

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

May 18, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

1440 Main Street North, Woodbury, CT 06798

Latitude: 41.589936 Longitude: -73.169872 Site #: 876379_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1440 Main Street North, Woodbury, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 140-foot level of the existing 163-foot tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by NB+C, dated February 24, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated August 27, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was originally approved by the Town of Woodbury Zoning Commission on August 10, 1999, see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Barbara Perkinson, First Selectman and William Agresta, Town Planner for the Town of Woodbury, as well as the tower owner (Crown Castle) and property owner (Tikva Wolff).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 163-feet and the Dish Wireless LLC antennas will be located at a centerline height of 140-feet.
- 2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 24.54% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Woodbury. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 140-foot level of the existing 163-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Woodbury.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Barbara Perkinson, First Selectman 281 Main St South Woodbury, CT 06798

William Agresta, Town Planner 281 Main St South Woodbury, CT 06798

Tikva Wolff - Property Owner c/o Crown Castle 4017 Washington Road McMurray, PA 15317

Crown Castle- Tower Owner

Exhibit A

Original Facility Approval

VOICES
Middle Quarter Mall
Main Street South
Woodbury, CT 06798

Zoning Commission

P.G. Box 369

Town of Woodbury - Woodbury, Connecticut 06798-0369

First land deed from the Indians April 12th 1659

Telephone: (203) 263-3467

Fux: (203) 253-5076

Kindly publish the following legal notice in VOICES on Sunday, August 22, 1999. The invoice should be sent to the Accounting Office, 281 Main Street S. Box #369, Woodbury, CT 06798 with a tear-sheet copy for the Town Planner's Office.

LEGAL NOTICE

At its regular meeting held on Tuesday, August 10, 1999, the Woodbury Zoning Commission took the following actions:

APPROVED: With conditions, Application #969 submitted by Sprint Spectrum, LP, d/b/a Sprint PCS to construct a radio tower/wireless telecommunications facility at 1440 Main St. N., Richard Wolff, property owner. (Map 12/Lot 54)

APPROVED: With conditions, Application #973 submitted by Watertown Fire District for an Earth Materials Permit for gravel excavation from Nonnewaug River, Hart Farm Wellfield on Rte. 61. (Map 14/Lots 10, 32, 32A –B, 33)

DENIED: To deny without prejudice Application #971 for lack of information submitted by Woodbury Fire Dept. for Earth Materials Permit for a fire pond at 274 Grassy Hill Rd., Richard Wolff, property owner. (Map 64/Lot 12).

APPROVED: With conditions, Application #976 submitted by Flanders Nature Center, Inc. for a Special Permit to hold a fall festival at the Van Vleck Farm Sanctuary on Flanders Rd and Church Hill Rd on October 3, 1999. (Map 96/Lots 21, 22, 23)

Dated this 20th day of August, 1999.

Sue Bartlett, Admin, Asst.

A letter of 8/10/99 from Ken Faroni of O & G was submitted granting a 65-day extension.

(Tietz unseated, Alt. Leach seated) #969/Sprint Spectrum/Wolff/1440 Main St. N/Wireless TeleComm. Facility MOTION:

WHEREAS, the WOODBURY ZONING COMMISSION has received Application #969 submitted by Sprint Spectrum, L.P., d/b/a Sprint PCS for a Special Permit pursuant to Section 5.2.4 of the Woodbury Zoning Regulations to construct a radio tower/wireless telecommunications facility and associated radio equipment on property owned by Richard Wolff at 1440 Main Street North (Tax Assessor's Map 12/Lot 54); and

WHEREAS, members of the Commission inspected the site at a duly noticed special meeting on July 6, 1999; and

WHEREAS, a duly called public hearing was held June 22, 1999 and July 13, 1999 to consider the application and to receive public comments; and

WHEREAS, the Commission has carefully considered all the information and testimony received during the duly called public hearing; and

WHEREAS, the Commission has determined that the proposed radio tower/telecommunications facility and associated radio equipment are in conformance with Section 5.2.4 of the Woodbury Zoning Regulations after conditions 6 and 7 below, are met;

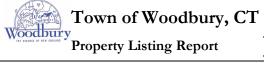
NOW THEREFORE BE IT RESOLVED that the WOODBURY ZONING COMMISSION approves Application #969 submitted by Sprint Spectrum, L.P., d/b/a Sprint PCS for a Special Permit pursuant to Section 5.2.4 of the Woodbury Zoning Regulations to construct a radio tower/telecommunications facility and associated radio equipment on property owned by Richard Wolff at 1440 Main Street North (Tax Assessor's Map 12/Lot 54) as depicted on the site plans and accompanying materials dated June 17, 1999, with the following conditions:

- 1. A final site development plan, annotated with all conditions herein, shall be filed with the Town Planner prior to commencement of construction;
- 2. An itemized estimate of costs for soil erosion and sedimentation control, screening, landscaping, and tower removal and site restoration must be provided to the Woodbury Town Planner (Town Planner) for determination of an appropriate bond and such bond shall be posted in a form and amount determined by the Town Planner, prior to commencement of construction;
- 3. The Town Planner shall be notified 48 hours prior to commencement of construction to permit inspection of soil erosion and sedimentation control devices;

- 4. The tower and enclosure area shall be designed to accommodate up to six providers of telecommunications services, with all ground equipment enclosed in a single building and the enclosure secured and screened in manner that is architecturally compatible with surrounding farm;
- 5. All electric and telephone service to the tower and building shall be installed below ground.
- 6. The galvanized steel tower shall not exceed 160 feet above grade in height, shall have no lights above the height of the building, screening, or fence, and shall not be painted. Any future extension of the tower to accommodate additional antennas or addition of any facilities other than shown on the approved site plan shall require an amendment to this Special Permit as provided in Section 10.6 of the Woodbury Zoning Regulations, however, an extension of the tower from 160 feet to 190 feet shall be deemed to be of a minor nature;
- 7. The tower shall be located no closer than 190 feet from any property line along Main Street North and Swamp Road.
- 8. Sprint shall use best efforts to make the tower available.
 to other telecommunications carriers and promote co-location
 on this tower on a commercially reasonable basis;
- 9. In the event the wireless telecommunications facility ceases to be used by Sprint PCS or any bona fide tenant providers of telecommunication services for a period of a year, the tower and all associated equipment and structures shall be removed by Sprint PCS within 90 days.;
- 10. Construction shall not commence until all applicable appeal periods have terminated and this permit will expire if construction is not completed by August 10, 2001; and
- 11. An A2, as-built survey shall be filed with the Town Planner upon completion of construction.

Made by Kelly, seconded by Alt. Leach. Vote 5-0 in favor.

(Tietz unseated, Alt. Leach seated)
#973/Watertown Fire District/Hart Farm Wellfield/Rte 61/EM Permit
MOTION:


WHEREAS, the WOODBURY ZONING COMMISSION has received Application #973 submitted by the Watertown Fire District for an Earth Materials Permit pursuant to Section 15.3 of the Woodbury Zoning Regulations to excavate up to 4500 cubic yards of gravel from the Nonnewaug River (Tax Assessor's Map 14/Lots 10, 32, 32A, 32B, 33); and

WHEREAS, the Woodbury Inland Wetlands Agency approved the regulated activity on August 9, 1999; and

WHEREAS, a duly called public hearing was held July 27, 1999 and August 10, 1999 to consider the application and to receive public comments; and

Exhibit B

Property Card

Map Block Lot

012-054

Building #

Unique Identifier

390820

Property Information

Property Location	1440 MAIN ST NORTH		
36 W A 11	4017 WASHINGTON ROAD		
Mailing Address	MCMURRAY PA 15317		
Land Use	Utility Building		
Zoning Code	OS60		
Neighborhood	26		

Owner	WOLFF TIKVA
Co-Owner	
Book / Page	0384/1171
Land Class	Industrial
Census Tract	3621
Acreage	1.38

Valuation Summary

(Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings	0	0
Outbuildings	384068	268850
Land	131100	91770
Total	515168	0

Utility Information

	_ 		
Electric	No		
Gas	No		
Sewer	No		
Public Water	No		
Well	No		

Primary Construction Details

Heating Fuel	
Heating Type	
AC Type	
Bedrooms	
Full Bathrooms	
Half Bathrooms	
Extra Fixtures	
Total Rooms	
Bath Style	
Kitchen Style	
Occupancy	

Building Use	
Building Condition	
Frame Type	
Fireplaces	
Bsmt Gar	
Fin Bsmt Area	
Fin Bsmt Quality	
Building Grade	
Roof Style	
Roof Cover	
	8/12/2021

Report Created On

Town of Woodbury, CT

Property Listing Report

WOLFF TIKVA

WOLFF RICHARD ESTATE OF

Map Block Lot

012-054

Building #

Unique Identifier

390820

				
etached Outbuildings	<u>S</u>			
Type	Description	Area (sq ft)	Condition	Year Built
Cell Towers	Building/Equipment	300	Average	2000
Cell Towers	Building/Equipment	392	Average	2000
Cell Towers	Mono Pole	120	Average	2000
Cell Towers	Building/Equipment	420	Average	2000
Cell Towers	Building/Equipment	400	Average	2000
Cell Towers	Fencing	400	Average	2000
ttached Extra Feature	es			
Type	Description	Area (sq ft)	Condition	Year Built
Sales History				

0384_1171

343_526

9/29/2011

5/25/2006

0

Exhibit C

Construction Drawings

wireless...

DISH Wireless L.L.C. SITE ID: BOHVN00030A

DISH Wireless L.L.C. SITE ADDRESS:

1440 MAIN STREET NORTH WOODBURY, CT 06798

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

<u> </u>	SHEET INDEX	
SHEET NO.	SHEET TITLE	
T-1	TITLE SHEET	
A-1	OVERALL AND ENLARGED SITE PLAN	
A-1 A-2		—
A-2 A-3	ELEVATION, ANTENNA LAYOUT AND SCHEDULE EQUIPMENT PLATFORM AND H-FRAME DETAILS	
,, ,		
A-4	EQUIPMENT DETAILS	
A-5	EQUIPMENT DETAILS	
A-6	EQUIPMENT DETAILS	
	ELECTRICAL (EIRER ROLLTE RUMA AND MOTER	
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	
E-2	ELECTRICAL DETAILS	
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	
G-1	GROUNDING PLANS AND NOTES	
G-2	GROUNDING DETAILS	
G-3	GROUNDING DETAILS	
RF-1	RF CABLE COLOR CODE	
	IN OABLE COLON CODE	
GN-1	LEGEND AND ABBREVIATIONS	
GN-2	RF SIGNAGE	
GN-3	GENERAL NOTES	
GN-4	GENERAL NOTES	
GN-5	GENERAL NOTES	
		—

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
- INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) • INSTALL (1) PROPOSED HYBRID CABLE
- INSTALL (3) DOUBLE Z-BRACKETS (1 PER SECTOR)
- REMOVE EXISTING ABANDONED ANTENNA MOUNT

GROUND SCOPE OF WORK:

- INSTALL (1) PROPOSED FIF RACK
- INSTALL (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)

PROJECT DIRECTORY SITE INFORMATION APPLICANT: DISH Wireless L.L.C. PROPERTY OWNER: TIKVA WOLFF ADDRESS: 1514 MAIN ST. NORTH 5701 SOUTH SANTA FE DRIVE WOODBURY, CT 06798 LITTLETON, CO 80120 TOWER OWNER: CROWN CASTLE USA INC. TOWER TYPE: MONOPOLE 2000 CORPORATE DR. CANONSBURG, PA 15317 TOWER CO SITE ID: 876379 (877) 486-9377 TOWER APP NUMBER: 553370 SITE DESIGNER: NB+C ENGINEERING SERVICES, LLC 6095 MARSHALEE DRIVE, SUITE 300 COUNTY: LITCHFIELD ELKRIDGE, MD 21075 LATITUDE (NAD 83): 41° 35′ 23.81″ N (410) 712-7092 41.58995 N LONGITUDE (NAD 83): -73' 10' 11.52" W -73.16987 W ZONING JURISDICTION: TOWN OF WOODBURY SITE ACQUISITION: CORWIN.DIXON@CROWNCASTLE.COM ZONING DISTRICT: OS-60 - OPEN SPACE RESIDENCE CONSTRUCTION MANAGER: JAVIER SOTO WOOD-000012-00000 JAVIER.SOTO@DISH.COM PARCEL NUMBER: -000054-390820 OCCUPANCY GROUP: U DIPESH PARIKH RF ENGINEER: DIPESH.PARIKH@DISH.COM CONSTRUCTION TYPE: II-B POWER COMPANY: CONNECTICUT LIGHT & POWER TELEPHONE COMPANY: TBD

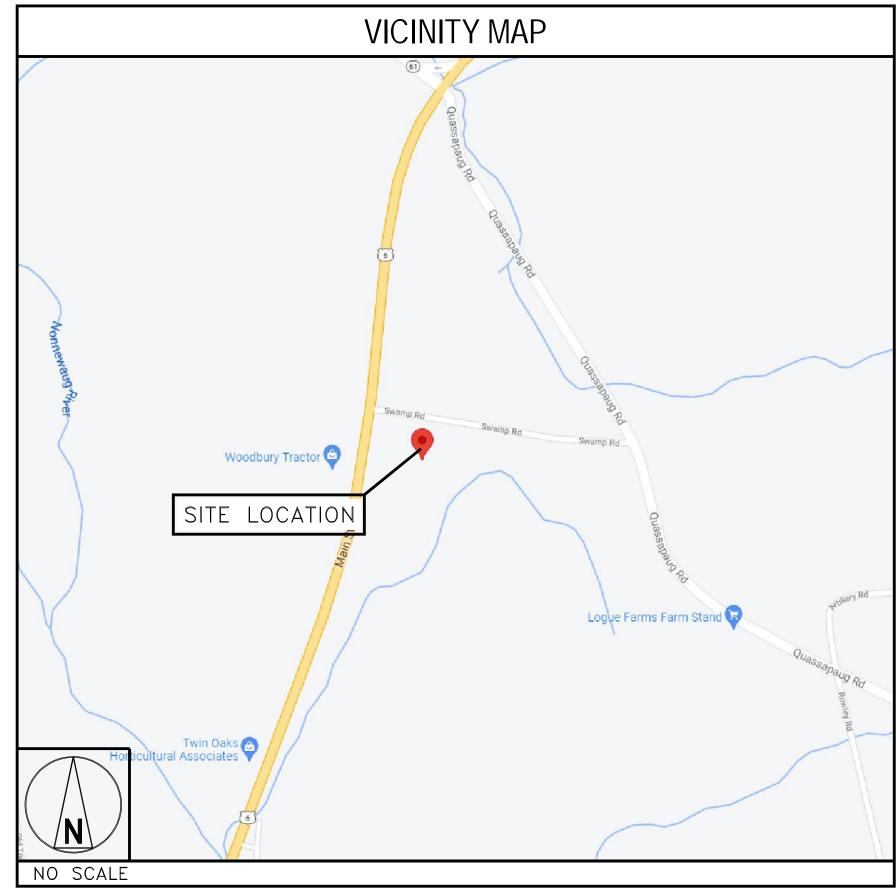
SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455

WWW.CBYD.COM CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.


11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

DIRECTIONS

DIRECTIONS FROM WATERBURY-OXFORD AIRPORT:

START OUT GOING NORTHEAST ON CHRISTIAN ST TOWARD JULIANO DR. TURN SLIGHT RIGHT ONTO CHRISTIAN RD. TURN RIGHT ONTO SOUTHFORD RD/CT-188. TURN LEFT ONTO MIDDLEBURY RD/CT-64. STAY STRAIGHT TO GO ONTO TRANQUILITY RD. TRANQUILITY RD BECOMES OLD WATERTOWN RD. OLD WATERTOWN RD BECOMES QUASSAPAUG RD. TURN LEFT ONTO SWAMP RD. TURN LEFT ONTO MAIN ST/US-6 W. 1440 MAIN ST N IS ON

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

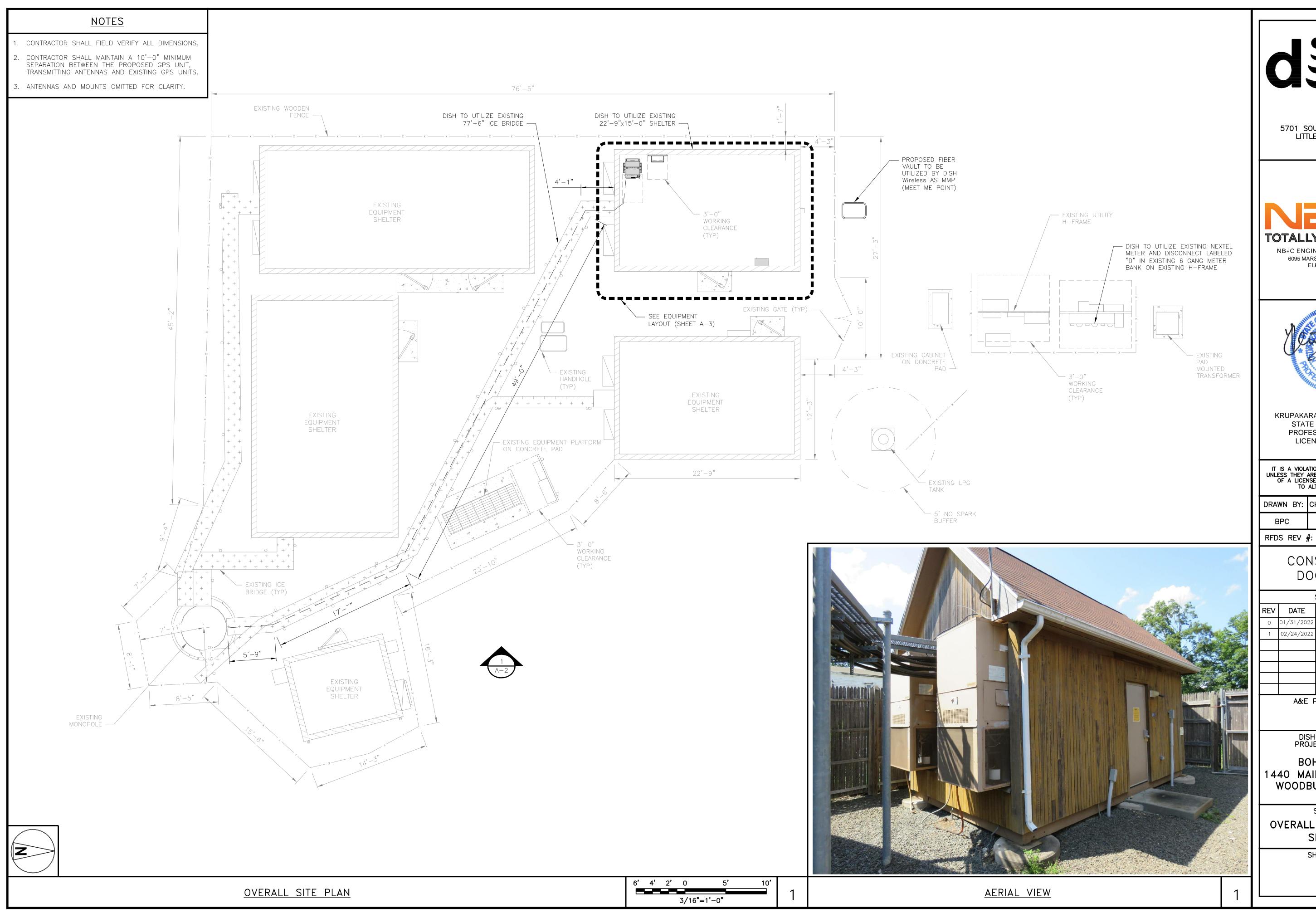
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY:
BPC	BRN	TA	
RFDS REV ;	# :		

CONSTRUCTION DOCUMENTS

	SUBMITTALS			
REV	DATE	DESCRIPTION		
0	01/31/2022	ISSUED FOR CONSTRUCTION		
1	02/24/2022	ISSUED FOR CONSTRUCTION		
	A&E F	PROJECT NUMBER		
		070770		

876379


DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

dess_m

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

02/24/2022

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

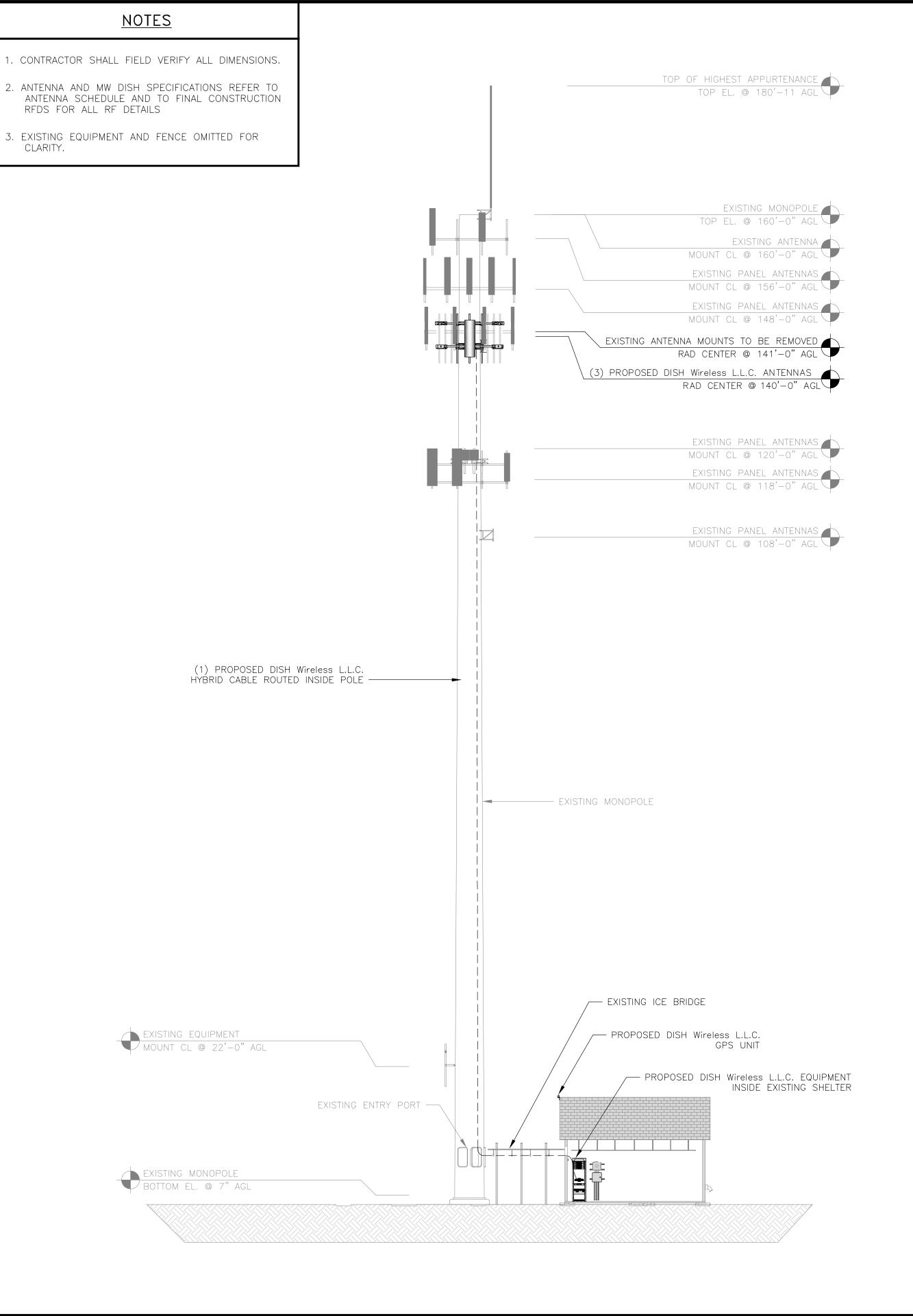
DRAWN BY:	CHECKED BY:	APPROVED	BY:
BPC	BRN	TA	
DED0 DEV	11		

CONSTRUCTION DOCUMENTS

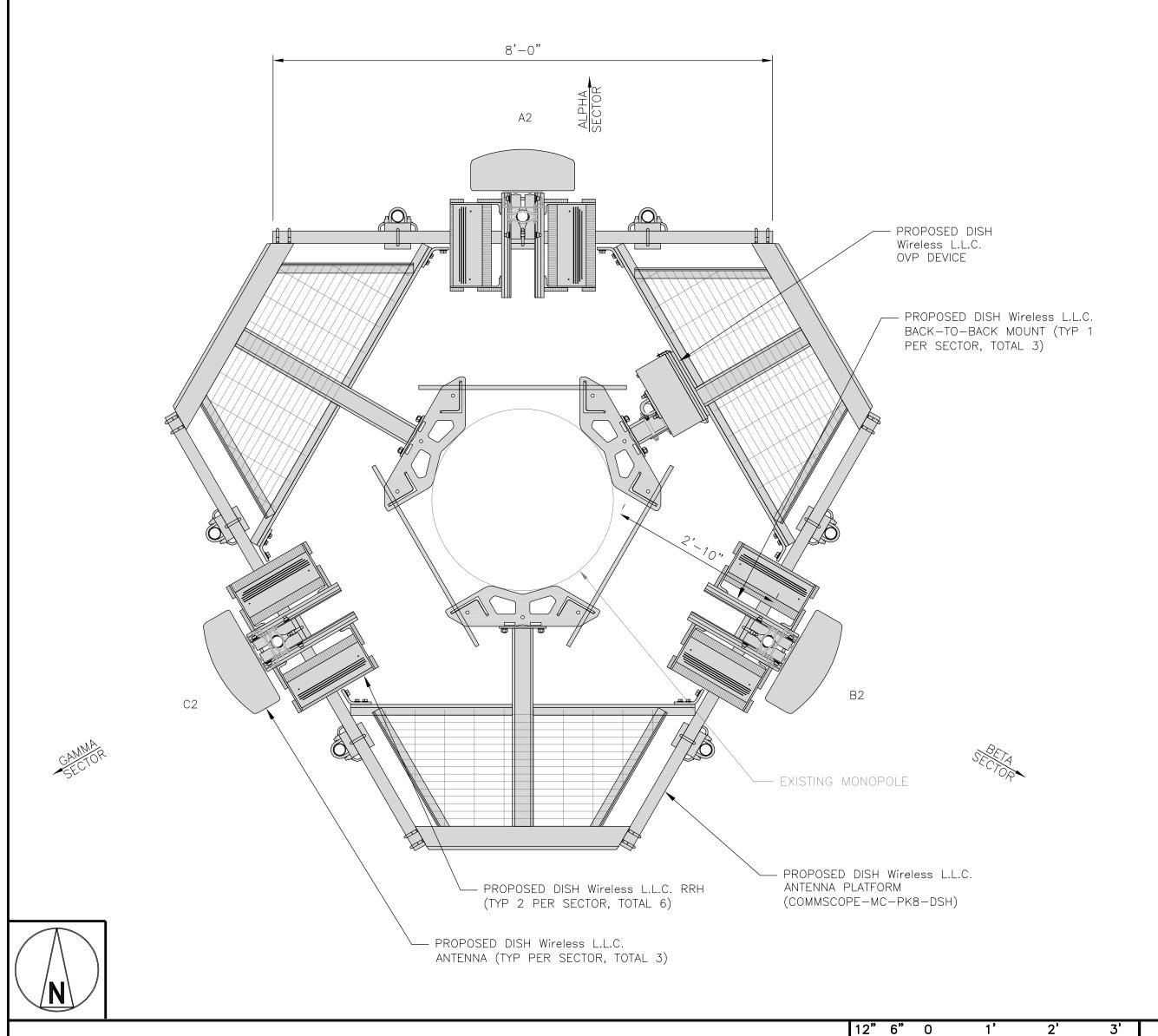
	SUBMITTALS							
REV	EV DATE DESCRIPTION							
0	01/31/2022	ISSUED FOR CONSTRUCTION						
1	02/24/2022	ISSUED FOR CONSTRUCTION						
	A 0.E DDO IECT NUMBED							

