



#### CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

October 9, 2012

Rick Woods SBA Communications Corporation One Research Dr. Suite 200C Westborough, MA 01581

RE: **EM-SPRINT-166-120907** – Sprint Spectrum notice of intent to modify an existing telecommunications facility located at 1201 Wolcott Road, Wolcott, Connecticut.

Dear Mr. Woods:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- The coax lines and accessory equipment shall be installed in accordance with the recommendations made in the Structural Analysis Report prepared by FDH Engineering dated June 27, 2012 and stamped by Christopher Murphy;
- Following the installation of the proposed equipment, Sprint shall provide documentation certifying that the installation complied with the engineer's recommendation;
- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated September 6, 2012. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.



This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts
Executive Director

LR/CDM/jbw

c: The Honorable Thomas G. Dunn, Mayor, Town of Wolcott David Kalinowski, Zoning Enforcement Officer, Town of Wolcott Sean Gormley, SBA



# EM-SPRINT-166-120907

September 6, 2012

David Martin and Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE:

Notice of Exempt Modification

1201 Wolcott Road Wolcott, CT 06716 N 41 ° 37' 17.69" W 72 ° 58' 25.08" REGETVED

SEP - 7 2012

CONNECTICUT

SITING COUNCIL

Dear Mr. Martin and Members of the Siting Council:

On behalf of Sprint Spectrum, SBA Communications is submitting an exempt modification application to the Connecticut Siting council for modification of existing equipment at a tower facility located at 1201 Wolcott Road Wolcott, CT.

The 1201 Wolcott Road facility consists of a 350' Self-Support Tower owned and operated by SBA Communications. In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

As part of Sprint's Network Vision modification project, Sprint desires to upgrade their equipment to meet the new standards of 4G technology. The new antennas and associated equipment will allow customers to download files and browse the internet at a high rate of speed while also allowing their phones to be compatible with the latest 4G technology.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna and equipment configuration along with the required fee of \$625.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be



significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

- 1. The overall height of the structure will be unaffected.
- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than the new equipment cabinets.
- 3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.
- 4. The changes in radio frequency power density will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, SBA Communications on behalf of Sprint Spectrum, respectfully submits that he proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to cal me at (508) 614-0389 with any questions you may have concerning this matter.

Thank you,

**Rick Woods** 

**SBA Communications Corporation** 

One Research Dr. Suite 200C

Westborough, MA 01581

508-366-5505 x 319 + T

508-366-5507 + F

508-614-0389 + C

rwoods@sbasite.com



## Sprint Spectrum Equipment Modification

1201 Wolcott Road Wolcott, CT Site number CT33XC073

**Tower Owner:** 

**SBA Communications Corporation** 

**Equipment Configuration:** 

**Self-Support Tower** 

**Current and/or approved:** 

Nine (9) CDMA Antennas @ 134' Nine (9) lines of 1-5/8" coax

Two (2) equipment cabinets

**Planned Modifications:** 

Remove Nine (9) CDMA antennas & Nine (9) lines of 1-5/8"

Install Three (3) Network Vision antennas & Six (6) RRHs @ 134'

Install Three (3) Hybriflex fiber cables

Install Three (3) Filters Install Four (4) RETs

Install One (1) Fiber Distribution Box

Replace Two (2) existing equipment cabinets with Three (3) new

cabinets

#### Structural Information:

The attached structural analysis demonstrates that the tower and foundation will have adequate structural capacity to accommodate the proposed modifications.

#### **Power Density:**

The anticipated Maximum Composite contributions from the Sprint facility are 18.222% of the allowable FCC established general public limit. The anticipated composite MPE value for this site assuming all carriers present is 29.992% of the allowable FCC established general public limit sampled at the ground level.

| Site Compr        | osite MPE % |
|-------------------|-------------|
| Carrier           | MPE %       |
| Sprint            | 18.222%     |
| LoJack            | 0.000%      |
| TSR Wireless      | 0.470%      |
| Weblink Wireless  | 2.830%      |
| Wolcott Ambulance | 0.520%      |
| Nextel            | 1.430%      |
| Clearwire         | 0.420%      |
| Marcus            | 2.640%      |
| AT&T              | 1.870%      |
| Metro PCS         | 1.590%      |
|                   |             |
| Total Site MPE %  | 29.992%     |



September 6, 2012

Mayor Thomas Dunn Town of Wolcott 10 Kenea Ave Wolcott, CT 06716

RE: Telecommunications Facility-1201 Wolcott Road Wolcott, CT 06716

Dear Mayor Dunn,

In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Sprint's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Sprint's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (508) 614-0389.

Thank you,

Rick Woods

SBA Communications Company

One Research Dr. Suite 200C

Westborough, MA 01581

508-366-5505 x 319 + T

508-366-5507 + F 508-614-0389 + C

rwoods@sbasite.com

#### STRUCTURAL NOTE:

STRUCTURAL DESIGNS AND DETAILS FOR ANTENNA MOUNTS AND RRH MOUNTS COMPLETED BY HUDSON DESIGN GROUP LLC ON BEHALF OF ALCATEL-LUCENT ARE INCLUSIVE OF THE ENTIRE ANTENNA FRAME/PLATFORM/ANTENNA/RRH MOUNTS SECURED TO THE TOWER STRUCTURE.

#### STRUCTURAL NOTE:

CT33XC073

WOLCOTT

NEW HAVEN

MAP: 119: LOT 7

N 41° 37' 17.69"

960'± (AMSL)

SELF SUPPORT

134' (AGL)

EDWARD CLEARY

50 BEACH ROAD

WOLCOTT, CT 06716

SBA STRUCTURES, INC

BOCA RATON, FL 33487

5900 BROKEN SOUND PKWY

W 72° 58' 25 08'

1201 WOLCOTT ROAD

WOLCOTT, CT 06716

SITE NUMBER:

SITE ADDRESS:

SITE NAME:

COUNTY:

ZONING:

PARCEL ID:

COORDINATES(\*):

GROUND ELEV.(\*):

STRUCTURE TYPE:

PROPERTY OWNER:

SPRINT SITERRA DATABASE.

ANTENNA RAD

CENTER(\*\*):

STRUCTURE

STRUCTURE HEIGHT: 350' (AGL)

G.C. TO REFER TO SPECIAL INSTALLATION REQUIREMENTS AND/OR MODIFICATIONS RECOMMENDED IN STRUCTURAL ANALYSIS REPORT PREPARED BY FDH ENGINEERING, INC. DATED: JUNE 27, 2012

**SBA SITE #: CT20021-A SBA SITE NAME: CLEARY TOWER (EDWARD)** 

SITE INFORMATION

LOCAL POWER

LOCAL TELCO

APPLICANT:

APPLICANT

REPRESENTATIVE:

SITE ACQUISITION

A&E CONSULTANT:



SITE NUMBER:

CT33XC073

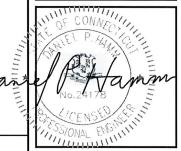
SITE NAME:

## WOLCOTT

SITE ADDRESS:

## 1201 WOLCOTT ROAD WOLCOTT, CT 06716




SHEET NO.

