Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 18, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification Andrews Road, Wolcott, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. The tower was approved by the Siting Council ("Council") in March of 1981 (Petition No. 67). Cellco's use of the tower was approved by the Council in December of 2019 (PE1133-VER-20191104). A copy of the Council's Petition No. 67 and PE1133-VER-20191104 approvals are included in <u>Attachment 1</u>.

Cellco's proposed modification involves the installation of two (2) interference mitigation filters ("Filters") on its existing antenna mounting assembly. The specification sheet for the Filter is included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Wolcott's Chief Elected Official and Land Use Officer. A copy of this letter is being sent to the owner of the Property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The Filters will be installed on Cellco's existing antenna mounting assembly.

28048569-v1

Boston | Hartford | New York | Washington, DC | Providence | Miami | Stamford | Wilmington | Philadelphia | Los Angeles | Albany | rc.com

Robinson+Cole

Melanie A. Bachman, Esq. October 18, 2023 Page 2

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of the Filters will not result in a change to radio frequency (RF) emissions from the facility. Therefore, no new RF emissions information is included in this filing.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation, mounting assembly can support Cellco's proposed modifications. A copy of the SA and MA are included in <u>Attachment 3</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 5</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kunie Mu

Kenneth C. Baldwin

Enclosures Copy to:

Thomas G. Dunn, Mayor David Kalinowski, Zoning Enforcement Officer Southern New England Telephone Company, Property Owner Alex Tyurin, Verizon Wireless

Robinson+Cole

Melanie A. Bachman, Esq. October 18, 2023 Page 3

Thomas G. Dunn, Mayor Town of Wolcott 10 Kenea Avenue Wolcott, CT 06716

David Kalinowski, Zoning Enforcement Officer Town of Wolcott 10 Kenea Avenue Wolcott, CT 06716

Southern New England Telephone Company c/o Frontier Communications attn: Tax Department 401 Merritt 7 Norwalk, CT 06851

Alex Tyurin Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

ATTACHMENT 1

STATE OF CONNECTICUT DEPARTMENT OF BUSINESS REGULATION POWER FACILITY EVALUATION COUNCIL

Petition No. 67 Wolcott, Connecticut March 26, 1981

Mr. Doocy, Mr. Clapp, Mr. Wood, and Mr. Reid met Mr. Kischell and Mr. Bailey of the Southern New England Telephone Company to review the first half of Petition No. 67. Telecommunication facilities were viewed in Wolcott, Waterbury, and Meriden. The second half of Petition No. 67 involves facilities in Shelton, Norwalk, and Bridgeport. These were reviewed on March 31, 1981.

The first half of this petition involves the following changes at the Barry Avenue site in Wolcott: (a) replacing an existing 90 foot tall triangular lattice steel tower with an 80 foot tall square lattice steel tower; (b) replacing two microwave dishes and two reflectors with four new microwave dishes; (c) adding a 12' x 16' concrete radio building and a new fuel storage tank at the base of the tower and extending the fence to encompass the new facilities. Additional changes include: (d) adding two microwave antennae to the Waterbury East Tower in Waterbury and another concrete radio building; and (e) adding one microwave antenna to the West Peak tower in Meriden.

The Wolcott site is in a single family dwelling residential area near the top of Clinton Hill. The tower is visible from several locations within the area. The tower base and radio building are partially screened by vegetation from the nearest residence and are not visible from other residences. The new tower will be located several feet northeast of the existing tower at approximately the same ground elevation. The proposed tower will be 80 feet tall and more narrow than the existing tower; it will be square instead of triangular. The new microwave antennae are to be mounted on a platform at the top of the tower.

The soil appears shallow but stable, and a few bedrock outcrops appear on the site. The proposed tower will require new foundations which will be set in soil or bedrock. If the soil is too shallow or the bedrock unsuitable, some blasting may be necessary.

A new concrete building will be constructed at the base of the tower and will
 accomodate the generator used for emergency power. The existing fence will be extended to enclose this facility.

The existing tower will remain in place for approximately six months or until the new facility is operating properly. Then the existing tower will be dismantled and removed.

According to the SNETCO representatives, this proposal has been approved by the Wolcott Planning and Zoning Commission.

The Waterbury East tower is located adjacent to a water tower and several other cable TV or telecommunication towers on top of Long Hill in Waterbury. The site is surrounded by single and multiple family dwellings, commercial, and industrial properties. Both the telecommunication tower and the water tower are visible

Phone 566-5612 State Office Building — Hartford, Connecticut 06115 An Equal Opportunity Employer from many viewpoints in the Waterbury area. Two microwave antennae are to be mounted at the 80 foot level to the existing 90 foot tower. Once the new facilities are operating, two narrow 80 foot tall towers presently on the site can be removed. These two towers now support reflectors which relay signals from the Waterbury central office to Wolcott. A new radio building will be constructed at the base of the tower and the existing fence will be extended to surround this new building. The radio building will house an emergency generator, the new radio equipment, and future radio equipment when existing facilities are replaced. An existing building presently storing a temporary generator may be removed after the new building is constructed. According to SNETCO representatives, this proposal has received planning and zoning approval.

The Meriden tower is adjacent to West Peak State Park and several telecommunication towers on the top of West Peak. The existing telecommunication facilities on West Peak are relatively well screened from most locations within the state park, but they are a prominent feature on the ridge top as seen from viewpoints in the Meriden area and can be seen up to many miles away on clear days.

The telephone company's tower presently supports seven microwave antennae. SNETCO proposes to add one microwave dish to the existing tower at the 90 foot level to complete a route from Meriden to the Wolcott Tower. The existing North Branform to Wolcott route will be eliminated, and an antenna at the North Branford tower may be removed when the Meriden to Wolcott route is in service. No additional buildings are proposed at this site.

Duncan C. Reid Environmentalist March 30, 1981

STATE OF CONNECTICUT

DEPARTMENT OF BUSINESS REGULATION POWER FACILITY EVALUATION COUNCIL

> Petition No. 67 Norwalk, Connecticut March 31, 1981

Commissioner Boucher, Mr. Clapp, Christopher Wood and Duncan Reid met Mr. Bailey and Mr. Kischell of the Southern New England Telephone Company to review the second part of Petition No. 67 which involved facilities in Norwalk, Bridgeport, and Shelton. The first part of this petition involves facilities located in Wolcott, Waterbury, and Meriden which were visited on Thursday, March 26th.

In Norwalk one dish is to be mounted on an existing 350 foot tower located at a telephone company service center immediately north of Route 1. The dish will be directed toward the existing tower in Bridgeport. The general area around the Norwalk site appears to be commercial, residential, and industrial. The tower is visible from many locations in the area.

The Bridgeport tower (40 feet tall) is located on top of the Central Office Building in downtown Bridgeport. One dish will be mounted at approximately the 30 foot level and directed tower the new dish in Norwalk. The location of the tower on top of the office building diminishes its visual impact.

The 181 foot tower in Shelton is located in a rural residential area. One 5 foot dish will be removed and a 12 foot dish mounted in the same location and directed toward an existing facility in Derby. A new and large dish is required in Shelton to prevent interference with transmissions from Shelton to New Haven. This tower is visible from selected locations within the immediate area and from some distant viewpoints.

No additional radio buildings, generators, or fuel tanks, are planned for the facilities in Norwalk, Bridgeport, and Shelton.

Duncan C. Reid Environmentalist March 31, 1981

> Phone 566-5612 State Office Building — Hartford, Connecticut 06115 An Equal Opportunity Employer

STATE OF CONNECTICUT **CONNECTICUT SITING COUNCIL** Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

December 24, 2019

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

PE1133-VER-20191104 - Cellco Partnership d/b/a Verizon Wireless sub-petition for a declaratory RE: ruling for approval of an eligible facility request for modifications to an existing telecommunications facility located off Andrews Road, Wolcott, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby approves your Eligible Facilities Request (EFR) to install antennas and associated equipment at the above-referenced facility pursuant to the Federal Communications Commission Wireless Infrastructure Report and Order, with the following conditions:

- 1. Approval of any minor changes be delegated to Council staff;
- 2. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- 3. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- 4. The validity of this action shall expire one year from the date of this letter; and
- 5. The Petitioner may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the EFR dated November 1, 2019 and additional information received December 2, 2019. Any minor changes to the eligible facility request require advance notification and approval

Thank you for your attention and cooperation.

Sincerely,

Melanie Bachman **Executive Director**

MAB/IN/emr

c: The Honorable Thomas G. Dunn, Mayor, Town of Wolcott David Kalinowski, Zoning Inspector, Town of Wolcott

S:\PETTIONS\!!0! !200\!!33\3_Subpections_ByTown\Wolco::\AndrewsRd\DCLTR_TELCOM-PE: or tild, Andrewsed weapon does

ATTACHMENT 2

BSF0020F3V1-1

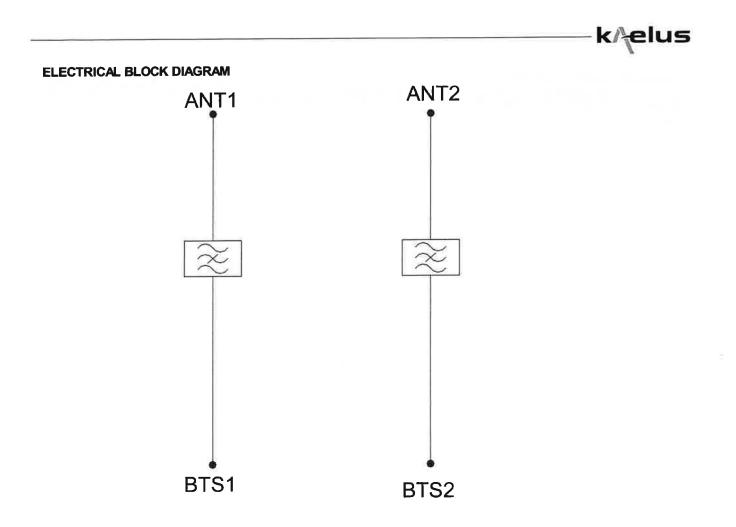
TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2,6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

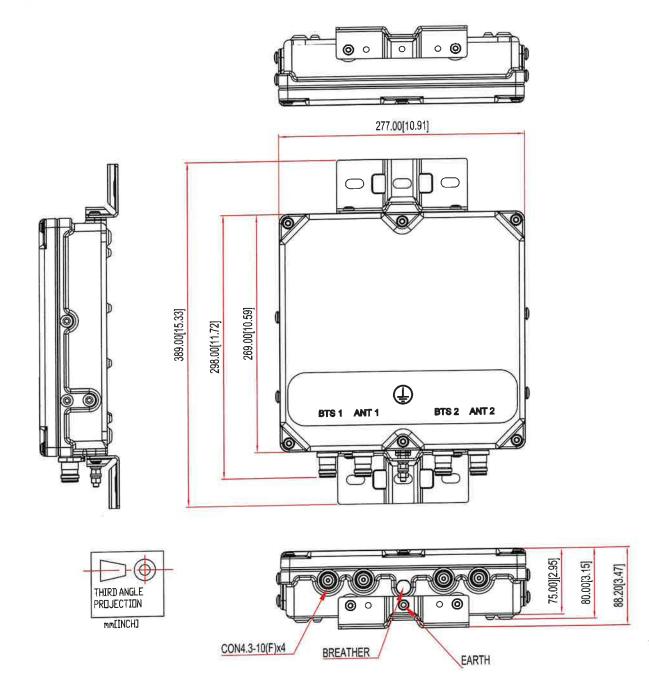
FEATURES

- · Passes full 700 and 850 bands
- · Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- Dual twin mounting available

TECHNICAL SPECIFICATIONS


BAND NAME	700 PATH / 850 UPLINK PATH	850 DOWNLINK PATH						
Passband	698 - 849MHz	869 - 891 5MHz						
Insertion loss	0.1dB typical / 0.3dB maximum	0.5dB typical, 1,45dB maximum						
Return loss	24dB typical, 1	18dB minimum						
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz						
Rejection	53dB minimum @ 8	894,1 - 896,5MHz						
ELECTRICAL								
Impedance	500							
Intermodulation products	-160dBc maximum in UL Band (assuming -153dBc maximum	i 20MHz Signal), with 2 x 43dBm carriers n with 2 x 43dBm						
DC / AISG								
Passband	0 - 13	BMHz						
Insertion loss	0,3dB maximum							
Return loss	15dB minimum							
Input voltage range	± 33V							
DC current rating	2A continuous, 4A peak							
Compliance	3GPP TS	S 25 461						
ENVIRONMENTAL								
For further details of environmental co	ompliance, please contact Kaelus.							
Temperature range	-20°C to +60°C	-4°F to +140°F						
Ingress protection	IPE	67						
Altitude	2600m							
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 - Unit n	nust be terminated with some lightning protection circuits						
MTBF	>1,000,0	00 hours						
Compliance	ETSI EN 300 019 class 4.1H,	RoHS, NEBS GR-487-CORE						
MECHANICAL								
Dimensions H x D x W	269 x 277 x 80mm 10.60 x 10.90 x 3.1	5in (Excluding brackets and connectors)						
Weight	8.0 kg 17.6 lb	os (no bracket)						
Finish	Powder coated, lig	ht grey (RAL7035)						
Connectors	RF: 4.3-1							
Mounting	Optional pole/wall bracket supplied with two metal clamps 4 inform	45-178mm diameter poles or custom bracket. See orderivation.						

ORDERING INFORMATION


PART NUMBER	CONFIGURATION	OPTIONAL FEATURES	CONNECTORS
BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4.3-10 (F)
D05000053\/4_4	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)
BSF0020F3V1-1 BSF0020F3V1-2	QUAD, 4 in / 4 out	DC/AISG PASS	4.3-10 (F)

Page 2

MECHANICAL BLOCK DIAGRAM

BSF0020F3V1-1

ATTACHMENT 3

Structural Analysis of an 80 ft Self-Supporting Tower

VZW Site Info: 2580172 – Wolcott NW CT Everest Site Info: 701770 – Andrews Rd County: New Haven Location: Andrews Rd, Wolcott, CT

Checked By:

Ed Rosenbloom Structural Design Engineer IV

Kenneth K Tang Digitally signed by Kenneth K Tang Date: 2023.09.06 15:57:39 -07'00'

Two Allegheny Ctr Nova Tower 2, Suite 1002 Pittsburgh, PA 15212

September 2023

September 6, 2023

Andrew Dykstra Everest Infrastructure Partners Two Allegheny Ctr Nova Tower 2, Suite 1002 Pittsburgh, PA 15212

RE: Verizon Wireless – 2580172 - Wolcott NW CT Everest – 701770 – Andrews Rd 107 Andrews Rd, Wolcott, CT

Andrew:

Armor Tower has completed the structural analysis of the subject tower and have found it to be adequate within the scope of this analysis to support the proposed antenna loading. The tower was analyzed according to the code-specified wind and ice parameters outlined in the Code Requirements section.

The subject tower is an 80' square self-supporting tower consisting of all-bolted sections with angle legs and bracing. Tower face dimensions range from 6'1'' at the top to 10'7'' at the base. Foundation capacities are based on a geotechnical report and foundation mapping.

The loading used in the analysis consisted of the existing and proposed equipment and equipment changes shown in Table 1.

A synopsis of the analysis results is as follows:

•	Tower legs:	67%
•	Bracing/bolts:	44%/50%

	0	
٠	Anchor bolts	75%
٠	Foundation	59%

We recommend a post-construction inspection be completed by a structural engineer to document that tower-mounted equipment has been placed in compliance with the requirements of this analysis. For a detailed listing of tower performance, please see page 20 of the calculations.

We appreciate the opportunity to provide our professional services to Everest Infrastructure Partners and Verizon Wireless and if you have any questions concerning this analysis, please contact us.

Sincerely,

ARMOR TOWER, INC.

Patrick Botimer Structural Design Engineer V

Kenneth K Tang

Digitally signed by Kenneth K Tang Date: 2023.09.06 15:58:06 -07'00'

9 North Main Street, 2nd Floor, Cortland, NY 13045 (607)591-5381 Fax: (866)870-0840 www.ArmorTower.com

Status	Mount Elev.	Ant. CL	QTY	Antenna Model	Mount Type	Coax QTY/Size	Coax Location	Owner/ Tenant	
Existing	80	90	2	DB212	Extended pipemounts	7/8" coax	Climbing Ladder	Unknowr	
Ŭ			3	APXVAARR24_43-U-NA20					
			3	VV-65A-R1	Pipemounts				
Existing	77	77	3	AIR6419 B41	below	(4) 1-1/4" hybrid	Face D		
Reserved			3	Radio 4449	platform				
			3	Radio 4460 B25/B66					
			2	NNHH-65B-R4					
			2	RFV01U-D1A	(2) R5-216				
	67	67	2	RFV01U-D2A	sector	(1) 1-7/8" hybrid	LegA	vzw	
Existing			2	BSF0020F3V1-1 Filter	mounts	(_) _ // _ // = // = // = // = // =			
Proposed			1	Raycap/12-circuit OVP					
	60	60	1	VHLPX3-11W	Dishmount				

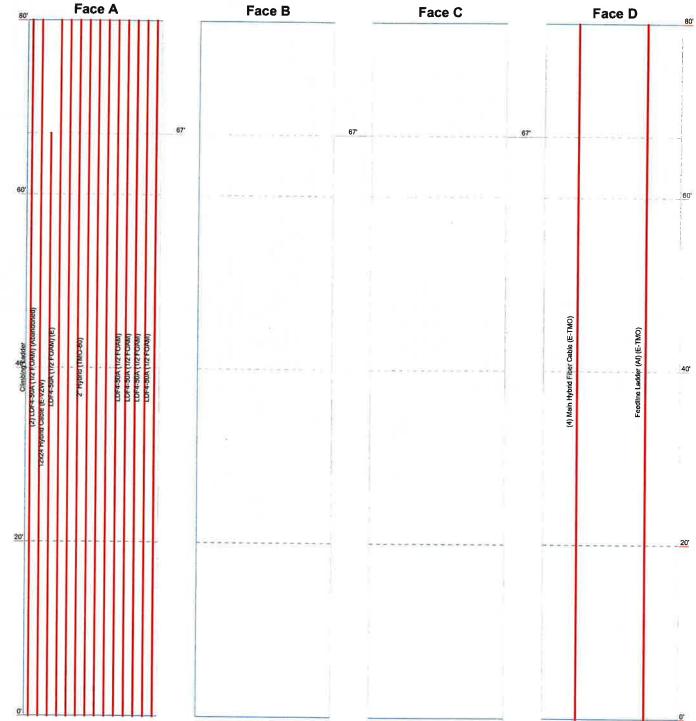
TABLE 1 - Existing/Proposed/Reserved Antennas and Feed lines

CODE REQUIREMENTS

ODE REQUIREMENTS	
Governing code:	2022 CT State Building Code
Code basis/adoption:	2021 International Building Code
Referenced standard:	ANSI/TIA 222-H
Basic wind speed: (3-sec. gust):	V_{ult} : 125 mph with no ice
•	50 mph with 1" concurrent ice
County of site location:	New Haven
ASCE 7 Special wind region:	No
Structure/Risk Category:	II
Exposure Category:	В
Topographic Category: (Method 1)	1 - no topographic escalation
Crest Height/Tower Base AMSL Elevation:	0 ft/ 1006 ft
Site Spectral Response:	$S_s=0.190, S_1=0.054 * Does Not Govern*$

Document	Source	Date of Document
Prior Analysis	Armor Tower, Inc	May 2022
RF Design/CoLo Application	Everest Infrastructure	June 2023
Geotechnical report	Armor Tower, Inc	Dec 2017

PRIMARY ASSUMPTIONS CONSIDERED IN THIS PROJECT


- 1. Leg A is assumed to be oriented Northwest.
- 2. Allowable steel stresses are defined by AISC-LRFD-99/360-16 and all welds conform to AWS D1.1 specification.
- 3. If reserved antennas/feed lines by other carriers or the tower owner are to be considered in this analysis, it is the responsibility of Everest and its affiliates to provide this information.
- 4. Any deviation from the analyzed antenna loading will require a re-analysis of the tower for verification of structural integrity. No changes are proposed for the feed lines.
- 5. This analysis assumes all tower members are galvanized adequately to prevent corrosion of the steel and that all tower members are in "like new" condition with no physical deterioration. This analysis also assumes the tower has been maintained properly per TIA 222-H Annex J recommended inspection and maintenance procedures for tower owners and is in a plumb condition. Armor Tower has not completed a condition assessment of the tower.
- 6. No accounting for residual stresses due to incorrect tower erection can be made. This analysis assumes all bolts are appropriately tightened providing necessary connection continuity and that the installation of the tower was performed by a qualified tower erector.
- 7. No conclusions, expressed or implied, shall indicate that Armor Tower has made an evaluation of the original design, materials, fabrication, or potential installation or erection deficiencies. Any information contrary to that assumed for the purpose of preparing this analysis could alter the findings and conclusions stated herein.
- 8. Armor Tower reserves the right to add to or modify this report as more information becomes available.
- 9. The investigation of the load carrying capacities of the antenna supporting frames/mounts is outside the scope of this analysis. Antenna mount certification can be completed under a separate contract.
- 10. Armor Tower can assist the contractor in providing a Class IV rigging plan for equipment lifting.

