	3.69	3.95	4	.07	
12.5500		4.1	L	4.05	3.91	3.73	3	.50	
12.8000	1	3.2	7	3.04	2.82	2.61	2	. 42	
13.0500	I	2.24	1	2.09	1.95	1.83		.72	
13.3000	1	1.63	3	1.54	1.46	1.40		.34	
13.5500	1	1.29	9	1.25	1.21	1.17	1	.14	
13.8000	1	1.11	L	1.09	1.06	1.04		.02	
14.0500	1	. 99	9	.97	.95	. 93		.92	
14.3000	T	. 90)	.88	.87	.85		.84	
14.5500	1	. 83	3	.82	.81	.80		.79	
14.8000	1	. 78	3	.77	.76	.75		.75	
15.0500	T	. 7		.73	.72	.71		.70	
15.3000	T	. 69	€	. 68	.68	. 67		.66	
15,5500	1	. 65	5	. 64	.63	, 62		. 61	
15.8000		. 63	L.	.60	.59	.58		.57	
16.0500	1	. 5 (5	.55	.54	.53		.52	
16.3000	Ti-	.52	2	.51	.50	.49		.49	
16.5500	1	. 48	3	. 47	.47	.46		.46	
16.8000	T.	. 45	5	. 45	.44	. 44		. 43	
17.0500	T	. 43		. 43	.42	. 42		.41	
17,3000	T	. 4	Ļ	. 40	.40	.39		.39	
17.5500	T.	.39	9	.38	.38	.37		.37	
17.8000	L	.36	5	.36	.36	.35		.35	
18.0500	t	. 34	1	.34	.33	.33		.33	
18.3000	1	. 32	2	.32	.32	.31		.31	
18.5500	T	. 31	C,	.30	.30	.30		.30	
18.8000	1	. 30)	,30	.29	. 29		.29	
19.0500	Î	.29	9	.29	.29	. 29		.28	

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:35 PM Date: 8/25/2011

Page 6.09 Event: 25 yr Type.... Node: Addition Summary Name.... DP 5

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW Storm... TypeIII 24hr Tag: 25 YR

Time hrs	1	Time	on	01	YDROGRAP utput Ti represe	me inc	rement	= .05		in	each	row.	
19.3000	1		.28		.28		.28		.28			.28	_
19.5500	Ť		.28		.28		.27		.27			.27	
19.8000	Î		.27		.27		.27		.27			.26	
20.0500	1		.26		.26		.26		.26			.26	
20.3000	1		.26		.26		.26		.25			.25	
20.5500	1		.25		.25		.25		.25			.25	
20.8000	1		.25		.25		.24		.24			.24	
21.0500	1		.24		.24		.24		.24			.24	
21.3000	1		.24		.24		.23		.23			.23	
21.5500	1		.23		.23		.23		.23			.23	
21.8000	Ţ		.23		.23		.22		.22			.22	
22.0500	1		.22		.22		.22		.22			.22	
22.3000	1		.22		.22		.21		.21			.21	
22.5500	1		.21		.21		.21		.21			.21	
22,8000	T		.21		.21		.20		.20			.20	
23.0500	U		.20		.20		.20		.20			.20	
23.3000	T		.20		.19		.19		.19			.19	
23.5500	1		.19		.19		.19		-19			.19	
23.8000	0		.19		.18		.18		.18			.18	
24.0500	1		.18		.18		.17		.16			.15	
24.3000	I		.14		.12		.11		.09			.08	
24.5500	T		.07		.05		.04		.04			.03	
24.8000	T		.03		.02		.02		.01			.01	
25.0500	1		.01		.01		.01		.01			.00	
25.3000	J		.00		.00		.00		.00			.00	
25.5500	1		.00		.00		.00						

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM

Type.... Node: Addition Summary Page 6.10 Name... DP 5
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR Event: 50 yr

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Li	nk ID	Upstream	Node 1	D HYG	file	HYG ID	HYG tag
TO DP 5		EXDA 5				EXDA 5	50 YR
INFLOWS TO:	DP 5				W. J. J. Com. 2	Peak Time	D- 1 E1
HYG file	HYG	ID	HYC	tag	Volume ac-ft	hrs	Peak Flow cfs
	EXDA	5	5.0) YR	.914	12.5500	5.67

TOTAL FLOW INTO: DP 5

			- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
	DP 5	50 YR	.914	12.5500	5.67

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:35 PM Date: 8/25/2011 Type.... Node: Addition Summary Page 6.11 Event: 50 yr

Name... DP 5
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW

Storm... TypeIII 24hr Tag: 50 YR

TOTAL NODE INFLOW...

HYG file = HYG ID = DP 5 HYG Tag = 50 YR

Peak Discharge = 5.67 cfs
Time to Peak = 12.5500 hrs
HYG Volume = .914 ac-ft

HYDROCRAPH ORDINATES (cfs)

Time	Ĭ.	HYDROGRAPH ORDINATES (cfs) Output Time increment = .0500 hrs								
hrs	I I	ime on	left represents			in each row.				
11.2500		.00	.00	.00	.01	.01				
11.5000	1	.02	.03	.05	.07	.11				
11.7500	1	.15	. 22	.32	. 45	.65				
12.0000	1	.90	1.30	1.75	2,36	3.00				
12.2500	1	3.69	4.31	4.89	5.25	5.56				
12.5000	1	5.66	5.67	5.55	5.32	5.04				
12.7500	1	4.71	4.38	4.06	3.75	3.46				
13.0000	1	3.19	2.95	2.74	2.55	2.39				
13.2500	Ť	2.24	2.11	2.00	1.89	1.81				
13.5000	1	1.73	1.66	1.60	1.55	1.50				
13.7500	Î.	1.46	1.42	1.38	1.35	1.32				
14.0000	1	1.29	1.26	1.23	1.21	1.18				
14.2500	T.	1.16	1.14	1.11	1.10	1.08				
14.5000	i	1.06		1.03	1.02	1.01				
14.7500	î.	.99	.98	.97	.96	.95				
15.0000	Î	.94	.92	.91	.90	.89				
15.2500	T.	.88	.87	.86	.85	.84				
15.5000	i	.83	.81	.80	.79	.78				
15.7500	1	. 77		.75	.73	.72				
16.0000		.71		.69	.68	.66				
16.2500	Î.	. 65	. 64	.63	.62	.61				
16.5000	1	. 61	.60	.59	.58	.58				
16.7500	1	. 57	.56	.56	.55	.55				
17.0000	Ŷ	.54		.53	.52	.52				
17.2500	i.	.51		.50	.50	.49				
17.5000	ì	. 49		.47	.47	.46				
7.7500	Î	. 46		.45	.44	. 44				
18.0000	ï	. 43		.42	.42	.41				
18.2500	î	. 40		.40	.39	.39				
18.5000	î .	.38		.38	.38	.37				
18.7500	ì	. 37		.37	.36	.36				

Curtis Jones & Associates S/N: A215014070C4 PondPack Ver. 8.0068 Time: 2:35 PM

Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 50 YR Page 6.12 Event: 50 yr

Time hrs	1	Time	on	0	utput	Time	RDINAT increm time	nent	= .05	00 hrs value	in	each	row.	
19.0000			.36			.36		.36		.36			.35	_
19.2500	1		.35			. 35		.35		,35			.35	
19.5000	1		.34			.34		.34		.34			.34	
19.7500	1		.34			. 33		.33		.33			.33	
20.0000	1		.33			. 33		.32		.32			.32	
20.2500			.32			.32		.32		.32			.31	
20.5000			.31			.31		.31		.31			.31	
20.7500	1		.31		3	.30		.30		.30			.30	
21.0000	1		.30		- 3	.30		.30		.30			.29	
21.2500	1		.29			.29		.29		.29			.29	
21.5000			.29			.29		.28		.28			.28	
21.7500	1		.28			.28		.28		.28			.28	
22.0000	1		.27		-	27		.27		.27			.27	
22.2500	£		.27			27		.27		.26			.26	
22.5000	1		.26		100	26		.26		.26			.26	
22.7500	1		.26		- 54	25		.25		. 25			.25	
23.0000	1		.25			.25		.25		.25			.24	
23.2500	1		.24			24		.24		.24			.24	
23.5000	1		.24			24		.23		.23			.23	
23.7500	1		.23		1.	23		.23		,23			.22	
24.0000	1		.22		- 1	22		.22		.21			.20	
24.2500	1		.19			17		.15		.13			.11	
24.5000	1		.10			.08		.07		.06			.05	
24.7500	3		.04			03		.03		.02			.02	
25.0000	1		.01			01		.01		.01			.01	
25,2500	I		.01			00		.00		.00			.00	
25.5000	Ţ		.00		4	00		.00		.00			.00	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM

Type.... Node: Addition Summary Page 6.13 Name... DP 5
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID HYG file	HYG ID	HYG tag
TO DP 5	EXDA 5	EXDA 5	100 YR
INFLOWS TO: DP 5			

INFLOWS TO: HYG file	DP 5 HYG ID	HYG tag	Volume ac-ft	Peak Time	Peak Flow cfs
	EXDA 5	100 YR	1.188	12.5000	7.64

TOTAL FLOW	INTO: DP 5		- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG tag	ac-ft	hrs	cfs
ESTROPATOR	DP 5	100 YR	1.188	12.5000	7.64

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:35 PM

Type.... Node: Addition Summary Page 6.14 Event: 100 yr Name.... DP 5

File.... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW Storm... TypeIII 24hr Tag: 100 YR

TOTAL NODE INFLOW ...

