CC CROWN CASTLE

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

May 22, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T - 806362 347 East Street, Wolcott, CT 06716 Latitude: 41° 33' 34.41" / Longitude: -72° 56' 49.10"

Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 158-foot mount on the existing 185-foot Self-Support Tower, located at 347 East Street, Wolcott, CT. The tower is owned by Crown Castle and the property is owned by Augostinho & Joanne Rodrigues. AT&T now intends to replace three (3) antennas and add three (3) antennas to their existing configuration. The new antennas will be installed at the 158-ft level of the tower. AT&T is also proposing a mount swap pursuant to the enclosed Mount Analysis Report.

The facility was approved by the Connecticut Siting Council in Docket No. 56 on April 14, 1986. Said approval given with conditions which this exempt modification complies with.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Thomas G. Dunn, Mayor for the Town of Wolcott, David Kalinowski, Zoning Inspector, Crown Castle as the tower owner, and Mr. and Mrs. Rodrigues, the property owners.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

The Foundation for a Wireless World. CrownCastle.com Page 2

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba Sincerely,

Anne Marie Zsamba Network Real Estate Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments

cc:

The Honorable Thomas G. Dunn, Mayor (*via email only to tdunn@wolcott.org*) Town Hall 10 Kenea Avenue Wolcott, CT 06716

David Kalinowski, Zoning Inspector (via email only to ehenderson@wolcottct.org) Town Hall 10 Kenea Avenue Wolcott, CT 06716

Augostinho & Joanne Rodrigues 347 East Street Wolcott, CT 06716

Crown Castle, Tower Owner

Dear Mayor Dunn:

Attached please find AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today May 22, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 <u>CrownCastle.com</u> Dear Mr. Kalinowski:

Attached please find AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today May 22, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 <u>CrownCastle.com</u>

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Exhibit A

Original Facility Approval

DOCKET NO. 56

AN APPLICATION OF METRO MOBILE CTS OF	:	CONNECTICUT SITING
NEW HAVEN, INC., FOR A CERTIFICATE OF		
ENVIRONMENTAL COMPATIBILITY AND PUBLIC		
NEED FOR THE CONSTRUCTION, MAINTENANCE,	:	COUNCIL
AND OPERATION OF FACILITIES TO PROVIDE		
CELLULAR SERVICE IN NEW HAVEN COUNTY.	:	April 14, 1986

<u>DECISION AND ORDER</u>

Pursuant to the foregoing opinion, the Council hereby directs that a certificate of environmental compatibility and public need as required by section 16-50k of the General Statutes of Connecticut (CGS) be issued to Metro Mobile CTS of New Haven, Inc., for the construction, maintenance, and operation of cellular mobile phone telecommunication towers and associated equipment in the towns of Wolcott, Naugatuck, West Haven (existing tower), Milford, Hamden (existing tower), Guilford, and North Branford subject to the conditions below.

- The proposed and alternate Beacon Falls sites are rejected without prejudice.
- The Wolcott tower shall be constructed to meet Zone C wind loading with 1" of radial ice and shall not exceed 180' in height excluding antennas.
- 3. The Naugatuck tower shall not exceed 160' in height, excluding antennas. The certificate holder shall offer to remove the existing privately owned, unused tower now on the site.
- 4. Any future actions requiring the removal of the existing West Haven or Hamden towers to be shared by the certificate holder shall also apply to the equipment mounted on those towers by the certificate holder, regardless of that equipment's status under Chapter 277a of the CGS.

- The Milford tower shall be a monopole structure not to exceed 100' in height, excluding antennas.
- The Guilford tower shall be a monopole structure not to exceed 150' in height, excluding antennas.
- 7. The North Branford Route 17 site is rejected. The North Branford East Reeds Gap Road tower shall not exceed 160' in height, excluding antennas.
- 8. The certificate holder shall submit a development and management plan for the Wolcott, Naugatuck, Milford, Hamden, Guilford, and North Branford sites pursuant to sections 16-50j-75 through 16-50j-77 of the RSA, except that irrelevant items in section 16-50j-76 need only be identified as such. In addition to the requirements of section 16-50j-76, the D&M plan shall provide plans for evergreen screening around the fenced perimeter at the Wolcott, Milford, Hamden, Guilford, and North Branford sites. The D&M plan shall include a proposal for painting the approved monopole structures to blend with the sky. Any changes to specifications in the D&M plan must be approved by the Council prior to facility operation.
- 9. All certified facilities shall be constructed, operated, and maintained as specified in the Council's record and in the site development and management plan required by order 8.
- 10. The certificate holder shall permit public or private entities to share space on the towers approved herein, for due consideration received, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. In addition to complying with 16-50j-73, the

-2-

certificate holder shall notify the Council of the addition of any equipment to any approved tower.

- 11. A fence not lower than 8' shall surround each tower and associated equipment.
- 12. Unless necessary to comply with order 13, below, no lights shall be installed on any of these towers.
- 13. The facilities' construction and any future tower sharing shall be in accordance with all applicable federal, state, and municipal laws and regulations. Shared uses by entities not subject to jurisdiction pursuant to sections 16-50i and 16-50k of the CGS shall be subject to all applicable federal, state, and municipal laws and regulations.
- 14. Construction activities shall take place during daylight working hours.
- 15. This decision and order shall be void and the towers and associated equipment shall be dismantled and removed, or reapplication for any new use shall be made to the CSC before any such new use is made, if the towers do not provide or permanently cease to provide cellular service following completion of construction.
- 16. This decision and order shall be void if all construction authorized herein is not completed within three years of the issuance of this decision, or within three years of the completion of any appeal if appeal of this decision is taken, unless otherwise approved by the Council.

Pursuant to CGS section 16-50p, we hereby direct that a copy of the decision and order shall be served on each person listed below. A notice

of the issuance shall be published in The Record-Journal, The New Haven Register, The Branford Review, The Evening Sentinel, The Waterbury American, and The Waterbury Republican. The parties to this proceeding are: Metro Mobile CTS of New Haven, Inc. (Applicant) 5 Eversley Avenue Norwalk, Connecticut 06855 ATTN: Armand Mascioli General Manager Mr. Kevin B. Sullivan, Esq. (its attorneys) Byrne, Slater, Sandler, Shulman & Rouse, P.C. 111 Pearl Street P.O. Box 3216 Hartford, Connecticut 06103 Mr. Richard Rubin, Esq. Fleischman and Walsh, P.C. 1725 N Street, N.W. Washington, D.C. 20036 Guilford Conservation Commission represented by: Mr. David B. Damer Chairman Guilford Conservation Commission 440 Great Hill Road Guilford, Connecticut 06437 Mr. Robert W. Griswold, Jr. 100 Rimmon Hill Road Beacon Falls, Connecticut 06403 Town of Hamden Memorial Town Hall 2372 Whitney Avenue Hamden, Connecticut 06518 ATTN: Shirley Gonzales Town Planner

Guilford Planning and Zoning Commission represented by: Mr. David W. Fisher Chairman Town Hall 31 Park Street Guilford, Connecticut 06437 Town of Hamden represented by: John DeNicola, Jr. Mayor Town of Hamden Memorial Town Hall 2372 Whitney Avenue New Haven, Connecticut 06518 Citizens Park Council of New Haven represented by: Mr. John J. Ciarleglio President Citizens Park Council of New Haven 36 Elmwood Road New Haven, Connecticut 06515 Mr. Thomas V. Keating 343 Rimmon Hill Road Beacon Falls, Connecticut 06403 Ms. Evelyn M. Sirowich 245 Rimmon Hill Road Beacon Falls, Connecticut 06403 Mr. Jack B. Levine 11 White Birch Lane Beacon Falls, Connecticut 06403 Southern New England Telephone Company represented by: Mr. Peter J. Tyrrell, Esq. 227 Church Street New Haven, Connecticut 06506 Mr. Dennis Bialecki 96 West Road

Beacon Falls, Connecticut 06403

Brittany Woods Homeowner's Association represented by: Mr. Stephen P. Del Sole, Esq. Del Sole & Del Sole 152 Temple Street P.O. Box 405 New Haven, Connecticut 06502-0405 Ms. Barbara G. Schlein Box 2993 Westville Station New Haven, Connecticut 06515 Mr. & Mrs. Joseph T. Farrell, Jr. 334 Rimmon Hill Road Beacon Falls, Connecticut 06403 Town of Beacon Falls represented by: The Honorable Leonard F. D'Amico First Selectman 10 Maple Avenue Beacon Falls, Connecticut 06403 West Rock Ridge Park Association represented by: Mr. William L. Doheny Jr., D.D.S. President 220 Mountain Road Hamden, Connecticut 06514 Department of Parks, represented by: Recreation & Trees Mr. Robert G. Sheeley Director Parks, Recreation & Trees P.O. Box 1416 New Haven, Connecticut 06506 Town of Wallingford represented by: William W. Dickinson, Jr. Mayor Municipal Building 350 Center Street P.O. Box 427 Wallingford, Connecticut 06492 New Haven Sierra Club represented by: Ms. Laurie Klein 270 Edgewood Avenue New Haven, Connecticut 06511

Peter M. Lerner State Representative 8 Merritt Avenue Woodbridge, Connecticut 06525 Carleton J. Benson State Representative 161 Scott Road Prospect, Connecticut 06712 Dr. Stephen Collins (service waived) Vice Chairman West Rock State Park Advisory Council Bethany, Connecticut (service wavied) Mr. Louis Melillo 985 Wintergreen Avenue Hamden, Connecticut Mr. John McGeever (service waived) 339 Rimmon Hill Beacon Falls, Connecticut 06403 Senator John Consoli (service waived) 51 Luke Hill Road Bethany, Connecticut 06525 Representative George P. Bassing (service waived) 14 Oakwood Drive Seymour, Connecticut 06483 (service waived) Dr. George D. Whitney 858 Oakwood Road Orange, Connecticut (service waived) Mr. Steve Molnar 205 West Road Beacon Falls, Connecticut Mr. James W. Grandy (service waived) President Hamden Land Conservation Trust Hamden, Connecticut Senator Richard S. Eaton (service waived) 269 Mulberry Point Road Guilford, Connecticut 06437 Representative Robert M. Ward 719 Totoket Road Northford, Connecticut 06472

Town of North Branford	represented by:
	John Gesmonde, Esquire 3127 Whitney Avenue Hamden, Connecticut 06518
Regina Smith 1887 Middletown Avenue Northford, Connecticut 06472	(service waived)
Richard A. Nizolek The Restland Farm Corporation Route 17	
Northford, Connecticut 06472	
Mary Liska 83 Reeds Gap Road Northford, Connecticut 06472	
Ben Bullard 50 Christmas Hill Road Guilford, Connecticut 06437	(service waived)
Roland Robichaud 31 Berncliff Drive North Branford, Connecticut 06471	(service waived)
Irene Flynn 1926 Middletown Avenue Northford, Connecticut 06472	(service waived)
Charles Pope 199 Donalds Road Guilford, Connecticut 06437	
Richard Abate 131 Manor Road Guilford, Connecticut 06437	(service waived)
City of Milford	represented by:
	Mayor Alberta Jagoe Alderman Maurice Condon Alderman Frederick Lisman City Hall River Street Milford, Connecticut 06460

Thomas Scelfo 81 Berncliff Drive North Branford, Connecticut 06471 (service waived)

Senator Thomas Scott 22 Meyers Court Milford, Connecticut 06460

Helen Moore 385 Oronoque Road Milford, Connecticut 06460

William Barberi 298 Oronoque Road Milford, Connecticut 06460 (service waived)

(service waived)

(service waived)

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut, this 14th day of April, 1986.

Council Members

Vote Cast

Pond hli

Gloria Dibble Pond Chairperson

Absent

Yes

١ Commissioner John Downey Commissioner Peter G. Boucher Designee:

Commissioner Stanley Pad

Designee: Christopher Cooper

Ower C

Mortimer A. Gelston

James G. Horsfall)	
Parmelie, Katz.)	
Pamela B. Katz	/	
William H. Smith)	
Ch C- Tait)	

Colin C. Tait

No

Yes

Yes

Yes

Yes

No

No

) :) STATE OF CONNECTICUT ss. New Britain, April 14, 1986 COUNTY OF HARTFORD

I hereby certify that the foregoing is a true and correct copy of the decision and order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

Christopher S. Wood, Executive Director Connecticut Siting Council

Exhibit B

Property Card

347 EAST ST

Location	347 EAST ST	Mblu	131/ 1/ 19/ /
Acct#	R0478100	Owner	RODRIGUES AGOSTINHO V &
Assessment	\$453,670	Appraisal	\$648,090
PID	5352	Building Count	3

Current Value

Appraisal					
Valuation Year Improvements Land Tot					
2016	\$401,720	\$246,370	\$648,090		
Assessment					
Valuation Year	Improvements	Land	Total		
2016	\$281,210	\$172,460	\$453,670		

Owner of Record

Owner	RODRIGUES AGOSTINHO V &	Sale Price	\$0
Co-Owner	JOANNE	Certificate	
Address	347 EAST ST	Book & Page	0131/0023
	WOLCOTT, CT 06716	Sale Date	06/27/1980
		Instrument	25

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
RODRIGUES AGOSTINHO V &	\$0		0131/0023	25	06/27/1980

Building Information

Building 1 : Section 1

	Building Attributes	
Less Depreciation:	\$210,440	
Replacement Cost		
Building Percent Good:	62	
Replacement Cost:	\$339,418	
Living Area:	3,139	
Year Built:	1930	
Year Built:	1930	

Field	Description
Style	Colonial
Model	Residential
Grade:	В
Stories	1.9
Occupancy	1
Exterior Wall 1	Vinyl Siding
Exterior Wall 2	
Roof Structure	Gambrel
Roof Cover	Arch Shingles
Interior Wall 1	Drywall
Interior Wall 2	
Interior FIr 1	Carpet
Interior Flr 2	
Heat Fuel	Oil
Heat Type:	Hot Water
AC Percent	35% CAC
Total Bedrooms:	5 Bedrooms
Full Bthrms:	3
Half Baths:	0
Extra Fixtures	0
Total Rooms:	9
Bath Style:	Average
Kitchen Style:	Average
Num Kitchens	1
Fireplace(s)	0
Usrfld 103	0
Usrfld 104	0
% Attic Fin	0
LF Dormer	12
Foundation	Poured Conc
Bsmt Gar(s)	0
Bsmt %	100
SF FBM	0.00
SF Rec Rm	182
Fin Bsmt Qual	LQ
Bsmt Access	Int & Ext
Usrfld 300	
Usrfld 301	

Building Photo

(http://images.vgsi.com/photos/WolcottCTPhotos/\00\01\17\56.jpg)

Building Layout

(http://images.vgsi.com/photos/WolcottCTPhotos//Sketches/5352_5352.jpg

	Building Sub-Areas (sq ft)		
Code	Description	Gross Area	Living Area
BAS	First Floor	1,616	1,616
FNS	Finished 90% Story	1,292	1,163
FUS	Finished Upper Story	360	360
BSM	Basement	2,212	0
PTC	Concrete Patio	516	0
UEP	Unfin. Enclosed Porch	126	0
		6,122	3,139

Year Built:	1910		
Living Area:	1,308		
Replacement Cost:	lacement Cost: \$134,245		
Building Percent Good:	60		
Replacement Cost	¢90 550		
Less Depreciation.	Attribute	- Pida 2 of 2	
Building	Allinbule		
Field		Description	
Style		Conventional	
Model		Residential	
Grade:		D	
Stories		1	
Occupancy		1	
Exterior Wall 1		Vinyl Siding	
Exterior Wall 2			
Roof Structure		Gable	
Roof Cover		Arch Shingles	
Interior Wall 1		Plaster	
Interior Wall 2			
Interior FIr 1		Carpet	
Interior FIr 2			
Heat Fuel		Oil	
Heat Type:		Hot Water	
AC Percent		None	
Total Bedrooms:		2 Bedrooms	
Full Bthrms:		1	
Half Baths:		0	
Extra Fixtures		0	
Total Rooms:		5	
Bath Style:		Average	
Kitchen Style:		Average	
Num Kitchens		1	
Fireplace(s)		0	
Usrfld 103		0	
Usrfid 104		0	
% Attic Fin		0	
LF Dormer		0	
Foundation		Poured Conc	
Bsmt Gar(s)		0	
Bsmt %		0	

Building Photo

(http://images.vgsi.com/photos/WolcottCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/WolcottCTPhotos//Sketches/5352_20142.jp

	Building Sub-Areas (sq ft)		<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	968	968
FUS	Finished Upper Story	340	340
CRL	Crawl Space	968	0
FEP	Finished Enclosed Porch	24	0
PTS	Stone Patio	108	0
WDK	Deck	136	0
		2,544	1,308

SF FBM	0.00
SF Rec Rm	0
Fin Bsmt Qual	
Bsmt Access	None
Usrfld 300	
Usrfld 301	

Building 3 : Section 1

Year Built:	1912
Living Area:	1,481
Replacement Cost:	\$160,287
Building Percent Good:	60
Replacement Cost	
Less Depreciation:	\$96,170

Building Attributes : Bldg 3 of 3			
Field	Description		
Style	Conventional		
Model	Residential		
Grade:	D		
Stories	1.65		
Occupancy	2		
Exterior Wall 1	Vinyl Siding		
Exterior Wall 2			
Roof Structure	Gable		
Roof Cover	Arch Shingles		
Interior Wall 1	Plaster		
Interior Wall 2			
Interior FIr 1	Hardwood		
Interior Flr 2	Carpet		
Heat Fuel	Oil		
Heat Type:	Hot Water		
AC Percent	None		
Total Bedrooms:	3 Bedrooms		
Full Bthrms:	2		
Half Baths:	0		
Extra Fixtures	0		
Total Rooms:	7		
Bath Style:	Average		
Kitchen Style:	Average		
Num Kitchens	2		
Fireplace(s)	0		
Usrfld 103	0		

Building Photo

(http://images.vgsi.com/photos/WolcottCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/WolcottCTPhotos//Sketches/5352_20143.jp

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	1,068	1,068
FHS	Finished Half Story	636	413
BSM	Basement	468	0
CRL	Crawl Space	600	0
FOP	Open Porch	72	0
UEP	Unfin. Enclosed Porch	30	0

Usrfld 104	0
% Attic Fin	0
LF Dormer	0
Foundation	Poured Conc
Bsmt Gar(s)	0
Bsmt %	100
SF FBM	0.00
SF Rec Rm	0
Fin Bsmt Qual	
Bsmt Access	Int & Ext
Usrfld 300	
Usrfld 301	

WDK	Deck	120	0
		2,994	1,481

•

Extra Features

Extra Features Lege				<u>Legend</u>
Code	Description	Size	Value	Bldg #
SOL	Solar Array	39.00 UNITS	\$0	1

Land

Land Use		Land Line Valua	tion
Use Code	112	Size (Acres)	2.20
Description	Multiple Houses	Frontage	
Zone	R-30	Depth	
Neighborhood	6C	Assessed Value	\$172,460
Alt Land Appr	Νο	Appraised Value	\$246,370
Category			

Outbuildings

Outbuildings					<u>Legend</u>	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FGR1	Garage	FR	Frame	672.00 S.F.	\$5,880	1
FGR1	Garage	FR	Frame	560.00 S.F.	\$4,900	1
FOP	Porch			480.00 S.F.	\$2,760	1
РТО	Patio	CN	Concrete	408.00 S.F.	\$1,020	1

Valuation History

Appraisal				
Valuation Year	Land	Total		
2019	\$401,720	\$246,370	\$648,090	
2018	\$401,720	\$246,370	\$648,090	

2017	\$401,720	\$246,370	\$648,090

Assessment				
Valuation Year	Total			
2019	\$281,210	\$172,460	\$453,670	
2018	\$281,210	\$172,460	\$453,670	
2017	\$281,210	\$172,460	\$453,670	

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

AT&T ATAN	Isotration Image: state of the state o
 GREENFIELD GROUNDING NOTES: GREENFIELD GROUNDING NOTES: ALL denoue FLEROME SYSTEM (NELLIONE TELEONUMEATION, PADD, UEHNING, PROTEND, ROLLING, PRESNAMER, FIN, DAD, BORGED OTAGINAS, MACZARANG, WITH HE, NE. THE SUBCONTRACTOR SALL PERSONAL HER 190, DAD BURG CONTRACT STREENG, CARRANG, WITH HER, SC., PADD, LIFE SUBCONTRACTOR SALL PERSONAL HER 190, DAD BURG CONTRACT STREENG, CARRANG, WITH HER, SC., PADD, LIFE SUBCONTRACTOR SALL PERSONAL HER 190, DAD BURG ATTEXT STREENG, CARRANG, WITH HER 190, DAD BURG ATTEXT STREENG, SCREENG, CARGUN MISTLUTION AS A DED TO A TEXT STREENG, CARGUN WAS A DE CONTRACT STREENG RECOMMENDATION AND RESOURCES AND RECOVERS AS REEDD TO JOHNER ATTEXT STREENG, CARGUN WAS AND CONDUCT AND STREENG RECOMMENDATION AND PROVIDENT STREENG STREENG AS DAD BURG TO STREENG AND AND AND AND AND AND AND AND AND AND	16 ALL ETGREGN RESINANT MARTEN. CORREGN RESINANT MARTEN. 17 MARCH JANGROSA RESINANT MARTEN. 18 MARCH JANGROSA RESINANT MARTEN. 18 MARCH JANGROSA MARTEN. 18 MART 1-12 AND STATENT AND AND ELECTRON. 19 ADD ALL RETURL OBJECTS WITH 8 FT oF MARI GROUDD MARCE 19 ADD ALL RETURL OBJECTS WITH 8 FT oF MARI GROUDD MARCE 19 ADD ALL RETURL OBJECTS WITH 7 MARI GROUDD MARCEN 19 ADD ALL RETURL OBJECTS WITH 7 MARI GROUDD MARCEN 19 ADD ALL RETURL OBJECTS WART FOR A FARG AND/OF RE CONDUCTORS. 19 ADD ALL RETURL OBJECTS WART 19 ADD ALL RECOVERY STATENT 19 ADD ALL RETURL OBJECTS WART 19 ADD ALL RECOVERY 19 ADD ALL 10 ADD ALL OBJECTS WART 19 ADD ALL RECOVERY 19 ADD ALL RE DALE OBJECT 10 ADD ADD THE ACUTO FORMER SAID ADD 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE ELEVER SALL DOWN OF THE ACUT. CONDIT FALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS AND TAPA AT ADD ADD TOTAR SALL RE 10 ALL OBJECTS ADD ADD THE ACUT. ADD ADD TAPA AT 10 ALL OBJECTS ADD ADD ADD ADD ADD ADD ADD ADD ADD AD
 ELECTRICAL INSTALLATION NOTES: ALL ELERGER, WORK SANL BE FREGRADE IN ACCORRAGE WITH HIE PROJECT CODENT FORDINGS: SEX SUBJECT SUBJECTION ON THE PROJECT TODAL. STATL CODENT FORDINGS: SEX SUBJECT SUBJECTION ON THE PROJECT TODAL. STATL SUBJECTS: THE CARD ALL PERFORMET SUBJECTION ON THE PROJECT FOR MARK ACCESS TO ECUMPART FOR THE PROOF MARION SER EQUIDAR PROJECTS FILL BE FROM THE PROOF MARION SER EQUIDAR TO ALL REPORT SALL BEFORMET DAIL MANINA MANUAL COMMINS DI MARK ACCESS TO ECUMPART FOR THE PROOF MARION AND EXCENT SALL BE FROM THE PROOF MARION AND THE PROOF MARION ALL REPORT SALL BE FROM THE PROOF MARION AND ELECTRON VARIATION MATCHING SALL CONTON AND DEALES SALL ANT ER FOLTED THROUGH LOCES-TIFL CARE TRANK. E. DELES SALL ANT ER FOLTED THROUGH LOCES-TIFL CARE TRANK. E. DELES SALL AT ER FORTERTION MATCHING SALL CONTON FOR THE ALL ENTERING VARIATION MATCHING SALL CONTON AND EXCENT FORMERTION AND THROUGH LOCES-TIFL CARE TRANK. ALL ELERGER, COMPANIENT FOR THE DAMA ON ORDER TRANK. MALL ELERGER, COMPANIENT FOR THE DAMA ON ORDER TO THRUNK OF EXCENT OF THE LOCATION AND THROUGH LOCES-TIFL CARE TRANK. MALL ELERGER, CONDINING AND THRUNK OF AND ORDER TO THRUNK OF EXCENT OF THE LOCATION AND THRUNK OF AND ORDER TO THRUNK OF EXCENT OF THE LOCATION AND THRUNK OF AND ORDER TO THRUNK OF EXCENT OF THE LOCATION AND THRUNK OF AND ORDER TO THRUNK OF EXCENT OF THE LOCATION AND THRUNK OF AND ORDER TO THRUNK OF EXCENT OF THE LOCATION AND THRUNK OF AND THRUNK OF AND OF EXCENT OF THE LOCATION AND THRUNK OF AND ORDER TO THRUNK OF EXCENT OF THE LOCATION AND THRUNK OF AND OF AND OF EXCENT OF THE LOCATION AND ORDER TO THRUNK OF AND OF EXCENT OF THE LOCATION AND ORDER TO THRUNK OF AND OF EXCENT OF THE LOCATION AND ORDER TO THRUNK OF AND OF EXCENT OF THE LOCATION AND ORDER TO THRUNK OF AND OF EXCENT OF THE LOCATION AND ORDER TO THRUNK OF AND OF EXCENT OF THE LOCATION AND ORDER TO THRUNK OF AND OF EXCENT OF THE LOCATION AND ORDER TO THRUNK OF AND OF EXCENT OF	 LELFRIGA, MARELLU, DINNE DIA, ELCINGA, MARELLUIC, INDIA DE CONCUEJD NOMERULIC GONDUT (2000) PLC: SCIENLE 40) SHUL ER USD FOR CONCUEJD MODORS AND LA PREVORD AND STANDER AND SCIENLE 40 PLC FRA ALL ELEMAN/DA AND THENC FINAL PROPORTING NO STANDER AND SCIENLE 40 PLC FRA ALL ELEMAN/DA AND THENC FINAL SCIENCE AND SCIENCE AND ACCEPTAGE CONDINGS AND THENC FINAL SCIENCE AND SCIENCE AND ACCEPTAGE CONDINGS AND THENC FINAL SCIENCE AND SCIENCE AND ACCEPTAGE CONDINGS AND THENC FINAL SCIENCE AND ACCEPTAGE CONDINGS AND THENC FINAL SCIENCE AND ACCEPTAGE CONDINGS AND AND THENC FINAL SCIENCE AND ACCEPTAGE CONDINGS AND AND THENC FINAL SCIENCE AND ACCEPTAGE CONDINGS AND AND AND ACCEPTAGE AND ACCEPTAGE CONDINGS AND AND AND ACCEPTAGE AND ACCEPTAGE CONDINGS AND AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE CONDINGS AND AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE AND ACCEPTAGE ACCEPTAGE AND ACCEPTA
 MASONRY NOTES. H-LURO CONCERT MORPH UNITS SHUL WET ASTLU. SPECEPOIDIN OR, OBDERT MORPH UNITS SHUL WET ASTLU. SPECEPOIDIN OF CONCERT WORMEN OF THEOREM DESAN CONNECTION PROVIDED IN THE PROPERTICATION PERIFORM OF ASTLU. TOTAL THE PROPERTICATION PERIFORM OF ASTLUT OF THE PROPERTICATION OF THEOREM TO TADA THE PROPERTICATION OF THEOREM TO TADA THE PROPERTICATION OF THEOREM TO TADA THE PROPERTICATION OF THE PROPERTICATION OF THEOREM TO TADA THE PROPERTICATION OF THE PROPERTICAL OF THE PROPERTING OF THE PROPERTICAL OF THE PROPERTICAL OF THE PROPERIAL DET	 execompacting sparse processes as increases and increases as increases and inc
 WORK GENERAL NOTES. The Septemberors shut connert untriv locating serves freen in the space of consenserves when the strain of consenserves when the strain of consenserves when the space of the strain of the strain of the space of the strain of the st	 STRUCTUBAL STEFL NOTES: STRUCTUBAL STEFL NOTES: The service shut a comparison with sum sum service with some sources of the service with some sources of the source sources of the source sources of the source sources of the source source source source source source source sources of the source source

04055.010_886362_NHV 108 943133.dwg - Sheet:C-1 - User: fperkins - May 19, 2020 - 11:09am

ALACTER TAX ONEATER NO 1021 ALANDEREN OF AT RAT ONEATER NO 1021 ALACTER NO 1021 ALACTER AND	AT&T GRA NUSA OR OF ONE NUSA OF OT ON NUSA OF OT ON ATT&T SITTE NUMBER: ATT&T SITTE NUMBER: ATT&T VIO BU #: 806362 NHV 108 943133 347 EAST STREET WOLCOTT, CT 06716 EXISTING 185-0" SELF-SUPPORT TOWER								ISSUED FOR:	0 4/27/20 BLB CONSTRUCTION FWP 1 5/18/20 GEM CONSTRUCTION FWP				A STOC MENT	Rev March	1 × 1 × 1 × 1	31670 114 0.105100 114 1050001A1 5000 5/18/20	B&T ENGINEERING, INC. PEC.0001564 Express 2/10/21 EFBATWATTING OF A STREPARTMENTING (NA.1.100, NTTING THE RESERVICE NA.1.100, NTTING THE RESERVICE	C-5 1	
		RET CABLE		~	~	~	*		≻	~	~	~		~	≻	~	~			
		DIPLEXER		(2) POWERWAVE CM1007-DBPXBC-003 (GROUND)	(2) KAELUS DBC0061F1V51-2 (GROUND)	I	I		(2) POWERWAVE CM1007-DBPXBC-003 (GROUND)	(2) KAELUS DBC0061F1V51-2 (GROUND)	I	I		<pre>(2) POWERWAVE CM1007-DBPXBC-003 (GROUND)</pre>	<pre>(2) KAELUS DBC0061F1V51-2 (GROUND)</pre>	I	I			
	-	RRHS	-		<pre>(1) RRUS-E2 B29 (GROUND)</pre>	(1) 4478 B14 (1) RRUS-32 B66A	(1) 4449 B5/B12		I	(1) RRUS-E2 B29 (GROUND) (1) RRUS-32 B2 (1) RRUS-32 B30	(1) 4478 B14 (1) RRUS-32 B66A	(1) 4449 B5/B12		I	<pre>(1) RRUS-E2 B29 (GROUND)</pre>	(1) 4478 B14 (1) RRUS-32 B66A	(1) 4449 B5/B12			
	DULE	DC (WR-VG86ST-BRD) FIBER CABLES (FB-L98B-034-XXXXXX)	-		(1) FIBER (2) DC LINES					(1) FIBER (2) DC LINES					= (2) DC LINES					
	BLE SCHE	RAYCAP			DC6-48-60-18-8					DC6-48-60-18-8					(1) DC6-48-60-18-8					SCHEDULE
	DAXIAL CA	TMA QTY AND MODEL		(1) CCI DTMABP7819VG12A	I	I	I		(1) CCI DTMABP7819VG12A	I	I	I		(1) CCI DTMABP7819VG12A	I	I	I			COAXIAL CABLE : .E
		TH COAX		0 .	0 .	I	I		0 "	9. 0.	I	I		0"	0" 2	ı	I			TT TO SCA
	A ANV	DAX MAU COA		r" 216'-	r" 216'-	1	1		r" 223'-	r" 216'-	1	1		r" 210'-	r" 216'-	1	1			FINAL ANT SCALE: NO
	FINAL ANTER	L MAIN CC		1-1/2	1-1/4	I	1		1-1/4	1-1/2	1	1		1-1/2	1-1/2	1	1			(\neg)
		ELECTRICAL DOWNTILT		10.	2./2./6	10°/6	13/10/10		ż	3/0/6	.9/.6	.6/.6/.6		10.	2./2./6	.9/.9	6/6/6			
		IECHANICAL DOWNTILT		'n	ь	ъ	°.		ь	Ň	ò	.0		3	ь	ъ	ь			
	-	ANTENNA RAD CENTER		160'-0"	160'-0"	160'-0"	160'-0"		160'-0"	160'-0"	160'-0"	160'-0"		160'-0"	160'-0"	160'-0"	160'-0"			
		ANTENNA TYPE		POWERWAVE 7770	QUINTEL QS66512-2	CCI OPA65R-BU6DA-K	CCI DMP65R-BU6DA		POWERWAVE 7770	CCI TPA-65R-LCUUUU-H8	CCI OPA65R-BU8DA-K	CCI DMP65R-BU8DA		POWERWAVE 7770	QUINTEL QS66512-2	CCI OPA65R-BU6DA-K	CCI DMP65R-BU6DA			
		AZIMUTH		140	24.	24"	24"		261	140	140	140		24.	261	261*	261	DUPMENT		
		STATUS		EXISTING	EXISTING	NEW	NEW		EXISTING	EXISTING	NEW	NEW		EXISTING	EXISTING	NEW	NEW	TES NEW EC		
		TECH	SECTOR	UMTS	LTE	LTE	LTE/5G	SECTOR	UMTS	LTE	LTE	LTE/5G	SECTOR	UMTS	LTE	LTE	LTE/5G	BOLD DENOI		
L l		POS.	ALPHA	A1	A2	A3	A4	BETA :	8	B2	B3	B4	CAMM/	5	C3	C3	5 C	NOTE:		

104033.010_806362_NHV 108 943133.dwg - Sheet:0-5 - User: fperkins - May 19, 2020 - 11:09am

OUTE AT	AT&T SITE NUMBER: MARK SITE NUMBER: WARK SITE NUMBER: WARK SITE NUMBER: CTV1060 BU #: 806362 NHV 108 943133 347 EAST STREET WOLCOTT, CT 06716 EXISTING 185-0" SELF-SUPPORT TOWER	ISSUED FOR: 15SUED FOR: 10 0.172 0 0.172/10 1 9/18/20 0 0.05780/000	ST18/20	B&T ENGINEERING, INC. PEC.0001564 Excise 2710/21 ETA VUA.TURV OF 14 TVUA PERSOL, ULASSED FOR TATAL PERSOL, TATAL SCHEDURING, INC. TATAL SCHEDURI
ROPER INSTALLATION. LIED WITH A HEAT GUN, USE ROHBIED DUE TO POIENTIAL ROHBIED DUE TO POIENTIAL CHING THE EQUIPMENT ON LING THE EQUIPMENT ON SIS (REH/REU, ANTENNAS, SIS ORIVECTORS ATTACHED TO CONCETTORS THE THREADS MUST CONCETTOR DETALLED. X COLOR CODE X COLOR CODE	CRENC CONTRACT OF THE CONNECT OF ANGE BLANK WHITE WHIT	N TABLE Reference Convection No No YES	NO NO NO NO NO SULUS FOR DUCTORS DUCTORS (NUM EINING (NCHES) 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 L
HYSICAL SPACE EXISTS FOR PI FOR ROOFTOP SITES WHEN APP ICE, SUCH ALS A TORCH, IS PI THE GROUND PRIOR TO INSTAT HE GROUND PRIOR TO INSTAT FEETORS FOUND ON RF DEVICE HE DEVICE. TH MAY BE USED (0 FULLY THREADED DIN CONCENT ANY BE USED DIN CONCENT ANY BE USED DIN CONCENT ANY BE USED DIN CONCENT ANY DE - COA	PER / FIRST F WHIE WHIE WHIE POWN	UCT APPLICATION APPLICATION APPLICATION APPLICATION CONNECTOR CONNECTOR CONNECTOR YES (1) NO YES (1) YES	YES NO MINIMUM BENDING F GROUNDING CON GROUNDING CON GROUNDING CON GROUNDING CON GROUNDING CON GROUNDING CON CONDICION SIZE NO A MG 4 MG 2 MG 1/0 MG	4/0 AWG 750 KCML
BE USED WHEN ADEQUATE PI BE USED AT GROUND LEVEL (C WITH AN OPEN TLAME DEVI AND CABLES FEAT SHARK IS AND CABLES FEAT SHARK IS PARKINS A PPLED ON TEAT STALLATION INSTRUC DAMAGE BEING CAUSED ON AR THEAD ADAPTER OR BUTT ARE STOLD SHARK IS USED ON AR THEAD ADAPTER OR BUTT ARE STOLD SHARK IS USED ON AR THEAD ADAPTER OR BUTT ARE STOLD SHARK IS USED ON AR THEAD ADAPTER OR BUTT ARE STOLD SHARK IS USED ON AR THEAD ADAPTER OR BUTT ARE STOLD SHARK IS USED ON AR THEAD ADAPTER OR BUTT ARE STOLD SHARK IS USED ON AR THEAD ADAPTER OR BUTT ARE STOLD SHARK IS USED ON ARE STOLD S		PROOFING PROD	YES CONNECTORS bs TORQUE In-lbs 221-265 44 15 5	S HAND TIGHTEN
PRODUCTS ARE ONLY TO INTERPOLUCTS ARE ONLY TO INTERPOLUES ON TOWER SOME INSTALLING ON TOWER FOR INSTALLING TO CONVERTORS EQUIPMENT EVEN IN THE TOWER TOP. THE FLASH START SHERE START SHERE START SHERE REFER TO THE MANUFACTIONS. HERE TO THE MANUFACTIONS. HERE TO THE MANUFACTIONS AND START SHERE REFER TO THE MANUFACTIONS AND START SHERE REFER TO THE MANUFACTIONS. TABLE 1: TABLE 1:	200 (B/C) 200 (B/C)	WEATHERP WEATHERP HARDLINE TO UNWER CONNECTION CONNECTION TYES	РЕК ВООТ NO ГОRQUE VALUES FOR NO ГОRQUE TYPE ТОRQUE FI-1 ector TYPE T0RQUE FI-1 -16 DIN 19-22 4.3-10 3.67 N 1.25 SMA 0.42	TNC 0.42 ET/AISG HAND TIGHTE
	A R R R R R R R R R R R R R R R R R R R	3 x x x y x y x y y x y y x y <td>Image: state state</td> <td>A CONTRACTOR OF CONTRACTOR C</td>	Image: state	A CONTRACTOR OF CONTRACTOR C
Base on an autor and autor and au				

Exhibit D

Structural Analysis Report

Date: March 26, 2020

Amanda D Brown Crown Castle 6325 Ardrey Kell Rd, Suite 600 Charlotte, NC 28277	Paul J. Ford an 250 E. Broad S Columbus, OH 614-221-6679	d Company it., Ste 600 43215
Subject:	Structural Analysis Report	
Carrier Designation:	<i>AT&T Mobility</i> Co-Locate Carrier Site Number: Carrier Site Name:	61146 N/A
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	806362 NHV 108 943133 596314 1835064 509327 Rev. 0
Engineering Firm Designation:	Paul J. Ford and Company Project Number:	37520-0048.002.8700
Site Data:	INTERSECTION OF RTE 322/MERIDIAN RDW WOLCOTT, New Haven County, CT Latitude 41° 33′ 34.41″, Longitude -72° 56′ 49 185 Foot - Self Support Tower	OLCOTT SITE, .1"