ELEVATION	67		lia) 67 67	67	67	67	87	8 3	00	37.5	37,5	37.5	27.5	27.5	27.5	17.5	17.5	17.5	17.5	75	75	75	2			n thickness with height.		? and AISC Specifications. Standards.									RTING TOWER ANAL
TYPE	Samsung RFV01U-D1A (VZW-Delta)	Samsung RFV01U-D1A (VZW-Gamma)	RVZDC-6627-PF-48 (12Circuit OVP) (VZW-Delta) Sameting REV01(1-D2A /VZW-Delta)	Samsung RFV01U-D2A (VZW-Gamma)	(2) R5-216 Mount Bracket (VZW)	(2) R5-216 Mount Bracket (VZW)	(2) BSF0020F3V1 Filter (P-VZW-67)	4"Sch40 x 4ft (Dishmount)		L2 1/2×2×1/4 @ 5ft Vert (E)	L2 1/2x2x1/4 @ 5ft Vert. (E)	L2 1/2x2x1/4 @ 5ft Vert. (E)	L2 1/2x2x1/4 @ 5ft Vent (E)	12X2X14 @ 51 Ven. (E)		L2 1/2x2x1/4 @ 5ft Vert (E)	L2 1/2x2x1/4 @ 5ft Vert (E)	L2 1/2x2x1/4 @ 5ft Vert. (E)	L2 1/2×2×1/4 @ 5/t Vert. (E)	L2 1/2x2x1/4 @ 5ft Vert (E)	L2 1/2x2x1/4 @ 5ft Vert. (E)	12 1/2/2/2/1/4 (B) 301 VETL. (E)	ר וובאבאוד ש און אמון (ב)			TOWER DESIGN NOTES Tower designed for Exposure B to the TIA-222-G Standard. Tower designed for a 125 mph basic wind in accordance with the TIA-222-G Standard. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.		 V 3/ 3 / 5 / 40. Iopographic Category 1 with Crest Height of U Connections use gatvanized as 25 botis, unts and locking devices. Installation per TIA/EIA-222 and AISC Specifications. B. Tower members are "hot dioped" advanized in accordance with ASTIM A123 and ASTIM A153 Standards. 									R, INC ^{100:} 80' SELF-SUPPORTING TOWER ANALYSIS Project Varizon Wireless - Wolforth CTAndrews Rd
ELEVATION	80	80	80	3 08	71	77	77	77			77		2	11				77	77	77	67	67		MATERIA	58 ksi	TOWER D ne TIA-222-G Standar c wind in accordance 1 b basic wind with 1.00	ph wind.	Height of U bolts, nuts and locking alvanized in accordance	s electrodes. r ASCE7								ARMOR TOWER, INC
	m - WalcollNW (E)		<pre>c Bft (Dipole Mast)</pre>	c Btt (Dipole Mast)	TMO-Alpha)			~	(K-1MU-Bela)	Ericsson Alktor 19 B41 W. MigPipe (R-TMO-Gamma)	APXVAARR24_43-U-NA20 w MigPipe		-43-U-INAZU W. INIGFIPE	APXVAARR24_43-U-NA20 w. MIGPipe	(E-1 MO-Gamma)	Ericsson Radio 4449 B71/B65 (F-TMO-Rela)	Ericsson Radio 4449 B71/B85 (E-TMO-Gamma)	Ericsson Radio 4460 B25+B66 (R-TMO-Alpha)	Ericsson Radio 4460 B25+B66 (R-TMO-Beta)	Ericsson Radio 4460 B25+B66 (R-TMO-Gamma)	(2) NNHH-65B-R4 w, Mtg Pipe (VZW-Delta)	(2) NNHH-65B-R4 w. Mig Pipe (VZW-Gamma)			36 ksi	TOWER DE Tower designed for Exposure B to the TIA-222-6 Standard. Tower designed for a 125 mph basic wind in accordance wi Tower is also designed for a 50 mph basic wind with 1.00 in	Deflections are based upon a 60 mph wind. Tower Risk Category II.	pographic Category 1 with Crest nnections use galvanized A325 t wer members are "hot dipped" ga	Velds are fabricated with ER-70S-6 electroc Vult(125 mph) = Vasd(97 mph) Per ASCE7	(E)xisting or (P)roposed. TOWER RATING: 67.7%							ARMOR ⁴¹
	Top Plat	DB224 (E)	2" Sch40.	2" Sch4	V V-65A	V V-65A	V V-65P	Ericsso	Ericsso	Encsso (R-TMC	APXVA		(E-TMO-Bela)	APXVA	(E-1MC	Frices		Ericsso	Ericsso		ALL REACTIONS (2) NN		MAX. CORNER REACT	DOWN: 101262 lb SHFAR: 13513 lb	T. BBR04 Ib	SHEAR: 11853 Ib AXIAL 1. To 83584 Ib 2. To 3. To 3. To	(TOBOL	50 mph WIND - 1.0000 in ICE9. W	AXIAL 11. (27990 lh		b 1405 kip-ft	TORQUE 4 kip-ft	CTIONS - 125 mph WIND			
							X		X		>	~		É		>	1	~		N 2		23	X			Œ	SHEAR		50 m	1		25255 Ib		REA			
	2	T	E			VINCO			1						10.00									40.0 ft				щ 0.02					0.0 ft				
							_			¢10	ne -				æ				61	998X				1.	_	6.21KE	0	1 0 7		20101	P)	-	6'1E	-	بر (qı) بر slər @ (u)		
						17	591	9						9	0	,								<u>985</u>	9 L		5	10106	8				1665	9'01	(11) HIDIM	Face	
						201	Jav	<u>.</u>	-		-	-	-	-	-		-						91	1/6 219											Bracing		
						-									A.N													12×2/1						sl	aletno: Horizonta		
						1																					12×1/4	1 2×2/1	51						aletoo.		
									-	200114-	1.11.1				A.N						-						\$/1X7	ZX2/1							ahia	D qoT	
									R	WLXI	exen	i.		1	A.N		_	_	5.25	LXZ	:o		_	9£A	_		WIXZI	i insks i			_		-	ə	iberð lend Sirts		
										1/23				1	A.N	-			5 52 5 52					9EA		₽/L×E×EJ	12×1/4	1 2×2/1 1	ก	91/3×£>	кел			ə	sisno Dial Gradi	Diago	
								1		20178				1	A.N	• •								86A 86A		₽/LXEXEI	V1X2/	I ISXS I	ก	8/3×9×		ar =1		a	Srade Dnais Gradi	Diago	

Feed Line Distribution Chart 0' - 80'

App In Face

Armor Tower, Inc	80' SELF-SUPPORTING	TOWER AN	ALYSIS
9 North Main St	Project: Verizon Wireless - Wolcott.	CT/Andrews	Rd
IOWER Cortland, NY 13045	Client: Everest Infrastructure #701770	Drawn by: PB	App'd:
Phone: 607-591-5381	Code: TIA-222-G	Date: 09/06/23	Scale: NTS
FAX: 866-870-0840	Path:		Dwg No. E-7

Elevation (ft)

ARMOR TOWER	JOD 80' SELF-SUPPORTING TOWER ANALYSIS	Page 1 of 20
encineering ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Tower Input Data

The main tower is a 4x free standing tower with an overall height of 80' above the ground line. The base of the tower is set at an elevation of 0' above the ground line. The face width of the tower is 6'2-1/32" at the top and 10'6-15/32" at the base. This tower is designed using the TIA-222-G standard. The following design criteria apply: ASCE 7-10 Wind Data is used. Basic wind speed of 125 mph. Risk Category II. Exposure Category B. Topographic Category 1. Crest Height 0'. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications ... Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.. Welds are fabricated with ER-70S-6 electrodes .. Vult(125 mph) = Vasd(97 mph) Per ASCE7. (E)xisting or (P)roposed .. Pressures are calculated at each section. Stress ratio used in tower member design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs
 √

 Consider Moments Horizontals
 √

 Consider Moments Diagonals
 √

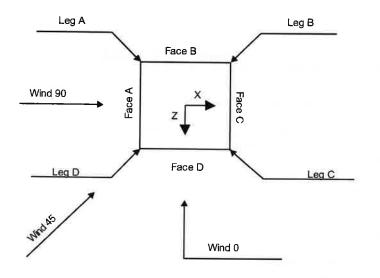
 Use Moment Magnification
 √

 √
 Use Code Stress Ratios

 √
 Use Code Safety Factors Guys

 Escalate Ice
 √

 Always Use Max Kz
 √


 Use Special Wind Profile
 √

 √
 Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform

- Assume Legs Pinned
- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
- v Use Clear Spans For WIIId A √ Use Clear Spans For KL/r
- V Use Clear Spans r or KL/T Retension Guys To Initial Tension Bypass Mast Stability Checks
 √ Use Azimuth Dish Coefficients
- ✓ Project Wind Area of Appurtenances Alternative Appurt. EPA Calculation
- ✓ Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component
- ✓ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules
- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
 √ Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist. Exemption
 Use TIA-222-G Tension Splice Exemption

Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

ARMOR	JOB 80' SELF-SUPPORTING TOWER ANALYSIS	Page 2 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Square Tower

Tower Section Geometry										
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length				
	<u>fi</u>			ß	Sections	n				
Γ1	80'-60'			6'2-1/32"	1	20'				
Г2	60'-40'			6'2-1/32"	1	20*				
T3	40'-20'			7'6-3/8"	ĩ	20'				
T4	20'-0'			8'10-13/16"	1	20'				

	Tower Section Geometry (cont'd)											
Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset					
	ft	ft		Panels		în	in					
T 1	80'-60'	5'	X Brace	No	No	0.0000	0.0000					
T2	60'-40'	5'	X Brace	No	No	0.0000	0.0000					
T3	40'-20'	10'	X Brace	No	Yes	0.0000	0.0000					
T4	20'-0'	10'	X Brace	No	Yes	0.0000	0.0000					

		Tower	Section (Geometry	(cont'd)	
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 80'-60'	Equal Angle	L4x4x3/8	A36 (36 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)

AR TC	MOR WER	Job	30' SELF-SUPPO	RTING TOWE	R ANALYSIS	Page 3 of 20	0	
ARMOR	NEERING TOWER, INC Jorth Main	Project	Verizon Wireless	s - Wolcott, CT/	/Andrews Rd	Date 12:39:12 09/0		
Cortlan Phone:	d, NY 13045 607-591-5381 866-570-0840	Client	Everest In	frastructure #7	01770	Designed by PB		
Tower Elevation	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade		

<i>î</i>						
T2 60'-40'	Equal Angle	L5x5x1/2	A36 (36 ksi)	Single Angle	L2 1/2x2x1/4	A36 (36 ksi)
T3 40'-20'	Equal Angle	L6x6x1/2	A36 (36 ksi)	Equal Angle	L3x3x1/4	A36 (36 ksi)
T4 20'-0'	Equal Angle	L6x6x5/8	A36 (36 ksi)	Equal Angle	L3x3x5/16	A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girl Grade
71 80'-60'	Equal Angle	L3x3x1/4	A36 (36 ksi)	Solid Round		A36 (36 ksi)
T2 60'-40'	Channel	C7x12.25	A36 (36 ksi)	Solid Round		A36 (36 ksi)
T3 40'-20'	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round		A36 (36 ksi)
T4 20'-0'	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round		A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizonta Grade
fi	Girts			1.84	75 1 A J	L2 1/2x2 1/2x1/4	A36
T3 40'-20'	None	Flat Bar		A36 (36 ksi)	Equal Angle	LZ 1/2XZ 1/2X1/4	(36 ksi)
T4 20'-0'	None	Flat Bar		A36 (36 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft			A572-50	Solid Round	9/16	A572-50
T1 80'-60'	Solid Round		(50 ksi)	Solid Rould	5/10	(50 ksi)
T2 60'-40'	Solid Round		A572-50 (50 ksi)	Solid Round	9/16	A572-50 (50 ksi)
T3 40'-20'	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round	9/16	A572-50 (50 ksi)
T4 20'-0'	Equal Angle	L2 1/2x2 1/2x1/4	(36 ksi) (36 ksi)	Solid Round	9/16	A572-50 (50 ksi)

	JOD 80' SELF-SUPPORTING TOWER ANALYSIS	Page 4 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Tower Section Geometry (cont'd)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in					in	in	in
T1 80'-60'	0.00	0.0000	A36 (36 ksi)	1	1	1.03	36.0000	36.0000	36.0000
T2 60'-40'	0.00	0.0000	A36 (36 ksi)	1	1	1.03	36.0000	36.0000	36.0000
T3 40'-20'	0.00	0.0000	A36 (36 ksi)	1	1	1.03	36.0000	36.0000	36.0000
T4 20'-0'	0.00	0.0000	A36 (36 ksi)	1	1	1.03	36.0000	36.0000	36.0000

Tower Section Geometry (cont'd)

						K Fai	ctors			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X Y	X Y	X Y	X Y	X Y	X Y	X Y
T1 80'-60'	No	No	1	1	1	1	1	1	î	1
T2 60'-40'	No	No	1	1	1	1	1	1	1	1
T3 40'-20'	No	No	1	1	1	1	1	1	1	1
T4 201 01				1	1	1	1	1	1	1
T4 20'-0'	No	No	1	1	1	1	1	0.5	1	1
				1	1	1	1	0.5	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft			Diago	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
<i>.</i>	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 80'-60' T2 60'-40'	0.0000 0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 0.75	0.0000	0.75
T3 40'-20' T4 20'-0'	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75

ARMOR TOWER	Job	80' SELF-SUPPORTING TOWER ANALYSIS	Page 5 of 20
ENGINEERING ARMOR TOWER, INC 9 North Main	Project	Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client	Everest Infrastructure #701770	Designed by PB

Tower Elevation	Redun Horizo		Redund Diagor		Reduna Sub-Diag		Redui Sub-Ho		Redundan	t Vertical	Redund	lant Hip		lant Hip gonal
fi	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 80'-60'	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T2 60'- 4 0'	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T3 40'-20'	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75					1		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75					1	-	0.0000	0.75 (4)	0.0000	0.75 (4)
T4 20'-0'	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	1			(1)										
	0.0000	0.75 (2)	0.0000	0.75 (2)							0.0000	0.75 (2)	0.0000	0.75 (2)
	1													
	0.0000	0.75 (3)	0.0000	0.75 (3)							0.0000	0.75 (3)	0.0000	0.75 (3)
	1	0.55 (1)	0.0000	0.75	1		1		I		0.0000	0.75 (4)	0.0000	0.75 (4)
	0.0000	0.75 (4)	0.0000	0.75 (4)		-								

Tower Section Geometry (cont'd)

Tower Elevation	Leg Connection	Leg		Diagon	al	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
ft	Туре	Bolt Size	No.	Bolt Size in	No.	Bolt Size	No.	Bolt Size in	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
T1 80'-60'	Sleeve DS	0.7500 A307	8	0.7500 A307	2	0.7500 A325N	2	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T2 60'-40'	Sleeve DS	0.7500 A307	12	0.7500 A307	2	0.7500 A325N	2	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0

ARMOR	JOD 80' SELF-SUPPORTING TOWER ANALYSIS	Page 6 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Tower Elevation ft	Leg Connection Type	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in	_	m		10		in		in		in	
T3 40'-20'	Sleeve DS	0.7500	16	0.7500	2	0.7500	2	0.6250	0	0.6250	0	0.7500	2	0.7500	2
		A307		A307		A325N		A325N		A325N		A307		A307	-
T4 20'-0'	Sleeve DS	0.7500	20	0.7500	2	0.7500	2	0.6250	0	0.6250	0	0.7500	2	0.7500	2
		A307		A307		A325N		A325N		A325N		A307		A307	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation	~	ft	in	(Frac FW)		Row	in	in	in	plf
Climbing Ladder	A	No	No	Af (CaAa)	80' - 0'	-29.000 0	0.335	1	1	2.0000	4.0000		10.50
LDF4-50A (1/2 FOAM) (Abandoned)	A	No	No	Ar (CaAa)	80' - 0'	0.0000	0	2	2	0.6300	0.6300		0.15
12x24 Hybrid Cable (E-VZW) *	A	No	No	Ar (CaAa)	67' - 0'	1.0000	0.48	1	1	2.0000	2.0000		3.10
Main Hybrid Fiber Cable (E-TMO)	D	No	No	Ar (CaAa)	80' - 0'	1.0000	0.25	4	4	1.4300	1.4300		1.63
Feedline Ladder (Af) (E-TMO) *	D	No	No	Af (CaAa)	80' - 0'	0.0000	0.27	1	1	3.0000	3.0000		8.40
LDF4-50A (1/2 FOAM) (E)	Α	No	No	Ar (CaAa)	80' - 0'	-22.500 0	0.27	1	1	0.6300	0.6300		0.15
a	A	No	No	Ar (CaAa)	80' - 0'	-24.000 0	0.28	1	1	1.9800	1.9800		0.72
3 2	A	No	No	Ar (CaAa)	80' - 0'	-26.000 0	0.295	1	1	1.9800	1.9800		0.72
2" Hybrid (TMO-80)	A	No	No	Ar (CaAa)	80' - 0'	-28.000 0	0.31	1	1	1 .9800	1.9800		0.72
*	A	No	No	Ar (CaAa)	80' - 0'	-30.000 0	0.325	1	1	1.9800	1.9800		0.72
	Α	No	No	Ar (CaAa)	80' - 0'	-32.000 0	0.34	1	1	1.9800	1.9800		0.72
×	A	No	No	Ar (CaAa)	80' - 0'	-34.000 0	0.355	1	1	1.9800	1.9800		0.72
LDF4-50A (1/2 FOAM)	Α	No	No	Ar (CaAa)	80' - 0'	-36.000 0	0.37	1	1	0.6300	0.6300		0.15
LDF4-50A (1/2 FOAM)	A	No	No	Ar (CaAa)	80' - 0'	-38.000 0	0.385	1	1	0.6300	0.6300		0.15
LDF4-50A (1/2 FOAM)	A	No	No	Ar (CaAa)	80' - 0'	-40.000 0	0.4	1	1	0.6300	0.6300		0.15
LDF4-50A (1/2 FOAM)	A	No	No	Ar (CaAa)	80' - 0'	-42.000 0	0.415	1	1	0.6300	0.6300		0.15

ARMOR TOWER	Job 80' SELF-SUPPORTING TOWER ANALYSIS	Page 7 of 20
ENGINEERING ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	$C_A A_A$ In Face	C _A A _A Out Face	Weight
Section	Elevation		ft ²	ft ²	ft ²	ft ²	lb
T1	80'-60'	A	0.000	0.000	47.313	0.000	339.10
11	00-00	В	0.000	0.000	0.000	0.000	0.00
		č	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	21.440	0.000	298.40
T2	60'-40'	A	0.000	0.000	49.913	0.000	379.40
12 00-40	00-10	В	0.000	0.000	0.000	0.000	0.00
		Č	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	21.440	0.000	298.40
T 2	40'-20'	A	0.000	0.000	49.913	0.000	379.40
T3	40-20	B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	21,440	0.000	298.40
	201.01	A	0.000	0.000	49,913	0.000	379.40
T4	20'-0'	B	0.000	0.000	0.000	0.000	0.00
		В С	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	21.440	0.000	298.40