HYG file =
HYG ID = DP 5
HYG Tag = 100 YR

_____ Peak Discharge = 7.64 cfs
Time to Peak = 12.5000 hrs
HYG Volume = 1.188 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	1			ROGRAPH O put Time			(cfs) = .05	00 hrs				
hrs		Time on	left r	epresents	time	for	first	value	in e	each	row.	
10.9000	1	.0)	.00		.00	27755	.01	775		.01	
11.1500	11	.0:	2	.03		.04		405			.07	
11.4000	1	. 0	9	.11		.14		.17			.21	
11.6500	I	. 2	6	.33		.40		.52			. 67	
11.9000	1	. 8	7	1.17	1	1,52		2.08		3	2.70	
12.1500	1	3.5	1)	4.36	C	5.26		6.04			6.77	
12.4000	1	7.2)	7.55	7	7.64		7.60			7.39	
12.6500	4	7.0	5	6.64	6	5.19		5.73		1	5.29	
12.9000	1	4.8	3	4.48	4	1.13		3.80			3.53	
13.1500	1	3.2	3	3.06	2	2.86		2.69		1	2.54	
13.4000	1	2.4	l	2.29	2	2.19		2.10			2.02	
13.6500	1	1.9	ō	1.89	1	1.84		1.79			1.74	
13.9000	1	1.70)	1.65	1	.61		1.58		3	1.54	
14.1500	ű.	1.5	Ĺ	1.48	.1	1.45		1.42			1.39	
14.4000	1	1.3	7	1.34	1	1.32		1.30		19	1.29	
14.6500	T	1.2	7	1.25	1	.24		1.22			1.21	
14.9000	D	1.19	9	1.18	1	1.16		1.15		3	1.13	
15.1500	1	1.13	2	1.11	1	.09		1.08		3	1.06	
15.4000	1	1.09	5	1.04	1	.02		1.01			.99	
15.6500	T	.98	3	.97		.95		.94			.92	
15.9000	I.	.9	Ĺ	.89		.88		.86			.85	
16.1500	1	. 83	3	.82		.81		.79			.78	
16.4000	T.	. 7	7	.76		.75		.74			.73	
16.6500	1	. 72	2	.71		.70		.69			.69	
16.9000	1	. 68	3	.67		.67		.66			. 65	
17.1500	T.	. 64	1	. 64		.63		.62			. 62	
17.4000	L	.63	8	.60		.60		.59			.58	
17.6500	Ĺ	.58		.57		.56		.56			.55	
17.9000	f.	.54		. 54		.53		.52			.52	
18.1500	F	.53		.50		.50		.49			. 49	
18.4000	Ê	. 48		.48		.47		. 47			.46	
A. A. L. S.						7 7 7		2.77			200	

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:35 PM Date: 8/25/2011

Page 6.15 Event: 100 yr Type.... Node: Addition Summary

Name... DP 5
File... C:\Program Files\Haestad\PPKW\PPW\3092 EXDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR

Time hrs		utput Time ind		0500 hrs st value in e	aab waa
nrs	Time on left	represents ti	rwe for fit	st value in e	ach iow
18.6500	.46	. 46	.46	.45	. 45
18.9000	. 45	. 44	. 44	. 44	. 44
19.1500	. 44	.43	.43	. 43	. 43
19.4000	. 43	.42	. 42	. 42	.42
19.6500	.42	.41	.41	. 41	.41
19.9000	. 41	.40	.40	. 40	.40
20.1500	.40	.39	.39	.39	.39
20.4000	.39	.38	.38	.38	.38
20.6500	.38	.38	.37	.37	.37
20.9000	.37	.37	.37	.36	.36
21.1500	.36	.36	.36	.36	.36
21.4000	.35	.35	.35	.35	.35
21.6500	.35	.34	.34	.34	.34
21.9000	.34	.34	.34	.33	.33
22.1500	.33	.33	.33	.33	.32
22.4000	.32	.32	.32	.32	.32
22.6500	.32	.31	.31	.31	.31
22.9000	.31	.31	.30	.30	.30
23.1500	.30	.30	.30	.29	.29
23.4000	.29	.29	.29	.29	.29
23.6500	.28	.28	.28	. 28	.28
23.9000	.28	.27	.27	.27	.26
24.1500	.25	.24	.23	.21	.18
24.4000	.16	.14	.12	.10	.08
24.6500	.07	.06	.05	.04	.03
24.9000 i	.03	.02	.02	.01	.01
25.1500	.01	.01	.01	.01	.00
25.4000	-00	.00	.00	.00	.00
25.6500	.00	.00	4.0	4.6.2	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:35 PM Date: 8/25/2011 Appendix A A-1

Index of Starting Page Numbers for ID Names

---- D -----DP 5 2 YR... 6.01, 6.04, 6.07, 6.10, 6.13

---- E ----EXDA 5... 3.01, 4.01, 5.03, 5.04, 5.05, 5.06, 5.07

----- L -----Litchfield Co.... 2.01, 2.02

----- W -----Watershed... 1.01

S/N: A215014070C4 PondPack Ver. 8,0068

Curtis Jones & Associates
Time: 2:35 PM Date: 8/25/2011

Proposed Flows – DL5

Table of Contents

Table of Contents

í

*********	****** MASTER SUMMARY *************
Watershed	. Master Network Summary 1.01
******	*** DESIGN STORMS SUMMARY ************
Litchfield Co	. Design Storms 2.01
Litchfield Co	. 2 YR Design Storms 2.02
*******	****** RAINFALL DATA **************
TypeIII 24hr	. 100 YR Synthetic Curve 3.01
******	***** TC CALCULATIONS *************
PRDA 5D	, Tc Calcs 4.01
PRDA 5ND	. Tc Calcs 4.03
******	****** CN CALCULATIONS **************
PRDA 5D	. Runoff CN-Area 5.01
PRDA 5ND	. Runoff CN-Area 5.02
******	**** RUNOFF HYDROGRAPHS *************
	Unit Hyd. Equations 6.01

Table of Contents (continued)

PRDA 5D	2 YR Unit Hyd. Summary	6.03
PRDA 5D	10 YR Unit Hyd, Summary	6.04
PRDA 5D	25 YR Unit Hyd. Summary	6.05
PRDA 5D	50 YR Unit Hyd. Summary	6.06
PRDA 5D	100 YR Unit Hyd. Summary	6.07
PRDA 5ND	2 YR Unit Hyd. Summary	6.08
PRDA 5ND	10 YR Unit Hyd. Summary	6.09
PRDA 5ND	25 YR Unit Hyd. Summary	6.10
PRDA 5ND		6.11
PRDA 5ND		6.12
***********	****** HYG ADDITION **********	*****
DP 5	2 YR Node: Addition Summary	7.01
DP 5	10 YR Node: Addition Summary	7.03
DP 5	25 YR Node: Addition Summary	7.05
DP 5		7.07
DP 5		7.09

Table of Contents

Table of Contents (continued)

****	* * * *	***	****	****** POND VOLUMES ***********	*****
UNDER	DET	5.		Vol: Elev-Area	8.01
****	***	***	****	**** OUTLET STRUCTURES **********	*****
Outlet	t 1.			Outlet Input Data	9.01 9.03 9.05
****	***	***	****	****** POND ROUTING ***********	*****
UNDER	DET	5.		Pond Infiltration Calcs	10.01
UNDER	DET	5	OUT	2 YR Pond Routing Summary	10.04
UNDER	DET	5	OUT	10 YR Pond Routing Summary	10.05
UNDER	DET	5	OUT	25 YR Pond Routing Summary	10.06
UNDER	DET	5	OUT	50 YR Pond Routing Summary	10.07
UNDER	DET	5	OUT	100 YR Pond Routing Summary	10.08

iii

Type.... Master Network Summary Name.... Watershed Page 1,01

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

MASTER DESIGN STORM SUMMARY

Network Storm Collection: Litchfield Co.