Dear Amanda D Brown,

Paul J. Ford and Company is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity – 97.3%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

dekah Jomes

Rebekah M. Dorris, PE Project Engineer Rdorris@pauljford.com

MTL

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 185-ft Self Support tower designed by Rohn in September of 1986.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	С
Topographic Factor:	1
ce Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

	Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
			3	cci antennas	DMP65R-BU8D w/ Mount Pipe		
			3	cci antennas	OPA65R-BU6D w/ Mount Pipe		
			1	cci antennas	TPA-65R-LCUUUU-H8 w/ Mount Pipe		
			3	3 powerwave 7770.00 w/ Mount Pip			
]		100.0	2 quintel technology QS66512-2 w/ Mount F		QS66512-2 w/ Mount Pipe		
		160.0	3	ericsson	RRUS 32 B2		
]			3	ericsson	RRUS 32 B30		
	159.0		3	ericsson	RRUS 32 B66A	12	1-1/4
	156.0		3	ericsson	RRUS 4449 B5/B12	6	3/4
			3	ericsson	RRUS 4478 B14_CCIV2		
			6	kaelus	DBC0061F1V51-2		
			1 raycap DC6-48-60-18-8F				
			3	communication components inc.	DTMABP7819VG12A		
		158.0	3	powerwave technologies	7020.00		
			2	raycap	DC6-48-60-18-8F		
1			3	tower mounts	Sabre C10857007C		

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
3		3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe					
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe					
186.0	186.0	3	ericsson	AIR 3246 B66 w/ Mount Pipe	13	1-5/8			
		3	ericsson	KRY 112 144/1	2	1-3/8			
		3	ericsson	KRY 112 489/2					
		3	ericsson	RADIO 4449 B12/B71					
		3	tower mounts	Site Pro1 VFA12-HD					
		6	commscope	SBNHH-1D45B w/ Mount Pipe					
		3	commscope	SBNHH-1D65B w/ Mount Pipe					
		2	andrew	DB846F65ZAXY w/ Mount Pipe					
					2	antel	LPA-80063/6CFx5 w/ Mount Pipe		
177.0	177.0	2	swedcom	SC-E 6014 rev2 w/ Mount Pipe	13	1-5/8			
		3	alcatel lucent	RRH2X60-AWS					
	3	alcatel lucent	RRH2X60-PCS						
		3	alcatel lucent	RRH2x60-700					
		2	rfs celwave	DB-T1-6Z-8AB-0Z		8°			
		1	tower mounts	Sector Mount [SM 504-3]					
		3	commscope	NNVV-65B-R4 w/ Mount Pipe					
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe					
168.0 168		1	andrew	VHLP2-11					
	168.0	3	samsung telecommunications	FDD_R6_RRH	1 6 3	1/4 5/16 1 1/4			
		3	nokia	AHCC	5	1-1/4			
		3	nokia	AHFIB_CCIV2					
		1	dragonwave	HORIZON DUO					
		3	tower mounts	Site Pro 1 VFA12-HD					
40.0	40.0	1	gps	GPS_A	1	1/2			
40.0 40.0		1	tower mounts	Side Arm Mount [SO 306-1]		1/2			

 Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH, 2/4/2008	2303630	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Rohn, 9/9/1986	217670	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Rohn, 9/9/1986	529684	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Jacobs, 10/10/2018	7656058	CCISITES
4-POST-MODIFICATION INSPECTION	ETS, 3/19/2019	8288884	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	185 - 180	Leg	Pipe 2.875" x 0.203" (2.5 STD)	2	-3.982	40.516	9.8	Pass
T2	180 - 160	Leg	Pipe 2.875" x 0.203" (2.5 STD)	13	-26.983	47.805	56.4	Pass
Т3	160 - 140	Leg	Pipe 3.5" x 0.300" (3 XS)	54	-74.320	100.549	73.9	Pass
T4	140 - 120	Leg	Pipe 4.5" x 0.337" (4 XS)	93	-117.223	169.398	69.2	Pass
T5	120 - 100	Leg	Pipe 5.5" x 0.375" (5 EH)	132	-149.632	207.090	72.3	Pass
Т6	100 - 80	Leg	Pipe 5.5" x 0.375" (5 EH)	159	-184.489	207.002	89.1	Pass
Т7	80 - 60	Leg	Pipe 6.625" x 0.340" (6 EHS)	186	-216.406	256.163	84.5	Pass
Т8	60 - 40	Leg	Pipe 6.625" x 0.432" (6 XS)	213	-248.077	318.804	77.8	Pass
Т9	40 - 20	Leg	Pipe 6.625" x 0.432" (6 XS)	240	-278.258	318.764	87.3	Pass
T10	20 - 0	Leg	Pipe 8.75" x 0.375" (8 EHS)	267	-291.187	413.697	70.4	Pass
T1	185 - 180	Diagonal	L 2 x 2 x 1/4	10	-1.896	13.742	13.8 18.9 (b)	Pass
T2	180 - 160	Diagonal	Pipe 2.375" x 0.154" (2 STD)	20	-9.782	18.519	52.8	Pass

Section No <u>.</u>	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
Т3	160 - 140	Diagonal	Pipe 2.375" x 0.154" (2 STD)	60	-10.994	16.359	67.2	Pass
T4	140 - 120	Diagonal	Pipe 2.375" x 0.154" (2 STD)	99	-10.783	14.024	76.9	Pass
Т5	120 - 100	Diagonal	Pipe 2.875" x 0.203" (2.5 STD)	138	-13.354	17.183	77.7	Pass
Т6	100 - 80	Diagonal	Pipe 2.875" x 0.203" (2.5 STD)	165	-12.236	15.003	81.6	Pass
T7	80 - 60	Diagonal	Pipe 2.875" x 0.203" (2.5 STD)	192	-12.929	13.285	97 <u>.</u> 3	Pass
Т8	60 - 40	Diagonal	Pipe 2.875" x 0.276" (2.5 XS)	219	-13.385	14.663	91.3	Pass
Т9	40 - 20	Diagonal	Pipe 3.5" x 0.216" (3 STD)	246	-13.226	20.089	65.8	Pass
T10	20 - 0	Diagonal	Pipe 3.5" x 0.216" (3 STD)	279	-20.935	33.778	62.0	Pass
T2	180 - 160	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	19	-5.230	23.693	22.1	Pass
Т3	160 - 140	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	58	-6.886	20.062	34.3	Pass
T4	140 - 120	Horizontal	Pipe 2.375" x 0.154" (2 STD)	97	-7.439	28.514	26.1	Pass
T5	120 - 100	Horizontal	Pipe 2.375" x 0.154" (2 STD)	136	-7.898	23.744	33.3	Pass
Т6	100 - 80	Horizontal	Pipe 2.375" x 0.154" (2 STD)	163	-8.024	17.591	45.6	Pass
Т7	80 - 60	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	190	-9.026	30.294	29.8 31.3 (b)	Pass
Т8	60 - 40	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	217	-9.761	23.431	41.7	Pass
Т9	40 - 20	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	244	-9.943	18.553	53.6	Pass
T10	20 - 0	Horizontal	Pipe 3.5" x 0.216" (3 STD)	275	-11.239	32.785	34.3	Pass
T1	185 - 180	Top Girt	L 2 x 2 x 1/4	4	-0.390	4.664	8.4	Pass
T10	20 - 0	Redund Horz 1 Bracing	Rohn 1.5" x 11 ga	280	-5.056	5.846	86.5	Pass
T10	20 - 0	Redund Diag 1 Bracing	2L 2 x 2 x 1/4 (1/4)	281	-4.605	11.859	38.8	Pass
T10	20 - 0	Redund Hip 1 Bracing	Pipe 1.9" x 0.145" (1.5 STD)	282	-0.033	12.885	0.3	Pass
T10	20 - 0	Redund Hip Diagonal 1 Bracing	Pipe 2.875" x 0.203" (2.5 STD)	283	-0.079	11.130	0.7	Pass
T2	180 - 160	Inner Bracing	L 2 x 2 x 1/8	27	-0.006	8.787	0.4	Pass
Т3	160 - 140	Inner Bracing	L 2 x 2 x 1/8	66	-0.006	6.461	0.5	Pass
T4	140 - 120	Inner Bracing	L 2 x 2 x 1/8	105	-0.007	4.417	0.6	Pass
T5	120 - 100	Inner Bracing	L 2 x 2 x 1/8	144	-0.008	3.339	0.6	Pass
T6	100 - 80	Inner Bracing	L 2.5 x 2.5 x 3/16	171	-0.010	6.987	0.5	Pass
T7	80 - 60	Inner Bracing	L 3 x 3 x 3/16	198	-0.012	9.162	0.6	Pass
Т8	60 - 40	Inner Bracing	L 3.5 x 3.5 x 1/4	225	-0.014	14.989	0.5	Pass
Т9	40 - 20	Inner Bracing	L 3.5 x 3.5 x 1/4	252	-0.015	11.368	0.6	Pass
T10	20 - 0	Inner Bracing	Pipe 3.5" x 0.216" (3 STD)	296	-0.016	31.107	0.5	Pass
							Summary	
						Leg (T6)	89.1	Pass
						Diagonal (T7)	97.3	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
						Horizontal (T9)	53.6	Pass
						Top Girt (T1)	8.4	Pass
						Redund Horz 1 Bracing (T10)	86.5	Pass
						Redund Diag 1 Bracing (T10)	38.8	Pass
						Redund Hip 1 Bracing (T10)	0.3	Pass
						Redund Hip Diagonal 1 Bracing (T10)	0.7	Pass
						Inner Bracing (T5)	0.6	Pass
						Bolt Checks	64.5	Pass
						Rating =	97.3	Pass

Table 5 - Tower Component Stresses vs. Capacity – LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	41.9	Pass
1	Base Foundation Structural Steel	0	63.6	Pass
1	Base Foundation Soil Interaction	0	74.7	Pass

Notes:

All structural ratings are per TIA-222-H Section 15.5

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

tnxTower Report - version 8.0.5.0

SYMBOL LIST

SIZE	MARK	SIZE
Pipe 6.625" x 0.340" (6 EHS)	D	Pipe 2.875" x 0.276" (2.5 XS)
Pipe 8.75" x 0.375" (8 EHS)	E	A572-50
_2 x 2 x 1/4	F	Pipe 1.9" x 0.145" (1.5 STD)
-	SIZE ipe 6.625" x 0.340" (6 EHS) ipe 8.75" x 0.375" (8 EHS) 2 x 2 x 1/4	SIZE MARK ipe 6.625" x 0.340" (6 EHS) D ipe 8.75" x 0.375" (8 EHS) E 2 x 2 x 1/4 F

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53 - A	30 ksi	48 ksi	A513-50	50 ksi	66 ksi
A572-50	50 ksi	65 ksi	A500-50	50 ksi	62 ksi
A618-50	50 ksi	70 ksi			

TOWER DESIGN NOTES

Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.

2.

Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to 3. 4 increase in thickness with height.

5

Deflections are based upon a 60 mph wind. Tower Risk Category II. Topographic Category 1 with Crest Height of 0.000 ft TIA-222-H Annex S 6. 7.

8.

TOWER RATING: 97.3% 9.

ALL REACTIONS ARE FACTORED

 \triangle

MAX. CORNER REACTIONS AT BASE: DOWN: 321 K SHEAR: 39 K

UPLIFT: -284 K SHEAR: 36 K

18 K | 2094 kip-ft

TORQUE 23 kip-ft 50 mph WIND - 1.500 in ICE

TORQUE 113 kip-ft REACTIONS - 125 mph WIND

Paul J. Ford and Company 250 E. Broad St., Ste 600 Columbus, OH 43215 Phone: 614-221-6679 FAX:

v	^{Job:} 180' SST / Wolco:	tt, CT	
	Project: BU 806362 / PJF 3	7520-0048	
	^{Client:} Crown Castle	^{Drawn by:} Rebekah Dorris	App'd:
	^{Code:} TIA-222-H	^{Date:} 03/26/20	^{Scale:} NTS
	Path:		Dwg No. F_

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 185.000 ft above the ground line. The base of the tower is set at an elevation of 0.000 ft above the ground line.

The face width of the tower is 8.500 ft at the top and 27.677 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in New Haven County, Connecticut.
- 2) Tower base elevation above sea level: 745.000 ft.
- 3) Basic wind speed of 125 mph.
- 4) Risk Category II.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.000 ft.
- 9) Nominal ice thickness of 1.500 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56.000 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Deflections calculated using a wind speed of 60 mph.
- 14) TIA-222-H Annex S.
- 15) Pressures are calculated at each section.
- 16) Tower analysis based on target reliabilities in accordance with Annex S.
- 17) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 18) Stress ratio used in tower member design is 1.05.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

√ Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section

- ✓ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- ✓ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- Retension Guys To Initial Tension √ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules

- ✓ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable
- $\sqrt{}$ Offset Girt At Foundation
- $\sqrt{}$ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-H Bracing Resist Exemption Use TIA-222-H Tension Splice

Exemption Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	185.000-			8.500	1	5.000
	180.000					
T2	180.000-		B054	8.500	1	20.000
	160.000					
Т3	160.000-		C039	8.542	1	20.000
	140.000					
T4	140.000-		D061	10.625	1	20.000
	120.000					
T5	120.000-		E075	12.708	1	20.000
	100.000					
Т6	100.000-80.000		F023	14.958	1	20.000
Τ7	80.000-60.000		G043	17.542	1	20.000
Т8	60.000-40.000		H014	20.042	1	20.000
Т9	40.000-20.000		J021	22.542	1	20.000
T10	20.000-0.000		K029	25.177	1	20.000

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace End	Horizontals	Offset	Offset
	ft	ft		Panels		in	in
T1	185.000- 180.000	5.000	X Brace	No	Yes	0.000	0.000
T2	180.000- 160.000	6.667	K Brace Down	No	Yes	0.000	0.000
Т3	160.000- 140.000	6.528	K Brace Down	No	Yes	5.000	0.000
Τ4	140.000- 120.000	6.528	K Brace Down	No	Yes	5.000	0.000
Т5	120.000- 100.000	10.000	K Brace Down	No	Yes	0.000	0.000
Т6	100.000-80.000	10.000	K Brace Down	No	Yes	0.000	0.000
T7	80.000-60.000	10.000	K Brace Down	No	Yes	0.000	0.000
Т8	60.000-40.000	10.000	K Brace Down	No	Yes	0.000	0.000
Т9	40.000-20.000	10.000	K Brace Down	No	Yes	0.000	0.000

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T10	20.000-0.000	19.917	K1 Down	No	Yes	0.000	1.000

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
T1 185.000-	Pipe	Pipe 2.875" x 0.203" (2.5	A53 - A	Equal Angle	L 2 x 2 x 1/4	A572-50
180.000		STD)	(30 ksi)			(50 ksi)
T2 180.000-	Pipe	Pipe 2.875" x 0.203" (2.5	A618-50	Pipe	Pipe 2.375" x 0.154" (2	A618-50
160.000		STD)	(50 ksi)		STD)	(50 ksi)
T3 160.000-	Pipe	Pipe 3.5" x 0.300" (3 XS)	A618-50	Pipe	Pipe 2.375" x 0.154" (2	A618-50
140.000			(50 ksi)		STD)	(50 ksi)
T4 140.000-	Pipe	Pipe 4.5" x 0.337" (4 XS)	A618-50	Pipe	Pipe 2.375" x 0.154" (2	A618-50
120.000			(50 ksi)		STD)	(50 ksi)
T5 120.000-	Pipe	Pipe 5.5" x 0.375" (5 EH)	A513-50	Pipe	Pipe 2.875" x 0.203" (2.5	A618-50
100.000			(50 ksi)		STD)	(50 ksi)
T6 100.000-	Pipe	Pipe 5.5" x 0.375" (5 EH)	A513-50	Pipe	Pipe 2.875" x 0.203" (2.5	A618-50
80.000			(50 ksi)		STD)	(50 ksi)
T7 80.000-	Pipe	Pipe 6.625" x 0.340" (6	A513-50	Pipe	Pipe 2.875" x 0.203" (2.5	A618-50
60.000		EHS)	(50 ksi)		STD)	(50 ksi)
T8 60.000-	Pipe	Pipe 6.625" x 0.432" (6 XS)	A513-50	Pipe	Pipe 2.875" x 0.276" (2.5	A618-50
40.000			(50 ksi)		XS)	(50 ksi)
T9 40.000-	Pipe	Pipe 6.625" x 0.432" (6 XS)	A513 - 50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
20.000			(50 ksi)			(50 ksi)
T10 20.000-	Pipe	Pipe 8.75" x 0.375" (8 EHS)	A500-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
0.000			(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 185.000- 180.000	Equal Angle	L 2 x 2 x 1/4	A572-50 (50 ksi)	Pipe		A572-50 (50 ksi)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
	Mid						
ft	Girts						
T2 180.000-	None	Pipe		A618-50	Pipe	Pipe 1.9" x 0.145"	A618-50
160.000				(50 ksi)		(1.5 STD)	(50 ksi)
T3 160.000-	None	Pipe		A618-50	Pipe	Pipe 1 9" x 0 145"	A618-50
140.000				(50 ksi)		(1.5 STD)	(50 ksi)
T4 140.000-	None	Pipe		A618-50	Pipe	Pipe 2 375" x 0 154"	A618-50
120.000				(50 ksi)		(2 STD)	(50 ksi)
T5 120.000-	None	Pipe		A618-50	Pipe	Pipe 2 375" x 0 154"	A618-50
100.000				(50 ksi)		(2 STD)	(50 ksi)
T6 100.000-	None	Pipe		A618-50	Pipe	Pipe 2 375" x 0 154"	A618-50
80.000				(50 ksi)		(2 STD)	(50 ksi)
T7 80.000-	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50
60.000				(50 ksi)		(2.5 STD)	(50 ksi)
T8 60.000-	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50
40.000				(50 ksi)		(2.5 STD)	(50 ksi)
T9 40.000-	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50
20.000				(50 ksi)		(2.5 STD)	(50 ksi)
T10 20.000-	None	Pipe		A618-50	Pipe	Pipe 3 5" x 0 216" (3	A618-50
0.000				(50 ksi)		STD)	(50 ksi)

Tower	Secondary	Secondary Horizontal	Secondary	Inner Bracing	Inner Bracing Size	Inner Bracing
Elevation	Horizontal Type	Size	Horizontal	Туре		Grade
			Grade			
ft						
T2 180.000-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
160.000			(50 ksi)			(36 ksi)
T3 160.000-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
140.000			(50 ksi)			(36 ksi)
T4 140.000-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
120.000			(50 ksi)			(36 ksi)
T5 120.000-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
100.000			(50 ksi)			(36 ksi)
T6 100.000-	Pipe		A618-50	Single Angle	L 2 5 x 2 5 x 3/16	A36
80.000			(50 ksi)			(36 ksi)
T7 80.000-	Pipe		A618-50	Single Angle	L 3 x 3 x 3/16	A36
60.000			(50 ksi)			(36 ksi)
T8 60.000-	Pipe		A618-50	Single Angle	L 3 5 x 3 5 x 1/4	A36
40.000			(50 ksi)			(36 ksi)
T9 40.000-	Pipe		A618-50	Single Angle	L 3.5 x 3.5 x 1/4	A36
20.000	•		(50 ksi)			(36 ksi)
T10 20.000-	Pipe		A618-50	Pipe	Pipe 3.5" x 0.216" (3	A53-B-35
0.000	•		(50 ksi)		STD)	(35 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Redundant Bracing		Redundant Type	Redundant Size	K Factor
ft	Grade				
T10 20.000-	A618-50	Horizontal (1)	Pipe	Rohn 1.5'' x 11 ga	1
0.000	(50 ksi)	Diagonal (1)	Double Angle	2L 2 x 2 x 1/4 (1/4)	1
	. ,	Hip (1)	Pipe	Pipe 1.9" x 0.145" (1.5	1
		Hip Diagonal	Pipe	STD)	1
		(1)		Pipe 2.875" x 0.203" (2.5	
		. ,		STD)	

Towor	Cuppet	Cueset	Cuppet Crade	Adjust Easter	Adjust	Moight Mult	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	Gussel Grader		Factor	weigin wun.	Stitch Bolt	Stitch Bolt	Stitch Bolt
Lievalion	(ner face)	THICKINESS		\neg_{f}	Δ		Specing	Snacing	Snacing
	(per lace)				\neg r		Diagonals	Horizontals	Pedundante
ft	ft ²	in					in	in	in
T1 185 000-	0.000	0.250	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid_Pt
180,000	0.000	0.200	(36 ksi)	1.00	1.00	1.00	ivita i t	What t	ivita i t
T2 180 000-	0 000	0 250	A36	1.03	1.03	1 05	Mid-Pt	Mid-Pt	Mid-Pt
160.000	01000	01200	(36 ksi)	1100		1100	inia i t		initia i t
T3 160.000-	0.000	0.250	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
140.000			(36 ksi)						
T4 140.000-	0.000	0.250	`A36 ´	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
120.000			(36 ksi)						
T5 120.000-	0.000	0.250	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
100.000			(36 ksi)						
T6 100.000-	0.000	0.250	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
80.000			(36 ksi)						
T7 80.000-	0.000	0.250	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
60.000			(36 ksi)						
T8 60.000-	0.000	0.250	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
40.000			(36 ksi)						
T9 40.000-	0.000	0.250	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
20.000			(36 ksi)						
T10 20.000-	0.000	0.375	A36	1.03	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
0.000			(36 ksi)						

						K Fad	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		x	x	X	X	X	X	Х
ft	-			Y	Y	Y	Y	Y	Y	Y
T1 185.000-	Yes	Yes	1	1	1	1	1	1	1	1
180.000				1	1	1	1	1	1	1
T2 180.000-	Yes	Yes	1	1	1	1	1	1	1	1
160.000				1	1	1	1	1	1	1
T3 160.000-	Yes	Yes	1	1	1	1	1	1	1	1
140.000				1	1	1	1	1	1	1
T4 140.000-	Yes	Yes	1	1	1	1	1	1	1	1
120.000				1	1	1	1	1	1	1
T5 120.000-	Yes	Yes	1	1	1	1	1	1	1	1
100.000				1	1	1	1	1	1	1
T6 100.000-	Yes	Yes	1	1	1	1	1	1	1	1
80.000				1	1	1	1	1	1	1
T7 80.000-	Yes	Yes	1	1	1	1	1	1	1	1
60,000				1	1	1	1	1	1	1
T8 60.000-	Yes	Yes	1	1	1	1	1	1	1	1
40.000				1	1	1	1	1	1	1
T9 40.000-	Yes	Yes	1	1	1	1	1	1	1	1
20,000				1	1	1	1	1	1	1
T10 20 000-	Yes	Yes	1	1	1	1	1	1	1	1
0.000			-	1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Bottom	n Girt	Mid	Girt	Long Hor	izontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 185.000- 180.000	0.000	1	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T2 180.000- 160.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T3 160.000- 140.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1
T4 140.000- 120.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1
T5 120.000-	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1
T6 100.000-	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1
T7 80.000-	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1
T8 60.000-	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1
T9 40.000-	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1
Z0.000 T10 20.000- 0.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1	0.000	1

Tower	Leg	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor	t
Elevation	Connection													Horizor	ntal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 185.000-	Flange	0.750	4	0.500	1	0.500	1	0.000	0	0.625	0	0.625	0	0.625	0
180.000		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T2 180.000-	Flange	0.750	4	0.625	3	0.625	0	0.000	0	0.625	0	0.625	2	0.625	0
160.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 160.000-	Flange	0.875	4	0.625	3	0.000	0	0.000	0	0.000	0	0.625	2	0.000	0
140.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 140.000-	Flange	1.000	4	0.625	3	0.000	0	0.000	0	0.000	0	0.625	2	0.000	0
120.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 120.000-	Flange	1.000	4	0.625	3	0.625	0	0.000	0	0.000	0	0.625	2	0.000	0
100.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 100.000-	Flange	1.000	6	0.625	3	0.625	0	0.000	0	0.000	0	0.625	2	0.000	0
80.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 80.000-	Flange	1.000	6	0.625	3	0.000	0	0.000	0	0.625	0	0.625	2	0.625	0
60.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 60.000-	Flange	1.000	6	0.625	3	0.000	0	0.000	0	0.625	0	0.625	2	0.625	0
40.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 40.000-	Flange	1.000	8	0.625	3	0.625	0	0.000	0	0.625	0	0.625	2	0.625	0
20.000		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 20.000-	Flange	1.000	0	0.750	3	0.000	0	0.000	0	0.625	0	0.750	2	0.625	0
0.000		A449		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacin	Width or Diameter	Perimete r	Weight
	Leg		Torque	Туре	ft	in	(Frac FW)		Row	g	in	in	klf
** 5000 / **			Calculation									111	
LDF4- 50A(1/2")	А	No	No	Ar (CaAa)	40.000 - 0.000	0.000	-0.44	1	1	0.500	0.630		0.000
561(1-5/8")	А	No	No	Ar (CaAa)	177.000 - 0.000	0.000	-0.4	12	2	0.500	1.625		0.001
561(1-5/8")	А	No	No	Ar (CaAa)	177.000 - 0.000	0.000	-0.41	1	1	0.500	1.625		0.001
1.5" flat Cable Ladder Rail	A	No	No	Af (CaAa)	177.000 - 0.000	0.000	-0.4	2	2	24.000 1.500	1.500		0.002
CAT5E(1/4)	А	No	No	Ar (CaAa)	168.000 - 0.000	0.000	0.4	1	1	0.260	0.260		0.000
9207(5/16)	А	No	No	Ar (CaAa)	168.000 - 0.000	0.000	0.4	6	2	0.330	0.330		0.000
HB114-1- 0813U4- M5J(1-1/4)	A	No	No	Ar (CaAa)	168.000 - 0.000	0.000	0.43	3	3	1.540	1.540		0.001
1.5" flat Cable Ladder Rail **Face C**	A	No	No	Af (CaAa)	168.000 - 0.000	0.000	0.45	2	2	24.000 1.500	1.500		0.002
LCF158- 50JA(15/8")	С	No	No	Ar (CaAa)	185.000 - 0.000	-2.500	-0.4	15	12	0.500	2.010		0.001
1.5" flat Cable Ladder Rail	С	No	No	Af (CaAa)	185.000 - 0.000	-2.500	-0.4	2	2	28.000 1.500	1.500		0.002
2'' Rigid Conduit	С	No	No	Ar (CaAa)	158.000 - 0.000	0.000	-0.33	2	2	0.500	2.000		0.003
FB-L98B- 034- XXX(3/8'')	С	No	No	Ar (CaAa)	158.000 - 0.000	0.000	-0.31	2	2	0.000	0.394		0.000

Description	Face	Allow	Exclude	Componen	Placement	Face	Lateral	#	#	Clear	Width or	Perimete	Weight
	or	Shield	From	t		Offset	Offset		Per	Spacin	Diameter	r	
	Leg		Torque	Туре	ft	in	(Frac FW)		Row	g	in		klf
			Calculation							in		in	
WR-	С	No	No	Ar (CaAa)	158.000 -	0.000	-0.32	4	4	0.500	0.795		0.001
VG86ST-					0.000								
BRD(3/4")													
WR-	С	No	No	Ar (CaAa)	158.000 -	0.000	-0.33	2	2	0.795	0.795		0.001
VG86ST-					0.000					0.500			
BRD(3/4)													
HB114-1-	С	No	No	Ar (CaAa)	158.000 -	0.000	-0.35	12	12	0.500	1.540		0.001
0813U4-					0.000								
M5J(1-1/4)													
1.5" flat	С	No	No	Af (CaAa)	158.000 -	0.000	-0.35	2	2	28.000	1.500		0.002
Cable Ladder				. ,	0.000					1.500			
Rai													

Safety Line	С	No	No	Ar (CaAa)	180.000 -	0.000	0.5	1	1	0.500	0.375		0.000
3/8					0.000								

			Disci	rete Tov	ver Load	ds			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
Lightning Rod 5/8''x4'	С	From Leg	0.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice 2" Ice	0.250 0.664 0.973 1.494	0.250 0.664 0.973 1.494	0.031 0.034 0.039 0.059
AIR 32 B2A/B66AA w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice 2" Ice	6.747 7.202 7.648 8.565	6.070 6.867 7.583 9.063	0.153 0.214 0.282 0.441
AIR 32 B2A/B66AA w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice 2" Ice	6.747 7.202 7.648 8.565	6.070 6.867 7.583 9.063	0.153 0.214 0.282 0.441
AIR 32 B2A/B66AA w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice 2" Ice	6.747 7.202 7.648 8.565	6.070 6.867 7.583 9.063	0.153 0.214 0.282 0.441
APXVAARR24_43-U-NA20 w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice 2" Ice	14.690 15.460 16.230 17.820	6.870 7.550 8.250 9.670	0.186 0.315 0.458 0.788
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice	14.690 15.460 16.230 17.820	6.870 7.550 8.250 9.670	0.186 0.315 0.458 0.788
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice 2" Ice	14.690 15.460 16.230 17.820	6.870 7.550 8.250 9.670	0.186 0.315 0.458 0.788
RADIO 4449 B12/B71	A	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice 2" Ice	1.650 1.810 1.978 2.336	1.163 1.301 1.447 1.762	0.074 0.090 0.109 0.155

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
RADIO 4449 B12/B71	В	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2'' Ice	1.650 1.810 1.978	1.163 1.301 1.447	0.074 0.090 0.109
						1" Ice 2" Ice	2.336	1.762	0.155
RADIO 4449 B12/B71	С	From Leg	4.000 0.000	0.000	186.000	No Ice 1/2"	1.650 1.810	1.163 1.301	0.074 0.090
			0.000			Ice 1" Ice 2" Ice	1.978 2.336	1.447 1.762	0.109 0.155
KRY 112 489/2	А	From Leg	4.000	0.000	186.000	No Ice	0.559	0.365	0.015
			0.000			Ice	0.764	0.542	0.027
						1" Ice 2" Ice	0.998	0.752	0.046
KRY 112 489/2	В	From Leg	4.000 0.000	0.000	186.000	No Ice 1/2"	0.559 0.658	0.365 0.448	0.015 0.020
			0.000			lce	0.764	0.542	0.027
						1" Ice 2" Ice	0.998	0.752	0.046
KRY 112 489/2	С	From Leg	4.000	0.000	186.000	No Ice	0.559	0.365	0.015
			0.000			1/2" Ice	0.658	0.448	0.020
			0.000			1" Ice 2" Ice	0.998	0.752	0.046
KRY 112 144/1	А	From Leg	4.000	0.000	186.000	No Ice	0.350	0.175	0.011
			0.000			lce	0.426	0.234	0.014
						1" Ice 2" Ice	0.698	0.456	0.032
KRY 112 144/1	В	From Leg	4.000	0.000	186.000	No Ice	0.350	0.175	0.011
			0.000			lce	0.428	0.234	0.014
	0	F	4 000	0.000	400.000	1" Ice 2" Ice	0.698	0.456	0.032
KRY 112 144/1	C	From Leg	4.000	0.000	186.000	NO ICE 1/2"	0.350	0.175	0.011
			0.000			Ice	0.509	0.301	0.019
AID 3246 B66 w/ Mount	^	From Log	4 000	0.000	186.000	1" Ice 2" Ice	0.698 8 177	0.456	0.032
Pipe	~	I TOILLEG	0.000	0.000	100.000	1/2"	8.656	7.393	0.272
			0.000			Ice	9.124	8.128	0.349
						1" Ice 2" Ice	10.086	9.646	0.529
AIR 3246 B66 w/ Mount	В	From Leg	4.000	0.000	186.000	No Ice	8.177	6.559	0.201
Pipe			0.000			1/2" Ice	8.656 9.124	7.393 8.128	0.272
			0.000			1" Ice 2" Ice	10.086	9.646	0.529
AIR 3246 B66 w/ Mount Pine	С	From Leg	4.000	0.000	186.000	No Ice 1/2"	8.177 8.656	6.559 7 393	0.201
T ipe			0.000			lce	9.124	8.128	0.349
						1" Ice 2" Ice	10.086	9.646	0.529
VFA12-HD	A	From Leg	2.000	0.000	186.000	No Ice 1/2"	13.200 19.500	9.200 14.600	0.658
			0.000			lce	25.800	20.000	0.950
		_				1" Ice 2" Ice	38.400	30.800	1.242
VFA12-HD	В	From Leg	2.000	0.000	186.000	No Ice	13.200	9.200	0.658
			0.000			lce	25,800	20.000	0.804
						1" Ice 2" Ice	38.400	30.800	1.242

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft	۰	ft		ft²	ft²	К
VFA12-HD	С	From Leg	ft 2.000 0.000	0.000	186.000	No Ice 1/2''	13.200 19.500	9.200 14.600	0.658 0.804
			0.000			Ice 1" Ice 2" Ice	25.800 38.400	20.000 30.800	0.950 1.242
(2) 7'x2'' Antenna Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2'' Ice	1.663 2.391 2.825	1.663 2.391 2.825	0.026 0.039 0.056
	_			0.000	400.000	1" Ice 2" Ice	3.706	3.706	0.105
(2) /'x2" Antenna Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	186.000	No Ice 1/2" Ice 1" Ice	1.663 2.391 2.825 3.706	1.663 2.391 2.825 3.706	0.026 0.039 0.056 0.105
(2) 7'x2'' Antenna Mount Pipe	С	From Leg	4.000	0.000	186.000	2 Ice No Ice 1/2"	1.663 2.391	1.663 2.391	0.026 0.039
****			0.000			Ice 1" Ice 2" Ice	2.825 3.706	2.825 3.706	0.056 0.105
(2) DB846F65ZAXY w/	А	From Leg	4.000	0.000	177.000	No Ice	7.271	7.821	0.047
Mount Pipe			0.000			Ice 1" Ice 2" Ice	8.348 9.402	9.912 9.912 11.731	0.114 0.189 0.367
(2) LPA-80063/6CFx5 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	177.000	No Ice 1/2" Ice 1" Ice	9.805 10.373 10.907 11.998	10.195 11.363 12.246 14.063	0.052 0.144 0.245 0.475
(2) SC-E 6014 rev2 w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice	3.564 3.905 4.256	4.223 4.780 5.353	0.032 0.071 0.116
			4 000	0.000	477.000	1" Ice 2" Ice	4.984	6.548	0.225
(2) SBNHH-1D45B W/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	177.000	1/2" Ice 1" Ice	8.260 8.830 9.410 10.610	4.390 4.910 5.430 6.530	0.090 0.168 0.257 0.470
(2) SBNHH-1D45B w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	177.000	2" Ice No Ice 1/2"	8.260 8.830	4.390 4.910	0.090 0.168
			0.000			Ice 1" Ice 2" Ice	9.410 10.610	5.430 6.530	0.257 0.470
(2) SBNHH-1D45B w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	177.000	No Ice 1/2" Ice 1" Ice	8.260 8.830 9.410	4.390 4.910 5.430 6.530	0.090 0.168 0.257 0.470
SBNHH-1D65B w/ Mount	A	From Leg	4.000	0.000	177.000	2" Ice No Ice	4.090	3.300	0.066
нре			0.000			Ice 1" Ice 2" Ice	4.490 4.890 5.720	4.070 4.870	0.130 0.204 0.386
SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	177.000	No Ice 1/2" Ice	4.090 4.490 4.890	3.300 3.680 4.070	0.066 0.130 0.204
SBNHH-1D658 w/ Mount	C	From Lea	4 000	0 000	177 000	1" Ice 2" Ice No Ice	5.720	4.870 3.300	0.386
Pipe	U	I IOIII LEY	0.000	0.000	111.000	1/2" Ice	4.490 4.890	3.680 4.070	0.130 0.204

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
						1" Ice	5.720	4.870	0.386
RRH2x60-700	A	From Leg	4.000 0.000 0.000	0.000	177.000	No Ice 1/2" Ice 1" Ice	3.500 3.761 4.029 4.585	1.816 2.052 2.289 2.785	0.060 0.083 0.109 0.173
RRH2x60-700	В	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	3.500 3.761 4.029 4.585	1.816 2.052 2.289 2.785	0.060 0.083 0.109 0.173
RRH2x60-700	С	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	3.500 3.761 4.029 4.585	1.816 2.052 2.289 2.785	0.060 0.083 0.109 0.173
RRH2X60-AWS	A	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	1.877 2.055 2.240 2.632	1.236 1.386 1.544 1.893	0.044 0.060 0.079 0.125
RRH2X60-AWS	В	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	1.877 2.055 2.240 2.632	1.236 1.386 1.544 1.893	0.044 0.060 0.079 0.125
RRH2X60-AWS	С	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	1.877 2.055 2.240 2.632	1.236 1.386 1.544 1.893	0.044 0.060 0.079 0.125
RRH2X60-PCS	A	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	2.200 2.393 2.593 3.015	1.723 1.901 2.087 2.480	0.055 0.075 0.099 0.155
RRH2X60-PCS	В	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	2.200 2.393 2.593 3.015	1.723 1.901 2.087 2.480	0.055 0.075 0.099 0.155
RRH2X60-PCS	С	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	2.200 2.393 2.593 3.015	1.723 1.901 2.087 2.480	0.055 0.075 0.099 0.155
(2) DB-T1-6Z-8AB-0Z	С	From Leg	4.000 0.000 0.000	0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice	4.800 5.070 5.348 5.926	2.000 2.193 2.393 2.815	0.044 0.080 0.120 0.213
Sector Mount [SM 504-3]	С	None		0.000	177.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	31.050 43.830 56.440 81.280	31.050 43.830 56.440 81.280	1.708 2.326 3.143 5.358
FDD_R6_RRH	A	From Leg	4.000 0.000 0.000	0.000	168.000	No Ice 1/2" Ice 1" Ice 2" Ice	1.533 1.690 1.854 2.204	0.684 0.800 0.923 1.193	0.033 0.045 0.058 0.094
FDD_R6_RRH	В	From Leg	4.000 0.000	0.000	168.000	∠ ice No ice	1.533 1.690	0.684 0.800	0.033 0.045

