1 vdustrial Ave, S e 3 N iwah NJ 07430 P ve: 201.684.0055 F 201.684.0066

June 10th, 2022

Members of the Siting Council Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification Andrews Road, Wolcott, CT 06617 Latitude: 41.611770000 Longitude: -73.0045000 T-Mobile Site#: CT11403A - Anchor

Dear Ms. Bachman:

T-Mobile currently maintains nine (9) antennas at the 77-foot level of the existing 80-foot lattice tower on Andrews Road, Wolcott, CT. The 80-foot lattice tower is owned and operated by Everest Infrastructure Partners. The property is owned by Frontier Communications. T-Mobile now intends to remove and replace (6) antennas at the 77-foot level of the tower. These antennas will support 5G services.

Planned Modifications:

Tower: Install New: (3) Ericsson AIR 6419 B41 Antennas (3) Commscope VV-65A-R1 Antennas (3) Radio 4460 B25 B66 (1) 6x24 Hybrid Cables

<u>To Be Removed:</u> (6) AIR21 Antennas All Existing TMAs and Diplexers Remove Existing Coax Cables (1) 9x18 Hybrid Cable

Ground:

Install (1) 6230 Power Enclosure, (1) 6230 Battery Rack, and (1) 200A Electrical Panel. Remove existing PBC 6200 Cabinet.

This facility was originally approved by the Council in Petition No. 67 on March 26, 1981. This modification will not break any of the conditions set forth in this approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Mayor Thomas Dunn, Elected Official, and David Kalinowski, Zoning Inspector, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Eric Breun Transcend Wireless Cell: 201-658-7728 Email: <u>ebreun@transcendwireless.com</u>

Attachments cc: Thomas Dunn - Mayor of Wolcott David Kalinowski - Zoning Inspector Everest Infrastructure Partners - Tower Owner Frontier Communications - Property Owner

Hello, your package has been delivered.

Delivery Date: Wednesday, 06/08/2022 Delivery Time: 11:31 AM Signed by: FRONT DOOR

TRANSCEND WIRELESS

Tracking Number:	1ZV257420392491022	
Ship To:	SOUTHERN NEW END TEL CO 401 MERRITT 7 NORWALK, CT 06851 US	
Number of Packages:	1	
UPS Service:	UPS Ground	
Package Weight:	1.0 LBS	
Reference Number:	CT11403A	

Hello, your package has been delivered.

Delivery Date: Wednesday, 06/08/2022 Delivery Time: 2:44 PM Signed by: KALINOWKI

TRANSCEND WIRELESS

Tracking Number:	1ZV257420395058496
Ship To:	DAVID KALINOWSKI 10 KENEA AVENUE WOLCOTT, <mark>CT</mark> 06716 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CT11403A

Hello, your package has been delivered.

Delivery Date: Wednesday, 06/08/2022 Delivery Time: 2:46 PM Signed by: DESAULINERS

TRANSCEND WIRELESS

Tracking Number:	1ZV257420398068489
Ship To:	MAYOR THOMAS DUNN 10 KENEA AVENUE WOLCOTT, CT 06716 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CT11403A

Hello, your package has been delivered.

Delivery Date: Thursday, 06/09/2022 Delivery Time: 10:16 AM Signed by: DOYLE

TRANSCEND WIRELESS

Tracking Number:	1ZV257420396098478
Ship To:	EVEREST INFRASTRUCTURE PARTNERS 2 ALLEGHENY CENTER NOVA TOWER 2 SUITE 703 ALLEGHENY, PA 15212 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CT11403A

ANDREWS RD

Location	ANDREWS RD	Mblu	106/ 1/ 42B/ /
Acct#	S0522200	Owner	SOUTHERN NEW ENG TEL CO
Assessment	\$210,410	Appraisal	\$300,590
PID	5792	Building Count	1

Current Value

Appraisal					
Valuation Year	Total				
2021	\$70,090	\$230,500	\$300,590		
Assessment					
Valuation Year	Improvements	Land	Total		
2021	\$49,060	\$161,350	\$210,410		

Owner of Record

Owner	SOUTHERN NEW ENG TEL CO	Sale Price	\$0
Co-Owner	C/O FRONTIER COMMUNICATIONS	Certificate	
Address	401 MERRITT 7	Book & Page	0059/0443
	TAX DEPT	Sale Date	10/17/1957
	NORWALK, CT 06851	Instrument	25

Ownership History

Ownership History						
Owner Sale Price Certificate Book & Page Instrument Sale Date						
SOUTHERN NEW ENG TEL CO	\$0		0059/0443	25	10/17/1957	

Building Information

Building 1 : Section 1

Year Built: Living Area: Replacement Cost: Building Percent Good: Replacement Cost	0 \$0	
Less Depreciation:	\$0	
	Building Attri	butes
Field		Description
Style		Outbuildings
Model		
Grade:		
Stories		
Occupancy		
Exterior Wall 1		
Exterior Wall 2		
Roof Structure		
Roof Cover		
Interior Wall 1		
Interior Wall 2		
Interior Flr 1		
Interior FIr 2		
Heat Fuel		
Heat Type:		
AC Percent		
Total Bedrooms:		
Full Bthrms:		
Half Baths:		

Building Photo

Building Layout

Building Layout

Building Sub-Areas (sq ft)

Legend

No Data for Building Sub-Areas

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land Use

Use Code	202	
Description	Comm w/OB	0
Zone	R-30	
Neighborhood	CGEN	
Alt Land Appr	No	
Category		

Land Line Valuation

Size (Acres) 0.92 Frontage Depth Assessed Value \$161,350 Appraised Value \$230,500

Outbuildings

Outbuildings					Legend	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FN5	FENCE-10'CHAIN			365.00 L.F.	\$3,830	1
CELL	Cell	зн	Cell Shed	221.00 S.F.	\$24,860	1
CELL	Cell	зн	Cell Shed	368.00 S.F.	\$41,400	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2020	\$70,090	\$97,000	\$167,090		
2019	\$70,090	\$97,000	\$167,090		
2018	\$70,090	\$97,000	\$167,090		

Assessment					
Valuation Year	Improvements	Land	Total		
2020	\$49,060	\$67,900	\$116,960		
2019	\$49,060	\$67,900	\$116,960		
2018	\$49,060	\$67,900	\$116,960		

STATE OF CONNECTICUT DEPARTMENT OF BUSINESS REGULATION POWER FACILITY EVALUATION COUNCIL

> Petition No. 67 Wolcott, Connecticut March 26, 1981

Mr. Doocy, Mr. Clapp, Mr. Wood, and Mr. Reid met Mr. Kischell and Mr. Bailey of the Southern New England Telephone Company to review the first half of Petition No. 67. Telecommunication facilities were viewed in Wolcott, Waterbury, and Meriden. The second half of Petition No. 67 involves facilities in Shelton, Norwalk, and Bridgeport. These were reviewed on March 31, 1981.

The first half of this petition involves the following changes at the Barry Avenue site in Wolcott: (a) replacing an existing 90 foot tall triangular lattice steel tower with an 80 foot tall square lattice steel tower; (b) replacing two microwave dishes and two reflectors with four new microwave dishes; (c) adding a 12' x 16' concrete radio building and a new fuel storage tank at the base of the tower and extending the fence to encompass the new facilities. Additional changes include: (d) adding two microwave antennae to the Waterbury East Tower in Waterbury and another concrete radio building; and (e) adding one microwave antenna to the West Peak tower in Meriden.

The Wolcott site is in a single family dwelling residential area near the top of Clinton Hill. The tower is visible from several locations within the area. The tower base and radio building are partially screened by vegetation from the nearest residence and are not visible from other residences. The new tower will be located several feet northeast of the existing tower at approximately the same ground elevation. The proposed tower will be 80 feet tall and more narrow than the existing tower; it will be square instead of triangular. The new microwave antennae are to be mounted on a platform at the top of the tower.

The soil appears shallow but stable, and a few bedrock outcrops appear on the site. The proposed tower will require new foundations which will be set in soil or bedrock. If the soil is too shallow or the bedrock unsuitable, some blasting may be necessary.

• A new concrete building will be constructed at the base of the tower and will • accomodate the generator used for emergency power. The existing fence will be extended to enclose this facility.

The existing tower will remain in place for approximately six months or until the new facility is operating properly. Then the existing tower will be dismantled and removed.

According to the SNETCO representatives, this proposal has been approved by the Wolcott Planning and Zoning Commission.

The Waterbury East tower is located adjacent to a water tower and several other cable TV or telecommunication towers on top of Long Hill in Waterbury. The site is surrounded by single and multiple family dwellings, commercial, and industrial properties. Both the telecommunication tower and the water tower are visible

> Phone 566-5612 State Office Building — Hartford, Connecticut 06115 An Equal Opportunity Employer

from many viewpoints in the Waterbury area. Two microwave antennae are to be mounted at the 80 foot level to the existing 90 foot tower. Once the new facilities are operating, two narrow 80 foot tall towers presently on the site can be removed. These two towers now support reflectors which relay signals from the Waterbury central office to Wolcott. A new radio building will be constructed at the base of the tower and the existing fence will be extended to surround this new building. The radio building will house an emergency generator, the new radio equipment, and future radio equipment when existing facilities are replaced. An existing building presently storing a temporary generator may be removed after the new building is constructed. According to SNETCO representatives, this proposal has received planning and zoning approval.

The Meriden tower is adjacent to West Peak State Park and several telecommunication towers on the top of West Peak. The existing telecommunication facilities on West Peak are relatively well screened from most locations within the state park, but they are a prominent feature on the ridge top as seen from viewpoints in the Meriden area and can be seen up to many miles away on clear days.

The telephone company's tower presently supports seven microwave antennae. SNETCO proposes to add one microwave dish to the existing tower at the 90 foot level to complete a route from Meriden to the Wolcott Tower. The existing North Branform to Wolcott route will be eliminated, and an antenna at the North Branford tower may be removed when the Meriden to Wolcott route is in service. No additional buildings are proposed at this site.

Duncan C. Reid Environmentalist March 30, 1981

STATE OF CONNECTICUT

DEPARTMENT OF BUSINESS REGULATION POWER FACILITY EVALUATION COUNCIL

> Petition No. 67 Norwalk, Connecticut March 31, 1981

Commissioner Boucher, Mr. Clapp, Christopher Wood and Duncan Reid met Mr. Bailey and Mr. Kischell of the Southern New England Telephone Company to review the second part of Petition No. 67 which involved facilities in Norwalk, Bridgeport, and Shelton. The first part of this petition involves facilities located in Wolcott, Waterbury, and Meriden which were visited on Thursday, March 26th.

In Norwalk one dish is to be mounted on an existing 350 foot tower located at a telephone company service center immediately north of Route 1. The dish will be directed toward the existing tower in Bridgeport. The general area around the Norwalk site appears to be commercial, residential, and industrial. The tower is visible from many locations in the area.

The Bridgeport tower (40 feet tall) is located on top of the Central Office Building in downtown Bridgeport. One dish will be mounted at approximately the 30 foot level and directed tower the new dish in Norwalk. The location of the tower on top of the office building diminishes its visual impact.

The 181 foot tower in Shelton is located in a rural residential area. One 5 foot dish will be removed and a 12 foot dish mounted in the same location and directed toward an existing facility in Derby. A new and large dish is required in Shelton to prevent interference with transmissions from Shelton to New Haven. This tower is visible from selected locations within the immediate area and from some distant viewpoints.

No additional radio buildings, generators, or fuel tanks, are planned for the facilities in Norwalk, Bridgeport, and Shelton.

Duncan C. Reid Environmentalist March 31, 1981

> Phone 566-5612 State Office Building — Hartford, Connecticut 06115 An Equal Opportunity Employer

SITE NAME: WOLCOTT/ ANDREWS RD. 1 SITE ID: CT11403A ANDREWS RD WOLCOTT, CT 06716

T-MOBILE A/L TEMPLATE (PROVIDED BY RFDS)

67D5998E_1xAIR+10P+1QP

T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)

67D5D998E INDOOR

GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHAL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 11. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS. SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS. BUT IF ANY SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES. RULES. OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS. CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- 26. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.
- 27. PRIOR TO THE SUBMISSION OF BIDS. THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.

PROJECT SUMMARY

THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:

- 1. REMOVE EXISTING COAX CABLES, (1) 9x18
- 2. REMOVE EXISTING PBC 6200 CABINET
- 3. REMOVE EXISTING AIR21 KRC118023-1_B2A_B4P ANTENNA, TYP. (2) PER SECTOR,
- TOTAL OF (6) 4. REMOVE EXISTING TMAs AND DIPLEXERS
- 5. INSTALL (1) 6x24 HYBRID CABLES
- 6. INSTALL ERICSSON: AIR6419 B41 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3)
- 7. INSTALL COMMSCOPE: W-65A-R1 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3)
- 8. INSTALL ERICSSON: RADIO 4460 B25+B66, TYP. (1) PER SECTOR, TOTAL OF (3)
- 9. INSTALL 19 INCH EQUIPMENT RACK
- 10. INSTALL (1) 6230 POWER ENCLOSURE
- 11. INSTALL (1) 6230 BATTERY RACK
- 12. INSTALL NEW 200A ELECTRICAL PANEL

SHEET. NO.

T-1

N-1

PROJECT INFORMATION

SITE NAME:	WOLCOTT/ ANDREWS RD1
SITE ID:	CT11403A
SITE ADDRESS:	ANDREWS RD WOLCOTT, CT 06716
APPLICANT:	T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT. 06002
CONTACT PERSON:	DAN REID (PROJECT MANAGER) TRANSCEND WIRELESS, LLC (203) 592–8291
ENGINEER OF RECORD:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD ROAD BRANFORD, CT. 06405
	CARLO F. CENTORE, PE (203) 488–0580 EXT. 122
SITE COORDINATES:	LATITUDE: 41°–37'–03" N LONGITUDE: 73°–00'–16" W GROUND ELEVATION: ±1000' AMSL
	SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

SHEET INDEX DESCRIPTION TITLE SHEET NOTES AND SPECIFICATIONS, ANT. SCHEDULE

C-1	COMPOUND PLAN, EQUIPMENT PLANS AND ELEVATION	0
C-2	ANTENNA PLANS AND ELEVATIONS	0
C-3	TYPICAL EQUIPMENT DETAILS	0
C-4	CONDUIT PENETRATION DETAILS	0
E—1	ELECTRICAL DIAGRAM AND CONDUIT ROUTING	0
E-2	TYPICAL ELECTRICAL DETAILS	0
E-3	ELECTRICAL SPECIFICATIONS	0

REV.

0

0

0

0

0

0

0

0

0

NOTES AND SPECIFICATIONS:

DESIGN BASIS

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5) •
- NOMINAL DESIGN SPEED: 97 MPH (Vult) (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

SITE NOTES

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

GENERAL NOTES

- ANY AFFECTED WORK.

- WORK.
- 6. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONFLICT IS SATISFACTORILY RESOLVED.
- 7. INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- WORK.
- ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- PROJECT.
- CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- CONSTRUCTION MANAGER.

	ANTENNA/APPURTENANCE SCHEDULE						
SECTOR	EXISTING/PROPOSED	ANTENNA	SIZE (INCHES) (L × W × D)	ANTENNA & HEIGHT	AZIMUTH	(E/P) RRU (QTY)	(E/P) TMA (QTY)
A1	PROPOSED	ERICSSON (AIR 6419 B41)	33 x 16 x 9	77'	50 °		
A2	EXISTING	RFS (APXVAARR24_43-U_NA20)	95.9 x 24 x 8.7	77'	50 °	(E) RADIO 4449 B71+B12 (1)	
A3	PROPOSED	COMMSCOPE (VV-65A-R1)	54.7 x 12.1 x 4.6	77'	50 °	(P) RADIO 4460 B25+B66 (1)	
					•	·	
B1	PROPOSED	ERICSSON (AIR 6419 B41)	33 x 16 x 9	77'	180°		
B2	EXISTING	RFS (APXVAARR24_43-U_NA20)	95.9 x 24 x 8.7	77'	180°	(E) RADIO 4449 B71+B12 (1)	
B3	PROPOSED	COMMSCOPE (VV-65A-R1)	54.7 x 12.1 x 4.6	77'	180°	(P) RADIO 4460 B25+B66 (1)	
	•		-				
C1	PROPOSED	ERICSSON (AIR 6419 B41)	33 x 16 x 9	77'	310		
C2	EXISTING	RFS (APXVAARR24_43-U_NA20)	95.9 x 24 x 8.7	77'	310	(E) RADIO 4449 B71+B12 (1)	
C3	PROPOSED	COMMSCOPE (VV-65A-R1)	54.7 x 12.1 x 4.6	77'	310	(P) RADIO 4460 B25+B66 (1)	

1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.

2. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH

3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.

4. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.

5. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS. ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY

CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE

CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR

8. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE

9. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING,

10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF

11. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS. SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL

12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER

13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR

- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 16. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- 26. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP, EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS. BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.
- 27. PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.

STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES) -- ASTM A992 (FY = 50 KSI)
- STRUCTURAL STEEL (OTHER SHAPES) -- ASTM A36 (FY = 36 KSI)
- STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B С. (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B,
- (FY = 42 KSI)PIPE---ASTM A53 (FY = 35 KSI)
- CONNECTION BOLTS---ASTM A325-N
- U-BOLTS---ASTM A36 ANCHOR RODS---ASTM F 1554
- WELDING ELECTRODE --- ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

(QTY) PROPOSED HYBRID/COAX
(1) 6x24 HYBRID CABLE

NOTE: ALL HYBRID/COAX LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING

T-MOBILE NORTHEAST LLC T-MOBILE NORTH AND	PROFESSIONAL ENGINEER SEAL PROFESSIONAL ENGINEER SEAL I WITTER I WITTER	CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION
--	--	---

A STRUCTURAL ANALYSIS OF THE ANTENNA MOUNTS WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING. REFER TO THE ANTENNA MOUNT ANALYSIS REPORT PREPARED BY CENTEK ENGINEERING (PROJECT # 22022.02) DATED 03/22/22 FOR ADDITIONAL A STRUCTURAL ANALYSIS IS TO BE COMPLETED "BY OTHERS" OF THE TOWER AND TOWER FOUNDATION. NO EQUIPMENT SHALL BE INSTALLED ON THE HOSTING STRUCTURE WITHOUT A PASSING STRUCTURAL ANALYSIS NOTE: NO EQUIPMENT SHALL BE INSTALLED ON THE HOSTING STRUCTURE WITHOUT A PASSING STRUCTURAL ANALYSIS REPORT AND CONTRACTOR PRIOR CONFIRMATION THAT ANY AND ALL REQUISITE MODIFICATIONS

<u>VV-65A-R1</u>

	EQUIPMENT	DIMENSIONS	WEIGHT	
MAKE: MODEL:	ERICSSON AIR6419 B41	33"L x 16"W x 9"D	±41 LBS.	
MAKE: MODEL:	COMMSCOPE VV-65A-R1	54.7"L x 12.08"W x 4.6"D	±23 LBS.	
<u>NOTES:</u> 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH T-MOBILE CONSTRUCTION MANAGER PRIOR TO ORDERING.				

PROPOSED ANTENNA DETAIL

POWER ENCLOSURE		
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: ERICSSON MODEL: POWER 6230	14.0"H x 19.0"W x 16.0"D	53 LBS

RADIO 4460 B25+B66

RRU (REMOTE RADIO UNIT)				
EQUIPMENT	DIMENSIONS	WEIGHT	CLEARANCES	
AKE: ERICSSON ODEL: RADIO 4460 B25+B66	19.6"L x 15.7"W x 12.1"D	±109 LBS.	BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. BELOW RRU: 16" MIN.	
<u>ITES:</u>				

1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH T-MOBILE CONSTRUCTION MANAGER PRIOR TO ORDERING.

FRONT

ERICSSON 19" RACK			
EQUIPMENT	DIMENSIONS	WEIGHT	
MAKE: ERICSSON MODEL: 19" RACK	63.0"H x 19.0"W x 23.0"D	±200 LBS.	
MODEL: 19" RACK	63.0 H X 19.0 W X 23.0 D		

PLAN

ERICSSON 19" RACK SCALE: NOT TO SCALE $\frac{6}{c-3}$

SCALE: NOT TO SCALE

C-4

NOTES:

TUBING.

 FLOOR OR WALL ASSEMBLY - MIN 2-1/2 IN. THICK REINFORCED LIGHTWEIGHT OR NORMAL WEIGHT (100-150 PCF) CONCRETE. WALL MAY ALSO BE CONSTRUCTED OF ANY UL CLASSIFIED CONCRETE BLOCKS*. MAX DIAM OF OPENING IS 30-7/8 IN. SEE CONCRETE BLOCKS (CAZT) CATEGORY IN THE FIRE RESISTANCE DIRECTORY FOR NAMES OF MANUFACTURERS.

A. STEEL FLOOR UNIT/FLOOR ASSEMBLY (NOT SHOWN) – AS AN ALTERNATE TO ITEM 1, THE FLOOR ASSEMBLY MAY CONSIST OF A FLUTED STEEL FLOOR UNIT/ CONCRETE FLOOR ASSEMBLY. THE FLOOR ASSEMBLY SHALL BE CONSTRUCTED OF THE MATERIALS AND IN THE MANNER DESCRIBED IN THE INDIVIDUAL FLOOR CEILING DESIGN IN THE FIRE RESISTANCE DIRECTORY AND SHALL INCLUDE THE FOLLOWING CONSTUCTION FEATURES:

B. CONCRETE – MIN 2–1/2 IN. THICK REINFORCED LIGHTWEIGHT ON NORMAL WEIGHT (100–150 PCF) CONCRETE, AS MEASURED FROM THE TOP PLANE OF THE FLOOR UNITS.

C. STEEL FLOOR AND FORM UNITS* – COMPOSITE OR NON-COMPOSITE 1-1/2 TO 3 IN. DEEP FLUTED GALV STEEL UNITS AS SPECIFIED IN THE INDIVIDUAL FLOOR-CEILING DESIGN. MAX DIAM OF OPENING IS 30-7/8 IN.

2. THROUGH-PENETRANT - ONE METALLIC PIPE OR CONDUIT TO BE INSTALLED EITHER CONCENTRICALLY OR ECCENTRICALLY WITHIN THE FIRESTOP SYSTEM. THE ANNULAR SPACE BETWEEN PIPE OR CONDUIT AND PERIPHERY OF OPENING SHALL BE MIN 0 IN. TO MAX 7/8 IN. PIPE OR CONDUIT TO BE RIGIDLY SUPPORTED ON BOTH SIDES OF FLOOR OR WALL ASSEMBLY. THE FOLLOWING TYPES AND SIZES OF METALLIC PIPES OR CONDUITS MAY BE USED:

A. STEEL PIPE NOM 30 IN. DIAM (OR SMALLER) SCHEDULE 10 (OR HEAVIER) STEEL PIPE.

- B. IRON PIPE NOM 30 IN. DIAM (OR SMALLER) CAST OR DUCTILE IRON PIPE.
- C. COPPER PIPE NOM 6 IN. DIAM (OR SMALLER) REGULAR (OR HEAVIER) COPPER PIPE. D. COPPER TUBING NOM 6 IN. DIAM (OR SMALLER) TYPE L (OR HEAVIER) COPPER

E. CONDUIT NOM 6 IN. DIAM (OR SMALLER) STEEL CONDUIT.

- F. CONDUIT NOM 4 IN. DIAM (OR SMALLER) STEEL ELECTRICAL METALLIC TUBING (EMT).
- 3. FILL, VOID OR CAVITY MATERIAL* SEALANT MIN 1/2 IN. THICKNESS OF FILL MATERIAL APPLIED WITHIN THE ANNULUS, FLUSH WITH TOP SURFACE OF FLOOR OR WITH BOTH SURFACES OF WALL. AT THE POINT CONTACT LOCATION BETWEEN PIPE AND CONCRETE, A MIN 1/4 IN. DIAM BEAD OF FILL MATERIAL SHALL BE APPLIED AT THE CONCRETE/PIPE INTERFACE ON THE TOP SURFACE OF FLOOR AND ON BOTH SURFACES OF WALL.