A&E PROJECT NUMBER 876379

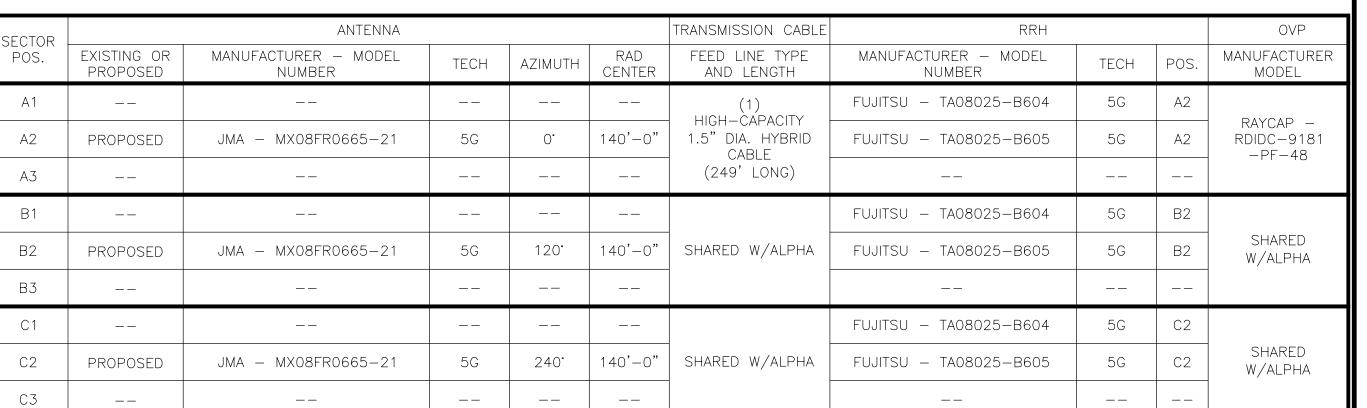
DISH Wireless L.L.C. PROJECT INFORMATION


BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

SHEET TITLE


OVERALL AND ENLARGED
SITE PLAN

SHEET NUMBER


A-1

PROPOSED EAST ELEVATION

<u>ANTENNA LAYOUT</u>

<u>NOTES</u>

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- 2. ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

02/24/2022

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

SUBMITTALS								
REV	REV DATE DESCRIPTION							
0	01/31/2022	ISSUED FOR CONSTRUCTION						
1	02/24/2022	ISSUED FOR CONSTRUCTION						
	A&E F	PROJECT NUMBER						

DISH Wireless L.L.C. PROJECT INFORMATION

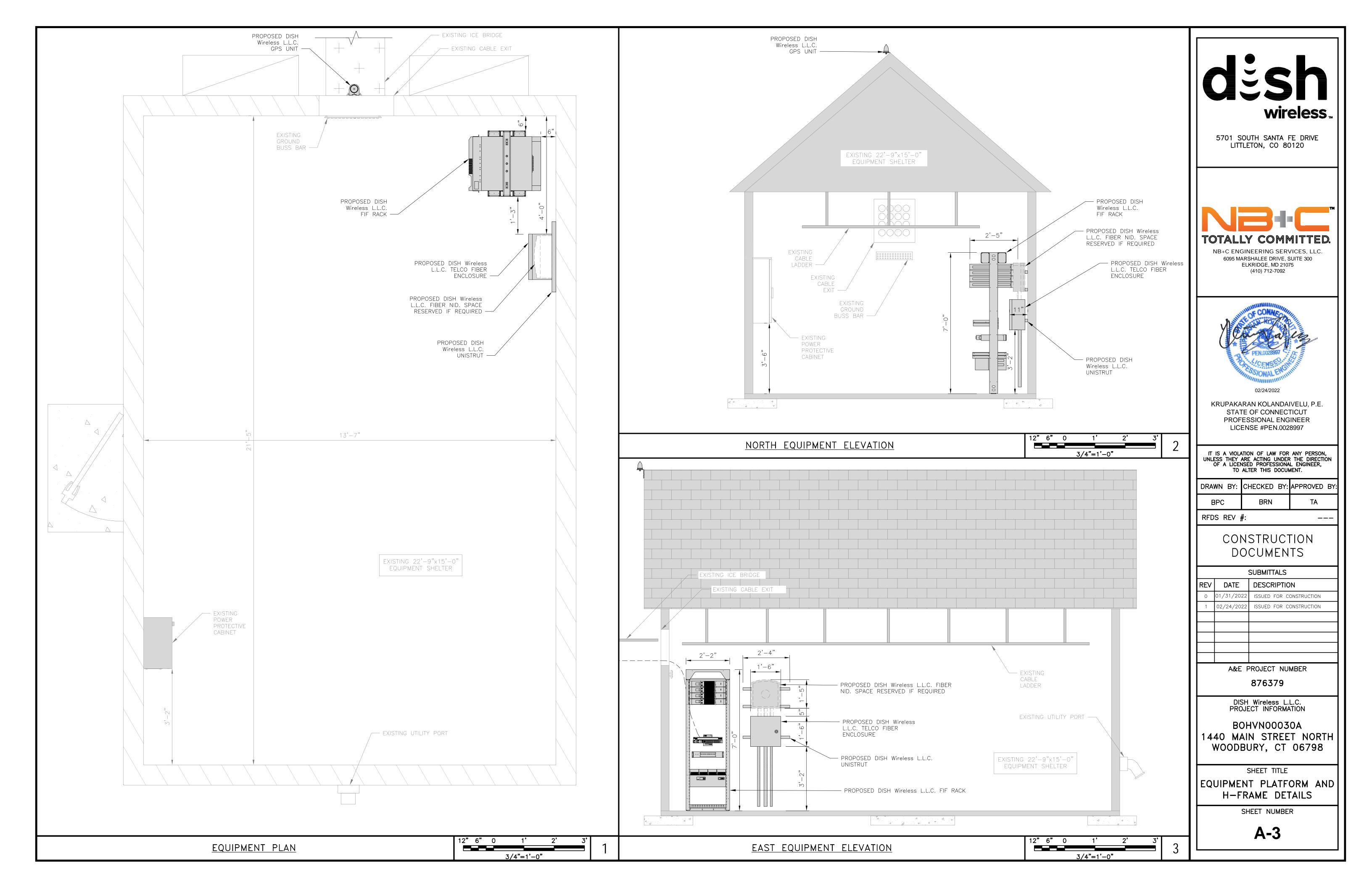
876379

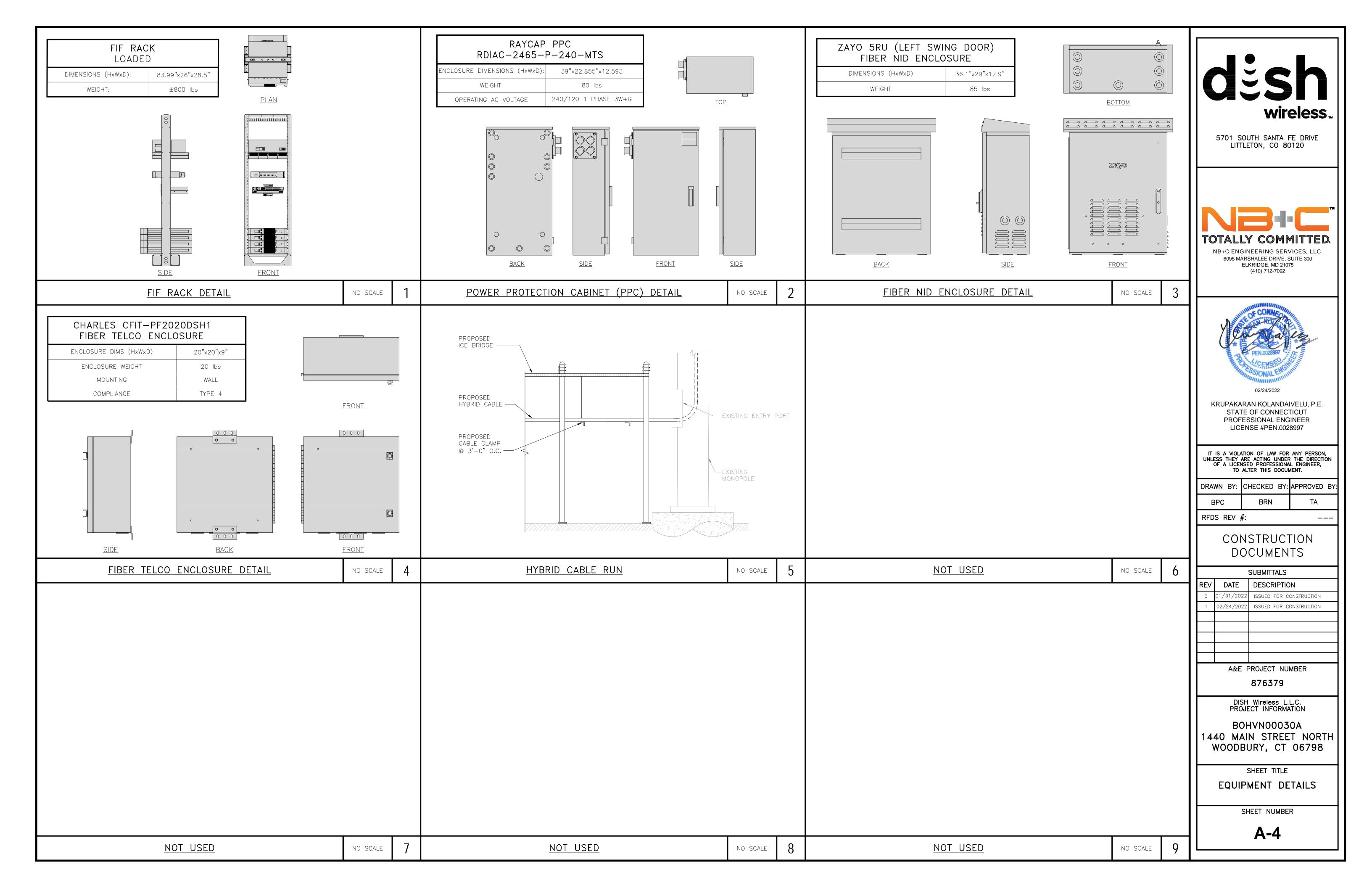
BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

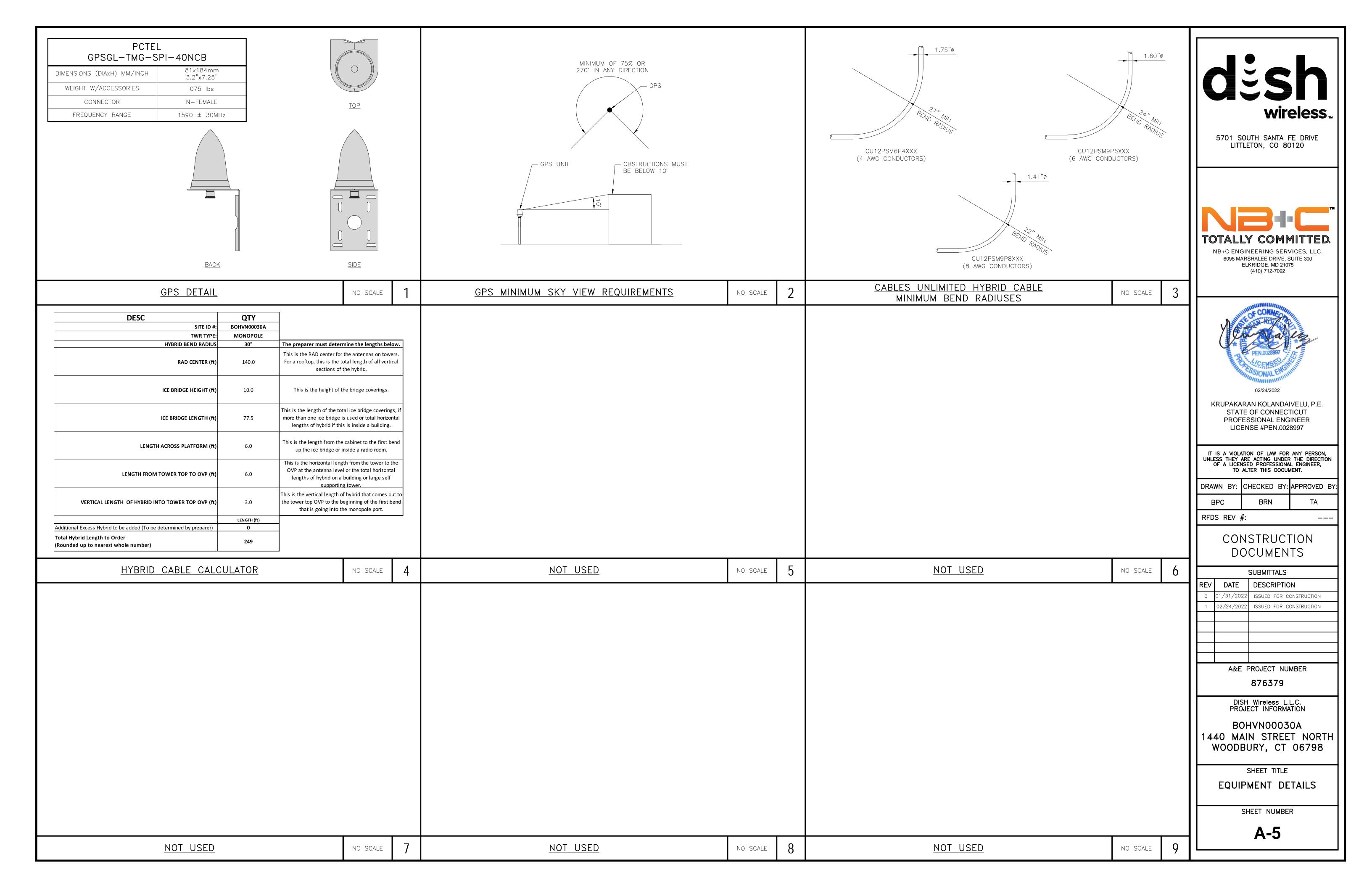
SHEET TITLE

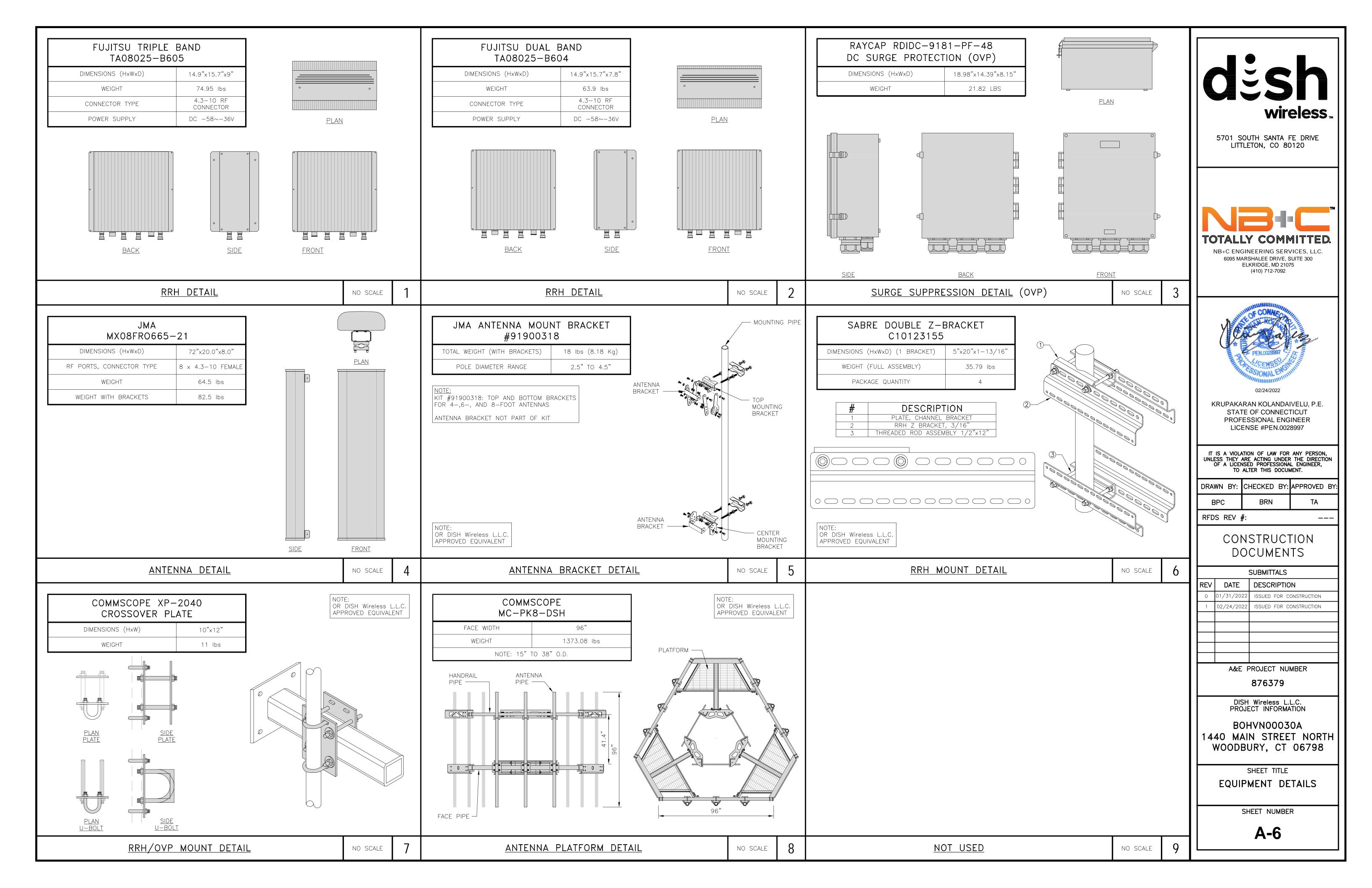
ELEVATION, ANTENNA LAYOUT AND SCHEDULE

SHEET NUMBER

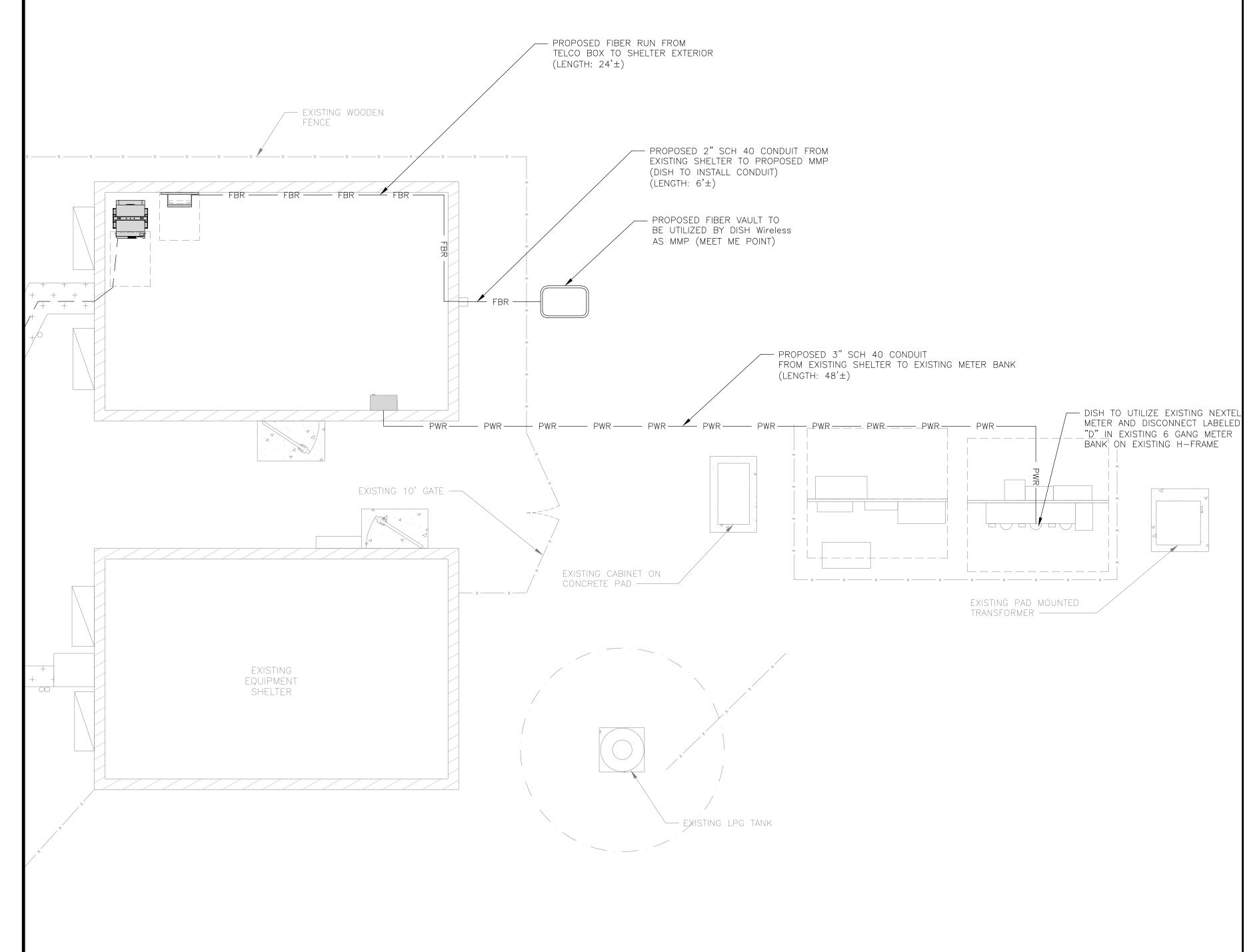

A-2


6' 4' 2' 0 5' 10' 3/16"=1'-0"


ANTENNA SCHEDULE


NO SCALE

3/4"=1'-0"



- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.
- DUE TO UTILITY EASEMENT RIGHTS SPECIFIED IN THE GROUND LEASE, CUSTOMER MAY INSTALL EQUIPMENT WITHIN SPECIFIED UTILITY EASEMENT AREA. "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 REPRESENT PLANNED ROUTING BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO A SURVEY, EXHIBITS, METES AND BOUNDS OF THE UTILITY EASEMENT, FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION AND OTHER REAL PROPERTY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS MATERIALLY INCONSISTENT WITH THE "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 AND SAID VARIANCE IS NOT NOTED ON CDS, PLEASE NOTIFY CROWN CASTLE REAL ESTATE AS FURTHER COORDINATION MAY BE NEEDED.

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.

10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.

- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS				
REV	DATE	DESCRIPTION				
0	01/31/2022	ISSUED FOR CONSTRUCTION				
1	02/24/2022	ISSUED FOR CONSTRUCTION				
A&E PROJECT NUMBER						

876379

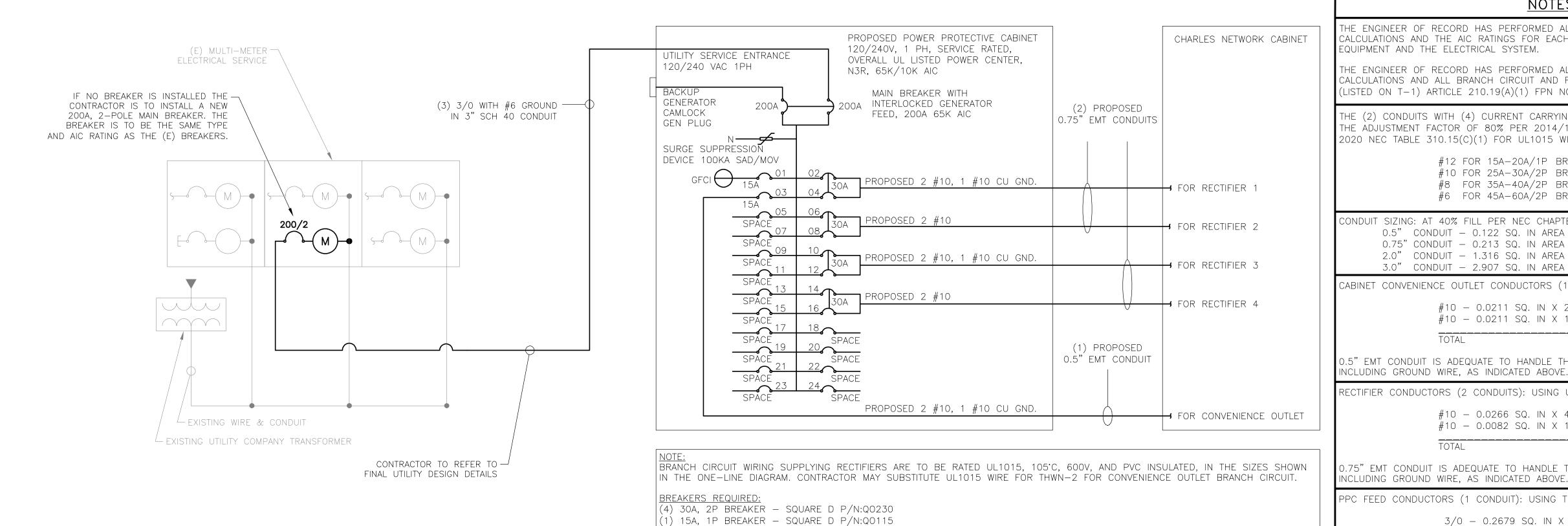
DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER


E-1

1/4"=1'-0"

ELECTRICAL NOTES

NO SCALE

NOTES

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED SHORT CIRCUIT CALCULATIONS AND THE AIC RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE EQUIPMENT AND THE ELECTRICAL SYSTEM.

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED VOLTAGE DROP CALCULATIONS AND ALL BRANCH CIRCUIT AND FEEDERS COMPLY WITH THE NEC (LISTED ON T-1) ARTICLE 210.19(A)(1) FPN NO. 4.

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

> $\#12 \text{ FOR } 15A-20A/1P \text{ BREAKER: } 0.8 \times 30A = 24.0A$ #10 FOR 25A-30A/2P BREAKER: $0.8 \times 40A = 32.0A$ #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: $0.8 \times 75A = 60.0A$

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358.

