

Filed by:

Kri Pelletier, Property Specialist - SBA Communications 134 Flanders Rd., Suite 125, Westborough, MA 01581 508.251.0720 x 3804 - kpelletier@sbasite.com

October 5, 2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Notice of Exempt Modification 2-4 Volunteer Drive Windsor Locks, CT 06096 Sprint Site #: NV2.5_CT43XC828 N 41° 55′ 41.18″ W 72° 38′ 48.42″

Dear Ms. Bachman:

Sprint currently maintains antennas at the 115-foot level of the existing 200-foot Self Support Tower at 2-4 Volunteer Drive in Windsor Locks, CT. The tower is owned by MCM Acquisition 2017, LLC, an SBA entity. (SBA recently acquired the site from MCM). The property is owned by the Town of Windsor Locks. Sprint now intends to add (3) newer technology cell antennas at the 115-foot level of the tower.

Please note: previous approval was given by the Siting Council on 9/26/14 under EM-SPRINT-165-140911. A Notification of Construction Not Complete was sent 11/12/15. Sprint now intends to resume construction. The proposed full scope of work is as follows:

Remove: n/a

Remove and Replace: n/a

Install:

- (3) RFS APXVSPP18-C-A20 panel antennas
- (3) Alcatel-Lucent TD-RRH8x20-25 RRHs
- (1) 1-1/4" fiber
- (1) RRU Mount Kit Sitepro1
- (1) Sector Frame Stiff Arm Kit Sitepro 1

Existing Equipment to Remain (Including entitlements):

- (3) RFS APXVTM14-C-I20 Panel Antennas
- (3) Alcatel-Lucent 800 MHz RRHs
- (3) Alcatel-Lucent 1900 MHz RRHS
- (3) 1-1/4" fiber
- (1) PCTEL GPS-TMG-HR-26N (at 60')
- (1) 1/2" line (at 60')

This facility was approved prior to the Council's jurisdiction, on 6/29/1999 by the Town of Windsor Locks Planning Department. Per Building Official Mark Doody, Zoning Sign-off was part of the building permit approval process for the 200' tower. There were no post-constructions conditions placed on the tower. This modification complies with all conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16.50j-72(b)(2). In accordance with R.C.S.A. § 16.50j-73, a copy of this letter is being sent to J. Christopher Kervick, the Town of Windsor Locks' First Selectman and representative for the Town as Property Owner, as well as Town Planner, Jennifer Rodriguez. (Separate notice is not being sent to tower owner, as it belongs to SBA.)

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16.50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modification will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-referenced telecommunication facility constitute an exempt modifications under R.C.S.A. § 16-50j-72(b)(2).

Sincerely

Kri Pelletier

Property Specialist

SBA COMMUNICATIONS CORPORATION

134 Flanders Rd., Suite 125

Westborough, MA 01581

508.251.0720 x3804 + T

508.366.2610 + F

203.446.7700 + C

kpelletier@sbasite.com

Attachments

cc: J. Christopher Kervick., First Selectman / with attachments

Town of Windsor Locks, 50 Church Street, Windsor Locks, CT 06096

Jennifer Rodriguez, Town Planner / with attachments

Town of Windsor Locks, 50 Church Street, Windsor Locks, CT 06096

POWER DENSITY

SPRINT Site Inventory and Power Data by Antenna

Sector:	A	Sector:	В	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20
Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd
Height (AGL):	116.8 feet	Height (AGL):	116.8 feet	Height (AGL):	116.8 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W);	220 Watts	Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts
ERP (W):	7,537.38	ERP (W):	7,537.38	ERP (W):	7,537.38
Antenna A1 MPE%	2.50 %	Antenna B1 MPE%	2.50 %	Antenna C1 MPE%	2.50 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVTM14-C-120	Make / Model:	RFS APXVTM14-C-120	Make / Model:	RFS APXVTM14-C-120
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	115 feet	Height (AGL):	115 feet	Height (AGL):	115 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE%	1.88 %	Antenna B2 MPE%	1.88 %	Antenna C2 MPE%	1.88 %

Site Composite MPE%				
Carrier MPE%				
SPRINT - Max per sector	4.38 %			
AT&T	0.99 %			
T-Mobile	0.85 %			
Verizon Wireless	3.16 %			
Clearwire	0.32 %			
Windsor Fire Dept	1.44 %			
Site Total MPE %:	11.14 %			

SPRINT Sector A Total:	4.38 %
SPRINT Sector B Total:	4.38 %
SPRINT Sector C Total:	4.38 %
Site Total:	11.14 %

SPRINT _ Max Values per Frequency Band / Technology Per Sector	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Sprint 850 MHz CDMA	1	437.55	116.8	1.28	850 MHz	567	0.23%
Sprint 850 MHz LTE	2	437.55	116.8	2.56	850 MHz	567	0.45%
Sprint 1900 MHz (PCS) CDMA	5	622.47	116.8	9.11	1900 MHz (PCS)	1000	0.91%
Sprint 1900 MHz (PCS) LTE	2	1,556.18	116.8	9.11	1900 MHz (PCS)	1000	0.91%
Sprint 2500 MHz (BRS) LTE	8	778.09	115	18.84	2500 MHz (BRS)	1000	1.88%
						Total:	4.38%

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

2 VOLUNTEER DRIVE #4

Location 2 VOLUNTEER DRIVE #4

Mblu 34/62/80//

UID 00023300

Owner WINDSOR LOCKS TOWN OF

Assessment \$1,292,200

PID 1943

Building Count 1

Current Value

Assessment					
Valuation Year Improvements Land Total					
2013	\$929,800	\$362,400	\$1,292,200		

Owner of Record

Owner

WINDSOR LOCKS TOWN OF

Sale Price

\$0

Co-Owner Address

50 CHURCH ST

Certificate

Book & Page 113/299

Sale Date

11/16/1972

WINDSOR LOCKS, CT 06096

Ownership History

Ownership History					
Owner Sale Price Certificate Book & Page Sale Date					
WINDSOR LOCKS TOWN OF \$0 113/299 11/16/1972					

Building Information

Building 1 : Section 1

Year Built:

1975

Living Area:

16,268

Replacement Cost:

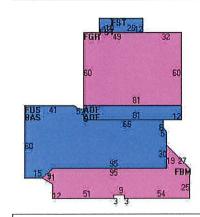
\$1,619,556 75

Building Percent Good:

Replacement Cost Less Depreciation:

\$1,214,700

Building Attributes				
Field Description				
STYLE	Other Municip			
MODEL	Ind/Comm			
Stories:	1			
Occupancy				
Exterior Wall A	Brick			


Building Photo

(http://images.vgsi.com/photos/WindsorlocksCTPhotos//00 \00\32/13.jpg)

Exterior Wall B		
Roof Structure	Flat	
Roof Cover	Tar & Gravel	
Interior Wall A	Drywall/Sheet	
Interior Wall B	Minim/Masonry	
Interior Floor A	Ceram Clay Til	
Interior Floor B	Carpet	
Heating Fuel	Oil	
Heating Type	Forced Air-Duc	
AC Type	Central	
Bldg Use	Municipal	
Total Rooms		
Total Bedrooms	00	
Total Baths	0	
Fireplace Types		
Fireplaces		
Heat/AC	Heat/AC Pkg	
Frame Type	Masonry	
Baths/Plumbing	Average	
Ceiling/Wall	Ceil and Walls	
Rooms/Prtns	Average	
Wall Height	11.00	
% Comn Wall	0.00	

Building Layout

	Building Sub-Areas	s (sq ft)	<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	5,418	5,418
FUS	Upper Sty	5,418	5,418
FBM	Fin Bsmt	3,056	3,056
AOF	Office	1,944	1,944
FST	Utility	432	432
FGR	Fin Garage	4,860	0
		21,128	16,268

Extra Features

	Extra Features <u>Legend</u>					
Code	Code Description Size Value					
SPRK	Sprinklers	15836.00 S.F.	\$9,500	1		

Land

Land Use		Land Line Value	ation
Use Code	901I	Size (Acres)	11.20
Description	Municipal	Frontage	947
Zone	RESA	Depth	0
Neighborhood	Í	Assessed Value	\$362,400
Alt Land Appr	No		
Category			

Outbuildings

Outbuildings						<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
GAR1	Garage	G	Good	2592.00 S.F.	\$50,500	1
PAV	Paving	А	Asphalt	46600.00 S.F.	\$38,400	1

- 3							
	GAR1	Garage	Α	Average	800.00 S.F.	\$15,000	1

Valuation History

Assessment						
Valuation Year Improvements Land Total						
2013	\$927,000	\$362,400	\$1,289,400			
2012	\$927,000	\$236,300	\$1,163,300			
2007	\$1,110,200	\$205,900	\$1,316,100			

⁽c) 2016 Vision Government Solutions, Inc. All rights reserved.

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT43XC828

Windsor Locks / MCM 2-4 Volunteer Drive Windsor Locks, CT 06096

September 26, 2017

EBI Project Number: 6217004203

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of					
FCC general	11.14 %				
population	11.14 /0				
allowable limit:					

September 26, 2017

SPRINT Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Emissions Analysis for Site: CT43XC828 – Windsor Locks / MCM

EBI Consulting was directed to analyze the proposed SPRINT facility located at **2-4 Volunteer Drive**, **Windsor Locks**, **CT**, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 850 MHz Band is approximately 567 μ W/cm². The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at **2-4 Volunteer Drive, Windsor Locks, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 3) 5 CDMA channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
- 4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-C-120 for transmission in the 850 MHz, 1900 MHz (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are 116.8 feet and 115 feet above ground level (AGL) for Sector A, 116.8 feet and 115 feet above ground level (AGL) for Sector B and 116.8 feet and 115 feet above ground level (AGL) for Sector C.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

SPRINT Site Inventory and Power Data by Antenna

Sector:	A	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20
Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd
Height (AGL):	116.8 feet	Height (AGL):	116.8 feet	Height (AGL):	116.8 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts
ERP (W):	7,537.38	ERP (W):	7,537.38	ERP (W):	7,537.38
Antenna A1 MPE%	2.50 %	Antenna B1 MPE%	2.50 %	Antenna C1 MPE%	2.50 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVTM14-C-120	Make / Model:	RFS APXVTM14-C-120	Make / Model:	RFS APXVTM14-C-120
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	115 feet	Height (AGL):	115 feet	Height (AGL):	115 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE%	1.88 %	Antenna B2 MPE%	1.88 %	Antenna C2 MPE%	1.88 %

Site Composite MPE%					
Carrier	MPE%				
SPRINT – Max per sector	4.38 %				
AT&T	0.99 %				
T-Mobile	0.85 %				
Verizon Wireless	3.16 %				
Clearwire	0.32 %				
Windsor Fire Dept	1.44 %				
Site Total MPE %:	11.14 %				

SPRINT Sector A Total:	4.38 %
SPRINT Sector B Total:	4.38 %
SPRINT Sector C Total:	4.38 %
Site Total:	11.14 %

SPRINT _ Max Values per Frequency Band / Technology Per Sector	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²) Frequency (MHz)		Allowable MPE (µW/cm²)	Calculated % MPE
Sprint 850 MHz CDMA	1	437.55	116.8	1.28	850 MHz	567	0.23%
Sprint 850 MHz LTE	2	437.55	116.8	2.56	850 MHz	567	0.45%
Sprint 1900 MHz (PCS) CDMA	5	622.47	116.8	9.11	1900 MHz (PCS)	1000	0.91%
Sprint 1900 MHz (PCS) LTE	2	1,556.18	116.8	9.11	1900 MHz (PCS)	1000	0.91%
Sprint 2500 MHz (BRS) LTE	8	778.09	115	18.84	2500 MHz (BRS)	1000	1.88%
						Total:	4.38%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (%)
Sector A:	4.38 %
Sector B:	4.38 %
Sector C:	4.38 %
SPRINT Maximum	4.38 %
Total (per sector):	4.36 %
Site Total:	11.14 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **11.14** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Structural Analysis for **SBA Network Services, Inc.**

195.0' Self Support (195.0' AGL)

SBA Site Name: Windsor Locks @ Volunteer SBA Site ID: CT22108-A-03 Sprint Nextel Site Name: Windsor Locks @ Volunteer Sprint Nextel Site ID: CT43XC828

Site Address: 2-4 Volunteer Drive, Windsor Locks, CT 06096

FDH Velocitel Project Number 17QKYA1400

Analysis Results

Tower Components	63.3%	Sufficient
Foundation	40.6%	Sufficient

Prepared By:

Stephan Rawles, El Project Engineer I

Reviewed By:

Dennis D. Abel, PE Director

CT License No. 23247

Velocitel, Inc., d.b.a. FDH Velocitel

6521 Meridien Drive Raleigh, NC, 27616 (919) 755-1012 Structural@fdhvelocitel.com

August 23, 2017

Prepared pursuant to the TIA/EIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and 2016 Connecticut Building Code

STR-RPT-10100 RG-1.3.15

TABLE OF CONTENTS

EXECUTIVE SUMMARY		3
Conclusions	3	
Recommendations	3	
APPURTENANCE LISTING		4
RESULTS		5
GENERAL COMMENTS		6
LIMITATIONS		6
APPENDIX		7

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Velocitel performed a structural analysis of the existing Self Support located in Windsor Locks, CT to determine whether the tower is structurally adequate to support the antenna configuration in place per **Table 1** pursuant to the *TIA/EIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and 2016 Connecticut Building Code*. Information pertaining to the antenna loading, current tower geometry, member sizes, and below grade parameters was obtained from:

Source	Document Type	Reference	Date
Pirod, Inc.	Tower & Foundation Drawings	Eng File No. A-115761-1	January 10, 2001
Tectonic Engineering Consultants P.C.	Geotechnical Report	Project No. 2285.01	May 18, 1999
FDH Velocitel	TIA Inspection	Project No. 17QALE1500	April 10, 2017
SBA Network Services, Inc.	-	-	-

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an *ultimate 3-second gust wind speed* of 125 mph converted to a *nominal 3-second gust wind speed* of 97 mph per Section 1609.3 and Appendix N as required for use in the *TIA-222-G Standard* per Exception #5 of Section 1609.1.1. Exposure Category B and Risk Category II were used in this analysis.

Note: Per Section 2.7.3 of the ANSI/TIA-222-G Standard, the seismic/earthquake loading effects can be ignored if the spectral response acceleration at short periods (S_s) is less than or equal to 1.00. The tower's location mandates a design S_s of less than 1.00, thus seismic loading was not considered as part of the analysis of this structure.

Conclusions

With the antenna configuration in place per **Table 1** we have determined the tower stress level to be sufficient and the foundation(s) to be sufficient pursuant to the requirements stipulated by *TIA/EIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and 2016 Connecticut Building Code* provided the **Recommendations** listed below are satisfied. For a more detailed description of the analysis of the tower, see the **Results** section of this report.

Our structural analysis has been performed assuming all information provided to FDH Velocitel is accurate (i.e., the structure member information, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the current analysis standards are met with the antenna configuration in place per **Table 1**, we have the following recommendations:

- 1. Feed lines to be installed as shown in **Figure 1** in the **Appendix**.
- 2. RRU/RRH Stipulation: The equipment may be installed in any arrangement as determined by the client.

APPURTENANCE LISTING

The antennas and equipment, with their corresponding feed lines, considered for this analysis are shown in **Table 1**. If the actual layout determined in the field deviates from the layout, FDH Velocitel should be contacted to perform a revised analysis.