OR WALL		DIA.	ANNULAR SPACE	ANNULAR SPACE	THICK.	FORM. MAT. THICK.	RATING
F	3 3/4"	1 1/2"	3/8"	2 1/8"	1"	2 3/4"	2
F	3 3/4"	6"	3/8"	3/4"	1"	2 3/4"	2
F	3 3/4"	6"	3/8"	1"	2"	1 3/4"	2
F	4 1/2"	1 1/2"	3/8"	2 1/8"	1"	3 1/2"	3
F	4 1/2"	6"	3/8"	3/4"	1"	3 1/2"	3
F	4 1/2"	6"	3/8"	1"	2"	2 1/2"	3
W	5 1/2"	1 1/2"	3/8"	2 1/8"	1"	3 1/2"	3
W	5 1/2"	6"	3/8"	3/4"	1"	3 1/2"	3
W	6 1/2"	1 1/2"	3/8"	2 1/8"	2"	2 1/2"	3
W	6 1/2"	6"	3/8"	1"	2"	2 1/2"	3

THROUGH PENETRANTS ONE METALLIC PIPE, CONDUIT OR -TUBING TO BE INSTALLED EITHER CONCENTRICALLY OR ECCENTRICALLY WITHIN THE FIRESTOP SYSTEM. PIPE, CONDUIT OR TUBING TO BE RIGIDLY SUPPORTED ON BOTH SIDES OF FLOOR OR WALL. FORMING MATERIAL SHALL BE A MIN. OF 1 1/2" THICK OF . 4 4 MIN. 4.0 PCF MINERAL WOOL BATT INSULATION FIRMLY PACKED IN OPENING, USG INTERIORS-TYPE SAF THICKNESS OF SEALANT APPLIED FLUSH W/THE TOP SURFACE OF BOTH SIDES OF FLOOR/WALL (SEE TABLE), USG INTERIORS-TYPE SS UL SYSTEM NUMBER: CAJ1020 F RATING – 3 HR.

PIPE AND CONDUIT PENETRATION DETAIL IN CONCRETE OR MASONRY SCALE: NOT TO SCALE

RISER DIAGRAM NOTES

- POWER CONDUIT TO BE ROUTED FROM NEW 200A ELECTRICAL PANEL, ROUTED TO NEW T-MOBILE POWER ENCLOSURE. REFER TO RISER FOR SIZE AND QUANTITY

- CONTRACTOR IS RESPONSIBLE TO VERIFY FINAL CONDUIT ROUTING, LENGTH OF RUN, AND FEASIBILITY.
- POTENTIAL CORE DRILLING MAY BE REQUIRED. CONTRACTOR IS RESPONSIBLE FOR ALL PENETRATIONS AND TO ENSURE THEY ARE FIREPROOFED AND FIRE RATING OF WALLS AND FLOORS ARE MAINTAINED.

5 120/240V, SINGLE PHASE, 225A RATED, 200A MAIN CIRCUIT BREAKER, 42 POSITION DISTRIBUTION PANEL, 65 KAIC, 200A MCB, NEMA 1, SURFACE MOUNT, FRONT TRIM HINGED

(4) EXISTING ELECTRICAL PANEL PP-1A TO BE REMOVED AND REPLACED. RELOCATE ALL EXISTING CIRCUIT BREAKERS TO NEW ELECTRICAL PANEL, INCLUDING EXISTING 150A CIRCUIT BREAKER AND EXISTING 100A CIRCUIT BREAKER. CONTRACTOR TO COORDINATE ALL OUTAGES WITH

ELECTRICAL SPECIFICATIONS

SECTION 16010

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN. OR OMITTED FROM. THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 16111

1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

CONDUIT SCHEDULE SECTION 16111						
CONDUIT TYPE	NEC REFERENCE	APPLICATION	MIN. BURIAL DEPTH (PER NEC TABLE 300.5) ^{2,3}			
EMT	ARTICLE 358	INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS	N/A			
RMC, RIGID GALV. STEEL	ARTICLE 344, 300.5, 300.50	ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.	6 INCHES			
PVC, SCHEDULE 40	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES			
PVC, SCHEDULE 80	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES			
LIQUID TIGHT FLEX. METAL	ARTICLE 350	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A			
FLEX. METAL	ARTICLE 348	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A			
¹ PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION.						

² UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24". ³ WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2" OF CONCRETE EXTENDING DOWN TO ROCK.

SECTION 16123

- 1.01. CONDUCTORS
- A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:
 - 120/208/240V 277/480V <u>COLOR</u> BLACK COLOR BROWN ORANGE RFD BLUF YELLOW CONTINUOUS WHITE GREY CONTINUOUS GREEN GREEN WITH YELLOW STRIPE
- B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

SECTION 16140

- 1.01. WIRING DEVICES
- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
- 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
- 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

1.01. DISCONNECT SWITCHES

A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190

- 1.01. SEISMIC RESTRAINT
- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

SECTION 16195

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

SECTION 16450 1.01. GROUNDING

- GROUNDING SOURCES.

- CORROSION

- RACEWAY(S).

- 1. GROUND BARS

- SPECIFICATIONS.

SECTION 16470

1.01. DISTRIBUTION EQUIPMENT

SECTION 16477

1.01. FUSES

SECTION 16960

REQUIRING WITNESSING.

SECTION 16961

- 1.01. TESTS BY CONTRACTOR

A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT

B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.

C. GROUNDING OF PANELBOARDS:

1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT

2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).

D. EQUIPMENT GROUNDING CONDUCTOR:

1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.

3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME

E. CELLULAR GROUNDING SYSTEM:

CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED). 3. ANTENNA GROUND CONNECTIONS AND PLATES.

F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.

G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S

A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHOR CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.

TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:

1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT

2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.

3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.

B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.

C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER. D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS

A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.

B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.

C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

Centered on Solutions[™]

Structural Analysis Report

Antenna Mount and Platform Analysis

Proposed T-Mobile Antenna Upgrade

Site Ref: CT11403A

Andrews Road Wolcott, CT

CENTEK Project No. 22022.02

Date: March 22, 2022

HILL STONAL ENGINEERS SSIONAL

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002 CENTEK Engineering, Inc. Structural Analysis Report T-Mobile | CT11403A March 21, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS
- ANTENNA AND APPURTENANCE SUMMARY
- ANALYSIS
- DESIGN LOADING
- REFERENCE STANDARDS
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- WIND LOAD CALCULATION
- RISA 3D OUTPUT REPORT

SECTION 4 – REFERENCE MATERIAL (not included in this report)

- RF DATA SHEET
- TOWER AND PLATFORM MAPPING REPORT PREPARED BY ARMOR TOWER ENGINEERING, JOB NO. VZW - WOLCOTTNW, DATED DECEMBER 21, 2017.

<u>Introduction</u>

This structural analysis report (SAR) was prepared to address the structural viability of installing T-Mobile's proposed antenna configuration attached to the existing, 80-ft, self-supporting lattice tower located at Andrews Road, Wolcott, Connecticut.

The antenna mount assembly consists of pipe masts attached at the top to the platform base frame. The platform is at the top of the self-supporting lattice tower at elevation 80-ft. The bottom of the antenna masts are braced with stiff arms attaching to the legs of the lattice tower. This structural analysis report verifies the adequacy of aforementioned antenna mount assembly only and the platform.

The antenna mount assembly geometry and member information were gathered through a site visit to investigate the current conditions, performed by Centek personnel on 03/10/2022, and a tower and platform mapping report prepared by Armor Tower Engineering, Job No. VZN-WolcottNW, dated December 21, 2017. Proposed/existing antenna and appurtenance information was taken from an RF data sheet dated 03/02/2022 provided by T-Mobile.

Primary Assumptions Used in the Analysis

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The existing elevated steel antenna frames carry the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

<u>Antenna and Equipment Summary</u>

Location	Appurtenance / Equipment	Rad Center Elevation (AGL)	Mount Type
Alpha/Beta /Gamma	 (1) Ericsson – AIR 6419 B41 Antenna (1) Commscope VV-65A-R1 Antenna (1) RFS APXVAARR24_43-U_NA20 Antenna (1) Ericsson 4460 B25+B66 Radio (1) 4449 B71+B12 Radio 	77-ft	V-Frame sector mounts attached to host lattice tower legs

Equipment – Indicates existing equipment to be relocated. **Equipment** – Indicates proposed equipment to be installed.

<u>Analysis</u>

The antenna frames were analyzed using a comprehensive computer program titled Risa3D. The program examines the antenna mounts considering the worst-case code prescribed loading condition. The structures were considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

<u>Design Loading</u>

Loading was determined per the requirements of the 2006 ANSI TIA-222-G, 2015 International Building Code amended by the 2018 CSBC and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Basic Wind Speed:	V _{asd} = 97 mph	Appendix N of the 2018 CT State Building Code		
Basic Wind Speed w/ Ice:	V _i = 50 mph	Annex B of TIA-222-G		
Risk Category:	Π	2015 IBC; Table 1604.05		
Exposure Category:	Surface Roughness B	ASCE 7-10; Section 26.7.2		
Dead Load	Equipment and framing self- weight	Identified within SAR design calculations		
Ground Snow Load:	S _G = 35 psf	Appendix N of the 2018 CT State Building Code		

Reference Standards

2015 International Building Code:

1. AISC 360-10, Specification for Structural Steel Buildings.

Results

Member stresses and design reactions were calculated utilizing the structural analysis software RISA 3D.

The antenna mounting assembly and impacted host building components were found to be structurally acceptable as presented in the following table:

Sector	Component	Stress Ratio (percentage of capacity)	Result
	Pipe 2.0 STD	52%	PASS
All Sectors	(Existing Antenna Mast)	52 /0	
	L3X3X1/4	18%	DV66
	(Existing Antenna Mast Stiff-Arm)	40 /0	1 400
	C7X12.25	200/	DV66
	(Existing Platform Baseframe)	2076	FA33
	5/8" A325 Bolt	65%	DV66
	(Existing connection of Platform and Lattice Tower)	05%	FA33

Conclusion

This analysis shows that the proposed subject antenna mount assemblies and lattice tower platform are STRUCTURALLY ADEQUETE to support the proposed T-Mobile modified antenna configuration.

The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Principle ~ Structural Engineer

Prepared by:

Pablo Perez-Gomez Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Branford, CT 06405

Centered on Solutions[™] <u>www.centekeng.com</u> 63-2 North Branford Road P: (203) 488-0580 F: (203) 488-8587

Subject:

Location:

Rev. 0: 03/21/2022

mph

mph

Wolcott, CT

(User Input per Appendix N of CSBC 2018)

(User Input per Annex B of TIA-222-G)

Prepared by: PPG Checked by: CFC Job No. 22022.02

Development of Design Heights, Exposure Coefficients,
and Velocity Pressures Per TIA-222-G
-

	Wind	Speeds
Basic	Wind	Speed

Basic Wind Speed	$V \coloneqq 97$
Basic Wind Speed with Ice	$V_i\!\coloneqq\!50$

Input

Structure Type = Structure Category = Exposure Category = Structure Height =

Height to Center of Antennas = Radial Ice Thickness = Radial Ice Density = Topographic Category =

Structure Tune := I	attice
$SC \coloneqq II$	
$Exp \coloneqq B$	
h := 80	ft
$z \coloneqq 77$	ft
$t_i\!\coloneqq\!0.75$	in
$Id \coloneqq 56.00$	pcf
$TC \coloneqq 1$	
$G_{H} = 0.85$	

(User Input)
(User Input)
(User Input)
(User Input)
(User Input)
(User Input per Annex B of TIA-222-G)
(User Input)
(User Input)
(User Input)

Gust Effect Factor =	$G_{H} = 0.85$	(U	lser Input)
Output Wind Direction Probability Factor =		e = Pole = 0.85 e = Lattice	(Per Table 2-2 of TIA-222-G) (Per Table 2-3 of TIA-222-G)
Importance Factors =			
$\begin{split} I_{Wind} \coloneqq \left\ \begin{array}{c} \text{if } SC = 1 \\ \left\ \begin{array}{c} 0.87 \\ 0.87 \end{array} \right\ = 1 \\ \text{if } SC = 2 \\ \left\ \begin{array}{c} 1.00 \\ 1.00 \end{array} \right\ \\ \text{if } SC = 3 \\ \left\ \begin{array}{c} 1.15 \end{array} \right\ \end{split} \end{split}$	$\begin{array}{c} u_{__Lce} := & \left \begin{array}{c} \text{if } SC = 1 \\ & \left \begin{array}{c} 0 \\ & \text{if } SC = 2 \\ & \left \begin{array}{c} 1.00 \\ & \text{if } SC = 3 \end{array} \right \\ & \left \begin{array}{c} 1.00 \end{array} \right \end{array} \right \end{array}$	$ \begin{split} I_{ice} &\coloneqq \left \begin{array}{c} \text{if } SC = 1 \\ \left\ \begin{array}{c} 0 \\ \text{if } SC = 2 \\ \left\ \begin{array}{c} 1.00 \\ \text{if } SC = 3 \\ \left\ \begin{array}{c} 1.25 \end{array} \right \end{array} \right \\ \end{array} \right \end{aligned} $	
Topographic Factor =	$K_{zt} \coloneqq \left\ \begin{array}{c} \text{if } TC > 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2 = 1	
	$K_a \coloneqq 1.0$		
Height Escalation factor for Ice Thick. =	$K_{iz}\!\coloneqq\!\left(\!\frac{z}{33}\!\right)^{\!0.1}\!=\!1.088$		
Velocity Pressure Coefficient Antennas =	$t_{iz} \coloneqq 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot I_{ice} \cdot$	$K_{zt}^{0.35} = 1.633$	
	$Kz \coloneqq 2.01 \cdot \left(\left(\frac{z}{zg} \right) \right)^{\frac{2}{\alpha}} =$	= 0.917	
Velocity Pressure w/o Ice Antennas =	$qz \coloneqq 0.00256 \cdot K_d \cdot Kz$	$\cdot V^2 \cdot I_{Wind} = 18.777$	\mathbf{psf}
Velocity Pressure with Ice Antennas =	$qz_{ice} \coloneqq 0.00256 \cdot K_d \cdot K_d$	$Z \cdot V_i^2 \cdot I_{Wind} = 4.989$	psf

Loads on Equipment

lbs

Wolcott, CT

Prepared by: PPG Checked by: CFC Job No. 22022.02

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 03/21/2022

Development of Wind & Ice Load on Antennas				
Antenna Data:		1 13-I L-NA	20	
		+_+0-0-11A	(11, 12, 12, 12, 12, 12, 12, 12, 12, 12,	
Antenna Shape =	Flat		(User Input)	
Antenna Height =	$L_{ant} \coloneqq 95.9$	in	(User Input)	
Antenna Width =	$W_{ant} \coloneqq 24$	in	(User Input)	
Antenna Thickness =	$T_{ant} \coloneqq 8.7$	in	(User Input)	
Antenna Weight =	$WT_{ant} \coloneqq 153.3$	lbs	(User Input)	
Number of Antennas =	$N_{ant}\coloneqq 1$		(User Input)	
Antenna Aspect Ratio =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 4.0$			
Antenna Force Coefficient =	$Ca_{ant}{=}1.27$			
Wind Load (without ice)				
Surface Area for One Antenna =	$SA_{antF} \coloneqq \frac{L_{ant} \cdot W_{ant}}{144}$	= 16		sf
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant}$	$\cdot K_a \cdot SA_{antF}$	= 323	<mark>lbs</mark>
Surface Area for One Antenna =	$SA_{antS} \coloneqq rac{L_{ant} \cdot T_{ant}}{144} =$	= 5.8		sf
Total Antenna Wind Force Side =	$F_{ant} \coloneqq qz \boldsymbol{\cdot} G_H \boldsymbol{\cdot} Ca_{ant}$	• $K_a \cdot SA_{antS}$	= 117	lbs
Wind Load (with ice)				
Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2\right)}{2}$	$\frac{2 \cdot t_{iz} \cdot \left(W_{an} \right)}{144}$	$\underbrace{+2 \cdot t_{iz}}_{t} = 18.8$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca$	$K_{ant} \cdot K_a \cdot SA_b$	CEantF = 101	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} \coloneqq \frac{\left(L_{ant} + 2\right)}{\left(L_{ant} + 2\right)}$	$\frac{2 \cdot t_{iz} \cdot \left(T_{ant} \right)}{144}$	$+2 \cdot t_{iz}$ = 8.2	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca$	$a_{ant} \cdot K_a \cdot SA_b$	CEantS = 44	<mark>lbs</mark>
Gravity Load (without ice)				
Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 153$			
Gravity Loads (ice only)				lbs
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \cdot W_{ant} \cdot T_{ant}$	$_{unt} = 2 \cdot 10^4$		cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \boldsymbol{\cdot} t_{iz} \right) \boldsymbol{\cdot}$	$(W_{ant} + 2 \cdot t)$	$t_{iz} \cdot (T_{ant} + 2 \cdot t_{iz})$	$-V_{ant} = 1 \cdot 10^4$
	V.			cu in
Weight of Ice on Each Antenna =	$W_{ICEant} \coloneqq \frac{\mathbf{r}_{ice}}{1728} \cdot Id$	= 399		lbs

Weight of Ice on All Antennas =

 $W_{\textit{ICEant}} \bullet N_{ant} = 399$

 Centered on Solutions
 www.centekeng.com

 63-2 North Branford Road
 P: (203) 488-0580

 Branford, CT 06405
 F: (203) 488-8587

Subject: Location:

Loads on Equipment

Wolcott, CT

(User Input)

(User Input)

(User Input)

(User Input)

(User Input)

(User Input)

Prepared by: PPG Checked by: CFC Job No. 22022.02

Rev. 0: 03/21/2022

Antenna Data: Antenna Model =

Antenna S	Shape =	Flat
Antenna H	leight =	$L_{ant} \coloneqq 54.7$
Antenna	Width =	$W_{ant} \coloneqq 12.08$
Antenna Thic	kness =	$T_{ant}\!\coloneqq\!4.6$
Antenna V	Veight =	$WT_{ant} \coloneqq 23$
Number of Ante	ennas =	$N_{ant} \coloneqq 1$

Development of Wind & Ice Load on Antennas

Antenna Aspect Ratio =

Commscope VV-65A-R1

in

in

in

lbs

Antenna Force Coefficient = $Ca_{ant} = 1.29$

Wind Load (without ice)

Surface Area for One Antenna =	$SA_{antF} \coloneqq \frac{L_{ant} \cdot W_{ant}}{144} = 4.6$	sf
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 94$	lbs
Surface Area for One Antenna =	$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144} = 1.7$	sf
Total Antenna Wind Force Side =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 36$	<mark>lbs</mark>

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz})}{144} = 6.2$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \bullet G_H \bullet Ca_{ant} \bullet K_a \bullet SA_{ICEantF} = 34$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 3.2$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 17$	<mark>lbs</mark>
Gravity Load (without ice)		
Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 23$	lbs

Gravity Loads (ice only)

Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant}$ Volume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{iz})$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id$ Weight of Ice on All Antenna = $W_{ICEant} \cdot N_{ant} = 128$

lbs

 $W_{ICEant} \cdot N_{ant} = 128$

Loads on Equipment

Wolcott, CT

Prepared by: PPG Checked by: CFC Job No. 22022.02

Centered on Solutions⁵⁵⁰ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Development of Wind & Ice Load on Antennas

Subject:

Location:

Rev. 0: 03/21/2022

<u>Antenna Data:</u>					
Antenna Model =	Ericsson AIR6419	9 B41			
Antenna Shape =	Flat		(User Input)		
Antenna Height =	$L_{ant} \coloneqq 33$	in	(User Input)		
Antenna Width =	$W_{ant} \coloneqq 16$	in	(User Input)		
Antenna Thickness =	$T_{\mathit{ant}} \coloneqq 8.9$	in	(User Input)		
Antenna Weight =	$WT_{ant} \coloneqq 41$	lbs	(User Input)		
Number of Antennas =	$N_{ant} \coloneqq 1$		(User Input)		
Antenna Aspect Ratio =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 2.1$	L			
Antenna Force Coefficient =	$Ca_{ant}{=}1.2$				
Wind Load (without ice)					
Surface Area for One Antenna =	$SA_{antF} \coloneqq rac{L_{ant} \cdot W_{ar}}{144}$	$\frac{nt}{2} = 3.7$		sf	
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_a$	$K_{a} \cdot SA_{a}$	$_{tF} = 70$	<mark>lbs</mark>	
Surface Area for One Antenna =	$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144}$	t = 2		sf	
Total Antenna Wind Force Side =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_a$	$M_{nnt} \cdot K_a \cdot SA_{an}$	$_{ttS} = 39$	<mark>lbs</mark>	
Wind Load (with ice)					
Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} := \frac{\left(L_{ant} + L_{ant} + L_{a$	$+2 \cdot t_{iz} \cdot (W)$ 144	$ant + 2 \cdot t_{iz} = 4.9$	sf	
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot G_H$	$Ca_{ant} \cdot K_a \cdot S_a$	$4_{ICEantF} = 25$	<mark>lbs</mark>	
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} \coloneqq \frac{\langle L_{ant} + $	$+2 \cdot t_{iz} \cdot (T_a)$ 144	$\frac{1}{1} + 2 \cdot t_{iz} = 3.1$	sf	
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot G_H$	$Ca_{ant} \cdot K_a \cdot S_a$	$4_{ICEantS} = 16$	<mark>lbs</mark>	
Gravity Load (without ice)					
Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 41$				
Gravity Loads (ice only)				lbs	
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \cdot W_{ant} \cdot T$	$T_{ant} = 4699$		cu in	
Volume of Ice on Fach Antenna =	$V_{i} := (L_{i} + 2 \cdot t)^{i}$	$W_{1}+2$	$(T_{1}+2,t_{1})$	-V = -38	:00
	· ice · \ ant + 2 · Ciz	/ ('' ant ' 2	-iz $(-ant + 2 - iz)$	• _{ant} = 56	u in
Weight of Ice on Each Antenna =	$W_{ICEant} \coloneqq \frac{V_{ice}}{1728} \bullet I$	d = 123		lbs	
Weight of Ice on All Antennas =	$W_{ICEant} \cdot N_{ant} = 123$	3		<mark>lbs</mark>	

 $W_{\textit{ICEant}} \cdot N_{ant} = 123$

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

F:(20

Subject:

Location:

Rev. 0: 03/21/2022

Loads on Equipment

<mark>lbs</mark>

Wolcott, CT

Prepared by: PPG Checked by: CFC

03) 488-8587	Job No	. 22022.02
<u>RRUS Data:</u> RRUS Model =	Ericsson 4449 B71+B12	
RRUS Shape =	Flat (User Input)	
RRUS Height =	$L_{RRUS} \coloneqq 17.9$ in (User Input)	
RRUS Width =	$W_{RRUS} \coloneqq 13.2$ in (User Input)	
RRUS Thickness =	$T_{RRUS} \coloneqq 9.5$ in (User Input)	
RRUS Weight =	$WT_{RRUS} \coloneqq 75$ lbs (User Input)	
Number of RRUS's =	$N_{RRUS} \coloneqq 1$	
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = 1.4$	
RRUS Force Coefficient =	$Ca_{RRUS} = 1.2$	
Wind Load (without ice)		
Surface Area for One RRUS =	$SA_{RRUSF} \coloneqq \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.6$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 31$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} \coloneqq \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.2$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{RRUS} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{RRUSS} = 23$	lbs
Wind Load (with ice)		
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.4$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \bullet G_H \bullet Ca_{RRUS} \bullet K_a \bullet SA_{ICERRUSF} = 12$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 1.9$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \bullet G_{H} \bullet Ca_{RRUS} \bullet K_{a} \bullet SA_{ICERRUSS} = 10$	lbs
Gravity Load (without ice)		
Weight of All RRUSs =	$WT_{RRUS} \cdot N_{RRUS} = 75$	<mark>lbs</mark>
Gravity Loads (ice only)		
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \bullet W_{RRUS} \bullet T_{RRUS} = 2245$	cu in
Volume of Ice on Each RRUS =	$V_{ice} \coloneqq \left(L_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RUS} + 2 \cdot t_{iz} \right$	V_{iz}) – V_{RRUS} = 2204
Weight of Ice on Each RRUS =	$W_{ICERRUS} \coloneqq \frac{V_{ice}}{1728} \cdot Id = 71$	cu in Ibs

CT11403A_TIA RevG Load Calculations Rev 0.mcdx

 $W_{ICERRUS} \cdot N_{RRUS} = 71$

Weight of Ice on All RRUSs =

Subject:

Location:

Rev. 0: 03/21/2022

Loads on Equipment

sf

lbs

sf

lbs

lbs

Wolcott, CT

Prepared by: PPG Checked by: CFC Job No. 22022.02

Centered on Solutions[™] <u>www.centekeng.com</u> 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587

Development of Wind & Ice Load on RRUS's			
RRUS Data:			
RRUS Model =	Ericsson 4460 B25	+B66	
RRUS Shape =	Flat		(User Input)
RRUS Height =	$L_{RRUS} \coloneqq 19.6$	in	(User Input)
RRUS Width =	$W_{RRUS}\!\coloneqq\!15.7$	in	(User Input)
RRUS Thickness =	$T_{RRUS} \coloneqq 12.1$	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 109$	lbs	(User Input)
Number of RRUS's =	$N_{RRUS}\coloneqq 1$		
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} =$	1.2	
RRUS Force Coefficient =	$Ca_{RRUS} = 1.2$		
Wind Load (without ice)			
Surface Area for One RRUS =	$SA_{RRUSF} \coloneqq \frac{L_{RRUS} \cdot W_{I}}{144}$	RRUS =	2.1