OWNER AND TENANT MAY, FROM TIME TO TIME AT TENANT'S OPTION, REPLACE THIS EXHIBIT WITH AN EXHIBIT SETTING FORTH THE LEGAL DESCRIPTION OF THE SITE, OR WITH ENGINEERED OR AS-BUILT DRAWING DEPICTING THE SITE OR ILLUSTRATING STRUCTURAL MODIFICATIONS OR OR AS-BUILT DRAWING DEPICTING THE SITE ON TILLUSTRATING STRUCTURE. MODIFICATIONS OR CONSTRUCTION PLANS OF THE SITE. ANY VISUAL OR TEXTUAL REPRESENTATION OF THE EQUIPMENT LOCATED WITHIN THE SITE CONTAINED IN THESE OTHER DOCUMENTS IS ILLUSTRATIVE ONLY, AND DOES NOT LIMIT THE RIGHTS OF SPRINT AS PROVIDED FOR IN THE AGREEMENT. THE LOCATIONS OF ANY ACCESS AND UTILITY EASEMENTS ARE ILLUSTRATIVE ONLY. ACTUAL LOCATIONS MAY BE DETERMINED BY TENANT AND/OR THE SERVICING UTILITY COMPANY IN COMPLIANCE WITH LOCAL LAWS AND REGULATIONS.









CHECKED BY:

APPROVED BY:

SHEET INDEX

GENERAL NOTES A-1 COMPOUND PLAN & ELEVATION A-2 ANTENNA SCENARIO A-3 DETAILS A-4 RF DATA SHEET A-5 CABINET & ANTENNA WIRING DIAGRAM S-1 STRUCTURAL DETAILS E-1 TYPICAL POWER & GROUNDING ONE LINE DIAGRAM

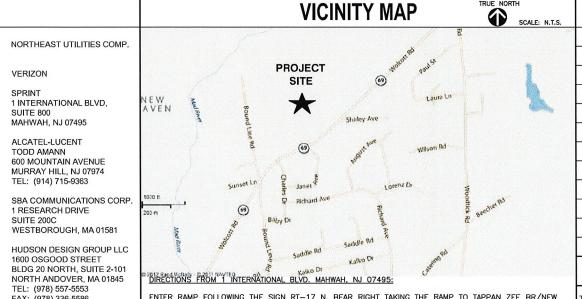
### **APPROVALS**

HE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE

### SITE NUMBER CT33XC073 SITE NAME:

WOLCOTT

**SUBMITTALS** 


REV. DATE DESCRIPTION

2 07/02/12 FOR CONSTRUCTION

1 04/04/12 ISSUED FOR REVIEW

SITE ADDRESS: 1201 WOLCOTT ROAD WOLCOTT, CT 06716

TITLE SHEET



#### (\*) SOURCE OF COORDINATES/ELEVATION - SBA AND DERIVED FROM ALU/SPRINT DATABASE **GENERAL NOTES**

\*\*) NOTE: NETWORK VISION ANTENNA RADIATION

DATABASE AND SBA STRUCTURAL ANALYSIS AND

WILL SUPERSEDE ANY CONFLICTING INFORMATION

CENTERLINE AGL (FEET) BASED ON SBA EQUIPMENT

- THIS IS AN UNMANNED TELECOMMUNICATION FACILITY AND NOT FOR HUMAN HABITATION: HANDICAPPED ACCESS NOT REQUIRED
  - POTABLE WATER OR SANITARY SERVICE IS NOT REQUIRED.
- NO OUTDOOR STORAGE OR ANY SOLID WASTE RECEPTACLES REQUIRED
- CONTRACTOR SHALL VERIEY ALL PLANS EXISTING DIMENSIONS AND CONDITIONS ON JOB SITE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK. FAILURE TO NOTIFY THE ARCHITECT/ENGINEER PLACE THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES AT THE CONTRACTOR'S
- DEVELOPMENT AND USE OF THE SITE WILL CONFORM TO ALL APPLICABLE CODES AND ORDINANCES BUILDING CODE: 2003 IBC WITH 2005 CT SUPPLEMENT & 2009 CT AMENDMENT ELECTRICAL CODE: 2005 NATIONAL ELECTRICAL CODE STRUCTURAL CODE: TIA/EIA-222-F STRUCTURAL STANDARDS FOR ANTENNA SUPPORTING STRUCTURES
- REPLACE EXISTING MODCELL CABINET WITH (1) MM-BTS CABINET & INSTALL FIBER DISTRIBUTION BOX WITHIN EXISTING LEASE AREA. REPLACE EXISTING POWER CABINET WITH (2) BBU CABINETS