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (ft.)	Description	Feed Lines	Carrier	Mount Elevation (ft.)	Mount Type
203.4	(1) Andrew DB224-A	(1) 7/8"		193.4	Direct
183.7	(5) Andrew 20' Dipoles w/ (4) Element			171.5	
182.8	(1) 2.5"Ø x 20.0' Omni	(8) 7/8"	WLPD		(3) 15' T-Frames
180.6	(1) 1.3"Ø x 13.0' Omni	(0) 110		171.5	(3) 15 1-Flames
179.1	(1) 1.3"Ø x 10.0' Omni				
168.3	(1) Raycap DC6-48-60-18-8F			167.5	Direct
165	(3) Andrew 8.0'x1.0'x6.5" Panel				
164.8	(3) Kathrein 80010121	(9) 1-5/8"	AT&T	161.5	(3) 15' T-Frames
	(3) 14.5"x9.5"x3.0" TMA	(1) 1-5/16" Conduit		101.5	(3) 13 1-11ames
163.9	(3) Ericsson RRUS 11 B12				
146.8	(1) Raycap RRFDC-3315-PF-48				Direct
	(1) 6.0' x 1.0' x 6.5" Panel	(12) 1-5/8"	Verizon	146	
145.7	(2) Amphenol BXA-70063/6CF-EDIN	(1) 1-1/4"			(3) 12.5' T-Frames
	(3) Antel BXA-171063-12CF-EDIN-5				(5) 12.5 1-1 fames
145.5	(3) Alcatel-Lucent 9442 RRH2x40 AWS				
	(3) EMS RR90-17-02DP		T-Mobile	135	
138.3	(3) RFS 4.7'x1.1'x3.5' Panel	(18) 1-5/8"			(3) 15' T-Frames
	(3) 7" x 6" x 3" TMA	(10) 1 0/0			(6) 16 111411166
137.8	(3) Andrew LNX-6515DS-A1M				
116.8	(3) RFS APXVSPP18-C-A20				
115	(3) RFS APXVTM14-C-I20			112.3	(3) 15' T-Frames
110.0	(3) Alcatel-Lucent TD-RRH8x20-25	(4) 1-1/4" Fiber	Sprint	100.0	B: 1
110.3	(3) Alcatel-Lucent 800 MHz RRH			109.6	Direct
107.6	(3) Alcatel-Lucent 1900 MHz RRH			106.5	Direct
104.6	(1) Andrew 3.3' Dish				
104	(1) Andrew VHLP1-23-DW1	(2) 1/2"	01	101.4	(3) 1.3' Standoffs
400.0	(3) Argus LLPX310R-V1	(1) 1-5/16" Conduit	Clearwire		` '
103.8	(3) Alcatel-Lucent SPI-22132825WB	⊣ `´		101.0	D: 1
102.4	(1) 12" x 12" x 6.38" Junction Box	(4) 4/0"	I belie ever	101.8	Direct
75.9	(1) 3.5" Ø x 8" GPS	(1) 1/2"	Unknown	74	(1) 3.5' Standoff
60	(1) PCTEL GPS-TMG-HR-26N	(1) 1/2"	Sprint	60	Direct

Proposed Carrier Final Loading:

Antenna Elevation (ft.)	Description	Feed Lines	Carrier	Mount Elevation (ft.)	Mount Type
116.8	(3) RFS APXVSPP18-C-A20				
115	(3) RFS APXVTM14-C-I20 (3) Alcatel-Lucent TD-RRH8x20-25	(4) 1-1/4" Fiber		112.3	(3) 15' T-Frames
110.3	(3) Alcatel-Lucent 800 MHz RRH	()	Sprint	109.6	Direct
107.6	(3) Alcatel-Lucent 1900 MHz RRH			106.5	Direct
60	(1) PCTEL GPS-TMG-HR-26N	(1) 1/2"		60	Direct

RESULTS

The following material grades for individual members were used for analysis:

Table 2 - Material Grade

Member Type	Material Grade	
Legs	A572-50	
Bracing	A36 & A572-50	
Anchor Rods	A687	

Table 3 and **Table 4** display the summary of capacities for the analyzed structure and its additional components. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. **Table 5** displays the maximum dish rotations at service winds speeds.

If the assumptions outlined in this report differ from actual field conditions, FDH Velocitel should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the **Appendix** for detailed modeling information.

Table 3 - Structure Member Capacities

Section No.	Elevation (ft.)	Component Type	Size	% Capacity	Pass / Fail
T1	195 - 185	Leg	1 3/4	2.7	Pass
T2	185 - 170	Leg	1 3/4	13.2	Pass
T3	170 - 150	Leg	2	30.6	Pass
T4	150 - 140	Leg	Pirod 105244	27.7	Pass
T5	140 - 120	Leg	Pirod 105217	34.7	Pass
T6	120 - 100	Leg	Pirod 105218	36.7	Pass
T7	100 - 80	Leg	Pirod 105218	48.9	Pass
T8	80 - 60	Leg	Pirod 105219	45.4	Pass
T9	60 - 40	Leg	Pirod 105219	53.6	Pass
T10	40 - 20	Leg	Pirod 105220	47.9 48.0 (b)	Pass
T11	20 - 0	Leg	Pirod 105220	53.6	Pass
T1	195 - 185	Diagonal	3/4	8.2	Pass
T2	185 - 170	Diagonal	3/4	24.8	Pass
T3	170 - 150	Diagonal	7/8	32.5	Pass
T4	150 - 140	Diagonal	L2 1/2x2 1/2x3/16	39.9 42.2 (b)	Pass
T5	140 - 120	Diagonal	L2 1/2x2 1/2x3/16	53.0 54.4 (b)	Pass
Т6	120 - 100	Diagonal	L3x3x3/16	46.0 57.3 (b)	Pass
T7	100 - 80	Diagonal	L3x3x5/16	37.9	Pass
T8	80 - 60	Diagonal	L3x3x5/16	47.6	Pass
T9	60 - 40	Diagonal	L3x3x5/16	60.2	Pass
T10	40 - 20	Diagonal	L3 1/2x3 1/2x5/16	47.5	Pass
T11	20 - 0	Diagonal	L3 1/2x3 1/2x5/16	63.3	Pass
T1	195 - 185	Horizontal	3/4	1.1	Pass
T2	185 - 170	Horizontal	3/4	8.5	Pass
T3	170 - 150	Horizontal	7/8	8.3	Pass
T1	195 - 185	Top Girt	7/8	0.8	Pass
T2	185 - 170	Top Girt	7/8	2.8	Pass
T3	170 - 150	Top Girt	1	9.9	Pass
T5	140 - 120	Top Girt	L2 1/2x2 1/2x3/16	8.7	Pass

Section No.	Elevation (ft.)	Component Type	Size	% Capacity	Pass / Fail
				18.6 (b)	
T1	195 - 185	Bottom Girt	3/4	3.2	Pass
T2	185 - 170	Bottom Girt	3/4	13.4	Pass
T3	170 - 150	Bottom Girt	7/8	13.4	Pass
T2	185 - 170	Mid Girt	7/8	2.2	Pass
T3	170 - 150	Mid Girt	1	1.8	Pass

Table 4 – Additional Structure Component Capacities

Elevation (ft.)	Component	% Capacity	Pass / Fail	Notes
0	Anchor Rods	49.2	Pass	-
0	Base Foundation (Soil Interaction)	40.6	Pass	-
0	Base Foundation (Structural)	16.2	Pass	-

Table 5 - Maximum Dish Rotations at Service Wind Speeds

Centerline Elevation (ft.)	Dish	Tilt (deg)*	Twist (deg)*
104.6	(1) Andrew 3.3'	0.1088	0.0022
104	(1) Andrew VHLP1-23-DW1	0.1081	0.0022

^{*}Allowable tilt and twist to be reviewed by the carrier.

GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Velocitel should be notified immediately to perform a revised analysis.

LIMITATIONS

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Velocitel.

APPENDIX

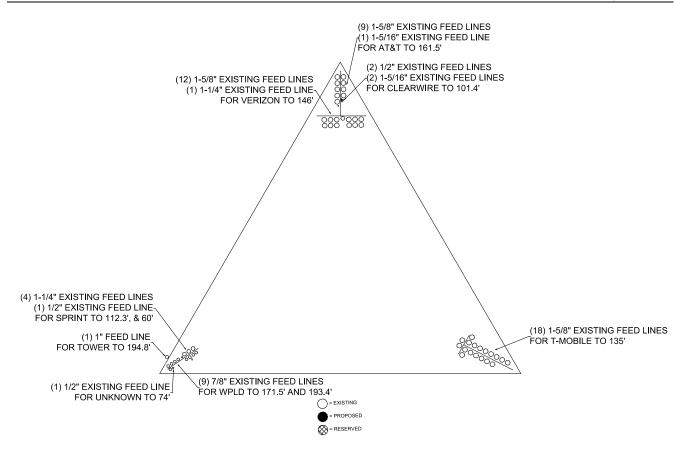
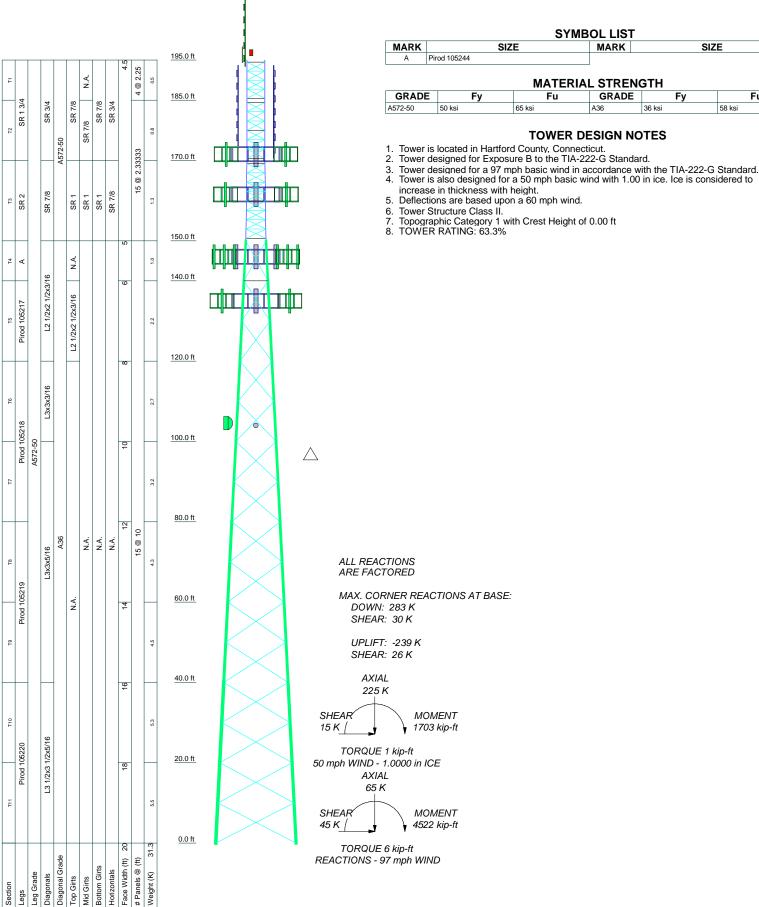
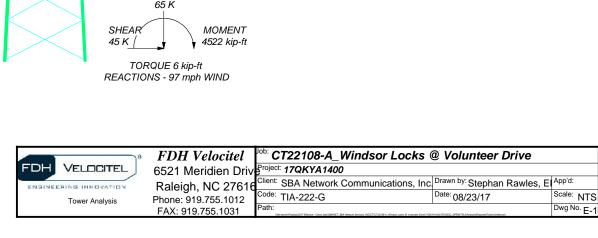




Figure 1 - Feed Line Layout

SYMBOL LIST

MATERIAL STRENGTH

A36

TOWER DESIGN NOTES

MARK

GRADE

36 ksi

SIZE

58 ksi

Fu

195.0 ft 4 @ 2.25 Α. A. 185.0 ft T2 SR 1 3/4 SR 7/8 SR 7/8 SR 3/4 SR 3/4 SR 7/8 15 @ 2.33333 170.0 ft SR 1 SR 1 SR 7/8 SR 2 150.0 ft Ä. ¹ ₹ 1:0 140.0 ft L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16 T5 Pirod 105217 2.2 120.0 ft L3x3x3/16 Pirod 105218 100.0 ft A572-50 10 \triangle 80.0 ft 12 15 @ 10 A36 Y Z Z Z L3x3x5/16 18 Pirod 105219 60.0 ft Ä. 6 4,5 40.0 ft 16 5.3 L3 1/2x3 1/2x5/16 Pirod 105220 20.0 ft 18 5.5 0.0 ft Weight (K) 31.3 Face Width (ft) 2 # Panels @ (ft) Diagonal Grade Mid Girts Bottom Girts Leg Grade Diagonals Horizontals Top Girts

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Beacon	194.8	RFS 4.7'x1.1'x3.5' Panel	135
Lightning Rod	194.6	RFS 4.7'x1.1'x3.5' Panel	135
DB224-A Omni	193.4	RFS 4.7'x1.1'x3.5' Panel	135
(2) 20' 4 Element Dipole	171.5	7" x 6" x 3" TMA	135
(2) 20' 4 Element Dipole	171.5	7" x 6" x 3" TMA	135
20' 4 Element Dipole	171.5	7" x 6" x 3" TMA	135
20'x2.5" Omni	171.5	LNX-6515DS-A1M w/ Mount Pipe	135
13'x2" Omni	171.5	LNX-6515DS-A1M w/ Mount Pipe	135
10' x 1.38" omni	171.5	LNX-6515DS-A1M w/ Mount Pipe	135
(3) 15' T-Frames	171.5	(3) 15' T-Frames	135
(5) Pipe Mount	171.5	(4) Pipe Mount	135
(5) Pipe Mount	171.5	(4) Pipe Mount	135
(5) Pipe Mount	171.5	(4) Pipe Mount	135
DC6-48-60-18-8F	167.5	APXVTM14-C-I20 w/ Mount Pipe	112.3
8'x1'x7" Panel w/ Pipe Mount	161.5	APXVTM14-C-I20 w/ Mount Pipe	112.3
8'x1'x7" Panel w/ Pipe Mount	161.5	APXVTM14-C-I20 w/ Mount Pipe	112.3
8'x1'x7" Panel w/ Pipe Mount	161.5	APXVIM14-C-I20 W/ Mount Pipe APXVSPP18-C-A20 w/ Mount Pipe	112.3
800 10121 w/ Mount Pipe	161.5	APXVSPP18-C-A20 w/ Mount Pipe	112.3
800 10121 w/ Mount Pipe	161.5	APXVSPP18-C-A20 w/ Mount Pipe	112.3
<u> </u>			
800 10121 w/ Mount Pipe 14.5"x9.25"x3.0" TMA	161.5 161.5	TD-RRH8x20-25 TD-RRH8x20-25	112.3 112.3
		1 1 1	-
14.5"x9.25"x3.0" TMA	161.5	TD-RRH8x20-25	112.3
14.5"x9.25"x3.0" TMA	161.5	(3) 15' T-Frames	112.3
RRUS 11 B12	161.5	(2) Pipe Mount	112.3
RRUS 11 B12	161.5	(2) Pipe Mount	112.3
RRUS 11 B12	161.5	(2) Pipe Mount	112.3
(3) 15' T-Frames	161.5	800 MHz RRH	109.6
(2) Pipe Mount	161.5	800 MHz RRH	109.6
(2) Pipe Mount	161.5	800 MHz RRH	109.6
(2) Pipe Mount	161.5	1900 MHz RRH	106.5
RRFDC-3315-PF-48	146	1900 MHz RRH	106.5
6' x 1' x 7" Panel	146	1900 MHz RRH	106.5
Pipe Mount [PM 601-1]	146	12" x 12" x 6.38" Junction Box	101.8
BXA-70063-6CF-EDIN w/ Mount Pipe	146	LLPX310R w/ Mount Pipe	101.4
BXA-70063-6CF-EDIN w/ Mount Pipe	146	LLPX310R w/ Mount Pipe	101.4
BXA-171063-12CF-EDIN-5 w/Mount	146	LLPX310R w/ Mount Pipe	101.4
Pipe		SPI-22132825WB RRH	101.4
BXA-171063-12CF-EDIN-5 w/Mount Pipe	146	SPI-22132825WB RRH	101.4
BXA-171063-12CF-EDIN-5 w/Mount	146	SPI-22132825WB RRH	101.4
Pipe	140	(3) 1.3' Standoffs	101.4
9442 RRH2x40 AWS RRH	146	Pipe Mount	101.4
9442 RRH2x40 AWS RRH	146	Pipe Mount	101.4
9442 RRH2x40 AWS RRH	146	Pipe Mount	101.4
(3) 12.5' T-Frames	146	3.3' Dish	101.4
(2) Pipe Mount	146	VHLP1-23-DW1	101.4
(2) Pipe Mount	146	Sidemarker	94.5
(2) Pipe Mount	146	Sidemarker	94.5
* * *		Sidemarker	94.5
RR90-17-02DP w/ Mount Pipe	135	3.37" Ø x 7.5" GPS	74
RR90-17-02DP w/ Mount Pipe	135	(1) 3.5' Standoff	74
RR90-17-02DP w/ Mount Pipe	135	GPS-TMG-HR-26N	60

SYMBOL LIST

O:502 2.0:				
MARK	SIZE	MARK	SIZE	
Λ	Pirod 105244			

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

9	FDH Veloci
DH VELOCITEL	6521 Meridien
ENGINEERING INNOVATION	Raleigh, NC 2
Tower Analysis	Phone: 919.755.1
	FΔY: 010 755 10

itel n Driv 2761 1012

	^{Job:} CT22108-A_Windsor Locks	@ Volunteer Drive		
٧	Project: 17QKYA1400			
	Client: SBA Network Communications, Inc	Drawn by: Stephan Rawles, El	App'd:	
Ĭ	Code: TIA-222-G	Date: 08/23/17	Scale:	NTS
	Path:	•	Dwg No	^{o.} F-

FDH Velocitel

6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	1 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 195.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.50 ft at the top and 20.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).