 $F_{RRUS} \coloneqq qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 41$

 $F_{RRUS} \coloneqq qz \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{RRUS} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{RRUSS} = 32$

 $SA_{RRUSS} \coloneqq \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.6$

Total RRUS Wind Force =

Surface Area for One RRUS =

Total RRUS Wind Force =

Wind	Load	(with	ice)

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 1\right)}{2}$	$\frac{2 \cdot t_{iz} \cdot \left(W_{RRUS} + 2 \cdot t_{iz} \right)}{144} = 3$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_H \cdot Ca_R$	$K_{a} \cdot SA_{ICERRUSF} = 15$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} \coloneqq \frac{\left(L_{RRUS} + 2\right)}{2}$	$\frac{2 \cdot t_{iz} \cdot \left(T_{RRUS} + 2 \cdot t_{iz} \right)}{144} = 2.4$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_H \cdot Ca_R$	$R_{US} \cdot K_a \cdot SA_{ICERRUSS} = 12$	lbs
Gravity Load (without ice)			
Weight of All RRUSs =	$WT_{RRUS} \cdot N_{RRUS} = 109$		lbs
Gravity Loads (ice only)			
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \bullet W_{RRUS} \bullet$	$T_{RRUS} = 3723$	cu in
Volume of Ice on Each RRUS =	$\boldsymbol{V}_{ice} \coloneqq \left(\boldsymbol{L}_{RRUS} + 2 \boldsymbol{\cdot} \boldsymbol{t}_{iz}\right) \boldsymbol{\cdot} \left($	$W_{RRUS} + 2 \cdot t_{iz} ight) \cdot \left(T_{RRUS} + 2 \cdot \right)$	$t_{iz} \rangle - V_{RRUS} = 2940$
Weight of Ice on Each RRUS =	$W_{ICERRUS} \coloneqq \frac{V_{ice}}{1728} \cdot Id =$	95	cu in Ibs

 $W_{ICERRUS} \cdot N_{RRUS} = 95$

Nodes

	Label	X [in]	Y [in]	Z [in]	Temp [deg F]	Detach From Dia
1	N27	0	0	0		
2	N2	-120	0	0		
3	N3	0	0	-244		
4	N4	-120	0	-244		
5	N5	0	0	-42.5		
6	N6	-120	0	-42.5		
7	N7	0	0	-85		
8	N8	-120	0	-85		
9	N9	0	0	-201.5		
10	N10	-120	0	-201.5		
11	N11	0	0	-159		
12	N12	-120	0	-159		
13	N13	-23	0	0		
14	N14	-23	0	-244		
15	N15	-23	0	-42.5		
16	N16	-23	0	-85		
17	N17	-23	0	-201.5		
18	N18	-23	0	-159		
19	N19	-97	0	0		
20	N20	-97	0	-42.5		
21	N21	-97	0	-85		
22	N22	-97	0	-159		
22	N23	_97	0	-201.5		
20	N24	-97	0	-201.0		
24	N24	-97	0	-244		
25	N26	-00	66	-122		
20	N20	120	66	0		
21	N20	-120	66	244		
20	N29	-120	00 E4	-244		
29	N31 N22	-120	54	0		
30	NO2	-120	04	-30		
31	N33	-120	0	-30		
32	N34	-120	27	0		
33	N30	-120	21	-30		
34	N36	-/5	27	0		
35	N37	-/5	0	0		
36	N38	-/5	54	0		
37	N39	-97	0	-122		
38	N40	-23	0	-122		
39	N41	-120	40.5	-36		
40	N42	0	54	0		
41	N43	0	54	-36		
42	N44	0	27	0		
43	N45	0	27	-36		
44	N46	-36	27	0	· · · · · · · · · · · · · · · · · · ·	
45	N47	-36	54	0		
46	N48	0	40.5	-36		
47	N49	0	0	-36		
48	N50	-36	0	0		
49	N51	-120	54	-244		
50	N52	-120	54	-208		
51	N53	-120	27	-244		
52	N54	-120	27	-208		
53	N55	-84	27	-244		
54	N56	-84	54	-244		
55	N57	-120	40.5	-208		
56	N58	-120	0	-208		
57	N59	-84	0	-244		
58	N60	-108	54	0		

Company : Centek Designer : PPG Job Number : 22022.02 Model Name : CT11403A_AMA

Nodes (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp (dea F)	Detach From Dia
59	N61	-108	54	-244		
60	N63	-47.625	0	-85		
61	N62	-23	0	-109.62		
62	N66	-72.322921	0	-109.677079		
63	N67	-47.69	0	-134.31		
64	N68	-72.3125	0	-109.666667		
65	N69	-120	66	-159		
66	N70	-120	54	-159		
67	N71	-120	54	-195		
68	N72	-120	27	-159		
69	N73	-120	27	-195		
70	N74	-75	27	-159		
71	N75	-75	54	-159		
72	N76	-120	40.5	-195		
73	N77	-120	0	-195		
74	N78	-75	0	-159		
75	N/9	0	42	-244		
76	N80	0	25	-244		
70	N81	0	8	-244		
78	N82	-81.0	42	-244		
79	N83	-81.0	25	-244		
00	IN04	-01.0	0	-244		
01	CON	-40.0	42	-244		
02	N00	-40.0	20	-244		
03	INO/	-40.0	0	-244		
95	N00	-01.0	0	-244		
86	NOO	-40.0	0	-244		
87	NQ1	0	8	-122		
88	NQ2	0	8	-42.5		
89	N93	0	8	-201 5		
90	N94	0	8	-159		
91	N95	0	8	-122		
92	N96	0	25	-42.5		
93	N97	0	25	-85		
94	N98	0	25	-201.5		
95	N99	0	25	-159		
96	N100	0	25	-122		
97	N101	0	42	-42.5		
98	N102	0	42	-85		
99	N103	0	42	-201.5		
100	N104	0	42	-159		
101	N105	0	42	-122		
102	N107	-3	0	-241		
103	N108	-54	0	-244		
104	N109	0	0	-190		
105	N110	-3	60	-241		
106	N111	-3	108	-241		
107	N112	-120	8	-42.5		
108	N113	-120	25	-42.5		
109	N114	-120	42	-42.5		
110	N119	-120	0	-122		
111	N120	-120	8	-122		
112	N121	-120	25	-122		
113	N122	-120	42	-122		
114	N116	-120	8	-85		
115	N117	-120	25	-85		
116	N118	-120	42	-85		

Company : Centek Designer : PPG Job Number : 22022.02 Model Name : CT11403A_AMA

Nodes (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [deg F]	Detach From Dia
117	N123	-97	0	-110		
118	N124	-97	54	-122		
119	N125	-97	54	-110		
120	N126	-97	27	-122		
121	N127	-117.5	54	-122		
122	N128	-108	54	-110		
123	N129	-117.5	0	-122		
124	N130	-117.5	96	-122		
125	N131	-108	54	-122		
126	N132	0	0	-66.5		
127	N133	3	0	-66.5		
128	N134	3	6	-66.5		
129	N135	3	-90	-66.5		
130	N136	0	0	-140.5		
131	N137	3	0	-140.5		
132	N138	3	6	-140.5		
133	N139	3	-90	-140.5		
134	N140	0	0	-222.75		
135	N141	3	0	-222.10		
136	N142	3	6	-222.15		
137	N142	3	90	222.15		
138	N143	1	-90	-222.15		
130	N144	4	-30	142.5		
140	N145	4	-90	- 142.5		
140	N140	4	-90	-224.75		
141	N147	4	6	-00.0		
142	N 140	4	6	-142.0		
143	N149	4	0	-224.75		
144	N150	4	-84	-08.0		
145	N151	4	-84	-142.5		
146	N152	4	-84	-224.75		
147	N153	4	0	-68.5		
148	N154	4	0	-142.5		
149	N155	4	0	-224.75		
150	N156	3	-84	-66.5		
151	N157	3	-84	-140.5		
152	N158	3	-84	-222.75		
153	N159	-40.75	0	0		
154	N160	-70.25	0	0		
155	N161	-40.75	8	0		
156	N162	-70.25	8	0		
157	N163	-40.75	25	0		
158	N164	-70.25	25	0		
159	N165	-40.75	42	0		
160	N166	-70.25	42	0		
161	N167	-75	0	3		
162	N168	-40.75	0	3		
163	N169	-75	6	3		
164	N170	-40.75	6	3		
165	N171	-75	-90	3		
166	N172	-40.75	-90	3		
167	N173	-123	0	-85		
168	N174	-123	-90	-85		
169	N175	-123	6	-85		
170	N176	-124	0	-83		
171	N177	-124	-90	-83		
172	N178	-124	6	-83		
173	N179	-123	-84	-85		
174	N180	-124	-84	-83		

Company : Centek Designer : PPG Job Number : 22022.02 Model Name : CT11403A_AMA

Nodes (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [deg F]	Detach From Dia
175	N181	-123	0	-159		
176	N182	-123	6	-159		
177	N183	-123	-90	-159		
178	N184	-117.5	8	-122		
179	N185	-117.5	25	-122		
180	N186	-117.5	42	-122		
181	N187	-34.75	0	-244		
182	N188	-34.75	0	-247		
183	N189	-34.75	6	-247		
184	N190	-34.75	-90	-247		
185	N191	3.5	-84	-67.5		
186	N192	3.5	-84	-141.5		
187	N193	3.5	-84	-223.75		
188	N194	3.5	0	-67.5		
189	N195	3.5	0	-141.5		
190	N196	3.5	0	-223.75		
191	N197	-123.5	0	-84		
192	N198	-123.5	-84	-84		
193	N199	-23	-84	-85		
194	N200	-23	-84	-159		
195	N201	-97	-84	-85		
196	N202	-97	-84	-159		
197	N203	-23	-60	-85		
198	N204	-23	-60	-159		
199	N205	-97	-60	-85		
200	N206	-97	-60	-159		
201	N207	-75	-84	3		
202	N208	-40.75	-84	3		
203	N209	-123	-84	-159		
204	N210	-34.75	-84	-247		
205	N211	-3	0	-85		
206	N212	-3	72	-85		
207	N213	-3	108	-85		
208	N214	-3	60	-85		
209	N215	0	0	-129.62		
210	N216	-3	8	-85		
211	N217	-3	25	-85		
212	N218	-3	42	-85		
213	N219	0	42	-36		
214	N220	0	8	-36		
215	N221	0	25	-36		

Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N18	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N16	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N22	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N21	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
5	N199	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
6	N200	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
7	N201	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
8	N202	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
9	N203	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
10	N204	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
11	N205	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
12	N206	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. C	Density [k	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
3	A992	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	0.3	0.65	0.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	0.3	0.65	0.49	46	1.2	58	1.1
6	A53 Grad	29000	11154	0.3	0.65	0.49	35	1.5	58	1.2

General Section Sets

	Label	Shape	Туре	Material	Area [in ²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1	GEN1A	RE4X4	Beam	gen_Conc3NW	16	21.333	21.333	31.573
2	RIGID		None	RIGID	1e+06	1e+06	1e+06	1e+06

Hot Rolled Member Properties

	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in] Lcomp t	Lcomp	L-Torqu	K y-y	K z-z	Cb	Function
1	M1	Platfor	244		Lbyy						Lateral
2	M2	Platfor	244		Lbyy						Lateral
3	M3	Platfor	120		Lbyy						Lateral
4	M4	Platfor	120		Lbyy						Lateral
5	M5	Platfor	120		Lbyy						Lateral
6	M6	Platfor	120		Lbyy						Lateral
7	M7	Platfor	120		Lbyy						Lateral
8	M8	Platfor	120		Lbyy						Lateral
9	M9	Platfor	42.5		Lbyy						Lateral
10	M10	Platfor	42.5		Lbyy						Lateral
11	M11	Platfor	74		Lbyy						Lateral
12	M12	Platfor	42.5		Lbyy		-				Lateral
13	M13	Platfor	42.5		Lbyy						Lateral
14	M14	Platfor	42.5		Lbyy						Lateral
15	M15	Platfor	42.5		Lbyy						Lateral
16	M16	Platfor	74		Lbyy						Lateral
17	M17	Platfor	42.5		Lbyy						Lateral
18	M18	Platfor	42.5		Lbyy						Lateral
19	M19	Platfor	104.652		Lbyy						Lateral
20	M20	Platfor	52.326		Lbyy						Lateral
21	M21	Corner	66		Lbyy						Lateral
22	M22	Corner	66		Lbyy						Lateral
23	M24	Corner	66		Lbyy						Lateral
24	M25	L3X3X4	36		Lbyy						Lateral
25	M26	L3X3X4	36		Lbyy						Lateral
26	M27	L3X3X4	45		Lbyy						Lateral
27	M28	L3X3X4	45		Lbyy						Lateral
28	M29	L3X3X4	54		Lbyy						Lateral
29	M30	L3X3X4	54		Lbyy						Lateral
30	M31	L3X3X4	48.324		Lbyy						Lateral
31	M32	L3X3X4	48.324		Lbyy						Lateral
32	M33	L3X3X4	48.324		Lbyy						Lateral
33	M34	L3X3X4	48.324		Lbyy						Lateral
34	M35	L3X3X4	48.324		Lbyy						Lateral
35	M36	L3X3X4	48.324		Lbyy						Lateral
36	M37	L3X3X4	48.324		Lbyy						Lateral
37	M38	L3X3X4	48.324		Lbyy						Lateral
38	M39	L3X3X4	43.566		Lbyy						Lateral
39	M40	L3X3X4	43.566		Lbvv						Lateral
40	M41	L3X3X4	43.566		Lbvv						Lateral
41	M42	L3X3X4	43.566		Lbvv						Lateral
42	M43	L3X3X4	45		Lbyy						Lateral
43	M44	L3X3X4	52.479		Lbyy						Lateral

Hot Rolled Member Properties (Continued)

	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in]	Lcomp t	Lcomp	L-Torgu	K v-v	K z-z	Cb	Function
44	M45	L3X3X4	52.479			Lbvv	_					Lateral
45	M46	L3X3X4	45			Lbvv						Lateral
46	M47	L3X3X4	57.628			Lbvv						Lateral
47	M48	L3X3X4	70.436			Lbvv						Lateral
48	M49	L3X3X4	36			Lbyy						Lateral
49	M50	L3X3X4	36			Lbvv						Lateral
50	M51	L3X3X4	36			Lbyy						Lateral
51	M52	L3X3X4	36			Lbyy			-			Lateral
52	M53	L3X3X4	54			Lbyy						Lateral
53	M54	L3X3X4	54			Lbyy						Lateral
54	M55	L3X3X4	45			Lbyy						Lateral
55	M56	L3X3X4	45			Lbyy						Lateral
56	M57	L3X3X4	45			Lbyy						Lateral
57	M58	L3X3X4	45			Lbyy						Lateral
58	M59	L3X3X4	50.912			Lbyy						Lateral
59	M60	L3X3X4	65.056			Lbyy						Lateral
60	M61	L3X3X4	36			Lbyy						Lateral
61	M62	L3X3X4	36			Lbyy						Lateral
62	M63	L3X3X4	36			Lbyy						Lateral
63	M64	L3X3X4	36			Lbyy						Lateral
64	M65	L3X3X4	54			Lbyy						Lateral
65	M66	L3X3X4	54			Lbyy						Lateral
66	M67	L3X3X4	45			Lbyy						Lateral
67	M68	L3X3X4	45			Lbyy						Lateral
68	M69	L3X3X4	45			Lbyy						Lateral
69	M70	L3X3X4	45			Lbyy						Lateral
70	M71	L3X3X4	50.912			Lbyy			-			Lateral
71	M72	L3X3X4	65.056			Lbyy						Lateral
72	M73	Platfor	244			Lbyy						Lateral
73	M74	Platfor	34.917			Lbyy						Lateral
74	M75	Platfor	34.913			Lbyy						Lateral
75	M76	Platfor	34.821			Lbyy						Lateral
76	M77	Corner	66			Lbyy						Lateral
77	M78	L3X3X4	36			Lbyy						Lateral
78	M79	L3X3X4	36			Lbyy						Lateral
79	M80	L3X3X4	45			Lbyy						Lateral
80	M81	L3X3X4	45			Lbyy						Lateral
81	M82	L3X3X4	54			Lbyy						Lateral
82	M83	L3X3X4	54			Lbyy						Lateral
83	M84	L3X3X4	45			Lbyy						Lateral
84	M85	L3X3X4	52.479			Lbyy						Lateral
85	M86	L3X3X4	52.479			Lbyy						Lateral
86	M87	L3X3X4	45			Lbyy						Lateral
87	M88	L3X3X4	57.628			Lbyy						Lateral
88	M89	L3X3X4	70.436			Lbyy						Lateral
89	M90	L3X3X4	42			Lbyy						Lateral
90	M91	L3X3X4	42			Lbyy						Lateral
91	M92	L2.5X2X4	81.6			Lbyy						Lateral
92	M93	PL 2"X1	81.6			Lbyy						Lateral
93	M94	PL 2"X1	81.6			Lbyy						Lateral
94	M95	L3X3X4	42			Lbyy						Lateral
95	M96	L3X3X4	42			Lbyy						Lateral
96	M97	L3X3X4	42			Lbyy						Lateral
97	M98	L3X3X4	42			Lbyy						Lateral
98	M99	L3X3X4	42			Lbyy						Lateral
99	M100	L3X3X4	42			Lbyy						Lateral
100	M101	L2.5X2X4	201.5			Lbyy						Lateral
101	M102	PL 2"X1	201.5	36	36	Lbyy						Lateral

Hot Rolled Member Properties (Continued)

	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in]	Lcomp t	Lcomp	L-Torqu	K y-y	K z-z	Cb	Function
102	M103	PL 2"X1	201.5	36	36	Lbvv						Lateral
103	M104	L3X3X4	78.804			Lbyy						Lateral
104	M105	L3X3X4	78.804			Lbyy						Lateral
105	M106	PIPE 3.0	60			Lbvv						Lateral
106	M107	PIPE 2.0	48			Lbyy						Lateral
107	M109	L3X3X4	42			Lbvv						Lateral
108	M110	L3X3X4	42			Lbvv						Lateral
109	M111	L3X3X4	42			Lbvv						Lateral
110	M112	L2.5X2X4	79.5			Lbvv						Lateral
111	M113	PL 2"X1	79.5			Lbvv						Lateral
112	M114	PL 2"X1	79.5			Lbvv						Lateral
113	M115	L3X3X4	54			Lbvv						Lateral
114	M116	1.3X3X4	54			Lbvv						Lateral
115	M117	1.3X3X4	29 547			Lbvv						Lateral
116	M118	L3X3X4	11			Lbvv						Lateral
117	M119	1.3X3X4	20.5			Lbvv						Lateral
118	M120	PIPE 2.0	96			Lbvv						Lateral
119	M121	PIPE 2.0	96			Lbvy						Lateral
120	M123	PIPE 2.0	96			Lbvy						Lateral
121	M125	PIPE 2.0	96			Lbvy						Lateral
122	M127	PIPE 2.0	96			Lbyy						Lateral
123	M128	PIPE 2.0	96			Lbyy						Lateral
124	M129	PIPE 2.0	96			Lbyy						Lateral
125	M136	13X3X4	42			Lbyy	-					Lateral
126	M137	13X3X4	42			Lbyy						Lateral
127	M138	1258284	29.5			Lbyy						Lateral
127	M130	PI 2"X1	29.5			Lbyy						Lateral
120	M140	PL 2"X1	29.5			Lbyy						Lateral
120	M141	PIPE 2.0	96			Lbyy						Lateral
131	M142	PIPE 2.0	96			Lbyy						Lateral
132	M146	DIDE 2.0	96			Lbyy		1				Lateral
132	M147	PIPE 2.0	96			Lbyy	-					
134	M151		96			Lbyy						Lateral
125	M152	122224	2.5			Lbyy						Lateral
136	M152	137374	2.5			Lbyy						Lateral
137	M154	138384	2.5			Lbw						
138	M155	13X3X4	2.5			Lbyy						
130	M156	DIDE 20	96			Lbyy						Lateral
140	M158	113131	104 043			Lbyy						Lateral
141	M150		104.043			Lbyy	1					Lateral
1/2	M160		104.043			Lbyy						
1/13	M161		104.043			Lbyy						Lateral
143	M162		21 757			Lbyy						Lateral
144	M162	137374	31.757			Lbyy						Lateral
145	M164	138384	60.062			Lbyy	2					
140	M165	137374	26 510			Lbyy						Lateral
1/19	M166	137374	20.019			Lbyy						Lateral
140	M167		26			Lbyy						Lateral
149	M169	DIDE 2.0	72			Lbyy						Lateral
150	M160	DIDE 2.0	26			Lbyy						Lateral
152	M170	137374	74 776			Lbyy						Lateral
152	M171	137374	74.770			Lbyy						Lateral
100		L3/3/4	14.000			LDyy						Lateral

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M151	Y	-0.153	%50	Active
2	M142	Y	-0.153	%50	Active
3	M123	Y	-0.153	%50	Active

Member Point Loads (BLC 2 : Dead Load) (Continued)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
4	M121	Y	-0.023	28	Active
5	M147	Y	-0.023	28	Active
6	M156	Y	-0.023	68	Active
7	M125	Y	-0.041	17	Active
8	M141	Y	-0.041	17	Active
9	M146	Y	-0.041	17	Active
10	M142	Y	-0.075	72	Active
11	M123	Y	-0.075	72	Active
12	M151	Y	-0.075	72	Active
13	M121	Y	-0.109	70	Active
14	M156	Y	-0.109	26	Active
15	M147	Y	-0.109	70	Active

Member Point Loads (BLC 3 : Ice Load)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M151	Y	-0.399	%50	Active
2	M142	Y	-0.399	%50	Active
3	M123	Y	-0.399	%50	Active
4	M156	Y	-0.128	68	Active
5	M121	Y	-0.128	28	Active
6	M147	Y	-0.128	28	Active
7	M146	Y	-0.123	17	Active
8	M141	Y	-0.123	17	Active
9	M125	Y	-0.123	17	Active
10	M151	Y	-0.071	72	Active
11	M123	Y	-0.071	72	Active
12	M142	Y	-0.071	72	Active
13	M121	Y	-0.095	70	Active
14	M147	Y	-0.095	70	Active
15	M156	Y	-0.095	26	Active

Member Point Loads (BLC 4 : Wind with Ice X (8psf))

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M123	X	0.101	%50	Active
2	M151	Х	0.101	%50	Active
3	M142	Х	0.044	%50	Active
4	M156	Х	0.017	68	Active
5	M121	X	0.034	28	Active
6	M147	Х	0.034	28	Active
7	M125	Х	0.025	17	Active
8	M146	Х	0.025	17	Active
9	M141	X	0.016	17	Active
10	M142	Х	0.01	72	Active
11	M123	Х	0.012	72	Active
12	M151	Х	0.012	72	Active
13	M156	Х	0.012	26	Active
14	M121	Х	0.015	70	Active
15	M147	X	0.015	70	Active

Member Point Loads (BLC 5 : Wind X(34psf))

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M151	Х	0.323	%50	Active
2	M123	Х	0.323	%50	Active
3	M142	Х	0.117	%50	Active
4	M156	Х	0.036	68	Active
5	M121	Х	0.094	28	Active
6	M147	Х	0.094	28	Active

Member Point Loads (BLC 5 : Wind X(34psf)) (Continued)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
7	M146	X	0.07	17	Active
8	M125	Х	0.07	17	Active
9	M141	Х	0.039	17	Active
10	M151	X	0.031	72	Active
11	M123	Х	0.031	72	Active
12	M142	X	0.023	72	Active
13	M156	Х	0.032	26	Active
14	M147	Х	0.041	70	Active
15	M121	Х	0.041	70	Active

Member Point Loads (BLC 6 : Wind with Ice Z(8psf))

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M151	Z	0.044	%50	Active
2	M123	Z	0.044	%50	Active
3	M142	Z	0.101	%50	Active
4	M121	Z	0.017	28	Active
5	M147	Z	0.017	28	Active
6	M156	Z	0.034	68	Active
7	M125	Z	0.016	17	Active
8	M146	Z	0.016	17	Active
9	M141	Z	0.025	17	Active
10	M142	Z	0.012	72	Active
11	M123	Z	0.01	72	Active
12	M151	Z	0.01	72	Active
13	M121	Z	0.012	70	Active
14	M147	Z	0.012	70	Active
15	M156	Z	0.015	26	Active

Member Point Loads (BLC 7 : Wind Z(34psf))