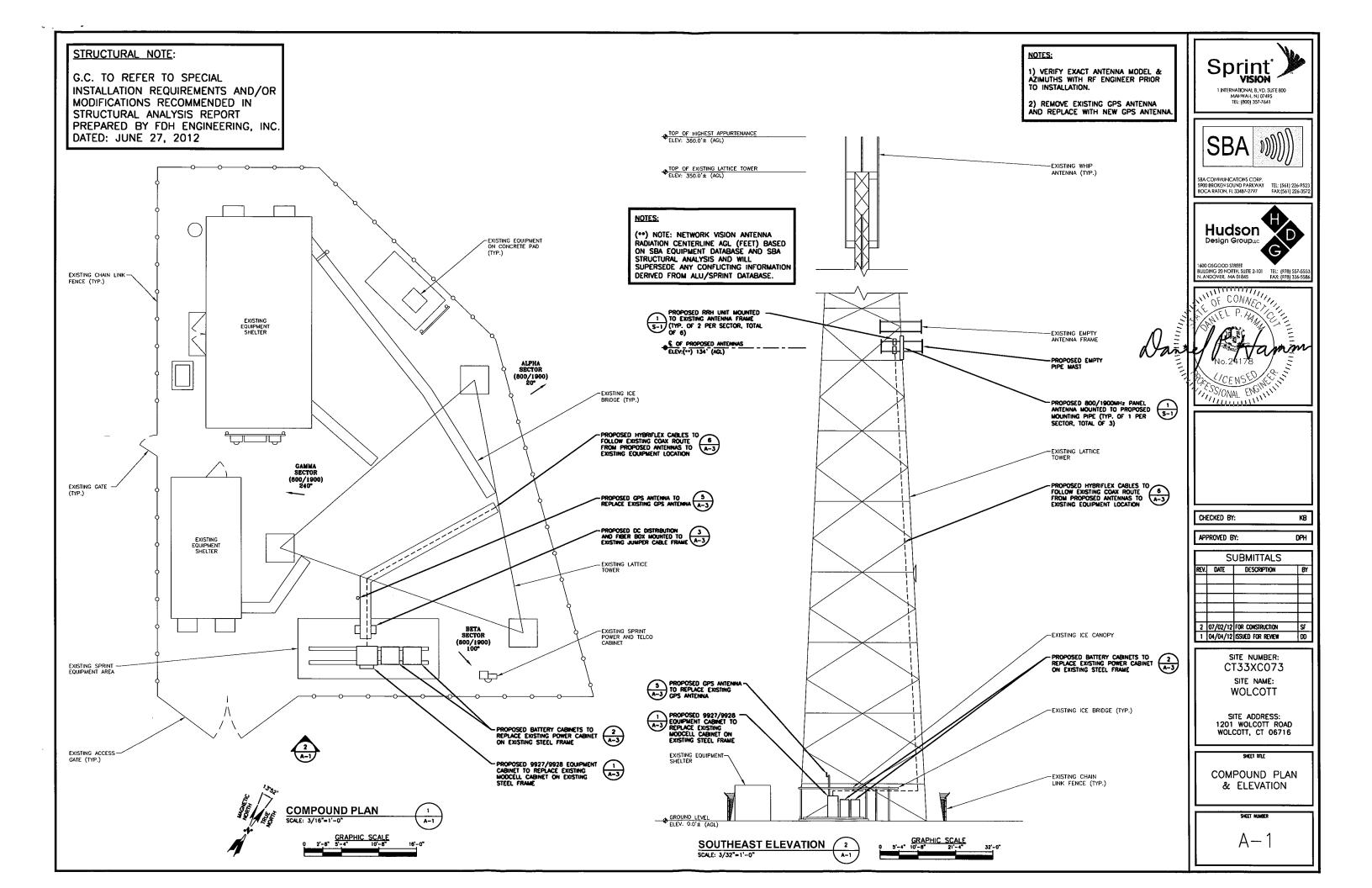
YORK CITY/I-87 S/I-287/NEW YORK STATE THRUWAY SOUTH. CONTINUE ON NEW YORK STATE THRUWAY

DANBURY/I-84 E (EXIT 9E). KEEP RIGHT TO WATERBURY/HARTFORD/I-84 E. EXIT RIGHT FOLLOWING THE

SIGN BALDWIN ST/DOWNTOWN WATERBURY (EXIT 22). TURN RIGHT ON S MAIN ST. TAKE LEFT ON E CLAY ST. TURN LEFT ON S ELM ST. TURN RIGHT ON E MAIN ST. TAKE LEFT ON WOLCOTT ST. ARRIVE AT YOUR

SCOPE OF WORK

S/I-287 E/I-87 S. KEEP LEFT TO WHITE PLAINS/RYE/I-287 E (EXIT 8). EXIT RIGHT FOLLOWING THE


SIGN BREWSTER/I-684 (EXIT 9A). KEEP LEFT TO BREWSTER/I-684. EXIT RIGHT FOLLOWING THE SIGN

- REMOVE (6) EXISTING CDMA ANTENNAS AND REPLACE WITH (3) NETWORK VISION ANTENNAS & (6) RRH'S.
- REMOVE EXISTING CDMA COAX CABLES & INSTALL (3) HYBRIFLEX CABLES FROM EQUIPMENT CABINET
- REMOVE EXISTING GPS ANTENNA AND REPLACE WITH NEW GPS ANTENNA. CALL BEFORE YOU DIG 1-800-922-4455 OR DIAL 811



| AL BUILDING DEPA           | RTMENT AND MAY IMPOSE CHANGES OR MODIFICA | ATIONS. |  |
|----------------------------|-------------------------------------------|---------|--|
|                            |                                           |         |  |
| ONSTRUCTION:               |                                           | DATE:   |  |
| EASING/<br>TE ACQUISITION: |                                           | DATE:   |  |
| F ENGINEER:                |                                           | DATE:   |  |
| ANDLORD/<br>ROPERTY OWNER: | APPROVED                                  | DATE    |  |

By Bryan Bakis, P.E. for SBA Communications Corp. at 2:55 pm, Jul 18, 2012





FDH Engineering, Inc., 6521 Meridien Dr. Raleigh, NC 27616, Ph. 919.755.1012, Fax 919.755.1031

## Structural Analysis for SBA Network Services, Inc.

350' Self-Support Tower

SBA Site Name: Cleary Tower (Edward)
SBA Site ID: CT20021-A
Sprint Site Name: Wolcott
Sprint Site ID: CT33XC073

FDH Project Number 12-04939E S2

**Analysis Results** 

| Tower Components | 97.3% | Sufficient |
|------------------|-------|------------|
| Foundation       | 69.0% | Sufficient |

Prepared By:

BA TEL

Brandon T. Compton, El Project Engineer Reviewed By:

Christopher M. Murphy

Christopher M. Murphy, PE President CT PE License No. 25842

FDH Engineering, Inc. 6521 Meridien Dr. Raleigh, NC 27616 (919) 755-1012 info@fdh-inc.com



June 27, 2012

Prepared pursuant to TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and 2005 Connecticut Building Code

#### **TABLE OF CONTENTS**

| EXECUTIVE SUMMARY    | 3 |
|----------------------|---|
| Conclusions          | 3 |
| Recommendation       | 3 |
| APPURTENANCE LISTING | 4 |
| RESULTS              |   |
| GENERAL COMMENTS     |   |
| LIMITATIONS          |   |
|                      | 9 |

#### **EXECUTIVE SUMMARY**

At the request of SBA Network Services, Inc., FDH Engineering, Inc. performed a structural analysis of the existing self-supported tower located in Wolcott, CT to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the *Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, TIA/EIA-222-F* and *2005 Connecticut Building Code*. Information pertaining to the existing/proposed antenna loading, current tower geometry, the member sizes, and foundation dimensions was obtained from:

| Paul J. Ford & Co. (Job No. A03-T143) Structural Analysis Report dated December 22, 2003                    |
|-------------------------------------------------------------------------------------------------------------|
| FDH, Inc. (Job No. 06-0879T) EIA/TIA Inspection Report dated September 19, 2006                             |
| FDH Engineering, Inc. (Project No. 11-11229E S2) Modifications Drawings for a 350' Self-Support Tower dated |
| January 31, 2012                                                                                            |
| FDH Engineering, Inc. (Project No. 11-11229E S2) Post Construction Inspection Report dated March 7, 2012    |
| SBA Network Services Inc.                                                                                   |

The basic design wind speed per the TIA/EIA-222-F standards and 2005 Connecticut Building Code is 85 mph without ice and 38 mph with 3/4" radial ice. Ice is considered to increase in thickness with height.