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
Section	Elevation	or Leg	Thickness in	ft²	ft ²	ft ²	ft²	lb
T1	80'-60'	A	2.156	0.000	0.000	171.136	0.000	2929.45
11	80-00	B		0.000	0.000	0.000	0.000	0.00
		č		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	57.202	0.000	1171.20
T 2	60'-40'	A	2.085	0.000	0.000	175.131	0.000	2970.17
T2	60-40	B	2.005	0.000	0.000	0.000	0.000	0.00
	C		0.000	0.000	0.000	0.000	0.00	
		D		0.000	0.000	56.453	0.000	1136.23
	101 201	_	1.981	0.000	0.000	169.003	0.000	2769.94
T3	40'-20'	A B	1.901	0.000	0.000	0.000	0.000	0.00
				0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	55.365	0.000	1086.31
		D	1 775	0.000	0.000	156.840	0.000	2394.64
T4	20'-0'	A	1.775	0.000	0.000	0.000	0.000	0.00
	B		0.000	0.000	0.000	0.000	0.00	
		C D		0.000	0.000	53.213	0.000	990.65

		Fe	ed Line	Center of	Pressure
lection	Elevation	CP _X	CPz	CP _X Ice	CP _z Ice
	ft	in	in	īn	in
r1	80'-60'	-3.8036	-3.5735	-5.5828	-6.1862
	60'-40'	-4.8614	-3.9527	-7.5946	-7.0443
T2	40'-20'	-6.2599	-4.2408	-10.6133	-8.0661
T3 T4	20'-0'	-7.8203	-4.6947	-13.7165	-9.1021

	JOD 80' SELF-SUPPORTING TOWER ANALYSIS	Page 8 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Shielding Factor Ka

Tower	Feed Line	Description	E. d.I.	R.	
Section	Record No.	Description	Feed Line Segment Elev.	K _a Na Isa	Ka
T1	2	Climbing Ladder		No Ice	Ice
T1	9	LDF4-50A (1/2 FOAM)		0.6000	0.5133 0.5133
T 1	10	12x24 Hybrid Cable			27172
TI	12	Main Hybrid Fiber Cable		0.6000	0.5133
Ti	13	Feedline Ladder (Af)		0.6000	0.5133
Tĩ	15	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000 0.6000	0.5133
Ti	16	2014 SON (1/2 1 OAW)	60.00 - 80.00	0.6000	0.5133
T 1	17		60.00 - 80.00	0.6000	0.5133 0.5133
T1	19	2" Hybrid	60.00 - 80.00	0.6000	0.5133
TI	20	2 1190110	60.00 - 80.00	0.6000	0.5133
T 1	21		60.00 - 80.00	0.6000	0.5133
T1	22		60.00 - 80.00	0.6000	0.5133
T1	23	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	24	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	25	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	26	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T2	2	Climbing Ladder	40.00 - 60.00	0.6000	0.5200
T2	9	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	10	12x24 Hybrid Cable	40.00 - 60.00	0.6000	0.5200
T2	12	Main Hybrid Fiber Cable	40.00 - 60.00	0.6000	0.5200
T2	13	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.5200
T2	15	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	16	(40.00 - 60.00	0.6000	0.5200
T2	17		40.00 - 60.00	0.6000	0.5200
T2	19	2" Hybrid	40.00 - 60.00	0.6000	0.5200
T2	20	,	40.00 - 60.00	0.6000	0.5200
T2	21		40.00 - 60.00	0.6000	0.5200
T2	22		40.00 - 60.00	0.6000	0.5200
T2	23	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	24	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	25	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	26	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T3	2	Climbing Ladder	20.00 - 40.00	0.6000	0.5599
T3	9	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	10	12x24 Hybrid Cable	20.00 - 40.00	0.6000	0.5599
T3	12	Main Hybrid Fiber Cable	20.00 - 40.00	0.6000	0.5599
T3	13	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.5599
T3	15	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	16		20.00 - 40.00	0.6000	0.5599
T3	17		20.00 - 40.00	0.6000	0.5599
T3	19	2" Hybrid	20.00 - 40.00	0.6000	0.5599
Т3	20		20.00 - 40.00	0.6000	0.5599
T3	21	(#	20.00 - 40.00	0.6000	0.5599
T3	22		20.00 - 40.00	0.6000	0.5599
T3	23	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	24	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	25	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
Т3	26	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T4	2	Climbing Ladder	0.00 - 20.00	0.6000	0.6000
T4	9	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T4	10	12x24 Hybrid Cable	0.00 - 20.00	0.6000	0.6000
T4	12	Main Hybrid Fiber Cable	0.00 - 20.00	0.6000	0.6000
T4	13	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T4	15	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T4	16		0.00 - 20.00	0.6000	0.6000
T4	17	2	0.00 - 20.00	0.6000	0.6000
			35.787.1875.9		12225-2223

ARMOR TOWER	JOD 80' SELF-SUPPORTING TOWER ANALYSIS	9 of 20
ARMOR TOWER, INC	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	1	Segment Elev.	No Ice	Ice
T4	19	2" Hybrid	0.00 - 20.00	0.6000	0.6000
T4	20		0.00 - 20.00	0.6000	0.6000
T4	21		0.00 - 20.00	0.6000	0.6000
T4	22		0.00 - 20.00		0.6000
T4	23	LDF4-50A (1/2 FOAM)	0.00 - 20.00		0.6000
T4		LDF4-50A (1/2 FOAM)	0.00 - 20.00		0.6000
T4	25	LDF4-50A (1/2 FOAM)			0.6000
T4		LDF4-50A (1/2 FOAM)		0.6000	0.6000

Discrete Tower Loads										
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight	
	0		Vert ft ft ft	. 0.	fi		ſt²	ft²	lb	
Top Platform - WolcottNW (E)	A	None		0.0000	80'	No Ice 1/2" Ice 1" Ice	353.84 392.53 431.23	297.42 336.16 374.89	5260.00 6838.00 8416.00	
L2 1/2x2x1/4 @ 5ft Vert. (E)	А	From Face	0.00 0'	0.0000	7'6"	No Ice 1/2" Ice 1" Ice	1.67 2.16 2.53	2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	В	From Face	0' 0.00 0'	0.0000	7'6"	No Ice 1/2" Ice 1" Ice	2.55 1.67 2.16 2.53	2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	С	From Face	0' 0.00 0'	0.0000	7'6''	No Ice 1/2" Ice 1" Ice	1.67 2.16 2.53	2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	D	From Face	0' 0.00 0'	0.0000	7'6"	No Ice 1/2" Ice 1" Ice	2.33 1.67 2.16 2.53	2.78 2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	A	From Face	0' 0.00 0'	0.0000	17'6"	No Ice 1/2" Ice 1" Ice	2.55 1.67 2.16 2.53	2.78 2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	В	From Face	0' 0.00 0' 0'	0.0000	17'6"	No Ice 1/2" Ice 1" Ice	1.67 2.16 2.53	2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	С	From Face	0,00 0' 0'	0.0000	17'6"	No Ice 1/2" Ice 1" Ice	1.67 2.16 2.53	2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	D	From Face	0.00 0'	0.0000	17'6''	No Ice 1/2" Ice 1" Ice	1.67 2.16 2.53	2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	Α	From Face	0' 0.00 0'	0.0000	27'6"	No Ice 1/2" Ice 1" Ice	1.67 2.16 2.53	2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	В	From Face	0' 0.00 0'	0.0000	27'6"	No Ice 1/2" Ice	2.55 1.67 2.16 2.53	2.78 2.05 2.41 2.78	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert. (E)	С	From Face	0' 0.00 0'	0.0000	27'6"	1" Ice No Ice 1/2" Ice	1.67 2.16	2.05 2.41	20.00 29.54 44.94	
L2 1/2x2x1/4 @ 5ft Vert.	D	From Face	0' 0.00	0.0000	27'6"	1" Ice No Ice	2.53 1.67	2.78 2.05	20.00	

	Job 80' SELF-SUPPORTING TOWER ANALYSIS	S 10 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Ro	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	С _л А _л Side	Weight
	Leg	-75*	Lateral Vert	stay not mont			Tront	Sille	
			ft	o	ft		ft²	ft²	11
			ft		<i>Ji</i>		Jr ⁻	JE	lb
			ft						
(E)			0'			1/2" Ice	2.16	2.41	29.54
			0'			1" Ice	2.53	2.78	44.94
L2 1/2x2x1/4 @ 5ft Vert.	Α	From Face	0.00	0.0000	37'6"	No Ice	1.67	2.05	20.00
(E)			0'			1/2" Ice	2.16	2.41	29.54
1010-0140603	-		0'			1" Ice	2.53	2.78	44.94
L2 1/2x2x1/4 @ 5ft Vert.	в	From Face	0.00	0.0000	37'6"	No Ice	1.67	2.05	20.00
(E)			0'			1/2" Ice	2.16	2.41	29.54
L2 1/2x2x1/4 @ 5ft Vert.	0	F F	0'			1" Ice	2.53	2.78	44.94
(E)	С	From Face	0.00	0.0000	37'6"	No Ice	1.67	2.05	20.00
(E)			0'			1/2" Ice	2.16	2.41	29.54
L2 1/2x2x1/4 @ 5ft Vert.	D	Erom Essa	0'	0.0000		1" Ice	2.53	2.78	44.94
(E)	D	From Face	0.00	0.0000	37'6"	No Ice	1.67	2.05	20.00
			0' 0'			1/2" Ice	2.16	2.41	29.54
** Exsiting Antennas			U			1" Ice	2.53	2.78	44.94
DB224	A	From Leg	2.00	0.0000	0.01	No fee	2.16	2.15	22.00
(E)	- 1	A TOWN DES	2.00 -7'	0.0000	80'	No Ice	3.15	3.15	32.00
(-)			-7			1/2" Ice	5.67	5.67	41.60
2" Sch40 x 8ft	А	From Leg	2.00	0.0000	80'	1" Ice	8.19	8.19	51.20
(Dipole Mast)		TTOM LOG	0'	0.0000	00	No Ice	1.90	1.90	30.00
(- T			4'			1/2" Ice 1" Ice	2.73	2.73	43.34
DB224	D	From Leg	2.00	0.0000	80'	No Ice	3.40 3.15	3.40	62.96
(E)	_	Trom Log	8'	0.0000	80	1/2" Ice	5.67	3.15	32.00
			10'			172 Ice	8.19	5.67	41.60
2" Sch40 x 8ft	D	From Leg	2.00	0.0000	80'	No Ice	1.90	8.19 1.90	51.20
(Dipole Mast)	_	- 1011 246	8'	0.0000	80	1/2" Ice	2.73	2.73	30.00
			4'			172 Ice	3.40	3.40	43.34 62.96
*			·			I ICC	J.40	3.40	02.90
TMO-2022									
V V-65A-R1 w. Mtg Pipe	Α	From Face	2.00	0.0000	77'	No Ice	5.93	3.62	40.00
(P-TMO-Alpha)			-7'			1/2" Ice	6.29	4.20	88.12
			0'			1" Ice	6.66	4.81	138.74
V V-65A-R1 w. Mtg Pipe	В	From Face	2.00	0.0000	77'	No Ice	5.93	3.62	40.00
(P-TMO-Beta)			7'			1/2" Ice	6.29	4.20	88.12
			0'			1" Ice	6.66	4.81	138.74
V V-65A-R1 w. Mtg Pipe	D	From Face	2.00	0.0000	77'	No Ice	5.93	3.62	40.00
(P-TMO-Gamma)			-7'			1/2" Ice	6.29	4.20	88.12
			0'			1" Ice	6.66	4.81	138.74
Ericsson AIR6419 B41 w.	Α	From Face	2.00	0.0000	77'	No Ice	6.53	3.74	100.00
MtgPipe			-7'			1/2" Ice	6.91	4.23	152.02
(P-TMO-Alpha)			0'			1" Ice	7.31	4.74	211.91
Ericsson AIR6419 B41 w.	В	From Face	2.00	0.0000	77'	No Ice	6.53	3.74	100.00
MtgPipe			7'			1/2" Ice	6.91	4.23	152.02
(P-TMO-Beta)	D		0'			1" Ice	7.31	4.74	211.91
Ericsson AIR6419 B41 w.	D	From Face	2.00	0.0000	77'	No Ice	6.53	3.74	100.00
MtgPipe (P-TMO-Gamma)			-7'			1/2" Ice	6.91	4.23	152.02
		E	0'	0.0055		1" Ice	7.31	4.74	211.91
PXVAARR24_43-U-NA20	A	From Face	2.00	0.0000	77'	No Ice	20.24	10.79	180.00
w. MtgPipe			-7'			1/2" Ice	20.89	12.21	315.89
(E-TMobile)	D	F F	0'			1" Ice	21.55	13.49	460.20
PXVAARR24_43-U-NA20	в	From Face	2.00	0.0000	77'	No Ice	20.24	10.79	180.00
w. MtgPipe			7'			1/2" Ice	20.89	12.21	315.89
(E-TMobile)	D	E-t-	0'	0.005-		1" Ice	21.55	13.49	460.20
PXVAARR24_43-U-NA20	D	From Face	2.00	0.0000	77'	No Ice	20.24	10.79	180.00
w. MtgPipe (E-TMobile)			-7'			1/2" Ice	20.89	12.21	315.89
Ericsson Radio 4449	Α	From Face	0'	0.0007		1" Ice	21.55	13.49	460.20
		ETOM FACE	2.00	0.0000	77'	No Ice	1.64	1.15	80.00

ARMOR TOWER	Job 80' SELF-SUPPORTING TOWER ANALYSIS	Page 11 of 20
engineering ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
9 North Main Cortland, NY 13045 Phone: 607-591-5381	Client Everest Infrastructure #701770	Designed by PB

Phone: 607-591-5381 FAX: 866-570-0840

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	lb
B71/B85			7'			1/2" Ice	1.80	1.29	94.04
(E-TMobile)			0'			1" Ice	1.97	1.43	112.70
Ericsson Radio 4449	в	From Face	7.00	0.0000	77'	No Ice	1.64	1.15	80.00
B71/B85	D	110111400	-7'			1/2" Ice	1.80	1.29	94.04
			0'			1" Ice	1.97	1.43	112.70
(E-TMobile) Ericsson Radio 4449	D	From Face	2.00	0.0000	77*	No Ice	1.64	1.15	80.00
B71/B85	D	11010111000	5'			1/2" Ice	1.80	1.29	94.04
			0'			1" Ice	1.97	1.43	112.70
(E-TMobile)	А	From Face	2.00	0.0000	77'	No Ice	2.56	1.98	110.00
Ericsson Radio 4460	A	1101111200	-7'			1/2" Ice	2.76	2.16	134.38
B25+B66			0'			1" Ice	2.97	2.34	163.03
(P-TMO-Alpha)	В	From Face	2.00	0.0000	77	No Ice	2.56	1.98	110.00
Ericsson Radio 4460	Б	FIGHTAGE	7'	010000		1/2" Ice	2.76	2.16	134.38
B25+B66			, 0'			1" Ice	2.97	2.34	163.03
(P-TMO-Beta)	D	From Face	2.00	0.0000	77	No Ice	2.56	1.98	110.00
Ericsson Radio 4460	D	FIOII Face	-7'	0.0000		1/2" Ice	2.76	2.16	134.38
B25+B66 (P-TMO-Gamma) *			0'			1" Ice	2.97	2.34	163.03
*VZW - 2019***								- 1 -	100.00
(2) NNHH-65B-R4 w. Mtg	D	From Leg	0.50	0.0000	67'	No Ice	12.27	7.17	100.00
Pipe		U	0'			1/2" Ice	12.77	8.13	187.33
(VZW-Delta)			0'			1" Ice	13.27	8.97	283.67
(2) NNHH-65B-R4 w. Mtg	Α	From Leg	0.50	0.0000	67'	No Ice	12.27	7.17	100.00
Pipe		0	0'			1/2" Ice	12.77	8.13	187.33
(VZW-Gamma)			0'			1" Ice	13.27	8.97	283.67
Samsung RFV01U-D1A	D	From Leg	0.50	0.0000	67'	No Ice	1.88	1.25	100.00
(VZW-Delta)	D	110111 206	0'			1/2" Ice	2.05	1.39	115.34
(VZW-Delta)			0'			1" Ice	2.22	1.54	136.47
Samsung RFV01U-D1A	А	From Leg	0.50	0.0000	67'	No Ice	1.88	1.25	100.00
	A	TIOM DOB	0'			1/2" Ice	2.05	1.39	115.34
(VZW-Gamma)			0'			1" Ice	2.22	1.54	136.47
DUZDC ((37 DE 48	D	From Leg	0.50	0.0000	67'	No Ice	3.79	2.51	30.00
RVZDC-6627-PF-48	D	110m Dog	0'			1/2" Ice	4.04	2.73	63.48
(12Circuit OVP)			0'			1" Ice	4.30	2.95	98.72
(VZW-Delta)	D	From Leg	0.50	0.0000	67'	No Ice	1.88	1.01	80.00
Samsung RFV01U-D2A	D	Tiom Log	0.50	0.000		1/2" Ice	2.05	1.14	98.43
(VZW-Delta)			0'			1" Ice	2.22	1.28	117.53
		From Leg	0.50	0.0000	67'	No Ice	1.88	1.01	80.00
Samsung RFV01U-D2A	А	From Leg	0.50	0.0000	2.	1/2" Ice	2.05	1.14	98.43
(VZW-Gamma)			0'			1" Ice	2.22	1.28	117.53
	5	None	U	0.0000	67'	No Ice	8.31	8.31	150.00
(2) R5-216 Mount Bracket	D	NORE		0.0000	57	1/2" Ice	11.95	11.95	187.92
(VZW)						1" Ice	14.13	14.13	274.19
		North		0.0000	67'	No Ice	8.31	8.31	150.00
(2) R5-216 Mount Bracket	Α	None		0.0000	57	1/2" Ice	11.95	11.95	187.92
(VZW)						1" Ice	14.13	14.13	274.19
	-	T	1.00	0.0000	60'	No Ice	1.11	1.11	50.00
4"Sch40 x 4ft	В	From Leg	1.00	0.0000	00	1/2" Ice	1.58	1.58	62.99
(Dishmount)			0' 0'			172 Icc 1" Ice	1.84	1.84	79.03
*VZW-2023			0.00	0.0000	67	No Ice	0.96	0.30	17.60
(2) BSF0020F3V1 Filter	D	From Leg		0.0000	07				24.37
(P-VZW-67)									32.93
(2) BSF0020F3V1 Filter	D	From Leg	0.00 0' 0'	0.0000	67'	No Ice 1/2" Ice 1" Ice	0.96 1.09 1.22	0.30 0.38 0.46	-

	Job 80' SELF-SUPPORTING TO	WER ANALYSIS Page 12 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott,	CT/Andrews Rd Date Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure	#701770 Designed by PB

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets; Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
*				ft	0	•	ft	ft		ft^2	lb
*VZW-2020 VHLPX3-11W (E-VZW)	в	Paraboloid w/Radome	From Leg	1.50 0' 0'	0.0000		60'	3.27	No Ice 1/2" Ice 1" Ice	8.42 8.86 9.29	40.00 80.00 130.00

Load Combinations

Comb. No.		Description		
1	Dead Only		 	
2	1.2 Dead+1.0 Wind 0 deg - No Ice			
3	0.9 Dead+1.0 Wind 0 deg - No Ice			
4	1.2 Dead+1.0 Wind 45 deg - No Ice			
5	0.9 Dead+1.0 Wind 45 deg - No Ice			
6	1.2 Dead+1.0 Wind 90 deg - No Ice			
7	0.9 Dead+1.0 Wind 90 deg - No Ice			
8	1.2 Dead+1.0 Wind 135 deg - No Ice			
9	0.9 Dead+1.0 Wind 135 deg - No Ice			
10	1.2 Dead+1.0 Wind 180 deg - No Ice			
11	0.9 Dead+1.0 Wind 180 deg - No Ice			
12	1.2 Dead+1.0 Wind 225 deg - No Ice			
13	0.9 Dead+1.0 Wind 225 deg - No Ice			
14	1.2 Dead+1.0 Wind 270 deg - No Ice			
15	0.9 Dead+1.0 Wind 270 deg - No Ice			
16	1.2 Dead+1.0 Wind 315 deg - No Ice			
17	0.9 Dead+1.0 Wind 315 deg - No Ice			
18	1.2 Dead+1.0 Ice+1.0 Temp			
19	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp			
20	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp			
21	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp			
22	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp			
23	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp			
24	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp			
25	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp			
26	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp			
27	Dead+Wind 0 deg - Service			
28	Dead+Wind 45 deg - Service			
29	Dead+Wind 90 deg - Service			
30	Dead+Wind 135 deg - Service			
31	Dead+Wind 180 deg - Service			
32	Dead+Wind 225 deg - Service			
33	Dead+Wind 270 deg - Service			
34	Dead+Wind 315 deg - Service			