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M151	Z	0.117	%50	Active
2	M123	Z	0.117	%50	Active
3	M142	Z	0.323	%50	Active
4	M121	Z	0.036	28	Active
5	M147	Z	0.036	28	Active
6	M156	Z	0.094	68	Active
7	M146	Z	0.039	17	Active
8	M125	Z	0.039	17	Active
9	M141	Z	0.07	17	Active
10	M123	Z	0.023	72	Active
11	M151	Z	0.023	72	Active
12	M142	Z	0.031	72	Active
13	M121	Z	0.032	70	Active
14	M147	Z	0.032	70	Active
15	M156	Z	0.041	26	Active

Member Distributed Loads (BLC 4 : Wind with Ice X (8psf))

	Member Label	Direction	Start Magnitud	End Magnitude	.Start Location [End Location [(Inactive [(k, k-f
1	M156	Х	0.001	0.001	0	%100	Active
2	M129	Х	0.001	0.001	0	%100	Active
3	M125	Х	0.001	0.001	0	%100	Active
4	M151	Х	0.001	0.001	0	%100	Active
5	M128	Х	0.001	0.001	0	%100	Active
6	M123	Х	0.001	0.001	0	%100	Active
7	M147	Х	0.001	0.001	0	%100	Active
8	M146	Х	0.001	0.001	0	%100	Active
9	M142	Х	0.001	0.001	0	%100	Active

Member Distributed Loads (BLC 4 : Wind with Ice X (8psf)) (Continued)

	Member Label	Direction	Start Magnitud	. End Magnitude	.Start Location [.End Location [(. Inactive [(k, k-f
10	M141	Х	0.001	0.001	0	%100	Active
11	M127	X	0.001	0.001	0	%100	Active
12	M121	X	0.001	0.001	0	%100	Active
13	M2	Х	0.003	0.003	0	%100	Active
14	M1	Х	0.003	0.003	0	%100	Active
15	M25	Х	0.001	0.001	0	%100	Active
16	M43	X X	0.001	0.001	0	%100	Active
17	M26	X	0.001	0.001	0	%100	Active
18	M46	X	0.001	0.001	0	%100	Active
19	M29	X	0.001	0.001	0	%100	Active
20	M21	X	0.001	0.001	0	%100	Active
21	M78	X	0.001	0.001	0	%100	Active
22	M61	X	0.001	0.001	0	%100	Active
23	M65	X	0.001	0.001	0	%100	Active
24	M82	X	0.001	0.001	0	%100	Active
25	M77	X	0.001	0.001	0	%100	Active
26	M84	X	0.001	0.001	0	%100	Active
27	M79	X	0.001	0.001	0	%100	Active
28	M87	X	0.001	0.001	0	%100	Active
29	M73	X	0.001	0.001	0	%100	Active
30	M71	X	0.001	0.001	0	%100	Active
31	M67	X	0.001	0.001	0	%100	Active
32	M62	X	0.001	0.001	0	%100	Active
33	M72	X	0.001	0.001	0	%100	Active
34	M88	X	0.001	0.001	0	%100	Active
35	M89	X	0.001	0.001	0	%100	Active
36	M24	X	0.001	0.001	0	%100	Active
37	M112	X	0.001	0.001	0	%100	Active
38	M114	X	0.001	0.001	0	%100	Active
39	M113	X	0.001	0.001	0	%100	Active
40	M109	X	0.001	0.001	0	%100	Active
41	M111	X	0.001	0.001	0	%100	Active
42	M120	X	0.001	0.001	0	%100	Active
43	M116	X	0.001	0.001	0	%100	Active
44	M115	X	0.001	0.001	0	%100	Active
45	MITU	X	0.001	0.001	0	%100	Active
40	MIUT	×	0.001	0.001	0	%100	Active
47	M90	X	0.001	0.001	0	%100	Active
40	M102	X	0.001	0.001	0	%100	Active
49	M100	×	0.001	0.001	0	%100	Active
51	MQQ	×	0.001	0.001	0	%100	Active
52	M104	X	0.001	0.001	0	%100	Active
53	M107	×	0.001	0.001	0	%100	Active
54	M169	X	0.001	0.001	0	%100	Active
55	M168	×	0.001	0.001	0	%100	Active
56	M171	X	0.001	0.001	0	%100	Active
57	M98	X	0.001	0.001	0	%100	Active
58	M97	X	0.001	0.001	0	%100	Active
59	M96	X	0.001	0.001	0	%100	Active
60	M106	X	0.001	0.001	0	%100	Active
61	M49	X	0.001	0.001	0	%100	Active
62	M50	X	0.001	0.001	0	%100	Active
63	M53	X	0.001	0.001	0	%100	Active
64	M55	X	0.001	0.001	0	%100	Active
65	M60	X	0.001	0.001	0	%100	Active
66	M59	X	0.001	0.001	0	%100	Active
67	M58	X	0.001	0.001	0	%100	Active

	Member Label	Direction	Start Magnitud	End Magnitude	.Start Location [.End Location [(Inactive [(k. k-f
68	M22	Х	0.001	0.001	0	%100	Active
Member	Distributed Load	ls (BLC 5 : Wind	l X(34psf))				
	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location (Inactive (/k_k-f
1	M128	X	0.004	0.004	0	%100	Active
2	M129	X	0.004	0.004	0	%100	Active
3	M127	Х	0.004	0.004	0	%100	Active
4	M146	Х	0.004	0.004	33	%100	Active
5	M141	Х	0.004	0.004	33	%100	Active
6	M125	X	0.004	0.004	33	%100	Active
7	M156	X	0.004	0.004	0	41	Active
8	M121	X	0.004	0.004	55	%100	Active
9	M147	X	0.004	0.004	55	%100	Active
10	M142	X	0.004	0.004	0	%100	Active
12	M106	×	0.005	0.005	0	%100	Active
12	M107	X	0.005	0.005	0	%100	Active
14	M104	X	0.005	0.005	0	%100	Active
15	M104	X	0.005	0.005	0	%100	Active
16	M101	X	0.005	0.005	0	%100	Active
17	M103	X	0.005	0.005	0	%100	Active
18	M100	X	0.005	0.005	0	%100	Active
19	M99	Х	0.005	0.005	0	%100	Active
20	M98	Х	0.005	0.005	0	%100	Active
21	M171	Х	0.005	0.005	0	%100	Active
22	M97	Х	0.005	0.005	0	%100	Active
23	M168	Х	0.005	0.005	0	%100	Active
24	M169	X	0.005	0.005	0	%100	Active
25	M96	X	0.005	0.005	0	%100	Active
26	M53	X	0.005	0.005	0	%100	Active
27	M49	X	0.005	0.005	0	%100	Active
28	M50	X	0.005	0.005	0	%100	Active
29	M58	X	0.005	0.005	0	%100	Active
31	M60	X	0.005	0.005	0	%100	Active
32	M59	X	0.005	0.005	0	%100	Active
33	M22	X	0.005	0.005	0	%100	Active
34	M25	X	0.005	0.005	0	%100	Active
35	M43	X	0.005	0.005	0	%100	Active
36	M26	Х	0.005	0.005	0	%100	Active
37	M46	Х	0.005	0.005	0	%100	Active
38	M29	Х	0.005	0.005	0	%100	Active
39	M21	Х	0.005	0.005	0	%100	Active
40	M73	Х	0.005	0.005	0	%100	Active
41	M120	X	0.005	0.005	0	%100	Active
42	M109	X	0.005	0.005	0	%100	Active
43	M110	X	0.005	0.005	0	%100	Active
44	W114	X	0.005	0.005	0	%100	Active
40	M112	×	0.005	0.005	0	%100	Active
40	M115	×	0.005	0.005	0	%100	Active
48	M116	X	0.005	0.005	0	%100	Active
49	M117	X	0.005	0.005	0	%100	Active
50	M77	X	0.005	0.005	0	%100	Active
51	M87	Х	0.005	0.005	0	%100	Active
52	M79	Х	0.005	0.005	0	%100	Active
53	M78	Х	0.005	0.005	0	%100	Active
54	M82	Х	0.005	0.005	0	%100	Active

Member Distributed Loads (BLC 4 : Wind with Ice X (8psf)) (Continued)

Member Distributed Loads (BLC 5 : Wind X(34psf)) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
55	M65	Х	0.005	0.005	0	%100	Active
56	M70	Х	0.005	0.005	0	%100	Active
57	M62	Х	0.005	0.005	0	%100	Active
58	M67	Х	0.005	0.005	0	%100	Active
59	M61	Х	0.005	0.005	0	%100	Active
60	M71	Х	0.005	0.005	0	%100	Active
61	M72	Х	0.005	0.005	0	%100	Active
62	M24	Х	0.005	0.005	0	%100	Active
63	M1	Х	0.011	0.011	0	%100	Active
64	M2	Х	0.011	0.011	0	%100	Active

Member Distributed Loads (BLC 6 : Wind with Ice Z(8psf))

	Member Label	Direction	Start Magnitud	End Magnitude	.Start Location [.End Location [(. Inactive [(k, k-f
1	M142	Z	0.001	0.001	0	%100	Active
2	M141	Z	0.001	0.001	0	%100	Active
3	M121	Z	0.001	0.001	0	%100	Active
4	M127	Z	0.001	0.001	0	%100	Active
5	M123	Z	0.001	0.001	0	%100	Active
6	M128	Z	0.001	0.001	0	%100	Active
7	M125	Z	0.001	0.001	0	%100	Active
8	M129	Z	0.001	0.001	0	%100	Active
9	M156	Z	0.001	0.001	0	%100	Active
10	M151	Z	0.001	0.001	0	%100	Active
11	M146	Z	0.001	0.001	0	%100	Active
12	M147	Z	0.001	0.001	0	%100	Active
13	M69	Z	0.001	0.001	0	%100	Active
14	M63	Z	0.001	0.001	0	%100	Active
15	M68	Z	0.001	0.001	0	%100	Active
16	M64	Z	0.001	0.001	0	%100	Active
17	M66	Z	0.001	0.001	0	%100	Active
18	M24	Z	0.001	0.001	0	%100	Active
19	M93	Z	0.001	0.001	0	%100	Active
20	M91	Z	0.001	0.001	0	%100	Active
21	M94	Z	0.001	0.001	0	%100	Active
22	M92	Z	0.001	0.001	0	%100	Active
23	M95	Z	0.001	0.001	0	%100	Active
24	M90	Z	0.001	0.001	0	%100	Active
25	M107	Z	0.001	0.001	0	%100	Active
26	M105	Z	0.001	0.001	0	%100	Active
27	M106	Z	0.001	0.001	0	%100	Active
28	M71	Z	0.001	0.001	0	%100	Active
29	M72	Z	0.001	0.001	0	%100	Active
30	M89	Z	0.001	0.001	0	%100	Active
31	M88	Z	0.001	0.001	0	%100	Active
32	M77	Z	0.001	0.001	0	%100	Active
33	M81	Z	0.001	0.001	0	%100	Active
34	M85	Z	0.001	0.001	0	%100	Active
35	M86	Z	0.001	0.001	0	%100	Active
36	M80	Z	0.001	0.001	0	%100	Active
37	M83	Z	0.001	0.001	0	%100	Active
38	M120	Z	0.001	0.001	0	%100	Active
39	M119	Z	0.001	0.001	0	%100	Active
40	M118	Z	0.001	0.001	0	%100	Active
41	M115	Z	0.001	0.001	0	%100	Active
42	M116	Z	0.001	0.001	0	%100	Active
43	M30	Z	0.001	0.001	0	%100	Active
44	M28	Z	0.001	0.001	0	%100	Active
45	M21	Z	0.001	0.001	0	%100	Active

Member Distributed Loads (BLC 6 : Wind with Ice Z(8psf)) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
46	M44	Z	0.001	0.001	0	%100	Active
47	M47	Z	0.001	0.001	0	%100	Active
48	M45	Z	0.001	0.001	0	%100	Active
49	M27	Z	0.001	0.001	0	%100	Active
50	M48	Z	0.001	0.001	0	%100	Active
51	M138	Z	0.001	0.001	0	%100	Active
52	M136	Z	0.001	0.001	0	%100	Active
53	M139	Z	0.001	0.001	0	%100	Active
54	M137	Z	0.001	0.001	0	%100	Active
55	M140	Z	0.001	0.001	0	%100	Active
56	M52	Z	0.001	0.001	0	%100	Active
57	M51	Z	0.001	0.001	0	%100	Active
58	M57	Z	0.001	0.001	0	%100	Active
59	M56	Z	0.001	0.001	0	%100	Active
60	M54	Z	0.001	0.001	0	%100	Active
61	M22	Z	0.001	0.001	0	%100	Active
62	M59	Z	0.001	0.001	0	%100	Active
63	M60	Z	0.001	0.001	0	%100	Active
64	M169	Z	0.001	0.001	0	%100	Active
65	M168	Z	0.001	0.001	0	%100	Active
66	M170	Z	0.001	0.001	0	%100	Active
67	M4	Z	0.003	0.003	0	%100	Active
68	M3	Z	0.003	0.003	0	%100	Active

Member Distributed Loads (BLC 7 : Wind Z(34psf))

92 	Member Label	Direction	Start Magnitud	End Magnitude	.Start Location [.End Location [(. Inactive [(k, k-f
1	M129	Z	0.004	0.004	0	%100	Active
2	M128	Z	0.004	0.004	0	%100	Active
3	M127	Z	0.004	0.004	0	%100	Active
4	M125	Z	0.004	0.004	33	%100	Active
5	M141	Z	0.004	0.004	33	%100	Active
6	M146	Z	0.004	0.004	33	%100	Active
7	M156	Z	0.004	0.004	0	41	Active
8	M147	Z	0.004	0.004	55	%100	Active
9	M121	Z	0.004	0.004	55	%100	Active
10	M151	Z	0.004	0.004	0	%100	Active
11	M123	Z	0.004	0.004	0	%100	Active
12	M64	Z	0.005	0.005	0	%100	Active
13	M68	Z	0.005	0.005	0	%100	Active
14	M63	Z	0.005	0.005	0	%100	Active
15	M69	Z	0.005	0.005	0	%100	Active
16	M91	Z	0.005	0.005	0	%100	Active
17	M95	Z	0.005	0.005	0	%100	Active
18	M90	Z	0.005	0.005	0	%100	Active
19	M92	Z	0.005	0.005	0	%100	Active
20	M94	Z	0.005	0.005	0	%100	Active
21	M24	Z	0.005	0.005	0	%100	Active
22	M66	Z	0.005	0.005	0	%100	Active
23	M93	Z	0.005	0.005	0	%100	Active
24	M106	Z	0.005	0.005	0	%100	Active
25	M107	Z	0.005	0.005	0	%100	Active
26	M4	Z	0.011	0.011	0	%100	Active
27	M3	Z	0.011	0.011	0	%100	Active
28	M28	Z	0.005	0.005	0	%100	Active
29	M44	Z	0.005	0.005	0	%100	Active
30	M27	Z	0.005	0.005	0	%100	Active
31	M45	Z	0.005	0.005	0	%100	Active
32	M21	Z	0.005	0.005	0	%100	Active

Member Distributed Loads (BLC 7 : Wind Z(34psf)) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
33	M30	Z	0.005	0.005	0	%100	Active
34	M137	Z	0.005	0.005	0	%100	Active
35	M138	Z	0.005	0.005	0	%100	Active
36	M136	Z	0.005	0.005	0	%100	Active
37	M139	Z	0.005	0.005	0	%100	Active
38	M140	Z	0.005	0.005	0	%100	Active
39	M54	Z	0.005	0.005	0	%100	Active
40	M51	Z	0.005	0.005	0	%100	Active
41	M57	Z	0.005	0.005	0	%100	Active
42	M56	Z	0.005	0.005	0	%100	Active
43	M52	Z	0.005	0.005	0	%100	Active
44	M22	Z	0.005	0.005	0	%100	Active
45	M81	Z	0.005	0.005	0	%100	Active
46	M83	Z	0.005	0.005	0	%100	Active
47	M85	Z	0.005	0.005	0	%100	Active
48	M86	Z	0.005	0.005	0	%100	Active
49	M80	Z	0.005	0.005	0	%100	Active
50	M88	Z	0.005	0.005	0	%100	Active
51	M89	Z	0.005	0.005	0	%100	Active
52	M71	Z	0.005	0.005	0	%100	Active
53	M72	Z	0.005	0.005	0	%100	Active
54	M47	Z	0.005	0.005	0	%100	Active
55	M48	Z	0.005	0.005	0	%100	Active
56	M59	Z	0.005	0.005	0	%100	Active
57	M60	Z	0.005	0.005	0	%100	Active
58	M120	Z	0.005	0.005	0	%100	Active
59	M169	Z	0.005	0.005	0	%100	Active
60	M168	Z	0.005	0.005	0	%100	Active
61	M105	Z	0.005	0.005	0	%100	Active
62	M118	Z	0.005	0.005	0	%100	Active
63	M119	Z	0.005	0.005	0	%100	Active
64	M115	Z	0.005	0.005	0	%100	Active
65	M116	Z	0.005	0.005	0	%100	Active
66	M170	Z	0.005	0.005	0	%100	Active

Member Distributed Loads (BLC 8 : BLC 2 Transient Area Loads)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
1	M3	Y	-0.007	-0.007	84	120	Active
2	M5	Y	-0.026	-0.014	96	120	Active
3	M31	Y	-0.006	-0.007	0	16.108	Active
4	M31	Y	-0.007	-0.007	16.108	32.216	Active
5	M31	Y	-0.007	-0.006	32.216	48.324	Active
6	M6	Y	-0.008	-0.015	84	120	Active
7	M32	Y	-0.006	-0.007	0	16.108	Active
8	M32	Y	-0.007	-0.007	16.108	32.216	Active
9	M32	Y	-0.007	-0.006	32.216	48.324	Active
10	M8	Y	-0.006	-0.017	84	120	Active
11	M41	Y	-0.009	-0.01	0	8.713	Active
12	M41	Y	-0.01	-0.013	8.713	17.426	Active
13	M41	Y	-0.013	-0.013	17.426	26.14	Active
14	M41	Y	-0.013	-0.01	26.14	34.853	Active
15	M41	Y	-0.01	-0.01	34.853	43.566	Active
16	M42	Y	-0.006	-0.01	0	8.713	Active
17	M42	Y	-0.01	-0.014	8.713	17.426	Active
18	M42	Y	-0.014	-0.014	17.426	26.14	Active
19	M42	Y	-0.014	-0.011	26.14	34.853	Active
20	M42	Y	-0.011	-0.008	34.853	43.566	Active
21	M152	Y	-0.004	-0.047	0	0.833	Active

Member Distributed Loads (BLC 8 : BLC 2 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
22	M152	Y	-0.047	-0.051	0.833	1.667	Active
23	M152	Y	-0.051	-0.004	1.667	2.5	Active
24	M7	Y	-0.023	-0.017	96	120	Active
25	M34	Y	-0.006	-0.007	0	16.108	Active
26	M34	Y	-0.007	-0.007	16.108	32.216	Active
27	M34	Y	-0.007	-0.006	32.216	48.324	Active
28	M4	Y	-0.006	-0.007	84	120	Active
29	M33	Y	-0.006	-0.007	0	16.108	Active
30	M33	Y	-0.007	-0.007	16.108	32.216	Active
31	M33	Y	-0.007	-0.006	32.216	48.324	Active
32	M3	Y	-0.018	-0.018	23	97	Active
33	M5	Y	-0.035	-0.035	23	97	Active
34	M6	Y	-0.018	-0.018	23	97	Active
35	M7	Y	-0.035	-0.035	23	97	Active
36	M8	Y	-0.018	-0.018	23	97	Active
37	M4	Y	-0.018	-0.018	23	97	Active
38	M3	Y	-0.007	-0.007	0	36	Active
39	M5	Y	-0.026	-0.014	0	24	Active
40	M35	Y	-0.006	-0.007	0	16 108	Active
41	M35	Y	-0.007	-0.007	16 108	32 216	Active
42	M35	Y	-0.007	-0.006	32 216	48 324	Active
43	M6	Y	-0.01	-0.015	0	36	Active
40	M36	V	-0.006	-0.007	0	16 108	Active
45	M36	V	-0.000	-0.007	16 108	32 216	Active
45	M36	V	-0.007	-0.007	32 216	48 324	Active
40	MQ	V	-0.007	-0.000	0	40.524	Active
47	M20	V	-0.007	-0.018	0	10.802	Active
40	M20	I V	-0.021	-0.012	10.902	21 792	Active
49	M39	T V	-0.012	-0.012	10.092	21.703	Active
51	M39	ř V	-0.012	-0.011	21.703	32.073	Active
50	10139	T V	-0.011	-0.0002023	32.075	43.000	Active
52	N40	ř V	-0.0002525	-0.011	10,902	10.692	Active
53	N40	T V	-0.011	-0.012	10.092	21.703	Active
54	10140	ř	-0.012	-0.012	21.703	32.073	Active
50	IVI40	Y	-0.012	-0.021	32.675	43.000	Active
50	IVI7	ř V	-0.009	-0.011	0	24	Active
5/	M38	Y	-0.006	-0.007	0	16.108	Active
58	IVI38	Y	-0.007	-0.007	10.108	32.210	Active
59	M38	Ý	-0.007	-0.006	32.216	48.324	Active
60	M4	Y	-0.0002829	-0.006	0	1.2	Active
61	M4	Y	-0.006	-0.013	1.2	14.4	Active
62	M4	Y	-0.013	-0.008	14.4	21.6	Active
63	M4	Y	-0.008	-0.0002829	21.6	28.8	Active
64	M4	Y	-0.0002829	-0.0002829	28.8	36	Active
65	M/	Y	-0.018	-0.009	0	12	Active
66	M/	Y	-0.009	8.406e-05	12	24	Active
67	M37	Y	-0.008	-0.008	0	9.665	Active
68	M37	Y	-0.008	-0.008	9.665	19.33	Active
69	M37	Y	-0.008	-0.008	19.33	28.995	Active
70	M37	Y	-0.008	-0.008	28.995	38.66	Active
/1	M37	Y	-0.008	-0.01	38.66	48.324	Active
72	M108	Y	-0.0009027	-0.001	0	0.849	Active
/3	M108	Y	-0.001	-0.001	0.849	1.697	Active
74	M108	Y	-0.001	-0.0005491	1.697	2.546	Active
75	M108	Y	-0.0005491	-0.0002911	2.546	3.394	Active
76	M108	Y	-0.0002911	-2.826e-05	3.394	4.243	Active
77	M6	Y	-0.002	-0.005	12	28.8	Active
78	M6	Y	-0.005	-0.005	28.8	45.6	Active
79	M6	Y	-0.005	-0.007	45.6	62.4	Active

Member Distributed Loads (BLC 8 : BLC 2 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
80	M6	Y	-0.007	-0.007	62.4	79.2	Active
81	M6	Y	-0.007	-0.0007239	79.2	96	Active
82	M8	Y	-0.002	-0.007	24	38.4	Active
83	M8	Y	-0.007	-0.012	38.4	52.8	Active
84	M8	Y	-0.012	-0.012	52.8	67.2	Active
85	M8	Y	-0.012	-0.008	67.2	81.6	Active
86	M8	Y	-0.008	-0.005	81.6	96	Active
87	M19	Y	-0.029	-0.014	0	20.93	Active
88	M19	Y	-0.014	-0.01	20.93	41.861	Active
89	M19	Y	-0.01	-0.012	41.861	62.791	Active
90	M19	Y	-0.012	-0.011	62.791	83.721	Active
91	M19	Y	-0.011	-0.013	83.721	104.652	Active
92	M20	Y	-0.024	-0.017	0	10.465	Active
93	M20	Y	-0.017	-0.018	10.465	20.93	Active
94	M20	Y	-0.018	-0.014	20.93	31.396	Active
95	M20	Y	-0.014	-0.013	31.396	41.861	Active
96	M20	Y	-0.013	-0.026	41.861	52.326	Active
97	M74	Y	-0.0002809	-0.012	0	6.983	Active
98	M74	Y	-0.012	-0.022	6.983	13.967	Active
99	M74	Y	-0.022	-0.02	13.967	20.95	Active
100	M74	Y	-0.02	-0.018	20.95	27.934	Active
101	M74	Y	-0.018	-0.012	27.934	34.917	Active
102	M75	Y	-0.007	-0.009	0	11.638	Active
103	M75	Y	-0.009	-0.01	11.638	23.276	Active
104	M75	Y	-0.01	-0.012	23.276	34.913	Active
105	M76	Y	-0.012	-0.009	0	11.607	Active
106	M76	Y	-0.009	-0.007	11.607	23.214	Active
107	M76	Y	-0.007	-0.006	23 214	34 821	Active

