

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

March 24, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 186 Minortown Road, Woodbury, CT 06798 Latitude: 41.567997 Longitude: -73.179680 Site #: 876405_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 186 Minortown Road, Woodbury, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 68-foot level of the existing 110foot monopole, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by NB+C, dated March 1, 2022, Exhibit C. Also included is a structural analysis prepared by Tower Engineering Professionals, dated September 21, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council, Docket No. 235 on June 19, 2003. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Barbara Perkinson, First Selectman and William Agresta, Town Planner for the Town of Woodbury, as well as the tower owner (Crown Castle) and property owner (Raymond Hardisty).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 110-feet and the Dish Wireless LLC antennas will be located at a centerline height of 68-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 38.38% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Woodbury. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 68-foot level of the existing 110-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Woodbury.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Barbara Perkinson, First Selectman Town of Woodbury 281 Main St South Woodbury, CT 06798

William Agresta, Town Planner Town of Woodbury 281 Main St South Woodbury, CT 06798

Raymond Hardisty, Property Owner 200 Minortown Road Woodbury, CT 06798

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

Connecticut Siting Council **Decisions**

DOCKET NO. 235 - Sprint Spectrum L.P. application for a	}	Connecticut
Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a	}	Siting
wireless telecommunications facility at 186 Minortown)	C
Road or Main Street North, North Woodbury, Connecticut.	}	Council

Decision and Order

June 19, 2003

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes **§** 16-50k, be issued to Sprint Spectrum L.P. d/b/a Sprint PCS for the construction, maintenance and operation of a wireless telecommunications facility at 186 Minortown Road, Woodbury, Connecticut. The Council denies certification of Site B located at Main Street North, Woodbury, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

 The tower shall be constructed no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Sprint PCS, AT&T Wireless PCS, LLC and other entities, both public and private, but such tower shall not exceed a height of 100 feet above ground level.

2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:

- a. Visual simulations of the monopole and stealth options for a 100-foot tower at the site including a flagpole and tree tower;
- b. a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, access road, utility line, and landscaping; and
- c. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case

modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or

economic reasons precluding such tower sharing.

- 6. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 7. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Waterbury Republican American</u>, and <u>Voices Sunday – The Weekly Star</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

<u>Applicant</u>

Sprint Spectrum L.P. d/b/a Sprint PCS

Its Representative

Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP CityPlace I, 38th Floor 185 Asylum Street Hartford, CT 06103-6522 860-509-6522

<u>Intervenor</u>

AT&T Wireless PCS, LLC d/b/a AT&T Wireless

Its Representative

Daniel F. Leary, Esq. Cuddy & Feder LLP 90 Maple Avenue White Plains, New York 10601 (914) 761-1300

<u>Party</u>

Anthony J. Vallillo

Content Last Modified on 8/21/2003 1:25:24 PM

Connecticut Siting Council **Petition Staff Reports**

Petition No. 678 - Project Summary

Cellco Partnership

North Woodbury, Connecticut

July 13, 2004

Introduction

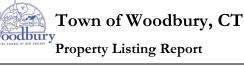
Cellco Partnership d/b/a as Verizon Wireless (Cellco) seeks to extend the height of a Sprint Spectrum L.P. (Sprint) owned 100-foot monopole located in North Woodbury, Connecticut. The existing tower was approved by the Council on June 19, 2003 under Docket 235. The tower currently supports the antennas of Sprint (100-foor centerline) and AT&T Wireless PCS LLC (90-foot centerline). Cellco is seeking a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the tower extension. A copy of the Petition was provided to the Town. Additionally, Cellco contacted the First Selectman to discuss the proposal. The Town has no comment on the proposed tower extension. Abutting property owners were also notified of the proposed extension. No abutters commented on the proposal.

Proposed Modification

Cellco seeks to extend the height of the approved tower from 100 feet to 110 feet. Cellco would install three flush mounted PCS panel antennas a centerline height of 110 feet, bringing the total height of the facility to 112 feet above ground level. Cellco would expand the compound by 20 feet to the north to accommodate a 12-foot by 30-foot equipment shelter. The proposed compound expansion is within Sprint's 100-foot by 100-foot lease area and would require minimal grading. Additional site clearing would not be required.

Visibility Impact

Extending the tower from 100 feet agl to 110 feet agl would increase visibility from 27-acres to 34-acres within a two-mile radius of the site, mainly as a result of the expansion of existing areas with visibility. In addition, approximately 4 acres of seasonal visibility would occur from the open areas immediately southeast of the site. The extended tower would be seasonally visible from 0.2 miles of North Main Street, 0.1 miles of Minortown Road, and 0.2 miles of Middle Road Turnpike.


Power Density

The conservative worst-case approximation of electromagnetic radiofrequency emissions for telecommunications operations at the site would increase from 22.4% to 24.2% of the applicable standard for uncontrolled environments.

Content Last Modified on 8/31/2004 4:27:37 PM

Exhibit B

Property Card

Map Block Lot 025-036

Building #

Unique Identifier

346700

Property Information

Property Location	186 MINORTOWN RD
Mailing Address	200 MINORTOWN ROAD
Mailing Address	WOODBURY CT 067983009
Land Use	Residential
Zoning Code	OS60
Neighborhood	26

Valuation Summary

(Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings	0	0
Outbuildings	0	0
Land	383013	53140
Total	383013	0

Owner	HARDISTY RAYMOND A
Co-Owner	
Book / Page	281/ 769
Land Class	Vacant Land
Census Tract	3621
Acreage	33.74
Utility Inform	nation
Electric	No
Gas	No
Sewer	No
Public Water	No
Well	No

Primary Construction Details

Year Built	
Building Desc.	
Building Style	
Stories	
Exterior Walls	
Exterior Walls 2	
Interior Walls	
Interior Walls 2	
Interior Floors 1	
Interior Floors 2	

Heating Fuel	
Heating Type	
АС Туре	
Bedrooms	
Full Bathrooms	
Half Bathrooms	
Extra Fixtures	
Total Rooms	
Bath Style	
Kitchen Style	
Occupancy	
	•

Building Use	
Building Condition	
Frame Type	
Fireplaces	
Bsmt Gar	
Fin Bsmt Area	
Fin Bsmt Quality	
Building Grade	
Roof Style	
Roof Cover	
eport Created On	3/24/2022

Report Created On

Town of Woodbury, CT Woodbury

Property Listing Report

Map Block Lot

025-036

Unique Identifier

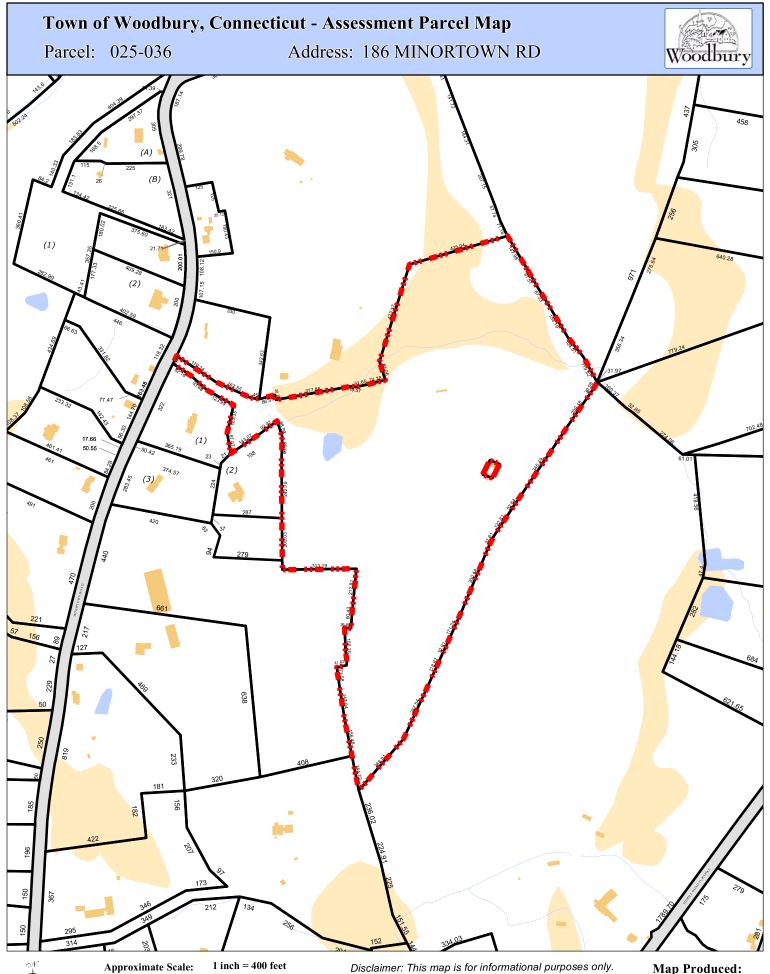
346700

Building #

Detached Outbuildings

Туре	Description	Area (sq ft)	Condition	Year Built

Attached Extra Features


Туре	Description	Area (sq ft)	Condition	Year Built

Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price
HARDISTY RAYMOND A	281_769	10/22/2002	0

HARDISTY RAYMOND A

281_769

All information is subject to verification by any user. The Town of Woodbury and its mapping contractors assume no legal responsibility for the information contained herein.

200

400

600

800 Feet Map Produced: 6/16/2021

Exhibit C

Construction Drawings

DISH Wireless L.L.C. SITE ID:

BOHVN00172A

DISH Wireless L.L.C. SITE ADDRESS:

186 MINORTOWN WOODBURY, CT 06798

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:


<u>CODE TYPE</u> BUILDING MECHANICAL ELECTRICAL

<u>CODE</u> 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX	
	SHEET TITLE	SHEET NO.
	TITLE SHEET	T-1
	OVERALL AND ENLARGED SITE PLAN	A-1
	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	A-2
	EQUIPMENT PLATFORM AND H-FRAME DETAILS	A-3
	EQUIPMENT DETAILS	A-4
and the states	EQUIPMENT DETAILS	A-5
	EQUIPMENT DETAILS	A-6
-BO C	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	E-1
	ELECTRICAL DETAILS	E-2
	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	E-3
	GROUNDING PLANS AND NOTES	G-1
	GROUNDING DETAILS	G-2
	GROUNDING DETAILS	G-3
	RF CABLE COLOR CODE	RF-1
	LEGEND AND ABBREVIATIONS	GN-1
	GENERAL NOTES	GN-2
	GENERAL NOTES	GN-3
THE FACILITY IS UNMA FOR ROUTINE MAINTEN DRAINAGE. NO SANITAF SIGNAGE IS PROPOSED	GENERAL NOTES	GN-4
11"x17" P		
CONTR THE JOB SITE, AN		

THIS IS NOT AN ALL INCLU APPROVED EQUIVALENT. CO THE PROJECT GENERALLY)
 TOWER SCOPE OF WORK: INSTALL (3) PROPOSED INSTALL (1) PROPOSED JUI INSTALL PROPOSED JUI INSTALL (6) PROPOSED INSTALL (1) PROPOSED INSTALL (1) PROPOSED INSTALL (3) DOUBLE Z) ∨)
 GROUND SCOPE OF WORK: INSTALL (1) PROPOSED REMOVE EXISTING ABAN 	

SCOPE OF WORK

NCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. LLY CONSISTS OF THE FOLLOWING:

OSED PANEL ANTENNAS (1 PER SECTOR) OSED ANTENNA PLATFORM MOUNT JUMPERS OSED RRUS (2 PER SECTOR) OSED OVER VOLTAGE PROTECTION DEVICE (OVP) OSED HYBRID CABLE BLE Z-BRACKETS (1 PER SECTOR)

OSED METAL PLATFORM OSED ICE BRIDGE OSED PPC CABINET OSED EQUIPMENT CABINET

- OSED POWER CONDUIT POSED TELCO CONDUIT
- OSED TELCO-FIBER BOX OSED GPS UNIT
- OSED FIBER NID (IF REQUIRED)
- ABANDONED PLATFORM

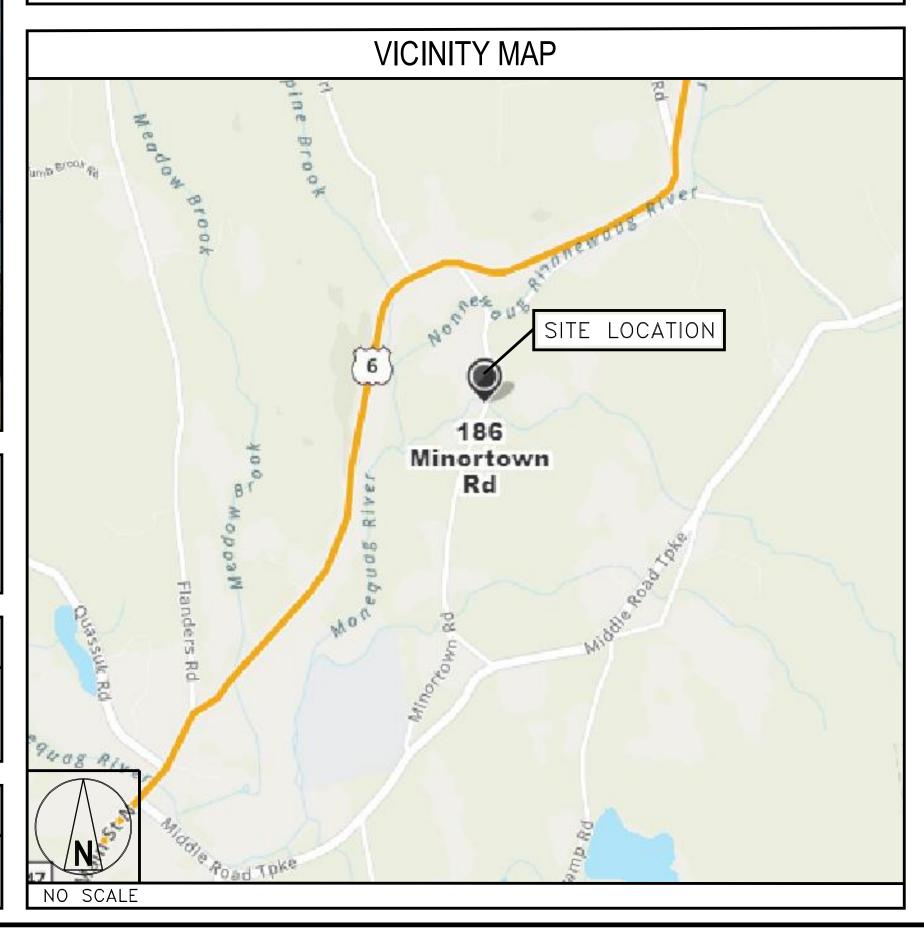
SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811	
JTILITY NOTIFICATION CENTER OF CONNECTICUT	
(800) 922-4455	
WWW.CBYD.COM	

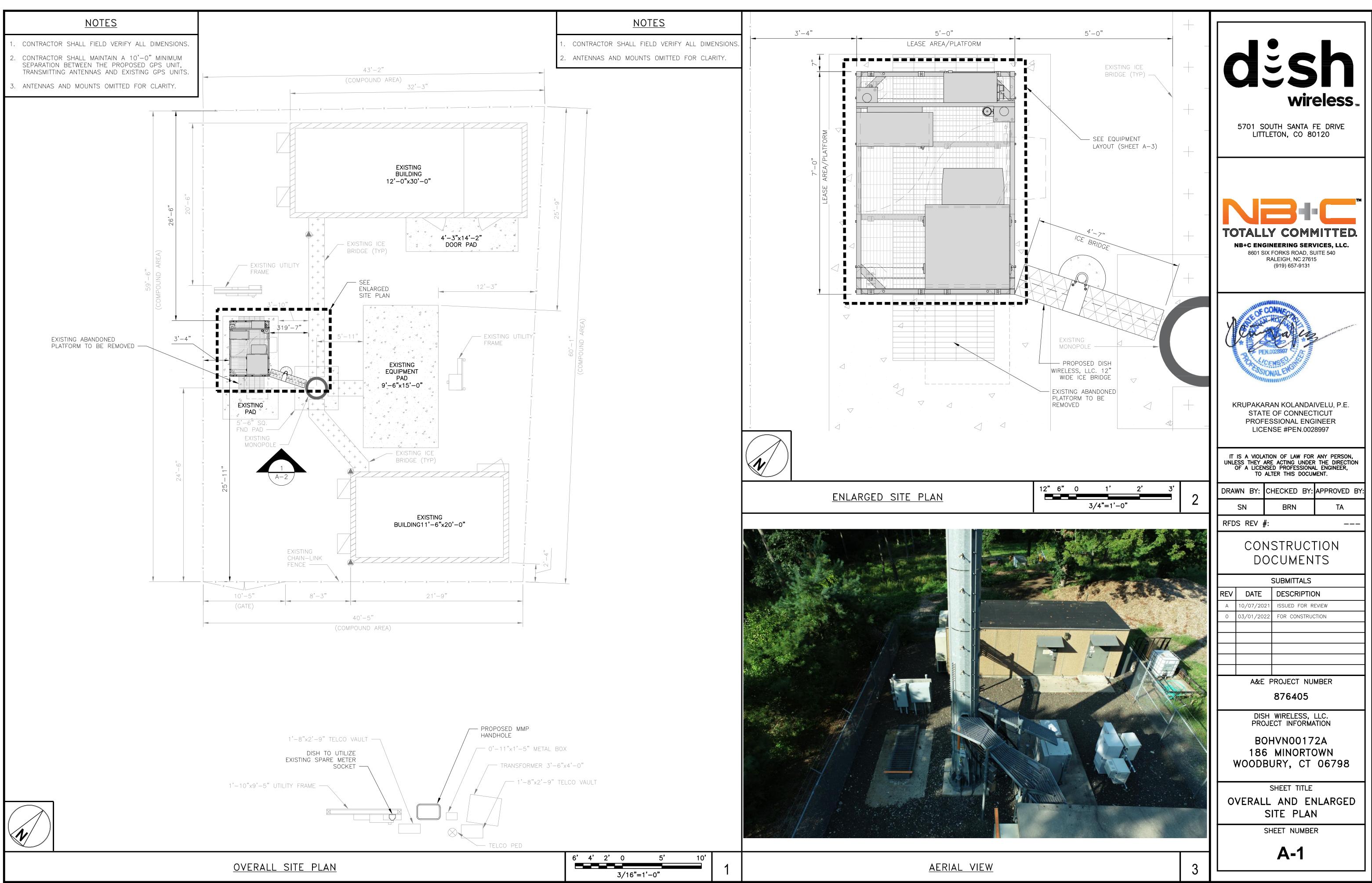
CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL


(17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

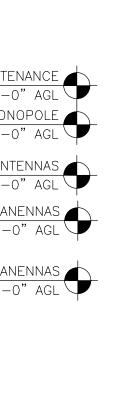
CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

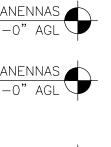

SITE IN	FORMATION	PROJECT DIRECTORY						
PROPERTY OWNER: ADDRESS:	HARDISTY RAYMOND A 200 MINORTOWN RD WOODBURY, CT 06798	APPLICANT:	DISH WIRELESS, LLC. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120					
TOWER TYPE:	MONOPOLE	TOWER OWNER:	CROWN CASTLE USA INC. 2000 CORPORATE DR.					
TOWER CO SITE ID:	876405		CANONSBURG, PA 15317 (877) 486-9377					
TOWER APP NUMBER:	553389							
		SITE DESIGNER:	NB+C ENGINEERING SERVICES					
COUNTY:	LITCHFIELD		8601 SIX FORKS RD, SUITE 540					
LATITUDE (NAD 83):	41° 74' 470" N		RALEIGH, NC 27615 (919) 657-9131					
LATTODE (TAD 03).	41.56799722 N		(919) 037-9131					
LONGITUDE (NAD 83):								
ZONING JURISDICTION:		SITE ACQUISITION:	I: CORWIN DIXON					
ZONING DISTRICT:	05-60		CORWIN.DIXON@CROWNCASTLE	CO				
	03 00	CONSTRUCTION M	IANAGER: JAVIER SOTO					
PARCEL NUMBER:	025-036		JAVIER.SOTO@DISH.COM					
OCCUPANCY GROUP:	U	RF ENGINEER:	SYED ZAIDI SYED.ZAIDI@DISH.COM					
CONSTRUCTION TYPE:	II-B							
POWER COMPANY:	CONNECTICUT LIGHT & POWER CO							
TELEPHONE COMPANY:								

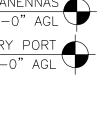
DIRECTIONS

DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT: START OUT GOING WEST ON SCHOEPHOESTER RD TOWARD LIGHT LN. MAKE A U-TURN AT LIGHT LN ONTO SCHOEPHOESTER RD. TAKE THE 1ST RIGHT ONTO ELLA GRASSO TURNPIKE/CT-75. MERGE ONTO CT-20 E TOWARD I-91/HARTFORD/SPRINGFIELD. MERGE ONTO I-91 S TOWARD HARTFORD. MERGE ONTO I-84 W VIA EXIT 32A TOWARD WATERBURY. TAKE THE CT-64 EXIT, EXIT 17, TOWARD WATERTOWN/MIDDLEBURY/CT-63. STAY STRAIGHT TO GO ONTO CHASE PKWY/CT-64. CONTINUE TO FOLLOW CT-64. TURN RIGHT ONTO MIDDLEBURY RD/CT-64. CONTINUE TO FOLLOW CT-64. CT-64 IS 0.2 MILES PAST UPPER WHITTEMORE RD. TURN RIGHT ONTO MAIN ST/US-6 E. MAIN ST IS 0.2 MILES PAST OLD SHERMAN HILL RD. TURN LEFT ONTO QUASSUK RD. QUASSUK RD IS 0.1 MILES PAST MIDDLE ROAD TURNPIKE. THEN 0.30 MILES.06798, CT, WELCOME TO WOODBURY, CT.

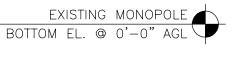


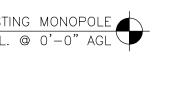

	1	
3/16"=1'-0"		

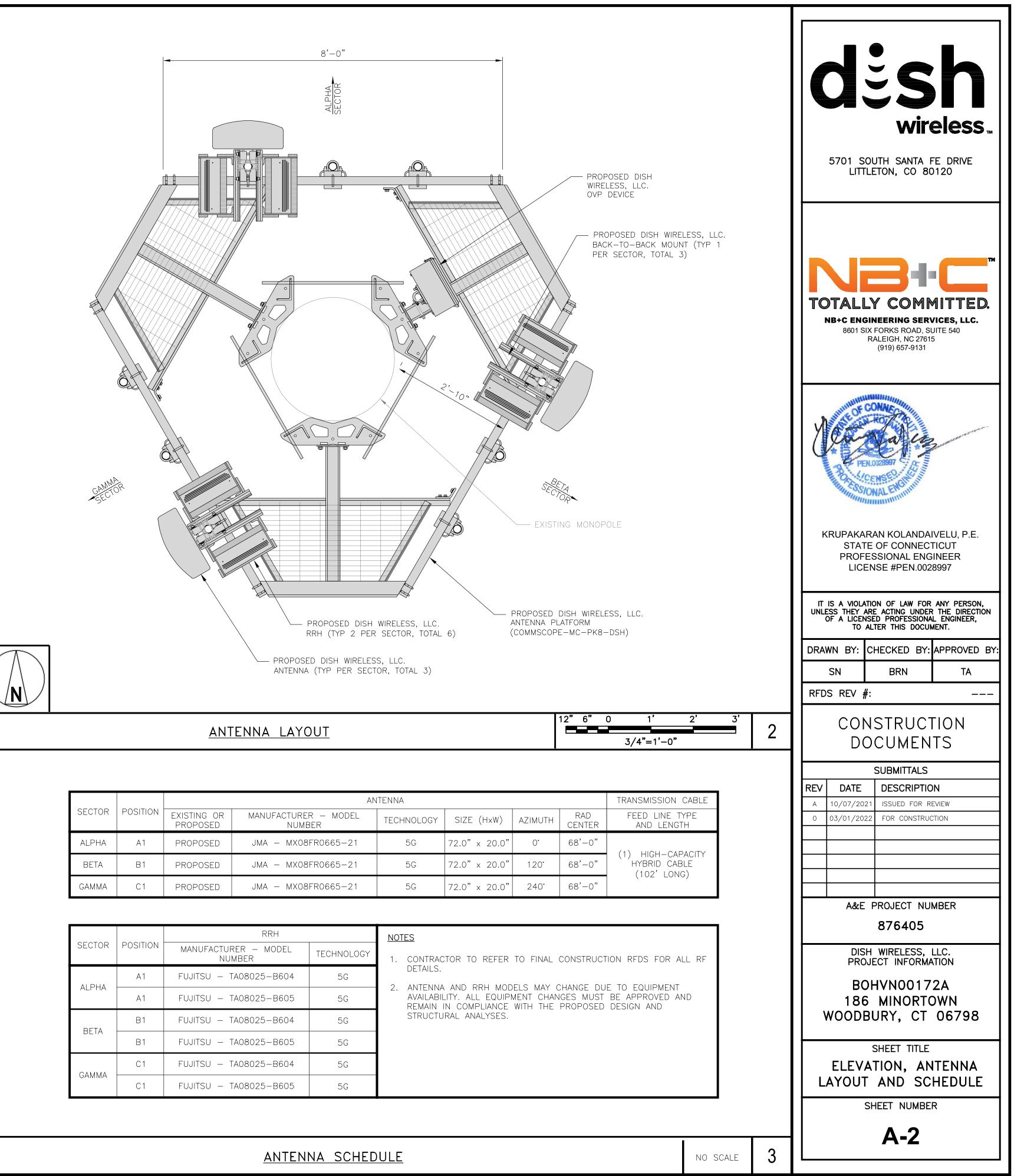

<u>NOTES</u>

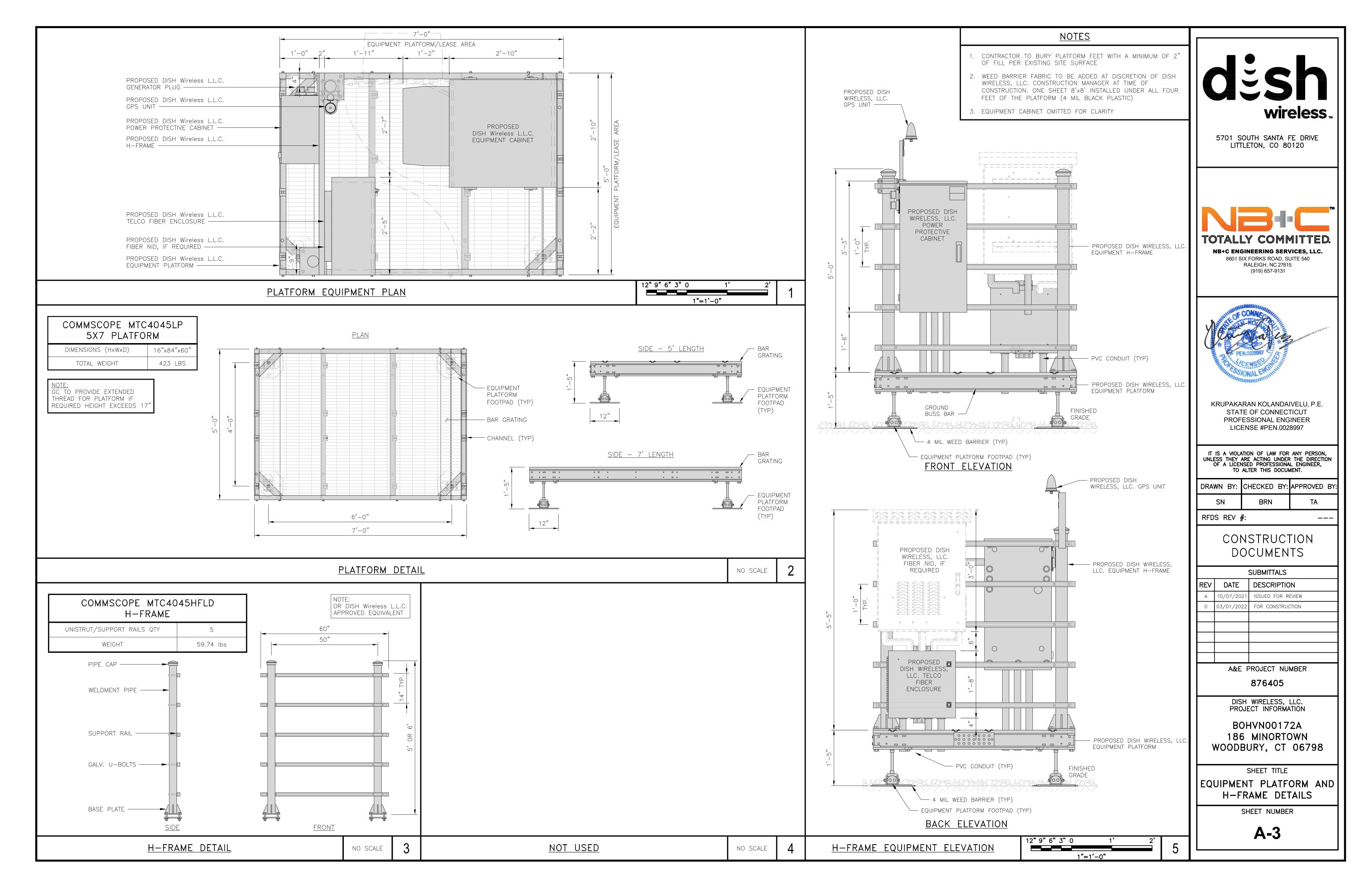

I. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.

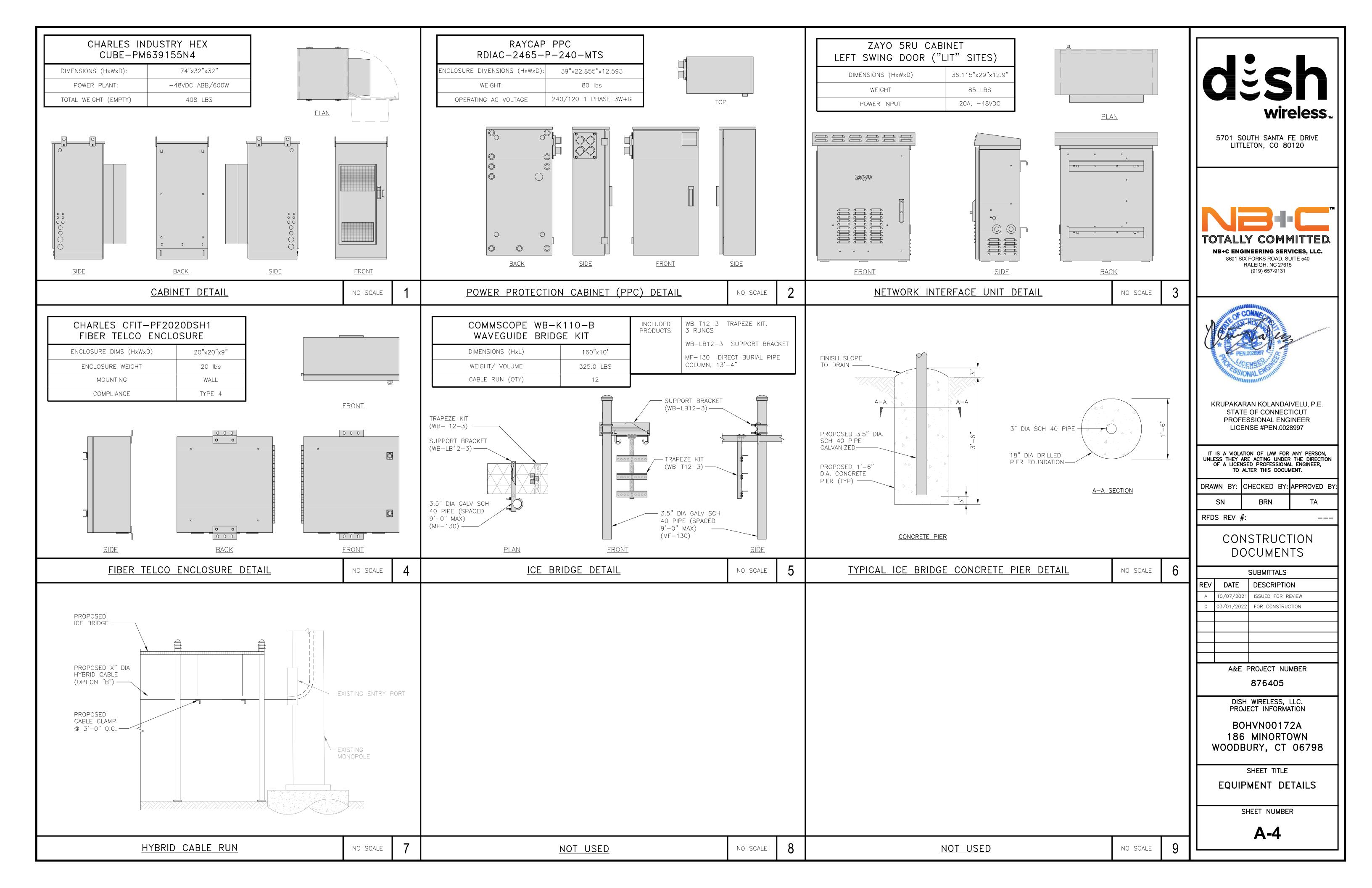
- 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
- 3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.





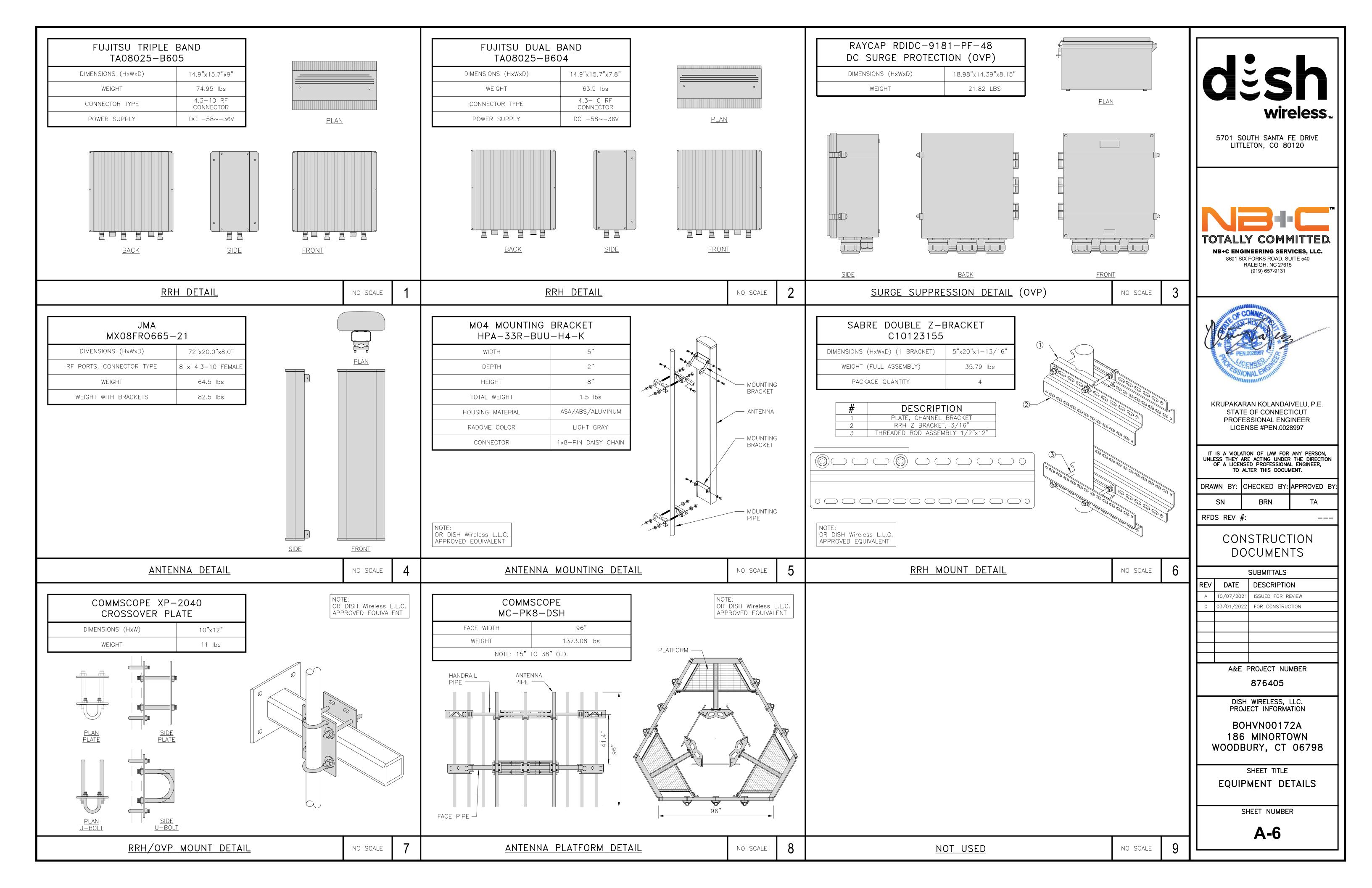


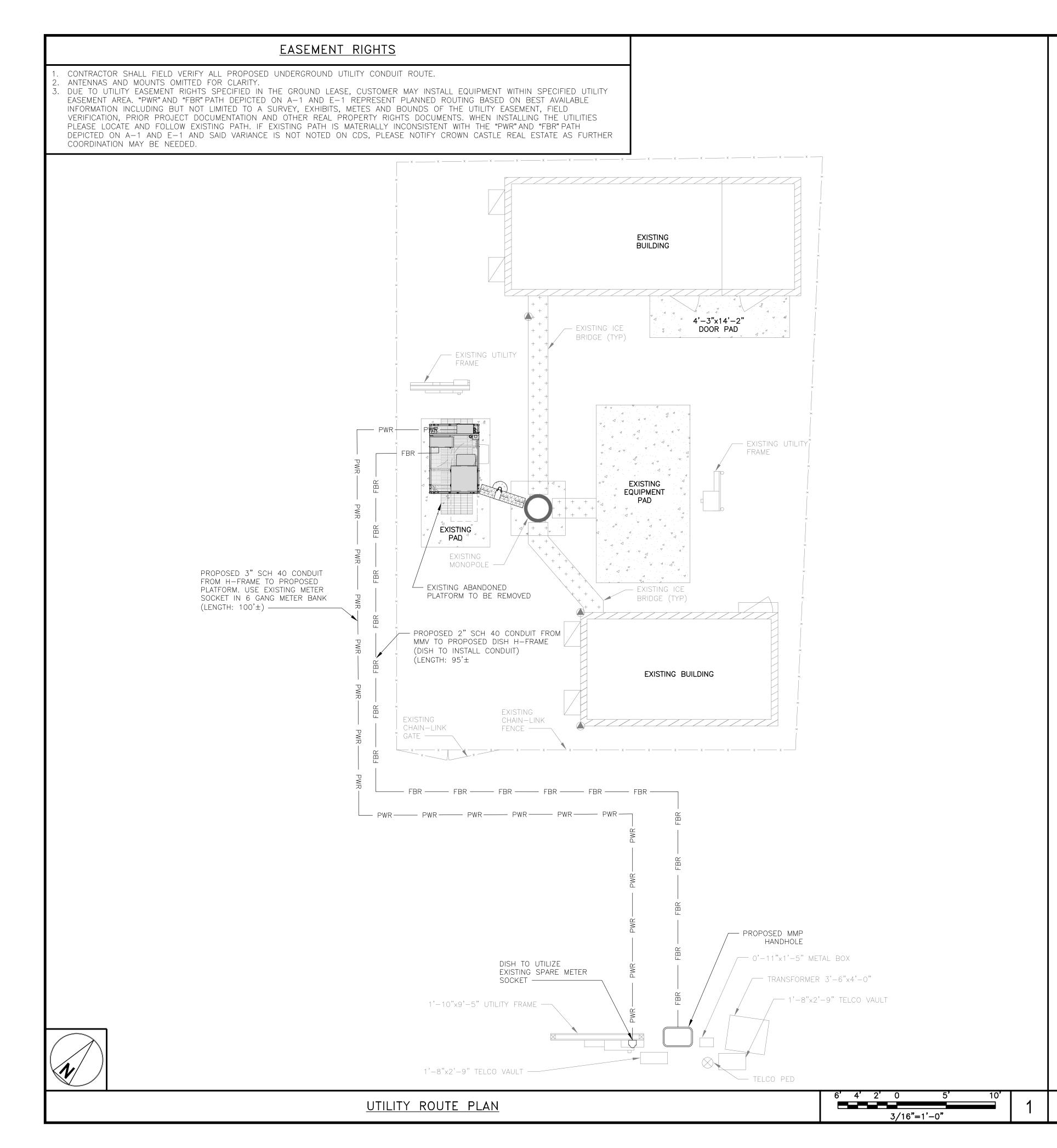


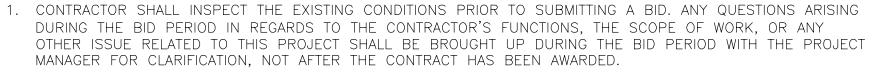

			AN	ITENNA		
SECTOR	POSITION	EXISTING OR PROPOSED	MANUFACTURER – MODEL NUMBER	TECHNOLOGY	SIZE (H×W)	AZIMU
ALPHA	A1	PROPOSED	JMA – MX08FR0665–21	5G	72.0" × 20.0"	0.
BETA	B1	PROPOSED	JMA – MX08FR0665–21	5G	72.0" × 20.0"	120
GAMMA	C1	PROPOSED	JMA – MX08FR0665–21	5G	72.0" × 20.0"	240

		RRH		<u>NOT</u>	<u>ES</u>
SECTOR	POSITION	MANUFACTURER – MODEL NUMBER	TECHNOLOGY	1.	CONTR
	A1	FUJITSU - TA08025-B604	5G	0	DETAILS
ALPHA	A1	FUJITSU - TA08025-B605	5G	2.	ANTENI AVAILAI REMAIN
BETA	B1	FUJITSU - TA08025-B604	5G		STRUC
BETA B1		FUJITSU - TA08025-B605	5G		
	C1	FUJITSU - TA08025-B604	5G		
GAMMA	C1	FUJITSU - TA08025-B605	5G		

8' 1/8"=1'-0"

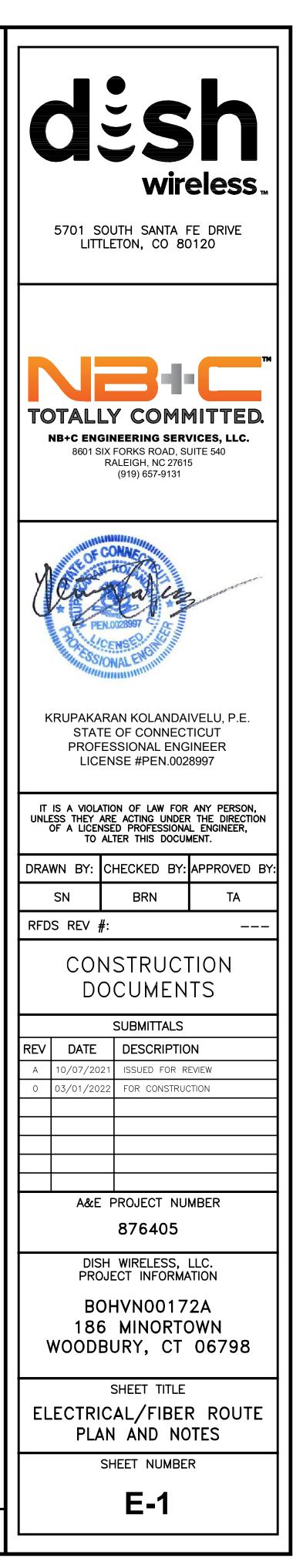

16'

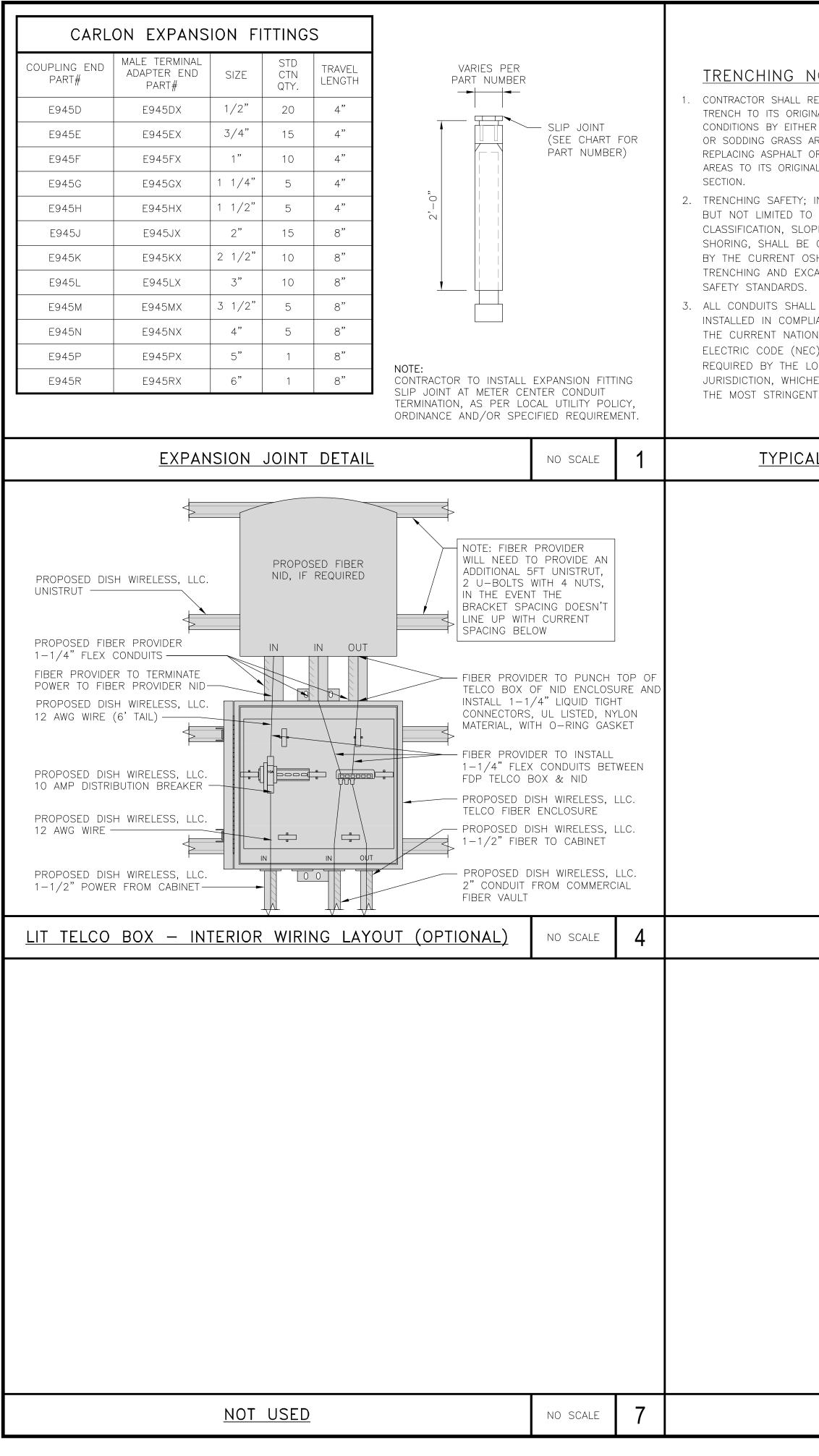



PCTEL					
GPSGL-TMG-SPI-40NCB					
DIMENSIONS (DIAXH) MM/ INCH 3.2"x7.25"					
WEIGHT W/ACCESSORIES075 lbsCONNECTORN-FEMALE					
FREQUENCY RANGE 1590 ± 30Mł	Ηz		<u>TOP</u>		
BACK			SIDE		
<u>GPS DETAIL</u>			NO SCALE	1	<u>GPS MI</u>
DESC	QTY				
SITE ID #: TWR TYPE:	d				
HYBRID BEND RADIUS	30"	The preparer must det			
RAD CENTER (ft)	68.0	For a rooftop, this is th			
ICE BRIDGE HEIGHT (ft)	10.0	This is the height c	f the bridge covering	ːs.	
ICE BRIDGE LENGTH (ft)	4.5	This is the length of the more than one ice bridg lengths of hybrid if		izontal	
LENGTH ACROSS PLATFORM (ft)	6.0	This is the length from the ice bridge of the second secon	the cabinet to the first pr inside a radio roon		
LENGTH FROM TOWER TOP TO OVP (ft)	6.0			ontal	
VERTICAL LENGTH OF HYBRID INTO TOWER TOP OVP (ft)	1.0	This is the vertical lengthered the tower top OVP to the	n of hybrid that come		
Additional Excess Hybrid to be added (To be determined by preparer)	LENGTH (ft) O				
Total Hybrid Length to Order (Rounded up to nearest whole number)	102				
HYBRID CABLE CALC	ULATOR		NO SCALE	4	
<u>NOT USED</u>			NO SCALE	7	

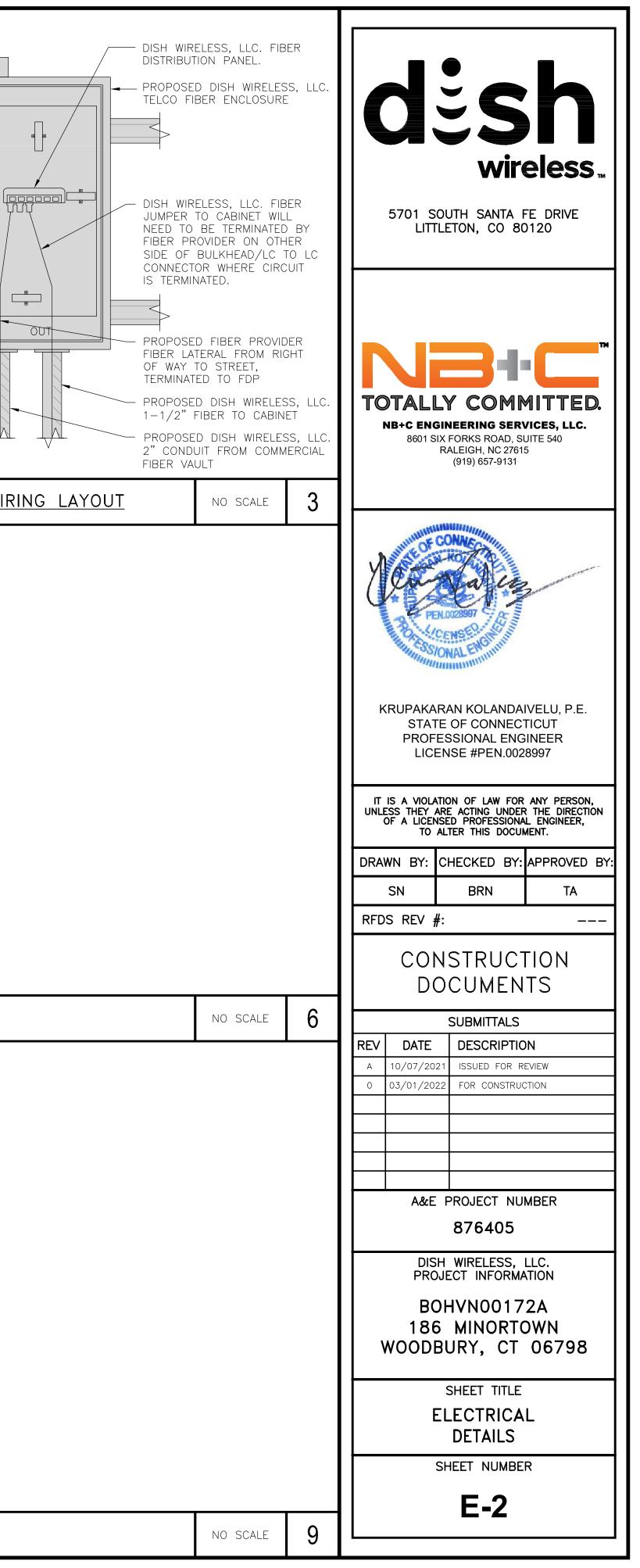
MINIMUM OF 75% OR 270' IN ANY DIRECTION GPS OBSTRUCTIONS MUST BE BELOW 10'			CU12PSM6P4XXX (4 AWG CONDUCTORS) CU12PSM9P8XXX (8 AWG CONDUCTORS) CU12PSM9P8XXX (8 AWG CONDUCTORS)			<section-header><text><text><text><text></text></text></text></text></section-header>
NIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID CABLE MINIMUM BEND RADIUSES	NO SCALE	3	KRUPAKARAN KOLANDAIVELU, P.E.
						STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: SN BRN RFDS REV #: CONSTRUCTION
NOT USED	NO SCALE	5	NOT USED	NO SCALE	6	DOCUMENTS SUBMITTALS
						REV DATE DESCRIPTION A 10/07/2021 ISSUED FOR REVIEW 0 03/01/2022 FOR CONSTRUCTION I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>	NO SCALE	9	

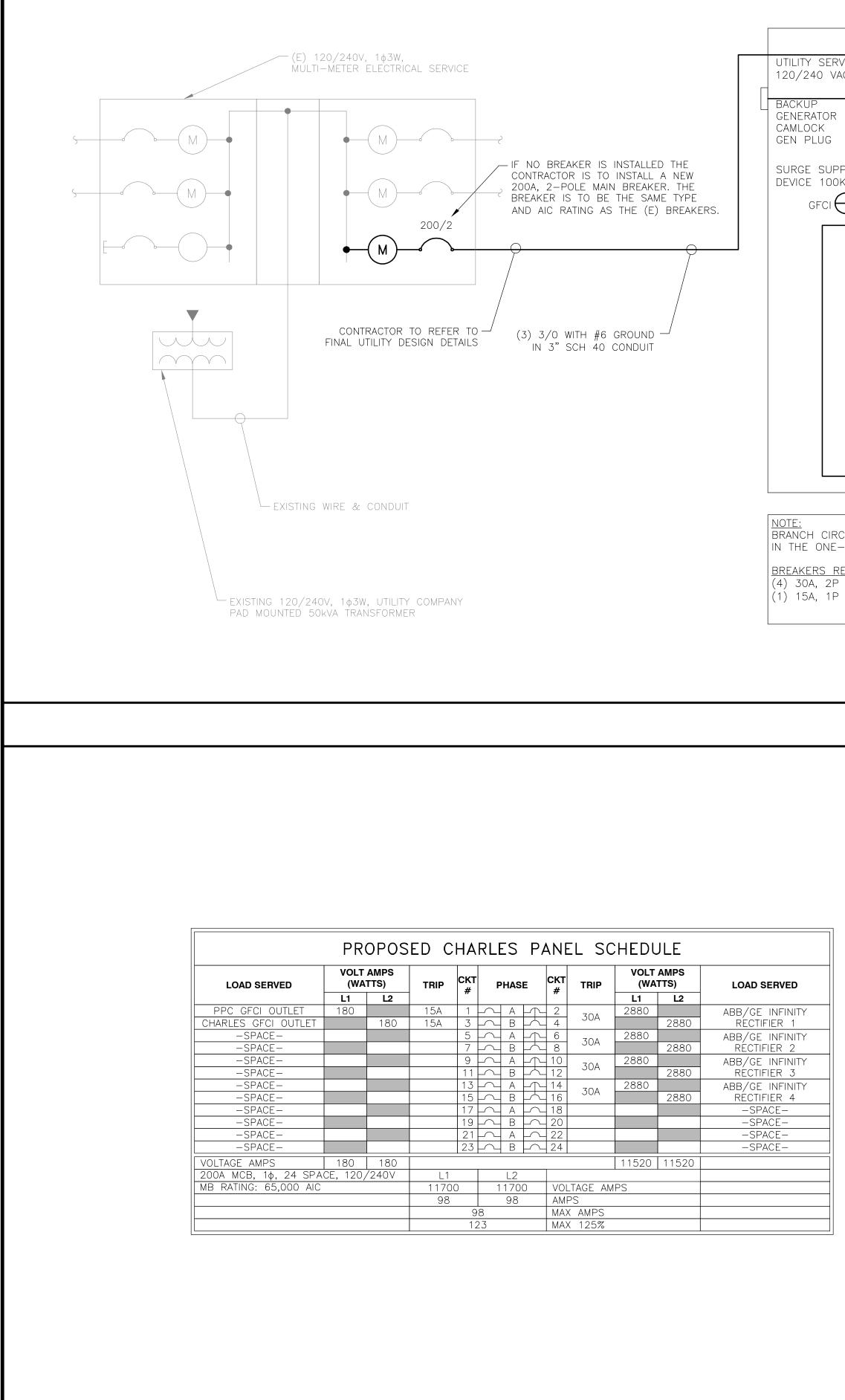
DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.



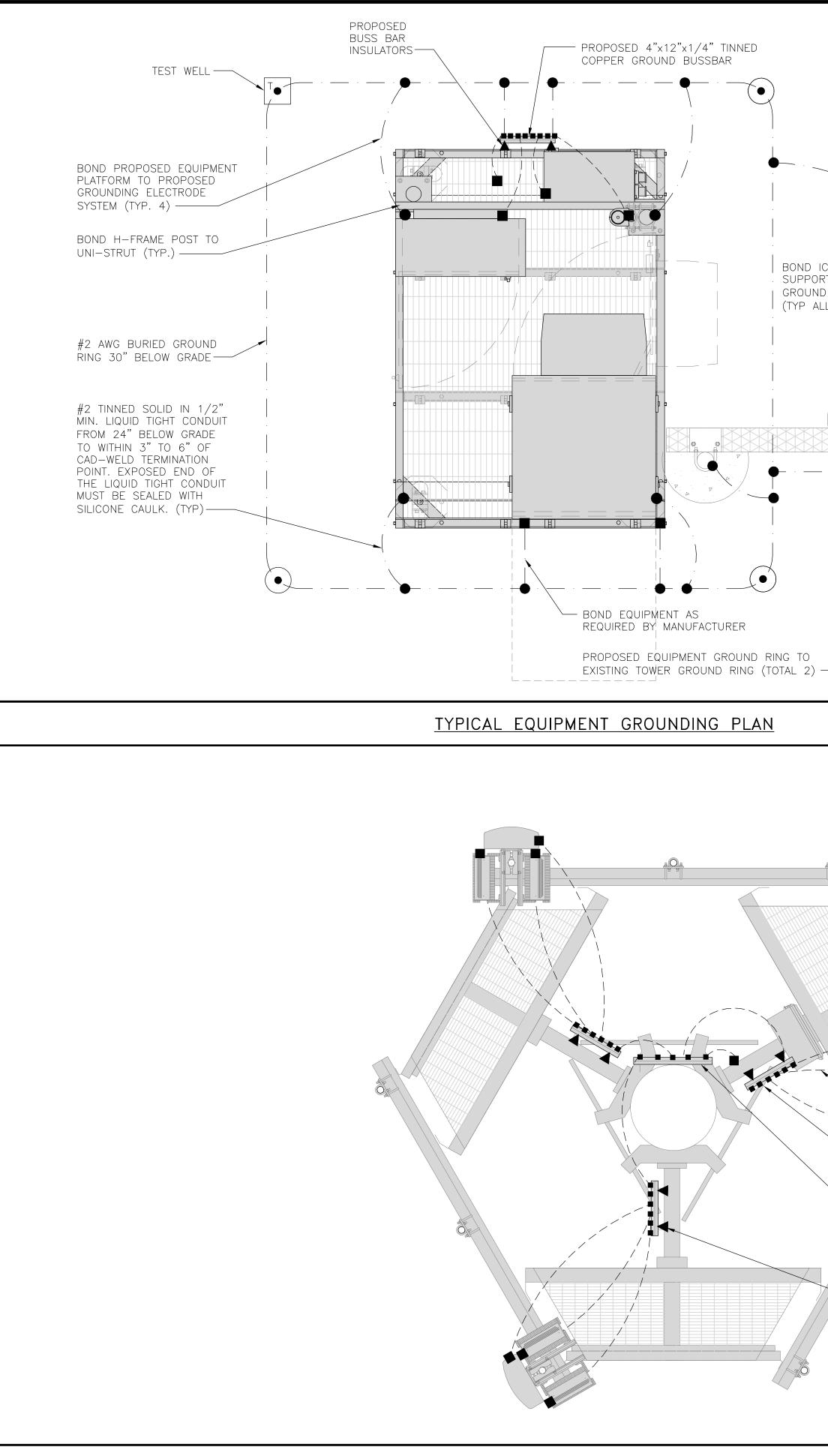

- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.

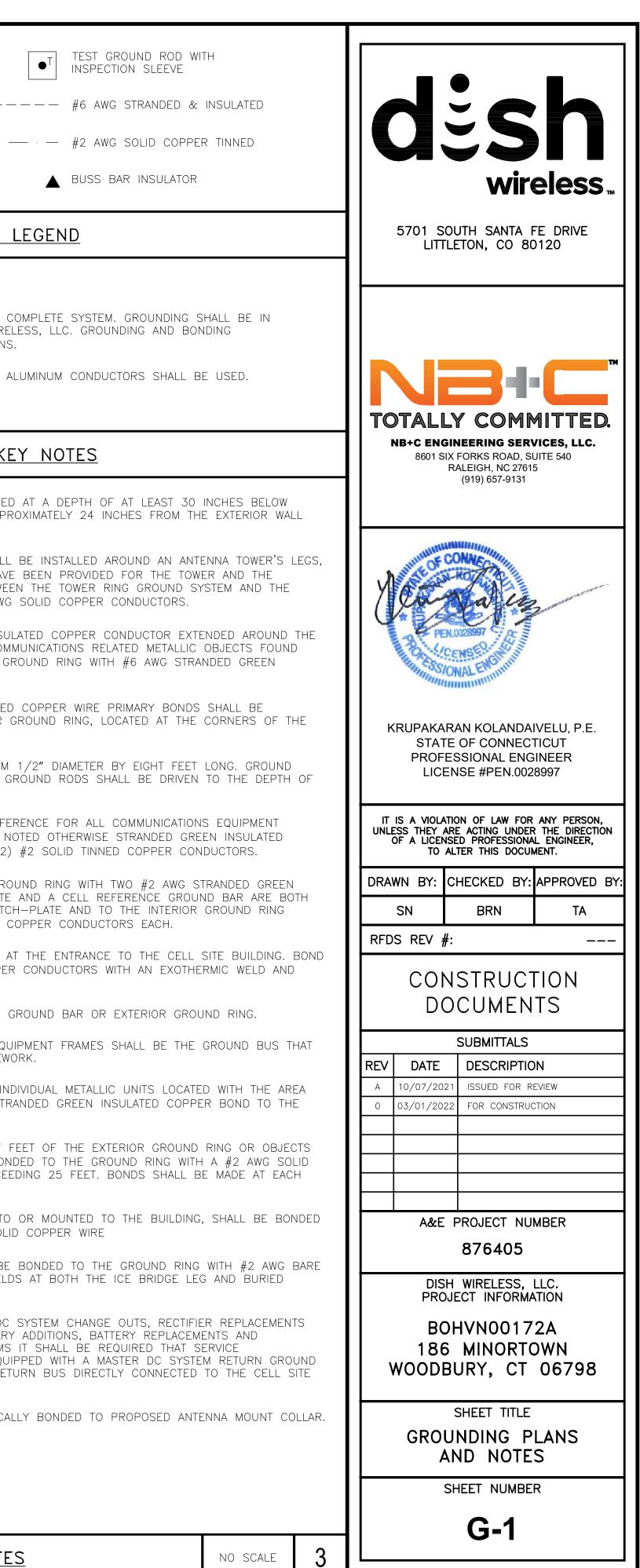
ELECTRICAL NOTES

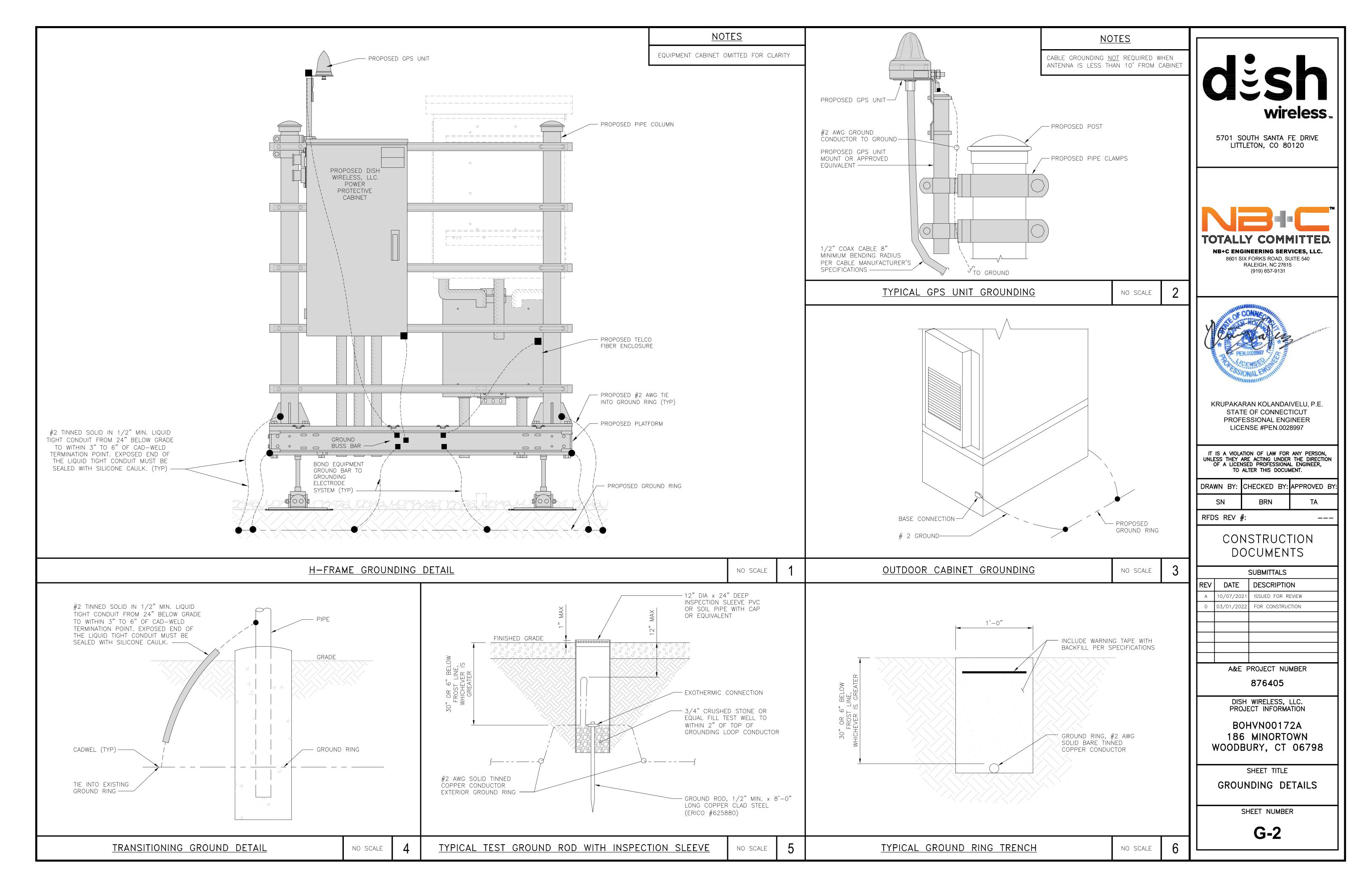

13. ALL TRENCHES IN COMPOUND TO BE HAND DUG


NO SCALE

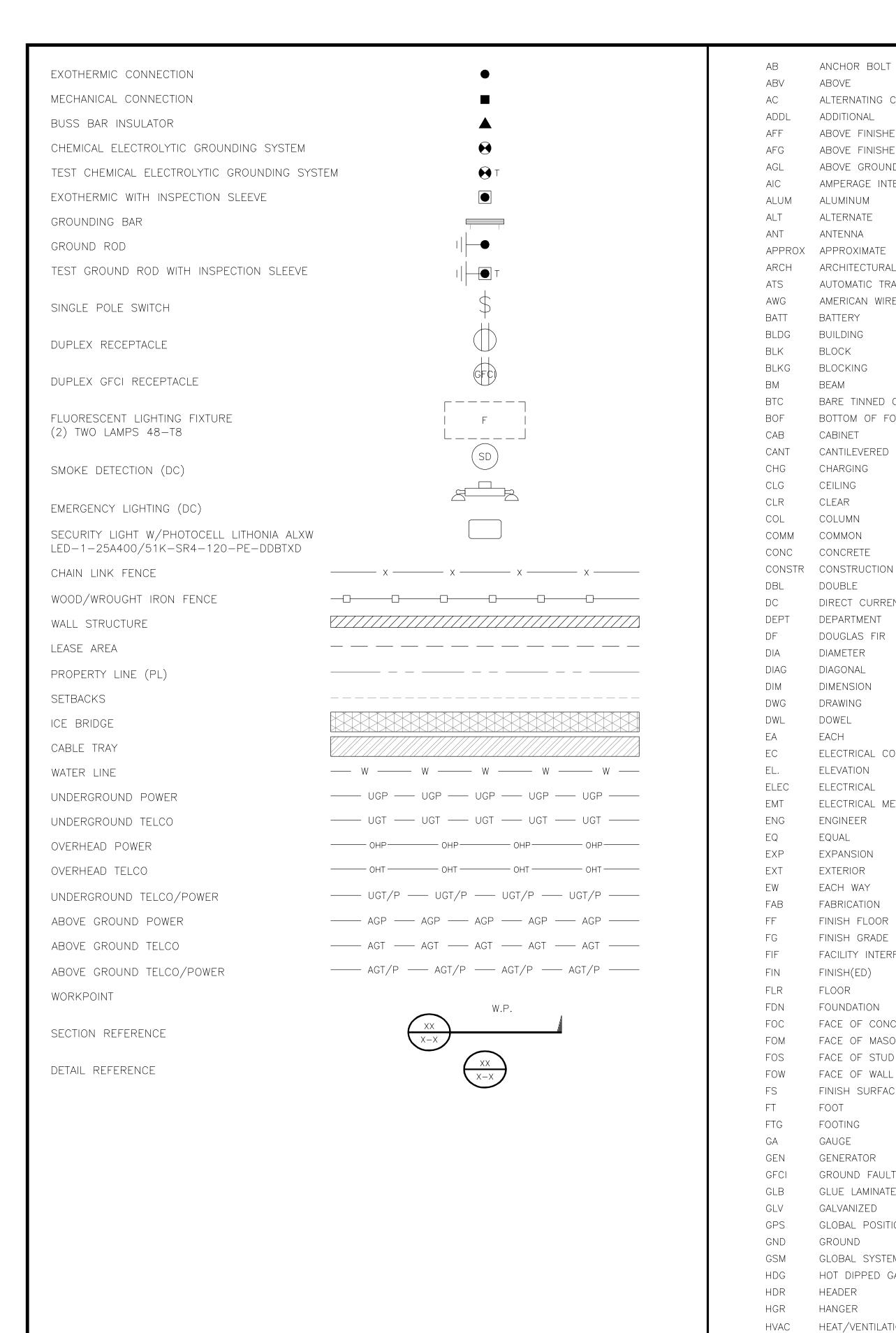
NOTES RESTORE THE NAL R SEEDING AREAS, OR OR CONCRETE AL CROSS INCLUDING, O SOIL PING, AND GOVERNED SHA CAVATION L BE JANCE WITH NAL C) OR AS OCAL	FILL PER SITE SPECIFICATIONS GENERAL NOTES E TO SUIT SOIL DITION IN ACCOR LOCAL REGULAT TRENCHING NOTE	S) DANCE IONS E 2 E SITE	DISH WIRELESS, LLC. PROVIDES 12AWG WIRE (6' TAIL) PROPOSED DISH WIRELESS, LLC. UNISTRUT PROPOSED DISH WIRELESS, LLC. 10 AMP DISTRIBUTION BREAKER PROPOSED DISH WIRELESS, LLC. 12 AWG WIRE PROPOSED DISH WIRELESS, LLC. 13 AWG WIRE PROPOSED DISH WIRELESS, LLC. 14 AWG WIRE PROPOSED DISH WIRELESS, LLC. 14 AWG WIRE PROPOSED DISH WIRELESS, LLC. 15 AWG WIRE PROPOSED DISH WIRELESS, LLC. 16 AWG WIRE PROPOSED DISH WIRELESS, LLC. 17 AWG WIRE PROPOSED DISH WIRELESS WIRE PROPOSED DIS
AL UNDERGROUND TRENCH DETAIL	NO SCALE	2	DARK TELCO BOX – INTERIOR WI
NOT USED	NO SCALE	5	<u>NOT USED</u>
<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>