Maximum Reactions

ARMOR	JOD 80' SELF-SUPPORTING TOWER ANALYSIS	Page 13 of 20
ARMOR TOWER, INC	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
Locunon		Load	lb	lb	lb
		Comb.			
Leg D	Max. Vert	12	101271.84	9477.82	-9633.47
Deg D	Max. H _x	12	101271.84	9477.82	-9633.47
	Max. Hz	5	-88004.07	-8271.71	8393.67
	Min. Vert	5	-88004.07	-8271.71	8393.67
	Min. H _x	5	-88004.07	-8271.71	8393.67
	Min. Hz	12	101271.84	9477.82	-9633.47
Leg C	Max. Vert	8	99944.85	-9577.76	-9356.49
Lege	Max. H.	17	-88053.15	8384.03	8245.71
	Max. Hz	17	-88053.15	8384.03	8245.71
	Min. Vert	17	-88053.15	8384.03	8245.71
	Min. H _x	8	99944.85	-9577.76	-9356.49
	Min. H_z	8	99944.85	-9577.76	-9356.49
Leg B	Max. Vert	4	100140.19	-9573.79	9418.14
Leg D	Max. H _x	13	-88888.75	8441.71	-8319.74
	Max. Hz	4	100140.19	-9573.79	9418.14
	Min. Vert	13	-88888.75	8441.71	-8319.74
	Min. H _x	4	100140.19	-9573.79	9418.14
	Min. H_z	13	-88888.75	8441.71	-8319.74
Leg A	Max. Vert	16	100365.31	9375.74	9597.01
Leg A	Max. H _x	16	100365.31	9375.74	9597.01
	Max. H _z	16	100365.31	9375.74	9597.01
	Min. Vert	9	-87737.81	-8231.27	-8369.59
	Min. H _x	9	-87737.81	-8231.27	-8369.59
	Min. Hz	9	-87737.81	-8231.27	-8369.59

	T	ower Mas	st Reacti	on Summ	ary	
Load Combination	Vertical	Shear _x lb	Shear _z lb	Overturning Moment, M _x kip-ft	Overturning Moment, M _z kip-ft	Torque kip-ft
	<i>lb</i> 23351.62	-0.00	0.00	2.49	6.18	0.00
Dead Only 1.2 Dead+1.0 Wind 0 deg - No	28021.95	5.74	-23786.73	-1340.76	7.08	-2.07
ice).9 Dead+1.0 Wind 0 deg - No	21016.46	5.74	-23786.73	-1341.50	5.22	-2.07
ice 1.2 Dead+1.0 Wind 45 deg - No	28021.95	17832.42	-17832.42	-983.77	-979.34	-2.88
lce 0.9 Dead+1.0 Wind 45 deg - No	21016.46	17832.42	-17832.42	-984.52	-981.19	-2.88
Ice 1.2 Dead+1.0 Wind 90 deg - No	28021.95	23082.84	-5.74	2.65	-1295.08	0.05
Ice 0.9 Dead+1.0 Wind 90 deg - No	21016.46	23082.84	-5.74	1.90	-1296.94	0.05
Ice 1.2 Dead+1.0 Wind 135 deg -	28021.95	17733.17	17772.20	985.87	-973.12	3.67
No Ice 0.9 Dead+1.0 Wind 135 deg -	21016.46	17733.17	17772.20	985.12	-974.97	3.67
No Ice 1.2 Dead+1.0 Wind 180 deg -	28021.95	-14.06	23853.03	1350.71	8.26	1.95
No Ice 0.9 Dead+1.0 Wind 180 deg -	21016.46	-14.06	23853.03	1349.97	6.41	1.95
No Ice 1.2 Dead+1.0 Wind 225 deg -	28021.95	-17857.67	17857.67	991.26	995.69	2.88
No Ice 0.9 Dead+1.0 Wind 225 deg -	21016.46	-17857.67	17857.67	990.52	993.84	2.88
No Ice 1.2 Dead+1.0 Wind 270 deg - No Ice	28021.95	-23149.14	14.06	3.83	1313.90	0.02

	JOD 80' SELF-SUPPORTING TOWER ANALYSIS	Page 14 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Load Combination	Vertical	Shear _x	Shear ₌	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M _z	
0.0 D 111.0 W/ 1970 1	lb	lb	Ib	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 270 deg -	21016.46	-23149.14	14.06	3.09	1312.04	0.07
No Ice						
1.2 Dead+1.0 Wind 315 deg -	28021.95	-17772.20	-17733.17	-977.55	990.30	-3.67
No Ice						
0.9 Dead+1.0 Wind 315 deg -	21016.46	-17772.20	-17733.17	-978.30	988.45	-3.67
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	83589.72	-0.00	0.00	-0.36	27.55	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0	83589.72	1.12	-6203.77	-344.28	27.48	-2.68
Ice+1.0 Temp						2.00
1.2 Dead+1.0 Wind 45 deg+1.0	83589.72	4594.62	-4594.62	-251.39	-223,49	-2.88
Ice+1.0 Temp					225.19	2.00
1.2 Dead+1.0 Wind 90 deg+1.0	83589.72	6020.68	-1.12	-0.42	-307.45	-1.42
Ice+1.0 Temp				0.12	507.45	-1.42
1.2 Dead+1.0 Wind 135	83589.72	4575.59	4583.20	249.95	-222.30	1.15
deg+1.0 Ice+1.0 Temp			1000120	247.75	-222.20	1.1.5
1.2 Dead+1.0 Wind 180	83589.72	-2.74	6216.71	344.34	27.72	2.66
deg+1.0 Ice+1.0 Temp			0210111	541,54	41.14	2.00
1.2 Dead+1.0 Wind 225	83589.72	-4599.55	4599.55	250.98	278.88	2.88
deg+1.0 Ice+1.0 Temp		1077.00	1377.33	250.90	270.00	2.00
1.2 Dead+1.0 Wind 270	83589.72	-6033.61	2.74	-0.19	363.33	1.44
deg+1.0 Ice+1.0 Temp		0055.01	2.74	-0.19	303.33	1.44
1.2 Dead+1.0 Wind 315	83589.72	-4583.20	-4575.59	-250.20	277.85	1.16
deg+1.0 Ice+1.0 Temp	00000172	-4505.20		-2.30.20	277.83	-1.15
Dead+Wind 0 deg ~ Service	23351.62	1.32	-5481.65	-307.18	(10	0.47
Dead+Wind 45 deg - Service	23351.62	4109.43	-4109.43		6.10	-0.47
Dead+Wind 90 deg - Service	23351.62	5319.47	-4109.43	-224.91	-221.22	-0.66
Dead+Wind 135 deg - Service	23351.62	4086.56	4095.56	2.41	-293.98	0.01
Dead+Wind 180 deg - Service	23351.62	-3.24		229.00	-219.78	0.84
Dead+Wind 225 deg - Service	23351.62		5496.93	313.08	6.38	0.44
Dead+Wind 270 deg - Service	23351.62	-4115.25	4115.25	230.24	233.93	0.66
Dead+Wind 315 deg - Service	23351.62	-5334.75	3.24	2.69	307.27	0.02
bolid - Willia 515 deg - Service	2001102	-4095.56	-4086.56	-223.47	232.69	-0.84

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	o
T1	80 - 60	0.551	32	0.0542	0.0019
T2	60 - 40	0.324	32	0.0453	0.0010
T3	40 - 20	0.150	32	0.0303	0.0006
T4	20 - 0	0.041	32	0.0147	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ß		Comb.	in	0	o	Ĥ
80'	Top Platform - WolcottNW	32	0.551	0.0542	0.0019	307168
77'	V V-65A-R1 w. Mtg Pipe	32	0.515	0.0531	0.0018	307168
67'	(2) NNHH-65B-R4 w. Mtg Pipe	32	0.400	0.0490	0.0013	118141
<u>60'</u>	VHLPX3-11W	32	0.324	0.0453	0.0010	80298
37'6"	L2 1/2x2x1/4 @ 5ft Vert.	32	0.132	0.0283	0.0005	74492
27'6"	L2 1/2x2x1/4 @ 5ft Vert.	32	0.073	0.0204	0.0004	62111
17'6"	L2 1/2x2x1/4 @ 5ft Vert.	32	0.033	0.0128	0.0002	63530

ARMOR	Job 80' SELF-SUPPORTING TOWER ANALYSIS	Page 15 of 20
ENGINEERING ARMOR TOWER, INC	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
6		Load Comb.	in	٥	٥	fi
7'6"	L2 1/2x2x1/4 @ 5ft Vert.	32	0.011	0.0054	0.0001	147091

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	o
TT1	80 - 60	2.349	12	0.2297	0.0085
11	60 - 40	1.388	12 12	0.1925	0.0045 0.0026
T2 T3 T4	40 - 20	0.642		0.1293	
	20 - 0	0.176	12	0.0627	0.0011

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
0		Load Comb.	in	0	o	ſ
	T Dista WalcottNW	12	2.349	0.2297	0.0085	73835
80'	Top Platform - WolcottNW	12	2.198	0.2251	0.0079	73835
77'	V V-65A-R1 w. Mtg Pipe		1.708	0.2080	0.0059	28398
67'	(2) NNHH-65B-R4 w. Mtg Pipe	12		0.1925	0.0045	19274
60'	VHLPX3-11W	12	1.388		0.0024	17482
37'6"	L2 1/2x2x1/4 @ 5ft Vert.	12	0.568	0.1207		
27'6"	L2 1/2x2x1/4 @ 5ft Vert.	12	0.313	0.0872	0.0016	14548
	$L_2 1/2x2x1/4$ @ 5ft Vert.	12	0.141	0.0547	0.0009	14866
17'6" 7'6"	$L_2 1/2x2x1/4$ @ 5ft Vert.	12	0.046	0.0233	0.0004	34418

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt	Allowable Load per Bolt	Ratio Load Allowable	Allowable Ratio	Criteria
	5				0	<i>lb</i>	17892.40		1	Bolt DS
T1	80	Leg	A307	0.7500	8	6190.15	17892.40	0.346		
		Diagonal	A307	0.7500	2	2270.23	8946.18	0.254	1	Bolt Shear
		Top Girt	A325N	0.7500	2	75.14	11146.90	0.007 🖌	1	Member Block Shear
T2	60	Leg	A307	0.7500	12	8707.60	17892.40	0.487	1	Bolt DS
12	00	Diagonal	A307	0.7500	2	1924.24	8946.18	0.215	1	Bolt Shear
		Top Girt	A325N	0.7500	2	65.85	17892.40	0.004	1	Bolt Shear
Т3	40	Leg	A307	0.7500	16	8598.17	17892.40	0.481	1	Bolt DS
15		Diagonal	A307	0.7500	2	3704.87	8946.18	0.414	1	Bolt Shear
		Horizontal	A307	0.7500	2	2696.76	8946.18	0.301	1	Bolt Shear
		Secondary Horizontal	A307	0.7500	2	177.90	8946.18	0.020	1	Bolt Shear

	Job 80' SELF-SUPPORTING TOWER ANALYSIS	Page 16 of 20
ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.	0	Туре	Grade		Oſ	Load	Load	Load	Ratio	
	ft			în	Bolts	per Bolt Ib	per Bolt Ib	Allowable		
		Top Girt	A325N	0.7500	2	1415.64	10467.20	0.135 🖌	1	Member Block Shear
T4 20	20	Leg	A307	0.7500	20	9026.97	17892.40	0.505 🖌	1	Bolt DS
		Diagonal	A307	0.7500	2	3994.92	8946.18	0.447	1	Bolt Shear
		Horizontal	A307	0.7500	2	3132.35	8946.18	0.350	1	Bolt Shear
		Secondary Horizontal	A307	0.7500	2	205.13	8946.18	0.023 🖌	1	Bolt Shear
		Top Girt	A325N	0.7500	2	2397.80	10467.20	0.229 🖌	1	Member Block Shear

Compression Checks

	Leg Design Data (Compression)								
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu
	ft		ft	ft		in ²	lb	lb	φP.
T1	80 - 60	L4x4x3/8	20'	5'	76.1 K=1.00	2.8600	-24760.60	68290.30	0.363
T2	60 - 40	L5x5x1/2	20'1/4"	5'1/8"	61.1 K=1.00	4.7500	-52245.60	126433.00	0.413
T3	40 - 20	L6x6x1/2	20'1/4"	10'1/8"	101.8 K=1.00	5.7500	-68785.40	107948.00	0.637
T4	20 - 0	L6x6x5/8	20'3/8"	10'1/4"	101.9 K=1.00	7.1100	-90269.80	133406.00	0.677

¹ $P_{\mu} / \phi P_n$ controls

Diagona	Design	Data	(Compression)	
---------	--------	------	---------------	--

Section No:	Elevation	Size	L	L _u	K1/r	A	P _u	φ <i>P</i> "	Ratio Pu
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
T1	80 - 60	L2 1/2x2 1/2x1/4	7'11-9/3 2"	3'9-1/8"	91.8 K=1.00	1.1900	-4540.47	24742.10	0.184 1
T2	60 - 40	L2 1/2x2x1/4	8'10-13/ 16"	4'3-19/3 2"	121.8 K=1.00	1.0600	-3816.79	15735.00	0.243 1
T3	40 - 20	L3x3x1/4	13'2-1/3 2"	6'5-17/3 2''	131.0 K=1.00	1.4400	-7409.74	18906.10	0.392 1
T4	20 - 0	L3x3x5/16	14'2-7/8'	7'23/32"	143.8 K=1.00	1.7800	-7989.84	19455.00	0.411 1

ARMOR	Job 80' SELF-SUPPORTING TOWER ANALYSIS	Page 17 of 20
engineering ARMOR TOWER, INC 9 North Main	Project Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
9 North Main Cortland, NY 13045 Phone: 607-591-5381 F4X* 866-570-0840	Client Everest Infrastructure #701770	Designed by PB

¹ P_{μ} / ϕP_{μ} controls

Horizontal Design Data (Compression)

Section	Elevation	Size	L	L_{μ}	K1/r	A	Pu	ϕP_n	Ratio P _w
No.	ft		ft	ft		in²	lb	lb	ϕP_u
T3	40 - 20	L2 1/2x2 1/2x1/4	8'2-5/8"	7'8-5/8"	188.6 K=1.00	1.1900	-4482.00	7556.83	0.593
T4	20 - 0	L2 1/2x2 1/2x1/4	9'8-5/8"	9'2-5/8"	112.7 K=0.50	1.1900	-5242.97	19763.40	0.265 1

¹ P_{μ} / ϕP_{μ} controls

		Secondary H	lorizon	tal De	sign	Data (Compre	ession)	
Section	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu
No.	ft		fi	ft		in ²	lb	lb	ϕP_{s}
T3	40 - 20	L2 1/2x2 1/2x1/4	8'6-1 9/3 2"	8'19/32"	125.5 K=1.00	1.1900	-336.26	16815.50	0.020
T4	20 - 0	L2 1/2x2 1/2x1/4	10'1-5/1 6"	9'7-5/16'	150.0 K=1.00	1.1900	-336.88	11947.00	0.028 1

¹ P_u / ϕP_n controls

		Top G	irt Des	ign D	ata (C	compr	ession)		
Section	Elevation	Size	L	L"	Kl/r	A	Pu	φP _n	Ratio P _u
No.	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	80 - 60	L3x3x1/4	6'2-1/32'	5'10-3/3 2''	118.3 K=1.00	1.4400	-189.37	22333.70	0.008
T2	60 - 40	C7x12.25	6'2-1/32'	5'9"	120.9 K=1.00	3.6000	-131.71	54036.40	0.002 '
T3	40 - 20	L2 1/2x2 1/2x1/4	7'6-3/8"	7'3/8"	171.9 K=1.00	1.1900	-2418.40	9097.05	0.266 1
T4	20 - 0	L2 1/2x2 1/2x1/4	8'10-13/ 16"	8'4-13/1 6"	205.3 K=1.00	1.1900	-4095.97	6377.07	0.642
		KL/R > 200 (C) - 131							

¹ $P_{\mu} / \phi P_{\pi}$ controls

Inner Bracing Design Data (Compression)

		Job	JOB 80' SELF-SUPPORTING TOWER ANALYSIS							f 20
A	RMOR TOWER, INC 9 North Main	Project	Verizon	Date 12:39:12 09/01/2						
	Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840		E	verest Ir		Designed by PB				
Section No.	Elevation	Size	L	L _u	Kl/r	A	Pu	φP"	Ratio P _u	
	ft		ft	ft		in^2	lb	lb	ϕP_n	
T1	80 - 60	9/16	8'8-5/8"	8'4-11/1 6"	716.1 K=1.00	0.2485	-16.51	109.49	0.151 1	

9/16 KL/R > 250 (C) - 47

KL/R > 250 (C) - 5

¹ P_u / ϕP_u controls

60 - 40

T2

Tension Checks

708.9

K=1.00

0.2485

-4.57

111.70

0.041 1

1

_	Leg Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu		
	ft		ft	fi		in ²	lb	lb	φP _n		
T1	80 - 60	L4x4x3/8	20'	5'	48.8	1.6528	19139.40	71897.30	0.266 1		
T2	60 - 40	L5x5x1/2	20'1/4"	5'1/8"	39.0	2.9062	44741.50	126422.00	0.354 1		
T3	40 - 20	L6x6x1/2	20'1/4"	10'1/8"	64.6	3.6562	60552.50	159047.00	0.381 '		
T4	20 - 0	L6x6x5/8	20'3/8"	10'1/4"	65.3	4.5122	79667.60	196280.00	0.406 1		

8'8-5/8" 8'3-23/3

2"

 $^{1}P_{\mu}$ / ϕP_{n} controls

Diagonal Design Data (Tension) Section Elevation Size L L_u Kl/r P_u A ϕP_n Ratio No. P_u ft ft ft in² lЬ lb φ*P*, T1 80 - 60 7'11-9/3 2" L2 1/2x2 1/2x1/4 3'9-1/8" 58.6 0.7284 4449.32 31687.00 0.140 1 V T2 60 - 40 L2 1/2x2x1/4 8'4-3/16' 0.140 1 4'3/8" 81.6 0.6309 3848.48 27445.80 1 13'2-1/3 2" T3 40 - 20 6'5-17/3 2'' L3x3x1/4 0.164 1 83.4 0.9159 6536.26 39843.30 1 T4 20 - 0 L3x3x5/16 14'2-7/8' 7'23/32" 91.8 1.1299 6959.28 49151.60 0.142 1 1

¹ P_u / ϕP_n controls

ARMOR	Job	80' SELF-SUPPORTING TOWER ANALYSIS	Page 19 of 20
ARMOR TOWER, INC 9 North Main	Project	Verizon Wireless - Wolcott, CT/Andrews Rd	Date 12:39:12 09/01/23
9 North Main Cortland, NY 13045 Phone: 607-591-5381	Client	Everest Infrastructure #701770	Designed by PB

Horizontal Design Data (Tension)

PB

Section	Elevation	Size	L	L _µ	Kl/r	A	Pu	φ <i>P</i> #	Ratio Pu
No.	ft		ft	ft		in ²	lb	lb	φ <i>P</i> ,,
T3	40 - 20	L2 1/2x2 1/2x1/4	8'2-5/8"	7'8-5/8"	120.4	0.7284	5393.52	31687.00	0.170
T4	20 - 0	L2 1/2x2 1/2x1/4	9'8-5/8"	9'2-5/8"	143.9	0.7284	6264.70	31687.00	0.198