Basic wind speed of 97 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

√ Use Code Safety Factors - Guys Escalate Ice

Always Use Max Kz Use Special Wind Profile

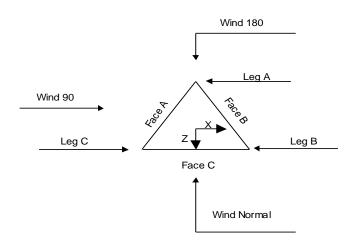
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas
 Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression


 All Leg Panels Have Same Allowable

 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	2 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Triangular Tower

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	195.00-185.00			4.50	1	10.00
T2	185.00-170.00			4.50	1	15.00
T3	170.00-150.00			4.50	1	20.00
T4	150.00-140.00			5.00	1	10.00
T5	140.00-120.00			6.00	1	20.00
T6	120.00-100.00			8.00	1	20.00
T7	100.00-80.00			10.00	1	20.00
T8	80.00-60.00			12.00	1	20.00
Т9	60.00-40.00			14.00	1	20.00
T10	40.00-20.00			16.00	1	20.00
T11	20.00-0.00			18.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
			**	End			
	ft	ft		Panels		in	in
T1	195.00-185.00	2.25	X Brace	No	Steps	6.0000	6.0000
T2	185.00-170.00	2.33	X Brace	No	Steps	6.0000	6.0000
T3	170.00-150.00	2.33	X Brace	No	Steps	9.0000	7.0000
T4	150.00-140.00	10.00	X Brace	No	No	0.0000	0.0000

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	3 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
			**	End			
	ft	ft		Panels		in	in
T5	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T6	120.00-100.00	10.00	X Brace	No	No	0.0000	0.0000
T7	100.00-80.00	10.00	X Brace	No	No	0.0000	0.0000
T8	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
T9	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
T10	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000
T11	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1 195.00-185.00	Solid Round	1 3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T2 185.00-170.00	Solid Round	1 3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T3 170.00-150.00	Solid Round	2	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
T4 150.00-140.00	Truss Leg	Pirod 105244	A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(50 ksi)			(36 ksi)
T5 140.00-120.00	Truss Leg	Pirod 105217	A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(50 ksi)			(36 ksi)
T6 120.00-100.00	Truss Leg	Pirod 105218	A572-50	Equal Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
T7 100.00-80.00	Truss Leg	Pirod 105218	A572-50	Equal Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T8 80.00-60.00	Truss Leg	Pirod 105219	A572-50	Equal Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T9 60.00-40.00	Truss Leg	Pirod 105219	A572-50	Equal Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T10 40.00-20.00	Truss Leg	Pirod 105220	A572-50	Equal Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)	_		(36 ksi)
T11 20.00-0.00	Truss Leg	Pirod 105220	A572-50	Equal Angle	L3 1/2x3 1/2x5/16	A36
	-		(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
ft	**			• •		
T1 195.00-185.00	Solid Round	7/8	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
T2 185.00-170.00	Solid Round	7/8	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
T3 170.00-150.00	Solid Round	1	A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)
T5 140.00-120.00	Equal Angle	L2 1/2x2 1/2x3/16	A36	Solid Round		A36
			(36 ksi)			(36 ksi)

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	4 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	CDA Nativark Communications Inc	Designed by
	SBA Network Communications, Inc.	Stephan Rawles,

Tower Section Geometry (cont'd)									
Tower Elevation ft	No. of Mid Girts	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade		
T1 195.00-185.00		Flat Bar		A36 (36 ksi)	Solid Round	3/4	A572-50 (50 ksi)		
T2 185.00-170.00	1	Solid Round	7/8	A36	Solid Round	3/4	A572-50 (50 ksi)		
T3 170.00-150.00	1	Solid Round	1	(36 ksi) A36 (36 ksi)	Solid Round	7/8	A572-50 (50 ksi)		

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area (per face)	Thickness		A_f	$Factor$ A_r		Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
T1 195.00-185.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T2 185.00-170.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T3 170.00-150.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T4 150.00-140.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T5 140.00-120.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T6 120.00-100.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T7 100.00-80.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
Τ8 80.00-60.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T9 60.00-40.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T10 40.00-20.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
Γ11 20.00-0.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000

	Tower Section Geometry (cont'd)											
						K Fa	ctors ¹					
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner		
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace		
	Single	Solid		Diags	Diags							
	Angles	Rounds		X	X	X	X	X	X	X		
ft				Y	Y	Y	Y	Y	Y	Y		
T1	Yes	Yes	1	1	1	1	1	1	1	1		
195.00-185.00				1	1	1	1	1	1	1		

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	5 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

						K Fac	ctors ¹			
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T2	Yes	Yes	1	1	1	1	1	1	1	1
185.00-170.00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	1	1	1	1	1	1
170.00-150.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
150.00-140.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T7	Yes	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T8	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
Т9	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T10	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T11	Yes	Yes	1	1	1	1	1	1	1	1
20.00-0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

			Truss-Leg	K Factors		
	Trus	s-Legs Used As Leg Me	mbers	Truss	embers	
Tower	Leg	X	Z	Leg	X	Z
Elevation	Panels	Brace	Brace	Panels	Brace	Brace
ft		Diagonals	Diagonals		Diagonals	Diagonals
T4	1	0.5	0.85	1	0.5	0.85
150.00-140.00						
T5	1	0.5	0.85	1	0.5	0.85
140.00-120.00						
T6	1	0.5	0.85	1	0.5	0.85
120.00-100.00						
T7	1	0.5	0.85	1	0.5	0.85
100.00-80.00						
T8	1	0.5	0.85	1	0.5	0.85
80.00-60.00						
T9	1	0.5	0.85	1	0.5	0.85
60.00-40.00						
T10	1	0.5	0.85	1	0.5	0.85
40.00-20.00						
T11	1	0.5	0.85	1	0.5	0.85
20.00-0.00						

Tower Section Geometry (cont'd)

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	6 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Tower	Leg		Diagon	al	Top Gi	rt	Botton	ı Girt	Mid	Girt	Long Hor	rizontal	Short Ho	rizontal
Elevation ft														
v	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	\overline{U}
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct in		Deduct in		Deduct in		Deduct in	
T1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
195.00-185.00														
T2	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
185.00-170.00	1													
T3	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
170.00-150.00	1													
T4	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
150.00-140.00														
T5	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
140.00-120.00														
T6	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
120.00-100.00	1													
T7	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
100.00-80.00														
T8 80.00-60.00		1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
T9 60.00-40.00		1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
T10	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
40.00-20.00														
T11 20.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagon	al	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Sleeve DS	0.6250	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
195.00-185.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Sleeve DS	0.6250	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
185.00-170.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Т3	Flange	1.0000	6	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
170.00-150.00		A325SC		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
150.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	1.0000	6	1.0000	1	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 80.00-60.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N >1"		A325N>1"		A325N		A325N		A325N		A325N		A325N	
T9 60.00-40.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	_	A325N		A325N>1"		A325N		A325N		A325N		A325N		A325N	
		>1"													
T10	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
40.00-20.00		A325N		A325N>1"		A325N		A325N		A325N		A325N		A325N	
		>1"													
T11 20.00-0.00	Flange	0.7500	0	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N>1"		A325N		A325N		A325N		A325N		A325N	

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	7 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client		Designed by
	SBA Network Communications, Inc.	Stephan Rawles,
		El

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
*** Wave	0					(= 1 111 = 11)						P J
Guide 1 ***												
T-Brackets	A	No	Af (CaAa)	161.50 - 8.00	-10.0000	0.43	1	1	1.0000	1.0000		8.40
1-5/8"	A	No	Ar (CaAa)	161.50 - 8.00	-8.0000	0.45	9	5	0.5000	1.9800		0.82
8	A	No	Ar (CaAa)	161.50 - 8.00	-8.0000	0.42	1	1	0.5000	1.3500		1.00
AWG(1-5/16") ***												
1/2"	A	No	Ar (CaAa)	101.40 - 8.00	-10.0000	0.45	2	2	0.0000	0.5800		0.15
8	A	No	Ar (CaAa)	101.40 - 8.00	-10.0000	0.44	2	2	0.5000	1.3500		1.00
AWG(1-5/16") ***												
1-5/8"	A	No	Ar (CaAa)	146.00 - 9.00	-18.0000	0.4	12	2	0.5000	1.9800		0.82
1-1/4"	A	No	Ar (CaAa)	146.00 - 9.00	-18.0000	0.4	1	1	0.5000	1.5500		0.66
*** Wave												
Guide 2 ***												
T-Brackets	В	No	Af (CaAa)	135.00 - 9.00	-9.0000	0.43	1	1	1.0000	1.0000		8.40
1-5/8" *** Wave	В	No	Ar (CaAa)	135.00 - 9.00	-8.0000	0.42	18	9	0.5000	1.9800		0.82
Guide 3 ***												
T-Brackets	C	No	Af (CaAa)	171.50 - 9.00	-10.0000	0.42	1	1	1.0000	1.0000		8.40
7/8'' ***	С	No	Ar (CaAa)	171.50 - 9.00	-10.0000	0.42	9	4	0.5000	1.1100		0.54
1/2" ***	С	No	Ar (CaAa)	74.00 - 12.00	-4.0000	0.44	1	1	0.5800	0.5800		0.15

1" ***	A	No	Ar (CaAa)	194.80 - 9.00	0.0000	-0.45	1	1	0.5000	1.2500		0.58

1-1/4"	C	No	Ar (CaAa)	112.30 - 10.00	-12.0000	0.43	4	4	0.5000	1.5500		0.66
1/2" ***	C	No	Ar (CaAa)	60.00 - 10.00	-12.0000	0.43	1	1	0.0000	0.5800		0.15

Feed Line/Linear Appurtenances - Entered As Area

Description	Face Allow or Shield	Component Type	Placement	Total Number	$C_A A_A$	Weight
	Leg	**	ft		ft²/ft	plf
***	-					

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft ²	ft^2	ft^2	ft ²	K

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	8 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Tower Section	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		ft²	ft^2	In Face ft²	Out Face ft²	K
m1	ft						
T1	195.00-185.00	A	0.000	0.000	1.225	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
TT:2	105.00.150.00	C	0.000	0.000	0.000	0.000	0.00
T2	185.00-170.00	A	0.000	0.000	1.875	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	1.748	0.000	0.02
T3	170.00-150.00	Α	0.000	0.000	26.462	0.000	0.20
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.313	0.000	0.27
T4	150.00-140.00	A	0.000	0.000	37.273	0.000	0.24
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	11.657	0.000	0.13
T5	140.00-120.00	A	0.000	0.000	94.793	0.000	0.56
		В	0.000	0.000	55.960	0.000	0.35
		C	0.000	0.000	23.313	0.000	0.27
T6	120.00-100.00	A	0.000	0.000	95.334	0.000	0.56
		В	0.000	0.000	74.613	0.000	0.46
		C	0.000	0.000	30.939	0.000	0.30
T7	100.00-80.00	A	0.000	0.000	102.513	0.000	0.60
		В	0.000	0.000	74.613	0.000	0.46
		C	0.000	0.000	35.713	0.000	0.32
T8	80.00-60.00	A	0.000	0.000	102.513	0.000	0.60
		В	0.000	0.000	74.613	0.000	0.46
		C	0.000	0.000	36.525	0.000	0.32
T9	60.00-40.00	A	0.000	0.000	102.513	0.000	0.60
		В	0.000	0.000	74.613	0.000	0.46
		C	0.000	0.000	38.033	0.000	0.32
T10	40.00-20.00	A	0.000	0.000	102.513	0.000	0.60
		В	0.000	0.000	74.613	0.000	0.46
		C	0.000	0.000	38.033	0.000	0.32
T11	20.00-0.00	A	0.000	0.000	58.852	0.000	0.35
		В	0.000	0.000	41.037	0.000	0.25
		C	0.000	0.000	20.066	0.000	0.17

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft ²	K
T1	195.00-185.00	A	2.383	0.000	0.000	5.895	0.000	0.11
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
T2	185.00-170.00	A	2.366	0.000	0.000	8.974	0.000	0.17
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	3.585	0.000	0.08
T3	170.00-150.00	A	2.342	0.000	0.000	53.334	0.000	1.14
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	47.533	0.000	1.05
T4	150.00-140.00	A	2.319	0.000	0.000	61.300	0.000	1.33
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	23.640	0.000	0.52
T5	140.00-120.00	A	2.294	0.000	0.000	147.892	0.000	3.18
		В		0.000	0.000	61.722	0.000	1.53
		C		0.000	0.000	47.002	0.000	1.03
T6	120.00-100.00	A	2.256	0.000	0.000	149.801	0.000	3.17
		В		0.000	0.000	81.903	0.000	2.02
		C		0.000	0.000	67.543	0.000	1.32
T7	100.00-80.00	A	2.211	0.000	0.000	188.094	0.000	3.56

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	9 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft^2	ft^2	ft ²	K
		В		0.000	0.000	81.439	0.000	1.99
		C		0.000	0.000	79.870	0.000	1.49
T8	80.00-60.00	A	2.156	0.000	0.000	185.707	0.000	3.47
		В		0.000	0.000	80.872	0.000	1.95
		C		0.000	0.000	85.747	0.000	1.56
T9	60.00-40.00	A	2.085	0.000	0.000	182.605	0.000	3.36
		В		0.000	0.000	80.135	0.000	1.91
		C		0.000	0.000	96.631	0.000	1.69
T10	40.00-20.00	A	1.981	0.000	0.000	178.093	0.000	3.20
		В		0.000	0.000	79.064	0.000	1.84
		C		0.000	0.000	93.962	0.000	1.60
T11	20.00-0.00	A	1.775	0.000	0.000	98.042	0.000	1.67
		В		0.000	0.000	42.319	0.000	0.94
		C		0.000	0.000	45.572	0.000	0.74

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	195.00-185.00	-0.8866	0.4379	-0.4772	0.2357
T2	185.00-170.00	-1.3908	0.5641	-0.6520	0.2780
T3	170.00-150.00	-1.8048	-1.5320	-1.3198	-0.6268
T4	150.00-140.00	-0.5435	-3.0890	-0.7505	-1.3744
T5	140.00-120.00	1.4379	-1.9665	0.3610	-1.0586
T6	120.00-100.00	1.6882	-1.7762	0.5302	-1.0290
T7	100.00-80.00	1.6296	-2.5058	0.4050	-1.3510
T8	80.00-60.00	1.7468	-2.9209	0.1743	-1.4693
T9	60.00-40.00	1.8021	-3.3076	-0.3254	-1.4021
T10	40.00-20.00	1.9242	-3.6688	-0.3473	-1.5917
T11	20.00-0.00	1.7771	-3.6742	-0.0373	-1.7630

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	22	1"	185.00 -	0.6000	0.3486
			194.80		
T2	16	T-Brackets	170.00 -	0.6000	0.3492
			171.50		
T2	17	7/8"	170.00 -	0.6000	0.3492
			171.50		
T2	22	1"	170.00 -	0.6000	0.3492
			185.00		
T3	2	T-Brackets	150.00 -	0.6000	0.3719
			161.50		
T3	3	1-5/8"	150.00 -	0.6000	0.3719
			161.50		
T3	4	8 AWG(1-5/16")	150.00 -	0.6000	0.3719
			161.50		
T3	16	T-Brackets	150.00 -	0.6000	0.3719

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	10 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, FI

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	•	Segment Elev.	No Ice	Ice
Т3	17	7/8"	170.00 150.00 -	0.6000	0.3719
			170.00		
T3	22	1"	150.00 - 170.00	0.6000	0.3719
T4	2	T-Brackets	140.00 -	0.6000	0.2606
T4	3	1-5/8"	150.00 140.00 -	0.6000	0.2606
T4	4	8 AWG(1-5/16")	150.00 140.00 -	0.6000	0.2606
T4	9	1-5/8"	150.00 140.00 -	0.6000	0.2606
T4	10	1-1/4"	146.00 140.00 -	0.6000	0.2606
			146.00		
T4	16	T-Brackets	140.00 - 150.00	0.6000	0.2606
T4	17	7/8"	140.00 - 150.00	0.6000	0.2606
T4	22	1"	140.00 - 150.00	0.6000	0.2606
T5	2	T-Brackets	120.00 -	0.6000	0.3868
T5	3	1-5/8"	140.00 120.00 -	0.6000	0.3868
T5	4	8 AWG(1-5/16")	140.00 120.00 -	0.6000	0.3868
Т5	9	1-5/8"	140.00 120.00 -	0.6000	0.3868
			140.00		
T5	10	1-1/4"	120.00 - 140.00	0.6000	0.3868
T5	13	T-Brackets	120.00 - 135.00	0.6000	0.3868
T5	14	1-5/8"	120.00 - 135.00	0.6000	0.3868
T5	16	T-Brackets	120.00 - 140.00	0.6000	0.3868
T5	17	7/8"	120.00 -	0.6000	0.3868
T5	22	1"	140.00 120.00 -	0.6000	0.3868
Т6	2	T-Brackets	140.00 100.00 -	0.6000	0.4909
T6	3	1-5/8"	120.00 100.00 -	0.6000	0.4909
	4		120.00		
T6	4	8 AWG(1-5/16")	100.00 - 120.00	0.6000	0.4909
T6	6	1/2"	100.00 - 101.40	0.6000	0.4909
Т6	7	8 AWG(1-5/16")	100.00 - 101.40	0.6000	0.4909
Т6	9	1-5/8"	100.00 - 120.00	0.6000	0.4909
Т6	10	1-1/4"	100.00 -	0.6000	0.4909
Т6	13	T-Brackets	120.00 100.00 -	0.6000	0.4909
T6	14	1-5/8"	120.00 100.00 -	0.6000	0.4909
Т6	16	T-Brackets	120.00 100.00 -	0.6000	0.4909
			120.00		
T6	17	7/8"	100.00 -	0.6000	0.4909