Return Ever	Total Depth it in	Rainfall Type	RNF ID
2 YR	3.2000	Synthetic Curve	TypeIII 24hr
10 YR	4.7000	Synthetic Curve	TypeIII 24hr
25 YR	5.5000	Synthetic Curve	TypeIII 24hr
50 YR	6.2000	Synthetic Curve	TypeIII 24hr
100 YR	7.0000	Synthetic Curve	TypeIII 24hr

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID	Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
*DP 5	JCT	2	.115	17.7	12,6000	.46	me manue p	
*DP 5	JCT	10	.424		12.5000	2.39		
*DP 5	JCT	25	.654		12.4000	3.95		
*DP 5	JCT	50	.880		12.4000	5.44		
*DP 5	JCT	100	1.160		12.4000	7.23		
JUNCTION	JCT	2	.115		12.6000	.46		
JUNCTION	JCT	10	.424		12.5000	2.39		
JUNCTION	JCT	25	.654		12.4000	3.95		
JUNCTION	JCT	50	.880		12.4000	5.44		
JUNCTION	JCT	100	1.160		12.4000	7.23		
PRDA 5D	AREA	2	.101		12.4000	.68		
PRDA 5D	AREA	10	.236		12.4000	1.79		
PRDA 5D	AREA	25	.318		12.4000	2.46		
PRDA 5D	AREA	50	.396		12.4000	3.08		
PRDA 5D	AREA	100	.488		12.4000	3,81		

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Page 1.02

Type.... Master Network Summary
Name.... Watershed
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node	ID			Туре	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft	
PRDA	END	7.7		7057	~~~~~	,115	45	12.6000	.46	Jesepope		
				AREA	10							
PRDA				AREA	10	.367		12.4000	2.33			
PRDA	5ND			AREA	25	.539		12.4000	3.76			
PRDA	5ND			AREA	50	.706		12.4000	5.15			
PRDA	5ND			AREA	100	.913		12.4000	6.85			
UNDER	DET	5	IN	POND	2	.101		12.4000	.68			
UNDER	DET	5	IN	POND	10	.236		12.4000	1.79			
UNDER	DET	5	IN	POND	25	.318		12.4000	2.46			
UNDER	DET	5	IN	POND	50	.396		12.4000	3.08			
UNDER	DET	5	IN	POND	100	.488		12.4000	3.81			
UNDER	DET	5	OUT	POND	2	.000		11.7000	.00	1434.84	.025	
UNDER	DET	5	OUT	POND	10	.057		13.2000	.28	1435.61	.080	
UNDER	DET	5	OUT	POND	25	.115		13.1000	. 43	1436.10	.115	
UNDER	DET	5	OUT	POND	50	.174		12.9000	.89	1436.42	.138	
UNDER			OUT	POND	100	.247		12.8000	1.56	1436.72	.159	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Type.... Design Storms Page 2.01 Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Title... Project Date: 4/16/2009

Project Engineer: Curtis Jones Project Title: Watershed

Project Comments:

DESIGN STORMS SUMMARY

Design Storm File, ID = Litchfield Co.

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yrTotal Rainfall Depth= 3.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

......

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

= 25 YR Storm Tag Name

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 25 yr Total Rainfall Depth= 5.5000 in

Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr Total Rainfall Depth= 6.2000 in Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 100 yr Total Rainfall Depth= 7.0000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8,0068 Time: 2:45 PM Date: 8/25/2011 Type.... Design Storms Page 2.02 Event: 2 yr Name.... Litchfield Co.

File.... C:\Program Files\Haestad\PPKW\PPW\

Storm... TypeIII 24hr Tag: 2 YR

DESIGN STORMS SUMMARY

Litchfield Co. Design Storm File, ID =

Storm Tag Name = 2 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 2 yr Total Rainfall Depth= 3.2000 in

Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 10 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 10 yr Total Rainfall Depth= 4.7000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 25 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr Storm Frequency = 25 yr

Total Rainfall Depth= 5.5000 in Duration Multiplier = 1
Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 50 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 50 yr

Total Rainfall Depth= 6.2000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

Storm Tag Name = 100 YR

Data Type, File, ID = Synthetic Storm TypeIII 24hr

Storm Frequency = 100 yr Total Rainfall Depth= 7.0000 in

Duration Multiplier = 1

Resulting Duration = 24.0000 hrs

Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates S/N: A215014070C4 Time: 2:45 PM Date: 8/25/2011 Name.... TypeIII 24hr Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\

CUMULATIVE RAINFALL FRACTIONS Output Time increment = .1000 hrs Time on left represents time for first value in each row. hrs |

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Page 3.02

Type.... Synthetic Curve
Name.... TypeIII 24hr Tag: 100 YR
File.... C:\Program Files\Haestad\PPKW\PPW\

Time	Output	TIVE RAINFA: Time incre	ment = .10	00 hrs	
hrs	Time on left	represents	time for	first value in	n each row.
22.0000	.981	.982	.983	.984	.985
22.5000	.986	.987	.988	.989	.990
23.0000 1	.991	.992	.993	.994	.995
23.5000	.996	.997	.997	.998	.999
24.0000	1.000				

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates
Time: 2:45 PM Date: 8/25/2011

Type.... Tc Calcs Page 4.01 Name.... PRDA 5D

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n .3000 Hydraulic Length 200.00 ft 2yr, 24hr P 3.2000 in Slope .035000 ft/ft

Avg. Velocity .14 ft/sec

Segment #1 Time: .3957 hrs

Segment #2: Tc: TR-55 Shallow

Hydraulic Length 502.00 ft Slope 5010000 ft/ft

Unpaved

Avg. Velocity 1.61 ft/sec

Segment #2 Time: .0864 hrs

_______ Total Tc: .4822 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM Date: 8/25/2011

```
Type.... Tc Calcs
Name.... PRDA 5D
                                              Page 4.02
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Tc Equations used...
Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))
    Where: Tc = Time of concentration, hrs
          n = Mannings n
          Lf = Flow length, ft
P = 2yr, 24hr Rain depth, inches
          Sf = Slope, %
Unpaved surface:
    V = 16.1345 * (Sf**0.5)
    Paved surface:
    V = 20.3282 * (Sf**0.5)
    Tc = (Lf / V) / (3600sec/hr)
    Where: V = Velocity, ft/sec
         Sf = Slope, ft/ft
         Tc = Time of concentration, hrs
          Lf = Flow length, ft
```

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Date: 8/25/2011

Total Tc: .4800 hrs

Type.... Tc Calcs Name.... PRDA 5ND Page 4.04 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Tc Equations used... Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))Where: Tc = Time of concentration, hrs n = Mannings n Lf = Flow length, ft P = 2yr, 24hr Rain depth, inches Sf = Slope, %

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2.45 pm Time: 2:45 PM Date: 8/25/2011

Type.... Runoff CN-Area Name.... PRDA 5D Page 5.01 File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW RUNOFF CURVE NUMBER DATA Impervious

COMPOSITE AREA & WEIGHTED CN ---> 1.770

66.95 (67)

		Area	Imper:		Adjusted
Soil/Surface Description	CN	acres	%C	%UC	CN
Soil Type B - Wooded	55	4.090			55.00
Soil Type B - Grass/Meadow	60	.800			60.00
Impervious	98	.050			98.00
COMPOSITE AREA & WEIGHTED CN>		4.940			56.24 (56)
	****	*********	*****		**********

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Name....