PROTOSED 70%ER FROMENTIAL CALINDA, NOC THY NOC					
SOUT WEND SUPERVISE RECTORES ARE TO BE FATER LINKS, 1050, 0000, 440 Peor VSULATE, IN THE SIZE SHOULD BARE OF ALL OF AND	AC 1PH 200A 200A PPRESSION DKA SAD/MOV 01 02 15A 03 04 15A 03 04 15A 05 06 SPACE 07 08 SPACE 09 10 SPACE 11 12 SPACE 13 14 SPACE 15 16 SPACE 17 18 SPACE 19 20 SPACE 21 22 SPACE 23 24	120/240V, 1 PH, SERVICE RATED, OVERALL UL LISTED POWER CENTER, N3R, 65K/10K AIC MAIN BREAKER WITH 200A INTERLOCKED GENERATOR FEED, 200A 65K AIC 30A PROPOSED 2 #10, 1 #10 CU GND 30A PROPOSED 2 #10 30A PROPOSED 2 #10 30A PROPOSED 2 #10 30A PROPOSED 2 #10 SPACE SPACE SPACE	(2) PROPOSED 0.75" EMT CONDUITS	 FOR RECTIFIER 1 FOR RECTIFIER 2 FOR RECTIFIER 3 FOR RECTIFIER 4 	0.5" EMT CONDUIT IS ADEQUATE INCLUDING GROUND WIRE, AS IT RECTIFIER CONDUCTORS (2 CON #10 - 0.0
	E-LINE DIAGRAM. CONTRA <u>Required:</u> P breaker – square d	CTOR MAY SUBSTITUTE UL1015 WIRE FOR	105°C, 600V, AND PVC INS THWN-2 FOR CONVENIENC	ULATED, IN THE SIZES SHOWN	$ \begin{array}{c} #10 - 0.0 \\ \hline TOTAL \end{array} $ 0.75" EMT CONDUIT IS ADEQUA INCLUDING GROUND WIRE, AS IN PPC FEED CONDUCTORS (1 CO $3/0 - 0$ $\#6 - 0$
No scale 2 NOT USED	<u>PPC 0</u>	NE-LINE DIAGRAM			
NU SCALE Z					
	NO SCALE	2		<u>NOT USED</u>	

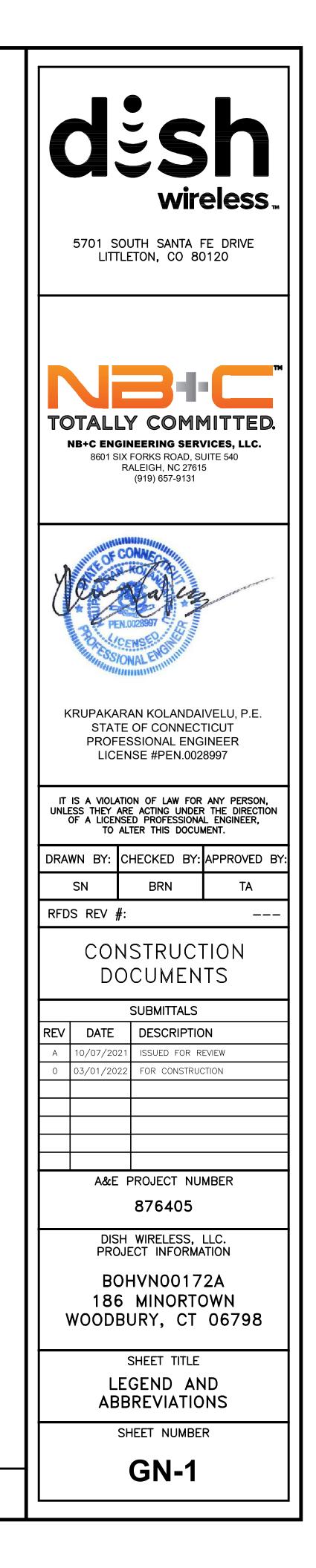

NOTES	
IAS PERFORMED ALL REQUIRED SHORT CIRCUIT	
RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE CAL SYSTEM.	
HAS PERFORMED ALL REQUIRED VOLTAGE DROP ICH CIRCUIT AND FEEDERS COMPLY WITH THE NEC 0.19(A)(1) FPN NO. 4.	dish
CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 1) FOR UL1015 WIRE.	wireless
R 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A R 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A R 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A R 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. .122 SQ. IN AREA .213 SQ. IN AREA .316 SQ. IN AREA .907 SQ. IN AREA	
T CONDUCTORS (1 CONDUIT): USING THWN-2, CU.	
0.0211 SQ. IN X 2 = 0.0422 SQ. IN 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <ground< td=""><td>TOTALLY COMMITTED.</td></ground<>	TOTALLY COMMITTED.
= 0.0633 SQ. IN	NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540
ATE TO HANDLE THE TOTAL OF (3) WIRES, INDICATED ABOVE.	RALEIGH, NC 27615 (919) 657-9131
ONDUITS): USING UL1015, CU.	
0.0266 SQ. IN X 4 = 0.1064 SQ. IN 0.0082 SQ. IN X 1 = 0.0082 SQ. IN BARE GROUND = 0.1146 SQ. IN	A MULTING CONNE
JATE TO HANDLE THE TOTAL OF (5) WIRES,	Can a us
INDICATED ABOVE. Conduit): Using thwn, cu.	PEN.0028997
0.2679 SQ. IN X 3 = 0.8037 SQ. IN	SSIONAL ENGINITIAN
0.0507 SQ. IN X 1 = 0.0507 SQ. IN < GROUND = 0.8544 SQ. IN	and the second
S ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INDICATED ABOVE.	KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT
	PROFESSIONAL ENGINEER LICENSE #PEN.0028997
NO SCALE	
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
	DRAWN BY: CHECKED BY: APPROVED BY:
	SN BRN TA
	RFDS REV #:
	CONSTRUCTION DOCUMENTS
	SUBMITTALS
	REVDATEDESCRIPTIONA10/07/2021ISSUED FOR REVIEW
	A 10/07/2021 ISSUED FOR REVIEW 0 03/01/2022 FOR CONSTRUCTION
	A&E PROJECT NUMBER
	876405
	DISH WIRELESS, LLC. PROJECT INFORMATION
	BOHVN00172A
	186 MINORTOWN WOODBURY, CT 06798
	SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
	SHEET NUMBER
	E-3
NO SCALE 3	

CE BRIDGE TI POSTS TO D RING BOND(s) L POSTS)			 EXOTHERMIC CONNECTION MECHANICAL CONNECTION GROUND BUS BAR GROUND BUS BAR GROUND ROD 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY. 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLIANCE WITH NEC SECTION 250 AND DISH WIRE REQUIREMENTS AND MANUFACTURER'S SPECIFICATION 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO GRADE, OR 6 INCHES BELOW THE FROST LINE AND APP OR FOOTING.
			 B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAV BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG C INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSU PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECON WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GO INSULATED CONDUCTOR. D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR BUILDING.
NOTES ANTENNAS AND OVP SHOWN / REFERENCING TO A SPECIFIC LAYOUT IS FOR REFERENCE P PROPOSED #6 AWG STRANDED COPPER GREEN INSULATED (TYP) PROPOSED 4"x6"x1/4" COPPER SECTOR GROUND BUSSBAR (TYP OF 3) PROPOSED UPPER TOWER GROUND BAR PROPOSED BUSS BAR (TYP.)	- Are generic at Manufacturer	THIS	 (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. OR GROUND RING CONDUCTOR. (F) CELL REFERENCE GROUND BAR: POINT OF GROUND REFT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS N COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GRINSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH USING (2) TWO #2 AWG STRANDED GREEN INSULATED (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED . TO GROUND RING WITH A #2 AWG SOLID TINNED COPPERINSPECTION SLEEVE. (I) TELCO CROUND BAR: BOND TO BOTH CELL REFERENCE (J) FRAME BONDING; THE BONDING POINT FOR TELECOM EQINS INSPECTION SLEEVE. (I) TELCO CROUND BAR: BOND TO BOTH CELL REFERENCE (J) FRAME BONDING; THE BONDING POINT FOR TELECOM EQINS IN TO ISOLATED FROM THE EQUIPMENTS METAL FRAMEW (K) INTERIOR UNIT BONDS; METAL FRAMES, CABINETS AND IN OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRINTERIOR GROUND RING. (L) FENCE AND GATE GROUNDING; METAL FRAMES, CABINETS AND IN OF THE INTERIOR GROUND RING BOTH CELL BEDOT TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCERDENCE GROUND RING. (M) EXTERIOR GROUND RING, WETALLIC OBJECTS, EXTERNAL TO TO THE EXTERIOR GROUND RING. USING #2 TINNED SOL (N) ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WEL GROUND RING. (O) DURING ALL DC POWER SYSTEM CHANGES INCLUDING DO OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERR ISTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS CONTRACTORS VERIFY ALL DC POWER SYSTEM COMMON RE REFERENCE GROUND BAR (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANIC// REFER TO DISH WIRELESS, LLC. GROUNDING NOTES.
<u>N</u>	NO SCALE	2	<u>GROUNDING KEY NOTE</u>



 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GROUND BAR, ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERMIC WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR LARGER. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND EFFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CONDUCTOR DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED ON THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACTOR. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINERS). 		EXTERNAL TOOTHED 3/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER J/16" MINIMUM SPACING	GAINST THE BARREL		TOOTHED BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE SHRINK BUTT U CONNE 3/8" DIA x1 1/2" S/S NUT S/S LOCK S/S LOCK S/S FLAT TINNED COPPER GROUNDING BAR	CTOR INSULATION JP AGAINST THE CTOR BARREL		<section-header><section-header><text><text><text></text></text></text></section-header></section-header>
TYPICAL GROUNDING NOTES	SCALE	1 <u>TYPICAL EXTERIOR TWO HOLE LUG</u>	O SCALE	2	TYPICAL INTERIOR TWO HOLE LUG	NO SCALE	3	
NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) S/S SPLIT WASHER S/S FLAT WASHER (2 HOLE LONG BARREL TINNED SOLID COPPER LUG (TYP) S/S FLAT WASHER (S/S FLAT WASHER (S/S NUT (TYP) CHERRY INSULATOR INSTALLED IF REQUIRED	R (TYP) (TYP)							KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997 TT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: SN BRN TA RFDS REV #: CONSTRUCTION
LUG DETAIL NO S	SCALE	4 <u>NOT USED</u> NO) SCALE	5	<u>NOT USED</u>	NO SCALE	6	
								SUBMITTALS REV DATE DESCRIPTION A 10/07/2021 ISSUED FOR REVIEW 0 03/01/2022 FOR CONSTRUCTION A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B A A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A
NOT USED NO S	SCALE	7 <u>NOT USED</u> NO	O SCALE	8	<u>NOT USED</u>	NO SCALE	9	

			3/4" TAPE WIDTH	HS WITH 3/4" SPACINO		
OW-BAND RRH – 600Mhz N71 BASEBAND) + 850Mhz N26 BAND) + 700Mhz N29 BAND) – OPTIONAL PER MARKET	PORT 1 PORT 2	_PHA RRH 2 PORT 3 PORT H SLANT + SLA RED RED		BETA RRH RT 2 PORT 3 POF SLANT + SLANT + S LUE BLUE BL	RT 4 PORT 1 POR LANT + SLANT + SL	AMMARRH2PORT 3ANT+ SLANT+ SLANTGREENGREEN
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	ORANGE ORANG WHITE (1) POR		GE WH	ANGE BLUE BLUE	NGE (1) F	
MID-BAND RRH – (AWS BANDS N66+N70)	RED RED PURPLE PURPLI WHITE WHITE	<mark>E</mark> REDRED	PURPLE PUF	RPLE BLUE BL	UE PURPLE PUR	PLE GREEN GREEN
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	WHITE (1) POR	RT PURPLE PURPL WHITE (1) PO			RPLE WHI (1) F	E PURPLE PURPLE WHITE (1) PORT
NCLUDE SECTOR BANDS BEING SUPPORTED AM LONG WITH FREQUENCY BANDS EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	REDBLUEGREENORANGEPURPLE	RED BLUE GREEN YELLOW				
HYBRID/DISCREET CABLES LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	LOW BAND RRH	HIGH BAND RRH	LOW BAND RRH	LOW BAND RRH	LOW BAND RRH	LOW BAND RRH
	RED	PURPLE		PURPLE	GREEN	PURPLE
POWER CABLES TO RRHs Low-band RRH power cables have sector Stripe only	RED LOW BAND RRH	HIGH BAND RRH	LOW BAND RRH		LOW BAND RRH	LOW BAND RRH
	RED LOW BAND RRH RED		LOW BAND RRH	PURPLE	LOW BAND RRH	LOW BAND RRH
	RED LOW BAND RRH RED PORT 1/ ANTENNA 1 "IN" RED RED		LOW BAND RRH	PURPLE	LOW BAND RRH	LOW BAND RRH GREEN
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED PORT 1/ ANTENNA 1	ARY	LOW BAND RRH	PURPLE	LOW BAND RRH	LOW BAND RRH GREEN
OW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY RET MOTORS AT ANTENNAS MICROWAVE RADIO LINKS	RED PORT 1/ ANTENNA 1 "IN" RED RED PRIMARY SECONDA WHITE RED WHITE RED	RED PURPLE	LOW BAND RRH	PURPLE	LOW BAND RRH	LOW BAND RRH GREEN


LOW BANDS (N71–N28) OPTIONAL – (N29) ORANGE CBRS TECH (3 GHz) YELLOW	AWS (N65+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANTRRH WHITE			Gissh b b b b b b b b b b
HA SECTOR BETA SECTOR	GAMMA S			THE STATE OF STATE O
<u>COLOR IDENTIFIER</u>		NO SCALE	2	Image: constrained of the second of the s
NOT USED		NO SCALE	3	SN BRN TA RFDS REV #: CONSTRUCTION DOCUMENTS
		NO SUALL	J	SUBMITTALS REV DATE DESCRIPTION A 10/07/2021 ISSUED FOR REVIEW 0 03/01/2022 FOR CONSTRUCTION A Indextor Instruction A Indextor Instruction A&E PROJECT NUMBER A&E PROJECT NUMBER BOHVN00172A 186 MINORTOWN BOHVN00172A 186 MINORTOWN WOODBURY, CT 06798 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER
<u>NOT USED</u>		NO SCALE	4	RF-1

<u>LEGEND</u>

ABBREVIATIONS

AB	ANCHOR BOLT	IN	INCH
ABV	ABOVE	INT	INTERIOR
AC	ALTERNATING CURRENT	LB(S)	POUND(S)
ADDL	ADDITIONAL		
		LF	LINEAR FEET
AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
AFG	ABOVE FINISHED GRADE	MAS	MASONRY
AGL	ABOVE GROUND LEVEL	MAX	MAXIMUM
AIC	AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE		
		MFR	MANUFACTURER
ANT	ANTENNA	MGB	MASTER GROUND BAR
APPROX	APPROXIMATE	MIN	MINIMUM
ARCH	ARCHITECTURAL	MISC	MISCELLANEOUS
ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATT	BATTERY		
		MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	NUMBER
BM	BEAM	#	NUMBER
BTC	BARE TINNED COPPER CONDUCTOR		
		NTS	NOT TO SCALE
BOF	BOTTOM OF FOOTING	OC	ON-CENTER
CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANT	CANTILEVERED	OPNG	OPENING
CHG	CHARGING		
CLG	CEILING	P/C	PRECAST CONCRETE
		PCS	PERSONAL COMMUNICATION SERVICES
CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
COL	COLUMN	PRC	PRIMARY RADIO CABINET
COMM	COMMON	PP	POLARIZING PRESERVING
CONC	CONCRETE		
CONSTR	CONSTRUCTION	PSF	POUNDS PER SQUARE FOOT
		PSI	POUNDS PER SQUARE INCH
DBL	DOUBLE	PT	PRESSURE TREATED
DC	DIRECT CURRENT	PWR	POWER CABINET
DEPT	DEPARTMENT		
DF	DOUGLAS FIR	QTY	QUANTITY
		RAD	RADIUS
DIA	DIAMETER	RECT	RECTIFIER
DIAG	DIAGONAL	REF	REFERENCE
DIM	DIMENSION		
DWG	DRAWING	REINF	REINFORCEMENT
DWL		REQ'D	REQUIRED
	DOWEL	RET	REMOTE ELECTRIC TILT
EA	EACH	RF	RADIO FREQUENCY
EC	ELECTRICAL CONDUCTOR		
EL.	ELEVATION	RMC	RIGID METALLIC CONDUIT
ELEC	ELECTRICAL	RRH	REMOTE RADIO HEAD
		RRU	REMOTE RADIO UNIT
EMT	ELECTRICAL METALLIC TUBING	RWY	RACEWAY
ENG	ENGINEER	SCH	SCHEDULE
EQ	EQUAL		
EXP	EXPANSION	SHT	SHEET
EXT	EXTERIOR	SIAD	SMART INTEGRATED ACCESS DEVICE
		SIM	SIMILAR
EW			
	EACH WAY	SPEC	SPECIFICATION
FAB	EACH WAY FABRICATION		SPECIFICATION
FAB FF		SQ	SQUARE
	FABRICATION	SQ SS	SQUARE STAINLESS STEEL
FF FG	FABRICATION FINISH FLOOR FINISH GRADE	SQ	SQUARE
FF FG FIF	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	SQ SS	SQUARE STAINLESS STEEL
FF FG	FABRICATION FINISH FLOOR FINISH GRADE	SQ SS STD STL	SQUARE STAINLESS STEEL STANDARD STEEL
FF FG FIF	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	SQ SS STD STL TEMP	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY
FF FG FIF FIN	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED)	SQ SS STD STL TEMP THK	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS
FF FG FIF FIN FLR FDN	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION	SQ SS STD STL TEMP THK TMA	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER
FF FG FIF FIN FLR FDN FOC	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE	SQ SS STD STL TEMP THK	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS
FF FG FIF FIN FLR FDN FOC FOM	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY	SQ SS STD STL TEMP THK TMA	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER
FF FG FIF FIN FLR FDN FOC	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE	SQ SS STD STL TEMP THK TMA TN TN TOA	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA
FF FG FIF FIN FLR FDN FOC FOM	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY	SQ SS STD STL TEMP THK TMA TN TOA TOC	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB
FF FG FIF FIN FLR FDN FOC FOM FOS	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE	SQ SS STD STL TEMP THK TMA TN TOA TOC	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOP TOS	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET)
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOP TOS TOW	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	SQ SS STD STL TEMP THK TMA TN TOA TOF TOS TOW TVSS	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR	SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOP TOS TOW	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTGAUGEGENERATORGROUND FAULT CIRCUIT INTERRUPTER	SQ SS STD STL TEMP THK TMA TN TOA TOF TOS TOW TVSS	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTFOOTINGGAUGEGROUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAM	SQ SS STD STL TEMP THK TMA TN TOA TOA TOA TOC TOF TOP TOS TOW TVSS TYP	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTGAUGEGENERATORGROUND FAULT CIRCUIT INTERRUPTER	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTFOOTINGGAUGEGROUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAM	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTFOOTINGGAUGEGROUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAMGALVANIZED	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTGOUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAMGALVANIZEDGROUNDGROUNDGROUNDGROUNDGROUNDFOOTIONING SYSTEMGROUNDGOUNDFOUNDN	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTGOUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAMGLOBAL POSITIONING SYSTEMGLOBAL SYSTEM FOR MOBILE	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UNO UMTS	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTGOUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAMGALVANIZEDGLOBAL POSITIONING SYSTEMGROUNDGLOBAL SYSTEM FOR MOBILEHOT DIPPED GALVANIZED	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTGOUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAMGLOBAL POSITIONING SYSTEMGLOBAL SYSTEM FOR MOBILE	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERGROUND UNDERWRITERS LABORATORY UNIESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTGOUND FAULT CIRCUIT INTERRUPTERGLUE LAMINATED BEAMGALVANIZEDGLOBAL POSITIONING SYSTEMGROUNDGLOBAL SYSTEM FOR MOBILEHOT DIPPED GALVANIZED	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR HGR	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTFOOTINGGAUGEGLUE LAMINATED BEAMGALVANIZEDGLOBAL POSITIONING SYSTEMGROUNDGLOBAL SYSTEM FOR MOBILEHOT DIPPED GALVANIZEDHEADERHANGER	SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERGROUND UNDERWRITERS LABORATORY UNIESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR HGR HGR	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTFOOTINGGAUGEGENERATORGLUE LAMINATED BEAMGALVANIZEDGLOBAL POSITIONING SYSTEMGROUNDGLOBAL SYSTEM FOR MOBILEHOT DIPPED GALVANIZEDHEADERHANGERHEAT/VENTILATION/AIR CONDITIONING	SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOF TOF TOP TOS TOW TVSS TYP UG UL UL UNO UL UL UNO UL UNO UL UNO UL UNO UNO UMTS UPS VIF ₩ W	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR HDR HCR HVAC HT	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTFOOTINGGAUGEGLUE LAMINATED BEAMGALVANIZEDGLOBAL POSITIONING SYSTEMGROUNDGLOBAL SYSTEM FOR MOBILEHOT DIPPED GALVANIZEDHEADERHANGER	SQ SS STL TEMP THK TMA TN TOA TOC TOF TOF TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W W/ WD WP	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERGROUND UNDERWRITERS LABORATORY UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITH WIDE WITH
FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR HGR HGR	FABRICATIONFINISH FLOORFINISH GRADEFACILITY INTERFACE FRAMEFINISH(ED)FLOORFOUNDATIONFACE OF CONCRETEFACE OF MASONRYFACE OF STUDFACE OF WALLFINISH SURFACEFOOTFOOTINGGAUGEGENERATORGLUE LAMINATED BEAMGALVANIZEDGLOBAL POSITIONING SYSTEMGROUNDGLOBAL SYSTEM FOR MOBILEHOT DIPPED GALVANIZEDHEADERHANGERHEAT/VENTILATION/AIR CONDITIONING	SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOF TOF TOP TOS TOW TVSS TYP UG UL UL UNO UL UL UNO UL UNO UL UNO UL UNO UNO UMTS UPS VIF ₩ W	SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, LLC. AND TOWER OWNER OWNER NOC & THE DISH WIRELESS, LLC. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH WIRELESS, LLC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, LLC. AND DISH WIRELESS, LLC. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, LLC. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
 REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS PAVEMENTS CURBS LANDSCAPING AND STRUCTURES ANY

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

<u>GENERAL NOTES:</u>

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WIRELESS, LLC.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

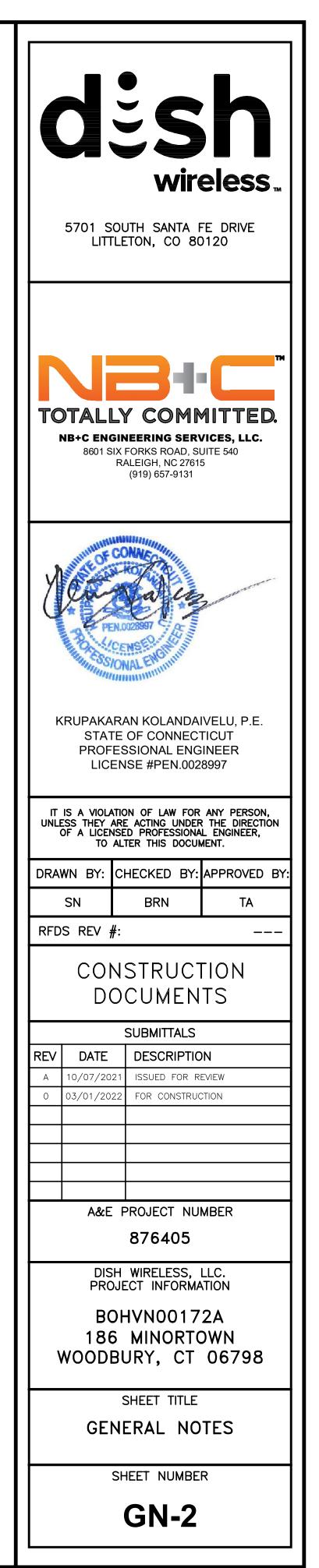
4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

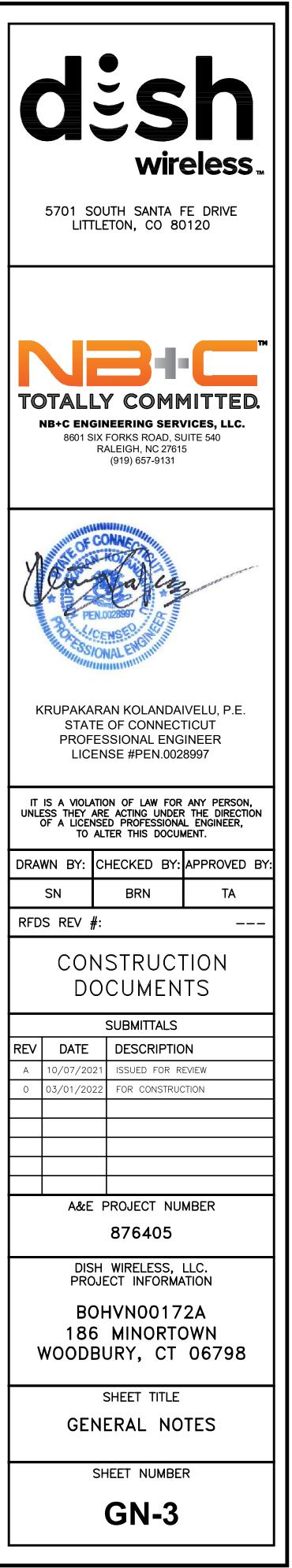
8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.


9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, LLC. AND TOWER OWNER


13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. SCREW FITTINGS ARE NOT ACCEPTABLE. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90° f AT TIME OF PLACEMENT. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY). 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE #5 BARS AND LARGER 60 ksi MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. • CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. • SLAB AND WALLS 3/4" 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. ● BEAMS AND COLUMNS 1-1/2" 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, LLC. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, LLC.". 29. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. THE NATIONAL ELECTRICAL CODE. 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND

AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. psf. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: #4 BARS AND SMALLER 40 ksi DRAWINGS: IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. ELECTRICAL INSTALLATION NOTES: 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. AND TRIP HAZARDS ARE ELIMINATED. 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. 5. EACH END OF EVERY POWER PHASE CONDUCTOR. GROUNDING CONDUCTOR. AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). 8. 9. WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE). 14. NEC.

15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE. BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED 8. COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

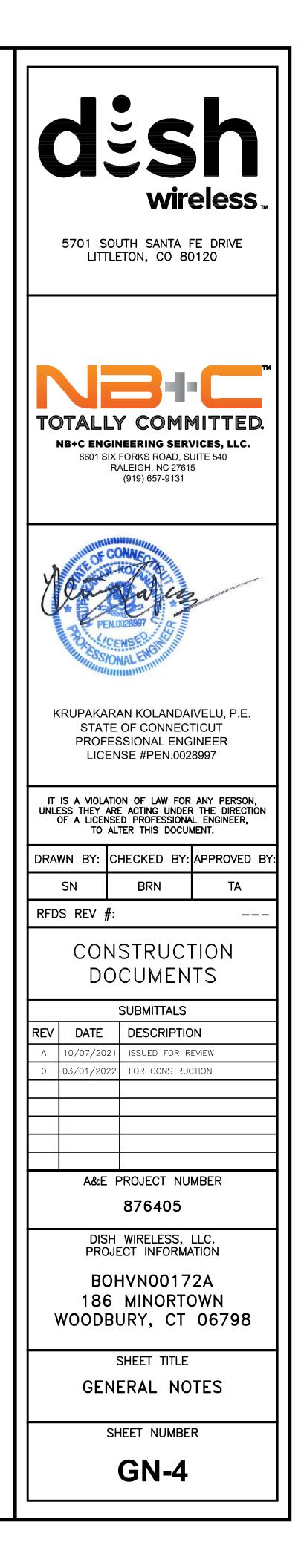
EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16.


MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND 17. RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: September 21, 2021

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 (919) 661-6351

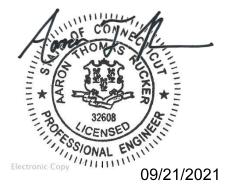
Subject: Structural Analysis Report

Carrier Designation:	DISH Network Co-Locate	
-	Site Number:	BOHVN00172A
	Site Name:	CT-CCI-T-876405
Crown Castle Designation:	BU Number:	876405
-	Site Name:	WOODBURY NORTH
	JDE Job Number:	645206
	Work Order Number:	1964072
	Order Number:	553389 Rev. 0
Engineering Firm Designation:	TEP Project Number:	25640.597664
Site Data:	186 Minortown, Woodbury Latitude <i>41° 34' 4.79''</i> , Long 110 Foot - Monopole Towe	

Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration


Sufficient Capacity – 99.4%

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2015 international Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Gautam Sopal, E.I. / DEN

Respectfully submitted by:

Aaron T. Rucker, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 100-ft monopole tower designed by Engineered Endeavors, Inc. The tower has been modified multiple times in the past to accommodate additional loading. The tower was previously extended 10-ft, bringing the overall tower height to 110-ft.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	118 mph
Exposure Category:	C
Topographic Factor:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	3	JMA Wireless	MX08FRO665-21 w/ Mount Pipe			
		3	Fujitsu	TA08025-B604		
68.0	68.0	3	Fujitsu	TA08025-B605	1	1-3/8
		1	Raycap	RDIDC-9181-PF-48		
		1	Tower Mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		6	Commscope	JAHH-65B-R3B w/ Mount Pipe		
		3	VZW	Sub6 Antenna - VZS01 w/ Mount Pipe		
		2	Antel	BXA-80080/4CF w/ Mount Pipe		
108.0	108.0	1	Antel	BXA-80063/4CFx5 w/ Mount Pipe	6	1-5/8
		3	Commscope	CBC78T-DS-43-2X	1	1-1/4
		3	Samsung Telecom.	RFV01U-D1A		
		3	Samsung Telecom.	RFV01U-D2A		
		1	RFS Celwave	DB-C1-12C-24AB-0Z		
		1	Tower Mounts	T-Arm Mount [TA 602-3]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)					
	3	3	3				3	RFS Celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe		
		3	RFS Celwave	APXVAALL24_43-U- NA20_TMO w/ Mount Pipe							
102.0	102.0	3	Ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe	4	1-5/8					
		3	Ericsson	RADIO 4415 B66A_CCIV3							
		3	Ericsson	RADIO 4424 B25_TMO							
		3	Ericsson	RADIO 4449 B71 B85A_T- MOBILE							
		1	Tower Mounts	SitePro1 RMQP-4096-HK							
		3	Alcatel Lucent	1900MHz RRH (65MHz)	-	-					
97.0	97.0	3	Alcatel Lucent	800MHZ RRH							
		1	Tower Mounts	Side Arm Mount [SO 701-3]							
			3	Powerwave Technologies	7770.00 w/ Mount Pipe						
		4	Cci Antennas	DMP65R-BU6D w/ Mount Pipe							
		2	Cci Antennas	DMP65R-BU4D w/ Mount Pipe							
80.0	80.0	6	Powerwave Technologies	LGP21401	2	1-5/8 7/8					
		3	Ericsson	RRUS 8843 B2/B66A	2	3/8 7/16					
		3	Ericsson	RRUS 4478 B14		7710					
		1	Raycap	DC6-48-60-0-8C-EV							
		1	Raycap	DC6-48-60-18-8F							
		1	Tower Mounts	T-Arm Mount [TA 602-3]							
75.0	75.0	3	Ericsson	RRUS 4449 B5/B12							
/5.0	/5.0	1	Tower Mounts	Side Arm Mount [SO 901-3]							
50.0	51.0	1	Lucent	KS24019-L112A	1	1/2					
50.0	50.0	1	Tower Mounts	Side Arm Mount [SO 701-1]		1/2					

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
Geotechnical Report	2158106	CCISites
Tower Foundation Drawings	1613643	CCISites
Tower Manufacturer Drawings	1614551	CCISites
Post-Modification Inspection	1956156	CCISites
Tower Reinforcement Drawings	2055775	CCISites
Tower Reinforcement Drawings	2177138	CCISites
Post-Modification Inspection	2309564	CCISites
Post-Modification Inspection	3373272	CCISites
Tower Reinforcement Drawings	3382709	CCISites
Post-Modification Inspection	3849745	CCISites

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) The tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

		, ,	Î.	1	1
Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
110 - 105	Pole	TP13.693x12.7x0.1875	Pole	7.2%	Pass
105 - 100	Pole	TP14.686x13.693x0.1875	Pole	21.6%	Pass
100 - 98.5	Pole	TP14.984x14.686x0.1875	Pole	27.0%	Pass
98.5 - 93.5	Pole	TP16.012x14.984x0.1875	Pole	43.3%	Pass
93.5 - 88.5	Pole	TP17.039x16.012x0.1875	Pole	56.1%	Pass
88.5 - 83.5	Pole	TP18.066x17.039x0.1875	Pole	66.2%	Pass
83.5 - 78.67	Pole	TP19.058x18.066x0.1875	Pole	76.6%	Pass
78.67 - 78.42	Pole + Reinf.	TP19.11x19.058x0.5625	Reinf. 5 Bolt-Shaft Bearing	41.7%	Pass

Table 4 - Section Capacity (Summary)^{1,2}

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail	
78.42 - 73.42 Pole + Reinf. TP20.137x19.11x0.5375		Reinf. 5 Tension Rupture	48.9%	Pass		
73.42 - 68.42	Pole + Reinf.	TP21.164x20.137x0.5125	Reinf. 5 Tension Rupture	55.6%	Pass	
68.42 - 63.42	Pole + Reinf.	TP22.191x21.164x0.4875	Reinf. 5 Tension Rupture	63.7%	Pass	
63.42 - 58.67	Pole + Reinf.	TP23.167x22.191x0.475	Reinf. 5 Bolt-Shaft Bearing	71.1%	Pass	
58.67 - 58.42	Pole + Reinf.	TP23.218x23.167x0.475	Reinf. 4 Bolt-Shaft Bearing	71.4%	Pass	
58.42 - 53.42	Pole + Reinf.	TP24.246x23.218x0.4625	Reinf. 4 Tension Rupture	77.2%	Pass	
53.42 - 50.87	Pole + Reinf.	TP25.54x24.246x0.45	Reinf. 4 Tension Rupture	80.2%	Pass	
50.87 - 45.87	Pole + Reinf.	TP25.363x24.395x0.5125	Reinf. 4 Tension Rupture	76.9%	Pass	
45.87 - 40.87	Pole + Reinf.	TP26.332x25.363x0.5	Reinf. 4 Tension Rupture	81.2%	Pass	
40.87 - 35.87	Pole + Reinf.	TP27.301x26.332x0.4875	Reinf. 4 Tension Rupture	85.0%	Pass	
35.87 - 30.87	Pole + Reinf.	TP28.269x27.301x0.475	Reinf. 4 Tension Rupture	88.4%	Pass	
30.87 - 28.67	Pole + Reinf.	TP28.696x28.269x0.475	Reinf. 4 Tension Rupture	89.7%	Pass	
28.67 - 28.42	Pole + Reinf.	TP28.744x28.696x0.475	Reinf. 7 Tension Rupture	89.9%	Pass	
28.42 - 23.42	Pole + Reinf.	TP29.713x28.744x0.4625	Reinf. 7 Tension Rupture	92.7%	Pass	
23.42 - 18.42	Pole + Reinf.	TP30.681x29.713x0.4563	Reinf. 7 Tension Rupture	95.2%	Pass	
18.42 - 14.17	Pole + Reinf.	TP31.505x30.681x0.45	Reinf. 7 Tension Rupture	97.1%	Pass	
14.17 - 13.92	Pole + Reinf.	TP31.553x31.505x0.55	Reinf. 3 Tension Rupture	86.4%	Pass	
13.92 - 13.67	Pole + Reinf.	TP31.602x31.553x0.55	Reinf. 3 Tension Rupture	86.5%	Pass	
13.67 - 13.42	Pole + Reinf.	TP31.65x31.602x0.4688	Reinf. 6 Tension Rupture	96.3%	Pass	
13.42 - 8.42	Pole + Reinf.	TP32.619x31.65x0.4625	Reinf. 6 Tension Rupture	98.4%	Pass	
8.42 - 5.75	Pole + Reinf.	TP33.136x32.619x0.4625	Reinf. 6 Tension Rupture	99.4%	Pass	
5.75 - 5.5	Pole + Reinf.	TP33.184x33.136x0.525	Reinf. 3 Tension Rupture	89.5%	Pass	
5.5 - 3.57	Pole + Reinf.	TP33.558x33.184x0.5875	Reinf. 1 Compression	74.0%	Pass	
3.57 - 3.32	Pole + Reinf.	TP33.607x33.558x0.5875	Reinf. 1 Compression	74.1%	Pass	
3.32 - 3.17	Pole + Reinf.	TP33.636x33.607x0.5875	Reinf. 1 Compression	74.1%	Pass	
3.17 - 2.92	Pole + Reinf.	TP33.684x33.636x0.4938	Reinf. 1 Compression	84.4%	Pass	
2.92 - 2.75	Pole + Reinf.	TP33.717x33.684x0.4938	Reinf. 1 Compression	84.5%	Pass	
2.75 - 2.5	Pole + Reinf.	TP33.766x33.717x0.4875	Reinf. 1 Compression	84.6%	Pass	
2.5 - 0	Pole + Reinf.	TP34.25x33.766x0.4875	Reinf. 1 Compression	85.2%	Pass	
	Í			Summary		
	1		Pole	76.6%	Pass	
			Reinforcement	99.4%	Pass	
			Overall	99.4%	Pass	

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component Elevation (ft) %		% Capacity	Pass / Fail
1,2	Flange Connection	98.5	72.2	Pass
1,2	Anchor Rods	-	65.4	Pass
1,2	Base Plate	-	95.3	Pass
1,2	Base Foundation Structural	-	57.1	Pass
1,2	Base Foundation Soil Interaction	-	89.5	Pass

Structure Rating (max from all components) =	99.4%	
--	-------	--

Notes:

See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity listed. Rating per TIA-222-H Section 15.5

1) 2)

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No 1) modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH							
GRADE	Fy	Fu	GRADE	Fy	Fu		
A572-65	65 ksi	80 ksi					

TOWER DESIGN NOTES

- Tower is located in Litchfield County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Bick Concernul.

ALL REACTIONS ARE FACTORED AXIAL 54 K

TORQUE 0 kip-ft 50 mph WIND - 1.5000 in ICE

AXIAL 32 K

TORQUE 2 kip-ft REACTIONS - 118 mph WIND

SHEAŔ 6 K {

SHEAR'

20 K (

MOMENT

512 kip-ft ¥

MOMENT

1690 kip-ft

- 6. Tower Risk Category II.
 7. Topographic Category 1 with Crest Height of 0.00 ft
 8. TOWER RATING: 99.4%

Tower Engineering Professionals	^{Job:} Woodbury Nort	h (BU 876405)	
326 Tryon Rd.	Project: TEP No. 25640.5	97664	
Raleigh, NC 27603	Client: Crown Castle	^{Drawn by:} kolson	App'd:
Phone: (919) 661-6351	^{Code:} TIA-222-H	Date: 09/21/21	Scale: NTS
	Path: C:\Users\kolson\Desktop\tnx\87	6405\876405_1964072_LC7.er	Dwg No. E-1

Areas Tosta or	Job		Page
tnxTower	v	Voodbury North (BU 876405)	1 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Litchfield County, Connecticut. Tower base elevation above sea level: 460.00 ft. Basic wind speed of 118 mph. Risk Category II. Exposure Category C. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.00 ft. Nominal ice thickness of 1.5000 in. Ice thickness is considered to increase with height. Ice density of 56.00 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. TOWER RATING: 99.4%. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Tower analysis based on target reliabilities in accordance with Annex S. Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$. Maximum demand-capacity ratio is: 1.05. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Assume Rigid Index Plate Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower

Job

Project

Client

Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:

Woodbury	North	(BU	876405)
		·	,

TEP No. 25640.597664

Page 2 of 40

Date 15:08:01 09/21/21

Crown Castle

Designed by kolson

Tapered Pole Section Geometry									
Section	Elevation	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	110.00-105.00	5.00	0.00	18	12.7000	13.6932	0.1875	0.7500	A572-65
	105 00 100 00	5.00	0.00	10	10 (000	14 (0(2	0.1075	0.7500	(65 ksi)
L2	105.00-100.00	5.00	0.00	18	13.6932	14.6863	0.1875	0.7500	A572-65 (65 ksi)
L3	100.00-98.50	1.50	0.00	18	14.6863	14.9843	0.1875	0.7500	A572-65
									(65 ksi)
L4	98.50-93.50	5.00	0.00	18	14.9843	16.0115	0.1875	0.7500	A572-65 (65 ksi)
L5	93.50-88.50	5.00	0.00	18	16.0115	17.0387	0.1875	0.7500	A572-65
									(65 ksi)
L6	88.50-83.50	5.00	0.00	18	17.0387	18.0660	0.1875	0.7500	A572-65 (65 ksi)
L7	83.50-78.67	4.83	0.00	18	18.0660	19.0583	0.1875	0.7500	(05 Ksi) A572-65
									(65 ksi)
L8	78.67-78.42	0.25	0.00	18	19.0583	19.1096	0.5625	2.2500	A572-65
L9	78.42-73.42	5.00	0.00	18	19.1096	20.1368	0.5375	2.1500	(65 ksi) A572-65
									(65 ksi)
L10	73.42-68.42	5.00	0.00	18	20.1368	21.1640	0.5125	2.0500	A572-65 (65 ksi)
L11	68.42-63.42	5.00	0.00	18	21.1640	22.1913	0.4875	1.9500	(63 KSI) A572-65
									(65 ksi)
L12	63.42-58.67	4.75	0.00	18	22.1913	23.1671	0.4750	1.9000	A572-65
L13	58.67-58.42	0.25	0.00	18	23.1671	23.2185	0.4750	1.9000	(65 ksi) A572-65
									(65 ksi)
L14	58.42-53.42	5.00	0.00	18	23.2185	24.2457	0.4625	1.8500	A572-65
L15	53.42-47.12	6.30	3.75	18	24.2457	25.5400	0.4500	1.8000	(65 ksi) A572-65
210	00112 1/112	0100	0110	10	2112107	2010 100	011200	110000	(65 ksi)
L16	47.12-45.87	5.00	0.00	18	24.3946	25.3633	0.5125	2.0500	A572-65
L17	45.87-40.87	5.00	0.00	18	25.3633	26.3320	0.5000	2.0000	(65 ksi) A572-65
217	10107 10107	2100	0.000	10	2010000	20.0020	0.0000	2.0000	(65 ksi)
L18	40.87-35.87	5.00	0.00	18	26.3320	27.3006	0.4875	1.9500	A572-65
L19	35.87-30.87	5.00	0.00	18	27.3006	28.2693	0.4750	1.9000	(65 ksi) A572-65
517	55.67 50.07	5.00	0.00	10	27.5000	20.2075	0.1750	1.9000	(65 ksi)
L20	30.87-28.67	2.20	0.00	18	28.2693	28.6956	0.4750	1.9000	A572-65
L21	28.67-28.42	0.25	0.00	18	28.6956	28.7440	0.4750	1.9000	(65 ksi) A572-65
221	20.07 20.12	0.20	0.00	10		20.7110	0.1750	1.9000	(65 ksi)
L22	28.42-23.42	5.00	0.00	18	28.7440	29.7127	0.4625	1.8500	A572-65
L23	23.42-18.42	5.00	0.00	18	29.7127	30.6814	0.4562	1.8250	(65 ksi) A572-65
220	20112 10112	2100	0.000	10	2311121	2010011	011202	110200	(65 ksi)
L24	18.42-14.17	4.25	0.00	18	30.6814	31.5047	0.4500	1.8000	A572-65
L25	14.17-13.92	0.25	0.00	18	31.5047	31.5532	0.5500	2.2000	(65 ksi) A572-65
		0.23	0.00	10	51.5077	51.5552	0.5500	2.2000	(65 ksi)
L26	13.92-13.67	0.25	0.00	18	31.5532	31.6016	0.5500	2.2000	A572-65
L27	13.67-13.42	0.25	0.00	18	31.6016	31.6500	0.4688	1.8750	(65 ksi) A572-65
	15.07 15.72	0.23	0.00	10	51.0010	51.0500	0.7000	1.0750	(65 ksi)
L28	13.42-8.42	5.00	0.00	18	31.6500	32.6187	0.4625	1.8500	A572-65
L29	8.42-5.75	2.67	0.00	18	32.6187	33.1360	0.4625	1.8500	(65 ksi) A572-65
	0.72 3.13	2.07	0.00	10	52.0107	55.1500	0.4025	1.0500	(65 ksi)

	Job		Page
tnxTower		Woodbury North (BU 876405)	3 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section	Elevation ft	Section Length	Splice Length	Number of Sides	Top Diameter in	Bottom Diameter	Wall Thickness	Bend Radius in	Pole Grade
1.20	<i>j</i> .				in	in	<u>in</u>		1570 (5
L30	5.75-5.50	0.25	0.00	18	33.1360	33.1844	0.5250	2.1000	A572-65 (65 ksi)
L31	5.50-3.57	1.93	0.00	18	33.1844	33.5584	0.5875	2.3500	A572-65
									(65 ksi)
L32	3.57-3.32	0.25	0.00	18	33.5584	33.6068	0.5875	2.3500	A572-65
									(65 ksi)
L33	3.32-3.17	0.15	0.00	18	33.6068	33.6359	0.5875	2.3500	A572-65
									(65 ksi)
L34	3.17-2.92	0.25	0.00	18	33.6359	33.6843	0.4938	1.9750	A572-65
									(65 ksi)
L35	2.92-2.75	0.17	0.00	18	33.6843	33.7172	0.4938	1.9750	A572-65
									(65 ksi)
L36	2.75-2.50	0.25	0.00	18	33.7172	33.7657	0.4875	1.9500	A572-65
									(65 ksi)
L37	2.50-0.00	2.50		18	33.7657	34.2500	0.4875	1.9500	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	12.8670	7.4465	147.2916	4.4419	6.4516	22.8302	294.7770	3.7240	1.9052	10.161
	13.8755	8.0376	185.2228	4.7945	6.9561	26.6273	370.6893	4.0195	2.0800	11.093
L2	13.8755	8.0376	185.2228	4.7945	6.9561	26.6273	370.6893	4.0195	2.0800	11.093
	14.8840	8.6286	229.1639	5.1471	7.4607	30.7163	458.6293	4.3151	2.2548	12.026
L3	14.8840	8.6286	229.1639	5.1471	7.4607	30.7163	458.6293	4.3151	2.2548	12.026
	15.1865	8.8059	243.5842	5.2529	7.6120	31.9999	487.4888	4.4038	2.3072	12.305
L4	15.1865	8.8059	243.5842	5.2529	7.6120	31.9999	487.4888	4.4038	2.3072	12.305
	16.2296	9.4173	297.9175	5.6175	8.1339	36.6269	596.2270	4.7095	2.4880	13.269
L5	16.2296	9.4173	297.9175	5.6175	8.1339	36.6269	596.2270	4.7095	2.4880	13.269
	17.2727	10.0286	359.7834	5.9822	8.6557	41.5662	720.0401	5.0152	2.6688	14.234
L6	17.2727	10.0286	359.7834	5.9822	8.6557	41.5662	720.0401	5.0152	2.6688	14.234
	18.3157	10.6399	429.6706	6.3469	9.1775	46.8178	859.9066	5.3210	2.8496	15.198
L7	18.3157	10.6399	429.6706	6.3469	9.1775	46.8178	859.9066	5.3210	2.8496	15.198
	19.3233	11.2305	505.2579	6.6991	9.6816	52.1875	1011.1807	5.6163	3.0243	16.129
L8	19.2655	33.0218	1427.1931	6.5660	9.6816	147.4131	2856.2641	16.5141	2.3643	4.203
	19.3176	33.1135	1439.1157	6.5842	9.7077	148.2450	2880.1250	16.5599	2.3733	4.219
L9	19.3215	31.6845	1380.7233	6.5931	9.7077	142.2300	2763.2634	15.8453	2.4173	4.497
	20.3646	33.4369	1622.7307	6.9578	10.2295	158.6323	3247.5966	16.7216	2.5981	4.834
L10	20.3684	31.9224	1553.1832	6.9666	10.2295	151.8336	3108.4102	15.9642	2.6421	5.155
	21.4115	33.5934	1810.0729	7.3313	10.7513	168.3579	3622.5276	16.7999	2.8229	5.508
L11	21.4153	31.9933	1728.0372	7.3402	10.7513	160.7277	3458.3483	15.9997	2.8669	5.881
	22.4584	33.5828	1998.5929	7.7048	11.2732	177.2877	3999.8157	16.7946	3.0477	6.252
L12	22.4603	32.7405	1950.7135	7.7093	11.2732	173.0405	3903.9939	16.3734	3.0697	6.462
	23.4512	34.2118	2225.6839	8.0557	11.7689	189.1157	4454.2964	17.1091	3.2414	6.824
L13	23.4512	34.2118	2225.6839	8.0557	11.7689	189.1157	4454.2964	17.1091	3.2414	6.824
	23.5034	34.2892	2240.8309	8.0739	11.7950	189.9816	4484.6103	17.1479	3.2505	6.843
L14	23.5053	33.4052	2185.4611	8.0784	11.7950	185.2872	4373.7979	16.7058	3.2725	7.076
	24.5484	34.9131	2494.9807	8.4430	12.3168	202.5670	4993.2444	17.4599	3.4532	7.466
L15	24.5503	33.9874	2431.3784	8.4475	12.3168	197.4031	4865.9561	16.9969	3.4752	7.723
	25.8646	35.8360	2850.0919	8.9070	12.9743	219.6718	5703.9341	17.9214	3.7030	8.229
L16	25.4296	38.8484	2799.3359	8.4781	12.3924	225.8904	5602.3553	19.4279	3.3914	6.617
	25.6755	40.4241	3153.9725	8.8220	12.8845	244.7873	6312.0950	20.2159	3.5619	6.95
L17	25.6774	39.4580	3081.6919	8.8265	12.8845	239.1774	6167.4388	19.7328	3.5839	7.168
	26.6610	40.9953	3456.1004	9.1703	13.3766	258.3685	6916.7485	20.5016	3.7544	7.509
L18	26.6630	39.9898	3374.5920	9.1748	13.3766	252.2751	6753.6245	19.9987	3.7764	7.747

	Job					Page	
tnxTower		Wood	bury North	(BU 8764	405)	4	of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TE	P No. 256	40.59766	4	Date 15:08:0	1 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client		Crown C	Castle		Designed k	l by olson
FAX:						K	013011

Section	пр Dia.	Area	1	r	C	<i>I/C</i>	J	mQ	W	W/I
	in	in^2	in^4	in	in	in ³	in^4	in ²	in	
	27.6466	41.4886	3768.4457	9.5187	13.8687	271.7225	7541.8500	20.7483	3.9469	8.096
L19	27.6485	40.4437	3676.9566	9.5231	13.8687	265.1257	7358.7514	20.2257	3.9689	8.356
	28.6322	41.9041	4089.8432	9.8670	14.3608	284.7918	8185.0679	20.9560	4.1394	8.715
L20	28.6322	41.9041	4089.8432	9.8670	14.3608	284.7918	8185.0679	20.9560	4.1394	8.715
	29.0650	42.5467	4280.8947	10.0183	14.5773	293.6677	8567.4222	21.2774	4.2144	8.872
L21	29.0650	42.5467	4280.8947	10.0183	14.5773	293.6677	8567.4222	21.2774	4.2144	8.872
	29.1141	42.6197	4302.9740	10.0355	14.6019	294.6850	8611.6099	21.3139	4.2229	8.89
L22	29.1161	41.5165	4195.2982	10.0399	14.6019	287.3109	8396.1166	20.7622	4.2449	9.178
	30.0997	42.9385	4641.3196	10.3838	15.0940	307.4936	9288.7463	21.4733	4.4154	9.547
L23	30.1007	42.3673	4581.5346	10.3860	15.0940	303.5327	9169.0978	21.1877	4.4264	9.702
	31.0843	43.7701	5051.8555	10.7299	15.5861	324.1251	10110.3584	21.8892	4.5969	10.075
L24	31.0852	43.1795	4985.7436	10.7321	15.5861	319.8833	9978.0476	21.5938	4.6079	10.24
	31.9213	44.3555	5404.3156	11.0244	16.0044	337.6767	10815.7424	22.1820	4.7528	10.562
L25	31.9059	54.0377	6541.6706	10.9889	16.0044	408.7418	13091.9488	27.0240	4.5768	8.322
	31.9551	54.1222	6572.4253	11.0061	16.0290	410.0330	13153.4988	27.0663	4.5854	8.337
L26	31.9551	54.1222	6572.4253	11.0061	16.0290	410.0330	13153.4988	27.0663	4.5854	8.337
	32.0043	54.2068	6603.2770	11.0233	16.0536	411.3264	13215.2427	27.1086	4.5939	8.353
L27	32.0168	46.3199	5672.0858	11.0522	16.0536	353.3213	11351.6351	23.1643	4.7369	10.105
	32.0660	46.3919	5698.5995	11.0694	16.0782	354.4297	11404.6975	23.2004	4.7454	10.124
L28	32.0670	45.7825	5625.9999	11.0716	16.0782	349.9143	11259.4026	22.8956	4.7564	10.284
	33.0506	47.2045	6166.6822	11.4155	16.5703	372.1524	12341.4787	23.6068	4.9269	10.653
L29	33.0506	47.2045	6166.6822	11.4155	16.5703	372.1524	12341.4787	23.6068	4.9269	10.653
	33.5758	47.9639	6469.0949	11.5991	16.8331	384.3081	12946.7021	23.9865	5.0179	10.85
L30	33.5662	54.3414	7301.2373	11.5769	16.8331	433.7430	14612.0818	27.1758	4.9079	9.348
	33.6154	54.4221	7333.8171	11.5941	16.8577	435.0426	14677.2843	27.2162	4.9165	9.365
L31	33.6057	60.7843	8159.8644	11.5719	16.8577	484.0438	16330.4658	30.3979	4.8065	8.181
	33.9854	61.4816	8443.8982	11.7047	17.0476	495.3117	16898.9072	30.7466	4.8723	8.293
L32	33.9854	61.4816	8443.8982	11.7047	17.0476	495.3117	16898.9072	30.7466	4.8723	8.293
	34.0346	61.5719	8481.1650	11.7218	17.0723	496.7807	16973.4898	30.7918	4.8808	8.308
L33	34.0346	61.5719	8481.1650	11.7218	17.0723	496.7807	16973.4898	30.7918	4.8808	8.308
	34.0641	61.6261	8503.5781	11.7322	17.0870	497.6632	17018.3455	30.8189	4.8859	8.316
L34	34.0786	51.9391	7207.6165	11.7654	17.0870	421.8184	14424.7169	25.9745	5.0509	10.23
	34.1278	52.0150	7239.2624	11.7826	17.1116	423.0612	14488.0504	26.0124	5.0594	10.247
L35	34.1278	52.0150	7239.2624	11.7826	17.1116	423.0612	14488.0504	26.0124	5.0594	10.247
	34.1612	52.0666	7260.8350	11.7943	17.1283	423.9075	14531.2240	26.0382	5.0652	10.259
L36	34.1622	51.4172	7172.9723	11.7966	17.1283	418.7778	14355.3831	25.7135	5.0762	10.413
	34.2113	51.4921	7204.3830	11.8137	17.1530	420.0083	14418.2457	25.7510	5.0848	10.43
L37	34.2113	51.4921	7204.3830	11.8137	17.1530	420.0083	14418.2457	25.7510	5.0848	10.43
	34.7032	52.2416	7523.5495	11.9857	17.3990	432.4128	15056.9987	26.1257	5.1700	10.605

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
L1				1	1	1			
110.00-105.00									
L2				1	1	1			
105.00-100.00									
L3				1	1	1			
100.00-98.50									
L4 98.50-93.50				1	1	1			
L5 93.50-88.50				1	1	1			
L6 88.50-83.50				1	1	1			
L7 83.50-78.67				1	1	1			
L8 78.67-78.42				1	1	0.851966			
L9 78.42-73.42				1	1	0.862009			
L10				1	1	0.876193			
73.42-68.42									
L11				1	1	0.894673			
68.42-63.42									

4	Job	Page
tnxTower	Woodbury North (BU 876405)	5 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client Crown Castle	Designed by kolson

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in				in	in	in
L12			1	1	0.895199			
63.42-58.67								
L13			1	1	0.894069			
58.67-58.42								
L14			1	1	0.895601			
58.42-53.42								
L15			1	1	0.909153			
53.42-47.12								
L16			1	1	0.912277			
47.12-45.87								
L17			1	1	0.918316			
45.87-40.87					0.005000			
L18			1	1	0.925923			
40.87-35.87					0.005004			
L19			1	1	0.935086			
35.87-30.87					0.000010			
L20			1	1	0.928912			
30.87-28.67					0.000000			
L21			1	1	0.928222			
28.67-28.42			1		0.020222			
L22			1	1	0.939232			
28.42-23.42			1	1	0.0290.40			
L23			1	1	0.938949			
23.42-18.42			1		0.041007			
L24			1	1	0.941287			
18.42-14.17			1	1	0.05542			
L25			1	1	0.95543			
14.17-13.92			1	1	0.054640			
L26			1	1	0.954649			
13.92-13.67			1	1	0.004400			
L27			1	1	0.994499			
13.67-13.42 L28 13.42-8.42			1	1	0.993662			
L28 13.42-8.42 L29 8.42-5.75			1	1	0.995662			
			1	1				
L30 5.75-5.50			1	1	0.973951 1.01862			
L31 5.50-3.57			1	1	1.01862			
L32 3.57-3.32 L33 3.32-3.17			1	1	1.01773			
L35 5.52-5.17 L34 3.17-2.92			1	1	0.906582			
			1	1	0.906382			
L35 2.92-2.75			1	1				
L36 2.75-2.50			1	1	0.917042			
L37 2.50-0.00			1	1	0.911243			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row		Width or Diameter	Perimeter	Weight
		Torque	Type	ft	Number	I er Kow	1 Osmon	in	in	plf
		Calculation		5						rJ
LDF4-50A(1/2)	В	No	Surface Ar	50.00 - 0.00	1	1	0.000	0.6250		0.15
			(CaAa)				0.000			
Mods										
MP3-05 (1.25in)	А	No	Surface Af	8.25 - 0.00	1	1	0.000	5.3300	14.8400	0.00
			(CaAa)				0.000			

A	Job		Page
tnxTower		Woodbury North (BU 876405)	6 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
		Torque Calculation	v I	ft				in	in	plf
MP3-05 (1.25in)	С	No	Surface Af (CaAa)	31.17 - 0.00	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-05 (1.25in)	В	No	Surface Af (CaAa)	31.17 - 0.00	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-05 (1.25in)	С	No	Surface Af (CaAa)	61.17 - 31.17	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-05 (1.25in)	В	No	Surface Af (CaAa)	61.17 - 31.17	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-05 (1.25in)	А	No	Surface Af (CaAa)	61.17 - 31.17	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-05 (1.25in)	С	No	Surface Af (CaAa)	81.17 - 61.17	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-05 (1.25in)	В	No	Surface Af (CaAa)	81.17 - 61.17	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-05 (1.25in) ***	А	No	Surface Af (CaAa)	81.17 - 61.17	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00
MP3-08.5 (1.25")	А	No	Surface Af (CaAa)	16.17 - 0.00	1	1	0.333 0.333	3.8400	13.2800	0.00
MP3-08.5 (1.25")	А	No	Surface Af (CaAa)	16.17 - 0.00	1	1	-0.333 -0.333	3.8400	13.2800	0.00

MP3-05 (1.25in) ***	А	No	Surface Af (CaAa)	31.17 - 11.17	1	1	$0.000 \\ 0.000$	5.3300	14.8400	0.00

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
LDF7-50A(1-5/8)	С	No	No	Inside Pole	108.00 - 0.00	6	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
B158-21U6S24-xx	С	No	No	Inside Pole	102.00 - 0.00	4	No Ice	0.00	2.50
M TMO(1-5/8)							1/2" Ice	0.00	2.50
_ ` `							1" Ice	0.00	2.50
							2" Ice	0.00	2.50
LDF7-50A(1-5/8)	С	No	No	Inside Pole	80.00 - 0.00	12	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
VR-VG66ST-BRD(С	No	No	Inside Pole	80.00 - 0.00	2	No Ice	0.00	0.91
7/8)							1/2" Ice	0.00	0.91
,							1" Ice	0.00	0.91
							2" Ice	0.00	0.91
B-L98B-002-75000	С	No	No	Inside Pole	80.00 - 0.00	1	No Ice	0.00	0.06
(3/8)							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
" Flexible Conduit	С	No	No	Inside Pole	80.00 - 0.00	1	No Ice	0.00	0.34
							1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34

tnxTower	Job	Woodbury North (PU 976405)	Page 7 of 40
0.000 - 0.000		Woodbury North (BU 876405)	7 81 48
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
							2" Ice	0.00	0.34
WR-VG122ST-BRD	С	No	No	Inside Pole	80.00 - 0.00	2	No Ice	0.00	0.14
A(7/16)							1/2" Ice	0.00	0.14
							1" Ice	0.00	0.14
							2" Ice	0.00	0.14
FB-L98B-034-XXX(С	No	No	Inside Pole	80.00 - 0.00	1	No Ice	0.00	0.06
3/8)							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
3/8" Ground	С	No	No	Inside Pole	110.00 - 0.00	2	No Ice	0.00	0.22
							1/2" Ice	0.00	0.22
							1" Ice	0.00	0.22
							2" Ice	0.00	0.22
1/2" Ground	С	No	No	Inside Pole	110.00 - 0.00	2	No Ice	0.00	0.52
							1/2" Ice	0.00	0.52
							1" Ice	0.00	0.52
							2" Ice	0.00	0.52

HB114-13U3M12-X	С	No	No	Inside Pole	108.00 - 0.00	1	No Ice	0.00	0.99
XXF(1-1/4)							1/2" Ice	0.00	0.99
· · · ·							1" Ice	0.00	0.99
							2" Ice	0.00	0.99
***								-	
CU12PSM9P8XXX(В	No	No	Inside Pole	68.00 - 0.00	1	No Ice	0.00	1.66
1-3/8)							1/2" Ice	0.00	1.66
,							1" Ice	0.00	1.66
							2" Ice	0.00	1.66

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft		ft^2	ft^2	ft^2	ft^2	Κ
L1	110.00-105.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.03
L2	105.00-100.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.06
L3	100.00-98.50	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.03
L4	98.50-93.50	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.09
L5	93.50-88.50	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.09
L6	88.50-83.50	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.09
L7	83.50-78.67	А	0.000	0.000	2.221	0.000	0.00
		В	0.000	0.000	2.221	0.000	0.00

A	Job		Page
tnxTower		Woodbury North (BU 876405)	8 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		6.2	ft^2	In Face	Out Face	V
	ft		$\frac{ft^2}{2}$		ft ²	ft ²	<u>K</u>
T 0		С	0.000	0.000	2.221	0.000	0.10
L8	78.67-78.42	A	0.000	0.000	0.222	0.000	0.00
		В	0.000	0.000	0.222	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01
L9	78.42-73.42	А	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	4.442	0.000	0.00
		С	0.000	0.000	4.442	0.000	0.15
L10	73.42-68.42	А	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	4.442	0.000	0.00
		С	0.000	0.000	4.442	0.000	0.15
L11	68.42-63.42	А	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	4.442	0.000	0.01
		Ē	0.000	0.000	4.442	0.000	0.15
L12	63.42-58.67	Ā	0.000	0.000	4.220	0.000	0.00
212	03.12 50.07	В	0.000	0.000	4.220	0.000	0.01
		Č	0.000	0.000	4.220	0.000	0.14
L13	58.67-58.42	A	0.000	0.000	0.222	0.000	0.00
ы.	30.07-30.42						
		B	0.000	0.000	0.222	0.000	0.00
T 1 4	50 40 52 40	C	0.000	0.000	0.222	0.000	0.01
L14	58.42-53.42	A	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	4.442	0.000	0.01
		С	0.000	0.000	4.442	0.000	0.15
L15	53.42-47.12	А	0.000	0.000	5.596	0.000	0.00
		В	0.000	0.000	5.777	0.000	0.01
		С	0.000	0.000	5.596	0.000	0.19
L16	47.12-45.87	А	0.000	0.000	1.110	0.000	0.00
		В	0.000	0.000	1.189	0.000	0.00
		С	0.000	0.000	1.110	0.000	0.04
L17	45.87-40.87	А	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	4.754	0.000	0.01
		Ċ	0.000	0.000	4.442	0.000	0.15
L18	40.87-35.87	Ă	0.000	0.000	4.442	0.000	0.00
LIU	10.07 55.07	В	0.000	0.000	4.754	0.000	0.01
		C	0.000	0.000	4.442	0.000	0.15
L19	35.87-30.87	A	0.000	0.000	4.442	0.000	0.00
L19	55.87-50.87	B	0.000	0.000	4.442	0.000	0.00
1.20	20.07.20.77	C	0.000	0.000	4.442	0.000	0.15
L20	30.87-28.67	A	0.000	0.000	1.954	0.000	0.00
		В	0.000	0.000	2.092	0.000	0.00
	ao /a ao /a	С	0.000	0.000	1.954	0.000	0.07
L21	28.67-28.42	A	0.000	0.000	0.222	0.000	0.00
		В	0.000	0.000	0.238	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01
L22	28.42-23.42	А	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	4.754	0.000	0.01
		С	0.000	0.000	4.442	0.000	0.15
L23	23.42-18.42	А	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	4.754	0.000	0.01
		С	0.000	0.000	4.442	0.000	0.15
L24	18.42-14.17	Ā	0.000	0.000	6.335	0.000	0.00
		В	0.000	0.000	4.041	0.000	0.01
		Č	0.000	0.000	3.775	0.000	0.13
L25	14.17-13.92	Ă	0.000	0.000	0.542	0.000	0.00
	17,17-13,74	B	0.000	0.000	0.238	0.000	0.00
		Б С	0.000	0.000	0.238	0.000	0.00
1.26	12 02 12 67						
L26	13.92-13.67	A	0.000	0.000	0.542	0.000	0.00
		В	0.000	0.000	0.238	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01
L27	13.67-13.42	А	0.000	0.000	0.542	0.000	0.00
		В	0.000	0.000	0.238	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01

tnxTower	Job	Maadauw Nasta (DLL 070		Page 9 of 40
		Woodbury North (BU 876	5405)	
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.5976	64	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle		Designed by kolson
Towar Towar Fo	ca An Ar	C.A. C.A.	Weight	

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
Section	ft		ft^2	ft^2	ft^2	ft ²	K
L28	13.42-8.42	А	0.000	0.000	8.399	0.000	0.00
		В	0.000	0.000	4.754	0.000	0.01
		Ċ	0.000	0.000	4.442	0.000	0.15
L29	8.42-5.75	Ā	0.000	0.000	5.353	0.000	0.00
		В	0.000	0.000	2.539	0.000	0.00
		Ċ	0.000	0.000	2.372	0.000	0.08
L30	5.75-5.50	A	0.000	0.000	0.514	0.000	0.00
		В	0.000	0.000	0.238	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01
L31	5.50-3.57	A	0.000	0.000	3.965	0.000	0.00
		В	0.000	0.000	1.835	0.000	0.00
		С	0.000	0.000	1.714	0.000	0.06
L32	3.57-3.32	А	0.000	0.000	0.514	0.000	0.00
		В	0.000	0.000	0.238	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01
L33	3.32-3.17	А	0.000	0.000	0.308	0.000	0.00
		В	0.000	0.000	0.143	0.000	0.00
		С	0.000	0.000	0.133	0.000	0.00
L34	3.17-2.92	А	0.000	0.000	0.514	0.000	0.00
		В	0.000	0.000	0.238	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01
L35	2.92-2.75	А	0.000	0.000	0.349	0.000	0.00
		В	0.000	0.000	0.162	0.000	0.00
		С	0.000	0.000	0.151	0.000	0.01
L36	2.75-2.50	А	0.000	0.000	0.514	0.000	0.00
		В	0.000	0.000	0.238	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.01
L37	2.50-0.00	А	0.000	0.000	5.136	0.000	0.00
		В	0.000	0.000	2.377	0.000	0.00
		С	0.000	0.000	2.221	0.000	0.07

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	c.2	c.2	In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	$_{ft^2}$	ft^2	K
L1	110.00-105.00	А	1.435	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.03
L2	105.00-100.00	А	1.428	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.06
L3	100.00-98.50	А	1.423	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.03
L4	98.50-93.50	А	1.419	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.09
L5	93.50-88.50	А	1.411	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.09
L6	88.50-83.50	А	1.403	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.09
L7	83.50-78.67	A	1.395	0.000	0.000	2.918	0.000	0.03
		В		0.000	0.000	2.918	0.000	0.03
		С		0.000	0.000	2.918	0.000	0.13
L8	78.67-78.42	Ā	1.390	0.000	0.000	0.292	0.000	0.00

	Job		Page
tnxTower		Woodbury North (BU 876405)	10 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Tower Section	Tower Elevation	Face	Ice Thickness	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation ft	or Lag	Thickness in	ft^2	ft^2	In Face ft ²	Out Face ft ²	K
	ji	Leg B	in	0.000	0.000	0.292	0.000	0.00
		Б С		0.000	0.000	0.292	0.000	0.00
τo	78 42 72 42	C A	1 206		0.000	0.292 5.827	0.000	0.01
L9	78.42-73.42	A	1.386	0.000		5.827 5.827	0.000	
		B		0.000	0.000			0.05
T 10	72 42 69 42	С	1.276	0.000	0.000	5.827	0.000	0.20
L10	73.42-68.42	A	1.376	0.000	0.000	5.818	0.000	0.05
		В		0.000	0.000	5.818	0.000	0.05
		С		0.000	0.000	5.818	0.000	0.20
L11	68.42-63.42	А	1.366	0.000	0.000	5.808	0.000	0.05
		В		0.000	0.000	5.808	0.000	0.06
		С		0.000	0.000	5.808	0.000	0.20
L12	63.42-58.67	А	1.356	0.000	0.000	5.508	0.000	0.05
		В		0.000	0.000	5.508	0.000	0.06
		С		0.000	0.000	5.508	0.000	0.19
L13	58.67-58.42	А	1.350	0.000	0.000	0.290	0.000	0.00
		В		0.000	0.000	0.290	0.000	0.00
		С		0.000	0.000	0.290	0.000	0.01
L14	58.42-53.42	А	1.344	0.000	0.000	5.786	0.000	0.05
		В		0.000	0.000	5.786	0.000	0.06
		C		0.000	0.000	5.786	0.000	0.20
L15	53.42-47.12	Ă	1.330	0.000	0.000	7.272	0.000	0.06
		В		0.000	0.000	8.218	0.000	0.08
		Č		0.000	0.000	7.272	0.000	0.25
L16	47.12-45.87	Ă	1.319	0.000	0.000	1.443	0.000	0.01
L10	47.12 45.07	B	1.517	0.000	0.000	1.853	0.000	0.01
		C B		0.000	0.000	1.443	0.000	0.02
T 17	15 97 10 97		1 210	0.000	0.000	5.752	0.000	0.05
L17	45.87-40.87	A	1.310			3.732		
		B		0.000	0.000	7.375	0.000	0.07
	10.05.05.05	С	1.001	0.000	0.000	5.752	0.000	0.20
L18	40.87-35.87	A	1.294	0.000	0.000	5.736	0.000	0.05
		В		0.000	0.000	7.343	0.000	0.07
		С		0.000	0.000	5.736	0.000	0.20
L19	35.87-30.87	А	1.276	0.000	0.000	5.718	0.000	0.05
		В		0.000	0.000	7.307	0.000	0.07
		С		0.000	0.000	5.718	0.000	0.20
L20	30.87-28.67	А	1.262	0.000	0.000	2.510	0.000	0.02
		В		0.000	0.000	3.202	0.000	0.03
		С		0.000	0.000	2.510	0.000	0.09
L21	28.67-28.42	А	1.257	0.000	0.000	0.285	0.000	0.00
		В		0.000	0.000	0.363	0.000	0.00
		Ĉ		0.000	0.000	0.285	0.000	0.01
L22	28.42-23.42	Ă	1.245	0.000	0.000	5.686	0.000	0.05
	20.12 20.12	В		0.000	0.000	7.243	0.000	0.05
		Č		0.000	0.000	5.686	0.000	0.20
L23	23.42-18.42	A	1.218	0.000	0.000	5.660	0.000	0.20
LLJ	23.72-10.42		1.210	0.000	0.000	7.190	0.000	0.03
		В С		0.000	0.000	5.660	0.000	0.07
1.24	10 10 14 17		1 100					
L24	18.42-14.17	A	1.188	0.000	0.000	8.296	0.000	0.07
		B		0.000	0.000	6.061	0.000	0.06
1.05		С		0.000	0.000	4.785	0.000	0.16
L25	14.17-13.92	A	1.171	0.000	0.000	0.718	0.000	0.01
		В		0.000	0.000	0.355	0.000	0.00
		С		0.000	0.000	0.281	0.000	0.01
L26	13.92-13.67	А	1.169	0.000	0.000	0.717	0.000	0.01
		В		0.000	0.000	0.355	0.000	0.00
		С		0.000	0.000	0.281	0.000	0.01
L27	13.67-13.42	А	1.166	0.000	0.000	0.717	0.000	0.01
		В		0.000	0.000	0.354	0.000	0.00
		С		0.000	0.000	0.280	0.000	0.01
L28	13.42-8.42	А	1.141	0.000	0.000	11.195	0.000	0.10
		В		0.000	0.000	7.037	0.000	0.06