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
			0.000			1/2" Ice 1" Ice	1.854 2.204	0.923 1.193	0.058 0.094
FDD_R6_RRH	С	From Leg	4.000	0.000	168.000	2" Ice No Ice	1.533	0.684	0.033
			0.000			1/2 Ice 1" Ice 2" Ice	1.890 1.854 2.204	0.800 0.923 1.193	0.045 0.058 0.094
NNVV-65B-R4 w/ Mount Pipe	А	From Leg	4.000 0.000 0.000	0.000	168.000	No Ice 1/2"	7.550 8.040 8.530	4.230 4.670 5.120	0.110 0.197 0.296
	_	-	0.000	0.000	400.000	1" Ice 2" Ice	9.560	6.050	0.529
NNVV-55B-R4 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	168.000	No Ice 1/2" Ice	7.550 8.040 8.530	4.230 4.670 5.120	0.110 0.197 0.296
NNVV-65B-R4 w/ Mount	C	From Lea	4 000	0.000	168 000	1" Ice 2" Ice No Ice	9.560 7.550	6.050 4 230	0.529 0.110
Pipe	U	110111 209	0.000	0.000	100,000	1/2" Ice 1" Ice 2" Ice	8.040 8.530 9.560	4.670 5.120 6.050	0.197 0.296 0.529
APXVTM14-ALU-I20 w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	168.000	No Ice 1/2" Ice 1" Ice	4.090 4.480 4.880 5.710	2.860 3.230 3.610 4.400	0.077 0.127 0.185 0.331
APXVTM14-ALU-I20 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	168.000	2" Ice No Ice 1/2" Ice	4.090 4.480 4.880	2.860 3.230 3.610	0.077 0.127 0.185
	0	Energy Law	4.000	0.000	469,000	1" Ice 2" Ice	5.710	4.400	0.331
Mount Pipe	U	FIGHTLEG	4.000 0.000 0.000	0.000	166.000	1/2" Ice 1" Ice 2" Ice	4.090 4.480 4.880 5.710	2.880 3.230 3.610 4.400	0.077 0.127 0.185 0.331
АНСС	A	From Leg	4.000 0.000 0.000	0.000	168.000	No Ice 1/2" Ice 1" Ice	1.628 1.790 1.959 2.320	1.139 1.281 1.431 1.753	0.045 0.060 0.078 0.121
AHCC	В	From Leg	4.000 0.000 0.000	0.000	168.000	2" Ice No Ice 1/2" Ice 1" Ice	1.628 1.790 1.959 2.320	1.139 1.281 1.431 1.753	0.045 0.060 0.078 0.121
AHCC	С	From Leg	4.000 0.000 0.000	0.000	168.000	2" Ice No Ice 1/2" Ice 1" Ice	1.628 1.790 1.959 2.320	1.139 1.281 1.431 1.753	0.045 0.060 0.078 0.121
AHFIB_CCIV2	A	From Leg	4.000 0.000 0.000	0.000	168.000	2" Ice No Ice 1/2" Ice	2.793 3.014 3.243	1.526 1.707 1.895	0.066 0.087 0.111
AHFIB_CCIV2	В	From Leg	4.000 0.000 0.000	0.000	168.000	2" Ice 2" Ice No Ice 1/2" Ice	2.793 3.014 3.243	1.526 1.707 1.895	0.066 0.087 0.111
AHFIB_CCIV2	С	From Leg	4.000	0.000	168.000	1" Ice 2" Ice No Ice	3.723 2.793	2.293 1.526	0.168 0.066

Description	Face or Lea	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	9		Vert ft ft	•	ft		ft²	ft²	К
			<u>ft</u>			1/2"	3 014	1 707	0.087
			0.000			Ice	3.243	1.895	0.111
						1" Ice	3.723	2.293	0.168
	C	From Lea	4 000	0.000	168 000	2" Ice No Ice	0 469	0 294	0.007
Horazon Boo	0	TION LOG	0.000	0.000	100.000	1/2"	0.556	0.365	0.012
			0.000			Ice	0.650	0.444	0.018
						1" Ice	0.861	0.624	0.036
Site Pro 1 VFA12-HD	А	From Lea	2.000	0.000	168.000	No Ice	13.200	9.200	0.658
			0.000			1/2"	19.500	14.600	0.804
			0.000			Ice	25.800	19.500	1.015
						2" Ice	38.400	30.800	1.242
Site Pro 1 VFA12-HD	в	From Leg	2.000	0.000	168.000	No Ice	13.200	9.200	0.658
			0.000			1/2"	19.500	14.600	0.804
			0.000			ICe 1'' Ice	25.800 38.400	19.500 30.800	1.015
						2" Ice	50,400	00.000	1.272
Site Pro 1 VFA12-HD	С	From Leg	2.000	0.000	168.000	No Ice	13.200	9.200	0.658
			0.000			1/2"	19.500	14.600	0.804
			0.000			1" Ice	38.400	30.800	1.242
						2" Ice			
(2) 7'x2" Antenna Mount	Α	From Leg	4.000	0.000	168.000	No Ice	1.663	1.663	0.026
Ріре			0.000			l/2	2.391	2.825	0.039
			01000			1" Ice	3.706	3.706	0.105
	-	F	4 000	0.000	400.000	2" Ice	4 000	4 000	0.000
(2) /'x2" Antenna Mount Pine	в	From Leg	4.000	0.000	168.000	No Ice 1/2"	1.663	1.663	0.026
T ipe			0.000			Ice	2.825	2.825	0.056
						1" Ice	3.706	3.706	0.105
(2) 7'x2" Antenna Mount	C	From Lea	4 000	0.000	168 000	2" Ice No Ice	1 663	1 663	0.026
Pipe	0	TION LOG	0.000	0.000	100.000	1/2"	2.391	2.391	0.039
·			0.000			Ice	2.825	2.825	0.056
						1" Ice 2" Ice	3.706	3.706	0.105
****						2 100			
****	_								
7770.00 w/ Mount Pipe	A	From Leg	4.000	0.000	158.000	No Ice	5.746	4.254	0.055
			2.000			lce	6.607	5.711	0.103
						1" Ice	7.488	7.155	0.287
7770.00 w/ Mount Pine	в	From Lea	4 000	0.000	158 000	2" Ice	5 746	1 251	0.055
7770.00 W/ Would Pipe	D	FIGHTLeg	4.000	0.000	156.000	1/2"	6.179	4.204 5.014	0.035
			2.000			Ice	6.607	5.711	0.157
						1" Ice	7.488	7.155	0.287
7770 00 w/ Mount Pipe	С	From Lea	4 000	0 000	158 000	Z ICe No Ice	5 746	4 254	0 055
	•		0.000			1/2"	6.179	5.014	0.103
			2.000			Ice	6.607	5.711	0.157
						1" Ice 2" Ice	7.488	7.155	0.287
QS66512-2 w/ Mount Pipe	А	From Leg	4.000	0.000	158.000	No Ice	4.040	4.180	0.137
			0.000			1/2"	4.420	4.570	0.206
			2.000			Ice 1" Ice	4.820 5.630	4.970 5.700	0.287 0.482
						2" Ice	5.000	5.730	0.402
QS66512-2 w/ Mount Pipe	С	From Leg	4.000	0.000	158.000	No Ice	4.040	4.180	0.137
			0.000			1/2" Ice	4.420 4.820	4.570 4.970	0.206
			2.000			1" Ice	5.630	5.790	0.482

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
TPA-65R-LCUUUU-H8 w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	11.850 12.770 13.710 15.640	8.990 9.880 10.790 12.660	0.115 0.210 0.319 0.580
DTMABP7819VG12A	A	From Leg	4.000 0.000 0.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	0.976 1.100 1.232 1.517	0.339 0.419 0.510 0.714	0.019 0.026 0.036 0.060
DTMABP7819VG12A	В	From Leg	4.000 0.000 0.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	0.976 1.100 1.232 1.517	0.339 0.419 0.510 0.714	0.019 0.026 0.036 0.060
DTMABP7819VG12A	С	From Leg	4.000 0.000 0.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	0.976 1.100 1.232 1.517	0.339 0.419 0.510 0.714	0.019 0.026 0.036 0.060
7020.00	A	From Leg	4.000 0.000 0.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	0.102 0.147 0.199 0.326	0.175 0.239 0.311 0.476	0.002 0.005 0.009 0.022
7020.00	В	From Leg	4.000 0.000 0.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	0.102 0.147 0.199 0.326	0.175 0.239 0.311 0.476	0.002 0.005 0.009 0.022
7020.00	С	From Leg	4.000 0.000 0.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	0.102 0.147 0.199 0.326	0.175 0.239 0.311 0.476	0.002 0.005 0.009 0.022
DC6-48-60-18-8F	A	From Leg	4.000 0.000 2.000	0.000	158.000	2 Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.212 1.892 2.105 2.570	1.212 1.892 2.105 2.570	0.033 0.055 0.080 0.138
DC6-48-60-18-8F	A	From Leg	4.000 0.000 0.000	0.000	158.000	2 Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.212 1.892 2.105 2.570	1.212 1.892 2.105 2.570	0.033 0.055 0.080 0.138
(2) DBC0061F1V51-2	A	From Leg	4.000 0.000 2.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	0.213 0.279 0.353 0.521	0.413 0.496 0.586 0.788	0.013 0.016 0.021 0.036
(2) DBC0061F1V51-2	В	From Leg	4.000 0.000 2.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	0.213 0.279 0.353 0.521	0.413 0.496 0.586 0.788	0.013 0.016 0.021 0.036
(2) DBC0061F1V51-2	С	From Leg	4.000 0.000 2.000	0.000	158.000	∠ ice No ice 1/2" ice 1" ice	0.213 0.279 0.353 0.521	0.413 0.496 0.586 0.788	0.013 0.016 0.021 0.036
RRUS 32 B30	A	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	2.743 2.965 3.194 3.675	1.668 1.855 2.049 2.458	0.053 0.074 0.098 0.157

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
RRUS 32 B30	В	From Leg	4.000	0.000	158.000	2" Ice No Ice 1/2"	2.743 2.965	1.668 1.855	0.053 0.074
			2.000			lce 1" lce 2" lce	3.194 3.675	2.049 2.458	0.098 0.157
RRUS 32 B30	С	From Leg	4.000 0.000 2.000	0.000	158.000	No Ice 1/2'' Ice	2.743 2.965 3.194	1.668 1.855 2.049	0.053 0.074 0.098
RRUS 32 B2	А	From Lea	4.000	0.000	158.000	1" Ice 2" Ice No Ice	3.675 2.743	2.458 1.668	0.157 0.053
		l loin Log	0.000 2.000	0.000	100.000	1/2" Ice 1" Ice	2.965 3.194 3.675	1.855 2.049 2.458	0.074 0.098 0.157
RRUS 32 B2	В	From Leg	4.000 0.000 2.000	0.000	158.000	No Ice 1/2" Ice 1" Ice	2.743 2.965 3.194 3.675	1.668 1.855 2.049 2.458	0.053 0.074 0.098 0.157
RRUS 32 B2	С	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	2.743 2.965 3.194 3.675	1.668 1.855 2.049 2.458	0.053 0.074 0.098 0.157
OPA65R-BU6D w/ Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	12.250 13.000 13.760 15.340	6.050 6.710 7.390 8.790	0.089 0.176 0.275 0.508
OPA65R-BU6D w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	12.250 13.000 13.760 15.340	6.050 6.710 7.390 8.790	0.089 0.176 0.275 0.508
OPA65R-BU6D w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	12.250 13.000 13.760 15.340	6.050 6.710 7.390 8.790	0.089 0.176 0.275 0.508
DMP65R-BU8D w/ Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	15.890 16.810 17.760 19.700	7.890 8.740 9.600 11.370	0.139 0.252 0.380 0.679
DMP65R-BU8D w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	15.890 16.810 17.760 19.700	7.890 8.740 9.600 11.370	0.139 0.252 0.380 0.679
DMP65R-BU8D w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	15.890 16.810 17.760 19.700	7.890 8.740 9.600 11.370	0.139 0.252 0.380 0.679
DC6-48-60-18-8F	A	From Leg	4.000 0.000 0.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	1.212 1.892 2.105 2.570	1.212 1.892 2.105 2.570	0.033 0.055 0.080 0.138
RRUS 4478 B14_CCIV2	A	From Leg	4.000 0.000 2.000	0.000	158.000	2" Ice No Ice 1/2" Ice 1" Ice	2.021 2.200 2.386 2.780	1.246 1.396 1.554 1.891	0.059 0.077 0.097 0.147

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
	в	From Lea	4 000	0.000	158 000	2" Ice	2 021	1 246	0.059
11100 4470 B14_00102	D	I Iom Leg	0.000	0.000	100.000	1/2"	2.200	1.396	0.077
			2.000			Ice	2.386	1.554	0.097
						1" Ice 2" Ice	2.780	1.891	0.147
RRUS 4478 B14_CCIV2	С	From Leg	4.000	0.000	158.000	No Ice	2.021	1.246	0.059
			2,000			1/2"	2.200	1.396	0.077
			2.000			1" Ice 2" Ice	2.780	1.891	0.147
RRUS 32 B66A	А	From Lea	4.000	0.000	158.000	No Ice	2.864	1.782	0.055
			0.000			1/2"	3.090	1.973	0.077
			2.000			Ice	3.323	2.171	0.103
						1" Ice 2" Ice	3.813	2.589	0.165
RRUS 32 B66A	В	From Leg	4.000	0.000	158.000	No Ice	2.864	1.782	0.055
			0.000			1/2"	3.090	1.973	0.077
			2.000				3.323	2.171	0.103
						2" Ice	3.013	2.009	0.165
RRUS 32 B66A	С	From Lea	4 000	0 000	158 000	No Ice	2 864	1 782	0.055
	•	1.000 Log	0.000	01000		1/2"	3.090	1.973	0.077
			2.000			Ice	3.323	2.171	0.103
						1" Ice 2" Ice	3.813	2.589	0.165
RRUS 4449 B5/B12	А	From Leg	4.000	0.000	158.000	No Ice	1.968	1.408	0.071
			0.000			1/2"	2.144	1.564	0.090
			2.000			Ice	2.328	1.727	0.111
	в	From Log	4 000	0.000	159 000	2" Ice	1.069	2.075	0.163
RR03 4449 B3/B12	D	FIOIDLeg	4.000	0.000	156.000	1/2"	2 144	1.400	0.071
			2 000			lce	2 328	1.304	0.090
			2.000			1" Ice	2 718	2 075	0.163
						2" Ice			
RRUS 4449 B5/B12	С	From Leg	4.000	0.000	158.000	No Ice	1.968	1.408	0.071
			0.000			1/2"	2.144	1.564	0.090
			2.000			ce	2.328	1.727	0.111
	-					1" Ice 2" Ice	2.718	2.075	0.163
Sector Mount [SM 502-3]	С	None		0.000	158.000	No Ice	29.820	29.820	1.673
						1/2"	42.210	42.210	2.266
						1" Ice	54.430 78.400	54.430 78.490	3.05Z
						2" Ice	70.450	70.450	5.100
**** ****						2 100			
GPS_A	в	From Leg	4.000	0.000	40.000	No Ice	0.255	0.255	0.001
			0.000			1/2"	0.320	0.320	0.005
			0.000			Ice	0.393	0.393	0.010
						1" Ice	0.561	0.561	0.025
Side Arm Mount ISO 200	Р	From Loc	2 000	0.000	40.000	2" Ice	0.440	2 260	0.040
	Б	FIOID Leg	2.000	0.000	40.000	1/2"	0.410	2.20U 3.830	0.042
[1			0.000				1 230	5 480	0.002
			0.000			1" Ice	2.080	9.370	0.187
						2" Ice		0.010	

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	۰	۰	ft	ft		ft²	К
VHLP2-11	С	Paraboloid w/o Radome	From Leg	4.000 0.000 0.000	-90.000		168.000	2.175	No Ice 1/2" Ice 1" Ice 2" Ice	3.720 4.010 4.300 4.880	0.027 0.050 0.070 0.110

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	12 Dead+10 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	12 Dead+10 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	12 Dead+10 Wind 120 deg - No lee
11	0.9 Dead+1.0 Wind 120 deg - No lee
12	1 2 Dead+10 Wind 150 deg - No lee
13	0.9 Dead+1.0 Wind 150 deg - No lee
14	12 Dead+1 0 Wind 180 dea - No lee
15	0.9 Decad+1.0 Wind 180 deg - No lee
16	1.2 Dead+1.0 Wind 210 deg - No lee
17	0.9 Decat+1.0 Wind 210 deg - No Ice
18	1 2 Dead+1 0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1 2 Dead+1 0 Wind 270 deg - No lee
20	
21	1.2 Dead+1.0 Wind 300 deg - No lee
22	1.2 Dead+1.0 Wind 300 deg No lee
23	
24	1.2 Dead+1.0 Wind 330 deg No Lee
25	
20	1.2 Dead+1.0 Wind 0 deg+1.0 log
21	
20	1.2 Dead+1.0 Wind 60 deat+1.0 log
29	
30	1.2 Dead+1.0 Wind 100 deg+1.0 Lee
32	1.2 Dead+1.0 Wind 150 dea+1.0 log
32	12 Dead+10 Wind 180 dea+10 lee
31	1.2 Dead+1.0 Wind 100 dea+1.0 loe
35	1.2 Dead+1.0 Wind 210 deat+1.0 lee
30	12 Dead+10 Wind 270 deg+10 lee
37	1.2 Dead-1.0 Wind 200 deat-1.0 log
30	
30	
40	
40 /1	
41	
42 42	
43	Dead-Wind 120 deg - Service
44	Dead-twind 150 deg - Service
40	Dead-Wind 100 deg - Service
40	Dead-twind 210 deg - Service
41 19	Dead I Wind 240 deg - Service
40 10	Dead-Wind 210 deg - Service
49 50	Dead I wind Storder Service
50	Deau+winu 550 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	٥
T1	185 - 180	4.304	45	0.213	0.071
T2	180 - 160	4.078	45	0.213	0.071
Т3	160 - 140	3.180	45	0.198	0.066
T4	140 - 120	2.369	45	0.170	0.055
T5	120 - 100	1.683	45	0.140	0.044
Т6	100 - 80	1.135	45	0.114	0.035
T7	80 - 60	0.707	45	0.086	0.026
Т8	60 - 40	0.391	45	0.060	0.018
Т9	40 - 20	0.173	45	0.039	0.012
T10	20 - 0	0.044	39	0.018	0.006

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	0	ft
186.000	Lightning Rod 5/8"x4'	45	4.304	0.213	0.071	163533
177.000	(2) DB846F65ZAXY w/ Mount Pipe	45	3.942	0.212	0.071	238837
168.000	VHLP2-11	45	3.535	0.206	0.069	95214
158.000	7770.00 w/ Mount Pipe	45	3.094	0.196	0.065	44086
40.000	GPS_A	45	0.173	0.039	0.012	60184

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
T1	185 - 180	17.487	14	0.864	0.294
T2	180 - 160	16.574	14	0.862	0.294
Т3	160 - 140	12.932	14	0.804	0.270
T4	140 - 120	9.635	14	0.690	0.227
T5	120 - 100	6.850	14	0.569	0.181
Т6	100 - 80	4.625	14	0.464	0.143
T7	80 - 60	2.883	14	0.349	0.106
Т8	60 - 40	1.598	14	0.243	0.075
Т9	40 - 20	0.712	3	0.158	0.051
T10	20 - 0	0.178	2	0.072	0.026

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
186.000	Lightning Rod 5/8"x4'	14	17.487	0.864	0.294	42142
177.000	(2) DB846F65ZAXY w/ Mount Pipe	14	16.024	0.858	0.292	64769
168.000	VHLP2-11	14	14.370	0.836	0.283	24150
158.000	7770.00 w/ Mount Pipe	14	12.581	0.794	0.266	10957
40.000	GPS_A	3	0.712	0.158	0.051	14873

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Туре	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt	per Bolt	Allowable		
τ1	195	Log	ASSEN	0.750	4	0 222	20 101	0.011	1.05	Balt Tanaian
	105	Diagonal	A225V	0.750	4	1 627	9 265	0.011	1.05	Cusset Rearing
		Top Girt	A325N	0.500	1	0.562	8 265	0.190	1.05	Gusset Bearing
Т2	180		A325N	0.500	1	4.624	30 101	0.000	1.05	Bolt Tonsion
12	100	Diagonal	A325N	0.750	2	3 261	13 806	0.134	1.05	Bolt Shoar
		Horizontal	A325N	0.025	2	2 632	13,806	0.230	1.05	Bolt Shear
ТЗ	160		A325N	0.025	2	15 250	13.000	0.191	1.05	Bolt Tonsion
15	100	Diagonal	A325N	0.675	4	3 665	41.000	0.307	1.05	Bolt Shear
		Horizontal	A325N	0.025	2	3.005	13,806	0.205	1.05	Bolt Shear
ти	140		A325N	1 000	2	25 450	54 517	0.250	1.05	Bolt Tension
14	140	Diagonal	A325N	0.625	4	3 753	13 806	0.407	1.05	Bolt Shear
		Horizontal	A325N	0.025	2	3 744	13.806	0.272	1.05	Bolt Shear
Τ5	120		A325N	1 000	2	33 027	54 517	0.271	1.05	Bolt Tension
15	120	Diagonal	A325N	0.625	3	1 152	13 806	0.000	1.05	Bolt Shear
		Horizontal	A325N	0.025	2	3 068	13,806	0.322	1.05	Bolt Shear
те	100		A325N	1 000	6	27 386	54 517	0.207	1.05	Bolt Tension
10	100	Diagonal	A325N	0.625	3	4 079	13 806	0.205	1.05	Bolt Shear
		Horizontal	A325N	0.025	2	4.079	13.806	0.295	1.05	Bolt Shear
Τ7	80		A325N	1 000	6	32 213	54 517	0.291	1.05	Bolt Tension
17	00	Diagonal	4325N	0.625	3	4 310	13 806	0.331	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	4.510	13 806	0.370	1.05	Bolt Shear
тя	60		4325N	1 000	6	36 905	54 517	0.677	1.05	Bolt Tension
10	00	Diagonal	4325N	0.625	3	4 462	13 806	0.323	1.05	Bolt Shear
		Horizontal	4325N	0.625	2	4 955	13,806	0.320	1.05	Bolt Shear
та	40		4325N	1 000	8	30 965	54 517	0.568	1.05	Bolt Tension
15	40	Diagonal	4325N	0.625	3	4 409	13 806	0.319	1.05	Bolt Shear
		Horizontal	Δ325N	0.625	2	5 137	13 806	0.372	1.05	Bolt Shear
T10	20	Diagonal	4325N	0.020	∠ 3	6 978	19.880	0.372	1.05	Bolt Shear
110	20	Horizontal	2325N	0.750	2	5 639	19.880	0.284	1.05	Bolt Shear

Bolt Design Data

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	185 - 180	Pipe 2.875" x 0.203" (2.5 STD)	5.000	5.000	63.3 K=1.00	1.704	-3.982	38.586	0.103 ¹
T2	180 - 160	Pipe 2.875" x 0.203" (2.5 STD)	20.000	6.667	84.4 K=1.00	1.704	-26.983	45.528	0.593 ¹
Т3	160 - 140	Pipe 3.5" x 0.300" (3 XS)	20.036	6.540	69.1 K=1.00	3.016	-74.320	95.761	0.776 ¹
T4	140 - 120	Pipe 4.5" x 0.337" (4 XS)	20.036	6.540	53.1 K=1.00	4.407	-117.223	161.331	0.727 ¹
Т5	120 - 100	Pipe 5.5" x 0.375" (5 EH)	20.042	10.021	66.2 K=1.00	6.038	-149.632	197.229	0.759 ¹
Т6	100 - 80	Pipe 5.5" x 0.375" (5 EH)	20.056	10.028	66.2 K=1.00	6.038	-184.489	197.145	0.936 ¹
Τ7	80 - 60	Pipe 6.625" x 0.340" (6 EHS)	20.052	10.026	54.1 K=1.00	6.713	-216.406	243.965	0.887 ¹
Т8	60 - 40	Pipe 6.625" x 0.432" (6 XS)	20.052	10.026	54.8 K=1.00	8.405	-248.077	303.623	0.817 ¹
Т9	40 - 20	Pipe 6.625" x 0.432" (6 XS)	20.058	10.029	54.8 K=1.00	8.405	-278.258	303.585	0.917 ¹
T10	20 - 0	Pipe 8.75" x 0.375" (8 EHS)	20.052	9.984	40.4 K=1.00	9.867	-291.187	393.997	0.739 ¹

¹ P_u / ϕP_n controls

		Diagonal I	Desig	n Data	a (Cor	npres	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T1	185 - 180	L 2 x 2 x 1/4	9.862	4.667	143.2 K=1.00	0.938	-1.896	13.087	0.145 ¹
T2	180 - 160	Pipe 2.375" x 0.154" (2 STD)	7.917	7.695	117.3 K=1.00	1.075	-9.782	17.637	0.555 ¹
Т3	160 - 140	Pipe 2.375" x 0.154" (2 STD)	8.419	8.188	124.8 K=1.00	1.075	-10.994	15.580	0.706 ¹
Τ4	140 - 120	Pipe 2.375" x 0.154" (2 STD)	9.112	8.843	134.8 K=1.00	1.075	-10.783	13.356	0.807 ¹
Т5	120 - 100	Pipe 2.875" x 0.203" (2.5 STD)	12.492	12.109	153.4 K=1.00	1.704	-13.354	16.364	0.816 ¹
Т6	100 - 80	Pipe 2.875" x 0.203" (2.5 STD)	13.307	12.959	164.1 K=1.00	1.704	-12.236	14.288	0.856 ¹
Τ7	80 - 60	Pipe 2.875" x 0.203" (2.5 STD)	14.162	13.772	174.4 K=1.00	1.704	-12.929	12.652	1.022 ¹
Т8	60 - 40	Pipe 2.875" x 0.276" (2.5 XS)	15.072	14.703	190.9 K=1.00	2.254	-13.385	13.964	0.959 ¹
Т9	40 - 20	Pipe 3.5" x 0.216" (3 STD)	16.082	15.729	162.2 K=1.00	2.228	-13.226	19.132	0.691 ¹
T10	20 - 0	Pipe 3.5" x 0.216" (3 STD)	24.260	12.130	125.1 K=1.00	2.228	-20.935	32.170	0.651 ¹

¹ P_u / ϕP_n controls

		Horizontal	Desig	in Dat	ta (Co	mpres	ssion)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ P _n	Ratio Pu
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T2	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.528	4.144	79.9 K=1.00	0.799	-5.230	22.564	0.232 ¹
Т3	160 - 140	Pipe 1.9" x 0.145" (1.5 STD)	9.945	4.827	93.0 K=1.00	0.799	-6.886	19.107	0.360 ¹
T4	140 - 120	Pipe 2.375" x 0.154" (2 STD)	12.028	5.827	88.8 K=1.00	1.075	-7.439	27.156	0.274 ¹
Т5	120 - 100	Pipe 2.375" x 0.154" (2 STD)	13.833	6.688	102.0 K=1.00	1.075	-7.898	22.613	0.349 ¹
Т6	100 - 80	Pipe 2.375" x 0.154" (2 STD)	16.250	7.896	120.4 K=1.00	1.075	-8.024	16.753	0.479 ¹
Τ7	80 - 60	Pipe 2.875" x 0.203" (2.5 STD)	18.792	9.120	115.5 K=1.00	1.704	-9.026	28.852	0.313 ¹
Т8	60 - 40	Pipe 2.875" x 0.203" (2.5 STD)	21.292	10.370	131.3 K=1.00	1.704	-9.761	22.315	0.437 ¹
Т9	40 - 20	Pipe 2.875" x 0.203" (2.5 STD)	23.859	11.654	147.6 K=1.00	1.704	-9.943	17.669	0.563 ¹
T10	20 - 0	Pipe 3.5" x 0.216" (3 STD)	25.177	12.313	127.0 K=1.00	2.228	-11.239	31.224	0.360 ¹

. -

¹ P_u / ϕP_n controls

	Top Girt Design Data (Compression)												
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ Ρ _n	Ratio P _u				
	ft		ft	ft		in²	ĸ	K	ϕP_n				
T1	185 - 180	L 2 x 2 x 1/4	8.500	8.010	245.8 K=1.00	0.938	-0.390	4.442	0.088 ¹				
		KL/R > 200 (C) - 4											

tnxTower Report - version 8.0.5.0

Section	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio
<i>NO.</i>	ft		ft	ft		in²	к	К	$\frac{P_u}{\phi P_n}$

¹ P_u / ϕP_n controls

	Red	lundant Horizo	ontal (′	1) Des	sign D	ata (C	compres	ssion)	
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	ĸ	K	$\frac{1}{\Phi P_n}$
T10	20 - 0	Rohn 1.5" x 11 ga	6.294	5.930	145.3 K=1.00	0.520	-5.056	5.568	0.908 ¹

¹ P_u / ϕP_n controls

Redundant Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	К	ϕP_n
T10	20 - 0	2L 2 x 2 x 1/4 (1/4)	11.466	10.909	217.7 K=1.00	1.875	-4.605	11.294	0.408 ¹
		2L 'a' > 63.068 in - 281							

¹ P_u / ϕP_n controls

	Redundant Hip (1) Design Data (Compression)											
Section No.	Elevation	Size	L	L _u	Kl/r	A	Pu	φ Ρ _n	Ratio P _u			
	ft		ft	ft		in²	K	K	ϕP_n			
T10	20 - 0	Pipe 1.9" x 0.145" (1.5 STD)	6.294	6.294	121.3 K=1.00	0.799	-0.033	12.272	0.003 ¹			

¹ P_u / ϕP_n controls

	Red	undant Hip Diaç	gonal	(1) De	esign	Data (Compr	ession)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T10	20 - 0	Pipe 2.875" x 0.203" (2.5 STD)	15.046	15.046	190.6 K=1.00	1.704	-0.079	10.600	0.007 1

¹ P_u / ϕP_n controls

		Inner Braci	ng Des	sign E	Data (C	Compi	ression)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ P _n	Ratio Pu
	ft		ft	ft		in²	ĸ	к	ϕP_n
T2	180 - 160	L 2 x 2 x 1/8	4.264	4.264	128.7 K=1.00	0.484	-0.006	8.369	0.001 1
Т3	160 - 140	L 2 x 2 x 1/8	4.293	4.293	129.6	0.484	-0.009	8.258	0.001 ¹

tnxTower Report - version 8.0.5.0

185 Ft Self Support Tower Structural Analysis Project Number 37520-0048.002.8700, Order 509327, Revision 0

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
					K=1.00				
T4	140 - 120	L 2 x 2 x 1/8	6.014	6.014	181.5	0.484	-0.007	4.207	0.002 1
					K=1.00				
T5	120 - 100	L 2 x 2 x 1/8	6.917	6.917	208.8	0.484	-0.008	3.180	0.002 ¹
					K=1.00				
Т6	100 - 80	L 2.5 x 2.5 x 3/16	8.125	8.125	197.0	0.902	-0.010	6.654	0.001 ¹
					K=1.00				
Τ7	80 - 60	L 3 x 3 x 3/16	9.396	9.396	189.1	1.090	-0.012	8.725	0.001 ¹
					K=1.00				
Т8	60 - 40	L 3.5 x 3.5 x 1/4	10.646	10.646	184.1	1.690	-0.014	14.275	0.001 ¹
					K=1.00				
Т9	40 - 20	L 3.5 x 3.5 x 1/4	11.930	11.930	206.3	1.690	-0.015	11.368	0.001*1
					K=1.00				
T10	20 - 0	Pipe 3.5" x 0.216" (3	12,589	12.589	129.8	2,228	-0.018	29.626	0.001 ¹
		STD)			K=1.00				
		,							

* DL controls

¹ P_u / ϕP_n controls

			Tens	ion Cl	hecks	5			
		Leg l	Desig	n Data	a (Ter	nsion)			
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	φP _n	Ratio P _u
	ft		ft	ft		in²	ĸ	К	ϕP_n
T1	185 - 180	Pipe 2.875" x 0.203" (2.5 STD)	5.000	5.000	63.3	1.704	1.307	46.009	0.028 1
T2	180 - 160	Pipe 2.875" x 0.203" (2.5 STD)	20.000	6.667	84.4	1.704	18.497	76.682	0.241 ¹
Т3	160 - 140	Pipe 3.5" x 0.300" (3 XS)	20.036	6.540	69.1	3.016	61.037	135.717	0.450 ¹
T4	140 - 120	Pipe 4.5" x 0.337" (4 XS)	20.036	6.540	53.1	4.407	101.799	198.335	0.513 ¹
T5	120 - 100	Pipe 5.5" x 0.375" (5 EH)	20.042	10.021	66.2	6.038	132.107	271.699	0.486 ¹
Т6	100 - 80	Pipe 5.5" x 0.375" (5 EH)	20.056	10.028	66.2	6.038	164.316	271.699	0.605 ¹
Τ7	80 - 60	Pipe 6.625" x 0.340" (6 EHS)	20.052	10.026	54.1	6.713	193.280	302.097	0.640 ¹
Т8	60 - 40	Pipe 6.625" x 0.432" (6 XS)	20.052	10.026	54.8	8.405	221.427	378.222	0.585 ¹
Т9	40 - 20	Pipe 6.625" x 0.432" (6 XS)	20.058	10.029	54.8	8.405	247.717	378.222	0.655 ¹
T10	20 - 0	Pipe 8.75" x 0.375" (8 EHS)	20.052	0.084	0.3	9.867	286.035	443.995	0.644 ¹

¹ P_u / ϕP_n controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	φ P _n	Ratio P _u
	ft		ft	ft		in²	ĸ	K	ϕP_n
T1	185 - 180	L 2 x 2 x 1/4	9.862	4.667	94.4	0.586	1.637	28.583	0.057 1
T2	180 - 160	Pipe 2.375" x 0.154" (2 STD)	7.917	7.695	117.3	1.075	9.709	48.354	0.201 ¹
Т3	160 - 140	Pipe 2.375" x 0.154" (2 STD)	8.419	8.188	124.8	1.075	10.912	48.354	0.226 1
T4	140 - 120	Pipe 2.375" x 0.154" (2 STD)	8.651	8.383	127.8	1.075	11.154	48.354	0.231 1
Т5	120 - 100	Pipe 2.875" x 0.203" (2.5 STD)	12.163	11.781	149.2	1.704	13.186	76.682	0.172 ¹
Т6	100 - 80	Pipe 2.875" x 0.203" (2.5 STD)	13.307	12.959	164.1	1.704	12.006	76.682	0.157 1

Section No.	Elevation	Size	L	L _u	Kl/r	А	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
Τ7	80 - 60	Pipe 2.875" x 0.203" (2.5 STD)	14.162	13.772	174.4	1.704	12.612	76.682	0.164 1
Т8	60 - 40	Pipe 2.875" x 0.276" (2.5 XS)	15.072	14.703	190.9	2.254	12.931	101.409	0.128 ¹
Т9	40 - 20	Pipe 3.5" x 0.216" (3 STD)	16.082	15.729	162.2	2.228	12.700	100.281	0.127 ¹
T10	20 - 0	Pipe 3.5'' x 0.216'' (3 STD)	24.260	12.130	125.1	2.228	19.975	100.281	0.199 ¹

¹ P_u / ϕP_n controls

		Horizon	tal De	sign [Data (Tensi	on)		
Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	φ P _n	Ratio P _u
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T2	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.528	4.144	79.9	0.799	5.264	35.976	0.146 1
Т3	160 - 140	Pipe 1.9" x 0.145" (1.5 STD)	9.945	4.827	93.0	0.799	6.913	35.976	0.192 ¹
T4	140 - 120	Pipe 2.375" x 0.154" (2 STD)	12.028	5.827	88.8	1.075	7.488	48.354	0.155 ¹
T5	120 - 100	Pipe 2.375" x 0.154" (2 STD)	13.833	6.688	102.0	1.075	7.936	48.354	0.164 ¹
Т6	100 - 80	Pipe 2.375" x 0.154" (2 STD)	16.250	7.896	120.4	1.075	8.024	48.354	0.166 ¹
T 7	80 - 60	Pipe 2.875" x 0.203" (2.5 STD)	18.792	9.120	115.5	1.704	9.072	76.682	0.118 ¹
Т8	60 - 40	Pipe 2.875" x 0.203" (2.5 STD)	21.292	10.370	131.3	1.704	9.910	76.682	0.129 ¹
Т9	40 - 20	Pipe 2.875" x 0.203" (2.5 STD)	23.859	11.654	147.6	1.704	10.274	76.682	0.134 ¹
T10	20 - 0	Pipe 3.5" x 0.216" (3 STD)	25.177	12.313	127.0	2.228	11.277	100.281	0.112 ¹

¹ P_u / ϕP_n controls

		Top G	irt Des	ign D	ata (T	ensio	n)		
Section	Elevation	Size	L	L _u	Kl/r	A	Pu	φPn	Ratio
<i>N</i> 0.	ft		ft	ft		in²	к	К	$\frac{1}{\Phi P_n}$
T1	185 - 180	L 2 x 2 x 1/4	8.500	8.010	162.8	0.586	0.562	28.583	0.020 ¹

¹ P_u / ϕP_n controls

Redundant Horizontal (1) Design Data (Tension)									
Section	Elevation	Size	L	L _u	Kl/r	A	Pu	φ Ρ _n	Ratio
No.	ft		ft	ft		in²	к	К	$\frac{P_u}{\phi P_n}$
T10	20 - 0	Rohn 1.5" x 11 ga	6.294	5.930	145.3	0.520	5.056	23.411	0.216 ¹

¹ P_u / ϕP_n controls
Redundant Diagonal (1) Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	φ P _n	Ratio P _u
	ft		ft	ft		in²	ĸ	K	ϕP_n
T10	20 - 0	2L 2 x 2 x 1/4 (1/4) 2L 'a' > 63.068 in - 287	11.466	10.909	215.0	1.875	4.605	84.375	0.055 ¹

¹ P_u / ϕP_n controls

	Redundant Hip (1) Design Data (Tension)								
Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	φP _n	Ratio P _u
	ft		ft	ft		in²	K	ĸ	ϕP_n
T10	20 - 0	Pipe 1.9" x 0.145" (1.5 STD)	6.294	6.294	121.3	0.799	0.021	35.976	0.001 ¹

¹ P_u / ϕP_n controls

Redundant Hip Diagonal (1) Design Data (Tension)									
Section No.	Section Elevation Size L L_u Kl/r A P_u ϕP_n Ratio P_u								
	ft		ft	ft		in²	K	K	ϕP_n
T10	20 - 0	Pipe 2.875" x 0.203" (2.5 STD)	15.046	15.046	190.6	1.704	0.072	76.682	0.001 ¹

¹ P_u / ϕP_n controls

Inner Bracing Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	ĸ	K	ϕP_n
T2	180 - 160	L 2 x 2 x 1/8	4.264	4.264	81.7	0.484	0.006	15.694	0.000 ¹
Т3	160 - 140	L 2 x 2 x 1/8	4.293	4.293	82.3	0.484	0.007	15.694	0.000 1
Τ4	140 - 120	L 2 x 2 x 1/8	5.334	5.334	102.2	0.484	0.006	15.694	0.000 1
T5	120 - 100	L 2 x 2 x 1/8	6.354	6.354	121.8	0.484	0.003	15.694	0.000 1
Т6	100 - 80	L 2.5 x 2.5 x 3/16	7.479	7.479	115.3	0.902	0.001	29.225	0.000 1
Τ7	80 - 60	L 3 x 3 x 3/16	8.771	8.771	112.0	1.090	0.001	35.311	0.000 1
T10	20 - 0	Pipe 3.5" x 0.216" (3 STD)	12.589	12.589	129.8	2.228	0.001	70.197	0.000 1