0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, NCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

= 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NO SCALE

wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE DESCRIPTION							
0	01/31/2022	ISSUED FOR CONSTRUCTION						
1	02/24/2022	ISSUED FOR CONSTRUCTION						
A&F PROJECT NUMBER								

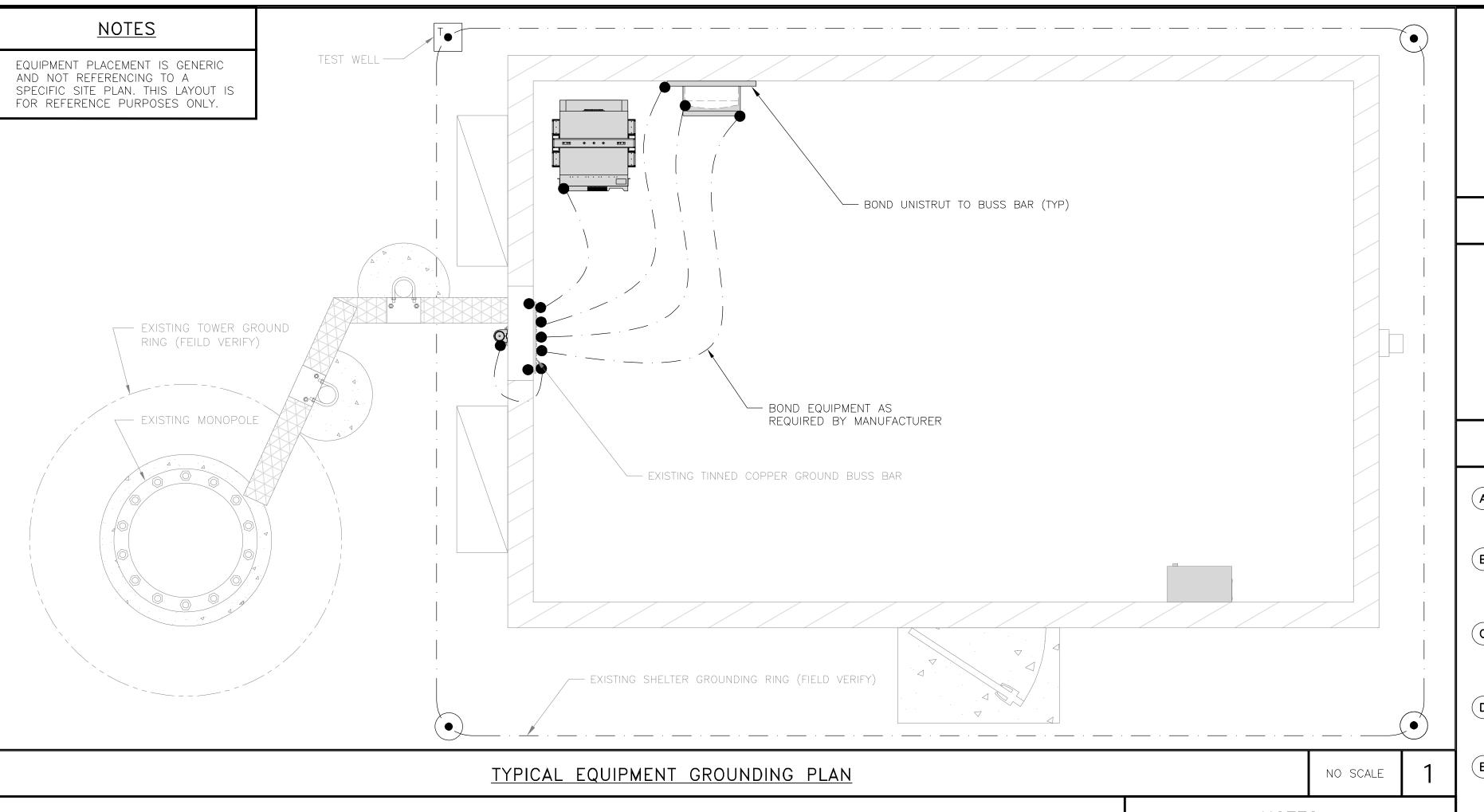
A&F PROJECT NUMBER

876379

DISH Wireless L.L.C. PROJECT INFORMATION

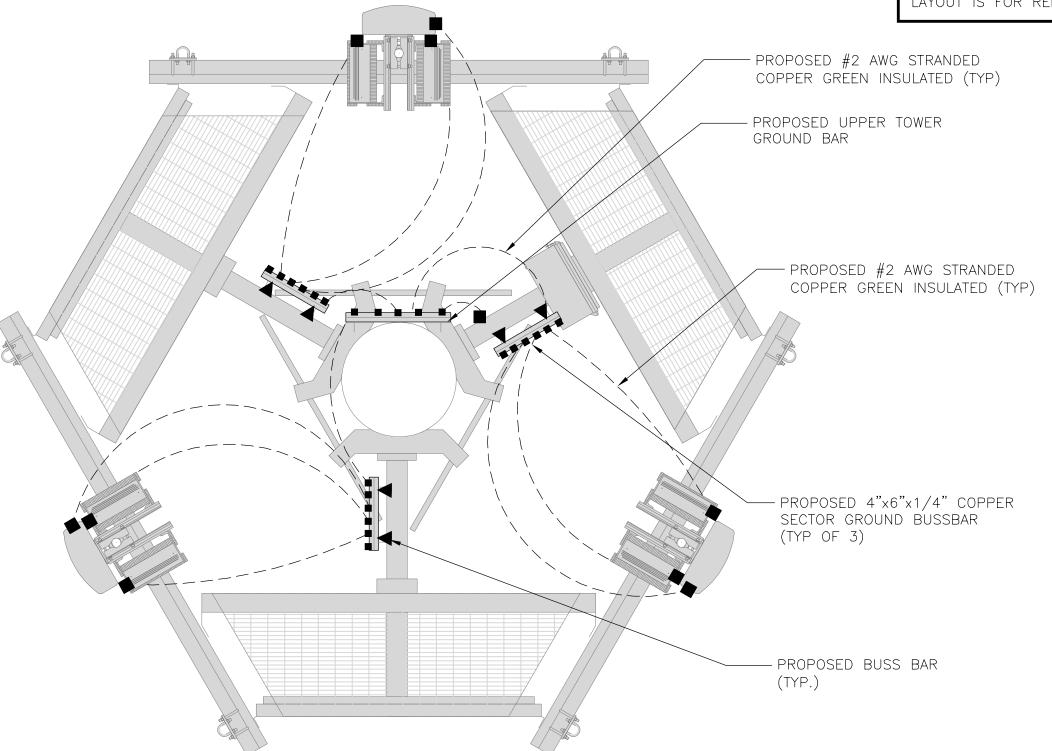
BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

SHEET TITLE


| ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3


PROPOSED CHARLES PANEL SCHEDULE												
LOAD SERVED	VOLT AMPS (WATTS)		TRIP	TRIP CKT		CKT PHASE		CKT #	TRIP		AMPS TTS)	LOAD SERVED
	L1	L2		"				,,		L1	L2	
PPC GFCI OUTLET	180		15A	1		Α	<u>-</u>	2	30A	2880		ABB/GE INFINITY
CHARLES GFCI OUTLET		180	15A	3	7	В	\perp	4	JUA		2880	RÉCTIFIER 1
-SPACE-				5	7	А		6	30A	2880		ABB/GE INFINITY
-SPACE-				7		В		8	JUA		2880	RÉCTIFIER 2
-SPACE-				9	-	Α		10	704	2880		ABB/GE INFINITY
-SPACE-				11		В		12	30A		2880	RÉCTIFIER 3
-SPACE-				13		Α		14	704	2880		ABB/GE INFINITY
-SPACE-				15		В		16	30A		2880	RÉCTIFIER 4
-SPACE-				17		Α		18				-SPACE-
-SPACE-				19		В		20				-SPACE-
-SPACE-				21	\sim	Α	-	22				-SPACE-
-SPACE-				23		В		24				-SPACE-
VOLTAGE AMPS	180	180								11520	11520	
200A MCB, 1φ, 24 SPACE, 120/240V		L1			L2							
MB RATING: 65,000 AIC		1170	0	1	170	0	VOL	TAGE AM	PS			
			98			98		AMF	PS			
			98				MAX AMPS					
					2 3				(125%			

PANEL SCHEDULE NOT USED NO SCALE NO SCALE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE PURPOSES ONLY

EXOTHERMIC CONNECTION

GROUND BUS BAR

GROUND ROD

MECHANICAL CONNECTION

INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

TEST GROUND ROD WITH

— · — · — #2 AWG SOLID COPPER TINNED

A BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- (C) INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE D BOND TO INTERIOR GROUND RING: #2 AWG SULID HINNED COFFEIX WILL I THINK DECEMBERS OF THE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE BUILDING.
- GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- (F) CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND $^{\prime}$ to ground ring with a #2 awg solid tinned copper conductors with an exothermic weld and INSPECTION SLEEVE.
- (|) <u>Telco ground bar:</u> bond to both cell reference ground bar or exterior ground ring.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- (K) <u>Interior unit bonds:</u> metal frames, cabinets and individual metallic units located with the area OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- (L) <u>fence and gate grounding:</u> Metal fences within 7 feet of the exterior ground ring or objects BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- (M) <u>exterior unit bonds:</u> Metallic objects, external to or mounted to the building, shall be bonded TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- (N) <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- O DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- (\mathbf{P}) tower top collector buss bar is to be mechanically bonded to proposed antenna mount collar.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

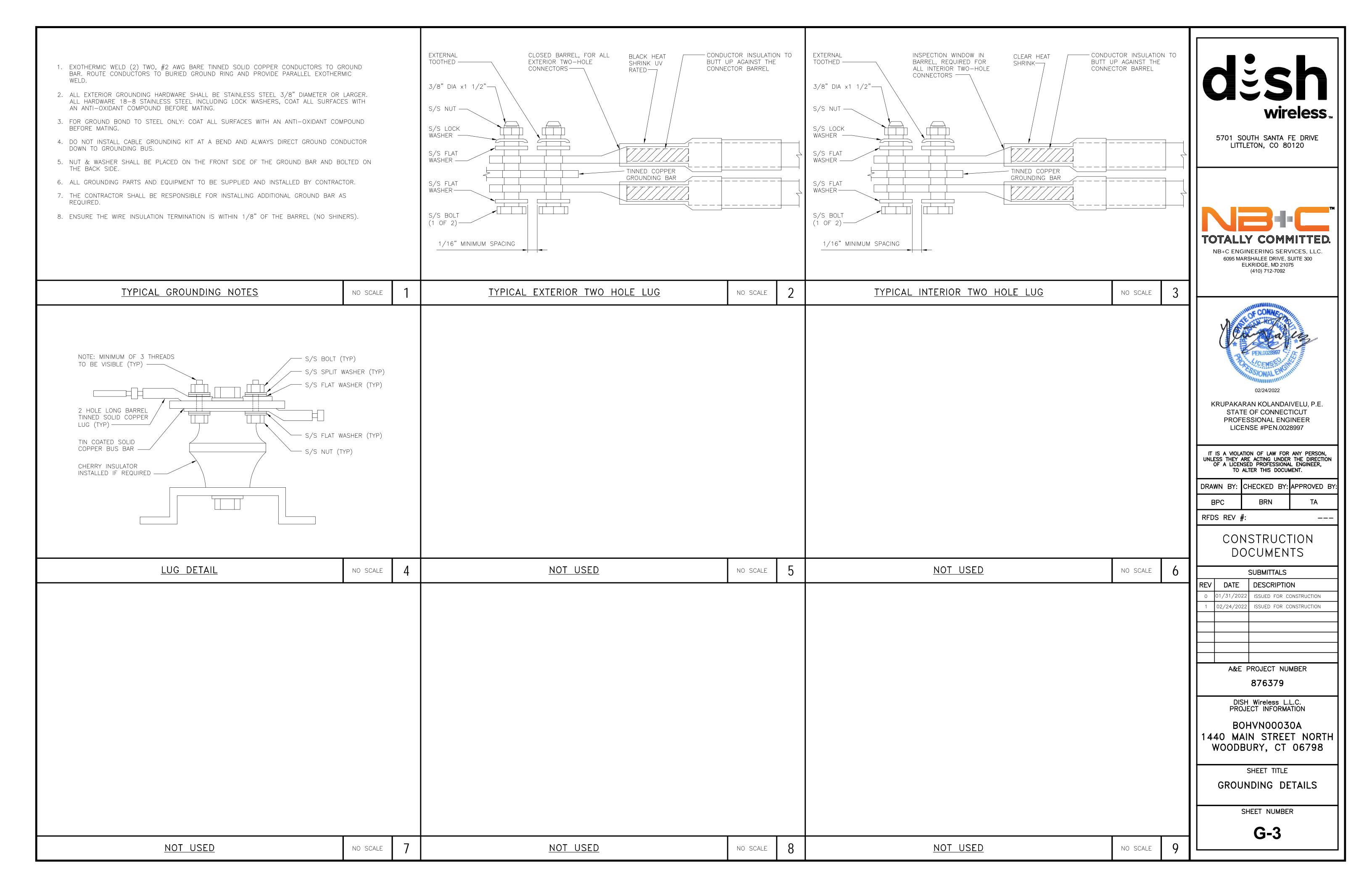
	SUBMITTALS							
REV	DATE DESCRIPTION							
0	01/31/2022	ISSUED FOR CONSTRUCTION						
1 02/24/2022 ISSUED FOR CONSTRUCTION								
A&E PROJECT NUMBER								

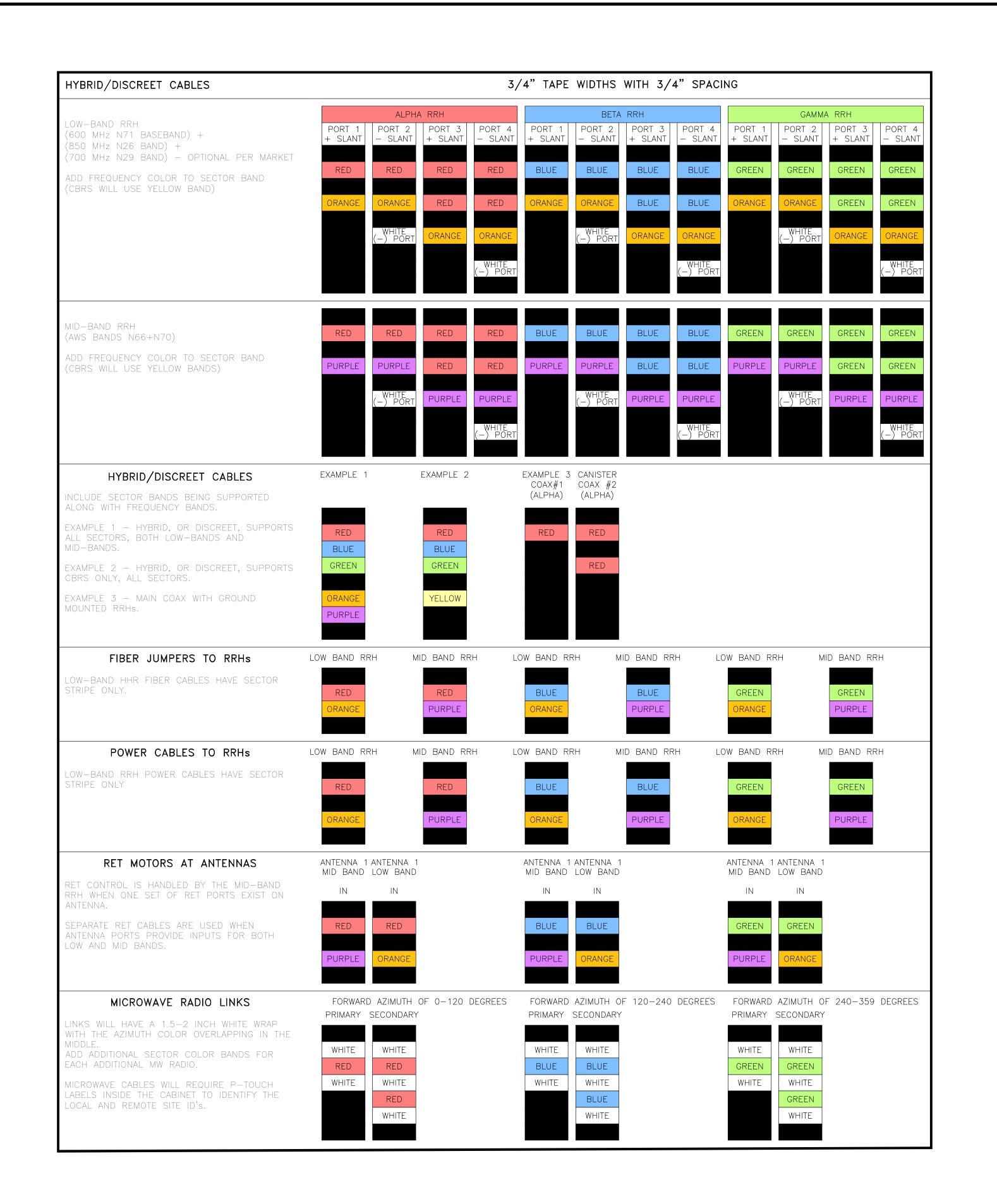
876379

DISH Wireless L.L.C. PROJECT INFORMATION

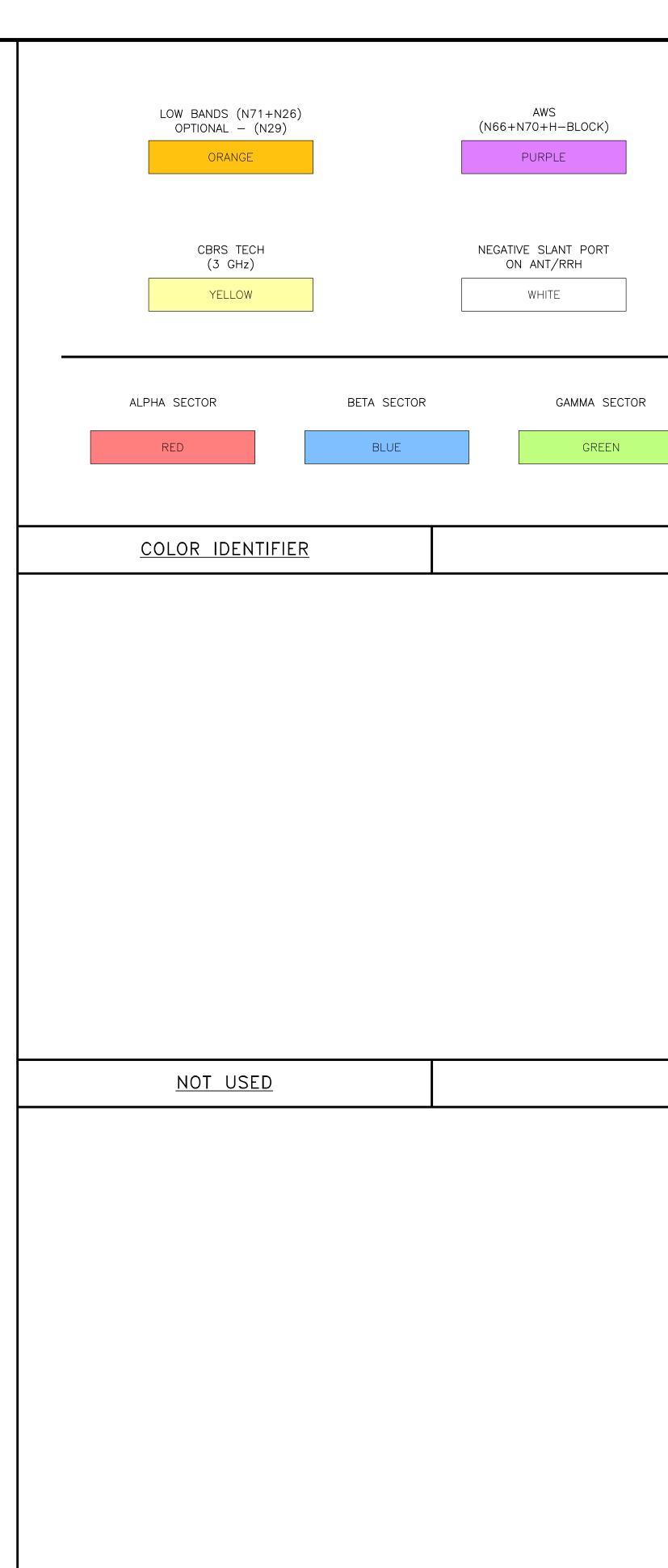
BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798


SHEET TITLE


GROUNDING PLANS AND NOTES


SHEET NUMBER

G-1


GROUNDING KEY NOTES

RF CABLE COLOR CODES

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

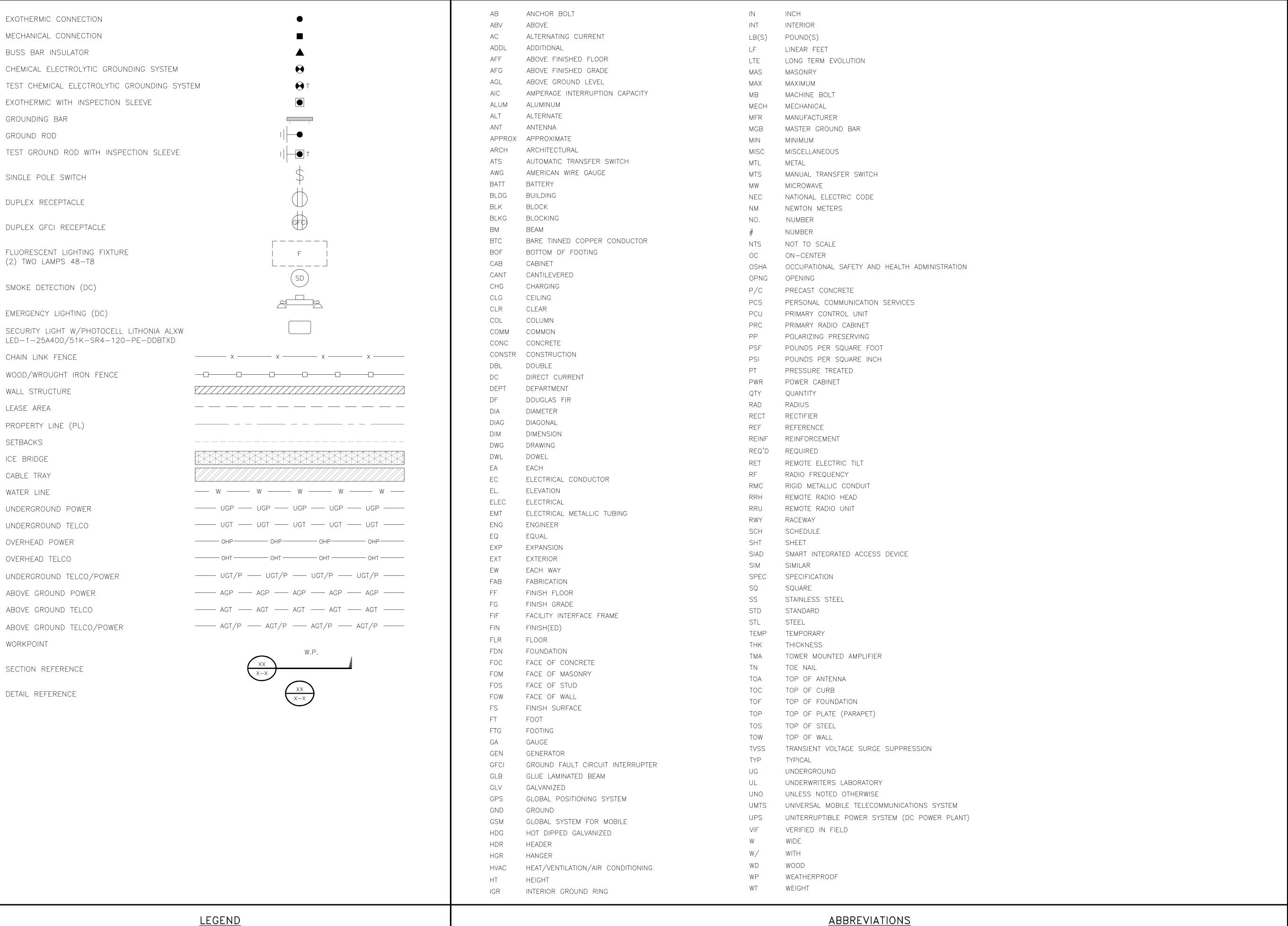
RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE DESCRIPTION							
0	01/31/2022	ISSUED FOR CONSTRUCTION						
1	02/24/2022	ISSUED FOR CONSTRUCTION						
·								
A&E PROJECT NUMBER								

876379

DISH Wireless L.L.C. PROJECT INFORMATION


BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

SHEET TITLE CABLE COLOR CODES

SHEET NUMBER

RF-1

NOT USED

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

02/24/2022

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION

DOCUMENTS

	SUBMITTALS					
REV DATE DESCRIPTION						
0	01/31/2022	ISSUED FOR CONSTRUCTION				
1	02/24/2022	ISSUED FOR CONSTRUCTION				

A&E PROJECT NUMBER

876379

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

	SIGN TYPES					
TYPE	COLOR	COLOR CODE PURPOSE				
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER AND POTENTIAL RF EXPOSURE.				
NOTICE	BLUE	"NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)				
CAUTION	YELLOW	"CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)				
WARNING	ORANGE/RED	"WARNING BEYOND THIS POINT" RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUMAN EXPOSURE. FAILURE TO OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SERIOUS INJURY. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR—1.1307(b)				

SIGN PLACEMENT:

- RF SIGNAGE PLACEMENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME REPORT, CREATED BY A THIRD PARTY PREVIOUSLY AUTHORIZED BY DISH Wireless L.L.C.
- INFORMATION SIGN (GREEN) SHALL BE LOCATED ON EXISTING DISH Wireless L.L.C EQUIPMENT.
 - A) IF THE INFORMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C EQUIPMENT CABINET.

 B) IF THE INFORMATION SIGH IS A METAL SIGN IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C H—FRAME WITH A SECURE ATTACH METHOD.
- IF EME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS; PLEASE CONTACT DISH Wireless L.L.C. CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION ON HOW TO PROCEED.

NOTES

- 1. FOR DISH Wireless L.L.C. LOGO, SEE DISH Wireless L.L.C. DESIGN SPECIFICATIONS (PROVIDED BY DISH Wireless L.L.C.)
- 2. SITE ID SHALL BE APPLIED TO SIGNS USING "LASER ENGRAVING" OR ANY OTHER WEATHER RESISTANT METHOD (DISH Wireless L.L.C. APPROVAL REQUIRED)
- 3. TEXT FOR SIGNAGE SHALL INDICATE CORRECT SITE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTRUCTION MANAGER RECOMMENDATIONS.
- 4. CABINET/SHELTER MOUNTING APPLICATION REQUIRES ANOTHER PLATE APPLIED TO THE FACE OF THE CABINET WITH WATER PROOF POLYURETHANE ADHESIVE
- 5. ALL SIGNS WILL BE SECURED WITH EITHER STAINLESS STEEL ZIP TIES OR STAINLESS STEEL TECH SCREWS
- 6. ALL SIGNS TO BE 8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL

INFORMATION

This is an access point to an area with transmitting antennas.