T	Job		Page
tnxTower		Woodbury North (BU 876405)	11 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
		С		0.000	0.000	5.583	0.000	0.19
L29	8.42-5.75	А	1.093	0.000	0.000	6.821	0.000	0.06
		В		0.000	0.000	3.706	0.000	0.03
		С		0.000	0.000	2.956	0.000	0.10
L30	5.75-5.50	Α	1.068	0.000	0.000	0.650	0.000	0.01
		В		0.000	0.000	0.345	0.000	0.00
		С		0.000	0.000	0.275	0.000	0.01
L31	5.50-3.57	А	1.045	0.000	0.000	4.994	0.000	0.04
		В		0.000	0.000	2.642	0.000	0.02
		С		0.000	0.000	2.118	0.000	0.07
L32	3.57-3.32	А	1.017	0.000	0.000	0.643	0.000	0.01
		В		0.000	0.000	0.339	0.000	0.00
		С		0.000	0.000	0.273	0.000	0.01
L33	3.32-3.17	А	1.011	0.000	0.000	0.386	0.000	0.00
		В		0.000	0.000	0.203	0.000	0.00
		С		0.000	0.000	0.164	0.000	0.01
L34	3.17-2.92	А	1.005	0.000	0.000	0.642	0.000	0.01
		В		0.000	0.000	0.338	0.000	0.00
		С		0.000	0.000	0.272	0.000	0.01
L35	2.92-2.75	А	0.998	0.000	0.000	0.436	0.000	0.00
		В		0.000	0.000	0.229	0.000	0.00
		С		0.000	0.000	0.185	0.000	0.01
L36	2.75-2.50	А	0.990	0.000	0.000	0.640	0.000	0.01
		В		0.000	0.000	0.337	0.000	0.00
		С		0.000	0.000	0.272	0.000	0.01
L37	2.50-0.00	А	0.919	0.000	0.000	6.308	0.000	0.05
		В		0.000	0.000	3.296	0.000	0.03
		С		0.000	0.000	2.680	0.000	0.09

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	110.00-105.00	0.0000	0.0000	0.0000	0.0000
L2	105.00-100.00	0.0000	0.0000	0.0000	0.0000
L3	100.00-98.50	0.0000	0.0000	0.0000	0.0000
L4	98.50-93.50	0.0000	0.0000	0.0000	0.0000
L5	93.50-88.50	0.0000	0.0000	0.0000	0.0000
L6	88.50-83.50	0.0000	0.0000	0.0000	0.0000
L7	83.50-78.67	0.0000	0.0000	0.0000	0.0000
L8	78.67-78.42	0.0000	0.0000	0.0000	0.0000
L9	78.42-73.42	0.0000	0.0000	0.0000	0.0000
L10	73.42-68.42	0.0000	0.0000	0.0000	0.0000
L11	68.42-63.42	0.0000	0.0000	0.0000	0.0000
L12	63.42-58.67	0.0000	0.0000	0.0000	0.0000
L13	58.67-58.42	0.0000	0.0000	0.0000	0.0000
L14	58.42-53.42	0.0000	0.0000	0.0000	0.0000
L15	53.42-47.12	0.0757	-0.0437	0.2628	-0.1517
L16	47.12-45.87	0.1635	-0.0944	0.5565	-0.3213
L17	45.87-40.87	0.1659	-0.0958	0.5591	-0.3228
L18	40.87-35.87	0.1696	-0.0979	0.5668	-0.3272
L19	35.87-30.87	0.1732	-0.1000	0.5734	-0.3310
L20	30.87-28.67	0.1757	-0.1015	0.5773	-0.3333
L21	28.67-28.42	0.1766	-0.1020	0.5785	-0.3340
L22	28.42-23.42	0.1784	-0.1030	0.5806	-0.3352
L23	23.42-18.42	0.1818	-0.1050	0.5833	-0.3367

A T	Job		Page
tnxTower		Woodbury North (BU 876405)	12 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L24	18.42-14.17	-0.4684	-0.4594	-0.0539	-0.6342
L25	14.17-13.92	-1.0449	-0.7721	-0.6278	-0.9020
L26	13.92-13.67	-1.0456	-0.7727	-0.6285	-0.9023
L27	13.67-13.42	-1.0463	-0.7733	-0.6291	-0.9025
L28	13.42-8.42	0.1769	-0.0840	0.4263	-0.3314
L29	8.42-5.75	-0.6751	-0.5681	-0.1970	-0.6613
L30	5.75-5.50	-0.7977	-0.6384	-0.3019	-0.7135
L31	5.50-3.57	-0.8000	-0.6404	-0.3086	-0.7123
L32	3.57-3.32	-0.8022	-0.6424	-0.3169	-0.7102
L33	3.32-3.17	-0.8026	-0.6428	-0.3187	-0.7096
L34	3.17-2.92	-0.8028	-0.6430	-0.3205	-0.7089
L35	2.92-2.75	-0.8032	-0.6434	-0.3226	-0.7082
L36	2.75-2.50	-0.8037	-0.6438	-0.3249	-0.7075
L37	2.50-0.00	-0.8064	-0.6462	-0.3461	-0.6990

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	r	Segment Elev.	No Ice	Ice
L7	25	MP3-05 (1.25in)	78.67 - 81.17	1.0000	1.0000
L7	26	MP3-05 (1.25in)	78.67 - 81.17	1.0000	1.0000
L7	27	MP3-05 (1.25in)	78.67 - 81.17	1.0000	1.0000
L8	25	MP3-05 (1.25in)	78.42 - 78.67	1.0000	1.0000
L8	26	MP3-05 (1.25in)	78.42 - 78.67	1.0000	1.0000
L8	27	MP3-05 (1.25in)	78.42 - 78.67	1.0000	1.0000
L9	25	MP3-05 (1.25in)	73.42 - 78.42	1.0000	1.0000
L9	26	MP3-05 (1.25in)	73.42 - 78.42	1.0000	1.0000
L9	27	MP3-05 (1.25in)	73.42 - 78.42	1.0000	1.0000
L10	25	MP3-05 (1.25in)	68.42 - 73.42	1.0000	1.0000
L10	26	MP3-05 (1.25in)	68.42 - 73.42	1.0000	1.0000
L10	27	MP3-05 (1.25in)	68.42 - 73.42	1.0000	1.0000
L11	25	MP3-05 (1.25in)	63.42 - 68.42	1.0000	1.0000
L11	26	MP3-05 (1.25in)	63.42 - 68.42	1.0000	1.0000
L11	27	MP3-05 (1.25in)	63.42 - 68.42	1.0000	1.0000
L12	21	MP3-05 (1.25in)	58.67 - 61.17	1.0000	1.0000
L12	22	MP3-05 (1.25in)	58.67 - 61.17	1.0000	1.0000
L12	23	MP3-05 (1.25in)	58.67 - 61.17	1.0000	1.0000
L12	25	MP3-05 (1.25in)	61.17 - 63.42	1.0000	1.0000
L12	26	MP3-05 (1.25in)	61.17 - 63.42	1.0000	1.0000
L12	27	MP3-05 (1.25in)	61.17 - 63.42	1.0000	1.0000
L13	21	MP3-05 (1.25in)	58.42 - 58.67	1.0000	1.0000
L13	22	MP3-05 (1.25in)	58.42 - 58.67	1.0000	1.0000
L13	23	MP3-05 (1.25in)	58.42 - 58.67	1.0000	1.0000
L14	21	MP3-05 (1.25in)	53.42 - 58.42	1.0000	1.0000
L14	22	MP3-05 (1.25in)	53.42 - 58.42	1.0000	1.0000
L14	23	MP3-05 (1.25in)	53.42 - 58.42	1.0000	1.0000
L15	12	LDF4-50A(1/2)	47.12 - 50.00	1.0000	1.0000
L15	21	MP3-05 (1.25in)	47.12 - 53.42	1.0000	1.0000
L15	22	MP3-05 (1.25in)	47.12 - 53.42	1.0000	1.0000
L15	23	MP3-05 (1.25in)	47.12 - 53.42	1.0000	1.0000
L16	12	LDF4-50A(1/2)	45.87 - 47.12	1.0000	1.0000
L16	21	MP3-05 (1.25in)	45.87 - 47.12	1.0000	1.0000

Job

Project

Client

Woodbury North (BU 876405)

Page 13 of 40 Date

Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:

TEP No. 25640.597664

Crown Castle

Designed by kolson

15:08:01 09/21/21

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.	<u>r</u>	Segment Elev.	No Ice	Ice
L16	22	MP3-05 (1.25in)	45.87 - 47.12	1.0000	1.0000
L16	23	MP3-05 (1.25in)	45.87 - 47.12	1.0000	1.0000
L17	12	LDF4-50A(1/2)	40.87 - 45.87	1.0000	1.0000
L17	21	MP3-05 (1.25in)	40.87 - 45.87	1.0000	1.0000
L17 L17	22 23	MP3-05 (1.25in)	40.87 - 45.87 40.87 - 45.87	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L17 L18	12	MP3-05 (1.25in) LDF4-50A(1/2)	40.87 - 43.87 35.87 - 40.87	1.0000	1.0000
L18 L18	21	MP3-05 (1.25in)	35.87 - 40.87	1.0000	1.0000
L18	22	MP3-05 (1.25in)	35.87 - 40.87	1.0000	1.0000
L18	23	MP3-05 (1.25in)	35.87 - 40.87	1.0000	1.0000
L19	12	LDF4-50A(1/2)	30.87 - 35.87	1.0000	1.0000
L19	18	MP3-05 (1.25in)	30.87 - 31.17	1.0000	1.0000
L19	19	MP3-05 (1.25in)	30.87 - 31.17	1.0000	1.0000
L19	21	MP3-05 (1.25in)	31.17 - 35.87	1.0000	1.0000
L19	22	MP3-05 (1.25in)	31.17 - 35.87	1.0000	1.0000
L19	23	MP3-05 (1.25in)	31.17 - 35.87	1.0000	1.0000
L19	32	MP3-05 (1.25in)	30.87 - 31.17	1.0000	1.0000
L20 L20	12 18	LDF4-50A(1/2) MP3-05 (1.25in)	28.67 - 30.87 28.67 - 30.87	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L20 L20	13	MP3-05 (1.25in)	28.67 - 30.87	1.0000	1.0000
L20 L20	32	MP3-05 (1.25in)	28.67 - 30.87	1.0000	1.0000
L20 L21	12	LDF4-50A(1/2)	28.42 - 28.67	1.0000	1.0000
L21	18	MP3-05 (1.25in)	28.42 - 28.67	1.0000	1.0000
L21	19	MP3-05 (1.25in)	28.42 - 28.67	1.0000	1.0000
L21	32	MP3-05 (1.25in)	28.42 - 28.67	1.0000	1.0000
L22	12	LDF4-50A(1/2)	23.42 - 28.42	1.0000	1.0000
L22	18	MP3-05 (1.25in)	23.42 - 28.42	1.0000	1.0000
L22	19	MP3-05 (1.25in)	23.42 - 28.42	1.0000	1.0000
L22	32	MP3-05 (1.25in)	23.42 - 28.42	1.0000	1.0000
L23	12	LDF4-50A(1/2)	18.42 - 23.42	1.0000	1.0000
L23	18	MP3-05 (1.25in)	18.42 - 23.42	1.0000	1.0000
L23 L23	19 32	MP3-05 (1.25in)	18.42 - 23.42	$1.0000 \\ 1.0000$	1.0000
L23 L24	52 12	MP3-05 (1.25in) LDF4-50A(1/2)	18.42 - 23.42 14.17 - 18.42	1.0000	$1.0000 \\ 1.0000$
L24 L24	12	MP3-05 (1.25in)	14.17 - 18.42	1.0000	1.0000
L24 L24	19	MP3-05 (1.25in)	14.17 - 18.42	1.0000	1.0000
L24	29	MP3-08.5 (1.25")	14.17 - 16.17	1.0000	1.0000
L24	30	MP3-08.5 (1.25")	14.17 - 16.17	1.0000	1.0000
L24	32	MP3-05 (1.25in)	14.17 - 18.42	1.0000	1.0000
L25	12	LDF4-50A(1/2)	13.92 - 14.17	1.0000	1.0000
L25	18	MP3-05 (1.25in)	13.92 - 14.17	1.0000	1.0000
L25	19	MP3-05 (1.25in)	13.92 - 14.17	1.0000	1.0000
L25	29	MP3-08.5 (1.25")	13.92 - 14.17	1.0000	1.0000
L25	30	MP3-08.5 (1.25")	13.92 - 14.17	1.0000	1.0000
L25	32	MP3-05 (1.25in)	13.92 - 14.17	1.0000	1.0000
L26 L26	12 18	LDF4-50A(1/2) MP3-05 (1.25in)	13.67 - 13.92 13.67 - 13.92	$1.0000 \\ 1.0000$	1.0000 1.0000
L20 L26	10	MP3-05 (1.25in)	13.67 - 13.92	1.0000	1.0000
L20 L26	29	MP3-08.5 (1.25")	13.67 - 13.92	1.0000	1.0000
L20 L26	30	MP3-08.5 (1.25")	13.67 - 13.92	1.0000	1.0000
L26	32	MP3-05 (1.25in)	13.67 - 13.92	1.0000	1.0000
L27	12	LDF4-50A(1/2)	13.42 - 13.67	1.0000	1.0000
L27	18	MP3-05 (1.25in)	13.42 - 13.67	1.0000	1.0000
L27	19	MP3-05 (1.25in)	13.42 - 13.67	1.0000	1.0000
L27	29	MP3-08.5 (1.25")	13.42 - 13.67	1.0000	1.0000
L27	30	MP3-08.5 (1.25")	13.42 - 13.67	1.0000	1.0000
L27	32	MP3-05 (1.25in)	13.42 - 13.67	1.0000	1.0000
L28	12	LDF4-50A(1/2)	8.42 - 13.42	1.0000	1.0000
L28	18	MP3-05 (1.25in)	8.42 - 13.42	1.0000	1.0000
L28	19 29	MP3-05 (1.25in)	8.42 - 13.42	1.0000	1.0000
L28 L28	29 30	MP3-08.5 (1.25") MP3-08.5 (1.25")	8.42 - 13.42 8.42 - 13.42	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
	30	MIT 5-00.5 (1.25)	0.72 - 13.42	1.0000	1.0000

Job

Project

Client

Woodbury North (BU 876405)

Page 14 of 40 Date 15:08:01 09/21/21

Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:

TEP No. 25640.597664

Crown Castle

Designed by kolson

Section Record No. Segment Elev. No Ice Ice L28 32 MP3-05 (1.25in) 11.17 - 13.42 1.0000 1 L29 12 LDF4-50A(1/2) 5.75 - 8.42 1.0000 1 L29 18 MP3-05 (1.25in) 5.75 - 8.42 1.0000 1 L29 19 MP3-05 (1.25'n) 5.75 - 8.42 1.0000 1 L30 12 LDF4-50A(1/2) 5.50 - 5.75 1.0000 1 L30 16 MP3-05 (1.25in) 5.50 - 5.75 1.0000 1 L30 18 MP3-05 (1.25in) 5.50 - 5.75 1.0000 1 L30 18 MP3-05 (1.25in) 5.50 - 5.75 1.0000 1 L30 29 MP3-08.5 (1.25') 5.50 - 5.75 1.0000 1 L31 12 LDF4-50A(1/2) 3.57 - 5.50 1.0000 1 L31 19 MP3-05 (1.25in) 3.57 - 5.50 1.0000 1 L31 19 MP3-05 (1.25in)	Tower	Feed Line	Description	Feed Line	Ka	Ka
			Description			Ice
			MP3-05 (1.25in)			1.0000
						1.0000
						1.0000
						1.0000
						1.0000
						1.0000
		30				1.0000
	L30	12			1.0000	1.0000
						1.0000
			MP3-05 (1.25in)			1.0000
		19	MP3-05 (1.25in)			1.0000
						1.0000
						1.0000
						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.0000
						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,			1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18	MP3-05 (1.25in)		1.0000	1.0000
$ \begin{bmatrix} L32 \\ L32 \\ L32 \\ 30 \\ MP3-08.5 (1.25'') \\ 3.32 - 3.57 \\ 1.0000 \\ 1 \\ L33 \\ 12 \\ LDF4-50A(1/2) \\ 3.17 - 3.32 \\ 1.0000 \\ 1 \\ L33 \\ 16 \\ MP3-05 (1.25in) \\ 3.17 - 3.32 \\ 1.0000 \\ 1 \\ L33 \\ 19 \\ MP3-05 (1.25in) \\ 3.17 - 3.32 \\ 1.0000 \\ 1 \\ L33 \\ 19 \\ MP3-05 (1.25in) \\ 3.17 - 3.32 \\ 1.0000 \\ 1 \\ L33 \\ 29 \\ MP3-08.5 (1.25'') \\ 3.17 - 3.32 \\ 1.0000 \\ 1 \\ L33 \\ 30 \\ MP3-08.5 (1.25'') \\ 3.17 - 3.32 \\ 1.0000 \\ 1 \\ L34 \\ 12 \\ LDF4-50A(1/2) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 18 \\ MP3-05 (1.25in) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 19 \\ MP3-08 (1.25in) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 19 \\ MP3-08 (1.25in) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 19 \\ MP3-08 (1.25in) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 19 \\ MP3-08 (1.25in) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 19 \\ MP3-08 (1.25in) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 19 \\ MP3-08 (1.25in) \\ 2.92 - 3.17 \\ 1.0000 \\ 1 \\ L34 \\ 19 \\ MP3-08 (1.25in) \\ 2.75 - 2.92 \\ 1.0000 \\ 1 \\ L35 \\ 10 \\ MP3-08 (1.25in) \\ 2.75 - 2.92 \\ 1.0000 \\ 1 \\ L35 \\ 19 \\ MP3-05 (1.25in) \\ 2.75 - 2.92 \\ 1.0000 \\ 1 \\ L35 \\ 19 \\ MP3-08 (1.25'n) \\ 2.75 - 2.92 \\ 1.0000 \\ 1 \\ L35 \\ 19 \\ MP3-08 (1.25'n) \\ 2.75 - 2.92 \\ 1.0000 \\ 1 \\ L35 \\ 10 \\ MP3-08 (1.25'n) \\ 2.75 - 2.92 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 19 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 19 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 30 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 30 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 30 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ MP3-08 (1.25'n) \\ 2.50 - 2.75 \\ 1.0000 \\ 1 \\ L36 \\ 10 \\ $						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,			1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L33	16				1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			MP3-05 (1.25in)			1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L33	19	MP3-05 (1.25in)	3.17 - 3.32	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L33	29	MP3-08.5 (1.25")	3.17 - 3.32	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L33	30	MP3-08.5 (1.25")	3.17 - 3.32	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L34	12	LDF4-50A(1/2)	2.92 - 3.17	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L34	16	MP3-05 (1.25in)	2.92 - 3.17	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L34	18	MP3-05 (1.25in)	2.92 - 3.17	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L34	19	MP3-05 (1.25in)	2.92 - 3.17	1.0000	1.0000
L35 12 LDF4-50A(1/2) 2.75 - 2.92 1.0000 1 L35 16 MP3-05 (1.25in) 2.75 - 2.92 1.0000 1 L35 18 MP3-05 (1.25in) 2.75 - 2.92 1.0000 1 L35 18 MP3-05 (1.25in) 2.75 - 2.92 1.0000 1 L35 19 MP3-05 (1.25in) 2.75 - 2.92 1.0000 1 L35 29 MP3-08.5 (1.25'') 2.75 - 2.92 1.0000 1 L35 30 MP3-08.5 (1.25'') 2.75 - 2.92 1.0000 1 L36 12 LDF4-50A(1/2) 2.50 - 2.75 1.0000 1 L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 18 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-08.5 (1.25'') 2.50 - 2.75 1.0000 1 L36 30	L34	29	MP3-08.5 (1.25")		1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			MP3-08.5 (1.25")	2.92 - 3.17	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L35		LDF4-50A(1/2)	2.75 - 2.92	1.0000	1.0000
L35 19 MP3-05 (1.25in) 2.75 - 2.92 1.0000 1 L35 29 MP3-08.5 (1.25") 2.75 - 2.92 1.0000 1 L35 30 MP3-08.5 (1.25") 2.75 - 2.92 1.0000 1 L36 12 LDF4-50A(1/2) 2.50 - 2.75 1.0000 1 L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 18 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-05 (1.25") 2.50 - 2.75 1.0000 1 L36 29 MP3-05 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L37 12 LD			MP3-05 (1.25in)	2.75 - 2.92		1.0000
L35 29 MP3-08.5 (1.25") 2.75 - 2.92 1.0000 1 L35 30 MP3-08.5 (1.25") 2.75 - 2.92 1.0000 1 L36 12 LDF4-50A(1/2) 2.50 - 2.75 1.0000 1 L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 18 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1						1.0000
L35 30 MP3-08.5 (1.25") 2.75 - 2.92 1.0000 1 L36 12 LDF4-50A(1/2) 2.50 - 2.75 1.0000 1 L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 18 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1			· · · · · · · · · · · · · · · · · · ·			1.0000
L36 12 LDF4-50A(1/2) 2.50 - 2.75 1.0000 1 L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 18 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1			MP3-08.5 (1.25")			1.0000
L36 16 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 18 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1						1.0000
L36 18 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-08.5 (1.25'') 2.50 - 2.75 1.0000 1 L36 29 MP3-08.5 (1.25'') 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25'') 2.50 - 2.75 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1						1.0000
L36 19 MP3-05 (1.25in) 2.50 - 2.75 1.0000 1 L36 29 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1						1.0000
L36 29 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1						1.0000
L36 30 MP3-08.5 (1.25") 2.50 - 2.75 1.0000 1 L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1						1.0000
L37 12 LDF4-50A(1/2) 0.00 - 2.50 1.0000 1						1.0000
						1.0000
L L371 161 MP3-05 (1 25in) 0.00 - 2.501 1.0000 1			. ,			1.0000
	L37	16	MP3-05 (1.25in)	0.00 - 2.50	1.0000	1.0000
						1.0000
						1.0000
	1					1.0000
L37 30 MP3-08.5 (1.25") 0.00 - 2.50 1.0000 1	L37	30	MP3-08.5 (1.25")	0.00 - 2.50	1.0000	1.0000

Job

Project

Client

Woodbury North (BU 876405)	
TEP No. 25640.597664	

Page 15 of 40 Date 15:08:01 09/21/21

Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:

Crown Castle

Designed by kolson

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment Elev.	Calculation	Width
				Method	Ratio
L7	25	MP3-05 (1.25in)	78.67 - 81.17	Auto	0.4411
L7	26	MP3-05 (1.25in)	78.67 - 81.17	Auto	0.4411
L7	27	MP3-05 (1.25in)	78.67 - 81.17	Auto	0.4411
L8	25	MP3-05 (1.25in)	78.42 - 78.67	Auto	0.5556
L8	26	MP3-05 (1.25in)	78.42 - 78.67	Auto	0.5556
L8	27	MP3-05 (1.25in)	78.42 - 78.67	Auto	0.5556
L9	25	MP3-05 (1.25in)	73.42 - 78.42	Auto	0.5295
L9	26	MP3-05 (1.25in)	73.42 - 78.42	Auto	0.5295
L9	27	MP3-05 (1.25in)	73.42 - 78.42	Auto	0.5295
L10	25	MP3-05 (1.25in)	68.42 - 73.42	Auto	0.4873
L10	26	MP3-05 (1.25in)	68.42 - 73.42	Auto	0.4873
L10	27	MP3-05 (1.25in)	68.42 - 73.42	Auto	0.4873
L11	25	MP3-05 (1.25in)	63.42 - 68.42	Auto	0.4452
L11	26	MP3-05 (1.25in)	63.42 - 68.42	Auto	0.4452
L11	27	MP3-05 (1.25in)	63.42 - 68.42	Auto	0.4452
L12	21	MP3-05 (1.25in)	58.67 - 61.17	Auto	0.4003
L12	22	MP3-05 (1.25in)	58.67 - 61.17	Auto	0.4003
L12	23	MP3-05 (1.25in)	58.67 - 61.17	Auto	0.4003
L12	25	MP3-05 (1.25in)	61.17 - 63.42	Auto	0.4164
L12	26	MP3-05 (1.25in)	61.17 - 63.42	Auto	0.4164
L12	27	MP3-05 (1.25in)	61.17 - 63.42	Auto	0.4164
L13	21	MP3-05 (1.25in) MP3-05 (1.25in)	58.42 - 58.67	Auto	$0.3910 \\ 0.3910$
L13 L13	22 23	MP3-05 (1.25in)	58.42 - 58.67 58.42 - 58.67	Auto	0.3910
L13 L14	23	MP3-05 (1.25in)	53.42 - 58.42	Auto Auto	0.3910
L14 L14	21	MP3-05 (1.25in)	53.42 - 58.42	Auto	0.3691
L14 L14	23	MP3-05 (1.25in)	53.42 - 58.42	Auto	0.3691
L15	23	MP3-05 (1.25in)	47.12 - 53.42	Auto	0.3266
L15	22	MP3-05 (1.25in)	47.12 - 53.42	Auto	0.3266
L15	23	MP3-05 (1.25in)	47.12 - 53.42	Auto	0.3266
L16	21	MP3-05 (1.25in)	45.87 - 47.12	Auto	0.3357
L16	22	MP3-05 (1.25in)	45.87 - 47.12	Auto	0.3357
L16	23	MP3-05 (1.25in)	45.87 - 47.12	Auto	0.3357
L17	21	MP3-05 (1.25in)	40.87 - 45.87	Auto	0.3116
L17	22	MP3-05 (1.25in)	40.87 - 45.87	Auto	0.3116
L17	23	MP3-05 (1.25in)	40.87 - 45.87	Auto	0.3116
L18	21	MP3-05 (1.25in)	35.87 - 40.87	Auto	0.2755
L18	22	MP3-05 (1.25in)	35.87 - 40.87	Auto	0.2755
L18	23	MP3-05 (1.25in)	35.87 - 40.87	Auto	0.2755
L19	18	MP3-05 (1.25in)	30.87 - 31.17	Auto	0.2243
L19	19	MP3-05 (1.25in)	30.87 - 31.17	Auto	0.2243
L19	21	MP3-05 (1.25in)	31.17 - 35.87	Auto	0.2403
L19	22	MP3-05 (1.25in)	31.17 - 35.87	Auto	0.2403
L19	23	MP3-05 (1.25in)	31.17 - 35.87	Auto	0.2403
L19	32	MP3-05 (1.25in)		Auto	0.2243
L20	18	MP3-05 (1.25in)	28.67 - 30.87	Auto	0.2163
L20	19	MP3-05 (1.25in)	28.67 - 30.87	Auto	0.2163
L20	32	MP3-05 (1.25in)	28.67 - 30.87	Auto	0.2163
L21	18	MP3-05 (1.25in)	28.42 - 28.67	Auto	0.2085
L21	19	MP3-05 (1.25in)	28.42 - 28.67	Auto	0.2085
L21	32	MP3-05 (1.25in)	28.42 - 28.67	Auto	0.2085
L22 L22	18 19	MP3-05 (1.25in) MP3-05 (1.25in)	23.42 - 28.42 23.42 - 28.42	Auto	$0.1876 \\ 0.1876$
L22 L22	32	MP3-05 (1.25in) MP3-05 (1.25in)	23.42 - 28.42 23.42 - 28.42	Auto Auto	0.1876
L22 L23	52 18	MP3-05 (1.25in)		Auto	0.1876
L23 L23	10				0.1535
1 1223	19	1.11 3-03 (1.23III)	10,72 - 23,72		0.1555

Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:

Job Woodbury North (BU 876405) Project TEP No. 25640.597664 Crown Castle Page 16 of 40 Date 15:08:01 09/21/21 Designed by kolson

Section Record No. Segment Relse: Calculation With Method L23 32 MP3-05 (1.25in) 18.42 - 23.42 Auto 0.1219 L24 19 MP3-05 (1.25in) 14.17 - 18.42 Auto 0.1219 L24 29 MP3-08.5 (1.25) 14.17 - 16.17 Auto 0.0000 L24 30 MP3-05 (1.25in) 13.92 - 14.17 Auto 0.1405 L25 19 MP3-05 (1.25in) 13.92 - 14.17 Auto 0.1405 L25 29 MP3-05 (1.25in) 13.92 - 14.17 Auto 0.0000 L25 30 MP3-05 (1.25in) 13.92 - 14.17 Auto 0.0000 L26 18 MP3-05 (1.25in) 13.67 - 13.92 Auto 0.1389 L26 19 MP3-05 (1.25in) 13.67 - 13.92 Auto 0.1389 L26 29 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.0000 L26 30 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.01050	Tower	Attachment	Description	Attachment	Ratio	Effective
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Section	Record No.		Segment Elev.		
L24 18 MP3-05 (1.25m) 14,17 - 18,42 Auto 0.1219 L24 29 MP3-08,5 (1.25') 14,17 - 16,17 Auto 0.0000 L24 30 MP3-08,5 (1.25') 14,17 - 16,17 Auto 0.0000 L24 30 MP3-05 (1.25m) 13.92 - 14,17 Auto 0.1405 L25 19 MP3-05 (1.25m) 13.92 - 14,17 Auto 0.1405 L25 29 MP3-08,5 (1.25') 13.92 - 14,17 Auto 0.1405 L26 19 MP3-08,5 (1.25') 13.67 - 13.92 Auto 0.1389 L26 19 MP3-05 (1.25m) 13.67 - 13.92 Auto 0.0000 L26 30 MP3-05 (1.25m) 13.42 - 13.67 Auto 0.1389 L27 18 MP3-05 (1.25m) 13.42 - 13.67 Auto 0.1105 L27 19 MP3-05 (1.25m) 13.42 - 13.67 Auto 0.0000 L27 30 MP3-05 (1.25m) 13.42 - 13.67 Auto 0.0001					Method	
L24 19 MP3-05 (1.25in) 14,17 - 18,42 Auto 0.0000 L24 30 MP3-08.5 (1.25') 14,17 - 16,17 Auto 0.0000 L24 32 MP3-08.5 (1.25'n) 14,17 - 18,42 Auto 0.1219 L25 18 MP3-05 (1.25in) 13.92 - 14,17 Auto 0.1405 L25 29 MP3-08.5 (1.25'n) 13.92 - 14,17 Auto 0.0000 L25 30 MP3-08.5 (1.25'n) 13.92 - 14,17 Auto 0.0000 L26 18 MP3-05 (1.25in) 13.67 - 13.92 Auto 0.1389 L26 19 MP3-08.5 (1.25'n) 13.67 - 13.92 Auto 0.1389 L26 20 MP3-08.5 (1.25'n) 13.47 - 13.67 Auto 0.1105 L27 18 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.1105 L27 19 MP3-08 (1.25in) 13.42 - 13.67 Auto 0.0000 L27 19 MP3-08 (1.25in) 13.42 - 13.67 Auto 0.0000						
L24 30 MP3-08 (1.25in) 14.17 - 16.17 Auto 0.0000 L24 32 MP3-05 (1.25in) 13.92 - 14.17 Auto 0.1405 L25 19 MP3-05 (1.25in) 13.92 - 14.17 Auto 0.1405 L25 29 MP3-08 (1.25in) 13.92 - 14.17 Auto 0.0000 L25 30 MP3-08 (1.25in) 13.67 - 13.92 Auto 0.1405 L26 18 MP3-06 (1.25in) 13.67 - 13.92 Auto 0.1389 L26 29 MP3-08 (1.25in) 13.67 - 13.92 Auto 0.0300 L26 30 MP3-08 (1.25in) 13.47 - 13.67 Auto 0.01389 L27 18 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.1105 L27 29 MP3-08 (1.25in) 13.42 - 13.67 Auto 0.0100 L27 30 MP3-08 (1.25in) 13.42 - 13.67 Auto 0.0105 L28 19 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.0000						
L24 32 MP3-05 (1.25in) 14,17 - 18,42 Auto 0.1219 L25 19 MP3-05 (1.25in) 13.92 - 14,17 Auto 0.1405 L25 29 MP3-06,5 (1.25in) 13.92 - 14,17 Auto 0.0000 L25 30 MP3-08,5 (1.25in) 13.92 - 14,17 Auto 0.0000 L26 18 MP3-05 (1.25in) 13.67 - 13.92 Auto 0.1389 L26 19 MP3-06,5 (1.25in) 13.67 - 13.92 Auto 0.0000 L26 30 MP3-08,5 (1.25in) 13.47 - 13.92 Auto 0.0000 L26 30 MP3-08,5 (1.25in) 13.42 - 13.67 Auto 0.0100 L27 18 MP3-05,5 (1.25in) 13.42 - 13.67 Auto 0.0010 L27 30 MP3-08,5 (1.25in) 13.42 - 13.67 Auto 0.0010 L27 30 MP3-08,5 (1.25in) 13.42 - 13.67 Auto 0.0016 L28 19 MP3-05,5 (1.25in) 13.42 - 13.42 Auto 0.0016 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
L26 30 MP3-08.5 (1.25") 13.67 - 13.92 Auto 0.0000 L26 32 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.1185 L27 18 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.0100 L27 29 MP3-08.5 (1.25") 13.42 - 13.67 Auto 0.0000 L27 30 MP3-08.5 (1.25in) 13.42 - 13.47 Auto 0.0010 L28 18 MP3-05 (1.25in) 13.42 - 13.42 Auto 0.0016 L28 19 MP3-08.5 (1.25") 8.42 - 13.42 Auto 0.0000 L28 30 MP3-08.5 (1.25") 8.42 - 13.42 Auto 0.0000 L28 30 MP3-08.5 (1.25m) 5.75 - 8.42 Auto 0.00671 L29 18 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.00671 L29 19 MP3-08.5 (1.25") 5.75 - 8.42 Auto 0.0000 L30 16 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0000						
L26 32 MP3-05 (1.25in) 13.67 - 13.92 Auto 0.1389 L27 19 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.1105 L27 29 MP3-08.5 (1.25'') 13.42 - 13.67 Auto 0.0000 L27 30 MP3-08.5 (1.25'') 13.42 - 13.67 Auto 0.0000 L27 30 MP3-05 (1.25in) 8.42 - 13.42 Auto 0.0916 L28 19 MP3-05 (1.25in) 8.42 - 13.42 Auto 0.0000 L28 29 MP3-08.5 (1.25'') 8.42 - 13.42 Auto 0.0000 L28 30 MP3-08.5 (1.25'') 8.42 - 13.42 Auto 0.0001 L29 16 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0061 L29 18 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0071 L29 19 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0070 L29 19 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0074						
L2718MP3-05 (1.25in)13.42 - 13.67Auto0.1105L2719MP3-05 (1.25in)13.42 - 13.67Auto0.0000L2730MP3-08.5 (1.25'')13.42 - 13.67Auto0.0000L2732MP3-05 (1.25in)13.42 - 13.67Auto0.0016L2818MP3-05 (1.25in)8.42 - 13.42Auto0.0916L2819MP3-05 (1.25'')8.42 - 13.42Auto0.0000L2830MP3-08.5 (1.25'')8.42 - 13.42Auto0.0000L2830MP3-06.5 (1.25'')8.42 - 13.42Auto0.0000L2830MP3-05 (1.25in)5.75 - 8.25Auto0.0665L2916MP3-05 (1.25in)5.75 - 8.42Auto0.0071L2919MP3-05 (1.25in)5.75 - 8.42Auto0.0071L2919MP3-05 (1.25in)5.75 - 8.42Auto0.0071L2929MP3-08.5 (1.25'')5.75 - 8.42Auto0.00784L3016MP3-05 (1.25in)5.50 - 5.75Auto0.0784L3018MP3-05 (1.25'')5.50 - 5.75Auto0.0000L3116MP3-05 (1.25'')3.57 - 5.50Auto0.0021L3119MP3-05 (1.25'')3.57 - 5.50Auto0.0021L3119MP3-05 (1.25'')3.57 - 5.50Auto0.0021L3116MP3-05 (1.25'')3.57 - 5.50Auto0.0000L3116MP3-05 (1						
L2719MP3-05 (1.25in) $13.42 - 13.67$ Auto0.0105L2729MP3-08.5 (1.25'') $13.42 - 13.67$ Auto0.0000L2730MP3-05 (1.25in) $13.42 - 13.67$ Auto0.0010L2732MP3-05 (1.25in) $8.42 - 13.42$ Auto0.0916L2819MP3-05 (1.25in) $8.42 - 13.42$ Auto0.0000L2829MP3-08.5 (1.25'') $8.42 - 13.42$ Auto0.0000L2830MP3-08.5 (1.25'') $8.42 - 13.42$ Auto0.0000L2832MP3-05 (1.25in) $5.75 - 8.25$ Auto0.0665L2916MP3-05 (1.25in) $5.75 - 8.42$ Auto0.0071L2919MP3-05 (1.25in) $5.75 - 8.42$ Auto0.0000L2930MP3-08.5 (1.25'') $5.75 - 8.42$ Auto0.0000L3016MP3-05 (1.25in) $5.50 - 5.75$ Auto0.0784L3019MP3-05 (1.25in) $5.50 - 5.75$ Auto0.0000L3030MP3-08.5 (1.25'') $5.50 - 5.75$ Auto0.0000L3116MP3-05 (1.25in) $3.57 - 5.50$ Auto0.0021L3118MP3-05 (1.25in) $3.57 - 5.50$ Auto0.0021L3119MP3-05 (1.25in) $3.57 - 5.50$ Auto0.0001L3129MP3-08.5 (1.25'') $3.32 - 3.57$ Auto0.0001L3110MP3-05 (1.25in) $3.32 - 3.57$ Auto0.0000<						
L27 29 MP3-08.5 (1.25") 13.42 - 13.67 Auto 0.0000 L27 30 MP3-05 (1.25m) 13.42 - 13.67 Auto 0.0000 L28 18 MP3-05 (1.25m) 8.42 - 13.42 Auto 0.0916 L28 19 MP3-05 (1.25m) 8.42 - 13.42 Auto 0.0000 L28 29 MP3-05 (1.25m) 8.42 - 13.42 Auto 0.0000 L28 30 MP3-05 (1.25m) 8.42 - 13.42 Auto 0.0000 L28 30 MP3-05 (1.25m) 5.75 - 8.42 Auto 0.00665 L29 16 MP3-05 (1.25m) 5.75 - 8.42 Auto 0.0071 L29 19 MP3-05 (1.25m) 5.75 - 8.42 Auto 0.0071 L29 19 MP3-05 (1.25m) 5.50 - 5.75 Auto 0.00784 L30 16 MP3-05 (1.25m) 5.50 - 5.75 Auto 0.0784 L30 19 MP3-05 (1.25m) 5.50 - 5.75 Auto 0.0021 L31 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
			. ,			
L27 32 MP3-05 (1.25in) 13.42 - 13.67 Auto 0.1105 L28 19 MP3-05 (1.25in) 8.42 - 13.42 Auto 0.0916 L28 29 MP3-08.5 (1.25") 8.42 - 13.42 Auto 0.0000 L28 30 MP3-08.5 (1.25in) 8.42 - 13.42 Auto 0.0000 L28 32 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.00671 L29 16 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.00671 L29 19 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0000 L29 29 MP3-08.5 (1.25") 5.75 - 8.42 Auto 0.0000 L30 16 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0784 L30 18 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0000 L31 16 MP3-05 (1.25in) 3.57 - 5.50 Auto 0.0001 L30 30 MP3-08.5 (1.25") 3.57 - 5.50 Auto 0.00001						
L28 18 MP3-05 (1.25in) 8.42 - 13.42 Auto 0.0916 L28 19 MP3-05 (1.25in) 8.42 - 13.42 Auto 0.0000 L28 30 MP3-08.5 (1.25") 8.42 - 13.42 Auto 0.0000 L28 30 MP3-06.5 (1.25in) 11.17 - 13.42 Auto 0.0006 L29 16 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0067 L29 18 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0001 L29 19 MP3-06.5 (1.25') 5.75 - 8.42 Auto 0.0000 L30 16 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0004 L30 19 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0004 L30 19 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0004 L30 29 MP3-08.5 (1.25'') 5.50 - 5.75 Auto 0.0001 L30 30 MP3-08.5 (1.25'') 3.57 - 5.50 Auto 0.00021						
L28 19 MP3-05 (1.25in) 8.42 - 13.42 Auto 0.0001 L28 29 MP3-08.5 (1.25'') 8.42 - 13.42 Auto 0.0000 L28 30 MP3-06.5 (1.25'') 8.42 - 13.42 Auto 0.0000 L28 32 MP3-05 (1.25in) 5.75 - 8.25 Auto 0.0665 L29 16 MP3-05 (1.25'') 5.75 - 8.42 Auto 0.0071 L29 19 MP3-05 (1.25'') 5.75 - 8.42 Auto 0.0071 L29 29 MP3-08.5 (1.25'') 5.75 - 8.42 Auto 0.0000 L30 16 MP3-05 (1.25'') 5.50 - 5.75 Auto 0.0784 L30 19 MP3-08.5 (1.25'') 5.50 - 5.75 Auto 0.0000 L30 29 MP3-08.5 (1.25'') 5.50 - 5.75 Auto 0.0001 L30 30 MP3-05 (1.25'') 3.57 - 5.50 Auto 0.0021 L31 18 MP3-05 (1.25'') 3.57 - 5.50 Auto 0.0021						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,			
L29 16 MP3-05 (1.25in) 5.75 - 8.25 Auto 0.0665 L29 18 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0671 L29 19 MP3-05 (1.25in) 5.75 - 8.42 Auto 0.0000 L29 29 MP3-08.5 (1.25'') 5.75 - 8.42 Auto 0.0000 L30 16 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0784 L30 18 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0000 L30 19 MP3-05 (1.25in) 5.50 - 5.75 Auto 0.0000 L30 29 MP3-08.5 (1.25'') 5.50 - 5.75 Auto 0.0000 L31 16 MP3-05 (1.25in) 3.57 - 5.50 Auto 0.0021 L31 19 MP3-05 (1.25'') 3.57 - 5.50 Auto 0.0000 L31 29 MP3-08 (1.25'') 3.57 - 5.50 Auto 0.0000 L32 16 MP3-05 (1.25'') 3.32 - 3.57 Auto 0.00851 L3						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
L30 30 MP3-08.5 (1.25") 5.50 - 5.75 Auto 0.0000 L31 16 MP3-05 (1.25in) 3.57 - 5.50 Auto 0.0921 L31 18 MP3-05 (1.25in) 3.57 - 5.50 Auto 0.0921 L31 19 MP3-05 (1.25in) 3.57 - 5.50 Auto 0.0921 L31 29 MP3-08.5 (1.25") 3.57 - 5.50 Auto 0.0000 L31 30 MP3-08.5 (1.25") 3.57 - 5.50 Auto 0.0000 L32 16 MP3-05 (1.25in) 3.32 - 3.57 Auto 0.0851 L32 18 MP3-05 (1.25in) 3.32 - 3.57 Auto 0.0851 L32 29 MP3-05 (1.25") 3.32 - 3.57 Auto 0.0000 L33 16 MP3-05 (1.25") 3.32 - 3.57 Auto 0.0000 L33 16 MP3-05 (1.25") 3.17 - 3.32 Auto 0.0838 L33 19 MP3-05 (1.25") 3.17 - 3.32 Auto 0.0000 L33						
L3116MP3-05 (1.25in)3.57 - 5.50Auto0.0921L3118MP3-05 (1.25in)3.57 - 5.50Auto0.0921L3119MP3-05 (1.25in)3.57 - 5.50Auto0.0921L3129MP3-08.5 (1.25'')3.57 - 5.50Auto0.0000L3130MP3-05 (1.25in)3.57 - 5.50Auto0.0000L3216MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3219MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3229MP3-08.5 (1.25in)3.32 - 3.57Auto0.0851L3229MP3-08.5 (1.25in)3.32 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.32 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-08.5 (1.25'')3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25'')3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0502L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)<						
L3118MP3-05 (1.25in)3.57 - 5.50Auto0.0921L3119MP3-05 (1.25in)3.57 - 5.50Auto0.0921L3129MP3-08.5 (1.25")3.57 - 5.50Auto0.0000L3130MP3-05 (1.25in)3.57 - 5.50Auto0.0000L3216MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3218MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3219MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3229MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.12 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-05 (1.25in)3.17 - 3.32Auto0.0000L3330MP3-05 (1.25in)2.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.7						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
L3129MP3-08.5 (1.25")3.57 - 5.50Auto0.0000L3130MP3-08.5 (1.25")3.57 - 5.50Auto0.0000L3216MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3218MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3219MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3229MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3230MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3318MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25in)2.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25") <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
L3130MP3-08.5 (1.25")3.57 - 5.50Auto0.0000L3216MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3218MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3219MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3229MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3230MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25in)3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0502						
L3216MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3218MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3219MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3229MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3230MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000					Auto	
L3218MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3219MP3-05 (1.25in)3.32 - 3.57Auto0.0851L3229MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3230MP3-08.5 (1.25")3.32 - 3.57Auto0.0000L3316MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-08.5 (1.25")3.17 - 3.32Auto0.0838L3329MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000		16				0.0851
L32 29 MP3-08.5 (1.25") 3.32 - 3.57 Auto 0.0000 L32 30 MP3-08.5 (1.25") 3.32 - 3.57 Auto 0.0000 L33 16 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 18 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 19 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 29 MP3-05 (1.25") 3.17 - 3.32 Auto 0.0000 L33 30 MP3-08.5 (1.25") 3.17 - 3.32 Auto 0.0000 L34 16 MP3-05 (1.25in) 2.92 - 3.17 Auto 0.0516 L34 18 MP3-05 (1.25in) 2.92 - 3.17 Auto 0.0516 L34 19 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0516 L34 29 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L34 29 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L3						
L32 30 MP3-08.5 (1.25") 3.32 - 3.57 Auto 0.0000 L33 16 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 18 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 19 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 19 MP3-05 (1.25") 3.17 - 3.32 Auto 0.0838 L33 29 MP3-08.5 (1.25") 3.17 - 3.32 Auto 0.0000 L33 30 MP3-08.5 (1.25") 3.17 - 3.32 Auto 0.0000 L34 16 MP3-05 (1.25in) 2.92 - 3.17 Auto 0.0516 L34 18 MP3-05 (1.25in) 2.92 - 3.17 Auto 0.0516 L34 19 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L34 29 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L34 29 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35	L32	19	MP3-05 (1.25in)	3.32 - 3.57	Auto	0.0851
L32 30 MP3-08.5 (1.25") 3.32 - 3.57 Auto 0.0000 L33 16 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 18 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 19 MP3-05 (1.25in) 3.17 - 3.32 Auto 0.0838 L33 19 MP3-05 (1.25") 3.17 - 3.32 Auto 0.0838 L33 29 MP3-08.5 (1.25") 3.17 - 3.32 Auto 0.0000 L33 30 MP3-08.5 (1.25") 3.17 - 3.32 Auto 0.0000 L34 16 MP3-05 (1.25in) 2.92 - 3.17 Auto 0.0516 L34 19 MP3-05 (1.25in) 2.92 - 3.17 Auto 0.0516 L34 19 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L34 29 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L34 29 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L3	L32	29	MP3-08.5 (1.25")	3.32 - 3.57	Auto	0.0000
L3316MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3318MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-05 (1.25'')3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25'')3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25'')2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25'')2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25'')2.75 - 2.92Auto0.0000		30	MP3-08.5 (1.25")	3.32 - 3.57		
L3319MP3-05 (1.25in)3.17 - 3.32Auto0.0838L3329MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3418MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000	L33	16				0.0838
L3329MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3330MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3418MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000	L33	18	MP3-05 (1.25in)	3.17 - 3.32	Auto	0.0838
L3330MP3-08.5 (1.25")3.17 - 3.32Auto0.0000L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3418MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000	L33		MP3-05 (1.25in)	3.17 - 3.32	Auto	0.0838
L3416MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3418MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-05 (1.25in)2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25'')2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25'')2.75 - 2.92Auto0.0000		29	MP3-08.5 (1.25")	3.17 - 3.32	Auto	0.0000
L3418MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000		30	MP3-08.5 (1.25")		Auto	0.0000
L3419MP3-05 (1.25in)2.92 - 3.17Auto0.0516L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000					Auto	
L3429MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3430MP3-08.5 (1.25")2.92 - 3.17Auto0.0000L3516MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3518MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3519MP3-05 (1.25in)2.75 - 2.92Auto0.0502L3529MP3-08.5 (1.25")2.75 - 2.92Auto0.0000						
L34 30 MP3-08.5 (1.25") 2.92 - 3.17 Auto 0.0000 L35 16 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 18 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 19 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 29 MP3-05 (1.25") 2.75 - 2.92 Auto 0.0502						
L35 16 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 18 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 19 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 19 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 29 MP3-08.5 (1.25") 2.75 - 2.92 Auto 0.0000						
L35 18 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 19 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 29 MP3-08.5 (1.25") 2.75 - 2.92 Auto 0.0000						
L35 19 MP3-05 (1.25in) 2.75 - 2.92 Auto 0.0502 L35 29 MP3-08.5 (1.25") 2.75 - 2.92 Auto 0.0000						
L35 29 MP3-08.5 (1.25") 2.75 - 2.92 Auto 0.0000						
L35] 30] MP3-08.5 (1.25")] 2.75 - 2.92] Auto] 0.0000						
	L35	30	MP3-08.5 (1.25")	2.75 - 2.92	Auto	0.0000

Arran Tonus are	Job		Page
tnxTower		Woodbury North (BU 876405)	17 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculation	Effective Width
			0	Method	Ratio
L36	16	MP3-05 (1.25in)	2.50 - 2.75	Auto	0.0468
L36	18	MP3-05 (1.25in)	2.50 - 2.75	Auto	0.0468
L36	19	MP3-05 (1.25in)	2.50 - 2.75	Auto	0.0468
L36	29	MP3-08.5 (1.25")	2.50 - 2.75	Auto	0.0000
L36	30	MP3-08.5 (1.25")	2.50 - 2.75	Auto	0.0000
L37	16	MP3-05 (1.25in)	0.00 - 2.50	Auto	0.0380
L37	18	MP3-05 (1.25in)	0.00 - 2.50	Auto	0.0380
L37	19	MP3-05 (1.25in)	0.00 - 2.50	Auto	0.0380
L37	29	MP3-08.5 (1.25")	0.00 - 2.50	Auto	0.0000
L37	30	MP3-08.5 (1.25")	0.00 - 2.50	Auto	0.0000

			DI	screte I	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft ft	o	ft		ft ²	ft ²	K
108									
(2) JAHH-65B-R3B w/	А	From Leg	4.00	-10.00	108.00	No Ice	5.50	4.38	0.10
Mount Pipe			-6.00			1/2" Ice	5.97	4.84	0.17
			0.00			1" Ice	6.45	5.30	0.25
						2" Ice	7.44	6.26	0.46
(2) JAHH-65B-R3B w/	в	From Leg	4.00	-10.00	108.00	No Ice	5.50	4.38	0.10
Mount Pipe			-6.00			1/2" Ice	5.97	4.84	0.17
			0.00			1" Ice	6.45	5.30	0.25
						2" Ice	7.44	6.26	0.46
(2) JAHH-65B-R3B w/	С	From Leg	4.00	-10.00	108.00	No Ice	5.50	4.38	0.10
Mount Pipe			-6.00			1/2" Ice	5.97	4.84	0.17
			0.00			1" Ice	6.45	5.30	0.25
						2" Ice	7.44	6.26	0.46
Sub6 Antenna - VZS01 w/	Α	From Leg	4.00	-10.00	108.00	No Ice	4.92	2.69	0.10
Mount Pipe			2.00			1/2" Ice	5.26	3.15	0.14
			0.00			1" Ice	5.62	3.63	0.19
						2" Ice	6.37	4.64	0.29
Sub6 Antenna - VZS01 w/	В	From Leg	4.00	-10.00	108.00	No Ice	4.92	2.69	0.10
Mount Pipe			2.00			1/2" Ice	5.26	3.15	0.14
			0.00			1" Ice	5.62	3.63	0.19
						2" Ice	6.37	4.64	0.29
Sub6 Antenna - VZS01 w/	С	From Leg	4.00	-10.00	108.00	No Ice	4.92	2.69	0.10
Mount Pipe			2.00			1/2" Ice	5.26	3.15	0.14
-			0.00			1" Ice	5.62	3.63	0.19
						2" Ice	6.37	4.64	0.29
XA-80080/4CF w/ Mount	Α	From Leg	4.00	-10.00	108.00	No Ice	5.04	4.03	0.03
Pipe			6.00			1/2" Ice	5.42	4.65	0.08
-			0.00			1" Ice	5.81	5.28	0.13
						2" Ice	6.62	6.56	0.25
XA-80080/4CF w/ Mount	В	From Leg	4.00	-10.00	108.00	No Ice	5.04	4.03	0.03
Pipe		U	6.00			1/2" Ice	5.42	4.65	0.08
-			0.00			1" Ice	5.81	5.28	0.13
						2" Ice	6.62	6.56	0.25
KA-80063/4CFx5 w/ Mount	С	From Leg	4.00	-10.00	108.00	No Ice	4.95	3.62	0.03

Disorato Towar Loado

And Tools and	Job		Page
tnxTower		Woodbury North (BU 876405)	18 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft^2	ft ²	K
Pipe			6.00			1/2" Ice	5.32	4.22	0.07
1			0.00			1" Ice	5.71	4.83	0.12
						2" Ice	6.51	6.11	0.23
CBC78T-DS-43-2X	А	From Leg	4.00	-10.00	108.00	No Ice	0.37	0.51	0.02
			-6.00			1/2" Ice	0.45	0.60	0.03
			0.00			1" Ice	0.53	0.70	0.04
CDCTOT DC 42 AV	ъ	E I	4.00	10.00	100.00	2" Ice	0.72	0.93	0.06
CBC78T-DS-43-2X	В	From Leg	4.00 -6.00	-10.00	108.00	No Ice 1/2" Ice	0.37	0.51 0.60	0.02 0.03
			-0.00			172 Ice	0.45 0.53	0.80	0.03
			0.00			2" Ice	0.33	0.70	0.04
CBC78T-DS-43-2X	С	From Leg	4.00	-10.00	108.00	No Ice	0.72	0.53	0.00
CDC701-D3-45-2A	C	110III Leg	-6.00	-10.00	100.00	1/2" Ice	0.45	0.60	0.02
			0.00			172 Ice	0.53	0.70	0.03
			0.00			2" Ice	0.72	0.93	0.06
RFV01U-D1A	А	From Leg	4.00	-10.00	108.00	No Ice	1.88	1.25	0.08
			-6.00			1/2" Ice	2.05	1.39	0.10
			0.00			1" Ice	2.22	1.54	0.12
						2" Ice	2.60	1.86	0.18
RFV01U-D1A	В	From Leg	4.00	-10.00	108.00	No Ice	1.88	1.25	0.08
			6.00			1/2" Ice	2.05	1.39	0.10
			0.00			1" Ice	2.22	1.54	0.12
						2" Ice	2.60	1.86	0.18
RFV01U-D1A	С	From Leg	4.00	-10.00	108.00	No Ice	1.88	1.25	0.08
			6.00			1/2" Ice	2.05	1.39	0.10
			0.00			1" Ice	2.22	1.54	0.12
		F I	4.00	10.00	100.00	2" Ice	2.60	1.86	0.18
RFV01U-D2A	А	From Leg	4.00	-10.00	108.00	No Ice	1.88	1.01	0.07
			$\begin{array}{c} 2.00 \\ 0.00 \end{array}$			1/2" Ice 1" Ice	2.05 2.22	1.14 1.28	0.09 0.11
			0.00			2" Ice	2.22	1.28	0.11
RFV01U-D2A	в	From Leg	4.00	-10.00	108.00	No Ice	1.88	1.01	0.13
KI VOTO-DZA	Б	110III Leg	-6.00	-10.00	100.00	1/2" Ice	2.05	1.14	0.09
			0.00			1" Ice	2.03	1.28	0.09
			0.00			2" Ice	2.60	1.59	0.15
RFV01U-D2A	С	From Leg	4.00	-10.00	108.00	No Ice	1.88	1.01	0.07
		0	-6.00			1/2" Ice	2.05	1.14	0.09
			0.00			1" Ice	2.22	1.28	0.11
						2" Ice	2.60	1.59	0.15
DB-C1-12C-24AB-0Z	А	From Leg	4.00	-10.00	108.00	No Ice	4.06	3.10	0.03
			6.00			1/2" Ice	4.32	3.34	0.07
			0.00			1" Ice	4.58	3.58	0.11
						2" Ice	5.14	4.09	0.20
(1) Dual Mount Bracket	А	From Leg	4.00	0.00	108.00	No Ice	0.13	0.21	0.01
			0.00			1/2" Ice	0.17	0.27	0.01
			0.00			1" Ice	0.23	0.33	0.01
	р	г I	4.00	0.00	100.00	2" Ice	0.36	0.49	0.02
(1) Dual Mount Bracket	В	From Leg	4.00	0.00	108.00	No Ice 1/2" Ice	0.13 0.17	0.21 0.27	0.01
			$\begin{array}{c} 0.00\\ 0.00\end{array}$			$1/2^{-1}$ Ice	0.17 0.23	0.27	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
			0.00			2" Ice	0.23	0.33	0.01
(1) Dual Mount Bracket	С	From Leg	4.00	0.00	108.00	No Ice	0.30	0.49	0.02
(1) Duai mount Diacket	C	r tom Log	4.00 0.00	0.00	100.00	1/2" Ice	0.15	0.21	0.01
			0.00			1" Ice	0.23	0.33	0.01
						2" Ice	0.36	0.49	0.02
T-Arm Mount [TA 602-3]	С	None		0.00	108.00	No Ice	13.40	13.40	0.77
						1/2" Ice	16.44	16.44	1.00

tnxTower	Job	Weedhum, North (DL 970405)	Page 19 of 40
		Woodbury North (BU 876405)	15 61 46
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	K
						1" Ice	19.70	19.70	1.29
102						2" Ice	25.86	25.86	2.05
APX16DWV-16DWV-S-E-A	А	From	4.00	0.00	102.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe	A	Centroid-Le	-7.00	0.00	102.00	1/2" Ice	6.86	3.27	0.00
20 w/ Would Tipe		g	0.00			1" Ice	0.00 7.45	3.79	0.11
		5	0.00			2" Ice	8.68	4.90	0.10
APX16DWV-16DWV-S-E-A	В	From	4.00	20.00	102.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe	Б	Centroid-Le	-7.00	20.00	102.00	1/2" Ice	6.86	3.27	0.00
20 m mount i pe		g	0.00			1" Ice	7.45	3.79	0.16
		8	0.000			2" Ice	8.68	4.90	0.29
APX16DWV-16DWV-S-E-A	С	From	4.00	20.00	102.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe	-	Centroid-Le	-7.00			1/2" Ice	6.86	3.27	0.11
		g	0.00			1" Ice	7.45	3.79	0.16
		8				2" Ice	8.68	4.90	0.29
APXVAALL24_43-U-NA20	А	From	4.00	0.00	102.00	No Ice	14.69	6.87	0.18
_TMO w/ Mount Pipe		Centroid-Le	-2.50			1/2" Ice	15.46	7.55	0.31
_ 1		g	0.00			1" Ice	16.23	8.25	0.45
		C				2" Ice	17.82	9.67	0.78
APXVAALL24_43-U-NA20	в	From	4.00	20.00	102.00	No Ice	14.69	6.87	0.18
_TMO w/ Mount Pipe		Centroid-Le	-2.50			1/2" Ice	15.46	7.55	0.31
_ *		g	0.00			1" Ice	16.23	8.25	0.45
		U				2" Ice	17.82	9.67	0.78
APXVAALL24_43-U-NA20	С	From	4.00	20.00	102.00	No Ice	14.69	6.87	0.18
_TMO w/ Mount Pipe		Centroid-Le	-2.50			1/2" Ice	15.46	7.55	0.31
		g	0.00			1" Ice	16.23	8.25	0.45
		U				2" Ice	17.82	9.67	0.78
AIR6449 B41_T-MOBILE	А	From	4.00	0.00	102.00	No Ice	5.19	2.71	0.13
w/ Mount Pipe		Centroid-Le	7.00			1/2" Ice	5.59	3.04	0.17
*		g	0.00			1" Ice	6.02	3.38	0.23
		C				2" Ice	6.90	4.12	0.35
AIR6449 B41_T-MOBILE	В	From	4.00	20.00	102.00	No Ice	5.19	2.71	0.13
w/ Mount Pipe		Centroid-Le	7.00			1/2" Ice	5.59	3.04	0.17
*		g	0.00			1" Ice	6.02	3.38	0.23
		Ū.				2" Ice	6.90	4.12	0.35
AIR6449 B41_T-MOBILE	С	From	4.00	20.00	102.00	No Ice	5.19	2.71	0.13
w/ Mount Pipe		Centroid-Le	7.00			1/2" Ice	5.59	3.04	0.17
		g	0.00			1" Ice	6.02	3.38	0.23
						2" Ice	6.90	4.12	0.35
RADIO 4415 B66A_CCIV3	Α	From	4.00	0.00	102.00	No Ice	1.64	0.68	0.05
		Centroid-Le	-7.00			1/2" Ice	1.80	0.79	0.06
		g	0.00			1" Ice	1.97	0.91	0.07
						2" Ice	2.32	1.18	0.11
RADIO 4415 B66A_CCIV3	В	From	4.00	20.00	102.00	No Ice	1.64	0.68	0.05
		Centroid-Le	-7.00			1/2" Ice	1.80	0.79	0.06
		g	0.00			1" Ice	1.97	0.91	0.07
						2" Ice	2.32	1.18	0.11
RADIO 4415 B66A_CCIV3	С	From	4.00	20.00	102.00	No Ice	1.64	0.68	0.05
		Centroid-Le	-7.00			1/2" Ice	1.80	0.79	0.06
		g	0.00			1" Ice	1.97	0.91	0.07
		-		0	107	2" Ice	2.32	1.18	0.11
RADIO 4424 B25_TMO	Α	From	4.00	0.00	102.00	No Ice	2.05	1.61	0.09
		Centroid-Le	-2.50			1/2" Ice	2.23	1.77	0.11
		g	0.00			1" Ice	2.42	1.94	0.13
	-	F	1.00	2 0.00	100.00	2" Ice	2.81	2.30	0.19
RADIO 4424 B25_TMO	В	From	4.00	20.00	102.00	No Ice	2.05	1.61	0.09
		Centroid-Le	-2.50			1/2" Ice	2.23	1.77	0.11

4T	Job	Page
tnxTower	Woodbury North (BU 8764	405) 20 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project TEP No. 25640.59766	4 Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client Crown Castle	Designed by kolson

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft^2	ft ²	K
		g	0.00			1" Ice	2.42	1.94	0.13
						2" Ice	2.81	2.30	0.19
RADIO 4424 B25_TMO	С	From	4.00	20.00	102.00	No Ice	2.05	1.61	0.09
		Centroid-Le	-2.50			1/2" Ice	2.23	1.77	0.11
		g	0.00			1" Ice	2.42	1.94	0.13
						2" Ice	2.81	2.30	0.19
RADIO 4449 B71	А	From	4.00	0.00	102.00	No Ice	1.97	1.59	0.07
B85A_T-MOBILE		Centroid-Le	-2.50			1/2" Ice	2.15	1.75	0.09
		g	0.00			1" Ice	2.33	1.92	0.12
						2" Ice	2.72	2.28	0.17
RADIO 4449 B71	В	From	4.00	20.00	102.00	No Ice	1.97	1.59	0.07
B85A_T-MOBILE		Centroid-Le	-2.50			1/2" Ice	2.15	1.75	0.09
		g	0.00			1" Ice	2.33	1.92	0.12
		-				2" Ice	2.72	2.28	0.17
RADIO 4449 B71	С	From	4.00	20.00	102.00	No Ice	1.97	1.59	0.07
B85A_T-MOBILE		Centroid-Le	-2.50			1/2" Ice	2.15	1.75	0.09
—		g	0.00			1" Ice	2.33	1.92	0.12
		0				2" Ice	2.72	2.28	0.17
2.4" x 8' Pipe	А	From	4.00	0.00	102.00	No Ice	1.90	1.90	0.03
211 110 1100		Centroid-Le	0.00	0.000	102.00	1/2" Ice	2.73	2.73	0.05
		g	0.00			1" Ice	3.42	3.42	0.07
		Б	0.00			2" Ice	4.46	4.46	0.13
2.4" x 8' Pipe	в	From	4.00	0.00	102.00	No Ice	1.90	1.90	0.03
2.4 x 6 1 lpc	Б	Centroid-Le	0.00	0.00	102.00	1/2" Ice	2.73	2.73	0.05
			0.00			172 Ice	3.42	3.42	0.05
		g	0.00			2" Ice	4.46	4.46	0.07
2.4" x 8' Pipe	С	From	4.00	0.00	102.00	No Ice	4.40	4.40 1.90	0.13
2.4 x 8 Fipe	C	Centroid-Le	4.00 0.00	0.00	102.00	1/2" Ice	2.73	2.73	0.03
		g	0.00			1" Ice	3.42	3.42	0.07
D 1 DMOD 400C HV	C	N		0.00	100.00	2" Ice	4.46	4.46	0.13
SitePro1 RMQP-4096-HK	С	None		0.00	102.00	No Ice	23.14	21.40	1.95
						1/2" Ice	28.17	26.44	2.34
						1" Ice	33.23	31.60	2.85
						2" Ice	43.26	41.56	3.50
97									
1900MHz RRH (65MHz)	А	From Leg	2.00	0.00	97.00	No Ice	2.31	2.38	0.06
			0.00			1/2" Ice	2.52	2.58	0.08
			0.00			1" Ice	2.73	2.79	0.11
						2" Ice	3.17	3.24	0.18
1900MHz RRH (65MHz)	в	From Leg	2.00	0.00	97.00	No Ice	2.31	2.38	0.06
			0.00			1/2" Ice	2.52	2.58	0.08
			0.00			1" Ice	2.73	2.79	0.11
						2" Ice	3.17	3.24	0.18
1900MHz RRH (65MHz)	С	From Leg	2.00	0.00	97.00	No Ice	2.31	2.38	0.06
			0.00			1/2" Ice	2.52	2.58	0.08
			0.00			1" Ice	2.73	2.79	0.11
						2" Ice	3.17	3.24	0.18
800MHZ RRH	А	From Leg	2.00	0.00	97.00	No Ice	2.13	1.77	0.05
		č	0.00			1/2" Ice	2.32	1.95	0.07
			0.00			1" Ice	2.51	2.13	0.10
						2" Ice	2.92	2.51	0.16
800MHZ RRH	В	From Leg	2.00	0.00	97.00	No Ice	2.12	1.77	0.05
COULTER ALLA	2	110111 200	0.00	0.00	2.100	1/2" Ice	2.32	1.95	0.03
			0.00			1" Ice	2.52	2.13	0.10
			0.00						
						2" Ice	2 92	2 51	0.16
800MHZ RRH	С	From Leg	2.00	0.00	97.00	2" Ice No Ice	2.92 2.13	2.51 1.77	0.16 0.05

Anna Tean an	Job	Page
tnxTower	Woodbury North (BU 876405	5) 21 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client Crown Castle	Designed by kolson

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	K
			0.00			1" Ice	2.51	2.13	0.10
						2" Ice	2.92	2.51	0.16
2.4" Dia. x 4-ft	А	From Leg	2.00	0.00	97.00	No Ice	0.87	0.87	0.01
			0.00			1/2" Ice	1.12	1.12	0.02
			0.00			1" Ice	1.37	1.37	0.03
			• • • •	0.00	07.00	2" Ice	1.91	1.91	0.06
2.4" Dia. x 4-ft	А	From Leg	2.00	0.00	97.00	No Ice	0.87	0.87	0.01
			0.00			1/2" Ice	1.12	1.12	0.02
			0.00			1" Ice	1.37	1.37	0.03
		Б I	2 00	0.00	07.00	2" Ice	1.91	1.91	0.06
2.4" Dia. x 4-ft	А	From Leg	2.00	0.00	97.00	No Ice	0.87	0.87	0.01
			0.00			1/2" Ice	1.12	1.12	0.02
			0.00			1" Ice	1.37	1.37	0.03
Side A Marriet [SO 701 2]	C	News		0.00	07.00	2" Ice	1.91	1.91	0.06
Side Arm Mount [SO 701-3]	С	None		0.00	97.00	No Ice 1/2" Ice	3.02	3.02	0.20
						1/2 Ice 1" Ice	4.18 5.33	4.18 5.33	0.24 0.28
						2" Ice	5.55 7.63	5.55 7.63	
80						2 100	7.05	7.05	0.36
7770.00 w/ Mount Pipe	А	From Leg	4.00	30.00	80.00	No Ice	5.75	4.25	0.06
7770.00 w/ Mount Pipe	А	FIOIII Leg	4.00 -6.00	30.00	80.00	1/2" Ice	6.18	4.23 5.01	0.00
			0.00			172 ICE 1" Ice	6.61	5.71	0.16
			0.00			2" Ice	7.49	7.16	0.10
7770.00 w/ Mount Pipe	в	From Leg	4.00	30.00	80.00	No Ice	5.75	4.25	0.29
7770.00 w/ would ripe	Б	110111 Log	-6.00	50.00	00.00	1/2" Ice	6.18	5.01	0.00
			0.00			1" Ice	6.61	5.71	0.16
			0.00			2" Ice	7.49	7.16	0.10
7770.00 w/ Mount Pipe	С	From Leg	4.00	20.00	80.00	No Ice	5.75	4.25	0.06
///o.oo w/ would ripe	C	Tion Leg	-6.00	20.00	00.00	1/2" Ice	6.18	5.01	0.00
			0.00			1" Ice	6.61	5.71	0.16
			0.00			2" Ice	7.49	7.16	0.29
(2) DMP65R-BU6D w/	А	From Leg	4.00	30.00	80.00	No Ice	11.96	5.97	0.11
Mount Pipe		8	3.00			1/2" Ice	12.70	6.63	0.20
1			0.00			1" Ice	13.46	7.30	0.30
						2" Ice	15.02	8.69	0.53
(2) DMP65R-BU4D w/	В	From Leg	4.00	30.00	80.00	No Ice	7.53	3.79	0.09
Mount Pipe		e	3.00			1/2" Ice	8.04	4.23	0.16
			0.00			1" Ice	8.57	4.68	0.22
						2" Ice	9.68	5.63	0.39
(2) DMP65R-BU6D w/	С	From Leg	4.00	20.00	80.00	No Ice	11.96	5.97	0.11
Mount Pipe		-	3.00			1/2" Ice	12.70	6.63	0.20
			0.00			1" Ice	13.46	7.30	0.30
						2" Ice	15.02	8.69	0.53
(2) LGP21401	А	From Leg	4.00	30.00	80.00	No Ice	1.10	0.21	0.01
			-6.00			1/2" Ice	1.24	0.27	0.02
			0.00			1" Ice	1.38	0.35	0.03
						2" Ice	1.69	0.52	0.05
(2) LGP21401	В	From Leg	4.00	30.00	80.00	No Ice	1.10	0.21	0.01
			-6.00			1/2" Ice	1.24	0.27	0.02
			0.00			1" Ice	1.38	0.35	0.03
(a) x (a) x - 1 - 1					00.55	2" Ice	1.69	0.52	0.05
(2) LGP21401	С	From Leg	4.00	20.00	80.00	No Ice	1.10	0.21	0.01
			-6.00			1/2" Ice	1.24	0.27	0.02
			0.00			1" Ice	1.38	0.35	0.03
		E I	4.00	20.00	00.00	2" Ice	1.69	0.52	0.05
RRUS 8843 B2/B66A	А	From Leg	4.00	30.00	80.00	No Ice	1.64	1.35	0.07
			6.00			1/2" Ice	1.80	1.50	0.09