FDH Velocitel

6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	11 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, FI

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Beser quen	Segment Elev.	No Ice	Ice
200000			120.00		
T6	22	1"	100.00 -	0.6000	0.4909
			120.00		
T6	27	1-1/4"	100.00 -	0.6000	0.4909
			112.30		
T7	2		80.00 - 100.00	0.6000	0.5595
T7	3	1-5/8"	80.00 - 100.00	0.6000	0.5595
T7	4	8 AWG(1-5/16")		0.6000	0.5595
T7	6	1/2"	80.00 - 100.00	0.6000	0.5595
T7	7	8 AWG(1-5/16")		0.6000	0.5595
T7 T7	9 10	1-5/8" 1-1/4"	80.00 - 100.00 80.00 - 100.00	0.6000	0.5595 0.5595
T7	13		80.00 - 100.00	0.6000 0.6000	0.5595
T7	13	1-Blackets 1-5/8"	80.00 - 100.00	0.6000	0.5595
T7	16		80.00 - 100.00	0.6000	0.5595
T7	17	7/8"	80.00 - 100.00	0.6000	0.5595
T7	22	1"	80.00 - 100.00	0.6000	0.5595
T7	27	1-1/4"	80.00 - 100.00	0.6000	0.5595
Т8	2	T-Brackets	60.00 - 80.00	0.6000	0.6000
Т8	3	1-5/8"	60.00 - 80.00	0.6000	0.6000
Т8	4	8 AWG(1-5/16")	60.00 - 80.00	0.6000	0.6000
T8	6	1/2"	60.00 - 80.00	0.6000	0.6000
T8	7	8 AWG(1-5/16")	60.00 - 80.00	0.6000	0.6000
Т8	9	1-5/8"	60.00 - 80.00	0.6000	0.6000
Т8	10	1-1/4"	60.00 - 80.00	0.6000	0.6000
Т8	13	T-Brackets	60.00 - 80.00	0.6000	0.6000
Т8	14	1-5/8"	60.00 - 80.00	0.6000	0.6000
T8	16	T-Brackets	60.00 - 80.00	0.6000	0.6000
T8	17	7/8"	60.00 - 80.00	0.6000	0.6000
T8	19	1/2"	60.00 - 74.00	0.6000	0.6000
T8	22	1"	60.00 - 80.00	0.6000	0.6000
T8 T9	27	1-1/4"	60.00 - 80.00	0.6000 0.6000	0.6000
T9	2 3	T-Brackets 1-5/8"	40.00 - 60.00 40.00 - 60.00	0.6000	0.6000 0.6000
T9	4	8 AWG(1-5/16")	40.00 - 60.00	0.6000	0.6000
T9	6	1/2"	40.00 - 60.00	0.6000	0.6000
T9	7	8 AWG(1-5/16")	40.00 - 60.00	0.6000	0.6000
T9	9	1-5/8"	40.00 - 60.00	0.6000	0.6000
T9	10	1-1/4"	40.00 - 60.00	0.6000	0.6000
Т9	13	T-Brackets	40.00 - 60.00	0.6000	0.6000
Т9	14	1-5/8"	40.00 - 60.00	0.6000	0.6000
T9	16	T-Brackets	40.00 - 60.00	0.6000	0.6000
Т9	17	7/8"	40.00 - 60.00	0.6000	0.6000
Т9	19	1/2"	40.00 - 60.00	0.6000	0.6000
Т9	22	1"	40.00 - 60.00	0.6000	0.6000
Т9	27	1-1/4"	40.00 - 60.00	0.6000	0.6000
T9	28	1/2"	40.00 - 60.00	0.6000	0.6000
T10	2	T-Brackets	20.00 - 40.00	0.6000	0.6000
T10	3	1-5/8"	20.00 - 40.00	0.6000	0.6000
T10	4	8 AWG(1-5/16")	20.00 - 40.00	0.6000	0.6000
T10	6	1/2"	20.00 - 40.00	0.6000	0.6000
T10	7 9	8 AWG(1-5/16")	20.00 - 40.00	0.6000	0.6000 0.6000
T10 T10	10	1-5/8"	20.00 - 40.00 20.00 - 40.00	0.6000	0.6000
T10 T10	10	1-1/4" T-Brackets	20.00 - 40.00	0.6000 0.6000	0.6000
T10	14	1-5/8"	20.00 - 40.00	0.6000	0.6000
T10	16	T-Brackets	20.00 - 40.00	0.6000	0.6000
T10	17	7/8"	20.00 - 40.00	0.6000	0.6000
T10	19	1/2"	20.00 - 40.00	0.6000	0.6000
T10	22	1"	20.00 - 40.00	0.6000	0.6000
T10	27	1-1/4"		0.6000	0.6000
T10	28	1/2"			0.6000
-	- 1				

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	12 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	_	Segment Elev.	No Ice	Ice
T11	2	T-Brackets	8.00 - 20.00	0.6000	0.6000
T11	3	1-5/8"	8.00 - 20.00	0.6000	0.6000
T11	4	8 AWG(1-5/16")	8.00 - 20.00	0.6000	0.6000
T11	6	1/2"	8.00 - 20.00	0.6000	0.6000
T11	7	8 AWG(1-5/16")	8.00 - 20.00	0.6000	0.6000
T11	9	1-5/8"	9.00 - 20.00	0.6000	0.6000
T11	10	1-1/4"	9.00 - 20.00	0.6000	0.6000
T11	13	T-Brackets	9.00 - 20.00	0.6000	0.6000
T11	14	1-5/8"	9.00 - 20.00	0.6000	0.6000
T11	16	T-Brackets	9.00 - 20.00	0.6000	0.6000
T11	17	7/8"	9.00 - 20.00	0.6000	0.6000
T11	19	1/2"	12.00 - 20.00	0.6000	0.6000
T11	22	1"	9.00 - 20.00	0.6000	0.6000
T11	27	1-1/4"	10.00 - 20.00	0.6000	0.6000
T11	28	1/2"	10.00 - 20.00	0.6000	0.6000

Discrete Tower Loads

or	Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
Leg		Lateral						
		Vert	0	C.		<i>c</i> .2	£2	K
				Jτ		Jr	Ji	Λ
A	From Face	0.00	0.0000	194.80	No Ice	2.00	2.00	0.02
		0.00			1/2" Ice	2.50	2.50	0.03
		1.30			1" Ice	3.00	3.00	0.04
C	From Leg	1.30	0.0000	194.60	No Ice	0.25	0.25	0.03
		0.00			1/2" Ice	0.66	0.66	0.03
		1.70			1" Ice	0.97	0.97	0.04
A	From Leg	1.00	0.0000	94.50	No Ice	0.38	0.38	0.01
		0.00			1/2" Ice	0.63	0.63	0.02
		0.00			1" Ice	0.75	0.75	0.03
В	From Leg	1.00	0.0000	94.50	No Ice	0.38	0.38	0.01
								0.02
								0.03
C	From Leg		0.0000	94.50				0.01
								0.02
		0.00			1" Ice	0.75	0.75	0.03
C	From Leg		0.0000	193.40				0.04
								0.08
		10.00			1" Ice	10.71	10.71	0.14
	Б Б	2.00	0.0000	171.50	NT T	4.00	4.00	0.04
Α	From Face		0.0000	1/1.50				0.04
								0.07
ъ	F F		0.0000	171.50				0.11
В	From Face		0.0000	1/1.50				0.04
								0.07 0.11
C	From Face		0.0000	171.50				0.11
C	1 TOILI Face		0.0000	1/1.50				0.04
								0.07
C	From Face		0.0000	171.50				0.11
	C A	C From Leg A From Leg B From Leg C From Leg C From Leg A From Face B From Face C From Face	Section Sect	ft ft ft ft ft ft ft ft	ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft 6.00 0.00 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 10.00 0.0000 10.00 0.0000 10.00 171.50 10.00 171.50 10.00 171.50 10.00 171.50 10.00 171.50 10.00 171.50 10.00 171.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ft ft ft² ft ft ft² A From Face 0.00 0.0000 194.80 No Ice 2.00 0.00 0.00 1/2" Ice 2.50 1.30 1" Ice 3.00 C From Leg 1.30 0.0000 194.60 No Ice 0.25 0.00 1.70 194.60 No Ice 0.25 1.70 1.70 1" Ice 0.66 1.70 1.70 1" Ice 0.97 A From Leg 1.00 0.0000 1/2" Ice 0.63 0.00 1" Ice 0.75 No Ice 0.38 0.00 1.00 0.0000 1/2" Ice 0.63 1.72" Ice 0.63 1" Ice 0.75 C From Leg 1.00 0.0000 1/2" Ice 0.63 0.00 1.00 0.0000 193.40 No Ice 6.38 1/2" Ice 0.50 0.00 1/2" Ice 6.03	ft ft ft o ft ft² ft² ft² A From Face 0.00 0.0000 194.80 No Ice 2.00 2.00 0.00 0.00 1/2" Ice 2.50 2.50 2.50 1.30 1" Ice 3.00 3.00 3.00 C From Leg 1.30 0.0000 194.60 No Ice 0.25 0.25 0.00 1.70 1" Ice 0.97 0.97 0.97 A From Leg 1.00 0.0000 94.50 No Ice 0.38 0.38 0.00 1.00 0.0000 1/2" Ice 0.63 0.

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	13 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C_AA_A Side	Weight
	Leg		Lateral						
			Vert ft	0	ft		ft^2	ft^2	K
			ft ft		J.		J.	J *	
			0.00			1/2" Ice	7.03	7.03	0.07
			11.30			1" Ice	9.07	9.07	0.12
13'x2" Omni	В	From Face	3.80	0.0000	171.50	No Ice	2.60	2.60	0.03
			0.00			1/2" Ice	3.92	3.92	0.05
10' v. 1 29" omn;	С	From Face	9.10 3.80	0.0000	171.50	1" Ice No Ice	5.27 1.38	5.27 1.38	0.07 0.02
10' x 1.38" omni	C	FIOIII Face	0.00	0.0000	171.50	1/2" Ice	2.40	2.40	0.02
			7.60			1" Ice	3.44	3.44	0.05
(3) 15' T-Frames	C	None	7.00	0.0000	171.50	No Ice	27.35	27.35	1.89
						1/2" Ice	38.29	38.29	2.64
						1" Ice	49.23	49.23	3.40
(5) Pipe Mount	A	From Face	3.80	0.0000	171.50	No Ice	1.20	1.20	0.02
			0.00			1/2" Ice	1.50	1.50	0.03
	_		0.00		.=	1" Ice	1.81	1.81	0.04
(5) Pipe Mount	В	From Face	3.80	0.0000	171.50	No Ice	1.20	1.20	0.02
			0.00 0.00			1/2" Ice 1" Ice	1.50	1.50	0.03 0.04
(5) Pipe Mount	С	From Face	3.80	0.0000	171.50	No Ice	1.81 1.20	1.81 1.20	0.04
(3) Tipe Would	C	110m race	0.00	0.0000	171.50	1/2" Ice	1.50	1.50	0.02
			0.00			1" Ice	1.81	1.81	0.03

DC6-48-60-18-8F	A	From Leg	0.50	0.0000	167.50	No Ice	1.21	1.21	0.03
		C	0.00			1/2" Ice	1.89	1.89	0.05
			0.80			1" Ice	2.11	2.11	0.08
'x1'x7" Panel w/ Pipe Mount	Α	From Face	3.80	0.0000	161.50	No Ice	11.47	9.20	0.06
			0.00			1/2" Ice	12.08	10.48	0.15
11.700 1 /00 14	ъ	F F	3.50	0.0000	161.50	1" Ice	12.71	11.50	0.24
'x1'x7" Panel w/ Pipe Mount	В	From Face	3.80	0.0000	161.50	No Ice	11.47	9.20	0.06
			0.00 3.50			1/2" Ice 1" Ice	12.08 12.71	10.48 11.50	0.15 0.24
'x1'x7" Panel w/ Pipe Mount	С	From Face	3.80	0.0000	161.50	No Ice	12.71	9.20	0.24
XIX/ Tanei w/ Tipe Wount	C	110m 1 acc	0.00	0.0000	101.50	1/2" Ice	12.08	10.48	0.00
			3.50			1" Ice	12.71	11.50	0.24
800 10121 w/ Mount Pipe	Α	From Face	3.80	0.0000	161.50	No Ice	5.39	4.60	0.07
•			0.00			1/2" Ice	5.81	5.35	0.11
			3.30			1" Ice	6.23	6.05	0.17
800 10121 w/ Mount Pipe	В	From Face	3.80	0.0000	161.50	No Ice	5.39	4.60	0.07
			0.00			1/2" Ice	5.81	5.35	0.11
000 10121 /34 / 12		F F	3.30	0.0000	161.50	1" Ice	6.23	6.05	0.17
800 10121 w/ Mount Pipe	C	From Face	3.80	0.0000	161.50	No Ice	5.39	4.60	0.07
			0.00 3.30			1/2" Ice 1" Ice	5.81 6.23	5.35 6.05	0.11 0.17
14.5"x9.25"x3.0" TMA	Α	From Face	3.80	0.0000	161.50	No Ice	0.23	0.03	0.17
14.5 A).25 A5.0 TWA	А	110m 1 acc	0.00	0.0000	101.50	1/2" Ice	0.00	0.43	0.02
			3.30			1" Ice	0.00	0.54	0.03
14.5"x9.25"x3.0" TMA	В	From Face	3.80	0.0000	161.50	No Ice	0.00	0.34	0.02
			0.00			1/2" Ice	0.00	0.43	0.02
			3.30			1" Ice	0.00	0.54	0.03
14.5"x9.25"x3.0" TMA	C	From Face	3.80	0.0000	161.50	No Ice	0.00	0.34	0.02
			0.00			1/2" Ice	0.00	0.43	0.02
DD1/0 11 D12			3.30	0.0000	161 50	1" Ice	0.00	0.54	0.03
RRUS 11 B12	A	From Face	3.80	0.0000	161.50	No Ice	2.83	1.18	0.05
			0.00			1/2" Ice	3.04	1.33	0.07
DDIIC 11 D12	D	From Foos	2.40	0.0000	161.50	1" Ice No Ice	3.26	1.48	0.10
RRUS 11 B12	В	From Face	3.80 0.00	0.0000	161.50	No Ice 1/2" Ice	2.83 3.04	1.18 1.33	0.05 0.07