#### Conclusions

With the existing and proposed antennas from Sprint in place at 134', the tower meets the requirements of the *TIA/EIA-222-F* standards and *2005 Connecticut Building Code* provided the **Recommendations** listed below are satisfied. Furthermore, provided the foundations were designed and constructed to support the original design reactions (see Paul J. Ford & Co. Job No. A03-T143), the foundations should have the necessary capacity to support the existing and proposed loading. For a more detailed description of the analysis of the tower, see the **Results** section of this report.

Our structural analysis has been performed assuming all information provided to FDH Engineering, Inc. is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

#### Recommendations

To ensure the requirements of the *TIA/EIA-222-F* standards and *2005 Connecticut Building Code* are met with the existing and proposed loading in place, we have the following recommendations:

- 1. Coax must be installed as shown in **Figure 1**.
- 2. RRU/RRH Stipulation: The equipment may be installed in any arrangement as determined by the client.

Document No. ENG-RPT-502S Revision Date: 06/17/11 3

#### **APPURTENANCE LISTING**

The proposed and existing antennas with their corresponding cables/coax lines are shown in **Table 1**. *If the actual layout determined in the field deviates from the layout, FDH Engineering, Inc. should be contacted to perform a revised analysis.* 

Table 1 - Appurtenance Loading

#### **Existing Loading:**

| Antenna<br>Elevation<br>(ft) | Description                                                                                                                                                                                              | Coax and<br>Lines                                | Carrier   | Mount<br>Elevation<br>(ft) | Mount Type                             |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|----------------------------|----------------------------------------|
|                              | (1) Andrew 600200-4 Omni                                                                                                                                                                                 | (1) 1-1/4"                                       | Marcus    | 38                         |                                        |
| 360                          | (1) RFS CAT #200 Omni                                                                                                                                                                                    | (1) 1/2"                                         |           | 350                        | (1) Star Mount w/ (9) Standoffs        |
| 050                          | (1) Celwave CAT #1110-0                                                                                                                                                                                  | (1) 7/8"                                         | LoJack    |                            | (1)                                    |
| 350                          | (1) Decibel DB809DK Omni                                                                                                                                                                                 |                                                  |           |                            |                                        |
| 338.5                        | (1) Andrew 600200-4 Omni                                                                                                                                                                                 | (1) 1-1/4"                                       |           | 328.5                      | (1) 4' Standoff                        |
| 328                          | (2) TX RX 101-58-10-0-03                                                                                                                                                                                 | (2) 1-1/4"                                       | Marcus    | 318                        | (1) 6' Standoff                        |
| 222                          | (6) Andrew HBX-6516DS-VTM<br>(6) Andrew ATM200-A20 RETs                                                                                                                                                  | (12) 1-5/8"<br>(1) 3/8"                          | Metro PCS | 222                        | (3) Andrew QT-SF10-B<br>10.5' T-Frames |
| 212                          | (3) Argus LLPX310R<br>(3) BTSs<br>(1) Andrew VHLP2-11 Dish<br>(1) Andrew VHLP2.5-11 Dish                                                                                                                 | (2) 1/2"<br>(3) 5/8"<br>(3) 1/4"<br>(3) 5/16"    | Clearwire | 212                        | (3) 10' T-Frames                       |
| 201.5                        | (8) Decibel DB844H90E-XY<br>(4) Decibel DB844H65E-XY                                                                                                                                                     | (12) 1-1/4"                                      | Nextel    | 201.5                      | (3) 15' T-Frames                       |
| 186                          | (6) KMW AM-X-CD-16-65-00T (3) Kathrein 800 10121 (3) Powerwave 7770.00 (6) CCI DTMABP7819VG12A TMAs (6) Powerwave LGP13519 Diplexers (6) Ericsson RRUS-11 RRUs (1) Raycap DC6-48-60-18-8F Surge Arrestor | (12) 1-5/8"<br>(1) 10mm Fiber<br>(2) 12 gauge DC | AT&T      | 186                        | (3) 13.5' T-Frames                     |
| 172.5                        | (1) Radiowaves SPD2-5.8NS Dish<br>(1) Radiowaves SPD3-2.4NS Dish                                                                                                                                         | (2) 1/2"                                         | Marcus    | 172.5                      | (2) Pipe Mounts (5.25' x 4.5")         |
| 158                          | (1) Celwave 201-7                                                                                                                                                                                        | (1) 5/8"                                         | Wolcott   | 158                        | (1) 17" Standoff Mount                 |
|                              |                                                                                                                                                                                                          |                                                  |           | 140                        | (3) 10' T-Frames                       |
| 134                          | (9) Decibel DB980H90T2E-M                                                                                                                                                                                | (9) 1-5/8"                                       | Sprint    | 134                        | (3) 15' T-Frames                       |
| 70                           | (1) Channel Master 1.0M Dish                                                                                                                                                                             | (1) 1/2"                                         |           | 70                         | (1) Pipe Mount (27" x 2.4")            |

#### **Proposed Loading:**

| Antenna<br>Elevation<br>(ft) | Description                                                                                                                                        | Coax and<br>Lines | Carrier | Mount<br>Elevation<br>(ft) | Mount Type       |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|----------------------------|------------------|
| 134                          | (3) RFS APXVSPP18-C-A20 (3) Alcatel Lucent 1900 MHz RRHs (3) Alcatel Lucent 800 MHz RRHs (3) Alcatel Lucent 800 MHz Filters (4) RFS ACU-A20-N RETs | (3) 1-1/4" Fiber  | Sprint  | 134                        | (3) 15' T-Frames |

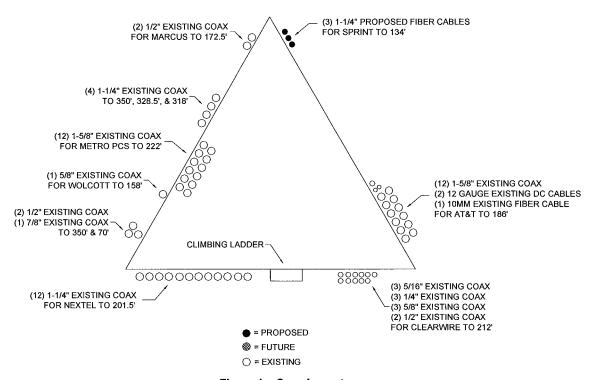



Figure 1 – Coax Layout

#### **RESULTS**

The following yield strength of steel for individual members was used for analysis:

Table 2 - Material Strength

| Member Type | Yield Strength |
|-------------|----------------|
| Legs        | 50 ksi         |
| Bracing     | 36 ksi         |

**Table 3** displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. *Note: Capacities up to 100% are considered acceptable.* **Table 4** displays the maximum foundation reactions.