4 T	Job		Page
tnxTower		Woodbury North (BU 876405)	22 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	K
			0.00			1" Ice	1.97	1.65	0.11
						2" Ice	2.32	1.99	0.16
RRUS 8843 B2/B66A	В	From Leg	4.00	30.00	80.00	No Ice	1.64	1.35	0.07
			6.00			1/2" Ice	1.80	1.50	0.09
			0.00			1" Ice	1.97	1.65	0.11
	_					2" Ice	2.32	1.99	0.16
RRUS 8843 B2/B66A	С	From Leg	4.00	20.00	80.00	No Ice	1.64	1.35	0.07
			6.00			1/2" Ice	1.80	1.50	0.09
			0.00			1" Ice	1.97	1.65	0.11
						2" Ice	2.32	1.99	0.16
RRUS 4478 B14	А	From Leg	4.00	30.00	80.00	No Ice	1.84	1.06	0.06
			0.00			1/2" Ice	2.01	1.20	0.08
			0.00			1" Ice	2.19	1.34	0.09
DDUG 4470 D14	р	E I	4.00	20.00	00.00	2" Ice	2.57	1.66	0.14
RRUS 4478 B14	В	From Leg	4.00	30.00	80.00	No Ice	1.84	1.06	0.06
			0.00			1/2" Ice	2.01	1.20	0.08
			0.00			1" Ice 2" Ice	2.19 2.57	1.34 1.66	0.09 0.14
RRUS 4478 B14	C	From Log	4.00	20.00	80.00				
KKUS 4478 D14	С	From Leg	4.00	20.00	80.00	No Ice 1/2" Ice	1.84	1.06	0.06 0.08
			$0.00 \\ 0.00$			172 ICe 1" Ice	2.01 2.19	1.20 1.34	0.08
			0.00			2" Ice	2.19	1.66	0.09
DC6-48-60-0-8C-EV	А	From Leg	4.00	30.00	80.00	No Ice	2.37	1.00	0.14
DC0-48-00-0-8C-EV	А	FIOII Leg	4.00 0.00	30.00	80.00	1/2" Ice	1.14	1.14	0.05
			0.00			172 ICC 1" ICC	2.00	2.00	0.05
			0.00			2" Ice	2.45	2.45	0.13
DC6-48-60-18-8F	В	From Leg	4.00	30.00	80.00	No Ice	1.21	1.21	0.03
Dec 10 00 10 01	D	Tioni Leg	0.00	50.00	00.00	1/2" Ice	1.89	1.89	0.05
			0.00			1" Ice	2.11	2.11	0.08
			0.00			2" Ice	2.57	2.57	0.14
T-Arm Mount [TA 602-3]	С	None		0.00	80.00	No Ice	13.40	13.40	0.77
· · · · · · · · · · · · · · · · · · ·		1.0110		0100	00.00	1/2" Ice	16.44	16.44	1.00
						1" Ice	19.70	19.70	1.29
						2" Ice	25.86	25.86	2.05
75									
RRUS 4449 B5/B12	А	From Leg	2.00	0.00	75.00	No Ice	1.97	1.41	0.07
		U	0.00			1/2" Ice	2.14	1.56	0.09
			0.00			1" Ice	2.33	1.73	0.11
						2" Ice	2.72	2.07	0.16
RRUS 4449 B5/B12	В	From Leg	2.00	0.00	75.00	No Ice	1.97	1.41	0.07
		-	0.00			1/2" Ice	2.14	1.56	0.09
			0.00			1" Ice	2.33	1.73	0.11
						2" Ice	2.72	2.07	0.16
RRUS 4449 B5/B12	С	From Leg	2.00	0.00	75.00	No Ice	1.97	1.41	0.07
			0.00			1/2" Ice	2.14	1.56	0.09
			0.00			1" Ice	2.33	1.73	0.11
						2" Ice	2.72	2.07	0.16
2.4" Dia. x 4-ft	А	From Leg	2.00	0.00	75.00	No Ice	0.87	0.87	0.01
			0.00			1/2" Ice	1.12	1.12	0.02
			0.00			1" Ice	1.37	1.37	0.03
						2" Ice	1.91	1.91	0.06
2.4" Dia. x 4-ft	В	From Leg	2.00	0.00	75.00	No Ice	0.87	0.87	0.01
			0.00			1/2" Ice	1.12	1.12	0.02
			0.00			1" Ice	1.37	1.37	0.03
o /// The line is a	~					2" Ice	1.91	1.91	0.06
2.4" Dia. x 4-ft	С	From Leg	2.00	0.00	75.00	No Ice	0.87	0.87	0.01
			0.00			1/2" Ice	1.12	1.12	0.02

tress Tossus are	Job		Page
tnxTower		Woodbury North (BU 876405)	23 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	K
			0.00			1" Ice	1.37	1.37	0.03
	~			0.00		2" Ice	1.91	1.91	0.06
Side Arm Mount [SO 901-3]	С	None		0.00	75.00	No Ice	1.14	1.14	0.32
						1/2" Ice 1" Ice	1.49 1.91	1.49 1.91	0.34 0.37
						2" Ice	2.93	2.93	0.37
68						2 100	2.95	2.75	0.40
MX08FRO665-21 w/ Mount	А	From	4.00	0.00	68.00	No Ice	8.01	4.23	0.11
Pipe		Centroid-Le	-4.00			1/2" Ice	8.52	4.69	0.19
*		g	0.00			1" Ice	9.04	5.16	0.29
		-				2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/ Mount	в	From	4.00	0.00	68.00	No Ice	8.01	4.23	0.11
Pipe		Centroid-Le	-4.00			1/2" Ice	8.52	4.69	0.19
		g	0.00			1" Ice	9.04	5.16	0.29
						2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/ Mount	С	From	4.00	0.00	68.00	No Ice	8.01	4.23	0.11
Pipe		Centroid-Le	-4.00			1/2" Ice	8.52	4.69	0.19
		g	0.00			1" Ice	9.04	5.16	0.29
TA 08025 DC04		F	4.00	0.00	68.00	2" Ice	10.11	6.12	0.52
TA08025-B604	А	From Controid Lo	4.00	0.00	68.00	No Ice 1/2" Ice	1.96 2.14	0.98	0.06
		Centroid-Le	-4.00 0.00			172 Ice 1" Ice	2.14	1.11 1.25	0.08 0.10
		g	0.00			2" Ice	2.32	1.23	0.10
TA08025-B604	В	From	4.00	0.00	68.00	No Ice	1.96	0.98	0.15
1A00025-D004	D	Centroid-Le	-4.00	0.00	08.00	1/2" Ice	2.14	1.11	0.08
		g	0.00			1" Ice	2.32	1.25	0.00
		Б	0.00			2" Ice	2.71	1.55	0.15
TA08025-B604	С	From	4.00	0.00	68.00	No Ice	1.96	0.98	0.06
		Centroid-Le	-4.00			1/2" Ice	2.14	1.11	0.08
		g	0.00			1" Ice	2.32	1.25	0.10
		-				2" Ice	2.71	1.55	0.15
TA08025-B605	Α	From	4.00	0.00	68.00	No Ice	1.96	1.13	0.08
		Centroid-Le	-4.00			1/2" Ice	2.14	1.27	0.09
		g	0.00			1" Ice	2.32	1.41	0.11
						2" Ice	2.71	1.72	0.16
TA08025-B605	В	From	4.00	0.00	68.00	No Ice	1.96	1.13	0.08
		Centroid-Le	-4.00			1/2" Ice	2.14	1.27	0.09
		g	0.00			1" Ice	2.32	1.41	0.11
TA02025 D605	С	From	4.00	0.00	68.00	2" Ice	2.71	1.72	0.16
TA08025-B605	C	From Centroid-Le	4.00 -4.00	0.00	68.00	No Ice	1.96 2.14	1.13 1.27	0.08 0.09
			0.00			1/2" Ice 1" Ice	2.14	1.27	0.09
		g	0.00			2" Ice	2.52	1.72	0.11
RDIDC-9181-PF-48	А	From	4.00	0.00	68.00	No Ice	2.01	1.17	0.10
RELECTION IN 10		Centroid-Le	-4.00	0.00	00.00	1/2" Ice	2.19	1.31	0.02
		g	0.00			1" Ice	2.37	1.46	0.06
		0				2" Ice	2.76	1.78	0.11
(2) 2.4" Dia x 8-ft Mount Pipe	А	From	4.00	0.00	68.00	No Ice	1.90	1.90	0.03
1		Centroid-Le	0.00			1/2" Ice	2.73	2.73	0.04
		g	0.00			1" Ice	3.40	3.40	0.06
						2" Ice	4.40	4.40	0.12
(2) 2.4" Dia x 8-ft Mount Pipe	В	From	4.00	0.00	68.00	No Ice	1.90	1.90	0.03
		Centroid-Le	0.00			1/2" Ice	2.73	2.73	0.04
		g	0.00			1" Ice	3.40	3.40	0.06
	C	P.	4.00	0.00	60.00	2" Ice	4.40	4.40	0.12
(2) 2.4" Dia x 8-ft Mount Pipe	С	From Controld Lo	4.00	0.00	68.00	No Ice	1.90	1.90	0.03
		Centroid-Le	0.00			1/2" Ice	2.73	2.73	0.04

tran Tonu or	Job		Page
tnxTower		Woodbury North (BU 876405)	24 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	0		Vert ft ft ft	o	ft		ft²	ft ²	Κ
		g	0.00			1" Ice	3.40	3.40	0.06
						2" Ice	4.40	4.40	0.12
Commscope MC-PK8-DSH	С	None		0.00	68.00	No Ice	34.24	34.24	1.75
-						1/2" Ice	62.95	62.95	2.10
						1" Ice	91.66	91.66	2.45
50						2" Ice	149.08	149.08	3.15
KS24019-L112A	в	From Leg	3.00	0.00	50.00	No Ice	0.08	0.08	0.01
K324019-L112A	D	110m Leg	0.00	0.00	50.00	1/2" Ice	0.08	0.08	0.01
			1.00			172 ICE 1" Ice	0.13	0.13	0.01
			1.00						
0.1. Ann. Mar. of 100 701 11	р	Darme Law	1.50	0.00	50.00	2" Ice	0.35	0.35	0.02
Side Arm Mount [SO 701-1]	В	From Leg	1.50	0.00	50.00	No Ice	0.85	1.67	0.07
			0.00			1/2" Ice	1.14	2.34	0.08
			0.00			1" Ice	1.43	3.01	0.09
						2" Ice	2.01	4.35	0.12
**									

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp

Arran Tonu or	Job	Page
tnxTower	Woodbury North (BU 876405)	25 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client Crown Castle	Designed by kolson

Comb.	Description
No.	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

			wem	mber Forces				
Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft	
T 1	110 - 105	Pole	Mar Tanaian		0.00	<u> </u>		
L1	110 - 105	Pole	Max Tension	26 26		0.00	-0.00	
			Max. Compression	26	-6.82	-0.19	0.69	
			Max. Mx	20	-2.47	11.45	0.12	
			Max. My	2	-2.45	0.38	11.45	
			Max. Vy	20	-3.76	11.45	0.12	
			Max. Vx	14	3.80	0.35	-11.13	
			Max. Torque	13			0.93	
L2	105 - 100	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-15.80	-0.20	0.73	
			Max. Mx	20	-6.70	39.35	0.61	
			Max. My	2	-6.67	0.84	39.80	
			Max. Vy	20	-8.25	39.35	0.61	
			Max. Vx	14	8.43	0.01	-39.50	
			Max. Torque	3			-1.35	
L3	100 - 98.5	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-15.92	-0.20	0.75	
			Max. Mx	20	-6.79	51.77	0.90	
			Max. My	2	-6.75	1.11	52.48	
			Max. Vy	20	-8.32	51.77	0.90	
			Max. Vx	14	8.49	-0.28	-52.19	
			Max. Torque	3			-1.35	
L4	98.5 - 93.5	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-17.70	-0.20	1.18	
			Max. Mx	20	-7.68	96.46	1.93	
			Max. My	2	-7.65	2.04	98.12	
			Max. Vy	20	-9.26	96.46	1.93	
			Max. Vx	14	9.44	-1.24	-97.67	
			Max. Torque	3			-1.35	
L5	93.5 - 88.5	Pole	Max Tension	1	0.00	0.00	0.00	
20			Max. Compression	26	-18.16	-0.21	1.23	
			Max. Mx	20	-8.04	143.21	2.89	
			Max. My	20	-8.01	2.98	145.73	
			Max. Vy	20	-9.45	143.21	2.89	

Maximum Member Forces

	Job		Page
tnxTower		Woodbury North (BU 876405)	26 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vx	14	9.63	-2.19	-145.31
			Max. Torque	3			-1.35
L6	88.5 - 83.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-18.64	-0.21	1.27
			Max. Mx	20	-8.43	190.86	3.84
			Max. My	2	-8.40	3.91	194.23
			Max. Vy	20	-9.63	190.86	3.84
			Max. Vx	14	9.81	-3.14	-193.86
			Max. Torque	15	,		1.34
L7	83.5 - 78.67	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-25.16	-0.12	2.55
			Max. Mx	20	-11.07	242.23	4.75
			Max. My	2	-11.05	4.56	246.72
			Max. Vy	20	-13.21	242.23	4.75
			Max. Vy Max. Vx	20 14	13.35	-3.87	-245.74
			Max. Torque	14	15.55	-5.07	1.79
L8	78.67 - 78.42	Pole	Max. Torque Max Tension	10	0.00	0.00	0.00
LO	10.01 - 10.42	role		26	-25.21	-0.12	2.55
			Max. Compression		-25.21		2.55 4.76
			Max. Mx	20		245.53	
			Max. My	2	-11.10	4.57	250.06
			Max. Vy	20	-13.20	245.53	4.76
			Max. Vx	14	13.35	-3.88	-249.08
1.0	70.40 72.40	D 1	Max. Torque	10	0.00	0.00	1.79
L9	78.42 - 73.42	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-27.35	-0.12	2.60
			Max. Mx	20	-12.55	312.79	4.91
			Max. My	2	-12.52	4.70	317.95
			Max. Vy	20	-13.84	312.79	4.91
			Max. Vx	14	14.15	-4.02	-317.48
			Max. Torque	10			1.79
L10	73.42 - 68.42	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-28.46	-0.12	2.64
			Max. Mx	20	-13.36	382.58	5.06
			Max. My	14	-13.29	-4.16	-389.25
			Max. Vy	20	-14.09	382.58	5.06
			Max. Vx	14	14.58	-4.16	-389.25
			Max. Torque	10			1.79
L11	68.42 - 63.42	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-35.31	0.21	3.02
			Max. Mx	20	-17.22	467.18	5.30
			Max. My	14	-17.15	-4.24	-476.22
			Max. Vy	20	-17.28	467.18	5.30
			Max. Vx	14	17.79	-4.24	-476.22
			Max. Torque	10			1.79
L12	63.42 - 58.67	Pole	Max Tension	1	0.00	0.00	0.00
	50.12 00.07		Max. Compression	26	-36.41	0.21	3.06
			Max. Mx	20	-18.06	549.71	5.45
			Max. My	20 14	-17.99	-4.37	-561.20
			Max. Vy	20	-17.50	549.71	5.45
			Max. Vy Max. Vx	20 14	-17.50	-4.37	-561.20
			Max. VX Max. Torque	14	10.01	-+.37	-361.20
[12	5067 5010	Pole	Max. Torque Max Tension		0.00	0.00	0.00
L13	58.67 - 58.42	role		1			
			Max. Compression	26 20	-36.47	0.21	3.06
			Max. Mx	20	-18.11	554.09	5.46
			Max. My	14	-18.05	-4.38	-565.70
			Max. Vy	20	-17.50	554.09	5.46
			Max. Vx	14	18.01	-4.38	-565.70
·	FO 18		Max. Torque	10	0.55		1.78
L14	58.42 - 53.42	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-37.65	0.21	3.09
			Max. Mx	20	-19.01	642.11	5.60

trees Tools on	Job		Page
tnxTower		Woodbury North (BU 876405)	27 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
		-		Comb.	K	kip-ft	kip-ft
			Max. My	14	-18.95	-4.52	-656.29
			Max. Vy	20	-17.73	642.11	5.60
			Max. Vx	14	18.24	-4.52	-656.29
			Max. Torque	10			1.78
L15	53.42 - 47.12	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-38.26	0.21	3.11
			Max. Mx	20	-19.47	687.42	5.67
			Max. My	14	-19.42	-4.59	-702.91
			Max. Vy	20	-17.84	687.42	5.67
			Max. Vx	14	18.35	-4.59	-702.91
			Max. Torque	10	10.00	1105	1.78
L16	47.12 - 45.87	Pole	Max Tension	1	0.00	0.00	0.00
110	17.12 13.07	1010	Max. Compression	26	-40.35	-0.10	2.98
			Max. Mx	20	-21.03	777.34	5.65
			Max. My	14	-20.97	-4.85	-795.77
			Max. Vy	20	-18.19	777.34	5.65
			Max. Vy Max. Vx	20 14	-18.19	-4.85	-795.77
			Max. VX Max. Torque	14	10.71	-+.03	1.78
.17	45.87 - 40.87	Pole	Max. Torque Max Tension	10	0.00	0.00	0.00
	+3.07 - 40.07	role		26	-41.68	-0.11	3.02
			Max. Compression			-0.11 868.71	3.02 5.72
			Max. Mx	20	-22.07		
			Max. My Max. Vu	14	-22.02	-4.92	-889.78
			Max. Vy	20	-18.39	868.71	5.72
			Max. Vx	14	18.92	-4.92	-889.78
			Max. Torque	10	0.00	0.00	1.78
L18	40.87 - 35.87	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-43.03	-0.13	3.05
			Max. Mx	20	-23.13	961.10	5.79
			Max. My	14	-23.09	-4.98	-984.79
			Max. Vy	20	-18.59	961.10	5.79
			Max. Vx	14	19.12	-4.98	-984.79
			Max. Torque	10			1.78
_19	35.87 - 30.87	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-44.39	-0.15	3.07
			Max. Mx	20	-24.21	1054.44	5.85
			Max. My	14	-24.18	-5.03	-1080.75
			Max. Vy	20	-18.78	1054.44	5.85
			Max. Vx	14	19.30	-5.03	-1080.75
			Max. Torque	10			1.78
_20	30.87 - 28.67	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-45.00	-0.15	3.07
			Max. Mx	20	-24.70	1095.80	5.87
			Max. My	14	-24.66	-5.06	-1123.26
			Max. Vy	20	-18.86	1095.80	5.87
			Max. Vx	14	19.38	-5.06	-1123.26
			Max. Torque	10	12.000	2.00	1.78
_21	28.67 - 28.42	Pole	Max Tension	1	0.00	0.00	0.00
1 22	20.07 - 20.42	1010	Max. Compression	26	-45.07	-0.15	3.08
			Max. Mx	20 20	-24.76	1100.51	5.88
			Max. My	20 14	-24.70	-5.06	-1128.11
			•		-24.75	-5.00	-1128.11
			Max. Vy Max. Vx	20 14			
			Max. Vx Max. Torque	14	19.37	-5.06	-1128.11
22	28 42 22 42	De ¹	Max. Torque	10	0.00	0.00	1.78
L22	28.42 - 23.42	Pole	Max Tension	$\frac{1}{2}$	0.00	0.00	0.00
			Max. Compression	26 20	-46.46	-0.17	3.08
			Max. Mx	20	-25.86	1195.17	5.93
			Max. My	14	-25.84	-5.11	-1225.37
			Max. Vy	20	-19.03	1195.17	5.93
			Max. Vx	14	19.55	-5.11	-1225.37
L23			Max. Torque	10			1.78
	23.42 - 18.42	Pole	Max Tension	1	0.00	0.00	0.00

ter Toru or	Job		Page
tnxTower		Woodbury North (BU 876405)	28 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-47.86	-0.19	3.09
			Max. Mx	20	-26.99	1290.62	5.98
			Max. My	14	-26.97	-5.16	-1323.40
			Max. Vy	20	-19.18	1290.62	5.98
			Max. Vx	14	19.70	-5.16	-1323.40
			Max. Torque	10			1.78
L24	18.42 - 14.17	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-49.10	-0.16	3.12
			Max. Mx	20	-27.97	1372.31	6.02
			Max. My	14	-27.95	-5.20	-1407.27
			Max. Vy	20	-19.30	1372.31	6.02
			Max. Vx	14	19.81	-5.20	-1407.27
			Max. Torque	10			1.78
L25	14.17 - 13.92	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-49.18	-0.16	3.13
			Max. Mx	20	-28.05	1377.14	6.02
			Max. My	14	-28.03	-5.20	-1412.22
			Max. Vy	20	-19.29	1377.14	6.02
			Max. Vx	14	19.80	-5.20	-1412.22
			Max. Torque	10			1.78
L26	13.92 - 13.67	Pole	Max Tension	1	0.00	0.00	0.00
	10002 10107	1 010	Max. Compression	26	-49.27	-0.15	3.13
			Max. Mx	20	-28.11	1381.96	6.02
			Max. My	14	-28.10	-5.20	-1417.17
			Max. Vy	20	-19.30	1381.96	6.02
			Max. Vx	14	19.81	-5.20	-1417.17
			Max. Torque	10	19.01	5.20	1.78
L27	13.67 - 13.42	Pole	Max Tension	1	0.00	0.00	0.00
227	15.07 15.12	1010	Max. Compression	26	-49.35	-0.15	3.14
			Max. Mx	20	-28.18	1386.78	6.03
			Max. My	14	-28.16	-5.20	-1422.12
			Max. Vy	20	-19.31	1386.78	6.03
			Max. Vx	14	19.82	-5.20	-1422.12
			Max. Torque	10	19.02	5.20	1.78
L28	13.42 - 8.42	Pole	Max Tension	1	0.00	0.00	0.00
120	15.42 0.42	1010	Max. Compression	26	-50.91	-0.09	3.18
			Max. Mx	20	-29.41	1483.66	6.07
			Max. My	14	-29.40	-5.25	-1521.50
			Max. Vy	20	-19.47	1483.66	6.07
			Max. Vx	14	19.96	-5.25	-1521.50
			Max. Torque	10	17.70	5.25	1.78
L29	8.42 - 5.75	Pole	Max Tension	1	0.00	0.00	0.00
	0.42 5.75	1010	Max. Compression	26	-51.75	-0.05	3.22
			Max. Mx	20	-30.08	1535.69	6.09
			Max. My	14	-30.08	-5.27	-1574.83
			Max. Vy	20	-19.55	1535.69	6.09
			Max. Vx	14	20.03	-5.27	-1574.83
			Max. Torque	10	20.05	-3.27	1.78
L30	5.75 - 5.5	Pole	Max Tension	10	0.00	0.00	0.00
1.50	5.75 - 5.5	TOIC	Max. Compression	26	-51.84	-0.05	3.22
			Max. Compression Max. Mx	20 20	-30.16	1540.57	6.09
			Max. My	20 14	-30.16	-5.27	-1579.83
			Max. Vy	20	-19.54	1540.57	6.09
			Max. Vy Max. Vx	20 14	20.02	-5.27	-1579.83
				14 10	20.02	-3.27	
I 21	55 257	Dela	Max. Torque		0.00	0.00	1.78
L31	5.5 - 3.57	Pole	Max Tension Max. Compression	1	0.00	0.00	0.00
			1	26 20	-52.56	-0.02	3.24
			Max. Mx Max. Mx	20	-30.75	1578.33	6.10 1618 52
			Max. My May Vy	14	-30.74	-5.28	-1618.52
			Max. Vy Max. Vx	20	-19.63	1578.33	6.10 1618 52
			Max. Vx	14	20.11	-5.28	-1618.52

Anna Tanu are	Job		Page
tnxTower		Woodbury North (BU 876405)	29 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
NO.	Ji	Туре		Comb.	K	kip-ft	kip-ft
			Max. Torque	10	K	кір-јі	1.78
L32	3.57 - 3.32	Pole	Max. Tension	1	0.00	0.00	0.00
102	5.57 5.52	1010	Max. Compression	26	-52.66	-0.01	3.25
			Max. Mx	20	-30.84	1583.24	6.10
			Max. My	14	-30.84	-5.28	-1623.54
			Max. Vy	20	-19.61	1583.24	6.10
			Max. Vx	14	20.09	-5.28	-1623.54
			Max. Torque	10			1.78
L33	3.32 - 3.17	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.71	-0.01	3.25
			Max. Mx	20	-30.89	1586.18	6.11
			Max. My	14	-30.88	-5.29	-1626.56
			Max. Vy	20	-19.62	1586.18	6.11
			Max. Vx	14	20.10	-5.29	-1626.56
			Max. Torque	10			1.78
L34	3.17 - 2.92	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.79	-0.01	3.25
			Max. Mx	20	-30.95	1591.08	6.11
			Max. My	14	-30.95	-5.29	-1631.58
			Max. Vy	20	-19.63	1591.08	6.11
			Max. Vx	14	20.10	-5.29	-1631.58
		~ .	Max. Torque	10			1.78
L35	2.92 - 2.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.84	-0.01	3.25
			Max. Mx	20	-30.99	1594.42	6.11
			Max. My	14	-30.99	-5.29	-1635.00
			Max. Vy	20	-19.63	1594.42 -5.29	6.11
			Max. Vx Max. Torque	14 10	20.11	-5.29	-1635.00 1.78
L36	2.75 - 2.5	Pole	Max. Torque Max Tension	10	0.00	0.00	0.00
L30	2.13 - 2.3	Pole	Max. Compression	26	-52.92	-0.00	3.26
			Max. Max	20 20	-31.06	1599.33	6.11
			Max. My	20 14	-31.05	-5.29	-1640.03
			Max. Wy	20	-19.64	1599.33	6.11
			Max. Vx	20 14	20.12	-5.29	-1640.03
			Max. Torque	10	20.12	-3.27	1.78
L37	2.5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
	2.0 0	1 010	Max. Compression	26	-53.68	0.03	3.28
			Max. Mx	20 20	-31.68	1648.51	6.13
			Max. My	14	-31.68	-5.31	-1690.39
			Max. Vy	20	-19.73	1648.51	6.13
			Max. Vx	14	20.20	-5.31	-1690.39
			Max. Torque	10			1.78

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	Κ	K	K
		Comb.			
Pole	Max. Vert	27	53.68	-0.00	5.91
	Max. H _x	20	31.69	19.71	0.01
	Max. Hz	3	23.77	0.01	19.84
	Max. M _x	2	1665.20	0.01	19.84
	Max. Mz	8	1648.18	-19.71	-0.01
	Max. Torsion	10	1.78	-17.04	-9.92
	Min. Vert	11	23.77	-17.04	-9.92
	Min. H _x	9	23.77	-19.71	-0.01

	Job	Page
tnxTower	Woodbury North (BU 876405)	30 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client Crown Castle	Designed by kolson

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	Κ	Κ	Κ
		Comb.			
	Min. Hz	15	23.77	-0.01	-20.18
	Min. M _x	14	-1690.39	-0.01	-20.18
	Min. Mz	20	-1648.51	19.71	0.01
	Min. Torsion	22	-1.78	17.34	10.10

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	$Shear_z$	Overturning Moment M	Overturning Moment M	Torque
Combination	K	K	K	Moment, M _x kip-ft	Moment, M _z kip-ft	kip-ft
Dead Only	26.41	0.00	0.00	-0.49	0.12	-0.00
1.2 Dead+1.0 Wind 0 deg - No	31.69	-0.01	-19.84	-1665.20	5.70	1.08
	00.77	0.01	10.04	1/20 40	5.40	1.00
0.9 Dead+1.0 Wind 0 deg - No Ice	23.77	-0.01	-19.84	-1638.48	5.48	1.09
1.2 Dead+1.0 Wind 30 deg - No	31.69	9.83	-17.18	-1439.81	-819.09	0.22
Ice 0.9 Dead+1.0 Wind 30 deg - No	23.77	9.83	-17.18	-1416.72	-806.16	0.24
Ice 1.2 Dead+1.0 Wind 60 deg - No	31.69	17.33	-10.08	-841.45	-1447.03	-0.69
Ice						
0.9 Dead+1.0 Wind 60 deg - No	23.77	17.33	-10.08	-827.96	-1424.13	-0.68
Ice 1.2 Dead+1.0 Wind 90 deg - No	31.69	19.71	0.01	4.88	-1648.18	-1.43
Ice 0.9 Dead+1.0 Wind 90 deg - No	23.77	19.71	0.01	4.89	-1621.98	-1.42
Ice 1.2 Dead+1.0 Wind 120 deg -	31.69	17.04	9.92	836.44	-1429.51	-1.78
No Ice 0.9 Dead+1.0 Wind 120 deg -	23.77	17.04	9.92	823.20	-1406.76	-1.78
No Ice 1.2 Dead+1.0 Wind 150 deg -	31.69	9.89	17.26	1444.76	-829.03	-1.65
No Ice 0.9 Dead+1.0 Wind 150 deg -	23.77	9.89	17.26	1421.86	-815.83	-1.66
No Ice 1.2 Dead+1.0 Wind 180 deg -	31.69	0.01	20.18	1690.39	-5.31	-1.08
No Ice 0.9 Dead+1.0 Wind 180 deg -	23.77	0.01	20.18	1663.68	-5.21	-1.09
No Ice 1.2 Dead+1.0 Wind 210 deg -	31.69	-9.83	17.18	1438.51	819.45	-0.22
No Ice 0.9 Dead+1.0 Wind 210 deg -	23.77	-9.83	17.18	1415.77	806.42	-0.24
No Ice 1.2 Dead+1.0 Wind 240 deg -	31.69	-17.04	9.91	826.93	1424.43	0.69
No Ice 0.9 Dead+1.0 Wind 240 deg -	23.77	-17.04	9.91	813.97	1401.73	0.68
No Ice 1.2 Dead+1.0 Wind 270 deg -	31.69	-19.71	-0.01	-6.13	1648.51	1.43
No Ice 0.9 Dead+1.0 Wind 270 deg -	23.77	-19.71	-0.01	-5.80	1622.22	1.42
No Ice 1.2 Dead+1.0 Wind 300 deg -	31.69	-17.34	-10.10	-850.90	1452.79	1.78
No Ice 0.9 Dead+1.0 Wind 300 deg -	23.77	-17.34	-10.10	-837.16	1429.64	1.77
No Ice 1.2 Dead+1.0 Wind 330 deg - No Ice	31.69	-9.89	-17.26	-1446.00	829.42	1.65

<i>tnxTower</i>	Job	Woodbury North (BU 876405)	Page 31 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Load Combination	Vertical	Shear _x	$Shear_z$	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 330 deg -	23.77	-9.89	-17.26	-1422.77	816.11	1.65
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	53.68	0.00	-0.00	-3.28	0.03	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	53.68	0.00	-5.91	-511.84	1.14	0.27
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	53.68	2.94	-5.12	-443.17	-251.42	0.04
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	53.68	5.09	-2.95	-256.70	-436.70	-0.20
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	53.68	5.87	-0.00	-2.25	-504.79	-0.38
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	53.68	5.08	2.95	251.84	-437.70	-0.47
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	53.68	2.94	5.11	437.56	-253.33	-0.42
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	53.68	-0.00	5.91	505.24	-1.07	-0.27
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	53.68	-2.94	5.12	436.45	251.48	-0.04
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	53.68	-5.09	2.95	249.93	436.66	0.20
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	53.68	-5.87	0.00	-4.46	504.84	0.38
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	53.68	-5.09	-2.95	-258.61	437.86	0.47
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	53.68	-2.94	-5.11	-444.27	253.39	0.42
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	26.41	-0.00	-4.83	-402.74	1.46	0.28
Dead+Wind 30 deg - Service	26.41	2.40	-4.19	-348.27	-197.83	0.06
Dead+Wind 60 deg - Service	26.41	4.22	-2.46	-203.70	-349.56	-0.17
Dead+Wind 90 deg - Service	26.41	4.80	0.00	0.79	-398.15	-0.36
Dead+Wind 120 deg - Service	26.41	4.15	2.42	201.72	-345.32	-0.45
Dead+Wind 150 deg - Service	26.41	2.41	4.21	348.72	-200.23	-0.42
Dead+Wind 180 deg - Service	26.41	0.00	4.92	408.10	-1.19	-0.28
Dead+Wind 210 deg - Service	26.41	-2.40	4.19	347.21	198.10	-0.06
Dead+Wind 240 deg - Service	26.41	-4.15	2.42	199.43	344.27	0.17
Dead+Wind 270 deg - Service	26.41	-4.80	-0.00	-1.85	398.41	0.36
Dead+Wind 300 deg - Service	26.41	-4.23	-2.46	-205.99	351.15	0.45
Dead+Wind 330 deg - Service	26.41	-2.41	-4.21	-349.78	200.50	0.42

Solution Summary

	Sui	n of Applied Force.	S		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	Κ	Κ	Κ	Κ	Κ	Κ	
1	0.00	-26.41	0.00	0.00	26.41	0.00	0.000%
2	-0.01	-31.69	-19.84	0.01	31.69	19.84	0.000%
3	-0.01	-23.77	-19.84	0.01	23.77	19.84	0.000%
4	9.83	-31.69	-17.18	-9.83	31.69	17.18	0.000%
5	9.83	-23.77	-17.18	-9.83	23.77	17.18	0.000%
6	17.33	-31.69	-10.08	-17.33	31.69	10.08	0.000%
7	17.33	-23.77	-10.08	-17.33	23.77	10.08	0.000%
8	19.71	-31.69	0.01	-19.71	31.69	-0.01	0.000%
9	19.71	-23.77	0.01	-19.71	23.77	-0.01	0.000%
10	17.04	-31.69	9.92	-17.04	31.69	-9.92	0.000%
11	17.04	-23.77	9.92	-17.04	23.77	-9.92	0.000%
12	9.89	-31.69	17.26	-9.89	31.69	-17.26	0.000%
13	9.89	-23.77	17.26	-9.89	23.77	-17.26	0.000%

	Job		Page
tnxTower		Woodbury North (BU 876405)	32 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

		n of Applied Forces			Sum of Reactior	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
14	0.01	-31.69	20.18	-0.01	31.69	-20.18	0.000%
15	0.01	-23.77	20.18	-0.01	23.77	-20.18	0.000%
16	-9.83	-31.69	17.18	9.83	31.69	-17.18	0.000%
17	-9.83	-23.77	17.18	9.83	23.77	-17.18	0.000%
18	-17.04	-31.69	9.91	17.04	31.69	-9.91	0.000%
19	-17.04	-23.77	9.91	17.04	23.77	-9.91	0.000%
20	-19.71	-31.69	-0.01	19.71	31.69	0.01	0.000%
21	-19.71	-23.77	-0.01	19.71	23.77	0.01	0.000%
22	-17.34	-31.69	-10.10	17.34	31.69	10.10	0.000%
23	-17.34	-23.77	-10.10	17.34	23.77	10.10	0.000%
24	-9.89	-31.69	-17.26	9.89	31.69	17.26	0.000%
25	-9.89	-23.77	-17.26	9.89	23.77	17.26	0.000%
26	0.00	-53.68	0.00	-0.00	53.68	0.00	0.000%
27	0.00	-53.68	-5.91	-0.00	53.68	5.91	0.000%
28	2.94	-53.68	-5.12	-2.94	53.68	5.12	0.000%
29	5.09	-53.68	-2.95	-5.09	53.68	2.95	0.000%
30	5.87	-53.68	-0.00	-5.87	53.68	0.00	0.000%
31	5.08	-53.68	2.95	-5.08	53.68	-2.95	0.000%
32	2.94	-53.68	5.11	-2.94	53.68	-5.11	0.000%
33	-0.00	-53.68	5.91	0.00	53.68	-5.91	0.000%
34	-2.94	-53.68	5.12	2.94	53.68	-5.12	0.000%
35	-5.09	-53.68	2.95	5.09	53.68	-2.95	0.000%
36	-5.87	-53.68	0.00	5.87	53.68	-0.00	0.000%
37	-5.09	-53.68	-2.95	5.09	53.68	2.95	0.000%
38	-2.94	-53.68	-5.11	2.94	53.68	5.11	0.000%
39	-0.00	-26.41	-4.83	0.00	26.41	4.83	0.000%
40	2.40	-26.41	-4.19	-2.40	26.41	4.19	0.000%
41	4.22	-26.41	-2.46	-4.22	26.41	2.46	0.000%
42	4.80	-26.41	0.00	-4.80	26.41	-0.00	0.000%
43	4.15	-26.41	2.42	-4.15	26.41	-2.42	0.000%
44	2.41	-26.41	4.21	-2.41	26.41	-4.21	0.000%
45	0.00	-26.41	4.92	-0.00	26.41	-4.92	0.000%
46	-2.40	-26.41	4.19	2.40	26.41	-4.19	0.000%
47	-4.15	-26.41	2.42	4.15	26.41	-2.42	0.000%
48	-4.80	-26.41	-0.00	4.80	26.41	0.00	0.000%
49	-4.23	-26.41	-2.46	4.23	26.41	2.46	0.000%
50	-2.41	-26.41	-4.21	2.41	26.41	4.21	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	6	0.00000001	0.00009767
3	Yes	5	0.0000001	0.00063079
4	Yes	7	0.0000001	0.00017019
5	Yes	6	0.0000001	0.00075108
6	Yes	7	0.0000001	0.00017563
7	Yes	6	0.0000001	0.00077383
8	Yes	6	0.0000001	0.00014321
9	Yes	5	0.00000001	0.00090193
10	Yes	7	0.0000001	0.00016248
11	Yes	6	0.0000001	0.00071538
12	Yes	7	0.0000001	0.00018052
13	Yes	6	0.0000001	0.00079838
14	Yes	6	0.00000001	0.00015495

· ·		Job			Page
tnx	cTower		Woodbury N	lorth (BU 876405)	33 of 40
"	.	Project			Date
Pr	r Engineering ofessionals 26 Tryon Rd.		TEP No.	25640.597664	15:08:01 09/21/21
Rale	ileigh, NC 27603 ne: (919) 661-6351 FAX:		Cro	wn Castle	Designed by kolson
15	X	-	0.0000001	0.00007665	
15	Yes	5	0.00000001	0.00097665	
16	Yes	7	0.00000001	0.00016735	
17	Yes	6	0.00000001	0.00073776	
18	Yes	7	0.00000001	0.00016472	
19	Yes	6	0.00000001	0.00072658	
20	Yes	6	0.00000001	0.00020007	
21	Yes	6	0.00000001	0.00006876	
22	Yes	7	0.00000001	0.00018456	
23	Yes	6	0.00000001	0.00081426	
24	Yes	7	0.00000001	0.00016362	
25	Yes	6	0.00000001	0.00071922	
26	Yes	4	0.00000001	0.00075202	
27	Yes	7	0.00000001	0.00024815	
28	Yes	7	0.00000001	0.00035039	
29	Yes	7	0.00000001	0.00035268	
30	Yes	7	0.00000001	0.00024414	
31	Yes	7	0.00000001	0.00033894	
32	Yes	7	0.00000001	0.00035111	
33	Yes	7	0.00000001	0.00024186	
34	Yes	7	0.00000001	0.00033920	
35	Yes	7	0.00000001	0.00033555	
36	Yes	7	0.00000001	0.00024420	
37	Yes	7	0.00000001	0.00036171	
38	Yes	7	0.00000001	0.00035052	
39	Yes	5	0.00000001	0.00011660	
40	Yes	5	0.00000001	0.00053593	
41	Yes	5	0.00000001	0.00057329	
42	Yes	5	0.00000001	0.00014494	
43	Yes	5	0.00000001	0.00048190	
44	Yes	5	0.00000001	0.00062929	
45	Yes	5	0.00000001	0.00012690	
46	Yes	5	0.00000001	0.00051065	
47	Yes	5	0.00000001	0.00049030	
48	Yes	5	0.00000001	0.00015533	
49	Yes	5	0.00000001	0.00065955	
50	Yes	5	0.00000001	0.00049287	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	110 - 105	22.03	49	1.89	0.01
L2	105 - 100	20.05	49	1.88	0.01
L3	100 - 98.5	18.10	49	1.84	0.01
L4	98.5 - 93.5	17.52	49	1.82	0.01
L5	93.5 - 88.5	15.66	49	1.73	0.01
L6	88.5 - 83.5	13.91	49	1.60	0.01
L7	83.5 - 78.67	12.32	49	1.45	0.01
L8	78.67 - 78.42	10.93	45	1.29	0.00
L9	78.42 - 73.42	10.86	45	1.29	0.00
L10	73.42 - 68.42	9.54	45	1.23	0.00
L11	68.42 - 63.42	8.30	45	1.15	0.00
L12	63.42 - 58.67	7.13	45	1.07	0.00
L13	58.67 - 58.42	6.10	45	0.99	0.00
L14	58.42 - 53.42	6.05	45	0.99	0.00
L15	53.42 - 47.12	5.06	45	0.90	0.00
L16	50.87 - 45.87	4.60	45	0.85	0.00
L17	45.87 - 40.87	3.73	45	0.80	0.00
L18	40.87 - 35.87	2.94	45	0.71	0.00

T	Job		Page
tnxTower		Woodbury North (BU 876405)	34 of 40
Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
	Client	Crown Castle	Designed by kolson

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L19	35.87 - 30.87	2.24	45	0.62	0.00
L20	30.87 - 28.67	1.64	45	0.53	0.00
L21	28.67 - 28.42	1.41	45	0.49	0.00
L22	28.42 - 23.42	1.38	45	0.48	0.00
L23	23.42 - 18.42	0.92	45	0.39	0.00
L24	18.42 - 14.17	0.56	45	0.30	0.00
L25	14.17 - 13.92	0.32	45	0.23	0.00
L26	13.92 - 13.67	0.31	45	0.22	0.00
L27	13.67 - 13.42	0.30	45	0.22	0.00
L28	13.42 - 8.42	0.29	45	0.21	0.00
L29	8.42 - 5.75	0.11	45	0.13	0.00
L30	5.75 - 5.5	0.05	45	0.08	0.00
L31	5.5 - 3.57	0.05	45	0.08	0.00
L32	3.57 - 3.32	0.02	45	0.05	0.00
L33	3.32 - 3.17	0.02	45	0.05	0.00
L34	3.17 - 2.92	0.02	45	0.05	0.00
L35	2.92 - 2.75	0.01	45	0.05	0.00
L36	2.75 - 2.5	0.01	45	0.04	0.00
L37	2.5 - 0	0.01	45	0.04	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
108.00	(2) JAHH-65B-R3B w/ Mount Pipe	49	21.23	1.89	0.01	12806
102.00	APX16DWV-16DWV-S-E-A20 w/	49	18.87	1.86	0.01	6653
	Mount Pipe					
97.00	1900MHz RRH (65MHz)	49	16.95	1.80	0.01	3299
80.00	7770.00 w/ Mount Pipe	49	11.29	1.32	0.00	2109
75.00	RRUS 4449 B5/B12	45	9.95	1.25	0.00	4041
68.00	MX08FRO665-21 w/ Mount Pipe	45	8.20	1.15	0.00	3731
50.00	KS24019-L112A	45	4.44	0.84	0.00	4299

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
110.	ft	in	Comb.	o	0
L1	110 - 105	91.15	14	7.81	0.06
L2	105 - 100	83.01	14	7.78	0.05
L3	100 - 98.5	74.97	14	7.63	0.04
L4	98.5 - 93.5	72.59	14	7.54	0.04
L5	93.5 - 88.5	64.91	14	7.15	0.03
L6	88.5 - 83.5	57.71	14	6.62	0.03
L7	83.5 - 78.67	51.10	14	6.01	0.02
L8	78.67 - 78.42	45.35	14	5.37	0.02
L9	78.42 - 73.42	45.07	14	5.36	0.02
L10	73.42 - 68.42	39.60	14	5.09	0.01
L11	68.42 - 63.42	34.43	14	4.79	0.01
L12	63.42 - 58.67	29.59	14	4.46	0.01
L13	58.67 - 58.42	25.32	14	4.13	0.01

	Job		Page
tnxTower		Woodbury North (BU 876405)	35 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L14	58.42 - 53.42	25.11	14	4.11	0.01
L15	53.42 - 47.12	21.00	14	3.74	0.01
L16	50.87 - 45.87	19.06	14	3.54	0.01
L17	45.87 - 40.87	15.46	14	3.31	0.01
L18	40.87 - 35.87	12.19	14	2.94	0.01
L19	35.87 - 30.87	9.30	14	2.57	0.00
L20	30.87 - 28.67	6.81	14	2.19	0.00
L21	28.67 - 28.42	5.84	14	2.03	0.00
L22	28.42 - 23.42	5.73	14	2.01	0.00
L23	23.42 - 18.42	3.83	14	1.63	0.00
L24	18.42 - 14.17	2.32	14	1.25	0.00
L25	14.17 - 13.92	1.35	14	0.93	0.00
L26	13.92 - 13.67	1.30	14	0.92	0.00
L27	13.67 - 13.42	1.25	14	0.90	0.00
L28	13.42 - 8.42	1.20	14	0.89	0.00
L29	8.42 - 5.75	0.46	14	0.53	0.00
L30	5.75 - 5.5	0.22	14	0.34	0.00
L31	5.5 - 3.57	0.20	14	0.33	0.00
L32	3.57 - 3.32	0.09	14	0.23	0.00
L33	3.32 - 3.17	0.07	14	0.21	0.00
L34	3.17 - 2.92	0.07	14	0.20	0.00
L35	2.92 - 2.75	0.06	14	0.19	0.00
L36	2.75 - 2.5	0.05	14	0.18	0.00
L37	2.5 - 0	0.04	14	0.16	0.00

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
108.00	(2) JAHH-65B-R3B w/ Mount Pipe	14	87.89	7.81	0.06	3410
102.00	APX16DWV-16DWV-S-E-A20 w/	14	78.16	7.71	0.05	1714
	Mount Pipe					
97.00	1900MHz RRH (65MHz)	14	70.25	7.45	0.04	834
80.00	7770.00 w/ Mount Pipe	14	46.87	5.49	0.02	521
75.00	RRUS 4449 B5/B12	14	41.30	5.18	0.02	995
68.00	MX08FRO665-21 w/ Mount Pipe	14	34.01	4.76	0.01	916
50.00	KS24019-L112A	14	18.42	3.49	0.01	1044

Compression Checks

	Pole Design Data								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	$\frac{P_u}{\phi P_n}$
L1	110 - 105 (1)	TP13.6932x12.7x0.1875	5.00	0.00	0.0	8.0376	-2.45	470.20	0.005
L2	105 - 100 (2)	TP14.6863x13.6932x0.1875	5.00	0.00	0.0	8.6286	-6.64	504.77	0.013
L3	100 - 98.5 (3)	TP14.9843x14.6863x0.1875	1.50	0.00	0.0	8.8060	-6.73	515.15	0.013
L4	98.5 - 93.5 (4)	TP16.0115x14.9843x0.1875	5.00	0.00	0.0	9.4173	-7.63	550.91	0.014

Anna Tanu an	Job		Page
tnxTower	Woodb	ury North (BU 876405)	36 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project TEF	• No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
L5	93.5 - 88.5 (5)	TP17.0387x16.0115x0.1875	5.00	0.00	0.0	10.0286	-7.99	586.67	0.014
L6	88.5 - 83.5 (6)	TP18.066x17.0387x0.1875	5.00	0.00	0.0	10.6399	-8.38	622.43	0.013
L7	83.5 - 78.67 (7)	TP19.0583x18.066x0.1875	4.83	0.00	0.0	11.2305	-11.04	656.98	0.017
L8	78.67 - 78.42	TP19.1096x19.0583x0.5625	0.25	0.00	0.0	33.1135	-11.10	1937.14	0.006
	(8)								
L9	78.42 - 73.42 (9)	TP20.1368x19.1096x0.5375	5.00	0.00	0.0	33.4369	-12.52	1956.06	0.006
L10	73.42 - 68.42 (10)	TP21.164x20.1368x0.5125	5.00	0.00	0.0	33.5934	-13.34	1965.21	0.007
L11	68.42 - 63.42 (11)	TP22.1913x21.164x0.4875	5.00	0.00	0.0	33.5828	-17.16	1964.59	0.009
L12	63.42 - 58.67 (12)	TP23.1671x22.1913x0.475	4.75	0.00	0.0	34.2118	-18.00	2001.39	0.009
L13	58.67 - 58.42 (13)	TP23.2185x23.1671x0.475	0.25	0.00	0.0	34.2892	-18.06	2005.92	0.009
L14	58.42 - 53.42 (14)	TP24.2457x23.2185x0.4625	5.00	0.00	0.0	34.9132	-18.95	2042.42	0.009
L15	53.42 - 47.12 (15)	TP25.54x24.2457x0.45	6.30	0.00	0.0	34.7357	-19.42	2032.04	0.010
L16	47.12 - 45.87 (16)	TP25.3633x24.3946x0.5125	5.00	0.00	0.0	40.4241	-20.97	2364.81	0.009
L17	45.87 - 40.87 (17)	TP26.332x25.3633x0.5	5.00	0.00	0.0	40.9953	-22.02	2398.23	0.009
L18	40.87 - 35.87	TP27.3006x26.332x0.4875	5.00	0.00	0.0	41.4887	-23.09	2427.09	0.010
L19	35.87 - 30.87 (19)	TP28.2693x27.3006x0.475	5.00	0.00	0.0	41.9041	-24.18	2451.39	0.010
L20	30.87 - 28.67 (20)	TP28.6956x28.2693x0.475	2.20	0.00	0.0	42.5467	-24.66	2488.98	0.010
L21	28.67 - 28.42 (21)	TP28.744x28.6956x0.475	0.25	0.00	0.0	42.6197	-24.73	2493.25	0.010
L22	28.42 - 23.42 (22)	TP29.7127x28.744x0.4625	5.00	0.00	0.0	42.9385	-25.84	2511.90	0.010
L23	(22) 23.42 - 18.42 (23)	TP30.6814x29.7127x0.4563	5.00	0.00	0.0	43.7701	-26.97	2560.55	0.011
L24	(23) 18.42 - 14.17 (24)	TP31.5047x30.6814x0.45	4.25	0.00	0.0	44.3555	-27.95	2594.80	0.011
L25	(2.1) 14.17 - 13.92 (25)	TP31.5532x31.5047x0.55	0.25	0.00	0.0	54.1222	-28.03	3166.15	0.009
L26	13.92 - 13.67 (26)	TP31.6016x31.5532x0.55	0.25	0.00	0.0	54.2068	-28.10	3171.10	0.009
L27	13.67 - 13.42 (27)	TP31.65x31.6016x0.4688	0.25	0.00	0.0	46.3919	-28.16	2713.93	0.010
L28	13.42 - 8.42 (28)	TP32.6187x31.65x0.4625	5.00	0.00	0.0	47.2045	-29.40	2761.47	0.011
L29	8.42 - 5.75 (29)	TP33.136x32.6187x0.4625	2.67	0.00	0.0	47.9639	-30.08	2805.89	0.011
L30	5.75 - 5.5 (30)	TP33.1844x33.136x0.525	0.25	0.00	0.0	54.4221	-30.16	3183.69	0.009
L31	5.5 - 3.57 (31)	TP33.5584x33.1844x0.5875	1.93	0.00	0.0	61.4816	-30.74	3596.67	0.009
L32	3.57 - 3.32 (32)	TP33.6068x33.5584x0.5875	0.25	0.00	0.0	61.5719	-30.84	3601.96	0.009
L33	3.32 - 3.17 (33)	TP33.6359x33.6068x0.5875	0.15	0.00	0.0	61.6261	-30.88	3605.13	0.009
L34	3.17 - 2.92 (34)	TP33.6843x33.6359x0.4938	0.25	0.00	0.0	52.0150	-30.95	3042.88	0.010
L35	2.92 - 2.75 (35)	TP33.7172x33.6843x0.4938	0.17	0.00	0.0	52.0666	-30.99	3045.90	0.010
L36	2.75 - 2.5 (36)	TP33.7657x33.7172x0.4875	0.25	0.00	0.0	51.4921	-31.05	3012.29	0.010
L37	2.5 - 0 (37)	TP34.25x33.7657x0.4875	2.50	0.00	0.0	52.2416	-31.68	3056.13	0.010

Pole Bending Design Data

	Job		Page
tnxTower		Woodbury North (BU 876405)	37 of 40
Tower Engineering Professionals 326 Tryon Rd.	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Client	Crown Castle	Designed by kolson

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
140.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	110 - 105 (1)	TP13.6932x12.7x0.1875	11.56	164.86	0.070	0.00	164.86	0.000
L2	105 - 100(2)	TP14.6863x13.6932x0.1875	40.13	190.17	0.211	0.00	190.17	0.000
L2 L3	100 - 98.5 (3)	TP14.9843x14.6863x0.1875	52.99	198.12	0.267	0.00	198.12	0.000
L4	98.5 - 93.5 (4)	TP16.0115x14.9843x0.1875	99.21	226.77	0.438	0.00	226.77	0.000
L4 L5						0.00	257.35	0.000
	93.5 - 88.5 (5)	TP17.0387x16.0115x0.1875	147.42	257.35	0.573			
L6	88.5 - 83.5 (6)	TP18.066x17.0387x0.1875	196.52	289.65	0.678	0.00	289.65	0.000
L7	83.5 - 78.67 (7)	TP19.0583x18.066x0.1875	249.36	318.58	0.783	0.00	318.58	0.000
L8	78.67 - 78.42 (8)	TP19.1096x19.0583x0.5625	252.69	917.83	0.275	0.00	917.83	0.000
L9	78.42 - 73.42 (9)	TP20.1368x19.1096x0.5375	320.55	982.13	0.326	0.00	982.13	0.000
L10	73.42 - 68.42	TP21.164x20.1368x0.5125	390.95	1042.35	0.375	0.00	1042.35	0.000
L11	68.42 - 63.42 (11)	TP22.1913x21.164x0.4875	476.92	1097.63	0.435	0.00	1097.63	0.000
L12	63.42 - 58.67 (12)	TP23.1671x22.1913x0.475	561.45	1170.87	0.480	0.00	1170.87	0.000
L13	58.67 - 58.42 (13)	TP23.2185x23.1671x0.475	565.93	1176.22	0.481	0.00	1176.22	0.000
L14	58.42 - 53.42 (14)	TP24.2457x23.2185x0.4625	656.31	1254.14	0.523	0.00	1254.14	0.000
L15	53.42 - 47.12 (15)	TP25.54x24.2457x0.45	702.93	1277.09	0.550	0.00	1277.09	0.000
L16	47.12 - 45.87 (16)	TP25.3633x24.3946x0.5125	795.78	1515.54	0.525	0.00	1515.54	0.000
L17	45.87 - 40.87 (17)	TP26.332x25.3633x0.5	889.79	1599.63	0.556	0.00	1599.63	0.000
L18 L19	40.87 - 35.87 (18) 25.87 - 20.87	TP27.3006x26.332x0.4875	984.80	1682.30	0.585 0.613	0.00 0.00	1682.30	0.000
L19 L20	35.87 - 30.87 (19) 30.87 - 28.67	TP28.2693x27.3006x0.475 TP28.6956x28.2693x0.475	1080.77 1123.28	1763.22 1818.17	0.618	0.00	1763.22 1818.17	0.000
L20	(20) 28.67 - 28.42	TP28.744x28.6956x0.475	1123.28	1824.47	0.618	0.00	1813.17	0.000
L21	(21) 28.42 - 23.42	TP29.7127x28.744x0.4625	1225.38	1903.77	0.644	0.00	1903.77	0.000
L23	(22) 23.42 - 18.42	TP30.6814x29.7127x0.4563	1323.41	2006.74	0.659	0.00	2006.74	0.000
L24	(23) 18.42 - 14.17	TP31.5047x30.6814x0.45	1407.28	2090.64	0.673	0.00	2090.64	0.000
L25	(24) 14.17 - 13.92	TP31.5532x31.5047x0.55	1412.22	2538.62	0.556	0.00	2538.62	0.000
L26	(25) 13.92 - 13.67 (26)	TP31.6016x31.5532x0.55	1417.18	2546.63	0.556	0.00	2546.63	0.000
L27	(26) 13.67 - 13.42 (27)	TP31.65x31.6016x0.4688	1422.13	2194.37	0.648	0.00	2194.37	0.000
L28	(27) 13.42 - 8.42 (28)	TP32.6187x31.65x0.4625	1521.51	2304.09	0.660	0.00	2304.09	0.000
L29	8.42 - 5.75 (29)	TP33.136x32.6187x0.4625	1574.83	2379.35	0.662	0.00	2379.35	0.000
L30	5.75 - 5.5 (30)	TP33.1844x33.136x0.525	1579.84	2693.46	0.587	0.00	2693.46	0.000
L30 L31	5.5 - 3.57 (31)	TP33.5584x33.1844x0.5875	1618.53	3066.60	0.528	0.00	3066.60	0.000
L31 L32	3.57 - 3.32 (32)	TP33.6068x33.5584x0.5875	1623.55	3075.69	0.528	0.00	3075.69	0.000
L32 L33	3.32 - 3.17 (33)	TP33.6359x33.6068x0.5875	1626.57	3081.16	0.528	0.00	3081.16	0.000
L33 L34	3.17 - 2.92 (34)		1631.59	2619.28	0.528	0.00	2619.28	0.000
		TP33.6843x33.6359x0.4938						
L35	2.92 - 2.75 (35)	TP33.7172x33.6843x0.4938	1635.01	2624.52	0.623	0.00	2624.52	0.000
L36	2.75 - 2.5 (36)	TP33.7657x33.7172x0.4875	1640.03	2600.38	0.631	0.00	2600.38	0.000
L37	2.5 - 0 (37)	TP34.25x33.7657x0.4875	1690.40	2677.18	0.631	0.00	2677.18	0.000

<i>tnxTower</i>

Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:

L34

L35

3.17 - 2.92 (34)

2.92 - 2.75 (35)

TP33.6843x33.6359x0.4938

TP33.7172x33.6843x0.4938

20.10

20.11

912.86

913.77

0.022

0.022

1.08

1.08

2653.38

2658.65

0.000

0.000

•	Job	Woodbury North (BU 876405)	Page 38 of 40
ıg	Project	TEP No. 25640.597664	Date 15:08:01 09/21/21
51	Client	Crown Castle	Designed by kolson

Pole Shear Design Data Section Elevation Size Actual ϕV_n Ratio Ratio Actual ϕT_n No. V_u V_u T_u T_u ĸ ft K kip-ft kip-ft ϕV_n ϕT_n L1 110 - 105 (1) TP13.6932x12.7x0.1875 3.80 141.06 0.92 166.84 0.027 0.006 105 - 100 (2) 8.54 192.28 L2 TP14.6863x13.6932x0.1875 151.43 0.056 1.08 0.006 L3 100 - 98.5 (3) TP14.9843x14.6863x0.1875 8.61 154.54 0.056 1.08 200.26 0.005 L4 98.5 - 93.5 (4) TP16.0115x14.9843x0.1875 229.03 0.005 9.56 165.27 0.058 1.19 L5 93.5 - 88.5 (5) TP17.0387x16.0115x0.1875 9.74 176.00 0.055 1.19 259.73 0.005 88.5 - 83.5 (6) 1.19 292.37 L6 TP18.066x17.0387x0.1875 9.92 186.73 0.053 0.004 L783.5 - 78.67 (7) TP19.0583x18.066x0.1875 13.33 197.09 0.068 1.73 325.72 0.005 943.92 L8 78.67 - 78.42 TP19.1096x19.0583x0.5625 13.33 0.023 1.72 0.002 581.14 (8) L9 78.42 - 73.42 TP20.1368x19.1096x0.5375 13.96 586.82 0.024 1.72 1007.23 0.002 (9) L10 73.42 - 68.42 TP21.164x20.1368x0.5125 14.22 589.56 0.024 1.72 1066.26 0.002 (10)68.42 - 63.42 589.38 0.030 1120.23 0.002 L11 TP22.1913x21.164x0.4875 17.701.79 (11)L12 63.42 - 58.67 TP23.1671x22.1913x0.475 17.92 600.42 0.030 1.78 1193.18 0.001 (12)L13 58.67 - 58.42 TP23.2185x23.1671x0.475 17.92 601.78 0.030 1.78 1198.59 0.001 (13)L14 58.42 - 53.42 TP24.2457x23.2185x0.4625 18.24 612.73 0.030 0.94 1276.19 0.001 (14)L15 53.42 - 47.12 TP25.54x24.2457x0.45 18.35 609.61 0.030 0.94 1298.34 0.001 (15) L16 47.12 - 45.87 TP25.3633x24.3946x0.5125 18.71 709.44 0.026 1.09 1543.97 0.001 (16)L17 45.87 - 40.87 TP26.332x25.3633x0.5 18.92 719.47 0.026 1.08 1627.60 0.001 (17)40.87 - 35.87 L18 TP27.3006x26.332x0.4875 19.12 728.13 0.026 1.08 1709.76 0.001 (18)L19 35.87 - 30.87 TP28.2693x27.3006x0.475 19.30 735.42 0.026 1.08 1790.07 0.001 (19)30.87 - 28.67 L20 TP28.6956x28.2693x0.475 19.38 746.70 0.026 1.08 1845.39 0.001 (20) 28.67 - 28.42 L21 TP28.744x28.6956x0.475 19.37 747.98 0.026 1.08 1851.73 0.001 (21)L22 1930.33 28.42 - 23.42 TP29.7127x28.744x0.4625 19.55 753.57 0.026 1.08 0.001 (22)L23 23.42 - 18.42 TP30.6814x29.7127x0.4563 19.70 768.17 0.026 1.082033.31 0.001 (23) 18.42 - 14.17 0.025 L24 TP31.5047x30.6814x0.45 19.81 778.44 1.08 2117.06 0.001 (24)L25 14.17 - 13.92 TP31.5532x31.5047x0.55 19.80 949.85 0.021 1.08 2578.93 0.000 (25)L26 13.92 - 13.67 TP31.6016x31.5532x0.55 19.81 951.33 0.021 1.08 2586.99 0.000 (26)L27 13.67 - 13.42 TP31.65x31.6016x0.4688 19.82 814.18 0.024 1.08 2223.28 0.000 (27) L28 13.42 - 8.42 TP32.6187x31.65x0.4625 19.96 828.44 0.024 1.08 2332.95 0.000 (28)L29 8.42 - 5.75 (29) TP33.136x32.6187x0.4625 841.77 0.024 2408.62 0.000 20.03 1.08 L30 TP33.1844x33.136x0.525 2731.75 0.000 5.75 - 5.5 (30) 20.02 955.11 0.021 1.08 5.5 - 3.57 (31) TP33.5584x33.1844x0.5875 1079.00 3115.53 0.000 L31 20.11 0.019 1.08 3.57 - 3.32 (32) L32 TP33.6068x33.5584x0.5875 20.09 1080.59 0.019 1.08 3124.69 0.000 L33 3.32 - 3.17 (33) TP33.6359x33.6068x0.5875 1081.54 0.019 3130.20 0.00020.101.08

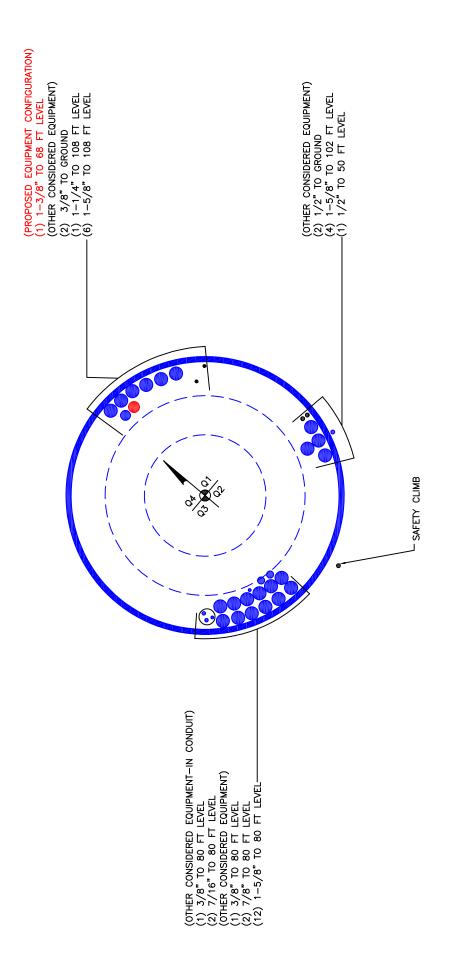
Anna Tanana an	Job	Page
tnxTower	Woodbury North (BU 876405) 39 of 40
Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Project TEP No. 25640.597664	Date 15:08:01 09/21/21
	Client Crown Castle	Designed by kolson

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _"	Actual T _u	ϕT_n	Ratio T _u
	ft		ĸ	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L36	2.75 - 2.5 (36)	TP33.7657x33.7172x0.4875	20.12	903.69	0.022	1.08	2633.64	0.000
L37	2.5 - 0 (37)	TP34.25x33.7657x0.4875	20.20	916.84	0.022	1.08	2710.87	0.000

Pole Interaction Design Data

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	M_{ux}	M_{uy}	V_u	T_u	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	110 - 105 (1)	0.005	0.070	0.000	0.027	0.006	0.076	1.050	4.8.2
L2	105 - 100 (2)	0.013	0.211	0.000	0.056	0.006	0.228	1.050	4.8.2
L3	100 - 98.5 (3)	0.013	0.267	0.000	0.056	0.005	0.284	1.050	4.8.2
L4	98.5 - 93.5 (4)	0.014	0.438	0.000	0.058	0.005	0.455	1.050	4.8.2
L5	93.5 - 88.5 (5)	0.014	0.573	0.000	0.055	0.005	0.590	1.050	4.8.2
L6	88.5 - 83.5 (6)	0.013	0.678	0.000	0.053	0.004	0.695	1.050	4.8.2
L7	83.5 - 78.67 (7)	0.017	0.783	0.000	0.068	0.005	0.805	1.050	4.8.2
L8	78.67 - 78.42	0.006	0.275	0.000	0.023	0.002	0.282	1.050	4.8.2
20	(8)	0.000	0.275	0.000	0.025	0.002	0.202	1.050	1.0.2
L9	78.42 - 73.42	0.006	0.326	0.000	0.024	0.002	0.333	1.050	4.8.2
	(9)	0.000	0.520	0.000	0.021	0.002	0.000	1.050	1.0.2
L10	73.42 - 68.42	0.007	0.375	0.000	0.024	0.002	0.383	1.050	4.8.2
	(10)	0.007	0.575	0.000	0.024	0.002	0.505	1.050	4.0.2
L11	68.42 - 63.42	0.009	0.435	0.000	0.030	0.002	0.444	1.050	4.8.2
LII	(11)	0.007	0.455	0.000	0.050	0.002	0.444	1.050	4.0.2
L12	63.42 - 58.67	0.009	0.480	0.000	0.030	0.001	0.489	1.050	4.8.2
L12	(12)	0.007	0.400	0.000	0.050	0.001	0.407	1.050	4.0.2
L13	58.67 - 58.42	0.009	0.481	0.000	0.030	0.001	0.491	1.050	4.8.2
L13		0.009	0.461	0.000	0.030	0.001	0.491	1.050	4.0.2
L14	(13) 58.42 - 53.42	0.009	0.523	0.000	0.030	0.001	0.534	1.050	4.8.2
L14		0.009	0.525	0.000	0.050	0.001	0.334	1.050	4.8.2
T 15	(14)	0.010	0.550	0.000	0.020	0.001	0.5(1	1.050	4.9.2
L15	53.42 - 47.12	0.010	0.550	0.000	0.030	0.001	0.561	1.050	4.8.2
T 17	(15)	0.000	0.525	0.000	0.026	0.001	0.525	1.050	4.9.2
L16	47.12 - 45.87	0.009	0.525	0.000	0.026	0.001	0.535	1.050	4.8.2
T 17	(16)	0.000	0.556	0.000	0.026	0.001	0.500	1.050	4.9.2
L17	45.87 - 40.87	0.009	0.556	0.000	0.026	0.001	0.566	1.050	4.8.2
T 10	(17)	0.010	0.505	0.000	0.026	0.001	0.506	1.050	100
L18	40.87 - 35.87	0.010	0.585	0.000	0.026	0.001	0.596	1.050	4.8.2
T 10	(18)	0.010	0 (12	0.000	0.026	0.001	0.624	1.050	100
L19	35.87 - 30.87	0.010	0.613	0.000	0.026	0.001	0.624	1.050	4.8.2
	(19)	0.010	0.610	0.000	0.000	0.001	0.000	1.050	4.0.2
L20	30.87 - 28.67	0.010	0.618	0.000	0.026	0.001	0.628	1.050	4.8.2
	(20)	0.010	0.640	0.000	0.00	0.001	0.600	1 0 7 0	4.9.5
L21	28.67 - 28.42	0.010	0.618	0.000	0.026	0.001	0.629	1.050	4.8.2
	(21)	0.010	0.444	0.000	0.00	0.001	0.455	1.050	4.9.5
L22	28.42 - 23.42	0.010	0.644	0.000	0.026	0.001	0.655	1.050	4.8.2
	(22)	0.011	0.650	0.000	0.00	0.001	0 (=1	1.0.70	4.2.5
L23	23.42 - 18.42	0.011	0.659	0.000	0.026	0.001	0.671	1.050	4.8.2
	(23)			0.000		0.001		4.0.50	
L24	18.42 - 14.17	0.011	0.673	0.000	0.025	0.001	0.685	1.050	4.8.2
	(24)			0.000		0.000			
L25	14.17 - 13.92	0.009	0.556	0.000	0.021	0.000	0.566	1.050	4.8.2
	(25)	0.0	0.5	0.5	0.67	0.5	0.5	4.0	
L26	13.92 - 13.67	0.009	0.556	0.000	0.021	0.000	0.566	1.050	4.8.2
	(26)								
L27	13.67 - 13.42	0.010	0.648	0.000	0.024	0.000	0.659	1.050	4.8.2
	(27)								

Anna Theory and	Job		Page
tnxTower	Woodbury Nor	th (BU 876405)	40 of 40
Tower Engineering Professionals 326 Tryon Rd. Raleigh, NC 27603 Phone: (919) 661-6351 FAX:	Project TEP No. 25	5640.597664	Date 15:08:01 09/21/21
	Client Crowr	Castle	Designed by kolson


Section No.	Elevation	Ratio P_u	Ratio M _{ux}	$Ratio M_{uy}$	$Ratio V_u$	$Ratio T_u$	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L28	13.42 - 8.42	0.011	0.660	0.000	0.024	0.000	0.672	1.050	4.8.2
	(28)								
L29	8.42 - 5.75 (29)	0.011	0.662	0.000	0.024	0.000	0.673	1.050	4.8.2
L30	5.75 - 5.5 (30)	0.009	0.587	0.000	0.021	0.000	0.596	1.050	4.8.2
L31	5.5 - 3.57 (31)	0.009	0.528	0.000	0.019	0.000	0.537	1.050	4.8.2
L32	3.57 - 3.32 (32)	0.009	0.528	0.000	0.019	0.000	0.537	1.050	4.8.2
L33	3.32 - 3.17 (33)	0.009	0.528	0.000	0.019	0.000	0.537	1.050	4.8.2
L34	3.17 - 2.92 (34)	0.010	0.623	0.000	0.022	0.000	0.634	1.050	4.8.2
L35	2.92 - 2.75 (35)	0.010	0.623	0.000	0.022	0.000	0.634	1.050	4.8.2
L36	2.75 - 2.5 (36)	0.010	0.631	0.000	0.022	0.000	0.642	1.050	4.8.2
L37	2.5 - 0 (37)	0.010	0.631	0.000	0.022	0.000	0.642	1.050	4.8.2

Program Version 8.1.1.0 - 6/3/2021 File:C:/Users/kolson/Desktop/tnx/876405/876405_1964072_LC7.eri

APPENDIX B

BASE LEVEL DRAWING

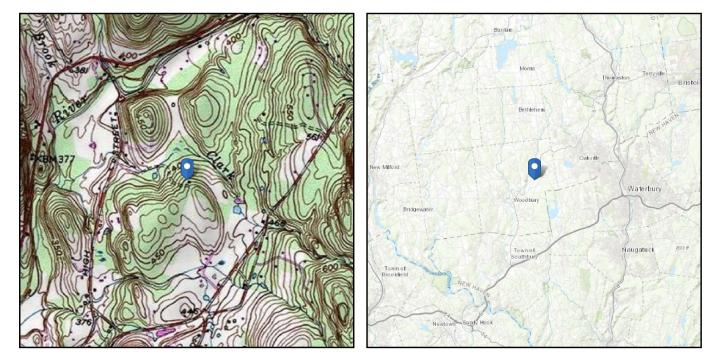
tnxTower Report - version 8.1.1.0

APPENDIX C

ADDITIONAL CALCULATIONS

No Address at This

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 0 ft (NAVD 88)

 Latitude:
 41.567997

 Longitude:
 -73.179681

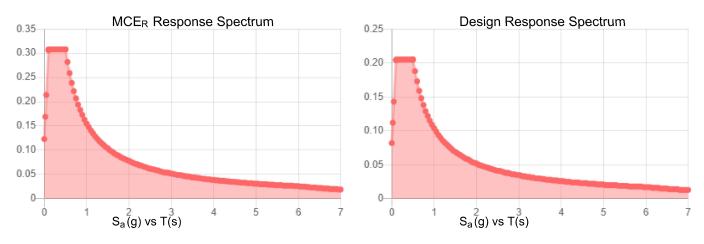
Wind

Results:

118 Vmph
76 Vmph
85 Vmph
90 Vmph
97 Vmph

Date Socessed:

AGE StepE2 172002 (Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.192	S _{DS} :	0.205	
S ₁ :	0.065	S _{D1} :	0.104	
F _a :	1.6	Τ _L :	6	
F _v :	2.4	PGA :	0.1	
S _{MS} :	0.308	PGA M:	0.16	
S _{M1} :	0.155	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Tue Sep 21 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Tue Sep 21 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Site BU: 876405

Work Order: 1964072

Pol	Pole Geometry Copyright © 2019 Crown Castle										
	Pole Height Above	Section Length	Lap Splice Length	Number of Sides	Top Diameter	Bottom Diameter	Wall Thickness (in)	Bend Radius	Pole Material		
	Base (ft)	(ft)	(ft)	Number of sides	(in)	(in)	wait mickness (iii)	(in)	Fole Material		
1	110	11.5	0	18	12.7	14.9843	0.1875	Auto	A572-65		
2	98.5	51.38	3.75	18	14.98	25.54	0.1875	Auto	A572-65		
3	50.87	50.87	0	18	24.39	34.25	0.25	Auto	A572-65		

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	3.58	plate	1.25x6.00 (65 ksi) (M	6		-2.5				2.5		x				1		-1				-1
2	2.75	5.75	channel	MP3-05 (1.25in)	1													x					
3	3.67	28.67	channel	MP3-05 (1.25in)	2	×						х											
4	28.67	58.67	channel	MP3-05 (1.25in)	3	x						х						x					
5	58.67	78.67	channel	MP3-05 (1.25in)	3	×						х						×					
6	3.17	14.17	channel	MP3-08.5 (1.25")	2											x				х			
7	13.67	28.67	channel	MP3-05 (1.25in)	1													x					
8																							
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in ²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	1.25	2.75	3.4375	2.125	Welded	n/a	Welded	n/a	0.750	3.438	0.0000	A572-65
2	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
3	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
4	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
5	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
6	3.84	2.8	4.96	0.48	Capacity Input	n/a	PC 8.8 - M20 (100)	23.000	18.000	3.986	1.2190	A572-65
7	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65

Connection Details for Custom Reinforcements

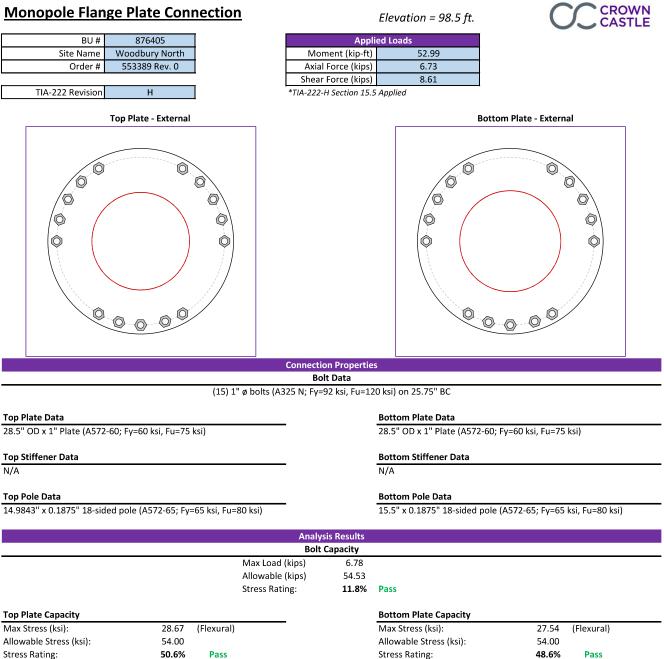
Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
MP3-08.5 (1.25")	Тор	8	Ν	3	2	-	-	-	-	-	-	-	-	-
WIPS-08.5 (1.25)	Bottom	-	-	-	-	0	0	0	0	0	0	-	-	1000
(TS) 1.25x6.00 (65	Тор	-	-	-	-	70	None	-	-	-	-	36	0.250	-
ksi) (MOD)	Bottom	-	-	-	-	70	PJP Groove	11.5	0.5	45	0.5	-	-	-

TNX Geometry Input

Inc	rement (ft): 5 Ex	port to TNX							
			Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	110 - 105	5		18	12.700	13.693	0.1875	A572-65	1.000
2	105 - 100	5		18	13.693	14.686	0.1875	A572-65	1.000
3	100 - 98.5	1.5	0	18	14.686	14.984	0.1875	A572-65	1.000
4	98.5 - 93.5	5		18	14.984	16.012	0.1875	A572-65	1.000
5	93.5 - 88.5	5		18	16.012	17.039	0.1875	A572-65	1.000
6	88.5 - 83.5	5		18	17.039	18.066	0.1875	A572-65	1.000
7	83.5 - 78.67	4.83		18	18.066	19.058	0.1875	A572-65	1.000
8	78.67 - 78.42	0.25		18	19.058	19.110	0.5625	A572-65	0.852
9	78.42 - 73.42	5		18	19.110	20.137	0.5375	A572-65	0.862
10	73.42 - 68.42	5		18	20.137	21.164	0.5125	A572-65	0.876
11	68.42 - 63.42	5		18	21.164	22.191	0.4875	A572-65	0.895
12	63.42 - 58.67	4.75		18	22.191	23.167	0.475	A572-65	0.895
13	58.67 - 58.42	0.25		18	23.167	23.218	0.475	A572-65	0.894
14	58.42 - 53.42	5		18	23.218	24.246	0.4625	A572-65	0.896
15	53.42 - 50.87	6.3	3.75	18	24.246	25.540	0.45	A572-65	0.909
16	50.87 - 45.87	5		18	24.395	25.363	0.5125	A572-65	0.912
17	45.87 - 40.87	5		18	25.363	26.332	0.5	A572-65	0.918
18	40.87 - 35.87	5		18	26.332	27.301	0.4875	A572-65	0.926
19	35.87 - 30.87	5		18	27.301	28.269	0.475	A572-65	0.935
20	30.87 - 28.67	2.2		18	28.269	28.696	0.475	A572-65	0.929
21	28.67 - 28.42	0.25		18	28.696	28.744	0.475	A572-65	0.928
22	28.42 - 23.42	5		18	28.744	29.713	0.4625	A572-65	0.939
23	23.42 - 18.42	5		18	29.713	30.681	0.45625	A572-65	0.939
24	18.42 - 14.17	4.25		18	30.681	31.505	0.45	A572-65	0.941
25	14.17 - 13.92	0.25		18	31.505	31.553	0.55	A572-65	0.955
26	13.92 - 13.67	0.25		18	31.553	31.602	0.55	A572-65	0.955
27	13.67 - 13.42	0.25		18	31.602	31.650	0.46875	A572-65	0.994
28	13.42 - 8.42	5		18	31.650	32.619	0.4625	A572-65	0.994
29	8.42 - 5.75	2.67		18	32.619	33.136	0.4625	A572-65	0.986
30	5.75 - 5.5	0.25		18	33.136	33.184	0.525	A572-65	0.974
31	5.5 - 3.57	1.93		18	33.184	33.558	0.5875	A572-65	1.019
32	3.57 - 3.32	0.25		18	33.558	33.607	0.5875	A572-65	1.018
33	3.32 - 3.17	0.15		18	33.607	33.636	0.5875	A572-65	1.017
34	3.17 - 2.92	0.25		18	33.636	33.684	0.49375	A572-65	0.907
35	2.92 - 2.75	0.17		18	33.684	33.717	0.49375	A572-65	0.906
36	2.75 - 2.5	0.25		18	33.717	33.766	0.4875	A572-65	0.917
37	2.5 - 0	2.5		18	33.766	34.250	0.4875	A572-65	0.911

TNX Section Forces

Ine	crement (ft):	5	TNX Output						
						M _{ux} (kip-				
	Section	He	ight (ft)	Pu	(К)	ft)	V _u (K)			
1	110	-	105		2.45	11.56	3.80			
2	105	-	100		6.64	40.13	8.54			
3	100	-	98.5		6.73	52.99	8.61			
4	98.5	-	93.5		7.63	99.21	9.56			
5	93.5	-	88.5		7.99	147.42	9.74			
6	88.5	-	83.5		8.38	196.52	9.92			
7	83.5	-	78.67		11.04	249.36	13.33			
8	78.67	-	78.42		11.10	252.69	13.33			
9	78.42	-	73.42		12.52	320.55	13.96			
10	73.42	-	68.42		13.33	390.95	14.22			
11	68.42	-	63.42		17.16	476.92	17.70			
12	63.42	-	58.67		18.00	561.45	17.92			
13	58.67	-	58.42		18.06	565.93	17.92			
14	58.42	-	53.42		18.95	656.31	18.24			
15	53.42	-	50.87		19.42	702.93	18.35			
16	50.87	-	45.87		20.97	795.78	18.71			
17	45.87	-	40.87		22.02	889.79	18.92			
18	40.87	-	35.87		23.09	984.80	19.12			
19	35.87	-	30.87		24.18	1080.77	19.30			
20	30.87	-	28.67		24.66	1123.28	19.38			
21	28.67	-	28.42		24.73	1128.12	19.37			
22	28.42	-	23.42		25.84	1225.38	19.55			
23	23.42	-	18.42		26.97	1323.41	19.70			
24	18.42	-	14.17		27.95	1407.28	19.81			
25	14.17	-	13.92		28.03	1412.23	19.80			
26	13.92	-	13.67		28.10	1417.18	19.81			
27	13.67	-	13.42		28.16	1422.13	19.82			
28	13.42	-	8.42		29.40	1521.51	19.96			
29	8.42	-	5.75		30.08	1574.84	20.03			
30	5.75	-	5.5		30.16	1579.84	20.02			
31	5.5	-	3.57		30.74	1618.53	20.11			
32	3.57	-	3.32		30.84	1623.55	20.09			
33	3.32	-	3.17		30.88	1626.57	20.10			
34	3.17	-	2.92		30.95	1631.59	20.10			
35	2.92	-	2.75		30.99	1635.01	20.11			
36	2.75	-	2.5		31.05	1640.03	20.12			
37	2.5	-	0		31.68	1690.40	20.20			


Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
110 - 105	Pole	TP13.693x12.7x0.1875	Pole	7.2%	Pass
105 - 100	Pole	TP14.686x13.693x0.1875	Pole	21.6%	Pass
100 - 98.5	Pole	TP14.984x14.686x0.1875	Pole	27.0%	Pass
98.5 - 93.5	Pole	TP16.012x14.984x0.1875	Pole	43.3%	Pass
93.5 - 88.5	Pole	TP17.039x16.012x0.1875	Pole	56.1%	Pass
88.5 - 83.5	Pole	TP18.066x17.039x0.1875	Pole	66.2%	Pass
83.5 - 78.67	Pole	TP19.058x18.066x0.1875	Pole	76.6%	Pass
78.67 - 78.42	Pole + Reinf.	TP19.11x19.058x0.5625	Reinf. 5 Bolt-Shaft Bearing	41.7%	Pass
78.42 - 73.42	Pole + Reinf.	TP20.137x19.11x0.5375	Reinf. 5 Tension Rupture	48.9%	Pass
73.42 - 68.42	Pole + Reinf.	TP21.164x20.137x0.5125	Reinf, 5 Tension Rupture	55.6%	Pass
68.42 - 63.42	Pole + Reinf.	TP22.191x21.164x0.4875	Reinf. 5 Tension Rupture	63.7%	Pass
63.42 - 58.67	Pole + Reinf.	TP23.167x22.191x0.475	Reinf. 5 Bolt-Shaft Bearing	71.1%	Pass
58.67 - 58.42	Pole + Reinf.	TP23.218x23.167x0.475	Reinf. 4 Bolt-Shaft Bearing	71.4%	Pass
58.42 - 53.42	Pole + Reinf.	TP24.246x23.218x0.4625	Reinf. 4 Tension Rupture	77.2%	Pass
53.42 - 50.87	Pole + Reinf.	TP25.54x24.246x0.45	Reinf. 4 Tension Rupture	80.2%	Pass
50.87 - 45.87	Pole + Reinf.	TP25.363x24.395x0.5125	Reinf. 4 Tension Rupture	76.9%	Pass
45.87 - 40.87	Pole + Reinf.	TP26.332x25.363x0.5	Reinf. 4 Tension Rupture	81.2%	Pass
40.87 - 35.87	Pole + Reinf.	TP27.301x26.332x0.4875	Reinf. 4 Tension Rupture	85.0%	Pass
35.87 - 30.87	Pole + Reinf.	TP28.269x27.301x0.475	Reinf. 4 Tension Rupture	88.4%	Pass
30.87 - 28.67	Pole + Reinf.	TP28.696x28.269x0.475	Reinf. 4 Tension Rupture	89.7%	Pass
28.67 - 28.42	Pole + Reinf.	TP28.744x28.696x0.475	Reinf. 7 Tension Rupture	89.9%	Pass
28.42 - 23.42	Pole + Reinf.	TP29.713x28.744x0.4625	Reinf. 7 Tension Rupture	92.7%	Pass
23.42 - 18.42	Pole + Reinf.	TP30.681x29.713x0.4563	Reinf. 7 Tension Rupture	95.2%	Pass
18.42 - 14.17	Pole + Reinf.	TP31.505x30.681x0.45	Reinf. 7 Tension Rupture	97.1%	Pass
14.17 - 13.92	Pole + Reinf.	TP31.553x31.505x0.55	Reinf. 3 Tension Rupture	86.4%	Pass
13.92 - 13.67	Pole + Reinf.	TP31.602x31.553x0.55	Reinf. 3 Tension Rupture	86.5%	Pass
13.67 - 13.42	Pole + Reinf.	TP31.65x31.602x0.4688	Reinf. 6 Tension Rupture	96.3%	Pass
13.42 - 8.42	Pole + Reinf.	TP32.619x31.65x0.4625	Reinf. 6 Tension Rupture	98.4%	Pass
8.42 - 5.75	Pole + Reinf.	TP33.136x32.619x0.4625	Reinf. 6 Tension Rupture	99.4%	Pass
5.75 - 5.5	Pole + Reinf.	TP33.184x33.136x0.525	Reinf. 3 Tension Rupture	89.5%	Pass
5.5 - 3.57	Pole + Reinf.	TP33.558x33.184x0.5875	Reinf. 1 Compression	74.0%	Pass
3.57 - 3.32	Pole + Reinf.	TP33.607x33.558x0.5875	Reinf. 1 Compression	74.1%	Pass
3.32 - 3.17	Pole + Reinf.	TP33.636x33.607x0.5875	Reinf. 1 Compression	74.1%	Pass
3.17 - 2.92	Pole + Reinf.	TP33.684x33.636x0.4938	Reinf. 1 Compression	84.4%	Pass
2.92 - 2.75	Pole + Reinf.	TP33.717x33.684x0.4938	Reinf. 1 Compression	84.5%	Pass
2.75 - 2.5	Pole + Reinf.	TP33.766x33.717x0.4875	Reinf. 1 Compression	84.6%	Pass
2.5 - 0	Pole + Reinf.	TP34.25x33.766x0.4875	Reinf. 1 Compression	85.2%	Pass
				Summary	
			Pole	76.6%	Pass
			Reinforcement	99.4%	Pass
			Overall	99.4%	Pass

Additional Calculations

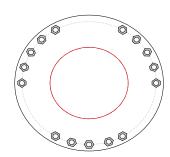
Section	Mom	ent of Inerti	a (in ⁴)		Area (in ²)				9	6 Capaci	ty*			
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7
110 - 105	185	n/a	185	8.04	n/a	8.04	7.2%							
105 - 100	229	n/a	229	8.63	n/a	8.63	21.6%							
100 - 98.5	244	n/a	244	8.81	n/a	8.81	27.0%							
98.5 - 93.5	298	n/a	298	9.42	n/a	9.42	43.3%							
93.5 - 88.5	360	n/a	360	10.03	n/a	10.03	56.1%							
88.5 - 83.5	430	n/a	430	10.64	n/a	10.64	66.2%							
83.5 - 78.67	505	n/a	505	11.23	n/a	11.23	76.6%							
78.67 - 78.42	509	918	1427	11.26	16.95	28.21	27.1%					41.7%		
78.42 - 73.42	597	1010	1607	11.87	16.95	28.82	32.6%					48.9%		
73.42 - 68.42	694	1107	1801	12.48	16.95	29.43	37.7%					55.6%		
68.42 - 63.42	801	1208	2009	13.09	16.95	30.04	44.0%					63.7%		
63.42 - 58.67	912	1308	2220	13.68	16.95	30.63	49.5%					71.1%		
58.67 - 58.42	918	1314	2232	13.71	16.95	30.66	49.8%				71.4%			
58.42 - 53.42	1047	1424	2471	14.32	16.95	31.27	55.2%				77.2%			
53.42 - 50.87	1116	1482	2598	14.63	16.95	31.58	57.8%				80.2%			
50.87 - 45.87	1587	1549	3136	19.93	16.95	36.88	51.2%				76.9%			
45.87 - 40.87	1778	1661	3440	20.70	16.95	37.65	54.7%				81.2%			
40.87 - 35.87	1984	1778	3762	21.46	16.95	38.41	57.9%				85.0%			
35.87 - 30.87	2204	1899	4103	22.23	16.95	39.18	60.9%				88.4%			
30.87 - 28.67	2307	1953	4259	22.57	16.95	39.52	62,2%				89.7%			
28.67 - 28.42	2318	1959	4277	22.61	16.95	39.56	62.3%			89.9%				89.9%
28.42 - 23.42	2563	2086	4649	23.38	16.95	40.33	65.1%			92.7%				92.7%
23.42 - 18.42	2824	2216	5040	24.15	16.95	41.10	67.6%			95.2%				95.2%
18.42 - 14.17	3060	2330	5390	24.80	16.95	41.75	69.6%			97.1%				97.1%
14.17 - 13.92	3121	3438	6559	24.84	26.87	51.71	63.1%			86.4%			77.7%	67.6%
13.92 - 13.67	3135	3448	6583	24.88	26.87	51.75	63.2%			86.5%			77.8%	67.7%
13.67 - 13.42	3110	2599	5710	24.92	21.22	46.14	70.1%			88.1%			96.3%	
13.42 - 8.42	3407	2754	6161	25.68	21.22	46.90	72,3%			90.0%			98,4%	
8.42 - 5.75	3573	2838	6411	26.09	21.22	47.31	73.5%			90.9%			99.4%	
5.75 - 5.5	3631	3787	7419	26.13	26.87	53.00	66,6%		70,5%	89,5%			81.0%	
5.5 - 3.57	3723	4793	8516	26.43	36.20	62.62	58.6%	74.0%	49.6%				66.3%	
3.57 - 3.32	3740	4805	8545	26.47	36.20	62.66	58.7%	74.1%	49.6%				66.4%	
3.32 - 3.17	3749	4813	8562	26.49	36.20	62.69	58.7%	74.1%	49.7%				66.4%	
3.17 - 2.92	3746	3484	7229	26.53	20.63	47.15	66.2%	84.4%					/0	
2.92 - 2.75	3757	3490	7247	26.56	20.63	47.18	66.2%	84.5%						
2.75 - 2.5	3773	3499	7272	26.59	20.63	47.22	66.4%	84.6%						
2.5 - 0	3939	3591	7530	26.98	20.63	47.60	67.3%	85.2%						

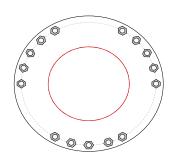
Note: Section capacity checked using 5 degree increments. Rating per TIA-222-H Section 15.5.

Stress Rating: 50.6% Tension Side Stress Rating: 72.2%

Pass

Max Stress (ksi):	27.54	(Flexural)	
Allowable Stress (ksi):	54.00		
Stress Rating:	48.6%	Pass	
Tension Side Stress Rating:	65.1%	Pass	

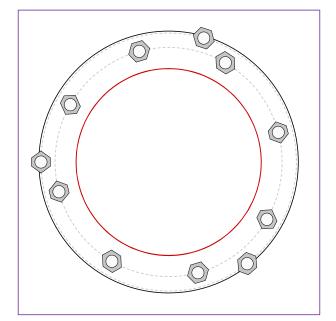

CCIplate


Elevation (ft) 98.5 (Flange)

Bolt	Resist	Resist Shear	Induce Plate
Group	Axial		Bending
1	Yes	Yes	Yes

Custom	<mark>ı Bolt Co</mark> r	nnection								
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	<u>Material</u>	Bolt Circle (in)	<u>Eta Factor, η:</u>	I _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	0	1	A325	25.75	0.5	0	N-Included		No
2	1	15	1	A325	25.75	0.5	0	N-Included		No
3	1	30	1	A325	25.75	0.5	0	N-Included		No
4	1	45	1	A325	25.75	0.5	0	N-Included		No
5	1	60	1	A325	25.75	0.5	0	N-Included		No
6	1	120	1	A325	25.75	0.5	0	N-Included		No
7	1	135	1	A325	25.75	0.5	0	N-Included		No
8	1	150	1	A325	25.75	0.5	0	N-Included		No
9	1	165	1	A325	25.75	0.5	0	N-Included		No
10	1	180	1	A325	25.75	0.5	0	N-Included		No
11	1	240	1	A325	25.75	0.5	0	N-Included		No
12	1	255	1	A325	25.75	0.5	0	N-Included		No
13	1	270	1	A325	25.75	0.5	0	N-Included		No
14	1	287	1	A325	25.75	0.5	0	N-Included		No
15	1	300	1	A325	25.75	0.5	0	N-Included		No

Plot Graphic


Monopole Base Plate Connection

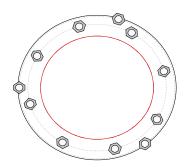
Site Info		
BU	# 876405	
Site Nam	e Woodbury North	
Order	# 553389 Rev. 0	

Analysis Considerations			
TIA-222 Revision	Н		
Grout Considered:	See Custom Sheet		
l _{ar} (in)	See Custom Sheet		

Applied Loads			
Moment (kip-ft)	1690.40		
Axial Force (kips)	31.68		
Shear Force (kips)	20.20		
*TIA-222-H Section 15.5 Applied			

Connection Properties	Analysis Results				
Anchor Rod Data	Anchor Rod Summary	(u	nits of kips, kip-in)		
GROUP 1: (8) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 42" BC	GROUP 1:				
GROUP 2: (3) 2-1/4" ø bolts (A193 Gr. B7 Derated N; Fy=99.19 ksi, Fu=125 ksi) on 47.2	5 Pu_t = 167.43	φPn_t = 243.75	Stress Rating		
pos. (deg): 74, 180, 308	Vu = 2.53	φVn = 149.1	65.4%		
	Mu = n/a	φMn = n/a	Pass		
Base Plate Data					
48" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)	GROUP 2:				
	Pu_t = 185.8	φPn_t = 304.69	Stress Rating		
Stiffener Data	Vu = 0	φVn = 186.38	58.1%		
N/A	Mu = n/a	φMn = n/a	Pass		
Pole Data	Base Plate Summary				
34.25" x 0.25" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)	Max Stress (ksi):	54.01	(Flexural)		
	Allowable Stress (ksi):	54			
	Stress Rating:	95.3%	Pass		

CCIplate


Elevation (ft) 0 (Base)

note: Bending interaction not considered when Grout Considered = "Yes"

	Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
I	1	Yes	Yes	Yes	Yes	No	
ſ	2	No	No	No	Yes	No	

Custom	Bolt Cor	nection								
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	<u>Material</u>	Bolt Circle (in)	<u>Eta Factor, η:</u>	l _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	15	2.25	A615-75	42	0.5	0.75	N-Included		No
2	1	60	2.25	A615-75	42	0.5	0.75	N-Included		No
3	1	105	2.25	A615-75	42	0.5	0.75	N-Included		No
4	1	150	2.25	A615-75	42	0.5	0.75	N-Included		No
5	1	195	2.25	A615-75	42	0.5	0.75	N-Included		No
6	1	240	2.25	A615-75	42	0.5	0.75	N-Included		No
7	1	285	2.25	A615-75	42	0.5	0.75	N-Included		No
8	1	330	2.25	A615-75	42	0.5	0.75	N-Included		No
9	2	74	2.25	193 Gr. B7 Derate	47.25	0.5	1	N-Included		No
10	2	180	2.25	193 Gr. B7 Derate	47.25	0.5	1	N-Included		No
11	2	308	2.25	193 Gr. B7 Derate	47.25	0.5	1	N-Included		No

Plot Graphic

Pier and Pad Foundation

	876405
	Woodbury North
App. Number:	553389 Rev. 0

TIA-222 Revision: Н Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions			
Compression, P_{comp} :	32	kips	
Base Shear, Vu_comp:	20	kips	
Moment, M _u :	1690	ft-kips	
Tower Height, H :	110	ft	
BP Dist. Above Fdn, bp_{dist}:	3	in	

Pier Properties			
Pier Shape:	Square		
Pier Diameter, dpier :	5.5	ft	
Ext. Above Grade, E:	1	ft	
Pier Rebar Size, Sc :	8		
Pier Rebar Quantity, mc :	30		
Pier Tie/Spiral Size, St :	4		
Pier Tie/Spiral Quantity, mt :	5		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc_{pier}:	3	in	

Pad Properties			
Depth, D:	6.5	ft	
Pad Width, W ₁ :	16.5	ft	
Pad Thickness, T :	3	ft	
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8		
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	17		
Pad Clear Cover, cc_{pad}:	3	in	

Material Properties				
Rebar Grade, Fy:	60	ksi		
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties			
Total Soil Unit Weight, $m{\gamma}$:	125	pcf	
Ultimate Gross Bearing, Qult:	12.000	ksf	
Cohesion, Cu :	0.000	ksf	
Friction Angle, $\boldsymbol{\varphi}$:	34	degrees	
SPT Blow Count, N _{blows} :	60		
Base Friction, μ :			
Neglected Depth, N:	3.50	ft	
Foundation Bearing on Rock?	No		
Groundwater Depth, gw:	N/A	ft	

<--Toggle between Gross and Net

Foundation Analysis Checks					
	Capacity	Demand	Rating*	Check	
Lateral (Sliding) (kips)	159.73	20.00	11.9%	Pass	
Bearing Pressure (ksf)	9.00	5.12	56.9%	Pass	
Overturning (kip*ft)	2060.52	1845.00	89.5%	Pass	
Pier Flexure (Comp.) (kip*ft)	2966.82	1780.00	57.1%	Pass	
Pier Compression (kip)	19253.52	56.50	0.3%	Pass	
Pad Flexure (kip*ft)	1867.53	963.87	49.2%	Pass	
Pad Shear - 1-way (kips)	591.69	210.03	33.8%	Pass	
Pad Shear - 2-way (Comp) (ksi)	0.190	0.000	0.0%	Pass	
Flexural 2-way (Comp) (kip*ft)	3203.98	1068.00	31.7%	Pass	

*Rating per TIA-222-H Section	
15.5	

Structural Rating*:	57.1%
Soil Rating*:	89.5%

Exhibit E

Mount Analysis

Date: November 8, 2021 POWER OF DESIGN Rob Kulbacki POD Group Crown Castle 1033 E Turkeyfoot Lake Rd. Suite 206 2000 Corporate Drive, Akron, OH 44312 Canonsburg, PA 15317 (330) 961 7432 724-416-2116 mhoudeshell@podgrp.com Subject: Mount Analysis Report **Carrier Designation: DISH Network** Carrier Site Number: **BOHVN00172A** Carrier Site Name: CT-CCI-T-876405 **Crown Castle Designation:** Crown Castle BU Number: 876405 Crown Castle Site Name: WOODBURY NORTH Crown Castle JDE Job Number: 645206 Crown Castle Order Number: 553389 Rev. 1 Engineering Firm Designation: POD Report Designation: 21-114359 Site Data: 186 MinorTown, Woodbury, Litchfield County, CT 06798 Latitude 41°34'4.79" Longitude -73°10'46.85" Structure Information: Tower Height & Type: 110 ft Monopole Mount Elevation: 68 ft Mount Type: 8' Platform with Support Rail Dear Rob Kulbacki,

POD Group is pleased to submit this "Mount Analysis Report" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sufficient

8' Platform with Support Rail (Multiple Sector)

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Bradley Linerode

Digitally signed Respectfully submitted by: by Jason Jason Cheronis **Peronis** Date: 2021.11.08 14:27:39 -05'00' * PE. PE. SONALE Jason Cheronis, PE Connecticut PE#: 0032793

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 – Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 – Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B Software Input Calculations

7) APPENDIX C Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Design Criteria

10) APPENDIX F

Mount Specification Sheets

1) INTRODUCTION

This mount is a proposed 8' Platform with Support Rail designed by Commscope (P/N: MC-PK8). This mount is to be installed at the 68 ft elevation on the 110 ft Monopole.

2) ANALYSIS CRITERIA

2015 IBC
TIA-222-H
II
118 mph
С
1.000
1.000
1 in
50 mph
0.192
0.065
30 mph
250 lb
500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)		Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details	Note
68		3	JMA WIRELESS	MX08FRO665-21	8' Platform	
	68	3	FUJITSU	TA08025-B604		
	00	3	3 FUJITSU TA08025-B605 Rail	with Support -	-	
		1	RAYCAP	RDIDC-9181-PF-48		

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	-	Crown Castle App #: 553389 Rev. 1 Dated: 8/18/2021	Crown Castle
Structural Analysis	-	Tower Engineering Professionals Report #: 25640.543262 Dated: 5/18/2021	Crown Castle
Proposed Base Levels Drawings	-	Crown Castle Sheet #: A1-68 Dated: 5/20/2021	Crown Castle
Mount Specification Sheets	-	Commscope Part #: MC-PK8-DSH Dated: 3/17/2021	Commscope

3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases. Selected output from the analysis are included in the Appendices.

A tool internally developed, using Microsoft Excel, by POD Group, was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the calculations is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed, and maintained in good condition in accordance with its original design, TIA Standards, and/or manufacturer's specifications. This is not a condition assessment of the mount, structure, or foundation.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The weight of the mount was increased 10% in the analysis to account for connections, coax, and jumpers.
- 5) The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure. POD Group does not analyze the fabrication of the mount or structure (including welding).
- 6) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 7) Steel grades have been assumed as follows, unless noted otherwise:

a.	Channel	ASTM A1011 (GR 36)
b.	Angle, Plate	ASTM A36 (GR 36)
c.	Square Flange Plate	ASTM A572 (GR 50)
d.	HSS (Rectangular)	ASTM 500 (GR B-46)
e.	Pipe	ASTM A500 (GR C-60)
f.	Connection Bolts	ASTM A325

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and POD Group should be allowed to review any new information to determine its effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

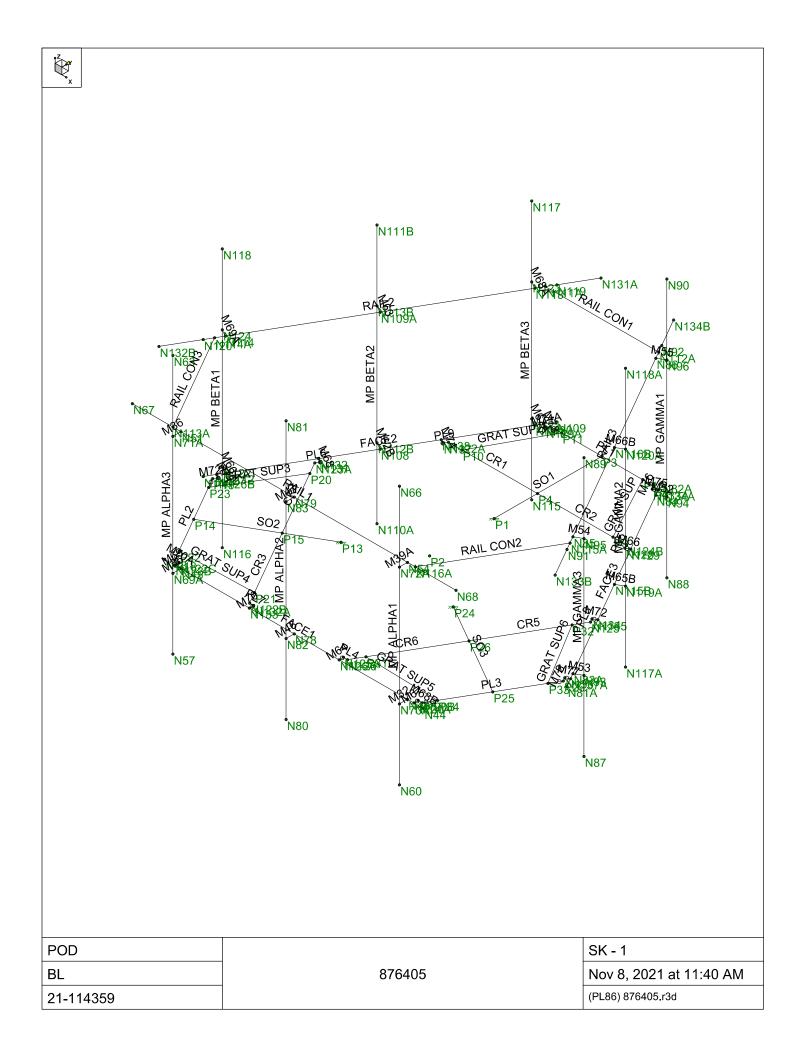
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Face	FACE		4.8	Pass
	Rail	RAIL	68	6.9	Pass
	Standoff	SO		24.4	Pass
	Corner	CR		21.6	Pass
1	Plate	PLATE		29.3	Pass
	Mount Pipe	MP		6.7	Pass
	Rail Connection	RAIL CON		7.7	Pass
	Grating Support	GRAT SUP		19.8	Pass
	Standoff Flange Plate Bolts	-	-	2.7	Pass
	Standoff Flange Plate	-	-	25.1	Pass

Table 3 - Mount Component Stresses vs. Capacity (8' Platform with Support Rail)

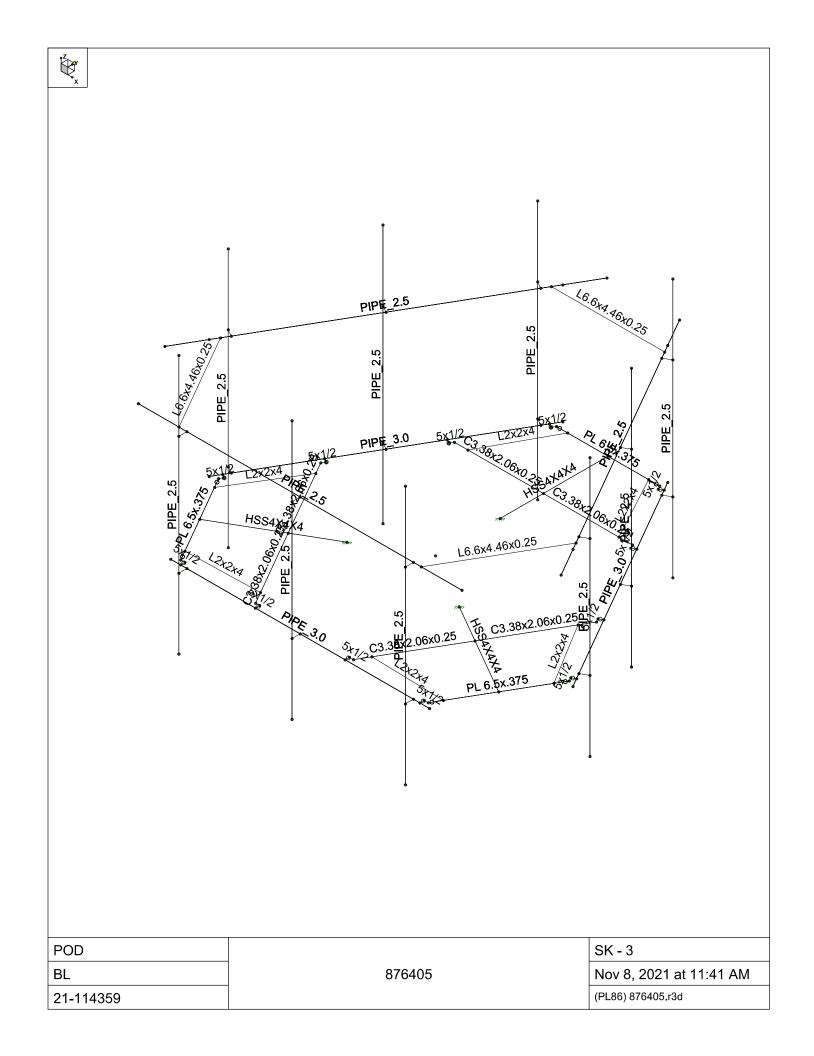
Structure Rating (max from all components) =
--

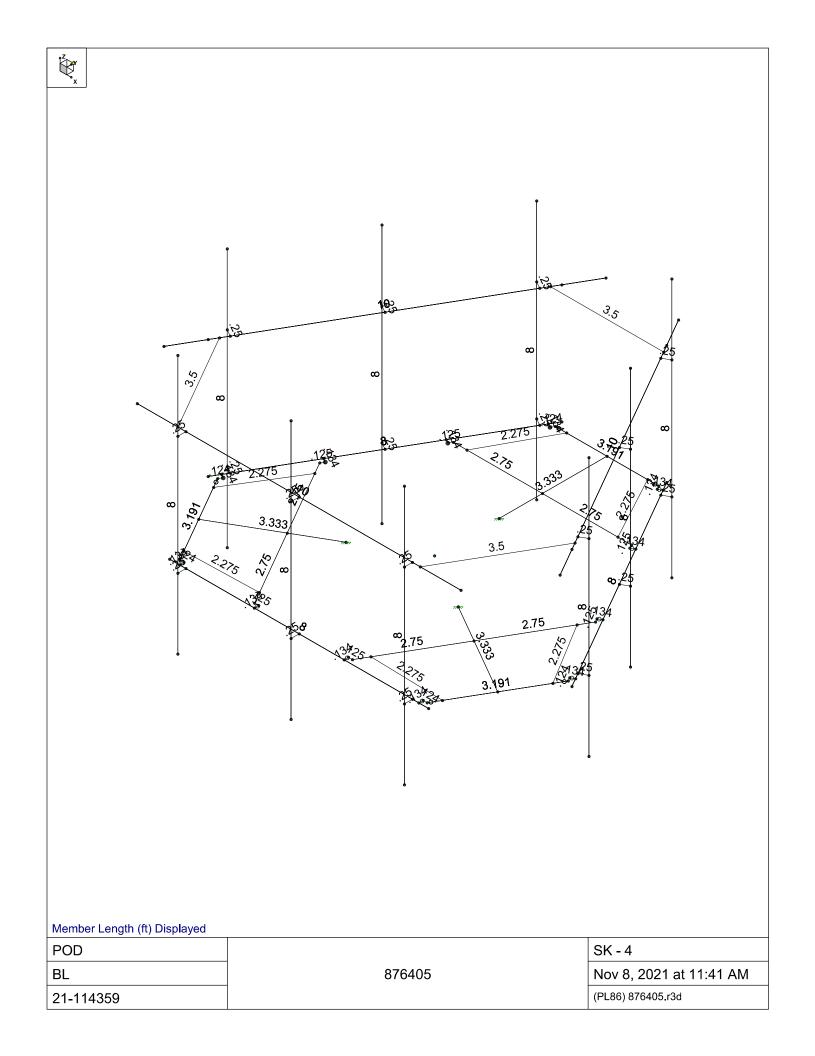
29.3%

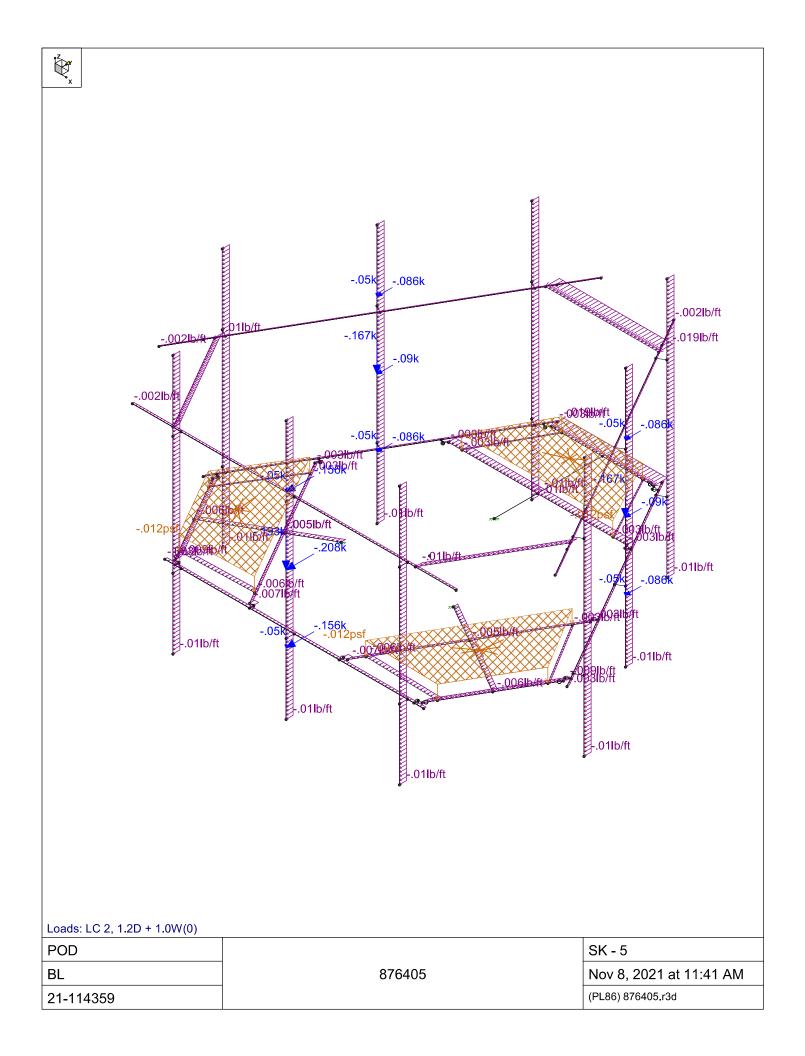
Notes:


1) See additional documentation in "Appendix C – Software Analysis Output" and "Appendix D – Additional Calculations" for calculations supporting the % capacity

4.1) Recommendations


The proposed mount Commscope MC-PK8-DSH installed at 68' elevation per manufacturer specifications has sufficient capacity to carry the proposed loading configuration.


APPENDIX A


Wire Frame and Rendered Models

POD		SK-2
BL	876405	Nov 8, 2021 at 11:40 AM
21-114359		(PL86) 876405.r3d

APPENDIX B

Software Input Calculations

	POD)
	POWER OF DESIGN	I
General Site	Information	

POD Job #	21-114359
Site Number	876405
Site Name	WOODBURY NORTH

General Site Informa	uon								
Mount Type	SFP	Risk Category		I (seismic)	1	Use CFD	Yes		
V (Wind Speed)	118	I(ice)	1	Sms	0.307				
Zs	460			Sm1	0.156			width (ft)	height (ft
ti	1	Ss	0.192	Sds	0.205	Front Outer D	imensions	8	3.667
Vi	50	51	0.065	Sd1	0.104				
Kzt	1	Soil Site Class	D	Seismic Design (Category				
Exposure	с	Fa	1.600	В					
zg	900	Fv	2.400	Seismic Analysis	Not Required				
α	9.5			R	2 TIA-222-H 16.7				
Kmin	0.85	Tower Type	Monopole	As	1 TIA-222-H 16.7				
G _H	1	Tower Height	110	Cs, Min	0.03 TIA-222-H 2.7.7.1.1				
Ke	0.98			Cs	0.1024 TIA-222-H 2.7.7.1.1				
Kp	0.95								
к,	0.9								

Appurtenance Information

Model	Shielded	% Shielded	Centerline	Centerline on MP	Spacing (in)	Azimuth	Sector	Quantity		MP #	
MX08FRO665-21			68	4	50		A/B/C	1	2		
TA08025-B604			68	4			A/B/C	1	2		
TA08025-B605			68	4			A/B/C	1	2		
RDIDC-9181-PF-48			68	4			A	1	2		

Mount Information

Elevation (ft)	68	Grating Thickness (in)	1
Kz	1.17	Grating Ice Weight (k/ft ²)	0.014
Kiz	1.07		
tiz	1.07		

Length (ft) Width (in) Centerline Mount Pipes 8 2.375 155

Version 3.54

													Force (Kips)			
vlodel	Height Width				Kz				(EPA) _T (ft ²)		ont Sic					
/X08FRO665-21	72.0	20.0	8.0	82.5		1.17	38.86	8.01			0.311	0.125	0.265	0.265	0.125	
A08025-B604	15.0	15.8	7.9	63.9		1.17	38.86	1.77			0.069	0.034	0.060	0.060	0.034	
FA08025-B605	15.0	15.8	9.1	75.0		1.17	38.86				0.069	0.040	0.061	0.061	0.040	
RDIDC-9181-PF-48	16.6	14.6	8.5	21.9		1.17	38.86	1.81	1.05	5	0.070	0.041	0.063	0.063	0.041	
Appurtenance Ice Ca	lculations															
vlodel	tiz (in) Height	Wid	th Depth	We	ight (lbs)	Kiz		az (lb/ft1)	(EPA) _N (ft ²)	(EPA) ₇ (ft ²)	Fre	ont Sid		Force (Kips) a Beta		Gamma
VX08FR0665-21	1.07	74.15	22.15	10.15	166.91	Ten.	1.07	6.98				0.057	0.026	0.050	0.050	0.0
FA08025-8604	1.07	17.11	17.90	10.02	39.36		1.07	6.98				0.009	0.025	0.008	0.008	0.0
TA08025-8605	1.07	17.11	17.90	11.21	42.08		1.07	6.98				0.009	0.005	0.008	0.008	0.0
RDIDC-9181-PF-48	1.07	18.72	16.72	10.61	41.43		1.07	6.98				0.005	0.006	0.000	0.008	0.0
	1.07	10.72	10.72	10.01	41.43		1.07	0.50	1.57	0.07		0.010	0.000	0.005	0.005	0.0
Round Members			Wind Calc	ulations								Ice Calculat	ions			
vlember	q _z (lb/ft ²) Ar	С	Rr	Cf	EPA (ft²) Loi	ad (k/ft)		Width (in)	Weight (k/ft) q	(lb/ft ²) Ari	ice Rrid	e Cf	EPA (ft ²)	Load (k/ft)
ace on	38.86	4.53	35.20	0.59	1.20	1.44	0.007		5.55	0.01	6.98	7.40	0.65	1.20	2.59	0.0
ace off	38.86	2.27	35.20	0.59	1.20	1.44	0.003		5.55	0.01	6.98	3.70	0.65	1.20	2.59	0.0
ail on	38.86	3.17	24.59	0.59	1.20	1.01	0.005		4.52	0.00	6.98	6.03	0.65	1.20	2.11	0.0
rail off	38.86	1.58	24.59	0.59	1.20	1.01	0.002		4.52	0.00	6.98	3.02	0.65	1.20	2.11	0.0
Flat Members																
			Wind Calculations									Ice Calculat	ions			
vlember	q _z (lb/ft ²) Af	Cf	EPA	Loa	d (k/ft)				Width (in)	Weight (k/ft) q,	(lb/ft ²) Ari	ice Rrie	e Cf	EPA		Load (k/ft)
0	38.86	3.33	1.25	1.25	0.007				6.15	0.01	6.98	5.12	0.65	1.25	1.24	0.0
Grat	38.86	2.28	2.00	0.68	0.006				4.15	0.01	6.98	4.72	0.65	2.00	0.92	0.0
91	38.86	5.69	2.00	3.41	0.019				8.65	0.01	6.98	7.57	0.65	2.00	2.94	0.0
R	38.86	4.65	2.00	1.39	0.010				5.53	0.01	6.98	7.60	0.65	2.00	1.48	0.0
Rail Con	38.86	5.78	2.00	3.47	0.019				8.75	0.01	6.98	7.66	0.65	2.00	2.98	0.0
912	38.86	0.15	2.00	0.04	0.007				4.52	0.00	6.98	0.28	0.65	2.00	0.06	0.0
Appurtenance Seism	ic Calculations															
Vlodel	Weight Sds	p	Cs	As	Ev	Eh										
VX08FRO665-21	82.5	0.205	1.000	0.102	1.000	0.003	0.008									
	63.9	0.205	1.000	0.102	1.000	0.003	0.007									
A09035 B604						0.005										
A08025-8604 A08025-8605	75.0	0.205	1.000	0.102	1.000	0.003	0.008									

APPENDIX C

Software Analysis Output

Nov 8, 2021 11:41 AM Checked By:___

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp to	Lcomp b	L-tor	Куу	Kzz	Cb	Func
1	SO1	HSS4X4X4	3.333			Lbyy						Lateral
2	GRAT SUP	L2x2x4	2.275			Lbyy						Lateral
3	GRAT SUP2	L2x2x4	2.275			Lbyy						Lateral
4	PL1	PL 6.5x.375	3.191			Lbyy						Lateral
5	SO2	HSS4X4X4	3.333			Lbyy						Lateral
6	GRAT SUP3	L2x2x4	2.275			Lbyy						Lateral
7	GRAT SUP4	L2x2x4	2.275			Lbyy						Lateral
8	PL2	PL 6.5x.375	3.191			Lbyy						Lateral
9	SO3	HSS4X4X4	3.333			Lbyy						Lateral
10	GRAT SUP5	L2x2x4	2.275			Lbyy						Lateral
11	GRAT SUP6	L2x2x4	2.275			Lbyy						Lateral
12	PL3	PL 6.5x.375	3.191			Lbyy						Lateral
13	FACE1	PIPE 3.0	8			Lbyy						Lateral
14	MP ALPHA1	PIPE 2.5	8			Lbyy						Lateral
15	MP ALPHA3	PIPE 2.5	8			Lbyy						Lateral
16	RAIL1	PIPE 2.5	10			Lbvy						Lateral
17	RAIL CON3	L6.6x4.46x0.25	3.5			Lbyy						Lateral
18	RAIL CON1	L6.6x4.46x0.25	3.5			Lbyy						Lateral
19	RAIL CON2	L6.6x4.46x0.25	3.5			Lbyy						Lateral
20	CR1	C3.38x2.06x0.25	2.75			Lbyy						Lateral
21	CR2	C3.38x2.06x0.25	2.75			Lbvv						Lateral
22	CR3	C3.38x2.06x0.25	2.75			Lbyy						Lateral
23	CR4	C3.38x2.06x0.25	2.75			Lbyy						Lateral
24	CR5	C3.38x2.06x0.25	2.75			Lbvv						Lateral
25	CR6	C3.38x2.06x0.25	2.75			Lbyy						Lateral
26	PL4	5x1/2	.125									Lateral
27	PL5	5x1/2	.125									Lateral
28	PL6	5x1/2	.125									Lateral
29	PL7	5x1/2	.125									Lateral
30	PL8	5x1/2	.125									Lateral
31	PL9	5x1/2	.125									Lateral
32	MP ALPHA2	PIPE 2.5	8			Lbyy						Lateral
33	FACE3	PIPE 3.0	8			Lbyy						Lateral
34	MP GAMMA1	PIPE 2.5	8			Lbyy						Lateral
35	MP GAMMA3	PIPE 2.5	8			Lbyy						Lateral
36	RAIL3	PIPE 2.5	10			Lbyy						Lateral
37	FACE2	PIPE 3.0	8			Lbyy						Lateral
38	MP BETA1	PIPE 2.5	8			Lbyy						Lateral
39	MP BETA3	PIPE 2.5	8			Lbyy						Lateral
40	RAIL2	PIPE 2.5	10			Lbyy						Lateral
41	MP BETA2	PIPE 2.5	8			Lbyy						Lateral
42	MP GAMMA2	PIPE 2.5	8			Lbyy						Lateral
43	M68B	5x1/2	.124									Lateral
44	M70A	5x1/2	.124									Lateral
45	M70A	5x1/2	.124									Lateral
46	M74A	5x1/2	.124									Lateral
40	M74A M76	5x1/2	.124									Latera
48	M78	5x1/2	.124									Lateral
40		JX 1/2	.124									Latoral

Member Advanced Data

	Label	l Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical Defl	RatAnalysis	Inactive	Seismic
1	SO1					-	Yes			None
2	GRAT SUP						Yes			None
3	GRAT SUP2						Yes			None

Nov 8, 2021 11:41 AM Checked By:___

Member Advanced Data (Continued)

	Label	l Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat.	Analysis	Inactive	Seismic
4	PL1	BenPIN	BenPIN				Yes	Default			None
5	SO2						Yes				None
6	GRAT SUP3						Yes				None
7	GRAT SUP4						Yes				None
8	PL2	BenPIN	BenPIN				Yes	Default			None
9	SO3						Yes	Default			None
10	GRAT SUP5						Yes				None
11	GRAT SUP6						Yes				None
12	PL3	BenPIN	BenPIN				Yes	Default			None
13	FACE1						Yes				None
14	MP ALPHA1						Yes		+y+3		None
15	MP ALPHA3						Yes		+y+3		None
16	RAIL1						Yes				None
17	RAIL CON3						Yes				None
18	RAIL CON1						Yes				None
19	RAIL CON2						Yes	Default			None
20	M32						Yes	** NA **			None
21	M35						Yes	** NA **			None
22	M36						Yes	** NA **			None
23	M39A						Yes	** NA **			None
24	CR1						Yes	Default			None
25	CR2						Yes	Default			None
26	CR3						Yes	Default			None
27	CR4						Yes	Default			None
28	CR5						Yes	Default			None
29	CR6						Yes	Default			None
30	M64	BenPIN					Yes	** NA **			None
31	PL4						Yes				None
32	M66	BenPIN					Yes	** NA **			None
33	PL5						Yes				None
34	M68	BenPIN					Yes	** NA **			None
35	PL6						Yes				None
36	M70	BenPIN					Yes	** NA **			None
37	PL7						Yes				None
38	M72	BenPIN					Yes	** NA **			None
39	PL8						Yes				None
40	M74	BenPIN					Yes	** NA **			None
41	PL9						Yes				None
	MP ALPHA2						Yes		+y+3		None
43	M46						Yes	** NA **			None
44	M47							** NA **			None
45	FACE3						Yes				None
	MP GAMM						Yes		+y+3		None
	MP GAMM						Yes		+y+3		None
48	RAIL3						Yes				None
49	M52						Yes	** NA **			None
50	M53						Yes	** NA **			None
51	M54						Yes	** NA **			None
52	M55						Yes	** NA **			None
53	FACE2						Yes				None
54	MP BETA1						Yes		+y+3		None
55	MP BETA3						Yes		+y+3		None
56	RAIL2						Yes				None
57	M66A						Yes	** NA **			None
58	M67A						Yes	** NA **			None
59	M68A						Yes	** NA **			None
60	M69A						Yes	** NA **			None
		an 17.0.0		640EV(01 1	142E0) Mai	nt Analys			86) 876405		Page 2

Nov 8, 2021 11:41 AM Checked By:____

Member Advanced Data (Continued)

	Label	l Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
61	MP BETA2						Yes		+y+3		None
62	M62B						Yes	** NA **			None
63	M63						Yes	** NA **			None
64	MP GAMM						Yes		+y+3		None
65	M65B						Yes	** NA **			None
66	M66B						Yes	** NA **			None
67	M67	BenPIN					Yes	** NA **			None
68	M68B						Yes				None
69	M69	BenPIN					Yes	** NA **			None
70	M70A						Yes				None
71	M71	BenPIN					Yes	** NA **			None
72	M72A						Yes				None
73	M73	BenPIN					Yes	** NA **			None
74	M74A						Yes				None
75	M75	BenPIN					Yes	** NA **			None
76	M76						Yes				None
77	M77	BenPIN					Yes	** NA **			None
78	M78						Yes				None

Member Primary Data

	Labal	Laint	Laint	K labet	Detete (Cootion/Ct	T	Dealers List	Mataria	Desire D
1	Label SO1	I Joint P3	J Joint P1	K Joint	Rotate(. Section/Sh HSS4X4X4	Type	Design List	Material A500 Gr.B Rect	Design R
							Beam	SquareTube		. , p. ooki
2	GRAT SUP GRAT SUP2	P9 P10	P12 P11		180	L2x2x4	Beam	Single Angle	A36 Gr.36	Typical
		P10	P11 P8		90 90	L2x2x4 PL 6.5x.375	Beam	Single Angle	A36 Gr.36	Typical
4	PL1					HSS4X4X4	Beam	RECT	A36 Gr.36 A500 Gr.B Rect	Typical
5	SO2	P14	P13		90		Beam	SquareTube		
6	GRAT SUP3	P20	P23		180	L2x2x4	Beam	Single Angle	A36 Gr.36	Typical
7	GRAT SUP4	P21	P22		270	L2x2x4	Beam	Single Angle	A36 Gr.36	Typical
8	PL2	P18	P19		270	PL 6.5x.375	Beam	RECT	A36 Gr.36	Typical
9	SO3	P25	P24		270	HSS4X4X4	Beam	SquareTube	A500 Gr.B Rect	
10	GRAT SUP5	P31	P34		360	L2x2x4	Beam	Single Angle	A36 Gr.36	Typical
11	GRAT SUP6	P32	P33		90	L2x2x4	Beam	Single Angle	A36 Gr.36	Typical
12	PL3	P29	P30		270	PL 6.5x.375	Beam	RECT	A36 Gr.36	Typical
13	FACE1	N43	N44		90	PIPE 3.0	Beam	Pipe	A500 GR.C	Typical
14	MP ALPHA1	N60	N66		180	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
15	MP ALPHA3	N57	N63		180	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
16	RAIL1	N67	N68		90	PIPE_2.5	Beam	Pipe	A500 GR.C	Typical
17	RAIL CON3	N114A	N113A		270	L6.6x4.46x	Beam	Single Angle	A36 Gr.36	Typical
18	RAIL CON1	N112A	N111A		90	L6.6x4.46x	Beam	Single Angle	A36 Gr.36	Typical
19	RAIL CON2	N116A	N115A		270	L6.6x4.46x	Beam	Single Angle	A36 Gr.36	Typical
20	M32	N48A	N70A		270	RIGID	None	None	RIGID	Typical
21	M35	N45	N69A		270	RIGID	None	None	RIGID	Typical
22	M36	N51	N71A		270	RIGID	None	None	RIGID	Typical
23	M39A	N54	N72A		270	RIGID	None	None	RIGID	Typical
24	CR1	P4	N122A		270	C3.38x2.06	Beam	Channel	A1011 36 Ksi	Typical
25	CR2	P4	N124B		270	C3.38x2.06	Beam	Channel	A1011 36 Ksi	Typical
26	CR3	P15	N122B		90	C3.38x2.06	Beam	Channel	A1011 36 Ksi	Typical
27	CR4	P15	N123A		90	C3.38x2.06	Beam	Channel	A1011 36 Ksi	Typical
28	CR5	P26	N125		90	C3.38x2.06	Beam	Channel	A1011 36 Ksi	Typical
29	CR6	P26	N126		90	C3.38x2.06	Beam	Channel	A1011 36 Ksi	Typical
30	M64	N126A	N125A		90	RIGID	None	None	RIGID	Typical
31	PL4	N126	N125A		270	5x1/2	Beam	RECT	A36 Gr.36	Typical
32	M66	N129	N128		270	RIGID	None	None	RIGID	Typical
33	PL5	N124B	N128		90	5x1/2	Beam	RECT	A36 Gr 36	Typical
34	M68	N132	N131		90	RIGID	None	None	RIGID	Typical

Nov 8, 2021 11:41 AM Checked By:____

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(Section/Sh	Type	Design List	Material	Design R
35	PL6	N123A	N131		90	5x1/2	Beam	RECT	A36 Gr.36	Typical
36	M70	N133	N132A		90	RIGID	None	None	RIGID	Typical
37	PL7		N132A		90	5x1/2	Beam	RECT	A36 Gr.36	Typical
38	M72	N135	N134		270	RIGID	None	None	RIGID	Typical
39	PL8	N125	N134		270	5x1/2	Beam	RECT	A36 Gr.36	Typical
40	M74	N138	N137		90	RIGID	None	None	RIGID	Typical
41	PL9	N122A	N137		270	5x1/2	Beam	RECT	A36 Gr.36	Typical
42	MP ALPHA2	N80	N81		180	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
43	M46	N78	N82		270	RIGID	None	None	RIGID	Typical
44	M47	N79	N83		270	RIGID	None	None	RIGID	Typical
45	FACE3	N81A	N82A		270	PIPE 3.0	Beam	Pipe	A500 GR.C	Typical
46	MP GAMMA1	N88	N90		180	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
47	MP GAMMA3	N87	N89		180	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
48	RAIL3	N134B	N133B		270	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
49	M52	N84	N94		90	RIGID	None	None	RIGID	Typical
50	M53	N83A	N93		90	RIGID	None	None	RIGID	Typical
51	M54	N85	N95		90	RIGID	None	None	RIGID	Typical
52	M55	N86	N96		90	RIGID	None	None	RIGID	Typical
53	FACE2	N109	N110		270	PIPE 3.0	Beam	Pipe	A500 GR.C	Typical
54	MP BETA1	N116	N118		180	PIPE_2.5	Beam	Pipe	A500 GR.C	Typical
55	MP BETA3	N115	N117		180	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
56	RAIL2	N132B	N131A		270	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
57	M66A	N112	N122		270	RIGID	None	None	RIGID	Typical
58	M67A	N111	N121		270	RIGID	None	None	RIGID	Typical
59	M68A	N113	N123		270	RIGID	None	None	RIGID	Typical
60	M69A	N114	N124		270	RIGID	None	None	RIGID	Typical
61	MP BETA2	N110A	N111B		60	PIPE 2.5	Beam	Pipe	A500 GR.C	Typical
62	M62B	N108	N112B		270	RIGID	None	None	RIGID	Typical
63	M63	N109A	N113B		270	RIGID	None	None	RIGID	Typical
64	MP GAMMA2	N117A			300	PIPE_2.5	Beam	Pipe	A500 GR.C	Typical
65	M65B	N115B			90	RIGID	None	None	RIGID	Typical
66	M66B	N116B			90	RIGID	None	None	RIGID	Typical
67	M67		N120B		90	RIGID	None	None	RIGID	Typical
68	M68B	P30	N120B		270	5x1/2	Beam	RECT	A36 Gr.36	Typical
69	M69	N123B	N122C		90	RIGID	None	None	RIGID	Typical
70	M70A	P18	N122C		270	5x1/2	Beam	RECT	A36 Gr.36	Typical
71	M71	N127	N126B		90	RIGID	None	None	RIGID	Typical
72	M72A	P19	N126B		90	5x1/2	Beam	RECT	A36 Gr.36	Typical
73	M73	N130	N129A		90	RIGID	None	None	RIGID	Typical
74	M74A	P7	N129A		90	5x1/2	Beam	RECT	A36 Gr.36	Typical
75	M75		N133A		270	RIGID	None	None	RIGID	Typical
76	M76	P8	N133A		90	5x1/2	Beam	RECT	A36 Gr.36	Typical
77	<u>M77</u>	N137A	N136		270	RIGID	None	None	RIGID	Typical
78	M78	P29	N136		90	5x1/2	Beam	RECT	A36 Gr.36	Typical

Hot Rolled Steel Properties

	Labe	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1

Hot Rolled Steel Properties (Continued)

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
9	A500 GR.C	29000	11154	.3	.65	.49	46	1.6	60	1.2
10	A529 Gr. 50	29000	11154	.3	.65	.49	50	1.1	65	1.1
11	A1011-33Ksi	29000	11154	.3	.65	.49	33	1.5	58	1.2
12	A1011 36 Ksi	29000	11154	.3	.65	.49	36	1.5	58	1.2
13	A1018 50 Ksi	29000	11154	.3	.65	.49	50	1.5	65	1.2

Member Point Loads (BLC 1 : Live Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	FACE1	Z	5	0

Member Point Loads (BLC 2 : Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	156	6.083
2	MP ALPHA2	Y	156	1.917
3	MP BETA2	Y	086	6.083
4	MP BETA2	Y	086	1.917
5	MP GAMMA2	Y	086	6.083
6	MP GAMMA2	Y	086	1.917
7	MP ALPHA2	Y	069	4
8	MP BETA2	Y	043	4
9	MP GAMMA2	Y	043	4
10	MP ALPHA2	Y	069	4
11	MP BETA2	Y	047	4
12	MP GAMMA2	Y	047	4
13	MP ALPHA2	Y	07	4

Member Point Loads (BLC 3 : Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	041	6.083
2	MP ALPHA2	Z	041	1.917
3	MP BETA2	Z	041	6.083
4	MP BETA2	Z	041	1.917
5	MP GAMMA2	Z	041	6.083
6	MP GAMMA2	Z	041	1.917
7	MP ALPHA2	Z	064	4
8	MP BETA2	Z	064	4
9	MP GAMMA2	Z	064	4
10	MP ALPHA2	Z	075	4
11	MP BETA2	Z	075	4
12	MP GAMMA2	Z	075	4
13	MP ALPHA2	Z	022	4

Member Point Loads (BLC 4 : Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	115	6.083
2	MP ALPHA2	Y	115	1.917
3	MP ALPHA2	Х	066	6.083
4	MP ALPHA2	Х	066	1.917
5	MP BETA2	Y	054	6.083
6	MP BETA2	Y	054	1.917
7	MP BETA2	Х	031	6.083
8	MP BETA2	Х	031	1.917
9	MP GAMMA2	Y	115	6.083
10	MP GAMMA2	Y	115	1.917

Member Point Loads (BLC 4 : Wind Load (30)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
11	MP GAMMA2	Х	066	6.083
12	MP GAMMA2	Х	066	1.917
13	MP ALPHA2	Y	052	4
14	MP ALPHA2	Х	03	4
15	MP BETA2	Y	03	4
16	MP BETA2	X	017	4
17	MP GAMMA2	Y	052	4
18	MP GAMMA2	X	03	4
19	MP ALPHA2	Y	053	4
20	MP ALPHA2	Х	031	4
21	MP BETA2	Y	034	4
22	MP BETA2	Х	02	4
23	MP GAMMA2	Y	053	4
24	MP GAMMA2	Х	031	4
25	MP ALPHA2	Y	055	4
26	MP ALPHA2	Х	031	4

Member Point Loads (BLC 5 : Wind Load (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	043	6.083
2	MP ALPHA2	Y	043	1.917
3	MP ALPHA2	Х	074	6.083
4	MP ALPHA2	Х	074	1.917
5	MP BETA2	Y	043	6.083
6	MP BETA2	Y	043	1.917
7	MP BETA2	Х	074	6.083
8	MP BETA2	Х	074	1.917
9	MP GAMMA2	Y	078	6.083
10	MP GAMMA2	Y	078	1.917
11	MP GAMMA2	Х	135	6.083
12	MP GAMMA2	Х	135	1.917
13	MP ALPHA2	Y	021	4
14	MP ALPHA2	Х	037	4
15	MP BETA2	Y	021	4
16	MP BETA2	Х	037	4
17	MP GAMMA2	Y	034	4
18	MP GAMMA2	Х	059	4
19	MP ALPHA2	Y	023	4
20	MP ALPHA2	Х	041	4
21	MP BETA2	Y	023	4
22	MP BETA2	Х	041	4
23	MP GAMMA2	Y	034	4
24	MP GAMMA2	Х	059	4
25	MP ALPHA2	Y	024	4
26	MP ALPHA2	Х	042	4

Member Point Loads (BLC 6 : Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	062	6.083
2	MP ALPHA2	X	062	1.917
3	MP BETA2	X	132	6.083
4	MP BETA2	Х	132	1.917
5	MP GAMMA2	Х	132	6.083
6	MP GAMMA2	Х	132	1.917
7	MP ALPHA2	Х	034	4
8	MP BETA2	X	06	4

Member Point Loads (BLC 6 : Wind Load (90)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
9	MP GAMMA2	Х	06	4
10	MP ALPHA2	Х	04	4
11	MP BETA2	Х	061	4
12	MP GAMMA2	Х	061	4
13	MP ALPHA2	Х	041	4

Member Point Loads (BLC 7 : Wind Load (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.043	6.083
2	MP ALPHA2	Y	.043	1.917
3	MP ALPHA2	Х	074	6.083
4	MP ALPHA2	Х	074	1.917
5	MP BETA2	Y	.078	6.083
6	MP BETA2	Y	.078	1.917
7	MP BETA2	Х	135	6.083
8	MP BETA2	Х	135	1.917
9	MP GAMMA2	Y	.043	6.083
10	MP GAMMA2	Y	.043	1.917
11	MP GAMMA2	Х	074	6.083
12	MP GAMMA2	Х	074	1.917
13	MP ALPHA2	Y	.021	4
14	MP ALPHA2	Х	037	4
15	MP BETA2	Y	.034	4
16	MP BETA2	Х	059	4
17	MP GAMMA2	Y	.021	4
18	MP GAMMA2	Х	037	4
19	MP ALPHA2	Y	.023	4
20	MP ALPHA2	Х	041	4
21	MP BETA2	Y	.034	4
22	MP BETA2	Х	059	4
23	MP GAMMA2	Y	.023	4
24	MP GAMMA2	Х	041	4
25	MP ALPHA2	Y	.024	4
26	MP ALPHA2	Х	042	4

Member Point Loads (BLC 8 : Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.115	6.083
2	MP ALPHA2	Y	.115	1.917
3	MP ALPHA2	Х	066	6.083
4	MP ALPHA2	Х	066	1.917
5	MP BETA2	Y	.115	6.083
6	MP BETA2	Y	.115	1.917
7	MP BETA2	X	066	6.083
8	MP BETA2	Х	066	1.917
9	MP GAMMA2	Y	.054	6.083
10	MP GAMMA2	Y	.054	1.917
11	MP GAMMA2	Х	031	6.083
12	MP GAMMA2	Х	031	1.917
13	MP ALPHA2	Y	.052	4
14	MP ALPHA2	Х	03	4
15	MP BETA2	Y	.052	4
16	MP BETA2	Х	03	4
17	MP GAMMA2	Y	.03	4
18	MP GAMMA2	Х	017	4
19	MP ALPHA2	Y	.053	4

Member Point Loads (BLC 8 : Wind Load (150)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
20	MP ALPHA2	Х	031	4
21	MP BETA2	Y	.053	4
22	MP BETA2	Х	031	4
23	MP GAMMA2	Y	.034	4
24	MP GAMMA2	Х	02	4
25	MP ALPHA2	Y	.055	4
26	MP ALPHA2	Х	031	4

Member Point Loads (BLC 9 : Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.156	6.083
2	MP ALPHA2	Y	.156	1.917
3	MP BETA2	Y	.086	6.083
4	MP BETA2	Y	.086	1.917
5	MP GAMMA2	Y	.086	6.083
6	MP GAMMA2	Y	.086	1.917
7	MP ALPHA2	Y	.069	4
8	MP BETA2	Y	.043	4
9	MP GAMMA2	Y	.043	4
10	MP ALPHA2	Y	.069	4
11	MP BETA2	Y	.047	4
12	MP GAMMA2	Ý	.047	4
13	MP ALPHA2	Y	.07	4

Member Point Loads (BLC 10 : Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.115	6.083
2	MP ALPHA2	Y	.115	1.917
3	MP ALPHA2	Х	.066	6.083
4	MP ALPHA2	Х	.066	1.917
5	MP BETA2	Y	.054	6.083
6	MP BETA2	Y	.054	1.917
7	MP BETA2	Х	.031	6.083
8	MP BETA2	Х	.031	1.917
9	MP GAMMA2	Y	.115	6.083
10	MP GAMMA2	Y	.115	1.917
11	MP GAMMA2	Х	.066	6.083
12	MP GAMMA2	Х	.066	1.917
13	MP ALPHA2	Y	.052	4
14	MP ALPHA2	Х	.03	4
15	MP BETA2	Y	.03	4
16	MP BETA2	Х	.017	4
17	MP GAMMA2	Y	.052	4
18	MP GAMMA2	Х	.03	4
19	MP ALPHA2	Y	.053	4
20	MP ALPHA2	Х	.031	4
21	MP BETA2	Y	.034	4
22	MP BETA2	Х	.02	4
23	MP GAMMA2	Y	.053	4
24	MP GAMMA2	Х	.031	4
25	MP ALPHA2	Y	.055	4
26	MP ALPHA2	Х	.031	4

Member Point Loads (BLC 11 : Wind Load (240))

Member Point Loads (BLC 11 : Wind Load (240)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.043	6.083
2	MP ALPHA2	Y	.043	1.917
3	MP ALPHA2	Х	.074	6.083
4	MP ALPHA2	Х	.074	1.917
5	MP BETA2	Y	.043	6.083
6	MP BETA2	Y	.043	1.917
7	MP BETA2	Х	.074	6.083
8	MP BETA2	Х	.074	1.917
9	MP GAMMA2	Y	.078	6.083
10	MP GAMMA2	Y	.078	1.917
11	MP GAMMA2	Х	.135	6.083
12	MP GAMMA2	Х	.135	1.917
13	MP ALPHA2	Y	.021	4
14	MP ALPHA2	Х	.037	4
15	MP BETA2	Y	.021	4
16	MP BETA2	Х	.037	4
17	MP GAMMA2	Y	.034	4
18	MP GAMMA2	Х	.059	4
19	MP ALPHA2	Y	.023	4
20	MP ALPHA2	Х	.041	4
21	MP BETA2	Y	.023	4
22	MP BETA2	Х	.041	4
23	MP GAMMA2	Y	.034	4
24	MP GAMMA2	Х	.059	4
25	MP ALPHA2	Y	.024	4
26	MP ALPHA2	Х	.042	4