¹ P_u / ϕP_n controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
T1	185 - 180	Leg	Pipe 2.875" x 0.203" (2.5 STD)	2	-3.982	40.516	9.8	Pass
T2	180 - 160	Leg	Pipe 2.875" x 0.203" (2.5 STD)	13	-26.983	47.805	56.4	Pass
Т3	160 - 140	Leg	Pipe 3.5" x 0.300" (3 XS)	54	-74.320	100.549	73.9	Pass
T4	140 - 120	Leg	Pipe 4.5" x 0.337" (4 XS)	93	-117.223	169.398	69.2	Pass
T5	120 - 100	Leg	Pipe 5.5" x 0.375" (5 EH)	132	-149.632	207.090	72.3	Pass

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Type		Element	ĸ	ĸ	Capacity	Fail
Т6	100 - 80	Leg	Pipe 5.5" x 0.375" (5 EH)	159	-184.489	207.002	89.1	Pass
T7	80 - 60	Lea	Pipe 6.625" x 0.340" (6 EHS)	186	-216.406	256.163	84.5	Pass
Т8	60 - 40	Lea	Pipe 6.625" x 0.432" (6 XS)	213	-248.077	318.804	77.8	Pass
Т9	40 - 20	Lea	Pipe 6.625" x 0.432" (6 XS)	240	-278.258	318,764	87.3	Pass
T10	20 - 0	Lea	Pipe 8.75" x 0.375" (8 EHS)	267	-291.187	413.697	70.4	Pass
T1	185 - 180	Diagonal	$1.2 \times 2 \times 1/4$	10	-1 896	13 742	13.8	Pass
• •		Diagonal					18.9 (b)	
Т2	180 - 160	Diagonal	Pipe 2 375" x 0 154" (2 STD)	20	-9 782	18 519	52.8	Pass
T3	160 - 140	Diagonal	Pine 2 375" x 0 154" (2 STD)	60	_10 994	16.359	67.2	Pass
T4	140 - 120	Diagonal	Pine 2 375" x 0 154" (2 STD)	99	-10 783	14 024	76.9	Pass
T5	120 - 100	Diagonal	Pine 2 875" x 0 203" (2 5	138	-13 354	17 183	77.7	Pass
15	120 - 100	Diagonal		100	-10.004	17.105		1 433
те	100 - 80	Diagonal	Bine 2 875" x 0 203" (2 5	165	-12 236	15 003	81.6	Dass
10	100 - 00	Diagonal		100	-12,200	10.000	01.0	1 435
Τ7	80 - 60	Diagonal	Pine 2 875" x 0 203" (2 5	192	-12 929	13 285	97 3	Pass
17	00-00	Diagonal		152	-12.525	13.205	57.5	1 855
Т9	60 40	Diagonal	$Bino 2.875'' \times 0.276''' (2.5 XS)$	210	13 385	14 663	01.3	Pass
	40 20	Diagonal	$Pipe 2.075 \times 0.276 (2.5 \text{ K})$	215	12 226	20.080	91.5	Pass
19	40 - 20	Diagonal	$Pipe 3.5 \times 0.216 (3.51D)$	240	-13.220	20.069	62.0	Pass
	20 - 0	Diagonal	Pipe 3.5" X 0.216" (3 STD)	279	-20.935	33.778	62.0	Pass
12	180 - 160	Horizontal	Pipe 1.9" X 0.145" (1.5 STD)	19	-5.230	23.693	22.1	Pass
13	160 - 140	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	58	-6.886	20.062	34.3	Pass
T4	140 - 120	Horizontal	Pipe 2.375" x 0.154" (2 STD)	97	-7.439	28.514	26.1	Pass
Т5	120 - 100	Horizonta	Pipe 2.375" x 0.154" (2 STD)	136	-7.898	23.744	33.3	Pass
Т6	100 - 80	Horizontal	Pipe 2.375" x 0.154" (2 STD)	163	-8.024	17.591	45.6	Pass
Τ7	80 - 60	Horizontal	Pipe 2.875" x 0.203" (2.5	190	-9.026	30.294	29.8	Pass
			STD)				31.3 (b)	
Т8	60 - 40	Horizontal	Pipe 2.875" x 0.203" (2.5	217	-9.761	23.431	41.7	Pass
			STD)					
Т9	40 - 20	Horizontal	Pipe 2.875" x 0.203" (2.5	244	-9.943	18.553	53.6	Pass
			STD)					
T10	20 - 0	Horizonta	Pipe 3.5" x 0.216" (3 STD)	275	-11.239	32,785	34.3	Pass
T1	185 - 180	Top Girt	L 2 x 2 x 1/4	4	-0.390	4.664	8.4	Pass
T10	20 - 0	Redund Horz 1	Rohn 1.5" x 11 ga	280	-5.056	5.846	86.5	Pass
		Bracing	i i i i i i i i i i i gu					
T10	20 - 0	Redund Diag 1	21 2 x 2 x 1/4 (1/4)	281	-4 605	11 859	38.8	Pass
		Bracing						
T10	20 - 0	Redund Hip 1	Pipe 1 9" x 0 145" (1 5 STD)	282	-0.033	12 885	0.3	Pass
110	20 0	Bracing		LOL	0.000	12.000	0.0	1 400
T10	20 - 0	Redund Hin	Pine 2 875" x 0 203" (2 5	283	_0 079	11 130	07	Pass
110	20-0	Diagonal 1 Bracing		200	-0.073	11.150	0.7	1 455
то	190 160			27	0.006	0 707	0.4	Base
	160 - 160	Inner Bracing		21	-0.000	6.707	0.4	Pass
13	160 - 140	Inner Bracing		00	-0.006	0.401	0.5	Pass
14	140 - 120	Inner Bracing	L 2 X 2 X 1/8	105	-0.007	4.417	0.6	Pass
15	120 - 100	Inner Bracing	L 2 x 2 x 1/8	144	-0.008	3.339	0.6	Pass
16	100 - 80	Inner Bracing	L 2.5 x 2.5 x 3/16	1/1	-0.010	6.987	0.5	Pass
17	80 - 60	Inner Bracing	L 3 x 3 x 3/16	198	-0.012	9.162	0.6	Pass
Т8	60 - 40	Inner Bracing	L 3.5 x 3.5 x 1/4	225	-0.014	14.989	0.5	Pass
Т9	40 - 20	Inner Bracing	L 3.5 x 3.5 x 1/4	252	-0.015	11.368	0.6	Pass
T10	20 - 0	Inner Bracing	Pipe 3.5" x 0.216" (3 STD)	296	-0.016	31.107	0.5	Pass
							Summary	
						Leg (T6)	89.1	Pass
						Diagonal	97.3	Pass
						(T7)		
						Horizontal	53.6	Pass
						(T9)		
						Top Girt	8.4	Pass
						(T1)		
						Redund	86.5	Pass
						Horz 1		-
						Bracino		
						(T10)		
						Redund	38.8	Pass
						Diag 1	00.0	. 455
						Bracing		
						(T10)		
						(110) Redund	0.3	Dace
							0.5	1 033
						Brasing		
						(110)		

185 Ft Self Support Tower Structural Analysis Project Number 37520-0048.002.8700, Order 509327, Revision 0

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
						Redund Hip Diagonal 1 Bracing (T10)	0.7	Pass
						Inner Bracing (T5)	0.6	Pass
						Bolt Checks	64.5	Pass
						RATING =	97.3	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Project Information				
BU #	806362			
Site Name	NHV 108 943133			
Order #	509327 Rev 0			

Tower Information					
Tower Type Self Support					
TIA-222 Rev H					

Apply TIA-222-H Section 15.5

Applied Loads					
Comp. Uplift					
Axial (k)	0.00	284.00			
Shear (k) 39.00 36.00					

Anchor Rod Data		
Quantity:	8	
Diameter (in):	1	
Material Grade:	A449	Fy=92 ksi Fu=120 ksi
Grout Considered:	Yes	Not Considered, lar<=1(d)
I _{ar} (in):	0	
Eta Factor, η:	0.55	
Thread Type:	N-Included	
Configuration:	Symmetrical	

Anchor Rod Results					
Axial, Pu_t (kips)	35.50				
Shear, Vu (kips)	4.50				
Moment, Mu (kip-in)	-				
Axial Cap., φPn_t (kips)	54.54				
Shear Cap., φVn (kips)	35.34				
Moment Cap., φMn (kip-in)	-				
Stress Rating	41.9%				

Pass

Pier and Pad Foundation

BU # :	806362
Site Name:	NHV 108 943133
App. Number:	509327 Rev 0

TIA-222 Revision: H Tower Type: Self Support Top & Bot. Pad Rein. Different?: Block Foundation?:

Superstructure Analysis Reactions			
Compression, P_{comp} :	321	kips	
Compression Shear, Vu_comp:	39	kips	
Uplift, P _{uplift} :	284	kips	
Uplift Shear, V_{u_uplift} :	36	kips	
Tower Height, H :	185	ft	
Base Face Width, BW :	27.6771	ft	
BP Dist. Above Fdn, bp_{dist}:	2.1	in	

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	3	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc :	10	
Pier Rebar Quantity, mc :	16	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt :	13	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties			
Depth, D :	12 <u>.</u> 5	ft	
Pad Width, W :	8.75	ft	
Pad Thickness, T :	2	ft	
Pad Rebar Size (Bottom), Sp :	7		
Pad Rebar Quantity (Bottom), mp :	10		
Pad C l ear Cover, cc_{pad}:	3	in	

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	3	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties				
Total Soil Unit Weight, $m{\gamma}$:	120	pcf		
Ultimate Gross Bearing, Qult:	24.000	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$:	40	degrees		
SPT Blow Count, N_{blows}:	50			
Base Friction, μ :	0.4			
Neglected Depth, N:	3.34	ft		
Foundation Bearing on Rock?	Yes			
Groundwater Depth, gw:	N/A	ft		

<---Toggle between Gross and Net

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Uplift (kips)	362.09	284.00	74.7%	Pass
Lateral (Sliding) (kips)	144.82	36.00	23.7%	Pass
Bearing Pressure (ksf)	18.00	6.11	32.3%	Pass
Pier Flexure (Comp.) (kip*ft)	1151.39	429.00	35.5%	Pass
Pier Flexure (Tension) (kip*ft)	873.96	396.00	43.2%	Pass
Pier Compression (kip)	1956.74	335.00	16.3%	Pass
Pad Flexure (kip*ft)	513.41	153.18	28.4%	Pass
Pad Shear - 1-way (kips)	169.84	45.75	25.7%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.077	44.6%	Pass
Flexural 2-way (Comp) (kip*ft)	1026.82	257.40	23.9%	Pass
Pad Shear - 2-way (Uplift) (ksi)	0.164	0.110	63.6%	Pass
Flexural 2-way (Tension) (kip*ft)	1026.82	237.60	22.0%	Pass

*Rating per TIA-222-H Section

15.5	
Soil Rating*:	74.7%
Structural Rating*:	63.6%

No Address at This

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 745.17 ft (NAVD 88) Latitude: 41.559558 Longitude: -72.946972

Wind

Results:

Wind Speed:	122 Vmph← 125 mph per jurisdiction
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	92 Vmph
100-year MRI	99 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Fri Dec 06 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.186	S _{DS} :	0.199	
S ₁ :	0.064	S _{D1} :	0.102	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.096	
S _{MS} :	0.298	PGA M :	0.154	
S _{M1} :	0.153	F _{PGA} :	1.6	
		e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Fri Dec 06 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Fri Dec 06 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 btwo@btgrp.com

Subject:		Mount Replacement Analysis Report				
Carrier Designation	n:	AT&T Mobility Equipment Chang	AT&T Mobility Equipment Change-Out			
Ū		Carrier Site Number:	61146			
		FA Number:	10035040			
		Carrier Site Name:	N/A			
Crown Castle Desid	anation:	Crown Castle BU Number:	806362			
		Crown Castle Site Name:	NHV 108 943133			
		Crown Castle JDE Job Number:	596314			
		Crown Castle Order Number:	509327, Rev.0			
Engineering Firm D	esignation:	B+T Group Report Designation:	104053.009.01			
Site Data:	Intersectior	of RTE 322/ Meridian Rd Wolcott Site, Wolcott, CT, New Haven Latitude 41° 33' 34.41" Longitude -72° 56' 49.10"				
Structure Informati	on:	Tower Height & Type: Mount Elevation: Mount Type:	185 ft. Self-Support Tower 158 ft. 13 ft. Sector Mount			

Dear Mr. Morrow,

Date: March 23, 2020

Charlotte, NC 28277

3530 Toringdon Way, Suite 300

Kevin Morrow

Crown Castle

(704) 405-6619

B+T Group is pleased to submit this "**Mount Replacement Analysis Report**" to determine the structural integrity of *AT&T Mobility*'s antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level to be:

Sector Mount (multiple)

Sufficient

This analysis has been performed in accordance with the 2018 International Building Code based upon an ultimate 3-second gust wind speed of 118 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Lokesh Narayanappa, E.I.T.

Respectfully submitted by: B&T Engineering, Inc. COA: PEC.0001564 Expires: 02/10/2021

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 3(a) - Mount Component Stresses vs. Capacity (Sector Mount, Typ. All Sectors)

Table 4(a) - Tieback End Reactions (Sector Mount, Alpha Sector)

Table 4(b) - Tieback End Reactions (Sector Mount, Beta Sector)

Table 4(c) - Tieback End Reactions (Sector Mount, Gamma Sector)

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations and Analysis Output

1) INTRODUCTION

This is a 13' Sector Mount, designed by Sabre (part# C10857007C)

2) ANALYSIS CRITERIA

Building Code:	2018 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	118 mph
Exposure Category:	С
Topographic Factor at Base:	1
Topographic Factor at Mount:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Seismic S₅:	0.195
Seismic S ₁ :	0.054
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft.)	Antenna Centerline (ft.)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details					
		3	CCI	DMP65R-BU8D						
		3	CCI	OPA65R-BU6D						
		1	CCI	TPA-65R-LCUUUU-H8						
		3	Powerwave	7770.00						
		2	Quintel	QS66512-2						
158	160	3	Ericsson	RRUS 32 B2						
		3	Ericsson	RRUS 32 B30						
		3	Ericsson	RRUS 32 B66A	13 ft. Sector					
			3	Ericsson	RRUS 4449 B5/ B12	Mount				
							3	Ericsson	RRUS 4478 B14_CCIV2	
									6	Kaelus
					1	Raycap	DC6-48-60-18-8F			
	3		Communication Components	DTMABP7819VG12A						
	0158	3	Powerwave	7020.00						
		2	Raycap	DC6-48-60-18-8F						

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source		
CCI Order	Existing Loading	Date: 03/04/2020	Crown Castle		
RFDS	Proposed Loading	Date: 03/02/2020	Crown Castle		
Mount Mapping	P+T Croup	Date: 12/30/2019	On File		
Mount Analysis Report	BTI Gloup	Date: 03/12/2020			

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed by B+T Group, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations and Analysis Output".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C). In addition, this analysis is in accordance with AT&T's Mount Technical Directive – R14.1.

Manufacturers' drawings were used to create the model

3.2) Assumptions

- 1. The mount was properly fabricated and installed in accordance with its original design and manufacturer's specifications.
- 2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
- 3. The configuration of antennas, mounts, and other appurtenances are as specified in Table-1.
- 4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
- 5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.

The following assumptions have been included in the analysis of the mount

Component	Section	Length	Note
Proposed Mount Pipe for New Antenna	2" Std. Pipe	10'-6"	In All Positions

- 6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
- 7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
- 8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 9. The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 10. The following material grades were assumed (Unless Noted Otherwise):

(a)	Connection Bolts	: ASTM A325
(b)	Steel Pipe	: ASTM A53 (GR. 35)
(c)	HSS (Round)	: ASTM 500 (GR. B-42)
(d)	HSS (Rectangular)	: ASTM 500 (GR. B-46)
(e)	Channel	: ASTM A36 (GR. 36)
(f)	Steel Solid Rod	: ASTM A36 (GR. 36)
(g)	Steel Plate	: ASTM A36 (GR. 36)
(h)	Steel Angle	: ASTM A36 (GR. 36)
(i)	UNISTRUT	: ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3(a) - Mount Component Stresses vs. Capacity (Sector Mount, Typ. All Sectors)

Notes	Component	Critical Member	Centerline (ft.)	% Capacity	Pass / Fail
1,2	Face Horizontals	M93	158	43.1	Pass
	Mount Pipes	9	158	69.0	Pass
	Supporting Arms	M60	158	17.9	Pass
	Verticals	10	158	56.8	Pass
	Diagonals	3	158	16.7	Pass
	Connection Plates	M61	158	56.2	Pass
	Tieback	M68	158	16.8	Pass

Structure Rating (max from all components) =

69.0%

Notes:

1) See additional documentation in "Appendix B - Software Input Calculations and Analysis Output" for calculations supporting the % capacity consumed.

2) All sectors are typical

Table 4(a) - Tieback Connection Data Table (Sector Mount, Alpha)

Tower Connection Node No.	Existing / Proposed	Resultant End Reaction (Ib)	Connected Member Type
70	Dranaad	1174.586	Leg
70A	Proposed	970.749	Leg

Notes:

1) Tieback connection point is within 25% of either end of the connected tower member

2) Tieback connection point is NOT within 25% of either end of the connected tower member

3) Reduced member compressive capacity according to CED-STD-10294 *Standard for Installation of Mounts and Appurtenances*

Table 4(b) - Tieback Connection Data Table (Sector Mount, Beta)

Tower Connection Node No.	Existing / Proposed	Resultant End Reaction (Ib)	Connected Member Type
N210	Dranaad	1393.799	Leg
N213	Proposed	1005.631	Leg

Notes:

1) Tieback connection point is within 25% of either end of the connected tower member

2) Tieback connection point is NOT within 25% of either end of the connected tower member

3) Reduced member compressive capacity according to CED-STD-10294 *Standard for Installation of Mounts and Appurtenances*

Table 4(c) - Tieback Connection Data Table (Sector Mount, Gamma)

Tower Connection Node No.	Existing / Proposed	Resultant End Reaction (Ib)	Connected Member Type
N139	Dranaad	1612.271	Leg
N142	Proposed	1309.156	Leg

Notes:

1) Tieback connection point is within 25% of either end of the connected tower member

2) Tieback connection point is NOT within 25% of either end of the connected tower member

3) Reduced member compressive capacity according to CED-STD-10294 *Standard for Installation of Mounts and Appurtenances*

4.1) Recommendations

The proposed mount designed by Sabre (part# C10857007C) has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

APPENDIX B

SOFTWARE INPUT CALCULATIONS AND ANALYSIS OUTPUT

PROJECT	104053.009.01 - NHV 108 943133, CT							
SUBJECT	Sector Mount Mount Analysis							
DATE	03/23/20 PAGE 1 OF							

<u>INPUT</u>									[R	EF: AI	NSI/TIA-222-H]
Tower Type		:	SST								
Ground Elevation	zs	:	745	ft	[ASCE7 Hazard Tool]						
Tower Height		:	185	ft							
Mount Elevation		:	158	ft							
Antenna Elevation		:	160	ft							
Crest Height		:	0	ft							
Risk Category		:	II		[Table 2-1]	Gust Factor	G _h	:	1.00		[Sec. 16.6]
Exposure Category		:	С		[Sec. 2.6.5.1.2]	Pressure Coefficient	Kz	:	1.40		[Sec. 2.6.5.2]
Topography Categor	y	:	1		[Sec. 2.6.6.2]	Topography Factor	K _{zt}	:	1.00		[Sec. 2.6.6]
Wind Velocity	V	:	118	mph	[ASCE7 Hazard Tool]	Elevation Factor	K _e	:	0.97		[Sec. 2.6.8]
Ice wind Velocity	Vi	:	50	mph	[ASCE7 Hazard Tool]	Directionality Factor	K_{d}	:	0.95		[Sec. 16.6]
Service Velocity	Vs	:	30	mph	[ASCE7 Hazard Tool]	Shielding Factor	Ka	:	0.90		[Sec. 16.6]
Base Ice thickness	t _i	:	1	in	[ASCE7 Hazard Tool]	Design Ice Thickness	t _{iz}	:	1.17	in	[Sec. 2.6.10]
Seismic Design Cat.		:	В		[ASCE7 Hazard Tool]						
	S_S	:	0.195			Importance Factor	I_e	:	1		[Table 2-3]
	S_1	:	0.054			Response Coefficient	Cs	:	0.10		[Sec. 2.7.7.1]
	S_{DS}	:	0.208			Amplification	As	:	2.42		[Sec. 16.7]
	S_{D1}	:	0.087								

ANTENNAS

Manufacturer	Model	Height	Front	Side Width	Weight	Shape	Quantity	Location
		(in)	Width (in)	(in)	(lbs)			(%)
Mount Pipe 6		-						
POWERWAVE TECHNOLOGIES	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	10
POWERWAVE TECHNOLOGIES	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	95
MUNICATION COMPONENTS	DTMABP7819VG12A	10.63	11.02	3.78	19.18	Flat	1	40
POWERWAVE TECHNOLOGIES	7020	2.50	4.90	8.40	2.20	Flat	1	60
Mount Pipe 7								
QUINTEL TECHNOLOGY	QS66512-2	72.00	12.00	9.60	111.00	Flat	0.5	5
QUINTEL TECHNOLOGY	QS66512-2	72.00	12.00	9.60	111.00	Flat	0.5	80
KAELUS	DBC0061F1V51-2	8.00	6.20	6.50	25.40	Flat	2	50
ERICSSON	TME-RRUS 32 B30	27.20	7.00	12.10	53.00	Flat	1	30
ERICSSON	TME-RRUS 32 B2	27.20	12.05	7.00	52.90	Flat	1	30
Mount Pipe 8								
CCI ANTENNAS	OPA65R-BU6D	71.20	21.00	7.80	63.50	Flat	0.5	5
CCI ANTENNAS	OPA65R-BU6D	71.20	21.00	7.80	63.50	Flat	0.5	80
ERICSSON	TME-RRUS 4478 B14	17.90	9 <u>.</u> 44	13.19	71.00	Flat	1	50
ERICSSON	RRUS 32 B66A	27.60	7.41	12.45	55.12	Flat	1	50
Mount Pipe 9								
CCI ANTENNAS	DMP65R-BU8D	96.00	20.70	7.70	105.60	Flat	0.5	5
CCI ANTENNAS	DMP65R-BU8D	96.00	20.70	7.70	105.60	Flat	0.5	95
ERICSSON	RRUS 4449 B5/B12	17.90	13.19	9.44	71.00	Flat	1	50
37						-		
RAYCAP	TME-DC6-48-60-18-8F	31.25	11.00	11.00	32.80	Round	1	30
M125								
RAYCAP	TME-DC6-48-60-18-8F	31.25	11.00	11.00	32.80	Round	1	50

PROJECT	104053.009	.01 - NHV 108	94313	з, ст	LHN
SUBJECT	Sector Mour	nt Mount Analy	sis		
DATE	03/23/20	PAGE	2	OF	5

Mount Pipe M94								
POWERWAVE TECHNOLOGIE	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	10
POWERWAVE TECHNOLOGIES	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	95
MUNICATION COMPONENTS	DTMABP7819VG12A	10.63	11.02	3.78	19.18	Flat	1	40
POWERWAVE TECHNOLOGIES	7020	2.50	4.90	8.40	2.20	Flat	1	60
lount Pipe M95								
CCI ANTENNAS	TPA-65R-LCUUUU-H8	96.00	14.40	8.60	81.60	Flat	0.5	5
CCI ANTENNAS	TPA-65R-LCUUUU-H8	96.00	14.40	8.60	81.60	Flat	0.5	70
KAELUS	DBC0061F1V51-2	8.00	6.20	6.50	25.40	Flat	2	50
ERICSSON	TME-RRUS 32 B30	27.20	7.00	12.10	53.00	Flat	1	30
ERICSSON	TME-RRUS 32 B2	27.20	12.05	7.00	52.90	Flat	1	30
1ount Pipe M96								
CCI ANTENNAS	OPA65R-BU6D	71.20	21.00	7.80	63.50	Flat	0.5	5
CCI ANTENNAS	OPA65R-BU6D	71.20	21.00	7.80	63.50	Flat	0.5	80
ERICSSON	TME-RRUS 4478 B14	17.90	9.44	13.19	71.00	Flat	1	50
ERICSSON	RRUS 32 B66A	27.60	7.41	12.45	55.12	Flat	1	50
Iount Pipe M97								
CCI ANTENNAS	DMP65R-BU8D	96.00	20.70	7.70	105.60	Flat	0.5	5
CCI ANTENNAS	DMP65R-BU8D	96.00	20.70	7.70	105.60	Flat	0.5	95
ERICSSON	RRUS 4449 B5/B12	17.90	13.19	9.44	71.00	Flat	1	50
1ount Pipe M50								
POWERWAVE TECHNOLOGIES	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	10
POWERWAVE TECHNOLOGIES	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	95
MUNICATION COMPONENTS	DTMABP7819VG12A	10.63	11.02	3.78	19.18	Flat	1	40
POWERWAVE TECHNOLOGIES	7020	2.50	4.90	8.40	2.20	Flat	1	60
Iount Pipe M51						_	1	
CCI ANTENNAS	TPA-65R-LCUUUU-H8	96.00	14.40	8.60	81.60	Flat	0.5	5
CCI ANTENNAS	TPA-65R-LCUUUU-H8	96.00	14.40	8.60	81.60	Flat	0.5	70
KAELUS	DBC0061F1V51-2	8.00	6.20	6.50	25.40	Flat	2	50
ERICSSON	TME-RRUS 32 B30	27.20	7.00	12.10	53.00	Flat	1	30
ERICSSON	TME-RRUS 32 B2	27.20	12.05	7.00	52.90	Flat	1	30
Iount Pipe M52						_	1	_
CCI ANTENNAS	OPA65R-BU6D	71.20	21.00	7.80	63.50	Flat	0.5	5
CCI ANTENNAS	OPA65R-BU6D	71.20	21.00	7.80	63.50	Flat	0.5	80
ERICSSON	TME-RRUS 4478 B14	17.90	9.44	13.19	71.00	Flat	1	50
ERICSSON	RRUS 32 B66A	27.60	7.41	12.45	55.12	Flat	1	50
As web Direction 1970								
10unt Pipe M53		06.00	20.70	7 70	105.00	et		-
CCI ANTENNAS	DMP65R-BU8D	96.00	20.70	/./0	105.60	Hat	0.5	5
	DMP65R-RURD	96.00	20.70	/./0	105.60	Hat	0.5	95
CCI ANTENNAS		17.00	10.10	0.44	74.00	- 1 - C		50
CCI ANTENNAS ERICSSON	RRUS 4449 B5/B12	17.90	13.19	9.44	71.00	Flat	1	50
CCI ANTENNAS ERICSSON	RRUS 4449 B5/B12	17.90	13.19	9.44	71.00	Flat	1	50

PROJECT	104053.009.01 - NHV 108 943133, CT	LHN
CUDIECT	O star Marrie Marrie Analysis	

PAGE

1

OF

1

SUBJECT

Sector Mount Mount Analysis

DATE

03/23/20

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630

B+T GRP

<u>INPUT</u>

[REF: ANSI/TIA-2	22 - H]
------------------	----------------

	Member Number	Section Set	Wind Projection (in)	Length (in)	Perimeter (in)	Shape	D _c (in)
	1	Connection Plate	0.63	16.00	13.25	Flat	6.03
	2	Connection Plate	0.63	16.00	13.25	Flat	6.03
	3	Diagonals	0.75	56.08	2.36	Round	0.75
	4	Main Horizontals	2.38	156.00	7.46	Round	2.38
	5	Main Horizontals	2.38	156.00	7.46	Round	2.38
	6	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
	7	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
	8	Mount-Pipe	2,38	126.00	9,50	Flat	3.36
	9	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
	10	Verticals	0.75	36.00	2.36	Round	0.75
	11	Verticals	0.75	36.00	2.36	Round	0.75
	15	Plates	0.50	2.72	8.38	Flat	3.72
	16	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
	17	Plates	0.50	3.31	8.38	Flat	3.72
	19	Plates	0.50	2.72	8.38	Flat	3.72
	20	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
	21	Plates	0.50	3.31	8.38	Flat	3.72
	24	Tieback	2.38	121.37	7.46	Round	2.38
	33	Diagonals	0.75	56.08	2.36	Round	0.75
	34	Verticals	0.75	36.00	2.36	Round	0.75
	35	Verticals	0.75	36.00	2.36	Round	0.75
	36	Plates	0.50	2.72	8.38	Flat	3.72
	37	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
	38	Plates	0.50	3.31	8.38	Flat	3.72
	39	Plates	0.50	2.72	8.38	Flat	3.72
	40	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
	41	Plates	0.50	3.31	8.38	Flat	3.72
	43	Tieback	2.38	121.37	7.46	Round	2.38
	M45	Connection Plate	0.63	16.00	13.25	Flat	6.03
	M46	Connection Plate	0.63	16.00	13.25	Flat	6.03
	M47	Diagonals	0.75	56.08	2.36	Round	0.75
	M48	Main Horizontals	2.38	156.00	7.46	Round	2.38
	M49	Main Horizontals	2.38	156.00	7.46	Round	2.38
	M50	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
	M51	Mount-Pipe	2.38	126.00	9,50	Flat	3.36
	M52	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
	M53	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
	M54	Verticals	0.75	36.00	2.36	Round	0.75
	M55	Verticals	0.75	36.00	2.36	Round	0.75
Ш	M59	Plates	0.50	2.72	8.38	Flat	3.72
Щ	M60	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
	M61	Plates	0.50	3.31	8,38	Flat	3.72
	M63	Plates	0.50	2.72	8.38	Flat	3.72
	M64	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
	M65	Plates	0.50	3.31	8,38	Flat	3.72
	M68	Tieback	2,38	121.37	7.46	Round	2.38
	M77	Diagonals	0.75	56.08	2.36	Round	0.75
\square	M78	Verticals	0.75	36.00	2.36	Round	0.75
	M79	Verticals	0.75	36.00	2,36	Round	0.75
	M80	Plates	0.50	2.72	8.38	Flat	3.72
	M81	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
	M82	Plates	0.50	3.31	8.38	Hat	3.72

M83	Plates	0.50	2.72	8.38	Flat	3.72
M84	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
M85	Plates	0.50	3.31	8,38	Flat	3.72
M87	Tieback	2.38	121,37	7.46	Round	2,38
M89	Connection Plate	0.63	16.00	13.25	Flat	6.03
M90	Connection Plate	0.63	16.00	13,25	Flat	6.03
M91	Diagonals	0.75	56.08	2.36	Round	0.75
M92	Main Horizontals	2.38	156.00	7.46	Round	2.38
M93	Main Horizontals	2.38	156.00	7.46	Round	2.38
M94	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
M95	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
M96	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
M97	Mount-Pipe	2.38	126.00	9.50	Flat	3.36
M98	Verticals	0.75	36.00	2.36	Round	0.75
M99	Verticals	0.75	36.00	2.36	Round	0.75
M103	Plates	0.50	2.72	8.38	Flat	3.72
M104	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
M105	Plates	0.50	3.31	8,38	Flat	3.72
M107	Plates	0.50	2,72	8.38	Flat	3.72
M108	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
M109	Plates	0.50	3.31	8.38	Flat	3.72
M112	Tieback	2.38	121.37	7.46	Round	2.38
M121	Diagonals	0.75	56.08	2.36	Round	0.75
M122	Verticals	0.75	36.00	2.36	Round	0.75
M123	Verticals	0.75	36.00	2.36	Round	0.75
M124	Plates	0.50	2.72	8.38	Flat	3.72
M125	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
M126	Plates	0.50	3.31	8.38	Flat	3.72
M127	Plates	0.50	2.72	8.38	Flat	3.72
M128	Supporting Horizontals	2.38	45.00	7.48	Round	2.38
M129	Plates	0.50	3.31	8.38	Flat	3.72
M131	Tieback	2.38	121.37	7.46	Round	2.38

PROJECT	104053,009,0		4V 108	3 943		LHN		
SUBJECT	Sector Mount	Moun	t Anal	ysis			U	B+T GRP 1717 S. Boulder, Suite 300
DATE	03/23/20		PAGE		0	Γ		Tulsa, OK 74159 (918) 587-4630
	Tower Type		 Х	sT				
	Ground Elevation	zs	: 7	1 5 †	ب	[ASCE7 Haza	rd Tool]	
	Tower Height		: 185	100	÷			
	Mount Elevation		: 158	3.00	بے			
	Antenna Elevation		: 160	00.0	÷۲			
	Crest Height			-	æ			
	Risk Category		`	н,		[Table 2-1]		
	Exposure Category			()		[Sec. 2.6.5.1	.2]	
	Topography Category			8		[Sec. 2.6.6.2		
	Wind Velocity	>	.1	18 1	hdm	[ASCE7 Haza	ird Tool]	
	Ice wind Velocity	>	<u>ں</u>	0	hdn	[ASCE7 Haza	rd Tool]	
	Service Velocity	$^{\rm s}$	т 	0	hdn	[ASCE7 Haza	ird Tool]	
	Base Ice thickness	ت	.1	00	Ē	[ASCE7 Haza	rd Tool]	
	Seismic Design Cat.			m		[ASCE7 Haza	rd Tool]	
		လို	.0	20				
		S1		05				
		S _{DS}	.0	21				
		S_{D1}		60				
	Gust Factor	ூ		8		[Sec. 16.6]		
	Pressure Coefficient	K_{z}		4		[Sec 2.6.5.2		
	Topography Factor	K_{zt}		8		[Sec. 2.6.6]		
	Elevation Factor	Å	0	97		[Sec. 2.6.8]		
	Directionality Factor	Å	0	95		[Sec. 16.6]		
	Shielding Factor	$\mathbf{x}_{\mathbf{a}}$	0	90		[Sec. 16.6]		
	Design Ice Thickness	t _{iz}		17 j	Ľ	[Sec. 2.6.10]		
	Torsetter Contraction	F		-		ן כ כ יוקידו		
	Importance ractor	- ⁻ (- 2		[lable z-3]		
	Response Coefficient	ۍ ګ		104		Sec 2771		
	Amplification	As	7.4T	9179		[Sec. 16./]		

B+T GRP 1717 S. Boulder, Suite 300 Tulsa, OK 74159 (918) 587-4630

п U

					-										 _					
F _{A Ice (T)}	0.01	0.01	00'0	00'0		0.02	0.02	0.01	0.02	0.01	0,02	0.02	0.01	0,02	0.03	0.03	0.01		0.01	0.01
$\mathbf{F}_{A \text{ Ice } (N)}$	0.02	0.02	0.01	0.00		0.02	0.02	0.01	0.01	0.02	0.06	0.06	0.01	0.01	0.07	0.07	0.01		0.01	0.01
F A No Ice (T)	0.05	0.05	0.01	0.01		0.08	0.08	0.04	0.12	0.07	0.10	0.10	0.08	0.12	0.14	0.14	0.06		0.05	0.05
F A No Ice (N)	0.11	0.11	0.04	0.00		60 [.] 0	60 [.] 0	0.03	0.07	0,11	0.28	0.28	0.06	0,07	0.37	0.37	0.08		0.05	0.05
EPA _{T-Ice} (ft ²)	1.46	1.46	0.55	0.36		3.08	3.08	1.27	2.96	1.92	2.59	2.59	2.18	3.07	3.43	3.43	1.66		3.11	3.11
EPA _{N-Ice} (ft ²)	2.66	2.66	1.20	0.24		3.70	3.70	1.23	1.92	2.95	5.96	5.96	1.66	2.03	7.87	7.87	2.18		3.11	3.11
$\mathbf{EPA}_{\mathrm{T}}(\mathrm{ft}^2)$	0.95	0.95	0.28	0.15		2.40	2.40	0.72	2.29	1.32	1.93	1.93	1.64	2.39	2.57	2.57	1.17		2.39	2.39
\mathbf{EPA}_{N} (ft ²)	2.10	2.10	0.81	60'0		3.00	3.00	0.69	1.32	2.28	5.19	5.19	1.17	1.42	6.90	6.90	1.64		2.39	2.39
C _a flat/round	1.31	1.31	1.20	1.20		1.36	1.36	1.20	1.26	1.20	1.24	1.24	1.20	1.25	1.30	1.30	1.20		0.51	0.51
Aspect Ratio	5.00	5.00	0.96	0.51		6.00	6.00	1.29	3.89	2,26	3,39	3.39	1.90	3.72	4.64	4.64	1.36		2.84	2.84
Qty	0.5	0.5	н	7		0.5	0.5	2	1		0.5	0.5	1	H	0.5	0.5	H			
Model	7770.00	7770.00	DTMABP7819VG12A	7020		QS66512-2	QS66512-2	DBC0061F1V51-2	TME-RRUS 32 B30	TME-RRUS 32 B2	OPA65R-BU6D	OPA65R-BU6D	TME-RRUS 4478 B14	RRUS 32 B66A	DMP65R-BU8D	DMP65R-BU8D	RRUS 4449 B5/B12		TME-DC6-48-60-18-8F	TME-DC6-48-60-18-8F
Manufacturer	ERWAVE TECHNOLO	JERWAVE TECHNOLO	NICATION COMPONE	JERWAVE TECHNOLO		UNTEL TECHNOLOG	UNTEL TECHNOLOG	KAELUS	ERICSSON	ERICSSON	CCI ANTENNAS	CCI ANTENNAS	ERICSSON	ERICSSON	CCI ANTENNAS	CCI ANTENNAS	ERICSSON		RAYCAP	RAYCAP