Member Distributed Loads (BLC 9 : BLC 3 Transient Area Loads)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
1	M3	Y	-0.023	-0.023	84	120	Active
2	M5	Y	-0.091	-0.049	96	120	Active
3	M31	Y	-0.021	-0.026	0	16.108	Active
4	M31	Y	-0.026	-0.026	16.108	32.216	Active
5	M31	Y	-0.026	-0.021	32.216	48.324	Active
6	M6	Y	-0.029	-0.051	84	120	Active
7	M32	Y	-0.021	-0.026	0	16.108	Active
8	M32	Y	-0.026	-0.026	16.108	32.216	Active
9	M32	Y	-0.026	-0.021	32.216	48.324	Active
10	M8	Y	-0.019	-0.061	84	120	Active
11	M41	Y	-0.032	-0.036	0	8.713	Active
12	M41	Y	-0.036	-0.047	8.713	17.426	Active
13	M41	Y	-0.047	-0.046	17.426	26.14	Active
14	M41	Y	-0.046	-0.036	26.14	34.853	Active
15	M41	Y	-0.036	-0.034	34.853	43.566	Active
16	M42	Y	-0.022	-0.036	0	8.713	Active
17	M42	Y	-0.036	-0.049	8.713	17.426	Active
18	M42	Y	-0.049	-0.05	17.426	26.14	Active
19	M42	Y	-0.05	-0.039	26.14	34.853	Active
20	M42	Y	-0.039	-0.028	34.853	43.566	Active
21	M152	Y	-0.012	-0.163	0	0.833	Active
22	M152	Y	-0.163	-0.179	0.833	1.667	Active
23	M152	Y	-0.179	-0.012	1.667	2.5	Active
24	M7	Y	-0.08	-0.061	96	120	Active
25	M34	Y	-0.021	-0.026	0	16.108	Active
26	M34	Y	-0.026	-0.026	16.108	32.216	Active
27	M34	Y	-0.026	-0.021	32.216	48.324	Active

Member Distributed Loads (BLC 9 : BLC 3 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
28	M4	Y	-0.021	-0.026	84	120	Active
29	M33	Y	-0.021	-0.026	0	16.108	Active
30	M33	Y	-0.026	-0.026	16.108	32.216	Active
31	M33	Y	-0.026	-0.021	32.216	48.324	Active
32	M3	Y	-0.062	-0.062	23	97	Active
33	M5	Y	-0.124	-0.124	23	97	Active
34	M6	Y	-0.062	-0.062	23	97	Active
35	M6	Y	-0.007	-0.016	12	28.8	Active
36	M6	Y	-0.016	-0.016	28.8	45.6	Active
37	M6	Y	-0.016	-0.024	45.6	62.4	Active
38	M6	Y	-0.024	-0.026	62.4	79.2	Active
39	M6	Y	-0.026	-0.003	79.2	96	Active
40	M8	Y	-0.007	-0.024	24	38.4	Active
40	M8	V	-0.024	-0.024	38.4	52.8	Active
41	M8	V	-0.024	-0.042	52.8	67.2	Active
42	MQ	V	0.042	0.03	67.2	91.6	Activo
43	MQ	V	-0.043	-0.03	91.6	01.0	Active
44	M10	I V	-0.03	-0.017	01.0	20.02	Active
40	M19	T V	-0.102	-0.05	20.02	20.93	Active
40	M19	ř	-0.05	-0.037	20.93	41.801	Active
47	M19	ř	-0.037	-0.041	41.801	62.791	Active
48	M19	Y	-0.041	-0.037	62.791	83.721	Active
49	M19	Y	-0.037	-0.047	83.721	104.652	Active
50	M20	Y	-0.082	-0.06	0	10.465	Active
51	M20	Ŷ	-0.06	-0.062	10.465	20.93	Active
52	M20	Y	-0.062	-0.05	20.93	31.396	Active
53	M20	Y	-0.05	-0.047	31.396	41.861	Active
54	M20	Y	-0.047	-0.092	41.861	52.326	Active
55	M74	Y	-0.0009832	-0.043	0	6.983	Active
56	M74	Y	-0.043	-0.077	6.983	13.967	Active
57	M74	Y	-0.077	-0.071	13.967	20.95	Active
58	M74	Y	-0.071	-0.063	20.95	27.934	Active
59	M74	Y	-0.063	-0.043	27.934	34.917	Active
60	M75	Y	-0.024	-0.03	0	11.638	Active
61	M75	Y	-0.03	-0.036	11.638	23.276	Active
62	M75	Y	-0.036	-0.042	23.276	34.913	Active
63	M76	Y	-0.042	-0.033	0	11.607	Active
64	M76	Y	-0.033	-0.026	11.607	23.214	Active
65	M76	Y	-0.026	-0.021	23.214	34.821	Active
66	M7	Y	-0.124	-0.124	23	97	Active
67	M8	Y	-0.062	-0.062	23	97	Active
68	M4	Y	-0.062	-0.062	23	97	Active
69	M1	Y	-0.004	-0.016	0	24.4	Active
70	M1	Y	-0.016	-0.028	24.4	48.8	Active
71	M9	Y	-0.032	-0.018	0	21.25	Active
72	M9	Y	-0.018	-0.005	21.25	42.5	Active
73	M35	Y	-0.012	-0.035	0	16,108	Active
74	M35	Y	-0.035	-0.035	16,108	32.216	Active
75	M35	Y	-0.035	-0.012	32,216	48.324	Active
76	M1	Y	-0.018	-0.011	24.4	61	Active
77	M1	Y	-0.011	-0.003	61	97.6	Active
78	M10	Y	-0.005	-0.018	0	21.25	Active
79	M10	Y	-0.018	-0.032	21.25	42.5	Active
80	M36	V	-0.012	-0.035	0	16 108	Active
81	M36	V	-0.035	-0.035	16 108	32 216	Active
82	M36	V	-0.035	-0.033	32 216	48 324	
83	M1	V	_0.001	_0.012	73.2	105 722	Activo
84	M1	V	-0.001	-0.015	105 733	138 267	Active
95	N/1	V	-0.015	-0.010	139 267	170.9	Active
60		ſ	-0.015	-0.001	130.207	170.0	Active

Member Distributed Loads (BLC 9 : BLC 3 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
86	M11	Y	-0.03	-0.016	0	18.5	Active
87	M11	Y	-0.016	-0.009	18.5	37	Active
88	M11	Y	-0.009	-0.016	37	55.5	Active
89	M11	Y	-0.016	-0.03	55.5	74	Active
90	M39	Y	-0.023	-0.037	0	14.522	Active
91	M39	Y	-0.037	-0.034	14.522	29.044	Active
92	M39	Y	-0.034	-0.015	29.044	43.566	Active
93	M40	Y	-0.015	-0.034	0	14.522	Active
94	M40	Y	-0.034	-0.037	14.522	29.044	Active
95	M40	Y	-0.037	-0.023	29.044	43.566	Active
96	M1	Y	-0.003	-0.011	146.4	183	Active
97	M1	Y	-0.011	-0.018	183	219.6	Active
98	M12	Y	-0.032	-0.018	0	21.25	Active
99	M12	Y	-0.018	-0.005	21.25	42.5	Active
100	M38	Y	-0.012	-0.035	0	16.108	Active
101	M38	Y	-0.035	-0.035	16.108	32.216	Active
102	M38	Y	-0.035	-0.012	32.216	48.324	Active
103	M1	Y	-0.021	-0.025	195.2	204.96	Active
104	M1	Y	-0.025	-0.021	204.96	214.72	Active
105	M1	Y	-0.021	-0.012	214.72	224.48	Active
106	M1	Y	-0.012	-0.008	224.48	234.24	Active
107	M1	Y	-0.008	-0.003	234.24	244	Active
108	M13	Y	-0.003	-0.011	0	8.5	Active
109	M13	Y	-0.011	-0.013	8.5	17	Active
110	M13	Y	-0.013	-0.02	17	25.5	Active
111	M13	Y	-0.02	-0.029	25.5	34	Active
112	M13	Y	-0.029	-0.028	34	42.5	Active
113	M37	Y	-0.019	-0.025	0	9.665	Active
114	M37	Y	-0.025	-0.028	9.665	19.33	Active
115	M37	Y	-0.028	-0.026	19.33	28.995	Active
116	M37	Y	-0.026	-0.026	28.995	38.66	Active
117	M37	Y	-0.026	-0.029	38.66	48.324	Active
118	M108	Y	-0.03	-0.015	0	0.849	Active
119	M108	Y	-0.015	-0.023	0.849	1.697	Active
120	M108	Y	-0.023	-0.037	1.697	2.546	Active
121	M108	Y	-0.037	-0.023	2.546	3.394	Active
122	M108	Y	-0.023	-0.002	3.394	4.243	Active

Member Area Loads (BLC 2 : Dead Load)

	Node A	Node B	Node C	Node D	Node D Direction		Magnitude [ksf]	Inactive [(k,
1	N2	N6	N20	N19	Y	A-B	-0.01	Active
2	N6	N8	N21	N20	Y	A-B	-0.01	Active
3	N8	N12	N22	N21	Y	A-B	-0.01	Active
4	N12	N10	N23	N22	Y	A-B	-0.01	Active
5	N10	N4	N24	N23	Y	A-B	-0.01	Active
6	N19	N20	N15	N13	Y	A-B	-0.01	Active
7	N20	N21	N16	N15	Y	A-B	-0.01	Active
8	N22	N23	N17	N18	Y	A-B	-0.01	Active
9	N23	N24	N14	N17	Y	A-B	-0.01	Active
10	N13	N15	N5	N27	Y	A-B	-0.01	Active
11	N15	N16	N7	N5	Y	A-B	-0.01	Active
12	N16	N18	N11	N7	Y	A-B	-0.01	Active
13	N18	N17	N9	N11	Y	A-B	-0.01	Active
14	N17	N14	N3	N9	Y	A-B	-0.01	Active
15	N21	N22	N18	N16	Y	A-B	-0.01	Active

Member Area Loads (BLC 3 : Ice Load)

	Node A	Node B	Node C	Node D	Direction	Load Direction	Magnitude [ksf] Inactive [(
1	N2	N6	N20	N19	Y	A-B	-0.035	Active	
2	N6	N8	N21	N20	Y	A-B	-0.035	Active	
3	N8	N12	N22	N21	Y	A-B	-0.035	Active	
4	N12	N10	N23	N22	Y	A-B	-0.035	Active	
5	N10	N4	N24	N23	Y	A-B	-0.035	Active	
6	N19	N21	N16	N13	Y	A-B	-0.035	Active	
7	N21	N22	N18	N16	Y	A-B	-0.035	Active	
8	N22	N23	N17	N18	Y	A-B	-0.035	Active	
9	N23	N24	N14	N17	Y	A-B	-0.035	Active	
10	N27	N13	N15	N5	Y	A-B	-0.035	Active	
11	N5	N15	N16	N7	Y	A-B	-0.035	Active	
12	N7	N16	N18	N11	Y	A-B	-0.035	Active	
13	N11	N18	N17	N9	Y	A-B	-0.035	Active	
14	N9	N17	N14	N3	Y	A-B	-0.035	Active	

Basic Load Cases

	BLC Desc	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Me	Surface(P
1	Self Weight	None		-1						
2	Dead Load	None					15		15	
3	Ice Load	None					15		14	
4	Wind with	None					15	68		
5	Wind X(3	None					15	64		
6	Wind with	None					15	68		
7	Wind Z(3	None					15	66		
8	BLC 2 Tra	None						107		
9	BLC 3 Tra	None						122		

Load Combinations

	De	So	PD	SR	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa
1	1.2	Yes	Y		1	1.2	2	1.2	5	1.6														
2	0.9	Yes	Y		1	0.9	2	0.9	5	1.6														
3	1.2	Yes	Y		1	1.2	2	1.2	3	1	4	1												
4	1.2	Yes	Y		1	1.2	2	1.2	7	1.6														
5	0.9	Yes	Y		1	0.9	2	0.9	7	1.6														
6	1.2	Yes	Y		1	1.2	2	1.2	3	1	6	1												

Node Reactions

	Node		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N18	max	0.252	6	3.08	6	2.91	1	-0.155	5	0.103	1	2.596	6
2		min	-0.875	2	0.838	2	-0.248	5	-0.515	3	-0.043	5	0.663	2
3	N16	max	0.336	4	2.934	3	-1.786	5	0	5	0.013	5	2.947	3
4		min	-1.175	2	0.864	5	-2.656	1	0	3	-0.065	1	0.853	5
5	N22	max	-0.086	5	3.266	6	1.569	6	-0.107	5	0.12	4	-1.034	2
6		min	-1.245	1	1.033	2	-1.064	2	-0.367	3	0.034	3	-2.76	6
7	N21	max	-0.118	5	2.919	3	0.796	2	0.53	6	0.016	5	-0.56	5
8		min	-1.491	1	0.98	5	-2.746	6	0.158	2	-0.02	1	-2.127	3
9	N199	max	0.012	6	0.008	3	0.008	6	0.003	5	0	6	0.002	5
10		min	-0.113	2	0.006	2	-0.073	2	-0.003	1	0	1	-0.002	1
11	N200	max	0.028	6	0.028	6	0.006	6	0.005	4	0	6	0.003	4
12		min	-0.33	2	0.002	2	-0.117	2	-0.006	2	0	1	-0.006	2
13	N201	max	-0.024	6	0.029	4	-0.001	3	0.004	5	0	6	0.003	5
14		min	-0.109	1	0.022	2	-0.196	5	-0.002	1	0	1	-0.006	2
15	N202	max	-0.002	5	0.006	4	0	4	0.022	5	0	6	0	6
16		min	-0.199	1	0.005	2	0	6	0	2	0	1	0	1
17	N203	max	0.039	4	1.778	6	2.425	6	-0.073	5	0.095	4	0.022	2
18		min	-0.002	2	0.851	2	1.137	2	-0.106	6	-0.031	2	-0.067	4
19	N204	max	0.013	3	1.769	3	-1.095	5	0.092	1	0.062	5	0.044	5

Node Reactions (Continued)

	Node		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
20		min	-0.026	5	0.763	5	-2.442	6	-0.065	5	-0.027	3	-0.019	3
21	N205	max	-0.014	3	2.302	3	3.17	3	-0.068	2	-0.038	3	0.08	4
22		min	-0.049	4	0.873	5	1.165	5	-0.107	6	-0.112	4	0.027	3
23	N206	max	0.009	5	1.708	3	-0.769	5	0.102	6	0.061	1	0.043	1
24		min	-0.022	3	0.592	5	-2.327	3	0.07	2	-0.02	5	-0.014	5
25	Totals:	max	0	6	19.677	3	0	3						
26		min	-5.498	1	7.585	5	-4.302	5			-			

Material Take-Off

	Material	Size	Pieces	Length [in]	Weight [k]
1	General				
2	RIGID		20	55.1	0
3	Total General		20	55.1	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	C7X12.25	24	2201.6	2.241
7	A36 Gr.36	L2.5X2X4	3	312.6	0.095
8	A36 Gr.36	L3X3X4	72	3420.4	1.397
9	A36 Gr.36	PIPE_2.0	11	1008	0.292
10	A36 Gr.36	PIPE_3.0	1	60	0.035
11	A36 Gr.36	PIPE_4.0	4	264	0.222
12	A36 Gr.36	PL 2"X1/4"	6	625.2	0.089
13	A500 Gr.46	L2.5X2X4	1	79.5	0.024
14	A500 Gr.46	L3X3X4	20	731.4	0.299
15	A500 Gr.46	LL3X3X4X3	4	416.2	0.34
16	A500 Gr.46	PIPE_2.0	4	324	0.094
17	A500 Gr.46	PIPE_3.0	1	72	0.042
18	A500 Gr.46	PL 2"X1/4"	2	159	0.023
19	Total HR Steel		153	9673.9	5.191

Subject:

Location:

Date: 03/22/2022

Wolcott, CT

Prepared by: PPG; Checked by: CFC Job No. 22022.02

Platform to Lattice Tower Leg Connection:

Description:

The platform atop the lattice tower was checked in Risa3D software. Using the output force reactions, the connection between the platform and the lattice tower was checked. Assumptions made for the purpose of analyzing the connection have been noted. From pictures one could tell that there are at least three thru-bolts connecting the platform channel and the tower angle legs.

Anchor Data

5/8" Dia. A325 Thru-Bolt

Threaded Rod Dia. =	$D \coloneqq 0.625 \ \textbf{in}$	
Number of Bolts =	$N\coloneqq 3$	(User Input)
Spacing Between Bolts =	$S \coloneqq 4 \ \textit{in}$	(User Input)
Yield Strength =	$F_Y \coloneqq 27.0 \ \textit{ksi}$	
Tensile Strength =	$F_T \coloneqq 45.0 \ ksi$	
Design Shear Strength =	$\Phi F_{nt} \coloneqq \left(D^2 \cdot \frac{\pi}{4} \right) \cdot F_Y =$	8.3 kip
Design Tensile Strength =	$\varPhi F_{nv} \coloneqq \left(D^2 \cdot \frac{\pi}{4}\right) \cdot F_T =$	13.8 kip
Design Reactions:	LC6 N22	
Force X =	$Shear_x \!\coloneqq\! 0.27 \boldsymbol{\cdot} \boldsymbol{kip}$	(User Input)
Force Y =	$Vertical \coloneqq 3.267 \ kip$	(User Input)
Force Z =	$Shear_z \coloneqq 1.57 \boldsymbol{\cdot kip}$	(User Input)
Moment X =	$M_X \coloneqq 0.366 \cdot kip \cdot ft$	(User Input)
Moment Y =	$M_Y \coloneqq 0.038 \cdot kip \cdot ft$	(User Input)
Moment Z =	$M_Z \coloneqq 2.76 \; \pmb{kip} \boldsymbol{\cdot ft}$	(User Input)

Anchor Check:

Ν

Max Tension Force = T_{Max}

$$x := \frac{Shear_z}{N} + \frac{M_Y + M_X}{S \cdot \frac{N}{2}} = 1.33 \text{ kip}$$

 M_Z

λī

 V_{Max}

Φŀ

-=6.7 **kip**

 $Shear_x + Vertical$

N

 $V_{Max} \coloneqq$

 T_{Max}

 ΦF_{nt}

max

 V_{Max}

 ΦF_{n}

$$S \cdot \frac{1}{2}$$
Condition 1 = $Condition1 \coloneqq if\left(\frac{T_{Max}}{\Phi F_{nt}} \le 1.00, \text{``OK''}, \text{``NG''}\right) = ``OK''$
Condition 2 = $Condition2 \coloneqq if\left(\frac{V_{Max}}{\Phi F_{nv}} \le 1.00, \text{``OK''}, \text{``NG''}\right) = ``OK''$

$$\label{eq:condition 3} \texttt{Condition 3} \texttt{=} \qquad Condition 3 \texttt{:=} \texttt{if} \bigg(\frac{T_{Max}}{\varPhi F_{nt}} + \frac{V_{Max}}{\varPhi F_{nv}} {\leq} 1.0 \,, \text{``OK"} \,, \text{``NG"} \bigg) \texttt{=} \text{``OK"}$$

 (T_{Max})

 ΦF

 F_z Connection C7X12.25 Platform between Platform and Lattice Tower Frame Leg. Assume three 5/8" A325 bolts (min size and strength)

> L4X4X3/8 Lattice Tower Leg

CT11403A_Thru Bolt Connection.mcdx

= 64.6%

Structural Analysis of an 80 ft Self-Supporting Tower

T-Mobile Site Number: CT11403A Everest Infrastructure Site Number: 701770 Site Name: Andrews Rd 1 County: New Haven Location: Andrews Rd, Wolcott, CT

Checked By:

Patrick Propert Structural Design Engineer III

Kenneth Fang Digitally signed by Kenneth Tang Date: 2022.05.16 11:52:27 -07'00'

Two Allegheny Ctr

Nova Tower 2, Suite 1002

Pittsburgh, PA 15212

May 2022

9 North Main Street, 2nd Floor, Cortland, NY 13045 (607)591-5381 Fax: (866)870-0840 www.ArmorTower.com May 11, 2022

Tom Rigg Everest Infrastructure Partners Two Allegheny Ctr Nova Tower 2, Suite 1002 Pittsburgh, PA 15212

RE: T-Mobile – CT11403A – Wolcott/Andres Rd 1 EIP #701770 Andrews Rd, Wolcott, CT

Tom:

We have completed the structural analysis of the subject tower and **have found it to be adequate within the scope of this analysis to support the proposed antenna loading**. The tower was analyzed according to the code wind and ice parameters outlined in the *Code Requirements Table* following this letter.

The subject tower is an 80' self-supporting tower consisting of all-bolted sections with angle legs and bracing. Tower face dimensions range from 6'1" at the top to 10'7" at the base. Foundation capacities are based on a geotechnical report prepared by our office in December 2017 and a dispersive wave investigation completed in July 2013.

The loading used in the analysis consisted of the existing antennas/lines as well as the following for T-Mobile at 80' on the existing unmodified platform:

- (3) APXVAARR24_43-U-NA20, (3) VV-65A-R1, (3) AIR 6419 antennas
- (3) Radio 4449 B71/B85, (3) Radio 4460 B25/B66 RRHs
- (4) 1-3/8" hybrid cable, (1) 2" hybrid cable. Existing (12) coax are to be removed.

The proposed hybrid line are to belocated as shown on drawing E-7.

The results of the analysis showed all tower and foundation elements to be loaded within allowable limits with a maximum stress rating of 67%. We recommend a post-construction inspection be completed by a structural engineer to document that tower-mounted equipment has been placed in compliance with the requirements of this analysis. For a detailed listing of tower performance, please see pages 21 to 26 of the calculations.

We appreciate the opportunity to provide our professional services to Everest Infrastructure Partners and T-Mobile and if you have any questions concerning this analysis, please contact us.

Sincerely,

ARMOR TOWER, INC.

Patrick Botimer Structural Design Engineer V

9 North Main Street, 2nd Floor, Cortland, NY 13045 (607)591-5381 Fax: (866)870-0840 www.ArmorTower.com

CODE REQUIREMENTS

2015 CT State Building Code **Governing code:** 2015 International Building Code **Code basis/adoption: Referenced standard:** ANSI/TIA 222-G-2 **Basic wind speed: (3-sec. gust):** V_{ult}: 125 mph with no ice 50 mph with 1" concurrent ice New Haven **County of site location:** ASCE 7 Special wind region: No Structure/Risk Category: Π **Exposure Category:** B **Topographic Category: (Method 1)** 1 - no topographic escalation **Crest Height/Tower Base AMSL Elevation**: 0 ft/ 1006 ft $S_s=0.190, S_1=0.054$ Site Spectral Response:

PRIMARY ASSUMPTIONS CONSIDERED IN THIS PROJECT

- 1. Leg A is assumed to be oriented West.
- 2. Allowable steel stresses are defined by AISC-LRFD-99/360-16 and all welds conform to AWS D1.1 specification.

- 3. If reserved antennas/feed lines by other carriers are to be considered in this analysis, it is the responsibility of Everest Infrastructure and its affiliates to provide this information.
- 4. Any deviation from the analyzed antenna loading will require a re-analysis of the tower for verification of structural integrity. This analysis has considered the proposed feed lines to be located as shown on drawing E-7.
- 5. This analysis assumes all tower members are galvanized adequately to prevent corrosion of the steel and that all tower members are in "like new" condition with no physical deterioration. This analysis also assumes the tower has been maintained properly per TIA 222-G Annex J recommended inspection and maintenance procedures for tower owners and is in a plumb condition. Armor Tower has not completed a condition assessment of the tower.
- 6. No accounting for residual stresses due to incorrect tower erection can be made. This analysis assumes all bolts are appropriately tightened providing necessary connection continuity and that the installation of the tower was performed by a qualified tower erector.
- 7. Foundation details are based on a geotechnical report prepared by this office in Decemberr 2017 and a dispersive wave foundation investigation in July 2013.
- 8. No conclusions, expressed or implied, shall indicate that Armor Tower has made an evaluation of the original design, materials, fabrication, or potential installation or erection deficiencies. Any information contrary to that assumed for the purpose of preparing this analysis could alter the findings and conclusions stated herein.
- 9. Tower member sizes, geometry, and existing antenna loading are based on a tower mapping completed by this office in December 2017. It is our assumption that this data is complete and accurately reflects the existing conditions of the tower and equipment. Armor Tower has not been

commissioned to field-validate this data. Armor Tower reserves the right to add to or modify this report as more information becomes available. Proposed equipment was outlined in a Colo App dated 4/12/22.

- 10. The investigation of the load carrying capacities of the antenna supporting frames/mounts is outside the scope of this analysis. Antenna mount certification can be completed under a separate contract.
- 11. Armor Tower can assist the contractor in providing a Class IV rigging plan for equipment lifting.