Member Point Loads (BLC 12 : Wind Load (270))

	Member Label	Direction	Magnitude[k.k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.062	6.083
2	MP ALPHA2	Х	.062	1.917
3	MP BETA2	Х	.132	6.083
4	MP BETA2	Х	.132	1.917
5	MP GAMMA2	Х	.132	6.083
6	MP GAMMA2	Х	.132	1.917
7	MP ALPHA2	Х	.034	4
8	MP BETA2	Х	.06	4
9	MP GAMMA2	Х	.06	4
10	MP ALPHA2	Х	.04	4
11	MP BETA2	X	.061	4
12	MP GAMMA2	X	.061	4
13	MP ALPHA2	X	.041	4

Member Point Loads (BLC 13 : Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	043	6.083
2	MP ALPHA2	Y	043	1.917
3	MP ALPHA2	Х	.074	6.083
4	MP ALPHA2	X	.074	1.917
5	MP BETA2	Y	078	6.083
6	MP BETA2	Y	078	1.917
7	MP BETA2	Х	.135	6.083
8	MP BETA2	Х	.135	1.917
9	MP GAMMA2	Y	043	6.083
10	MP GAMMA2	Y	043	1.917
11	MP GAMMA2	Х	.074	6.083

Member Point Loads (BLC 13 : Wind Load (300)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
12	MP GAMMA2	Х	.074	1.917
13	MP ALPHA2	Y	021	4
14	MP ALPHA2	Х	.037	4
15	MP BETA2	Y	034	4
16	MP BETA2	Х	.059	4
17	MP GAMMA2	Y	021	4
18	MP GAMMA2	Х	.037	4
19	MP ALPHA2	Y	023	4
20	MP ALPHA2	Х	.041	4
21	MP BETA2	Y	034	4
22	MP BETA2	Х	.059	4
23	MP GAMMA2	Y	023	4
24	MP GAMMA2	X	.041	4
25	MP ALPHA2	Ý	024	4
26	MP ALPHA2	Х	.042	4

Member Point Loads (BLC 14 : Wind Load (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	115	6.083
2	MP ALPHA2	Y	115	1.917
3	MP ALPHA2	Х	.066	6.083
4	MP ALPHA2	Х	.066	1.917
5	MP BETA2	Y	115	6.083
6	MP BETA2	Y	115	1.917
7	MP BETA2	Х	.066	6.083
8	MP BETA2	Х	.066	1.917
9	MP GAMMA2	Y	054	6.083
10	MP GAMMA2	Y	054	1.917
11	MP GAMMA2	Х	.031	6.083
12	MP GAMMA2	Х	.031	1.917
13	MP ALPHA2	Y	052	4
14	MP ALPHA2	Х	.03	4
15	MP BETA2	Y	052	4
16	MP BETA2	Х	.03	4
17	MP GAMMA2	Y	03	4
18	MP GAMMA2	Х	.017	4
19	MP ALPHA2	Y	053	4
20	MP ALPHA2	Х	.031	4
21	MP BETA2	Y	053	4
22	MP BETA2	Х	.031	4
23	MP GAMMA2	Y	034	4
24	MP GAMMA2	Х	.02	4
25	MP ALPHA2	Y	055	4
26	MP ALPHA2	Х	.031	4

Member Point Loads (BLC 15 : Maintanence (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	01	6.083
2	MP ALPHA2	Y	01	1.917
3	MP BETA2	Y	006	6.083
4	MP BETA2	Y	006	1.917
5	MP GAMMA2	Y	006	6.083
6	MP GAMMA2	Y	006	1.917
7	MP ALPHA2	Y	004	4
8	MP BETA2	Y	003	4
9	MP GAMMA2	Y	003	4

Member Point Loads (BLC 15 : Maintanence (0)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
10	MP ALPHA2	Y	004	4
11	MP BETA2	Y	003	4
12	MP GAMMA2	Y	003	4
13	MP ALPHA2	Y	005	4

Member Point Loads (BLC 16 : Maintanence (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	007	6.083
2	MP ALPHA2	Y	007	1.917
3	MP ALPHA2	Х	004	6.083
4	MP ALPHA2	Х	004	1.917
5	MP BETA2	Y	003	6.083
6	MP BETA2	Y	003	1.917
7	MP BETA2	Х	002	6.083
8	MP BETA2	X	002	1.917
9	MP GAMMA2	Y	007	6.083
10	MP GAMMA2	Y	007	1.917
11	MP GAMMA2	Х	004	6.083
12	MP GAMMA2	Х	004	1.917
13	MP ALPHA2	Y	003	4
14	MP ALPHA2	Х	002	4
15	MP BETA2	Y	002	4
16	MP BETA2	Х	001	4
17	MP GAMMA2	Y	003	4
18	MP GAMMA2	Х	002	4
19	MP ALPHA2	Y	003	4
20	MP ALPHA2	Х	002	4
21	MP BETA2	Y	002	4
22	MP BETA2	Х	001	4
23	MP GAMMA2	Y	003	4
24	MP GAMMA2	Х	002	4
25	MP ALPHA2	Y	004	4
26	MP ALPHA2	Х	002	4

Member Point Loads (BLC 17 : Maintanence (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	003	6.083
2	MP ALPHA2	Y	003	1.917
3	MP ALPHA2	Х	005	6.083
4	MP ALPHA2	Х	005	1.917
5	MP BETA2	Y	003	6.083
6	MP BETA2	Y	003	1.917
7	MP BETA2	Х	005	6.083
8	MP BETA2	Х	005	1.917
9	MP GAMMA2	Υ	005	6.083
10	MP GAMMA2	Y	005	1.917
11	MP GAMMA2	Х	009	6.083
12	MP GAMMA2	Х	009	1.917
13	MP ALPHA2	Y	001	4
14	MP ALPHA2	X	002	4
15	MP BETA2	Y	001	4
16	MP BETA2	Х	002	4
17	MP GAMMA2	Y	002	4
18	MP GAMMA2	Х	004	4
19	MP ALPHA2	Y	002	4
20	MP ALPHA2	Х	003	4

Member Point Loads (BLC 17 : Maintanence (60)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
21	MP BETA2	Y	002	4
22	MP BETA2	Х	003	4
23	MP GAMMA2	Y	002	4
24	MP GAMMA2	Х	004	4
25	MP ALPHA2	Ý	002	4
26	MP ALPHA2	X	003	4

Member Point Loads (BLC 18 : Maintanence (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	004	6.083
2	MP ALPHA2	Х	004	1.917
3	MP BETA2	Х	009	6.083
4	MP BETA2	Х	009	1.917
5	MP GAMMA2	Х	009	6.083
6	MP GAMMA2	Х	009	1.917
7	MP ALPHA2	Х	002	4
8	MP BETA2	Х	004	4
9	MP GAMMA2	Х	004	4
10	MP ALPHA2	Х	003	4
11	MP BETA2	Х	004	4
12	MP GAMMA2	Х	004	4
13	MP ALPHA2	Х	003	4

Member Point Loads (BLC 19 : Maintanence (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.003	6.083
2	MP ALPHA2	Y	.003	1.917
3	MP ALPHA2	Х	005	6.083
4	MP ALPHA2	Х	005	1.917
5	MP BETA2	Y	.005	6.083
6	MP BETA2	Y	.005	1.917
7	MP BETA2	Х	009	6.083
8	MP BETA2	Х	009	1.917
9	MP GAMMA2	Y	.003	6.083
10	MP GAMMA2	Y	.003	1.917
11	MP GAMMA2	Х	005	6.083
12	MP GAMMA2	Х	005	1.917
13	MP ALPHA2	Y	.001	4
14	MP ALPHA2	Х	002	4
15	MP BETA2	Y	.002	4
16	MP BETA2	Х	004	4
17	MP GAMMA2	Y	.001	4
18	MP GAMMA2	Х	002	4
19	MP ALPHA2	Y	.002	4
20	MP ALPHA2	Х	003	4
21	MP BETA2	Y	.002	4
22	MP BETA2	Х	004	4
23	MP GAMMA2	Y	.002	4
24	MP GAMMA2	Х	003	4
25	MP ALPHA2	Y	.002	4
26	MP ALPHA2	Х	003	4

Member Point Loads (BLC 20 : Maintanence (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.007	6.083

Member Point Loads (BLC 20 : Maintanence (150)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
2	MP ALPHA2	Y	.007	1.917
3	MP ALPHA2	Х	004	6.083
4	MP ALPHA2	Х	004	1.917
5	MP BETA2	Y	.007	6.083
6	MP BETA2	Y	.007	1.917
7	MP BETA2	Х	004	6.083
8	MP BETA2	Х	004	1.917
9	MP GAMMA2	Y	.003	6.083
10	MP GAMMA2	Y	.003	1.917
11	MP GAMMA2	Х	002	6.083
12	MP GAMMA2	Х	002	1.917
13	MP ALPHA2	Y	.003	4
14	MP ALPHA2	Х	002	4
15	MP BETA2	Y	.003	4
16	MP BETA2	Х	002	4
17	MP GAMMA2	Y	.002	4
18	MP GAMMA2	Х	001	4
19	MP ALPHA2	Y	.003	4
20	MP ALPHA2	X	002	4
21	MP BETA2	Y	.003	4
22	MP BETA2	Х	002	4
23	MP GAMMA2	Y	.002	4
24	MP GAMMA2	Х	001	4
25	MP ALPHA2	Y	.004	4
26	MP ALPHA2	Х	002	4

Member Point Loads (BLC 21 : Maintanence (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.01	6.083
2	MP ALPHA2	Y	.01	1.917
3	MP BETA2	Y	.006	6.083
4	MP BETA2	Y	.006	1.917
5	MP GAMMA2	Y	.006	6.083
6	MP GAMMA2	Y	.006	1.917
7	MP ALPHA2	Y	.004	4
8	MP BETA2	Y	.003	4
9	MP GAMMA2	Y	.003	4
10	MP ALPHA2	Y	.004	4
11	MP BETA2	Y	.003	4
12	MP GAMMA2	Y	.003	4
13	MP ALPHA2	Y	.005	4

Member Point Loads (BLC 22 : Maintanence (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.007	6.083
2	MP ALPHA2	Y	.007	1.917
3	MP ALPHA2	Х	.004	6.083
4	MP ALPHA2	Х	.004	1.917
5	MP BETA2	Y	.003	6.083
6	MP BETA2	Y	.003	1.917
7	MP BETA2	X	.002	6.083
8	MP BETA2	Х	.002	1.917
9	MP GAMMA2	Y	.007	6.083
10	MP GAMMA2	Y	.007	1.917
11	MP GAMMA2	Х	.004	6.083
12	MP GAMMA2	Х	.004	1.917

Member Point Loads (BLC 22 : Maintanence (210)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
13	MP ALPHA2	Y	.003	4
14	MP ALPHA2	Х	.002	4
15	MP BETA2	Y	.002	4
16	MP BETA2	Х	.001	4
17	MP GAMMA2	Y	.003	4
18	MP GAMMA2	Х	.002	4
19	MP ALPHA2	Y	.003	4
20	MP ALPHA2	Х	.002	4
21	MP BETA2	Y	.002	4
22	MP BETA2	Х	.001	4
23	MP GAMMA2	Y	.003	4
24	MP GAMMA2	Х	.002	4
25	MP ALPHA2	Y	.004	4
26	MP ALPHA2	Х	.002	4

Member Point Loads (BLC 23 : Maintanence (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.003	6.083
2	MP ALPHA2	Y	.003	1.917
3	MP ALPHA2	Х	.005	6.083
4	MP ALPHA2	Х	.005	1.917
5	MP BETA2	Y	.003	6.083
6	MP BETA2	Y	.003	1.917
7	MP BETA2	Х	.005	6.083
8	MP BETA2	Х	.005	1.917
9	MP GAMMA2	Y	.005	6.083
10	MP GAMMA2	Y	.005	1.917
11	MP GAMMA2	Х	.009	6.083
12	MP GAMMA2	Х	.009	1.917
13	MP ALPHA2	Y	.001	4
14	MP ALPHA2	X	.002	4
15	MP BETA2	Y	.001	4
16	MP BETA2	Х	.002	4
17	MP GAMMA2	Y	.002	4
18	MP GAMMA2	X	.004	4
19	MP ALPHA2	Y	.002	4
20	MP ALPHA2	Х	.003	4
21	MP BETA2	Y	.002	4
22	MP BETA2	Х	.003	4
23	MP GAMMA2	Y	.002	4
24	MP GAMMA2	Х	.004	4
25	MP ALPHA2	Y	.002	4
26	MP ALPHA2	X	.003	4

Member Point Loads (BLC 24 : Maintanence (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.004	6.083
2	MP ALPHA2	Х	.004	1.917
3	MP BETA2	Х	.009	6.083
4	MP BETA2	Х	.009	1.917
5	MP GAMMA2	Х	.009	6.083
6	MP GAMMA2	Х	.009	1.917
7	MP ALPHA2	Х	.002	4
8	MP BETA2	Х	.004	4
9	MP GAMMA2	Х	.004	4
10	MP ALPHA2	Х	.003	4

Member Point Loads (BLC 24 : Maintanence (270)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
11	MP BETA2	Х	.004	4
12	MP GAMMA2	Х	.004	4
13	MP ALPHA2	X	.003	4

Member Point Loads (BLC 25 : Maintanence (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	003	6.083
2	MP ALPHA2	Y	003	1.917
3	MP ALPHA2	Х	.005	6.083
4	MP ALPHA2	Х	.005	1.917
5	MP BETA2	Y	005	6.083
6	MP BETA2	Y	005	1.917
7	MP BETA2	Х	.009	6.083
8	MP BETA2	Х	.009	1.917
9	MP GAMMA2	Y	003	6.083
10	MP GAMMA2	Y	003	1.917
11	MP GAMMA2	Х	.005	6.083
12	MP GAMMA2	Х	.005	1.917
13	MP ALPHA2	Y	001	4
14	MP ALPHA2	Х	.002	4
15	MP BETA2	Y	002	4
16	MP BETA2	Х	.004	4
17	MP GAMMA2	Y	001	4
18	MP GAMMA2	Х	.002	4
19	MP ALPHA2	Y	002	4
20	MP ALPHA2	Х	.003	4
21	MP BETA2	Y	002	4
22	MP BETA2	Х	.004	4
23	MP GAMMA2	Y	002	4
24	MP GAMMA2	Х	.003	4
25	MP ALPHA2	Y	002	4
26	MP ALPHA2	X	.003	4

Member Point Loads (BLC 26 : Maintanence (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	007	6.083
2	MP ALPHA2	Y	007	1.917
3	MP ALPHA2	Х	.004	6.083
4	MP ALPHA2	Х	.004	1.917
5	MP BETA2	Y	007	6.083
6	MP BETA2	Y	007	1.917
7	MP BETA2	Х	.004	6.083
8	MP BETA2	Х	.004	1.917
9	MP GAMMA2	Y	003	6.083
10	MP GAMMA2	Y	003	1.917
11	MP GAMMA2	Х	.002	6.083
12	MP GAMMA2	Х	.002	1.917
13	MP ALPHA2	Y	003	4
14	MP ALPHA2	Х	.002	4
15	MP BETA2	Y	003	4
16	MP BETA2	Х	.002	4
17	MP GAMMA2	Y	002	4
18	MP GAMMA2	Х	.001	4
19	MP ALPHA2	Y	003	4
20	MP ALPHA2	Х	.002	4
21	MP BETA2	Ŷ	003	4

Member Point Loads (BLC 26 : Maintanence (330)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
22	MP BETA2	X	.002	4
23	MP GAMMA2	Y	002	4
24	MP GAMMA2	Х	.001	4
25	MP ALPHA2	Ý	004	4
26	MP ALPHA2	Х	.002	4

Member Point Loads (BLC 27 : Ice Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	083	6.083
2	MP ALPHA2	Z	083	1.917
3	MP BETA2	Z	083	6.083
4	MP BETA2	Z	083	1.917
5	MP GAMMA2	Z	083	6.083
6	MP GAMMA2	Z	083	1.917
7	MP ALPHA2	Z	039	4
8	MP BETA2	Z	039	4
9	MP GAMMA2	Z	039	4
10	MP ALPHA2	Z	042	4
11	MP BETA2	Z	042	4
12	MP GAMMA2	Z	042	4
13	MP ALPHA2	Z	041	4

Member Point Loads (BLC 28 : Ice Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	029	6.083
2	MP ALPHA2	Y	029	1.917
3	MP BETA2	Y	017	6.083
4	MP BETA2	Y	017	1.917
5	MP GAMMA2	Y	017	6.083
6	MP GAMMA2	Y	017	1.917
7	MP ALPHA2	Y	009	4
8	MP BETA2	Y	006	4
9	MP GAMMA2	Y	006	4
10	MP ALPHA2	Y	009	4
11	MP BETA2	Ý	007	4
12	MP GAMMA2	Ý	007	4
13	MP ALPHA2	Ý	01	4

Member Point Loads (BLC 29 : Ice Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	021	6.083
2	MP ALPHA2	Y	021	1.917
3	MP ALPHA2	Х	012	6.083
4	MP ALPHA2	Х	012	1.917
5	MP BETA2	Y	011	6.083
6	MP BETA2	Y	011	1.917
7	MP BETA2	Х	007	6.083
8	MP BETA2	Х	007	1.917
9	MP GAMMA2	Y	021	6.083
10	MP GAMMA2	Y	021	1.917
11	MP GAMMA2	Х	012	6.083
12	MP GAMMA2	Х	012	1.917
13	MP ALPHA2	Y	007	4
14	MP ALPHA2	Х	004	4
15	MP BETA2	Y	005	4

Member Point Loads (BLC 29 : Ice Wind Load (30)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
16	MP BETA2	Х	003	4
17	MP GAMMA2	Y	007	4
18	MP GAMMA2	Х	004	4
19	MP ALPHA2	Y	007	4
20	MP ALPHA2	Х	004	4
21	MP BETA2	Y	005	4
22	MP BETA2	Х	003	4
23	MP GAMMA2	Y	007	4
24	MP GAMMA2	X	004	4
25	MP ALPHA2	Y	008	4
26	MP ALPHA2	X	004	4

Member Point Loads (BLC 30 : Ice Wind Load (60))

_	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	009	6.083
2	MP ALPHA2	Y	009	1.917
3	MP ALPHA2	Х	015	6.083
4	MP ALPHA2	Х	015	1.917
5	MP BETA2	Y	009	6.083
6	MP BETA2	Y	009	1.917
7	MP BETA2	Х	015	6.083
8	MP BETA2	Х	015	1.917
9	MP GAMMA2	Y	014	6.083
10	MP GAMMA2	Y	014	1.917
11	MP GAMMA2	Х	025	6.083
12	MP GAMMA2	Х	025	1.917
13	MP ALPHA2	Y	003	4
14	MP ALPHA2	Х	005	4
15	MP BETA2	Y	003	4
16	MP BETA2	Х	005	4
17	MP GAMMA2	Y	005	4
18	MP GAMMA2	Х	008	4
19	MP ALPHA2	Y	003	4
20	MP ALPHA2	Х	006	4
21	MP BETA2	Y	003	4
22	MP BETA2	Х	006	4
23	MP GAMMA2	Y	005	4
24	MP GAMMA2	Х	008	4
25	MP ALPHA2	Y	003	4
26	MP ALPHA2	Х	006	4

Member Point Loads (BLC 31 : Ice Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	013	6.083
2	MP ALPHA2	Х	013	1.917
3	MP BETA2	Х	025	6.083
4	MP BETA2	Х	025	1.917
5	MP GAMMA2	Х	025	6.083
6	MP GAMMA2	X	025	1.917
7	MP ALPHA2	Х	005	4
8	MP BETA2	Х	008	4
9	MP GAMMA2	Х	008	4
10	MP ALPHA2	Х	006	4
11	MP BETA2	Х	008	4
12	MP GAMMA2	X	008	4
13	MP ALPHA2	Х	006	4

Nov 8, 2021 11:41 AM Checked By:____

Member Point Loads (BLC 32 : Ice Wind Load (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.009	6.083
2	MP ALPHA2	Y	.009	1.917
3	MP ALPHA2	Х	015	6.083
4	MP ALPHA2	Х	015	1.917
5	MP BETA2	Y	.014	6.083
6	MP BETA2	Y	.014	1.917
7	MP BETA2	Х	025	6.083
8	MP BETA2	Х	025	1.917
9	MP GAMMA2	Y	.009	6.083
10	MP GAMMA2	Y	.009	1.917
11	MP GAMMA2	Х	015	6.083
12	MP GAMMA2	Х	015	1.917
13	MP ALPHA2	Y	.003	4
14	MP ALPHA2	Х	005	4
15	MP BETA2	Y	.005	4
16	MP BETA2	Х	008	4
17	MP GAMMA2	Y	.003	4
18	MP GAMMA2	Х	005	4
19	MP ALPHA2	Y	.003	4
20	MP ALPHA2	Х	006	4
21	MP BETA2	Y	.005	4
22	MP BETA2	Х	008	4
23	MP GAMMA2	Y	.003	4
24	MP GAMMA2	Х	006	4
25	MP ALPHA2	Y	.003	4
26	MP ALPHA2	Х	006	4

Member Point Loads (BLC 33 : Ice Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.021	6.083
2	MP ALPHA2	Y	.021	1.917
3	MP ALPHA2	Х	012	6.083
4	MP ALPHA2	Х	012	1.917
5	MP BETA2	Y	.021	6.083
6	MP BETA2	Y	.021	1.917
7	MP BETA2	Х	012	6.083
8	MP BETA2	Х	012	1.917
9	MP GAMMA2	Y	.011	6.083
10	MP GAMMA2	Y	.011	1.917
11	MP GAMMA2	Х	007	6.083
12	MP GAMMA2	Х	007	1.917
13	MP ALPHA2	Y	.007	4
14	MP ALPHA2	Х	004	4
15	MP BETA2	Y	.007	4
16	MP BETA2	Х	004	4
17	MP GAMMA2	Y	.005	4
18	MP GAMMA2	Х	003	4
19	MP ALPHA2	Y	.007	4
20	MP ALPHA2	Х	004	4
21	MP BETA2	Y	.007	4
22	MP BETA2	Х	004	4
23	MP GAMMA2	Y	.005	4
24	MP GAMMA2	Х	003	4
25	MP ALPHA2	Y	.008	4
26	MP ALPHA2	Х	004	4

Member Point Loads (BLC 34 : Ice Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.029	6.083
2	MP ALPHA2	Y	.029	1.917
3	MP BETA2	Y	.017	6.083
4	MP BETA2	Y	.017	1.917
5	MP GAMMA2	Y	.017	6.083
6	MP GAMMA2	Y	.017	1.917
7	MP ALPHA2	Y	.009	4
8	MP BETA2	Y	.006	4
9	MP GAMMA2	Y	.006	4
10	MP ALPHA2	Y	.009	4
11	MP BETA2	Y	.007	4
12	MP GAMMA2	Ý	.007	4
13	MP ALPHA2	Ý	.01	4

Member Point Loads (BLC 35 : Ice Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.021	6.083
2	MP ALPHA2	Y	.021	1.917
3	MP ALPHA2	Х	.012	6.083
4	MP ALPHA2	Х	.012	1.917
5	MP BETA2	Y	.011	6.083
6	MP BETA2	Y	.011	1.917
7	MP BETA2	Х	.007	6.083
8	MP BETA2	Х	.007	1.917
9	MP GAMMA2	Y	.021	6.083
10	MP GAMMA2	Y	.021	1.917
11	MP GAMMA2	Х	.012	6.083
12	MP GAMMA2	Х	.012	1.917
13	MP ALPHA2	Y	.007	4
14	MP ALPHA2	Х	.004	4
15	MP BETA2	Y	.005	4
16	MP BETA2	Х	.003	4
17	MP GAMMA2	Y	.007	4
18	MP GAMMA2	Х	.004	4
19	MP ALPHA2	Y	.007	4
20	MP ALPHA2	Х	.004	4
21	MP BETA2	Y	.005	4
22	MP BETA2	Х	.003	4
23	MP GAMMA2	Y	.007	4
24	MP GAMMA2	Х	.004	4
25	MP ALPHA2	Y	.008	4
26	MP ALPHA2	Х	.004	4

Member Point Loads (BLC 36 : Ice Wind Load (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.009	6.083
2	MP ALPHA2	Y	.009	1.917
3	MP ALPHA2	Х	.015	6.083
4	MP ALPHA2	X	.015	1.917
5	MP BETA2	Y	.009	6.083
6	MP BETA2	Y	.009	1.917
7	MP BETA2	Х	.015	6.083
8	MP BETA2	Х	.015	1.917
9	MP GAMMA2	Y	.014	6.083
10	MP GAMMA2	Ý	.014	1.917
11	MP GAMMA2	X	.025	6.083

Member Point Loads (BLC 36 : Ice Wind Load (240)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
12	MP GAMMA2	Х	.025	1.917
13	MP ALPHA2	Y	.003	4
14	MP ALPHA2	Х	.005	4
15	MP BETA2	Y	.003	4
16	MP BETA2	Х	.005	4
17	MP GAMMA2	Y	.005	4
18	MP GAMMA2	Х	.008	4
19	MP ALPHA2	Y	.003	4
20	MP ALPHA2	Х	.006	4
21	MP BETA2	Y	.003	4
22	MP BETA2	Х	.006	4
23	MP GAMMA2	Y	.005	4
24	MP GAMMA2	X	.008	4
25	MP ALPHA2	Y	.003	4
26	MP ALPHA2	Х	.006	4

Member Point Loads (BLC 37 : Ice Wind Load (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.013	6.083
2	MP ALPHA2	Х	.013	1.917
3	MP BETA2	Х	.025	6.083
4	MP BETA2	Х	.025	1.917
5	MP GAMMA2	Х	.025	6.083
6	MP GAMMA2	Х	.025	1.917
7	MP ALPHA2	Х	.005	4
8	MP BETA2	Х	.008	4
9	MP GAMMA2	Х	.008	4
10	MP ALPHA2	Х	.006	4
11	MP BETA2	Х	.008	4
12	MP GAMMA2	Х	.008	4
13	MP ALPHA2	Х	.006	4

Member Point Loads (BLC 38 : Ice Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	009	6.083
2	MP ALPHA2	Y	009	1.917
3	MP ALPHA2	Х	.015	6.083
4	MP ALPHA2	Х	.015	1.917
5	MP BETA2	Y	014	6.083
6	MP BETA2	Y	014	1.917
7	MP BETA2	Х	.025	6.083
8	MP BETA2	Х	.025	1.917
9	MP GAMMA2	Y	009	6.083
10	MP GAMMA2	Y	009	1.917
11	MP GAMMA2	Х	.015	6.083
12	MP GAMMA2	Х	.015	1.917
13	MP ALPHA2	Y	003	4
14	MP ALPHA2	Х	.005	4
15	MP BETA2	Y	005	4
16	MP BETA2	Х	.008	4
17	MP GAMMA2	Y	003	4
18	MP GAMMA2	Х	.005	4
19	MP ALPHA2	Y	003	4
20	MP ALPHA2	Х	.006	4
21	MP BETA2	Y	005	4
22	MP BETA2	Х	.008	4

Member Point Loads (BLC 38 : Ice Wind Load (300)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
23	MP GAMMA2	Y	003	4
24	MP GAMMA2	Х	.006	4
25	MP ALPHA2	Ý	003	4
26	MP ALPHA2	Х	.006	4

Member Point Loads (BLC 39 : Ice Wind Load (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	021	6.083
2	MP ALPHA2	Y	021	1.917
3	MP ALPHA2	Х	.012	6.083
4	MP ALPHA2	Х	.012	1.917
5	MP BETA2	Y	021	6.083
6	MP BETA2	Y	021	1.917
7	MP BETA2	Х	.012	6.083
8	MP BETA2	Х	.012	1.917
9	MP GAMMA2	Y	011	6.083
10	MP GAMMA2	Y	011	1.917
11	MP GAMMA2	Х	.007	6.083
12	MP GAMMA2	Х	.007	1.917
13	MP ALPHA2	Y	007	4
14	MP ALPHA2	Х	.004	4
15	MP BETA2	Y	007	4
16	MP BETA2	Х	.004	4
17	MP GAMMA2	Y	005	4
18	MP GAMMA2	Х	.003	4
19	MP ALPHA2	Y	007	4
20	MP ALPHA2	Х	.004	4
21	MP BETA2	Y	007	4
22	MP BETA2	Х	.004	4
23	MP GAMMA2	Y	005	4
24	MP GAMMA2	Х	.003	4
25	MP ALPHA2	Y	008	4
26	MP ALPHA2	X	.004	4

Member Point Loads (BLC 40 : Earthquake (x-direction))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	004	6.083
2	MP ALPHA2	Х	004	1.917
3	MP BETA2	Х	004	6.083
4	MP BETA2	Х	004	1.917
5	MP GAMMA2	Х	004	6.083
6	MP GAMMA2	Х	004	1.917
7	MP ALPHA2	Х	007	4
8	MP BETA2	Х	007	4
9	MP GAMMA2	Х	007	4
10	MP ALPHA2	Х	008	4
11	MP BETA2	X	008	4
12	MP GAMMA2	Х	008	4
13	MP ALPHA2	Х	002	4

Member Point Loads (BLC 41 : Earthquake (y-direction))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	004	6.083
2	MP ALPHA2	Y	004	1.917
3	MP BETA2	Y	004	6.083

Member Point Loads (BLC 41 : Earthquake (y-direction)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
4	MP BETA2	Y	004	1.917
5	MP GAMMA2	Y	004	6.083
6	MP GAMMA2	Y	004	1.917
7	MP ALPHA2	Y	007	4
8	MP BETA2	Y	007	4
9	MP GAMMA2	Y	007	4
10	MP ALPHA2	Y	008	4
11	MP BETA2	Y	008	4
12	MP GAMMA2	Y	008	4
13	MP ALPHA2	Y	002	4

Member Point Loads (BLC 42 : Earthquake (z-direction))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	002	6.083
2	MP ALPHA2	Z	002	1.917
3	MP BETA2	Z	002	6.083
4	MP BETA2	Z	002	1.917
5	MP GAMMA2	Z	002	6.083
6	MP GAMMA2	Z	002	1.917
7	MP ALPHA2	Z	003	4
8	MP BETA2	Z	003	4
9	MP GAMMA2	Z	003	4
10	MP ALPHA2	Z	003	4
11	MP BETA2	Z	003	4
12	MP GAMMA2	Z	003	4
13	MP ALPHA2	Z	000895	4

Member Distributed Loads (BLC 2 : Wind Load (0))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	007	007	0	0
2	GRAT SUP	PY	006	006	0	0
3	GRAT SUP2	PY	006	006	0	0
4	PL1	PY	019	019	0	0
5	SO2	PY	007	007	0	0
6	GRAT SUP3	PY	006	006	0	0
7	GRAT SUP4	PY	006	006	0	0
8	PL2	PY	019	019	0	0
9	SO3	PY	007	007	0	0
10	GRAT SUP5	PY	006	006	0	0
11	GRAT SUP6	PY	006	006	0	0
12	PL3	PY	019	019	0	0
13	FACE1	PY	003	003	0	0
14	MP ALPHA1	PY	01	01	0	0
15	MP ALPHA3	PY	01	01	0	0
16	RAIL1	PY	002	002	0	0
17	RAIL CON3	PY	019	019	0	0
18	RAIL CON1	PY	019	019	0	0
19	RAIL CON2	PY	019	019	0	0
20	CR1	PY	01	01	0	0
21	CR2	PY	01	01	0	0
22	CR3	PY	01	01	0	0
23	CR4	PY	01	01	0	0
24	CR5	PY	01	01	0	0
25	CR6	PY	01	01	0	0
26	PL4	PY	007	007	0	0

Member Distributed Loads (BLC 2 : Wind Load (0)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F	. Start Location[ft,%]	End Location[ft,%]
27	PL5	PY	007	007	0	0
28	PL6	PY	007	007	0	0
29	PL7	PY	007	007	0	0
30	PL8	PY	007	007	0	0
31	PL9	PY	007	007	0	0
32	MP ALPHA2	PY	01	01	0	0
33	FACE3	PY	007	007	0	0
34	MP GAMMA1	PY	01	01	0	0
35	MP GAMMA3	PY	01	01	0	0
36	RAIL3	PY	005	005	0	0
37	FACE2	PY	007	007	0	0
38	MP BETA1	PY	01	01	0	0
39	MP BETA3	PY	01	01	0	0
40	RAIL2	PY	005	005	0	0
41	MP BETA2	PY	01	01	0	0
42	MP GAMMA2	PY	01	01	0	0

Member Distributed Loads (BLC 4 : Wind Load (30))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	SO1	PY	006	006	0	0
2	GRAT SUP	PY	005	005	0	0
3	GRAT SUP2	PY	005	005	0	0
4	PL1	PY	016	016	0	0
5	SO2	PY	006	006	0	0
6	GRAT SUP3	PY	005	005	0	0
7	GRAT SUP4	PY	005	005	0	0
8	PL2	PY	016	016	0	0
9	SO3	PY	006	006	0	0
10	GRAT SUP5	PY	005	005	0	0
11	GRAT SUP6	PY	005	005	0	0
12	PL3	PY	016	016	0	0
13	FACE1	PY	003	003	0	0
14	MP ALPHA1	PY	009	009	0	0
15	MP ALPHA3	PY	009	009	0	0
16	RAIL1	PY	002	002	0	0
17	RAIL CON3	PY	017	017	0	0
18	RAIL CON1	PY	017	017	0	0
19	RAIL CON2	PY	017	017	0	0
20	CR1	PY	009	009	0	0
21	CR2	PY	009	009	0	0
22	CR3	PY	009	009	0	0
23	CR4	PY	009	009	0	0
24	CR5	PY	009	009	0	0
25	CR6	PY	009	009	0	0
26	PL4	PY	006	006	0	0
27	PL5	PY	006	006	0	0
28	PL6	PY	006	006	0	0
29	PL7	PY	006	006	0	0
30	PL8	PY	006	006	0	0
31	PL9	PY	006	006	0	0
32	MP ALPHA2	PY	009	009	0	0
33	FACE3	PY	006	006	0	0
34	MP GAMMA1	PY	009	009	0	0
35	MP GAMMA3	PY	009	009	0	0
36	RAIL3	PY	004	004	0	0
37	FACE2	PY	006	006	0	0

Member Distributed Loads (BLC 4 : Wind Load (30)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft.%]
38	MP BETA1	PY	009	009	0	
39	MP BETA3	PY	009	009	0	0
40	RAIL2	PY	004	004	0	0
41	MP BETA2	PY	009	009	0	0
42	MP GAMMA2	PY	009	009	0	0
43	SO1	PX	003	003	0	0
44	GRAT SUP	PX	003	004	0	0
45	GRAT SUP2	PX	003	003	0	0
46	PL1	PX	009	009	0	0
47	SO2	PX	004	003	0	0
48	GRAT SUP3	PX	003	003	0	0
49	GRAT SUP4	PX	003	003	0	0
50	PL2	PX	009	009	0	0
51	SO3	PX	004	003	0	0
52	GRAT SUP5	PX	004	004	0	0
53	GRAT SUP6	PX	003	003	0	0
54	PL3	PX	009	009	0	0
55	FACE1	PX	003	003	0	0
56	MP ALPHA1	PX	005	005	0	0
57	MP ALPHA3	PX	005	005	0	0
58	RAIL1	PX	001	001	0	0
59	RAIL CON3	PX	01	01	0	0
60	RAIL CON1	PX	01	01	0	0
61	RAIL CON2	PX	01	01	0	0
62	CR1	PX	005	005	0	0
63	CR2	PX	005	005	0	0
64	CR3	PX	005	005	0	0
65	CR4	PX	005	005	0	0
66	CR5	PX	005	005	0	0
67	CR6	PX	005	005	0	0
68	PL4	PX	003	003	0	0
69	PL5	PX	003	003	0	0
70	PL6	PX	003	003	0	0
71	PL7	PX	003	003	0	0
72	PL8	PX	003	003	0	0
73	PL9	PX	003	003	0	0
74	MP ALPHA2	PX	005	005	0	0
75	FACE3	PX	003	003	0	0
76	MP GAMMA1	PX	005	005	0	0
77	MP GAMMA3	PX	005	005	0	0
78	RAIL3	PX	002	002	0	0
79	FACE2	PX	003	003	0	0
80	MP BETA1	PX	005	005	0	0
81	MP BETA3	PX	005	005	0	0
82	RAIL2	PX	002	002	0	0
83	MP BETA2	PX	005	005	0	0
84	MP GAMMA2	PX	005	005	0	0

Member Distributed Loads (BLC 5 : Wind Load (60))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	004	004	0	0
2	GRAT SUP	PY	003	003	0	0
3	GRAT SUP2	PY	003	003	0	0
4	PL1	PY	009	009	0	0
5	SO2	PY	004	004	0	0
6	GRAT SUP3	PY	003	003	0	0

Nov 8, 2021 11:41 AM Checked By:____

Member Distributed Loads (BLC 5 : Wind Load (60)) (Continued)

				<i>))</i> (00//////00//		
	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
7	GRAT SUP4	PY	003	003	0	0
8	PL2	PY	009	009	0	0
9	<u>SO3</u>	PY	004	004	0	0
10	GRAT SUP5	PY	003	003	0	0
11	GRAT SUP6	PY	003	003	0	0
12	PL3	PY	009	009	0	0
13	FACE1	PY	002	002	0	0
14	MP ALPHA1	PY	005	005	0	0
15	MP ALPHA3	PY	005	005	0	0
16	RAIL1	PY	001	001	0	0
17	RAIL CON3	PY	01	01	0	0
18	RAIL CON1	PY	01	01	0	0
19	RAIL CON2	PY	01	01	0	0
20	CR1	PY	005	005	0	0
21	CR2	PY	005	005	0	0
22	CR3	PY	005	005	0	0
23	CR4	PY	005	005	0	0
24	CR5	PY	005	005	0	0
25	CR6	PY	005	005	0	0
26	PL4	PY	003	003	0	0
27	PL5	PY	003	003	0	0
28	PL6	PY	003	003	0	0
29	PL7	PY	003	003	0	0
30	PL8	PY	003	003	0	0
31	PL9	PY	003	003	0	0
32	MP ALPHA2	PY	005	005	0	0
33	FACE3	PY	003	003	0	0
34	MP GAMMA1	PY	005	005	0	0
35	MP GAMMA3	PY	005	005	0	0
36	RAIL3	PY	002	002	0	0
37	FACE2	PY	003	003	0	0
38	MP BETA1	PY	005	005	0	0
39	MP BETA3	PY	005	005	0	0
40	RAIL2	PY	002	002	0	0
41	MP BETA2	PY	005	005	0	0
42	MP GAMMA2	PY	005	005	0	0
43	<u>SO1</u>	PX	006	006	0	0
44	GRAT SUP	PX	005	005	0	0
45	GRAT SUP2	PX	005	005	0	0
46	PL1	PX	016	016	0	0
47	<u>SO2</u>	PX	006	006	0	0
48	GRAT SUP3	PX	005	005	0	0
49	GRAT SUP4	PX	005	005	0	0
50	PL2	PX	016	016	0	0
51	<u>SO3</u>	PX	006	006	0	0
52	GRAT SUP5	PX	005	005	0	0
53	GRAT SUP6	PX	005	005	0	0
54	PL3	PX	016	016	0	0
55	FACE1	PX	003	003	0	0
56	MP ALPHA1	PX	009	009	0	0
57	MP ALPHA3	PX	009	009	0	0
58	RAIL1	PX	002	002	0	0
59	RAIL CON3	PX	017	017	0	0
60	RAIL CON1	PX	017	017	0	0
61	RAIL CON2	PX	017	017	0	0
62	CR1	PX	009	009	0	0
63	CR2	PX	009	009	0	0
	-3D Version 17.0.2		()/21 1112E() Marine			'3d] Page 25

Member Distributed Loads (BLC 5 : Wind Load (60)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
64	CR3	PX	009	009	0	0
65	CR4	PX	009	009	0	0
66	CR5	PX	009	009	0	0
67	CR6	PX	009	009	0	0
68	PL4	PX	006	006	0	0
69	PL5	PX	006	006	0	0
70	PL6	PX	006	006	0	0
71	PL7	PX	006	006	0	0
72	PL8	PX	006	006	0	0
73	PL9	PX	006	006	0	0
74	MP ALPHA2	PX	009	009	0	0
75	FACE3	PX	006	006	0	0
76	MP GAMMA1	PX	009	009	0	0
77	MP GAMMA3	PX	009	009	0	0
78	RAIL3	PX	004	004	0	0
79	FACE2	PX	006	006	0	0
80	MP BETA1	PX	009	009	0	0
81	MP BETA3	PX	009	009	0	0
82	RAIL2	PX	004	004	0	0
83	MP BETA2	PX	009	009	0	0
84	MP GAMMA2	PX	009	009	0	0

Member Distributed Loads (BLC 6 : Wind Load (90))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PX	007	007	0	0
2	GRAT SUP	PX	006	006	0	0
3	GRAT SUP2	PX	006	006	0	0
4	PL1	PX	019	019	0	0
5	SO2	PX	007	007	0	0
6	GRAT SUP3	PX	006	006	0	0
7	GRAT SUP4	PX	006	006	0	0
8	PL2	PX	019	019	0	0
9	SO3	PX	007	007	0	0
10	GRAT SUP5	PX	006	006	0	0
11	GRAT SUP6	PX	006	006	0	0
12	PL3	PX	019	019	0	0
13	FACE2	PX	003	003	0	0
14	MP ALPHA1	PX	01	01	0	0
15	MP ALPHA3	PX	01	01	0	0
16	RAIL2	PX	002	002	0	0
17	RAIL CON3	PX	019	019	0	0
18	RAIL CON1	PX	019	019	0	0
19	RAIL CON2	PX	019	019	0	0
20	CR1	PX	01	01	0	0
21	CR2	PX	01	01	0	0
22	CR3	PX	01	01	0	0
23	CR4	PX	01	01	0	0
24	CR5	PX	01	01	0	0
25	CR6	PX	01	01	0	0
26	PL4	PX	007	007	0	0
27	PL5	PX	007	007	0	0
28	PL6	PX	007	007	0	0
29	PL7	PX	007	007	0	0
30	PL8	PX	007	007	0	0
31	PL9	PX	007	007	0	0
32	MP ALPHA2	PX	01	01	0	0

Member Distributed Loads (BLC 6 : Wind Load (90)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
33	FACE3	PX	007	007	0	0
34	MP GAMMA1	PX	01	01	0	0
35	MP GAMMA3	PX	01	01	0	0
36	RAIL3	PX	005	005	0	0
37	FACE1	PX	007	007	0	0
38	MP BETA1	PX	01	01	0	0
39	MP BETA3	PX	01	01	0	0
40	RAIL1	PX	005	005	0	0
41	MP BETA2	PX	01	01	0	0
42	MP GAMMA2	PX	01	01	0	0

Member Distributed Loads (BLC 7 : Wind Load (120))

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	SO1	PY	.004	.004	0	0
2	GRAT SUP	PY	.003	.003	0	0
3	GRAT SUP2	PY	.003	.003	0	0
4	PL1	PY	.009	.009	0	0
5	SO2	PY	.004	.004	0	0
6	GRAT SUP3	PY	.003	.003	0	0
7	GRAT SUP4	PY	.003	.003	0	0
8	PL2	PY	.009	.009	0	0
9	SO3	PY	.004	.004	0	0
10	GRAT SUP5	PY	.003	.003	0	0
11	GRAT SUP6	PY	.003	.003	0	0
12	PL3	PY	.009	.009	0	0
13	FACE2	PY	.002	.002	0	0
14	MP ALPHA1	PY	.005	.005	0	0
15	MP ALPHA3	PY	.005	.005	0	0
16	RAIL2	PY	.001	.001	0	0
17	RAIL CON3	PY	.01	.01	0	0
18	RAIL CON1	PY	.01	.01	0	0
19	RAIL CON2	PY	.01	.01	0	0
20	CR1	PY	.005	.005	0	0
21	CR2	PY	.005	.005	0	0
22	CR3	PY	.005	.005	0	0
23	CR4	PY	.005	.005	0	0
24	CR5	PY	.005	.005	0	0
25	CR6	PY	.005	.005	0	0
26	PL4	PY	.003	.003	0	0
27	PL5	PY	.003	.003	0	0
28	PL6	PY	.003	.003	0	0
29	PL7	PY	.003	.003	0	0
30	PL8	PY	.003	.003	0	0
31	PL9	PY	.003	.003	0	0
32	MP ALPHA2	PY	.005	.005	0	0
33	FACE3	PY	.003	.003	0	0
34	MP GAMMA1	PY	.005	.005	0	0
35	MP GAMMA3	PY	.005	.005	0	0
36	RAIL3	PY	.002	.002	0	0
37	FACE1	PY	.003	.003	0	0
38	MP BETA1	PY	.005	.005	0	0
39	MP BETA3	PY	.005	.005	0	0
40	RAIL1	PY	.003	.003	0	0
41	MP BETA2	PY	.002	.002	0	0
42	MP GAMMA2	PY	.005	.005	0	0
42	SO1	PX	005	006	0	0
40	301	ΓΛ	000	000	V	U

Member Distributed Loads (BLC 7 : Wind Load (120)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
44	GRAT SUP	PX	005	005	0	0
45	GRAT SUP2	PX	005	005	0	0
46	PL1	PX	016	016	0	0
47	SO2	PX	006	006	0	0
48	GRAT SUP3	PX	005	005	0	0
49	GRAT SUP4	PX	005	005	0	0
50	PL2	PX	016	016	0	0
51	SO3	PX	006	006	0	0
52	GRAT SUP5	PX	005	005	0	0
53	GRAT SUP6	PX	005	005	0	0
54	PL3	PX	016	016	0	0
55	FACE2	PX	003	003	0	0
56	MP ALPHA1	PX	009	009	0	0
57	MP ALPHA3	PX	009	009	0	0
58	RAIL2	PX	002	002	0	0
59	RAIL CON3	PX	017	017	0	0
60	RAIL CON1	PX	017	017	0	0
61	RAIL CON2	PX	017	017	0	0
62	CR1	PX	009	009	0	0
63	CR2	PX	009	009	0	0
64	CR3	PX	009	009	0	0
65	CR4	PX	009	009	0	0
66	CR5	PX	009	009	0	0
67	CR6	PX	009	009	0	0
68	PL4	PX	006	006	0	0
69	PL5	PX	006	006	0	0
70	PL6	PX	006	006	0	0
71	PL7	PX	006	006	0	0
72	PL8	PX	006	006	0	0
73	PL9	PX	006	006	0	0
74	MP ALPHA2	PX	009	009	0	0
75	FACE3	PX	006	006	0	0
76	MP GAMMA1	PX	009	009	0	0
77	MP GAMMA3	PX	009	009	0	0
78	RAIL3	PX	004	004	0	0
79	FACE1	PX	006	006	0	0
80	MP BETA1	PX	009	009	0	0
81	MP BETA3	PX	009	009	0	0
82	RAIL1	PX	004	004	0	0
83	MP BETA2	PX	009	009	0	0
84	MP GAMMA2	PX	009	009	0	0

Member Distributed Loads (BLC 8 : Wind Load (150))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.006	.006	0	0
2	GRAT SUP	PY	.005	.005	0	0
3	GRAT SUP2	PY	.005	.005	0	0
4	PL1	PY	.016	.016	0	0
5	SO2	PY	.006	.006	0	0
6	GRAT SUP3	PY	.005	.005	0	0
7	GRAT SUP4	PY	.005	.005	0	0
8	PL2	PY	.016	.016	0	0
9	SO3	PY	.006	.006	0	0
10	GRAT SUP5	PY	.005	.005	0	0
11	GRAT SUP6	PY	.005	.005	0	0
12	PL3	PY	.016	.016	0	0

Member Distributed Loads (BLC 8 : Wind Load (150)) (Continued)

40	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%
13	FACE2	PY	.003	.003	0	0
14	MP ALPHA1	PY	.009	.009	0	0
15	MP ALPHA3	PY	.009	.009	0	0
16	RAIL2	PY	.002	.002	0	0
17	RAIL CON3	PY	.017	.017	0	0
18	RAIL CON1	PY	.017	.017	0	0
19	RAIL CON2	PY	.017	.017	0	0
20	CR1	PY	.009	.009	0	0
21	CR2	PY	.009	.009	0	0
22	CR3	PY	.009	.009	0	0
23	CR4	PY	.009	.009	0	0
24	CR5	PY	.009	.009	0	0
25	CR6	PY	.009	.009	0	0
26	PL4	PY	.006	.006	0	0
27	PL5	PY	.006	.006	0	0
28	PL6	PY	.006	.006	0	0
29	PL7	PY	.006	.006	0	0
30	PL8	PY	.006	.006	0	0
31	PL9	PY	.006	.006	0	0
32	MP ALPHA2	PY	.009	.009	0	0
33	FACE3	PY	.006	.006	0	0
34	MP GAMMA1	PY	.009	.009	0	0
35	MP GAMMA3	PY	.009	.009	0	0
36	RAIL3	PY	.004	.004	0	0
37	FACE1	PY	.006	.006	0	0
38	MP BETA1	PY	.009	.009	0	0
39	MP BETA3	PY	.009	.009	0	0
40	RAIL1	PY	.004	.004	0	0
41	MP BETA2	PY	.009	.009	0	0
42	MP GAMMA2	PY	.009	.009	0	0
43	SO1	PX	004	004	0	0
44	GRAT SUP	PX	003	003	0	0
45	GRAT SUP2	PX	003	003	0	0
46	PL1	PX	009	009	0	0
47	SO2	PX	004	004	0	Ő
48	GRAT SUP3	PX	003	003	0	0
49	GRAT SUP4	PX	003	003	0	0
50	PL2	PX	009	009	0	0
51	SO3	PX	004	004	0	0
52	GRAT SUP5	PX	003	003	0	0
53	GRAT SUP6	PX	003	003	0	0
54	PL3	PX	009	009	0	0
55	FACE2	PX	002	002	0	0
56	MP ALPHA1	PX	005	005	0	0
57	MP ALPHA3	PX	005	005	0	0
58	RAIL2	PX	001	001	0	0
59	RAIL CON3	PX	01	01	0	0
60	RAIL CON1	PX	01	01	0	0
61	RAIL CON2	PX	01	01	0	0
62	CR1	PX	005	005	0	0
63	CR2	PX	005	005	0	0
64	CR3	PX	005	005	0	0
65	CR4	PX	005	005	0	0
66	CR5	PX	005	005	0	0
67	CR6	PX	005	005	0	0
68	PL4	PX	003	003	0	0
69	PL5	PX	003	003	0	0
	1 20			000	y	<u> </u>

Member Distributed Loads (BLC 8 : Wind Load (150)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
70	PL6	PX	003	003	0	0
71	PL7	PX	003	003	0	0
72	PL8	PX	003	003	0	0
73	PL9	PX	003	003	0	0
74	MP ALPHA2	PX	005	005	0	0
75	FACE3	PX	003	003	0	0
76	MP GAMMA1	PX	005	005	0	0
77	MP GAMMA3	PX	005	005	0	0
78	RAIL3	PX	002	002	0	0
79	FACE1	PX	003	003	0	0
80	MP BETA1	PX	005	005	0	0
81	MP BETA3	PX	005	005	0	0
82	RAIL1	PX	002	002	0	0
83	MP BETA2	PX	005	005	0	0
84	MP GAMMA2	PX	005	005	0	0

Member Distributed Loads (BLC 9 : Wind Load (180))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.007	.007	0	0
2	GRAT SUP	PY	.006	.006	0	0
3	GRAT SUP2	PY	.006	.006	0	0
4	PL1	PY	.019	.019	0	0
5	SO2	PY	.007	.007	0	0
6	GRAT SUP3	PY	.006	.006	0	0
7	GRAT SUP4	PY	.006	.006	0	0
8	PL2	PY	.019	.019	0	0
9	SO3	PY	.007	.007	0	0
10	GRAT SUP5	PY	.006	.006	0	0
11	GRAT SUP6	PY	.006	.006	0	0
12	PL3	PY	.019	.019	0	0
13	FACE2	PY	.003	.003	0	0
14	MP ALPHA1	PY	.01	.01	0	0
15	MP ALPHA3	PY	.01	.01	0	0
16	RAIL2	PY	.002	.002	0	0
17	RAIL CON3	PY	.019	.019	0	0
18	RAIL CON1	PY	.019	.019	0	0
19	RAIL CON2	PY	.019	.019	0	0
20	CR1	PY	.01	.01	0	0
21	CR2	PY	.01	.01	0	0
22	CR3	PY	.01	.01	0	0
23	CR4	PY	.01	.01	0	0
24	CR5	PY	.01	.01	0	0
25	CR6	PY	.01	.01	0	0
26	PL4	PY	.007	.007	0	0
27	PL5	PY	.007	.007	0	0
28	PL6	PY	.007	.007	0	0
29	PL7	PY	.007	.007	0	0
30	PL8	PY	.007	.007	0	0
31	PL9	PY	.007	.007	0	0
32	MP ALPHA2	PY	.01	.01	0	0
33	FACE3	PY	.007	.007	0	0
34	MP GAMMA1	PY	.01	.01	0	0
35	MP GAMMA3	PY	.01	.01	0	0
36	RAIL3	PY	.005	.005	0	0
37	FACE1	PY	.007	.007	0	0
38	MP BETA1	PY	.01	.01	0	0

Member Distributed Loads (BLC 9 : Wind Load (180)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
39	MP BETA3	PY	.01	.01	0	0
40	RAIL1	PY	.005	.005	0	0
41	MP BETA2	PY	.01	.01	0	0
42	MP GAMMA2	PY	.01	.01	0	0

Member Distributed Loads (BLC 10 : Wind Load (210))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.006	.006	0	0
2	GRAT SUP	PY	.005	.005	0	0
3	GRAT SUP2	PY	.005	.005	0	0
4	PL1	PY	.016	.016	0	0
5	SO2	PY	.006	.006	0	0
6	GRAT SUP3	PY	.005	.005	0	0
7	GRAT SUP4	PY	.005	.005	0	0
8	PL2	PY	.016	.016	0	0
9	SO3	PY	.006	.006	0	0
10	GRAT SUP5	PY	.005	.005	0	0
11	GRAT SUP6	PY	.005	.005	0	0
12	PL3	PY	.016	.016	0	0
13	FACE3	PY	.003	.003	0	0
14	MP ALPHA1	PY	.009	.009	0	0
15	MP ALPHA3	PY	.009	.009	0	0
16	RAIL3	PY	.002	.002	0	0
17	RAIL CON3	PY	.017	.017	0	0
18	RAIL CON1	PY	.017	.017	0	0
19	RAIL CON2	PY	.017	.017	0	0
20	CR1	PY	.009	.009	0	0
21	CR2	PY	.009	.009	0	0
22	CR3	PY	.009	.009	0	0
23	CR4	PY	.009	.009	0	0
24	CR5	PY	.009	.009	0	0
25	CR6	PY	.009	.009	0	0
26	PL4	PY	.006	.006	0	0
27	PL5	PY	.006	.006	0	0
28	PL6	PY	.006	.006	0	0
29	PL7	PY	.006	.006	0	0
30	PL8	PY	.006	.006	0	0
31	PL9	PY	.006	.006	0	0
32	MP ALPHA2	PY	.009	.009	0	0
33	FACE1	PY	.006	.006	0	0
34	MP GAMMA1	PY	.009	.009	0	0
35	MP GAMMA3	PY	.009	.009	0	0
36	RAIL1	PY	.004	.004	0	0
37	FACE2	PY	.006	.006	0	0
38	MP BETA1	PY	.009	.009	0	0
39	MP BETA3	PY	.009	.009	0	0
40	RAIL2	PY	.004	.004	0	0
41	MP BETA2	PY	.009	.009	0	0
42	MP GAMMA2	PY	.009	.009	0	0
43	SO1	PX	.004	.004	0	0
44	GRAT SUP	PX	.003	.003	0	0
45	GRAT SUP2	PX	.003	.003	0	0
46	PL1	PX	.009	.009	0	0
47	SO2	PX	.004	.004	0	0
48	GRAT SUP3	PX	.003	.003	0	0
49	GRAT SUP4	PX	.003	.003	0	0

Member Distributed Loads (BLC 10 : Wind Load (210)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
50	PL2	PX	.009	.009	0	0
51	SO3	PX	.004	.004	0	0
52	GRAT SUP5	PX	.003	.003	0	0
53	GRAT SUP6	PX	.003	.003	0	0
54	PL3	PX	.009	.009	0	0
55	FACE3	PX	.002	.002	0	0
56	MP ALPHA1	PX	.005	.005	0	0
57	MP ALPHA3	PX	.005	.005	0	0
58	RAIL3	PX	.001	.001	0	0
59	RAIL CON3	PX	.01	.01	0	0
60	RAIL CON1	PX	.01	.01	0	0
61	RAIL CON2	PX	.01	.01	0	0
62	CR1	PX	.005	.005	0	0
63	CR2	PX	.005	.005	0	0
64	CR3	PX	.005	.005	0	0
65	CR4	PX	.005	.005	0	0
66	CR5	PX	.005	.005	0	0
67	CR6	PX	.005	.005	0	0
68	PL4	PX	.003	.003	0	0
69	PL5	PX	.003	.003	0	0
70	PL6	PX	.003	.003	0	0
71	PL7	PX	.003	.003	0	0
72	PL8	PX	.003	.003	0	0
73	PL9	PX	.003	.003	0	0
74	MP ALPHA2	PX	.005	.005	0	0
75	FACE1	PX	.003	.003	0	0
76	MP GAMMA1	PX	.005	.005	0	0
77	MP GAMMA3	PX	.005	.005	0	0
78	RAIL1	PX	.002	.002	0	0
79	FACE2	PX	.003	.003	0	0
80	MP BETA1	PX	.005	.005	0	0
81	MP BETA3	PX	.005	.005	0	0
82	RAIL2	PX	.002	.002	0	0
83	MP BETA2	PX	.005	.005	0	0
84	MP GAMMA2	PX	.005	.005	0	0

Member Distributed Loads (BLC 11 : Wind Load (240))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.004	.004	0	0
2	GRAT SUP	PY	.003	.003	0	0
3	GRAT SUP2	PY	.003	.003	0	0
4	PL1	PY	.009	.009	0	0
5	SO2	PY	.004	.004	0	0
6	GRAT SUP3	PY	.003	.003	0	0
7	GRAT SUP4	PY	.003	.003	0	0
8	PL2	PY	.009	.009	0	0
9	SO3	PY	.004	.004	0	0
10	GRAT SUP5	PY	.003	.003	0	0
11	GRAT SUP6	PY	.003	.003	0	0
12	PL3	PY	.009	.009	0	0
13	FACE3	PY	.002	.002	0	0
14	MP ALPHA1	PY	.005	.005	0	0
15	MP ALPHA3	PY	.005	.005	0	0
16	RAIL3	PY	.001	.001	0	0
17	RAIL CON3	PY	.01	.01	0	0
18	RAIL CON1	PY	.01	.01	0	0

Member Distributed Loads (BLC 11 : Wind Load (240)) (Continued)

	Member Label	Direction	Start Magnitude[]b/ft	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
19	RAIL CON2	PY	.01	.01	0	0
20	CR1	PY	.005	.005	0	0
21	CR2	PY	.005	.005	0	0
22	CR3	PY	.005	.005	0	Ő
23	CR4	PY	.005	.005	0	0
24	CR5	PY	.005	.005	0	0
25	CR6	PY	.005	.005	0	0
26	PL4	PY	.003	.003	0	0
27	PL5	PY	.003	.003	0	0
28	PL6	PY	.003	.003	0	0
29	PL7	PY	.003	.003	0	0
30	PL8	PY	.003	.003	0	0
31	PL9	PY	.003	.003	0	0
32	MP ALPHA2	PY	.005	.005	0	0
33	FACE1	PY	.003	.003	0	0
34	MP GAMMA1	PY	.005	.005	0	0
35	MP GAMMA3	PY	.005	.005	0	0
36	RAIL1	PY	.002	.002	0	0
37	FACE2	PY	.002	.003	0	0
38	MP BETA1	PY	.005	.005	0	0
39	MP BETA3	PY	.005	.005	0	0
40	RAIL2	PY	.002	.002	0	0
41	MP BETA2	PY	.005	.005	0	0
42	MP GAMMA2	PY	.005	.005	0	0
43	SO1	PX	.006	.006	0	0
44	GRAT SUP	PX	.005	.005	0	0
45	GRAT SUP2	PX	.005	.005	0	0
46	PL1	PX	.016	.016	0	0
47	SO2	PX	.006	.006	0	0
48	GRAT SUP3	PX	.005	.005	0	0
49	GRAT SUP4	PX	.005	.005	0	0
50	PL2	PX	.016	.016	0	0
51	SO3	PX	.006	.006	0	0
52	GRAT SUP5	PX	.005	.005	0	0
53	GRAT SUP6	PX	.005	.005	0	0
54	PL3	PX	.016	.016	0	0
55	FACE3	PX	.003	.003	0	0
56	MP ALPHA1	PX	.009	.009	0	0
57	MP ALPHA3	PX	.009	.009	0	0
58	RAIL3	PX	.002	.002	0	0
59	RAIL CON3	PX	.017	.017	0	0
60	RAIL CON1	PX	.017	.017	0	0
61	RAIL CON2	PX	.017	.017	0	0
62	CR1	PX	.009	.009	0	0
63	CR2	PX	.009	.009	0	0
64	CR3	PX	.009	.009	0	0
65	CR4	PX	.009	.009	0	0
66	CR5	PX	.009	.009	0	0
67	CR6	PX	.009	.009	0	0
68	PL4	PX	.006	.006	0	0
69	PL5	PX	.006	.006	0	0
70	PL6	PX	.006	.006	0	0
71	PL7	PX	.006	.006	0	0
72	PL8	PX	.006	.006	0	0
73	PL9	PX	.006	.006	0	0
74	MP ALPHA2	PX	.009	.009	0	0
75	FACE1	PX	.005	.006	0	0
1 1 3 1					~	

Member Distributed Loads (BLC 11 : Wind Load (240)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
76	MP GAMMA1	PX	.009	.009	0	0
77	MP GAMMA3	PX	.009	.009	0	0
78	RAIL1	PX	.004	.004	0	0
79	FACE2	PX	.006	.006	0	0
80	MP BETA1	PX	.009	.009	0	0
81	MP BETA3	PX	.009	.009	0	0
82	RAIL2	PX	.004	.004	0	0
83	MP BETA2	PX	.009	.009	0	0
84	MP GAMMA2	PX	.009	.009	0	0

Member Distributed Loads (BLC 12 : Wind Load (270))

				••//		
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PX	.007	.007	0	0
2	GRAT SUP	PX	.006	.006	0	0
3	GRAT SUP2	PX	.006	.006	0	0
4	PL1	PX	.019	.019	0	0
5	SO2	PX	.007	.007	0	0
6	GRAT SUP3	PX	.006	.006	0	0
7	GRAT SUP4	PX	.006	.006	0	0
8	PL2	PX	.019	.019	0	0
9	SO3	PX	.007	.007	0	0
10	GRAT SUP5	PX	.006	.006	0	0
11	GRAT SUP6	PX	.006	.006	0	0
12	PL3	PX	.019	.019	0	0
13	FACE3	PX	.003	.003	0	0
14	MP ALPHA1	PX	.01	.01	0	0
15	MP ALPHA3	PX	.01	.01	0	0
16	RAIL3	PX	.002	.002	0	0
17	RAIL CON3	PX	.019	.019	0	0
18	RAIL CON1	PX	.019	.019	0	0
19	RAIL CON2	PX	.019	.019	0	0
20	CR1	PX	.01	.01	0	0
21	CR2	PX	.01	.01	0	0
22	CR3	PX	.01	.01	0	0
23	CR4	PX	.01	.01	0	0
24	CR5	PX	.01	.01	0	0
25	CR6	PX	.01	.01	0	0
26	PL4	PX	.007	.007	0	0
27	PL5	PX	.007	.007	0	0
28	PL6	PX	.007	.007	0	0
29	PL7	PX	.007	.007	0	0
30	PL8	PX	.007	.007	0	0
31	PL9	PX	.007	.007	0	0
32	MP ALPHA2	PX	.01	.01	0	0
33	FACE1	PX	.007	.007	0	0
34	MP GAMMA1	PX	.01	.01	0	0
35	MP GAMMA3	PX	.01	.01	0	0
36	RAIL1	PX	.005	.005	0	0
37	FACE2	PX	.007	.007	0	0
38	MP BETA1	PX	.01	.01	0	0
39	MP BETA3	PX	.01	.01	0	0
40	RAIL2	PX	.005	.005	0	0
41	MP BETA2	PX	.01	.01	0	0
42	MP GAMMA2	PX	.01	.01	0	0

Nov 8, 2021 11:41 AM Checked By:___

Member Distributed Loads (BLC 13 : Wind Load (300))

	Member Label	Direction	Stort Magnituda[]b/ft	. End Magnitude[lb/ft,F	Stort Logation[ft 9/]	End Location[ft,%]
1	SO1	PY	004	004		
2	GRAT SUP	PY	003	003	0	0
3	GRAT SUP2	PY	003	003	0	0
4	PL1	PY	009	009	0	0
5	SO2	PY	004	004	0	0
6	GRAT SUP3	PY	003	003	0	0
7	GRAT SUP4	PY	003	003	0	0
8	PL2	PY	009	009	0	0
9	SO3	PY	004	004	0	0
10	GRAT SUP5	PY	003	003	0	0
11	GRAT SUP6	PY	003	003	0	0
12	PL3	PY	009	009	0	0
13	FACE3	PY	002	002	0	0
14	MP ALPHA1	PY	005	005	0	0
15	MP ALPHA3	PY	005	005	0	0
16	RAIL3	PY	001	001	0	0
17	RAIL CON3	PY	01	01	0	0
18	RAIL CON1	PY	01	01	0	0
19	RAIL CON2	PY	01	01	0	0
20	CR1	PY DV	005	005	0	0
21	CR2	PY DV	005	005	0	0
22 23	CR3 CR4	PY PY	005 005	005 005	0	0
23	CR4 CR5	PY PY	005	005	0	0
24	CR6	PY	005	005	0	0
26	PL4	PY	003	003	0	0
27	PL5	PY	003	003	0	0
28	PL6	PY	003	003	0	0
29	PL7	PY	003	003	0	0
30	PL8	PY	003	003	0	0
31	PL9	PY	003	003	0	0
32	MP ALPHA2	PY	005	005	0	0
33	FACE1	PY	003	003	0	0
34	MP GAMMA1	PY	005	005	0	0
35	MP GAMMA3	PY	005	005	0	0
36	RAIL1	PY	002	002	0	0
37	FACE2	PY	003	003	0	0
38	MP BETA1	PY	005	005	0	0
39	MP BETA3	PY	005	005	0	0
40	RAIL2	PY	002	002	0	0
41	MP BETA2	PY BX	005	005	0	0
42	MP GAMMA2	PY	005	005	0	0
43	SO1	PX	.006	.006	0	0
44	GRAT SUP	PX PX	.005	.005	0	0
45	GRAT SUP2	PX PX	.005	.005	0	0
46 47	<u>PL1</u> SO2	PX PX	.016	.016	0	0
47	GRAT SUP3	PX PX	.008	.005	0	0
40	GRAT SUP3	PX PX	.005	.005	0	0
50	PL2	PX	.005	.016	0	0
51	SO3	PX	.006	.006	0	0
52	GRAT SUP5	PX	.005	.005	0	0
53	GRAT SUP6	PX	.005	.005	0	0
54	PL3	PX	.016	.016	0	0
55	FACE3	PX	.003	.003	0	0
56	MP ALPHA1	PX	.009	.009	0	0
57	MP ALPHA3	PX	.009	.009	0	0
· · ·				t Analysis DISH\RI		3dl Page 35

Member Distributed Loads (BLC 13 : Wind Load (300)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	RAIL3	PX	.002	.002	0	0
59	RAIL CON3	PX	.017	.017	0	0
60	RAIL CON1	PX	.017	.017	0	0
61	RAIL CON2	PX	.017	.017	0	0
62	CR1	PX	.009	.009	0	0
63	CR2	PX	.009	.009	0	0
64	CR3	PX	.009	.009	0	0
65	CR4	PX	.009	.009	0	0
66	CR5	PX	.009	.009	0	0
67	CR6	PX	.009	.009	0	0
68	PL4	PX	.006	.006	0	0
69	PL5	PX	.006	.006	0	0
70	PL6	PX	.006	.006	0	0
71	PL7	PX	.006	.006	0	0
72	PL8	PX	.006	.006	0	0
73	PL9	PX	.006	.006	0	0
74	MP ALPHA2	PX	.009	.009	0	0
75	FACE1	PX	.006	.006	0	0
76	MP GAMMA1	PX	.009	.009	0	0
77	MP GAMMA3	PX	.009	.009	0	0
78	RAIL1	PX	.004	.004	0	0
79	FACE2	PX	.006	.006	0	0
80	MP BETA1	PX	.009	.009	0	0
81	MP BETA3	PX	.009	.009	0	0
82	RAIL2	PX	.004	.004	0	0
83	MP BETA2	PX	.009	.009	0	0
84	MP GAMMA2	PX	.009	.009	0	0

Member Distributed Loads (BLC 14 : Wind Load (330))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	006	006	0	0
2	GRAT SUP	PY	005	005	0	0
3	GRAT SUP2	PY	005	005	0	0
4	PL1	PY	016	016	0	0
5	SO2	PY	006	006	0	0
6	GRAT SUP3	PY	005	005	0	0
7	GRAT SUP4	PY	005	005	0	0
8	PL2	PY	016	016	0	0
9	SO3	PY	006	006	0	0
10	GRAT SUP5	PY	005	005	0	0
11	GRAT SUP6	PY	005	005	0	0
12	PL3	PY	016	016	0	0
13	FACE1	PY	003	003	0	0
14	MP ALPHA1	PY	009	009	0	0
15	MP ALPHA3	PY	009	009	0	0
16	RAIL1	PY	002	002	0	0
17	RAIL CON3	PY	017	017	0	0
18	RAIL CON1	PY	017	017	0	0
19	RAIL CON2	PY	017	017	0	0
20	CR1	PY	009	009	0	0
21	CR2	PY	009	009	0	0
22	CR3	PY	009	009	0	0
23	CR4	PY	009	009	0	0
24	CR5	PY	009	009	0	0
25	CR6	PY	009	009	0	0
26	PL4	PY	006	006	0	0

Member Distributed Loads (BLC 14 : Wind Load (330)) (Continued)

27	Member Label PL5	Direction PY	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%] 0	End Location[ft,%]
28	PL6	PY	006	006	0	0
29	PL7	PY	006	006	0	0
30	PL8	PY	006	006	0	0
31	PL9	PY	006	006	0	0
32	MP ALPHA2	PY	009	009	0	0
33	FACE3	PY	006	005	0	0
34	MP GAMMA1	PY	009	009	0	0
35	MP GAMMA3	PY	009	009	0	0
36	RAIL3	PY	004	009	0	0
37	FACE2	PY	004	004	0	0
38	MP BETA1	PY	009	009	0	0
39	MP BETA3	PY	009	009	0	0
40	RAIL2	PY	004	003	0	0
41	MP BETA2	PY	004	004	0	0
42	MP GAMMA2	PY	009	009	0	0
43	SO1	PX	.004	.009	0	0
43	GRAT SUP	PX PX	.004	.004	0	0
44	GRAT SUP2	PX PX	.003	.003	0	0
46	PL1	PX PX	.003	.003	0	0
40	SO2	PX PX	.009	.009	0	0
48	GRAT SUP3	PX	.004	.004	0	0
40	GRAT SUP3	PX	.003	.003	0	0
50	PL2	PX PX	.003	.009	0	0
51	SO3	PX	.009	.009	0	0
52	GRAT SUP5	PX	.004	.004	0	0
53	GRAT SUPS	PX	.003	.003	0	0
54	PL3	PX	.003	.009	0	0
55	FACE1	PX	.009	.009	0	0
56	MP ALPHA1	PX PX	.002	.002	0	0
57	MP ALPHA3	PX	.005	.005	0	0
58	RAIL1	PX	.003	.003	0	0
59	RAIL CON3	PX PX	.01	.001	0	0
60	RAIL CONS	PX PX	.01	.01	0	0
61	RAIL CON1	PX PX	.01	.01	0	0
62	CR1	PX PX	.005	.005	0	0
63	CR1 CR2	PX	.005	.005	-	
64	CR2 CR3	PX PX	.005	.005	0	0
65	CR3 CR4	PX PX	.005	.005	0	0
	CR5	PX PX			0	0
66 67	CR6	PX PX	.005	.005	0	0
68	PL4	PX PX	.003	.003	0	0
69	PL4 PL5	PX PX	.003	.003	0	0
70	PL5 PL6	PX PX	.003	.003	0	0
70	PL0 PL7	PX PX	.003	.003	0	0
72	PL7 PL8	PX PX	.003	.003	0	0
73	PL8 PL9	PX PX	.003	.003	0	0
74	MP ALPHA2	PX PX	.003	.005	0	0
75	FACE3	PX PX	.003	.003	0	0
76	MP GAMMA1	PX PX	.003	.003	0	0
					_	
77	MP GAMMA3	PX PX	.005	.005	0	0
78	RAIL3	PX PX	.002	.002	0	0
79	FACE2	PX PX	.003	.003	0	0
80	MP BETA1	PX PX	.005	.005	0	0
81	MP BETA3	PX PX	.005	.005	0	0
82 83	RAIL2 MP BETA2	PX PX	.002	.002	0	0
00			000	000	U	U U