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

DEFINITION OF TERMS: -----= Total area (acres): At = Ai+Ap Ai = Impervious area (acres) = Pervious area (acres) Ap = Runoff curve number for impervious area CNi = Runoff curve number for pervious area fLoss = f loss constant infiltration (depth/time) = Saturated Hydraulic Conductivity (depth/time) = Volumetric Moisture Deficit Md Psi = Capillary Suction (length) hK = Horton Infiltration Decay Rate (time^-1) = Initial Infiltration Rate (depth/time) fo = Ultimate(capacity)Infiltration Rate (depth/time) fc = Initial Abstraction (length) Ia dt = Computational increment (duration of unit excess rainfall) Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) UDdt = User specified override computational main time increment (only used if UDdt is => .1333Tc) D(t) = Point on distribution curve (fraction of P) for time step t = 2 / (1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67) = Hydrograph shape factor Ks = Unit Conversions * K: = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * KDefault Ks = 645.333 * 0.75 = 484Lag = Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc = Total precipitation depth, inches Pa(t) = Accumulated rainfall at time step t Pi(t) = Incremental rainfall at time step t qp = Peak discharge (cfs) for lin. runoff, for lhr, for 1 sq.mi. = (Ks * A * Q) / Tp (where Q = 1in. runoff, A=sq.mi.) Qu(t) = Unit hydrograph ordinate (cfs) at time step t Q(t) = Final hydrograph ordinate (cfs) at time step t Rai(t) = Accumulated runoff (inches) at time step t for impervious area Rap(t) = Accumulated runoff (inches) at time step t for pervious area Rii(t) = Incremental runoff (inches) at time step t for impervious area Rip(t) = Incremental runoff (inches) at time step t for pervious area = Incremental weighted total runoff (inches) Rtm = Time increment for rainfall table = S for impervious area: Si = (1000/CNi) - 10 Sp = S for pervious area: Sp = (1000/CNp) - 10= Time step (row) number Tc = Time of concentration Tb = Time (hrs) of entire unit hydrograph: Tb = Tp + Tr = Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + LagTr = Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2:45 PM Date: 8/25/2011

Type.... Unit Hyd. Equations Page 6.02

Name....

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

SCS UNIT HYDROGRAPH METHOD (Computational Notes)

PRECIPITATION: ------Column (1): Time for time step t Column (2): D(t) = Point on distribution curve for time step t
Column (3): Pi(t) = Pa(t) - Pa(t-1): Col.(4) - Preceding Col.(4)
Column (4): Pa(t) = D(t) x P: Col.(2) x P PERVIOUS AREA RUNOFF (using SCS Runoff CN Method) -----Column (5): Rap(t) = Accumulated pervious runoff for time step t If $(Pa(t) \text{ is } \le 0.2Sp)$ then use: Rap(t) = 0.0 If (Pa(t) is > 0.2Sp) then use: Rap(t) = (Col.(4)-0.2Sp)**2 / (Col.(4)+0.8Sp)Column (6): Rip(t) = Incremental pervious runoff for time step t $\begin{array}{lll} \text{Rip}(t) = & \text{Rap}(t) & - & \text{Rap}(t-1) \\ \text{Rip}(t) = \text{Col.}(5) & \text{for current row - Col.}(5) & \text{for preceding row.} \end{array}$ IMPERVIOUS AREA RUNOFF ------Column (7 & 8)... Did not specify to use impervious areas. INCREMENTAL WEIGHTED RUNOFF: ------Column (9): $R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$ $R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$ SCS UNIT HYDROGRAPH METHOD: ------Column (10): Q(t) is computed with the SCS unit hydrograph method

using R() and Qu().

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Type.... Unit Hyd. Summary
Name.... PRDA 5D Tag: 2 YR Page 6.03 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000 in
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5D 2 YR
TC = .4822 hrs
Drainage Area = 1.770 acres Runoff CN= 67

Computational Time Increment = .06429 hrs Computed Peak Time = 12.4079 hrs Computed Peak Time = J .68 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.4000 hrs Peak Flow, Interpolated Output = ,68 cfs

DRAINAGE AREA

ID:PRDA 5D

CN = 67 Area = 1.770 acres S = 4.9254 in 0.2S = .9851 in

Cumulative Runoff ------

.6871 in .101 ac-ft

HYG Volume... .101 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D) Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfsUnit peak time Tp = 32145 hrsUnit receding limb, Tr = 1.28579 hrsTotal unit time, Tb = 1.60724 hrs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM Date: 8/25/2011

Type.... Unit Hyd. Summary Page 6.04 Tag: 10 YR Name.... PRDA 5D Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 4.7000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 5D 10 YR

Tc = .4822 hrs

Drainage Area = 1.770 acres Runoff CN= 67

Computational Time Increment = .06429 hrsComputed Peak Time = 12.3436 hrsComputed Peak Time Computed Peak Flow = 1.79 cfs

Time Increment for HYG File = .1000 hrs
Peak Time, Interpolated Output = 12.4000 hrs
Peak Flow, Interpolated Output = 1.79 cfs

DRAINAGE AREA

------ID: PRDA 5D

CN = 67 Area = 1.770 acres S = 4.9254 in

0.2S = .9851 in

Cumulative Runoff

1.5972 in .236 ac-ft

HYG Volume236 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D) Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs Unit peak time Tp = .32145 hrs Unit receding limb, Tr = 1.28579 hrs Total unit time, Tb = 1.60724 hrs

Type.... Unit Hyd. Summary
Tag: 25 YR Page 6.05 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\
Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5D 25 YR

= .4822 hrs TC

Drainage Area = 1.770 acres Runoff CN= 67

Computational Time Increment = .06429 hrs Computed Peak Time = 12.3436 hrs Computed Peak Time = 2.48 cfs Computed Peak Flow

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.4000 hrs

Peak Flow, Interpolated Output = 2.46 cfs

DRAINAGE AREA

ID: PRDA 5D

CN = 67 Area = 1.770 acres

S = 4.9254 in

0.2S = .9851 in

Cumulative Runoff -----

2.1593 in

.318 ac-ft

HYG Volume318 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D) Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs Unit peak time Tp = .32145 hrs Unit receding limb, Tr = 1.28579 hrs Total unit time, Tb = 1.60724 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates
Time: 2.45 PM

Type.... Unit Hyd. Summary
Tag: 50 YR Page 6.06 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 5D 50 YR
Tc = .4822 hrs

Drainage Area = 1.770 acres Runoff CN= 67

Computational Time Increment = .06429 hrs Computed Peak Time = 12.3436 hrs Computed Peak Flow = 3.12 cfs

Time Increment for HYG File = .1000 hrsPeak Time, Interpolated Output = 12.4000 hrsPeak Flow, Interpolated Output = 3.08 cfs

DRAINAGE AREA

-----ID: PRDA 5D

CN = 67 Area = 1.770 a S = 4.9254 in 1.770 acres

0.2S = .9851 in

Cumulative Runoff

2.6819 in

.396 ac-ft

HYG Volume396 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D) Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfs Unit peak time Tp = .32145 hrs Unit receding limb, Tr = 1.28579 hrs Total unit time, Tb = 1.60724 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates

Time: 2:45

Type.... Unit Hyd. Summary Page 6.07 Tag: 100 YR Name.... PRDA 5D Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in

= C:\Program Files\Haestad\PPKW\PPW\ Rain Dir

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 5D 100 YR Tc = .4822 hrs

Drainage Area = 1.770 acres Runoff CN= 67

Computational Time Increment = .06429 hrs Computed Peak Time = 12.3436 hrs Computed Peak Time Computed Peak Flow = 3.88 cfs

Time Increment for HYG File = .1000 hrsPeak Time, Interpolated Output = 12.4000 hrsPeak Flow, Interpolated Output = 3.81 cfs

WARNING: The difference between calculated peak flow and interpolated peak flow is greater than 1.50%

DRAINAGE AREA

ID:PRDA 5D

CN = 67 Area = 1.770 acres S = 4.9254 in 0.2S = .9851 in

Cumulative Runoff

3.3070 in

.488 ac-ft

HYG Volume...

.488 ac-ft (area under HYG curve)

**** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48217 hrs (ID: PRDA 5D) Computational Incr, Tm = .06429 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 4.16 cfsUnit peak time Tp = .32145 hrsUnit peak, Unit receding limb, Tr = 1.28579 hrsTotal unit time, Tb = 1.60724 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:45 PM

Type.... Unit Hyd. Summary
Tag: 2 YR Page 6.08 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 2 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 2 year storm

Duration = 24.0000 hrs Rain Depth = 3.2000
Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 3.2000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 5ND 2 YR

= .4800 hrs Te

Drainage Area = 4.940 acres Runoff CN= 56

Computational Time Increment = .06400 hrs Computed Peak Time = 12.6086 hrs Computed Peak Flow =

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12,6000 hrs Peak Flow, Interpolated Output = .46 cfs

DRAINAGE AREA ------

ID: PRDA 5ND

CN = 56 Area = 4.940 acres S = 7.8571 in

0.2S = 1.5714 in

Cumulative Runoff

.2796 in ,115 ac-ft

HYG Volume115 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND) Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs Unit peak time Tp = .32002 hrs Unit receding limb, Tr = 1.28006 hrs Total unit time, Tb = 1.60008 hrs

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:45 PM Time: 2:45 PM Date: 8/25/2011 Type.... Unit Hyd. Summary Page 6.09 Tag: 10 YR Name.... PRDA 5ND Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 10 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 10 year storm

Duration = 24.0000 hrs Rain Depth = 4.7000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 10 YR
TC = .4800 hrs