L4x4x3/8

L5x5x1/2

L6x6x1/2

L6x6x5/8

Leg Grade Diagonals Top Girts

Z

Section Legs

2

12

	ARMOR TOWER, INC	^{Job:} 80' Self-Supporting Towe	er Analysis	;
ARWOR	9 North Main	Project: T-Mobile CT11403A Wolcott/	Andrews Rd	1
TIOWER	Cortland, NY 13045	Client: Everest Infrastructure #701770	Drawn by: PB	App'd:
	Phone: 607-591-5381	^{Code:} TIA-222-G	Date: 05/11/22	Scale: NTS
	FAX: 866-870-0840	Path: Printer/Teaming Departed/Til Team Falder/Project/Everent Infrastructure/70/770 Andrews/Bit Water/PV CT 2020/06 THO TA	Projectile (19/1823 al	Dwg No. E-1

	Job	80' Self-Supporting Tower Analysis	Page 1 of 20
ARMOR TOWER, INC 9 North Main	Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client	Everest Infrastructure #701770	Designed by PB

Tower Input Data

The main tower is a 4x free standing tower with an overall height of 80' above the ground line.

The base of the tower is set at an elevation of 0' above the ground line.

The face width of the tower is 6'2-1/32'' at the top and 10'6-15/32'' at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

ASCE 7-10 Wind Data is used. Basic wind speed of 125 mph. Risk Category II. Exposure Category B. Topographic Category 1. Crest Height 0'. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards. Welds are fabricated with ER-70S-6 electrodes. Vult(125 mph) = Vasd(97 mph) Per ASCE7. (E)xisting or (P)roposed.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Known

Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Consider Moments - Horizontals Assume Legs Pinned Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable $\sqrt{}$ Use Code Safety Factors - Guys Retension Guys To Initial Tension Offset Girt At Foundation Bypass Mast Stability Checks Consider Feed Line Torque Escalate Ice Always Use Max Kz √ Use Azimuth Dish Coefficients Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Project Wind Area of Appurt. Use Special Wind Profile $\sqrt{}$ Include Bolts In Member Capacity Autocalc Torque Arm Areas Use TIA-222-G Tension Splice Exemption Add IBC .6D+W Combination Leg Bolts Are At Top Of Section Poles Secondary Horizontal Braces Leg Sort Capacity Reports By Component Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric Ignore KL/ry For 60 Deg. Angle Legs Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are

	Job 80' Self-Supporting Tower Analysis	Page 2 of 20
ARMOR TOWER, INC 9 North Main	Project T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure #701770	Designed by PB

Square Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	ft			ft		ft
T1	80'-60'			6'2-1/32"	1	20'
T2	60'-40'			6'2-1/32"	1	20'
Т3	40'-20'			7'6-3/8"	1	20'
T4	20'-0'			8'10-13/16"	1	20'

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	80'-60'	5'	X Brace	No	No	0.0000	0.0000
T2	60'-40'	5'	X Brace	No	No	0.0000	0.0000
T3	40'-20'	10'	X Brace	No	Yes	0.0000	0.0000
T4	20'-0'	10'	X Brace	No	Yes	0.0000	0.0000

Tower Section Geometry (cont'd) Diagonal Type Diagonal Size Leg Size Leg Grade Diagonal Tower Leg Elevation Type Grade ft T1 80'-60' L4x4x3/8 L2 1/2x2 1/2x1/4 Equal Angle A36 Equal Angle A36 (36 ksi) (36 ksi)

Job	80' Self-Supporting Tower Analysis	Page 3 of 20
Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Client	Everest Infrastructure #701770	Designed by PB

ARMOR TOWER, INC 9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Tower Elevation	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
ft	1 JPC	5120	07 date	2500	51,0	0. uut
T2 60'-40'	Equal Angle	L5x5x1/2	A36	Single Angle	L2 1/2x2x1/4	A36
			(36 ksi)			(36 ksi)
T3 40'-20'	Equal Angle	L6x6x1/2	A36	Equal Angle	L3x3x1/4	A36
			(36 ksi)			(36 ksi)
T4 20'-0'	Equal Angle	L6x6x5/8	A36	Equal Angle	L3x3x5/16	A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
ft		~ ~ ~				
T1 80'-60'	Equal Angle	L3x3x1/4	A36	Solid Round		A36
			(36 ksi)			(36 ks1)
T2 60'-40'	Channel	C7x12.25	A36	Solid Round		A36
			(36 ksi)			(36 ksi)
T3 40'-20'	Equal Angle	L2 1/2x2 1/2x1/4	A36	Solid Round		A36
			(36 ksi)			(36 ksi)
T4 20'-0'	Equal Angle	L2 1/2x2 1/2x1/4	A36	Solid Round		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T3 40'-20'	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x1/4	A36
				(36 ksi)			(36 ksi)
T4 20'-0'	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x1/4	A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft	G 1'1 D 1			G 1:1 D 1	0/17	
11 80'-60'	Solid Round		A572-50 (50 ksi)	Solid Round	9/16	A5/2-50 (50 ksi)
T2 60'-40'	Solid Round		A572-50	Solid Round	9/16	A572-50
T3 40'-20'	Equal Angle	L2 1/2x2 1/2x1/4	A36	Solid Round	9/16	A572-50
			(36 ksi)			(50 ksi)
T4 20'-0'	Equal Angle	L2 1/2x2 1/2x1/4	A36	Solid Round	9/16	A572-50
			(36 ksi)			(50 ksi)

1		2 1	1	-	D
-	TC	X	W	F	D
	1C	ノ	W	E	n
E	NG	I N	EE	RI	N (

ARMOR TOWER, INC 9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	80' Self-Supporting Tower Analysis	Page 4 of 20
Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Client	Everest Infrastructure #701770	Designed by PB

Tower Section Geometry (cont'd)

Tower Elevation	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust. Factor	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	(per face)	Inickness		A_f	Ar		Shich Boli Spacing	Shich Boli Spacing	Stuch Bou Spacing
	(P = 1) = (P = 1)				/		Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1 80'-60'	0.00	0.0000	A36	1	1	1.03	36.0000	36.0000	36.0000
			(36 ksi)						
T2 60'-40'	0.00	0.0000	A36	1	1	1.03	36.0000	36.0000	36.0000
			(36 ksi)						
T3 40'-20'	0.00	0.0000	A36	1	1	1.03	36.0000	36.0000	36.0000
			(36 ksi)						
T4 20'-0'	0.00	0.0000	A36	1	1	1.03	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

			K Factors ¹								
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace	
ft	Angles	Kounds		X Y	X Y	X Y	X Y	X Y	X Y	X Y	
T1 80'-60'	No	No	1	1	1	1	1	1	1	1	
T2 60'-40'	No	No	1	1	1	1	1	1	1	1	
T3 40'-20'	No	No	1	1 1	1 1	1	1 1	1 1	1 1	1	
T4 20'-0'	No	No	1	1 1	1	1	1	1 0.5	1	1	
	2.10	1.10		1	1	1	1	0.5	1	1	

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower	Leg		Diago	nal	Top G	Top Girt		ı Girt	Mid	Girt	Long Horizontal		Short Horizontal	
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1 80'-60'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 60'-40'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 40'-20'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 20'-0'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Job	80' Self-Supporting Tower Analysis	Page 5 of 20
Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Client	Everest Infrastructure #701770	Designed by PB

ARMOR TOWER, INC 9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Tower Elevation ft	Redundant Horizontal		dundant Redundant rizontal Diagonal		Redund Sub-Diag	Redundant Sub-Diagonal		dant izontal	Redundan	t Vertical	Redundant Hip		Redundant Hip Diagonal	
jt	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 80'-60'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 60'-40'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 40'-20'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 20'-0'	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg		Diagonal		irt	Bottom	Girt	Mid G	irt	Long Horizontal		Short Horizontal	
Elevation ft	Connection Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1 80'-60'	Sleeve DS	0.7500	8	0.7500	2	0.7500	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A307		A307		A325N		A325N		A325N		A325N		A325N	
T2 60'-40'	Sleeve DS	0.7500	12	0.7500	2	0.7500	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A307		A307		A325N		A325N		A325N		A325N		A325N	
T3 40'-20'	Sleeve DS	0.7500	16	0.7500	2	0.7500	2	0.6250	0	0.6250	0	0.7500	2	0.7500	2
		A307		A307		A325N		A325N		A325N		A307		A307	
T4 20'-0'	Sleeve DS	0.7500	20	0.7500	2	0.7500	2	0.6250	0	0.6250	0	0.7500	2	0.7500	2
		A307		A307		A325N		A325N		A325N		A307		A307	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

D : .:	r	A 11	E 1 1	<i>C i</i>	D1	E	T , 1	11	11	<i>C</i> 1	TI <i>T</i> ¹ .1.1	D : /	117 . 1 .
Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	Ħ	#	Clear	Width or	Perimeter	weight
	or	Shield	From	Туре	c	Offset	Offset		Per	Spacing	Diameter		10
	Leg		Torque		ft	ın	(Frac FW)		Row	ın	in	in	plf
			Calculation										
Climbing	Α	No	No	Af (CaAa)	80' - 0'	-29.000	0.335	1	1	2.0000	4.0000		10.50
Ladder						0							
LDF4-50A	Α	No	No	Ar (CaAa)	80' - 0'	0.0000	0	2	2	0.6300	0.6300		0.15
(1/2 FOAM)													
(Abandoned)													
1-5/8"	D	No	No	Ar (CaAa)	67' - 0'	1.0000	0.19	2	2	1.4300	1.4300		1.63
hvbriflex				· · ·									
cables													
(VZW)													
Main Hybrid	А	No	No	Ar (CaAa)	80' - 0'	-20.000	0.25	4	2	0.5000	1.4300		1.63
Fiber Cable		110	110		00 0	0	0.20	•	_	0.0000	11.000		1100
(F-TMO)						Ū							
L DF4-50A	Δ	No	No	Ar (CaAa)	80' - 0'	-22 500	0.27	1	1	0.6300	0.6300		0.15
(1/2 FOAM)	11	110	110	/ II (Cu/Iu)	00 0	0	0.27	1	1	0.0500	0.0500		0.15
(1/2 I OAW) (F)						0							
(L)	۸	No	No	$\Lambda \pi (C_0 \Lambda_0)$	80' 0'	24 000	0.28	1	1	1 0200	1 0800		0.72
•	A	INO	INO	AI (CaAa)	80 - 0	-24.000	0.28	1	1	1.9800	1.9800		0.72
		N.	N.	A = (C = A =)	201 01	26,000	0.205	1	1	1 0000	1 0900		0.72
•	А	INO	INO	Ar (CaAa)	80' - 0'	-26.000	0.295	1	1	1.9800	1.9800		0.72
0.111.1.1					0.01 01	0	0.21			1 0000	1 0000		0.72
2" Hybrid	A	No	No	Ar (CaAa)	80' - 0'	-28.000	0.31	1	1	1.9800	1.9800		0.72
(P-TMO-80)						0							

80' Self-Supporting Tower Analysis

Date

ARMOR TOWER, INC

Job

Project

Client

9 North Main Cortland, NY 13045 Phone: 607-591-5381 T-Mobile CT11403A Wolcott/Andrews Rd 1

FAX: 866-870-0840

Everest Infrastructure #701770

Designed by	,
PE	3

15:44:38 05/11/22

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	From	Type		Offset	Offset		Per	Spacing	Diameter		
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										
•	А	No	No	Ar (CaAa)	80' - 0'	-30.000 0	0.325	1	1	1.9800	1.9800		0.72
	А	No	No	Ar (CaAa)	80' - 0'	-32.000 0	0.34	1	1	1.9800	1.9800		0.72
	А	No	No	Ar (CaAa)	80' - 0'	-34.000 0	0.355	1	1	1.9800	1.9800		0.72
LDF4-50A (1/2 FOAM)	А	No	No	Ar (CaAa)	80' - 0'	-36.000 0	0.37	1	1	0.6300	0.6300		0.15
LDF4-50A (1/2 FOAM)	А	No	No	Ar (CaAa)	80' - 0'	-38.000 0	0.385	1	1	0.6300	0.6300		0.15
LDF4-50A (1/2 FOAM)	А	No	No	Ar (CaAa)	80' - 0'	-40.000 0	0.4	1	1	0.6300	0.6300		0.15
LDF4-50A (1/2 FOAM)	А	No	No	Ar (CaAa)	80' - 0'	-42.000 0	0.415	1	1	0.6300	0.6300		0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	Κ
T1	80'-60'	А	0.000	0.000	57.353	0.000	0.45
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	2.002	0.000	0.02
T2	60'-40'	А	0.000	0.000	57.353	0.000	0.45
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	5.720	0.000	0.07
T3	40'-20'	А	0.000	0.000	57.353	0.000	0.45
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	5.720	0.000	0.07
T4	20'-0'	А	0.000	0.000	57.353	0.000	0.45
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	5.720	0.000	0.07

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
T1	80'-60'	А	2.156	0.000	0.000	193.844	0.000	3.31
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	9.050	0.000	0.13
T2	60'-40'	А	2.085	0.000	0.000	189.414	0.000	3.17
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	25.363	0.000	0.36
Т3	40'-20'	А	1.981	0.000	0.000	182.967	0.000	2.96
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00

A	AR/	M	OR
	IO	W	ER
E	NGIN	EE	RING

Job	80' Self-Supporting Tower Analysis	Page 7 of 20
Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Client	Everest Infrastructure #701770	Designed by PB

ARMOR TOWER, INC

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
		D		0.000	0.000	24.644	0.000	0.34
T4	20'-0'	А	1.775	0.000	0.000	170.170	0.000	2.58
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	23.219	0.000	0.30

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP_X	CPz
				Ice	Ice
	ft	in	in	in	in
T1	80'-60'	-2.7126	-6.1998	-4.1208	-9.5317
T2	60'-40'	-3.6493	-5.5626	-5.9056	-8.7811
T3	40'-20'	-5.1232	-5.9440	-8.9256	-10.0457
T4	20'-0'	-6.7020	-6.5618	-11.9911	-11.3581

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	2	Climbing Ladder	60.00 - 80.00	0.6000	0.5133
T1	9	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	10	1-5/8" hybriflex cables	60.00 - 67.00	0.6000	0.5133
T1	11	Main Hybrid Fiber Cable	60.00 - 80.00	0.6000	0.5133
T1	12	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	13		60.00 - 80.00	0.6000	0.5133
T1	14		60.00 - 80.00	0.6000	0.5133
T1	16	2" Hybrid	60.00 - 80.00	0.6000	0.5133
T1	17		60.00 - 80.00	0.6000	0.5133
T1	18		60.00 - 80.00	0.6000	0.5133
T1	19		60.00 - 80.00	0.6000	0.5133
T1	20	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	21	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	22	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T1	23	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.5133
T2	2	Climbing Ladder	40.00 - 60.00	0.6000	0.5200
T2	9	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	10	1-5/8" hybriflex cables	40.00 - 60.00	0.6000	0.5200
T2	11	Main Hybrid Fiber Cable	40.00 - 60.00	0.6000	0.5200
T2	12	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	13		40.00 - 60.00	0.6000	0.5200
T2	14		40.00 - 60.00	0.6000	0.5200
T2	16	2" Hybrid	40.00 - 60.00	0.6000	0.5200
T2	17		40.00 - 60.00	0.6000	0.5200
T2	18		40.00 - 60.00	0.6000	0.5200
T2	19		40.00 - 60.00	0.6000	0.5200
T2	20	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	21	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	22	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
T2	23	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5200
Т3	2	Climbing Ladder	20.00 - 40.00	0.6000	0.5599
Т3	9	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
	Job	80' Self-Supporting Tower Analysis	Page 8 of 20		
--	---------	--	---------------------------		
ARMOR TOWER, INC 9 North Main	Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22		
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client	Everest Infrastructure #701770	Designed by PB		

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T3	10	1-5/8" hybriflex cables	20.00 - 40.00	0.6000	0.5599
T3	11	Main Hybrid Fiber Cable	20.00 - 40.00	0.6000	0.5599
T3	12	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	13		20.00 - 40.00	0.6000	0.5599
T3	14		20.00 - 40.00	0.6000	0.5599
T3	16	2" Hybrid	20.00 - 40.00	0.6000	0.5599
T3	17		20.00 - 40.00	0.6000	0.5599
T3	18		20.00 - 40.00	0.6000	0.5599
T3	19		20.00 - 40.00	0.6000	0.5599
T3	20	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	21	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	22	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T3	23	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5599
T4	2	Climbing Ladder	0.00 - 20.00	0.6000	0.6000
T4	9	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T4	10	1-5/8" hybriflex cables	0.00 - 20.00	0.6000	0.6000
T4	11	Main Hybrid Fiber Cable	0.00 - 20.00	0.6000	0.6000
T4	12	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T4	13		0.00 - 20.00	0.6000	0.6000
T4	14		0.00 - 20.00	0.6000	0.6000
T4	16	2" Hybrid	0.00 - 20.00	0.6000	0.6000
T4	17		0.00 - 20.00	0.6000	0.6000
T4	18		0.00 - 20.00	0.6000	0.6000
T4	19		0.00 - 20.00	0.6000	0.6000
T4	20	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T4	21	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T4	22	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T4	23	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	Κ
Гор Platform - WolcottNW	А	None	<u>J</u>	0.0000	80'	No Ice	353.84	297.42	5.26
(E)						1/2" Ice	392.53	336.16	6.84
						1" Ice	431.23	374.89	8.42
L2 1/2x2x1/4 @ 5ft Vert.	А	From Face	0.00	0.0000	7'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	В	From Face	0.00	0.0000	7'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	С	From Face	0.00	0.0000	7'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	D	From Face	0.00	0.0000	7'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	А	From Face	0.00	0.0000	17'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	В	From Face	0.00	0.0000	17'6"	No Ice	1.67	2.05	0.02
(E) ~			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04

Job

Project

Client

80' Self-Supporting Tower Analysis

Date

ARMOR TOWER, INC 9 North Main

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

T-Mobile CT11403A Wolcott/Andrews Rd 1

15:44:38 05/11/22 Designed by

Everest Infrastructure #701770

esigned by PB

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert						
			ft ft ft	o	ft		ft ²	ft ²	Κ
L2 1/2x2x1/4 @ 5ft Vert	C	From Face	0.00	0.0000	17'6"	No Ice	1.67	2.05	0.02
(E)	e	1101111400	0'	0.0000	170	1/2" Ice	2.16	2.41	0.02
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	D	From Face	0.00	0.0000	17'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	А	From Face	0.00	0.0000	27'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	В	From Face	0.00	0.0000	27'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
	~		0'			1" Ice	2.53	2.78	0.04
L2 $1/2x2x1/4$ @ 5ft Vert.	С	From Face	0.00	0.0000	27'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
101/0 0 1/4 0 50 34	D	F F	0'	0.0000	27161	I" Ice	2.53	2.78	0.04
L2 $1/2x2x1/4$ @ 5ft Vert.	D	From Face	0.00	0.0000	27'6"	No Ice	1.67	2.05	0.02
(E)			0'			1/2" Ice	2.16	2.41	0.03
L 2 1/2. 2. 1/4 @ 5ft Vort	•	Enom Ecoo	0.00	0.0000	27161	I lee	2.33	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	A	From Face	0.00	0.0000	3/0	1/2" Loo	1.0/	2.05	0.02
(E)			0'			1/2 100	2.10	2.41	0.03
L 2 1/2x2x1/4 @ 5ft Vert	в	From Face	0.00	0.0000	37'6"	No Ice	2.55	2.78	0.04
(E)	Б	FIOIITFace	0.00	0.0000	570	1/2" Ice	2.16	2.03	0.02
			0'			172 ICC	2.10	2.41	0.03
L2 1/2x2x1/4 @ 5ft Vert	С	From Face	0.00	0.0000	37'6"	No Ice	1.67	2.76	0.04
(E)	U	i ioni i ace	0'	0.0000	570	1/2" Ice	2.16	2.03	0.02
(2)			0'			1" Ice	2.53	2.78	0.04
L2 1/2x2x1/4 @ 5ft Vert.	D	From Face	0.00	0.0000	37'6"	No Ice	1.67	2.05	0.02
(E)	2	1101111 400	0'	0.0000	57.0	1/2" Ice	2.16	2.41	0.03
			0'			1" Ice	2.53	2.78	0.04
** Exsiting Antennas									
2.5"ODx20' Omni	С	From Leg	2.00	0.0000	90'	No Ice	5.00	5.00	0.02
(E)			0'			1/2" Ice	7.03	7.03	0.06
			0'			1" Ice	9.07	9.07	0.11
20' Dipole	Α	From Leg	2.00	0.0000	90'	No Ice	5.00	5.00	0.02
(E)			-7'			1/2" Ice	7.03	7.03	0.06
			0'			1" Ice	9.07	9.07	0.11
20' Dipole	D	From Leg	2.00	0.0000	90'	No Ice	5.00	5.00	0.02
(E)			8'			1/2" Ice	7.03	7.03	0.06
101.0.1	P	F T	0'	0.0000	0.51	1" Ice	9.07	9.07	0.11
10' Dipole	D	From Leg	0.00	0.0000	85'	No Ice	3.29	3.29	0.04
(E)			/' 0'			1/2" Ice	4.97	4.97	0.07
Vari	C	Enom Loo	2.00	0.0000	021	I lee	5.57 0.20	5.57	0.10
(E)	C	From Leg	2.00	0.0000	65	1/2" Ice	0.50	0.30	0.01
(E)			0'			1/2 ICC	0.34	0.34	0.01
*			0			1 100	0.70	0.78	0.01
TMO-2022									
V V-65A-R1 w. Mtg Pine	А	From Face	2.00	0.0000	77'	No Ice	5.93	3.62	0.04
(P-TMO-Alpha)			-7'			1/2" Ice	6.29	4.20	0.09
(0'			1" Ice	6.66	4.81	0.14
V V-65A-R1 w. Mtg Pipe	В	From Face	2.00	0.0000	77'	No Ice	5.93	3.62	0.04
(P-TMO-Beta)			7'			1/2" Ice	6.29	4.20	0.09
			0'			1" Ice	6.66	4.81	0.14
V V-65A-R1 w. Mtg Pipe	D	From Face	2.00	0.0000	77'	No Ice	5.93	3.62	0.04
(P-TMO-Gamma)			-7'			1/2" Ice	6.29	4.20	0.09
			0'			1" Ice	6.66	4.81	0.14