PROJECT 104053.009.01 - NHV 108 94: SUBJECT Sector Mount Mount Analysis

KSC

PР

PAGE

03/23/20

DATE

B+T GRP 1717 S. Boulder, Suite 300 Tulsa, OK 74159 (918) 587-4630

п U

	i —				 					_					 1								 -				
F _{A Ice (T)}	0.01	0.01	00'0	00.00	0.04	0.04	0.01	0.02	0.01		0.02	0.02	0.01	0.02	0.03	0.03	0.01		0.01	0.01	00.0	00'0	0.04	0.04	0.01	0.02	0.01
F A Ice (N)	0.02	0.02	0.01	0.00	0.06	0.06	0.01	0.01	0.02		0.06	0.06	0.01	0.01	0.07	0.07	0.01		0.02	0.02	0.01	00.00	0.06	0.06	0.01	0.01	0.02
F A No Ice (T)	0.05	0.05	0.01	0.01	0.16	0.16	0.04	0.12	0.07		0.10	0.10	0.08	0.12	0.14	0.14	0.06		0.05	0.05	0.01	0.01	0.16	0.16	0.04	0.12	0.07
F _A No Ice (N)	0.11	00'0	00.00	0.00	0.27	00'0	0.00	0.00	00.00		0.28	0.00	0.00	00'0	0.37	0.37	00'0		0.11	0.11	0.00	00'0	0.27	00.00	00.00	00'0	00'0
EPA _{T-Ice} (ft ²)	1.46	1.46	0.55	0.36	3.74	3.74	1.27	2.96	1.92		2.59	2.59	2.18	3.07	3.43	3.43	1.66		1.46	1.46	0.55	0.36	3.74	3.74	1.27	2.96	1.92
EPA _{N-Ice} (ft ²)	2.66	2.66	1.20	0.24	5.72	5.72	1.23	1.92	2.95		5.96	5.96	1.66	2.03	7.87	7.87	2.18		2.66	2.66	1.20	0.24	5.72	5.72	1.23	1.92	2.95
$\mathbf{EPA}_{T}(\mathrm{ft}^{2})$	0.95	0.95	0.28	0.15	2.87	2.87	0.72	2.29	1.32		1.93	1.93	1.64	2.39	2.57	2.57	1.17		0.95	0.95	0.28	0.15	2.87	2.87	0.72	2.29	1.32
$\textbf{EPA}_{N} ~ (\text{ft}^2)$	2.10	2.10	0.81	0.09	4.80	4.80	0.69	1.32	2.28		5.19	5.19	1.17	1.42	6.90	<u>6.90</u>	1.64		2.10	2.10	0.81	60'0	4.80	4.80	0.69	1.32	2.28
C _a flat/round	1.31	1.31	1.20	1.20	1.39	1.39	1.20	1.26	1.20		1.24	1.24	1.20	1.25	1.30	1.30	1.20		1.31	1.31	1.20	1.20	1.39	1.39	1.20	1.26	1.20
Aspect Ratio	5.00	5.00	0.96	0.51	6.67	6.67	1.29	3.89	2.26		3.39	3.39	1.90	3.72	4.64	4.64	1.36		5.00	5.00	0.96	0.51	6.67	6.67	1.29	3.89	2.26
Qty	0.5	0.5	1	-	0.5	0.5	2	1			0.5	0.5	1	H	0.5	0.5	H		0.5	0.5	1	1	0.5	0.5	2	Ч	1
Model	7770.00	7770.00	DTMABP7819VG12A	7020	TPA-65R-LCUUUU-H8	TPA-65R-LCUUUU-H8	DBC0061F1V51-2	TME-RRUS 32 B30	TME-RRUS 32 B2		OPA65R-BU6D	OPA65R-BU6D	TME-RRUS 4478 B14	RRUS 32 B66A	DMP65R-BU8D	DMP65R-BU8D	RRUS 4449 B5/B12		7770.00	7770.00	DTMABP7819VG12A	7020	TPA-65R-LCUUUU-H8	TPA-65R-LCUUUU-H8	DBC0061F1V51-2	TME-RRUS 32 B30	TME-RRUS 32 B2
Manufacturer	FRWAVE TECHNOLO	IERWAVE TECHNOLO	NICATION COMPONE	IERWAVE TECHNOLO	CCI ANTENNAS	CCI ANTENNAS	KAELUS	ERICSSON	ERICSSON		CCI ANTENNAS	CCI ANTENNAS	ERICSSON	ERICSSON	CCI ANTENNAS	CCI ANTENNAS	ERICSSON		FRWAVE TECHNOLO	FRWAVE TECHNOLO	VICATION COMPONE	FRWAVE TECHNOLO	CCI ANTENNAS	CCI ANTENNAS	KAELUS	ERICSSON	ERICSSON

PROJECT104053.009.01 - NHV 108 94:LHNSUBJECTSector Mount Mount Analysis

ОF

m

PAGE

03/23/20

DATE

 PROJECT
 104053.009.01 - NHV 108 94:
 LHN

 SUBJECT
 Sector Mount Analysis
 LHN

 DATE
 03/23/20
 PAGE
 4
 OF

	B+T GRP 1717 S. Boulder, Suite 300 Tulsa, OK 74159	(918) 587-4630
-	ր Մ	

Manufacturer	Model	Qty	Aspect Ratio	C _a flat/round	$\textbf{EPA}_{N} ~ (\text{ft}^2)$	$\text{EPA}_{T}(\text{ft}^2)$	EPA _{N-Ice} (ft ²)	EPA _{T-Ice} (ft ²)	F A No Ice (N)	F A No Ice (T)	F _{A Ice (N)}	F _{A Ice (T)}
CCI ANTENNAS	OPA65R-BU6D	0.5	3.39	1.24	5.19	1.93	5.96	2.59	0.28	0.10	0.06	0.02
CCI ANTENNAS	OPA65R-BU6D	0.5	3.39	1.24	5.19	1.93	5.96	2.59	0.28	0.10	0.06	0.02
ERICSSON	TME-RRUS 4478 B14	1	1.90	1.20	1.17	1.64	1.66	2.18	0.06	0.08	0.01	0.01
ERICSSON	RRUS 32 B66A	н	3.72	1.25	1.42	2 <u>.</u> 39	2.03	3.07	0.07	0.12	0.01	0.02
CCI ANTENNAS	DMP65R-BU8D	0.5	4.64	1.30	06'9	2.57	7.87	3.43	0.37	0.14	0.07	0.03
CCI ANTENNAS	DMP65R-BU8D	0.5	4.64	1.30	6.90	2.57	7.87	3.43	0.37	0.14	0.07	0.03
ERICSSON	RRUS 4449 B5/B12		1.36	1.20	1.64	1.17	2.18	1.66	0.08	0.06	0.01	0.01

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Main Horizontals	HSS2 375X0	Beam	Pipe	A53 Gr.B 50	Typical	1 39	824	824	1.65
2	Supporting Horizontals	HSS2.375X0	Beam	Pipe	A53 Gr.B 50	Typical	1.39	.824	.824	1.65
3	Verticals	3/4" SR	Column	BÁR	A572 Gr.50	Typical	.442	.016	.016	.031
4	Diagonals	3/4" SR	HBrace	BAR	A572 Gr.50	Typical	.442	.016	.016	.031
5	Connection Plate	PL5/8x6	Beam	RECT	A572 Gr.50	Typical	3.75	.122	11.25	.456
6	Plates	PL 1/2X3 11/16	Beam	RECT	A572 Gr.50	Typical	1.844	.038	2.089	.141
7	Mount-Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
8	Tieback	HSS2.375X0	Beam	Pipe	A53 Gr.B 50	Typical	1	.627	.627	1.25

Member Primary Data

1 16 15 90 Connection Plate Beam RECT A572 Gr.50 Typica 3 3 51 52 Diagonals HBrace BAR A572 Gr.50 Typica 4 4 1 2 Main Horizontals Beam Pipe A83 Gr.B. Typica 5 5 3 4 Main Horizontals Beam Pipe A83 Gr.B. Typica 6 6 13 14 Mount-Pipe Column Pipe A53 Gr.B Typica 7 7 11 12 Mount-Pipe Column Pipe A53 Gr.B Typica 9 9 7 8 Mount-Pipe Column BAR A572 Gr.50 Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 13 13 29 19 RIGID None None RIGID Typica 15 15		Label	I Joint	J Joint	K Joint	Rotate(de	Section/Shape	Туре	Design List	Material	Design Rules
2 2 5 18 90 Connection Plate Beam RECT A572 Gr.50 Typica 4 4 1 2 Main Horizontals Beam Pipe A53 Gr.B. Typica 5 5 3 4 Main Horizontals Beam Pipe A53 Gr.B. Typica 6 6 13 14 Mount-Pipe Column Pipe A53 Gr.B. Typica 7 7 11 12 Mount-Pipe Column Pipe A53 Gr.B. Typica 8 8 9 10 Mount-Pipe Column Pipe A53 Gr.B. Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 11 11 50 51 Verticals Column BAR A572 Gr.50 Typica 13 12 9 19 RiGID None None None RiGiD Typica 1	1	1	16	15		90 Connection Plate		Beam	RECT	A572 Gr.50	Typical
3 3 51 52 Diagonals HBrace Main Horizontals Bara A572 Gr.50 Typica 4 4 1 2 Main Horizontals Beam Pipe A53 Gr.B. Typica 5 5 3 4 Main Horizontals Beam Pipe A53 Gr.B. Typica 6 6 13 14 Mount-Pipe Column Pipe A53 Gr.B. Typica 7 7 11 12 Mount-Pipe Column Pipe A53 Gr.B. Typica 9 9 7 8 Mount-Pipe Column Pipe A53 Gr.B. Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 12 12 30 28 RIGID None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 15 15<	2	2	5	18		90	Connection Plate	Beam	RECT	A572 Gr.50	Typical
4 4 1 2 Main Horizontals Beam Pipe A53 Gr.B. Typica 5 5 3 4 Main Horizontals Beam Pipe A53 Gr.B. Typica 6 6 13 14 Mount-Pipe Column Pipe A53 Gr.B. Typica 7 7 11 12 Mount-Pipe Column Pipe A53 Gr.B. Typica 8 8 9 10 Mount-Pipe Column Pipe A53 Gr.B. Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 11 11 50 51 Verticals Column None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None None RIGID Typica 15	3	3	51	52			Diagonals	HBrace	BAR	A572 Gr.50	Typical
5 5 3 4 Main Horizontals Beam Pipe A53 Gr.B Typica 6 6 13 14 Mount-Pipe Column Pipe A53 Gr.B Typica 7 7 11 12 Mount-Pipe Column Pipe A53 Gr.B Typica 8 8 9 10 Mount-Pipe Column Pipe A53 Gr.B Typica 9 9 7 8 Mount-Pipe Column Pipe A53 Gr.B Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 12 12 30 28 RiGID None None RIGID Typica 13 13 29 19 RiGID None None RIGID Typica 14 14 31 32 RiGID None None RIGID Typica 15 15 31 <	4	4	1	2			Main Horizontals	Beam	Pipe	A53 Gr.B	Typical
6 6 13 14 Mount-Pipe Column Pipe A53 Gr.B Typica 7 7 11 12 Mount-Pipe Column Pipe A53 Gr.B Typica 8 8 9 10 Mount-Pipe Column Pipe A53 Gr.B Typica 9 9 7 8 Mount-Pipe Column Pipe A53 Gr.B Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 11 11 50 51 Verticals Column None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None RIGID Typica 15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 16 64	5	5	3	4			Main Horizontals	Beam	Pipe	A53 Gr.B	Typical
7 7 11 12 Mount-Pipe Column Pipe A53 Gr.B Typica 8 8 9 10 Mount-Pipe Column Pipe A53 Gr.B Typica 9 9 7 8 Mount-Pipe Column Pipe A53 Gr.B Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 11 11 50 51 Verticals Column BAR A572 Gr.50 Typica 12 12 30 28 RIGID None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None RIGID Typica 15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 17 7.54 6	6	6	13	14			Mount-Pipe	Column	Pipe	A53 Gr.B	Typical
8 9 10 Mount-Pipe Column Pipe A53 Gr.B Typica 9 9 7 8 Mount-Pipe Column Pipe A53 Gr.B Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 11 11 50 51 Verticals Column BAR A572 Gr.50 Typica 12 12 30 28 RIGID None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 16 16 48 54 Supporting Horizontals Beam RECT A572 Gr.50 Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 20 <td< td=""><td>7</td><td>7</td><td>11</td><td>12</td><td></td><td></td><td>Mount-Pipe</td><td>Column</td><td>Pipe</td><td>A53 Gr.B</td><td>Typical</td></td<>	7	7	11	12			Mount-Pipe	Column	Pipe	A53 Gr.B	Typical
9 9 7 8 Mount-Pipe Column Pipe A53 Gr.B Typica 10 10 52 53 Verticals Column BAR A572 Gr.50 Typica 11 11 50 51 Verticals Column BAR A572 Gr.50 Typica 12 12 30 28 RIGID None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None None RIGID Typica 15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 23	8	8	9	10			Mount-Pipe	Column	Pipe	A53 Gr.B	Typical
10 52 53 Verticals Column BAR A572 Gr.50 Typica 11 11 50 51 Verticals Column BAR A572 Gr.50 Typica 12 12 30 28 RIGID None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None None RIGID Typica 15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 16 16 48 54 Supporting Horizontals Beam RECT A572 Gr.50 Typica 18 18 33 34 RIGID None None RIGID Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 21 21	9	9	7	8			Mount-Pipe	Column	Pipe	A53 Gr.B	Typical
11 11 50 51 Verticals Column BAR A572 Gr.50 Typica 12 12 30 28 RIGID None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None None RIGID Typica 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 16 16 48 54 Supporting Horizontals Beam RECT A572 Gr.50 Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 19 19 33 49 90 Plates Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica	10	10	52	53			Verticals	Column	BAR	A572 Gr.50	Typical
12 12 30 28 RIGID None None RIGID Typica 13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None None RIGID Typica 15 15 31 48 90 Plates Beam RIGID None None None None A572 Gr.50 Typica 16 48 54 Supporting Horizontals Beam RECT A572 Gr.50 Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 23 23 37 38 RIGID None None	11	11	50	51			Verticals	Column	BAR	A572 Gr.50	Typical
13 13 29 19 RIGID None None RIGID Typica 14 14 31 32 RIGID None None RIGID Typica 15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 16 16 48 54 Supporting Horizontals Beam RECT A572 Gr.50 Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 19 19 33 49 90 Plates Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 22 22 35 36 RIGID None None None RIGID Typica 23 23 37 38 RIGID None None RIGID Ty	12	12	30	28			RIGID	None	None	RIGID	Typical
14 14 31 32 RIGID None None RIGID Typica 15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 16 16 48 54 Supporting Horizontals Beam RECT A572 Gr.50 Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 18 18 33 34 RIGID None None RIGID Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.8 Typica <td>13</td> <td>13</td> <td>29</td> <td>19</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	13	13	29	19			RIGID	None	None	RIGID	Typical
15 15 31 48 90 Plates Beam RECT A572 Gr.50 Typica 16 16 48 54 Supporting Horizontals Beam Pipe A53 Gr.B Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 18 18 33 34 RIGID None None RIGID Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 23 23 37 38 RIGID None None RIGID Typica 24 26 66 70 Tieback Beam Pipe A53 Gr.B Typica 25 25 43 23 RIGID None None RIGID Typica <td>14</td> <td>14</td> <td>31</td> <td>32</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	14	14	31	32			RIGID	None	None	RIGID	Typical
16 16 48 54 Supporting Horizontals Beam Pipe A53 Gr.B. Typica 17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 18 18 33 34 RIGID None None RICI Dypica 19 19 33 49 90 Plates Beam RECT A572 Gr.50 Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.B. Typica 27 27 42 22 RIGID None None RIGID Typica	15	15	31	48		90	Plates	Beam	RECT	A572 Gr.50	Typical
17 17 54 6 90 Plates Beam RECT A572 Gr.50 Typica 18 18 33 34 RIGID None None RIGID Typica 19 19 33 49 90 Plates Beam RECT A572 Gr.50 Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 23 23 37 38 RIGID None None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.8 Typica 25 25 43 23 RIGID None None RIGID Typica 26 26 47 27 RIGID None None RIGID Typica 28 28 46 26 RIGID None None RIGID<	16	16	48	54			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
18 18 33 34 RIGID None None RIGID Typica 19 19 33 49 90 Plates Beam RECT A572 Gr.50 Typica 20 20 49 55 Supporting Horizontals Beam RECT A572 Gr.50 Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 22 22 35 36 RIGID None None None RIGID Typica 23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.8 Typica 25 25 43 23 RIGID None None RIGID Typica 26 26 47 27 RIGID None None RIGID Typica 29 <td>17</td> <td>17</td> <td>54</td> <td>6</td> <td></td> <td>90</td> <td>Plates</td> <td>Beam</td> <td>RECT</td> <td>A572 Gr.50</td> <td>Typical</td>	17	17	54	6		90	Plates	Beam	RECT	A572 Gr.50	Typical
19 19 33 49 90 Plates Beam RECT A572 Gr.50 Typica 20 20 49 55 Supporting Horizontals Beam Pipe A53 Gr.B Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 22 22 35 36 RIGID None None RIGID Typica 23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.B Typica 25 25 43 23 RIGID None None RIGID Typica 26 26 47 27 RIGID None None RIGID Typica 27 27 42 22 RIGID None None RIGID Typica 29 29<	18	18	33	34			RIGID	None	None	RIGID	Typical
20 20 49 55 Supporting Horizontals Beam Pipe A53 Gr.B Typica 21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 22 22 35 36 RIGID None None RIGID Typica 23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.B Typica 25 25 43 23 RIGID None None RIGID Typica 26 26 47 27 RIGID None None RIGID Typica 27 27 42 22 RIGID None None RIGID Typica 28 46 26 RIGID None None RIGID Typica 30 30 45 25	19	19	33	49		90	Plates	Beam	RECT	A572 Gr.50	Typical
21 21 55 17 90 Plates Beam RECT A572 Gr.50 Typica 22 22 35 36 RIGID None None RIGID Typica 23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.B Typica 25 25 43 23 RIGID None None None RIGID Typica 26 26 47 27 RIGID None None None RIGID Typica 27 27 42 22 RIGID None None RIGID Typica 29 29 41 21 RIGID None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica	20	20	49	55			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
22 22 35 36 RIGID None None RIGID Typica 23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.B Typica 25 25 43 23 RIGID None None RIGID Typica 26 26 47 27 RIGID None None RIGID Typica 27 27 42 22 RIGID None None RIGID Typica 28 28 46 26 RIGID None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 33 33 61 62 Diagonals	21	21	55	17		90	Plates	Beam	RÉCT	A572 Gr.50	Typical
23 23 37 38 RIGID None None RIGID Typica 24 24 66 70 Tieback Beam Pipe A53 Gr.B Typica 25 25 43 23 RIGID None None None RIGID Typica 26 26 47 27 RIGID None None None RIGID Typica 27 27 42 22 RIGID None None None RIGID Typica 28 28 46 26 RIGID None None None RIGID Typica 29 29 41 21 RIGID None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica </td <td>22</td> <td>22</td> <td>35</td> <td>36</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	22	22	35	36			RIGID	None	None	RIGID	Typical
24 24 66 70 Tieback Beam Pipe A53 Gr.B Typica 25 25 43 23 RIGID None None RIGID Typica 26 26 47 27 RIGID None None RIGID Typica 27 27 42 22 RIGID None None RIGID Typica 28 28 46 26 RIGID None None RIGID Typica 29 29 41 21 RIGID None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 61 62 63 Verticals Column	23	23	37	38			RIGID	None	None	RIGID	Typical
25 25 43 23 RIGID None None RIGID Typica 26 26 47 27 RIGID None None None RIGID Typica 27 27 42 22 RIGID None None None RIGID Typica 28 28 46 26 RIGID None None None RIGID Typica 29 29 41 21 RIGID None None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica	24	24	66	70			Tieback	Beam	Pipe	A53 Gr.B	Typical
26 26 47 27 RIGID None None RIGID Typica 27 27 42 22 RIGID None None RIGID Typica 28 28 46 26 RIGID None None RIGID Typica 29 29 41 21 RIGID None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 <td>25</td> <td>25</td> <td>43</td> <td>23</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	25	25	43	23			RIGID	None	None	RIGID	Typical
27 27 42 22 RIGID None None RIGID Typica 28 28 46 26 RIGID None None RIGID Typica 29 29 41 21 RIGID None None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica	26	26	47	27			RIGID	None	None	RIGID	Typical
28 28 46 26 RIGID None None RIGID Typica 29 29 41 21 RIGID None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58	27	27	42	22			RIGID	None	None	RIGID	Typical
29 29 41 21 RIGID None None RIGID Typica 30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.8 Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica </td <td>28</td> <td>28</td> <td>46</td> <td>26</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	28	28	46	26			RIGID	None	None	RIGID	Typical
30 30 45 25 RIGID None None RIGID Typica 31 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 3	29	29	41	21			RIGID	None	None	RIGID	Typical
31 31 40 20 RIGID None None RIGID Typica 32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam RECT<	30	30	45	25			RIGID	None	None	RIGID	Typical
32 32 44 24 RIGID None None RIGID Typica 33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam Pipe A53 Gr.B	31	31	40	20			RIGID	None	None	RIGID	Typical
33 33 61 62 Diagonals HBrace BAR A572 Gr.50 Typica 34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam Pipe A53 Gr.B Typica 41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 66 67 90 Plates	32	32	44	24			RIGID	None	None	RIGID	Typical
34 34 62 63 Verticals Column BAR A572 Gr.50 Typica 35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam RECT A572 Gr.50 Typica 41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 66 67 90 Plates Beam RECT A5	33	33	61	62			Diagonals	HBrace	BAR	A572 Gr.50	Typical
35 35 60 61 Verticals Column BAR A572 Gr.50 Typica 36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam Pipe A53 Gr.B Typica 41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 42 66 67 90 Plates Beam RECT A572 Gr.50 Typica	34	34	62	63			Verticals	Column	BAR	A572 Gr.50	Typical
36 36 35 58 90 Plates Beam RECT A572 Gr.50 Typica 37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam Pipe A53 Gr.B Typica 41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 42 66 67 90 Plates Beam RECT A572 Gr.50 Typica	35	35	60	61			Verticals	Column	BAR	A572 Gr.50	Typical
37 37 58 64 Supporting Horizontals Beam Pipe A53 Gr.B Typica 38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam Pipe A53 Gr.B Typica 41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 42 66 67 90 Plates Beam RECT A572 Gr.50 Typica	36	36	35	58		90	Plates	Beam	RECT	A572 Gr.50	Typical
38 38 64 56 90 Plates Beam RECT A572 Gr.50 Typica 39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam Pipe A53 Gr.B Typica 41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 66 67 90 Plates Beam RECT A572 Gr.50 Typica	37	37	58	64			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
39 39 37 59 90 Plates Beam RECT A572 Gr.50 Typica 40 40 59 65 Supporting Horizontals Beam Pipe A53 Gr.B Typica 41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 66 67 90 Plates Beam RECT A572 Gr.50 Typica	38	38	64	56		90	Plates	Beam	RECT	A572 Gr.50	Typical
40405965Supporting HorizontalsBeamPipeA53 Gr.BTypica4141655790PlatesBeamRECTA572 Gr.50Typica4242666790PlatesBeamRECTA572 Gr.50Typica	39	39	37	59		90	Plates	Beam	RECT	A572 Gr.50	Typical
41 41 65 57 90 Plates Beam RECT A572 Gr.50 Typica 42 42 66 67 DIOID Name DIOID Typica	40	40	59	65			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
42 42 66 67 DICID Name Name DICID Turing	41	41	65	57		90	Plates	Beam	RECT	A572 Gr.50	Typical
	42	42	66	67			RIGID	None	None	RIGID	Typical
43 43 68 70A Tieback Beam Pipe A53 Gr.B Typica	43	43	68	70A			Tieback	Beam	Pipe	A53 Gr.B	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(de	Section/Shape	Туре	Design List	Material	Design Rules
44	44	<u>68</u>	69 No7		00	<u>RIGID</u>	None	None	RIGID	Typical
45	<u>IVI45</u>	<u>N88</u>	N87		90	Connection Plate	Beam		A572 GI.50	Typical
40	<u>IVI40</u>	N///	N122		90	<u>Connection Plate</u>	Beam		A572 GI.50	Typical
47	<u>IVI47</u>	N72	N123			Main Horizontals	Poom	DAR	A572 GI.50	Typical
40	<u></u> M40	N75	N74			Main Horizontals	Beam	Pipe	A53 Gr B	Typical
49	M50	N85	N86			Mount Pine	Column	Pipe	A53 Gr B	Typical
51	M51	N83	N84			Mount-Pipe	Column	Pipe	A53 Gr B	Typical
52	M52	N81	N82			Mount-Pipe	Column	Pipe	A53 Gr B	Typical
53	M53	N70	N80			Mount-Pipe	Column	Pipe	453 Gr B	Typical
54	M54	N123	N124			Verticals	Column	BAR	A572 Gr 50	Typical
55	M55	N121	N127			Verticals	Column	BAR	A572 Gr.50	Typical
56	M56	N102	N100			RIGID	None	None	RIGID	Typical
57	M57	N71	N91			RIGID	None	None	RIGID	Typical
58	M58	N103	N104			RIGID	None	None	RIGID	Typical
59	M59	N103	N119		90	Plates	Beam	RECT	A572 Gr 50	Typical
60	M60	N119	N125			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
61	M61	N125	N78		90	Plates	Beam	RECT	A572 Gr.50	Typical
62	M62	N105	N106			RIGID	None	None	RIGID	Typical
63	M63	N105	N120		90	Plates	Beam	RECT	A572 Gr 50	Typical
64	M64	N120	N126			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
65	M65	N126	N89		90	Plates	Beam	RECT	A572 Gr.50	Typical
66	M66	N107	N108			RIGID	None	None	RIGID	Typical
67	M67	N109	N110			RIGID	None	None	RIGID	Typical
68	M68	N137	N139			Tieback	Beam	Pipe	A53 Gr.B	Typical
69	M69	N114	N95			RIGID	None	None	RIGID	Typical
70	M70	N118	N99			RIGID	None	None	RIGID	Typical
71	M71	N113	N94			RIGID	None	None	RIGID	Typical
72	M72	N117	N98			RIGID	None	None	RIGID	Typical
73	M73	N112	N93			RIGID	None	None	RIGID	Typical
74	M74	N116	N97			RIGID	None	None	RIGID	Typical
75	M75	N111	N92			RIGID	None	None	RIGID	Typical
76	M76	N115	N96			RIGID	None	None	RIGID	Typical
77	M77	N132	N133			Diagonals	HBrace	BAR	A572 Gr.50	Typical
78	M78	N133	N134			Verticals	Column	BAR	A572 Gr.50	Typical
79	M79	N131	N132			Verticals	Column	BAR	A572 Gr.50	Typical
80	M80	N107	N129		90	Plates	Beam	RECT	A572 Gr.50	Typical
81	M81	N129	N135			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
82	M82	N135	N127		90	Plates	Beam	RECT	A572 Gr.50	Typical
83	<u>M83</u>	N109	N130		90	Plates	Beam	RECT	A572 Gr.50	Typical
84	M84	N130	N136			Supporting Horizontals	Beam	Pipe	A53 Gr B	Typical
85	<u>M85</u>	N136	N128		90	Plates	Beam	RECT	A572 Gr 50	Typical
86	M86	N137	N138			RIGID	None	None	RIGID	Typical
87	<u>M87</u>	N140	N142			Tieback	Beam	Pipe	A53 Gr.B	Typical
88	<u>M88</u>	N140	N141			RIGID	None	None	RIGID	Typical
89	<u>M89</u>	N159	N158		90	Connection Plate	Beam	RECT	A5/2 Gr.50	Typical
90	M90	N148	N161		90	Connection Plate	Beam	RECT	A572 Gr.50	Typical
91	<u>M91</u>	N193	N194			Diagonals	нвгасе	BAR	A572 Gr 50	Ivpical
92	M92	N144	N145			Iviain Horizontals	Beam	Pipe	A53 Gr.B	Typical
93	<u>M93</u>	N146	N14/			Macuat D	Beam	Pipe	ADJ GIB	Typical
94	<u>N194</u>	N156	N15/			Mount-Pipe	Column	Pipe	A53 Gr.B	Typical
95	<u>IVI95</u>	N154	N155			Nount-Pipe	Column	Pipe	A53 Gr.B	Typical
90	NO7	N152	N153			Mount-Pipe	Column	Pipe	ADJ GLB	Typical
97		N150	N101			Vorticele	Column		A572 Gr 50	Typical
98	MOO	N194	N195			Verticals	Column	BAR	A572 GL50	Typical
100	M100	N172	N171				Nono	None		Typical
100	IVI I UU					NUU	NULLE	NUTIE		турісаі
RISA-3D Version 17.0.2 [S:\\\\009.01MA\140453_009_01_806362_NHV_Rev H.R3D] F										Page 2

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(de	. Section/Shape	Туре	Design List	Material	Design Rules
101	M101	N72	N162			RIGID	None	None	RIGID	Typical
102	M102	N174	N175			RIGID	None	None	RIGID	Typical
103	M103	N174	N190		90	Plates	Beam	RECT	A572 Gr.50	Typical
104	M104	N190	N196			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
105	M105	N196	N149		90	Plates	Beam	RECT	A572 Gr.50	Typical
106	M106	N176	N177			RIGID	None	None	RIGID	Typical
107	M107	N176	N191		90	Plates	Beam	RECT	A572 Gr.50	Typical
108	M108	N191	N197			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
109	M109	N197	N160		90	Plates	Beam	RECT	A572 Gr.50	Typical
110	M110	N178	N179			RIGID	None	None	RIGID	Typical
111	M111	N180	N181			RIGID	None	None	RIGID	Typical
112	M112	N208	N210			Tieback	Beam	Pipe	A53 Gr.B	Typical
113	M113	N185	N166			RIGID	None	None	RIGID	Typical
114	M114	N189	N170			RIGID	None	None	RIGID	Typical
115	M115	N184	N165			RIGID	None	None	RIGID	Typical
116	M116	N188	N169			RIGID	None	None	RIGID	Typical
117	M117	N183	N164			RIGID	None	None	RIGID	Typical
118	M118	N187	N168			RIGID	None	None	RIGID	Typical
119	M119	N182	N163			RIGID	None	None	RIGID	Typical
120	M120	N186	N167			RIGID	None	None	RIGID	Typical
121	M121	N203	N204			Diagonals	HBrace	BAR	A572 Gr.50	Typical
122	M122	N204	N205			Verticals	Column	BAR	A572 Gr.50	Typical
123	M123	N202	N203			Verticals	Column	BAR	A572 Gr.50	Typical
124	M124	N178	N200		90	Plates	Beam	RECT	A572 Gr.50	Typical
125	M125	N200	N206			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
126	M126	N206	N198		90	Plates	Beam	RECT	A572 Gr.50	Typical
127	M127	N180	N201		90	Plates	Beam	RECT	A572 Gr.50	Typical
128	M128	N201	N207			Supporting Horizontals	Beam	Pipe	A53 Gr.B	Typical
129	M129	N207	N199		90	Plates	Beam	RECT	A572 Gr.50	Typical
130	M130	N208	N209			RIGID	None	None	RIGID	Typical
131	M131	N211	N213			Tieback	Beam	Pipe	A53 Gr.B	Typical
132	M132	N211	N212			RIGID	None	None	RIGID	Typical

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead	DĽ		-1			70		·	
2	0 Wind - No Ice	WLZ					70	84		
3	90 Wind - No Ice	WLX					70	84		
4	0 Wind - Ice	WLZ					70	84		
5	90 Wind - Ice	WLX					70	84		
6	0 Wind - Service	WLZ					70	84		
7	90 Wind - Service	WLX					70	84		
8	lce	OL1					70	84		
9	0 Seismic	ELZ					70	84		
10	90 Seismic	ELX					70	84		
11	Live Load a	LL				3				
12	Live Load b	LL				3				
13	Live Load c	LL				3				
14	Live Load d	LL				3				
15	Maint LL 1	LL					1			
16	Maint LL 2	LL					1			
17	Maint LL 3	LL					1			
18	Maint LL 4	LL					1			
19	Maint LL 5	LL					1			
20	Maint LL 6	LL					1			

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
21	Maint LL 7	LĽ			-		1			
22	Maint LL 8	LL					1			
23	Maint LL 9	LL					1			
24	Maint LL 10	LL					1			
25	Maint LL 11	LL					1			
26	Maint LL 12	LL					1			
27	Maint LL 13	LL					1			
28	Maint LL 14	LL					1			
29	Maint LL 15	LL					1			
30	Maint LL 16	LL					1			
31	Maint LL 17	LL					1			
32	Maint LL 18	LL					1			
33	Maint LL 19	LL					1			
34	Maint LL 20	LL					1			
35	Maint LL 21	LL					1			
36	Maint LL 22	LL					1			
37	Maint LL 23	LL					1			
38	Maint LL 24	LL					1			

Load Combinations

	Description	Sol	P	S	BLC	;Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa
1	1.4 Dead	Yes	Y		1	1.4																		
2	1.2 D + 1.0 - 0 W	Yes	Y		1	1.2	2	1																
3	1.2 D + 1.0 - 30 W	Yes	Υ		1	1.2	2	.866	3	.5														
4	1.2 D + 1.0 - 60 W	Yes	Y		1	1.2	3	.866	2	.5														
5	1.2 D + 1.0 - 90 W	Yes	Υ		1	1.2	3	1																
6	1.2 D + 1.0 - 120 W	/Yes	Y		1	1.2	3	.866	2	5														
7	1.2 D + 1.0 - 150 W	/Yes	Y		1	1.2	2	866	3	.5														
8	1.2 D + 1.0 - 180 W	/Yes	Y		1	1.2	2	-1																
9	1.2 D + 1.0 - 210 W	/Yes	Y		1	1.2	2	866	3	5														
10	1.2 D + 1.0 - 240 W	/Yes	Y		1	1.2	3	866	2	5														
11	1.2 D + 1.0 - 270 W	/Yes	Υ		1	1.2	3	-1																
12	1.2 D + 1.0 - 300 W	/Yes	Υ		1	1.2	3	866	2	.5														
13	1.2 D + 1.0 - 330 W	/Yes	Y		1	1.2	2	.866	3	5														
14	1.2 D + 1.0 - 0 W/Ice	Yes	Y		1	1.2	4	1			8	1												
15	1.2 D + 1.0 - 30 W/Ice	Yes	Y		1	1.2	4	.866	5	.5	8	1												
16	1.2 D + 1.0 - 60 W/Ice	Yes	Y		1	1.2	5	.866	4	.5	8	1												
17	1.2 D + 1.0 - 90 W/Ice	Yes	Υ		1	1.2	5	1			8	1												
18	1.2 D + 1.0 - 120 W/Ice	Yes	Y		1	1.2	5	.866	4	5	8	1												
19	1.2 D + 1.0 - 150 W/Ice	Yes	Y		1	1.2	4	866	5	.5	8	1												
20	1.2 D + 1.0 - 180 W/Ice	Yes	Y		1	1.2	4	-1			8	1												
21	1.2 D + 1.0 - 210 W/Ice	Yes	Υ		1	1.2	4	866	5	5	8	1												
22	1.2 D + 1.0 - 240 W/Ice	Yes	Υ		1	1.2	5	866	4	5	8	1												
23	1.2 D + 1.0 - 270 W/Ice	Yes	Υ		1	1.2	5	-1			8	1												
24	1.2 D + 1.0 - 300 W/Ice	Yes	Y		1	1.2	5	866	4	.5	8	1												
25	1.2 D + 1.0 - 330 W/Ice	Yes	Υ		1	1.2	4	.866	5	5	8	1												
26	1.2 D + 1.0 E - 0	Yes	Υ		1	1.2	9	1																
27	1.2 D + 1.0 E - 30	Yes	Υ		1	1.2	9	.866	10	.5														
28	1.2 D + 1.0 E - 60	Yes	Y		1	1.2	10	.866	9	.5														
29	12D+10E-90	Yes	Y		1	1.2	10	1																
30	1.2 D + 1.0 E - 120	Yes	Y		1	1.2	10	.866	9	5														
31	1.2 D + 1.0 E - 150	Yes	Y		1	1.2	9	866	10	.5														
32	1.2 D + 1.0 E - 180	Yes	Y		1	1.2	9	-1																
33	1.2 D + 1.0 E - 210	Yes	Ý		1	12	9	866	10	5														
34	1.2 D + 1.0 E - 240	Yes	Y		1	1.2	10	866	9	5														

Load Combinations (Continued)

Desc	ription So	<u>lP</u>	. <u>S</u>	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLCFa	. BLC	Fa I	<u>BLCF</u> a	a BL	. <u>CFa.</u>	BLC	Fa	BLC	Fa
35 1.2 D + 1	<u>0 E - 270 Ye</u>	es Y		1	1.2	10	-1														
36 1.2 D + 1	<u>.0 E - 300 Ye</u>	es Y		1	1.2	10	866	9	.5												
37 1.2 D + 1	<u>.0 E - 330 Ye</u>	es Y		1	1.2	9	.866	10	5								_				
38 1.2 D + 1.5	LL a + SerYe	es Y		1	1.2	6	1	_		11	1.5						_				
<u>39 12D+15</u>	LL a + Ser Ye	es Y		1	1.2	6	.866		.5	11	1.5						-			_	
40 1.2 D + 1.5	LL a + Ser Ye	es Y		1	1.2		.866	6	.5	11	1.5									_	
4^{-1} 1.2 D + 1.5	LL $a + Ser Y \in$	<u>es r</u>		1	1.2		220	6	E	11	15						-			_	
42 1.2 D + 1.5				1	1.2	6	- 866	7	0	11	1.0									_	
43 1.2 D + 1.5	LLa+Ser Ve			1	1.2	6	000		.5	11	1.5									-	
45 1.2 D + 1.5	LL a + Ser Ye	23 I 26 Y		1	1.2	6	866	7	- 5	11	1.5						-			-	
46 1.2 D + 1.5	LL a + Ser Ye	as Y		1	12	7	866	6	- 5	11	1.5										
47 1.2 D + 1.5	LL a + SerYe	es Y		1	1.2	7	-1			11	1.5						-				
48 1.2 D + 1.5	LL a + SerYe	es Y		1	1.2	7	866	6	.5	11	1.5										
49 1.2 D + 1.5	LL a + SerYe	es Y		1	1.2	6	.866	7	5	11	1.5										
50 1.2 D + 1.5	LL b + SerYe	es Y		1	1.2	6	1			12	1.5										
51 1.2 D + 1.5	LL b + SerYe	es Y		1	1.2	6	.866	7	.5	12	1.5										
52 1.2 D + 1.5	LL b + Ser Ye	es Y		1	1.2	7	.866	6	.5	12	1.5										
53 1.2 D + 1.5	LL b + Ser Ye	es Y		1	1.2	7	1			12	1.5										
54 1.2 D + 1.5	LL b + Ser Ye	es Y		1	1.2	7	.866	6	5	12	1.5							-			
55 1.2 D + 1.5	LL b + Ser Ye	es Y		1	1.2	6	866	7	.5	12	1.5										
56 1.2 D + 1.5	LL D + Ser Ye	es Y		1	1.2	6	-1	7	-	12	1.5						-	-			
57 1.2 D + 1.5	LL b + Ser Ye	es y		1	1.2	<u> </u>	000	(5	12	1.5						-				
58 1.2 D + 1.5	$\frac{11}{11} \text{ b} + \text{Ser} \mathbf{Y} \in \mathbf{V}$			1	1.2		000	6	5	12	1.5						-			-	
$\frac{59}{12}$ 12D + 15	LL b + Ser Ye			1	1.2	7	- 866	6	5	12	1.5						_				
61 12 D + 15	$11 \text{ b} + \text{Ser}$ V_{4}			1	1.2	6	866	7	.5	12	1.5						-				
62 12 D + 15	LL c + Ser Ve			1	1.2	6	1		5	12	1.5										
63 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	6	.866	7	5	13	1.5										
64 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	7	.866	6	.5	13	1.5										
65 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	7	1			13	1.5										
66 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	7	.866	6	5	13	1.5										
67 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	6	866	7	.5	13	1.5										
68 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	6	-1			13	1.5										
69 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	6	866	7	5	13	1.5						_				
70 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	7	866	6	5	13	1.5										
71 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	_7_	-1	_		13	1.5					_	-			_	
72 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	7	866	6	.5	13	1.5						_				
73 1.2 D + 1.5	LL c + Ser Ye	es Y		1	1.2	6	.866		5	13	1.5						_	_		_	
74 1.2 D + 1.5 75 1 2 D + 1.5	LL d + Ser Y e	<u>es r</u>		1	1.2	6	998	7	E	14	1.5						-			_	
75 1.2 D + 1.5	LL d + Ser Ye			1	1.2	7	866	6	.5	14	1.5						_			_	
77 120+15	$11 d + Ser V_2$	20 1 20 V		1	1.2	7	1	0	.5	14	1.5						-	-			
78 1.2 D + 1.5	$LL d + Ser \vee 4$			1	1.2	7	.866	6	- 5	14	1.5										
79 1.2 D + 1.5	LL d + Ser V4			1	12	6	866	7	.5	14	1.5										
80 1 2 D + 1 5	LL d + Ser Ye	es Y		1	1.2	6	-1			14	1.5										
81 1.2 D + 1.5	LL d + Ser Ye	es Y		1	1.2	6	866	7	5	14	1.5										
82 1.2 D + 1.5	LL d + Ser Ye	es Y		1	1.2	7	866	6	5	14	1.5										
83 1.2 D + 1.5	LL d + Ser Ye	es Y		1	1.2	7	-1			14	1.5										
84 1.2 D + 1.5	LL d + Ser Ye	es Y		1	1.2	7	866	6	.5	14	1.5										
85 1.2 D + 1.5	LL d + Ser Ye	es Y		1	1.2	6	.866	7	5	14	1.5										
86 1.2 D + 1.5	LL Maint (1) Ye	es Y		1	1.2					15	1.5										
87 1.2 D + 1.5	LL Maint (2) Ye	es Y		1	1.2					16	1.5										
88 1.2 D + 1.5	LL Maint (3) Ye	es Y		1	1.2					17	1.5						-	-			
89 1.2 D + 1.5	LL Maint (4) Ye	es Y		1	1.2					18	1.5										
90 120+15	LL Maint (5) Ye	es Y		1	1.2					19	1.5						-	-			
91 1.2 D + 1.5	LL Maint (6) Ye	es⊨ Y		1	1.2					20	1.5										