Drainage Area = 4.940 acres Runoff CN= 56

Computational Time Increment = .06400 hrs Computed Peak Time = 12.4166 hrs Computed Peak Flow

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.4000 hrs Peak Flow, Interpolated Output = 2.33 cfs -----

DRAINAGE AREA

ID: PRDA 5ND

CN = 56 Area = 4.940 acres S = 7.8571 in 0.2S = 1.5714 in

Cumulative Runoff

.8910 in

.367 ac-ft

HYG Volume... .367 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND) Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs Unit peak time Tp = .32002 hrs Unit receding limb, Tr = 1.28006 hrs Total unit time, Tb = 1.60008 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates

Time: 0.45

Type.... Unit Hyd. Summary
Tag: 25 YR Page 6.10 Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 25 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 25 year storm

Duration = 24.0000 hrs Rain Depth = 5.5000 Rain Dir = C:\Program Files\Haestad\PPKW\PPW\ Rain Depth = 5.5000 in

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\

HYG File - ID = - PRDA 5ND 25 YR

TC = .4800 hrs

Drainage Area = 4.940 acres Runoff CN= 56

Computational Time Increment = .06400 hrs Computed Peak Time = 12.4166 hrs Computed Peak Flow = 3.78 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.4000 hrs Peak Flow, Interpolated Output = 3.76 cfs

DRAINAGE AREA

ID:PRDA 5ND

Area = 4.940S = 7.8571 in

0.2S = 1.5714 in

Cumulative Runoff

1.3095 in .539 ac-ft

HYG Volume539 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND) Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfsUnit peak time Tp = .32002 hrsUnit receding limb, Tr = 1.28006 hrsTotal unit time, Tb = 1.60008 hrs

PondPack Ver. 8.0068

Curtis Jones & Associates

Pinc. 2 45 Date: 8/25/2011 Type.... Unit Hyd. Summary
Tag: 50 YR Page 6.11 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 50 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 50 year storm

Duration = 24.0000 hrs Rain Depth = 6.2000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr Unit Hyd Type = Default Curvilinear

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 50 YR
TC = .4800 hrs

Drainage Area = 4.940 acres Runoff CN= 56

Computational Time Increment = .06400 hrs Computed Peak Time = 12.4166 hrs Computed Peak Time Computed Peak Flow = 5.15 cfs

Time Increment for HYG File = .1000 hrs Peak Time, Interpolated Output = 12.4000 hrs Peak Flow, Interpolated Output = 5.15 cfs

DRAINAGE AREA -------

ID: PRDA 5ND

CN = 56 Area = 4.940 acres

S = 7.8571 in

0.2S = 1.5714 in

Cumulative Runoff

1.7159 in .706 ac-ft

HYG Volume706 ac-ft (area under HYG curve)

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND) Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfs Unit peak time Tp = .32002 hrs Unit receding limb, Tr = 1.28006 hrs Total unit time, Tb = 1.60008 hrs

Type.... Unit Hyd. Summary
Tag: 100 YR Page 6.12 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 100 YR

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm

Duration = 24.0000 hrs Rain Depth = 7.0000 in Rain Dir = C:\Program Files\Haestad\PPKW\PPW\

Rain File -ID = - TypeIII 24hr

Unit Hyd Type = Default Curvilinear
HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
HYG File - ID = - PRDA 5ND 100 YR

= .4800 hrs TC

Drainage Area = 4.940 acres Runoff CN= 56

Computational Time Increment = .06400 hrs Computed Peak Time = 12.3526 hrs Computed Peak Flow

Time Increment for HYG File = Peak Time, Interpolated Output = 12.4000 hrs Peak Flow, Interpolated Output = 6.85 cfs

DRAINAGE AREA _____

ID:PRDA 5ND

CN = 56 Area = 4.940 acres

S = 7.8571 in0.2S = 1.5714 in

Cumulative Runoff

2.2181 in .913 ac-ft

.913 ac-ft (area under HYG curve) HYG Volume...

***** SCS UNIT HYDROGRAPH PARAMETERS *****

Time Concentration, Tc = .48002 hrs (ID: PRDA 5ND) Computational Incr, Tm = .06400 hrs = 0.20000 Tp

Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)

Unit peak, qp = 11.66 cfsUnit peak time Tp = .32002 hrsUnit receding limb, Tr = 1.28006 hrsTotal unit time, Tb = 1.60008 hrs

Curtis Jones & Associates S/N: A215014070C4 PondPack Ver. 8.0068 Time: 2:45 PM Date: 8/25/2011 Type.... Node: Addition Summary Page 7.01 Name.... DP 5 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 2 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag

TO DP5 JUNCTION JUNCTION 2 YR

JUNCTION 2 YR .115 12.6000 .46

TOTAL FLOW INTO: DP 5

HYG file HYG ID HYG tag ac-ft hrs cfs

DP 5 2 YR .115 12.6000 .46

Page 7.02 Type.... Node: Addition Summary Name.... DP 5 Event: 2 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Storm... TypeIII 24hr Tag: 2 YR

TOTAL NODE INFLOW ... HYG file =

HYG file =
HYG ID = DP 5
HYG Tag = 2 YR

Peak Discharge = .46 cfs
Time to Peak = 12.6000 hrs
HYG Volume = .115 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	Output Time increment = .1000 hrs					
hrs	Time o	n left	represents tim	e for	first value i	n each row.
12.0000		00	.02	.09	. 22	.35
12.5000		44	. 46	.43	.38	.34
13.0000		31	.28	.26	.24	.23
13.5000		22	.21	.21	.20	.20
14,0000	P	19	.19	.18	.18	.17
14.5000		17	.17	.16	.16	.16
15.0000		16	.15	.15	.15	.14
15.5000		14	.14	.13	.13	.13
16.0000		12	.12	.11	.11	.11
16.5000		11	.10	.10	.10	.10
17.0000) i	10	.10	.09	.09	.09
17.5000		09	.09	.08	.08	.08
18.0000		0.8	.08	.07	.07	.07
18,5000		07	.07	.07	.07	.07
19.0000		07	.07	.07	.07	.07
19.5000		07	.07	.06	.06	.06
20.0000		06	.06	.06	.06	.06
20.5000	7	06	.06	.06	.06	.06
21.0000		06	.06	.06	.06	.06
21.5000		06	.06	.06	. 05	.05
22.0000	4	05	.05	.05	, 05	.05
22.5000	0	05	.05	.05	.05	.05
23.0000		0.5	.05	.05	.05	.05
23.5000		0.5	.05	.05	.05	.04
24.0000		04	.04	.04	.03	.02
24.5000	2	01	.01	.00	.00	.00
25.0000		00				

S/N: A215014070C4 Curtis Jones & Associates PondPack Ver. 8.0068 Time: 2:45 PM Date: 8/25/2011 Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 10 YR Page 7.03 Event: 10 yr

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

					-===					======	-===
Upstream	Link	ID	Upstream	Node	ID	HYG	file	HYG	ID	HYG	tag
TO DP5			JUNCTION					JUN	CTION	10	YR
			========			.====					

INFLOWS TO:	DP 5			400000	27141 2411	4 4 9 2 1 1
HYG file	HYG ID	HYG	tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	10	YR	.424	12.5000	2.39
TOTAL FLOW	INTO: DP 5			16.1	no il mino	with most
HYG file	HYG ID	HYG	tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
2000100000	DP 5	10	YR	.424	12.5000	2.39

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:45 PM

Page 7.04 Type.... Node: Addition Summary Name.... DP 5 Event: 10 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Storm... TypeIII 24hr Tag: 10 YR

TOTAL NODE INFLOW ...