¹ P_u / ϕP_n controls

FAX: 866-570-0840

Secondary Horizontal Design Data (Tension)

Section	Elevation	Size	L	Lu	Kl/r	A	Ρ.,	ϕP_n	Ratio P
No.	fi		ft	ft		in ²	lb	lb	ϕP_n
T3	40 - 20	L2 1/2x2 1/2x1/4	8'6-19/3 2"	8'19/32"	125.5	0.7284	355.80	31687.00	0.011
T4	20 - 0	L2 1/2x2 1/2x1/4	9'3-15/3 2"	8'9-15/3 2"	137.2	0.7284	410.27	31687.00	0.013

¹ $P_{\mu} / \phi P_n$ controls

Top Girt Design Data (Tension)

Section	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP_n	Ratio Pu
No.	ft		ft	ft		in ²	lb	lb	φP _n
T1	80 - 60	L3x3x1/4	6'2-1/32'	5'10-3/3 2''	75.3	0.9159	150.28	39843.30	0.004
T2	60 - 40	C7x12.25	6'2-1/32'	5'9"	120.9	2.4939	83.91	108486.00	0.001
T3	40 - 20	L2 1/2x2 1/2x1/4	7'6-3/8"	7'3/8"	109.8	0.7284	2831.27	31687.00	0.089
T4	20 - 0	L2 1/2x2 1/2x1/4	8'10-13/ 16''	8'4-13/1 6''	131.1	0.7284	4795.59	31687.00	0.151

¹ $P_u / \phi P_n$ controls

Inner Bracing Design Data (Tension)									
Section	Elevation	Size	L	Lu	Kl/r	A	P _u	φP _n	Ratio P _u
No.	ft		ft	ft		in ²	lb	lb	ϕP_{a}
T3	40 - 20	9/16	10'7-13/ 16"	10'1-13/ 16"	866.5	0.2485	150.18	11182.70	0.013

		Job	80' SELF	Page 20 of 20						
Al	RMOR TOWER, INC 9 North Main	Project	Project Verizon Wireless - Wolcott, CT/Andrews Rd							9/01/23
	Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-570-0840	Client	Everest Infrastructure #701770						Designed by PB	
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ <i>P</i> "	Ratio	
NO.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$	

0.028 1

11182.70

		2	~		
	L/R > 500 (T) - 89				-
20 - 0	9/16	12'7-3/3	12'1-3/3	1031.5	
		2"	2"		
	L/R > 500 (T) - 127				

¹ P_u / ϕP_n controls

T4

Section Capacity Table

0.2485

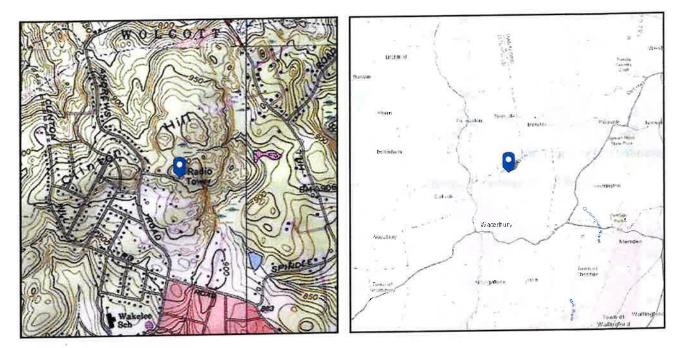
313.55

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	80 - 60	Leg	L4x4x3/8	1	-24760.60	68290.30	36.3	Pass
T2	60 - 40	Leg	L5x5x1/2	43	-52245.60	126433.00	41.3	Pass
		-				100100100	48.7 (b)	1 400
T3	40 - 20	Leg	L6x6x1/2	85	-68785.40	107948.00	63.7	Pass
T4	20 - 0	Leg	L6x6x5/8	123	-90269.80	133406.00	67.7	Pass
T1	80 - 60	Diagonal	L2 1/2x2 1/2x1/4	13	-4540.47	24742.10	18.4	Pass
							25.4 (b)	
T2	60 - 40	Diagonal	L2 1/2x2x1/4	55	-3816.79	15735.00	24.3	Pass
T3	40 - 20	Diagonal	L3x3x1/4	101	-7409.74	18906.10	39.2	Pass
							41.4 (b)	
T4	20 - 0	Diagonal	L3x3x5/16	139	-7989.84	19455.00	41.1	Pass
							44.7 (b)	
T3	40 - 20	Horizontal	L2 1/2x2 1/2x1/4	105	-4482.00	7556.83	59.3	Pass
T4	20 - 0	Horizontal	L2 1/2x2 1/2x1/4	143	-5242.97	19763.40	26.5	Pass
							35.0 (b)	
T3	40 - 20	Secondary Horizontal	L2 1/2x2 1/2x1/4	109	-336.26	16815.50	2.0	Pass
T4	20 - 0	Secondary Horizontal	L2 1/2x2 1/2x1/4	148	-336.88	11947.00	2.8	Pass
T1	80 - 60	Top Girt	L3x3x1/4	7	-189.37	22333.70	0.8	Pass
T2	60 - 40	Top Girt	C7x12.25	49	-126.03	54036.40	0.3	Pass
-							0.4 (b)	
T3	40 - 20	Top Girt	L2 1/2x2 1/2x1/4	93	-2418.40	9097.05	26.6	Pass
T4	20 - 0	Top Girt	L2 1/2x2 1/2x1/4	131	-4095.97	6377.07	64.2	Pass
T1	80 - 60	Inner Bracing	9/16	5	-16.51	109.49	15.1	Pass
T2	60 - 40	Inner Bracing	9/16	47	-4.57	111.70	4.1	Pass
T3	40 - 20	Inner Bracing	9/16	89	150.18	11182.70	1.3	Pass
T4	20 - 0	Inner Bracing	9/16	128	313.55	11182.70	2.8	Pass
							Summary	
						Leg (T4)	67.7	Pass
						Diagonal	44.7	Pass
						(T4)		
						Horizontal	59.3	Pass
						(T3)		
						Secondary	2.8	Pass
						Horizontal		
						(T4)		
						Top Girt	64.2	Pass
						(T4)		
						Inner	15.1	Pass
						Bracing (T1)		
						Bolt Checks	50.5	Pass
			Comparison and a second	-		RATING =	67.7	Pass

SS Tower Pad & 3Pier Cal	culations			
		Client: EIP/TMO		
Applied Factored Loads:		Project: Wolcott, Cl	2	
	kip-ft	09/01/23 13:50		
Uplift: 89	kip	Code: TIA-222-H		
DownLoad: 101	kip			
ΣDeadLoad: 28.00	kip	Specific Gravity:	2.65	
Total Shear 25.00	kip	Soil Unit Weight:	110 lb/ft^3	
→ 10.54ft		Submerged Unit Wt:	68.49 lb/ft ³	
→ 3.0ft		Concrete Unit Wt:	150 lb/ft^3	
- 3.0IL	4.70ft		3000 psi	
		Rebar Fy:	60000 psi	
2.2ft	the second s		-	
23.8010		Σ Concr Vol:	48.4 cuyd	
Pier Depth: 2.5	£+	Depth to Water:	4.7 ft	
TICE Depend	kip-ft	Dopon of mercan		
Total Moment: 1623	KTD-IC			
	0.75 TIA-G	9 4 1		Toe:
OTM Safety Factor:	No	J. 1. 1		
Add Toe at Base of Pad?	NO			
	φs: 0.7	75		
Bearing Pressure:	1.	fb(max):	1314 psf	
Soil Type @ Bearing		Fb:	9000 psf	
SPT-N @ Bearing	Localion: Jo		14.6% Loaded	
Overturning Moment Capac	3654 kip ft		59.2% Loaded	
	1			

Foundation Design per ACI 318

Global Check: **OK** 0


Anchor Rods				
TIA 4.9.9			Client:	EIP/VZW
Factored Reacti	ons: Sł	hear:		Wolcott, CT
Uplift:	88.9	11.9 kip	09/01/23	
Download:	101.3	13.5 kip	Standard:	TIA-H
# of Anc	hor Rods:	4		
	t Circle:	13.5 inch		
		2010 Inon		
Ancho	or Rod d:	1.25 inch	7	tpi (UNC)
	d _n : 1	L.111 inch, Te		
Anchor Rod M		36 Fu		ksi *Assumed
		Fy	: 36	ksi
Clear distance	between Top of	Concrete		
to bottom of 1	eveling nut (l	ar):	linch	Anchor Rod
		lar<1(d)		not in flexure
$\phi_t R_{nt}$:	- -	$\phi_{c}R_{nc}$:	34.9	kip
$\phi_v R_{nv}$:	26.7 kip	$\phi_{c}R_{nvc}$:	20.9	kip
M _{ut} :	1.93 kip-i	n M _{uc} :	2.19	kip-in
$\phi_{f}M_{n}$:	7.40 kip-i	n		
$\phi_{c}R_{nb}$:	34.87 kip			
TIA-G calculati				
Deta	il Type: c: Gr		ባ:	0.55
		I	Eq. 4.9.9-a	
				<1.05 OK
		Tens	sion Check:	0.29 <1.05 OK
		1.011		0.25 C1.05 OA
		Compress	sion Check:	0.75 <1.05 OK
		-		Contraction of the second

ASCE 7 Hazards Report

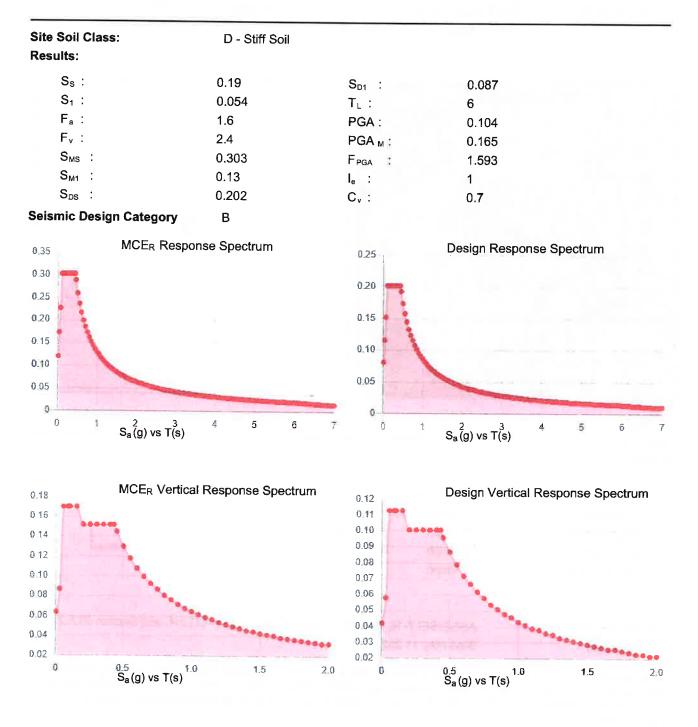
Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Elevation: 1006.38 ft () Latitude: 41.617693 Longitude: -73.004574

Wind

Results:

Wind Speed 10-year MRI 25-year MRI 50-year MRI 100-year MRI 117 Vmph 75 Vmph 84 Vmph 90 Vmph 97 Vmph


125 mph 2022 CT State Builidng Code Appendix P New Haven CT

Data Source: Date Accessed: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2 Wed May 11 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Data Accessed:

Wed May 11 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Wed May 11 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

September 9, 2019 November 21, 2019 (Rev. 1) May 23, 2023 (Rev. 2) July 14, 2023 (Rev.3)

20 Alexander Drive, 2nd Floor Wallingford, CT 06492

RE: TEP Project Number: Site Name: Site Address: 263231.866801 Wolcott NW CT 107/109 Andrews Road Wolcott, CT 06716

To Whom It May Concern:

TEP Northeast (TEP NE) has been authorized by Verizon to perform a mount analysis on the existing Verizon antenna/RRH mounts to determine their capability of supporting the following additional loading:

- (4) NNHH-65B-R4 Antennas (72.0"x19.6"x7.8" Wt. 68 lbs. /each)
- (2) B2/B66A RRH-BR049 RRH's (RFV01U-D1A RRH) (15.0"x15.0"x10.0" Wt. = 98 lbs. /each)
- (2) B5/B13 RRH-BR04C RRH's (RFV01U-D2A) (15.0"x15.0"x8.1" Wt. = 82 lbs. /each)
- (1) OVP Box (28.9"x15.7"x10.3" Wt. 32 lbs. /each)
- (2) BSF0020F3V1-1 Mitigation Filters (15.3"x10.9"x3.5" Wt. = 18 lbs. /each)

*Proposed equipment shown in bold.

Mount fabrication drawings prepared by SitePro1, P/N R5-LL, dated April 21, 2010; and P/N R5-216, dated February 19, 2013, were used to perform this analysis. This office conducted a survey climb and mapping of the existing Verizon antenna mounts on March 30, 2021.

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, and the International Building Code 2021 with the 2022 Connecticut State Building Code.
- TEP NE considers this mount to be asymmetrical and has applied wind loads in 30-degree increments all around the mount. Per TIA-222-H and Appendix P of the Connecticut State Building Code, the max basic wind speed for this site is equal to 120 mph with a max basic wind speed with ice of 50 mph and a max ice thickness of 1.0 in. An escalated ice thickness of 1.07 in was used for this analysis.
- TEP NE considers this site to be exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions.
- TEP NE considers this site to be topographic category 1; tower is located on flat terrain or the bottom of a hill or ridge.
- TEP NE considers this site to have a spectral response acceleration parameter at short periods, S_s, of 0.191 and a spectral response acceleration parameter at a period of 1 second, S₁, of 0.054.
- This analysis does not include live load conditions for this mount.
- The existing mounts are secured to the existing self-supporting tower with threaded rods, angles, and clamps tightened around the tower leg. TEP NE considers the threaded rods as the governing connection members.

Based on our evaluation, we have determined that the existing mounts **ARE CAPABLE** of supporting the proposed installation.

	Component	Controlling Load Case	Stress Ratio	Pass/Fail
Existing Mount Rating	2	LC7	31%	PASS

Reference Documents:

- Fabrication drawings prepared by SitePro1, P/N R5-LL dated April 21, 2010.
- Fabrication drawings prepared by SitePro1, P/N R5-216 dated February 19, 2013.

This determination was based on the following limitations and assumptions:

- 1. TEP NE is not responsible for any modifications completed prior to and hereafter which TEP NE was not directly involved.
- 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 4. The existing mounts have been adequately secured to the tower structure per the mount manufacturer's specifications.
- 5. All components pertaining to Verizon's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
- 6. TEP NE performed a localized analysis on the mount itself and not on the supporting tower structure.

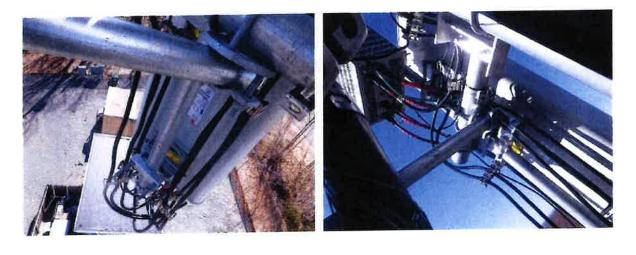
Please feel free to contact our office should you have any questions.

Respectfully Submitted, TEP Northeast

alar C

Michael Cabral Director

Daniel P. Hamm, PE Vice President


FIELD PHOTOS:

Page 5 of 5 Re: Wolcott NW CT July 14, 2023 (Rev.3)

FIELD PHOTOS (CONT.):

Wind & Ice Calculations
 Date:
 7/14/2023

 Project Name:
 Wolcott NW CT

 Designed By:
 CL
 Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$K_z = 2.01 (z/z_g)^{2/\alpha}$		z=	<mark>67</mark> (f	ft)
2		z _g =	1200 (f	ft)
K _z =	0.881	α=	7.0	

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Zg	α	K _{zmin}	Kc
B	1200 ft	7.0	0.70	0.9
c	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.2 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2.0
4	0.72	1.5

1

1

 $K_{zt} = [1 + (K_c K_t/K_h)]^2$

K_{zt}=

Category=

 $K_h = e^{(f^*z/H)}$

K _h =	1.0	
K _c =	0.9	(from Table 2-4)
K _t =	0	(from Table 2-5)
f=	0.0	(from Table 2-5)
z=	67	
z _s =	1000	(Mean elevation of base of structure above sea level)
H=	0	(Ht. of the crest above surrounding terrain)
K _{zt} =	1.00	(from 2.6.6.2.1)
K _e =	0.96	(from 2.6.8)

2.6.10 Design Ice Thickness

(If Category 1 then K = =1.0)

Max Ice Thickness = Importance Factor =

 $t_{iz} = t_i^* | *K_{iz}^* (K_{zt})^{0.35}$

2.6.9 Gust Effect Factor

2.6.9.1 Self Supporting	Lattice Structures

G_h = 1.0 Latticed Structures > 600 ft

G_h = 0.85 Latticed Structures 450 ft or less

G_h = 0.85 + 0.15 [h/150 - 3.0]

h= ht. of structure

h=	83	G _h =	0.85
2.6.9.2 Guyed Masts		G _h =	0.85
2.6.9.3 Pole Structures		G _b =	1.1
2.6.9 Appurtenances		G _h =	1.0

2.6.9.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

G _h =	1.35	Gh=	1.00		
2.6.11.2 Design Wind	Force on Appurtenances				
F= q _z *G _h *(EP	A) _A				
q _z = 0.00256*K	$z^*K_{zt}*K_s*K_e*K_d*V_{max}^2$		K _z =	<mark>0.881</mark>	(from 2.6.5.2)
			K _{zt} =	1.0	(from 2.6.6.2.1)
			K _s =	1.0	(from 2.6.7)
q _z =	26.64		K _e =	<mark>0.96</mark>	(from 2.6.8)
q _{z (ice)} =	4.62		K _d =	0.85	(from Table 2-2)
q₂ (30)=	1.66		V _{max} =	120	mph (Ultimate Wind Speed)
		Vm	ax (ice)=	50	mph
			V ₃₀ =	30	mph

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95
Tubular pole structures supporting antennas enclosed within a cylindrical shroud	1.00

Determine Ca:

Table 2-9

	Foi	rce Coefficients (Ca) for Ap	purtenances	10-5-05
		Aspect Ratio ≤ 2.5	Aspect Ratio = 7	Aspect Ratio ≥ 25
	Nember Type	Ca	Ca	Ca
Flat Square/Rectangular HSS		1.2	1.4	2.0
		1.2 - 2.8(r _s) ≥ 0.85	$1.4 - 4.0(r_s) \ge 0.90$	$2.0 - 6.0(r_s) \ge 1.2$
Round	C < 39	0.7	0.8	1.2
	(Subcritical)	0.7		
	39 ≤ C ≤ 78	4.14/(C ^{0,485})	3.66/(C ^{0.415})	46.8/(C ^{.1.0})
	(Transitional)	4.14/(C)	5105/(0)	
	C > 78	0.5	0.6	0.6
- II.	(Supercritical)	0.5	515	

Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction.

(Aspect ratio is independent of the spacing between support points of a linear appurtenance,

Note: Linear interpolation may be used for aspect ratios other than those shown.