If the assumptions outlined in this report differ from actual field conditions, FDH Engineering, Inc. should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the **Appendix** for detailed modeling information

Table 3 - Summary of Working Percentage of Structural Components

| Section<br>No. | Elevation<br>ft | Component<br>Type    | Size                   | % Capacity*      | Pass<br>Fail |
|----------------|-----------------|----------------------|------------------------|------------------|--------------|
| T1             | 350 - 340       | Leg                  | 2                      | 22.1             | Pass         |
|                |                 | Diagonal             | L2x1 1/2x3/16          | 26.0<br>35.9 (b) | Pass         |
| e              |                 | Top Girt             | L2x1 1/2x3/16          | 7.3<br>7.4 (b)   | Pass         |
| T2             | 340 - 320       | Leg                  | 2                      | 58.4             | Pass         |
|                |                 | Diagonal             | L2x1 1/2x3/16          | 35.1<br>50.3 (b) | Pass         |
| T3             | 320 - 300       | Leg                  | 2 1/2                  | 56.4             | Pass         |
|                |                 | Diagonal             | L2x2x3/16              | 23.6<br>38.1 (b) | Pass         |
| T4             | 300 - 280       | Leg                  | 3 1/4                  | 43.6             | Pass         |
|                |                 | Diagonal             | L2 1/2x2 1/2x3/16      | 22.4<br>33.0 (b) | Pass         |
| T5             | 280 - 260       | Leg                  | 3 1/4                  | 53.4             | Pass         |
|                |                 | Diagonal             | L2 1/2x2 1/2x3/16      | 33.2<br>36.5 (b) | Pass         |
| T6             | 260 - 240       | Leg                  | 3 1/2                  | 49.8             | Pass         |
|                |                 | Diagonal             | L3x3x3/16              | 28.6<br>42.9 (b) | Pass         |
| T7             | 240 - 220       | Leg                  | 3 1/2                  | 46.6             | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2 1/2x3/16x3/8 | 22.5<br>28.1 (b) | Pass         |
|                |                 | Secondary Horizontal | L2 1/2x2 1/2x3/16      | 30.5             | Pass         |
| T8             | 220 - 200       | Leg                  | 3 3/4                  | 46.3             | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2 1/2x3/16x3/8 | 39.7             | Pass         |
|                | 000 400         | Secondary Horizontal | L2 1/2x2 1/2x3/16      | 48.2             | Pass         |
| Т9             | 200 - 180       | Leg                  | 4                      | 47.5             | Pass         |
|                |                 | Diagonal             | 2L3x3x3/16x3/8         | 37.9<br>52.2 (b) | Pass         |
|                |                 | Secondary Horizontal | L3x3x3/16              | 42.4             | Pass         |

Document No. ENG-RPT-502S Revision Date: 06/17/11 6

| Section<br>No. | Elevation<br>ft | Component<br>Type     | Size                   | % Capacity*      | Pass<br>Fail |
|----------------|-----------------|-----------------------|------------------------|------------------|--------------|
| T10            | 180 - 160       | Leg                   | 4 1/4                  | 49.0             | Pass         |
|                |                 | Diagonal              | 2L3x3x3/16x3/8         | 50.0<br>60.2 (b) | Pass         |
|                |                 | Secondary Horizontal  | L3x3x3/16              | 63.3             | Pass         |
| T11            | 160 - 140       | Leg                   | 4 1/4                  | 57.1             | Pass         |
|                |                 | Diagonal              | 2L3x3x3/16x3/8         | 62.3<br>64.2 (b) | Pass         |
|                |                 | Secondary Horizontal  | L3 1/2x3 1/2x1/4       | 42.8<br>50.3 (b) | Pass         |
| T12            | 140 - 120       | Leg                   | 4 1/2                  | 55.1             | Pass         |
|                |                 | Diagonal              | 2L3x3x1/4x3/8          | 61.1<br>68.5 (b) | Pass         |
|                |                 | Horizontal            | 2L2 1/2x2 1/2x3/16x3/8 | 39.9             | Pass         |
|                |                 | Redund Horz 1 Bracing | L2x2x3/16              | 97.3             | Pass         |
|                |                 | Redund Diag 1 Bracing | L2 1/2x2 1/2x3/16      | 61.3             | Pass         |
|                |                 | Inner Bracing         | L3 1/2x3 1/2x1/4       | 0.5              | Pass         |
| T13            | 120 - 100       | Leg                   | 4 3/4                  | 93.3             | Pass         |
|                |                 | Diagonal              | 2L3x3x1/4x3/8          | 66.2<br>69.6 (b) | Pass         |
|                |                 | Horizontal            | 2L2 1/2x2 1/2x3/16x3/8 | 54.1             | Pass         |
|                |                 | Redund Diag 1 Bracing | L2 1/2x2 1/2x3/16      | 74.7             | Pass         |
|                |                 | Inner Bracing         | L4x4x1/4               | 0.6              | Pass         |
| T14            | 100 - 80        | Leg                   | 4 3/4                  | 61.8             | Pass         |
|                |                 | Diagonal              | 2L3x3x1/4x3/8          | 74.4             | Pass         |
|                |                 | Horizontal            | 2L2 1/2x2 1/2x3/16x3/8 | 70.6             | Pass         |
|                |                 | Redund Horz 1 Bracing | L2x2x3/8               | 92.7             | Pass         |
|                |                 | Redund Diag 1 Bracing | L2 1/2x2 1/2x3/16      | 89.4             | Pass         |
|                |                 | Inner Bracing         | L4x4x1/4               | 0.6              | Pass         |
| T15            | 80 - 60         | Leg                   | 5                      | 96.2             | Pass         |
|                |                 | Diagonal              | 2L3 1/2x3 1/2x1/4x3/8  | 53.1<br>59.7 (b) | Pass         |
|                |                 | Horizontal            | 2L3x3x3/16x3/8         | 51.2             | Pass         |
|                |                 | Redund Diag 1 Bracing | L3x3x3/16              | 60.6             | Pass         |
|                |                 | Inner Bracing         | 2L3x3x3/16x3/8         | 0.7              | Pass         |
| T16            | 60 - 40         | Leg                   | 5 1/4                  | 89.4             | Pass         |
|                |                 | Diagonal              | 2L3 1/2x3 1/2x1/4x3/8  | 59.7<br>60.7 (b) | Pass         |
|                |                 | Horizontal            | 2L3x3x3/16x3/8         | 64.0             | Pass         |
|                |                 | Redund Diag 1 Bracing | L3x3x3/16              | 71.0             | Pass         |
|                |                 | Inner Bracing         | 2L3x3x3/16x3/8         | 0.7              | Pass         |
| T17            | 40 - 20         | Leg                   | 5 1/4                  | 97.2             | Pass         |
|                |                 | Diagonal              | 2L3 1/2x3 1/2x1/4x3/8  | 65.4             | Pass         |
|                |                 | Horizontal            | 2L3 1/2x3 1/2x1/4x3/8  | 37.9             | Pass         |
|                |                 | Redund Diag 1 Bracing | L3x3x3/16              | 83.2             | Pass         |
|                |                 | Inner Bracing         | 2L3 1/2x3 1/2x1/4x3/8  | 0.6              | Pass         |
| T18            | 20 - 0          | Leg                   | 5 1/2                  | 90.5             | Pass         |
|                |                 | Diagonal              | 2L3 1/2x3 1/2x1/4x3/8  | 71.9             | Pass         |
|                |                 | Horizontal            | 2L3 1/2x3 1/2x1/4x3/8  | 45.9             | Pass         |
|                |                 | Redund Diag 1 Bracing | L3x3x3/16              | 96.1             | Pass         |
|                |                 | Inner Bracing         | 2L3 1/2x3 1/2x1/4x3/8  | 0.7              | Pass         |

<sup>\*</sup>Capacities include 1/3 allowable stress increase for wind per TIA/EIA-222-F standards.