HYG file = HYG ID = DP 5 HYG Tag = 10 YR

Peak Discharge = 2.39 cfs
Time to Peak = 12.5000 hrs
HYG Volume = .424 ac-ft

HYDROGRAPH ORDINATES (cfs) Time | Output Time increment = .1000 hrs

Time hrs	Time				= .1000 hrs first value i	n each row.
11.7000	į.	.00	.01	.05	.24	.70
12.2000	1	.42	2.05	2.35	2.39	2.24
12.7000	1 1	.98	1.70	1.47	1.30	1.18
13.2000	[1	.08	1.00	.95	.90	.87
13,7000	T	. 8 4	.81	.79	.76	.74
14.2000	E	.71	.69	.67	. 65	. 62
14.7000	£	.60	. 58	.56	.54	.52
15.2000	t .	.50	. 48	.46	. 44	.42
15.7000		.40	.39	.37	.36	.34
16.2000	1	.32	.31	.29	.28	.27
16.7000	T .	.27	.26	.25	.25	. 24
17.2000	T	.23	.22	.22	.21	.21
17.7000	T.	.20	.20	.19	.19	.18
18.2000	T)	.18	. 18	.17	. 17	.17
18.7000	C	.17	.17	.16	.16	.16
19.2000	T .	.16	.16	.16	.16	.15
19.7000	T.	.15	.15	.15	.15	.15
20.2000	f .	.15	.14	.14	.14	.14
20.7000	1	. 14	.14	.14	.14	.14
21,2000	1	.13	.13	.13	.13	.13
21,7000	C	.13	.13	.13	.13	.12
22.2000	I -	.12	.12	.12	.12	.12
22.7000	T.	.12	.12	.11	.11	.11
23,2000	1	.11	.11	.11	.11	.11
23.7000	1	.11	.10	.10	.10	.10
24.2000	1	.08	.06	.04	.02	.01
24.7000		.01	.00	.00	.00	.00

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:45 PM Date: 8/25/2011 Type.... Node: Addition Summary
Name.... DP 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 25 YR Page 7.05 Event: 25 yr

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

========				====:							=
Upstream	Link	ID	Upstream	Node	ID	HYG	file	HYG	ID	HYG	tag
mo ppr			TIMORION								
TO DP5			JUNCTION					JUI	NCTION	25	YR

TO DP5	JUNCTION			JUNCTION	25 YR
INFLOWS TO	: DP 5				
HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	JUNCTION	25 YR	. 654	12.4000	3.95
TOTAL FLOW	INTO: DP 5			S. 15 (S. 15)	STATE CAST
HYG file	HYG ID	HYG tag	Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 5	25 YR	.654	12.4000	3,95

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Page 7.06 Event: 25 yr Type.... Node: Addition Summary Name.... DP 5

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Storm... TypeIII 24hr Tag: 25 YR

TOTAL NODE INFLOW ...

HYG file = HYG ID = DP 5 HYG Tag = 25 YR

Peak Discharge = 3.95 cfs
Time to Peak = 12.4000 hrs
HYG Volume = .654 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	1	Output Time				
hrs	Time on	left represents	time for	first value	in each row.	
11.4000	.0	0 .00	.01	.04	.12	_
11.9000	.3	0 .71	1.49	2.60	3.51	
12.4000	3.9	5 3.85	3.46	2.97	2.51	
12.9000	2.1		1.72	1.57	1.46	
13.4000	1.3	7 1.30	1.25	1.20	1.16	
13.9000	1.1	3 1.09	1.06	1.03	1.00	
14.4000	1 .9	8 .95	.93	.91	.89	
14.9000	1 .8	7 .85	.83	.81	.78	
15.4000	1 .7	6 .74	.72	.69	. 67	
15.9000	1 .6	4 .62	.59	.56	.54	
16.4000	.5	1 .49	. 47	. 45	.43	
16.9000	. 4	1 .39	.38	.36	.35	
17.4000	.3	4 .32	.31	.30	.29	
17,9000	1 .2		.26	.25	.24	
18,4000	1 .2	4 .23	.23	.22	.22	
18.9000	1 .2	2 .22	.22	.21	.21	
19.4000	. 2	1 .21	.21	.20	.20	
19.9000	.2	0 .20	.20	.19	.19	
20.4000	.1	9 .19	.19	.19	.19	
20.9000	.1	8 .18	.18	.18	.18	
21.4000	11	8 .17	.17	.17	.17	
21.9000	1 .1	7 .17	.17	.16	.16	
22.4000	.1	6 .16	.16	.16	.15	
22.9000	1 .1	5 .15	,15	.15	.15	
23.4000	.1	5 .14	.14	.14	.14	
23.9000	1 .1	4 .14	.13	.11	.08	
24.4000	.0	5 .03	.02	.01	.01	
24.9000	.0	0 .00	.00	.00		

S/N: A215014070C4 Curtis Jones & Associates Date: 8/25/2011 PondPack Ver. 8.0068 Time: 2:45 PM

Type.... Node: Addition Summary Page 7.07 Name.... DP 5 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Storm... TypeIII 24hr Tag: 50 YR

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Link ID	Upstream Node ID HYG file	HYG ID	HYG tag
~			
TO DP5	JUNCTION	JUNCTION	50 YR
	والمراكب		

INFLOWS TO:	DP 5			- Volume	Peak Time	Peak Flow
HYG file	HYG ID	HYG	tag	ac-ft	hrs	cfs
	JUNCTION	50	YR	,880	12.4000	5.44

TOTAL FLOW	INTO: DP 5					
HYG file	HYG ID	HYG	taα	- Volume	Peak Time hrs	Peak Flow
	DP 5	50	YR	.880	12.4000	5.44

Curtis Jones & Associates S/N: A215014070C4 Time: 2:45 PM PondPack Ver. 8.0068 Date: 8/25/2011

Page 7.08 Type.... Node: Addition Summary Name.... DP 5 Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Storm... TypeIII 24hr Tag: 50 YR

TOTAL NODE INFLOW ...

HYG file = HYG ID = DP 5 HYG Tag = 50 YR

Peak Discharge = 5.44 cfs
Time to Peak = 12.4000 hrs
HYG Volume = .880 ac-ft

HYDROGRAPH ORDINATES (cfs)

Time	HYDROGRAPH ORDINATE Output Time increme Time on left represents time f			nent = .1000 hrs								
hrs	1 T:	ime on	left rep	resents	time	for	first	value	in	each	row.	
11.1000	1	.00		.00		.01		.03			.05	
11.6000	1	.10		.18		.34		. 63		3	1.23	
12.1000	1	2.32		3.79	5	.04		5.44		5	5.18	
12,6000	1	4.64		4.11	3	.61		3.17		2	2.80	
13.1000	T	2.51		2.26	2	.05		1.89		1	1.76	
13.6000	1	1.66		1.56	1	.49		1.43		3	1.37	
14.1000	1.	1.31		1.27	1	.22		1.19		3	1.16	
14.6000	1	1.13		1.11	1	.08		1.06		3	1.04	
15.1000	1	1.01		.99		.97		.94			.92	
15.6000	1	.89		.87		.84		.81			.79	
16.1000	3.	.76		. 73		.71		. 68			.66	
16.6000	1	. 64		. 62		.60		.57			.55	
17.1000	1	.53		.51		.49		. 47			. 45	
17.6000	10	.43		. 41		.39		.38			.36	
18.1000	T	.35		.33		.32		.31			.30	
18.6000	T	.30		.29		.29		.28			.28	
19,1000	T	.27		.27		.26		.26			.26	
19.6000	1	.25		.25		.25		.25			.24	
20,1000	£.	.24		. 24		.24		.24			.23	
20.6000	T.	.23		.23		.23		.23			.22	
21,1000	L	.22		.22		.22		.22			.21	
21.6000	I	.21		.21		.21		.21			.21	
22.1000	1	.20		.20		.20		.20			.20	
22.6000	T	.19		.19		.19		.19			.19	
23.1000	1	.18		.18		.18		.18			.18	
23.6000	1.	.17		.17		.17		.17			.17	
24.1000	T	.16		.13		.10		.06			.04	
24.6000	£.	.02		.01		.01		.00			.00	
25.1000	T	.00		.00								

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:45 PM

Type.... Node: Addition Summary Page 7.09 Name... DP 5
File... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW
Storm... TypeIII 24hr Tag: 100 YR Event: 100 yr

SUMMARY FOR HYDROGRAPH ADDITION at Node: DP 5

HYG Directory: C:\Program Files\Haestad\PPKW\PPW\

Upstream Li	nk ID	Upstream	Node	ID	HYG	file	HYG ID	HYG	tag
TO DP5		JUNCTION					JUNCTION	100	YR
INFLOWS TO:	DP 5								

TOTAT	ET ON	TMTO.	DD	5

HYG file	HYG ID	HYG tag	- Volume ac-ft	Peak Time hrs	Peak Flow cfs
	DP 5	100 YR	1,160	12.4000	7.23

JUNCTION 100 YR 1.160 12.4000 7.23

S/N: A215014070C4 Curtis Jones & Associates
PondPack Ver. 8.0068 Time: 2.45 PM Date: 8/25/2011 Type.... Node: Addition Summary Page 7.10 Name.... DP 5 Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 100 YR