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	14 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C_AA_A Side	Weight
	Leg		Lateral						
			Vert ft	٥	ft		ft^2	ft^2	K
			ft ft		J.		<i>J</i> -	J	
RRUS 11 B12	С	From Face	3.80	0.0000	161.50	No Ice	2.83	1.18	0.05
			0.00			1/2" Ice	3.04	1.33	0.07
			2.40			1" Ice	3.26	1.48	0.10
(3) 15' T-Frames	C	None		0.0000	161.50	No Ice	27.35	27.35	1.89
						1/2" Ice	38.29	38.29	2.64
(2) Din - M		E E	2.00	0.0000	161.50	1" Ice	49.23	49.23	3.40
(2) Pipe Mount	A	From Face	3.80	0.0000	161.50	No Ice	1.20	1.20	0.02
			0.00 0.00			1/2" Ice 1" Ice	1.50 1.81	1.50 1.81	0.03 0.04
(2) Pipe Mount	В	From Face	3.80	0.0000	161.50	No Ice	1.20	1.81	0.04
(2) Fipe Mount	ь	rioiii race	0.00	0.0000	101.50	1/2" Ice	1.50	1.50	0.02
			0.00			1" Ice	1.81	1.81	0.03
(2) Pipe Mount	C	From Face	3.80	0.0000	161.50	No Ice	1.20	1.20	0.02
(2) 1 ipe Mount	C	r rom r ucc	0.00	0.0000	101.50	1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
***		Б. Т	0.50	0.0000	1.16.00	NT T	2.02	1.06	0.00
RRFDC-3315-PF-48	A	From Leg	0.50	0.0000	146.00	No Ice	3.02	1.96	0.03
			0.00			1/2" Ice	3.24	2.15	0.06
Cl 11 7" D 1		Farm I	0.80	0.0000	146.00	1" Ice	3.47	2.35	0.09
6' x 1' x 7" Panel	A	From Leg	4.00	0.0000	146.00	No Ice 1/2" Ice	8.13	5.28	0.04
			0.00			1" Ice	8.59	5.74	0.09
Dina Maunt [DM 601-1]		Enom Loo	-0.30 4.00	0.0000	146.00	No Ice	9.05 3.00	6.20	0.15 0.07
Pipe Mount [PM 601-1]	A	From Leg	0.00	0.0000	140.00	1/2" Ice	3.74	0.90 1.12	0.07
			-0.30			1" Ice	4.48	1.12	0.08
BXA-70063-6CF-EDIN w/	В	From Leg	4.00	0.0000	146.00	No Ice	7.81	5.80	0.04
Mount Pipe	Ь	Trom Leg	0.00	0.0000	110.00	1/2" Ice	8.36	6.95	0.10
Would I ipe			-0.30			1" Ice	8.87	7.82	0.17
BXA-70063-6CF-EDIN w/	C	From Leg	4.00	0.0000	146.00	No Ice	7.81	5.80	0.04
Mount Pipe			0.00			1/2" Ice	8.36	6.95	0.10
Ī.			-0.30			1" Ice	8.87	7.82	0.17
BXA-171063-12CF-EDIN-5	A	From Leg	4.00	0.0000	146.00	No Ice	5.02	5.28	0.04
w/Mount Pipe			0.00			1/2" Ice	5.57	6.45	0.09
_			-0.30			1" Ice	6.09	7.33	0.14
BXA-171063-12CF-EDIN-5	В	From Leg	4.00	0.0000	146.00	No Ice	5.02	5.28	0.04
w/Mount Pipe			0.00			1/2" Ice	5.57	6.45	0.09
			-0.30			1" Ice	6.09	7.33	0.14
BXA-171063-12CF-EDIN-5	C	From Leg	4.00	0.0000	146.00	No Ice	5.02	5.28	0.04
w/Mount Pipe			0.00			1/2" Ice	5.57	6.45	0.09
			-0.30	0.0000	11500	1" Ice	6.09	7.33	0.14
9442 RRH2x40 AWS RRH	Α	From Leg	4.00	0.0000	146.00	No Ice	2.50	1.89	0.05
			0.00			1/2" Ice	2.71	2.08	0.07
0442 PRU2 40 ANG PRU	D	г т	-0.50	0.0000	146.00	1" Ice	2.93	2.27	0.10
9442 RRH2x40 AWS RRH	В	From Leg	4.00	0.0000	146.00	No Ice	2.50	1.89	0.05
			0.00			1/2" Ice 1" Ice	2.71	2.08 2.27	0.07 0.10
9442 RRH2x40 AWS RRH	C	From Log	-0.50 4.00	0.0000	146.00	No Ice	2.93 2.50	1.89	0.10
7444 KKM2840 AWS KKM	C	From Leg	4.00 0.00	0.0000	140.00	1/2" Ice	2.50	2.08	0.03
			-0.50			1" Ice	2.71	2.08	0.07
(3) 12.5' T-Frames	A	None	-0.30	0.0000	146.00	No Ice	30.02	30.02	0.10
(3) 12.3 1-11ames	А	TOHE		0.0000	170.00	1/2" Ice	40.48	40.48	1.40
						1" Ice	50.94	50.94	1.86
(2) Pipe Mount	A	From Leg	4.00	0.0000	146.00	No Ice	1.20	1.20	0.02
(2) 1 190 1110uiit	••	205	0.00	0.0000	1.5.00	1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
(2) Pipe Mount	В	From Leg	4.00	0.0000	146.00	No Ice	1.20	1.20	0.02
Y / F		8	0.00			1/2" Ice	1.50	1.50	0.03

Jo	b	Page
	CT22108-A_Windsor Locks @ Volunteer Drive	15 of 28
Р	roject	Date
	17QKYA1400	16:58:59 08/23/17
С	lient SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
			Vert ft ft	0	ft		ft²	ft²	K
						1" Ice	1.81	1.81	0.04
(2) Pipe Mount	С	From Leg	4.00 0.00 0.00	0.0000	146.00	No Ice 1/2" Ice 1" Ice	1.20 1.50 1.81	1.20 1.50 1.81	0.02 0.03 0.04
*** RR90-17-02DP w/ Mount		Enom I oo	3.80	0.0000	135.00	No Ice	4.59	2 22	0.03
Pipe	A	From Leg	0.00	0.0000	133.00	1/2" Ice	5.02	3.32 4.09	0.07
RR90-17-02DP w/ Mount	В	From Leg	3.30 3.80	0.0000	135.00	1" Ice No Ice	5.44 4.59	4.78 3.32	0.12 0.03
Pipe	Б	110III Leg	0.00	0.0000	133.00	1/2" Ice	5.02	4.09	0.03
			3.30			1" Ice	5.44	4.78	0.12
RR90-17-02DP w/ Mount Pipe	C	From Leg	3.80 0.00	0.0000	135.00	No Ice 1/2" Ice	4.59 5.02	3.32 4.09	0.03 0.07
ripe			3.30			1" Ice	5.44	4.09	0.07
RFS 4.7'x1.1'x3.5' Panel	Α	From Leg	3.80	0.0000	135.00	No Ice	5.80	2.42	0.02
			0.00			1/2" Ice	6.16	2.76	0.05
RFS 4.7'x1.1'x3.5' Panel	В	From Leg	3.30 3.80	0.0000	135.00	1" Ice No Ice	6.52 5.80	3.10 2.42	0.09 0.02
KI 5 4.7 XI.1 X5.5 Tunei	ь	Trom Log	0.00	0.0000	133.00	1/2" Ice	6.16	2.76	0.05
			3.30			1" Ice	6.52	3.10	0.09
RFS 4.7'x1.1'x3.5' Panel	C	From Leg	3.80 0.00	0.0000	135.00	No Ice 1/2" Ice	5.80 6.16	2.42 2.76	0.02 0.05
			3.30			1" Ice	6.52	3.10	0.03
7" x 6" x 3" TMA	Α	From Leg	3.80	0.0000	135.00	No Ice	0.00	0.17	0.01
			0.00			1/2" Ice	0.00	0.23	0.01
7" x 6" x 3" TMA	В	From Leg	3.30 3.80	0.0000	135.00	1" Ice No Ice	0.00	0.30 0.17	0.02 0.01
/ XO X3 IMA	Б	rioiii Leg	0.00	0.0000	133.00	1/2" Ice	0.00	0.17	0.01
			3.30			1" Ice	0.00	0.30	0.02
7" x 6" x 3" TMA	C	From Leg	3.80	0.0000	135.00	No Ice	0.00	0.17	0.01
			0.00 3.30			1/2" Ice 1" Ice	0.00	0.23 0.30	0.01 0.02
LNX-6515DS-A1M w/	Α	From Leg	3.80	0.0000	135.00	No Ice	11.78	10.85	0.12
Mount Pipe			0.00			1/2" Ice	12.50	12.32	0.22
INV CELEDO ALM/	D	E I	2.80	0.0000	125.00	1" Ice	13.18	13.46	0.33
LNX-6515DS-A1M w/ Mount Pipe	В	From Leg	3.80 0.00	0.0000	135.00	No Ice 1/2" Ice	11.78 12.50	10.85 12.32	0.12 0.22
niount i ipe			2.80			1" Ice	13.18	13.46	0.33
LNX-6515DS-A1M w/	C	From Leg	3.80	0.0000	135.00	No Ice	11.78	10.85	0.12
Mount Pipe			0.00 2.80			1/2" Ice 1" Ice	12.50	12.32 13.46	0.22 0.33
(3) 15' T-Frames	C	None	2.80	0.0000	135.00	No Ice	13.18 27.35	27.35	1.89
(5) 15 1 11411165		110110		0.0000	100.00	1/2" Ice	38.29	38.29	2.64
						1" Ice	49.23	49.23	3.40
(4) Pipe Mount	Α	From Leg	3.80	0.0000	135.00	No Ice	1.20	1.20	0.02
			0.00 0.00			1/2" Ice 1" Ice	1.50 1.81	1.50 1.81	0.03 0.04
(4) Pipe Mount	В	From Leg	3.80	0.0000	135.00	No Ice	1.20	1.20	0.02
• • •		J	0.00			1/2" Ice	1.50	1.50	0.03
(A) Dina Marrit	C	Erom I	0.00	0.0000	125.00	1" Ice	1.81	1.81	0.04
(4) Pipe Mount	C	From Leg	3.80 0.00	0.0000	135.00	No Ice 1/2" Ice	1.20 1.50	1.20 1.50	0.02 0.03
			0.00			1" Ice	1.81	1.81	0.03

*** PXVTM14-C-I20 w/ Mount	٨	From Leg	4.50	0.0000	112.30	No Ice	6.65	5.03	0.08
Pipe Pix V 1 M 14-C-120 W/ Mount	Α	rioni Leg	0.00	0.0000	112.30	1/2" Ice	0.05 7.14	5.03	0.08

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	16 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	O		Vert ft ft	٥	ft		ft²	ft^2	K
			ft						
			2.70			1" Ice	7.60	6.63	0.20
APXVTM14-C-I20 w/ Mount	В	From Leg	4.50	0.0000	112.30	No Ice	6.65	5.03	0.08
Pipe			0.00			1/2" Ice	7.14	5.89	0.13
A DYLLITTA (1.4. C. 120		Б. Т	2.70	0.0000	112.20	1" Ice	7.60	6.63	0.20
APXVTM14-C-I20 w/ Mount	C	From Leg	4.50	0.0000	112.30	No Ice	6.65	5.03	0.08
Pipe			0.00 2.70			1/2" Ice 1" Ice	7.14 7.60	5.89	0.13 0.20
APXVSPP18-C-A20 w/	A	From Leg	4.50	0.0000	112.30	No Ice	8.26	6.63 6.95	0.20
Mount Pipe	Α	From Leg	0.00	0.0000	112.30	1/2" Ice	8.82	8.13	0.08
Would Tipe			4.50			1" Ice	9.35	9.02	0.13
APXVSPP18-C-A20 w/	В	From Leg	4.50	0.0000	112.30	No Ice	8.26	6.95	0.23
Mount Pipe	Ь	Trom Leg	0.00	0.0000	112.30	1/2" Ice	8.82	8.13	0.15
Would Tipe			4.50			1" Ice	9.35	9.02	0.23
APXVSPP18-C-A20 w/	C	From Leg	4.50	0.0000	112.30	No Ice	8.26	6.95	0.08
Mount Pipe			0.00			1/2" Ice	8.82	8.13	0.15
			4.50			1" Ice	9.35	9.02	0.23
TD-RRH8x20-25	A	From Leg	4.50	0.0000	112.30	No Ice	3.70	1.29	0.07
		_	0.00			1/2" Ice	3.95	1.46	0.09
			2.70			1" Ice	4.20	1.64	0.12
TD-RRH8x20-25	В	From Leg	4.50	0.0000	112.30	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
			2.70			1" Ice	4.20	1.64	0.12
TD-RRH8x20-25	C	From Leg	4.50	0.0000	112.30	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
000144 5544			2.70	0.0000	100.50	1" Ice	4.20	1.64	0.12
800 MHz RRH	Α	From Leg	0.50	0.0000	109.60	No Ice	2.13	1.77	0.05
			0.00			1/2" Ice	2.32	1.95	0.07
900 MH- DDH	D	E I	0.70	0.0000	100.60	1" Ice	2.51	2.13	0.10
800 MHz RRH	В	From Leg	0.50	0.0000	109.60	No Ice 1/2" Ice	2.13	1.77	0.05
			0.00 0.70			1/2 Ice 1" Ice	2.32 2.51	1.95 2.13	0.07 0.10
800 MHz RRH	С	From Leg	0.70	0.0000	109.60	No Ice	2.13	1.77	0.10
600 MHZ KKH	C	110III Leg	0.00	0.0000	107.00	1/2" Ice	2.32	1.95	0.03
			0.70			1" Ice	2.51	2.13	0.10
1900 MHz RRH	Α	From Leg	0.50	0.0000	106.50	No Ice	2.31	2.38	0.06
		110111 2208	0.00	0.0000	100.00	1/2" Ice	2.52	2.58	0.08
			1.10			1" Ice	2.73	2.79	0.11
1900 MHz RRH	В	From Leg	0.50	0.0000	106.50	No Ice	2.31	2.38	0.06
			0.00			1/2" Ice	2.52	2.58	0.08
			1.10			1" Ice	2.73	2.79	0.11
1900 MHz RRH	C	From Leg	0.50	0.0000	106.50	No Ice	2.31	2.38	0.06
			0.00			1/2" Ice	2.52	2.58	0.08
			1.10			1" Ice	2.73	2.79	0.11
(3) 15' T-Frames	C	None		0.0000	112.30	No Ice	34.86	34.86	1.73
						1/2" Ice	49.79	49.79	2.32
						1" Ice	64.72	64.72	2.91
(2) Pipe Mount	A	From Leg	4.50	0.0000	112.30	No Ice	1.20	1.20	0.02
			0.00			1/2" Ice	1.50	1.50	0.03
(2) Pine M	D	Enone I	0.00	0.0000	112.20	1" Ice	1.81	1.81	0.04
(2) Pipe Mount	В	From Leg	4.50 0.00	0.0000	112.30	No Ice 1/2" Ice	1.20	1.20	0.02 0.03
			0.00			1/2 Ice 1" Ice	1.50 1.81	1.50 1.81	0.03
(2) Pipe Mount	C	From Leg	4.50	0.0000	112.30	No Ice	1.81	1.81	0.04
(2) Tipe Mount	C	110m Leg	0.00	0.0000	112.30	1/2" Ice	1.50	1.50	0.02
			0.00			1" Ice	1.81	1.81	0.03
***			0.00			1 100	1.01	1.01	3.04
LLPX310R w/ Mount Pipe	Α	From Leg	1.30	0.0000	101.40	No Ice	4.69	3.16	0.05
	-								,

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	17 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Vert						
			ft	0	ft		ft^2	ft^2	K
			ft						
			ft						
			0.00			1/2" Ice	5.07	3.74	0.09
LI DYOLOD (M. D.	ъ.		2.60	0.0000	101.40	1" Ice	5.47	4.33	0.13
LLPX310R w/ Mount Pipe	В	From Leg	1.30	0.0000	101.40	No Ice	4.69	3.16	0.05
			0.00			1/2" Ice 1" Ice	5.07	3.74	0.09
LLDV210D/M+ Di	С	F I	2.60 1.30	0.0000	101.40	No Ice	5.47 4.69	4.33 3.16	0.13 0.05
LLPX310R w/ Mount Pipe	C	From Leg	0.00	0.0000	101.40	1/2" Ice	4.69 5.07	3.74	0.05
			2.60			1" Ice	5.47	4.33	0.09
SPI-22132825WB RRH	Α	From Leg	1.30	0.0000	101.40	No Ice	0.00	0.00	0.13
SF1-22132823 WB KKH	A	Prom Leg	0.00	0.0000	101.40	1/2" Ice	0.00	0.00	0.00
			2.40			1" Ice	0.00	0.00	0.00
SPI-22132825WB RRH	В	From Leg	1.30	0.0000	101.40	No Ice	0.00	0.00	0.00
51 1-22132023 WB KKII	ь	110m Lcg	0.00	0.0000	101.40	1/2" Ice	0.00	0.00	0.00
			2.40			1" Ice	0.00	0.00	0.00
SPI-22132825WB RRH	C	From Leg	0.00	0.0000	101.40	No Ice	0.00	0.00	0.00
511 22132023 WB 1441	Č	Trom Leg	0.00	0.0000	101.10	1/2" Ice	0.00	0.00	0.00
			2.40			1" Ice	0.00	0.00	0.00
(3) 1.3' Standoffs	C	None	2	0.0000	101.40	No Ice	9.50	9.50	0.22
(5) The Bundons	Ü	110110		0.0000	1011.10	1/2" Ice	11.80	11.80	0.32
						1" Ice	14.10	14.10	0.41
Pipe Mount	Α	From Leg	1.30	0.0000	101.40	No Ice	1.20	1.20	0.02
P			0.00			1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
Pipe Mount	В	From Leg	1.30	0.0000	101.40	No Ice	1.20	1.20	0.02
1		Č	0.00			1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
Pipe Mount	C	From Leg	1.30	0.0000	101.40	No Ice	1.20	1.20	0.02
•		C	0.00			1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
12" x 12" x 6.38" Junction	A	From Leg	0.50	0.0000	101.80	No Ice	1.20	0.64	0.02
Box		_	0.00			1/2" Ice	1.34	0.74	0.03
			0.60			1" Ice	1.48	0.86	0.04