Obey all signs and barriers beyond this point.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874

Site	ID.

HIS SIGN IS FOR REFERENCE PURPOSES ONLY

NOTICE

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

A CAUTION

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

AWARNING

Transmitting Antenna(s)

Radio frequency fields beyond this point *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID

dėsh

d:Sh wireless

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B+C ENGINEERING SERVICES, LLC 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,

	DRAWN	BY:	CHECKED	BY:	APPROVED	B١
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	EV DATE DESCRIPTION					
0	01/31/2022	ISSUED FOR CONSTRUCTION				
1	02/24/2022	ISSUED FOR CONSTRUCTION				
	A&F PROJECT NUMBER					

876379

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

> SHEET TITLE RF SIGNAGE

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER: DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC.

6095 MARSHALEE DRIVE, SUITE 300

ELKRIDGE, MD 21075

02/24/2022

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
0	01/31/2022	ISSUED FOR CONSTRUCTION
1	02/24/2022	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

876379

DISH Wireless L.L.C.

PROJECT INFORMATION

BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

GENERAL NOTES

SHEET TITLE

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI—CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

02/24/2022

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS				
REV	DATE	DESCRIPTION			
0	01/31/2022	ISSUED FOR CONSTRUCTION			
1	02/24/2022	ISSUED FOR CONSTRUCTION			
	A&E F	PROJECT NUMBER			

DISH Wireless L.L.C. PROJECT INFORMATION

876379

BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 3. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDUITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4"
 NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END
 OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092

02/24/2022

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

BPC BRN TA	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS				
REV DATE DESCRIPTION					
0	01/31/2022	ISSUED FOR CONSTRUCTION			
1	02/24/2022	ISSUED FOR CONSTRUCTION			
	A&E PROJECT NUMBER				

DISH Wireless L.L.C. PROJECT INFORMATION

876379

BOHVN00030A 1440 MAIN STREET NORTH WOODBURY, CT 06798

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: August 27, 2021

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 (919) 661-6351

Subject: **Structural Analysis Report**

Carrier Designation: **DISH Network Co-Locate**

> Site Number: BOHVN00030A Site Name: CT-CCI-T-876379

Crown Castle Designation: **BU Number:** 876379

> Site Name: N. Woodbury / Wolff Parcel

JDE Job Number: 645193 **Work Order Number:** 1966274 **Order Number:** 553370 Rev. 0

Engineering Firm Designation: **TEP Project Number:** 25647.591403

Site Data: 1440 Main Street North, Woodbury, Litchfield County, CT 06798

Latitude 41° 35' 23.81", Longitude -73° 10' 11.52"

163 Foot - Monopole Tower

Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Pllicable Standard references and design criteria are listed in section 2 - Analysis Criteria.

Structural analysis prepared by: Gautam Sopal, E.I. / DEN

Respectfully submitted by:

Aaron T. Rucker, P.E.

1/1/11/11 Electronic Copy

08/27/2021

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 163-ft monopole tower designed by Engineered Endeavors, Inc.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 120 mph

Exposure Category:CTopographic Factor:1.0Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	JMA Wireless	MX08FRO665-21 w/ Mount Pipe		
		3	Fujitsu	TA08025-B605		
140.0	140.0	3	Fujitsu	TA08025-B604	1	1-1/2
		1	Raycap	RDIDC-9181-PF-48		
		1	Tower Mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)				
160.0	171.0	1	Sinclair	SC229-SFXLDF	4	1/2				
160.0	160.0	1	Tower Mounts	Pipe Mount [PM 601-1]						
156.0	158.0					3	RFS Celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe		
					3	RFS Celwave	APXVAALL24_43-U- NA20_TMO w/ Mount Pipe			
		3	Ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe	4	1-5/8				
						3	Ericsson	RADIO 4415 B66A_CCIV3		
		3	Ericsson	RADIO 4449 B71 B85A_T- MOBILE						
		3	Ericsson	RADIO 4424 B25_TMO						
	156.0	1	Tower Mounts	Platform Mount [LP 602-1]						

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
		6	Antel	LPA-80080/6CF w/ Mount Pipe		1-5/8		
		6	Andrew	SBNHH-1D65B w/ Mount Pipe				
1400	150.0	3	VZW	Sub6 Antenna – Samsung MT6407-77A w/ Mount Pipe	_			
148.0		1	RFS Celwave	DB-C1-12C-24AB-0Z	7			
		3	Samsung Telecom.	RFV01U-D1A				
		3	Samsung Telecom.	RFV01U-D2A				
	148.0	1	Tower Mounts	Platform Mount [LP 401-1]				
120.0	121.0	6	Ericsson	TME-RRUS-11	-	-		
	119.0			3	Powerwave Technologies	7770.00 w/ Mount Pipe		
		6	Commscope	NNHH-65B-R4 w/ Mount Pipe				
		3	Ericsson	RRUS 4478 B14				
		3	Powerwave Technologies	TT19-08BP111-001	2	3/8		
118.0		3	Ericsson	RRUS 4449 B5/B12	4	7/8		
		3	Ericsson	RRUS 8843 B2/B66A	12	1-5/8		
		1	Raycap	DC6-48-60-18-8F				
		1	Raycap	DC6-48-60-0-8C-EV				
	118.0	1	Tower Mounts	Platform Mount [LP 401-1_KCKR]				
		1	Tower Mounts	Miscellaneous [NA 510-1]				
108.0	110.0	1	Telewave	ANT150D6-9	-	-		
22.0	24.0	1	Lucent	nt KS24019-L112A		1/2		
22.0	22.0 1		Tower Mounts	Side Arm Mount [SO 701-1]	1	1/4		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source	
Geotechnical Report	1531966	CCISites	
Tower Foundation Drawings	1614612	CCISites	
Tower Manufacturer Drawings	1613543	CCISites	

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

3.2) Assumptions

- 1) The tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

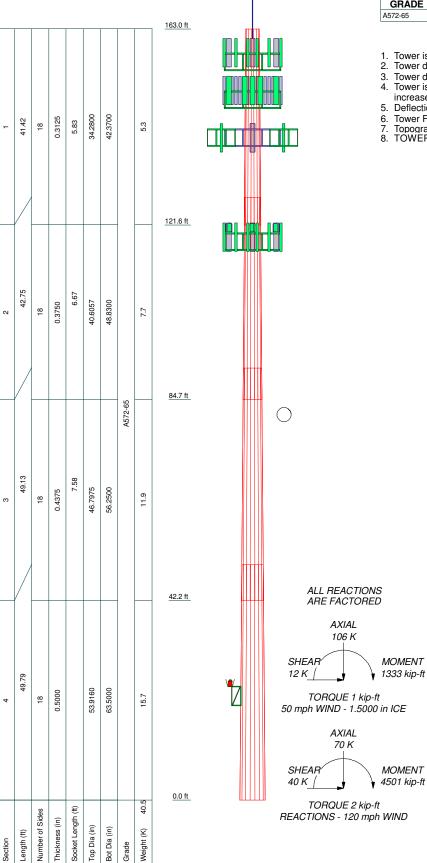
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (k)	ΦP _{allow} (k)	% Capacity	Pass / Fail
L1	163.007 - 121.587	Pole	TP42.37x34.28x0.3125	1	-16.25	2492.97	17.5	Pass
L2	121.587 - 84.67	Pole	TP48.83x40.6057x0.375	2	-30.99	3448.83	34.7	Pass
L3	84.67 - 42.2067	Pole	TP56.25x46.7975x0.4375	3	-46.41	4636.15	44.5	Pass
L4	42.2067 - 0	Pole	TP63.5x53.916x0.5	4	-70.32	6141.33	49.5	Pass
							Summary	
						Pole (L4)	49.5	Pass
						RATING =	49.5	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail	
1,2	Anchor Rods	-	51.3	Pass	
1,2	Base Plate	-	48.8	Pass	
1,2	Base Foundation Structural	-	48.9	Pass	
1,2	Base Foundation Soil Interaction	-	27.1	Pass	

Structure Rating (max from all components) =	51.3%
--	-------

Notes:


4.1) Recommendations

 The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity listed.

²⁾ Rating per TIA-222-H Section 15.5

APPENDIX A TNXTOWER OUTPUT

Tower Engineering Professionals

MATERIAL STRENGTH

			-		
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 kei	80 kei			

TOWER DESIGN NOTES

- 1. Tower is located in Litchfield County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 49.5%

Tower Engineering Professionals, Inc. lob: N. Woodbury / Wolff Parcel (BU 876379) Project: **TEP No. 25647.591403** 326 Tryon Road Client: Crown Castle Drawn by: SMA Raleigh, NC 27603-5263 Scale: NTS Code: TIA-222-H Date: 08/27/21 Phone: (919) 661-6351 Dwg No. E-1 FAX: (919) 661-6350

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	1 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Litchfield County, Connecticut.

Tower base elevation above sea level: 490.00 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.00 ft.

Nominal ice thickness of 1.5000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Maximum demand-capacity ratio is: 1.05.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz

Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.
 Autocalc Torque Arm Areas
 Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- √ Consider Feed Line Torque
 Include Angle Block Shear Check
 Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice Exemption
 Poles
- ✓ Include Shear-Torsion Interaction
 Always Use Sub-Critical Flow
 Use Top Mounted Sockets
 Pole Without Linear Attachments
 Pole With Shroud Or No Appurtenances
 Outside and Inside Corner Radii Are
 Known

Tower Engineering Professionals, Inc. 326 Tryon Road

Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	2 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	163.01-121.59	41.42	5.83	18	34.2800	42.3700	0.3125	1.2500	A572-65 (65 ksi)
L2	121.59-84.67	42.75	6.67	18	40.6057	48.8300	0.3750	1.5000	A572-65 (65 ksi)
L3	84.67-42.21	49.13	7.58	18	46.7975	56.2500	0.4375	1.7500	A572-65 (65 ksi)
L4	42.21-0.00	49.79		18	53.9160	63.5000	0.5000	2.0000	A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in^3	in^4	in^2	in	
L1	34.7606	33.6915	4911.1720	12.0585	17.4142	282.0205	9828.8063	16.8490	5.4833	17.546
	42.9754	41.7158	9322.3361	14.9304	21.5240	433.1144	18656.9387	20.8619	6.9071	22.103
L2	42.3138	47.8845	9791.4486	14.2819	20.6277	474.6754	19595.7811	23.9468	6.4866	17.298
	49.5254	57.6736	17107.6924	17.2015	24.8056	689.6695	34237.8956	28.8423	7.9341	21.158
L3	48.7543	64.3766	17480.3987	16.4578	23.7731	735.3015	34983.7986	32.1944	7.4664	17.066
	57.0503	77.5026	30501.1953	19.8134	28.5750	1067.4084	61042.5248	38.7587	9.1300	20.869
L4	56.1528	84.7712	30558.2079	18.9627	27.3893	1115.6981	61156.6251	42.3936	8.6092	17.218
	64.4025	99.9810	50134.4235	22.3650	32.2580	1554.1702	100334.815	50.0000	10.2960	20.592
							2			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Facto A_f	r Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1			1	1	1			
163.01-121.59								
L2			1	1	1			
121.59-84.67 L3 84.67-42.21			1	1	1			
L4 42.21-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Component	Placement	Total	Number	Start/End	Width or	Perimeter	Weight
		From Torque	Туре	ft	Number	Per Row	Position	Diameter in	in	plf
		Calculation								

Safety Line 3/8	С	No	Surface Ar (CaAa)	163.00 - 0.00	1	1	-0.167 -0.167	0.3750		0.22
22										
LDF4-50A(1/2)	C	No	Surface Ar (CaAa)	22.00 - 0.00	1	1	0.167 0.167	0.6250		0.15
*****			,							

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	3 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	- 4	ft			ft²/ft	plf
160									
LDF4-50A(1/2)	В	No	No	Inside Pole	160.00 - 0.00	1	No Ice	0.00	0.15
							1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
165									
HB158-21U6S24-xx	Α	No	No	Inside Pole	156.00 - 0.00	4	No Ice	0.00	2.50
$M_{TMO}(1-5/8)$							1/2" Ice	0.00	2.50
							1" Ice	0.00	2.50
							2" Ice	0.00	2.50
148									
LDF7-50A(1-5/8)	Α	No	No	Inside Pole	148.00 - 0.00	6	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
HB158-1-13U6-S6F	A	No	No	Inside Pole	148.00 - 0.00	1	No Ice	0.00	1.90
18(1-5/8)							1/2" Ice	0.00	1.90
•							1" Ice	0.00	1.90
							2" Ice	0.00	1.90
141									
140									
CU12PSM9P6XXX(В	No	No	Inside Pole	140.00 - 0.00	1	No Ice	0.00	2.35
1-1/2)							1/2" Ice	0.00	2.35
							1" Ice	0.00	2.35
							2" Ice	0.00	2.35
118									
2" Flexible Conduit	C	No	No	Inside Pole	118.00 - 0.00	2	No Ice	0.00	0.34
							1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34
							2" Ice	0.00	0.34
B-L98B-002-75000	C	No	No	Inside Pole	118.00 - 0.00	1	No Ice	0.00	0.06
(3/8)							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
B-L98B-034-XXX(C	No	No	Inside Pole	118.00 - 0.00	1	No Ice	0.00	0.06
3/8)							1/2" Ice	0.00	0.06
,							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
VR-VG66ST-BRD(C	No	No	Inside Pole	118.00 - 0.00	2	No Ice	0.00	0.91
7/8)							1/2" Ice	0.00	0.91
,							1" Ice	0.00	0.91
							2" Ice	0.00	0.91
WR-VG86ST-BRD	C	No	No	Inside Pole	118.00 - 0.00	2	No Ice	0.00	0.68
A(7/8)							1/2" Ice	0.00	0.68
(/							1" Ice	0.00	0.68
							2" Ice	0.00	0.68
CF158-50A(1-5/8)	C	No	No	Inside Pole	118.00 - 0.00	12	No Ice	0.00	0.80
	~	1.0	1.0				1/2" Ice	0.00	0.80
							1" Ice	0.00	0.80
							2" Ice	0.00	0.80
108							2 100	0.00	0.00
	В	No	No	Inside Pole	108.00 - 0.00	1	No Ice	0.00	0.15
		110	110	2110100 1 010	100.00 0.00		110 100	0.00	0.13
LDF4-50A(1/2)							1/2" Ice	0.00	0.15

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	4 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg	Smeia	Torque Calculation	Туре	ft	rumber		ft²/ft	plf
							2" Ice	0.00	0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft ²	ft ²	K
L1	163.01-121.59	A	0.000	0.000	0.000	0.000	0.52
		В	0.000	0.000	0.000	0.000	0.05
		C	0.000	0.000	1.553	0.000	0.01
L2	121.59-84.67	Α	0.000	0.000	0.000	0.000	0.62
		В	0.000	0.000	0.000	0.000	0.10
		C	0.000	0.000	1.384	0.000	0.46
L3	84.67-42.21	Α	0.000	0.000	0.000	0.000	0.71
		В	0.000	0.000	0.000	0.000	0.11
		C	0.000	0.000	1.592	0.000	0.59
L4	42.21-0.00	A	0.000	0.000	0.000	0.000	0.71
		В	0.000	0.000	0.000	0.000	0.11
		C	0.000	0.000	2.958	0.000	0.59

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft ²	ft ²	K
L1	163.01-121.59	A	1.475	0.000	0.000	0.000	0.000	0.52
		В		0.000	0.000	0.000	0.000	0.05
		C		0.000	0.000	13.770	0.000	0.15
L2	121.59-84.67	A	1.428	0.000	0.000	0.000	0.000	0.62
		В		0.000	0.000	0.000	0.000	0.10
		C		0.000	0.000	12.275	0.000	0.58
L3	84.67-42.21	A	1.361	0.000	0.000	0.000	0.000	0.71
		В		0.000	0.000	0.000	0.000	0.11
		C		0.000	0.000	13.724	0.000	0.72
L4	42.21-0.00	A	1.221	0.000	0.000	0.000	0.000	0.71
		В		0.000	0.000	0.000	0.000	0.11
		C		0.000	0.000	20.431	0.000	0.78

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP_X	CP_Z
section	Elevation	CFX	CFZ	Ice	Ice
	ft	in	in	in	in
L1	163.01-121.59	0.1035	0.2838	0.4883	1.3388
L2	121.59-84.67	0.1036	0.2841	0.4992	1.3686
L3	84.67-42.21	0.1037	0.2843	0.4943	1.3552

Page Job *tnxTower* 5 of 19 N. Woodbury / Wolff Parcel (BU 876379) **Project** Date Tower Engineering TEP No. 25647.591403 10:07:38 08/27/21 Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350 Client Designed by Crown Castle

SMA

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L4	42.21-0.00	0.0102	0.5359	0.1954	2.0397

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

T	ower	Feed Line	Description	Feed Line	K_a	K_a
$S\epsilon$	ection	Record No.		Segment Elev.	No Ice	Ice
	L1	2	Safety Line 3/8	121.59 -	1.0000	1.0000
			•	163.00		
	L2	2	Safety Line 3/8	84.67 - 121.59	1.0000	1.0000
	L3	2	Safety Line 3/8	42.21 - 84.67	1.0000	1.0000
	L4	2	Safety Line 3/8	0.00 - 42.21	1.0000	1.0000
	L4	28	LDF4-50A(1/2)	0.00 - 22.00	1.0000	1.0000

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weight
			ft ft ft ft	٥	ft		ft²	ft²	K

SC229-SFXLDF	A	From Leg	1.00	0.0000	160.00	No Ice	5.95	5.95	0.03
			0.00			1/2" Ice	7.97	7.97	0.07
			11.00			1" Ice	10.00	10.00	0.13
Din - M (DM (01 11	Α	E I	0.50	0.0000	160.00	2" Ice No Ice	14.12 1.32	14.12 1.32	0.28 0.07
Pipe Mount [PM 601-1]	А	From Leg	0.50	0.0000	160.00	1/2" Ice	1.52	1.52	0.07
			0.00			1" Ice	1.84	1.36	0.08
			0.00			2" Ice	2.40	2.40	0.09
156						2 100	2.40	2.40	0.13
APX16DWV-16DWV-S-E-A	Α	From	4.00	0.0000	156.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe		Centroid-Le	0.00	0.0000	150.00	1/2" Ice	6.86	3.27	0.11
20 W Mount I pe		g	2.00			1" Ice	7.45	3.79	0.16
		8				2" Ice	8.68	4.90	0.29
APX16DWV-16DWV-S-E-A	В	From	4.00	0.0000	156.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe		Centroid-Le	0.00			1/2" Ice	6.86	3.27	0.11
•		g	2.00			1" Ice	7.45	3.79	0.16
						2" Ice	8.68	4.90	0.29
APX16DWV-16DWV-S-E-A	C	From	4.00	0.0000	156.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe		Centroid-Le	0.00			1/2" Ice	6.86	3.27	0.11
•		g	2.00			1" Ice	7.45	3.79	0.16
						2" Ice	8.68	4.90	0.29
APXVAALL24_43-U-NA20	A	From	4.00	0.0000	156.00	No Ice	14.69	6.87	0.18

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	6 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weight
	Leg		Lateral Vert						
			ft	٥	ft		ft^2	ft^2	K
			ft ft						
_TMO w/ Mount Pipe		Centroid-Le	0.00			1/2" Ice	15.46	7.55	0.31
_ 1		g	2.00			1" Ice	16.23	8.25	0.45
						2" Ice	17.82	9.67	0.78
APXVAALL24_43-U-NA20	В	From	4.00	0.0000	156.00	No Ice	14.69	6.87	0.18
_TMO w/ Mount Pipe		Centroid-Le	0.00			1/2" Ice 1" Ice	15.46	7.55	0.31
		g	2.00			2" Ice	16.23 17.82	8.25 9.67	0.45 0.78
APXVAALL24_43-U-NA20	С	From	4.00	0.0000	156.00	No Ice	14.69	6.87	0.78
_TMO w/ Mount Pipe	C	Centroid-Le	0.00	0.0000	130.00	1/2" Ice	15.46	7.55	0.10
_ me w mount ipe		g g	2.00			1" Ice	16.23	8.25	0.45
		8				2" Ice	17.82	9.67	0.78
AIR6449 B41_T-MOBILE	A	From	4.00	0.0000	156.00	No Ice	5.19	2.71	0.13
w/ Mount Pipe		Centroid-Le	0.00			1/2" Ice	5.59	3.04	0.17
		g	2.00			1" Ice	6.02	3.38	0.23
						2" Ice	6.90	4.12	0.35
AIR6449 B41_T-MOBILE	В	From	4.00	0.0000	156.00	No Ice	5.19	2.71	0.13
w/ Mount Pipe		Centroid-Le	0.00			1/2" Ice	5.59	3.04	0.17
		g	2.00			1" Ice 2" Ice	6.02 6.90	3.38 4.12	0.23 0.35
AIR6449 B41_T-MOBILE	С	From	4.00	0.0000	156.00	No Ice	5.19	2.71	0.33
w/ Mount Pipe	C	Centroid-Le	0.00	0.0000	130.00	1/2" Ice	5.59	3.04	0.13
w/ Would I ipc		g	2.00			1" Ice	6.02	3.38	0.23
		8	2.00			2" Ice	6.90	4.12	0.35
RADIO 4415 B66A_CCIV3	Α	From	4.00	0.0000	156.00	No Ice	1.64	0.68	0.05
_		Centroid-Le	0.00			1/2" Ice	1.80	0.79	0.06
		g	2.00			1" Ice	1.97	0.91	0.07
						2" Ice	2.32	1.18	0.11
RADIO 4415 B66A_CCIV3	В	From	4.00	0.0000	156.00	No Ice	1.64	0.68	0.05
		Centroid-Le	0.00			1/2" Ice	1.80	0.79	0.06
		g	2.00			1" Ice	1.97	0.91	0.07
RADIO 4415 B66A_CCIV3	С	From	4.00	0.0000	156.00	2" Ice No Ice	2.32 1.64	1.18 0.68	0.11 0.05
RADIO 4413 B00A_CCIV3	C	Centroid-Le	0.00	0.0000	130.00	1/2" Ice	1.80	0.08	0.05
		g	2.00			1" Ice	1.97	0.79	0.00
		5	2.00			2" Ice	2.32	1.18	0.11
RADIO 4449 B71	Α	From	4.00	0.0000	156.00	No Ice	1.97	1.59	0.07
B85A_T-MOBILE		Centroid-Le	0.00			1/2" Ice	2.15	1.75	0.09
		g	2.00			1" Ice	2.33	1.92	0.12
						2" Ice	2.72	2.28	0.17
RADIO 4449 B71	В	From	4.00	0.0000	156.00	No Ice	1.97	1.59	0.07
B85A_T-MOBILE		Centroid-Le	0.00			1/2" Ice	2.15	1.75	0.09
		g	2.00			1" Ice	2.33	1.92	0.12
PADIO 4440 P71	C	Enom	4.00	0.0000	156.00	2" Ice	2.72	2.28	0.17
RADIO 4449 B71 B85A_T-MOBILE	C	From Centroid-Le	4.00 0.00	0.0000	156.00	No Ice 1/2" Ice	1.97 2.15	1.59 1.75	0.07 0.09
B63A_1-MOBILE		g	2.00			1" Ice	2.33	1.73	0.09
		8	2.00			2" Ice	2.72	2.28	0.12
RADIO 4424 B25_TMO	Α	From	4.00	0.0000	156.00	No Ice	2.05	1.61	0.09
	-	Centroid-Le	0.00			1/2" Ice	2.23	1.77	0.11
		g	2.00			1" Ice	2.42	1.94	0.13
						2" Ice	2.81	2.30	0.19
RADIO 4424 B25_TMO	В	From	4.00	0.0000	156.00	No Ice	2.05	1.61	0.09
		Centroid-Le	0.00			1/2" Ice	2.23	1.77	0.11
		g	2.00			1" Ice	2.42	1.94	0.13
DADIO 4404 D05 TMC		г.	4.00	0.0000	156.00	2" Ice	2.81	2.30	0.19
RADIO 4424 B25_TMO	C	From	4.00	0.0000	156.00	No Ice	2.05	1.61	0.09

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	7 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight	
			Vert ft ft ft	o	ft		ft²	ft²	K	
		g	2.00			1" Ice	2.42	1.94	0.13	
		C				2" Ice	2.81	2.30	0.19	
Platform Mount [LP 602-1]	C	None		0.0000	156.00	No Ice	31.07	31.07	1.34	
						1/2" Ice	34.82	34.82	1.97	
						1" Ice 2" Ice	38.48 45.60	38.48 45.60	2.67 4.31	
8' Ladder	С	From	2.00	0.0000	156.00	No Ice	1.53	5.33	0.10	
o Laddei	C	Centroid-Fa	0.00	0.0000	130.00	1/2" Ice	4.36	8.08	0.10	
		ce	-4.00			1" Ice	7.19	10.83	0.13	
						2" Ice	12.86	16.33	0.16	
2.4" Dia. x 6-ft	A	From	4.00	0.0000	156.00	No Ice	1.43	1.43	0.02	
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03	
		g	0.00			1" Ice	2.29	2.29	0.05	
						2" Ice	3.06	3.06	0.09	
2.4" Dia. x 6-ft	В	From	4.00	0.0000	156.00	No Ice	1.43	1.43	0.02	
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03	
		g	0.00			1" Ice 2" Ice	2.29 3.06	2.29 3.06	0.05 0.09	
2.4" Dia. x 6-ft	С	From	4.00	0.0000	156.00	No Ice	1.43	1.43	0.09	
2.4 Dia. x 0-1t	C	Centroid-Le	0.00	0.0000	130.00	1/2" Ice	1.43	1.43	0.02	
		g	0.00			1" Ice	2.29	2.29	0.05	
		8				2" Ice	3.06	3.06	0.09	
148										
LPA-80080/6CF w/ Mount	Α	From	4.00	0.0000	148.00	No Ice	4.93	10.92	0.07	
Pipe		Centroid-Fa	0.00			1/2" Ice	5.58	12.21	0.14	
		ce	2.00			1" Ice	6.16	13.16	0.22	
	_	_				2" Ice	7.33	15.11	0.41	
(2) LPA-80080/6CF w/	В	From	4.00	0.0000	148.00	No Ice	4.93	10.92	0.07	
Mount Pipe		Centroid-Fa	0.00			1/2" Ice 1" Ice	5.58	12.21 13.16	0.14 0.22	
		ce	2.00			2" Ice	6.16 7.33	15.16	0.22	
(3) LPA-80080/6CF w/	C	From	4.00	0.0000	148.00	No Ice	4.93	10.92	0.41	
Mount Pipe	C	Centroid-Fa	0.00	0.0000	140.00	1/2" Ice	5.58	12.21	0.14	
mount Tipe		ce	2.00			1" Ice	6.16	13.16	0.22	
						2" Ice	7.33	15.11	0.41	
(3) SBNHH-1D65B w/	Α	From	4.00	0.0000	148.00	No Ice	4.09	3.30	0.07	
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	4.49	3.68	0.13	
		ce	2.00			1" Ice	4.89	4.07	0.20	
	_	_				2" Ice	5.72	4.87	0.39	
(2) SBNHH-1D65B w/	В	From	4.00	0.0000	148.00	No Ice	4.09	3.30	0.07	
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	4.49	3.68	0.13	
		ce	2.00			1" Ice 2" Ice	4.89 5.72	4.07 4.87	0.20 0.39	
SBNHH-1D65B w/ Mount	С	From	4.00	0.0000	148.00	No Ice	4.09	3.30	0.39	
Pipe	C	Centroid-Fa	0.00	0.0000	146.00	1/2" Ice	4.49	3.68	0.07	
Tipe		ce	2.00			1" Ice	4.89	4.07	0.20	
			2.00			2" Ice	5.72	4.87	0.39	
IT6407-77A w/ Mount Pipe	A	From	4.00	0.0000	148.00	No Ice	4.91	2.68	0.10	
		Centroid-Fa	0.00			1/2" Ice	5.26	3.14	0.14	
		ce	2.00			1" Ice	5.61	3.62	0.18	
						2" Ice	6.36	4.63	0.29	
IT6407-77A w/ Mount Pipe	В	From	4.00	0.0000	148.00	No Ice	4.91	2.68	0.10	
		Centroid-Fa	0.00			1/2" Ice	5.26	3.14	0.14	
		ce	2.00			1" Ice	5.61	3.62	0.18	
TT6407-77A w/ Mount Pipe	C	From	4.00	0.0000	148.00	2" Ice No Ice	6.36 4.91	4.63	0.29	
110+01-11/A W/ MOUIL Pipe	C	Centroid-Fa	4.00	0.0000	140.00	INO ICE	4.71	2.68	0.10 0.14	