**Table 4 - Maximum Base Reactions** 

| Load Type             | Direction   | Current Analysis<br>(TIA/EIA-222-F) | Original Design<br>(EIA/TIA-222-E) |
|-----------------------|-------------|-------------------------------------|------------------------------------|
| Individual Foundation | Horizontal  | 56 k                                |                                    |
|                       | Uplift      | 398 k                               | 631 k                              |
|                       | Compression | 518 k                               | 751 k                              |
| Overturning Moment    | <u></u>     | 14,904 k-ft                         |                                    |

#### **GENERAL COMMENTS**

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Engineering, Inc. should be notified immediately to perform a revised analysis.

#### **LIMITATIONS**

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Engineering, Inc.

### **APPENDIX**

Document No. ENG-RPT-502S Revision Date: 06/17/11 9

| Section           | T18                   | T17                   | T16               | T15            | T14      | T13                    | T12             | TI.             | T10             | T9              | T8           | 11                     | T6        | T5          | T4                | E.        | T2            | F        |
|-------------------|-----------------------|-----------------------|-------------------|----------------|----------|------------------------|-----------------|-----------------|-----------------|-----------------|--------------|------------------------|-----------|-------------|-------------------|-----------|---------------|----------|
| Legs              | SR 5 1/2              | SR 5 1/4              | /4                | SR 5           | SR       | 4 3/4                  | SR 4 1/2        | SR              | SR 4 1/4        | SR 4            | SR 3 3/4     | SR                     | SR 3 1/2  | SR 3        | SR 3 1/4          | SR 2 1/2  | SR 2          |          |
| Leg Grade         |                       |                       |                   |                |          |                        |                 |                 | A572-50         | 50              |              |                        |           |             |                   |           |               |          |
| Diagonals         |                       | 2L3 1/2x3 1/2x1/4x3/8 | x1/4x3/8          |                |          | 2L3x3x1/4x3/8          | 8               |                 | 2L3x3x3/16x3/8  | ./8             | 2L2 1/2x2 1. | 2L2 1/2x2 1/2x3/16x3/8 | L3x3x3/16 | L2 1/2x2    | L2 1/2x2 1/2x3/16 | L2x2x3/16 | L2x1 1/2x3/16 | 116      |
| Diagonal Grade    |                       |                       |                   |                |          |                        |                 |                 | A36             |                 |              |                        |           |             |                   |           |               |          |
| Top Girts         |                       |                       |                   |                |          |                        |                 |                 | N.A.            |                 |              |                        |           |             |                   |           |               | 4        |
| Horizontals       | 2L3 1/2x3 1/2x1/4x3/8 | 1/2×1/4×3/8           | 2L3x3x3           | 2L3x3x3/16x3/8 | 212      | 2L2 1/2x2 1/2x3/16x3/8 | 5x3/8           |                 |                 |                 |              |                        | N.A.      |             |                   |           |               |          |
| Sec. Horizontals  |                       |                       |                   | N.A.           |          |                        |                 | œ               | L3x.            | L3x3x3/16       | L2 1/2x2     | L2 1/2x2 1/2x3/16      |           |             | N.A.              |           |               |          |
| Red. Horizontals  | L3x3x3/16             | 12.1                  | L2 1/2x2 1/2x3/16 | 9              | L2x2x3/8 | L2x2                   | L2x2x3/16       |                 |                 |                 |              |                        | N.A.      |             |                   |           |               |          |
| Red. Diagonals    |                       | L3x3x3/16             | 16                |                |          | L2 1/2x2 1/2x3/16      | 16              |                 |                 |                 |              |                        | N.A.      |             |                   |           |               |          |
| Inner Bracing     | 2L3 1/2x3 1/2x1/4x3/8 | 1/2×1/4×3/8           | 2L3x3x3           | 2L3x3x3/16x3/8 | L4x      | L4x4x1/4               | œ               |                 |                 |                 |              |                        | N.A.      |             |                   |           |               |          |
| Face Width (ft) 3 | 36 34                 | 32                    | 30                | 28             | 3 26     | 6 24                   | 4 22            | 20              |                 | 18 1            | 16 14        | 12                     | 10        | 80          |                   | 9         |               |          |
| # Panels @ (ft)   |                       |                       |                   |                |          | 24 @                   | @ 10            |                 |                 |                 |              |                        |           | 9 @ 6.66667 |                   | 4 @ 5     | 5@4 2         | 2@       |
| Weight (K) 89.7   | .7 10.3               | 9.5                   | 8.7               | 6.1            | 7.0      | 6.7                    | 6.1             | 5,7             | 5,2             | 4.7             | 3,9          | 3.4                    | 2.8       | 2.3         | 2.2               | 1.4       | 1.0           | 0.5      |
|                   | 0.0 ft                | 40.0 ft               |                   | 60.0 ft        | 80.0 ft  | 100.0 ft               | <u>120.0 ft</u> | <u>140.0 ft</u> | <u>160.0 ft</u> | <u>180.0 ft</u> | 200.0 ft     | 220.0 ft               | 240.0 ft  | 260.0 ft    | 280.0 ft          | 300.0 ft  | 340.0 ft      | 340.0 ft |
|                   |                       |                       |                   |                |          |                        |                 |                 |                 |                 |              |                        |           |             |                   |           |               |          |
| R                 |                       | 38                    |                   |                |          |                        | l               |                 | $\triangle$     |                 |              |                        |           |             |                   |           |               |          |