Member Distributed Loads (BLC 14 : Wind Load (330)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
84	MP GAMMA2	PX	.005	.005	0	0

Member Distributed Loads (BLC 15 : Maintanence (0))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	000471	000471	0	0
2	GRAT SUP	PY	000377	000377	0	0
3	GRAT SUP2	PY	000377	000377	0	0
4	PL1	PY	001	001	0	0
5	SO2	PY	000471	000471	0	0
6	GRAT SUP3	PY	000377	000377	0	0
7	GRAT SUP4	PY	000377	000377	0	0
8	PL2	PY	001	001	0	0
9	SO3	PY	000471	000471	0	0
10	GRAT SUP5	PY	000377	000377	0	0
11	GRAT SUP6	PY	000377	000377	0	0
12	PL3	PY	001	001	0	0
13	FACE1	PY	000226	000226	0	0
14	MP ALPHA1	PY	000639	000639	0	0
15	MP ALPHA3	PY	000639	000639	0	0
16	RAIL1	PY	000158	000158	0	0
17	RAIL CON3	PY	001	001	0	0
18	RAIL CON1	PY	001	001	0	0
19	RAIL CON2	PY	001	001	0	0
20	CR1	PY	000637	000637	0	0
21	CR2	PY	000637	000637	0	0
22	CR3	PY	000637	000637	0	0
23	CR4	PY	000637	000637	0	0
24	CR5	PY	000637	000637	0	0
25	CR6	PY	000637	000637	0	0
26	PL4	PY	000447	000447	0	0
27	PL5	PY	000447	000447	0	0
28	PL6	PY	000447	000447	0	0
29	PL7	PY	000447	000447	0	0
30	PL8	PY	000447	000447	0	0
31	PL9	PY	000447	000447	0	0
32	MP ALPHA2	PY	000639	000639	0	0
33	FACE3	PY	000452	000452	0	0
34	MP GAMMA1	PY	000639	000639	0	0
35	MP GAMMA3	PY	000639	000639	0	0
36	RAIL3	PY	000316	000316	0	0
37	FACE2	PY	000452	000452	0	0
38	MP BETA1	PY	000639	000639	0	0
39	MP BETA3	PY	000639	000639	0	0
40	RAIL2	PY	000316	000316	0	0
41	MP BETA2	PY	000639	000639	0	0
42	MP GAMMA2	PY	000639	000639	0	0

Member Distributed Loads (BLC 16 : Maintanence (30))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	000408	000408	0	0
2	GRAT SUP	PY	000326	000326	0	0
3	GRAT SUP2	PY	000326	000326	0	0
4	PL1	PY	001	001	0	0
5	SO2	PY	000408	000408	0	0
6	GRAT SUP3	PY	000326	000326	0	0
7	GRAT SUP4	PY	000326	000326	0	0

<u>Member Distributed Loads (BLC 16 : Maintanence (30)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
8	PL2	PY	001	001	0	0
9	SO3	PY	000408	000408	0	0
10	GRAT SUP5	PY	000326	000326	0	0
11	GRAT SUP6	PY	000326	000326	0	0
12	PL3	PY	001	001	0	0
13	FACE1	PY	000196	000196	0	0
14	MP ALPHA1	PY	000553	000553	0	0
15	MP ALPHA3	PY	000553	000553	0	0
16	RAIL1	PY	000137	000137	0	0
17	RAIL CON3	PY	001	001	0	0
18	RAIL CON1	PY	001	001	0	0
19	RAIL CON2	PY	001	001	0	0
20	CR1	PY	000551	000551	0	0
21	CR2	PY	000551	000551	0	0
22	CR3	PY	000551	000551	0	0
23	CR4	PY	000551	000551	0	0
24	CR5	PY	000551	000551	0	0
25	CR6	PY	000551	000551	0	0
26	PL4	PY	000387	000387	0	0
27	PL5	PY	000387	000387	0	0
28	PL6	PY	000387	000387	0	0
29	PL7	PY	000387	000387	0	0
30	PL8	PY	000387	000387	0	0
31	PL9	PY	000387	000387	0	0
32	MP ALPHA2	PY	000553	000553	0	0
33	FACE3	PY	000392	000392	0	0
34	MP GAMMA1	PY	000553	000553	0	0
35	MP GAMMA3	PY	000553	000553	0	0
36	RAIL3	PY	000273	000273	0	0
37	FACE2	PY	000392	000392	0	0
38	MP BETA1	PY	000553	000553	0	0
39	MP BETA3	PY	000553	000553	0	0
40	RAIL2	PY	000273	000273	0	0
41	MP BETA2	PY	000553	000553	0	0
42	MP GAMMA2	PY	000553	000553	0	0
43	SO1	PX	000235	000235	0	0
44	GRAT SUP	PX	000188	000188	0	0
45	GRAT SUP2	PX	000188	000188	0	0
46	PL1	PX	000612	000612	0	0
47	SO2	PX	000235	000235	0	0
48	GRAT SUP3	PX	000188	000188	0	0
49	GRAT SUP4	PX	000188	000188	0	0
50	PL2	PX	000612	000612	0	0
51	SO3	PX	000235	000235	0	0
52	GRAT SUP5	PX	000188	000188	0	0
53	GRAT SUP6	PX	000188	000188	0	0
54	PL3	PX	000612	000612	0	0
55	FACE1	PX	000113	000113	0	0
56	MP ALPHA1	PX	000319	000319	0	0
57	MP ALPHA3	PX	000319	000319	0	0
58	RAIL1	PX	-7.9e-5	-7.9e-5	0	0
59	RAIL CON3	PX	000622	000622	0	0
60	RAIL CON1	PX	000622	000622	0	0
61	RAIL CON2	PX	000622	000622	0	0
62	CR1	PX	000318	000318	Ő	0
63	CR2	PX	000318	000318	0	0
64	CR3	PX	000318	000318	0	0

Member Distributed Loads (BLC 16 : Maintanence (30)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
65	CR4	PX	000318	000318	0	0
66	CR5	PX	000318	000318	0	0
67	CR6	PX	000318	000318	0	0
68	PL4	PX	000224	000224	0	0
69	PL5	PX	000224	000224	0	0
70	PL6	PX	000224	000224	0	0
71	PL7	PX	000224	000224	0	0
72	PL8	PX	000224	000224	0	0
73	PL9	PX	000224	000224	0	0
74	MP ALPHA2	PX	000319	000319	0	0
75	FACE3	PX	000226	000226	0	0
76	MP GAMMA1	PX	000319	000319	0	0
77	MP GAMMA3	PX	000319	000319	0	0
78	RAIL3	PX	000158	000158	0	0
79	FACE2	PX	000226	000226	0	0
80	MP BETA1	PX	000319	000319	0	0
81	MP BETA3	PX	000319	000319	0	0
82	RAIL2	PX	000158	000158	0	0
83	MP BETA2	PX	000319	000319	0	0
84	MP GAMMA2	PX	000319	000319	0	0

Member Distributed Loads (BLC 17 : Maintanence (60))

	Member Label	Direction	Start Magnitude[Ib/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	000235	000235	0	0
2	GRAT SUP	PY	000188	000188	0	0
3	GRAT SUP2	PY	000188	000188	0	0
4	PL1	PY	000612	000612	0	0
5	SO2	PY	000235	000235	0	0
6	GRAT SUP3	PY	000188	000188	0	0
7	GRAT SUP4	PY	000188	000188	0	0
8	PL2	PY	000612	000612	0	0
9	SO3	PY	000235	000235	0	0
10	GRAT SUP5	PY	000188	000188	0	0
11	GRAT SUP6	PY	000188	000188	0	0
12	PL3	PY	000612	000612	0	0
13	FACE1	PY	000113	000113	0	0
14	MP ALPHA1	PY	000319	000319	0	0
15	MP ALPHA3	PY	000319	000319	0	0
16	RAIL1	PY	-7.9e-5	-7.9e-5	0	0
17	RAIL CON3	PY	000622	000622	0	0
18	RAIL CON1	PY	000622	000622	0	0
19	RAIL CON2	PY	000622	000622	0	0
20	CR1	PY	000318	000318	0	0
21	CR2	PY	000318	000318	0	0
22	CR3	PY	000318	000318	0	0
23	CR4	PY	000318	000318	0	0
24	CR5	PY	000318	000318	0	0
25	CR6	PY	000318	000318	0	0
26	PL4	PY	000224	000224	0	0
27	PL5	PY	000224	000224	0	0
28	PL6	PY	000224	000224	0	0
29	PL7	PY	000224	000224	0	0
30	PL8	PY	000224	000224	0	0
31	PL9	PY	000224	000224	0	0
32	MP ALPHA2	PY	000319	000319	0	0
33	FACE3	PY	000226	000226	0	0

Member Distributed Loads (BLC 17 : Maintanence (60)) (Continued)

						En d La satian [ft 0/1
34	Member Label	Direction PY		End Magnitude[lb/ft,F 000319		End Location[ft,%]
35	MP GAMMA1 MP GAMMA3	PT	000319 000319	000319	0	0
36	RAIL3	PT	000158	000158	0	0
37	FACE2	PY PY	000158	000158	0	0
38		PY			0	0
39	MP BETA1	PT PY	000319	000319	0	0
40	MP BETA3 RAIL2	PY PY	000319	000319 000158	0	0
40		PY PY	000158	000158		0
41	MP BETA2 MP GAMMA2	PY	000319 000319	000319	0	0
					-	
43 44	<u>SO1</u>	PX	000408	000408	0	0
	GRAT SUP	PX	000326	000326		
45	GRAT SUP2	PX	000326	000326	0	0
46	PL1	PX	001	001	0	0
47	SO2	PX	000408	000408	0	0
48	GRAT SUP3	PX	000326	000326	0	0
49	GRAT SUP4	PX	000326	000326	0	0
50	PL2	PX	001	001	0	0
51	SO3	PX	000408	000408	0	0
52	GRAT SUP5	PX	000326	000326	0	0
53	GRAT SUP6	PX	000326	000326	0	0
54	PL3	PX	001	001	0	0
55	FACE1	PX	000196	000196	0	0
56	MP ALPHA1	PX	000553	000553	0	0
57	MP ALPHA3	PX	000553	000553	0	0
58	RAIL1	PX	000137	000137	0	0
59	RAIL CON3	PX	001	001	0	0
60	RAIL CON1	PX	001	001	0	0
61	RAIL CON2	PX	001	001	0	0
62	CR1	PX	000551	000551	0	0
63	<u>CR2</u>	PX	000551	000551	0	0
64	CR3	PX	000551	000551	0	0
65	<u>CR4</u>	PX	000551	000551	0	0
66	CR5	PX	000551	000551	0	0
67	CR6	PX	000551	000551	0	0
68	PL4	PX	000387	000387	0	0
69	PL5	PX	000387	000387	0	0
70	PL6	PX	000387	000387	0	0
71	PL7	PX	000387	000387	0	0
72	PL8	PX	000387	000387	0	0
73	PL9	PX	000387	000387	0	0
74	MP ALPHA2	PX	000553	000553	0	0
75	FACE3	PX	000392	000392	0	0
76	MP GAMMA1	PX	000553	000553	0	0
77	MP GAMMA3	PX	000553	000553	0	0
78	RAIL3	PX	000273	000273	0	0
79	FACE2	PX	000392	000392	0	0
80	MP BETA1	PX	000553	000553	0	0
81	MP BETA3	PX	000553	000553	0	0
82	RAIL2	PX	000273	000273	0	0
83	MP BETA2	PX	000553	000553	0	0
84	MP GAMMA2	PX	000553	000553	0	0

Member Distributed Loads (BLC 18 : Maintanence (90))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	SO1	PX	000471	000471	0	0
2	GRAT SUP	PX	000377	000377	0	0

Member Distributed Loads (BLC 18 : Maintanence (90)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
3	GRAT SUP2	PX	000377	000377	0	0
4	PL1	PX	001	001	0	0
5	SO2	PX	000471	000471	0	0
6	GRAT SUP3	PX	000377	000377	0	0
7	GRAT SUP4	PX	000377	000377	0	0
8	PL2	PX	001	001	0	0
9	SO3	PX	000471	000471	0	0
10	GRAT SUP5	PX	000377	000377	0	0
11	GRAT SUP6	PX	000377	000377	0	0
12	PL3	PX	001	001	0	0
13	FACE2	PX	000226	000226	0	0
14	MP ALPHA1	PX	000639	000639	0	0
15	MP ALPHA3	PX	000639	000639	0	0
16	RAIL2	PX	000158	000158	0	0
17	RAIL CON3	PX	001	001	0	0
18	RAIL CON1	PX	001	001	0	0
19	RAIL CON2	PX	001	001	0	0
20	CR1	PX	000637	000637	0	0
21	CR2	PX	000637	000637	0	0
22	CR3	PX	000637	000637	0	0
23	CR4	PX	000637	000637	0	0
24	CR5	PX	000637	000637	0	0
25	CR6	PX	000637	000637	0	0
26	PL4	PX	000447	000447	0	0
27	PL5	PX	000447	000447	0	0
28	PL6	PX	000447	000447	0	0
29	PL7	PX	000447	000447	0	0
30	PL8	PX	000447	000447	0	0
31	PL9	PX	000447	000447	0	0
32	MP ALPHA2	PX	000639	000639	0	0
33	FACE3	PX	000452	000452	0	0
34	MP GAMMA1	PX	000639	000639	0	0
35	MP GAMMA3	PX	000639	000639	0	0
36	RAIL3	PX	000316	000316	0	0
37	FACE1	PX	000452	000452	0	0
38	MP BETA1	PX	000639	000639	0	0
39	MP BETA3	PX	000639	000639	0	0
40	RAIL1	PX	000316	000316	0	0
41	MP BETA2	PX	000639	000639	0	0
42	MP GAMMA2	PX	000639	000639	0	0

Member Distributed Loads (BLC 19 : Maintanence (120))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.000235	.000235	0	0
2	GRAT SUP	PY	.000188	.000188	0	0
3	GRAT SUP2	PY	.000188	.000188	0	0
4	PL1	PY	.000612	.000612	0	0
5	SO2	PY	.000235	.000235	0	0
6	GRAT SUP3	PY	.000188	.000188	0	0
7	GRAT SUP4	PY	.000188	.000188	0	0
8	PL2	PY	.000612	.000612	0	0
9	SO3	PY	.000235	.000235	0	0
10	GRAT SUP5	PY	.000188	.000188	0	0
11	GRAT SUP6	PY	.000188	.000188	0	0
12	PL3	PY	.000612	.000612	0	0
13	FACE2	PY	.000113	.000113	0	0

Member Distributed Loads (BLC 19 : Maintanence (120)) (Continued)

14	Member Label MP ALPHA1	Direction PY	Start Magnitude[lb/ft, .000319	End Magnitude[lb/ft,F .000319	Start Location[ft,%]	End Location[ft,%
15	MP ALPHA3	PY	.000319	.000319	0	0
16	RAIL2	PY	7.9e-5	7.9e-5	0	0
17	RAIL CON3	PY	.000622	.000622	0	0
18	RAIL CON1	PY	.000622	.000622	0	0
19	RAIL CON2	PY	.000622	.000622	0	0
20	CR1	PY	.000318	.000318	0	0
21	CR2	PY	.000318	.000318	0	0
22	CR3	PY	.000318	.000318	0	0
23	CR4	PY	.000318	.000318	0	0
24	CR5	PY	.000318	.000318	0	0
25	CR6	PY	.000318	.000318	0	0
26	PL4	PY	.000224	.000224	0	0
27	PL5	PY	.000224	.000224	0	0
28	PL6	PY	.000224	.000224	0	0
29	PL7	PY	.000224	.000224	0	0
30	PL8	PY	.000224	.000224	0	0
31	PL9	PY	.000224	.000224	0	0
32	MP ALPHA2	PY	.000319	.000319	0	0
33	FACE3	PY	.000226	.000226	0	0
34	MP GAMMA1	PY PY	.000319	.000319	0	0
35	MP GAMMA3	PY PY	.000319	.000319	0	0
36	RAIL3	PY	.000158	.000158	0	0
37	FACE1	PY	.000226	.000226	0	0
38	MP BETA1	PY PY	.000319	.000319	0	0
39	MP BETA3	PY PY	.000319	.000319	0	0
40	RAIL1	PY PY	.000158	.000158	0	0
41 42	MP BETA2	PY PY	<u>.000319</u> .000319	.000319 .000319	0	0
4 <u>2</u> 43	MP GAMMA2 SO1	PY PX	000408	000408		
43	GRAT SUP	PX PX	000408	000326	0	0
45	GRAT SUP2	PX	000326	000326	0	0
46	PL1	PX	001	001	0	0
47	SO2	PX	000408	000408	0	0
48	GRAT SUP3	PX	000326	000326	0	0
49	GRAT SUP4	PX	000326	000326	0	0
50	PL2	PX	001	001	0	0
51	SO3	PX	000408	000408	0	0
52	GRAT SUP5	PX	000326	000326	0	0
53	GRAT SUP6	PX	000326	000326	0	0
54	PL3	PX	001	001	0	0
55	FACE2	PX	000196	000196	0	0
56	MP ALPHA1	PX	000553	000553	0	0
57	MP ALPHA3	PX	000553	000553	0	0
58	RAIL2	PX	000137	000137	0	0
59	RAIL CON3	PX	001	001	0	0
60	RAIL CON1	PX	001	001	0	0
61	RAIL CON2	PX	001	001	0	0
62	CR1	PX	000551	000551	0	0
63	CR2	PX	000551	000551	0	0
64	CR3	PX	000551	000551	0	0
65	CR4	PX	000551	000551	0	0
66	CR5	PX	000551	000551	0	0
67	CR6	PX	000551	000551	0	0
68	PL4	PX	000387	000387	0	0
	PL5	PX	000387	000387	0	0
69 70		PX	.0000			

Member Distributed Loads (BLC 19 : Maintanence (120)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
71	PL7	PX	000387	000387	0	0
72	PL8	PX	000387	000387	0	0
73	PL9	PX	000387	000387	0	0
74	MP ALPHA2	PX	000553	000553	0	0
75	FACE3	PX	000392	000392	0	0
76	MP GAMMA1	PX	000553	000553	0	0
77	MP GAMMA3	PX	000553	000553	0	0
78	RAIL3	PX	000273	000273	0	0
79	FACE1	PX	000392	000392	0	0
80	MP BETA1	PX	000553	000553	0	0
81	MP BETA3	PX	000553	000553	0	0
82	RAIL1	PX	000273	000273	0	0
83	MP BETA2	PX	000553	000553	0	0
84	MP GAMMA2	PX	000553	000553	0	0

Member Distributed Loads (BLC 20 : Maintanence (150))

	Member Label	Direction	Start Magnitude[Ib/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.000408	.000408	0	0
2	GRAT SUP	PY	.000326	.000326	0	0
3	GRAT SUP2	PY	.000326	.000326	0	0
4	PL1	PY	.001	.001	0	0
5	SO2	PY	.000408	.000408	0	0
6	GRAT SUP3	PY	.000326	.000326	0	0
7	GRAT SUP4	PY	.000326	.000326	0	0
8	PL2	PY	.001	.001	0	0
9	SO3	PY	.000408	.000408	0	0
10	GRAT SUP5	PY	.000326	.000326	0	0
11	GRAT SUP6	PY	.000326	.000326	0	0
12	PL3	PY	.001	.001	0	0
13	FACE2	PY	.000196	.000196	0	0
14	MP ALPHA1	PY	.000553	.000553	0	0
15	MP ALPHA3	PY	.000553	.000553	0	0
16	RAIL2	PY	.000137	.000137	0	0
17	RAIL CON3	PY	.001	.001	0	0
18	RAIL CON1	PY	.001	.001	0	0
19	RAIL CON2	PY	.001	.001	0	0
20	CR1	PY	.000551	.000551	0	0
21	CR2	PY	.000551	.000551	0	0
22	CR3	PY	.000551	.000551	0	0
23	CR4	PY	.000551	.000551	0	0
24	CR5	PY	.000551	.000551	0	0
25	CR6	PY	.000551	.000551	0	0
26	PL4	PY	.000387	.000387	0	0
27	PL5	PY	.000387	.000387	0	0
28	PL6	PY	.000387	.000387	0	0
29	PL7	PY	.000387	.000387	0	0
30	PL8	PY	.000387	.000387	0	0
31	PL9	PY	.000387	.000387	0	0
32	MP ALPHA2	PY	.000553	.000553	0	0
33	FACE3	PY	.000392	.000392	0	0
34	MP GAMMA1	PY	.000553	.000553	0	0
35	MP GAMMA3	PY	.000553	.000553	0	0
36	RAIL3	PY	.000273	.000273	0	0
37	FACE1	PY	.000392	.000392	0	0
38	MP BETA1	PY	.000553	.000553	0	0
39	MP BETA3	PY	.000553	.000553	0	0

Member Distributed Loads (BLC 20 : Maintanence (150)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
40	RAIL1	PY	.000273	.000273	0	0
41	MP BETA2	PY	.000553	.000553	0	0
42	MP GAMMA2	PY	.000553	.000553	0	0
43	SO1	PX	000235	000235	0	0
44	GRAT SUP	PX	000188	000188	0	0
45	GRAT SUP2	PX	000188	000188	0	0
46	PL1	PX	000612	000612	0	0
47	SO2	PX	000235	000235	0	0
48	GRAT SUP3	PX	000188	000188	0	0
49	GRAT SUP4	PX	000188	000188	0	0
50	PL2	PX	000612	000612	0	0
51	SO3	PX	000235	000235	0	0
52	GRAT SUP5	PX	000188	000188	0	0
53	GRAT SUP6	PX	000188	000188	0	0
54	PL3	PX	000612	000612	0	0
55	FACE2	PX	000113	000113	0	0
56	MP ALPHA1	PX	000319	000319	0	0
57	MP ALPHA3	PX	000319	000319	0	0
58	RAIL2	PX	-7.9e-5	-7.9e-5	0	0
59	RAIL CON3	PX	000622	000622	0	0
60	RAIL CON1	PX	000622	000622	0	0
61	RAIL CON2	PX	000622	000622	0	0
62	CR1	PX	000318	000318	0	0
63	CR2	PX	000318	000318	0	0
64	CR3	PX	000318	000318	0	0
65	CR3	PX	000318	000318	0	0
66	CR5	PX	000318	000318	0	0
67	CR6	PX	000318	000318	0	0
68	PL4	PX	000224	000224	0	0
69	PL5	PX	000224	000224	0	0
70	PL6	PX	000224	000224	0	0
71	PL7	PX	000224	000224	0	0
72	PL8	PX	000224	000224	0	0
73	PL9	PX	000224	000224	0	0
74	MP ALPHA2	PX	000319	000319	0	0
75	FACE3	PX	000226	000226	0	0
76	MP GAMMA1	PX	000319	000319	0	0
77	MP GAMMA3	PX	000319	000319	0	0
78	RAIL3	PX	000158	000158	0	0
79	FACE1	PX	000226	000138	0	0
80	MP BETA1	PX	000319	000319	0	0
81	MP BETA3	PX	000319	000319	0	0
82	RAIL1	PX	000158	000158	0	0
83	MP BETA2	PX PX	000319	000138	0	0
84	MP GAMMA2	PX PX	000319	000319	0	0
04		ΓΛ	000319	000319	U	U

Member Distributed Loads (BLC 21 : Maintanence (180))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.000471	.000471	0	0
2	GRAT SUP	PY	.000377	.000377	0	0
3	GRAT SUP2	PY	.000377	.000377	0	0
4	PL1	PY	.001	.001	0	0
5	SO2	PY	.000471	.000471	0	0
6	GRAT SUP3	PY	.000377	.000377	0	0
7	GRAT SUP4	PY	.000377	.000377	0	0
8	PL2	PY	.001	.001	0	0

Member Distributed Loads (BLC 21 : Maintanence (180)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
9	SO3	PY	.000471	.000471	0	0
10	GRAT SUP5	PY	.000377	.000377	0	0
11	GRAT SUP6	PY	.000377	.000377	0	0
12	PL3	PY	.001	.001	0	0
13	FACE2	PY	.000226	.000226	0	0
14	MP ALPHA1	PY	.000639	.000639	0	0
15	MP ALPHA3	PY	.000639	.000639	0	0
16	RAIL2	PY	.000158	.000158	0	0
17	RAIL CON3	PY	.001	.001	0	0
18	RAIL CON1	PY	.001	.001	0	0
19	RAIL CON2	PY	.001	.001	0	0
20	CR1	PY	.000637	.000637	0	0
21	CR2	PY	.000637	.000637	0	0
22	CR3	PY	.000637	.000637	0	0
23	CR4	PY	.000637	.000637	0	0
24	CR5	PY	.000637	.000637	0	0
25	CR6	PY	.000637	.000637	0	0
26	PL4	PY	.000447	.000447	0	0
27	PL5	PY	.000447	.000447	0	0
28	PL6	PY	.000447	.000447	0	0
29	PL7	PY	.000447	.000447	0	0
30	PL8	PY	.000447	.000447	0	0
31	PL9	PY	.000447	.000447	0	0
32	MP ALPHA2	PY	.000639	.000639	0	0
33	FACE3	PY	.000452	.000452	0	0
34	MP GAMMA1	PY	.000639	.000639	0	0
35	MP GAMMA3	PY	.000639	.000639	0	0
36	RAIL3	PY	.000316	.000316	0	0
37	FACE1	PY	.000452	.000452	0	0
38	MP BETA1	PY	.000639	.000639	0	0
39	MP BETA3	PY	.000639	.000639	0	0
40	RAIL1	PY	.000316	.000316	0	0
41	MP BETA2	PY	.000639	.000639	0	0
42	MP GAMMA2	PY	.000639	.000639	0	0

Member Distributed Loads (BLC 22 : Maintanence (210))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.000408	.000408	0	0
2	GRAT SUP	PY	.000326	.000326	0	0
3	GRAT SUP2	PY	.000326	.000326	0	0
4	PL1	PY	.001	.001	0	0
5	SO2	PY	.000408	.000408	0	0
6	GRAT SUP3	PY	.000326	.000326	0	0
7	GRAT SUP4	PY	.000326	.000326	0	0
8	PL2	PY	.001	.001	0	0
9	SO3	PY	.000408	.000408	0	0
10	GRAT SUP5	PY	.000326	.000326	0	0
11	GRAT SUP6	PY	.000326	.000326	0	0
12	PL3	PY	.001	.001	0	0
13	FACE3	PY	.000196	.000196	0	0
14	MP ALPHA1	PY	.000553	.000553	0	0
15	MP ALPHA3	PY	.000553	.000553	0	0
16	RAIL3	PY	.000137	.000137	0	0
17	RAIL CON3	PY	.001	.001	0	0
18	RAIL CON1	PY	.001	.001	0	0
19	RAIL CON2	PY	.001	.001	0	0

Member Distributed Loads (BLC 22 : Maintanence (210)) (Continued)

20	Member Label CR1	Direction PY	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F .000551	. Start Location[ft,%]	End Location[ft,%
20	CR2	PY	.000551	.000551	0	0
22	CR3	PY	.000551	.000551	0	0
23	CR4	PY	.000551	.000551	0	0
24	CR5	PY	.000551	.000551	0	0
25	CR6	PY	.000551	.000551	0	0
26	PL4	PY	.000387	.000387	0	0
27	PL5	PY	.000387	.000387	0	0
28	PL6	PY	.000387	.000387	0	0
29	PL7	PY	.000387	.000387	0	0
30	PL8	PY	.000387	.000387	0	0
31	PL9	PY	.000387	.000387	0	0
32	MP ALPHA2	PY	.000553	.000553	0	0
33	FACE1	PY	.000392	.000392	0	0
34	MP GAMMA1	PY	.000553	.000553	0	0
35	MP GAMMA1	PY	.000553	.000553	0	0
36	RAIL1	PY	.000273	.000273	0	0
37	FACE2	PY	.000392	.000392	0	0
38	MP BETA1	PY	.000553	.000553	0	0
39	MP BETA3	PY PY	.000553	.000553	0	0
40	RAIL2	PY	.000273	.000273	0	0
41	MP BETA2	PY	.000553	.000553	0	0
42	MP GAMMA2	PY	.000553	.000553	0	0
43	SO1	PX	.000235	.000235	0	0
44	GRAT SUP	PX PX	.000233	.000233	0	0
45	GRAT SUP2	PX	.000188	.000188	0	0
46	PL1	PX PX	.000612	.000612	0	0
40	SO2	PX	.000235	.000235	0	0
48	GRAT SUP3	PX PX	.000235	.000233	0	0
49	GRAT SUP4	PX	.000188	.000188	0	0
50	PL2	PX PX	.000612	.000612	0	0
51	SO3	PX	.000235	.000235	0	0
52	GRAT SUP5	PX	.000188	.000233	0	0
53	GRAT SUP6	PX	.000188	.000188	0	0
54	PL3	PX PX	.000612	.000612	0	0
55	FACE3	PX	.000112	.000112	0	0
56	MP ALPHA1	PX PX	.000319	.000319	0	0
57	MP ALPHA3	PX	.000319	.000319	0	0
58	RAIL3	PX PX	7.9e-5	7.9e-5	0	0
59	RAIL CON3	PX PX	.000622	.000622	0	0
60	RAIL CONS	PX PX	.000622	.000622	0	0
61	RAIL CON1	PX PX	.000622	.000622	0	0
62	CR1	PX PX	.000318	.000318	0	0
63	CR1 CR2	PX PX	.000318	.000318	0	0
64	CR3	PX PX	.000318	.000318	0	0
65	CR4	PX	.000318	.000318	0	0
66	CR5	PA PX	.000318	.000318	0	0
67	CR6	PX PX	.000318	.000318	0	0
68	PL4	PX PX	.000224	.000224	0	0
69	PL4 PL5	PX	.000224	.000224	0	0
70	PL5 PL6	PX PX	.000224	.000224	0	0
70	PL6 PL7	PX PX	.000224	.000224	0	0
72	PL7 PL8	PX PX	.000224	.000224	0	0
73	PL8 PL9	PX PX	.000224	.000224	0	0
74	MP ALPHA2	PX PX	.000224	.000224	0	0
75	FACE1	PX PX	.000319	.000319		
76	MP GAMMA1	PX PX	.000226	.000226	0	0
10		ΓΛ	.000319	.000319	U	U

Member Distributed Loads (BLC 22 : Maintanence (210)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
77	MP GAMMA3	PX	.000319	.000319	0	0
78	RAIL1	PX	.000158	.000158	0	0
79	FACE2	PX	.000226	.000226	0	0
80	MP BETA1	PX	.000319	.000319	0	0
81	MP BETA3	PX	.000319	.000319	0	0
82	RAIL2	PX	.000158	.000158	0	0
83	MP BETA2	PX	.000319	.000319	0	0
84	MP GAMMA2	PX	.000319	.000319	0	0

Member Distributed Loads (BLC 23 : Maintanence (240))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.000235	.000235	0	0
2	GRAT SUP	PY	.000188	.000188	0	0
3	GRAT SUP2	PY	.000188	.000188	0	0
4	PL1	PY	.000612	.000612	0	0
5	SO2	PY	.000235	.000235	0	0
6	GRAT SUP3	PY	.000188	.000188	0	0
7	GRAT SUP4	PY	.000188	.000188	0	0
8	PL2	PY	.000612	.000612	0	0
9	SO3	PY	.000235	.000235	0	0
10	GRAT SUP5	PY	.000188	.000188	0	0
11	GRAT SUP6	PY	.000188	.000188	0	0
12	PL3	PY	.000612	.000612	0	0
13	FACE3	PY	.000113	.000113	0	0
14	MP ALPHA1	PY	.000319	.000319	0	0
15	MP ALPHA3	PY	.000319	.000319	0	0
16	RAIL3	PY	7.9e-5	7.9e-5	0	0
17	RAIL CON3	PY	.000622	.000622	0	0
18	RAIL CON1	PY	.000622	.000622	0	0
19	RAIL CON2	PY	.000622	.000622	0	0
20	CR1	PY	.000318	.000318	0	0
21	CR2	PY	.000318	.000318	0	0
22	CR3	PY	.000318	.000318	0	0
23	CR4	PY	.000318	.000318	0	0
24	CR5	PY	.000318	.000318	0	0
25	CR6	PY	.000318	.000318	0	0
26	PL4	PY	.000224	.000224	0	0
27	PL5	PY	.000224	.000224	0	0
28	PL6	PY	.000224	.000224	0	0
29	PL7	PY	.000224	.000224	0	0
30	PL8	PY	.000224	.000224	0	0
31	PL9	PY	.000224	.000224	0	0
32	MP ALPHA2	PY	.000319	.000319	0	0
33	FACE1	PY	.000226	.000226	0	0
34	MP GAMMA1	PY	.000319	.000319	0	0
35	MP GAMMA3	PY	.000319	.000319	0	0
36	RAIL1	PY	.000158	.000158	0	0
37	FACE2	PY	.000226	.000226	0	0
38	MP BETA1	PY	.000319	.000319	0	0
39	MP BETA3	PY	.000319	.000319	0	0
40	RAIL2	PY	.000158	.000158	0	0
41	MP BETA2	PY	.000319	.000319	0	0
42	MP GAMMA2	PY	.000319	.000319	0	0
43	SO1	PX	.000408	.000408	0	0
44	GRAT SUP	PX	.000326	.000326	0	0
45	GRAT SUP2	PX	.000326	.000326	0	0
					-	

Member Distributed Loads (BLC 23 : Maintanence (240)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
46	PL1	PX	.001	.001	0	0
47	SO2	PX	.000408	.000408	0	0
48	GRAT SUP3	PX	.000326	.000326	0	0
49	GRAT SUP4	PX	.000326	.000326	0	0
50	PL2	PX	.001	.001	0	0
51	SO3	PX	.000408	.000408	0	0
52	GRAT SUP5	PX	.000326	.000326	0	0
53	GRAT SUP6	PX	.000326	.000326	0	0
54	PL3	PX	.001	.001	0	0
55	FACE3	PX	.000196	.000196	0	0
56	MP ALPHA1	PX	.000553	.000553	0	0
57	MP ALPHA3	PX	.000553	.000553	0	0
58	RAIL3	PX	.000137	.000137	0	0
59	RAIL CON3	PX	.001	.001	0	0
60	RAIL CON1	PX	.001	.001	0	0
61	RAIL CON2	PX	.001	.001	0	0
62	CR1	PX	.000551	.000551	0	0
63	CR2	PX	.000551	.000551	0	0
64	CR3	PX	.000551	.000551	0	0
65	CR4	PX	.000551	.000551	0	0
66	CR5	PX	.000551	.000551	0	0
67	CR6	PX	.000551	.000551	0	0
68	PL4	PX	.000387	.000387	0	0
69	PL5	PX	.000387	.000387	0	0
70	PL6	PX	.000387	.000387	0	0
71	PL7	PX	.000387	.000387	0	0
72	PL8	PX	.000387	.000387	0	0
73	PL9	PX	.000387	.000387	0	0
74	MP ALPHA2	PX	.000553	.000553	0	0
75	FACE1	PX	.000392	.000392	0	0
76	MP GAMMA1	PX	.000553	.000553	0	0
77	MP GAMMA3	PX	.000553	.000553	0	0
78	RAIL1	PX	.000273	.000273	0	0
79	FACE2	PX	.000392	.000392	0	0
80	MP BETA1	PX	.000553	.000553	0	0
81	MP BETA3	PX	.000553	.000553	0	0
82	RAIL2	PX	.000273	.000273	0	0
83	MP BETA2	PX	.000553	.000553	0	0
84	MP GAMMA2	PX	.000553	.000553	0	0

Member Distributed Loads (BLC 24 : Maintanence (270))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PX	.000471	.000471	0	0
2	GRAT SUP	PX	.000377	.000377	0	0
3	GRAT SUP2	PX	.000377	.000377	0	0
4	PL1	PX	.001	.001	0	0
5	SO2	PX	.000471	.000471	0	0
6	GRAT SUP3	PX	.000377	.000377	0	0
7	GRAT SUP4	PX	.000377	.000377	0	0
8	PL2	PX	.001	.001	0	0
9	SO3	PX	.000471	.000471	0	0
10	GRAT SUP5	PX	.000377	.000377	0	0
11	GRAT SUP6	PX	.000377	.000377	0	0
12	PL3	PX	.001	.001	0	0
13	FACE3	PX	.000226	.000226	0	0
14	MP ALPHA1	PX	.000639	.000639	0	0

Member Distributed Loads (BLC 24 : Maintanence (270)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
15	MP ALPHA3	PX	.000639	.000639	0	0
16	RAIL3	PX	.000158	.000158	0	0
17	RAIL CON3	PX	.001	.001	0	0
18	RAIL CON1	PX	.001	.001	0	0
19	RAIL CON2	PX	.001	.001	0	0
20	CR1	PX	.000637	.000637	0	0
21	CR2	PX	.000637	.000637	0	0
22	CR3	PX	.000637	.000637	0	0
23	CR4	PX	.000637	.000637	0	0
24	CR5	PX	.000637	.000637	0	0
25	CR6	PX	.000637	.000637	0	0
26	PL4	PX	.000447	.000447	0	0
27	PL5	PX	.000447	.000447	0	0
28	PL6	PX	.000447	.000447	0	0
29	PL7	PX	.000447	.000447	0	0
30	PL8	PX	.000447	.000447	0	0
31	PL9	PX	.000447	.000447	0	0
32	MP ALPHA2	PX	.000639	.000639	0	0
33	FACE1	PX	.000452	.000452	0	0
34	MP GAMMA1	PX	.000639	.000639	0	0
35	MP GAMMA3	PX	.000639	.000639	0	0
36	RAIL1	PX	.000316	.000316	0	0
37	FACE2	PX	.000452	.000452	0	0
38	MP BETA1	PX	.000639	.000639	0	0
39	MP BETA3	PX	.000639	.000639	0	0
40	RAIL2	PX	.000316	.000316	0	0
41	MP BETA2	PX	.000639	.000639	0	0
42	MP GAMMA2	PX	.000639	.000639	0	0

Member Distributed Loads (BLC 25 : Maintanence (300))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	000235	000235	0	0
2	GRAT SUP	PY	000188	000188	0	0
3	GRAT SUP2	PY	000188	000188	0	0
4	PL1	PY	000612	000612	0	0
5	SO2	PY	000235	000235	0	0
6	GRAT SUP3	PY	000188	000188	0	0
7	GRAT SUP4	PY	000188	000188	0	0
8	PL2	PY	000612	000612	0	0
9	SO3	PY	000235	000235	0	0
10	GRAT SUP5	PY	000188	000188	0	0
11	GRAT SUP6	PY	000188	000188	0	0
12	PL3	PY	000612	000612	0	0
13	FACE3	PY	000113	000113	0	0
14	MP ALPHA1	PY	000319	000319	0	0
15	MP ALPHA3	PY	000319	000319	0	0
16	RAIL3	PY	-7.9e-5	-7.9e-5	0	0
17	RAIL CON3	PY	000622	000622	0	0
18	RAIL CON1	PY	000622	000622	0	0
19	RAIL CON2	PY	000622	000622	0	0
20	CR1	PY	000318	000318	0	0
21	CR2	PY	000318	000318	0	0
22	CR3	PY	000318	000318	0	0
23	CR4	PY	000318	000318	0	0
24	CR5	PY	000318	000318	0	0
25	CR6	PY	000318	000318	0	0

Member Distributed Loads (BLC 25 : Maintanence (300)) (Continued)

00	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
26	PL4	PY DV	000224	000224	0	0
27	PL5	PY PY	000224	000224	0	0
28	PL6	PY PY	000224	000224	0	0
29	PL7		000224	000224	0	0
30	PL8	PY PY	000224	000224	0	0
31 32	PL9	PY PY	000224	000224	0	0
	MP ALPHA2	PY PY	000319	000319	0	0
33	FACE1	PY PY	000226	000226	0	0
34	MP GAMMA1		000319	000319	0	0
35	MP GAMMA3	PY PY	000319	000319	0	0
<u>36</u> 37	RAIL1 FACE2	PY PY	000158 000226	000158	0	0
38	MP BETA1	PY	000319	000226 000319	0	0
39		PT PY	000319	000319		
	MP BETA3	PY			0	0
40 41	RAIL2	PY PY	000158	000158	0	0
41	MP BETA2 MP GAMMA2	PY	000319 000319	000319 000319	0	0
		PT PX				0
43	SO1 GRAT SUP	PX PX	.000408	.000408 .000326	0	0
44 45	GRAT SUP GRAT SUP2	PX PX	.000326	.000326		0
45	PL1	PX PX	.000326	.000326	0	0
40	SO2	PX PX	.000408	.000408	0	0
47	GRAT SUP3	PX PX	.000326	.000326	0	0
40	GRAT SUP3	PX PX	.000326	.000326		0
50	PL2	PX PX	.000328	.000328	0	0
50	SO3	PX PX	.000408	.000408	0	0
52	GRAT SUP5	PX PX	.000326	.000326	0	0
53	GRAT SUP5	PX PX	.000326	.000326	0	0
54	PL3	PX	.000320	.000320	0	0
55	FACE3	PX	.000196	.000196	0	0
56	MP ALPHA1	PX	.000553	.000553	0	0
57	MP ALPHA3	PX	.000553	.000553	0	0
58	RAIL3	PX	.000137	.000137	0	0
59	RAIL CON3	PX	.001	.000137	0	0
60	RAIL CONS	PX	.001	.001	0	0
61	RAIL CON1	PX	.001	.001	0	0
62	CR1	PX	.000551	.000551	0	0
63	CR2	PX	.000551	.000551	0	0
64	CR3	PX	.000551	.000551	0	0
65	CR4	PX	.000551	.000551	0	0
66	CR5	PX	.000551	.000551	0	0
67	CR6	PX	.000551	.000551	0	0
68	PL4	PX	.000387	.000387	0	0
69	PL5	PX	.000387	.000387	0	0
70	PL6	PX	.000387	.000387	0	0
70	PL7	PX	.000387	.000387	0	0
72	PL8	PX	.000387	.000387	0	0
73	PL9	PX	.000387	.000387	0	0
74	MP ALPHA2	PX	.000553	.000553	0	0
75	FACE1	PX	.000392	.000392	0	0
76	MP GAMMA1	PX	.000553	.000553	0	0
77	MP GAMMA3	PX	.000553	.000553	0	0
78	RAIL1	PX	.000273	.000273	0	0
78	FACE2	PX	.000392	.000392	0	0
80	MP BETA1	PX	.000553	.000553	0	0
81	MP BETA3	PX	.000553	.000553	0	0
82	RAIL2	PX	.000273	.000273	0	0
		•		•		
	A-3D Version 17.0.2	11.1 1876/06	V121 11/350\ Moun	t Analvsis DISH\RI	SAVDI 861 876/05 1	r3d1 Page 51

Member Distributed Loads (BLC 25 : Maintanence (300)) (Continued)

		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
	83	MP BETA2	PX	.000553	.000553	0	0
8	84	MP GAMMA2	PX	.000553	.000553	0	0

Member Distributed Loads (BLC 26 : Maintanence (330))

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
1	SO1	PY	000408	000408		
2	GRAT SUP	PY	000326	000326	0	0
3	GRAT SUP2	PY	000326	000326	0	0
4	PL1	PY	001	001	0	0
5	SO2	PY	000408	000408	0	0
6	GRAT SUP3	PY	000326	000326	0	0
7	GRAT SUP4	PY	000326	000326	0	0
8	PL2	PY	001	001	0	0
9	SO3	PY	000408	000408	0	0
10	GRAT SUP5	PY	000326	000326	0	0
11	GRAT SUP6	PY	000326	000326	0	0
12	PL3	PY	001	001	0	0
13	FACE1	PY	000196	000196	0	0
14	MP ALPHA1	PY	000553	000553	0	0
15	MP ALPHA3	PY	000553	000553	0	0
16	RAIL1	PY	000137	000137	0	0
17	RAIL CON3	PY	001	001	0	0
18	RAIL CON1	PY	001	001	0	0
19	RAIL CON2	PY	001	001	0	0
20	CR1	PY	000551	000551	0	0
21	CR2	PY	000551	000551	0	0
22	CR3	PY	000551	000551	0	0
23	CR4	PY	000551	000551	0	0
24	CR5	PY	000551	000551	0	0
25	CR6	PY	000551	000551	0	0
26	PL4	PY	000387	000387	0	0
27	PL5	PY	000387	000387	0	0
28	PL6	PY	000387	000387	0	0
29	PL7	PY	000387	000387	0	0
30	PL8	PY	000387	000387	0	0
31	PL9	PY	000387	000387	0	0
32	MP ALPHA2	PY	000553	000553	0	0
33	FACE3	PY	000392	000392	0	0
34	MP GAMMA1	PY	000553	000553	0	0
35	MP GAMMA3	PY	000553	000553	0	0
36	RAIL3	PY	000273	000273	0	0
37	FACE2	PY	000392	000392	0	0
38	MP BETA1	PY	000553	000553	0	0
39	MP BETA3	PY	000553	000553	0	0
40	RAIL2	PY DV	000273	000273	0	0
41	MP BETA2	PY	000553	000553	0	0
42	MP GAMMA2	PY	000553	000553	0	0
43		PX	.000235	.000235	0	0
44	GRAT SUP	PX PX	.000188	.000188	0	0
45 46	GRAT SUP2	PX PX	.000188	.000188	0	0
46	PL1 SO2	PX PX	.000612	.000612 .000235	0	0
47	GRAT SUP3	PX PX	.000235	.000235	0	0
48	GRAT SUP3 GRAT SUP4	PX PX	.000188	.000188	0	0
50	PL2	PX PX	.000612	.000188	0	0
50	SO3	PA PX	.000235	.000235	0	0
			.000233	.000200	V	U U

Member Distributed Loads (BLC 26 : Maintanence (330)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
52	GRAT SUP5	PX	.000188	.000188	0	0
53	GRAT SUP6	PX	.000188	.000188	0	0
54	PL3	PX	.000612	.000612	0	0
55	FACE1	PX	.000113	.000113	0	0
56	MP ALPHA1	PX	.000319	.000319	0	0
57	MP ALPHA3	PX	.000319	.000319	0	0
58	RAIL1	PX	7.9e-5	7.9e-5	0	0
59	RAIL CON3	PX	.000622	.000622	0	0
60	RAIL CON1	PX	.000622	.000622	0	0
61	RAIL CON2	PX	.000622	.000622	0	0
62	CR1	PX	.000318	.000318	0	0
63	CR2	PX	.000318	.000318	0	0
64	CR3	PX	.000318	.000318	0	0
65	CR4	PX	.000318	.000318	0	0
66	CR5	PX	.000318	.000318	0	0
67	CR6	PX	.000318	.000318	0	0
68	PL4	PX	.000224	.000224	0	0
69	PL5	PX	.000224	.000224	0	0
70	PL6	PX	.000224	.000224	0	0
71	PL7	PX	.000224	.000224	0	0
72	PL8	PX	.000224	.000224	0	0
73	PL9	PX	.000224	.000224	0	0
74	MP ALPHA2	PX	.000319	.000319	0	0
75	FACE3	PX	.000226	.000226	0	0
76	MP GAMMA1	PX	.000319	.000319	0	0
77	MP GAMMA3	PX	.000319	.000319	0	0
78	RAIL3	PX	.000158	.000158	0	0
79	FACE2	PX	.000226	.000226	0	0
80	MP BETA1	PX	.000319	.000319	0	0
81	MP BETA3	PX	.000319	.000319	0	0
82	RAIL2	PX	.000158	.000158	0	0
83	MP BETA2	PX	.000319	.000319	0	0
84	MP GAMMA2	PX	.000319	.000319	0	0

Member Distributed Loads (BLC 27 : Ice Dead Load)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	SO1	Z	008	008	0	0
2	GRAT SUP	Z	005	005	0	0
3	GRAT SUP2	Z	005	005	0	0
4	PL1	Z	008	008	0	0
5	SO2	Z	008	008	0	0
6	GRAT SUP3	Z	005	005	0	0
7	GRAT SUP4	Z	005	005	0	0
8	PL2	Z	008	008	0	0
9	SO3	Z	008	008	0	0
10	GRAT SUP5	Z	005	005	0	0
11	GRAT SUP6	Z	005	005	0	0
12	PL3	Z	008	008	0	0
13	FACE1	Z	006	006	0	0
14	MP ALPHA1	Z	005	005	0	0
15	MP ALPHA3	Z	005	005	0	0
16	RAIL1	Z	005	005	0	0
17	RAIL CON3	Z	009	009	0	0
18	RAIL CON1	Z	009	009	0	0
19	RAIL CON2	Z	009	009	0	0
20	CR1	Z	008	008	0	0

Member Distributed Loads (BLC 27 : Ice Dead Load) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
21	CR2	Z	008	008	0	0
22	CR3	Z	008	008	0	0
23	CR4	Z	008	008	0	0
24	CR5	Z	008	008	0	0
25	CR6	Z	008	008	0	0
26	PL4	Z	004	004	0	0
27	PL5	Z	004	004	0	0
28	PL6	Z	004	004	0	0
29	PL7	Z	004	004	0	0
30	PL8	Z	004	004	0	0
31	PL9	Z	004	004	0	0
32	MP ALPHA2	Z	005	005	0	0
33	FACE3	Z	006	006	0	0
34	MP GAMMA1	Z	005	005	0	0
35	MP GAMMA3	Z	005	005	0	0
36	RAIL3	Z	005	005	0	0
37	FACE2	Z	006	006	0	0
38	MP BETA1	Z	005	005	0	0
39	MP BETA3	Z	005	005	0	0
40	RAIL2	Z	005	005	0	0
41	MP BETA2	Z	005	005	0	0
42	MP GAMMA2	Z	005	005	0	0

Member Distributed Loads (BLC 28 : Ice Wind Load (0))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	001	001	0	0
2	GRAT SUP	PY	001	001	0	0
3	GRAT SUP2	PY	001	001	0	0
4	PL1	PY	003	003	0	0
5	SO2	PY	001	001	0	0
6	GRAT SUP3	PY	001	001	0	0
7	GRAT SUP4	PY	001	001	0	0
8	PL2	PY	003	003	0	0
9	SO3	PY	001	001	0	0
10	GRAT SUP5	PY	001	001	0	0
11	GRAT SUP6	PY	001	001	0	0
12	PL3	PY	003	003	0	0
13	FACE1	PY	001	001	0	0
14	MP ALPHA1	PY	004	004	0	0
15	MP ALPHA3	PY	004	004	0	0
16	RAIL1	PY	000921	000921	0	0
17	RAIL CON3	PY	003	003	0	0
18	RAIL CON1	PY	003	003	0	0
19	RAIL CON2	PY	003	003	0	0
20	CR1	PY	002	002	0	0
21	CR2	PY	002	002	0	0
22	CR3	PY	002	002	0	0
23	CR4	PY	002	002	0	0
24	CR5	PY	002	002	0	0
25	CR6	PY	002	002	0	0
26	PL4	PY	002	002	0	0
27	PL5	PY	002	002	0	0
28	PL6	PY	002	002	0	0
29	PL7	PY	002	002	0	0
30	PL8	PY	002	002	0	0
31	PL9	PY	002	002	0	0

Member Distributed Loads (BLC 28 : Ice Wind Load (0)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
32	MP ALPHA2	PY	004	004	0	0
33	FACE3	PY	002	002	0	0
34	MP GAMMA1	PY	004	004	0	0
35	MP GAMMA3	PY	004	004	0	0
36	RAIL3	PY	002	002	0	0
37	FACE2	PY	002	002	0	0
38	MP BETA1	PY	004	004	0	0
39	MP BETA3	PY	004	004	0	0
40	RAIL2	PY	002	002	0	0
41	MP BETA2	PY	004	004	0	0
42	MP GAMMA2	PY	004	004	0	0

Member Distributed Loads (BLC 29 : Ice Wind Load (30))

	Member Label	Direction	Start Magnitude[Ib/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	001	001	0	0
2	GRAT SUP	PY	001	001	0	0
3	GRAT SUP2	PY	001	001	0	0
4	PL1	PY	003	003	0	0
5	SO2	PY	001	001	0	0
6	GRAT SUP3	PY	001	001	0	0
7	GRAT SUP4	PY	001	001	0	0
8	PL2	PY	003	003	0	0
9	SO3	PY	001	001	0	0
10	GRAT SUP5	PY	001	001	0	0
11	GRAT SUP6	PY	001	001	0	0
12	PL3	PY	003	003	0	0
13	FACE1	PY	000978	000978	0	0
14	MP ALPHA1	PY	003	003	0	0
15	MP ALPHA3	PY	003	003	0	0
16	RAIL1	PY	000798	000798	0	0
17	RAIL CON3	PY	003	003	0	0
18	RAIL CON1	PY	003	003	0	0
19	RAIL CON2	PY	003	003	0	0
20	CR1	PY	002	002	0	0
21	CR2	PY	002	002	0	0
22	CR3	PY	002	002	0	0
23	CR4	PY	002	002	0	0
24	CR5	PY	002	002	0	0
25	CR6	PY	002	002	0	0
26	PL4	PY	001	001	0	0
27	PL5	PY	001	001	0	0
28	PL6	PY	001	001	0	0
29	PL7	PY	001	001	0	0
30	PL8	PY	001	001	0	0
31	PL9	PY	001	001	0	0
32	MP ALPHA2	PY	003	003	0	0
33	FACE3	PY	002	002	0	0
34	MP GAMMA1	PY	003	003	0	0
35	MP GAMMA3	PY	003	003	0	0
36	RAIL3	PY	002	002	0	0
37	FACE2	PY	002	002	0	0
38	MP BETA1	PY	003	003	0	0
39	MP BETA3	PY	003	003	0	0
40	RAIL2	PY	002	002	0	0
41	MP BETA2	PY	003	003	0	0
42	MP GAMMA2	PY	003	003	0	0

Member Distributed Loads (BLC 29 : Ice Wind Load (30)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
43	SO1	PX	000652	000652	0	0
44	GRAT SUP	PX	000704	000704	0	0
45	GRAT SUP2	PX	000704	000704	0	0
46	PL1	PX	001	001	0	0
47	SO2	PX	000652	000652	0	0
48	GRAT SUP3	PX	000704	000704	0	0
49	GRAT SUP4	PX	000704	000704	0	0
50	PL2	PX	001	001	0	0
51	SO3	PX	000652	000652	0	0
52	GRAT SUP5	PX	000704	000704	0	0
53	GRAT SUP6	PX	000704	000704	0	0
54	PL3	PX	001	001	0	0
55	FACE1	PX	000565	000565	0	0
56	MP ALPHA1	PX	002	002	0	0
57	MP ALPHA3	PX	002	002	0	0
58	RAIL1	PX	000461	000461	0	0
59	RAIL CON3	PX	001	001	0	0
60	RAIL CON1	PX	001	001	0	0
61	RAIL CON2	PX	001	001	0	0
62	CR1	PX	000938	000938	0	0
63	CR2	PX	000938	000938	0	0
64	CR3	PX	000938	000938	0	0
65	CR4	PX	000938	000938	0	0
66	CR5	PX	000938	000938	0	0
67	CR6	PX	000938	000938	0	0
68	PL4	PX	000768	000768	0	0
69	PL5	PX	000768	000768	0	0
70	PL6	PX	000768	000768	0	0
71	PL7	PX	000768	000768	0	0
72	PL8	PX	000768	000768	0	0
73	PL9	PX	000768	000768	0	0
74	MP ALPHA2	PX	002	002	0	0
75	FACE3	PX	001	001	0	0
76	MP GAMMA1	PX	002	002	0	0
77	MP GAMMA3	PX	002	002	0	0
78	RAIL3	PX	000921	000921	0	0
79	FACE2	PX	001	001	0	0
80	MP BETA1	PX	002	002	0	0
81	MP BETA3	PX	002	002	0	0
82	RAIL2	PX	000921	000921	0	0
83	MP BETA2	PX	002	002	0	0
84	MP GAMMA2	PX	002	002	0	0

Member Distributed Loads (BLC 30 : Ice Wind Load (60))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[Ib/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	000652	000652	0	0
2	GRAT SUP	PY	000704	000704	0	0
3	GRAT SUP2	PY	000704	000704	0	0
4	PL1	PY	001	001	0	0
5	SO2	PY	000652	000652	0	0
6	GRAT SUP3	PY	000704	000704	0	0
7	GRAT SUP4	PY	000704	000704	0	0
8	PL2	PY	001	001	0	0
9	SO3	PY	000652	000652	0	0
10	GRAT SUP5	PY	000704	000704	0	0
11	GRAT SUP6	PY	000704	000704	0	0

Member Distributed Loads (BLC 30 : Ice Wind Load (60)) (Continued)

<u>12</u> 13	PL3	PY	001			
	FACE1	PY	000565	001 000565	0	0
14	MP ALPHA1	PY	002	002	0	0
15	MP ALPHA3	PY	002	002	0	0
16	RAIL1	PY	000461	002	0	0
17	RAIL CON3	PY	001	001	0	0
18	RAIL CONS	PY	001	001	0	0
19	RAIL CON2	PY	001	001	0	0
20	CR1	PY	000938	000938	0	0
21	CR2	PY	000938	000938	0	0
22	CR3	PY	000938	000938	0	0
23	CR4	PY	000938	000938	0	0
24	CR5	PY	000938	000938	0	0
25	CR6	PY	000938	000938	0	0
26	PL4	PY	000768	000768	0	0
27	PL5	PY	000768	000768	0	0
28	PL6	PY	000768	000768	0	0
29	PL7	PY	000768	000768	0	0
30	PL8	PY	000768	000768	0	0
31	PL9	PY	000768	000768	0	0
32	MP ALPHA2	PY	002	002	0	0
33	FACE3	PY	002	002	0	0
34	MP GAMMA1	PY	002	002	0	0
35	MP GAMMA3	PY	002	002	0	0
36	RAIL3	PY	000921	000921	0	0
37	FACE2	PY	001	001	0	0
38	MP BETA1	PY	001	002	0	0
39	MP BETA3	PY	002	002	0	0
40	RAIL2	PY	0002	000921	0	0
41	MP BETA2	PY	002	002	0	0
42	MP GAMMA2	PY	002	002	0	0
43	SO1	PX	002	002	0	0
44	GRAT SUP	PX	001	001	0	0
45	GRAT SUP2	PX	001	001	0	0
46	PL1	PX	003	003	0	0
47	SO2	PX	001	003	0	0
48	GRAT SUP3	PX	001	001	0	0
49	GRAT SUP4	PX	001	001	0	0
50	PL2	PX PX	003	001	0	0
51	SO3	PX PX	003	003	0	0
52	GRAT SUP5	PX	001	001	0	0
53	GRAT SUP6	PX	001	001	0	0
54	PL3	PX	003	003	0	0
55	FACE1	PX	000978	000978	0	0
56	MP ALPHA1	PX	003	003	0	0
57	MP ALPHA3	PX	003	003	0	0
58	RAIL1	PX	000798	000798	0	0
59	RAIL CON3	PX	003	003	0	0
60	RAIL CON1	PX	003	003	0	0
61	RAIL CON2	PX	003	003	0	0
62	CR1	PX	003	003	0	0
63	CR2	PX	002	002	0	0
64	CR3	PX PX	002	002	0	0
65	CR4	PX	002	002	0	0
66	CR5	PX PX	002	002	0	0
		PX	002	002	0	0
67	CR6	PX	= UUZ			

Member Distributed Loads (BLC 30 : Ice Wind Load (60)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
69	PL5	PX	001	001	0	0
70	PL6	PX	001	001	0	0
71	PL7	PX	001	001	0	0
72	PL8	PX	001	001	0	0
73	PL9	PX	001	001	0	0
74	MP ALPHA2	PX	003	003	0	0
75	FACE3	PX	002	002	0	0
76	MP GAMMA1	PX	003	003	0	0
77	MP GAMMA3	PX	003	003	0	0
78	RAIL3	PX	002	002	0	0
79	FACE2	PX	002	002	0	0
80	MP BETA1	PX	003	003	0	0
81	MP BETA3	PX	003	003	0	0
82	RAIL2	PX	002	002	0	0
83	MP BETA2	PX	003	003	0	0
84	MP GAMMA2	PX	003	003	0	0

Member Distributed Loads (BLC 31 : Ice Wind Load (90))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PX	001	001	0	0
2	GRAT SUP	PX	001	001	0	0
3	GRAT SUP2	PX	001	001	0	0
4	PL1	PX	003	003	0	0
5	SO2	PX	001	001	0	0
6	GRAT SUP3	PX	001	001	0	0
7	GRAT SUP4	PX	001	001	0	0
8	PL2	PX	003	003	0	0
9	SO3	PX	001	001	0	0
10	GRAT SUP5	PX	001	001	0	0
11	GRAT SUP6	PX	001	001	0	0
12	PL3	PX	003	003	0	0
13	FACE2	PX	001	001	0	0
14	MP ALPHA1	PX	004	004	0	0
15	MP ALPHA3	PX	004	004	0	0
16	RAIL2	PX	000921	000921	0	0
17	RAIL CON3	PX	003	003	0	0
18	RAIL CON1	PX	003	003	0	0
19	RAIL CON2	PX	003	003	0	0
20	CR1	PX	002	002	0	0
21	CR2	PX	002	002	0	0
22	CR3	PX	002	002	0	0
23	CR4	PX	002	002	0	0
24	CR5	PX	002	002	0	0
25	CR6	PX	002	002	0	0
26	PL4	PX	002	002	0	0
27	PL5	PX	002	002	0	0
28	PL6	PX	002	002	0	0
29	PL7	PX	002	002	0	0
30	PL8	PX	002	002	0	0
31	PL9	PX	002	002	0	0
32	MP ALPHA2	PX	004	004	0	0
33	FACE3	PX	002	002	0	0
34	MP GAMMA1	PX	004	004	0	0
35	MP GAMMA3	PX	004	004	0	0
36	RAIL3	PX	002	002	0	0
37	FACE1	PX	002	002	0	0

Member Distributed Loads (BLC 31 : Ice Wind Load (90)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
38	MP BETA1	PX	004	004	0	0
39	MP BETA3	PX	004	004	0	0
40	RAIL1	PX	002	002	0	0
41	MP BETA2	PX	004	004	0	0
42	MP GAMMA2	PX	004	004	0	0

Member Distributed Loads (BLC 32 : Ice Wind Load (120))

	Member Label	Direction		End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>SO1</u>	PY	.000652	.000652	0	0
2	GRAT SUP	PY	.000704	.000704	0	0
3	GRAT SUP2	PY	.000704	.000704	0	0
4	PL1	PY	.001	.001	0	0
5	SO2	PY	.000652	.000652	0	0
6	GRAT SUP3	PY	.000704	.000704	0	0
7	GRAT SUP4	PY	.000704	.000704	0	0
8	PL2	PY	.001	.001	0	0
9	SO3	PY	.000652	.000652	0	0
10	GRAT SUP5	PY	.000704	.000704	0	0
11	GRAT SUP6	PY	.000704	.000704	0	0
12	PL3	PY	.001	.001	0	0
13	FACE2	PY	.000565	.000565	0	0
14	MP ALPHA1	PY	.002	.002	0	0
15	MP ALPHA3	PY	.002	.002	0	0
16	RAIL2	PY	.000461	.000461	0	0
17	RAIL CON3	PY	.001	.001	0	0
18	RAIL CON1	PY	.001	.001	0	0
19	RAIL CON2	PY	.001	.001	0	0
20	CR1	PY	.000938	.000938	0	0
21	CR2	PY	.000938	.000938	0	0
22	CR3	PY	.000938	.000938	0	0
23	CR4	PY	.000938	.000938	0	0
24	CR5	PY	.000938	.000938	0	0
25	CR6	PY	.000938	.000938	0	0
26	PL4	PY	.000768	.000768	0	0
27	PL5	PY	.000768	.000768	0	0
28	PL6	PY	.000768	.000768	0	0
29	PL7	PY	.000768	.000768	0	0
30	PL8	PY	.000768	.000768	0	0
31	PL9	PY	.000768	.000768	0	0
32	MP ALPHA2	PY	.002	.002	0	0
33	FACE3	PY	.001	.001	0	0
34	MP GAMMA1	PY	.002	.002	0	0
35	MP GAMMA3	PY	.002	.002	0	0
36	RAIL3	PY	.000921	.000921	0	0
37	FACE1	PY	.001	.001	0	0
38	MP BETA1	PY	.002	.002	0	0
39	MP BETA3	PY	.002	.002	0	0
40	RAIL1	PY	.000921	.000921	0	0
41	MP BETA2	PY	.002	.002	0	0
42	MP GAMMA2	PY	.002	.002	0	0
43	<u>SO1</u>	PX	001	001	0	0
44	GRAT SUP	PX	001	001	0	0
45	GRAT SUP2	PX	001	001	0	0
46	PL1	PX	003	003	0	0
47	SO2	PX	001	001	0	0
48	GRAT SUP3	PX	001	001	0	0

Member Distributed Loads (BLC 32 : Ice Wind Load (120)) (Continued)

	Member Label	Direction	Start Magnitude[Ib/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
49	GRAT SUP4	PX	001	001	0	0
50	PL2	PX	003	003	0	0
51	SO3	PX	001	001	0	0
52	GRAT SUP5	PX	001	001	0	0
53	GRAT SUP6	PX	001	001	0	0
54	PL3	PX	003	003	0	0
55	FACE2	PX	000978	000978	0	0
56	MP ALPHA1	PX	003	003	0	0
57	MP ALPHA3	PX	003	003	0	0
58	RAIL2	PX	000798	000798	0	0
59	RAIL CON3	PX	003	003	0	0
60	RAIL CON1	PX	003	003	0	0
61	RAIL CON2	PX	003	003	0	0
62	CR1	PX	002	002	0	0
63	CR2	PX	002	002	0	0
64	CR3	PX	002	002	0	0
65	CR4	PX	002	002	0	0
66	CR5	PX	002	002	0	0
67	CR6	PX	002	002	0	0
68	PL4	PX	001	001	0	0
69	PL5	PX	001	001	0	0
70	PL6	PX	001	001	0	0
71	PL7	PX	001	001	0	0
72	PL8	PX	001	001	0	0
73	PL9	PX	001	001	0	0
74	MP ALPHA2	PX	003	003	0	0
75	FACE3	PX	002	002	0	0
76	MP GAMMA1	PX	003	003	0	0
77	MP GAMMA3	PX	003	003	0	0
78	RAIL3	PX	002	002	0	0
79	FACE1	PX	002	002	0	0
80	MP BETA1	PX	003	003	0	0
81	MP BETA3	PX	003	003	0	0
82	RAIL1	PX	002	002	0	0
83	MP BETA2	PX	003	003	0	0
84	MP GAMMA2	PX	003	003	0	0

Member Distributed Loads (BLC 33 : Ice Wind Load (150))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.001	.001	0	0
2	GRAT SUP	PY	.001	.001	0	0
3	GRAT SUP2	PY	.001	.001	0	0
4	PL1	PY	.003	.003	0	0
5	SO2	PY	.001	.001	0	0
6	GRAT SUP3	PY	.001	.001	0	0
7	GRAT SUP4	PY	.001	.001	0	0
8	PL2	PY	.003	.003	0	0
9	SO3	PY	.001	.001	0	0
10	GRAT SUP5	PY	.001	.001	0	0
11	GRAT SUP6	PY	.001	.001	0	0
12	PL3	PY	.003	.003	0	0
13	FACE2	PY	.000978	.000978	0	0
14	MP ALPHA1	PY	.003	.003	0	0
15	MP ALPHA3	PY	.003	.003	0	0
16	RAIL2	PY	.000798	.000798	0	0
17	RAIL CON3	PY	.003	.003	0	0

Member Distributed Loads (BLC 33 : Ice Wind Load (150)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft.%]
18	RAIL CON1	PY	.003	.003	0	0
19	RAIL CON2	PY	.003	.003	0	0
20	CR1	PY	.002	.002	0	0
21	CR2	PY	.002	.002	0	0
22	CR3	PY	.002	.002	0	0
23	CR4	PY	.002	.002	0	0
24	CR5	PY	.002	.002	0	0
25	CR6	PY	.002	.002	0	0
26	PL4	PY	.001	.001	0	0
27	PL5	PY	.001	.001	0	0
28	PL6	PY	.001	.001	0	0
29	PL7	PY	.001	.001	0	0
30	PL8	PY	.001	.001	0	0
31	PL9	PY	.001	.001	0	0
32	MP ALPHA2	PY	.003	.003	0	0
33	FACE3	PY	.002	.002	0	0
34	MP GAMMA1	PY	.003	.003	0	0
35	MP GAMMA3	PY	.003	.003	0	0
36	RAIL3	PY	.002	.002	0	0
37	FACE1	PY	.002	.002	0	0
38	MP BETA1	PY	.003	.003	0	0
39	MP BETA3	PY	.003	.003	0	0
40	RAIL1	PY	.002	.002	0	0
41	MP BETA2	PY	.003	.003	0	0
42	MP GAMMA2	PY	.003	.003	0	0
43	<u>SO1</u>	PX	000652	000652	0	0
44	GRAT SUP	PX	000704	000704	0	0
45	GRAT SUP2	PX	000704	000704	0	0
46	PL1	PX	001	001	0	0
47	<u>SO2</u>	PX	000652	000652	0	0
48	GRAT SUP3	PX	000704	000704	0	0
49	GRAT SUP4	PX	000704	000704	0	0
50	PL2	PX	001	001	0	0
51	<u>SO3</u>	PX	000652	000652	0	0
52	GRAT SUP5	PX	000704	000704	0	0
53	GRAT SUP6	PX	000704	000704	0	0
54	PL3	PX	001	001	0	0
55	FACE2	PX	000565	000565	0	0
56	MP ALPHA1	PX	002	002	0	0
57	MP ALPHA3	PX	002	002	0	0
58	RAIL2	PX	000461	000461	0	0
59	RAIL CON3	PX	001	001	0	0
60	RAIL CON1	PX	001	001	0	0
61	RAIL CON2	PX	001	001	0	0
62	CR1	PX	000938	000938	0	0
63	CR2	PX	000938	000938	0	0
64	CR3	PX PX	000938	000938	0	0
65	CR4	PX PX	000938	000938	0	0
66	CR5	PX PY	000938 000938	000938	0	0
67	CR6	PX PX		000938	0	0
68	PL4	PX PX	000768	000768	0	0
69	PL5	PX PX	000768	000768	0	0
70	PL6	PX	000768	000768	0	0
71	PL7	PX PX	000768	000768	0	0
72	PL8	PX PX	000768	000768	0	0
73		PX PX	000768	000768	0	0
74	MP ALPHA2	PX	002	002	0	0
	-3D Version 17.0.2		V21 1112E0) Maur	nt Analysis DISH\RI	CAV(DL 06) 076405	r3d] Page 61

Member Distributed Loads (BLC 33 : Ice Wind Load (150)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
75	FACE3	PX	001	001	0	0
76	MP GAMMA1	PX	002	002	0	0
77	MP GAMMA3	PX	002	002	0	0
78	RAIL3	PX	000921	000921	0	0
79	FACE1	PX	001	001	0	0
80	MP BETA1	PX	002	002	0	0
81	MP BETA3	PX	002	002	0	0
82	RAIL1	PX	000921	000921	0	0
83	MP BETA2	PX	002	002	0	0
84	MP GAMMA2	PX	002	002	0	0