Load Combinations (Continued)

Description	Sol	P \$	S BLC	;Fa	BLC Fa	BLC F	a BLC	Fa	BLCFa	. BLC	Fa	BLCF	a E	BLCF	a	BLC	Fa	BLC	Fa
92 1.2 D + 1.5 LL Maint (7) Yes	Y	1	1.2			21	1.5											
93 1.2 D + 1.5 LL Maint (8	3) Yes	Y	1	1.2			22	1.5											
94 1.2 D + 1.5 LL Maint () Yes	Y	1	1.2			23	1.5											
95 1.2 D + 1.5 LL Maint (.	Yes	Y	1	1.2			24	1.5											
96 1.2 D + 1.5 LL Maint (.	Yes	Y	1	1.2			25	1.5											
97 1.2 D + 1.5 LL Maint (.	Yes	Y	1	1.2			26	1.5											
98 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			27	1.5											
99 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			28	1.5											
100 1.2 D + 1.5 LL Maint (.	Yes	Y	1	1.2			29	1.5											
101 1.2 D + 1.5 LL Maint (.	Yes	Y	1	1.2			30	1.5											
102 1.2 D + 1.5 LL Maint (.	Yes	Y	1	1.2			31	1.5											
103 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			32	1.5											
104 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			33	1.5											
105 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			34	1.5											
106 1.2 D + 1.5 LL Maint (.	Yes	Y	1	1.2			35	1.5											
107 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			36	1.5											
108 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			37	1.5											
109 1.2 D + 1.5 LL Maint (.	- Yes	Y	1	1.2			38	1.5											

Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Y	018	%10
2	6	Y	018	%95
3	6	Y	019	%40
4	6	Y	002	%60
5	6	Y	0	0
6	7	Y	056	%5
7	7	Y	056	%80
8	7	Y	051	%50
9	7	Y	053	%30
10	7	Y	053	%30
11	8	Y	032	%5
12	8	Y	032	%80
13	8	Y	071	%50
14	8	Y	055	%50
15	8	Y	0	0
16	9	Y	053	%5
17	9	Y	053	%95
18	9	Y	071	%50
19	9	Y	0	0
20	9	Y	0	0
21	37	Y	033	%30
22	37	Y	0	0
23	37	Y	0	0
24	37	Y	0	0
25	37	Y	0	0
26	M125	Y	033	%50
27	M125	Y	0	0
28	M125	Y	0	0
29	M125	Y	0	0
30	M125	Y	0	0
31	M94	Y	018	%10
32	M94	Y	018	%95
33	M94	Y	019	%40
34	M94	Y	002	%60

Page 7

Member Point Loads (BLC 1 : Dead) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
35	M94	Y	0	0
36	M95	Y	041	%5
37	M95	Y	041	%70
38	M95	Y	051	%50
39	M95	Y	053	%30
40	M95	Y	053	%30
41	M96	Y	032	%5
42	M96	Y	032	%80
43	M96	Y	071	%50
44	M96	Y	055	%50
45	M96	Y	0	0
46	M97	Y	053	%5
47	M97	Y	053	%95
48	M97	Y	071	%50
49	M97	Y	0	0
50	M97	Y	0	0
51	M50	Y	018	%10
52	M50	Y	018	%95
53	M50	Y	019	%40
54	M50	Y	002	%60
55	M50	Y	0	0
56	M51	Y	041	%5
57	M51	Y	041	%70
58	M51	Y	051	%50
59	M51	Y	053	%30
60	M51	Y	053	%30
61	M52	Y	032	%5
62	M52	Y	032	%80
63	M52	Y	071	%50
64	M52	Y	055	%50
65	M52	Y	0	0
66	M53	Y	053	%5
67	M53	Y	053	%95
68	M53	Y	071	%50
69	M53	Υ	0	0
70	M53	Y	0	0

Member Point Loads (BLC 2 : 0 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Z	114	%10
2	6	Z	114	%95
3	6	Z	041	%40
4	6	Z	004	%60
5	6	Z	0	0
6	7	Z	092	%5
7	7	Z	092	%80
8	7	Z	034	%50
9	7	Z	069	%30
10	7	Z	113	%30
11	8	Z	281	%5
12	8	Z	281	%80
13	8	Z	058	%50
14	8	Z	074	%50
15	8	Z	0	0
16	9	Z	365	%5
17	9	Z	365	%95

Member Point Loads (BLC 2 : 0 Wind - No Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
18	9	Z	082	%50
19	9	Z	0	0
20	9	Z	0	0
21	37	Z	05	%30
22	37	Z	0	0
23	37	Z	0	0
24	37	Z	0	0
25	37	Z	0	0
26	M125	Z	05	%50
27	M125	Z	0	0
28	M125	Z	0	0
29	M125	Z	0	0
30	M125	Z	0	0
31	M94	Z	- 114	%10
32	M94	Z	- 114	%95
33	M94	7	- 041	%40
34	M94	7	004	%60
35	M94	Z	0	0
36	M95	7	- 273	%5
37	M95	7	- 273	%70
38	M95	7	- 034	%50
39	M95	7	- 069	%30
40	M95	7	- 113	%30
41	M96	7	- 281	%5
42	M96	7	- 281	%80
43	M96	7	- 058	%50
40	M96	7	030	%50
44	M96	7	074	0
40	M97	7	- 365	%5
40	M97	7	- 365	%95
18	M97	7	000	%50
10	M97	7	002	////
50	M97	7	0	0
51	M50	7	_ 11/	%10
52	M50	7	114	%05
52	M50	7	114	%40
54	M50	7	041	%60
55	M50	7	004	/////
56	M51	7	_ 273	%5
57	M51	7	273	%70
58	M51	7	275	%50
50	M51	7	_ 060	%30
60	W51	7	009	%30
61	N52	7	113	0/5
62	N52	7	201	//05
62	M52	7	201	//00U
64	<u>IVIJZ</u> M50		030	//000
65		7	074	7650
60		7	0	0/ 5
67	IVIDO MED		303	70 0
60	IVID3		305	7090
60	IVI53	<u> </u>	082	%50
69	IVI53		0	
70	IVI53	Δ	0	0

Member Point Loads (BLC 3 : 90 Wind - No Ice)

Member Label

Magnitude[k,k-ft]

Location[ft,%]

Direction

Member Point Loads (BLC 3 : 90 Wind - No Ice) (Continued)

1 6 X -052 940 3 6 X -014 940 4 6 X -014 940 5 6 X -073 960 6 7 X -073 960 7 7 X -073 960 8 7 X -073 9860 9 7 X -073 9860 11 7 X -073 9860 13 8 X -062 9800 14 8 X -062 9800 14 8 X -063 9800 14 8 X -072 9800 16 9 X -137 9855 18 9 X 0 0 22 37 X 0 0 23 377 X		Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
2 6 X -052 %95 3 6 X -014 %40 4 6 X -007 %60 5 6 X 0 0 0 6 7 X -078 %50 %50 8 7 X -078 %80 %50 9 7 X -119 %30 %50 10 7 X -105 %5 %50 11 8 X -105 %5 %50 13 8 X -066 %80 %50 14 8 X -137 %55 %50 15 8 X 0 0 0 0 16 9 X -137 %56 %50 18 9 X 0 0 0 21 37 X 0 0 0 1	1	6	Χ	052	%10
3 6 X 014 %40 4 6 X 0.07 %60 5 6 X 0.078 %40 6 7 X 078 %40 7 7 X 078 %40 8 7 X 036 %50 9 7 X 015 %80 10 7 X 066 %30 11 8 X 105 %80 13 8 X 062 %50 14 8 X 137 %45 15 8 X 058 %50 16 9 X 137 %45 17 9 X 058 %50 18 9 X 0 0 20 9 X 0 0 21 37 X 0 0	2	6	X	052	%95
4 6 X -007 %80 5 6 X 0 0 0 6 7 X -078 %5 5 7 7 X -078 %60 5 8 7 X -078 %60 5 9 7 X -078 %60 5 10 7 X -078 %60 5 11 8 X -105 %5 5 12 8 X -105 %5 5 13 8 X -062 %50 1 14 8 X -137 %95 5 17 9 X -137 %95 5 18 9 X 0 0 0 20 9 X 0 0 0 21 37 X 0 0 0 <t< td=""><td>3</td><td>6</td><td>X</td><td>014</td><td><u>%40</u></td></t<>	3	6	X	014	<u>%40</u>
5 6 X 0 0 6 7 X -078 %50 7 7 X -036 %60 9 7 X -0166 %30 10 7 X -066 %30 11 8 X -105 %60 13 8 X -062 %50 14 8 X -062 %50 14 8 X -052 %50 15 8 X -0 0 0 16 9 X -137 %55 1 18 9 X 0 0 0 20 9 X 0 0 0 21 37 X 0 0 0 22 37 X 0 0 0 23 37 X 0 0 0 24 </td <td>4</td> <td>6</td> <td>X</td> <td>007</td> <td>%60</td>	4	6	X	007	%60
6 7 7 X -078 %55 8 7 X -036 %50 9 7 X -019 %30 10 7 X -019 %30 11 8 X -119 %30 11 8 X -105 %45 12 8 X -105 %46 13 8 X -002 %50 14 8 X -0 0 0 16 9 X -137 %55	5	6	X	0	0
7 7 X 078 %80 9 7 X 119 %30 10 7 X 066 %30 11 8 X 105 %50 12 8 X 105 %50 13 8 X 105 %50 14 8 X 137 %55 15 8 X 137 %55 16 9 X 058 %50 18 9 X 058 %50 19 9 X 0 0 0 21 37 X 0 0 0 22 37 X 0 0 0 24 37 X 0 0 0 25 37 X 0 0 0 26 M125 X 0 0 0 28 M125 X 0 0 0 30 M125 X <td>6</td> <td>7</td> <td>X</td> <td>078</td> <td><u>%5</u></td>	6	7	X	078	<u>%5</u>
8 7 X -036 %50 10 7 X -066 %30 11 8 X -105 %55 12 8 X -105 %50 13 8 X -105 %50 14 8 X -062 %50 14 8 X -022 %50 16 9 X -137 %55 16 9 X -137 %50 19 9 X -058 %60 19 9 X 0 0 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X 0 0 28 M125 X 0	7	7	X	078	<u>%80</u>
9 7 X -119 %30 10 7 X -066 %30 11 8 X -105 %50 12 8 X -1065 %50 13 8 X -082 %50 14 8 X -124 %50 15 8 X 0 0 16 9 X -137 %55 17 9 X -058 %50 19 9 X 0 0 20 9 X 0 0 0 21 37 X 0 0 0 22 37 X 0 0 0 24 37 X 0 0 0 25 37 X 0 0 0 26 M125 X 0 0 0 28 M1	8	7	X	036	%50
10 7 X 065 %30 11 8 X 105 %65 13 8 X 062 %50 14 8 X 022 %50 14 8 X 022 %50 15 8 X 0 0 16 9 X 137 %50 17 9 X 058 %50 18 9 X 0 0 0 20 9 X 0 0 0 21 37 X 0 0 0 22 37 X 0 0 0 24 37 X 0 0 0 25 37 X 0 0 0 26 M125 X 0 0 0 30 M125 X 0 0 0	9	<u> </u>	X	119	%30
11 8 X 105 %60 13 8 X 065 %60 14 8 X 066 %60 15 8 X 0 0 16 9 X 137 %550 17 9 X 137 %550 18 9 X 058 %50 19 9 X 0 0 0 20 9 X 0 0 0 21 37 X 0 0 0 23 37 X 0 0 0 24 37 X 0 0 0 25 37 X 0 0 0 26 M125 X 0 0 0 30 M125 X 0 0 0 31 M94 X 062 %10 </td <td>10</td> <td></td> <td>X</td> <td>066</td> <td><u>%30</u></td>	10		X	066	<u>%30</u>
12 8 X 105 %80 13 8 X 082 %550 14 8 X -016 9 15 8 X 0 0 16 9 X -137 %55 17 9 X -137 %55 18 9 X -058 %50 20 9 X 0 0 21 37 X 0 0 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X -05 %50 27 M126 X 0 0 30 M125 X 0 0 31 M94 X -052 %60 33	11	8	X	105	%5
13 8 X 082 %80 15 8 X 0 0 16 9 X -137 %55 17 9 X -137 %55 18 9 X -058 %50 19 9 X 0 0 20 9 X 0 0 21 37 X -055 %30 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 %10 32 M94 X -014 %60 35	12	8	X	105	<u>%80</u>
14 8 X 124 %50 15 8 X 0 0 16 9 X 137 %55 17 9 X 137 %95 18 9 X 0 0 20 9 X 0 0 21 37 X 0 0 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X -05 %50 27 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 %10 32 M94 X -014 %40 34 M94 X -036 %50 38	13	8	X	082	<u>%50</u>
15 8 X 0 0 16 9 X -137 $\frac{9}{45}$ 17 9 X -058 $\frac{9}{450}$ 18 9 X -058 $\frac{9}{450}$ 20 9 X 0 0 21 37 X 0 0 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X -05 $\frac{9}{450}$ 27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 $\frac{9}{495}$ 33 M94 X -014 $\frac{9}{40}$ 35 M94 X -0162 $$	14	8	X	124	<u>%50</u>
16 9 X 137 $\%5$ 18 9 X 058 $\%50$ 19 9 X 0 0 20 9 X 0 0 21 37 X 055 $\%30$ 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X -05 $\%50$ 27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 $\%10$ 32 M94 X 007 $\%60$ 33 M94 X 014 $\%40$ 34 M94 X 066 $\%30$ </td <td>15</td> <td>8</td> <td>X</td> <td>0</td> <td>0</td>	15	8	X	0	0
1/ 9 X 13/ %95 18 9 X 0.58 %50 19 9 X 0 0 20 9 X 0 0 21 37 X 0 0 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X 0 0 27 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 %10 32 M94 X -062 %55 33 M94 X -0162 %55 33 M94 X -036 %50 34 M95 X 162 %50 36 <td>16</td> <td>9</td> <td>X</td> <td>137</td> <td><u>%5</u></td>	16	9	X	137	<u>%5</u>
18 9 X 058 %50 19 9 X 0 0 20 9 X 0 0 21 37 X 05 %30 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 26 M125 X 055 %50 27 M125 X 0 0 29 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 %10 32 M94 X 062 %95 33 M94 X 007 %60 34 M84 X 007 %60 35 M95 X 162 %55 38 M95 X 162 %50	17	9	X	137	<u>%95</u>
19 9 X 0 0 20 9 X 0 0 21 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X -05 %50 27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 %10 32 M94 X -052 %55 33 M94 X -0652 %95 33 M94 X -007 %60 34 M94 X -036 %50 37 M95 X -162 %70 38 M95 X -162 %50 <t< td=""><td>18</td><td>9</td><td>X</td><td>058</td><td><u>%50</u></td></t<>	18	9	X	058	<u>%50</u>
20 9 X 0 0 21 37 X 05 %30 22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X 05 %50 27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 %95 33 M94 X 062 %95 33 M94 X 062 %95 33 M94 X 062 %55 37 M95 X 162 %5 38 M95 X 162 %50 39 M95 X 036 %50 <tr< td=""><td>19</td><td>9</td><td><u>X</u></td><td>0</td><td>0</td></tr<>	19	9	<u>X</u>	0	0
21 37 X -05 %30 22 37 X 0 0 24 37 X 0 0 25 37 X 0 0 26 M125 X -05 %50 27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 %10 32 M94 X -062 %95 33 M94 X -014 %40 34 M94 X -007 %60 35 M94 X -036 %50 36 M95 X -162 %50 39 M95 X -066 %30 41 M96 X -015 %50 43 M96 X -066 %30	20	9	X	0	0
22 37 X 0 0 23 37 X 0 0 24 37 X 0 0 26 M125 X -05 %50 27 M125 X 0 0 28 M125 X 0 0 29 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 %10 32 M94 X -062 %95 33 M94 X -062 %95 33 M94 X -007 %60 36 M95 X -162 %5 37 M95 X -162 %5 37 M95 X -162 %50 40 M96 X -036 %50 41 M96 X -105 %5 <tr< td=""><td>21</td><td>37</td><td>X</td><td>05</td><td><u>%30</u></td></tr<>	21	37	X	05	<u>%30</u>
23 37 X 0 0 24 37 X 0 0 26 M125 X 05 %50 27 M125 X 0 0 28 M125 X 0 0 29 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 %10 32 M94 X 014 %40 33 M94 X 014 %40 34 M94 X 0162 %50 37 M95 X 162 %50 38 M95 X 162 %50 39 M95 X 105 %60 41 M96 X 105 %50 43 M96 X 105 %60 44 M96 X 105 %50 </td <td>22</td> <td>37</td> <td>X</td> <td>0</td> <td>0</td>	22	37	X	0	0
24 37 X 0 0 25 37 X 0 0 26 M125 X 05 %50 27 M125 X 0 0 28 M125 X 0 0 29 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 %10 32 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 007 %60 36 M95 X 162 %5 37 M95 X 162 %5 38 M95 X 036 %60 39 M95 X 066 %30 40 M96 X 105 %5 42 M96 X 162 %50	23	37	X	0	0
25 37 X 0 0 26 M125 X 05 %50 27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 %85 33 M94 X 014 %40 34 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 0 0 36 M95 X 162 %70 38 M95 X 036 %60 39 M95 X 105 %5 41 M96 X 105 %50 42 M96 X 105 %50 44 M96 X 137 %95 <td>_24</td> <td>37</td> <td>X</td> <td>0</td> <td>0</td>	_24	37	X	0	0
26 M125 X 05 %50 27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 %10 32 M94 X 052 %95 33 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 007 %60 36 M95 X 162 %5 37 M95 X 162 %50 38 M95 X 162 %50 40 M96 X 105 %50 41 M96 X 105 %50 42 M96 X 052 %50 43 M96 X 052 %50 44 M96 X 058	25	37	Χ	0	0
27 M125 X 0 0 28 M125 X 0 0 30 M125 X 0 0 31 M94 X -052 %10 32 M94 X -052 %95 33 M94 X -007 %60 35 M94 X -007 %60 35 M94 X -007 %60 36 M95 X -162 %57 38 M95 X -162 %50 39 M95 X -066 %30 41 M96 X -015 %50 42 M96 X -082 %50 43 M96 X -082 %50 44 M96 X -082 %50 44 M96 X -082 %50 45 M96 X -082 %	26	M125	X	05	%50
28 M125 X 0 0 29 M125 X 0 0 30 M125 X 0 0 31 M94 X 052 %10 32 M94 X 052 %60 33 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 007 %60 36 M95 X 162 %55 37 M95 X 162 %50 38 M95 X 119 %30 40 M95 X 105 %50 41 M96 X 105 %50 42 M96 X 105 %50 43 M96 X 082 %50 44 M96 X 035 %50 45 M96 X 0	27	M125	Χ	0	0
29 M125 X 0 0 30 M125 X 0 0 0 31 M94 X 052 %10 32 M94 X 052 %95 33 M94 X 014 %40 34 M94 X 014 %40 35 M94 X 014 %60 35 M94 X 0 0 36 M95 X 162 %5 39 M95 X 036 %50 39 M95 X 105 %680 41 M96 X 105 %550 42 M96 X 105 %600 43 M96 X 124 %550 44 M96 X 0 0 45 M96 X 0.124 %50 45 M96 X	28	M125	Х	0	0
30 M125 X 0 0 31 M94 X 052 %10 32 M94 X 052 %95 33 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 0 0 36 M95 X 162 %5 37 M95 X 036 %50 39 M95 X 119 %30 40 M96 X 105 %5 42 M96 X 105 %50 43 M96 X 105 %50 44 M96 X 124 %50 45 M96 X 137 %55 46 M97 X 058 %50 48 M97 X 0 0 50 M97 X 0	29	M125	Χ	0	0
31 M94 X 052 %10 32 M94 X 052 %95 33 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 007 %60 36 M95 X 162 %5 37 M95 X 162 %70 38 M95 X 162 %70 39 M95 X 119 %30 40 M96 X 066 %30 41 M96 X 105 %5 42 M96 X 062 %50 43 M96 X 062 %50 44 M96 X 124 %50 45 M96 X 058 %50 45 M96 X 058 %50 48 M97 X <	30	M125	X	0	0
32 M94 X 052 %95 33 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 0 0 36 M95 X 162 %5 37 M95 X 162 %70 38 M95 X 162 %70 39 M95 X 192 %30 40 M95 X 105 %5 41 M96 X 105 %50 42 M96 X 105 %50 43 M96 X 105 %60 44 M96 X 082 %50 44 M96 X 028 %50 45 M96 X 0 0 46 M97 X 137 %55 47 M97 X 052 <td>31</td> <td>M94</td> <td>Χ</td> <td>052</td> <td><u> </u></td>	31	M94	Χ	052	<u> </u>
33 M94 X 014 %40 34 M94 X 007 %60 35 M94 X 0 0 36 M95 X 162 %5 37 M95 X 162 %70 38 M95 X 036 %50 39 M95 X 015 %630 40 M95 X 015 %60 41 M96 X 105 %50 42 M96 X 082 %50 43 M96 X 082 %50 44 M96 X 0 0 45 M96 X 0 0 46 M97 X 137 %55 47 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %0	32	M94	X	052	<u>%95</u>
34 M94 X 007 %60 35 M94 X 0 0 0 36 M95 X 162 %5 37 M95 X 162 %70 38 M95 X 036 %50 39 M95 X 066 %30 40 M95 X 066 %30 41 M96 X 105 %60 42 M96 X 067 %60 43 M96 X 015 %80 43 M96 X 062 %50 44 M96 X 012 %50 45 M96 X 0 0 46 M97 X 137 %55 47 M97 X 0 0 50 M97 X 0.058 %50 49 M97 X	33	M94	Χ	014	%40
35 M94 X 0 0 36 M95 X 162 %5 37 M95 X 162 %70 38 M95 X 036 %50 39 M95 X 019 %30 40 M95 X 105 %5 42 M96 X 105 %60 43 M96 X 105 %50 44 M96 X 124 %50 45 M96 X 137 %5 47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 052 %10 51 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 162	34	M94	Х	007	%60
36 M95 X 162 %5 37 M95 X 162 %70 38 M95 X 036 %50 39 M95 X 036 %50 40 M95 X 119 %30 40 M95 X 105 %5 41 M96 X 105 %50 42 M96 X 105 %50 43 M96 X 105 %50 44 M96 X 124 %50 45 M96 X 137 %55 47 M97 X 137 %55 47 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 007 <td>35</td> <td>M94</td> <td>Χ</td> <td>0</td> <td>0</td>	35	M94	Χ	0	0
37 M95 X 162 $%70$ 38 M95 X 036 $%50$ 39 M95 X 119 $%30$ 40 M95 X 066 $%30$ 41 M96 X 105 $%5$ 42 M96 X 105 $%80$ 43 M96 X 082 $%50$ 44 M96 X 082 $%50$ 44 M96 X 124 $%50$ 44 M96 X 0 0 45 M96 X 0 0 46 M97 X 137 $%95$ 47 M97 X 0 0 50 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 $%955$	36	M95	Х	162	%5
38 M95 X 036 %50 39 M95 X 119 %30 40 M95 X 066 %30 41 M96 X 105 %55 42 M96 X 105 %80 43 M96 X 082 %50 44 M96 X 124 %50 45 M96 X 0 0 46 M97 X 137 %55 47 M97 X 058 %50 48 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 162 %55 57 M51 X 162	37	M95	Χ	162	%70
39 M95 X 119 %30 40 M95 X 066 %30 41 M96 X 105 %5 42 M96 X 105 %60 43 M96 X 105 %60 43 M96 X 124 %50 44 M96 X 0 0 45 M96 X 137 %55 47 M97 X 137 %95 48 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 052 %95 53 M50 X 007 %60 54 M50 X 0 0 55 M50 X 0	38	M95	Х	036	%50
40 M95 X 066 %30 41 M96 X 105 %5 42 M96 X 105 %80 43 M96 X 082 %50 44 M96 X 124 %50 45 M96 X 0 0 46 M97 X 137 %5 47 M97 X 137 %95 48 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 0 0 55 M50 X 0 0 0 56 M51 X 162 %5 5 57 M51 X	39	M95	Χ	119	%30
41 M96 X 105 %5 42 M96 X 105 %80 43 M96 X 082 %50 44 M96 X 124 %50 45 M96 X 0 0 46 M97 X 137 %55 47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 0 0 55 M50 X 0 0 0 56 M51 X 162 %5 5 57 M51 X 162 %70 9	40	M95	Х	066	%30
42 M96 X 105 %80 43 M96 X 082 %50 44 M96 X 124 %50 45 M96 X 0 0 46 M97 X 137 %5 47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 0 0 0 56 M51 X 162 %5 5 57 M51 X 162 %5 5	41	M96	Χ	105	%5
43 M96 X 082 %50 44 M96 X 124 %50 45 M96 X 0 0 46 M97 X 137 %5 47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 007 %60 54 M50 X 007 %60 55 M50 X 162 %5 57 M51 X 162 %5	42	M96	Х	105	%80
44 M96 X 124 %50 45 M96 X 0 0 46 M97 X 137 %5 47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 0 0 55 M50 X 0 0 56 M51 X 162 %5 57 M51 X 162 %70	43	M96	Χ	082	%50
45 M96 X 0 0 46 M97 X 137 %5 47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 0 0 55 M50 X 0 0 56 M51 X 162 %55 57 M51 X 162 %70	44	M96	Х	124	%50
46 M97 X 137 %5 47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 0 0 55 M50 X 0 0 56 M51 X 162 %5 57 M51 X 162 %70	45	M96	Χ	0	0
47 M97 X 137 %95 48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 0 0 55 M50 X 0 0 56 M51 X 162 %55 57 M51 X 162 %70	46	M97	Х	137	%5
48 M97 X 058 %50 49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 0 0 56 M51 X 162 %55 57 M51 X 162 %70	47	M97	Χ	137	%95
49 M97 X 0 0 50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 0 0 56 M51 X 162 %55 57 M51 X 162 %70	48	M97	Х	058	%50
50 M97 X 0 0 51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 0 0 56 M51 X 162 %55 57 M51 X 162 %70	49	M97	Χ	0	0
51 M50 X 052 %10 52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 0 0 56 M51 X 162 %55 57 M51 X 162 %70	50	M97	Х	0	0
52 M50 X 052 %95 53 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 0 0 56 M51 X 162 %5 57 M51 X 162 %70	51	<u>M50</u>	Χ	052	%10
53 M50 X 014 %40 54 M50 X 007 %60 55 M50 X 0 0 56 M51 X 162 %5 57 M51 X 162 %70	52	M50	Х	052	%95
54 M50 X 007 %60 55 M50 X 0 0 56 M51 X 162 %5 57 M51 X 162 %70	53	M50	Х	014	%40
55 M50 X 0 0 56 M51 X 162 %5 57 M51 X 162 %70	54	M50	Х	007	%60
56 M51 X 162 %5 57 M51 X 162 %70 RISA-3D Version 17.0.2 IS1 \) <td>55</td> <td>M50</td> <td>X</td> <td>0</td> <td>0</td>	55	M50	X	0	0
57 M51 X 162 %70 RISA-3D Version 17.0.2 [S ¹] \	56	M51	Х	162	%5
RISA-3D Version 17.0.2 [S:\ \ \ \ \ \0.000.01ΜΔ\140453.000.01.806362.NH\/ Rev H R3D1 Page 0	57	M51	Х	162	%70
		Δ_{3D} Version 17.0.2 [S:\ \ \		453 000 01 806363 NUV DA	

Member Point Loads (BLC 3 : 90 Wind - No Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
58	M51	Х	036	%50
59	M51	Х	119	%30
60	M51	Х	066	%30
61	M52	Х	105	%5
62	M52	Х	105	%80
63	M52	Х	082	%50
64	M52	Х	124	%50
65	M52	Х	0	0
66	M53	Х	137	%5
67	M53	X	137	%95
68	M53	Х	058	%50
69	M53	Х	0	0
70	M53	X	0	0

Member Point Loads (BLC 4 : 0 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Z	021	<u>%10</u>
2	6	Z	021	%95
3	6	Z	007	%40
4	6	Z	0008	%60
5	6	Z	0	0
6	7	Z	02	%5
7	7	Z	02	%80
8	7	Z	006	%50
9	7	Z	012	%30
10	7	Z	02	%30
11	8	Z	057	%5
12	8	Z	057	%80
13	8	Z	011	%50
14	8	Z	013	%50
15	8	Z	0	0
16	9	Z	073	%5
17	9	Z	073	%95
18	9	Z	015	%50
19	9	Z	0	0
20	9	Z	0	0
21	37	Z	009	%30
22	37	Z	0	0
23	37	Z	0	0
24	37	Z	0	0
25	37	Z	0	0
26	M125	Z	009	%50
27	<u>M125</u>	Z	0	0
28	M125	Z	0	0
29	<u>M125</u>	Z	0	0
30	M125	Z	0	0
31	M94	Z	021	%10
32	M94	Z	021	%95
33	<u>M94</u>	Z	007	%40
34	M94	Z	0008	%60
35	M94	Z	0	0
36	M95	Z	057	%5
37	M95	Ζ	057	%70
38	M95	Z	006	%50
39	M95	Z	012	%30
40	M95	Ζ	02	%30

Member Point Loads (BLC 4 : 0 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
41	M96	Z	057	%5
42	M96	Z	057	%80
43	M96	Z	011	%50
44	M96	Z	013	%50
45	M96	Z	0	0
46	M97	Z	073	%5
47	M97	Z	073	%95
48	M97	Z	015	%50
49	M97	Z	0	0
50	M97	Z	0	0
51	M50	Z	021	%10
52	M50	Z	021	%95
53	M50	Z	007	%40
54	M50	Z	0008	%60
55	M50	Z	0	0
56	M51	Z	057	%5
57	M51	Z	057	%70
58	M51	Z	006	%50
59	M51	Z	012	%30
60	M51	Z	02	%30
61	M52	Z	057	%5
62	M52	Z	057	%80
63	M52	Z	011	%50
64	M52	Z	013	%50
65	M52	Z	0	0
66	M53	Z	073	%5
67	M53	Z	073	%95
68	M53	Z	015	%50
69	M53	Z	0	0
70	M53	Z	0	0

Member Point Loads (BLC 5 : 90 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Х	009	%10
2	6	Х	009	%95
3	6	Х	003	%40
4	6	Х	001	%60
5	6	Х	0	0
6	7	Х	017	%5
7	7	Х	017	%80
8	7	Х	006	%50
9	7	Х	021	%30
10	7	Х	012	%30
11	8	Х	024	%5
12	8	Х	024	%80
13	8	Х	015	%50
14	8	Х	022	%50
15	8	Х	0	0
16	9	Х	032	%5
17	9	Χ	032	%95
18	9	Х	011	%50
19	9	X	0	0
20	9	Х	0	0
21	37	Х	009	%30
22	37	Х	0	0
23	37	X	0	0

Member Point Loads (BLC 5 : 90 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
24	37	Х	0	0
25	37	X	0	0
26	M125	X	009	%50
27	M125	Х	0	0
28	M125	X	0	0
29	M125	Х	0	0
30	M125	Х	0	0
31	M94	Х	009	%10
32	M94	X	009	%95
33	M94	Х	003	%40
34	M94	Х	001	%60
35	M94	Х	0	0
36	M95	Х	036	%5
37	M95	Х	036	%70
38	M95	Х	006	%50
39	M95	X	021	%30
40	M95	X	012	%30
41	M96	X	024	%5
42	M96	X	024	%80
43	M96	X	- 015	%50
44	M96	X	- 022	%50
45	M96	X	0	0
46	M97	X	- 032	%5
47	M97	X	- 032	%95
48	M97	X	- 011	%50
49	M97	X	0	0
50	M97	X	0	Ŭ,
51	M50	X	- 009	%10
52	M50	X	- 009	%95
53	M50	X	- 003	%40
54	M50	X	- 001	%60
55	M50	X	0	0
56	M51	X	- 036	%5
57	M51	X	- 036	%70
58	M51	X	006	%50
59	M51	X	- 021	%30
60	M51	X	- 012	%30
61	M52	X	- 024	%5
62	M52	X	- 024	%80
63	M52	X	- 015	%50
64	M52	X	- 022	%50
65	M52	X	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
66	M53	X	- 032	%5
67	M53	X	- 032	%95
68	M53	X	- 011	%50
69	M53	X	0	0
70	M53	X	0	0
10	IVIUU		U	U

Member Point Loads (BLC 6 : 0 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Z	007	%10
2	6	Z	007	%95
3	6	Z	003	%40
4	6	Z	0003	%60
5	6	Z	0	0
6	7	Z	006	%5

Member Point Loads (BLC 6 : 0 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	7	Z	006	%80
8	7	Z	002	%50
9	7	Z	004	%30
10	7	Z	007	%30
11	8	Z	018	%5
12	8	Z	018	%80
13	8	Z	004	%50
14	8	Z	005	%50
15	8	Z	0	0
16	9	Z	024	%5
17	9	Z	024	%95
18	9	Z	005	%50
19	9	Z	0	0
20	9	Z	0	0
21	37	Z	003	%30
22	37	Z	0	0
23	37	Z	0	0
24	37	Z	0	0
25	37	Z	0	0
26	M125	Z	003	%50
27	M125	Z	0	0
28	M125	Z	0	0
29	M125	<u>Z</u>	0	0
30	M125	Z	0	0
31	M94	Z	007	%10
32	M94	Z	007	%95
33	M94	Z	003	%40
34	M94	Z	0003	%60
35	M94	Z	0	0
36	M95	Z	018	%5
37	M95	Z	018	%70
38	M95	Z	002	%50
39	M95	Z	004	%30
40	M95	Z	007	%30
41	M96	Z	018	%5
42	M96	Z	018	%80
43	M96	Z	004	%50
44	M96	Z	005	%50
45	M96	Z	0	0
46	<u>M97</u>	Z	024	%5
47	<u>M97</u>	Z	024	%95
48	M97	Z	005	%50
49	M97	Z	0	0
50	M97	Z	0	0
51	<u>M50</u>		007	<u>%10</u>
52	M50	Z	007	%95
53	<u>M50</u>	<u>Z</u>	003	%40
54	M50	<u> </u>	0003	%60
55	M50	<u> </u>	0	0
56	M51	<u> </u>	018	%5
57	M51		018	%70
58	M51	<u>Z</u>	002	%50
59	M51	<u> </u>	004	%30
60	M51	Z	007	%30
61	M52	<u>Z</u>	018	%5
62	M52	Z	018	%80
63	M52	Ζ	004	<u> </u>

Member Point Loads (BLC 6 : 0 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
64	M52	Z	005	%50
65	M52	Z	0	0
66	M53	Z	024	%5
67	M53	Z	024	%95
68	M53	Z	005	%50
69	M53	Z	0	0
70	M53	Z	0	0

Member Point Loads (BLC 7 : 90 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	X	003	%10
2	6	X	003	%95
3	6	Х	0009	%40
4	6	Х	0005	%60
5	6	X	0	0
6	7	Х	005	%5
7	7	Х	005	%80
8	7	Х	002	%50
9	7	Х	008	%30
10	7	Х	004	%30
11	8	X	007	%5
12	8	X	007	%80
13	8	X	005	%50
14	8	Х	008	%50
15	8	X	0	0
16	9	Х	009	%5
17	9	Х	009	%95
18	9	Х	004	%50
19	9	X	0	0
20	9	Х	0	0
21	37	X	003	%30
22	37	X	0	0
23	37	X	0	0
24	37	X	0	0
25	37	X	0	0
26	M125	X	003	%50
27	M125	X	0	0
28	M125	Х	0	0
29	M125	Х	0	0
30	M125	Х	0	0
31	M94	Х	003	%10
32	M94	Х	003	%95
33	M94	Х	0009	%40
34	M94	Х	0005	%60
35	M94	Χ	0	0
36	M95	X	01	%5
37	M95	X	01	%70
38	M95	X	002	%50
39	<u>M95</u>	X	008	%30
40	M95	X	004	%30
41	M96	X	007	%5
42	M96	X	007	%80
43	<u>M96</u>	X	005	%50
44	M96	X	008	%50
45	M96	X	0	0
46	M97	X	009	%5