80' Self-Supporting Tower Analysis

Date

ARMOR TOWER, INC

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

T-Mobile CT11403A Wolcott/Andrews Rd 1

Everest Infrastructure #701770

Designed by PΒ

15:44:38 05/11/22

Job

Project

Client

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert	0	G		<i>c.</i> 2	<u>c</u> 2	V
			ji ft		Ji		Ji	Л	Λ
			ft						
Ericsson AIR6419 B41 w	А	From Face	2.00	0.0000	77'	No Ice	6.53	3.74	0.10
MtgPipe	11	1101111400	-7'	0.0000	,,	1/2" Ice	6.91	4.23	0.15
(P-TMO-Alpha)			0'			1" Ice	7.31	4.74	0.21
Ericsson AIR6419 B41 w.	В	From Face	2.00	0.0000	77'	No Ice	6.53	3.74	0.10
MtgPipe	_		7'			1/2" Ice	6.91	4.23	0.15
(P-TMO-Beta)			0'			1" Ice	7.31	4.74	0.21
Ericsson AIR6419 B41 w.	D	From Face	2.00	0.0000	77'	No Ice	6.53	3.74	0.10
MtgPipe			-7'			1/2" Ice	6.91	4.23	0.15
(P-TMO-Gamma)			0'			1" Ice	7.31	4.74	0.21
APXVAARR24 43-U-NA20	А	From Face	2.00	0.0000	77'	No Ice	20.24	10.79	0.18
w. MtgPipe			-7'			1/2" Ice	20.89	12.21	0.32
(E-TMobile)			0'			1" Ice	21.55	13.49	0.46
APXVAARR24 43-U-NA20	в	From Face	2.00	0.0000	77'	No Ice	20.24	10.79	0.18
w. MtgPipe			7'			1/2" Ice	20.89	12.21	0.32
(E-TMobile)			0'			1" Ice	21.55	13.49	0.46
APXVAARR24 43-U-NA20	D	From Face	2.00	0.0000	77'	No Ice	20.24	10.79	0.18
w. MtgPipe			-7'			1/2" Ice	20.89	12.21	0.32
(E-TMobile)			0'			1" Ice	21.55	13.49	0.46
Ericsson Radio 4449	А	From Face	2.00	0.0000	77'	No Ice	1.64	1.15	0.08
B71/B85			7'			1/2" Ice	1.80	1.29	0.09
(E-TMobile)			0'			1" Ice	1.97	1.43	0.11
Ericsson Radio 4449	в	From Face	7.00	0.0000	77'	No Ice	1.64	1.15	0.08
B71/B85			-7'			1/2" Ice	1.80	1.29	0.09
(E-TMobile)			0'			1" Ice	1.97	1.43	0.11
Ericsson Radio 4449	D	From Face	2.00	0.0000	77'	No Ice	1.64	1.15	0.08
B71/B85			5'			1/2" Ice	1.80	1.29	0.09
(E-TMobile)			0'			1" Ice	1.97	1.43	0.11
Ericsson Radio 4460	Α	From Face	2.00	0.0000	77'	No Ice	2.56	1.98	0.11
B25+B66			-7'			1/2" Ice	2.76	2.16	0.13
(P-TMO-Alpha)			0'			1" Ice	2.97	2.34	0.16
Ericsson Radio 4460	в	From Face	2.00	0.0000	77'	No Ice	2.56	1.98	0.11
B25+B66			7'			1/2" Ice	2.76	2.16	0.13
(P-TMO-Beta)			0'			1" Ice	2.97	2.34	0.16
Ericsson Radio 4460	D	From Face	2.00	0.0000	77'	No Ice	2.56	1.98	0.11
B25+B66			-7'			1/2" Ice	2.76	2.16	0.13
(P-TMO-Gamma)			0'			1" Ice	2.97	2.34	0.16
*									
*VZW - 2019***			o e o	0.0000	< - .		10.05		0.10
(2) NNHH-65B-R4 w. Mtg	D	From Leg	0.50	0.0000	67	No Ice	12.27	7.17	0.10
Pipe			0'			1/2" Ice	12.77	8.13	0.19
(VZW-Delta)	G	F F	0,	0.0000		I" Ice	13.27	8.97	0.28
(2) NNHH-65B-R4 w. Mtg	C	From Leg	0.50	0.0000	67	No Ice	12.27	7.17	0.10
Pipe			0'			1/2" Ice	12.77	8.13	0.19
(VZW-Gamma)	D	гт	0	0.0000	(7)	1 [°] Ice	13.27	8.97	0.28
AWS(B06)/PCS(B2) Dual	D	From Leg	0.50	0.0000	67	No Ice	1.88	1.25	0.08
Band KKH			0'			1/2" Ice	2.05	1.39	0.10
(VZW-Delta)	C	Enom Log	0.50	0.0000	671	I lee	2.22	1.54	0.12
AwS(B00)/PCS(B2) Dual	C	From Leg	0.30	0.0000	07	1/2" Lee	1.00	1.23	0.08
(VZW Commo)			0			1/2 ICe	2.03	1.59	0.10
(VZW-Gamma)	D	From Log	0.50	0.0000	671	No Ioo	2.22	2.51	0.12
(12Circuit OVP)	D	From Leg	0.30	0.0000	07	1/2" Ice	3.79	2.31	0.03
(VZW Delta)			0'			172 ICC	4.04	2.75	0.00
$(v \ge v - D \in ia)$ 700(B13)/850(B5) Dual Band	р	From Lag	0.50	0.0000	67	No Ice	1.50	2.95	0.10
RRH	D	From Leg	0.50	0.0000	07	1/2" Ice	2.05	1.01	0.07
(VZW_Delta)			0'			1" Ice	2.05	1.14	0.11
700(B13)/850(B5) Dual Band	C	From Leg	0.50	0.0000	67'	No Ice	1.88	1.20	0.07
	~	TION LOS	0.20	0.0000	07	110 100	1.00	1.01	0.07

	Job	80' Self-Supporting Tower Analysis	Page 11 of 20
ARMOR TOWER, INC 9 North Main	Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client	Everest Infrastructure #701770	Designed by PB

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert	o	ft		£+2	fr ²	K
			ft ft		ji		ji	Ji	K
RRH			0'			1/2" Ice	2.05	1.14	0.09
(VZW-Gamma)			0'			1" Ice	2.22	1.28	0.11
(4) R5-216 Mount Bracket	С	None		0.0000	67'	No Ice	8.31	8.31	0.15
(VZW)						1/2" Ice	11.95	11.95	0.19
						1" Ice	14.13	14.13	0.27

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	Κ
4 FT DISH	В	Grid	From Face	7.00 5' 3'6"	0.0000		80'	4.00	No Ice 1/2" Ice 1" Ice	12.56 13.09 13.62	0.17 0.24 0.30
4 FT DISH	D	Grid	From Face	7.00 -5' 3'6"	0.0000		80'	4.00	No Ice 1/2" Ice 1" Ice	12.56 13.09 13.62	0.17 0.24 0.30

Load Combinations

Comb.	Description
No.	-
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 45 deg - No Ice
5	0.9 Dead+1.0 Wind 45 deg - No Ice
6	1.2 Dead+1.0 Wind 90 deg - No Ice
7	0.9 Dead+1.0 Wind 90 deg - No Ice
8	1.2 Dead+1.0 Wind 135 deg - No Ice
9	0.9 Dead+1.0 Wind 135 deg - No Ice
10	1.2 Dead+1.0 Wind 180 deg - No Ice
11	0.9 Dead+1.0 Wind 180 deg - No Ice
12	1.2 Dead+1.0 Wind 225 deg - No Ice
13	0.9 Dead+1.0 Wind 225 deg - No Ice
14	1.2 Dead+1.0 Wind 270 deg - No Ice
15	0.9 Dead+1.0 Wind 270 deg - No Ice
16	1.2 Dead+1.0 Wind 315 deg - No Ice
17	0.9 Dead+1.0 Wind 315 deg - No Ice
18	1.2 Dead+1.0 Ice+1.0 Temp
19	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
20	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp
21	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
22	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp
23	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
24	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp

ARMOR TOWER	Job	80
ARMOR TOWER, INC 9 North Main	Project	T-Mol

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	80' Self-Supporting Tower Analysis	Page 12 of 20
Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Client	Everest Infrastructure #701770	Designed by PB

Comb.	Description
No.	
25	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
26	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 45 deg - Service
29	Dead+Wind 90 deg - Service
30	Dead+Wind 135 deg - Service
31	Dead+Wind 180 deg - Service
32	Dead+Wind 225 deg - Service
33	Dead+Wind 270 deg - Service
34	Dead+Wind 315 deg - Service

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg D	Max. Vert	12	100.54	9.55	-9.37
	Max. H _x	12	100.54	9.55	-9.37
	Max. H _z	5	-88.44	-8.39	8.22
	Min. Vert	5	-88.44	-8.39	8.22
	Min. H _x	5	-88.44	-8.39	8.22
	Min. Hz	12	100.54	9.55	-9.37
Leg C	Max. Vert	8	100.46	-9.44	-9.46
-	Max. H _x	17	-88.34	8.28	8.31
	Max. H _z	17	-88.34	8.28	8.31
	Min. Vert	17	-88.34	8.28	8.31
	Min. H _x	8	100.46	-9.44	-9.46
	Min. Hz	8	100.46	-9.44	-9.46
Leg B	Max. Vert	4	100.40	-9.39	9.51
	Max. H _x	13	-88.54	8.26	-8.36
	Max. H _z	4	100.40	-9.39	9.51
	Min. Vert	13	-88.54	8.26	-8.36
	Min. H _x	4	100.40	-9.39	9.51
	Min. Hz	13	-88.54	8.26	-8.36
Leg A	Max. Vert	16	100.30	9.48	9.40
-	Max. H _x	16	100.30	9.48	9.40
	Max. H _z	16	100.30	9.48	9.40
	Min. Vert	9	-88.46	-8.35	-8.26
	Min. H _x	9	-88.46	-8.35	-8.26
	Min. H.	9	-88.46	-8.35	-8.26

Maximum Reactions

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	22.83	0.00	0.00	1.29	-0.14	0.00
1.2 Dead+1.0 Wind 0 deg - No	27.39	0.01	-23.62	-1352.75	-0.82	3.27
Ice						
0.9 Dead+1.0 Wind 0 deg - No	20.54	0.01	-23.62	-1353.13	-0.78	3.27
Ice						
1.2 Dead+1.0 Wind 45 deg - No	27.39	17.46	-17.77	-997.45	-974.56	3.06
Ice						
0.9 Dead+1.0 Wind 45 deg - No	20.54	17.46	-17.77	-997.84	-974.51	3.06
Ice						

Job

Project

Client

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840 T-Mobile CT11403A Wolcott/Andrews Rd 1

Designed by

15:44:38 05/11/22

Date

Everest Infrastructure #701770

PΒ

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment M	Overturning Moment M	Torque
Combination	K	K	K	kin-ft	kin-ft	kin-ft
1.2 Dead+1.0 Wind 90 deg - No	27.39	23.03	-0.01	0.89	-1309.38	0.90
Ice	21105	20100	0101	0.07	1000100	010 0
0.9 Dead+1.0 Wind 90 deg - No	20.54	23.03	-0.01	0.50	-1309.34	0.90
Ice						
1.2 Dead+1.0 Wind 135 deg -	27.39	17.44	17.76	999.61	-973.63	-1.25
No Ice						
0.9 Dead+1.0 Wind 135 deg -	20.54	17.44	17.76	999.23	-973.59	-1.25
No Ice						
1.2 Dead+1.0 Wind 180 deg -	27.39	-0.01	23.62	1355.83	0.49	-3.27
No Ice						
0.9 Dead+1.0 Wind 180 deg -	20.54	-0.01	23.62	1355.45	0.53	-3.27
No Ice						
1.2 Dead+1.0 Wind 225 deg -	27.39	-17.46	17.77	1000.54	974.22	-2.93
No Ice						
0.9 Dead+1.0 Wind 225 deg -	20.54	-17.46	17.77	1000.15	974.27	-2.93
No Ice						
1.2 Dead+1.0 Wind 270 deg -	27.39	-23.03	0.01	2.20	1309.05	-0.90
No Ice						
0.9 Dead+1.0 Wind 270 deg -	20.54	-23.03	0.01	1.81	1309.09	-0.90
No Ice						
1.2 Dead+1.0 Wind 315 deg -	27.39	-17.44	-17.76	-996.52	973.30	1.11
No Ice						
0.9 Dead+1.0 Wind 315 deg -	20.54	-17.44	-17.76	-996.91	973.34	1.11
No Ice					0.60	
1.2 Dead+1.0 Ice+1.0 Temp	82.27	0.00	0.00	-1.01	8.69	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0	82.27	0.00	-6.13	-348.58	8.59	-0.56
Ice+1.0 Temp	00.05	4.40		250 (0	005.05	1.40
1.2 Dead+1.0 Wind 45 deg+1.0	82.27	4.48	-4.61	-258.69	-237.95	-1.48
Ice+1.0 Temp	00.07	5.05	0.00		224.00	1.21
1.2 Dead+1.0 Wind 90 deg+1.0	82.27	5.95	-0.00	-1.11	-324.88	-1.31
12D 1+10W 1125	02.27	4 40	4.61	25(52	227.01	0.22
1.2 Dead+1.0 Wind 135	82.27	4.48	4.61	256.53	-237.81	-0.23
deg+1.0 Ice+1.0 Temp	82.27	0.00	(12	246 57	9.70	0.5(
1.2 Dead + 1.0 wind 180	02.27	-0.00	0.15	540.57	0.79	0.50
$1.2 \text{ Dead} \pm 1.0 \text{ Wind } 225$	82.27	1 19	4.61	256 67	255 22	0.84
$d_{ag+1} 0 l_{ce+1} 0 Temp$	02.27	-4.40	4.01	250.07	255.55	0.84
1.2 Dead + 1.0 Wind 270	82.27	5.05	0.00	0.01	312 26	1 3 1
$d_{ag+1} 0 L_{ce+1} 0 T_{emp}$	62.27	-5.95	0.00	-0.91	342.20	1.51
1.2 Dead+1.0 Wind 315	82 27	-4.48	-4.61	-258 55	255.18	0.87
deg+1.0 Ice+1.0 Temp	02.27			-230.33	255.10	0.07
Dead+Wind 0 deg - Service	22.83	0.00	-5 44	-310.74	-0.29	0.75
Dead+Wind 45 deg - Service	22.83	4.02	-4.09	-228.88	-224 64	0.75
Dead+Wind 90 deg - Service	22.83	5.31	-0.00	1.14	-301.78	0.21
Dead+Wind 135 deg - Service	22.83	4.02	4.09	231.24	-224.42	-0.29
Dead+Wind 180 deg - Service	22.83	-0.00	5.44	313.31	0.01	-0.75
Dead+Wind 225 deg - Service	22.83	-4.02	4.09	231.45	224.36	-0.67
Dead+Wind 270 deg - Service	22.83	-5.31	0.00	1.44	301.51	-0.21
Dead+Wind 315 deg - Service	22.83	-4.02	-4.09	-228.67	224.15	0.26

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	80 - 60	0.554	30	0.0559	0.0053

4		X	٨	2	R
1	ĪĊ	X	J	FI	2
E	NG	IN	EE	RI	NO

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T2	60 - 40	0.323	30	0.0457	0.0033
T3	40 - 20	0.148	30	0.0302	0.0013
T4	20 - 0	0.040	30	0.0145	0.0003

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
	**	Load				Curvature
ft		Comb.	in	0	0	ft
90'	2.5"ODx20' Omni	30	0.554	0.0559	0.0053	275263
85'	10' Dipole	30	0.554	0.0559	0.0053	275263
83'6"	4 FT DISH	30	0.554	0.0559	0.0053	275263
83'	Yagi	30	0.554	0.0559	0.0053	275263
80'	Top Platform - WolcottNW	30	0.554	0.0559	0.0053	275263
77'	V V-65A-R1 w. Mtg Pipe	30	0.518	0.0546	0.0050	275263
67'	(2) NNHH-65B-R4 w. Mtg Pipe	30	0.400	0.0498	0.0040	105870
37'6"	L2 1/2x2x1/4 @ 5ft Vert.	30	0.131	0.0281	0.0011	74485
27'6"	L2 1/2x2x1/4 @ 5ft Vert.	30	0.072	0.0202	0.0006	62444
17'6"	L2 1/2x2x1/4 @ 5ft Vert.	30	0.032	0.0126	0.0003	64043
7'6"	L2 1/2x2x1/4 @ 5ft Vert.	32	0.010	0.0054	0.0001	148286

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	80 - 60	2.366	8	0.2348	0.0231
T2	60 - 40	1.388	8	0.1945	0.0144
T3	40 - 20	0.640	8	0.1295	0.0058
T4	20 - 0	0.174	12	0.0625	0.0015

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
90'	2.5"ODx20' Omni	8	2.366	0.2348	0.0231	68491
85'	10' Dipole	8	2.366	0.2348	0.0231	68491
83'6"	4 FT DISH	8	2.366	0.2348	0.0231	68491
83'	Yagi	8	2.366	0.2348	0.0231	68491
80'	Top Platform - WolcottNW	8	2.366	0.2348	0.0231	68491
77'	V V-65A-R1 w. Mtg Pipe	8	2.213	0.2297	0.0218	68491
67'	(2) NNHH-65B-R4 w. Mtg Pipe	8	1.713	0.2110	0.0175	26343
37'6"	L2 1/2x2x1/4 @ 5ft Vert.	8	0.565	0.1209	0.0050	17379
27'6"	L2 1/2x2x1/4 @ 5ft Vert.	12	0.311	0.0870	0.0026	14522
17'6"	L2 1/2x2x1/4 @ 5ft Vert.	12	0.140	0.0545	0.0012	14870
7'6"	L2 1/2x2x1/4 @ 5ft Vert.	12	0.045	0.0232	0.0004	34430

9 North Main Cortland, NY 13045

Phone: 607-591-5381 FAX: 866-870-0840

Bolt Design Data										
Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	80	Leg	A307	0.7500	8	6.48	17.89	0.362 🖌	1	Bolt DS
		Diagonal	A307	0.7500	2	2.46	8.95	0.275 🖌	1	Bolt Shear
		Top Girt	A325N	0.7500	2	0.08	11.15	0.007 🖌	1	Member Block Shear
T2	60	Leg	A307	0.7500	12	8.82	17.89	0.493 🖌	1	Bolt DS
		Diagonal	A307	0.7500	2	2.03	8.95	0.227 🖌	1	Bolt Shear
		Top Girt	A325N	0.7500	2	0.07	17.89	0.004	1	Bolt Shear
T3	40	Leg	A307	0.7500	16	8.60	17.89	0.481	1	Bolt DS
		Diagonal	A307	0.7500	2	3.77	8.95	0.422	1	Bolt Shear
		Horizontal	A307	0.7500	2	2.73	8.95	0.306	1	Bolt Shear
		Secondary Horizontal	A307	0.7500	2	0.18	8.95	0.020	1	Bolt Shear
		Top Girt	A325N	0.7500	2	1.44	10.47	0.138 🖌	1	Member Block Shear
T4	20	Leg	A307	0.7500	20	8.97	17.89	0.501 🖌	1	Bolt DS
		Diagonal	A307	0.7500	2	3.96	8.95	0.443 🖌	1	Bolt Shear
		Horizontal	A307	0.7500	2	3.15	8.95	0.352 🖌	1	Bolt Shear
		Secondary Horizontal	A307	0.7500	2	0.21	8.95	0.023	1	Bolt Shear
		Top Girt	A325N	0.7500	2	2.42	10.47	0.231 🗸	1	Member Block Shear

Compression Checks

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	Κ	ϕP_n
T1	80 - 60	L4x4x3/8	20'	5'	76.1 K=1.00	2.8600	-25.91	68.29	0.379 1
T2	60 - 40	L5x5x1/2	20'1/4"	5'1/8"	61.1 K=1.00	4.7500	-52.91	126.43	0.418
Т3	40 - 20	L6x6x1/2	20'1/4"	10'1/8"	101.8 K=1.00	5.7500	-68.81	107.95	0.637
T4	20 - 0	L6x6x5/8	20'3/8"	10'1/4"	101.9 K=1.00	7.1100	-89.68	133.41	0.672

9 North Main Cortland, NY 13045

Phone: 607-591-5381

FAX: 866-870-0840

¹ $P_u / \phi P_n$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	80 - 60	L2 1/2x2 1/2x1/4	7'11-9/3 2''	3'9-1/8"	91.8 K=1.00	1.1900	-4.92	24.74	0.199 ¹
T2	60 - 40	L2 1/2x2x1/4	8'10-13/ 16"	4'3-19/3 2"	121.8 K=1.00	1.0600	-3.99	15.73	0.253 1
Т3	40 - 20	L3x3x1/4	13'2-1/3 2"	6'5-17/3 2"	131.0 K=1.00	1.4400	-7.53	18.91	0.398 1
T4	20 - 0	L3x3x5/16	14'2-7/8'	7'23/32"	143.8 K=1.00	1.7800	-7.93	19.45	0.407 1

¹ $P_u / \phi P_n$ controls

	Horizontal Design Data (Compression)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	Κ	ϕP_n
T3	40 - 20	L2 1/2x2 1/2x1/4	8'2-5/8"	7'8-5/8"	188.6 K=1.00	1.1900	-4.57	7.56	0.605 1
T4	20 - 0	L2 1/2x2 1/2x1/4	9'8-5/8"	9'2-5/8"	112.7 K=0.50	1.1900	-5.29	19.76	0.268 1

¹ P_u / ϕP_n controls

Secondary Horizontal Design Data (Compression)

Section No	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.
	ft		ft	ft		in^2	Κ	Κ	ϕP_n
T3	40 - 20	L2 1/2x2 1/2x1/4	8'6-19/3 2''	8'19/32"	125.5 K=1.00	1.1900	-0.34	16.82	0.020 1
T4	20 - 0	L2 1/2x2 1/2x1/4	10'1-5/1 6''	9'7-5/16' '	150.0 K=1.00	1.1900	-0.34	11.95	0.028 1

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

4	AR	M		2
1	ĪĊ	Ŵ	FF	ζ
E	NGI	NEE	RIN	G

ARMOR TOWER, INC 9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

lob	80' Self-Supporting Tower Analysis	Page 17 of 20
Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Client	Everest Infrastructure #701770	Designed by PB

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	80 - 60	L3x3x1/4	6'2-1/32'	5'10-3/3 2"	118.3 K=1.00	1.4400	-0.19	22.33	0.009 1
T2	60 - 40	C7x12.25	6'2-1/32'	5'9"	120.9 K=1.00	3.6000	-0.14	54.04	0.003 1
Т3	40 - 20	L2 1/2x2 1/2x1/4	7'6-3/8"	7'3/8"	171.9 K=1.00	1.1900	-2.47	9.10	0.272 1
T4	20 - 0	L2 1/2x2 1/2x1/4	8'10-13/ 16"	8'4-13/1 6''	205.3 K=1.00	1.1900	-4.15	6.38	0.651 1
		KL/R > 200 (C) - 131							

¹ $P_u / \phi P_n$ controls

Inner Bracing Design Data (Compression)

Section No	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P
110.	ft		ft	ft		in^2	Κ	Κ	$\frac{1}{\Phi P_n}$
T1	80 - 60	9/16	8'8-5/8"	8'4-11/1 6"	716.1 K=1.00	0.2485	-0.02	0.11	0.144 1
T2	60 - 40	KL/R > 250 (C) - 5 9/16	8'8-5/8"	8'3-23/3 2"	708.9 K=1.00	0.2485	-0.00	0.11	0.042 1
		KL/R > 250 (C) - 47							

¹ $P_u / \phi P_n$ controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
T1	80 - 60	L4x4x3/8	20'	5'	48.8	1.6528	20.22	71.90	0.281 1
T2	60 - 40	L5x5x1/2	20'1/4"	5'1/8"	39.0	2.9063	45.53	126.42	0.360 ¹
T3	40 - 20	L6x6x1/2	20'1/4"	10'1/8"	64.6	3.6563	60.86	159.05	0.383 1
T4	20 - 0	L6x6x5/8	20'3/8"	10'1/4"	65.3	4.5122	79.45	196.28	0.405 1

¹ $P_u / \phi P_n$ controls

9 North Main Cortland, NY 13045

Phone: 607-591-5381 FAX: 866-870-0840

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in^2	Κ	K	ϕP_n
T1	80 - 60	L2 1/2x2 1/2x1/4	7'11-9/3 2"	3'9-1/8"	58.6	0.7284	4.80	31.69	0.152 1
T2	60 - 40	L2 1/2x2x1/4	8'4-3/16'	4'3/8"	81.6	0.6309	4.06	27.45	0.148 1
Т3	40 - 20	L3x3x1/4	13'2-1/3 2"	6'5-17/3 2''	83.4	0.9159	6.69	39.84	0.168 1
T4	20 - 0	L3x3x5/16	14'2-7/8'	7'23/32"	91.8	1.1299	6.94	49.15	0.141 1

¹ $P_u / \phi P_n$ controls

		Hori	zontal	Desig	n Da	ta (Ten	ision)		
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
T3	40 - 20	L2 1/2x2 1/2x1/4	8'2-5/8"	7'8-5/8"	120.4	0.7284	5.47	31.69	0.173 1
T4	20 - 0	L2 1/2x2 1/2x1/4	9'8-5/8"	9'2-5/8"	143.9	0.7284	6.29	31.69	0.199 1

¹ $P_u / \phi P_n$ controls

Secondary Horizontal Design Data (Tension)

Section	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio
No.								•	P_u
	ft		ft	ft		in^2	K	Κ	ϕP_n
T3	40 - 20	L2 1/2x2 1/2x1/4	8'6-19/3 2"	8'19/32''	125.5	0.7284	0.36	31.69	0.012 1
T4	20 - 0	L2 1/2x2 1/2x1/4	9'3-15/3 2''	8'9-15/3 2''	137.2	0.7284	0.42	31.69	0.013 1

¹ P_u / ϕP_n controls

		Тс	op Girt D)esigı	n Data	ı (Tens	sion)		
Section	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$

ARMOR TOWER, INC 9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	80' Self-Supporting Tower Analysis	Page 19 of 20
Project	T-Mobile CT11403A Wolcott/Andrews Rd 1	Date 15:44:38 05/11/22
Client	Everest Infrastructure #701770	Designed by PB

Ratio

 P_u

 ϕP_n

~

~

1

1

L Kl/r P_u Section Elevation Size L_u Α ϕP_n No. in^2 ft K ft ft K 5'10-3/3 0.9159 T1 80 - 60 L3x3x1/4 6'2-1/32' 75.3 0.16 39.84 0.004^{-1} 2" T2 60 - 40 C7x12.25 6'2-1/32' 5'9" 120.9 2.4939 0.09 108.49 0.001 1 Т3 40 - 20 L2 1/2x2 1/2x1/4 7'6-3/8" 7'3/8" 109.8 0.7284 2.88 31.69 0.091 1 T4 20 - 0 L2 1/2x2 1/2x1/4 8'10-13/ 8'4-13/1 131.1 0.7284 4.84 31.69 0.153 1 16" 6"

¹ $P_u / \phi P_n$ controls

Inner Bracing Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
T3	40 - 20	9/16	10'7-13/ 16"	10'1-13/ 16"	866.5	0.2485	0.15	11.18	0.013 1
		L/R > 500 (T) - 89							
T4	20 - 0	9/16	12'7-3/3 2"	12'1-3/3 2"	1031.5	0.2485	0.31	11.18	0.028*1
		L/R > 500 (T) - 127							