TOTAL NODE INFLOW...
HYG file =

HYG ID = DP 5 HYG Tag = 100 YR

Peak Discharge = 7.23 cfs
Time to Peak = 12.4000 hrs
HYG Volume = 1.160 ac-ft

S/N: A215014070C4 PondPack Ver. 8.0068

Curtis Jones & Associates Time: 2:45 PM

Type.... Vol: Elev-Area Page 8.01 Name.... UNDER DET 5

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Elevation (ft)	Planimeter (sq.in)	Area (acres)	A1+A2+sqr(A1*A2) (acres)	Volume (ac-ft)	Volume Sum (ac-ft)
1434.50		.0720	.0000	.000	.000
1437.00		.0720	.2160	.180	.180

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt.(Areal*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment Areal, Area2 = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2

S/N: A215014070C4 PondPack Ver. 8,0068

Curtis Jones & Associates Time: 2:45 PM

Type.... Outlet Input Data Page 9.01

Name.... Outlet 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 1434.50 ft Increment = .10 ft Max. Elev.= 1437.00 ft

************ OUTLET CONNECTIVITY ***********

---> Forward Flow Only (UpStream to DnStream)
<--- Reverse Flow Only (DnStream to UpStream)
<---> Forward and Reverse Both Allowed

Structure	No.		Outfall	E1, ft	E2, ft
Orifice-Circular	2	>	TW	1436.000	1437.000
Orifice-Circular	1	>	TW	1435.000	1437.000
TW SETUP, DS Channel					

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Type.... Outlet Input Data Page 9.02 Name.... Outlet 1

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID = 2
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1436.00 ft
Diameter = .6670 ft
Orifice Coeff. = .600

Structure ID = 1
Structure Type = Orifice-Circular

of Openings = 1
Invert Elev. = 1435.00 ft
Diameter = .3330 ft
Orifice Coeff. = .600

Structure ID = TW
Structure Type = TW SETUP, DS Channel
FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...

Maximum Iterations= 30
Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
Min. Q tolerance = .10 cfs
Max. Q tolerance = .10 cfs

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Page 9.03

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 2 (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev. ft	Q cfs	TW Elev Converg	ge Computation Messages
1434.50	.00	Free Outfall	HW & TW below invert
1434.60	.00	Free Outfall	HW & TW below invert
1434.70	.00	Free Outfall	HW & TW below invert
1434.80	.00	Free Outfall	HW & TW below invert
1434.90	.00	Free Outfall	HW & TW below invert
1435.00	.00	Free Outfall	HW & TW below invert
1435.10	.00	Free Outfall	HW & TW below invert
1435.20	.00	Free Outfall	HW & TW below invert
1435.30	.00	Free Outfall	HW & TW below invert
1435.40	.00	Free Outfall	HW & TW below invert
1435.50	.00	Free Outfall	HW & TW below invert
1435.60	.00	Free Outfall	HW & TW below invert
1435.70	.00	Free Outfall	HW & TW below invert
1435.80	.00	Free Outfall	HW & TW below invert
1435.90	.00	Free Outfall	HW & TW below invert
1436.00	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El
1436.10	.03		CRIT. DEPTH CONTROL Vh= ,027ft Dcr= ,073ft CRIT. DEPT
1436.20	.11	Free Outfall	CRIT.DEPTH CONTROL Vh= .052ft Dcr= .148ft CRIT.DEPTH
1436.30	.23	Free Outfall	CRIT.DEPTH CONTROL Vh= .081ft Dcr= .219ft CRIT.DEPTH
1436.40	.39	Free Outfall	CRIT.DEPTH CONTROL Vh= .110ft Dcr= .289ft CRIT.DEPTH
1436.50	.58	Free Outfall	CRIT. DEPTH CONTROL Vh= .143ft Dcr= .357ft CRIT. DEPTH
1436.60	.79	Free Outfall	CRIT.DEPTH CONTROL Vh= .180ft Dcr= .421ft CRIT.DEPTH
1436.70	1.02	Free Outfall	H =,37
	1.15	Free Outfall	H ≔, 47
1436.90	1.27	Free Outfall	H = .57
L437.00	1.37	Free Outfall	H = .67

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM Date: 8/25/2011

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = 1 (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev,	Device Q	Tail Water	Notes
WS Elev. ft	-	TW Elev Conver ft +/-ft	ge Computation Messages
1434.50	.00	Free Outfall	HW & TW below invert
1434.60	.00	Free Outfall	HW & TW below invert
1434.70	.00		HW & TW below invert
1434.80	.00	Free Outfall	HW & TW below invert
1434.90	.00	Free Outfall	HW & TW below invert
1435.00	.00	Free Outfall	Upstream HW & DNstream TW < Inv.El
1435.10	.02	Free Outfall	CRIT.DEPTH CONTROL Vh= .027ft Dcr= .073ft CRIT.DEPTH
1435.20	.07	Free Outfall	CRIT.DEPTH CONTROL Vh= .054ft Dcr= .146ft CRIT.DEPTH
1435.30	.14		CRIT.DEPTH CONTROL Vh= .092ft Dcr= .208ft CRIT.DEPTH
1435.40	.20		H =, 23
1435.50	.24	Free Outfall	H = .33
1435.60	.28	Free Outfall	H = .43
1435.70	.31	Free Outfall	H = .53
1435.80	.33	Free Outfall	H = .63
1435.90	.36	Free Outfall	H = .73
1436.00	.38	Free Outfall	H = .83
1436.10	.40	Free Outfall	H = .93
1436.20	. 43	Free Outfall	
1436.30	. 45	Free Outfall	H =1.13
1436.40	.47	Free Outfall	H =1.23
1436.50	. 48	Free Outfall	H =1.33
1436.60	.50	Free Outfall	H =1.43
1436.70	.52	Free Outfall	H =1.53
1436.80	.54	Free Outfall	H =1,63
1436.90	.55	Free Outfall	H =1.73
1437.00	.57	Free Outfall	H =1,83

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM Date: 8/25/2011

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

***** COMPOSITE OUTFLOW SUMMARY ****

WS Elev,	Total Q		Notes
		Converg	le
Elev.	Q	TW Elev Error	
ft	cfs	ft +/-ft	Contributing Structures
7			
1434.50	.00	Free Outfall	None contributing
1434.60	.00	Free Outfall	None contributing
1434.70		Free Outfall	None contributing
1434.80		Free Outfall	None contributing
1434.90	.00	Free Outfall	None contributing
1435.00	.00	Free Outfall	None contributing
1435.10	.02	Free Outfall	1
1435.20	.07	Free Outfall	1
1435.30	.14	Free Outfall	1
1435.40	.20	Free Outfall	1
1435.50	.24	Free Outfall	1
1435.60	.28	Free Outfall	1
1435.70	.31	Free Outfall	1
1435.80	.33	Free Outfall	1
1435.90	.36	Free Outfall	1
1436.00	.38	Free Outfall	1
1436.10	.43	Free Outfall	2 +1
1436.20	.53	Free Outfall	2 +1
1436.30	.67	Free Outfall	2 +1
1436.40	.85	Free Outfall	2 +1
1436.50	1.06	Free Outfall	2 +1
1436.60	1.29	Free Outfall	2 +1
1436.70		Free Outfall	2 +1
1436.80		Free Outfall	
1436.90		Free Outfall	2 +1
1437.00	1.94	Free Outfall	2 +1

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Page 10.01

Type.... Pond Infiltration Calcs
Name.... UNDER DET 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

INFILTRATION RATING TABLE CALCULATIONS

Infilt.(cfs) = (3.0000 (in/hr) * Area) * KuWhere: Ku = units conversion factor

				W.S.Elev ft	Total Area acres	Infilt. cfs	
No	storage	at	this	elevation	infiltration	set to	zero.
21.5	~~~~			1434.50	.0720	.00	2010.
				1434.60	.0720	.22	
				1434.70	.0720	. 22	
				1434.80	.0720	.22	
				1434.90	.0720	.22	
				1435.00	.0720	.22	
				1435.10	.0720	.22	
				1435.20	.0720	. 22	
				1435.30	.0720	.22	
				1435.40	.0720	.22	
				1435.50	.0720	.22	
				1435.60	.0720	.22	
				1435.70	.0720	.22	
				1435.80	.0720	.22	
				1435.90	.0720	.22	
				1436.00	.0720	.22	
				1436.10	.0720	.22	
				1436.20	.0720	.22	
				1436.30	.0720	.22	
				1436.40	.0720	.22	
				1436.50	.0720	.22	
				1436.60	.0720	.22	
				1436.70	.0720	.22	
				1436.80	.0720	.22	
				1436.90	.0720	.22	
				1437.00	.0720	.22	

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM Date: 8/25/2011

Page 10.02

Type.... Pond E-V-Q Table
Name.... UNDER DET 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

LEVEL POOL ROUTING DATA

= C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - UNDER DET 5 IN 2 YR Outflow HYG file = NONE STORED - UNDER DET 5 OUT 2 YR