3.37" Ø x 7.5" GPS	C	From Leg	3.50	0.0000	74.00	No Ice	0.12	0.12	0.00
			0.00			1/2" Ice	0.18	0.18	0.00
			1.90			1" Ice	0.25	0.25	0.00
(1) 3.5' Standoff	C	From Leg	1.75	0.0000	74.00	No Ice	0.85	1.67	0.07
			0.00			1/2" Ice	1.14	2.34	0.08
			0.00			1" Ice	1.43	3.01	0.09

GPS-TMG-HR-26N	C	From Leg	0.50	0.0000	60.00	No Ice	0.21	0.13	0.00
			0.00			1/2" Ice	0.27	0.18	0.00
			0.00			1" Ice	0.33	0.24	0.01

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	18 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client		Designed by
	SBA Network Communications, Inc.	Stephan Rawles,

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	٥	ft	ft		ft^2	K
3.3' Dish	С	Paraboloid	From	1.00	0.0000		101.40	3.30	No Ice	8.55	0.04
		w/Shroud (HP)	Leg	0.00					1/2" Ice	8.99	0.09
				3.20					1" Ice	9.43	0.13
VHLP1-23-DW1	A	Paraboloid	From	1.00	0.0000		101.40	1.27	No Ice	1.28	0.01
		w/Shroud (HP)	Leg	0.00					1/2" Ice	1.45	0.02
			_	2.60					1" Ice	1.62	0.03

Truss-Leg Properties

Section	Area	Area	Self	Ice	Equiv.	Equiv.	Leg
Designation		Ice	Weight	Weight	Diameter	Diameter	Area
						Ice	
	in^2	in^2	K	K	in	in	in^2
Pirod 105244	1026.8606	3412.2617	0.54	1.21	7.1310	23.6963	3.6816
Pirod 105217	2312.6169	6612.9668	0.57	2.54	8.0299	22.9617	5.3014
Pirod 105218	2441.6826	6657.9346	0.70	2.56	8.4781	23.1178	7.2158
Pirod 105218	2441.6826	6626.0542	0.70	2.54	8.4781	23.0071	7.2158
Pirod 105219	2620.2715	6659.0197	1.05	2.55	9.0982	23.1216	9.4248
Pirod 105219	2620.2715	6608.2711	1.05	2.51	9.0982	22.9454	9.4248
Pirod 105220	2757.8509	6606.4167	1.22	2.49	9.5759	22.9389	11.9282
Pirod 105220	2757.8509	6459.8043	1.22	2.32	9.5759	22.4299	11.9282

Load Combinations

Comb.	Description
No.	-
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	19 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client		Designed by
	SBA Network Communications, Inc.	Stephan Rawles, El

Comb.	Description
No.	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	٥
T1	195 - 185	4.303	39	0.1895	0.0131
T2	185 - 170	3.904	39	0.1888	0.0105
T3	170 - 150	3.301	39	0.1849	0.0055
T4	150 - 140	2.531	39	0.1645	0.0044
T5	140 - 120	2.192	39	0.1506	0.0038
T6	120 - 100	1.586	39	0.1256	0.0028
T7	100 - 80	1.083	39	0.1033	0.0021
T8	80 - 60	0.688	39	0.0776	0.0016
T9	60 - 40	0.391	39	0.0566	0.0012
T10	40 - 20	0.181	39	0.0349	0.0008
T11	20 - 0	0.054	39	0.0175	0.0004

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb.	in	0	0	Curvature ft
194.80	Beacon	39	4.295	0.1894	0.0131	474672
194.60	Lightning Rod	39	4.287	0.1894	0.0131	474672
193.40	DB224-A Omni	39	4.239	0.1894	0.0127	474672
171.50	(2) 20' 4 Element Dipole	39	3.362	0.1857	0.0060	371878
167.50	DC6-48-60-18-8F	39	3.201	0.1833	0.0049	139027
161.50	8'x1'x7" Panel w/ Pipe Mount	39	2.963	0.1782	0.0042	58831
146.00	RRFDC-3315-PF-48	39	2.392	0.1590	0.0042	35659
135.00	RR90-17-02DP w/ Mount Pipe	39	2.032	0.1438	0.0036	56736

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	20 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles,
		El

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
112.30	APXVTM14-C-I20 w/ Mount Pipe	39	1.380	0.1172	0.0025	43979
109.60	800 MHz RRH	39	1.311	0.1143	0.0024	43887
106.50	1900 MHz RRH	39	1.235	0.1109	0.0023	43781
104.60	3.3' Dish	39	1.189	0.1088	0.0022	43717
104.00	VHLP1-23-DW1	39	1.175	0.1081	0.0022	43699
101.80	12" x 12" x 6.38" Junction Box	39	1.124	0.1055	0.0021	43689
101.40	LLPX310R w/ Mount Pipe	39	1.115	0.1050	0.0021	43704
94.50	Sidemarker	39	0.964	0.0963	0.0019	45099
74.00	3.37" Ø x 7.5" GPS	39	0.589	0.0709	0.0015	51099
60.00	GPS-TMG-HR-26N	39	0.391	0.0566	0.0012	54604

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	195 - 185	17.873	2	0.7872	0.0549
T2	185 - 170	16.217	2	0.7843	0.0438
T3	170 - 150	13.713	2	0.7673	0.0231
T4	150 - 140	10.515	2	0.6822	0.0184
T5	140 - 120	9.112	2	0.6245	0.0161
T6	120 - 100	6.595	2	0.5214	0.0118
T7	100 - 80	4.506	2	0.4292	0.0086
T8	80 - 60	2.864	2	0.3223	0.0068
T9	60 - 40	1.626	2	0.2353	0.0050
T10	40 - 20	0.753	2	0.1452	0.0032
T11	20 - 0	0.226	2	0.0728	0.0016

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	۰	٥	ft
194.80	Beacon	2	17.840	0.7871	0.0547	124468
194.60	Lightning Rod	2	17.807	0.7871	0.0545	124468
193.40	DB224-A Omni	2	17.608	0.7868	0.0533	124468
171.50	(2) 20' 4 Element Dipole	2	13.964	0.7706	0.0249	75828
167.50	DC6-48-60-18-8F	2	13.297	0.7606	0.0204	34354
161.50	8'x1'x7" Panel w/ Pipe Mount	2	12.310	0.7391	0.0177	14315
146.00	RRFDC-3315-PF-48	2	9.938	0.6593	0.0176	8661
135.00	RR90-17-02DP w/ Mount Pipe	2	8.448	0.5966	0.0151	13819
112.30	APXVTM14-C-I20 w/ Mount Pipe	2	5.737	0.4867	0.0104	10609
109.60	800 MHz RRH	2	5.452	0.4746	0.0100	10583
106.50	1900 MHz RRH	2	5.135	0.4605	0.0095	10552
104.60	3.3' Dish	2	4.946	0.4517	0.0092	10534
104.00	VHLP1-23-DW1	2	4.888	0.4488	0.0091	10528
101.80	12" x 12" x 6.38" Junction Box	2	4.675	0.4382	0.0089	10523
101.40	LLPX310R w/ Mount Pipe	2	4.638	0.4362	0.0088	10526
94.50	Sidemarker	2	4.011	0.4001	0.0080	10861
74.00	3.37" Ø x 7.5" GPS	2	2.452	0.2946	0.0062	12311
60.00	GPS-TMG-HR-26N	2	1.626	0.2353	0.0050	13146

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	21 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	Bolt K	K	Allowable		
T1	195	Leg	A325N	0.6250	4	0.63	24.85	0.025	1	Bolt DS
T2	185	Leg	A325N	0.6250	5	2.28	24.85	0.092	1	Bolt DS
T3	170	Leg	A325SC	1.0000	6	5.08	53.01	0.096	1	Bolt Tension
T4	150	Leg	A325N	1.0000	6	5.61	53.01	0.106	1	Bolt Tension
		Diagonal	A325N	1.0000	1	4.50	10.66	0.422	1	Member Block Shear
T5	140	Leg	A325N	1.0000	6	10.37	53.01	0.196	1	Bolt Tension
		Diagonal	A325N	1.0000	1	5.80	10.66	0.544	1	Member Block Shear
		Top Girt	A325N	1.0000	1	1.98	10.66	0.186	1	Member Block Shear
T6	120	Leg	A325N	1.0000	6	15.41	53.01	0.291	1	Bolt Tension
		Diagonal	A325N	1.0000	1	6.70	11.68	0.573	1	Member Block Shear
T7	100	Leg	A325N	1.0000	6	20.87	53.01	0.394	1	Bolt Tension
		Diagonal	A325N	1.0000	1	7.38	19.47	0.379	1	Member Block Shear
Т8	80	Leg	A325N >1"	1.2500	6	25.84	72.48	0.357	1	Bolt Tension
		Diagonal	A325N>1'	1.2500	1	7.38	20.30	0.364	1	Member Block Shear
T9	60	Leg	A325N >1"	1.2500	6	30.45	72.48	0.420	1	Bolt Tension
		Diagonal	A325N>1'	1.2500	1	7.62	20.30	0.375	1	Member Block Shear
T10	40	Leg	A325N >1"	1.2500	6	34.78	72.48	0.480	1	Bolt Tension
		Diagonal	A325N>1'	1.2500	1	7.97	23.70	0.336	1	Member Block Shear
T11	20	Diagonal	A325N>1'	1.2500	1	8.60	23.70	0.363	1	Member Block Shear

Compression Checks

Leg Design Data (Compression)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.								,	P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	195 - 185	1 3/4	10.00	2.25	61.7	2.4053	-2.22	81.93	0.027 1
					K=1.00				/
T2	185 - 170	1 3/4	15.00	2.33	64.0	2.4053	-10.61	80.23	0.132^{-1}

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	22 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, FI

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
					K=1.00				~
Т3	170 - 150	2	20.00	2.33	56.0 K=1.00	3.1416	-34.37	112.40	0.306 1
T4	150 - 140	Pirod 105244	10.02	10.02	45.4 K=1.00	3.6816	-39.41	142.49	0.277 1
T5	140 - 120	Pirod 105217	20.03	10.02	37.8 K=1.00	5.3014	-74.56	214.86	0.347 1
T6	120 - 100	Pirod 105218	20.03	10.02	32.4 K=1.00	7.2158	-110.25	300.68	0.367 1
T7	100 - 80	Pirod 105218	20.03	10.02	32.4 K=1.00	7.2158	-146.96	300.68	0.489 1
Т8	80 - 60	Pirod 105219	20.03	10.02	28.4 K=1.00	9.4248	-181.49	399.87	0.454 1
Т9	60 - 40	Pirod 105219	20.03	10.02	28.4 K=1.00	9.4248	-214.13	399.87	0.536 1
T10	40 - 20	Pirod 105220	20.03	10.02	25.2 K=1.00	11.9282	-245.62	512.38	0.479 1
T11	20 - 0	Pirod 105220	20.03	10.02	25.2 K=1.00	11.9282	-274.80	512.38	0.536 1

¹ P_u / ϕP_n controls

			Truss-	Leg D	iagon	al Data	1		
Section No.	Elevation ft	Diagonal Size	L_d ft	Kl/r	ϕP_n K	A in ²	$V_u \ K$	$\phi V_n \ K$	Stress Ratio
T4	150 - 140	0.5	1.48	121.0	165.67	0.1963	0.65	3.39	0.190
T5	140 - 120	0.5	1.47	120.0	238.57	0.1963	0.70	3.34	0.210
T6	120 - 100	0.5	1.46	119.0	324.71	0.1963	0.73	3.38	0.216
T7	100 - 80	0.5	1.46	119.0	324.71	0.1963	0.25	3.38	0.074
T8	80 - 60	0.625	1.45	94.4	424.12	0.3068	0.17	6.96	0.024
T9	60 - 40	0.625	1.45	94.4	424.12	0.3068	0.17	6.96	0.025
T10	40 - 20	0.625	1.43	93.6	536.77	0.3068	0.81	7.01	0.115
T11	20 - 0	0.625	1.43	93.6	536.77	0.3068	1.30	7.01	0.185

Diagonal Design Data (Compression)

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	23 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	195 - 185	3/4	5.03	2.43	140.2 K=0.90	0.4418	-0.42	5.08	0.082 1
T2	185 - 170	3/4	5.07	2.45	141.3 K=0.90	0.4418	-1.24	5.00	0.248 1
Т3	170 - 150	7/8	5.48	2.66	131.5 K=0.90	0.6013	-2.55	7.86	0.325 1
T4	150 - 140	L2 1/2x2 1/2x3/16	11.42	4.98	120.8 K=1.00	0.9020	-5.41	13.56	0.399 1
T5	140 - 120	L2 1/2x2 1/2x3/16	12.50	5.63	136.4 K=1.00	0.9020	-5.80	10.95	0.530 1
Т6	120 - 100	L3x3x3/16	13.80	6.33	127.4 K=1.00	1.0900	-6.87	14.95	0.460 1
T7	100 - 80	L3x3x5/16	15.24	7.08	144.3 K=1.00	1.7800	-7.33	19.32	0.379 1
Т8	80 - 60	L3x3x5/16	16.80	7.84	159.7 K=1.00	1.7800	-7.49	15.76	0.476 ¹
Т9	60 - 40	L3x3x5/16	18.45	8.68	176.8 K=1.00	1.7800	-7.75	12.87	0.602 1
T10	40 - 20	L3 1/2x3 1/2x5/16	20.16	9.54	165.9 K=1.00	2.0900	-8.15	17.15	0.475 1
T11	20 - 0	L3 1/2x3 1/2x5/16	21.92	10.43	181.3 K=1.00	2.0900	-9.09	14.36	0.633 1

¹ P_u / ϕP_n controls

		Horiz	ontal De	sign	Data (Comp	ressior	1)	
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	195 - 185	3/4	4.50	4.35	195.1 K=0.70	0.4418	-0.03	2.62	0.011 1
T2	185 - 170	3/4	4.50	4.35	195.1 K=0.70	0.4418	-0.22	2.62	0.085 1
Т3	170 - 150	7/8	4.58	4.41	169.4 K=0.70	0.6013	-0.39	4.74	0.083 1

¹ P_u / ϕP_n controls

		Тор	Girt Des	ign D	oata (C	Compr	ession)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	195 - 185	7/8	4.50	4.35	167.2 K=0.70	0.6013	-0.04	4.86	0.008 1
T2	185 - 170	7/8	4.50	4.35	167.2	0.6013	-0.14	4.86	0.028^{-1}

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	24 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
					K=0.70				~
Т3	170 - 150	1	4.52	4.35	146.2 K=0.70	0.7854	-0.82	8.30	0.099 1
T5	140 - 120	L2 1/2x2 1/2x3/16	6.00	4.58	115.6 K=1.04	0.9020	-1.25	14.47	0.087 1

¹ P_u / ϕP_n controls

		Bottor	n Girt Do	esign	Data	(Comp	oressio	n)	
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	195 - 185	7/8	4.50	4.35	167.2 K=0.70	0.6013	-0.16	4.86	0.032 1
T2	185 - 170	7/8	4.50	4.35	167.2 K=0.70	0.6013	-0.65	4.86	0.134 1
Т3	170 - 150	1	4.99	4.82	161.9 K=0.70	0.7854	-0.91	6.77	0.134 1

¹ P_u / ϕP_n controls

		Mid	Girt Des	ign D	ata (C	ompre	ession)	ı	
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
IVO.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
T2	185 - 170	7/8	4.50	4.35	167.2 K=0.70	0.6013	-0.11	4.86	0.022 1
Т3	170 - 150	1	4.75	4.59	154.1 K=0.70	0.7854	-0.13	7.47	0.018 1

¹ P_u / ϕP_n controls

Tension Checks

			Leg Des	sign E	Data (Tensio	n)		
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
T1	195 - 185	1 3/4	10.00	0.50	13.7	1.2339	1.57	60.15	0.026 1 #

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	25 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by
	SBA Network Communications, inc.	Stephan Rawles, El