Member Point Loads (BLC 7 : 90 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
47	M97	X	009	%95
48	M97	Х	004	%50
49	M97	Х	0	0
50	M97	Х	0	0
51	M50	Х	003	%10
52	M50	Х	003	%95
53	M50	Х	0009	%40
54	M50	Х	0005	%60
55	M50	X	0	0
56	M51	X	01	%5
57	M51	X	01	%70
58	M51	X	002	%50
59	M51	Х	008	%30
60	M51	X	004	%30
61	M52	X	007	%5
62	M52	X	007	%80
63	M52	Х	005	%50
64	M52	X	008	%50
65	M52	X	0	0
66	M53	X	009	%5
67	M53	Х	009	%95
68	M53	X	004	%50
69	M53	X	0	0
70	M53	X	0	0

Member Point Loads (BLC 8 : Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Y	043	%10
2	6	Y	043	%95
3	6	Y	016	%40
4	6	Y	003	%60
5	6	Y	0	0
6	7	Y	116	%5
7	7	Y	116	%80
8	7	Y	019	%50
9	7	Y	049	%30
10	7	Y	049	%30
11	8	Y	11	%5
12	8	Y	11	%80
13	8	Y	037	%50
14	8	Y	051	%50
15	8	Y	0	0
16	9	Y	154	%5
17	9	Y	154	%95
18	9	Y	037	%50
19	9	Y	0	0
20	9	Y	0	0
21	37	Y	045	%30
22	37	Y	0	0
23	37	Υ	0	0
24	37	Y	0	0
25	37	Υ	0	0
26	M125	Y	045	%50
27	M125	Y	0	0
28	M125	Y	0	0
29	M125	Y	0	0

Member Point Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
30	M125	Y	0	0
31	M94	Y	043	%10
32	M94	Y	043	%95
33	M94	Y	016	%40
34	M94	Y	003	%60
35	M94	Y	0	0
36	M95	Y	124	%5
37	M95	Y	124	%70
38	M95	Y	019	%50
39	M95	Y	049	%30
40	M95	Y	049	%30
41	M96	Y	11	%5
42	M96	Y	11	%80
43	M96	Y	037	%50
44	M96	Y	051	%50
45	M96	Y	0	0
46	M97	Y	154	%5
47	M97	Y	154	%95
48	M97	Y	037	%50
49	M97	Y	0	0
50	M97	Y	0	0
51	M50	Y	043	%10
52	M50	Y	043	%95
53	M50	Y	016	%40
54	M50	Y	003	%60
55	M50	Y	0	0
56	M51	Y	124	%5
57	M51	Y	124	%70
58	M51	Y	019	%50
59	M51	Y	049	%30
60	M51	Y	049	%30
61	M52	Y	11	%5
62	M52	Y	11	%80
63	M52	Y	037	%50
64	M52	Y	051	%50
65	M52	Y	0	0
66	M53	Y	154	%5
67	M53	Y	154	%95
68	M53	Y	037	%50
69	M53	Y	0	0
70	M53	Y	0	0

Member Point Loads (BLC 9 : 0 Seismic)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Z	009	%10
2	6	Z	009	%95
3	6	Z	005	%40
4	6	Z	0006	%60
5	6	Z	0	0
6	7	Z	028	%5
7	7	Z	028	%80
8	7	Z	006	%50
9	7	Z	013	%30
10	7	Z	013	%30
11	8	Z	016	%5
12	8	Z	016	%80

Member Point Loads (BLC 9 : 0 Seismic) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
13	8	Z	018	%50
14	8	Z	014	%50
15	8	Z	0	0
16	9	Z	026	%5
17	9	Z	026	%95
18	9	Z	018	%50
19	9	Z	0	0
20	9	Z	0	0
21	37	Z	008	%30
22	37	Z	0	0
23	37	Z	0	0
24	37	Z	0	0
25	37	Ζ	0	0
26	M125	Z	008	%50
27	M125	Z	0	0
28	M125	Z	0	0
29	M125	Ζ	0	0
30	M125	Z	0	0
31	M94	Z	009	%10
32	M94	Z	009	%95
33	M94	Z	005	%40
34	M94	Z	0006	%60
35	<u>M94</u>	<u>Z</u>	0	0
36	<u>M95</u>	<u>Z</u>	021	%5
37	<u>M95</u>	<u>Z</u>	021	%70
38	M95	Ζ	006	%50
39	<u>M95</u>	Z	013	%30
40	<u>M95</u>	<u>Z</u>	013	%30
41	<u>M96</u>	<u>Z</u>	016	%5
42	<u>M96</u>	<u>Z</u>	016	%80
43	<u>M96</u>	<u> </u>	018	%50
44	<u>M96</u>	<u> </u>	014	%50
45	<u>M96</u>	<u> </u>	0	0
46	<u>M97</u>	<u> </u>	026	%5
4/	<u>M97</u>	<u> </u>	026	%95
48	N97	<u> </u>	018	%50
49	N97	2	0	0
50	N97	2	000	0(10
51	NI50	<u>∠</u> 7	009	%10
52		<u> </u>	009	%95 9/ 40
53	MEO	7	005	7/04U 9/ 60
55		7	0000	%00
55	NISU NISU		021	0/5
50	N/51	7	021	00
57		<u> </u>	021	
50	M51	7	000	//00
60	M51	7		//030
61	M52	7	015	0/5
62	M52	7	010	/05
63	M52	7		%50
64	M52	7	010	%50
65	M52	7	014	0
66	M53	7	- 026	%5
67	M53	7	020	%05
68	M53	7	_ 018	%50
60	M53	7	010	0
	IVIJJ	L <u>L</u>	U U	

Member Point Loads (BLC 9 : 0 Seismic) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
70	M53	Z	0	0

Member Point Loads (BLC 10 : 90 Seismic)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	6	Х	009	%10
2	6	Х	009	%95
3	6	Х	005	%40
4	6	Х	0006	%60
5	6	Х	0	0
6	7	Х	028	%5
7	7	Х	028	%80
8	7	Х	006	%50
9	7	Х	013	%30
10	7	Х	013	%30
11	8	Х	016	%5
12	8	X	016	%80
13	8	X	018	%50
14	8	X	014	%50
15	8	X	0	0
16	9	X	026	%5
17	9	X	026	%95
18	9	X	018	%50
19	9	X	0	0
20	9	X	0	0
21	37	X	008	%30
22	37	X	0	0
23	37	X	0	0
24	37	X	0	0
25	37	X	0	0
26	M125	X	008	%50
27	M125	X	0	0
28	M125	Х	0	0
29	M125	Х	0	0
30	M125	Х	0	0
31	M94	Х	009	%10
32	M94	Х	009	%95
33	M94	Х	005	%40
34	M94	Х	0006	%60
35	M94	Х	0	0
36	M95	Х	021	%5
37	M95	Х	021	%70
38	M95	Х	006	%50
39	M95	Х	013	%30
40	M95	Х	013	%30
41	M96	Χ	016	%5
42	M96	Х	016	%80
43	M96	Х	018	%50
44	M96	Х	014	%50
45	M96	Х	0	0
46	M97	Х	026	%5
47	M97	Х	026	%95
48	M97	Х	018	%50
49	M97	Х	0	0
50	M97	Х	0	0
51	M50	Х	009	%10
52	M50	Х	009	%95

Member Point Loads (BLC 10 : 90 Seismic) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
53	M50	X	005	%40
54	M50	Х	0006	%60
55	M50	Х	0	0
56	M51	Х	021	%5
57	M51	Х	021	%70
58	M51	Х	006	%50
59	M51	Х	013	%30
60	M51	Х	013	%30
61	M52	Х	016	%5
62	M52	X	016	%80
63	M52	Х	018	%50
64	M52	Х	014	%50
65	M52	Х	0	0
66	M53	Х	026	%5
67	M53	X	026	%95
68	M53	X	018	%50
69	M53	X	0	0
70	M53	X	0	0

Member Point Loads (BLC 15 : Maint LL 1)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 4	Y	25	%5
Mambar Daint Landa (DLC 16	· Maint (1 2)		
Wemper Point Loads (BLC 16	: Waint LL Z)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 5	Ý	25	%5
Member Point Loads (BLC 17	: Maint LL 3)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 4	Y	25	%95
Member Point Loads (BLC 18	: Maint LL 4)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 5	Y	25	%95
Member Point Loads (BLC 19	: Maint LL 5)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 M49	Y	25	%5
Member Point Loads (BLC 20	: Maint LL 6)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft.%]
1 M48	Y	25	%5
Member Point Loads (BLC 21	: Maint LL 7)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 M49	Y	25	%95
Member Point Loads (BLC 22	: Maint LL 8)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 M48	Y	25	%95
Member Point Loads (BLC 23	: Maint LL 9)		
Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
RISA-3D Version 17.0.2 [S:\\	.\\\009.01MA\1404	53_009_01_806362_NHV_Re	ev H.R3D] Page 19

Member F	<u> Point Loads (BLC 23 :</u>	Maint LL 9) (Contin	nued)	
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M92	Y	25	%5
Member F	Point Loads (BLC 24 :	Maint LL 10)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M93	Y	25	%5
Member F	Point Loads (BLC 25 :	Maint LL 11)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M92	Y	25	%95
Member F	Point Loads (BLC 26 :	Maint LL 12)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M93	Y	25	%95
Member F	Point Loads (BLC 27 :	Maint LL 13)		
	Member Label	Direction	Magnitude[k.k-ft]	Location[ft.%]
1	16	Y	25	%50
Member F	Point Loads (BLC 28 :	Maint LL 14)		
	Member Label	Direction	Magnitude[k k-ft]	Location[ft %]
1	20	Y	25	%50
Member F	Point Loads (BLC 29 :	Maint LL 15)		
	Member Label	Direction	Magnitude[k k-ft]	Location[ft %]
1	37	Y	25	%50
Member F	Point Loads (BLC 30 :	Maint LL 16)		
	Member Label	Direction	Magnitude[k.k-ft]	Location[ft,%]
1	40	Y	25	%50
Member F	Point Loads (BLC 31 :	Maint LL 17)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M60	Y	25	%50
Member F	Point Loads (BLC 32 :	Maint LL 18)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Y	25	%50
Member F	Point Loads (BLC 33 :	Maint LL 19)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft.%]
1	M81	Y	25	%50
Member F	Point Loads (BLC 34 :	Maint LL 20)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M84	Υ	25	%50
Member F	Point Loads (BLC 35 :	Maint LL 21)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M125	Y	25	%50

Member Point Loads (BLC 36 : Maint LL 22)

1	Member Label	Direction	Magnitude[k,k-ft]	Location[ft.%]				
	M128	Y	25	%50				
Member Point Loads (BLC 37 : Maint LL 23)								
1	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]				
	M104	Y	25	%50				

Member Point Loads (BLC 38 : Maint LL 24)

-

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M108	Y	25	%50

Member Distributed Loads (BLC 2 : 0 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Z	004	004	0	0
2	2	Z	004	004	0	0
3	3	Z	003	003	0	0
4	4	Z	01	01	0	0
5	5	Z	01	01	0	0
6	6	Z	016	016	0	0
7	7	Z	016	016	0	0
8	8	Z	016	016	0	0
9	9	Z	016	016	0	0
10	10	Z	003	003	0	0
11	11	Z	003	003	0	0
12	15	Z	002	002	0	0
13	16	Z	009	009	0	0
14	17	Z	002	002	0	0
15	19	Z	002	002	0	0
16	20	Z	009	009	0	0
17	21	Z	002	002	0	0
18	24	Z	01	01	0	0
19	33	Z	003	003	0	0
20	34	Z	003	003	0	0
21	35	Z	003	003	0	0
22	36	Z	002	002	0	0
23	37	Z	009	009	0	0
24	38	Z	002	002	0	0
25	39	Z	002	002	0	0
26	40	Z	009	009	0	0
27	41	Z	002	002	0	0
28	43	Z	01	01	0	0
29	M45	Z	004	004	0	0
30	M46	Z	004	004	0	0
31	M47	Z	003	003	0	0
32	M48	Z	01	01	0	0
33	M49	Z	01	01	0	0
34	M50	Z	016	016	0	0
35	M51	Z	016	016	0	0
36	M52	Z	016	016	0	0
37	M53	Z	016	016	0	0
38	M54	Z	003	003	0	0
39	M55	Z	003	003	0	0
40	M59	Z	002	002	0	0
41	M60	Z	009	009	0	0
42	M61	Z	002	002	0	0

Member Distributed Loads (BLC 2 : 0 Wind - No Ice) (Continued)

	Member Label	Direction	_Start Magnitude[k/ft,	. End Magnitude[k/ft,F	. Start Location[ft,%]	End Location[ft,%]
43	M63	Z	002	002	0	0
44	M64	Z	009	009	0	0
45	M65	Z	002	002	0	0
46	M68	Z	01	01	0	0
47	M77	Z	003	003	0	0
48	M78	Z	003	003	0	0
49	M79	Z	003	003	0	0
50	M80	Z	002	002	0	0
51	M81	Z	009	009	0	0
52	M82	Z	002	002	0	0
53	M83	Z	002	002	0	0
54	M84	Z	009	009	0	0
55	M85	Z	002	002	0	0
56	M87	Z	01	01	0	0
57	M89	Z	004	004	0	0
58	M90	Z	004	004	0	0
59	M91	Z	003	003	0	0
60	M92	Z	01	01	0	0
61	M93	Z	01	01	0	0
62	M94	Z	016	016	0	0
63	M95	Z	016	016	0	0
64	M96	Z	016	016	0	0
65	M97	Z	016	016	0	0
66	M98	Z	003	003	0	0
67	M99	Z	003	003	0	0
68	M103	Z	002	002	0	0
69	M104	Z	009	009	0	0
70	M105	Z	002	002	0	0
71	M107	Z	002	002	0	0
72	M108	Z	009	009	0	0
73	M109	Z	002	002	0	0
74	M112	Z	01	01	0	0
75	M121	Z	003	003	0	0
76	M122	Z	003	003	0	0
77	M123	Z	003	003	0	0
78	M124	Z	002	002	Ō	0
79	M125	Ž	009	009	0	Ő
80	M126	Z	002	-,002	Ō	Ō
81	M127	Z	002	002	0	0
82	M128	Z	009	009	0	0
83	M129	Z	002	002	0	0
84	M131	Z	01	01	Ō	Ő

Member Distributed Loads (BLC 3 : 90 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Х	004	004	0	0
2	2	Х	004	004	0	0
3	3	Х	003	003	0	0
4	4	Х	01	01	0	0
5	5	Х	01	01	0	0
6	6	Х	016	016	0	0
7	7	Х	016	016	0	0
8	8	Х	016	016	0	0
9	9	Х	016	016	0	0
10	10	Х	003	003	0	0
11	11	Х	003	003	0	0

Member Distributed Loads (BLC 3 : 90 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
12	15	X	002	002	0	0
13	16	Χ	009	009	00	0
14	17	Х	002	002	0	0
15	19	Χ	002	002	0	0
16	20	Х	009	009	0	0
17	21	Х	002	002	0	0
18	24	Х	01	01	0	0
19	33	Х	003	003	0	0
20	34	Х	003	003	0	0
21	35	Х	003	003	0	0
22	36	Х	002	002	0	0
23	37	Х	009	009	0	0
24	38	Х	002	002	0	0
25	39	Х	002	002	0	0
26	40	Х	009	009	0	0
27	41	Х	002	002	0	0
28	43	X	01	01	0	0
29	M45	Х	004	004	0	0
30	M46	Х	004	004	0	0
31	M47	Х	003	003	0	0
32	M48	Х	01	01	0	0
33	M49	Х	01	01	0	0
34	M50	Х	016	016	0	0
35	M51	Х	016	016	0	0
36	M52	Х	016	016	0	0
37	M53	Х	016	016	0	0
38	M54	Х	003	003	0	0
39	M55	Х	003	003	0	0
40	M59	Х	002	002	0	0
41	M60	Х	009	009	0	0
42	M61	Х	002	002	0	0
43	M63	Х	002	002	0	0
44	M64	Х	009	009	0	0
45	M65	Х	002	002	0	0
46	M68	Х	01	01	0	0
47	M77	Х	003	003	0	0
48	M78	Х	003	003	0	0
49	M79	Х	003	003	0	0
50	M80	Х	002	002	0	0
51	M81	Χ	009	009	0	0
52	M82	Х	002	002	0	0
53	M83	Х	002	002	0	0
54	M84	Х	009	009	0	0
55	M85	X	002	002	0	0
56	M87	Х	01	01	0	0
57	M89	Х	004	004	0	0
58	M90	Х	004	004	0	0
59	M91	Х	003	003	0	0
60	M92	Х	01	01	0	0
61	M93	Х	01	01	0	0
62	M94	X	016	016	0	0
63	M95	X	016	016	0	0
64	M96	X	016	016	0	0
65	M97	X	016	016	0	0
66	M98	X	003	003	0	0
67	M99	X	003	003	0	0
68	M103	X	002	002	0	0

Member Distributed Loads (BLC 3 : 90 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
69	M104	Х	009	009	0	0
70	M105	Х	002	002	0	0
71	M107	Х	002	002	0	0
72	M108	Х	009	009	0	0
73	M109	Х	002	002	0	0
74	M112	Х	01	01	0	0
75	M121	Х	003	003	0	0
76	M122	Х	003	003	0	0
77	M123	Х	003	003	0	0
78	M124	Х	002	002	0	0
79	M125	Х	009	009	0	0
80	M126	Х	002	002	0	0
81	M127	Х	002	002	0	0
82	M128	Х	009	009	0	0
83	M129	Х	002	002	0	0
84	M131	X	01	01	0	0

Member Distributed Loads (BLC 4 : 0 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Z	004	004	0	0
2	2	Z	004	004	0	0
3	3	Z	002	002	0	0
4	4	Z	002	002	0	0
5	5	Z	002	002	0	0
6	6	Z	006	006	0	0
7	7	Z	006	006	0	0
8	8	Z	006	006	0	0
9	9	Z	006	006	0	0
10	10	Z	002	002	0	0
11	11	Z	002	002	0	0
12	15	Z	004	004	0	0
13	16	Z	002	002	0	0
14	17	Z	004	004	0	0
15	19	Z	004	004	0	0
16	20	Z	002	002	0	0
17	21	Z	004	004	0	0
18	24	Z	002	002	0	0
19	33	Z	002	002	0	0
20	34	Z	002	002	0	0
21	35	Z	002	002	0	0
22	36	Z	004	004	0	0
23	37	Z	002	002	0	0
24	38	Z	004	004	0	0
25	39	Z	004	004	0	0
26	40	Z	002	002	0	0
27	41	Z	004	004	0	0
28	43	Z	002	002	0	0
29	M45	Z	004	004	0	0
30	M46	Z	004	004	0	0
31	M47	Z	002	002	0	0
32	M48	Z	002	002	0	0
33	M49	Z	002	002	0	0
34	M50	Z	006	006	0	0
35	M51	Z	006	006	0	0
36	M52	Z	006	006	0	0
37	M53	Z	006	006	0	0

Member Distributed Loads (BLC 4 : 0 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
38	M54	Z	002	002	0	0
39	M55	Z	002	002	0	0
40	M59	Z	004	004	0	0
41	<u>M60</u>	Z	002	002	0	0
42	M61	Z	004	004	0	0
43	M63	Z	004	004	0	0
44	M64	Z	002	002	0	0
45	M65	Z	004	004	0	0
46	M68	Z	002	002	0	0
47	M77	Z	002	002	0	0
48	M78	Z	002	002	0	0
49	M79	Z	002	002	0	0
50	M80	Z	004	004	0	0
51	M81	Z	002	002	0	0
52	M82	Z	004	004	0	0
53	M83	Z	004	004	0	0
54	M84	Z	002	002	0	0
55	M85	Z	004	004	0	0
56	M87	7	- 002	- 002	0	0
57	M89	7	- 004	- 004	0	0
58	M90	7	- 004	- 004	Ő	0
59	M91	7	- 002	- 002	Ő	0
60	M92	7	- 002	- 002	0	0
61	M93	7	- 002	- 002	0	0
62	M94	7	- 006	- 006	0	0
63	M95	7	- 006	- 006	0	0
64	M96	7	- 006	- 006	0	0
65	M97	7	- 006	- 006	0	0
66	M98	7	- 002	- 002	0	0
67	M99	7	- 002	- 002	0	0
68	M103	7	- 004	- 004	0	0
69	M104	7	- 002	- 002	0	0
70	M105	7	- 004	- 004	0	0
71	M103	7	004	004	0	0
72	M108	7	- 002	- 002	0	0
73	M109	7	- 004	- 004	0	0
74	M112	7	_ 002	- 002	0	0
75	M121	7	- 002	- 002	0	0
76	M122	7	002	002	0	0
77	M122	7	002	002	0	0
78	M124	7	_ 004	_ 00/	0	0
70	M125	7		_ 002	0	0
80	M120	7	002	002	0	0
81	M120	7	_ 004	004	0	0
82	M128	7	004	004	0	0
82	M120	7	002	002	0	0
<u> </u>	M121	7	004	004	0	0
04	IVITST	<u> </u>	002	002	U	U

Member Distributed Loads (BLC 5 : 90 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Х	004	004	0	0
2	2	Х	004	004	0	0
3	3	Х	002	002	0	0
4	4	Х	002	002	0	0
5	5	Х	002	002	0	0
6	6	Х	006	006	0	0

Member Distributed Loads (BLC 5 : 90 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
		X	006	006	0	0
8	8		006	006	0	0
9	9	<u> </u>	006	006	0	0
10	10	X	002	002	0	0
11	11	X	002	002	0	0
12	15	X	004	004	0	0
13	16	X	002	002	0	0
14	1/	X	004	004	0	0
15	19	X	004	004	0	0
16	20	X	002	002	0	0
1/	21	X	004	004	0	0
18	24	X	002	002	0	0
19	33	X	002	002	0	0
20	34	X	002	002	0	0
21	35	X	002	002	0	0
22	36	X	004	004	0	0
23	37	X	002	002	0	0
24	38	X	004	004	0	0
25	39	X	004	004	0	0
26	40	X	002	002	0	0
27	41	X	004	004	0	0
28	43	X	002	002	0	0
29	<u>M45</u>	X	004	004	0	0
30	<u>M46</u>	X	004	004	0	0
31	M47	X	002	002	0	0
32	M48	X	002	002	0	0
33	M49	X	002	002	0	0
34	M50	X	006	006	0	0
35	M51	X	006	006	0	0
36	M52	X	006	006	0	0
37	M53	X	006	006	0	0
38	M54	X	002	002	0	0
39	<u>M55</u>	X	002	002	0	0
40	M59	X	004	004	0	0
41	<u>M60</u>	X	002	002	0	0
42	<u>M61</u>	X	004	004	0	0
43	<u>M63</u>	X	004	004	0	0
44	<u>M64</u>	X	002	002	0	0
45	<u>M65</u>	X	004	004	0	0
46	M68	X	002	002	0	0
47	<u>M77</u>	X	002	002	0	0
48	M78	X	002	002	0	0
49	M79	X	002	002	0	0
50	M80	X	004	004	0	0
51	<u>M81</u>	X	002	002	0	0
52	M82	X	004	004	0	0
53	M83	X	004	004	0	0
54	M84	X	002	002	0	0
55	<u>M85</u>	X	004	004	0	0
56	M87	X	002	002	0	0
57	M89	X	004	004	0	0
58	M90	X	004	004	0	0
59	M91	X	002	002	0	0
60	M92	X	002	002	0	0
61	M93	X	002	002	0	0
62	M94	Х	006	006	0	0
63	M95	X	006	006	0	0

Member Distributed Loads (BLC 5 : 90 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
64	M96	Х	006	006	0	0
65	M97	Х	006	006	0	0
66	M98	Х	002	002	0	0
67	M99	Х	002	002	0	0
68	M103	Х	004	004	0	0
69	M104	Х	002	002	0	0
70	M105	Х	004	004	0	0
71	M107	Х	004	004	0	0
72	M108	Х	002	002	0	0
73	M109	Х	004	004	0	0
74	M112	Х	002	002	0	0
75	M121	Х	002	002	0	0
76	M122	Х	002	002	0	0
77	M123	Х	002	002	0	0
78	M124	Х	004	004	0	0
79	M125	Х	002	002	0	0
80	M126	Х	004	004	0	0
81	M127	X	004	004	0	0
82	M128	X	002	002	0	0
83	M129	Х	004	004	0	0
84	M131	X	002	002	0	0

Member Distributed Loads (BLC 6 : 0 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Z	0003	0003	0	0
2	2	Z	0003	0003	0	0
3	3	Z	0001	0001	0	0
4	4	Z	0003	0003	0	0
5	5	Z	0003	0003	0	0
6	6	Z	001	001	0	0
7	7	Z	001	001	0	0
8	8	Z	001	001	0	0
9	9	Z	001	001	0	0
10	10	Z	0001	0001	0	0
11	11	Z	0001	0001	0	0
12	15	Z	0001	0001	0	0
13	16	Z	0003	0003	0	0
14	17	Z	0002	0002	0	0
15	19	Z	0001	0001	0	0
16	20	Z	0003	0003	0	0
17	21	Z	0002	0002	0	0
18	24	Z	0003	0003	0	0
19	33	Z	0001	0001	0	0
20	34	Z	0001	0001	0	0
21	35	Z	0001	0001	0	0
22	36	Z	0001	0001	0	0
23	37	Z	0003	0003	0	0
24	38	Z	0002	0002	0	0
25	39	Z	0001	0001	0	0
26	40	Z	0003	0003	0	0
27	41	Z	0002	0002	0	0
28	43	Z	0003	0003	0	0
29	M45	Z	0003	0003	0	0
30	M46	Z	0003	0003	0	0
31	M47	Z	0001	0001	0	0
32	M48	Z	0003	0003	0	0

Member Distributed Loads (BLC 6 : 0 Wind - Service) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
33	M49	Z	0003	0003	0	0
34	M50	Z	001	001	0	0
35	M51	Z	001	001	0	0
36	M52	Z	001	001	0	0
37	M53	Z	001	001	0	0
38	M54	Z	0001	0001	0	0
39	M55	Z	0001	0001	0	0
40	M59	Z	0001	0001	0	0
41	M60	Z	0003	0003	0	0
42	M61	Z	0002	0002	0	0
43	M63	Z	0001	0001	0	0
44	M64	Z	0003	0003	0	0
45	M65	Z	0002	0002	0	0
46	M68	Z	0003	0003	0	0
47	M77	7	- 0001	- 0001	0	0
48	M78	7	0001	- 0001	0	0
49	M79	7	0001	0001	0	0
50	M80	7	- 0001	- 0001	0	0
51	M81	7	- 0003	- 0003	0	0
52	M82	7	- 0002	- 0002	0	0
53	M83	7	- 0001	- 0001	0	0
54	M84	7	- 0003	- 0003	0	0
55	M85	7	- 0002	- 0002	0	0
56	M87	7	- 0003	- 0003	0	0
57	M89	7	- 0003	- 0003	0	0
58	M90	7	- 0003	- 0003	0	0
59	M91	7	0001	0001	0	0
60	M92	Z	0003	0003	0	0
61	M93	Z	0003	0003	0	0
62	M94	Z	001	001	0	0
63	M95	Z	001	001	0	0
64	M96	Z	001	001	0	0
65	M97	Z	001	001	0	0
66	M98	Z	0001	0001	0	0
67	M99	Z	0001	0001	0	0
68	M103	Z	0001	0001	0	0
69	M104	Z	0003	0003	0	0
70	M105	Z	0002	0002	0	0
71	M107	Z	0001	0001	0	0
72	M108	Z	0003	0003	0	0
73	M109	Z	0002	0002	0	0
74	M112	Z	0003	0003	0	0
75	M121	Z	0001	0001	0	0
76	M122	Z	0001	0001	0	0
77	M123	Z	0001	0001	0	0
78	M124	Z	0001	0001	0	0
79	M125	Z	0003	0003	0	0
80	M126	Z	0002	0002	0	0
81	M127	Z	0001	0001	0	0
82	M128	Z	0003	0003	0	0
83	M129	Z	0002	0002	0	0
84	M131	Z	0003	0003	0	0

Member Distributed Loads (BLC 7 : 90 Wind - Service)

_		Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
	1	1	Х	0003	0003	0	0
_							
_							

Member Distributed Loads (BLC 7 : 90 Wind - Service) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
2	2	Х	0003	0003	0	0
3	3	X	0001	0001	00	0
4	4	Х	0003	0003	0	0
5	5	X	0003	0003	0	0
6	6	Х	001	001	0	0
7	7	Χ	001	001	0	0
8	8	Х	001	001	0	0
9	9	Χ	001	001	0	0
10	10	Х	0001	0001	0	0
11	11	Χ	0001	0001	0	0
12	15	Х	0001	0001	0	0
13	16	Χ	0003	0003	0	0
14	17	Х	0002	0002	0	0
15	19	Χ	0001	0001	0	0
16	20	Х	0003	0003	0	0
17	21	Х	0002	0002	0	0
18	24	Х	0003	0003	0	0
19	33	Χ	0001	0001	0	0
20	34	Х	0001	0001	0	0
21	35	Χ	0001	0001	0	0
22	36	Х	0001	0001	0	0
23	37	Х	0003	0003	0	0
24	38	Х	0002	0002	0	0
25	39	Х	0001	0001	0	0
26	40	Х	0003	0003	0	0
27	41	Х	0002	0002	0	0
28	43	Х	0003	0003	0	0
29	M45	X	0003	0003	0	0
30	M46	Х	0003	0003	0	0
31	M47	Χ	0001	0001	0	0
32	M48	Х	0003	0003	0	0
33	M49	Χ	0003	0003	0	0
34	M50	Х	001	001	0	0
35	M51	X	001	001	0	0
36	M52	Х	001	001	0	0
37	M53	X	001	001	0	0
38	M54	Х	0001	0001	0	0
39	M55	X	0001	0001	0	0
40	M59	Х	0001	0001	0	0
41	M60	X	0003	0003	0	0
42	M61	Х	0002	0002	0	0
43	M63	X	0001	0001	0	0
44	M64	X	0003	0003	0	0
45	M65	X	0002	0002	0	0
46	M68	Х	0003	0003	0	0
47	M77	Х	0001	0001	0	0
48	M78	X	0001	0001	0	0
49	M79	X	0001	0001	0	0
50	M80	X	0001	0001	0	0
51	<u>M81</u>	X	0003	0003	0	0
52	M82	X	0002	0002	0	0
53	<u>M83</u>	X	0001	0001	0	0
54	M84	X	0003	0003	0	0
55	<u>M85</u>	X	0002	0002	0	0
56	M87	Х	0003	0003	0	0
57	M89	Х	0003	0003	0	0
58	M90	Х	0003	0003	0	0

Member Distributed Loads (BLC 7 : 90 Wind - Service) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
59	M91	Х	0001	0001	0	0
60	M92	Х	0003	0003	0	0
61	M93	Х	0003	0003	0	0
62	M94	Х	001	001	0	0
63	M95	Х	001	001	0	0
64	M96	Х	001	001	0	0
65	M97	Х	001	001	0	0
66	M98	Х	0001	0001	0	0
67	M99	Х	0001	0001	0	0
68	M103	Х	0001	0001	0	0
69	M104	Х	0003	0003	0	0
70	M105	Х	0002	0002	0	0
71	M107	Х	0001	0001	0	0
72	M108	Х	0003	0003	0	0
73	M109	Х	0002	0002	0	0
74	M112	Х	0003	0003	0	0
75	M121	Х	0001	0001	0	0
76	M122	Х	0001	0001	0	0
77	M123	Х	0001	0001	0	0
78	M124	Х	0001	0001	0	0
79	M125	Х	0003	0003	0	0
80	M126	Х	0002	0002	0	0
81	M127	Х	0001	0001	0	0
82	M128	Х	0003	0003	0	0
83	M129	Х	0002	0002	0	0
84	M131	Х	- 0003	- 0003	0	0

Member Distributed Loads (BLC 8 : Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Y	01	01	0	0
2	2	Y	01	01	0	0
3	3	Y	003	003	0	0
4	4	Y	005	005	0	0
5	5	Y	005	005	0	0
6	6	Y	006	006	0	0
7	7	Y	006	006	0	0
8	8	Y	006	006	0	0
9	9	Y	006	006	0	0
10	10	Y	003	003	0	0
11	11	Y	003	003	0	0
12	15	Y	007	007	0	0
13	16	Y	005	005	0	0
14	17	Y	007	007	0	0
15	19	Y	007	007	0	0
16	20	Y	005	005	0	0
17	21	Y	007	007	0	0
18	24	Y	005	005	0	0
19	33	Y	003	003	0	0
20	34	Y	003	003	0	0
21	35	Y	003	003	0	0
22	36	Y	007	007	0	0
23	37	Y	005	005	0	0
24	38	Y	007	007	0	0
25	39	Y	007	007	0	0
26	40	Y	005	005	0	0
27	41	Y	007	007	0	0

Member Distributed Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
28	43	Y	005	005	0	0
29	<u>M45</u>	Y	01	01	0	0
30	M46	Y	01	01	0	0
31	M47	Υ	003	003	0	0
32	M48	Y	005	005	0	0
33	M49	Y	005	005	0	0
34	M50	Y	006	006	0	0
35	<u>M51</u>	Y	006	006	0	0
36	M52	Y	006	006	0	0
37	M53	Y	006	006	0	0
38	M54	Y	003	003	0	0
39	M55	Y	003	003	0	0
40	M59	Y	007	007	0	0
41	M60	Y	005	005	0	0
42	M61	Y	007	007	0	0
43	M63	Y	007	007	0	0
44	M64	Y	005	005	0	0
45	M65	Y	007	007	0	0
46	M68	Y	005	005	0	0
47	M77	Ý	003	003	0	0
48	M78	Y	003	003	0	0
49	M79	Y	003	003	0	0
50	M80	Y	007	007	0	0
51	M81	Y	005	005	0	0
52	M82	Y	007	007	0	0
53	M83	Y	007	007	0	0
54	M84	Ý	005	005	0	0
55	M85	Y	007	007	0	0
56	M87	Y	005	005	0	0
57	M89	Y	01	01	0	0
58	M90	Y	01	01	0	0
59	M91	Y	003	003	0	0
60	M92	Y	005	005	0	0
61	M93	Y	005	005	0	0
62	M94	Y	006	006	0	0
63	M95	Y	006	006	0	0
64	M96	Y	006	006	0	0
65	M97	Y	006	006	0	0
66	M98	Y	003	003	0	0
67	M99	Y	003	003	0	0
68	M103	Y	007	007	0	0
69	M104	Y	005	005	0	0
70	M105	Y	007	007	0	0
71	M107	Y	007	007	0	0
72	M108	Y	005	005	0	0
73	M109	Y	007	007	0	0
74	M112	Y	005	005	0	0
75	M121	Y	003	003	0	0
76	M122	Y	003	003	0	0
77	M123	Y	003	003	0	0
78	M124	Y	007	007	0	0
79	M125	Y	005	005	0	0
80	M126	Y	007	007	0	0
81	M127	Y	007	007	0	0
82	M128	Y	005	005	0	0
83	M129	Y	007	007	0	0
84	M131	Y	005	005	0	0

Member Distributed Loads (BLC 9 : 0 Seismic)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	<u> </u>	003	003	0	0
2	2	<u> </u>	003	003	0	0
3	3	Ζ	0003	0003	0	0
4	4	Z	001	001	0	0
5	5	Z	001	001	0	0
6	6	Z	0009	0009	0	0
7	7	Z	0009	0009	0	0
8	8	Z	0009	0009	0	0
9	9	Z	0009	0009	0	0
10	10	Z	0003	0003	0	0
11	11	Z	0003	0003	0	0
12	15	Z	001	001	0	0
13	16	Z	001	001	0	0
14	17	Z	001	001	0	0
15	19	Z	001	001	0	0
16	20	Z	001	001	0	0
17	21	Z	001	001	0	0
18	24	Z	0009	0009	0	0
19	33	Z	0003	0003	0	0
20	34	Z	0003	0003	0	0
21	35	7	0003	0003	0	0
22	36	7	001	- 001	Ő	Ő
23	37	7	- 001	- 001	0	0
24	38	7	- 001	- 001	0	0
25	39	7	- 001	- 001	0	0
26	40	7	- 001	- 001	0	0
27	41	7	- 001	- 001	0	0
28	43	7	- 0009	- 0009	0	0
29	M45	7	- 003	- 003	0	0
30	M46	7	- 003	- 003	0	0
31	M47	7	- 0003	- 0003	0	0
32	M48	7	001	001	0	Ő
33	M49	Z	001	001	0	Ő
34	M50	Z	0009	0009	0	0
35	M51	7	- 0009	- 0009	0	0
36	M52	7	- 0009	0009	0	0
37	M53	7	- 0009	- 0009	0	0
38	M54	7	- 0003	- 0003	0	Õ
39	M55	7	- 0003	- 0003	0	Ő
40	M59	Z	001	001	0	0
41	M60	Z	001	001	0	0
42	M61	Z	001	001	Ő	Ő
43	M63	Z	001	001	0	0
44	M64	Z	-,001	001	0	0
45	M65	Z	001	001	0	0
46	M68	Z	0009	0009	0	0
47	M77	Z	0003	0003	0	0
48	M78	Z	0003	-,0003	0	0
49	M79	Z	0003	0003	0	0
50	M80	Z	001	001	0	Ō
51	M81	Z	001	001	0	0
52	M82	Z	001	001	Ő	Ő
53	M83	Z	001	001	0	0
54	M84	Z	001	001	0	Ō
55	M85	Z	001	001	0	0
56	M87	Z	0009	0009	0	0
57	M89	Z	003	003	0	0
	moo	<u> </u>			~	<u> </u>

Member Distributed Loads (BLC 9 : 0 Seismic) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
58	M90	Z	003	003	0	0
59	M91	Z	0003	0003	0	0
60	M92	Z	001	001	0	0
61	M93	Z	001	001	0	0
62	M94	Z	0009	0009	0	0
63	M95	Z	0009	0009	0	0
64	M96	Z	0009	0009	0	0
65	M97	Z	0009	0009	0	0
66	M98	Z	0003	0003	0	0
67	M99	Z	0003	0003	0	0
68	M103	Z	001	001	0	0
69	M104	Z	001	001	0	0
70	M105	Z	001	001	0	0
71	M107	Z	001	001	0	0
72	M108	Z	001	001	0	0
73	M109	Z	001	001	0	0
74	M112	Z	0009	0009	0	0
75	M121	Z	0003	0003	0	0
76	M122	Z	0003	0003	0	0
77	M123	Z	0003	0003	0	0
78	M124	Z	001	001	0	0
79	M125	Z	001	001	0	0
80	M126	Z	001	001	0	0
81	M127	Z	001	001	0	0
82	M128	Z	001	001	0	0
83	M129	Z	001	001	0	0
84	M131	7	- 0009	- 0009	0	0