#### **DESIGNED APPURTENANCE LOADING**

| TYPE                             | ELEVATION | TYPE                                       | ELEVATION      |
|----------------------------------|-----------|--------------------------------------------|----------------|
| Lightning Rod                    | 355       | (2) Powerwave LGP13519 Diplexer            | 186            |
| Flash Beacon Lighting            | 350       | (2) Powerwave LGP13519 Diplexer            | 186            |
| DB809DK-Y                        | 350       | (2) Powerwave LGP13519 Diplexer            | 186            |
| Andrew 600200-5                  | 350       | DC6-48-60-18-8F Surge Arrestor             | 186            |
| RFS CAT #200                     | 350       | (3) 13.5' T-Frames                         | 186            |
| CAT #1110-9                      | 350       | (2) AM-X-CD-16-65-00T-RET w/ Mount         | 186            |
| Standoff Mount - 7'-9"           | 350       | Pipe .                                     |                |
| Standoff Mount - 7'              | 350       | 800 10121 w/Mount Pipe                     | 186            |
| Standoff Mount - 7'-9"           | 350       | 800 10121 w/Mount Pipe                     | 186            |
| Standoff Mount - 7'-9"           | 350       | 800 10121 w/Mount Pipe                     | 186            |
| Standoff Mount - 7'              | 350       | 7770.00 w/Mount Pipe                       | 186            |
| Standoff Mount - 7'-9"           | 350       | 7770.00 w/Mount Pipe                       | 186            |
| Standoff Mount - 7'-9"           | 350       | 7770.00 w/Mount Pipe                       | 186            |
| Standoff Mount - 7'              | 350       | (2) AM-X-CD-16-65-00T-RET w/ Mount         | 186            |
| Standoff Mount - 7'-9"           | 350       | Pipe                                       |                |
| Andrew 600200-4                  | 328.5     | (2) AM-X-CD-16-65-00T-RET w/ Mount<br>Pipe | 186            |
| 4' Side Mount Standoff (1)       | 328.5     |                                            | 470.5          |
| (2) TX RX 101-58-10-0-03         | 318       | Pipe Mount 5.25' x 4.5"                    | 172.5          |
| 6' Side Mount Standoff (1)       | 318       | Pipe Mount 5.25' x 4.5"<br>SPD2-5.8NS      | 172.5          |
| (2) HBX-6516DS-VTM w/ Mount Pipe | 222       | SPD3-2.4NS                                 | 172.5<br>172.5 |
| (2) HBX-6516DS-VTM w/ Mount Pipe | 222       |                                            |                |
| (2) HBX-6516DS-VTM w/ Mount Pipe | 222       | 201-7                                      | 158            |
| (2) ATM200-A20 RET               | 222       | Standoff Mount - 17"  (3) 10' T-Frames     | 140            |
| (2) ATM200-A20 RET               | 222       |                                            | 3.13           |
| (2) ATM200-A20 RET               | 222       | 800 MHz Filter                             | 134            |
| (3) 10.5' T-Frames MNT           | 222       | 800 MHz Filter                             | 134            |
| Argus LLPX310R w/ Mount Pipe     | 212       | ACU-A20-N RET                              | 134            |
| Argus LLPX310R w/ Mount Pipe     | 212       | ACU-A20-N RET                              | 134            |
| Argus LLPX310R w/ Mount Pipe     | 212       | (2) ACU-A20-N RET                          | 134            |
| BTS                              | 212       | (2) Empty Mount Pipe                       | 134            |
| BTS                              | 212       | (2) Empty Mount Pipe                       | 134            |
| BTS                              | 212       | (2) Empty Mount Pipe                       | 134            |
| (3) 10' T-Frames                 | 212       | 1900 MHz RRH                               | 134            |
| VHLP2-11                         | 212       | 1900 MHz RRH                               | 134            |
| VHLP2.5-11                       | 212       | 800 MHz RRH                                | 134            |
| (4) DB844H90E-XY w/Mount Pipe    | 201.5     | 800 MHz RRH                                | 134            |
| (4) DB844H90E-XY w/Mount Pipe    | 201.5     | 800 MHz Filter                             | 134            |
| (4) DB844H65E-XY w/Mount Pipe    | 201.5     | (3) 15' T-Frames                           | 134            |
| (3) 15' T-Frames                 | 201.5     | APXVSPP18-C-A20 w/Mount Pipe               | 134            |
| (2) RRUS-11                      | 186       | 1900 MHz RRH                               | 134            |
| (2) RRUS-11                      | 186       | 800 MHz RRH                                | 134            |
| (2) RRUS-11                      | 186       | APXVSPP18-C-A20 w/Mount Pipe               | 134            |
| (2) DTMABP7819VG12A TMA          | 186       | APXVSPP18-C-A20 w/Mount Pipe               | 134            |
| (2) DTMABP7819VG12A TMA          | 186       | Pipe Mount 27" x 2.4"                      | 70             |
| (2) DTMABP7819VG12A TMA          | 186       | 1M Dish                                    | 70             |

#### SYMBOL LIST

|           | MARK | SIZE          | MARK | SIZE             |
|-----------|------|---------------|------|------------------|
| MAX. CORN | Α    | L2x1 1/2x3/16 | В    | L3 1/2x3 1/2x1/4 |

DOWN: : SHEAR:

#### **MATERIAL STRENGTH**

|         | GRADE   | Fy     | Fu     | GRADE | Fy     | Fu     |   |
|---------|---------|--------|--------|-------|--------|--------|---|
| UPLIFT: | A572-50 | 50 ksi | 65 ksi | A36   | 36 ksi | 58 ksi | _ |
| SHEAR.  |         |        |        |       |        |        | _ |

AXIAL

SHEAR 26 K

#### **TOWER DESIGN NOTES**

210 K 1. Tower is located in New Haven County, Connecticut.

2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard. 3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.

TORQUE 14 kip-ft 38 mph WIND - 0.7500 in ICE

AXIAL 120 K

SHEAR MOMENT 91 K

14904 kip-ft

TORQUE 50 kip-ft REACTIONS - 85 mph WIND

## FDH Tower Analysis

FDH Engineering, Inc. 6521 Meridien Drive

Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

| ·. | Job: Cleary Tower (Edward          | ), CT20021-A              |            |
|----|------------------------------------|---------------------------|------------|
|    | Project: 12-04939E S2              |                           |            |
|    | Client: SBA Network Services, Inc. | Drawn by: Brandon Compton | App'd:     |
|    | Code: TIA/EIA-222-F                | Date: 06/27/12            | Scale: NTS |
|    | Doth:                              |                           | Dura No -  |



### RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

**Sprint Existing Facility** 

Site ID: CT33XC073

Wolcott 1201 Wolcott Road Wolcott, CT 06716

August 21, 2012



August 21, 2012

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Emissions Values for Site CT33XC073 - Wolcott

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 1201 Wolcott Road, Wolcott, CT, for the purpose of determining whether the emissions from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm2). The number of  $\mu$ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limit for the cellular band is approximately 567  $\mu$ W/cm², and the general population exposure limit for the PCS band is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Fax: (781) 273.3311



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

#### **CALCULATIONS**

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 1201 Wolcott Road, Wolcott, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 3 CDMA Carriers (1900 MHz) were considered for each sector of the proposed installation.
- 2) 1 CDMA Carrier (850 MHz) was considered for each sector of the proposed installation
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
- 5) The antenna used in this modeling is the RFS APXVSPP18-C-A20. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.