Tower Engineering

Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	8 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	K
		ce	2.00			1" Ice	5.61	3.62	0.18
						2" Ice	6.36	4.63	0.29
DB-C1-12C-24AB-0Z	В	From	4.00	0.0000	148.00	No Ice	4.06	3.10	0.03
		Centroid-Fa	0.00			1/2" Ice	4.32	3.34	0.07
		ce	2.00			1" Ice 2" Ice	4.58 5.14	3.58 4.09	0.11 0.20
RFV01U-D1A	Α	From	4.00	0.0000	148.00	No Ice	1.88	1.25	0.20
KI VOIU-DIA	А	Centroid-Fa	0.00	0.0000	148.00	1/2" Ice	2.05	1.39	0.10
		ce	2.00			1" Ice	2.22	1.54	0.12
						2" Ice	2.60	1.86	0.18
RFV01U-D1A	В	From	4.00	0.0000	148.00	No Ice	1.88	1.25	0.08
		Centroid-Fa	0.00			1/2" Ice	2.05	1.39	0.10
		ce	2.00			1" Ice	2.22	1.54	0.12
	~	_				2" Ice	2.60	1.86	0.18
RFV01U-D1A	C	From	4.00	0.0000	148.00	No Ice	1.88	1.25	0.08
		Centroid-Fa	0.00			1/2" Ice 1" Ice	2.05	1.39	0.10
		ce	2.00			2" Ice	2.22 2.60	1.54 1.86	0.12 0.18
RFV01U-D2A	Α	From	4.00	0.0000	148.00	No Ice	1.88	1.01	0.18
KI VOIU-DZA	А	Centroid-Fa	0.00	0.0000	148.00	1/2" Ice	2.05	1.14	0.07
		ce	2.00			1" Ice	2.22	1.28	0.11
						2" Ice	2.60	1.59	0.15
RFV01U-D2A	В	From	4.00	0.0000	148.00	No Ice	1.88	1.01	0.07
		Centroid-Fa	0.00			1/2" Ice	2.05	1.14	0.09
		ce	2.00			1" Ice	2.22	1.28	0.11
	_					2" Ice	2.60	1.59	0.15
RFV01U-D2A	C	From	4.00	0.0000	148.00	No Ice	1.88	1.01	0.07
		Centroid-Fa	0.00			1/2" Ice	2.05	1.14	0.09
		ce	2.00			1" Ice 2" Ice	2.22 2.60	1.28 1.59	0.11 0.15
Platform Mount [LP 401-1]	С	None		0.0000	148.00	No Ice	24.04	24.04	1.65
Flationii Mount [LF 401-1]	C	None		0.0000	146.00	1/2" Ice	28.93	28.93	2.17
						1" Ice	33.88	33.88	2.76
						2" Ice	43.93	43.93	4.16
141 **140**									
MX08FRO665-21 w/ Mount	Α	From	4.00	0.0000	140.00	No Ice	8.01	4.23	0.11
Pipe		Centroid-Le	0.00			1/2" Ice	8.52	4.69	0.19
		g	0.00			1" Ice	9.04	5.16	0.29
MV00FD 0665 21 / M t	D	E	4.00	0.0000	140.00	2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/ Mount Pipe	В	From Centroid-Le	4.00 0.00	0.0000	140.00	No Ice 1/2" Ice	8.01 8.52	4.23 4.69	0.11 0.19
Търс		g	0.00			1" Ice	9.04	5.16	0.19
		5	0.00			2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/ Mount	C	From	4.00	0.0000	140.00	No Ice	8.01	4.23	0.11
Pipe		Centroid-Le	0.00			1/2" Ice	8.52	4.69	0.19
•		g	0.00			1" Ice	9.04	5.16	0.29
						2" Ice	10.11	6.12	0.52
(2) TA08025-B605	В	From	4.00	0.0000	140.00	No Ice	1.96	1.13	0.08
		Centroid-Le	0.00			1/2" Ice	2.14	1.27	0.09
		g	0.00			1" Ice	2.32	1.41	0.11
TA00025 DC05	C	E	4.00	0.0000	140.00	2" Ice	2.71	1.72	0.16
TA08025-B605	C	From Centroid-Le	4.00 0.00	0.0000	140.00	No Ice 1/2" Ice	1.96 2.14	1.13 1.27	0.08 0.09
		g g	0.00			1/2 Ice 1" Ice	2.14	1.41	0.09
		5	0.00			2" Ice	2.71	1.72	0.11
						z ice	2./1		(7.10)

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	9 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

RDIDC-9181-PF-48 C From 4.00 0.0000 140.00 No Ice 2.32 1.	11 0.08 25 0.10 55 0.15 17 0.02 31 0.04
ft ft ft ft ft ft ft ft	11 0.08 25 0.10 55 0.15 17 0.02 31 0.04
Centroid-Le g 0.00 11/2" Ice 2.14 1. g 0.00 1" Ice 2.32 1. 2" Ice 2.71 1. RDIDC-9181-PF-48 C From 4.00 0.0000 140.00 No Ice 2.01 1. Ice 2.37 1. 2" Ice 2.76 1. Ice 2.73 2. Ice 4.40 4. Ice	25 0.10 55 0.15 17 0.02 31 0.04
RDIDC-9181-PF-48 C From 4.00 0.0000 140.00 No Ice 2.32 1.	25 0.10 55 0.15 17 0.02 31 0.04
RDIDC-9181-PF-48 C From 4.00 0.0000 140.00 No Ice 2.01 1.	55 0.15 17 0.02 31 0.04
RDIDC-9181-PF-48 C From 4.00 0.0000 140.00 No Ice 2.01 1. Centroid-Le 0.00 11/2" Ice 2.19 1. g 0.00 1" Ice 2.37 1. 2" Ice 2.76 1. 2" Ice 2.76 1. Centroid-Le 0.00 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 3.424 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 145 **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1" Ice 3.21 1.	17 0.02 31 0.04
Centroid-Le 0.00 g 0.00 1/2" Ice 2.19 1. g 0.00 1" Ice 2.37 1. 2" Ice 2.76 1. 2" Ice 2.76 1. 2" Ice 2.76 1. 2" Ice 2.76 1. 2" Ice 2.73 2. 10 2 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 1.90 1. Commscope MC-PK8-DSH C None 1.00 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 145 1/2" Ice 2.78 1. **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. I'I Ice 3.21 1.	31 0.04
g 0.00 1" Ice 2.37 1. 2" Ice 2.76 1. 2" Ice 2.76 1. 2" Ice 2.76 1. 2" Ice 2.76 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 3.424 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 149 **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1" Ice 3.21 1.	
2" Ice 2.76 1.	46 0.06
Centroid-Le 0.00 g 0.00 11/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 11/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 11/2" Ice 2.73 2. g 0.00 11' Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 149. **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 11/2" Ice 2.99 1. 1" Ice 3.21 1.	78 0.11
g 0.00 1" Ice 3.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 2.73 2. (2) 1" Ice 3.40 3. (2) 2" Ice 4.40 4. (3) 4. (4) 4.	90 0.03
2" Ice 4.40 4.00 4.00 4.00 4.00 140.00 No Ice 1.90 1.00 1.2" Ice 2.73 2.00 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1.00 1.2" Ice 2.73 2.00 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1.00 1.2" Ice 2.73 2.00 2.000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000000 1.0000000 1.0000000000	73 0.04
(2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34. 1/2" Ice 62.95 62. 1" Ice 91.66 91. 2" Ice 149.08 149. **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	40 0.06
Centroid-Le 0.00 g 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 1/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 145 145 120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 11/2" Ice 2.99 1. 1/2" Ice 2.99 1. 1/2" Ice 3.21 1.	40 0.12
g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. (2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 11/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 145 **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 11/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	
2" Ice 4.40 4.00 4.00 4.00 4.00 140.00 No Ice 1.90 1.00 1.2" Ice 4.40 4.00 4.00 1.2" Ice 4.40 4.00 1.2" Ice 62.95 62 1" Ice 91.66 91 1.00 1.0	
(2) 2.4" Dia x 8-ft Mount Pipe A From 4.00 0.0000 140.00 No Ice 1.90 1. Centroid-Le 0.00 11/2" Ice 2.73 2. g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 145 **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 11/2" Ice 2.99 1. 1" Ice 3.21 1.	
Centroid-Le 0.00	
g 0.00 1" Ice 3.40 3. 2" Ice 4.40 4. Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 149 **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	
Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 149.08 149.00 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 149.00 140.00 No Ice 2.78 1.00 0.000 120.00 No Ice 2.78 1.00 0.000 172" Ice 2.99 1.1.00 1" Ice 3.21 1.00 Ice 3.21 1.00 Ice 3.21 Ice 4.40 4.00 4.0000 Ice 34.24 34 4.40 Ice 34.24 Ice 3	40 0.06
Commscope MC-PK8-DSH C None 0.0000 140.00 No Ice 34.24 34 1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 1	40 0.12
1/2" Ice 62.95 62 1" Ice 91.66 91 2" Ice 149.08 149 **120** (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	.24 1.75
120 (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	95 2.10
120 (2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	.66 2.45
(2) TME-RRUS-11 A From Leg 1.00 0.0000 120.00 No Ice 2.78 1. 0.00 1/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	9.08 3.15
0.00 1/2" Ice 2.99 1. 1.00 1" Ice 3.21 1.	
1.00 1" Ice 3.21 1.	19 0.05
	83 0.15 19 0.05
	33 0.07
	49 0.09
	83 0.15
	19 0.05
	.33 0.07
	49 0.09
2" Ice 3.66 1.	83 0.15
	43 0.02
	92 0.03
	29 0.05
	0.09
	43 0.02
	92 0.03 29 0.05
	06 0.09 43 0.02
	92 0.03
	29 0.05
	06 0.09
118	
	25 0.06
	0.10
	71 0.16
	16 0.29
	25 0.06
Centroid-Le 0.00 1/2" Ice 6.18 5.	O 1 O 1 O
2" Ice 7.49 7.	71 0.16

Tower Engineering

Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	10 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	0	ft		ft²	ft²	K
7770.00 w/ Mount Pipe	C	From	ft4.00	0.0000	118.00	No Ice	5.75	4.25	0.06
7770.00 W/ Would I Ipe	C	Centroid-Le	0.00	0.0000	110.00	1/2" Ice	6.18	5.01	0.10
		g	1.00			1" Ice	6.61	5.71	0.16
		C				2" Ice	7.49	7.16	0.29
(2) NNHH-65B-R4 w/ Mount	A	From	4.00	0.0000	118.00	No Ice	7.55	4.23	0.11
Pipe		Centroid-Le	0.00			1/2" Ice	8.04	4.67	0.20
		g	1.00			1" Ice	8.53	5.12	0.30
(A) 2 D D D J (1) C	-	-	4.00	0.0000	110.00	2" Ice	9.56	6.05	0.53
(2) NNHH-65B-R4 w/ Mount	В	From	4.00	0.0000	118.00	No Ice	7.55	4.23	0.11
Pipe		Centroid-Le	0.00			1/2" Ice	8.04	4.67	0.20
		g	1.00			1" Ice 2" Ice	8.53 9.56	5.12 6.05	0.30 0.53
(2) NNHH-65B-R4 w/ Mount	С	From	4.00	0.0000	118.00	No Ice	9.56 7.55	4.23	0.33
Pipe	C	Centroid-Le	0.00	0.0000	116.00	1/2" Ice	8.04	4.23	0.11
1 tpc		g	1.00			1" Ice	8.53	5.12	0.20
		5	1.00			2" Ice	9.56	6.05	0.53
RRUS 4478 B14	Α	From	4.00	0.0000	118.00	No Ice	1.84	1.06	0.06
		Centroid-Le	0.00			1/2" Ice	2.01	1.20	0.08
		g	1.00			1" Ice	2.19	1.34	0.09
						2" Ice	2.57	1.66	0.14
RRUS 4478 B14	В	From	4.00	0.0000	118.00	No Ice	1.84	1.06	0.06
		Centroid-Le	0.00			1/2" Ice	2.01	1.20	0.08
		g	1.00			1" Ice	2.19	1.34	0.09
						2" Ice	2.57	1.66	0.14
RRUS 4478 B14	C	From	4.00	0.0000	118.00	No Ice	1.84	1.06	0.06
		Centroid-Le	0.00			1/2" Ice	2.01	1.20	0.08
		g	1.00			1" Ice	2.19	1.34	0.09
TT10 00DD111 001		E	4.00	0.0000	110.00	2" Ice No Ice	2.57	1.66	0.14
TT19-08BP111-001	A	From Centroid-Le	4.00 0.00	0.0000	118.00	1/2" Ice	0.55 0.64	0.44 0.53	0.02 0.02
			1.00			1" Ice	0.04	0.53	0.02
		g	1.00			2" Ice	0.74	0.84	0.05
TT19-08BP111-001	В	From	4.00	0.0000	118.00	No Ice	0.55	0.44	0.02
, 00 00-	_	Centroid-Le	0.00			1/2" Ice	0.64	0.53	0.02
		g	1.00			1" Ice	0.74	0.63	0.03
		C				2" Ice	0.97	0.84	0.05
TT19-08BP111-001	C	From	4.00	0.0000	118.00	No Ice	0.55	0.44	0.02
		Centroid-Le	0.00			1/2" Ice	0.64	0.53	0.02
		g	1.00			1" Ice	0.74	0.63	0.03
		_				2" Ice	0.97	0.84	0.05
RRUS 4449 B5/B12	Α	From	4.00	0.0000	118.00	No Ice	1.97	1.41	0.07
		Centroid-Le	0.00			1/2" Ice	2.14	1.56	0.09
		g	1.00			1" Ice 2" Ice	2.33 2.72	1.73 2.07	0.11 0.16
RRUS 4449 B5/B12	В	From	4.00	0.0000	118.00	No Ice	1.97	1.41	0.16
KKUS 4449 B3/B12	ь	Centroid-Le	0.00	0.0000	116.00	1/2" Ice	2.14	1.56	0.07
		g	1.00			1" Ice	2.33	1.73	0.09
		b	1.00			2" Ice	2.72	2.07	0.16
RRUS 4449 B5/B12	C	From	4.00	0.0000	118.00	No Ice	1.97	1.41	0.07
		Centroid-Le	0.00			1/2" Ice	2.14	1.56	0.09
		g	1.00			1" Ice	2.33	1.73	0.11
						2" Ice	2.72	2.07	0.16
RRUS 8843 B2/B66A	Α	From	4.00	0.0000	118.00	No Ice	1.64	1.35	0.07
		Centroid-Le	0.00			1/2" Ice	1.80	1.50	0.09
		g	1.00			1" Ice	1.97	1.65	0.11
DDIIG 0042 D275 ()	т.	F	4.00	0.0000	110.00	2" Ice	2.32	1.99	0.16
RRUS 8843 B2/B66A	В	From	4.00	0.0000	118.00	No Ice	1.64	1.35	0.07

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	11 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	K
		Centroid-Le	0.00			1/2" Ice	1.80	1.50	0.09
		g	1.00			1" Ice	1.97	1.65	0.11
						2" Ice	2.32	1.99	0.16
RRUS 8843 B2/B66A	C	From	4.00	0.0000	118.00	No Ice	1.64	1.35	0.07
		Centroid-Le	0.00			1/2" Ice	1.80	1.50	0.09
		g	1.00			1" Ice	1.97	1.65	0.11
DG(40 (0 10 0F	ъ.		4.00	0.0000	110.00	2" Ice	2.32	1.99	0.16
DC6-48-60-18-8F	В	From	4.00	0.0000	118.00	No Ice	1.21	1.21	0.03
		Centroid-Le	0.00			1/2" Ice	1.89	1.89	0.05
		g	1.00			1" Ice	2.11	2.11	0.08
DC(49 (0 0 9C EV		E	4.00	0.0000	110.00	2" Ice	2.57	2.57	0.14
DC6-48-60-0-8C-EV	С	From	4.00	0.0000	118.00	No Ice	1.14	1.14	0.03
		Centroid-Le	0.00 1.00			1/2" Ice 1" Ice	1.79 2.00	1.79 2.00	0.05 0.07
		g	1.00			2" Ice	2.45	2.45	0.07
Platform Mount [LP	С	None		0.0000	118.00	No Ice	35.26	35.26	1.92
401-1_KCKR]	C	None		0.0000	110.00	1/2" Ice	43.15	43.15	2.58
401-1_KCKKJ						1" Ice	51.27	51.27	3.36
						2" Ice	68.18	68.18	5.24
Miscellaneous [NA 510-1]	C	None		0.0000	118.00	No Ice	6.36	6.36	0.26
Wiscentineous [177310 1]	C	Tione		0.0000	110.00	1/2" Ice	8.52	8.52	0.34
						1" Ice	10.62	10.62	0.46
						2" Ice	14.64	14.64	0.77
2.4" Dia. x 6-ft	Α	From	4.00	0.0000	118.00	No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	0.00			1" Ice	2.29	2.29	0.05
		C				2" Ice	3.06	3.06	0.09
2.4" Dia. x 6-ft	В	From	4.00	0.0000	118.00	No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	0.00			1" Ice	2.29	2.29	0.05
						2" Ice	3.06	3.06	0.09
2.4" Dia. x 6-ft	C	From	4.00	0.0000	118.00	No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	0.00			1" Ice	2.29	2.29	0.05
						2" Ice	3.06	3.06	0.09
108									
ANT150D6-9	Α	From Leg	2.00	0.0000	108.00	No Ice	5.00	5.00	0.03
			0.00			1/2" Ice	7.03	7.03	0.06
			2.00			1" Ice	9.07	9.07	0.11
22						2" Ice	13.22	13.22	0.25
KS24019-L112A	С	From Leg	3.00	0.0000	22.00	No Ice	0.08	0.08	0.01
K324017-L112A	C	110m Leg	0.00	0.0000	44.00	1/2" Ice	0.08	0.08	0.01
			2.00			1" Ice	0.13	0.13	0.01
			2.00			2" Ice	0.19	0.19	0.01
Side Arm Mount [SO 701-1]	С	From Leg	1.50	0.0000	22.00	No Ice	0.35	1.67	0.02
Side I iiii Mount [50 /01-1]	C	1 Tolli Leg	0.00	0.0000	22.00	1/2" Ice	1.14	2.34	0.08
			0.00			1" Ice	1.43	3.01	0.09
			0.00			2" Ice	2.01	4.35	0.12

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	12 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26 27	1.2 Dead+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
28 29	1.2 Dead+1.0 Wind 50 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 00 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	13 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	163.007 - 121.587	Pole	Max Tension	8	0.00	0.00	-0.00
			Max. Compression	26	-33.39	-0.88	3.27
			Max. Mx	8	-16.25	-407.72	-1.18
			Max. My	2	-16.30	1.98	394.55
			Max. Vy	8	18.69	-407.72	-1.18
			Max. Vx	2	-18.11	1.98	394.55
			Max. Torque	4			-1.90
L2	121.587 - 84.67	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-58.23	-0.92	3.29
			Max. Mx	8	-30.99	-1323.79	-4.95
			Max. My	2	-31.03	5.71	1289.48
			Max. Vy	8	29.16	-1323.79	-4.95
			Max. Vx	2	-28.57	5.71	1289.48
			Max. Torque	13			1.98
L3	84.67 - 42.2067	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-77.71	-0.92	2.98
			Max. Mx	8	-46.41	-2647.52	-9.27
			Max. My	2	-46.43	10.01	2588.87
			Max. Vy	8	34.44	-2647.52	-9.27
			Max. Vx	2	-33.86	10.01	2588.87
			Max. Torque	13			1.98
L4	42.2067 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-106.43	-0.48	2.15
			Max. Mx	8	-70.32	-4501.38	-14.81
			Max. My	2	-70.32	15.64	4414.54
			Max. Vy	8	39.67	-4501.38	-14.81
			Max. Vx	2	-39.13	15.64	4414.54
			Max. Torque	13			1.98

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	30	106.43	-11.56	-0.03
	Max. H _x	20	70.34	39.64	0.11
	Max. H _z	2	70.34	0.11	39.09
	Max. M _x	2	4414.54	0.11	39.09
	Max. M _z	8	4501.38	-39.64	-0.11
	Max. Torsion	13	1.74	-19.92	-33.91
	Min. Vert	17	52.76	19.72	-33.80
	Min. H _x	8	70.34	-39.64	-0.11
	Min. H _z	14	70.34	-0.11	-39.09
	Min. M _x	14	-4412.67	-0.11	-39.09
	Min. Mz	20	-4501.16	39.64	0.11
	Min. Torsion	25	-1.70	19.92	33.91

Tower Mast Reaction Summary

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	14 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg - No	58.62 70.34	0.00 -0.11	0.00 -39.09	-0.74 -4414.54	-0.08 15.64	0.00 1.26
Ice 0.9 Dead+1.0 Wind 0 deg - No	52.76	-0.11	-39.09	-4380.07	15.54	1.26
Ice 1.2 Dead+1.0 Wind 30 deg - No	70.34	19.72	-33.80	-3815.36	-2237.15	0.49
Ice 0.9 Dead+1.0 Wind 30 deg - No	52.76	19.72	-33.80	-3785.54	-2219.74	0.49
Ice 1.2 Dead+1.0 Wind 60 deg - No	70.34	34.27	-19.45	-2194.08	-3890.49	-0.42
Ice 0.9 Dead+1.0 Wind 60 deg - No	52.76	34.27	-19.45	-2176.84	-3860.22	-0.42
Ice 1.2 Dead+1.0 Wind 90 deg - No	70.34	39.64	0.11	14.81	-4501.38	-1.23
Ice 0.9 Dead+1.0 Wind 90 deg - No	52.76	39.64	0.11	14.92	-4466.35	-1.24
Ice 1.2 Dead+1.0 Wind 120 deg -	70.34	34.38	19.64	2219.47	-3906.21	-1.72
No Ice 0.9 Dead+1.0 Wind 120 deg -	52.76	34.38	19.64	2202.48	-3875.80	-1.73
No Ice 1.2 Dead+1.0 Wind 150 deg -	70.34	19.92	33.91	3829.20	-2264.41	-1.74
No Ice 0.9 Dead+1.0 Wind 150 deg -	52.76	19.92	33.91	3799.74	-2246.76	-1.74
No Ice 1.2 Dead+1.0 Wind 180 deg -	70.34	0.11	39.09	4412.67	-15.85	-1.28
No Ice 0.9 Dead+1.0 Wind 180 deg -	52.76	0.11	39.09	4378.69	-15.69	-1.28
No Ice 1.2 Dead+1.0 Wind 210 deg -	70.34	-19.72	33.80	3813.48	2236.94	-0.46
No Ice 0.9 Dead+1.0 Wind 210 deg -	52.76	-19.72	33.80	3784.15	2219.58	-0.46
No Ice 1.2 Dead+1.0 Wind 240 deg -	70.34	-34.27	19.45	2192.20	3890.27	0.46
No Ice 0.9 Dead+1.0 Wind 240 deg -	52.76	-34.27	19.45	2175.45	3860.06	0.47
No Ice 1.2 Dead+1.0 Wind 270 deg -	70.34	-39.64	-0.11	-16.68	4501.16	1.25
No Ice 0.9 Dead+1.0 Wind 270 deg -	52.76	-39.64	-0.11	-16.30	4466.20	1.25
No Ice 1.2 Dead+1.0 Wind 300 deg -	70.34	-34.38	-19.64	-2221.33	3905.99	1.70
No Ice 0.9 Dead+1.0 Wind 300 deg -	52.76	-34.38	-19.64	-2203.86	3875.65	1.70
No Ice 1.2 Dead+1.0 Wind 330 deg - No Ice	70.34	-19.92	-33.91	-3831.08	2264.20	1.70
0.9 Dead+1.0 Wind 330 deg - No Ice	52.76	-19.92	-33.91	-3801.12	2246.61	1.70
1.2 Dead+1.0 Ice+1.0 Temp	106.43	0.00	-0.00	-2.15	-0.48	0.00
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	106.43	-0.03	-11.45	-1317.20	2.97	0.00
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	106.43	5.76	-9.91	-1139.29	-663.66	-0.08
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	106.43	10.00	-5.70	-656.75	-1152.60	-0.39
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	106.43	11.56	0.03	1.12	-1332.85	-0.61
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	106.43	10.02	5.75	658.04	-1156.12	-0.65
1.2 Dead+1.0 Wind 150	106.43	5.80	9.93	1138.00	-669.75	-0.53

Tower Engineering

Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	15 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Load Combination	Vertical	$Shear_x$	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	106.43	0.03	11.45	1312.40	-4.07	-0.26
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	106.43	-5.76	9.91	1134.49	662.55	0.08
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	106.43	-10.00	5.70	651.95	1151.49	0.40
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	106.43	-11.56	-0.03	-5.92	1331.75	0.61
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	106.43	-10.02	-5.75	-662.85	1155.01	0.65
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	106.43	-5.80	-9.93	-1142.81	668.64	0.53
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	58.62	-0.03	-9.21	-1035.37	3.60	0.30
Dead+Wind 30 deg - Service	58.62	4.65	-7.96	-894.91	-524.47	0.12
Dead+Wind 60 deg - Service	58.62	8.07	-4.58	-514.88	-912.03	-0.10
Dead+Wind 90 deg - Service	58.62	9.34	0.03	2.91	-1055.23	-0.29
Dead+Wind 120 deg - Service	58.62	8.10	4.63	519.71	-915.71	-0.40
Dead+Wind 150 deg - Service	58.62	4.69	7.99	897.05	-530.86	-0.40
Dead+Wind 180 deg - Service	58.62	0.03	9.21	1033.82	-3.78	-0.30
Dead+Wind 210 deg - Service	58.62	-4.65	7.96	893.36	524.29	-0.11
Dead+Wind 240 deg - Service	58.62	-8.07	4.58	513.32	911.85	0.10
Dead+Wind 270 deg - Service	58.62	-9.34	-0.03	-4.46	1055.05	0.29
Dead+Wind 300 deg - Service	58.62	-8.10	-4.63	-521.27	915.54	0.40
Dead+Wind 330 deg - Service	58.62	-4.69	-7.99	-898.60	530.68	0.40