Member Distributed Loads (BLC 10 : 90 Seismic)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Х	003	003	0	0
2	2	Х	003	003	0	0
3	3	Х	0003	0003	0	0
4	4	Х	001	001	0	0
5	5	Х	001	001	0	0
6	6	Х	0009	0009	0	0
7	7	Х	0009	0009	0	0
8	8	Х	0009	0009	0	0
9	9	Х	0009	0009	0	0
10	10	Х	0003	0003	0	0
11	11	Х	0003	0003	0	0
12	15	Х	001	001	0	0
13	16	Х	001	001	0	0
14	17	Х	001	001	0	0
15	19	Х	001	001	0	0
16	20	Х	001	001	0	0
17	21	Х	001	001	0	0
18	24	Х	0009	0009	0	0
19	33	Х	0003	0003	0	0
20	34	Х	0003	0003	0	0
21	35	Х	0003	0003	0	0
22	36	Х	001	001	0	0
23	37	Х	001	001	0	0
24	38	Х	001	001	0	0
25	39	Х	001	001	0	0
26	40	Х	001	001	0	0

Member Distributed Loads (BLC 10 : 90 Seismic) (Continued)

07	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
27	41	X	001	001	0	0
28	43	X	0009	0009	0	0
29	N45	X	003	003	0	0
30	M46	X	003	003	0	0
31	<u>M47</u>	X	0003	0003	0	0
32	M48	X	001	001	0	0
33	M49	X	001	001	0	0
34	M50	X	0009	0009	0	0
35	M51	X	0009	0009	0	0
36	M52	X	0009	0009	0	0
37	M53	X	0009	0009	0	0
38	<u>M54</u>	X	0003	0003	0	0
39	M55	X	0003	0003	0	0
40	<u>M59</u>	X	001	001	0	0
41	M60	X	001	001	0	0
42	<u>M61</u>	X	001	001	0	0
43	M63	X	001	001	0	0
44	<u>M64</u>	X	001	001	0	0
45	<u>M65</u>	X	001	001	0	0
46	<u>M68</u>	X	0009	0009	0	0
47	<u> </u>	X	0003	0003	0	0
48	M78	X	0003	0003	0	0
49	<u>M79</u>	X	0003	0003	0	0
50	<u>M80</u>	X	001	001	0	0
51	<u>M81</u>	X	001	001	0	0
52	M82	X	001	001	0	0
53	<u>M83</u>	X	001	001	0	0
54	M84	X	001	001	0	0
55	M85	X	001	001	0	0
56	M87	X	0009	0009	0	0
57	M89	X	003	003	0	0
58	M90	X	003	003	0	0
59	<u>M91</u>	X	0003	0003	0	0
60	<u>M92</u>	X	001	001	0	0
61	<u>M93</u>	X	001	001	0	0
62	<u>M94</u>	X	0009	0009	0	0
63	<u>M95</u>	X	0009	0009	0	0
64	<u>M96</u>	X	0009	0009	0	0
65	<u>M97</u>	X	0009	0009	0	0
66	M98	X	0003	0003	0	0
67	M99	X	0003	0003	0	0
68	M103	X	001	001	0	0
69	M104	X	001	001	0	0
/0	M105	X	001	001	0	0
/1	M107	X	001	001	<u> </u>	0
72	<u>M108</u>	X	001	001	0	0
73	<u>M109</u>	X	001	001	0	0
/4	M112	X	0009	0009	0	0
/5	<u>M121</u>	X	0003	0003	0	0
/6	M122	X	0003	0003	0	0
17	M123	X	0003	0003	0	0
/8	M124	X	001	001	0	0
79	M125	X	001	001	0	0
80	M126	X	001	001	0	0
81	M127	X	001	001	0	0
82	M128	X	001	001	0	0
83	M129	<u> X </u>	001	001	0	0

Member Distributed Loads (BLC 10 : 90 Seismic) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
84	M131	Х	0009	0009	0	0

Joint Loads and Enforced Displacements (BLC 11 : Live Load a)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*s^2*ft)]
1	20	L	Y	5
2	N92	L	Y	5
3	N163	L	Y	5

Joint Loads and Enforced Displacements (BLC 12 : Live Load b)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*s^2*ft)]
1	21	L	Y	5
2	N93	L	Y	5
3	N164		Y	- 5

Joint Loads and Enforced Displacements (BLC 13 : Live Load c)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*s^2*ft)]
1	22	L	Y	5
2	N94	L	Y	5
3	N165	L	Y	5

Joint Loads and Enforced Displacements (BLC 14 : Live Load d)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*s^2*ft)]
1	23	L	Y	5
2	N95	L	Y	5
3	N166	L	Y	5

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	29	max	1.845	41	1.719	14	.502	13	0	109	0 T	109	Ō	109
2		min	-1.349	83	.532	8	-3.674	19	0	1	0	1	0	1
3	30	max	1.31	77	1.536	20	3.54	25	0	109	0	109	0	109
4		min	-1.805	47	.51	2	.207	7	0	1	0	1	0	1
5	70	max	.043	5	.05	22	1.174	4	0	109	0	109	0	109
6		min	043	11	009	4	-1.106	10	0	1	0	1	0	1
7	70A	max	.045	5	.055	22	.898	4	0	109	0	109	0	109
8		min	045	11	002	4	969	10	0	1	0	1	0	1
9	N71	max	1.199	4	1.662	19	2.106	2	0	109	0	109	0	109
10		min	-3.841	10	.536	13	-1.3	8	0	1	0	1	0	1
11	N72	max	2.748	16	1.692	22	4.073	2	0	109	0	109	0	109
12		min	509	10	.588	4	-2.233	8	0	1	0	1	0	1
13	N102	max	3.552	16	1.471	24	.379	38	0	109	0	109	0	109
14		min	179	10	.536	6	-1.93	80	0	1	0	1	0	1
15	N139	max	1.379	8	.059	3	.793	3	0	109	0	109	0	109
16		min	-1.3	2	021	9	84	9	0	1	0	1	0	1
17	N142	max	1.029	8	.057	14	.684	2	0	109	0	109	0	109
18		min	-1.115	2	01	8	635	8	0	1	0	1	0	1
19	N173	max	205	3	1.524	15	.781	2	0	109	0	109	0	109
20		min	-2.598	21	.526	9	-2.879	44	0	1	0	1	0	1
21	N210	max	1.164	7	.054	7	.624	7	0	109	0	109	0	109
22		min	-1.227	13	015	13	661	13	0	1	0	1	0	1
23	N213	max	.891	7	.055	19	.464	7	0	109	0	109	0	109
24		min	829	13	003	13	428	13	0	1	0	1	0	1

Envelope Joint Reactions (Continued)

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
25	Totals:	max	8.251	5	9.691	18	11.437	2						
26		min	-8.251	11	4.248	11	-11.437	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pphi*Pphi*Mphi*M Egn
1	9	PIPE 2.0	.690	3.719	8	.046	3.828		43	8.922 32.13 1.872 1.872 H1-1b
2	M53	PIPE 2.0	.690	3.719	8	.047	6.672		38	8.922 32.13 1.872 1.872 H1-1b
3	M97	PIPE 2.0	.690	3.719	2	.047	3.828		39	8.922 32.13 1.872 1.872 H1-1b
4	M95	PIPE 2.0	.597	3.719	2	.071	3.828		3	8.922 32.13 1.872 1.872 H1-1b
5	M51	PIPE 2.0	.597	3.719	8	.069	3.828		12	8.922 32.13 1.872 1.872 H1-1b
6	10	3/4" SR	.568	0	20	.005	0		20	2,707 19,88 ,249 ,249 H1-1a
7	M98	3/4" SR	.565	0	15	.005	0		16	2,707 19,88 ,249 ,249 H1-1a
8	M61	PL 1/2X3 11/16	.562	0	21	.288	0	v	18	79.835 82.969 .864 6.374 H1-1b
9	M105	PL 1/2X3 11/16	.558	0	14	.311	0	v	21	79.835 82.969 .864 6.374 H1-1b
10	17	PL 1/2X3 11/16	.556	0	16	.317	0	v	14	79.835 82.969 .864 6.374 H1-1b
11	11	3/4" SR	.551	3	14	.004	0		8	2.707 19.88 .249 .249 H1-1a
12	M54	3/4" SR	.549	0	24	.005	0		24	2.707 19.88 .249 .249 H1-1a
13	8	PIPE 2.0	.545	3.719	8	.079	3.828		8	8,922 32,13 1,872 1,872 H1-1b
14	M96	PIPE 2.0	.545	3.719	2	.085	3.828		4	8.922 32.13 1.872 1.872 H1-1b
15	M52	PIPE 2.0	.545	3.719	2	.084	3.828		13	8.922 32.13 1.872 1.872 H1-1b
16	M109	PL 1/2X3 11/16	.543	0	25	.298	0	v	16	79.835 82.969 864 6.374 H1-1b
17	M65	PL 1/2X3 11/16	.543	0	20	.284	0	v	25	79.835 82.969 864 6.374 H1-1b
18	21	PL 1/2X3 11/16	.539	0	18	.309	0	v	20	79.835 82.969 864 6.374 H1-1b
19	M99	3/4" SR	.536	3	21	.004	3	_	10	2,707 19.88 .249 .249 H1-1a
20	34	3/4" SR	530	0	20	008	0		19	2 707 19 88 249 249 H1-1a
21	M122	3/4" SR	525	0	16	009	0		15	2 707 19 88 249 249H1-1a
22	M55	3/4" SR	515	3	18	003	0		13	2 707 19 88 249 249 H1-1a
23	M78	3/4" SR	506	0	24	008	0		23	2 707 19 88 249 249H1-1a
24	35	3/4" SR	467	3	14	006	0		20	2 707 19 88 249 249
25	M123	3/4" SR	454	3	21	006	0		15	2 707 19 88 249 249
26	M79	3/4" SR	436	3	18	006	0		12	2 707 19 88 249 249H1-1a
27	38	PL 1/2X3 11/16	434	0	84	370	0	v	15	79.835 82.969 864 6 374 H1-1b
28	41	PL 1/2X3 11/16	433	0	82	357	0	v	20	79.835 82.969 864 6 374 H1-1b
29	M93	HSS2.375X0	431	4.469	2	128	2.438		8	7 649 62 55 3 6 3 6H1-1a
30	M129	PL 1/2X3 11/16	426	0	80	358	0	v	15	79.835 82.969 864 6 374 H1-1b
31	M126	PL 1/2X3 11/16	426	0	79	369	0	v	23	79.835 82.969 864 6 374 H1-1b
32	M82	PL 1/2X3 11/16	418	0	74	372	0	v	19	79.835 82.969 864 6 374 H1-1b
33	M85	PL 1/2X3 11/16	413	0	75	353	0	v	22	79.835 82.969 864 6 374 H1-1b
34	5	HSS2.375X0	375	2.573	7	116	2.167	-	2	7 649 62 55 3 6 3 6 H1-1a
35	M49	HSS2.375X0	357	4.469	10	122	2.302		9	7 649 62 55 3 6 3 6 H1-1a
36	7	PIPE 2.0	288	3.719	8	059	3.828		8	8 922 32 13 1 872 1 872 H1-1b
37	6	PIPE 2.0	280	3.828	8	039	6.672		14	8 922 32 13 1 872 1 872 H1-1b
38	M50	PIPE 2.0	.271	3.828	85	.038	6.672		18	8.922 32.13 1.872 1.872 H1-1b
39	M94	PIPE 2.0	270	3.828	77	039	4.266		76	8 922 32 13 1 872 1 872 H1-1b
40	M107	PL 1/2X3 11/16	269	227	2	174	227	v	16	80.831 82.969 864 6 374 H1-1b
41	15	PL 1/2X3 11/16	268	227	2	229	227	v	2	80.831 82.969 864 6 374 H1-1b
42	19	PL 1/2X3 11/16	263	227	7	191	0	v	8	80.831 82.969 864 6 374 H1-1b
43	M92	HSS2.375X0	258	542	2	151	2.438	-	2	7 649 62 55 3 6 3 6H1-1b
44	4	HSS2.375X0	257	2.438	8	168	2.167		8	7 649 62 55 3 6 3 6H1-1b
45	M103	PL 1/2X3 11/16	248	227	9	181	227	v	21	80.831 82.969 864 6 374 H1-1b
46	M90	PI 5/8x6	240	667	14	196	167	v	24	94.955 168.75 2 197 21.094 H1-1b
47	2	PL5/8x6	239	667	17	199	167	v	15	94.955 168.75 2 197 21.094 H1-1b
48	M63	PL 1/2X3 11/16	.237	.227	23	167	.227	V	25	80.831 82.969 864 6 374 H1-1b
49	M46	PL5/8x6	.236	.667	21	194	.167	v	20	94.955 168.75 2 197 21.094 H1-1b
50	M59	PL 1/2X3 11/16	.228	.227	18	170	.227	v	18	80.831 82.969 864 6.374 H1-1b
								_		

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*P	phi*P	phi*M	phi*M	Eqn
51	1	PL5/8x6	.225	667	23	.196	167	V	21	94.955	168.75	2.197	21.094	H1-1b
52	M89	PL5/8x6	.225	.667	20	.193	.167	У	18	94.955	168.75	2.197	21.094	H1-1b
53	M48	HSS2.375X0	.224	.542	9	.138	2.302	-	2	7.649	62.55	3.6	3.6	H1-1b
54	M45	PL5/8x6	.222	.667	15	.191	.167	y	14	94.955	168.75	2.197	21.094	H1-1b
55	39	PL 1/2X3 11/16	.181	.227	80	.194	.227	Ŷ	20	80.831	82.969	.864	6.374	H1-1b
56	M83	PL 1/2X3 11/16	.179	.227	85	.189	.227	y	23	80.831	82.969	.864	6.374	H1-1b
57	M60	HSS2.375X0	.179	3.672	21	.106	3.75	-	18	48.725	62.55	3.6	3.6	H1-1b
58	M104	HSS2.375X0	.178	3.672	14	.111	3.75		21	48.725	62.55	3.6	3.6	<mark>H1-</mark> 1b
59	M127	PL 1/2X3 11/16	.177	.227	76	.194	.227	V	15	80.831	82.969	.864	6.374	H1-1b
60	20	HSS2.375X0	.176	3.672	24	.106	3.75		20	48.725	62.55	3.6	3.6	<mark>H1-1</mark> b
61	M64	HSS2.375X0	.176	3.672	16	.100	3.75		25	48.725	62.55	3.6	3.6	H1-1b
62	16	HSS2.375X0	.176	3.672	17	.113	3.75		14	48.725	62.55	3.6	3.6	H1-1b
63	M108	HSS2.375X0	.175	3.672	20	.104	3.75		15	48.725	62.55	3.6	3.6	H1-1b
64	36	PL 1/2X3 11/16	.169	.227	14	.201	.227	V	14	80.831	82.969	.864	6.374	H1 - 1b
65	M68	HSS2.375X0	.168	0	9	.004	0		3	9.616	45	2.674	2.674	H1
66	M124	PL 1/2X3 11/16	.167	.227	21	.202	.227	V	22	80.831	82.969	.864	6.374	H1-1b
67	3	3/4" SR	.167	0	15	.023	4.673		8	1.116	19.88	.249	.249	H1-1b
68	M80	PL 1/2X3 11/16	.167	.227	18	.202	.227	V	18	80.831	82.969	.864	6.374	H1 - 1b
69	M91	3/4" SR	.166	0	23	.013	4.673		4	1.116	19.88	.249	.249	H1-1b
70	M47	3/4" SR	.164	0	19	.017	4.673		13	1.116	19.88	.249	.249	H1-1b
71	33	3/4" SR	.160	0	25	.016	4.673		8	1.116	19.88	.249	.249	H1-1b
72	M121	3/4" SR	.159	4.673	15	.013	4.673		15	1.116	19.88	.249	.249	H1-1b
73	M77	3/4" SR	.157	4.673	23	.013	4.673		24	1.116	19.88	.249	.249	H1-1b
74	M112	HSS2.375X0	.145	0	13	.004	10.1		7	9.616	45	2.674	2.674	H1
75	40	HSS2.375X0	.138	3.672	83	.108	3.75		20	48.725	62.55	3.6	3.6	H1-1b
76	M128	HSS2.375X0	.136	3.672	80	.107	3.75		15	48.725	62.55	3.6	3.6	H1-1b
77	37	HSS2.375X0	.134	3.672	82	.113	3.75		14	48.725	62.55	3.6	3.6	H1-1b
78	M84	HSS2.375X0	.132	3.672	75	.104	3.75		25	48.725	62.55	3.6	3.6	H1-1b
79	M125	HSS2.375X0	.131	3.672	79	.112	3.75		22	48.725	62.55	3.6	3.6	H1-1b
80	M81	HSS2.375X0	.129	3.672	74	.111	3.75		19	48.725	62.55	3.6	3.6	H1-1b
81	M87	HSS2.375X0	.126	10.1	8	.004	10.1		3	9.616	45	2.674	2.674	H1
82	24	HSS2.375X0	.122	10.1	4	.004	10.1		11	9.616	45	2.674	2.674	H1
83	M131	HSS2.375X0	.099	5.057	13	.004	10.1		7	9.616	45	2.674	2.674	H1-1b
84	43	HSS2.375X0	.093	10.1	4	.004	10.1		11	9.616	45	2.674	2.674	H1

Exhibit F

Power Density/RF Emissions Report

Crown Castle on behalf of AT&T Mobility, LLC Site BU – 806362 Application ID – ATT order 509327 Site Name – NHV 108 943133 Site Compliance Report

Intersection of Rte 322 / Meridian Road Wolcott, CT 06716

Latitude: N41-33-34.40 Longitude: W72-56-49.10 Structure Type: Self-Support

Report generated date: March 24, 2020 Report by: Zyotty Thamsil Customer Contact: Anne Marie Zsamba

AT&T Mobility, LLC will be compliant upon completion of the remediation identified in Section 3.2.

© 2020 Site Safe, LLC, Vienna, VA

Michael Fischer, P.E. Registered Professional Engineer (Electrical) Connecticut License Number 33928 Expires January 31, 2021

Signed 24 March 2020

Crown Castle on behalf of AT&T Mobility, LLC NHV 108 943133 - 806362 Radio Frequency (RF) Site Compliance Report

Intersection of Rte 322 / Meridian Road, Wolcott, CT 06716

Table of Contents

1	EX	ECUTIVE SUMMARY	3
2	RE	GULATORY BASIS	4
	2.1 2.2	FCC Rules and Regulations	4 5
3	SIT		6
	3.1 3.2	Site Compliance Statement	6 6
4	SA	FETY PLAN AND PROCEDURES	7
5	AN	NALYSIS	. 8
	5.1	RF Emissions Diagram	8
6	AN	ITENNA INVENTORY	13
7	EN	GINEER CERTIFICATION	17
A	PPEN	DIX A – STATEMENT OF LIMITING CONDITIONS	18
A	PPEN	DIX B – ASSUMPTIONS AND DEFINITIONS	19
	Gene Use c Defin	eral Model Assumptions df Generic Antennas hitions	19 19 20
A	PPEN	DIX C – RULES & REGULATIONS	22
	Expla Occ	anation of Applicable Rules and Regulations upational Environment Explained	22 22
A	PPEN	DIX D – GENERAL SAFETY RECOMMENDATIONS	23
	Addi	tional Information	24

1 Executive Summary

AT&T Mobility, LLC has contracted with Site Safe, LLC (Sitesafe), an independent Radio Frequency (RF) regulatory and engineering consulting firm, to determine whether the proposed communications site, 806362 - NHV 108 943133, located at Intersection of Rte 322 / Meridian Road, Wolcott, CT, is in compliance with the Federal Communication Commission (FCC) Rules and Regulations for RF emissions.

This report contains a detailed summary of the RF environment at the site including:

- Diagram of the site
- Inventory of the make / model of all antennas
- Theoretical MPE based on modeling

This report addresses exposure to radio frequency electromagnetic fields in accordance with the FCC Rules and Regulations for all individuals, classified in two groups, "Occupational or Controlled" and "General Public or Uncontrolled." **AT&T Mobility, LLC will be compliant** with the FCC Rules and Regulations, as described in OET Bulletin 65, **upon implementation of the proposed remediation.** The corrective actions needed to make this site compliant are located in Section 3.2.

AT&T Mobility, LLC proposes to make modifications to an existing site. The proposed antennas are noted as "proposed" in the antenna table under Section 6.

This document and the conclusions herein are based on the information provided by AT&T Mobility, LLC.

If you have any questions regarding RF safety and regulatory compliance, please do not hesitate to contact Sitesafe's Customer Support Department at (703) 276-1100.

2 Regulatory Basis

2.1 FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for evaluating the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996, the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric	Magnetic	Power	Averaging Time E ² ,
Range	Field	Field	Density (S)	H ² or S (minutes)
(MHz)	Strength (E)	Strength	(mW/cm²)	
	(V/m)	(H) (A/m)		
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-			5	6
100,000				

Limits for Occupational/Controlled Exposure (MPE)

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time E ² , H ² or S (minutes)
(MHz)	Strength (E)	Strength	(mW/cm²)	
	(V/m)	(H) (A/m)		
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-			1.0	30
100,000				
<i>c c</i>				

f = frequency in MHz *Plane-wave equivalent power density

2.2 OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer –

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic lockout/tagout procedure aimed to control the unexpected energization or startup of machines when maintenance or service is being performed.

3 Site Compliance

3.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant with the FCC Rules and Regulations, as described in OET Bulletin 65, **upon implementation of the proposed remediation**. The corrective actions needed to make this site compliant are located in Section 3.2.

The compliance determination is based on theoretical modeling, RF signage placement recommendations, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the proposed AT&T Mobility, LLC deployment plan could result in the site being rendered noncompliant.

3.2 Actions for Site Compliance

Based on common industry practice and our understanding of FCC and OSHA requirements, this section provides a statement of recommendations for site compliance. RF alert signage recommendations have been proposed based on theoretical analysis of MPE levels. Where applicable, barriers can consist of locked doors, fencing, railing, rope, chain, paint striping or tape, combined with RF alert signage.

The site will be made compliant if the following changes are implemented:

Self-Support Tower Access Location

Ensure that a Warning sign is installed. Ensure that a NOC Information sign is installed. Ensure that the access points to the tower or gates 1 and 2 are locked/restricted.

4 Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

Training and Qualification Verification: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a worker's understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet-based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

<u>RF Signage</u>: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3-foot clearance from all antennas</u>: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The farther away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram(s): Section 5 of this report contains RF Diagram(s) that outline various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst-case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.

5 Analysis

5.1 **RF Emissions Diagram**

The RF diagram(s) below display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix B.

The key at the bottom of each diagram indicates if percentages displayed are referenced to FCC **General Public** Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

This table displays the maximum theoretical percentage of the FCC's General Public MPE limits:

	General Pu	blic Levels:
Exposure Type:	Maximum	Spatial Average
Reference Level:	Antenna	Ground
AT&T Mobility, LLC:	8,581.8%	<1%
Composite:	13,079.4%	<1%

Note: On the diagrams shown below, each level is marked with a height. For all diagrams that are marked as *Spatial Average 0' – 6'*, the modeling program will spatially average the emissions within the area six feet above each set level. This provides an accurate spatial average of the percentage of the FCC's MPE limits within an accessible area.

RF Exposure Simulation For: NHV 108 943133 Composite Diagram

Spatial Average 0' - 6'

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: NHV 108 943133 All Sector Detailed View

% of FCC Public Exposure Limit Spatial Average 0' - 6'

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: NHV 108 943133 Elevation View

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Single Level (0)

RF Exposure Simulation For: NHV 108 943133 AT&T Mobility, LLC Contribution

% of FCC Public Exposure Limit Spatial Average 0' - 6'

0

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

6 Antenna Inventory

The Antenna Inventory shows all transmitting antennas at the site. This inventory was provided by the customer and was utilized by Sitesafe to perform theoretical modeling of RF emissions. The inventory coincides with the site diagrams in this report, identifying each antenna's location at 806362 - NHV 108 943133. The antenna information collected includes the following information:

- Licensee or wireless operator name
- Frequency or frequency band
- Transmitter power Transmitter Power Output ("TPO"), Effective Radiated Power ("ERP"), or Equivalent Isotropic Radiated Power ("EIRP")
- Antenna manufacturer make, model, and gain

For other carriers at this site, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information with regard to carrier, their FCC license and/or antenna information was not available nor could it be secured while on site. Equipment, antenna models and nominal transmit power were used for modeling, based on past experience with radio service providers.

The following antenna inventory was provided by the customer and was utilized to create the site model diagrams:

				-															
-	EDT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MDT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	z(ft) (AGL)	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	168	168	168
	ERP (Watts)	3508.5	2239.3	2455.4	5249.5	2792.5	3508.5	3631.8	2455.4	5249.5	2792.5	3508.5	2239.3	2455.4	5249.5	2792.5	1888	2885.6	6167.7
	# of Trans	1	1	-	L.	1	1	1	1	-	1	1	1	-	1	-	-	-	-
	Power Units	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt
	Power Type	TPO	IPO	TPO	ГРО	IPO	TPO	TPO	IPO	TPO	TPO	TPO	TPO	TPO	IPO	TPO	ТРО	TPO	TPO
-	Power	160	160	160	160	100	160	160	160	160	100	160	160	160	160	100	100	06	160
-	Horizontal Half Power BW (Deg)	86	69	61.1	67.1	50.6	86	61.9	61.1	67.1	50.6	86	69	61.1	67.1	50.6	64	60	68
	Antenna Gain (dBd)	13.41	11.46	11.86	15.16	14.46	13.41	13.56	11.86	15.16	14.46	13.41	11.46	11.86	15.16	14.46	12.76	15.06	15.86
Inventory	Az (Deg)	24	24	24	24	24	140	140	140	140	140	261	261	261	261	261	30	30	30
Antenna	Tech	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE	LTE			
	TX Freq (MHz)	1930	763	734	2110	2345	1930	763	734	2110	2345	1930	763	734	2110	2345	862	1900	2500
-	(ft)	4.6	9	5.9	8	8	4.6	8	5.9	8	8	4.6	6	5.9	8	8	9	9	4.7
	Ant Type	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel
-	Antenna Make and Model	Powerwave 7770	Quintel QS66512-2	CCI Antennas OPA65R-BU6D	Cci DMP65R-BU8D	Cci DMP65R-BU8D	Powerwave 7770	Cci Antennas TPA-65R-LCUUUU-H8	CCI Antennas OPA65R-BU6D	Cci DMP65R-BU8D	Cci DMP65R-BU8D	Powerwave 7770	Quintel QS66512-2	CCI Antennas OPA65R-BU6D	Cci DMP65R-BU8D	Cci DMP65R-BU8D	Commscope NNVV-65B-R4	Commscope NNVV-65B-R4	RFS APXVTM14-C-I20
-	Operator	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC (PROPOSED)	AT&T MOBILITY LLC (PROPOSED)	SPRINT	SPRINT	SPRINT
	Ant #	-	2	З	4	4	5	9	7	ω	8	6	10	11	12	12	13	13	14

8618 Westwood Center Drive • Suite 315 • Vienna, VA 22182 703.276.1100 • info@sitesafe.com Page 14

			-																	
	EDI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MDT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	z(ft) (AGL)	168	168	168	168	168	168	168	186	186	186	186	186	186	186	186	186	186	186	186
	ERP (Watts)	2885.6	1888	6167.7	2885.6	1888	13.1	6167.7	6167.7	2507.2	3492.4	6167.7	6167.7	2507.2	3492.4	6167.7	6167.7	2507.2	3492.4	6167.7
-	# of Trans	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	~	1	1	1
	Power Units	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt
-	Power Type	TPO	ГРО	TPO	ГРО	TPO	IPO	IPO	ГРО	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	ГРО	TPO	IPO
-	Power	06	100	160	06	100	0.01	160	160	120	160	160	160	120	160	160	160	120	160	160
-	Horizontal Half Power BW (Deg)	60	64	68	60	64	3.3	68	63	62.76	62	65	63	62.76	62	65	63	62.76	62	65
	Antenna Gain (dBd)	15.06	12.76	15.86	15.06	12.76	32.35	15.86	15.86	13.2	13.39	15.86	15.86	13.2	13.39	15.86	15.86	13.2	13.39	15.86
Inventory	Az (Deg)	150	150	150	260	260	213	260	30	30	30	30	150	150	150	150	270	270	270	270
Antenna	Tech						-													
	TX Freq (MHz)	1900	862	2500	1900	862	11000	2500	1900	600	700	2100	1900	600	700	2100	1900	600	700	2100
-	(ft)	9	9	4.7	9	6	2	4.7	4.9	8	8	4.8	4.9	8	8	4.8	4.9	8	8	4.8
	Ant Type	Panel	Panel	Panel	Panel	Panel	Aperture	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel
	Antenna Make and Model	Commscope NNVV-65B-R4	Commscope NNVV-65B-R4	RFS APXVTM14-C-I20	Commscope NNVV-65B-R4	Commscope NNVV-65B-R4	Andrew VHLP2-11	RFS APXVTM14-C-I20	Ericsson AIR 32 B2A B66AA	RFS APXVAARR24_43-U-NA20	RFS APXVAARR24_43-U-NA20	Ericsson AIR 3246	Ericsson AIR 32 B2A B66AA	RFS APXVAARR24_43-U-NA20	RFS APXVAARR24_43-U-NA20	Ericsson AIR 3246	Ericsson AIR 32 B2A B66AA	RFS APXVAARR24_43-U-NA20	RFS APXVAARR24_43-U-NA20	Ericsson AIR 3246
	Operator	SPRINT	SPRINT	SPRINT	SPRINT	SPRINT	SPRINT	SPRINT	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE
-	# #	15	15	16	17	17	18	19	20	21	21	22	23	24	24	25	26	27	27	28

8618 Westwood Center Drive • Suite 315 • Vienna, VA 22182 703.276.1100 • info@sitesafe.com Page 15

	1														
EDI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MDT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Z(ft) (AGL)	177	177	177	177	177	177	177	177	177	177	177	177	177	177	177
ERP (Watts)	2259.9	4667.9	9465	6872.6	4519.8	2259.9	4667.9	9465	6872.6	4519.8	2014.1	4667.9	9465	6872.6	4028.3
# of Trans	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Power Units	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt
Power Type	DOT	DOT	DOT	DOT	DOT	DOT	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	DOL
Power	80	160	160	160	160	80	160	160	160	160	80	160	160	160	160
Horizontal Half Power BW (Deg)	65	47	42	63	65	63	47	42	63	63	57	47	42	63	57
Antenna Gain (dBd)	14.51	14.65	17.72	16.33	14.51	14.51	14.65	17.72	16.33	14.51	14.01	14.65	17.72	16.33	14.01
Az (Deg)	20	20	20	20	20	140	140	140	140	140	270	270	270	270	270
Tech															
TX Freq (MHz)	850	751	1900	2100	850	850	751	1900	2100	850	850	751	1900	2100	850
(ft)	9	9	9	9	9	5.9	9	6	6	5.9	3.6	6	6	6	3.6
Ant Type	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel
Antenna Make and Model	Andrew DB846F65ZAXY	Andrew SBNHH-1D45B	Andrew SBNHH-1D45B	Andrew SBNHH-1D65B	Andrew DB846F65ZAXY	Antel LPA-80063-6CF	Andrew SBNHH-1D45B	Andrew SBNHH-1D45B	Andrew SBNHH-1D65B	Antel LPA-80063-6CF	Swedcom SC 6014	Andrew SBNHH-1D45B	Andrew SBNHH-1D45B	Andrew SBNHH-1D65B	Swedcom SC 6014
Operator	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS	VERIZON WIRELESS
Ant #	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43

Note: The Z reference indicates antenna height **above ground level (AGL)**. ERP values provided by the client and used in the modeling may be greater than are currently deployed. For additional modeling information, refer to Appendix B. Proposed equipment is tagged as (*Proposed*) under *Operator* or Antenna Make and Model.

7 Engineer Certification

The professional engineer whose seal appears on the cover of this document hereby certifies and affirms:

That I am registered as a Professional Engineer in the jurisdiction indicated in the professional engineering stamp on the cover of this document; and

That I am an employee of Site Safe, LLC, in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Zyotty Thamsil.

March 24, 2020

Appendix A – Statement of Limiting Conditions

Sitesafe will not be responsible for matters of a legal nature that affect the site or property.

Due to the complexity of some wireless sites, Sitesafe performed this analysis and created this report utilizing best industry practices and due diligence. Sitesafe cannot be held accountable or responsible for anomalies or discrepancies due to actual site conditions (i.e. mislabeling of antennas or equipment, inaccessible cable runs, inaccessible antennas or equipment, etc.) or information or data supplied by AT&T Mobility, LLC, the site manager, or their affiliates, subcontractors or assigns.

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, observed during the survey of the subject property or that Sitesafe became aware of during the normal research involved in performing this survey. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data provided by a second party and physical data collected by Sitesafe, the physical data will be used.

Appendix B – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The site has been modeled with these assumptions to show the maximum RF energy density. Sitesafe believes this to be a worst-case analysis, based on best available data. Areas modeled to predict emissions greater than 100% of the applicable MPE level may not actually occur but are shown as a worst-case prediction that could be realized real time. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Thus, at any time, if power density measurements were made, we believe the realtime measurements would indicate levels below those depicted in the RF emission diagram(s) in this report. By modeling in this way, Sitesafe has conservatively shown exclusion areas – areas that should not be entered without the use of a personal monitor, carriers reducing power, or performing real-time measurements to indicate real-time exposure levels.

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest MPE, resulting in a conservative analysis.

Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible for taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site complies with FCC standards with regards to Human Exposure to Radio Frequency Electromagnetic Fields from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to a half-wave dipole antenna.

Gain (of an antenna) – The ratio, usually expressed in decibels, of the power required at the input of a loss-free reference antenna to the power supplied to the input of the given antenna to produce, in a given direction, the same field strength or the same power density at the same distance. When not specified otherwise, the gain refers to the direction of maximum radiation. Gain may be considered for a specified polarization. Gain may be referenced to an isotropic antenna (dBi) or a half-wave dipole (dBd) antenna.

General Population/Uncontrolled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are *unaware* of the potential for exposure and who have no control over their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use its industry specific knowledge of antenna models to select a worst-case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The rms and peak electric and magnetic field strength, their squares, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **aware** of the potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of RF exposure on humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit <u>www.osha.gov</u>.

Radio Frequency Exposure or Electromagnetic Fields – Electromagnetic waves that are propagated from antennas through space.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average energy a 6-foot tall human body will absorb while present in an electromagnetic field of energy.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix C – Rules & Regulations

Explanation of Applicable Rules and Regulations

The FCC has set forth guidelines in OET Bulletin 65 for human exposure to radio frequency electromagnetic fields. Specific regulations regarding this topic are listed in Part 1, Subpart I, of Title 47 in the Code of Federal Regulations. Currently, there are two different levels of MPE - General Public MPE and Occupational MPE. An individual classified as Occupational can be defined as an individual who has received appropriate RF training and meets the conditions outlined below. General Public is defined as anyone who does not meet the conditions of being Occupational. FCC and OSHA Rules and Regulations define compliance in terms of total exposure to total RF energy, regardless of location of or proximity to the sources of energy.

It is the responsibility of all licensees to ensure these guidelines are maintained at all times. It is the ongoing responsibility of all licensees composing the site to maintain ongoing compliance with the FCC Rules and Regulations. Individual licensees that contribute less than 5% MPE to any total area out of compliance are not responsible for corrective actions.

OSHA has adopted and enforces the FCC's exposure guidelines. A building owner or site manager can use this report as part of an overall RF Health and Safety Policy. It is important for building owners/site managers to identify areas in excess of the General Population MPE and ensure that only persons qualified as Occupational are granted access to those areas.

Occupational Environment Explained

The FCC definition of Occupational exposure limits apply to persons who:

- are exposed to RF energy as a consequence of their employment;
- have been made aware of the possibility of exposure; and
- can exercise control over their exposure.

OSHA guidelines go further to state that persons must complete RF Safety Awareness training and must be trained in the use of appropriate personal protective equipment.

In order to consider this site an Occupational Environment, the site must be controlled to prevent access by any individuals classified as the General Public. Compliance is also maintained when any non-occupational individuals (the General Public) are prevented from accessing areas indicated as Red or Yellow in the attached RF Emissions diagram. In addition, a person must be aware of the RF environment into which they are entering. This can be accomplished by an RF Safety Awareness class, and by appropriate written documentation such as this Site Compliance Report.

All AT&T Mobility, LLC employees who require access to this site must complete RF Safety Awareness training and must be trained in the use of appropriate personal protective equipment.

Appendix D – General Safety Recommendations

The following are general recommendations appropriate for any site with accessible areas in excess of 100% General Public MPE. These recommendations are not specific to this site. These are safety recommendations appropriate for typical site management, building management, and other tenant operations.

1. All individuals needing access to the main site (or the area indicated to be in excess of General Public MPE) should wear a personal protective monitor (PPM), successfully complete proper RF Safety Awareness training, and have and be trained in the use of appropriate personal protective equipment.

2. All individuals needing access to the main site should be instructed to read and obey all posted placards and signs.

3. The site should be routinely inspected and this or similar report updated with the addition of any antennas or upon any changes to the RF environment including:

- adding new antennas that may have been located on the site
- removing of any existing antennas
- changes in the radiating power or number of RF emitters

4. Post the appropriate **NOTICE**, **CAUTION**, or **WARNING** sign at the main site access point(s) and other locations as required. Note: Please refer to RF Exposure Diagrams in Section 5.1 to inform <u>everyone</u> who has access to this site that beyond posted signs there may be levels in excess of the limits prescribed by the FCC. In addition to RF Advisory Signage, a RF Guideline Signage is recommended to be posted at the main site access point(s). The signs below are examples of signs meeting FCC guidelines.

5. Ensure that the site door remains locked (or appropriately controlled) to deny access to the general public if deemed as policy by the building/site owner.

Keep a copy of this report available for all persons who must access the site. They should read this report and be aware of the potential hazards with regards to RF and MPE limits.

Additional Information

Additional RF information is available at the following sites: <u>https://www.fcc.gov/general/radio-frequency-safety-0</u> <u>https://www.fcc.gov/engineering-technology/electromagnetic-compatibility-</u> <u>division/radio-frequency-safety/faq/rf-safety</u>

OSHA has additional information available at: <u>https://www.osha.gov/SLTC/radiofrequencyradiation/index.html</u>