Pond Node Data = UNDER DET 5 Pond Volume Data = UNDER DET 5 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

-------Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + 0 cfs
1434.50	.00	.000	.0720	.00	.00	.00
1434.60	.00	.007	.0720	.22	.22	1.96
1434.70	.00	.014	.0720	.22	.22	3.70
1434.80	.00	.022	.0720	.22	.22	5.45
1434.90	.00	.029	.0720	.22	.22	7.19
1435.00	.00	.036	.0720	.22	.22	8.93
1435.10	.02	.043	.0720	.22	.24	10.69
1435.20	.07	.050	.0720	.22	.29	12.48
1435.30	. 14	.058	.0720	.22	.36	14.30
1435.40	.20	.065	.0720	.22	.42	16.10
1435.50	.24	.072	.0720	.22	.46	17.88
1435.60	.28	.079	.0720	.22	.49	19.66
1435.70	.31	.086	.0720	.22	.52	21.43
1435.80	.33	.094	.0720	.22	.55	23.20
1435.90	.36	.101	.0720	.22	.58	24.97
1436.00	.38	.108	.0720	.22	.60	26.74
1436.10	.43	.115	.0720	.22	.65	28.53
1436.20	.53	.122	.0720	.22	.75	30.37
1436.30	. 67	.130	.0720	.22	.89	32.26
1436.40	.85	.137	.0720	.22	1.07	34.18

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Type.... Pond E-V-Q Table Page 10.03

Name.... UNDER DET 5
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

LEVEL POOL ROUTING DATA

= C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - UNDER DET 5 IN 2 YR Outflow HYG file = NONE STORED - UNDER DET 5 OUT 2 YR

Data = UNDER DET 5 Pond Volume Data = UNDER DET 5 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs Time Increment = .000 crs

Elevation ft	Outflow cfs	Storage ac-ft	Area acres	Infilt. cfs	Q Total cfs	2S/t + 0 cfs
1436.50	1.06	.144	.0720	.22	1.28	36.13
1436.60	1.29	.151	.0720	. 22	1.51	38.10
1436.70	1.54	.158	.0720	.22	1.75	40.09
1436.80	1.68	.166	.0720	.22	1.90	41.98
1436.90	1.82	.173	.0720	.22	2.04	43.85
1437.00	1.94	.180	.0720	.22	2.16	45.72

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM Date: 8/25/2011

Type.... Pond Routing Summary Page 10.04 Name.... UNDER DET 5 OUT Tag: 2 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Event: 2 yr

Storm... TypeIII 24hr Tag: 2 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - UNDER DET 5 IN 2 YR Outflow HYG file = NONE STORED - UNDER DET 5 OUT 2 YR

Pond Node Data = UNDER DET 5 Pond Volume Data = UNDER DET 5 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

-------Starting WS Elev = 1434.50 ft Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

====							
Peak	Inflow	=	. 68	cfs	at	12.4000	hrs
Peak	Outflow	=	.00	cfs	at	11.7000	hrs
Peak	Infiltration		.22	cfs	at	12.4000	hrs
Peak	Elevation	=	1434.84	ft			
Peak	Storage =		.025	ac-ft			

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000	
+	HYG Vol IN	=	.101	
-	Infiltration	=	.101	
-	HYG Vol OUT	=	.000	
-	Retained Vol	=	.000	
			42424433	

Unrouted Vol = .000 ac-ft (.000% of Inflow Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Type.... Pond Routing Summary Page 10.05 Name.... UNDER DET 5 OUT Tag: 10 YR
File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW Event: 10 yr

Storm... TypeIII 24hr Tag: 10 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\ Inflow HYG file = NONE STORED - UNDER DET 5 IN 10 YR Outflow HYG file = NONE STORED - UNDER DET 5 OUT 10 YR

Pond Node Data = UNDER DET 5 Pond Volume Data = UNDER DET 5 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

The Contract of the Contract o	the state of the s		and the second second				
	111111011	=	1.79	cfs	at	12.4000	hrs
Peak	Outflow	=	.28	cfs	at	13.2000	hrs
Peak	Infiltration	=	.22	cfs	at	12.1000	hrs
Peak	Elevation	=	1435,61	ft			
Peak	Storage =		.080	ac-ft			

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000
+	HYG Vol IN	=	.236
-	Infiltration	=	.178
-	HYG Vol OUT	=	.057
-	Retained Vol	=	.000

Unrouted Vol = -.000 ac-ft (.002% of Inflow Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Type.... Pond Routing Summary Page 10.06
Name.... UNDER DET 5 OUT Tag: 25 YR Event: 25 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 25 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 25 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 25 YR

Pond Node Data = UNDER DET 5 Pond Volume Data = UNDER DET 5 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

TIALTIC	July Coll Hou Hil	DITTO	JULII DOIL	TELLET			
		====					
Peak	Inflow	=	2.46	cfs	at	12.4000	hrs
Peak	Outflow	=	.43	cfs	at	13.1000	hrs
1000000	Infiltration	=	,22	cfs	at	12.0000	hrs
Peak	Elevation	=	1436.10	ft			
Peak	Storage =		.115	ac-ft			

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000	
+	HYG Vol IN	=	.318	
-	Infiltration	=	.203	
-	HYG Vol OUT	=	.115	
$\overline{}$	Retained Vol	=	.000	

Unrouted Vol = -.000 ac-ft (.001% of Inflow Volume)

 Type.... Pond Routing Summary Page 10.07
Name.... UNDER DET 5 OUT Tag: 50 YR Event: 50 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 50 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 50 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 50 YR

Pond Node Data = UNDER DET 5 Pond Volume Data = UNDER DET 5 Pond Outlet Data = Outlet 1

Infiltration = 3,0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak	Inflow	=	3.08	cfs	at	12.4000	hrs
Peak	Outflow	=	.89	cfs	at	12.9000	hrs
Peak	Infiltration	=	.22	cfs	at	11.8000	hrs
Peak	Elevation	=	1436.42	ft			
Peak	Storage =		.138	ac-ft			

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000					
+	HYG Vol IN	=	.396					
-	Infiltration	=	.222					
-	HYG Vol OUT	=	.174					
-	Retained Vol	=	.000					
	Unrouted Vol	=	,000	ac-ft	(.001%	of	Inflow	Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Type.... Pond Routing Summary Page 10.08
Name.... UNDER DET 5 OUT Tag: 100 YR Event: 100 yr

File.... C:\Program Files\Haestad\PPKW\PPW\3092 PRDA 5.PPW

Storm... TypeIII 24hr Tag: 100 YR

LEVEL POOL ROUTING SUMMARY

HYG Dir = C:\Program Files\Haestad\PPKW\PPW\
Inflow HYG file = NONE STORED - UNDER DET 5 IN 100 YR
Outflow HYG file = NONE STORED - UNDER DET 5 OUT 100 YR

Pond Node Data = UNDER DET 5 Pond Volume Data = UNDER DET 5 Pond Outlet Data = Outlet 1

Infiltration = 3.0000 in/hr

INITIAL CONDITIONS

Starting WS Elev = 1434.50 ft
Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak	Inflow	=	3.81	cfs	at	12.4000	hrs
Peak	Outflow	\Rightarrow	1.56	cfs	at	12.8000	hrs
Peak	Infiltration	=	.22	cfs	at	11.6000	hrs
Peak	Elevation	=	1436.72	ft			
Peak	Storage =		.159	ac-ft			

MASS BALANCE (ac-ft)

+	Initial Vol	=	.000
+	HYG Vol IN	=	.488
-	Infiltration	=	.240
-	HYG Vol OUT	=	.247
-	Retained Vol	=	.000

Unrouted Vol = .000 ac-ft (.001% of Inflow Volume)

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM

Appendix A A-1

Index of Starting Page Numbers for ID Names

DP 5 2 YR... 7.01, 7.03, 7.05, 7.07, 7.09

---- L -----Litchfield Co..., 2.01, 2,02

---- 0 ----Outlet 1... 9.01, 9.03, 9.05

PRDA 5D... 4.01, 5.01, 6.03, 6.04, 6.05, 6.06, 6.07
PRDA 5ND... 4.03, 5.02, 6.08, 6.09, 6.10, 6.11, 6.12, 3.01

UNDER DET 5... 8.01, 10.01, 10.02 UNDER DET 5 OUT 2 YR... 10.04, 10.05, 10.06, 10.07, 10.08

---- W ----Watershed... 1.01

S/N: A215014070C4 PondPack Ver. 8.0068 Curtis Jones & Associates Time: 2:45 PM