Solution Summary

	Su	m of Applied Forces	s		Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Error	
Comb.	K	K	K	K	K	K		
1	0.00	-58.62	0.00	0.00	58.62	0.00	0.000%	
2	-0.11	-70.34	-39.09	0.11	70.34	39.09	0.000%	
3	-0.11	-52.76	-39.09	0.11	52.76	39.09	0.000%	
4	19.72	-70.34	-33.80	-19.72	70.34	33.80	0.000%	
5	19.72	-52.76	-33.80	-19.72	52.76	33.80	0.000%	
6	34.27	-70.34	-19.45	-34.27	70.34	19.45	0.000%	
7	34.27	-52.76	-19.45	-34.27	52.76	19.45	0.000%	
8	39.64	-70.34	0.11	-39.64	70.34	-0.11	0.000%	
9	39.64	-52.76	0.11	-39.64	52.76	-0.11	0.000%	
10	34.38	-70.34	19.64	-34.38	70.34	-19.64	0.000%	
11	34.38	-52.76	19.64	-34.38	52.76	-19.64	0.000%	
12	19.92	-70.34	33.91	-19.92	70.34	-33.91	0.000%	
13	19.92	-52.76	33.91	-19.92	52.76	-33.91	0.000%	
14	0.11	-70.34	39.09	-0.11	70.34	-39.09	0.000%	
15	0.11	-52.76	39.09	-0.11	52.76	-39.09	0.000%	
16	-19.72	-70.34	33.80	19.72	70.34	-33.80	0.000%	
17	-19.72	-52.76	33.80	19.72	52.76	-33.80	0.000%	
18	-34.27	-70.34	19.45	34.27	70.34	-19.45	0.000%	
19	-34.27	-52.76	19.45	34.27	52.76	-19.45	0.000%	
20	-39.64	-70.34	-0.11	39.64	70.34	0.11	0.000%	
21	-39.64	-52.76	-0.11	39.64	52.76	0.11	0.000%	
22	-34.38	-70.34	-19.64	34.38	70.34	19.64	0.000%	
23	-34.38	-52.76	-19.64	34.38	52.76	19.64	0.000%	
24	-19.92	-70.34	-33.91	19.92	70.34	33.91	0.000%	
25	-19.92	-52.76	-33.91	19.92	52.76	33.91	0.000%	
26	0.00	-106.43	0.00	0.00	106.43	0.00	0.000%	
27	-0.03	-106.43	-11.45	0.03	106.43	11.45	0.000%	

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	16 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

	Su	m of Applied Forces			Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
28	5.76	-106.43	-9.91	-5.76	106.43	9.91	0.000%
29	10.00	-106.43	-5.70	-10.00	106.43	5.70	0.000%
30	11.56	-106.43	0.03	-11.56	106.43	-0.03	0.000%
31	10.02	-106.43	5.75	-10.02	106.43	-5.75	0.000%
32	5.80	-106.43	9.93	-5.80	106.43	-9.93	0.000%
33	0.03	-106.43	11.45	-0.03	106.43	-11.45	0.000%
34	-5.76	-106.43	9.91	5.76	106.43	-9.91	0.000%
35	-10.00	-106.43	5.70	10.00	106.43	-5.70	0.000%
36	-11.56	-106.43	-0.03	11.56	106.43	0.03	0.000%
37	-10.02	-106.43	-5.75	10.02	106.43	5.75	0.000%
38	-5.80	-106.43	-9.93	5.80	106.43	9.93	0.000%
39	-0.03	-58.62	-9.21	0.03	58.62	9.21	0.000%
40	4.65	-58.62	-7.96	-4.65	58.62	7.96	0.000%
41	8.07	-58.62	-4.58	-8.07	58.62	4.58	0.000%
42	9.34	-58.62	0.03	-9.34	58.62	-0.03	0.000%
43	8.10	-58.62	4.63	-8.10	58.62	-4.63	0.000%
44	4.69	-58.62	7.99	-4.69	58.62	-7.99	0.000%
45	0.03	-58.62	9.21	-0.03	58.62	-9.21	0.000%
46	-4.65	-58.62	7.96	4.65	58.62	-7.96	0.000%
47	-8.07	-58.62	4.58	8.07	58.62	-4.58	0.000%
48	-9.34	-58.62	-0.03	9.34	58.62	0.03	0.000%
49	-8.10	-58.62	-4.63	8.10	58.62	4.63	0.000%
50	-4.69	-58.62	-7.99	4.69	58.62	7.99	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00030786
3	Yes	4	0.00000001	0.00019632
4	Yes	5	0.00000001	0.00022330
5	Yes	5	0.00000001	0.00010660
6	Yes	5	0.00000001	0.00022345
7	Yes	5	0.00000001	0.00010648
8	Yes	4	0.00000001	0.00025280
9	Yes	4	0.00000001	0.00015638
10	Yes	5	0.00000001	0.00021940
11	Yes	5	0.00000001	0.00010424
12	Yes	5	0.00000001	0.00023261
13	Yes	5	0.00000001	0.00011110
14	Yes	4	0.00000001	0.00040935
15	Yes	4	0.00000001	0.00026534
16	Yes	5	0.00000001	0.00021712
17	Yes	5	0.00000001	0.00010359
18	Yes	5	0.00000001	0.00022040
19	Yes	5	0.00000001	0.00010503
20	Yes	4	0.00000001	0.00035499
21	Yes	4	0.00000001	0.00022675
22	Yes	5	0.00000001	0.00023482
23	Yes	5	0.00000001	0.00011194
24	Yes	5	0.00000001	0.00021810
25	Yes	5	0.00000001	0.00010373
26	Yes	4	0.00000001	0.00000001
27	Yes	5	0.00000001	0.00015842
28	Yes	5	0.00000001	0.00018118

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350		N. Woodbury / Wolff Parcel (BU 876379)					
		Project	TEP No.	Date 10:07:38 08/27/			
		Client	wn Castle	Designed by SMA			
•		_	0.0000001	0.00040277			
29 30	Yes Yes	5 5	$0.00000001 \\ 0.00000001$	0.00018255 0.00016039			
30 31	Yes	5	0.0000001	0.00016039			
32	Yes	5	0.0000001	0.00018130			
33	Yes	5	0.0000001	0.00018137			
34	Yes	5	0.00000001	0.00017903			
35	Yes	5	0.00000001	0.00017993			
36	Yes	5	0.00000001	0.00015997			
37	Yes	5	0.00000001	0.00018377			
38	Yes	5	0.00000001	0.00018169			
39	Yes	4	0.00000001	0.00003383			
40	Yes	4	0.00000001	0.00010814			
41	Yes	4	0.00000001	0.00010674			
42	Yes	4	0.00000001	0.00003249			
43	Yes	4	0.00000001	0.00009970			
44	Yes	4	0.00000001	0.00011695			
45	Yes	4	0.00000001	0.00003453			
46	Yes	4	0.00000001	0.00010042			
47	Yes	4	0.00000001	0.00010289			
48	Yes	4	0.00000001	0.00003319			

0.000000010.00000001

49

Yes

Maximum Tower Deflections - Service Wind								
Section	Elevation	Horz.	Gov.	Tilt	Twist			
No.	ft	Deflection in	Load Comb.	٥	0			
L1	163.007 - 121.587	14.444	42	0.6892	0.0012			
L2	127.42 - 84.67	9.398	42	0.6440	0.0009			
L3	91.3367 - 42.2067	4.991	42	0.4978	0.0005			
L4	49.79 - 0	1.535	42	0.2746	0.0002			

0.00011829

0.00009987

	Critical Deflections and Radius of Curvature - Service Wind							
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of		
ft		Load Comb.	in	٥	٥	Curvature ft		
160.00	SC229-SFXLDF	42	14.007	0.6873	0.0012	147339		
156.00	APX16DWV-16DWV-S-E-A20 w/	42	13.427	0.6847	0.0011	105142		
	Mount Pipe							
148.00	LPA-80080/6CF w/ Mount Pipe	42	12.273	0.6782	0.0011	49091		
140.00	MX08FRO665-21 w/ Mount Pipe	42	11.135	0.6687	0.0010	32020		
120.00	(2) TME-RRUS-11	42	8.414	0.6220	0.0008	18198		
118.00	7770.00 w/ Mount Pipe	42	8.154	0.6152	0.0008	17624		
108.00	ANT150D6-9	42	6.900	0.5761	0.0007	15222		
22.00	KS24019-L112A	42	0.458	0.1212	0.0001	18100		

Maximum Tower Deflections - Design Wind

Tower Engineering Professionals, Inc. 326 Tryon Road

Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job	N. Woodbury / Wolff Parcel (BU 876379)	Page 18 of 19
Project	TEP No. 25647.591403	Date 10:07:38 08/27/21
Client	Crown Castle	Designed by SMA

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	163.007 - 121.587	61.643	8	2.9420	0.0052
L2	127.42 - 84.67	40.113	8	2.7494	0.0038
L3	91.3367 - 42.2067	21.305	8	2.1254	0.0020
L4	49.79 - 0	6.549	8	1.1722	0.0008

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
160.00	SC229-SFXLDF	8	59.781	2.9340	0.0051	34747
156.00	APX16DWV-16DWV-S-E-A20 w/	8	57.306	2.9228	0.0050	24796
	Mount Pipe					
148.00	LPA-80080/6CF w/ Mount Pipe	8	52.383	2.8951	0.0046	11576
140.00	MX08FRO665-21 w/ Mount Pipe	8	47.528	2.8547	0.0043	7550
120.00	(2) TME-RRUS-11	8	35.912	2.6556	0.0034	4285
118.00	7770.00 w/ Mount Pipe	8	34.805	2.6265	0.0033	4149
108.00	ANT150D6-9	8	29.453	2.4597	0.0028	3579
22.00	KS24019-L112A	8	1.953	0.5172	0.0003	4240

Compression Checks

			Po	le Des	sign l	Data			
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	163.007 - 121.587 (1)	TP42.37x34.28x0.3125	41.42	0.00	0.0	40.5857	-16.25	2374.26	0.007
L2	121.587 - 84.67 (2)	TP48.83x40.6057x0.375	42.75	0.00	0.0	56.1470	-30.99	3284.60	0.009
L3	84.67 - 42.2067 (3)	TP56.25x46.7975x0.4375	49.13	0.00	0.0	75.4766	-46.41	4415.38	0.011
1.4	42 2067 0 (4)	TP63 5x53 016x0 5	40.70	0.00	0.0	00 0810	70.32	5848 80	0.012

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L1	163.007 -	TP42.37x34.28x0.3125	407.72	2309.38	0.177	0.00	2309.38	0.000
	121.587(1)							
L2	121.587 -	TP48.83x40.6057x0.375	1323.80	3734.23	0.355	0.00	3734.23	0.000
	84.67 (2)							
L3	84.67 -	TP56.25x46.7975x0.4375	2647.54	5807.86	0.456	0.00	5807.86	0.000
	42.2067 (3)							

Tower Engineering Professionals, Inc.

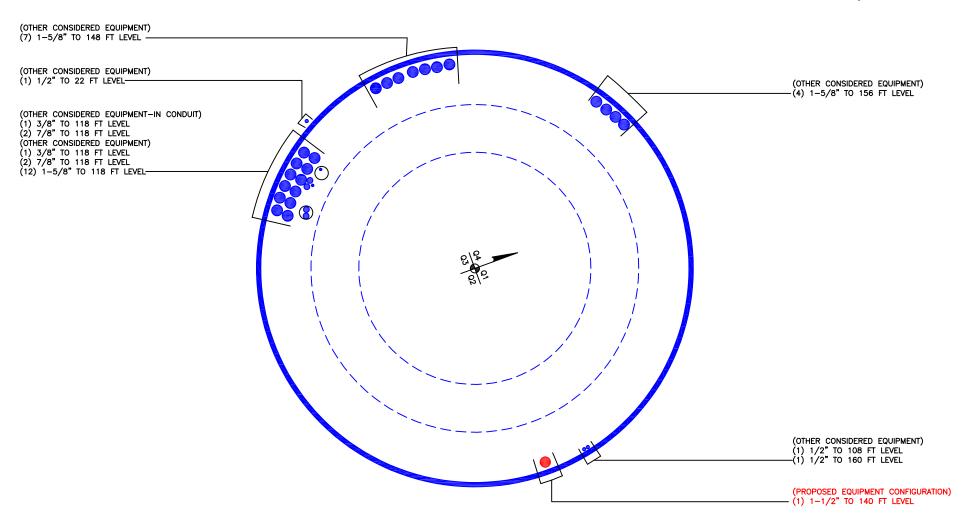
326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	N. Woodbury / Wolff Parcel (BU 876379)	19 of 19
Project		Date
	TEP No. 25647.591403	10:07:38 08/27/21
Client	Outside On all a	Designed by
	Crown Castle	SMA

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}		•	M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L4	42.2067 - 0 (4)	TP63.5x53.916x0.5	4501.41	8875.75	0.507	0.00	8875.75	0.000

Section No.	Elevation	Size	$Actual V_u$	ϕV_n	$Ratio\ V_u$	$Actual T_u$	ϕT_n	Ratio T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	163.007 - 121.587 (1)	TP42.37x34.28x0.3125	18.69	712.28	0.026	0.64	2552.38	0.000
L2	121.587 - 84.67 (2)	TP48.83x40.6057x0.375	29.16	985.38	0.030	1.35	4070.72	0.000
L3	84.67 - 42.2067 (3)	TP56.25x46.7975x0.4375	34.44	1324.61	0.026	1.35	6305.17	0.000
L4	42.2067 - 0 (4)	TP63.5x53.916x0.5	39.67	1754.67	0.023	1.23	9680.92	0.000

Pole	Interaction	Design	Data
------	-------------	--------	------


Section No.	Elevation	$Ratio$ P_u	Ratio M _{ux}	Ratio M _{uy}	Ratio V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	163.007 - 121.587 (1)	0.007	0.177	0.000	0.026	0.000	0.184	1.050	4.8.2
L2	121.587 - 84.67 (2)	0.009	0.355	0.000	0.030	0.000	0.365	1.050	4.8.2
L3	84.67 - 42.2067 (3)	0.011	0.456	0.000	0.026	0.000	0.467	1.050	4.8.2
L4	42.2067 - 0 (4)	0.012	0.507	0.000	0.023	0.000	0.520	1.050	4.8.2

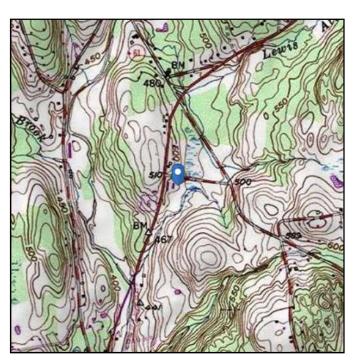
Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
L1	163.007 - 121.587	Pole	TP42.37x34.28x0.3125	1	-16.25	2492.97	17.5	Pass
L2	121.587 - 84.67	Pole	TP48.83x40.6057x0.375	2	-30.99	3448.83	34.7	Pass
L3	84.67 - 42.2067	Pole	TP56.25x46.7975x0.4375	3	-46.41	4636.15	44.5	Pass
L4	42.2067 - 0	Pole	TP63.5x53.916x0.5	4	-70.32	6141.33	49.5	Pass
							Summary	
						Pole (L4)	49.5	Pass
						RATING =	49.5	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 490.19 ft (NAVD 88)

Risk Category: || Latitude: 41.589947

Soil Class: D - Stiff Soil Longitude: -73.169867

Wind

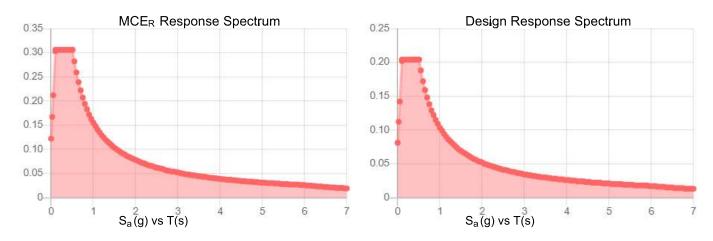
Results:

Wind Speed: 118 Vmph 120 Vmph per jurisdiction

10-year MRI76 Vmph25-year MRI85 Vmph50-year MRI90 Vmph100-year MRI97 Vmph

Date Socressed: ASCAE(SZE) Z0(20), Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.191	S _{DS} :	0.204	
S_1 :	0.065	S_{D1} :	0.103	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.099	
S _{MS} :	0.306	PGA _M :	0.159	
S _{M1} :	0.155	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Fri Aug 20 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Fri Aug 20 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

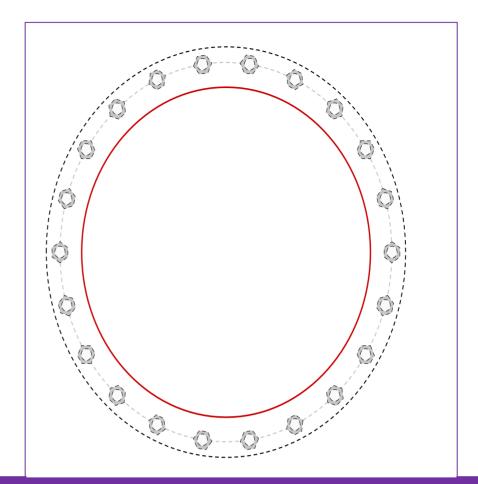
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Monopole Base Plate Connection



Site Info		
	BU #	876379
	Site Name	Woodbury / Wolff Par
	Order #	553370 Rev. 0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	0.75

Applied Loads	
Moment (kip-ft)	4501.00
Axial Force (kips)	70.00
Shear Force (kips)	40.00

^{*}TIA-222-H Section 15.5 Applied

Stress Rating:

Connection Properties

Anchor Rod Data

(22) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 73" BC

Base Plate Data

79" OD x 2.5" Plate (A871 Gr. 60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data

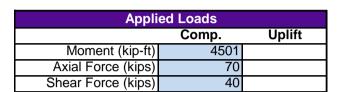
N/A

Pole Data

63.5" x 0.5" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 131.29	φPn_t = 243.75	Stress Rating
Vu = 1.82	φVn = 149.1	51.3%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	27.69	(Flexural)
Allowable Stress (ksi):	54	


48.8%

Pass

CCIplate - Version 4.1.2 Analysis Date: 8/27/2021

Drilled Pier Foundation

BU #: 876379
Site Name: N. Woodbury / Wolff Parcel
Order Number: 553370 Rev. 0
TIA-222 Revison: H
Tower Type: Monopole

Material Properties					
Concrete Strength, f'c:	4	ksi	Override (ksi)		
Rebar Strength, Fy:	60	ksi			
Tie Yield Strength, Fyt:	60	ksi			

Pier Design Data							
Depth	28	ft					
Ext. Above Grade	1	ft					
Pier	Section 1						
From 1' above gra	ade to 28' below g	ırade					
Pier Diameter	8	ft					
Rebar Quantity	32						
Rebar Size	11						
Clear Cover to Ties	4	in					
Tie Size	5						
Tie Spacing	12	in					

Analysis Results							
Soil Lateral Check	Compression	Uplift					
$D_{v=0}$ (ft from TOC)	7.60	-					
Soil Safety Factor	4.68	-					
Max Moment (kip-ft)	4759.32	-					
Rating*	27.1%	-					
Soil Vertical Check	Compression	Uplift					

542.87

Skin Friction (kips)

(ksi)	(ksi)	End Bearing (kips)	1318.34	-
		Weight of Concrete (kips)	211.52	-
		Total Capacity (kips)	1861.21	-
-		Axial (kips)	281.52	-
Rebar & Pi	er Options	Rating*	14.4%	-
}		Reinforced Concrete Flexure	Compression	Uplift
Embedded Pole Inputs		Critical Depth (ft from TOC)	7.28	-
Belled Pier Inputs		Critical Moment (kip-ft)	4758.32	-
		Critical Moment Capacity	9265.50	-
		Rating*	48.9%	-
'		Reinforced Concrete Shear	Compression	Uplift
		Critical Depth (ft from TOC)	25.42	-
		Critical Shear (kip)	217.07	-
		Critical Shear Capacity	1230.12	-
]		Rating*	16.8%	-

Structural Foundation Rating*	48.9%
Soil Interaction Rating*	27.1%

^{*}Rating per TIA-222-H Section 15.5

Groundwater Depth 14.5 # of Layers 5

Override

Layer	Top (ft)	Bottom (ft)	Thickness (ft)	Y _{soil} (pcf)	Yconcrete (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)		Ultimate Skin Friction Comp Override (ksf)	I IIItimate Skin I	Ult. Net Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	4	4	135	150	0	0	0.000	0.000	0.00	0.00			Cohesionless
2	4	5	1	135	150	0	38	0.000	0.000	0.00	0.00			Cohesionless
3	5	14.5	9.5	135	150	0	38	0.000	0.000	0.80	0.80			Cohesionless
4	14.5	15	0.5	75	87.6	0	38	0.000	0.000	0.80	0.80			Cohesionless
5	15	28	13	75	87.6	0	38	0.000	0.000	1.60	1.60	32		Cohesionless

Check Limitation	
Apply TIA-222-H Section 15.5:	▽
N/A	
Additional Longitudinal Reb	oar
Input Effective Depths (else Actual):	
Shear Design Options	
Check Shear along Depth of Pier:	
Utilize Shear-Friction Methodology:	
Override Critical Depth:	

Go to Soil Calculations

Shear-Friction Methodology is Applied

Exhibit E

Mount Analysis

Date: November 3, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: DISH Wireless Dish 5G

Carrier Site Number: BOHVN00030A Carrier Site Name: CT-CCI-T-876379

Crown Castle Designation: Crown Castle BU Number: 876379

Crown Castle Site Name: N. WOODBURY / WOLFF PARCEL

Crown Castle JDE Job Number: 645193 **Crown Castle Order Number:** 553370 Rev. 2

Engineering Firm Designation: Trylon Report Designation: 195375

Site Data: 1440 Main Street North, Woodbury, Litchfield County, CT, 06798

Latitude 41°35'23.81" Longitude -73°10'11.52"

Structure Information: Tower Height & Type: 160.0 ft Monopole

Mount Elevation: 140.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of DISH Wireless's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code . Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Vlad Barbu

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015IBC/2018 CTSBC

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 120 mph

Exposure Category: Topographic Factor at Base: 1.00 Topographic Factor at Mount: 1.00 Ice Thickness: 1.5 in Wind Speed with Ice: 40 mph Seismic Ss: 0.194 Seismic S₁: 0.065 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	table : ! represent Equipment comiguration							
Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details			
		3	JMA WIRELESS	MX08FRO665-21	8.0 ft Platform			
140.0	140.0	3	FUJITSU	TA08025-B604				
140.0	140.0	3	FUJITSU	TA08025-B605	[Commscope,			
		1	RAYCAP	RDIDC-9181-PF-48	MC-PK8-C]			

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

		1		
Document	Remarks	Reference	Source	
Crown Application	DISH Wireless Application	572910, Rev. 2	CCI Sites	
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon	

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Table & Medit Component Careson ver Capacity (Flatform, 7th Costoro)						
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail	
1,2	Mount Pipe(s)	MP9	140.0	36.8	Pass	
	Horizontal(s)	H1		11.0	Pass	
	Standoff(s)	M2		49.0	Pass	
	Bracing(s)	M1		37.6	Pass	
	Handrail(s)	M19		17.7	Pass	
	Plate(s)	M10		26.8	Pass	
	Mount Connection(s)	-		13.1	Pass	

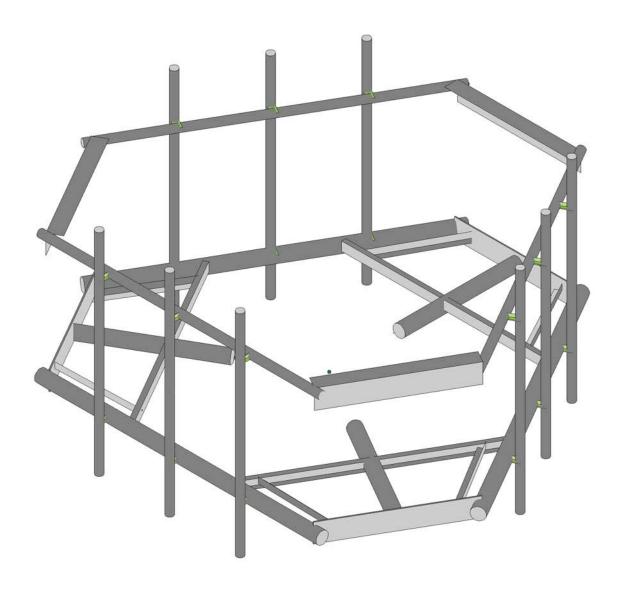
Structure Rating (max from all components) =	49.0%
--	-------

Notes:

2) Rating per TIA-222-H, Section 15.5

¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

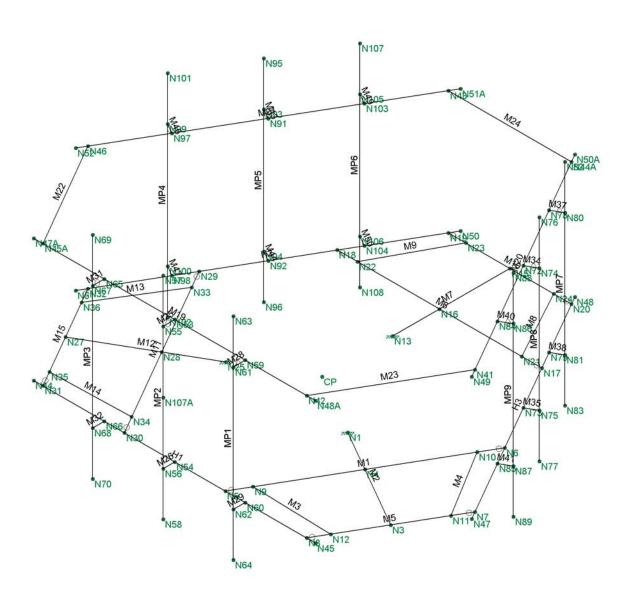
4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A WIRE FRAME AND RENDERED MODELS



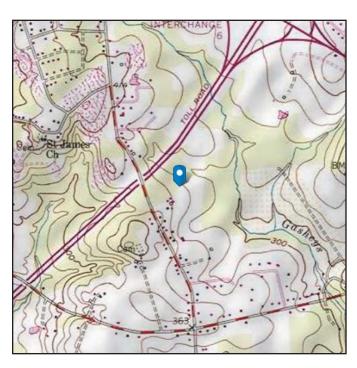
Envelope Only Solution

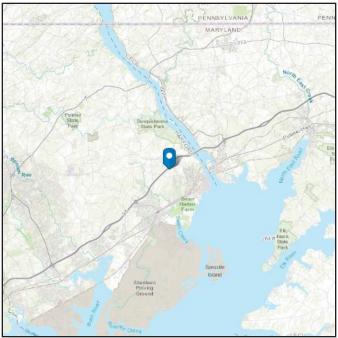
Trylon		SK - 1
VB	876379	Nov 3, 2021 at 2:24 PM
195375		876379_loaded.r3d

Envelope Only Solution

Trylon		SK - 2
VB	876379	Nov 3, 2021 at 2:24 PM
195375		876379_loaded.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS


Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 347.29 ft (NAVD 88)

Risk Category: II Latitude: 39.561386 Soil Class: D - Stiff Soil Longitude: -76.143906

Ice

Results:

Ice Thickness:0.75 in.Concurrent Temperature:15 FGust Speed:40 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Nov 03 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.1

PROJECT DATA	
Job Code:	195375
Carrier Site ID:	BOHVN00030A
Carrier Site Name:	CT-CCI-T-876379

CODES AND STANDARDS	
Building Code:	2015 IBC
Local Building Code:	Connecticut State Building
Design Standard:	TIA-222-H

STRUCTURE DETAILS		
Mount Type:	Platform	
Mount Elevation:	140.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	163.0	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	II	
Exposure Category:	С	
Site Class:	D - Default	
Ground Elevation:	490.19	ft.