Tel: (781) 273.2500

Fax: (781) 273.3311



- 6) The antenna mounting height centerline of the proposed antennas is **134 feet** above ground level (AGL)
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

Tel: (781) 273.2500

Fax: (781) 273.3311

|         | Site ID<br>Site Addresss<br>Site Type | CT<br>1201 Wolcc<br>S | CT03XC073 - Wolcott<br>1201 Wolcott Road, Wolcott, CT 06716<br>Self Support Tower | lcott<br>ott, CT 06716<br>wer |            |                                        |                       |                                       |                                                          |                        |                    |             |                                   |                                   |                    |                           |                                |
|---------|---------------------------------------|-----------------------|-----------------------------------------------------------------------------------|-------------------------------|------------|----------------------------------------|-----------------------|---------------------------------------|----------------------------------------------------------|------------------------|--------------------|-------------|-----------------------------------|-----------------------------------|--------------------|---------------------------|--------------------------------|
|         |                                       |                       |                                                                                   |                               |            |                                        | Sector 1              | r 1                                   |                                                          |                        |                    |             |                                   |                                   |                    |                           |                                |
| Antenna | Antenna<br>Number Antenna Make        | Antenna Model         | Radio Type                                                                        | Frequency Band                | Technology | Power<br>Out Per<br>Channel<br>(Watts) | Number of<br>Channels | Number of Composite<br>Channels Power | Antenna Gain<br>in direction<br>of sample<br>point (dBd) | Antenna<br>Height (ft) | analysis<br>height | Cable Size  | Cable Loss Additional (dB)        | Additional<br>Loss                | ERP                | Power<br>Density<br>Value | Power<br>Density<br>Percentage |
| 1a      | RFS                                   | APXVSPP18-C-A20       | RRH                                                                               | 1900 MHz                      | CDMA/LTE   | 20                                     | 3                     | 09                                    | 15.9                                                     | 134                    | 128                | 1/2"        | 0.5                               | 0                                 | 2080.4211 45.64963 | 45.64963                  | 4.56496%                       |
| 1a      | RFS                                   | APXVSPP18-C-A20       | RRH                                                                               | 850 MHz                       | CDMA / LTE | 20                                     | 1                     | 20                                    | 13.4                                                     | 134                    | 128                | 1/5"        | 0.5                               | 0                                 | 389.96892 8.556892 | 8.556892                  | 1.50915%                       |
|         |                                       |                       |                                                                                   |                               |            |                                        |                       |                                       |                                                          |                        |                    | Sector tota | I Power Der                       | Sector total Power Density Value: | 6.074%             |                           |                                |
|         |                                       |                       |                                                                                   |                               |            |                                        | Sector 2              | r 2                                   |                                                          |                        |                    |             |                                   |                                   |                    |                           |                                |
| Antenna |                                       |                       |                                                                                   |                               |            | Power<br>Out Per<br>Channel            | Number of             | Number of Composite                   | Antenna Gain<br>in direction<br>of sample                | Antenna                | analysis           |             | Cable Loss Additional             | Additional                        |                    | Power                     | Power<br>Density               |
| Number  | Number   Antenna Make                 | Antenna Model         | Radio Type                                                                        | Frequency Band                | Technology | (Watts)                                | Channels              | Power                                 | point (dBd) Height (ft)                                  | Height (ft)            | height             | Cable Size  | (dB)                              | Loss                              | ERP                | Value                     | Percentage                     |
|         | RFS                                   | APXVSPP18-C-A20       | RRH                                                                               | 1900 MHz                      | CDMA / LTE | 20                                     | 3                     | 60                                    | 15.9                                                     | 134                    | 128                | 1/2"        | 0.5                               | 0                                 | 2080.4211          | 45.64963                  | 4.56496%                       |
| 2a      | RFS                                   | APXVSPP18-C-A20       | RRH                                                                               | 850 MHz                       | CDMA / LTE | 20                                     | 1                     | 20                                    | 13.4                                                     | 134                    | 128                | 1/2"        | 0.5                               | 0                                 | 389.96892 8.556892 | 8.556892                  | 1.50915%                       |
|         |                                       |                       |                                                                                   |                               |            |                                        |                       |                                       |                                                          |                        |                    | Sector tota | Sector total Power Density Value: | isity Value:                      | 6.074%             |                           |                                |
|         |                                       |                       |                                                                                   |                               |            |                                        | Sector 3              | r3                                    |                                                          |                        |                    |             |                                   |                                   |                    |                           |                                |
|         |                                       |                       |                                                                                   |                               |            | Power<br>Out Per                       |                       |                                       | Antenna Gain<br>in direction                             |                        |                    |             |                                   |                                   |                    | Power                     | Power                          |
| Antenna | Antenna Make                          | Antenna Model         | Radio Type                                                                        | Frequency Band                | Technology | Channel<br>(Watts)                     | Number of<br>Channels | Composite                             | of sample<br>point (dBd)                                 | Antenna<br>Height (ft) | analysis<br>height | Cable Size  | Cable Loss Additional             | Additional                        | ERP                | Density                   | Density                        |
| 3a      | RFS                                   | APXVSPP18-C-A20       | RRH                                                                               | 1900 MHz                      | CDMA / LTE | 20                                     | 3                     | 09                                    | 15.9                                                     | 134                    | 128                | 1/2"        | 0.5                               | 0                                 | 2080.4211          | 45.64963                  | 4.56496%                       |
| 3a      | RFS                                   | APXVSPP18-C-A20       | RRH                                                                               | 850 MHz                       | CDMA / LTE | 20                                     | 1                     | 20                                    | 13.4                                                     | 134                    | 128                | 1/2"        | 0.5                               | 0                                 | 389.96892          | 8.556892                  | 1.50915%                       |
|         |                                       |                       |                                                                                   |                               |            |                                        |                       |                                       |                                                          |                        |                    | Sector tota | Sector total Power Density Value: | isity Value:                      | 6.074%             |                           |                                |

| Site Comp          | Site Composite MPE % |
|--------------------|----------------------|
| Carrier            | MPE%                 |
| Sprint             | 18.222%              |
| LoJack             | %000:0               |
| TSR Wireless       | 0.470%               |
| Weblink Wireless   | 2.830%               |
| Wolcott Ambulance  | 0.520%               |
| Nextel             | 1.430%               |
| Clearwire          | 0.420%               |
| Marcus             | 2.640%               |
| AT&T               | 1.870%               |
| Metro PCS          | 1.590%               |
| Total City Made of | %€00 B€              |



#### **Summary**

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the Sprint facility are 18.222% (6.074% from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **29.992%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government

Tel: (781) 273.2500

Fax: (781) 273.3311

Scott Heffernan

RF Engineering Director

**EBI Consulting** 

21 B Street

Burlington, MA 01803