Ice Thickness =	1.07	in	Angle =	0 (deg)	E	Equival	ent Angle =	180 (deg)
Appurtenances	<u>Height</u>	Width	<u>Depth</u>	<u>Flat Area</u>	<u>Aspect</u> <u>Ratio</u>	<u>Ca</u>	<u>Force (ibs)</u>	Force (lbs) (w/ lce)
NNHH-65B-R4 Antenna	72.0	19.6	7.8	9.80	3.67	1.25	327	65
B2/B66A RRH-BR049 RRH B2/B66A RRH-BR049 RRH (Shielded)	15.0 15.0	15.0 7.5	10.0 10.0	1.56 0.78	1.00 0.00	1.20 1.20		11 6
B5/B13 RRH-BR04C RRH B5/B13 RRH-BR04C RRH (Shielded)	15.0 15.0	15.0 7.5	8.1 8.1	1.56 0.78	1.00 0.00	1.20 1.20		11 6
OVP Box OVP Box (Shielded)	28.9 28.9	15.7 7.9	10.3 10.3	3.15 1.58	1.84 0.00	1.20 1.20		21 12
BSF0020F3V1-1 Mitigation Filter BSF0020F3V1-1 Mitigation Filter (Shielc	15.3 15.3	10.9 5.5	3.5 3.5	1.16 0.58	1.40 0.00	1.20 1.20		9
2" Pipe	2.4	12.0	•	0.20	0.20	1.20	6	
3-1/2" Pipe	4.0	12.0	-	0.33	0.33	1.20	11	
4" Pipe	4.5	12.0	÷	0.38	0.38	1.20	12	

	_	_	_		WIND LOAD		_					
Angle = 30	(deg)		Ice Thick	ness =	1.07	in.	l -		Equiv	alent Angle =	210	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	<u>Flat Area</u> (side)	Aspect Ratio	Aspect Ratio	<u>Ca (normal)</u>	<u>Ca</u> (side)	<u>Force (lbs)</u> (normal)	Force (lbs) (side)	Force (ibs (angle)
NNHH-658-R4 Antenna	72.0	19.6	7.8	9.80	3.90	3.67	9.23	1,25	1.47	327	153	283
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0									
B2/866A RRH-BR049 RRH (Shielded)	15.0	7.5	10.0	1.56	1.04	1.00	1.50	1.20	1.20	50	99	46
	10.0	_/.5	10.0	0.78	1.04	2.00	1.50	1.20	1.20	25	39	27
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	50	27	
85/813 RRH-BR04C RRH (Shielded)	15.0	7.5	8.1	0.78	0.84	2.00	1.85	1.20	1.20	25	27	44
					0,04	2.00	1.05	1.20	1.20	23	47	25
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	101	67	92
OVP Box (Shielded)	28.9	7.9	10.3	1.58	2.07	3.68	2.81	1.25	1.21	53	67	56
							2.01		1.2.2		•/	30
BSF0020F3V1-1 Mitigation Filter	15.3	10.9	3.5	1.16	0.37	1.40	4.37	1.20	1.28	37	13	31
BSF0020F3V1-1 Mitigation Filter (Sh	15.3	5,5	3.5	0.58	0.37	2,81	4.37	1.21	1,28	19	13	17
WIND LOADS WITH ICE:												
NHH-658-R4 Antenna	74.1	24.7	0.0									
	74.1	21.7	9.9	11.20	5.12	3.41	7.45	1.24	1.42	64	34	57
32/B66A RRH-BR049 RRH	17.1	17:1	12.1	2.04	1.45	1.00		1.20			_	
32/866A RRH-BR049 RRH (Shielded)	17.1	9.6	12.1	1.15	1.45	1,00	1.41	1.20	1.20	11	8	11
· · · · · · · · · · · · · · · · · · ·		5.0	16.1	1.13	1.45	1.78	1.41	1.20	1.20	6	8	7
95/B13 RRH-BR04C RRH	17,1	17.1	10.2	2.04	1.22	1.00	1.67	1.20	1.20	11		40
35/B13 RRH-BR04C RRH (Shielded)	17.1	9.6	10.2	1.15	1.22	1.78	1.67	1.20	1.20	6	7	10
						1.70	1.07	1.20	1.20	0		
OVP Box	31,0	17.8	12.4	3.85	2.68	1.74	2.49	1.20	1.20	21	15	20
OVP Box (Shielded)	31.0	10.0	12.4	2.16	2.68	3.11	2.49	1.23	1.20	12	15	13
												1.5
ISF0020F3V1-1 Mitigation Filter	17.4	13.0	5,6	1.66	0.34	1.34	3.09	1.20	1.23	9	2	7
SF0020F3V1-1 Mitigation Filter (Sh	17.4	7.6	5.6	1.66	0.34	2.30	3.09	1.20	1.23	9	2	7

E

Angle = 60	(deg)		Ice Thick	ness =	1.07	in.		[Equiv	alent Angle =	240	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	<u>Flat Area</u> (side)	<u>Ratio</u> (normal)	<u>Ratio</u> (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs) (angle)
NNHH-65B-R4 Antenna	72.0	19.6	7.8	9.80	3.90	3.67	9.23	1.25	1.47	327	153	197
	_							1.00	1 20	50	93	37
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	50 25	33	31
B2/B66A RRH-BR049 RRH (Shielded)	15.0	7.5	10.0	0.78	1.04	2.00	1.50	1.20	1.20	43	23	
		45.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	50	27	83
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1 8.1	0.78	0.84	2.00	1,85	1.20	1.20	2.5	27	26
B5/B13 RRH-BR04C RRH (Shielded)	15.0	7.5	8.1	0.76	0.04	2.00						
	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1,21	101	67	75
OVP Box	28.9	7.9	10.3	1.58	2.07	3.68	2.81	1.25	1.21	53	67	63
OVP Box (Shielded)	20.5											40
BSF0020F3V1-1 Mitigation Filter	15.3	10.9	3.5	1.16	0.37	1.40	4.37	1.20	1.28	37	13	19
BSF0020F3V1-1 Mitigation Filter (Sh	15.3	5.5	3.5	0.58	0.37	2.81	4.37	1.21	1.28	19	13	14
WIND LOADS WITH ICE:												
NNHH-658-R4 Antenna	74.1	21.7	9.9	11.20	5.12	3.41	7.45	1.24	1.42	64	34	41
			40.0	2.04	1.45	1.00	1.41	1.20	1.20	11	8	9
BZ/B66A RRH-BR049 RRH	17.1	17.1	12.1		1.45	1.00	1.41	1.20	1.20	6	8	8
BZ/B66A RRH-BR049 RRH (Shielded)	17,1	9.6	12.1	1.15	1.43	1.70	0.70		276.0			
	171	17.1	10.2	2.04	1.22	1,00	1.67	1.20	1.20	11	7	
B5/B13 RRH-BR04C RRH	17.1 17.1	9.6	10.2	1.15	1.22	1.78	1.67	1.20	1.20	6	7	7
B5/B13 RRH-BR04C RRH (Shielded)	1/.1	5.0	10.2									
OVP Box	31.0	17.8	12.4	3.85	2.68	1.74	2,49	1.20	1,20	21	15	17
OVP Box OVP Box (Shielded)	31.0	10.0	12.4	2.16	2.68	3.11	2.49	1.23	1.20	12	15	14
OAL BOY (allience)												
BSF0020F3V1-1 Mitigation Filter	17.4	13.0	5.6	1.66	0.34	1.34	3.09	1.20	1.23	9	2	
BSF0020F3V1-1 Mitigation Filter (Sh		7.6	5.6	1.66	0.34	2.30	3.09	1.20	1.23	9	2	

	_	_			WINDLOA	DS						
Angle = 90	(deg)		Ice Thick	ness =	1.07	in,			Equiv	alent Angle =	270	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	<u>Flat Area</u> (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs) (angle)
NNHH-65B-R4 Antenna	72.0	19.6	7.8	9.80	3.90	3.67	9.23	1.25	1.47	327	153	153
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0									
B2/B66A RRH-BR049 RRH (Shielded)	15.0	7.5	10.0	1.56	1.04	1.00	1.50	1.20	1.20	50	33	39
set sour min shows min (smelled)	15.0	7.5	10.0	0.78	1.04	0.00	1.50	1.20	1.20	25	33	33
85/813 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	50		
85/B13 RRH-BR04C RRH (Shielded)	15.0	7.5	8,1	0.78	0.84	0.00	1.85	1.20	1.20	25	27 27	27
				0.70	0.04	0.00	1.05	1.20	1.20	4	21	21
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	101	67	67
OVP Box (Shielded)	28.9	7.9	10,3	1.58	2.07	0.00	2.81	1.20	1.21	50	67	67
								241	-10			
BSF0020F3V1-1 Mitigation Filter	15.3	10.9	3,5	1.16	0.37	1.40	4.37	1.20	1.28	37	13	13
BSF0020F3V1-1 Mitigation Fliter (Shi	15.3	5.5	3,5	0.58	0.37	0.00	4.37	1.20	1.28	19	13	13
WIND LOADS WITH ICE:												
NNHH-65B-R4 Antenna	74.1	21.7	9,9	11.20	5.12	3.41	7.45	1.24	1.42	64	34	34
92/B66A RRH-BR049 RRH	17.1	17.1	17.1									
32/866A RRH-BR049 RRH (Shielded)	17.1	9.6	12.1 12.1	2.04	1.45	1.00	1.41	1.20	1.20	11	8	
	±/.1	5.0	12.1	1.15	1.45	1.78	1.41	1.20	1.20	6		8
35/B13 RRH-BR04C RRH	17.1	17.1	10.2	2.04	1.22	1.00	1.67	1.20	1.20		7	-
35/B13 RRH-BR04C RRH (Shielded)	17.1	9.6	10.2	1.15	1.22	1.00	1.67	1.20	1.20	11 6	7	7
		-				2.70	1.07	1.20	1.20			
OVP Box	31.0	17.8	12.4	3.85	2.68	1.74	2.49	1.20	1.20	Z1	15	15
DVP Box (Shielded)	31.0	10.0	12,4	2.16	2.68	3.11	2.49	1.23	1.20	12	15	15
										_		
SF0020F3V1-1 Mitigation Filter	17.4	13.0	5.6	1.66	0.34	1.34	3.09	1.20	1.23	9	2	2
SF0020F3V1-1 Mitigation Filter (Shi	17.4	7.6	5.6	1.66	0.34	2.30	3.09	1.20	1.23	9	2	2

			-		WIND LOA							
Angle = 120	(deg)		Ice Thick	iess =	1.07	in.		[Equi	valent Angle =	300	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	Flat Area (side)	<u>Ratio</u> (normal)	<u>Ratio</u> (side)	<u>Ca</u> (norm <u>al)</u>	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs) (angle)
NNHH-65B-R4 Antenna	72.0	19,6	7.8	9.80	3.90	3.67	9.23	1.25	1.47	327	153	197
						1.00	1.50	1.20	1.20	50	33	37
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04		1.50	1.20	1.20	25	33	31
B2/B66A RRH-BR049 RRH (Shielded)	15.0	7.5	10.0	0.78	1.04	2.00	1.50	1.20	1.40			
	15.0	45.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	50	27	33
85/B13 RRH-BR04C RRH	15.0	15.0		0.78	0.84	2.00	1.85	1,20	1.20	25	27	26
B5/B13 RRH-BR04C RRH (Shielded)	15.0	7.5	81	0.76	0.04	2.00	1.00					
	20.0	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	101	67	75
OVP Box	28.9 28.9	7.9	10.3	1.58	2.07	3.68	2.81	1.25	1.21	53	67	63
OVP Box (Shielded)	26.9	7.5	10.5	1.00								
the second second state of the second s	15,3	10.9	3.5	1.16	0.37	1.40	4.37	1.20	1.28	37	13	19
BSF0020F3V1-1 Mitigation Filter		5.5	3.5	0.58	0.37	2.81	4.37	1.21	1.28	19	13	14
BSF0020F3V1-1 Mitlgation Filter (Shi	15.5	<u>c</u> ,c	5.5	0.50								
WIND LOADS WITH ICE:												
NNHH-65B-R4 Antenna	74.1	21.7	9.9	11.20	5.12	3.41	7.45	1.24	1.42	64	34	41
						1.00	1.41	1.20	1.20	11		9
B2/B66A RRH-BR049 RRH	17.1	17.1	12.1	2.04	1.45	1.00		1.20	1.20	6		
B2/B66A RRH-BR049 RRH (Shielded)	17.1	9.6	12.1	1.15	1.45	1.78	1.41	1.20	1.20			
		_			1.22	1.00	1.67	1.20	1.20	11	7	8
B5/B13 RRH-BR04C RRH	17.1	17.1	10.2	2.04	1.22	1.00	1.67	1.20	1.20	6	7	7
B5/B13 RRH-BR04C RRH (Shielded)	17.1	9.6	10.2	1.15	1.22	1./8	1.07	1.20	1.2.4			
	31.0	17.8	12.4	3.85	2.68	1.74	2.49	1.20	1.20	21	15	17
OVP Box	31.0	10.0	12.4	2.16	2.68	3.11	2.49	1.23	1.20	12	15	14
OVP Box (Shielded)	31.0	10.0										
DEPOSITOR A Balification Filter	17.4	13.0	5.6	1.66	0.34	1.34	3.09	1.20	1.23	9	2	4
BSF0020F3V1-1 Mitigation Filter		7.6	5.6	1.66	0.34	2.30	3.09	1,20	1.23	9	2	4
BSF0020F3V1-1 Mitigation Filter (Shi	17.4	7.0	5.0									

		_	_		WIND LOA	05						
Angle = 150	(deg)		Ice Thick	ness =	1.07	in.			Equi	valent Angle =	330	(deg)
WIND LOADS WITH NO ICE:												
<u>Appurtenances</u>	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	<u>Flat Area</u> (side)	<u>Ratio</u> (normal)	<u>Ratio</u> (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (Ibs) (side)	Force (lbs (angle)
NNHH-65B-R4 Antenna	72.0	19.6	7.8	9.80	3.90	3.67	9.23	1.25	1.47	327	153	283
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00						
B2/B66A RRH-BR049 RRH (Shielded)	15.0	7.5	10.0	0.78	1.04	1.00	1.50	1.20	1.20	50	33	46
	1010	/	10.0	0.78	1.04	2.00	1.50	1.20	1.20	25	33	27
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1,20	50	27	
B5/B13 RRH-BR04C RRH (Shielded)	15.0	7.5	8.1	0.78	0.84	2.00	1.85	1.20	1.20	25	27	44
				0.70	0.04	2.00	1.05	1.20	1.20	25	2/	25
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	101	67	92
OVP Box (Shielded)	28.9	7.9	10.3	1.58	2.07	3.68	2.81	1.25	1.21	53	67	56
							2101	1.2.5				30
BSF0020F3V1-1 Mitigation Filter	15.3	10.9	3.5	1.16	0.37	1.40	4.37	1.20	1.28	37	13	31
BSF0020F3V1-1 Mitigation Filter (Shie	15.3	5.5	3.5	0.58	0.37	2.81	4.37	1.21	1,28	19	13	17
WIND LOADS WITH ICE:												
NNHH-658-R4 Antenna	74.1	21.7	9.9	11.20	5.12	3.41	7.45	1.24	1.42	64	34	
					DILL	3.41	7.45	1,24	1,42	04	34	57
32/B66A RRH-BR049 RRH	17.1	17.1	12.1	2.04	1.45	1.00	1.41	1.20	1.20	11	8	11
32/B66A RRH-BR049 RRH (Shielded)	17.1	9.6	12.1	1.15	1.45	1.78	1.41	1.20	1.20	6		7
	17.4											
95/B13 RRH-BR04C RRH 95/B13 RRH-BR04C RRH (Shielded)	17.1	17.1	10.2	2.04	1.22	1.00	1.67	1.20	1.20	11	7	10
STOLES KAR-ONUSC KKR (SNIEIGEG)	17.1	9.6	10.2	1.15	1.22	1.78	1,67	1.20	1.20	6	7	6
OVP Box	31.0	17.8	12.4	3.85	2.68	1.74	2.49	1.20	1 20			
DVP Box (Shielded)	31.0	10.0	12.4	2.16	2.68	3.11	2.49	1.20	1.20 1.20	21	15 15	20
		2010	10.7	2.40	2.00	2.11	2.49	1.25	1.20	12	15	13
SF0020F3V1-1 Mitigation Filter	17.4	13.0	5.6	1.66	0.34	1.34	3.09	1.20	1.23	9	2	
SF0020F3V1-1 Mitigation Filter (Shin	17.4	7.6	5.6	1.66	0.34	2.30	3.09	1.20	1.23	9	2	7

 Date:
 7/14/2023

 Project Name:
 Wolcott NW CT

 Designed By:
 CL
 Checked By: MSC

ICE WEIGHT CALCULATIONS

Thickness of ice:	1.07 in.
Density of ice:	56 pcf

NNHH-65B-R4 Antenna

total radial SF area:	
72.0	
19.6	
7.8	
object:	174 lbs
68.0	lbs
e and object:	242 lbs
	19.6 7.8 object:

B5/B13 RRH-BR04C RRH

otal radial SF area:	
15.0	
15.0	
8.1	
oject:	30 lbs
82.0	lbs
and object:	112 lbs
	15.0 15.0 8.1 pject:

BSF0020F3V1-1 Mitigation Filter

otal radial SF area:	
15.3	
10.9	
3.5	
oject:	21 lbs
18.0	lbs
and object:	39 lbs
	10.9 3.5 oject:

3-1/2" Pipe

Per foot weight of ice:		
diameter (in):	4.00	
Per foot weight of ice on object:		7 plf

B2/B66A RRH-BR049 RRH

Weight of ice based on total radial SF	area:	
Height (in):	15.0	
Width (in):	15.0	
Depth (in):	10.0	
Total weight of ice on object:		31 lbs
Weight of object:	98.0	bs
Combined weight of ice and object:		129 lbs

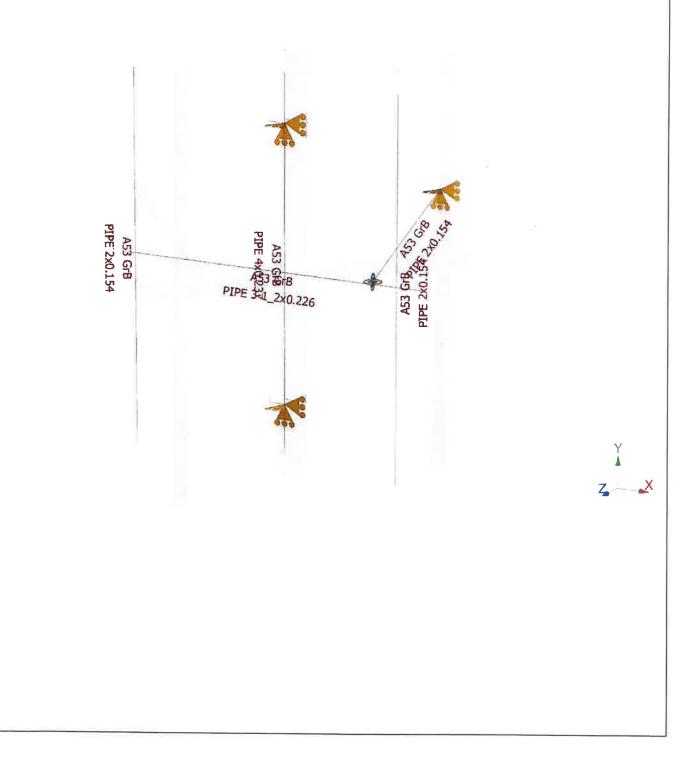
OVP Box

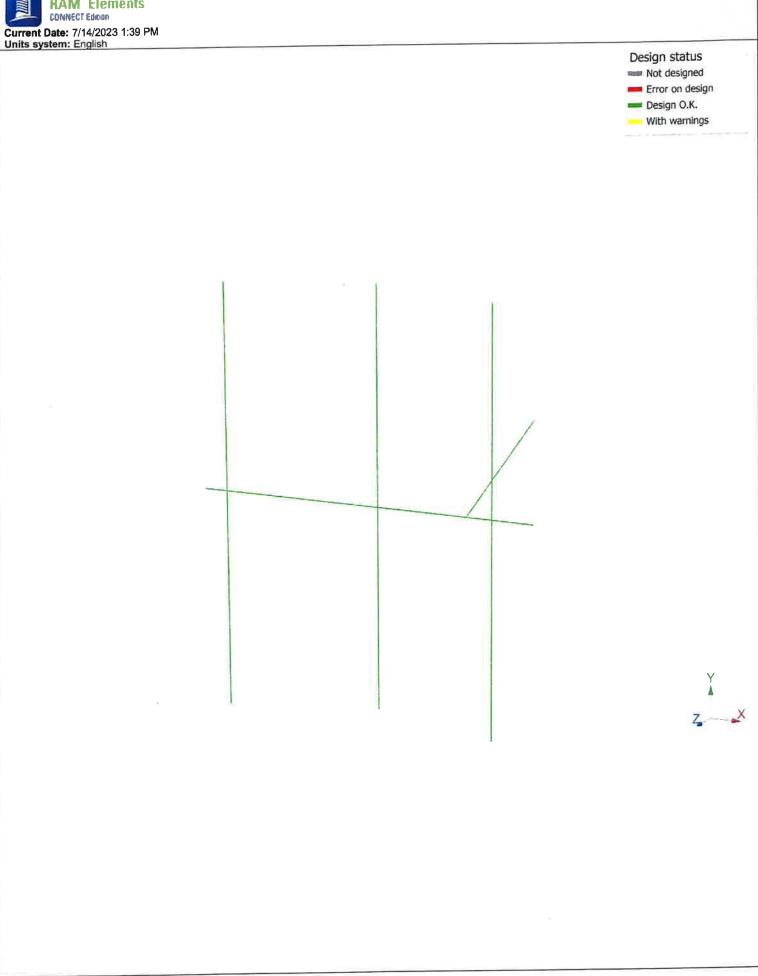
Weight of ice based on total radia		
Height (in):	28.9	
Width (in):	15.7	
Depth (in):	10.3	
Total weight of ice on object:		62 lbs
Weight of object:	32.0 lbs	5
Combined weight of ice and object	t:	94 bs