TOPOGRAPHIC DATA		
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAM	IETERS	
Design Wind Speed:	120	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (K _z):	1.36	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q _z):	46.74	psf
Ground Elevation Factor (K _e):	0.98	

ICE PARAME	ETERS	
Design Ice Wind Speed:	40	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (qzi):	46.74	psf
Mount Ice Thickness (t _{iz}):	1.73	in

WIND STRUCTURE C	ALCULATIONS	
Flat Member Pressure:	84.13	psf
Round Member Pressure:	50.48	psf
Ice Wind Pressure:	4.77	psf

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.194	g
1 Second Accel (S ₁):	0.065	g
Short Period Des. (S _{DS}):	0.21	g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.10	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description
"	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	1	140	No Ice	8.01	3.21	82.50
			w/ Ice	9.62	4.62	284.74
TA08025-B604	1	140	No Ice	1.96	0.98	63.90
			w/ Ice	2.39	1.31	69.99
TA08025-B604	2	140	No Ice	1.96	0.98	63.90
			w/ Ice	2.39	1.31	69.99
TA08025-B605	3	140	No Ice	1.96	1.13	75.00
			w/ Ice	2.39	1.47	74.56
RDIDC-9181-PF-48	1	140	No Ice	2.01	1.17	21.85
			w/ Ice	2.44	1.53	73.49
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			w/ ICE			

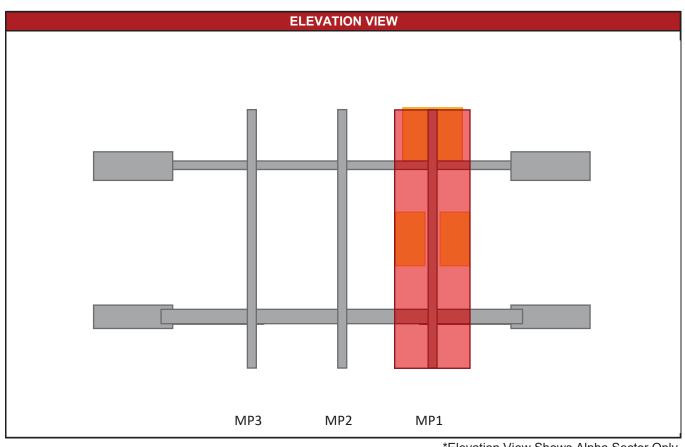
EQUIPMENT LOADING [CONT.]

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
-			w/ Ice			
			No Ice			
-			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

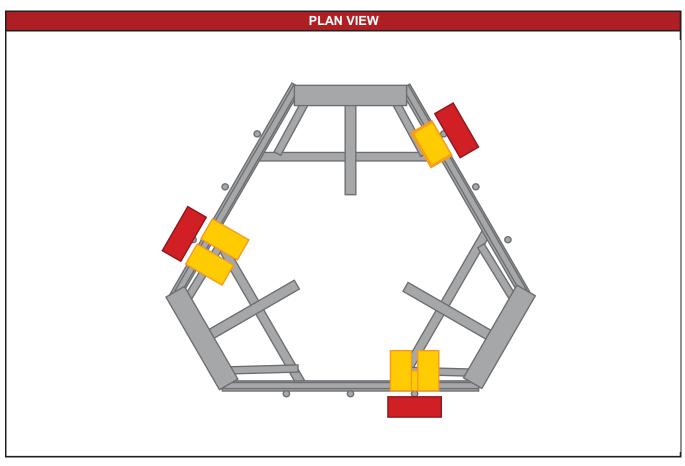
EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	K _z	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	1	140	1.00	1.36	0.95	1.73	46.74	5.19
TA08025-B604	1	140	1.00	1.36	0.95	1.73	46.74	5.19
TA08025-B604	2	140	1.00	1.36	0.95	1.73	46.74	5.19
TA08025-B605	3	140	1.00	1.36	0.95	1.73	46.74	5.19
RDIDC-9181-PF-48	1	140	1.00	1.36	0.95	1.73	46.74	5.19

EQUIPMENT LATERAL WIND FORCE CALCULATIONS


Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	1	No Ice	336.95	185.51	286.47	135.03	286.47	185.51
		w/ Ice	44.97	27.45	39.13	21.61	39.13	27.45
TA08025-B604	1	No Ice	82.60	51.60	72.27	41.27	72.27	51.60
		w/ Ice	11.16	7.39	9.90	6.13	9.90	7.39
TA08025-B604	2	No Ice	82.60	51.60	72.27	41.27	72.27	51.60
		w/ Ice	11.16	7.39	9.90	6.13	9.90	7.39
TA08025-B605	3	No Ice	82.60	56.28	73.83	47.51	73.83	56.28
		w/ Ice	11.16	7.96	10.09	6.89	10.09	7.96
RDIDC-9181-PF-48	1	No Ice	84.63	58.01	75.76	49.14	75.76	58.01
		w/ Ice	11.42	8.21	10.35	7.13	10.35	8.21
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		VV/ 10C			l .		l	

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]


Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	1	140	82.5	10.24
TA08025-B604	1	140	63.9	7.93
TA08025-B604	2	140	63.9	7.93
TA08025-B605	3	140	75	9.31
RDIDC-9181-PF-48	1	140	21.85	2.71

*Elevation View Shows Alpha Sector Only

1825 W. Walnut Hill Lane, Suite 120 Irving, Texas 75038

Equipment Name	Total Quantity	Antenna Centerline	Mount Pipe Positions	Equipment Azimuths
MX08FRO665-21	3	140	MP1/MP4/MP7	0/120/240
TA08025-B604	1	140	MP1	0
TA08025-B604	2	140	MP1	0
TA08025-B605	3	140	MP4/MP7	120/240
RDIDC-9181-PF-48	1	140	MP7	240

APPENDIX C SOFTWARE ANALYSIS OUTPUT

Company : Trylon Designer : VB Job Number : 195375 Model Name : 876379

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISI S100-12: LRFD
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Voc

Yes

No

1

8

REBAR SET ASTMA615

Unused Force Warnings?

Min 1 Bar Diam. Spacing?

Min % Steel for Column

Max % Steel for Column

Concrete Rebar Set

Company Designer Job Number : Trylon : VB

: 195375 : 876379

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	Density[k/ft	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[psi]	Fu[psi]
1	A653 SS Gr33	29500	11346	.3	.65	.49	33000	45000
2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Brac	L2x2x3	Beam	Single A	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bra	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Cor	L6.6"X4.46"X0.25"	Beam	Single A	A36 Gr.36	Typical	2.703	4.759	12.473	.055
7	Horizontals	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

Company : Trylon Designer : VB Job Number : 195375 Model Name : 876379

Nov 3, 2021 3:53 PM Checked By: CA

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Cold Formed Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	lyy [in4]	Izz [in4]	J [in4]	
1	CF1A	8CU1.25X057	Beam	None	A653 SS Gr33	Typical	.581	.057	4.41	.00063	1

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DL			-1		11		3	
2	Structure Wind X	WLX						51		
3	Structure Wind Y	WLY						51		
4	Wind Load 0 AZI	WLX					22			
5	Wind Load 30 AZI	None					22			
6	Wind Load 45 AZI	None					22			
7	Wind Load 60 AZI	None					22			
8	Wind Load 90 AZI	WLY					22			
9	Wind Load 120 AZI	None					22			
10	Wind Load 135 AZI	None					22			
11	Wind Load 150 AZI	None					22			
12	Ice Weight	OL1					11	51	3	
13	Ice Structure Wind X	OL2						51		
14	Ice Structure Wind Y	OL3						51		
15	Ice Wind Load 0 AZI	OL2					22			
16	Ice Wind Load 30 AZI	None					22			
17	Ice Wind Load 45 AZI	None					22			
18	Ice Wind Load 60 AZI	None					22			
19	Ice Wind Load 90 AZI	OL3					22			
20	Ice Wind Load 120 AZI	None					22			
21	Ice Wind Load 135 AZI	None					22			
22	Ice Wind Load 150 AZI	None					22			
23	Seismic Load X	ELX	124				11			
24	Seismic Load Y	ELY		124			11			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			

: 195375 : 876379 Nov 3, 2021 3:53 PM Checked By: CA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
34	Maintenance Load 1 (None					1			
35	Maintenance Load 2 (None					1			
36	Maintenance Load 3 (None					1			
37	Maintenance Load 4 (None					1			
38	Maintenance Load 5 (None					1			
39	Maintenance Load 6 (None					1			
40	Maintenance Load 7 (None					1			
41	Maintenance Load 8 (None					1			
42	Maintenance Load 9 (None					1			
43	BLC 1 Transient Area	None						9		
44	BLC 12 Transient Are	None						9		

Load Combinations

	Des cription	Sol	PDS	SRBLC	Fact.	BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact										
1	1.4DL	Yes	Υ	DL	1.4																		
2	1.2DL + 1	Yes	Υ	DL		2	1	3		4	1												
3	1.2DL + 1	Yes	Υ	DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1	Yes	Υ	DL		2	.707	3	.707	6	1												
5	1.2DL + 1	Yes	Υ	DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1	Yes	Υ	DL	1.2	2		3	1	8	1												
7	1.2DL + 1	Yes	Υ	DL	1.2	2	5	3	.866	9	1												
8	1.2DL + 1	Yes	Υ	DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1	Yes	Υ	DL	1.2	2	866	3	.5	11	1												
10	1.2DL + 1	Yes	Υ	DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1	Yes	Υ	DL	1.2	2	866	3	5	5	-1												
12	1.2DL + 1	Yes	Υ	DL	1.2	2	707	3	707	6	-1												
13	1.2DL + 1	Yes	Υ	DL	1.2	2	5	3	866	7	-1												
14	1.2DL + 1	Yes	Υ	DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1	Yes	Υ	DL	1.2	2	.5	3	866	9	-1												
16	1.2DL + 1	Yes	Υ	DL	1.2	2	.707	3	707	10	-1												
17	1.2DL + 1	Yes	Υ	DL	1.2	2	.866	3	5	11	-1												
18	0.9DL + 1	Yes	Υ	DL	.9	2	1	3		4	1												
19	0.9DL + 1	Yes	Υ	DL	9	2	.866	3	.5	5	1												
20	0.9DL + 1	Yes	Υ	DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1	Yes	Υ	DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1	Yes	Υ	DL	.9	2		3	1	8	1												
23	0.9DL + 1	Yes	Υ	DL	9	2	5	3	.866	9	1												
24	0.9DL + 1	Yes	Υ	DL	.9	2	707	3	.707	10	1												
	0.9DL + 1		Υ	DL	9	2	866	3	.5	11	1												
26	0.9DL + 1	Yes	Υ	DL	.9	2	-1	3		4	-1												
27	0.9DL + 1	Yes	Υ	DL	.9	2	866	3	5	5	-1												
28	0.9DL + 1	Yes	Υ	DL	.9	2	707	3	707	6	-1												
29	0.9DL + 1	Yes	Υ	DL	.9	2	5	3	866	7	-1												
30	0.9DL + 1	Yes	Υ	DL	.9	2		3	-1	8	-1												
31	0.9DL + 1	Yes	Υ	DL	.9	2	.5	3	866	9	-1												
32	0.9DL + 1	Yes	Υ	DL	.9	2	.707	3	707	10	-1												
33	0.9DL + 1	Yes	Υ	DL	.9	2	.866	3	5	11	-1												
34	1.2DL + 1	Yes	Υ	DL	1.2	OL1	1	13	1	14		15	1										
35	1.2DL + 1	Yes	Υ	DL	1.2	OL1	1	13	.866	14	.5	16	1										
36	1.2DL + 1	Yes	Υ	DL	1.2	OL1	1	13	.707	14	.707	17	1										

Load Combinations (Continued)

	Deceription C	ا اه'	חח	e D	DI C	Foot	DI C	Coot	DI C	Coot														
37	Description S		Υ	.лс	DL			1	13	.5		.866		1	.DLC	raci	.DLC	raci	.blc	ract	.blc	raci	.blc	raci.
38			Y		DL		OL1	1	13	.0	14	1	19	1										
39	1.2DL + 1 Y		Y		DL		OL1	-	13	5		.866		1										
	1.2DL + 1 Y		Y					1		707				1										
40					DL		_	1		866			21											
41			Υ		DL		OL1	1				.5	22	1										
42	1.2DL + 1 Y		Υ		DL		OL1	1	13	-1	14	_	15											
43	1.2DL + 1 Y	_	Υ		DL		OL1	1				5	16	-1										
44	1.2DL + 1 Y		Υ		DL	1.2		1		707		707	17	-1										
45	1.2DL + 1 Y	_	Υ		DL	1.2	_	1	13	5		866		-1										
46	1.2DL + 1 Y		Υ		DL		OL1	1	13		14	-1	19											
47	1.2DL + 1 Y	_	Υ		DL		OL1	1	13	.5		866		-1									\vdash	
48	1.2DL + 1 Y		Υ		DL	1.2		1	13				21	-1										
49	1.2DL + 1 Y	_	Υ		DL	_	OL1	1	13	.866	14	5	22	-1										
	(1.2+0.2S Y	_	Υ			1.241		1	24															
51	(1.2+0.2S Y		Υ			1.241				.5														
	(1.2+0.2S Y		Υ			1.241				.707														
53	(1.2+0.2S Y	_	Υ			1.241		.5	24	.866													\sqcup	
	(1.2+0.2S Y		Υ			1.241			24	1														
	(1.2+0.2S Y	_	Υ			1.241		5		.866														
	(1.2+0.2S Y		Υ			1.241				.707														
	\	_	Υ					866	24	.5														
	•	'es	Υ			1.241			24															
	\	'es	Υ		DL	1.241	23	866																
	\ \ \	'es	Υ		DL	1.241	23	707		707														
61	(1.2+0.2S Y	'es	Υ		DL	1.241	23	5	24	866														
62	(1.2+0.2S Y	'es	Υ		DL	1.241	23		24	-1														
63	(1.2+0.2S Y	'es	Υ		DL	1.241	23	.5		866														
64	(1.2+0.2S Y	'es	Υ		DL	1.241	23	.707	24	707														
65	(1.2+0.2S Y	'es	Υ		DL	1.241	23	.866	24	5														
66	(0.9-0.2SdY	'es	Υ		DL	.859	23	1	24															
67	(0.9-0.2SdY	'es	Υ		DL	.859		.866		.5														
68	(0.9-0.2SdY	_	Υ		DL	.859				.707														
69	(0.9-0.2SdY	_	Υ			.859		.5	24	.866													\Box	
	(0.9-0.2SdY	-	Υ			.859			24	1														
	(0.9-0.2SdY	_	Υ			.859		5		.866														
	(0.9-0.2SdY	-	Υ					707		.707														
	(0.9-0.2SdY		Y					866		.5														
	(0.9-0.2SdY	_				.859			24	.,														
	(0.9-0.2SdY							866		5														
	(0.9-0.2SdY							707																
	(0.9-0.2SdY					.859				866														
	(0.9-0.2SdY					.859				-1														
	(0.9-0.2SdY					.859	_			866														
	(0.9-0.2SdY		Y					.707																
	(0.9-0.2SdY		Y					.866																
	1.2DL + 1 Y		Y			1.2			24	5														
	1.2DL + 1 Y		Y																					
	1.2DL + 1 Y		Y			1.2																		
						1.2																		
	1.2DL + 1 Y					1.2																		
	1.2DL + 1 Y	_	_			1.2																		
	1.2DL + 1 Y					1.2																		
88	1.2DL + 1 Y	es	Υ		DL	1.2	31	1.5																

Company Designer Job Number : 876379

Load Combinations (Continued)

	Des cription	Sol F	פ חפ	SR BI	C.E	act	BLC.	Fact	BLC	: Fact	BI C	Fact	BLC	Fact	BLCI	Fact	BLC:	Fact	BLC	Fact	BI C	Fact	BLC	Fact
89	1.2DL + 1		Y	D	_	1.2	32		DLC	1 401	DLO	1 401		i act		aot	.DLO	i act		l act	L	1 401	DLO	ı acı.
- 00	1.2DL + 1		Y	D		1.2	33	1.5																
	1.2DL + 1		Y	D	-	1.2	34	1.5	2	.063	3		4	.063										
	1.2DL + 1		Y	D		1.2	34	1.5	2	.054		.031		.063										
	1.2DL + 1	_	Y	D		1.2	34	1.5	2	.044		.044		.063										
- 00	1.2DL + 1		Y		_	1.2	34		2	.031		.054		.063										
	1.2DL + 1		Y	D					2	.031	3													
	1.2DL + 1		Y	D		1.2	34	1.5	2	031	3	.063		.063										
	1.2DL + 1			D	_	1.2	34			044		.054		.063										
01	1.2DL + 1		Y	D		1.2	34	1.5	2		3	.044												
	1.2DL + 1		Y	D	_	1.2	34	1.5	2	054		.031		.063										
			Y	D		1.2	34	1.5	2	063	3	024	4	063										
	1.2DL + 1		Y	D		1.2		1.5	2	054	3	031	5	063										
	1.2DL + 1		Y	D		1.2	34	1.5	2	044	3	044	6	063										
	1.2DL + 1		Y	D		1.2	34	1.5	2	031	3	054		063										
	1.2DL + 1		Υ	D		1.2	34	1.5	2	00.4	3	063	8	063										
	1.2DL + 1		Y	D	_	1.2	34	1.5	2	.031	3	054		063										
	1.2DL + 1		Υ	D	_	1.2	34	1.5	2	.044		044		063										
	1.2DL + 1		Y	D		1.2	34		2	.054		031		063										
	1.2DL + 1		Υ	<u>D</u>		1.2	35	1.5	2	.063			4	.063										
	1.2DL + 1		Υ	D		1.2	35	1.5	2	.054		.031		.063										
	1.2DL + 1		Υ	<u>D</u>		1.2	35	1.5	2	.044		.044		.063										
	1.2DL + 1		Υ	D		1.2	35		2	.031		.054		.063										
	1.2DL + 1		Υ	D		1.2	35	1.5	2		3	.063		.063										
	1.2DL + 1		Υ	D		1.2	35		2	031	3	.054		.063										
	1.2DL + 1		Υ	D	_	1.2	35		2	044	3	.044		.063										
	1.2DL + 1		Υ	D	_	1.2	35		2	054		.031	11	.063										
	1.2DL + 1		Υ	D	<u>L 1</u>	1.2	35	1.5	2	063	3		4	063										
	1.2DL + 1		Υ	D	L 1	1.2	35	1.5	2	054	3	031	5	063										
	1.2DL + 1		Υ	D	L 1	1.2	35	1.5	2	044	3	044	6	063										
	1.2DL + 1		Υ	D	L 1	1.2	35	1.5	2	031	3	054	7	063										
	1.2DL + 1		Υ	D	L 1	1.2	35	1.5	2		3	063	8	063										
	1.2DL + 1		Υ	D	L 1	1.2	35	1.5	2	.031	3	054	_	063										
121	1.2DL + 1	Yes	Υ	D	L 1	1.2	35	1.5	2	.044	3	044	10	063										
122	1.2DL + 1	Yes	Υ	D	L 1	1.2	35	1.5	2	.054	3	031	11	063										
	1.2DL + 1		Υ	D	L 1	1.2	36	1.5	2	.063	3		4	.063										
124	1.2DL + 1	Yes	Υ	D		1.2	36		2	.054		.031	5	.063										
125	1.2DL + 1	Yes	Υ	D	L 1	1.2	36		2	.044	3	.044	6	.063										
126	1.2DL + 1	Yes	Υ	D	_			1.5		.031		.054		.063										
	1.2DL + 1		Υ	D		1.2	36		2		3	.063		.063										
	1.2DL + 1		Υ					1.5	2	031		.054		.063										
	1.2DL + 1		Y				36		2	044				.063										
	1.2DL + 1		Υ				36		2	054		.031		.063										
	1.2DL + 1		Y		_		36		2	063			4	063										
	1.2DL + 1		Y				36		2	054		031		063										
	1.2DL + 1		Y		_		36		2	044		044		063										
	1.2DL + 1		Y	D			36		2	031		054		063										
	1.2DL + 1		Ÿ	D			36		2		3	063		063										
	1.2DL + 1		Y				36		2	.031		054	_	063										
	1.2DL + 1		Y				36		2	.044		044	_											
	1.2DL + 1		Y				36		2	.054		031		063										
	1.2DL + 1		Y		_			1.5	2	.063		.001	4	.063										
	1.2DL + 1		-						2			024	_											
140	1.ZDL T 1	1 65	ĭ	טן		1.2	3/	1.5		.054	3	.031	ວ	.063										

Nov 3, 2021

Checked By: CA

3:53 PM

Load Combinations (Continued)

Loud	Combinat	ЮП	3 (0011	inrac	,u _j																	
D	Description Sol.	.PD.	.SRBLC	Fact.	.BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	.BLC I	Fact	.BLC	Fact	.BLC	Fact	.BLC F	act!	BLC	Fact.
141 1.	.2DL + 1 Yes	Y	DL	1.2	37	1.5	2	.044	3	.044	6	.063										
142 1.	.2DL + 1 Yes	Y	DL		37	1.5	2	.031		.054		.063										
	.2DL + 1 Yes		DL		37	1.5	2		3	.063		.063									\neg	
	.2DL + 1 Yes		DL		37	1.5	2	031		.054		.063										
	.2DL + 1 Yes		DL		37	1.5	2	044		.044												
	.2DL + 1 Yes		DL		37	1.5	2	054		.031	11	.063										
	.2DL + 1 Yes		DL			1.5	2	063	3	.031	4	063										
	.2DL + 1Yes							054		031	5	063										
	.2DL + 1Yes		DL			1.5	2	044		031		063							-			
		_	DL	1.2	37	1.5	2				6											
	.2DL + 1 Yes		DL	1.2	37	1.5	2	031	3	054	7	063 063							-			
	.2DL + 1 Yes		DL	1.2	37	1.5	2	004	3	063	8											
	.2DL + 1 Yes		DL	1.2	37	1.5	2	.031		054	9	063								_	\rightarrow	
	.2DL + 1 Yes		DL	1.2	37	1.5	2	.044		044		063							\vdash	_		
	.2DL + 1 Yes		DL	1.2	37	1.5	2	.054		031	11	063							-		\rightarrow	
	.2DL + 1 Yes		DL	_	38	1.5	2	.063			4	.063							$\perp \perp$			
	.2DL + 1 Yes		DL		38	1.5	2	.054		.031		.063										
	.2DL + 1 Yes		DL		38	1.5	2	.044		.044		.063										
	.2DL + 1 Yes		DL		38	1.5	2	.031		.054		.063										
	.2DL + 1 Yes		DL	1.2	38	1.5	2	_	3	.063		.063										
	.2DL + 1 Yes		DL		38	1.5	2	031		.054		.063										
	.2DL + 1 Yes	_	DL	_	38	1.5	2	044		.044									$\perp \perp$			
	.2DL + 1 Yes	_	DL	_	38	1.5	2	054		.031	11	.063										
	.2DL + 1 Yes	_	DL	1.2	38	1.5	2	063			4	063										
164 1.	.2DL + 1 Yes	Y	DL	1.2	38	1.5	2	054	3	031	5	063										
165 1.	.2DL + 1 Yes	Y	DL	1.2	38	1.5	2	044	3	044	6	063										
166 1.	.2DL + 1 Yes	Y	DL	1.2	38	1.5	2	031	3	054	7	063										
167 1.	.2DL + 1 Yes	Y	DL	1.2	38	1.5	2		3	063	8	063										
168 1.	.2DL + 1 Yes	Y	DL	1.2	38	1.5	2	.031	3	054	9	063										
169 1.	.2DL + 1 Yes	Y	DL		38	1.5	2	.044		044	10	063										
170 1.	.2DL + 1 Yes		DL		38	1.5	2	.054		031		063										
	.2DL + 1 Yes		DL		39	1.5	2	.063			4	.063								\neg		
	.2DL + 1 Yes		DL		39	1.5	2	.054		.031		.063										
	.2DL + 1 Yes		DL		39	1.5	2	.044		.044		.063								-		
	.2DL + 1 Yes		DL		39	1.5	2	.031		.054		.063										
	.2DL + 1 Yes		DL	1.2	39	1.5	2	.001	3	.063		.063								-		
	.2DL + 1 Yes		DL		39	1.5	2	031		.054		.063										
	.2DL + 1 Yes			1.2				044		.044												
	.2DL + 1 Yes			1.2			2	054		.031												
	.2DL + 1 Yes			1.2			2	063		.001	4	063	$\overline{}$									
_	.2DL + 1Yes		DL				2	054		031		063										
	.2DL + 1Yes			1.2			2	044		044		063								-	-	
	.2DL + 1Yes					1.5		031		054		063										
		_	DL	_	39		2	2.031		063		063										
	.2DL + 1 Yes		DL	_	39	1.5	2	004	3	_	8											
	.2DL + 1 Yes		DL		39	1.5	2	.031		054	_	063										
	.2DL + 1 Yes		DL	_	39	1.5	2	.044		044		063										
	.2DL + 1 Yes		DL	_	39	1.5	2	.054		031		063										
	.2DL + 1Yes			1.2		1.5	2	.063			4	.063										
	.2DL + 1 Yes			1.2			2	.054		.031		.063	$\overline{}$									
	.2DL + 1 Yes			1.2	40	1.5	2	.044		.044		.063	-									
	.2DL + 1 Yes			1.2	40	1.5	2	.031		.054		.063	$\overline{}$									
	.2DL + 1 Yes	_		1.2	40		2		3	.063		.063										
192 1.	.2DL + 1 Yes	Y	DL	1.2	40	1.5	2	031	3	.054	9	.063										