* DL controls

¹ $P_u / \phi P_n$ controls

Section Capacity Table

Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
ft	Type		Element	Κ	Κ	Capacity	Fail
80 - 60	Leg	L4x4x3/8	2	-25.91	68.29	37.9	Pass
60 - 40	Leg	L5x5x1/2	44	-52.91	126.43	41.8	Pass
						49.3 (b)	
40 - 20	Leg	L6x6x1/2	86	-68.81	107.95	63.7	Pass
20 - 0	Leg	L6x6x5/8	123	-89.68	133.41	67.2	Pass
80 - 60	Diagonal	L2 1/2x2 1/2x1/4	13	-4.92	24.74	19.9	Pass
						27.5 (b)	
60 - 40	Diagonal	L2 1/2x2x1/4	56	-3.99	15.73	25.3	Pass
40 - 20	Diagonal	L3x3x1/4	95	-7.53	18.91	39.8	Pass
						42.2 (b)	
20 - 0	Diagonal	L3x3x5/16	133	-7.93	19.45	40.7	Pass
	-					44.3 (b)	
40 - 20	Horizontal	L2 1/2x2 1/2x1/4	105	-4.57	7.56	60.5	Pass
20 - 0	Horizontal	L2 1/2x2 1/2x1/4	143	-5.29	19.76	26.8	Pass
						35.2 (b)	
40 - 20	Secondary Horizontal	L2 1/2x2 1/2x1/4	110	-0.34	16.82	2.0	Pass
20 - 0	Secondary Horizontal	L2 1/2x2 1/2x1/4	148	-0.34	11.95	2.8	Pass
80 - 60	Top Girt	L3x3x1/4	7	-0.19	22.33	0.9	Pass
60 - 40	Top Girt	C7x12.25	49	-0.13	54.04	0.3	Pass
	$\begin{tabular}{ c c c c c c c } \hline Elevation & ft & \\ \hline 80 - 60 & \\ 60 - 40 & \\ 40 - 20 & \\ 20 - 0 & \\ 80 - 60 & \\ 60 - 40 & \\ 40 - 20 & \\ 20 - 0 & \\ 40 - 20 & \\ 20 - 0 & \\ 40 - 20 & \\ 20 - 0 & \\ 80 - 60 & \\ 60 - 40 & \\ \hline \end{tabular}$	Elevation ft Component Type $80 - 60$ Leg $80 - 60$ Leg $40 - 20$ Leg $20 - 0$ Leg $80 - 60$ Diagonal $60 - 40$ Diagonal $60 - 40$ Diagonal $40 - 20$ Diagonal $20 - 0$ Diagonal $40 - 20$ Horizontal $20 - 0$ Horizontal $40 - 20$ Secondary Horizontal $40 - 40$ Top Girt	Elevation Component Type Size ft Type Size $80 - 60$ Leg L4x4x3/8 $60 - 40$ Leg L5x5x1/2 $40 - 20$ Leg L6x6x1/2 $20 - 0$ Leg L6x6x5/8 $80 - 60$ Diagonal L2 1/2x2 1/2x1/4 $60 - 40$ Diagonal L2 1/2x2x1/4 $40 - 20$ Diagonal L3x3x5/16 $40 - 20$ Horizontal L2 1/2x2 1/2x1/4 $20 - 0$ Horizontal L2 1/2x2 1/2x1/4 $40 - 20$ Secondary Horizontal L2 1/2x2 1/2x1/4 $60 - 40$ Top Girt C7x12.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

ļ	١	2/	Ŵ	1	1	2	ſ	2
	ГС)	5	1	E		P	1
Е	N G	IN	I E	Е	R	I	N	

Date 15:44:38 05/11/22

ARMOR TOWER, INC 9 North Main

Job

Project

Client

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Everest Infrastructure #701770

T-Mobile CT11403A Wolcott/Andrews Rd 1

Designed by PB

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
							0.4 (b)	
T3	40 - 20	Top Girt	L2 1/2x2 1/2x1/4	93	-2.47	9.10	27.2	Pass
T4	20 - 0	Top Girt	L2 1/2x2 1/2x1/4	131	-4.15	6.38	65.1	Pass
T1	80 - 60	Inner Bracing	9/16	6	-0.02	0.11	14.4	Pass
T2	60 - 40	Inner Bracing	9/16	48	-0.00	0.11	4.2	Pass
T3	40 - 20	Inner Bracing	9/16	89	0.15	11.18	1.3	Pass
T4	20 - 0	Inner Bracing	9/16	127	0.31	11.18	2.8	Pass
							Summary	
						Leg (T4)	67.2	Pass
						Diagonal	44.3	Pass
						(T4)		
						Horizontal	60.5	Pass
						(T3)		
						Secondary	2.8	Pass
						Horizontal		
						(T4)		
						Top Girt	65.1	Pass
						(T4)		
						Inner	14.4	Pass
						Bracing (T1)		
						Bolt Checks	50.1	Pass
						RATING =	67.2	Pass

SS Tower Pad & 3Pier Calculations

Applied Factored Loads:OTM:1396Uplift:89DownLoad:101ΣDeadLoad:27.00Total Shear25.00	kip-ft kip kip kip	Client: EIP/TMO Project: Wolcott, CT 05/11/22 15:48 Code: TIA-222-G Specific Gravity: Soil Unit Weight:	2.65
→ 10.54ft	.4ft	Submerged Unit Wt: Concrete Unit Wt: Concrete f`c:	68.49 lb/ft ³ 150 lb/ft ³ 3000 psi
2.2ft 23.80ft Pier Depth: 2.5 Total Moment: 1614	ft kip-ft	Rebar Fy: Σ Concr Vol: Depth to Water:	60000 psi 48.4 cuyd 4.7 ft
OTM Safety Factor: Add Toe at Base of Pad?	0.75 TIA-G S	9.4.1	
Bearing Pressure: Soil Type @ Bearing SPT-N @ Bearing	<pre></pre>	5 fb(max): Fb:	1307 psf 9000 psf 14.5% Loaded
over carning moment capac	3644 kip ft		59.0% Loaded

Foundation Design per ACI 318

Global Check: OK

Toe:

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Elevation: 1006.38 ft () Latitude: 41.617693 Longitude: -73.004574

Wind

Results:

Wind Speed	117 Vmph	125 mph
10-year MRI	75 Vmph	CT State Builidng
25-year MRI	84 Vmph	Code Appendix N
50-year MRI	90 Vmph	New Haven CT
100-vear MRI	97 Vmph	

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs.	CC.2-1-CC.2-4, and Section 26.5.2
Date Accessed:	Wed May 11 2022	

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil		
S _s :	0.19	S _{D1} :	0.087
S ₁ :	0.054	Τ _L :	6
F _a :	1.6	PGA :	0.104
F _v :	2.4	PGA M :	0.165
S _{MS} :	0.303	F _{PGA} :	1.593
S _{M1} :	0.13	l _e :	1
S _{DS} :	0.202	C _v :	0.7
Seismic Design Category	В		

Seismic Design Category

Data Accessed:

Wed May 11 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

- - -

Results:

1.00 in.
15 F
50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Wed May 11 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

https://rfds-prod-web-core-secure.geo.cf.t-mobile.com/DataSheet/Printout/023934b3-46ea-44fc-9b1d-9cac9f71089d?layoutId=f101bbd7-4ada-4547-a... 1/11

Section 3 - Proposed Template Images

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

RAN Template:	A&L Template:
67D5D998Ė Indoor	67D5998E_1xAIR+10P+1QP

CT11403A_Anchor_10

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Section 5 - RAN Equipment

	Existing RAN Equipment					
	Template: 67D92C Inc	loor				
Enclosure	1	2				
Enclosure Type	(RBS 3206)	PBC 6200				
Baseband	DUW30 DUW30 DUG20 (RBS6601 (x 2)) (BB 6630 L1900) (L1900 L2100) (L2100) (L600 N600) (L1900 N600) (L2100) (L2100 N600) (L2100 N600 N600) (L2100 N600 N600) (L2100 N600 N600 N600) (L2100 N600 N600) (L2100 N600 N600 N600) (L2100 N600 N600 N600 N600 N600 N600 N600 N					
Hybrid Cable System	Ericsson 9x18 HCS *Select Length* Ericsson 6x12 HCS *Select Length & AWG* (x 3)					
Radio	RU22 (x 6) U2100					

Proposed RAN Equipment							
	Template: 67D5D998E Indoor						
Enclosure	1	2	3				
Enclosure Type	(RBS 3206)	Ericsson - 19 Inch Rack	Power 6230				
Baseband	DUW30 U2100 DUG20 G1900 RBS6601 (x 2) BB 6630 L2100 L1900 BB 6630 L700 L600 N600	RP 6651 L2500 N2500					
Hybrid Cable System	Ericsson 6x12 HCS *Select Length & AWG* (x 3	PSU 4813 vR4A (Kit) Ericsson Hybrid Trunk 6/24 4AWG 50m					
Transport System		CSR IXRe V2 (Gen2)					
RAN Scope of Work	RAN Scope of Work:						

Remove and return all cabinet radios from existing base station cabinet.

Add (1) 19 inch Rack.

Add (1) iXRe Router to new 19 inch Rack.

Add (1) RP 6651 for L2500/N2500 to new 19 inch Rack

Add (1) PSU4813 Voltage Booster to new 19 inch Rack.

Add (1) power 6230..

Existing : (3) 6x12, (1) 9x18

Remove all Coax, remove (1) 9x18

Add (1) 6X24 HCS terminating at 19 inch Rack Connect DC for the AIR6419 B41 to the PSU4813 Voltage Booster.

RAN Template: 67D5D998E Indoor

CT11403A_Anchor_10

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Section 6 - A&L Equipment

Existing Template: 67D92C_2xAIR+1OP Proposed Template: 67D5998E_1xAIR+1OP+1QP

	Sector 1 (Existing) view from behind							
Coverage Type	Coverage Type (A - Outdoor Macro)							
Antenna			2	2		:	3	
Antenna Model	Ericsson - AIR21 KRC118023- 1_B2A_B4P (Quad)		RFS - APX	VAARR24_43	-U-NA20 (Oct	0)	Ericsson - AIR21 KRC11 1_B2P_B4A (Quad)	8023-
Azimuth	50		50				50	
M. Tilt	0		0				0	
Height	77		77				77	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L1900 G1900	(U2100)	L700 L600 N600	L700 L600 N600			L2100	
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	3	3	2	2			3	
Cables	Fiber Jumper - 15 ft. (x2)	1-1/4" Coax - 124 ft. (x2)	Coax Jumper (x2) Fiber Jumper - 15 ft.	Coax Jumper (x2)			Fiber Jumper - 15 ft. (x2)	
TMAs		Generic Twin Style 1B - AWS (AtAntenna)						
Diplexers / Combiners								
Radio			Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)				
Sector Equipment								
Unconnected Equipment:								
Cable: 1-1/4" Coax	: - 124 ft. Cable: 1-1/4" C	coax - 124 ft.						
Scope of Work:								
Replace LB Dual in Position 2 with (1) LB/MB Octo. Replace RRUS11 B12 in Position 2 with (1) Radio 4449 B71+B12 for L600 and L700.								

CT11403A_Anchor_10

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Sector 1 (Proposed) view from behind Coverage Type (A - Outdoor Macro) Antenna 1 2 3 Antenna Model AIR 6419 B41 (Active Antenna - Massive MIMO) [RFS - APXVAARR24_43-U-NA20 (Octo)] Commscope_VV-65A-R1 (Quad) Azimuth (50) (50) (50) M. Tilt 0 0 0 Height (77) (77) (77) Ports **P1 P2 P3 P4 P5 P6 P7 P8** Active Tech. L2500 N2500 L2500 N2500 L700 L700 (L2100) (L1900) (L2100) (L1900) (G1900) (U2100) (G1900) (U2100) (L600) (L600) N600 N600 Dark Tech. **Restricted Tech** Decomm. Tech. E. Tilt 2 (2) 2 (2) 3 3 Cables Fiber Jumper (x2) Fiber Jumper (x2) Coax Coax Coax Jumper (x2) Coax Jumper (x2) Jumper Jumper Fiber Jumper Fiber Jumper (x2) (x2) Fiber Fiber Jumper Jumper TMAs **Diplexers** / Combiners Radio SHARED SHARED Radio Radio 4460 B25+B66 4449 Radio (At Antenna) Radio 4460 B25+B66 B71+B8 4449 (At Antenna) 5 (At B71+B8 Antenn 5 (At a) Antenn a) Sector Equipment **Unconnected Equipment:** Scope of Work: There will be Three antennae per sector. Remove all TMAs. Remove all diplexers.

Remove all Coaxial Lines.

Replace AIR21 B2A/B4P from Position 1 with (1) AIR6419 B41 for L2500 and N2500.

Replace AIR21 B2P/B4A with (1) mid-band Quad VV-65A-R1 in Position 3 .

Add (1) Radio 4460 B25+B66 for L2100, L1900 (Both carriers), and GSM to Position 3 at antenna.

Ensure RET control is enabled for all technology layers according to the Design Documents

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template: 67D5D998E Indoor A&L Template: 67D5998E_1xAIR+1OP+1QP

CT11403A_Anchor_10

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Sector 2 (Existing) view from behind								
Coverage Type	A - Outdoor Macro							
Antenna	1			2	2		3	
Antenna Model	Ericsson - AIR21 KRC118023- 1_B2P_B4A (Quad)		RFS - APX	VAARR24_43	-U-NA20 (Oct	0)	Ericsson - AIR21 KRC118 1_B2A_B4P (Quad)	8023-
Azimuth	180		180				180	
M. Tilt	0		0				0	
Height	77		(77)				77	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L2100		L700 L600 N600	L700 L600 N600			(L1900) (G1900)	U2100
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	3		2	2			3	3
Cables	Fiber Jumper - 15 ft. (x2)		Coax Jumper (x2) Fiber Jumper - 15 ft.	Coax Jumper (x2)			Fiber Jumper - 15 ft. (x2)	1-1/4" Coax - 124 ft. (x2)
TMAs								Generic Twin Style 1B - AWS (AtAntenna)
Diplexers / Combiners								
Radio			Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)				
Sector Equipment								
Unconnected Equipment:								
Cable: 1-1/4" Coax - 124 π.								
Replace LB Dual in Position 2 with (1) LB/MB Octo. Replace RRUS11 B12 in Position 2 with (1) Radio 4449 B71+B12 for L600 and L700. *A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.								

Coverage Type

CT11403A_Anchor_10

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

A - Outdoor Macro 1 2

Antenna	1		2				3	
Antenna Model	AIR 6419 B41 (Active Antenna - Massive MIMO)		(RFS - APXVAARR24_43-U-NA20 (Octo))				Commscope_VV-65A-R1 (Quad)	
Azimuth	(180)		180				180	
M. Tilt	0		0				0	
Height	77		77				77	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L2500 N2500	L2500 N2500	L700 L600 N600	L700 L600 N600			L2100 L1900 G1900 U2100	L2100 L1900 G1900 U2100
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2	2			3	3
Cables	Fiber Jumper (x2)	(Fiber Jumper (x2)	Coax Jumper (x2) Fiber Jumper	Coax Jumper (x2) Fiber Jumper			Coax Jumper (x2) Fiber Jumper	Coax Jumper (x2) Fiber Jumper
TMAs								
Diplexers / Combiners								
Radio			Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)			Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)
Sector Equipment								
Unconnected Equip	ment:							

Scope of Work:

There will be Three antennae per sector.

Remove all TMAs.

Remove all diplexers.

Remove all Coaxial Lines.

Replace AIR21 B2A/B4P from Position 1 with (1) AIR6419 B41 for L2500 and N2500.

Replace AIR21 B2P/B4A with (1) mid-band Quad VV-65A-R1 in Position 3 .

Add (1) Radio 4460 B25+B66 for L2100, L1900 (Both carriers), and GSM to Position 3 at antenna.

Ensure RET control is enabled for all technology layers according to the Design Documents

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template: 67D5D998E Indoor A&L Template: 67D5998E_1xAIR+1OP+1QP

CT11403A_Anchor_10

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Sector 3 (Existing) view from behind								
Coverage Type	A - Outdoor Macro							
Antenna	1			2	2		3	
Antenna Model	Ericsson - AIR21 KRC118023- 1_B2P_B4A (Quad)		RFS - APX	VAARR24_43	-U-NA20 (Oct	0)	Ericsson - AIR21 KRC118 1_B2A_B4P (Quad)	8023-
Azimuth	310		310				310	
M. Tilt	0		0				0	
Height	77		(77)				77	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L2100		L700 L600 N600	L700 L600 N600			(L1900) (G1900)	U2100
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	3		2	2			3	3
Cables	Fiber Jumper - 15 ft. (x2)		Coax Jumper (x2) Fiber Jumper - 15 ft.	Coax Jumper (x2)			Fiber Jumper - 15 ft. (x2)	1-1/4" Coax - 124 ft. (x2)
TMAs								Generic Twin Style 1B - AWS (AtAntenna)
Diplexers / Combiners								
Radio			Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)				
Sector Equipment								
Unconnected Equipment:								
Cable: 1-1/4" Coax - 124 ft. Cable: 1-1/4" Coax - 124 ft. Cable: 1-1/4" Coax - 124 ft.								
Scope of Work:								
Replace LB Dual in Replace RRUS11 B	Replace LB Dual in Position 2 with (1) LB/MB Octo. Replace RRUS11 B12 in Position 2 with (1) Radio 4449 B71+B12 for L600 and L700.							
*A dashed border ind	A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.							

CT11403A_Anchor_10

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Radio 4460 B25+B66

Radio 4460 B25+B66

(At Antenna)

(At Antenna)

Sector 3 (Proposed) view from behind Coverage Type (A - Outdoor Macro) Antenna 1 2 3 Antenna Model AIR 6419 B41 (Active Antenna - Massive MIMO) [RFS - APXVAARR24_43-U-NA20 (Octo)] Commscope_VV-65A-R1 (Quad) Azimuth (310) (310) (310) M. Tilt 0 0 (0) Height (77) (77) (77) Ports **P1 P2 P3 P4 P5 P6 P7 P8** Active Tech. L2500 N2500 L2500 N2500 L700 L700 (L2100) (L1900) (L2100) (L1900) (G1900) (U2100) (G1900) (U2100) (L600) (L600) N600 N600 Dark Tech. **Restricted Tech** Decomm. Tech. E. Tilt 2 (2) 2 (2) 3 3 Cables Fiber Jumper (x2) Fiber Jumper (x2) Coax Coax Coax Jumper (x2) Coax Jumper (x2) Jumper Jumper Fiber Jumper Fiber Jumper (x2) (x2) Fiber Fiber Jumper Jumper TMAs **Diplexers** / Combiners Radio SHARED

SHARED

B71+B8

Antenn a)

Radio

4449

5 (At

Radio

4449

5 (At

a)

B71+B8

Antenn

Unconnected Equipment:

Sector Equipment

Scope of Work:

There will be Three antennae per sector.

Remove all TMAs.

Remove all diplexers.

Remove all Coaxial Lines.

Replace AIR21 B2A/B4P from Position 1 with (1) AIR6419 B41 for L2500 and N2500.

Replace AIR21 B2P/B4A with (1) mid-band Quad VV-65A-R1 in Position 3 .

Add (1) Radio 4460 B25+B66 for L2100, L1900 (Both carriers), and GSM to Position 3 at antenna.

Ensure RET control is enabled for all technology layers according to the Design Documents

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

Enclosure Type

Power 6230

Section 7 - Power Systems Equipment							
Existing Power Systems Equipment							
This section is intentionally blank							
	Proposed Power Systems Equipment						
Enclosure	e 1						

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11403A

Wolcott/ Andrews Rd._1 Andrews Road Wolcott, Connecticut 06716

May 30, 2022

EBI Project Number: 6222003530

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	66.18 %				

May 30, 2022

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTI1403A - Wolcott/ Andrews Rd._I

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **Andrews Road** in **Wolcott, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at Andrews Road in Wolcott, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 6) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 7) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 8) I LTE Traffic channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 9) I LTE Broadcast channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 10) I NR Traffic channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
- 11) I NR Broadcast channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 12) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 13) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 14) The antennas used in this modeling are the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s) in Sector A, the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s) in Sector B, the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 2500 MHz / 2500 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 2000 MHz / 2100 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 2500 MHz / 2100 MHz / 2100 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and

associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 15) The antenna mounting height centerline of the proposed antennas is 77 feet above ground level (AGL).
- 16) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 17) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	Ericsson AIR 6419	Make / Model:	Ericsson AIR 6419	Make / Model:	Ericsson AIR 6419
Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz
Gain:	22.05 dBd / 15.55 dBd / 22.05 dBd / 15.55 dBd	Gain:	22.05 dBd / 15.55 dBd / 22.05 dBd / 15.55 dBd	Gain:	22.05 dBd / 15.55 dBd / 22.05 dBd / 15.55 dBd
Height (AGL):	77 feet	Height (AGL):	77 feet	Height (AGL):	77 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W)	240.00 Watts	Total TX Power (W):	240.00 Watts	Total TX Power (W):	240.00 Watts
ERP (VV):	31,011.95	ERP (VV):	31,011.95	ERP (W):	31,011.95
Antenna AI MPE %	22.12%	Antenna BI MPE %	22.12%	Antenna CI MPE %:	22.12%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd
Height (AGL):	77 feet	Height (AGL):	77 feet	Height (AGL):	77 feet
Channel Count:	5	Channel Count:	5	Channel Count:	5
Total TX Power (W)	200.00 Watts	Total TX Power (W):	200.00 Watts	Total TX Power (W):	200.00 Watts
ERP (VV):	4,059.02	ERP (VV):	4,059.02	ERP (VV):	4,059.02
Antenna A2 MPE %	6.91%	Antenna B2 MPE %	6.91%	Antenna C2 MPE %:	6.91%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Commscope VV-65A- R I	Make / Model:	Commscope VV-65A- R I	Make / Model:	Commscope VV-65A- R I
Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz
Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd / 16.05 dBd	Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd / 16.05 dBd	Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd / 16.05 dBd
Height (AGL):	77 feet	Height (AGL):	77 feet	Height (AGL):	77 feet
Channel Count:	10	Channel Count:	10	Channel Count:	10
Total TX Power (W)	420.00 Watts	Total TX Power (W):	420.00 Watts	Total TX Power (W):	420.00 Watts
ERP (W):	15,863.03	ERP (VV):	15,863.03	ERP (VV):	15,863.03
Antenna A3 MPE %	11.31%	Antenna B3 MPE %	11.31%	Antenna C3 MPE %:	11.31%

Site Composite MPE %						
Carrier	MPE %					
T-Mobile (Max at Sector A):	40.34%					
Verizon	22.93%					
Personal Vision	0%					
SNET TMRS	2.91%					
Site Total MPE % :	66.18%					

T-Mobile MPE % Per Sector						
T-Mobile Sector A Total:	40.34%					
T-Mobile Sector B Total:	40.34%					
T-Mobile Sector C Total:	40.34%					
Site Total MPE % :	66.18%					

T-Mobile Maximum MPE Power Values (Sector A)							
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile 2500 MHz LTE IC & 2C Traffic	I	9619.47	77.0	68.60	2500 MHz LTE IC & 2C Traffic	1000	6.86%
T-Mobile 2500 MHz LTE IC & 2C Broadcast	I	717.84	77.0	5.12	2500 MHz LTE IC & 2C Broadcast	1000	0.51%
T-Mobile 2500 MHz NR Traffic	I	19238.94	77.0	137.21	2500 MHz NR Traffic	1000	13.72%
T-Mobile 2500 MHz NR Broadcast	I	1435.69	77.0	10.24	2500 MHz NR Broadcast	1000	1.02%
T-Mobile 600 MHz LTE	2	591.73	77.0	8.44	600 MHz LTE	400	2.11%
T-Mobile 600 MHz NR	I	1577.94	77.0	11.25	600 MHz NR	400	2.81%
T-Mobile 700 MHz LTE	2	648.82	77.0	9.25	700 MHz LTE	467	1.98%
T-Mobile 1900 MHz GSM	4	1076.77	77.0	30.72	1900 MHz GSM	1000	3.07%
T-Mobile 1900 MHz LTE	2	2153.53	77.0	30.72	1900 MHz LTE	1000	3.07%
T-Mobile 2100 MHz UMTS	2	1208.15	77.0	17.23	2100 MHz UMTS	1000	1.72%
T-Mobile 2100 MHz LTE	2	2416.30	77.0	34.47	2100 MHz LTE	1000	3.45%
						Total:	40.34%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)				
Sector A:	40.34%				
Sector B:	40.34%				
Sector C:	40.34%				
T-Mobile Maximum	40.34%				
MPE % (Sector A):					
Site Total:	66.18%				
Site Compliance Status:	COMPLIANT				

The anticipated composite MPE value for this site assuming all carriers present is **66.18%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.