2" Pipe

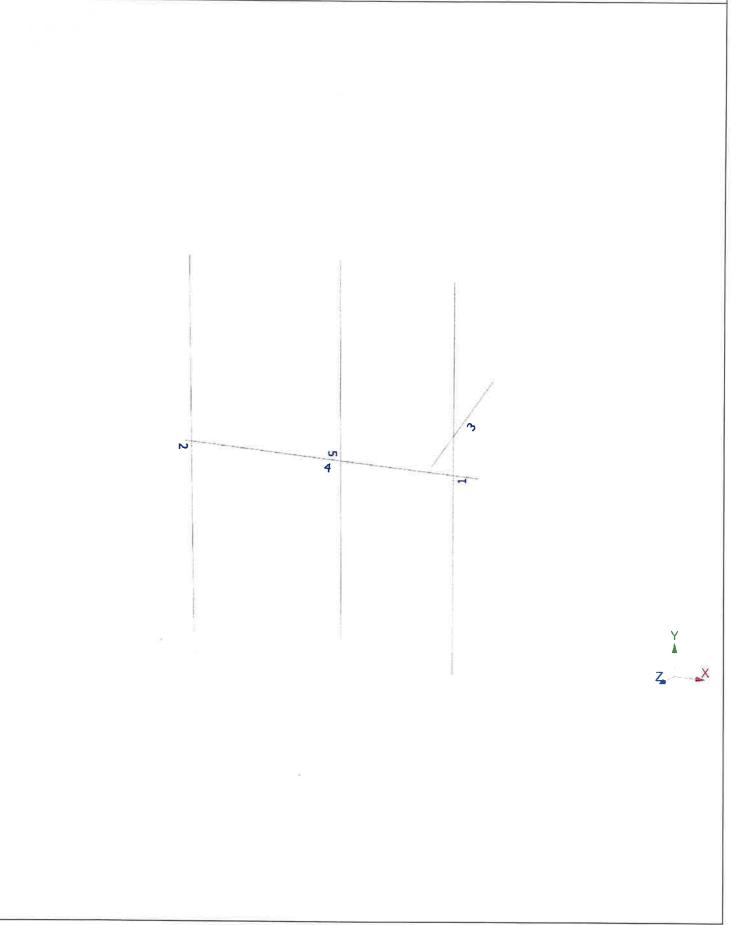
Per foot weight of ice:			
diameter (in):	2.38		_
Per foot weight of ice on object:		5 plf	

4" Pipe		S
Per foot weight of ice:		
diameter (in):	4.50	
Per foot weight of ice on object:		7 plf


Mount Calculations (Existing Conditions)



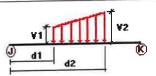
z ____X



Current Date: 7/14/2023 1:39 PM Units system: English

Load data

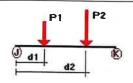
GLOSSARY


Comb

Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
	Dead Load	No	DL
D	Wind Load (NO ICE)	No	WIND
Wo	What Load (No IOL) WL 30deg	No	WIND
W30		No	WIND
W60	WL 60deg	No	WIND
W90	WL 90deg	No	WIND
W120	WL 120deg	No	WIND
W150	WL 150deg	No	LL
Di	ice Load	No	WIND
W10	WL ICE 0deg	No	WIND
WI30	WL ICE 30deg	No	WIND
W160	WL ICE 60deg	No	WIND
W190	WL ICE 90deg	No	WIND
WI120	WL ICE 120deg	No	WIND
WI150	WL ICE 150deg		


Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
 Wo	3		-0.006	-0.006	0.00	No	100.00	Yes
~~~	4	z	-0.011	-0.011	0.00	No	100.00	Yes
	5	z	-0.012	-0.012	0.00	No	100.00	Yes
W30	3	z	-0.006	-0.006	0.00	No	100.00	Yes
4430	4	z	-0.011	-0.011	0.00	No	100.00	Yes
	5	z	-0.012	-0.012	0.00	No	100.00	Yes
W60	1	x	-0.006	-0.006	0.00	No	100.00	Yes
VV00	2	x	-0.006	-0.006	0.00	No	100.00	Yes
	3	x	-0.006	-0.006	0.00	No	100.00	Yes
	5	x	-0.012	-0.012	0.00	No	100.00	Yes
W90	1	x	-0.006	-0.006	0.00	No	100.00	Yes
W90	2	x	-0.006	-0.006	0.00	No	100.00	Yes
	2	x	-0.006	-0.006	0.00	No	100.00	Yes
	5	x	-0.012	-0.012	0.00	No	100.00	Yes
W120	1	x	-0.006	-0.006	0.00	No	100.00	Yes
VV IZU	2	x	-0.006	-0.006	0.00	No	100.00	Yes

	5	У	-0.007	-0.007	0.00	No	100.00	Yes
	4	У	-0.007	-0.007	0.00	No	100.00	Yes
	3	У	-0.005	-0.005	0.00	No	100.00	Yes
	2	У	-0.005	-0.005	0.00	No	100.00	Yes
Di	1	У	-0.005	-0.005	0.00	No	100.00	Yes
	5	z	0.012	0.012	0.00	No	100.00	Yes
	4	Z	0.011	0.011	0.00	No	100.00	Yes
	3	z	0.006	0.006	0.00	No	100.00	Yes
	2	Z	0.006	0.006	0.00	No	100.00	Yes
W150	1	Z	0.006	0.006	0.00	No	100.00	Yes
	5	x	-0.012	-0.012	0.00	No	100.00	Yes
	3	x	-0.006	-0.006	0.00	No	100.00	Yes

### **Concentrated forces on members**



Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
D	1	У	-0.034	0.50	No
		У	-0.034	5.50	No
		У	-0.082	2.00	No
		У	-0.018	4.50	No
	2	У	-0.034	0.50	No
		У	-0.034	5.50	No
		У	-0.098	2.00	No
		У	-0.032	4.50	No
Wo	1	z	-0.164	0.50	No
		z	-0.164	5.50	No
	2	z	-0.164	0.50	No
		z	-0.164	5.50	No
W30	1	3	-0.142	0.50	No
		3	-0.142	5.50	No
		3	-0.025	2.00	No
		3	-0.017	4.50	No
	2	3	-0.142	0.50	No
		3	-0.142	5.50	No
		3	-0.027	2.00	No
		3	-0.056	4.50	No
W60	1	3	-0.099	0.50	No
		3	-0.099	5.50	No
		3	-0.026	2.00	No
		3	-0.014	4.50	No
	2	3	-0.099	0.50	No
		3	-0.099	5.50	No
		3	-0.031	2.00	No
		3	-0.063	4.50	No
W90	1	х	-0.077	0.50	No
		х	-0.077	5.50	No
		х	-0.027	2.00	No
		х	-0.013	4.50	No
	2	х	-0.077	0.50	No

		x	-0.077	5.50	No
		x	-0.033	2.00	No
			-0.067	4.50	No
		×	-0.099	0.50	No
W120	1	2		5.50	No
		2	-0.099		
		2 2 2 2 2	-0.033	2.00	No
		2	-0.019	4.50	No
	2	2	-0.099	0.50	No
		2	-0.099	5.50	No
		2	-0.037	2.00	No
			-0.075	4.50	No
14/450	1	2	-0.142	0.50	No
W150	'	2 2 2	-0.142	5.50	No
		2		2.00	No
		2 2 2 2 2 2 2	-0.044		No
		2	-0.031	4.50	
	2	2	-0.142	0.50	No
		2	-0.142	5.50	No
		2	-0.046	2.00	No
		2	-0.092	4.50	No
Di	1	У	-0.087	0.50	No
Di	1	y	-0.087	5.50	No
			-0.03	2.00	No
		У	-0.021	4.50	No
		У		0.50	No
	2	У	-0.087		No
		У	-0.087	5.50	
		У	-0.031	2.00	No
		У	-0.062	4.50	No
WIO	1	z	-0.033	0.50	No
		z	-0.033	5,50	No
	2	z	-0.033	0.50	No
		z	-0.033	5.50	No
WI30	1	3	-0.029	0.50	No
1100	•	3	-0.029	5.50	No
		3	-0.006	2.00	No
		3 3 3	-0.007	4.50	No
	0	2	-0.029	0.50	No
	2	3	-0.029	5.50	No
		3 3 3 3		2.00	No
		3	-0.007	4.50	No
		3	-0.013		No
WI60	1	3	-0.021	0.50	
		3	-0.021	5.50	No
		3	-0.007	2.00	No
		3	-0.004	4.50	No
	2	3	-0.021	0.50	No
		3	-0.021	5.50	No
		3	-0.008	2.00	No
		3	-0.014	4.50	No
W190	1	×	-0.017	0.50	No
W190			-0.017	5.50	No
		×		2.00	No
		×	-0.007	4.50	No
		x	-0.002		No
	2	×	-0.017	0.50	
		x	-0.017	5.50	No
		x	-0.008	2.00	No
		х	-0.015	4.50	No
WI120	1	2	-0.021	0.50	No
		2	-0.021	5.50	No
		2	-0.008	2.00	No
		2	-0.004	4.50	No
	2	2	-0.021	0.50	No
	-	<del>11</del> ./			

				************************	
		2	-0.02	4.50	No
		2	-0.011	2.00	No
		2	-0.029	5.50	No
	2	2	-0.029	0.50	No
		2	-0.007	4.50	No
		2	-0.01	2.00	No
		2	-0.029	5.50	No
WI150	1	2	-0.029	0.50	No
		2	-0.017	4.50	No
		2	-0.009	2.00	No
		2	-0.021	5.50	No

### Self weight multipliers for load conditions

			nt multiplie	Itiplier	
Condition	Description	Comb.	MultX	MultY	MultZ
 D	Dead Load	 No	0.00	-1.00	0.00
Wo	Wind Load (NO ICE)	No	0.00	0.00	0.00
W30	WL 30deg	No	0.00	0.00	0.00
W60	WL 60deg	No	0.00	0.00	0.00
W90	WL 90deg	No	0.00	0.00	0.00
W120	WL 120deg	No	0.00	0.00	0.00
W150	WL 150deg	No	0.00	0.00	0.00
Di	Ice Load	No	0.00	0.00	0.00
W10	WL ICE 0deg	No	0.00	0.00	0.00
WI30	WL ICE 30deg	No	0.00	0.00	0.00
WI60	WL ICE 60deg	No	0.00	0.00	0.00
WI90	WL ICE 90deg	No	0.00	0.00	0.00
WI120	WL ICE 120deg	No	0.00	0.00	0.00
WI150	WL ICE 150deg	No	0.00	0.00	0.00

4



Current Date: 7/14/2023 1:40 PM Units system: English

## Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design :
LC1=1.2D+Wo
LC2=1.2D+W30
LC3=1.2D+W60
LC4=1.2D+W90
LC5=1.2D+W120
LC6=1.2D+W150
LC7=1.2D-Wo
LC8=1.2D-W30
LC9=1.2D-W60
LC10=1.2D-W90
LC11=1.2D-W120
LC12=1.2D-W150
LC13=0.9D+Wo
LC14=0.9D+W30
LC15=0.9D+W60
LC16=0.9D+W90
LC17=0.9D+W120
LC18=0.9D+W150
LC19=0.9D-Wo
LC20=0.9D-W30
LC21=0.9D-W60
LC22=0.9D-W90
LC23=0.9D-W120
LC24=0.9D-W150
LC25=1.2D+Di+WI0
LC26=1.2D+Di+WI30
LC27=1.2D+Di+WI60
LC28=1.2D+Di+WI90
LC29=1.2D+Di+WI120
LC30=1.2D+Di+WI150
LC31=1.2D+Di-WI0
LC32=1.2D+Di-WI30
LC33=1.2D+Di-WI60
LC34=1.2D+Di-WI90
LC35=1.2D+Di-WI120
LC36=1.2D+Di-W1150

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	PIPE 2x0.154	1	LC7 at 50.00%	0.31	OK	
		2	LC7 at 50.00%	0.31	ок	
		3	LC9 at 50.00%	0.03	ОК	
	PIPE 3-1_2x0.226	4	LC2 at 50.00%	0.17	ок	
	PIPE 4x0.237	5	LC2 at 50.00%	0.08	ок	



Current Date: 7/14/2023 1:40 PM Units system: English

### **Geometry** data

### GLOSSARY

Cb22, Cb33 Cm22, Cm33	: Moment gradient coefficients : Coefficients applied to bending term in interaction formula
d0	: Tapered member section depth at J end of member
DJX	Rigid end offset distance measured from J node in axis X
DJY	: Rigid end offset distance measured from J node in axis Y
DJZ	Rigid end offset distance measured from J node in axis Z
DKX	Rigid end offset distance measured from K node in axis X
DKY	Rigid end offset distance measured from K node in axis Y
DKZ	Rigid end offset distance measured from K node in axis Z
dL	Tapered member section depth at K end of member
lg factor	Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	Effective length factor about axis 2
K33	Effective length factor about axis 3
L22	Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	: Rotation about X
RY	: Rotation about Y
RZ	Rotation about Z
то	1 = Tension only member 0 = Normal member
ТХ	: Translation in X
TY	Translation in Y
TZ	: Translation in Z

#### Nodes

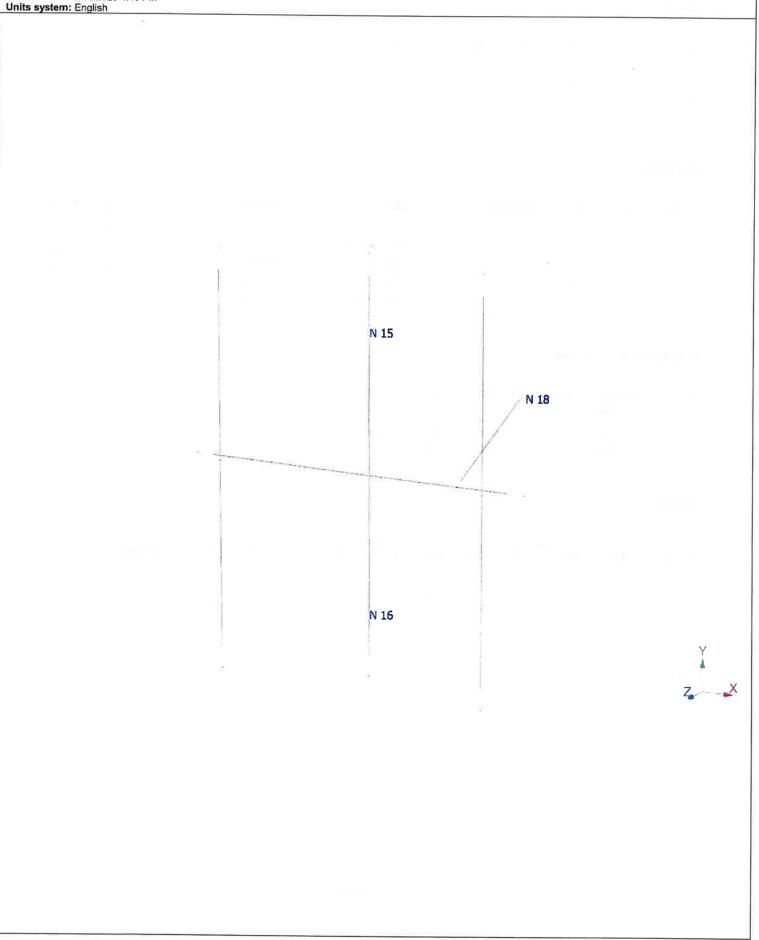
Node	X [ft]	<b>Y</b> [ft]	<b>Ž</b>	Rigid Floor
		L'9	[ft]	
1	0.00	0.00	0.00	0
2	2.50	0.00	0.00	0
3	-2.50	0.00	0.00	0
4	0.00	3.00	-0.36	0
5	0.00	-3.00	-0.36	0
6	0.00	0.00	-0.36	0
7	2.00	0.00	0.00	0
8	2.00	0.00	0.25	0
9	-2.00	0.00	0.00	0
10	-2.00	0.00	0.25	0
11	2.00	3.00	0.25	0
12	-2.00	3.00	0.25	0
13	-2.00	-3.00	0.25	0
14	2.00	-3.00	0.25	0
15	0.00	2.00	-0.36	0
16	0.00	-2.00	-0.36	0
17	1.50	0.00	0.00	0
18	0.00	0.00	-5.50	0

### Restraints

Node	тх	TY	TZ	RX	RY	RZ
		1	1	<u>.</u> 1	0	1
16	1	1	1	1	0	1
18	1	1	1	0	0	0

### Members

Member	NJ	NK	Description	Section	Material	<b>d0</b> [in]	<b>dL</b> [in]	lg factor
		14		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
	11	14		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
2	12	13		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
3	17	18		PIPE 3-1 2x0.226	A53 GrB	0.00	0.00	0.00
4	3	2		PIPE 4x0.237	A53 GrB	0.00	0.00	0.00
5	4	5		FIFL 4X0.237	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

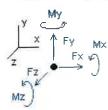

### **Orientation of local axes**

Member	Rotation [Deg]	Axes23	NX	NY	NZ
1	315.00	0	0.00	0.00	0.00
2	315.00	0	0.00	0.00	0.00

### Hinges

		Node	ə-J		Node-K							
Member	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity	
3	1	1	0	0	0	0	0	0	0	0	Full	








Current Date: 7/14/2023 1:40 PM Units system: English

### Analysis result

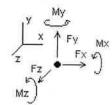
#### Reactions



Direction of positive forces and moments

		Forces [Kip]			Moments [Kip*ft]	
Node	FX	FY	FZ	MX	MY	MZ
Condition L	.C1=1.2D+Wo					0.04004
15	0.01869	0.31445	0.27820	-0.29933	0.00000	0.01064
16	-0.01995	0.31445	0.50467	0.43156	0.00000	0.01191
18	0.00126	0.01157	0.00912	0.00000	0.0000	0.00000
SUM	0.00000	0.64047	0.79200	0.13223	0.00000	0.02255
Condition L	.C2=1.2D+W30					0.00040
15	0.28443	0.31444	0.30774	-0.33496	0.00000	0.28218
16	0.27368	0.31444	0.56354	0.48433	0.00000	-0.27593
18	-0.06808	0.01160	-0.24526	0.00000	0.00000	0.00000
SUM	0.49002	0.64047	0.62602	0.14936	0.00000	0.00625
Condition L	.C3=1.2D+W60					0.27906
15	0.30716	0.31444	0.18566	-0.23904	0.00000	
16	0.29710	0.31444	0.44219	0.38882	0.00000	-0.27320
18	-0.05249	0.01160	-0.25309	0.00000	0.00000	0.00000
SUM	0.55177	0.64047	0.37477	0.14977	0.00000	0.00585
Condition L	_C4=1.2D+W90					
15	0.33415	0.31443	0.00133	-0.04874	0.00000	0.30877
16	0.33718	0.31443	0.22913	0.18173	0.00000	-0.31056
18	-0.04633	0.01160	-0.23046	0.00000	0.00000	0.00000
SUM	0.62500	0.64047	0.00000	0.13299	0.00000	-0.00179
Condition I	.C5=1.2D+W120					
15	0.30025	0.31444	-0.22071	0.18055	0.00000	0.27345
16	0.29644	0.31444	-0.02778	-0.06794	0.00000	-0.27125
18	-0.02371	0.01159	-0.14749	0.00000	0.00000	0.00000
SUM	0.57298	0.64047	-0.39598	0.11261	0.00000	0.00220

Condition I	LC6=1.2D+W150					
15	0.29707	0.31444	-0.37769	0.31389	0.00000	0.29866
16	0.30478	0.31444	-0.19615	-0.20794	0.00000	-0.30319
18	-0.04960	0.01160	-0.18641	0.00000	0.00000	0.00000
SUM	0.55225	0.64047	-0.76025	0.10595	0.00000	-0.00453
Condition L	_C7=1.2D-Wo					
15	0.02000	0.31445	-0.50578	0.43209	0.00000	0.01196
16	-0.01863	0.31445	-0.27671	-0.29840	0.00000	0.01059
18	-0.00137	0.01157	-0.00951	0.00000	0.00000	0.00000
SUM	0.00000	0.64047	-0.79200	0.13369	0.00000	0.02255
Condition L	.C8=1.2D-W30					
15	-0.24581	0.31444	-0.53560	0.46798	0.00000	-0.25965
16	-0.31238	0.31444	-0.33574	-0.35135	0.00000	0.29854
18	0.06816	0.01159	0.24531	0.00000	0.00000	0.00000
SUM	-0.49002	0.64047	-0.62602	0.11663	0.00000	0.03889
Condition L	C9=1.2D-W60					
15	-0.26854	0.31444	-0.41352	0.37206	0.00000	-0.25653
16	-0.33580	0.31444	-0.21441	-0.25586	0.00000	0.29582
18	0.05257	0.01159	0.25316	0.00000	0.00000	0.00000
SUM	-0.55177	0.64047	-0.37477	0.11620	0.00000	0.03929
Condition L	C10=1.2D-W90					
15	-0.29549	0.31444	-0.22915	0.18174	0.00000	-0.28622
16	-0.37592	0.31444	-0.00142	-0.04882	0.00000	0.33319
18	0.04641	0.01159	0.23057	0.00000	0.00000	0.00000
SUM	-0.62500	0.64047	0.00000	0.13293	0.00000	0.04698
Condition L	C11=1.2D-W120					
15	-0.26155	0.31445	-0.00697	-0.04771	0.00000	-0.25085
16	-0.33508	0.31445	0.25574	0.20107	0.00000	0.29379
18	0.02366	0.01158	0.14721	0.00000	0.00000	0.00000
SUM	-0.57298	0.64047	0.39598	0.15336	0.00000	0.04295
Condition L	C12=1.2D-W150					
15	-0.25829	0.31444	0.15016	-0.18122	0.00000	-0.27599
16	-0.34340	0.31444	0.42436	0.34131	0.00000	0.32570
18	0.04944	0.01159	0.18573	0.00000	0.00000	0.00000
SUM	-0.55225	0.64047	0.76025	0.16009	0.00000	0.04971
Condition L	C13=0.9D+Wo					
15	0.01385	0.23584	0.30653	-0.31586	0.00000	0.00782
16	-0.01511	0.23584	0.47635	0.41502	0.00000	0.00908
18	0.00126	0.00867	0.00912	0.00000	0.00000	0.00000
SUM	0.00000	0.48036	0.79200	0.09915	0.00000	0.01691


Condition L	C14=0.9D+W30					
15	0.27950	0.23582	0.33613	-0.35154	0.00000	0.27930
16	0.27861	0.23582	0.53515	0.46774	0.00000	-0.27880
18	-0.06808	0.00871	-0.24526	0.00000	0.00000	0.00000
SUM	0.49002	0.48036	0.62602	0.11620	0.00000	0.00050
Condition L	C15=0.9D+W60					0.07040
15	0.30225	0.23582	0.21409	-0.25564	0.00000	0.27619
16	0.30201	0.23582	0.41376	0.37222	0.00000	-0.27607
18	-0.05249	0.00871	-0.25309	0.00000	0.00000	0.00000
SUM	0.55177	0.48036	0.37477	0.11658	0.00000	0.00013
Condition L	C16=0.9D+W90					0.00500
15	0.32924	0.23582	0.02982	-0.06537	0.00000	0.30590
16	0.34209	0.23582	0.20064	0.16509	0.00000	-0.31343
18	-0.04633	0.00871	-0.23046	0.00000	0.00000	0.00000
SUM	0.62500	0.48036	0.00000	0.09972	0.00000	-0.00752
Condition L	C17=0.9D+W120					
15	0.29535	0.23583	-0.19215	0.16388	0.00000	0.27059
16	0.30135	0.23583	-0.05634	-0.08461	0.00000	-0.27411
18	-0.02371	0.00869	-0.14749	0.00000	0.00000	0.00000
SUM	0.57298	0.48036	-0.39598	0.07927	0.00000	-0.00352
Condition L	C18=0.9D+W150					
15	0.29214	0.23583	-0.34910	0.29721	0.00000	0.29579
16	0.30971	0.23583	-0.22475	-0.22463	0.00000	-0.30607
18	-0.04960	0.00870	-0.18641	0.00000	0.00000	0.00000
SUM	0.55225	0.48036	-0.76025	0.07257	0.00000	-0.01028
Condition L	C19=0.9D-Wo					
15	0.01517	0.23584	-0.47713	0.41537	0.00000	0.00914
16	-0.01380	0.23584	-0.30536	-0.31512	0.00000	0.00777
18	-0.00137	0.00868	-0.00951	0.00000	0.00000	0.00000
SUM	0.00000	0.48036	-0.79200	0.10025	0.00000	0.01691
Condition L	C20=0.9D-W30					
15	-0.25054	0.23583	-0.50701	0.45130	0.00000	-0.26242
16	-0.30765	0.23583	-0.36432	-0.36803	0.00000	0.29577
18	0.06816	0.00870	0.24531	0.00000	0.00000	0.00000
SUM	-0.49002	0.48036	-0.62602	0.08327	0.00000	0.03336
Condition L	C21=0.9D-W60					0.0500.1
15	-0.27329	0.23583	-0.38497	0.35540	0.00000	-0.25931
16	-0.33105	0.23583	-0.24296	-0.27252	0.00000	0.29304
18	0.05257	0.00870	0.25316	0.00000	0.00000	0.00000
SUM	-0.55177	0.48036	-0.37477	0.08288	0.00000	0.03373

Condition I	LC22=0.9D-W90					
15	-0.30024	0.23583	-0.20066	0.16512	0.00000	-0.2889
16	-0.37116	0.23583	-0.02990	-0.06545	0.00000	0.3304
18	0.04641	0.00870	0.23057	0.00000	0.00000	0.0000
SUM	-0.62500	0.48036	0.00000	0.09967	0.00000	0.0414
Condition L	_C23=0.9D-W120					
15	-0.26631	0.23583	0.02145	-0.06430	0.00000	-0.2536
16	-0.33032	0.23583	0.22732	0.18448	0.00000	0.2910
18	0.02366	0.00869	0.14721	0.00000	0.00000	0.0000
SUM	-0.57298	0.48036	0.39598	0.12018	0.00000	0.0373
Condition L	.C24=0.9D-W150					
15	-0.26303	0.23583	0.17854	-0.19779	0.00000	-0.27876
16	-0.33866	0.23583	0.39598	0.32474	0.00000	0.32293
18	0.04944	0.00870	0.18573	0.00000	0.00000	0.0000
SUM	-0.55225	0.48036	0.76025	0.12695	0.00000	0.04417
Condition L	.C25=1.2D+Di+WI0					
15	0.04140	0.58508	-0.15979	0.06579	0.00000	0.02417
16	-0.04140	0.58508	0.29179	0.19782	0.00000	0.02417
18	0.00000	0.02582	-0.00001	0.00000	0.00000	0.00000
SUM	0.00000	1.19598	0.13200	0.26362	0.00000	0.04834
Condition L	.C26=1.2D+Di+WI3	D				
15	0.09726	0.58508	-0.15102	0.05521	0.00000	0.08170
16	0.02252	0.58508	0.30929	0.21351	0.00000	-0.03808
18	-0.01443	0.02582	-0.05291	0.00000	0.00000	0.00000
SUM	0.10536	1.19598	0.10536	0.26872	0.00000	0.04362
Condition L	C27=1.2D+Di+WI6	D				
15	0.08635	0.58508	-0.16405	0.06873	0.00000	0.07029
16	0.00923	0.58508	0.29387	0.19859	0.00000	-0.02528
18	-0.01284	0.02582	-0.04710	0.00000	0.00000	0.00000
SUM	0.08273	1.19598	0.08273	0.26732	0.00000	0.04501
Condition L	C28=1.2D+Di+WI90	D				
15	0.09380	0.58508	-0.20436	0.11023	0.00000	0.07803
16	0.01806	0.58508	0.24787	0.15376	0.00000	-0.03383
18	-0.01187	0.02582	-0.04351	0.00000	0.00000	0.00000
SUM	0.10000	1.19598	0.00000	0.26399	0.00000	0.04421
	C29=1.2D+Di+WI12	20				
15	0.08426	0.58508	-0.25407	0.16138	0.00000	0.06847
16	0.00839	0.58508	0.19123	0.09856	0.00000	-0.02418
18	-0.00639	0.02582	-0.02342	0.00000	0.00000	0.00000
SUM	0.08627	1.19598	-0.08627	0.25993	0.00000	0.04428

Condition LO	C30=1.2D+Di+WI1	50				0.00400
15	0.09969	0.58508	-0.26127	0.16907	0.00000	0.08438 -0.04149
16	0.02619	0.58508	0.18165	0.08948	0.00000	
18	-0.00991	0.02582	-0.03635	0.00000	0.00000	0.00000
SUM	0.11597	1.19598	-0.11597	0.25855	0.00000	0.04289
Condition L	C31=1.2D+Di-WI0					
15	0.04140	0.58508	-0.29242	0.19815	0.00000	0.02417
16	-0.04140	0.58508	0.16043	0.06619	0.00000	0.02417
18	0.00000	0.02582	-0.00001	0.00000	0.00000	0.00000
SUM	0.00000	1.19598	-0.13200	0.26434	0.00000	0.04834
Condition LO	C32=1.2D+Di-WI3	D				
15	-0.01446	0.58508	-0.30120	0.20874	0.00000	-0.03337
16	-0.10533	0.58508	0.14293	0.05050	0.00000	0.08643
18	0.01443	0.02582	0.05291	0.00000	0.00000	0.00000
SUM	-0.10536	1.19598	-0.10536	0.25924	0.00000	0.05306
Condition L	C33=1.2D+Di-WI6	D				
15	-0.00354	0.58508	-0.28817	0.19522	0.00000	-0.02196
16	-0.09203	0.58508	0.15834	0.06542	0.00000	0.07362
18	0.01285	0.02582	0.04710	0.00000	0.00000	0.00000
SUM	-0.08273	1.19598	-0.08273	0.26064	0.00000	0.05166
Condition L	C34=1.2D+Di-WI9	0				
15	-0.01100	0.58508	-0.24786	0.15373	0.00000	-0.02970
16	-0.10087	0.58508	0.20434	0.11024	0.00000	0.08217
18	0.01187	0.02582	0.04352	0.00000	0.00000	0.00000
SUM	-0.10000	1.19598	0.00000	0.26397	0.00000	0.05247
Condition L	C35=1.2D+Di-WI1	20				0.00040
15	-0.00145	0.58508	-0.19814	0.10257	0.00000	-0.02013
16	-0.09120	0.58508	0.26100	0.16546	0.00000	0.07253
18	0.00638	0.02582	0.02341	0.00000	0.00000	0.00000
SUM	-0.08627	1.19598	0.08627	0.26803	0.00000	0.05240
Condition L	C36=1.2D+Di-WI1	50				0.00007
15	-0.01687	0.58508	-0.19094	0.09488	0.00000	-0.03605
16	-0.10900	0.58508	0.27058	0.17454	0.00000	0.08983
18	0.00991	0.02582	0.03633	0.0000	0.0000	0.00000
SUM	-0.11597	1.19598	0.11597	0.26942	0.00000	0.05379

#### Envelope for nodal reactions

Note.- Ic is the controlling load condition



Direction of positive forces and moments

Envelope of nodal reactions for LC1=1.2D+Wo

LC1=1.2D+Wo
LC2=1.2D+W30
LC3=1.2D+W60
LC4=1.2D+W90
LC5=1.2D+W120
LC6=1.2D+W150
LC7=1.2D-Wo
LC8=1.2D-W30
LC9=1.2D-W60
LC10=1.2D-W90
LC11=1.2D-W120
LC12=1.2D-W150
LC13=0.9D+Wo
LC14=0.9D+W30
LC15=0.9D+W60
LC16=0.9D+W90
LC17=0.9D+W120
LC18=0.9D+W150
LC19=0.9D-Wo
LC20=0.9D-W30
LC21=0.9D-W60
LC22=0.9D-W90
LC23=0.9D-W120
LC24=0.9D-W150
LC25=1.2D+Di+WI0
LC26=1.2D+Di+WI30
LC27=1.2D+Di+WI60
LC28=1.2D+Di+WI90
LC29=1.2D+Di+WI120
LC30=1.2D+Di+W150
LC31=1.2D+Di-WI0
LC32=1.2D+Di-WI30
LC33=1.2D+Di-W160
LC34=1.2D+Di-WI90
LC35=1.2D+Di-WI120
LC36=1.2D+Di-WI150

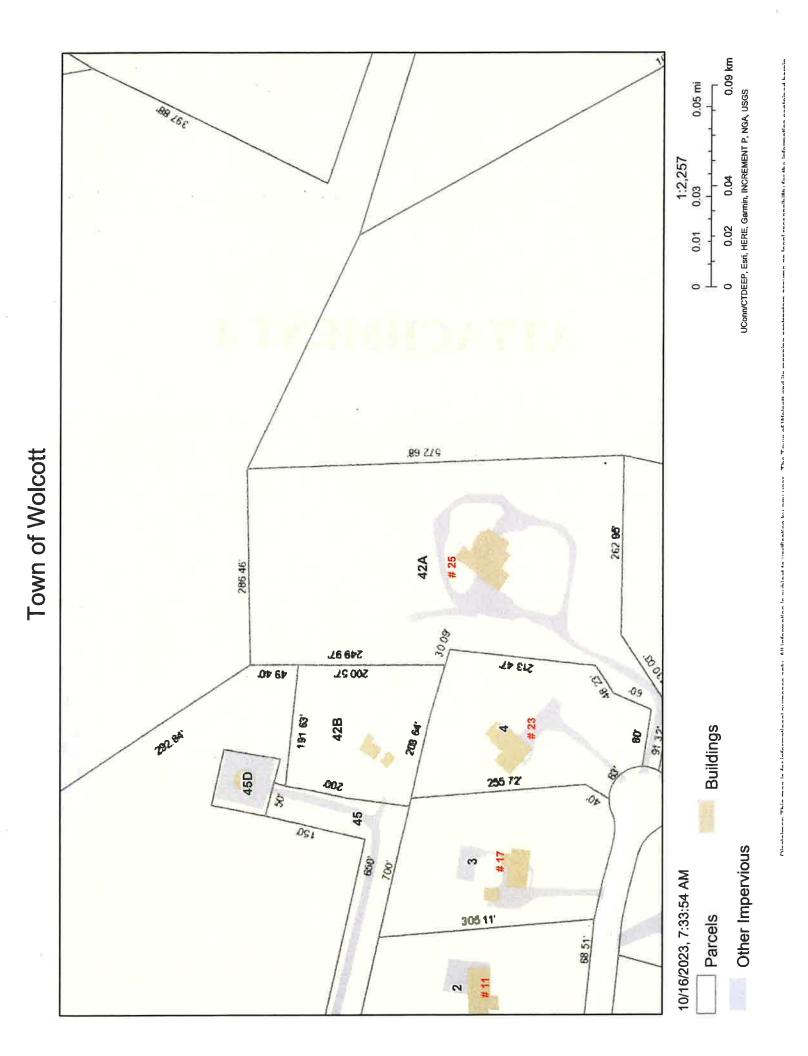
				Fc	orces					Mome	ents		
Node		Fx [Kip]	lc	<b>Fy</b> [Kip]	lc	Fz [Kip]	lc	Mx [Kip*ft]	lc	<b>My</b> [Kip*ft]	lc	<b>Mz</b> [Kip*ft]	lc
15	Max	0.334	LC4	0.585	LC33	0.336	LC14	0.46798	LC8	0.00000	LC1	0.30877	LC4
-	Min	-0.300	LC22	0.236	LC16	-0.536	LC8	-0.35154	LC14	0.00000	LC1	-0.28899	LC22
16	Max	0.342	LC16	0.585	LC33	0.564	LC2	0.48433	LC2	0.00000	LC1	0.33319	LC10
	Min	-0.376	LC10	0.236	LC16	-0.364	LC20	-0.36803	LC20	0.00000	LC1	-0.31343	LC16
18	Мах	0.068	LC8	0.026	LC26	0.253	LC9	0.00000	LC1	0.00000	LC1	0.00000	LC1
	Min	-0.068	LC2	0.009	LC13	-0.253	LC3	0.00000	LC1	0.00000	LC1	0.00000	LC1



## **Connection Check**

 Date:
 7/14/2023

 Project Name:
 Wolcott NW CT


 Designed By:
 RL
 Checked By: MSC



### CHECK THRU BOLT CONNECTION CAPACITY → EXISTING ANCHORS

Reference: AISC S	Steel Cor	nstruc	tion Manu	ial 14tł	n Editic	on (ASD)				
Bolt Type =			A36 1/2"	Threa	ded Ro	od				
Allowable Tensile	Load =					Allow	vable Sh	ear Load =		
	F	_{Tall} =	4271	lbs.			F _{vall} =		lbs.	
CONNECTION DI	TT COL									
CONNECTION PLA NBOLT ROWS	=	VFIGU			<u>.TS)</u>			_		(a. e. )
NBOLT ROWS				rows		d _Y	Ξ.		in	(Min.)
BOLTS	=		2	bolts/	row	dx	=	14	in	(Min.)
TENSILE FORCES										
Moment in X axis:			485	lb-ft.	(See	Bentley	Output)			
Couple Reaction fr	om M _x :		2328	lbs.	`	,	,			
Moment in Y axis:			0	lb-ft.	(See	Bentley	Output)			
Couple Reaction fre	om M _Y :		0	lbs.						
Reaction in Z direct	tion:		564	lbs.	(See	Bentley	Output)			
Resultant per bolt:			1305	lbs.						
SHEAR FORCES										
Moment in Z axis:			334	lb-ft.	(See	Bentley	Output)			
Couple Reaction fro	om M _z :		<b>1604</b>	lbs.		·	. ,			
Reaction in X direct	tion:		376	lbs.	(See	Bentley	Output)			
Reaction in Y direct	tion:		585	lbs.	(See	Bentley	Output)			
Resultant per bolt:			976	lbs.						
Tension Design Loa	d /Bolts	=								
		f _t =	1305.00	lbs.	<	4270	).6 lbs.	Therefore,	OK	!
Shear Design Load	/ Bolts=									
		f _v =	975.85	lbs.	<	2562	2.4 lbs.	Therefore,	ОК	
CHECK COMBINE	D TENSI	<u>ON A</u>	ND SHEAI	<u>R</u>						
f _t / F _T	+		f _v / F _v	≤	1.0					
0.306	+		0.381	=	0.68		1.0	Therefore,	οκ	

## **ATTACHMENT 4**



**ANDREWS RD** 

**Owner** SOUTHERN NEW ENG TEL CO Mblu 106/ 1/ 42B/ / Appraisal \$300,590 Building Count 1 Location ANDREWS RD Acct# S0522200 Assessment \$210,410 **PID** 5792

## **Current Value**

	Appresa		
Valuation Year	Improvements	Land	Total
2022	060'02\$	\$230,500	\$300,590
	Assessment		
Valuation Year	Improvements	Land	Total
2022	\$49,060	\$161,350	\$210,410

## **Owner of Record**

\$0	0059/0443	10/17/1957	25	
Sale Price	Certificate Book & Page 0059/0443	Sale Date	Instrument	
SOUTHERN NE	401 MERRITT 7		NORWALK, CI U0831	
Owner Co. Curren	Address			

# ð

Ownership History						
	Owne	Ownership History				
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date	

## **ATTACHMENT 5**