Nov 3, 2021 3:53 PM Checked By: CA

Load Combinations (Continued)

	Description Sol	ם מפ	SP BI	C Eact	BI C	Fact	BLC	Fact	BI C	Fact	BI C	Fact	BI C Fa	+ BIC	Eact	BLC	Fact	BLC Fact	BLC	Fact
193	1.2DL + 1 Yes	Y	D		40	1.5	2	044	3	.044			.DLC i a	,tb_c	l act	bLC	i act	DECTACE	blc	i act
194		Y	D		40	1.5	2	054	3	.031	11									
195	1.2DL + 1Yes	Ÿ	D		40	1.5	2	063	3	.001	4	063								
	1.2DL + 1Yes	Y	D		40	1.5	2	054	3	031	5	063								
197	1.2DL + 1 Yes	Ÿ	D		40	1.5	2	044	3	044	6	063								
198	1.2DL + 1 Yes	Υ	D		40	1.5	2	031	3	054	7	063								
	1.2DL + 1 Yes	Y	D		40	1.5	2		3	063	8	063								
200	1.2DL + 1 Yes	Υ	D		40	1.5	2	.031	3	054	9	063								
201	1.2DL + 1 Yes	Υ	D		40	1.5	2	.044	3	044	10	063								
202	1.2DL + 1 Yes	Υ	D		40	1.5	2	.054	3	031	11	063								
203	1.2DL + 1 Yes	Υ	D		41	1.5	2	.063	3		4	.063								
204	1.2DL + 1 Yes	Υ	D	1.2	41	1.5	2	.054	3	.031	5	.063								
	1.2DL + 1 Yes	Υ	D	_ 1.2	41	1.5	2	.044	3	.044	6	.063								
206	1.2DL + 1 Yes	Υ	D	_ 1.2	41	1.5	2	.031	3	.054	7	.063								
207	1.2DL + 1 Yes	Υ	D	_ 1.2	41	1.5	2		3	.063	8	.063								
208	1.2DL + 1 Yes	Υ	D	1.2	41	1.5	2	031	3	.054	9	.063								
209	1.2DL + 1Yes	Υ	D	_ 1.2	41	1.5	2	044	3	.044	10	.063								
210	1.2DL + 1 Yes	Υ	D		41	1.5	2	054	3	.031	11	.063								
211	1.2DL + 1 Yes	Υ	D		41	1.5	2	063	3		4	063								
212	1.2DL + 1 Yes	Υ	D	_ 1.2	41	1.5	2	054	3	031	5	063								
213	1.2DL + 1Yes	Υ	D		41	1.5	2	044	3	044	6	063								
214		Υ	D		41	1.5	2	031	3	054	7	063								
215	1.2DL + 1Yes	Υ	D		41	1.5	2		3	063	8	063								
	1.2DL + 1Yes	Υ	D		41	1.5	2	.031	3	054	9	063								
217	1.2DL + 1Yes	Υ	D		41	1.5	2	.044	3	044	10	063								
218	1.2DL + 1 Yes	Υ	D		41	1.5	2	.054	3	031	11	063								
	1.2DL + 1Yes	Υ	D		42	1.5	2	.063	3		4	.063							\perp	
	1.2DL + 1 Yes	Υ	D		42	1.5	2	.054	3	.031	5	.063								
221	1.2DL + 1Yes	Υ	D		42	1.5	2	.044	3	.044	6	.063								
222	1.2DL + 1 Yes	Y	D		42	1.5	2	.031	3	.054	7	.063								
223	1.2DL + 1 Yes	Y	D		42	1.5	2	001	3	.063	8	.063								
224		Y	D		42	1.5	2	031	3	.054	9	.063								
225	1.2DL + 1Yes	Y	D		42	1.5	2	044	3	.044	10	.063								
226	1.2DL + 1 Yes	Y	D		42	1.5	2	054	3	.031	11	.063								
	1.2DL + 1Yes	Υ	D		42	1.5	2	063	3	0.24	4	063								
228	1.2DL + 1 Yes	Y	D		42	1.5	2	054	3	031	5	063								
229	1.2DL + 1Yes	Y	D		42	1.5	2	044	3	044	6	063								
230	1.2DL + 1 Yes	Y	D	_	42	1.5	2	031	3	054	7	063								
231	1.2DL + 1Yes	Y	D		42	1.5	2	004	3	063	8	063								
232	1.2DL + 1 Yes	Y	D		42	1.5	2	.031	3	054	9	063 063								
233	1.2DL + 1Yes	Y	D		42	1.5	2	.044	3	044 031	10	063								
234	I.ZDL + I Yes	Υ	D	_ 1.2	42	1.5	2	.054	3	031	11	003								

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1580.373	3	1042.089	20	1924.316	39	371.517	31	403.121	33	1871.588	19
2		min	-1575.751	27	-1045.918	12	-45.71	31	-3526.338	39	-2015.365	130	-1875.937	11
3	N1	max	1648.59	17	939.302	8	1948.978	45	3380.322	45	423.062	19	1904.306	25
4		min	-1645.354	25	-930.732	32	-46.844	21	-358.367	21	-2371.293	43	-1910.258	17
5	N13	max	426.208	18	1610.994	22	1806.386	34	710.286	167	3744.409	34	1576.025	30

Company : Trylon Designer : VB Job Number : 195375 Model Name : 876379

Nov 3, 2021 3:53 PM Checked By: CA

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
6		min	-434.519	10	-1615.468	14	-140.742	26	-679.47	223	-632.037	26	-1575.896	6
7	Totals:	max	3263.223	18	3032.771	22	5423.23	42						
8		min	-3263.227	10	-3032.772	14	1362.469	67						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

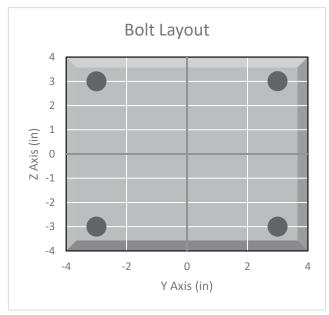
	Member	Shape	Code Check	Loc[in]	LC	Shear.	.Loc[in]	Dir LC phi*Pncphi*Pntphi*Mnphi*MnCb
1	M2	PIPE 3.5	.515	40	45	.204	40	9 64491.4. 78750 7953.75 7953.75 2 H1-1b
2	M12	PIPE 3.5	.504	40	39	.183	40	3 64491.4 78750 7953.75 7953.75 2 H1-1b
3	M7	PIPE 3.5	.471	40	34	.165	40	14 64491.4 78750 7953.75 7953.75 2 H1-1b
4	MP9	PIPE 2.0	.387	57	2	.031	57	3 20866.7 32130 1871.625 1871.625 1 H1-1b
5	M1	C3X5	.386	34.8	45	.138	63.1	y 41 32858.7 47628 981.263 4104 1 H1-1b
6	M11	C3X5	.381	34.8	40	.139	63.1	y 35 32858.7 47628 981.263 4104 1 H1-1b
7	MP1	PIPE 2.0	.378	57	16	.049	57	17 20866.7 32130 1871.625 1871.625 1 H1-1b
8	MP3	PIPE 2.0	.373	57	5	.045	57	10 20866.7 32130 1871.625 1871.625 1 H1-1b
9	MP8	PIPE 2.0	.372	57	10	.041	57	14 20866.7 32130 1871.625 1871.625 1 H1-1b
10	MP4	PIPE 2.0	.360	57	11	.052	57	11 20866.7 32130 1871.625 1871.625 1 H1-1b
11	MP2	PIPE 2.0	.358	57	5	.058	57	9 20866.7 32130 1871.625 1871.625 1 H1-1b
12	M6	C3X5	.355	34.8	34	.130	63.1	y 46 32858.7 47628 981.263 4104 1 H1-1b
13	MP7	PIPE 2.0	.340	57	10	.042	15	17 20866.7 32130 1871.625 1871.625 1 H1-1b
14	MP6	PIPE 2.0	.335	57	15	.032	57	9 20866.7 32130 1871.625 1871.625 1 H1-1b
15	MP5	PIPE 2.0	.331	57	16	.049	57	3 20866.7 32130 1871.625 1871.625 1 H1-1b
16	M15	6.5"x0.37"	.282	21	7	.097	21	y 37 27548.275757.5 583.963 6290.07 1 H1-1b
17	M10	6.5"x0.37"	.271	21	2	.091	21	y 48 27548.2 75757.5 583.963 6305.3721 H1-1b
18	M5	6.5"x0.37"	.267	21	12	.101	21	y 42 27548.2 75757.5 583.963 6633.7981 H1-1b
19	M13	L2x2x3	.194	0	14	.027	0	z 43 18084.2 23392.8 557.717 1182.442 1 H2-1
20	M19	PIPE 2.0	.186	72	10	.173	72	2 14916.0 32130 1871.625 1871.625 1 H1-1b
21	M3	L2x2x3	.185	0	3	.027	0	z 49 18084.2 23392.8 557.717 1182.442 1 H2-1
22	M20	PIPE 2.0	.171	72	15	.164	72	8 14916.0 32130 1871.625 1871.625 1 H1-1b
23	M8	L2x2x3	.160	0	10	.026	0	z 38 18084.2 23392.8 557.717 1182.442 1 H2-1
24	M21	PIPE 2.0	.154	72	5	.147	72	13 14916.0 32130 1871.625 1871.625 1 H1-1b
25	M4	L2x2x3	.149	0	13	.029	0	y 41 18084.2 23392.8 557.717 1182.442 1 H2-1
26	M9	L2x2x3	.136	0	2	.028	0	y 47 18084.2 23392.8 557.717 1182.442 1 H2-1
27	M14	L2x2x3	.122	0	7	.030	0	y 36 18084.2 23392.8 557.717 1182.442 1 H2-1
28	H1	PIPE 3.5	.113	72	121	.116	24	10 60666.1 78750 7953.75 7953.75 1 H1-1b
29	Н3	PIPE 3.5	.112	31	10	.111	24	16 60666.1 78750 7953.75 7953.75 1 H1-1b
30	H2	PIPE 3.5	.108	72	212	.100	24	5 60666.1 78750 7953.75 7953.75 1 H1-1b
31	M23	L6.6"X4.46	.082	0	26	.045	0	y 9 51170.9 87561 2464.809 7125.374 1 H2-1
32	M22	L6.6"X4.46	.076	0	21	.042	42	z 4 51170.9 87561 2464.809 7125.374 1 H2-1
33	M24	L6.6"X4.46	.072	0	32	.041	0	y 14 51170.9 87561 2464.809 7125.374 1 H2-1

Envelope AISI S100-12: LRFD Cold Formed Steel Code Checks

Member Shape Code...Loc[in] LC Shear..Loc[in] Dir LC phi*Pn[lb]phi*Tn[lb] phi*Mny...phi*Mnz... Cb Cmyy Cmzz Eqn No Data to Print ...

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 11/3/2021



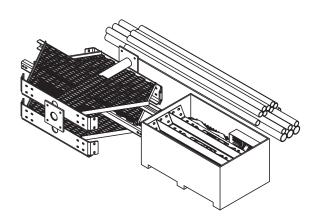
BOLT TOOL 1.5.2

Project Data								
Job Code:	195375							
Carrier Site ID:	BOHVN00030A							
Carrier Site Name:	CT-CCI-T-876379							

Code								
Design Standard:	TIA-222-H							
Slip Check:	No							
Pretension Standard:	AISC							

Bolt Pro	Bolt Properties										
Connection Type:	Bolt										
Diameter:	0.625	in									
Grade:	A325										
Yield Strength (Fy):	92	ksi									
Ultimate Strength (Fu):	120	ksi									
Number of Bolts:	4										
Threads Included:	Yes										
Double Shear:	No										
Connection Pipe Size:	-	in									

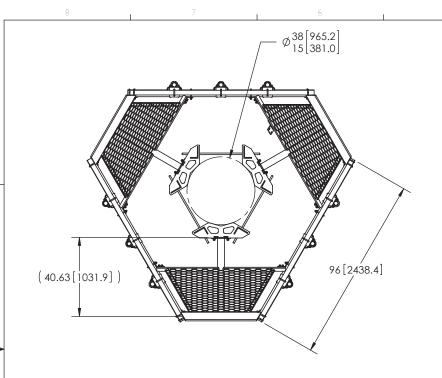
Connection Description	
Standoff to Tower Collar	

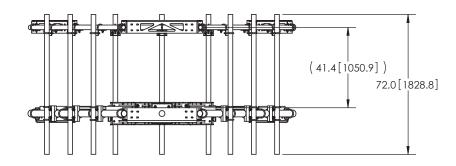

Bolt Check*											
Tensile Capacity (ϕT_n) :		lbs									
Shear Capacity (ϕV_n) :	13805.8	lbs									
Tension Force (T _u):	2793.5	lbs									
Shear Force (V _u):	236.2	lbs									
Tension Usage:	13.1%										
Shear Usage:	1.6%										
Interaction:	13.1%	Pass									
Controlling Member:	M7										
Controlling LC:	2										

^{*}Rating per TIA-222-H Section 15.5

APPENDIX E SUPPLEMENTAL DRAWINGS

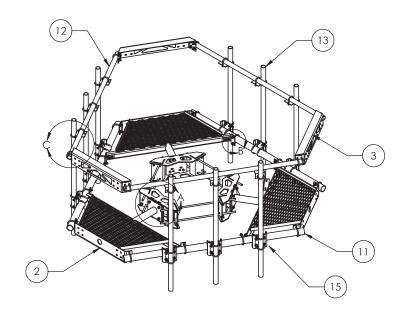
	REVISIONS										
REV.	ECN	DESCRIPTION	BY	DATE							
Α		INITIAL RELEASE	DRR	12/27/11							
В	8000005979	CHANGE NOSE CORNER BRKT, ADD GUB-4240	MSM	11/25/14							
С	8000007579	NEW RINGMOUNT WELDMENT DESIGN	RJC	04/07/15							

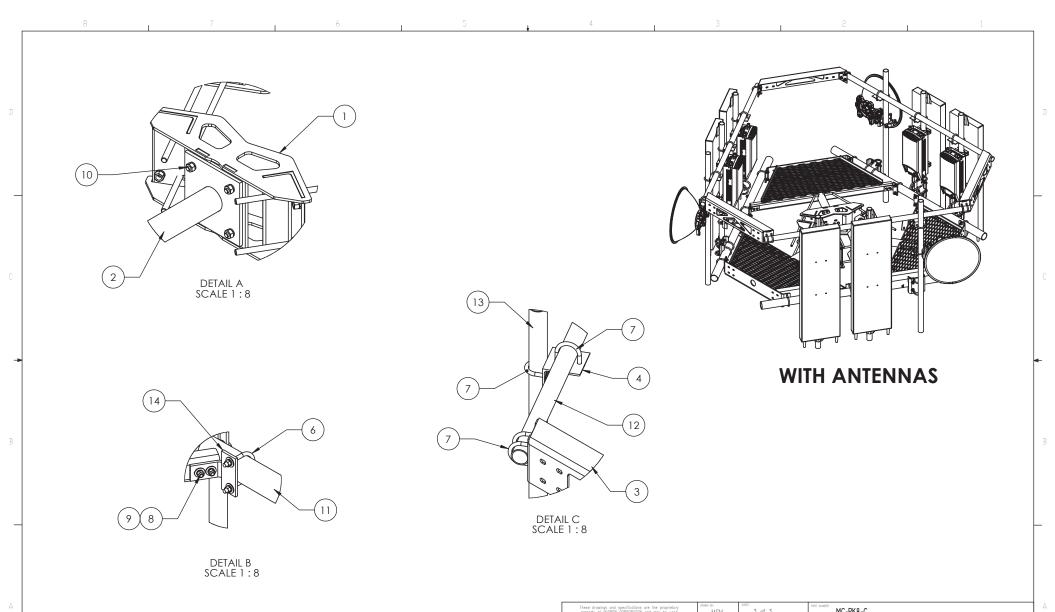

FOR BOM ENTRY ONLY



NOTES:

1. CUSTOMER ASSEMBLY SHEETS 2-3.


property of ANDREW CORPORATION and may be only for the specific purpose authorized in writ Andrew Corporation.	be used iriting by	MSM	1 of 3	MC-PK8-C
Andrew Corporation. DIMENSIONS ARE IN INCHES U.O.S. ERANCES UNLESS OTHERWISE SPECIFIED:		оножа ву: ТР	NTS	LOW PROFILE PLATFORM KIT 8' FACE
$X = \pm .12$ ANGLES $X = \pm .06$ FRACTIONS	±2° ±1/32	10/18/11	A36, A500	ASSEMBLY DRAWING
.XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005	11/02	REVISION:	GALV A123	WESTCHESTER, IL, 60154
DO NOT SCALE THIS PRIN	NT	C	1410.14 LBS	


NOTES:

- 1. ALL METRIC DIMENSIONS ARE IN BRACKETS.
 2. WILL FIT MONOPOLES 15"-38" OD.

	ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT
>[1	MC-RM1550-3	12" - 50" OD RINGMOUNT	1	230.42 LBS
	2	MTC300601	Low Profile Co-Location Platform Snub Nose	3	134.21 LBS
	3	MT195801	Corner Weldment Snub Nose Handrail	3	27.10 LBS
	4	XA2020.01	CROSS OVER ANGLE	9	2.65 LBS
	5	GUB-4356	1/2" X 3-5/8" X 6" GALV U-BOLT	18	0.82 LBS
	6	GUB-4355	1/2" X 3-5/8" X 5" GALV U-BOLT	12	0.71 LBS
	7	GUB-4240	1/2" X 2-1/2" X 4" GALV U-BOLT	48	0.56 LBS
	8	GB-04145	1/2" X 1-1/2" GALV BOLT KIT	12	0.13 LBS
	9	GWF-04	1/2" GALV FLAT WASHER	24	0.03 LBS
	10	GB-0520A	5/8" X 2" GALV BOLT KIT (A325)	12	0.27 LBS
	11	MT54796	3.50" OD X 96" GALV PIPE	3	60.28 LBS
	12	MT-651-96	Ø 2.375" OD X 96" PIPE	3	29.07 LBS
Ī	13	MT-651	2.375" OD x 72" PIPE	9	21.80 LBS
Ī	14	MT19617	MT196 Pipe Mount Plate	6	2.49 LBS
	15	MT21701	PIPE MOUNT PLATE	9	7.93 LBS

These drawings and specifications are the proprietary property of ANDREW CORPORATION and may be used only for the specific purpose authorized in writing by Andrew Corporation.	MSM	2 of 3	MC-PK8-C
ALL DIMENSIONS ARE IN INCHES U.O.S.	снеже вт: ТР	NTS	pescention: 25" OD Snub Nose MT-196
TOLERANCES UNLESS OTHERWISE SPECIFIED: $X = \pm .12$ ANGLES $\pm 2^{\circ}$ $XX = \pm .06$ FRACTIONS $\pm 1/32$	10/18/11	A36, A53	SPARING THE ASSEMBLY DRAWING
.XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005	REVISION:	GALV A123	WESTCHESTER, IL. 60154
DO NOT SCALE THIS PRINT		1361.27 LBS	ANDREW ® U.S.A.

NOTES:

1. ALL METRIC DIMENSIONS ARE IN BRACKETS.

	property of ANDREW CORPORATION and may be only for the specific purpose authorized in writing Andrew Corporation.	e used iting by	MSM	3 of 3	MC-PK8-C
	ALL DIMENSIONS ARE IN INCHES U.O.S.		онежев ву: ТР	NTS	25" OD Snub Nose MT-196
	TOLERANCES UNLESS OTHERWISE SPECIFIED: $.X = \pm .12$ ANGLES $.XX = \pm .06$ FRACTIONS	±2" ±1/32	10/18/11	A36, A53	DRAWING THE ASSEMBLY DRAWING
	.XXX= ± .03	,	REVISION:	GALV A123	WESTCHESTER, IL, 60154
F	REMOVE BURRS AND BREAK EDGES .005 DO NOT SCALE THIS PRINT		C	1361.27 LBS	ANDREW & U.S.A.
_					

8

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 876379

BOHVN00030A 1440 Main Street North Woodbury, Connecticut 06798

May 17, 2022

EBI Project Number: 6222003250

Site Compliance Summary						
Compliance Status:	COMPLIANT					
Site total MPE% of FCC general population allowable limit:	24.54%					

May 17, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 876379 - BOHVN00030A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **1440 Main Street**North in Woodbury, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1440 Main Street North in Woodbury, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n7l channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 140 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	I 40 feet	Height (AGL):	140 feet	Height (AGL):	140 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (W):	1,424.17	ERP (W):	1,424.17	ERP (W):	1,424.17
Antenna A1 MPE %:	0.42%	Antenna B1 MPE %:	0.42%	Antenna C1 MPE %:	0.42%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	0.42%			
Sprint	2.3%			
T-Mobile	5.58%			
Verizon	8.92%			
AT&T	7.32%			
Site Total MPE % :	24.54%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	0.42%			
Dish Wireless Sector B Total:	0.42%			
Dish Wireless Sector C Total:	0.42%			
Site Total MPE % :	24.54%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	140.0	0.89	600 MHz n71	400	0.22%
Dish Wireless 1900 MHz n70	4	245.22	140.0	1.96	1900 MHz n70	1000	0.20%
						Total:	0.42%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	0.42%		
Sector B:	0.42%		
Sector C:	0.42%		
Dish Wireless Maximum MPE % (Sector A):	0.42%		
(occioi 71).			
Site Total:	24.54%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **24.54**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

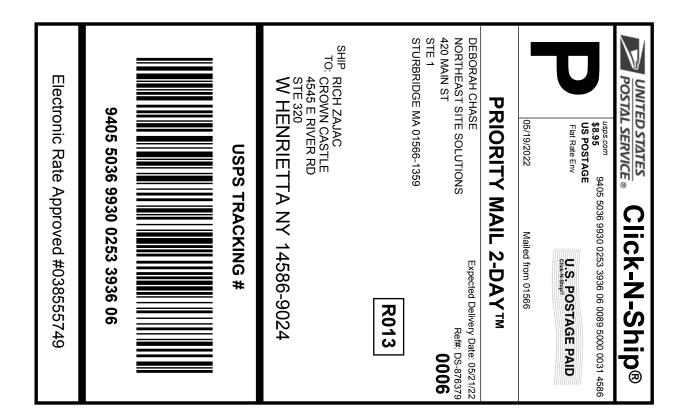
Site Acquisition Specialist

Crown Castle telecommunications site at:

1440 MAIN STREET NORTH, WOODBURY, CT 06798

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 876379/N. WOODBURY / WOLFF PARCEL


Customer Site ID: BOHVN00030A/CT-CCI-T-876379

Site Address: 1440 Main Street North, WOODBURY, CT 06798

By: Date: 5/17/2022
Richard Zajac

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0253 3936 06

563888623 05/19/2022 Trans. #: Print Date: Ship Date: 05/19/2022 05/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-876379

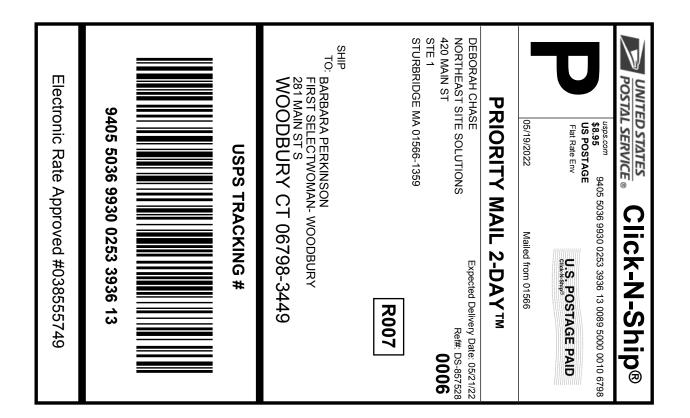
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0253 3936 13

563888623 05/19/2022 Trans. #: Print Date: Ship Date: 05/19/2022 05/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-857528

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


BARBARA PERKINSON

FIRST SELECTWOMAN- WOODBURY

281 MAIN ST S

WOODBURY CT 06798-3449

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0253 3936 37

563888623 05/19/2022 Trans. #: Print Date: Ship Date: 05/19/2022 05/21/2022 Delivery Date:

Priority Mail® Postage: \$8.95 \$8.95 Total:

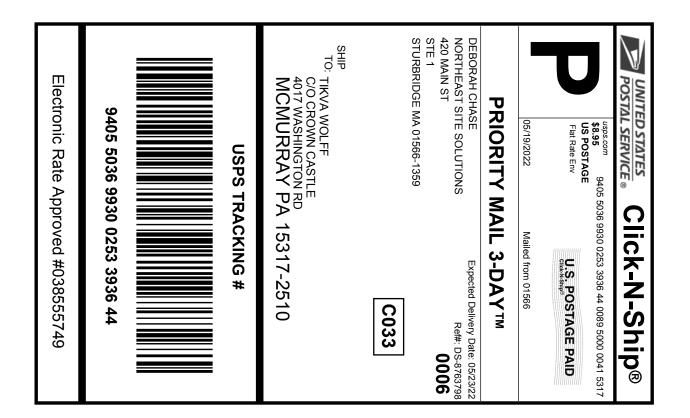
Ref#: DS-876379

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

WILLIAM AGRESTA

TOWN PLANNER 281 MAIN ST S

WOODBURY CT 06798-3449

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0253 3936 44

563888623 05/19/2022 Trans. #: Print Date: Ship Date: 05/19/2022 05/23/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-8763798

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

TIKVA WOLFF

C/O CROWN CASTLE 4017 WASHINGTON RD MCMURRAY PA 15317-2510

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800) 275-8777

05/20/2022

08:43 AM

Product

Ütу Uni t Price Price

Prepaid Mail 1

\$0.00

West Henrietta, NY 14586 Weight: 0 lb 2.00 oz

Acceptance Date: Fri 05/20/2022

Tracking #: 9405 5036 9930 0253 3936 06

Prepaid Mail

\$0.00

Woodbury, CT 06798 Weight: 0 lb 10.90 oz Acceptance Date:

Fri 05/20/2022

Tracking #: 9405 5036 9930 0253 3936 37

Prepaid Mail

\$0.00

\$0.00

Canonsburg, PA 15317 Weight: 1 1b 3.70 oz Acceptance Date: Fri 05/20/2022

Tracking #: 9405 5036 9930 0253 3936 44

Prepaid Mail

Woodbury, CT 06798 Weight: 1 lb 12.60 oz Acceptance Date:

Fri 05/20/2022

Tracking #: 9405 5036 9930 0253 3936 13

Grand Total:

Every household in the U.S. is now

eligible to receive a second set of 4 free test kits. Go to www.covidtests.gov

Proeview your Mail rack your Packages
Sign up for FREE @
https://informeddelivery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience; Go to: https://postalexperience.com/Pos or scan this code with your mobile device,