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
1,0.	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
T2	185 - 170	1 3/4	15.00	0.50	13.7	1.7942	7.25	87.47	0.083 1 #
Т3	170 - 150	2	20.00	0.58	14.0	3.1416	30.49	141.37	0.216 ¹
T4	150 - 140	Pirod 105244	10.02	10.02	45.4	3.6816	33.68	165.67	0.203 1
T5	140 - 120	Pirod 105217	20.03	10.02	37.8	5.3014	62.23	238.57	0.261 ¹
Т6	120 - 100	Pirod 105218	20.03	10.02	32.4	7.2158	92.43	324.71	0.285 1
T7	100 - 80	Pirod 105218	20.03	10.02	32.4	7.2158	125.21	324.71	0.386 1
Т8	80 - 60	Pirod 105219	20.03	10.02	28.4	9.4248	155.05	424.12	0.366 ¹
Т9	60 - 40	Pirod 105219	20.03	10.02	28.4	9.4248	182.71	424.12	0.431 1
T10	40 - 20	Pirod 105220	20.03	10.02	25.2	11.9282	208.67	536.77	0.389 1
T11	20 - 0	Pirod 105220	20.03	10.02	25.2	11.9282	232.50	536.77	0.433 1

 $^{^{1}}$ $_{u}$ / $_{\phi}P_{n}$ controls $^{\#}$ Based on net area of leg in section below

Section	Elevation	Diagonal Size	L_d	Kl/r	ϕP_n	A2	V_u	ϕV_n	Stress
No.	ft		ft		K	in ²	K	K	Ratio
T4	150 - 140	0.5	1.48	121.0	165.67	0.1963	0.65	3.39	0.190
T5	140 - 120	0.5	1.47	120.0	238.57	0.1963	0.70	3.34	0.210
Т6	120 - 100	0.5	1.46	119.0	324.71	0.1963	0.73	3.38	0.216
T7	100 - 80	0.5	1.46	119.0	324.71	0.1963	0.25	3.38	0.074
Т8	80 - 60	0.625	1.45	94.4	424.12	0.3068	0.17	6.96	0.024
Т9	60 - 40	0.625	1.45	94.4	424.12	0.3068	0.17	6.96	0.025
T10	40 - 20	0.625	1.43	93.6	536.77	0.3068	0.81	7.01	0.115
T11	20 - 0	0.625	1.43	93.6	536.77	0.3068	1.30	7.01	0.185

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	26 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client		Designed by
	SBA Network Communications, Inc.	Stephan Rawles,
		El

		Diaç	Diagonal Design Data (Tension)							
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
T1	195 - 185	3/4	5.03	2.43	155.8	0.4418	0.42	19.88	0.021 1	
T2	185 - 170	3/4	5.07	2.45	156.9	0.4418	1.22	19.88	0.061 1	
T3	170 - 150	7/8	5.48	2.66	146.1	0.6013	2.54	27.06	0.094 1	
T4	150 - 140	L2 1/2x2 1/2x3/16	11.42	4.98	80.1	0.9020	4.50	29.22	0.154 1	
T5	140 - 120	L2 1/2x2 1/2x3/16	12.50	5.63	90.0	0.9020	5.80	29.22	0.199 1	
T6	120 - 100	L3x3x3/16	13.80	6.33	83.5	1.0900	6.70	35.32	0.190 ¹	
T7	100 - 80	L3x3x5/16	14.50	6.73	90.3	1.7800	7.38	57.67	0.128 1	
Т8	80 - 60	L3x3x5/16	16.80	7.84	105.3	1.7800	7.38	57.67	0.128 1	
Т9	60 - 40	L3x3x5/16	18.45	8.68	116.2	1.7800	7.62	57.67	0.132 1	
T10	40 - 20	L3 1/2x3 1/2x5/16	20.16	9.54	108.8	2.0900	7.97	67.72	0.118 1	
T11	20 - 0	L3 1/2x3 1/2x5/16	21.92	10.43	118.6	2.0900	8.60	67.72	0.127 1	

¹ P_u / ϕP_n controls

	Horizontal Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	K	K	ϕP_n		
T1	195 - 185	3/4	4.50	4.35	278.7	0.4418	0.05	19.88	0.003 1		
T2	185 - 170	3/4	4.50	4.35	278.7	0.4418	0.27	19.88	0.013 1		
Т3	170 - 150	7/8	4.58	4.41	241.9	0.6013	0.49	27.06	0.018 1		

¹ P_u / ϕP_n controls

Section Elevation Size L L_u Kl/r A P_u ϕP_n Ratio		Top Girt Design Data (Tension)								
	Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	27 of 28
Project		Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	195 - 185	7/8	4.50	4.35	238.9	0.6013	0.02	27.06	0.001 1
T2	185 - 170	7/8	4.50	4.35	238.9	0.6013	0.13	27.06	0.005 1
Т3	170 - 150	1	4.52	4.35	208.9	0.7854	0.81	35.34	0.023 1
T5	140 - 120	L2 1/2x2 1/2x3/16	6.00	4.58	77.1	0.9020	1.98	29.22	0.068 1

¹ P_u / ϕP_n controls

	Bottom Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
T1	195 - 185	7/8	4.50	4.35	238.9	0.6013	0.17	27.06	0.006 1	
T2	185 - 170	7/8	4.50	4.35	238.9	0.6013	0.66	27.06	0.024 1	
Т3	170 - 150	1	4.99	4.82	231.3	0.7854	1.20	35.34	0.034 1	

¹ P_u / ϕP_n controls

Mid Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ΦP_n
T2	185 - 170	7/8	4.50	4.35	238.9	0.6013	0.13	19.48	0.006 1
Т3	170 - 150	1	4.75	4.59	220.1	0.7854	0.41	25.45	0.016 1

¹ P_u / ϕP_n controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
T1	195 - 185	Leg	1 3/4	1	-2.22	81.93	2.7	Pass
T2	185 - 170	Leg	1 3/4	37	-10.61	80.23	13.2	Pass
T3	170 - 150	Leg	2	89	-34.37	112.40	30.6	Pass

FDH Velocitel 6521 Meridien Drive Raleigh, NC 27616 Phone: 919.755.1012 FAX: 919.755.1031

Job		Page
	CT22108-A_Windsor Locks @ Volunteer Drive	28 of 28
Proje	et	Date
	17QKYA1400	16:58:59 08/23/17
Client	SBA Network Communications, Inc.	Designed by Stephan Rawles, El

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
T4	150 - 140	Leg	Pirod 105244	157	-39.41	142.49	27.7	Pass
T5	140 - 120	Leg	Pirod 105217	166	-39.41 -74.56	214.86	34.7	Pass
T6	120 - 100	Leg	Pirod 105217 Pirod 105218	184	-110.25	300.68	36.7	Pass
T7	100 - 80	Leg	Pirod 105218	199	-146.96	300.68	48.9	Pass
T8	80 - 60	Leg	Pirod 105219	214	-181.49	399.87	45.4	Pass
T9	60 - 40	Leg	Pirod 105219	229	-214.13	399.87	53.6	Pass
T10	40 - 20	Leg	Pirod 105220	244	-245.62	512.38	47.9	Pass
110	40 - 20	Lcg	1 110d 103220	244	-243.02	312.36	48.0 (b)	1 433
T11	20 - 0	Leg	Pirod 105220	259	-274.80	512.38	53.6	Pass
T1	195 - 185	Diagonal	3/4	14	-0.42	5.08	8.2	Pass
T2	185 - 170	Diagonal	3/4	53	-1.24	5.00	24.8	Pass
T3	170 - 150	Diagonal	7/8	102	-2.55	7.86	32.5	Pass
T4	150 - 140	Diagonal	L2 1/2x2 1/2x3/16	162	-5.41	13.56	39.9	Pass
							42.2 (b)	
T5	140 - 120	Diagonal	L2 1/2x2 1/2x3/16	175	-5.80	10.95	53.0	Pass
							54.4 (b)	
T6	120 - 100	Diagonal	L3x3x3/16	190	-6.87	14.95	46.0	Pass
							57.3 (b)	
T7	100 - 80	Diagonal	L3x3x5/16	205	-7.33	19.32	37.9	Pass
T8	80 - 60	Diagonal	L3x3x5/16	220	-7.49	15.76	47.6	Pass
T9	60 - 40	Diagonal	L3x3x5/16	232	-7.75	12.87	60.2	Pass
T10	40 - 20	Diagonal	L3 1/2x3 1/2x5/16	247	-8.15	17.15	47.5	Pass
T11	20 - 0	Diagonal	L3 1/2x3 1/2x5/16	262	-9.09	14.36	63.3	Pass
T1	195 - 185	Horizontal	3/4	16	-0.03	2.62	1.1	Pass
T2	185 - 170	Horizontal	3/4	55	-0.22	2.62	8.5	Pass
T3	170 - 150	Horizontal	7/8	148	-0.39	4.74	8.3	Pass
T1	195 - 185	Top Girt	7/8	4	-0.04	4.86	0.8	Pass
T2	185 - 170	Top Girt	7/8	41	-0.14	4.86	2.8	Pass
T3	170 - 150	Top Girt	1	93	-0.82	8.30	9.9	Pass
T5	140 - 120	Top Girt	L2 1/2x2 1/2x3/16	168	-1.25	14.47	8.7	Pass
							18.6 (b)	
T1	195 - 185	Bottom Girt	7/8	8	-0.16	4.86	3.2	Pass
T2	185 - 170	Bottom Girt	7/8	44	-0.65	4.86	13.4	Pass
T3	170 - 150	Bottom Girt	1	95	-0.91	6.77	13.4	Pass
T2	185 - 170	Mid Girt	7/8	47	-0.11	4.86	2.2	Pass
T3	170 - 150	Mid Girt	1	98	-0.13	7.47	1.8	Pass
							Summary	_
						Leg (T11)	53.6	Pass
						Diagonal (T11)	63.3	Pass
						Horizontal (T2)	8.5	Pass
						Top Girt (T5)	18.6	Pass
						Bottom Girt (T2)	13.4	Pass
						Mid Girt (T2)	2.2	Pass
						Bolt Checks	57.3	Pass
						RATING =	63.3	Pass

 $Program\ Version\ 7.0.7.0\ -\ 7/18/2016\ File: //fdh-server/Projects/2017\ Effective\ -\ Client\ Jobs/SBANET_SBA\ Network\ Services,\ INC/CT/CT22108-A_Windsor\ Locks\ @\ Volunteer\ Drive/17QKYA1400-STASOO_SPRINT/R.0/Analysis/ReportedTower/Untitled.eri$

FDH Velocitel., 6521 Meridien Dr. Raleigh, NC 27616, Ph. 919.755.1012, Fax 919.755.1031

SST - Anchor Rod Interaction Check per 4.9.9 TIA-222-G

Project No.	17QKYA1400	
Site Name	Windsor Locks	
Site ID	CT22108-A	

RISA Reactions per Leg				
Pu	239	kips		
Vu	26	kips		

Anchor Rod Properties:				
F _{yb} , Anchor Rod Ult. Yield Stress	105	ksi		
F _{ub} , Anchor Rod Ult. Tensile Stress	125	ksi		
number of anchor rods per leg	6	-		
diameter of anchor rod	1 1/4	in		
A _{net} , anchor rods	0.969	in ²		
η, detail type factor	0.55	-		

(use Table 7-18 AISC, Net Tensile Area) (see Fig. 4-4 Anchor Rod Detail Type)

Capacity:				
ØR _{nt} , design tensile strength	96.90	kips		
øR _{nv} , design shear strength	51.77	kips		
øR _{nm} , design flexural strength	20.32	kip-in		
Interaction Equation	49.2%	OK		
Interaction Equation	N/A	OK		

(TIA-222-G section 4.9.9) (TIA-222-G section 4.9.9)

Equations:

 $\emptyset R_{nt} = 0.8*F_{ub}*A_{net}$ $\emptyset R_{nt} = 0.75*0.45*F_{ub}*A_{b}$

 $\phi R_{nt} = 0.9*Fy_b*d^3/6$

Interaction Equation = $[Pu/leg+(Vu/leg)/\eta]/\emptyset Rnt$

Interaction Equation = $[(Vu/\emptyset Rnv)^2 + (Pu/\emptyset Rnt + Mu/\emptyset Rnm)^2]$

Version: 3.5

Issue Date: 12/6/20:

Combined Foundation (3 Piers, 1 Pad)

Project Data						
Project Number:	Project	17QKYA1400				
Site Name:	SiteName	Vindsor Locks @ Volunteer Driv				
Site ID:	SiteID	CT22108-A				

Tower & Leg Reactions					
Tower Shear:	TwrV	45	kip		
Tower Moment:	TwrM	4522	ft-kip		
Tower Weight:	TwrWt	65	kip		
Leg Compression:	LegC	283	kip		
Leg Shear (leg in compression):	LegVcomp	30	kip		
Uplift:	LegU	239	kip		
Leg Shear (leg in tension):	LegVup	26	kip		

Code & Design Parameters					
Standard:	Standard	TIA-222-G	-		
Maximum Soil Stress Ratio:	SRmaxSoil	110%	-		
Maximum Steel Stress Ratio:	SRmaxStr	105%	-		
Results Type:	ResultsType	Steel Only	-		

	Site Details		
Frost Depth:	Frost	3.333	ft
Water Depth:	Water	11	ft
Depth Neglected:	Neglect	3.333	ft
Seismic Design Category:	SDC	В	-

Soil Parameters			
Bearing Pressure Capacity:	Вс	3500	psf
Ultimate or Allowable:	BcUltAll	Allowable	-
Bearing Pressure Type:	ВсТуре	Net	-
Unit Weight:	gamma	100	pcf
Angle of Internal Friction:	phi	28	deg
Cohesion:	cohesion	0	psf
Sliding Friction Coefficient:	mu	0.4	-
Passive Pressure Coefficient:	Кр	2.77	-
Passive Pressure Coeff. Override:	KnOver		_

Material Specifications				
Concrete Strength: fc 3000 psi				
Concrete Weight:	ConcUnitWt	150	pcf	
Rebar Yield Strength: Fy		60	ksi	
Clear Cover:	сс	3	in	

Design Dimensions			
Tower Width:	20	ft	
Number of Tower Legs:	Legs	3	-
Tower/Foundation Offset:	Offset	TRUE	TRUE/FALSE
Bearing Depth:	D	10	ft
Pad Width:	W	29.5	ft
Pad Thickness:	Т	3.5	ft
Pier Diameter/Width:	Dp	5	ft
Pier Shape:	Shape	Round	-
Pier Extension:	Ext	5	ft

Reinforcement			
Pad Reinforcement Quantity:	PadQty	39	-
Pad Reinforcement Size:	PadSize	9	-
Pier Reinforcement Quantity:	PierQty	27	-
Pier Reinforcement Size:	PierSize	8	-
Pier Reinforcement Hook: PierHook		TRUE	TRUE/FALSE
Tie Reinforcement Size:	TieSize	4	-
Tie Reinforcement Spacing:	TieSp	6	in

Anchor Embedment				
Anchor Bolt Diameter: ABDia 1.25 in				
Anchor Bolt Length:	ABL	80.0625	in	
Anchor Bolt Exposed: ABExp		8.5	in	
Embedment Plate Diameter:	ABPlateD	-	in	
Embedment Plate Thickness:	ABPlateT	-	in	
Anchor Bolt Embedment Length:	ABEmbed	71.5625	in	

Steel & Soil Checks				
Lateral:	=LatRatio	N/A		
Overturning:	=OTRatio	N/A		
Bearing:	=QRatio	N/A		
Pad One-Way Shear:	=V1Ratio	1.4%		
Pad Two-Way Shear:	=V2Ratio	16.2%		
Pad Flexure:	=FlexRatio	3.9%		
Pad Minimum Reinforcement:	=MinPadCheck	OK		
Pad Reinforcement Development:	=DevPadCheck	OK		
Pier Compression:	=CompRatio	6.6%		
Pier Tension & Bending:	=PierStrRatio	Use DSMC		
Pier Minimum Reinforcement:	=MinPierCheck	OK		
Pier Reinforcement Development:	=DevPierCCheck1	OK		
Pier Reinforcement Development:	=DevPierTCheck1	OK		
Pier Reinforcement Development:	=DevPierTCheck2	OK		
Pier Hook Development:	=DevHookCheck	OK		
Anchor Embedment:	=ABCheck	#VALUE!		

Controlling Percentages			
Soil Stress Ratio: N/A			
Structure Stress Ratio: 16.2%			

SOLVE

Notes:

- **1.** This sheet is a supplement to the BSPSQP Pad Pier sheet, which should be used to calculate actual overturning and bearing capacities.
- **2.** If pier appears to be overstressed in bending and tension, use the Drilled Shaft Moment Capacity for a less conservative capacity.
- **3.** Enter 0 for rebar quantity and 0 for anchor bolt length if unknown.
- **4.** Buoyant weights for concrete and soil must be entered directly in the "ConcUnitWt" and "gamma" cells.