Member Distributed Loads (BLC 34 : Ice Wind Load (180))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.001	.001	0	0
2	GRAT SUP	PY	.001	.001	0	0
3	GRAT SUP2	PY	.001	.001	0	0
4	PL1	PY	.003	.003	0	0
5	SO2	PY	.001	.001	0	0
6	GRAT SUP3	PY	.001	.001	0	0
7	GRAT SUP4	PY	.001	.001	0	0
8	PL2	PY	.003	.003	0	0
9	SO3	PY	.001	.001	0	0
10	GRAT SUP5	PY	.001	.001	0	0
11	GRAT SUP6	PY	.001	.001	0	0
12	PL3	PY	.003	.003	0	0
13	FACE2	PY	.001	.001	0	0
14	MP ALPHA1	PY	.004	.004	0	0
15	MP ALPHA3	PY	.004	.004	0	0
16	RAIL2	PY	.000921	.000921	0	0
17	RAIL CON3	PY	.003	.003	0	0
18	RAIL CON1	PY	.003	.003	0	0
19	RAIL CON2	PY	.003	.003	0	0
20	CR1	PY	.002	.002	0	0
21	CR2	PY	.002	.002	0	0
22	CR3	PY	.002	.002	0	0
23	CR4	PY	.002	.002	0	0
24	CR5	PY	.002	.002	0	0
25	CR6	PY	.002	.002	0	0
26	PL4	PY	.002	.002	0	0
27	PL5	PY	.002	.002	0	0
28	PL6	PY	.002	.002	0	0
29	PL7	PY	.002	.002	0	0
30	PL8	PY	.002	.002	0	0
31	PL9	PY	.002	.002	0	0
32	MP ALPHA2	PY	.004	.004	0	0
33	FACE3	PY	.002	.002	0	0
34	MP GAMMA1	PY	.004	.004	0	0
35	MP GAMMA3	PY	.004	.004	0	0
36	RAIL3	PY	.002	.002	0	0
37	FACE1	PY	.002	.002	0	0
38	MP BETA1	PY	.004	.004	0	0
39	MP BETA3	PY	.004	.004	0	0
40	RAIL1	PY	.002	.002	0	0
41	MP BETA2	PY	.004	.004	0	0
42	MP GAMMA2	PY	.004	.004	0	0

Nov 8, 2021 11:41 AM Checked By:____

<u>Member Distributed Loads (BLC 35 : Ice Wind Load (210))</u>

Member Latel Direction Start Magnitudelb/E. End Location(ft %) End Location(ft %) 2 GRAT SUP PY 001 .001 0 0 3 GRAT SUP2 PY 001 .001 0 0 4 PL1 PY 003 .003 0 0 5 SC22 PY 001 .001 0 0 6 GRAT SUP3 PY .001 .001 0 0 7 GRAT SUP4 PY .001 .001 0 0 0 8 PL2 PY .001 .001 0 0 0 10 GRAT SUP5 PY .001 .001 0 0 0 11 GRAT SUP5 PY .001 .001 0 0 0 12 PL3 PY .003 .003 .003 0 0 0 13 FACE3 PY .003	WEIIIK	<u>Der Distributed Loc</u>			u (210))		
2 GRAT SUP PY PY 001 001 0 0 4 PL1 PY 003 003 0 0 5 SO2 PY 001 001 0 0 6 GRAT SUP3 PY 001 001 0 0 7 GRAT SUP5 PY 001 001 0 0 9 SO3 PY 001 001 0 0 10 GRAT SUP5 PY 001 001 0 0 11 GRAT SUP5 PY 001 001 0 0 12 PL3 PY 003 003 0 0 13 FACE3 PY 003 003 0 0 0 14 MPALPHA1 PY 003 003 0 0 0 15 MPALPHA3 PY 003 003 0 0 0 16					• •		End Location[ft,%]
3 GRAT SUP2 PY .001 .001 0 0 5 SO2 PY .001 .001 0 0 6 GRAT SUP3 PY .001 .001 0 0 7 GRAT SUP4 PY .001 .001 0 0 9 SO3 PY .001 .001 0 0 10 GRAT SUP5 PY .001 .001 0 0 11 GRAT SUP6 PY .003 .003 0 0 12 PL3 PY .003 .003 0 0 0 13 FACE3 PY .003 .003 0 0 0 14 MP ALPHA3 PY .003 .003 0 0 0 16 RALS .001 .001 .001 .001 .001 .001 16 RALS .002 .002 .002 .002	1						
4 PL1 PY .003 .003 .0 0 5 SO2 PY .001 .001 0 0 6 GRAT SUP3 PY .001 .001 0 0 7 GRAT SUP5 PY .001 .001 0 0 10 GRAT SUP6 PY .001 .001 0 0 11 GRAT SUP6 PY .001 .001 0 0 12 PL3 PY .003 .003 0 0 0 13 FACE3 PY .003 .003 .003 0 0 14 MP ALPHA1 PY .003 .003 .003 0 0 18 RAL CON3 PY .003 .003 .003 0 0 20 CR1 PY .002 .002 .002 0 0 21 CR2 PY .002 .002							
5 SO2 PY 001 001 0 0 6 GRAT SUP3 PY 001 001 0 0 7 GRAT SUP4 PY 003 003 0 0 9 SO3 PY 001 001 0 0 10 GRAT SUP5 PY 001 001 0 0 11 GRAT SUP5 PY 003 003 0 0 12 PL3 PY 003 003 0 0 13 FACE3 PY 003 003 0 0 14 MPALPHA1 PY 003 003 0 0 16 RAL PY 003 003 0 0 0 17 RAL CON1 PY 002 002 0 0 0 20 CR1 PY 002 002 0 0 0 21							
6 GRAT SUP3 PY 001 001 0 0 7 GRAT SUP4 PY 003 003 0 0 9 SQ3 PY 001 001 0 0 10 GRAT SUP5 PY 001 001 0 0 11 GRAT SUP6 PY 001 001 0 0 12 PL3 PY 003 003 0 0 13 FACE3 PY 003 003 0 0 14 MP ALPHA3 PY 003 003 0 0 15 MP ALPHA3 PY 003 003 0 0 0 16 RAL CON1 PY 003 003 0 0 0 10 RAL CON1 PY 002 002 0 0 0 22 CR3 PY 002 002 0 0 0						0	0
7 GRAT SUP4 PY 001 001 0 0 8 PL2 PY 003 003 0 0 9 SQ3 PY 001 001 0 0 0 10 GRAT SUP5 PY 001 001 0 0 11 GRAT SUP5 PY 003 .003 0 0 12 PL3 PY .003 .003 0 0 14 MPALPHA1 PY .003 .003 0 0 15 MPALPHA3 PY .003 .003 0 0 0 16 RAL CON1 PY .003 .003 0 0 0 19 RAL CON1 PY .002 .002 0 0 0 21 CR2 PY .002 .002 0 0 0 22 CR3 PY .002 .002 .002	5	SO2				0	0
8 PL2 PY 003 003 0 0 9 SO3 PY 001 0011 0 0 10 GRAT SUP5 PY 001 0011 0 0 11 GRAT SUP5 PY 003 003 0 0 13 FACE3 PY 0003 003 0 0 14 MP ALPHA1 PY 003 003 0 0 16 RAL3 PY 000798 000798 0 0 17 RAIL CON1 PY 003 003 0 0 0 18 RAIL CON1 PY 002 002 0 0 0 20 CR1 PY 002 002 0 0 0 21 CR2 PY 002 002 0 0 0 22 CR3 PY 002 002 0 0 0	6	GRAT SUP3	PY	.001	.001	0	0
9 SO3 PY 001 001 0 0 10 GRAT SUP6 PY 001 001 0 0 11 GRAT SUP6 PY 003 003 0 0 12 PL3 PY 003 003 0 0 13 FACE3 PY 003 003 0 0 14 MP ALPHA1 PY 003 003 0 0 15 MP ALPHA3 PY 003 003 0 0 16 RAIL CON1 PY 003 003 0 0 19 RAIL CON1 PY 002 002 0 0 20 CR1 PY 002 002 0 0 0 21 CR2 PY 002 002 0 0 0 22 CR3 PY 001 001 0 0 0 23	7	GRAT SUP4	PY	.001	.001	0	0
10 GRAT SUP5 PY 001 001 0 0 11 GRAT SUP6 PY 003 003 0 0 13 FACE3 PY 000378 000978 0 0 13 FACE3 PY 000378 000978 0 0 14 MP ALPHA1 PY 003 003 0 0 0 15 MP ALPHA3 PY 003 003 0 0 0 16 RAL3 PY 003 003 0 0 0 17 RAL CON1 PY 002 002 0 0 0 20 CR1 PY 002 002 0 0 0 22 CR3 PY 002 002 0 0 0 23 CR4 PY 001 001 0 0 0 24 CR5 PY 002 00	8	PL2	PY	.003	.003	0	0
I1 GRAT_SUP6 PY .001 .001 0 0 I2 PL3 PY .003 .003 0 0 I3 FACE3 PY .003 .003 0 0 I4 MP ALPHA1 PY .003 .003 0 0 I5 MP ALPHA1 PY .003 .003 0 0 I5 MP ALPHA1 PY .003 .003 0 0 I6 RAIL CON1 PY .003 .003 0 0 19 RAIL CON2 PY .002 .002 0 0 20 CR1 PY .002 .002 0 0 0 21 CR2 PY .002 .002 .002 0 0 0 23 CR4 PY .001 .001 0 0 0 0 24 CR5 PY .001 .001	9	SO3	PY	.001	.001	0	0
12 PACE3 PY .003 .003 .0 0 13 FACE3 PY .000378 .0 .0 14 MP ALPHA1 PY .003 .003 .0 .0 15 MP ALPHA3 PY .000798 .0 .0 .0 16 RAILS PY .003 .003 .0 .0 .0 17 RAIL CON1 PY .003 .003 .0 .0 .0 18 RAIL CON1 PY .002 .002 .0 .0 .0 20 CR1 PY .002 .002 .0 .0 .0 21 CR3 PY .002 .002 .0 .0 .0 22 CR4 PY .002 .002 .0 .0 .0 23 CR4 PY .001 .001 .0 .0 .0 .0 .0 24 CR5	10	GRAT SUP5	PY	.001	.001	0	0
12 PACE3 PY .003 .003 .0 0 13 FACE3 PY .000378 .0 .0 14 MP ALPHA1 PY .003 .003 .0 .0 15 MP ALPHA3 PY .000798 .0 .0 .0 16 RAILS PY .003 .003 .0 .0 .0 17 RAIL CON1 PY .003 .003 .0 .0 .0 18 RAIL CON1 PY .002 .002 .0 .0 .0 20 CR1 PY .002 .002 .0 .0 .0 21 CR3 PY .002 .002 .0 .0 .0 22 CR4 PY .002 .002 .0 .0 .0 23 CR4 PY .001 .001 .0 .0 .0 .0 .0 24 CR5	11		PY	.001	.001	0	0
13 FACE3 PY .000378 .000978 0 0 14 MP ALPHA1 PY .003 .003 0 0 15 MP ALPHA3 PY .000798 .000798 0 0 16 RAIL CON3 PY .0003 .003 0 0 17 RAIL CON1 PY .003 .003 0 0 19 RAIL CON2 PY .002 .002 0 0 20 CR1 PY .002 .002 0 0 21 CR2 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .001 .001 0 0 26 PL4 PY .001 .001 0 0 28 PL7 PY .001 .001 0 0 30 PL3	12		PY	.003	.003	0	0
International MP ALPHA1 PY .003 .003 0 0 15 MP ALPHA3 PY .000798 .000798 0 0 16 RAIL3 PY .000798 .000798 0 0 17 RAIL CON1 PY .003 .003 0 0 18 RAIL CON1 PY .002 .002 0 0 20 CR1 PY .002 .002 0 0 21 CR2 PY .002 .002 0 0 22 CR3 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .001 .001 0 0 26 CR6 PY .001 .001 0 0 28 PL5 PY .001 .001 0 0 29 PY			PY			0	0
15 MP ALPHA3 PY .003 .003 0 0 16 RAIL3 PY .000798 .000798 0 0 17 RAIL CON1 PY .003 .003 0 0 18 RAIL CON1 PY .003 .003 0 0 19 RAIL CON1 PY .002 .002 0 0 20 CR1 PY .002 .002 0 0 21 CR2 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .002 .002 0 0 25 CR6 PY .001 .001 0 0 0 25 CR6 PY .001 .001 0 0 0 26 PL4 PY .001 .001 0 0 0			PY			0	
16 RAIL CON3 PY .000798 .000798 0 0 17 RAIL CON1 PY .003 .003 0 0 18 RAL CON1 PY .003 .003 0 0 19 RAIL CON2 PY .002 .002 0 0 20 CR1 PY .002 .002 0 0 21 CR2 PY .002 .002 0 0 22 CR3 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .001 .001 0 0 25 CR6 PY .001 .001 0 0 0 26 PL4 PY .001 .001 0 0 0 26 PL6 PY .001 .001 0 0 0						-	
17 RAIL CON3 PY .003 .003 0 0 18 RAIL CON2 PY .003 .003 0 0 20 CR1 PY .002 .002 0 0 20 CR1 PY .002 .002 0 0 21 CR2 PY .002 .002 0 0 22 CR3 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .002 .002 0 0 25 CR6 PY .001 .001 0 0 26 PL4 PY .001 .001 0 0 0 28 PL6 PY .001 .001 0 0 0 30 PL8 PY .001 .001 0 0 0 31 PL9 PY .003 .003 0 0 0 33							
18 RAIL CON1 PY .003 .003 .00 .01 19 RAIL CON2 PY .003 .003 .00 .00 20 CR1 PY .002 .002 .00 .00 21 CR2 PY .002 .002 .00 .00 22 CR3 PY .002 .002 .00 .00 23 CR4 PY .002 .002 .00 .00 24 CR5 PY .002 .002 .00 .00 25 CR6 PY .001 .001 .00 .00 26 PL4 PY .001 .001 .00 .00 28 PL6 PY .001 .001 .00 .00 30 PL8 PY .001 .001 .00 .00 31 PL9 PY .003 .003 .00 .00 32 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
19 RAIL CON2 PY .003 .003 0 0 20 CR1 PY .002 .002 0 0 21 CR2 PY .002 .002 0 0 22 CR3 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .002 .002 0 0 25 CR6 PY .001 .001 0 0 26 PL4 PY .001 .001 0 0 27 PL5 PY .001 .001 0 0 28 PL7 PY .001 .001 0 0 0 30 PL8 PY .001 .001 0 0 0 33 FACE1 PY .002 .002 0 0 0 34							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
21 CR2 PY .002 .002 0 0 22 CR3 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .002 .002 0 0 25 CR6 PY .001 .001 0 0 26 PL4 PY .001 .001 0 0 28 PL6 PY .001 .001 0 0 29 PL7 PY .001 .001 0 0 30 PL8 PY .001 .001 0 0 31 PL9 PY .002 .002 0 0 0 33 FACE1 PY .003 .003 .003 0 0 0 34 MP GAMMA1 PY .002 .002 .0 0 0							
22 CR3 PY .002 .002 0 0 23 CR4 PY .002 .002 0 0 24 CR5 PY .002 .002 0 0 25 CR6 PY .002 .002 0 0 26 PL4 PY .001 .001 0 0 28 PL6 PY .001 .001 0 0 29 PL7 PY .001 .001 0 0 30 PL8 PY .001 .001 0 0 31 PL9 PY .003 .003 0 0 33 FACE1 PY .002 .002 0 0 0 34 MP GAMMA1 PY .003 .003 0 0 0 35 MP GAMMA3 PY .003 .003 0 0 0 36							
23 CR4 PY .002 .001							
24 CR5 PY .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .001							
25 CR6 PY .002 .002 0 0 26 PL4 PY .001 .001 0 0 27 PL5 PY .001 .001 0 0 28 PL6 PY .001 .001 0 0 29 PL7 PY .001 .001 0 0 30 PL8 PY .001 .001 0 0 31 PL9 PY .002 .002 0 0 32 MP ALPHA2 PY .002 .002 0 0 33 FACE1 PY .002 .002 0 0 0 34 MP GAMMA1 PY .003 .003 0 0 0 35 MP GAMMA3 PY .002 .002 0 0 0 36 RAL1 PY .003 .003 0 0 0						-	
26 PL4 PY .001 .001 0 0 27 PL5 PY .001 .001 0 0 28 PL6 PY .001 .001 0 0 29 PL7 PY .001 .001 0 0 30 PL8 PY .001 .001 0 0 31 PL9 PY .001 .001 0 0 32 MP ALPHA2 PY .002 .002 0 0 34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .002 .002 0 0 36 RAIL1 PY .002 .002 0 0 0 37 FACE2 PY .002 .002 .002 0 0 40 RAIL2 PY .003 .003 0 0 0							
27 PL5 PY .001 .001 0 0 28 PL6 PY .001 .001 0 0 30 PL8 PY .001 .001 0 0 31 PL9 PY .001 .001 0 0 32 MP ALPHA2 PY .003 .003 0 0 33 FACE1 PY .003 .003 0 0 34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .003 .003 0 0 36 RAIL1 PY .002 .002 0 0 0 37 FACE2 PY .002 .002 0 0 0 38 MP BETA1 PY .003 .003 0 0 0 41 MP BETA2 PY .003 .003 0 0 0							
28 PL6 PY .001 .001 0 0 29 PL7 PY .001 .001 0 0 30 PL8 PY .001 .001 0 0 31 PL9 PY .001 .001 0 0 32 MP ALPHA2 PY .002 .002 0 0 33 FACE1 PY .002 .002 0 0 34 MP GAMMA1 PY .002 .002 0 0 35 MP GAMMA3 PY .002 .002 0 0 36 RAIL1 PY .002 .002 0 0 0 38 MP BETA1 PY .003 .003 .003 0 0 40 RAIL2 PY .002 .002 0 0 0 41 MP BETA3 PY .003 .003 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
29 PL7 PY .001 .001 0 0 30 PL8 PY .001 .001 0 0 31 PL9 PY .001 .001 0 0 32 MP ALPHA2 PY .003 .003 0 0 33 FACE1 PY .002 .002 0 0 34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .003 .003 0 0 36 RAIL1 PY .002 .002 0 0 38 MP BETA1 PY .003 .003 0 0 39 MP BETA2 PY .003 .003 0 0 0 40 RAIL2 PY .003 .003 0 0 0 41 MP BETA2 PY .003 .003 0 0 0						-	
30 PL8 PY .001 .001 0 0 31 PL9 PY .001 .001 0 0 32 MPALPHA2 PY .003 .003 0 0 33 FACE1 PY .002 .002 0 0 34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .002 .002 0 0 36 RAIL1 PY .002 .002 0 0 36 MP BETA1 PY .003 .003 0 0 39 MP BETA3 PY .003 .003 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000704 .000704 0 0 44 GRAT SUP <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
31 PL9 PY .001 .001 0 0 32 MP ALPHA2 PY .003 .003 0 0 33 FACE1 PY .002 .002 0 0 34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .002 .002 0 0 36 RAIL1 PY .002 .002 0 0 37 FACE2 PY .002 .002 0 0 38 MP BETA1 PY .003 .003 0 0 40 RAIL2 PY .003 .003 0 0 41 MP GAMMA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
32 MP ALPHA2 PY .003 .003 0 0 33 FACE1 PY .002 .002 0 0 34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .002 .002 0 0 36 RAIL1 PY .002 .002 0 0 38 MP BETA1 PY .002 .002 0 0 39 MP BETA3 PY .003 .003 0 0 40 RAIL2 PY .003 .003 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 47 <							
33 FACE1 PY .002 .002 0 0 34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .003 .003 0 0 36 RAIL1 PY .002 .002 0 0 37 FACE2 PY .002 .002 0 0 39 MP BETA1 PY .003 .003 0 0 40 RAIL2 PY .003 .003 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000704 .000704 0 0 45 GRAT SUP2 PX .001 .001 0 0 46 PL1 PX .000704 .000704 0 0 47 SO2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
34 MP GAMMA1 PY .003 .003 0 0 35 MP GAMMA3 PY .003 .003 0 0 36 RAIL1 PY .002 .002 0 0 37 FACE2 PY .002 .002 0 0 38 MP BETA1 PY .003 .003 0 0 39 MP BETA3 PY .003 .003 0 0 40 RAIL2 PY .003 .003 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP2 PX .000704 .000704 0 0 45 GRAT SUP2 PX .0001 .001 0 0 47							
35 MP GAMMA3 PY .003 .003 0 0 36 RAIL1 PY .002 .002 0 0 37 FACE2 PY .002 .002 0 0 38 MP BETA1 PY .003 .003 0 0 39 MP BETA2 PY .002 .002 0 0 40 RAIL2 PY .003 .003 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP2 PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 48							
36 RAIL1 PY .002 .002 0 0 37 FACE2 PY .002 .002 0 0 38 MP BETA1 PY .003 .003 0 0 39 MP BETA3 PY .003 .003 0 0 40 RAIL2 PY .002 .002 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .0001704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000704 .000704 0 0 50							
37 FACE2 PY .002 .002 0 0 38 MP BETA1 PY .003 .003 0 0 39 MP BETA3 PY .003 .003 0 0 40 RAIL2 PY .002 .002 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000704 .000704 0 0 49 GRAT SUP3 PX .000704 .000704 0 0 50							
38 MP BETA1 PY .003 .003 0 0 39 MP BETA3 PY .003 .003 0 0 40 RAIL2 PY .002 .002 0 0 41 MP BETA2 PY .003 .003 0 0 41 MP GAMMA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 0 47 SO2 PX .000652 .000652 0 0 0 49 GRAT SUP3 PX .000704 .000704 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
39 MP BETA3 PY .003 .003 0 0 40 RAIL2 PY .002 .002 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52							
40 RAIL2 PY .002 .002 0 0 41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP4 PX .001 .001 0 0 53							
41 MP BETA2 PY .003 .003 0 0 42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 50 PL2 PX .000704 .000704 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP5 PX .000704 .000704 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
42 MP GAMMA2 PY .003 .003 0 0 43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .0001 .001 0 0 53 GRAT SUP6 PX .000704 .000704 0 0							
43 SO1 PX .000652 .000652 0 0 44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0							
44 GRAT SUP PX .000704 .000704 0 0 45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .002 .002 0 0							
45 GRAT SUP2 PX .000704 .000704 0 0 46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 51 SO3 PX .000704 .000704 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .002 .002 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
46 PL1 PX .001 .001 0 0 47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
47 SO2 PX .000652 .000652 0 0 48 GRAT SUP3 PX .000704 .000704 0 0 49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .001 .001 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0						-	
48 GRAT SUP3 PX .000704 .000704 0 0 49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
49 GRAT SUP4 PX .000704 .000704 0 0 50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
50 PL2 PX .001 .001 0 0 51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0						-	
51 SO3 PX .000652 .000652 0 0 52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
52 GRAT SUP5 PX .000704 .000704 0 0 53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
53 GRAT SUP6 PX .000704 .000704 0 0 54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
54 PL3 PX .001 .001 0 0 55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
55 FACE3 PX .000565 .000565 0 0 56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0							
56 MP ALPHA1 PX .002 .002 0 0 57 MP ALPHA3 PX .002 .002 0 0						0	0
57 MP ALPHA3 PX .002 .002 0 0					.000565	0	0
	56	MP ALPHA1	PX	.002	.002	0	0
	57	MP ALPHA3	PX	.002	.002	0	0
		2D Varaian 17.0.2		5\/21 114250\ Ma			

Member Distributed Loads (BLC 35 : Ice Wind Load (210)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	RAIL3	PX	.000461	.000461	0	0
59	RAIL CON3	PX	.001	.001	0	0
60	RAIL CON1	PX	.001	.001	0	0
61	RAIL CON2	PX	.001	.001	0	0
62	CR1	PX	.000938	.000938	0	0
63	CR2	PX	.000938	.000938	0	0
64	CR3	PX	.000938	.000938	0	0
65	CR4	PX	.000938	.000938	0	0
66	CR5	PX	.000938	.000938	0	0
67	CR6	PX	.000938	.000938	0	0
68	PL4	PX	.000768	.000768	0	0
69	PL5	PX	.000768	.000768	0	0
70	PL6	PX	.000768	.000768	0	0
71	PL7	PX	.000768	.000768	0	0
72	PL8	PX	.000768	.000768	0	0
73	PL9	PX	.000768	.000768	0	0
74	MP ALPHA2	PX	.002	.002	0	0
75	FACE1	PX	.001	.001	0	0
76	MP GAMMA1	PX	.002	.002	0	0
77	MP GAMMA3	PX	.002	.002	0	0
78	RAIL1	PX	.000921	.000921	0	0
79	FACE2	PX	.001	.001	0	0
80	MP BETA1	PX	.002	.002	0	0
81	MP BETA3	PX	.002	.002	0	0
82	RAIL2	PX	.000921	.000921	0	0
83	MP BETA2	PX	.002	.002	0	0
84	MP GAMMA2	PX	.002	.002	0	0

Member Distributed Loads (BLC 36 : Ice Wind Load (240))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	.000652	.000652	0	0
2	GRAT SUP	PY	.000704	.000704	0	0
3	GRAT SUP2	PY	.000704	.000704	0	0
4	PL1	PY	.001	.001	0	0
5	SO2	PY	.000652	.000652	0	0
6	GRAT SUP3	PY	.000704	.000704	0	0
7	GRAT SUP4	PY	.000704	.000704	0	0
8	PL2	PY	.001	.001	0	0
9	SO3	PY	.000652	.000652	0	0
10	GRAT SUP5	PY	.000704	.000704	0	0
11	GRAT SUP6	PY	.000704	.000704	0	0
12	PL3	PY	.001	.001	0	0
13	FACE3	PY	.000565	.000565	0	0
14	MP ALPHA1	PY	.002	.002	0	0
15	MP ALPHA3	PY	.002	.002	0	0
16	RAIL3	PY	.000461	.000461	0	0
17	RAIL CON3	PY	.001	.001	0	0
18	RAIL CON1	PY	.001	.001	0	0
19	RAIL CON2	PY	.001	.001	0	0
20	CR1	PY	.000938	.000938	0	0
21	CR2	PY	.000938	.000938	0	0
22	CR3	PY	.000938	.000938	0	0
23	CR4	PY	.000938	.000938	0	0
24	CR5	PY	.000938	.000938	0	0
25	CR6	PY	.000938	.000938	0	0
26	PL4	PY	.000768	.000768	0	0

Member Distributed Loads (BLC 36 : Ice Wind Load (240)) (Continued)

	ber Distributed Lo					
	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
27	PL5	PY	.000768	.000768	0	0
28	PL6	PY	.000768	.000768	0	0
29	PL7	PY	.000768	.000768	0	0
30	PL8	PY	.000768	.000768	0	0
31	PL9	PY	.000768	.000768	0	0
32	MP ALPHA2	PY	.002	.002	0	0
33	FACE1	PY	.001	.001	0	0
34	MP GAMMA1	PY	.002	.002	0	0
35	MP GAMMA3	PY	.002	.002	0	0
36	RAIL1	PY	.000921	.000921	0	0
37	FACE2	PY	.001	.001	0	0
38	MP BETA1	PY	.002	.002	0	0
39	MP BETA3	PY	.002	.002	0	0
40	RAIL2	PY	.000921	.000921	0	0
41	MP BETA2	PY	.002	.002	0	0
42	MP GAMMA2	PY	.002	.002	0	0
43	<u>SO1</u>	PX	.001	.001	0	0
44	GRAT SUP	PX	.001	.001	0	0
45	GRAT SUP2	PX	.001	.001	0	0
46	<u>PL1</u>	PX	.003	.003	0	0
47	SO2	PX DX	.001	.001	0	0
48	GRAT SUP3	PX	.001	.001	0	0
49	GRAT SUP4	PX	.001	.001	0	0
50	PL2	PX	.003	.003	0	0
51	SO3	PX	.001	.001	0	0
52	GRAT SUP5	PX	.001	.001	0	0
53	GRAT SUP6	PX	.001	.001	0	0
54	PL3	PX	.003	.003	0	0
55	FACE3	PX	.000978	.000978	0	0
<u>56</u> 57	MP ALPHA1	PX PX	.003	.003	0	0
58	MP ALPHA3 RAIL3	PX PX	.003	.000798	0	0
59	RAILS RAIL CON3	PA PX	.003	.003	0	0
60	RAIL CONS	PA PX	.003	.003	0	0
61	RAIL CON1	PX PX	.003	.003	0	0
62	CR1	PA PX	.003	.003	0	0
63	CR2	PX	.002	.002	0	0
64	CR3	PX	.002	.002	0	0
65	CR4	PA PX	.002	.002	0	0
66	CR5	PA PX	.002	.002	0	0
67	CR6	PA PX	.002	.002	0	0
68	PL4	PX PX	.002	.002	0	0
69	PL4	PX	.001	.001	0	0
70	PL6	PX	.001	.001	0	0
70	PL7	PX	.001	.001	0	0
72	PL8	PX PX	.001	.001	0	0
73	PL9	PX	.001	.001	0	0
74	MP ALPHA2	PX PX	.001	.003	0	0
74	FACE1	PX	.003	.003	0	0
76	MP GAMMA1	PX PX	.002	.002	0	0
70	MP GAMMA3	PX	.003	.003	0	0
78	RAIL1	PX	.003	.003	0	0
78	FACE2	PX PX	.002	.002	0	0
80	MP BETA1	PX PX	.002	.002	0	0
81	MP BETA3	PX	.003	.003	0	0
82	RAIL2	PX	.003	.003	0	0
83	MP BETA2	PX	.002	.002	0	0
			·	·	•	
DICA	A-3D Version 17.0.2	IT-\ \876404	5\(21 11/350) Mour	t Analysis DISH/DI	SV/DI 86) 876405 r	3dl Page 65

Member Distributed Loads (BLC 36 : Ice Wind Load (240)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
84	MP GAMMA2	PX	.003	.003	0	0

Member Distributed Loads (BLC 37 : Ice Wind Load (270))

	Member Label	Direction		.End Magnitude[lb/ft,F		End Location[ft,%]
1	<u>SO1</u>	PX	.001	.001	0	0
2	GRAT SUP	PX	.001	.001	0	0
3	GRAT SUP2	PX	.001	.001	0	0
4	PL1	PX	.003	.003	0	0
5	<u>SO2</u>	PX	.001	.001	0	0
6	GRAT SUP3	PX	.001	.001	0	0
7	GRAT SUP4	PX	.001	.001	0	0
8	PL2	PX	.003	.003	0	0
9	<u>SO3</u>	PX	.001	.001	0	0
10	GRAT SUP5	PX	.001	.001	0	0
11	GRAT SUP6	PX	.001	.001	0	0
12	PL3	PX	.003	.003	0	0
13	FACE3	PX	.001	.001	0	0
14	MP ALPHA1	PX	.004	.004	0	0
15	MP ALPHA3	PX	.004	.004	0	0
16	RAIL3	PX	.000921	.000921	0	0
17	RAIL CON3	PX	.003	.003	0	0
18	RAIL CON1	PX	.003	.003	0	0
19	RAIL CON2	PX	.003	.003	0	0
20	CR1	PX	.002	.002	0	0
21	CR2	PX	.002	.002	0	0
22	CR3	PX	.002	.002	0	0
23	CR4	PX	.002	.002	0	0
24	CR5	PX	.002	.002	0	0
25	CR6	PX	.002	.002	0	0
26	PL4	PX	.002	.002	0	0
27	PL5	PX	.002	.002	0	0
28	PL6	PX	.002	.002	0	0
29	PL7	PX	.002	.002	0	0
30	PL8	PX	.002	.002	0	0
31	PL9	PX	.002	.002	0	0
32	MP ALPHA2	PX	.004	.004	0	0
33	FACE1	PX	.002	.002	0	0
34	MP GAMMA1	PX	.004	.004	0	0
35	MP GAMMA3	PX	.004	.004	0	0
36	RAIL1	PX	.002	.002	0	0
37	FACE2	PX	.002	.002	0	0
38	MP BETA1	PX	.004	.004	0	0
39	MP BETA3	PX	.004	.004	0	0
40	RAIL2	PX	.002	.002	0	0
41	MP BETA2	PX	.004	.004	0	0
42	MP GAMMA2	PX	.004	.004	0	0

Member Distributed Loads (BLC 38 : Ice Wind Load (300))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	000652	000652	0	0
2	GRAT SUP	PY	000704	000704	0	0
3	GRAT SUP2	PY	000704	000704	0	0
4	PL1	PY	001	001	0	0
5	SO2	PY	000652	000652	0	0
6	GRAT SUP3	PY	000704	000704	0	0
7	GRAT SUP4	PY	000704	000704	0	0

Member Distributed Loads (BLC 38 : Ice Wind Load (300)) (Continued)

		D: //				
8	Member Label PL2	Direction PY	Start Magnitude/lb/ft,	End Magnitude[lb/ft,F 001	0	End Location[ft,%]
9	SO3	PY	000652	000652	0	0
10	GRAT SUP5	PY	000704	000704	0	0
11	GRAT SUP6	PY	000704	000704	0	0
12	PL3	PY	001	001	0	0
13	FACE3	PY	000565	000565	0	0
14	MP ALPHA1	PY	002	002	0	0
15	MP ALPHA3	PY	002	002	0	0
16	RAIL3	PY	000461	000461	0	0
17	RAIL CON3	PY	001	001	0	0
18	RAIL CON1	PY	001	001	0	0
19	RAIL CON2	PY	001	001	0	0
20	CR1	PY	000938	000938	0	0
21	CR2	PY	000938	000938	0	0
22	CR3	PY	000938	000938	0	0
23	CR4	PY	000938	000938	0	0
24	CR5	PY	000938	000938	0	0
25	CR6	PY	000938	000938	0	0
26	PL4	PY PY	000768	000768	0	0
27 28	PL5 PL6	PY PY	000768 000768	000768 000768	0	0
20	PL0 PL7	PY PY	000768	000768	0	0
30	PL8	PY	000768	000768	0	0
31	PL9	PY	000768	000768	0	0
32	MP ALPHA2	PY	002	002	0	0
33	FACE1	PY	002	002	0	0
34	MP GAMMA1	PY	002	002	0	0
35	MP GAMMA3	PY	002	002	0	0
36	RAIL1	PY	000921	000921	0	0
37	FACE2	PY	001	001	0	0
38	MP BETA1	PY	002	002	0	0
39	MP BETA3	PY	002	002	0	0
40	RAIL2	PY	000921	000921	0	0
41	MP BETA2	PY	002	002	0	0
42	MP GAMMA2	PY	002	002	0	0
43	SO1	PX	.001	.001	0	0
44	GRAT SUP	PX	.001	.001	0	0
45	GRAT SUP2	PX	.001	.001	0	0
46	PL1	PX	.003	.003	0	0
47	<u>SO2</u>	PX	.001	.001	0	0
48	GRAT SUP3	PX	.001	.001	0	0
49	GRAT SUP4	PX	.001	.001	0	0
50	PL2	PX PX	.003	.003	0	0
51	SO3	PX PX	.001	.001	0	0
52	GRAT SUP5	PX PX	.001	.001	0	0
53	GRAT SUP6	PX PX	.001	.001	0	0
54 55	PL3 FACE3	PX PX	.0003	.003	0	0
56	MP ALPHA1	PX	.000978	.003	0	0
57	MP ALPHAT	PX PX	.003	.003	0	0
58	RAIL3	PX	.000798	.000798	0	0
59	RAIL CON3	PX	.003	.003	0	0
60	RAIL CONS	PX	.003	.003	0	0
61	RAIL CON2	PX	.003	.003	0	0
62	CR1	PX	.002	.002	0	0
63	CR2	PX	.002	.002	0	0
64	CR3	PX	.002	.002	0	0
		•	L	t Analysis DISH\RI		•

Member Distributed Loads (BLC 38 : Ice Wind Load (300)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
65	CR4	PX	.002	.002	0	0
66	CR5	PX	.002	.002	0	0
67	CR6	PX	.002	.002	0	0
68	PL4	PX	.001	.001	0	0
69	PL5	PX	.001	.001	0	0
70	PL6	PX	.001	.001	0	0
71	PL7	PX	.001	.001	0	0
72	PL8	PX	.001	.001	0	0
73	PL9	PX	.001	.001	0	0
74	MP ALPHA2	PX	.003	.003	0	0
75	FACE1	PX	.002	.002	0	0
76	MP GAMMA1	PX	.003	.003	0	0
77	MP GAMMA3	PX	.003	.003	0	0
78	RAIL1	PX	.002	.002	0	0
79	FACE2	PX	.002	.002	0	0
80	MP BETA1	PX	.003	.003	0	0
81	MP BETA3	PX	.003	.003	0	0
82	RAIL2	PX	.002	.002	0	0
83	MP BETA2	PX	.003	.003	0	0
84	MP GAMMA2	PX	.003	.003	0	0

Member Distributed Loads (BLC 39 : Ice Wind Load (330))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO1	PY	001	001	0	0
2	GRAT SUP	PY	001	001	0	0
3	GRAT SUP2	PY	001	001	0	0
4	PL1	PY	003	003	0	0
5	SO2	PY	001	001	0	0
6	GRAT SUP3	PY	001	001	0	0
7	GRAT SUP4	PY	001	001	0	0
8	PL2	PY	003	003	0	0
9	SO3	PY	001	001	0	0
10	GRAT SUP5	PY	001	001	0	0
11	GRAT SUP6	PY	001	001	0	0
12	PL3	PY	003	003	0	0
13	FACE1	PY	000978	000978	0	0
14	MP ALPHA1	PY	003	003	0	0
15	MP ALPHA3	PY	003	003	0	0
16	RAIL1	PY	000798	000798	0	0
17	RAIL CON3	PY	003	003	0	0
18	RAIL CON1	PY	003	003	0	0
19	RAIL CON2	PY	003	003	0	0
20	CR1	PY	002	002	0	0
21	CR2	PY	002	002	0	0
22	CR3	PY	002	002	0	0
23	CR4	PY	002	002	0	0
24	CR5	PY	002	002	0	0
25	CR6	PY	002	002	0	0
26	PL4	PY	001	001	0	0
27	PL5	PY	001	001	0	0
28	PL6	PY	001	001	0	0
29	PL7	PY	001	001	0	0
30	PL8	PY	001	001	0	0
31	PL9	PY	001	001	0	0
32	MP ALPHA2	PY	003	003	0	0
33	FACE3	PY	002	002	0	0

Member Distributed Loads (BLC 39 : Ice Wind Load (330)) (Continued)

						End Leasting [ft 0/1
34	Member Label MP GAMMA1	Direction PY	003	End Magnitude[lb/ft,F 003	0	End Location[ft,%]
35	MP GAMMA1	PT PY	003	003	0	0
36	RAIL3	PY	003	003	0	0
37	FACE2	PY	002	002	0	0
38	MP BETA1	PY	002	002	0	0
39	MP BETA3	PY	003	003	0	0
40	RAIL2	PY	003	003	0	0
41	MP BETA2	PY	002	002	0	0
42	MP GAMMA2	PY	003	003	0	0
43	SO1	PX	.000652	.000652	0	0
44	GRAT SUP	PX	.000704	.000704	0	0
45	GRAT SUP2	PX	.000704	.000704	0	0
46	PL1	PX	.001	.001	0	0
47	SO2	PX	.000652	.000652	0	0
48	GRAT SUP3	PX	.000704	.000704	0	0
49	GRAT SUP4	PX	.000704	.000704	0	0
50	PL2	PX	.001	.001	0	0
51	SO3	PX	.000652	.000652	0	0
52	GRAT SUP5	PX	.000704	.000704	0	0
53	GRAT SUP6	PX	.000704	.000704	0	0
54	PL3	PX	.001	.001	0	0
55	FACE1	PX	.000565	.000565	0	0
56	MP ALPHA1	PX	.002	.002	Ő	0
57	MP ALPHA3	PX	.002	.002	0	0
58	RAIL1	PX	.000461	.000461	0	0
59	RAIL CON3	PX	.001	.001	0	0
60	RAIL CON1	PX	.001	.001	0	0
61	RAIL CON2	PX	.001	.001	0	0
62	CR1	PX	.000938	.000938	0	0
63	CR2	PX	.000938	.000938	0	0
64	CR3	PX	.000938	.000938	0	0
65	CR4	PX	.000938	.000938	0	0
66	CR5	PX	.000938	.000938	0	0
67	CR6	PX	.000938	.000938	0	0
68	PL4	PX	.000768	.000768	0	0
69	PL5	PX	.000768	.000768	0	0
70	PL6	PX	.000768	.000768	0	0
71	PL7	PX	.000768	.000768	0	0
72	PL8	PX	.000768	.000768	0	0
73	PL9	PX	.000768	.000768	0	0
74	MP ALPHA2	PX	.002	.002	0	0
75	FACE3	PX	.001	.001	0	0
76	MP GAMMA1	PX	.002	.002	0	0
77	MP GAMMA3	PX	.002	.002	0	0
78	RAIL3	PX	.000921	.000921	0	0
79	FACE2	PX	.001	.001	0	0
80	MP BETA1	PX	.002	.002	0	0
81	MP BETA3	PX	.002	.002	0	0
82	RAIL2	PX	.000921	.000921	0	0
83	MP BETA2	PX	.002	.002	0	0
84	MP GAMMA2	PX	.002	.002	0	0

Member Distributed Loads (BLC 43 : BLC 3 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	SO2	Z	018	018	0	1.966
2	GRAT SUP3	Z	009	009	.319	2.275

Member Distributed Loads (BLC 43 : BLC 3 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
3	GRAT SUP4	Z	009	009	.319	2.275
4	SO3	Z	018	018	0	1.966
5	GRAT SUP5	Z	009	009	.319	2.275
6	GRAT SUP6	Z	009	009	.319	2.275
7	SO1	Z	018	018	0	1.966
8	GRAT SUP	Z	009	009	.319	2.275
9	GRAT SUP2	Z	009	009	.319	2.275

Member Distributed Loads (BLC 44 : BLC 27 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	SO2	Z	025	025	0	1.966
2	GRAT SUP3	Z	013	013	.319	2.275
3	GRAT SUP4	Z	013	013	.319	2.275
4	SO3	Z	025	025	0	1.966
5	GRAT SUP5	Z	013	013	.319	2.275
6	GRAT SUP6	Z	013	013	.319	2.275
7	SO1	Z	025	025	0	1.966
8	GRAT SUP	Z	013	013	.319	2.275
9	GRAT SUP2	Z	013	013	.319	2.275

Member Area Loads (BLC 3 : Dead Load)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	P22	P21	P20	P23	Z	Two Way	01
2	P31	P34	P33	P32	Z	Two Way	01
3	P9	P12	P11	P10	Z	Two Way	01

Member Area Loads (BLC 27 : Ice Dead Load)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	P22	P21	P20	P23	Z	Two Way	014
2	P31	P34	P33	P32	Z	Two Way	014
3	P9	P12	P11	P10	Z	Two Way	014

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	P24	max	.336	5	.593	5	1 127	33	499	17	917	14	.688	5
2		min	353	23	593	23	.583	14	-1.183	36	-2.005	33	716	23
3	P13	max	.353	17	.593	35	1.625	10	499	23	2.994	10	.716	17
4		min	336	35	593	17	.583	26	-2.469	7	.917	26	688	35
5	P1	max	.638	11	.111	2	1.039	21	2.152	20	.195	11	.642	29
6		min	638	29	11	20	.52	2	.881	2	195	29	642	11
7	Totals:	max	1.013	11	1.043	2	3.172	27						
8		min	-1.013	29	-1.043	20	2.384	5						

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Live Load	DĹ	_	_	-		1		-	
2	Wind Load (0)	DL					13	42		
3	Dead Load	DL			-1.1		13		3	
4	Wind Load (30)	DL					26	84		
5	Wind Load (60)	DL					26	84		
6	Wind Load (90)	DL					13	42		

Nov 8, 2021 11:41 AM Checked By:____

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
7	Wind Load (120)	DĹ	-	_	-		26	84		
8	Wind Load (150)	DL					26	84		
9	Wind Load (180)	DL					13	42		
10	Wind Load (210)	DL					26	84		
11	Wind Load (240)	DL					26	84		
12	Wind Load (270)	DL					13	42		
13	Wind Load (300)	DL					26	84		
14	Wind Load (330)	DL					26	84		
15	Maintanence (0)	DL					13	42		
16	Maintanence (30)	DL					26	84		
	Maintanence (60)	DL					26	84		
	Maintanence (90)	DL					13	42		
	Maintanence (120)	DL					26	84		
	Maintanence (150)	DL					26	84		
	Maintanence (180)	DL					13	42		
	Maintanence (210)	DL					26	84		
	Maintanence (240)	DL					26	84		
	Maintanence (270)	DL					13	42		
	Maintanence (300)	DL					26	84		
	Maintanence (330)	DL					26	84		
27	Ice Dead Load	DL					13	42	3	
	Ice Wind Load (0)	DL					13	42		
	Ice Wind Load (30)	DL					26	84		
	Ice Wind Load (60)	DL					26	84		
	Ice Wind Load (90)	DL					13	42		
32	Ice Wind Load (120)	DL					26	84		
33	Ice Wind Load (150)	DL					26	84		
34	Ice Wind Load (180)	DL					13	42		
35	Ice Wind Load (210)	DL					26	84		
36	Ice Wind Load (240)	DL					26	84		
37	Ice Wind Load (270)	DL					13	42		
38	Ice Wind Load (300)	DL					26	84		
39	Ice Wind Load (330)	DL					26	84		
	Earthquake (x-directio	DL	113				13			
	Earthquake (y-directio			113			13			
	Earthquake (z-directio	DL			045		13			
	BLC 3 Transient Area	None						9		
	BLC 27 Transient Are	None						9		

Load Combinations

	Description	Solve	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.4D	Yes	Y		3	1.4																		
2	1.2D + 1.0W(0)	Yes	Y		3	1.2	2	1																
3	1.2D + 1.0Di + 1.0Wi(0)	Yes	Y		3	1.2	27	1	28	1														
4	1.2D + 1.5L + 1.0WI(0)	Yes	Y		3	1.2	1	1.5	15	1														
5	1.2D + 1.0W(30)	Yes	Y		3	1.2	4	1																
6	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	29	1														
7	1.2D + 1.5L + 1.0WI(3	Yes	Y		3	1.2	1	1.5	16	1														
8	1.2D + 1.0W(60)	Yes	Y		3	1.2	5	1																
9	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	30	1														
10	1.2D + 1.5L + 1.0WI(6	Yes	Y		3	1.2	1	1.5	17	1														
11	1.2D + 1.0W(90)	Yes	Y		3	1.2	6	1																
12	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	31	1														
13	1.2D + 1.5L + 1.0WI(9	Yes	Y		3	1.2	1	1.5	18	1														
14	1.2D + 1.0W(120)	Yes	Y		3	1.2	7	1																

Nov 8, 2021 11:41 AM Checked By:____

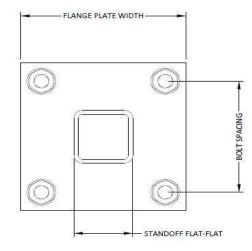
Load Combinations (Continued)

	Description	Solve	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
15	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	32	1														
16 ²	1.2D + 1.5L + 1.0WI(1	Yes	Y		3	1.2	1	1.5	19	1														
17	1.2D + 1.0W(150)	Yes	Y		3	1.2	8	1																
18 ′	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	33	1														
19 ′	1.2D + 1.5L + 1.0WI(1	Yes	Y		3	1.2	1	1.5	20	1														
20	1.2D + 1.0W(180)	Yes	Y		3	1.2	9	1																
21 1	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	34	1														
22	1.2D + 1.5L + 1.0WI(1	Yes	Y		3	1.2	1	1.5	21	1														
23	1.2D + 1.0W(210)	Yes	Y		3	1.2	10	1																
	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	35	1														
25	1.2D + 1.5L + 1.0WI(2	Yes	Y		3	1.2	1	1.5	22	1														
	1.2D + 1.0W(240)	Yes	Y		3	1.2		1																
	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2		1	36	1														
	1.2D + 1.5L + 1.0WI(2	Yes	Y		3	1.2	1	1.5	23	1														
	1.2D + 1.0W(270)	Yes	Y		3		12																	
		Yes	Y		3	1.2	27	1	37	1														
	1.2D + 1.5L + 1.0WI(2	Yes	Y		3	1.2		1.5	24	1														
	1.2D + 1.0W(300)	Yes	Y		3	1.2																		
		Yes	Y		3		27		38															
	1.2D + 1.5L + 1.0WI(3	Yes	Y		3	1.2		1.5	25	1														
	1.2D + 1.0W(330)	Yes	Y		3	1.2		1																
	1.2D + 1.0Di + 1.0Wi(Yes	Y		3	1.2	27	1	39	1														
	1.2D + 1.5L + 1.0WI(3	Yes	Y		3	1.2	1	1.5	26	1														
	1.2D + 1.0E(x) + 1.0E	Yes	Y		3	1.2	40	1	42	1	1	1												
	1.2D + 1.0E(y) + 1.0E	Yes	Y		3	1.2		1	42	1	1	1												
40	1.2D - 1.0E(x) + 1.0E(Yes	Y		3	1.2	40	-1	42	1	1	1												
41	1.2D - 1.0E(y) + 1.0E(Yes	Y		3	1.2	41	-1	42	1	1	1												

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	. Loc[ft]	L	C phi*P	phi*P.	phi*M	.phi*M	Egn
1	SO2	HSS4X	.244	3.333		.090	3.333	v 4	4 133.1	139.5	. 16.181	16.181	H1-1b
2	CR3	C3.38x2	.216	0	37	.039	2.349	y .	7 47.7	6 56.7	2.203	5.752	H1-1b
3	GRAT SUP4	L2x2x4	.198	2.275	7	.013	2.275	v s	9 23.53	9 30.58	691	1.577	H2-1
4	CR4	C3.38x2	.190	0	10	.029	0	y 1	0 47.7	6 56.7	2.203	5.752	<mark>H1-1</mark> b
5	CR6	C3.38x2	.178	0	34	.025	0	y 3	4 47.7	6 56.7	2.203	5.752	H1-1b
6	CR5	C3.38x2	.167	0	33	.024	2.349	y 3	2 47.7	6 56.7	2.203	5.752	H1-1b
7	CR2	C3.38x2	.159	0	21	.024	2.349	y 2	3 47.7	6 56.7	2.203	5.752	H1-1b
8	CR1	C3.38x2	.159	0	21	.024	2.349	y 1	7 47.7	6 56.7	2.203	5.752	H1-1b
9	SO3	HSS4X	.154	3.333	26	.042	3.333	y 4	4 133.1			16.181	H1-1b
10	PL2	PL 6.5x	.141	1.595	7	.293	.332	y .	7 4.40	2 78.97	5.617	8.849	<mark>H1-1</mark> b
11	SO1	HSS4X	.141	3.333	26	.035	3.333	y 2	6 133.1	139.5	. 16.181	16.181	H1-1b
12	GRAT SUP3	L2x2x4	.103	2.275	10	.018	2.275	z [.]	7 23.53	9 30.58	691	1.577	H2-1
13	PL3	PL 6.5x	.088	1.595	32	.108	.332	y 2		2 78.97		8.179	H1-1b
14	RAIL CON3	L6.6x4	.077	0	20	.010	0	y .			12.465		
15	RAIL CON2	L6.6x4	.077	3.5	20	.008	-	v i	5 50.61	6 87.56	12.465	7.125	H2-1
16	GRAT SUP6	L2x2x4	.076	2.275	33	.012	2.275	y 3	<u> </u>	9 30.58	1001	1.577	H2-1
17	PL1	PL 6.5x	.075	1.595	23	.094	2.858	y 2	3 4.40	2 78.97	5.617	8.246	H1-1b
18	GRAT SUP5	L2x2x4	.074	2.275	36	.013	2.275	z 3		9 30.58		1.577	H2-1
19	RAIL CON1	L6.6x4	.070	3.5	8	.008	0	y 2	9 50.61	6 87.56	12.465	7.125	H2-1
20	GRAT SUP	L2x2x4	.067	2.275	23	.012	2.275	z 2	1 23.53	9 30.58	691	1.577	H2-1
21	GRAT SUP2	L2x2x4	.067	2.275	17	.012	2.275	y 2		9 30.58		1.577	H2-1
22	MP ALPHA2	PIPE_2.5	.067	2.167	26	.022	2.167	2			4.727		H1-1b
23		PIPE_2.5	.064	2.167	2	.023	2.167				4.727		H1-1b
	MP GAMMA2	PIPE_2.5	.064	2.167	2	.023	2.167		2 33.48	7 66.65	4.727	4.727	H1-1b
25	RAIL1	PIPE_2.5	.064	5	2	.057	1.354	1	9 22.74	8 66.65	4.727	4.727	H1 - 1b

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)


	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]		LC	phi*P	phi*P	phi*M…pł	hi*M	Egn
26	MP ALPHA3	PIPE_2.5	.057	2.167	5	.022	5.75		2			4.727 4		<mark>H1-1</mark> b
27	MP ALPHA1	PIPE_2.5	.057	2.167	35	.022	5.75		2	33.487	66.654	4.727 4	.727	H1-1b
28	MP GAMMA3	PIPE_2.5	.053	5.75	5	.018	2.167		5			4.727 4		<mark>H1-1</mark> b
29	MP BETA1	PIPE_2.5	.053	5.75	35	.018	2.167		35			4.727 4		H1-1b
30	RAIL3	PIPE_2.5	.053	5	26	.056	8.646					4.727 4		<mark>H1-1</mark> b
31	RAIL2	PIPE_2.5	.053	5	14	.069	1.458					4.727 4		H1-1b
32	FACE1	PIPE_3.0	.048	4	27	.029	.25		37			7.555 7		<mark>H1-1</mark> b
33	MP BETA3	PIPE_2.5	.048	5.75	29	.017	2.167		14			4.727 4		H1-1b
34	MP GAMMA1	PIPE_2.5	.048	5.75	11	.017	2.167		26			4.727 4		H1-1b
35	FACE2	PIPE_3.0	.045	4	35	.028	5.333		8	54.629	85.698	7.5557		H1-1b
36	PL4	5x1/2	.043	.125	5	.082	0	y	36	80.541	81	.844 8	.438	<mark>H1-1</mark> b
37	PL7	5x1/2	.043	.125	35	.102	0	Y	7	80.541	81	.844 8		H1-1b
38	FACE3	PIPE_3.0	.042	3.917	5	.028	2.667		32	54.629		7.5557		<mark>H1-1b</mark>
39	PL8	5x1/2	.040	.125	5	.078	0	V	30	80.541	81	.844 8		H1-1b
40	PL6	5x1/2	.040	.125	35	.089	0	У	13	80.541	81	.844 8	.438	<mark>H1-1</mark> b
41	PL9	5x1/2	.039	.125	11	.076	0	V	18	80.541	81	.844 8	.438	H1-1b
42	PL5	5x1/2	.039	.125	29	.076	0	У	24	80.541	81	.844 8		<mark>H1-1b</mark>
43	M70A	5x1/2	.032	.124	4	.120	0	Y	7	80.545	81	.844 8		H1-1b
44	M68B	5x1/2	.021	.124	2	.040	0	У	35	80.545	81	.844 8		<mark>H1-1b</mark>
45	M78	5x1/2	.017	.124	26	.044	0	V	29	80.545	81	.844 8		H1-1b
46	M72A	5x1/2	.017	.124	14	.045	0	У	13	80.545	81	.844 8		<mark>H1-1</mark> b
47	M76	5x1/2	.016	.124	29	.038	0	V	23	80.545	81	.844 8		H1 - 1b
48	M74A	5x1/2	.016	.124	11	.038	0	y	17	80.545	81	.844 8	.438	<mark>H1-1</mark> b

APPENDIX D

Additional Calculations

	DD R OF DESIGN	
POD Job # Site Number Site Name	21-114359 876405 Woodbury	
Calculations Based on	ТІА-222-Н	
<i>Reactions from RISA-3D</i> Moment Axial Shear	3.826 ft-kip 0.121 kips 1.625 kips	
Bolt Information Grade Threads in Shear Plane Diameter Bolt Spacing Number of Rods	A325 Included 0.625 in. 7 in. 4	
<i>Flange Plate Inforation</i> Width Thickness Grade	<mark>9</mark> in. 0.625 in. A572-50	
Standoff Information Standoff Member Flat-Flat Thickness	HSS 4 in. 0.233 in.	
Bolt Calculations Φ A _{nt} A _b Fu ΦR _{nv} ΦR _{nv} V F Capacity	0.75 0.226 in ² 0.307 in ² 120 ksi 13.81 kips 20.34 kips 0.41 kips 3.30 kips 2.7%	
Flange Plate Calculation Φ Fy T _{min} Z ΦM _n M _u Capacity	75 0.9 50 ksi 0.20 in 0.9 in ³ 39.6 in-kip 9.9 in-kip 25.1%	

Capacities					
Bolts	2.7%				
Flange Plate	25.1%				

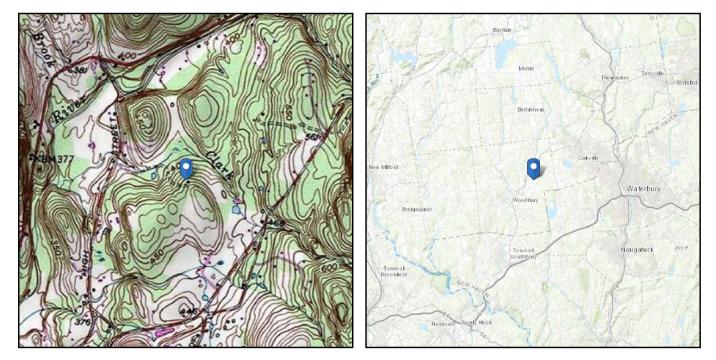
Ver 1.0 - 3/5/2019

APPENDIX E

Design Criteria

No Address at This

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 460.09 ft (NAVD 88)

 Latitude:
 41.567997

 Longitude:
 -73.179681

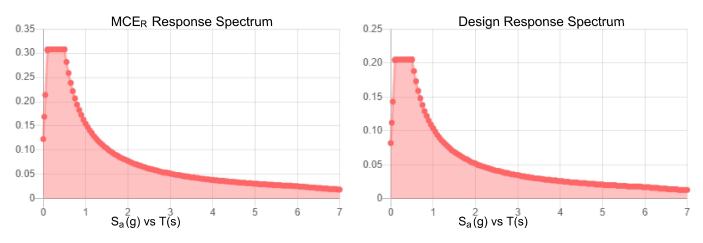
Wind

Results:

Wind Speed:	118 Vmph
10-year MRI	76 Vmph
25-year MRI	85 Vmph
50-year MRI	90 Vmph
100-year MRI	97 Vmph

Date Socressed:

MGG EVOE08-202 Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.192	S _{DS} :	0.205	
S ₁ :	0.065	S _{D1} :	0.104	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.1	
S _{MS} :	0.308	PGA M:	0.16	
S _{M1} :	0.155	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Nov 08 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

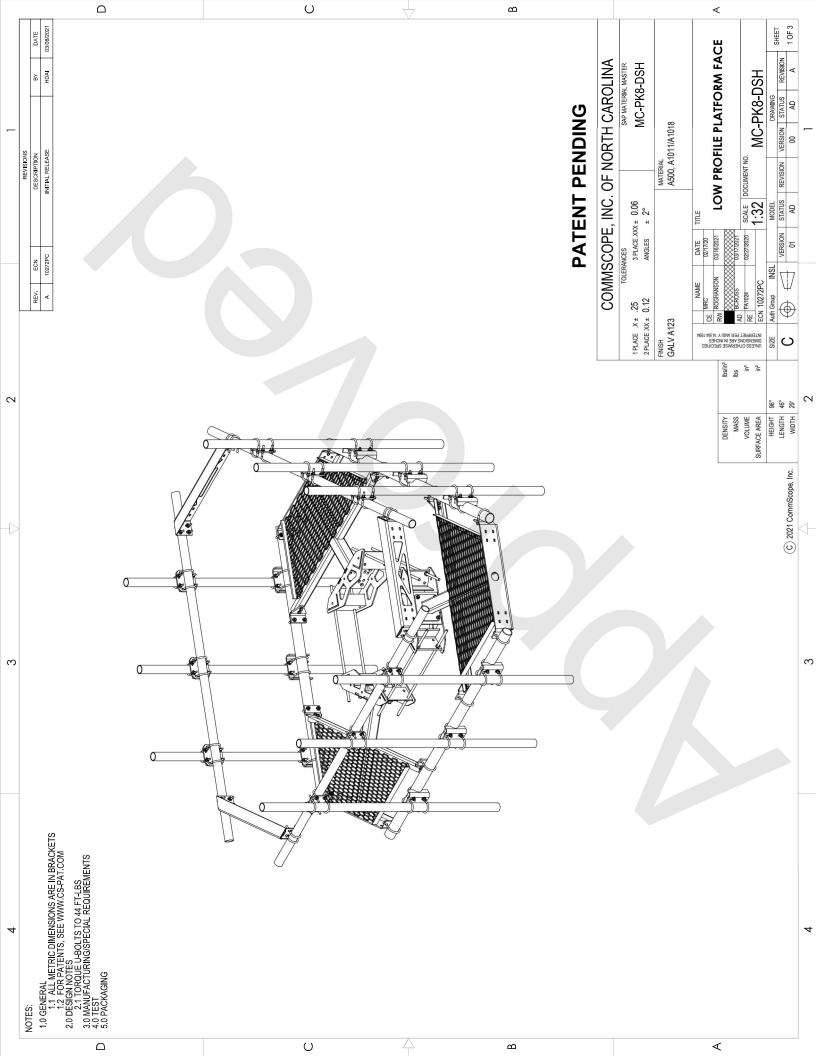
Ice

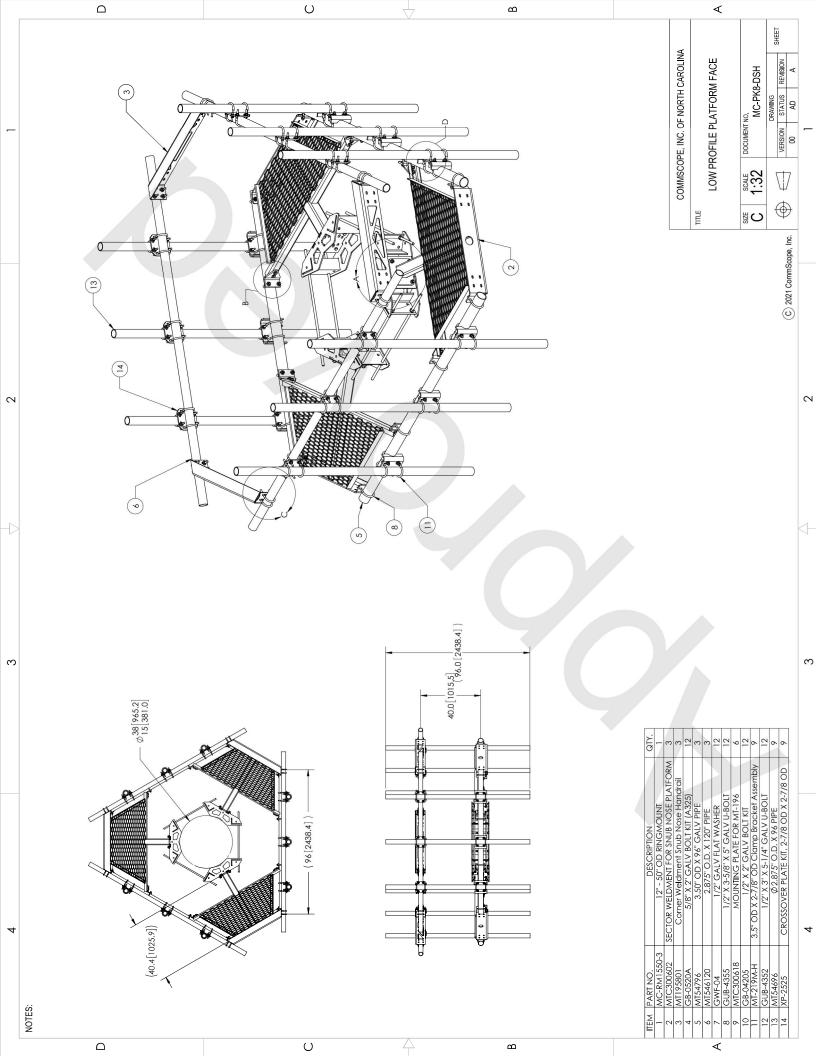
Results:

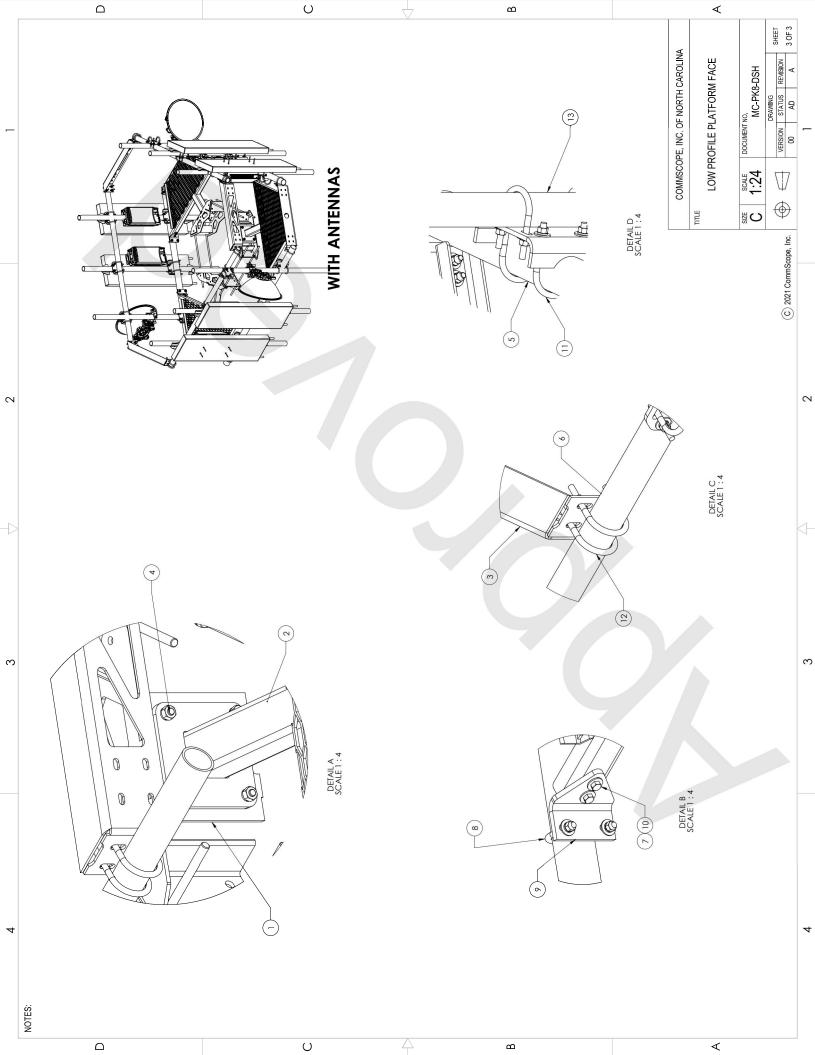
Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Mon Nov 08 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.


The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.


In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX F

Mount Specification Sheets

 \square

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00172A

876405 186 Minortown Woodbury, Connecticut 06798

November 19, 2021

EBI Project Number: 6221007205

Site Compliance Summary						
Compliance Status:	COMPLIANT					
Site total MPE% of FCC general population allowable limit:	38.38%					

environmental | engineering | due diligence

November 19, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00172A - 876405

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **186 Minortown** in **Woodbury, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 186 Minortown in Woodbury, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 68 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	68 feet	Height (AGL):	68 feet	Height (AGL):	68 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (VV):	5,236.31
Antenna AI MPE %:	6.15%	Antenna BI MPE %:	6.15%	Antenna CI MPE %:	6.15%

environmental | engineering | due diligence

Site Composite MPE %						
Carrier	MPE %					
Dish Wireless (Max at Sector A):	6.15%					
T-Mobile	13.99%					
Verizon	3.35%					
AT&T	14.89%					
Site Total MPE % :	38.38%					

Dish Wireless MPE % Per Sector						
Dish Wireless Sector A Total: 6.15%						
Dish Wireless Sector B Total:	6.15%					
Dish Wireless Sector C Total:	6.15%					
Site Total MPE % :	38.38%					

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	68.0	8.37	600 MHz n71	400	2.09%
Dish Wireless 1900 MHz n70	4	542.70	68.0	20.30	1900 MHz n70	1000	2.03%
Dish Wireless 2190 MHz n66	4	542.70	68.0	20.30	2190 MHz n66	1000	2.03%
						Total:	6.15%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	6.15%		
Sector B:	6.15%		
Sector C:	6.15%		
Dish Wireless Maximum MPE % (Sector A):	6.15%		
Site Total:	38.38%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **38.38%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

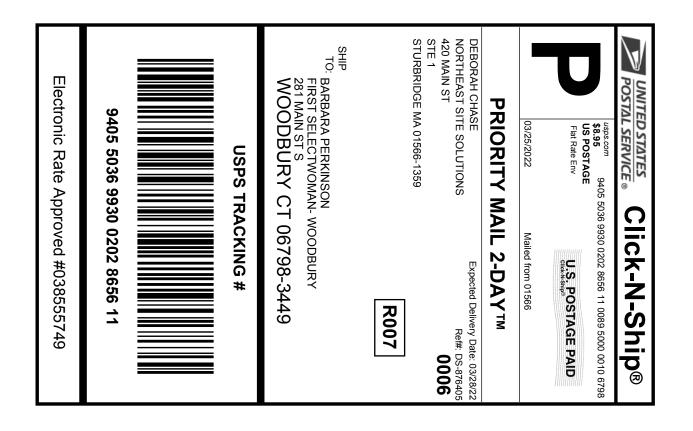
Re: Tower Share Application Crown Castle telecommunications site at: 186 MINORTOWN, WOODBURY, CT 06798

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: Customer Site ID: Site Address:

876405/WOODBURY NORTH BOHVN00172A/CT-CCI-T-876405 186 MinorTown, WOODBURY, CT 06798

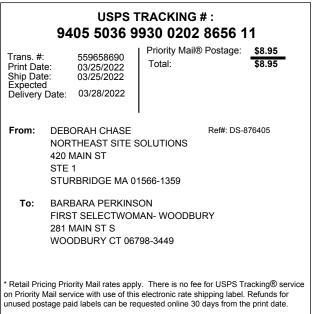
Crown Castle

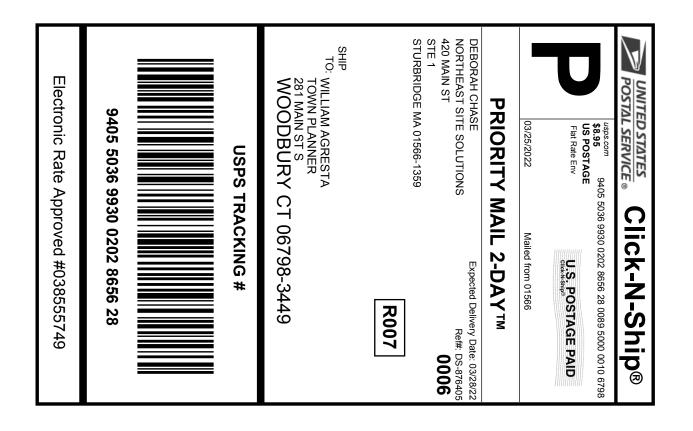

By:

3/21/2022 Date:

Richard Zajac Site Acquisition Specialist

Exhibit H

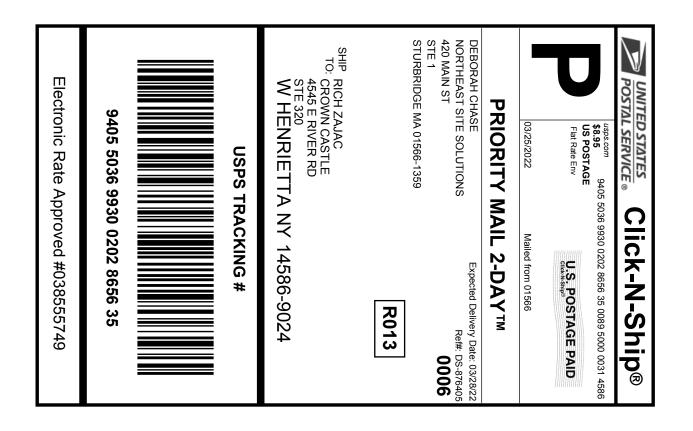

Recipient Mailings



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

	,		÷
576405	, C	NUN SZSI	
•	TED		ES ICE.
21 FARMINGTON (80	RMINGTON LO MAIN N, CT OG DO)275-8	ST	01:57 PM
03/25/2022 Product	Qty	Unit Price	Price
Prepaid Mail West Henrietta Weight: O 1b Acceptance Da Fri 03/25 Tracking #: 9405 5036	1 2.00 oz te: /2022	586	\$0.00
Prepaid Mail Woodbury, CT Weight: O lb Acceptance Da Fri 03/2 Tracking #: 9405 503	1 06798 8.70 of ate: 5/2022	Z	\$0.00
Prepaid Mail Woodbury, CT Weight: O 1k Acceptance D Fri O3/2 Tracking #: 9405 50	25/2022	oz 0202 865	\$0.00 i6 11
Prepaid Mail Woodbury, C Weight: O l Acceptance Fri O3,	1 5 06798 b 8.60 Date: /25/2022		\$0.00
Grand Total:			\$0.0

00

ŝ