(Bearing and Stability Checks) Tool for TIA Rev F or G - Application (MP, SST with unitbase)

BU#: Site Name: App #:

Loads Already Factored			
For P (DL) 1.2 <disregard< td=""></disregard<>			
For P,V, and M (WL)	1.35	<disregard< td=""></disregard<>	

Pad & Pier Data			
Base PL Dist. Above Pier:	3.5	in	
Pier Dist. Above Grade:	60	in	
Pad Bearing Depth, D:	10	ft	
Pad Thickness, T:	3.5	ft	
Pad Width=Length, L:	29.5	ft	
Pier Cross Section Shape:	Round	<pull down<="" td=""></pull>	
Enter Pier Diameter:	8.7	ft	
Concrete Density:	150	pcf	
Pier Cross Section Area:	58.90	ft^2	
Pier Height:	11.50	ft	
Soil (above pad) Height:	6.50	ft	

Soil Parameters			
Unit Weight, γ:	100	pcf	
Ultimate Bearing Capacity, qn:	7.88	ksf	
Strength Reduct. factor, φ:	0.75		
Angle of Friction, Φ:	28	degrees	
Undrained Shear Strength, Cu:	0	ksf	
Allowable Bearing: φ*qn:	5.91	ksf	
Passive Pres. Coeff., Kp	2.77		

Forces/Moments due to Wind and Lateral Soil			
Minimum of (φ*Ultimate Pad			
Passive Force, Vu):	45.0	kips	
Pad Force Location Above D:	1.63	ft	
φ(Passive Pressure Moment):		ft-kips	
Factored O.T. M(WL), "1.6W":	5397.7	ft-kips	
Factored OT (MW-Msoil), M1	5324.50	ft-kips	

Resistance due to Foundation Gravity			
Soil Wedge Projection grade, a:	3.46	ft	
Sum of Soil Wedges Wt:	57.46	kips	
Soil Wedges ecc, K1:	14.11	ft	
Ftg+Soil above Pad wt:	1085.9	kips	
Unfactored (Total ftg-soil Wt):	1143.33	kips	
1.2D. No Soil Wedges.	1368.04	kips	
0.9D. With Soil Wedges	1077.74	kips	

Resistance due to Cohesion (Vertical)		
φ*(1/2*Cu)(Total Vert. Planes)	0.00	kips
Cohesion Force Eccentricity, K2	0.00	ft

SST Base Reaction Forces		
TIA Revision:	G	<pull down<="" td=""></pull>
Factored DL Axial, PDu:	65	kips
Factored WL Shear, Vu:	45	kips
Factored WL Moment, Mu:	4709.552	ft-kips

Load Factor	Shaft Factored Loads		
1.00	1.2D+1.6W, Pu:	65	kips
0.90	0.9D+1.6W, Pu:	48.75	kips
4.00	Vu:	45	kips
1.00	Mu:	4709.552	ft-kips

1.2D+1.6W Load Combination, Bearing Results:

1125 1 11011 20aa Goillomation, Boaring Rooditor		
(<u>No Soil Wedges</u>)	1368.04	P1="1.2D+1.6W"
[Reaction+Conc+Soil]	1300.04	(Kips)
Factored "1.6W" Overturning Moment (MW-Msoil), M1	5324.50	ft-kips

Orthogonal Direction:

ecc1 = M1/P1 = 3.89 ft Orthogonal qu= 2.40 ksf qu/ϕ^*qn Ratio= **40.64%** Pass

Diagonal Direction:

ecc2 = (0.707M1)/P1 = 2.75 ft Diagonal qu= 2.38 ksf qu/ ϕ *qn Ratio= **40.20%** Pass

Run <-- Press Upon Completing All Input

Overturning Stability Check

0.9D+1.6W Load Combination, Bearing Results:

(w/ Soil Wedges) [Reaction+Conc+Soil]	1077.74	P2="0.9D+1.6W" (Kips)
Factored "1.6W" Overturning Moment (MW-Msoil) - 0.9(M of Wedge + M of Cohesion), M2	4594.76	ft-kips

Orthogonal ecc3 = M2/P2 = 4.26 ft
Ortho Non Bearing Length,NBL= 8.53 ft
Orthogonal qu= 1.95 ksf
Diagonal qu= 1.96 ksf

Max Reaction Moment (ft-kips) so that $qu=\phi^*qn = 100\%$ Capacity Rating			
Actual M:	4709.55		
M Orthogonal:	12899.10	36.51%	Pass
M Diagonal:	12465.85	37.78%	Pass

Analysis Date: 8/23/2017

Moment Capacity of Drilled Concrete Shaft (Caisson) for TIA Rev F or G

Note: Shaft assumed to have ties, not spiral, transverse reinforcing

Site Data	
BU#:	
Site Name:	
App #:	

Loads	Already Fac	tored
For M (WL)	1.3	<disregard< td=""></disregard<>
For P (DL)	1.3	<disregard< td=""></disregard<>

Pier Properties		
Concrete:		
Pier Diameter =	5	ft
Concrete Area =	2827.4	in ²
Reinforcement:		_
Clear Cover to Tie =	3	in
Horiz. Tie Bar Size=	4	
Vert. Cage Diameter =	4.33	ft
Vert. Cage Diameter =	52.00	_in
Vertical Bar Size =	8	
Bar Diameter =	1.00	in
Bar Area =	0.79	in ²
Number of Bars =	27	
As Total=	21.33	in ²
A s/ Aconc, Rho:	0.0075	0.75%

ACI 10.5 , ACI 21.10.4, and IBC 1810.

Min As for Flexural, Tension Controlled, Shafts:

(3)*(Sqrt(f'c)/Fy: 0.0027

200 / Fy: 0.0033

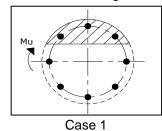
Minimum Rho Check:

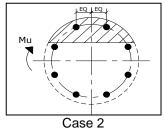
Actual Req'd Min. Rho:	0.33%	Flexural
Provided Rho:	0.75%	OK

Ref. Shaft Max Axial Capacities, φ Max(Pn or Tn):		
Max Pu = $(\phi = 0.65)$ Pn.		
Pn per ACI 318 (10-2)	4386.39	kips
at Mu=(φ=0.65)Mn=	1884.57	ft-kips
Max Tu, (φ=0.9) Tn =	1151.82	kips
at Mu=φ=(0.90)Mn=	0.00	ft-kips

Maximum Shaft Superimposed Forces		
TIA Revision:	G	
Max. Factored Shaft Mu:	299	ft-kips (* Note)
Max. Factored Shaft Pu:	239	kips
Max Axial Force Type:	Tension	

(*) Note: Max Shaft Superimposed Moment does not necessarily equal to the shaft top reaction moment


Load Factor	Sha	ed Loads	
1.00	Mu:	299	ft-kips
1.00	Pu:	239	kips


Material Properties			
Concrete Comp. strength, f'c =	3000	psi	
Reinforcement yield strength, Fy =	60	ksi	
Reinforcing Modulus of Elasticity, E =	29000	ksi	
Reinforcement yield strain =	0.00207	_	
Limiting compressive strain =	0.003		
ACI 318 Cod	е	_	
Select Analysis ACI Code=	2008		
Seismic Proper	Seismic Properties		
Seismic Design Category =	В		
Seismic Risk =	Low		

Solve	< Press Upon Completing All Input
(Run)	

Results:

Governing Orientation Case: 1

Dist. From Edge to Neutral Axis: 9.16
Extreme Steel Strain, et: 0.0153

et > 0.0050, Tension Controlled

in

Reduction Factor, φ : **0.900**

Output Note: Negative Pu=Tension

For Axial Compression, ϕ Pn = Pu: -239.00 kips Drilled Shaft Moment Capacity, ϕ Mn: 1868.18 ft-kips Drilled Shaft Superimposed Mu: 299.00 ft-kips

(Mu/φMn, Drilled Shaft Flexure CSR:	16.0%

Ultimate Net Bearing-to-Ultimate Gross Bearing Capacity Conversion Sheet

Ultimate Net Bearing, q _{net}	ksf	7
Depth to Base of Pad, D	ft	10
	_	
_		
Converted Gross Bearing, q _{gross}	ksf	7.88

Soil Layer Thickness (ft) *	Soil Weight (pcf)**
8	100
2	38

Note: we are only using this conversion when we know that the values given in the soil report are net. If no indication is given as to whether the given bearing value is net or gross, we will assume that the value is <u>net</u>.

^{*}Last soil thickness layer should stop at base of foundation

^{**}Soil unit weight should be the original soil density, not the desnsity of the backfill.

SPRINT WORK IS CONTINGENT ON THE FOLLOWING:

- COMPLETION OF A GLOBAL STRUCTURAL STABILITY ASSESSMENT
- COMPLETION OF AN ANTENNA/RRH MOUNT STRUCTURAL ASSESSMENT
- GC SHALL FURNISH, INSTALL AND COMPLETE ALL STRUCTURAL MODIFICATIONS AS INDICATED IN BEFORE-MENTIONED ANALYSIS AND ASSESSMENT

WINDSOR LOCKS @ VOLUNTEER DRIVE SITE NAME:

SITE NUMBER: CT43XC828

CT43XC828Q17.1 **AUGMENT ID:**

2-4 VOLUNTEER DRIVE **SITE ADDRESS:**

WINDSOR LOCKS, CT 06096

TITLE SHEET

RF DATA SHEET

OUTLINE SPECIFICATIONS

OUTLINE SPECIFICATIONS

OUTLINE SPECIFICATIONS

COMPOUND AND EQUIPMENT PLAN

ANTENNA AND RRH MOUNTING DETAILS

ANTENNA PLANS & ELEVATION

TOWER EQUIPMENT DETAILS

ELECTRICAL DETAILS AND NOTES

GROUNDING DETAILS AND NOTES

JURISDICTION: TOWN OF WINDSOR LOCKS

SITE TYPE: **EXISTING 200' SELF-SUPPORT TOWER**

PROGRAM: DO MACRO

PROJECT INFORMATION

70NING JURISDICTION

SCOPE OF WORK:

WINDSOR LOCKS)

(TOWN OF

UNMANNED TELECOMMUNICATIONS FACILITY SPRINT EQUIPMENT MODERNIZATION BASED ON INFORMATION PROVIDED BY SPRINT

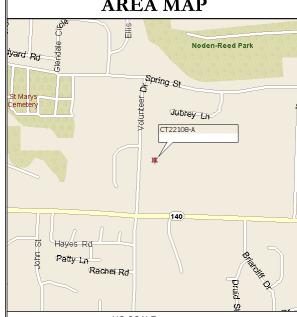
REGULATORY COMPLIANCE AND LEGAL COUNSEL, THIS TELECOMMUNICATIONS EQUIPMENT DEPLOYMENT IS CONSIDERED AN <u>ELIGIBLE FACILITY</u> UNDER THE MIDDLE CLASS TAX RELIEF AND JOB CREATION ACT OF 2012. 47 USC 1455(A), SECTION 6409 AND IS SUBJECT TO AN ELIGIBLE FACILITY REQUEST, EXPEDITED REVIEW AND LIMITED/PARTIAL ZONING PRE-EMPTION FOR LOCAL DISCRETIONARY PERMITS (VARIANCE, SPECIAL PERMIT. SITE PLAN REVIEW OR ADMINISTRATIVE REVIEW).

SITE ADDRESS:

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

LATITUDE: 41.92814166° N LONGITUDE: -72.6468° W

JURISDICTION: NATIONAL, STATE & LOCAL CODES & ORDINANCES


CURRENT USE: TELECOMMUNICATIONS FACILITY PROPOSED USE TELECOMMUNICATIONS FACILITY

TOWER OWNER: SBA TOWERS LLC SBA SITE ID: CT22108-A

SBA SITE NAME: WINDSOR LOCKS @ VOLUNTEER DRIVE

SBA REGIONAL SITE MANAGER:

AREA MAP

NO SCALE

LOCATION MAP

Deborah ^c

Woodland St

Denslow S

Andover Rd

AND ARRIVE AT CT22108-A.

LF	
200	SHEI T-
7	SP.
E	SP-
102	SP-
niton St	Α-
ve St Park (7)	Α-
	Α-
159	Α-
∯ Windsor	S-
Locks	E-
140	E- G-
140	
Sunset St	G-
webb st	G-
Sunset St	PROJ CONS

APPROVALS

DRAWING INDEX

SHEET DESCRIPTION

11			
l	TITLE	SIGNATURE	DATE
l	PROJECT MANAGER:		
1	CONSTRUCTION:		
۱	RF ENGINEERING:		
	ZONING/SITE ACQ.:		
	OPERATIONS:		
ت آا	TOWER OWNER:		

ACCEPTANCE DOES NOT CONSTITUTE APPROVAL OF DESIGN, CALCULATIONS, ANALYSIS, TEST METHODS OF MATERIALS DEVELOPED OR SELECTED BY THE SUBCONTRACTOR AND DOES NOT RELIEVE SUBCONTRACTOR FROM FULL COMPLIANCE WITH CONTRACTUAL OBLIGATIONS.

CODE COMPLIANCE

CODE

CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CONTACT INFORMATION

A&F FIRM:

B+T GROUP 1717 S. BOULDER, STE. 300 TULSA, OK 74119

TODD HIGGINBOTTOM (918) 587-4630

PROJECT MANAGEMENT .:

CONTACT:

CONTACT:

CONSTRUCTION MANAGER:

MICHAEL DELIA (781) 316-6348

SCOPE OF WORK

- · INSTALL (3) NEW SPRINT PANEL ANTENNAS
- INSTALL (3) NEW SPRINT 2500MHz RRHS
 INSTALL (1) NEW SPRINT 1 1/4" FIBER

DIRECTIONS

NO SCALE

DEPART BRADLEY INTERNATIONAL AIRPORT ON BRADLEY FIELD CONNECTOR. ROAD NAME CHANGES TO SCHOEPHOESTER RD. TURN LEFT ONTO CT-75 [TURNPIKE RD]. TURN RIGHT ONTO CT-140 [ELM ST]. TURN LEFT ONTO VOLUNTEER DR. TURN RIGHT ONTO ACCESS ROAD

GENERAL NOTES

- THIS IS AN UNMANNED TELECOMMUNICATIONS FACILITY AND NOT FOR HUMAN HABITATION HANDICAPPED ACCESS, POTABLE WATER, SANITARY SERVICE, OUTDOOR STORAGE AND SOLID WASTE RECEPTACLES
- CONTRACTORS SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS AND CONDITIONS ON JOB SITE. CONTRCATOR SHALL IMMEDIATELY NOTIFY THE ARCHOTECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK. FAILURE TO NOTIFY THE ARCHITECT/ENGINNER PLACES THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES AT THE CONTRACTOR'S EXPENSE.

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE

CODE TYPE BUILDING/DWELLING STRUCTURAL

IBC 2012 IBC 2012 MECHANICAL ELECTRICAL

CALL CONNECTICUT ONE CALL (800) 922-4455 **CALL 3 WORKING DAYS** BEFORE YOU DIG!

REV.#

0

0

0

0

0

0

0

0

0

0

CT43XC828

WINDSOR LOCKS @ **VOLUNTEER DRIVE**

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

PROIECT NO 114957 002

CHECKED BY: ISSUED FOR

155UED FOR:				FUK:
	REV	DATE	DRWN	DESCRIPTION
Ш	0	9/13/17	MDW	CONSTRUCTION
Ш				
ij				
Ш				
l liL				

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18

REVISION

SECTION 01 100 - SCOPE OF WORK

PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT CONSTRUCTION STANDARDS FOR WIRELESS SITES, CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- .3 <u>PRECEDENCE:</u> SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES INCLUDING THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.

.4 NATIONALLY RECOGNIZED CODES AND STANDARDS:

- A. THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
- GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.
- GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITÉRIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT.
- NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE - "NEC") AND NFPA 101 (LIFE SAFETY CODE).
- AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM) INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
- AMERICAN CONCRETE INSTITUTE (ACI)
- AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
- CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
- 10. PORTLAND CEMENT ASSOCIATION (PCA)
- 11. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
- 12. BRICK INDUSTRY ASSOCIATION (BIA)
- 13 AMERICAN WELDING SOCIETY (AWS)
- 14. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- 15. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
- 16. DOOR AND HARDWARE INSTITUTE (DHI)
- 17 OCCUPATIONAL SAFFTY AND HEALTH ACT (OSHA)
- 18. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

1.5 DEFINITIONS:

- WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- COMPANY: SPRINT CORPORATION
- FNGINFER: SYNONYMOUS WITH ARCHITECT & FNGINFER AND "A&F" THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY
- WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT
- CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT ..
- SITE FAMILIARITY: CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIFLD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.
- POINT OF CONTACT: COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT
- .8 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH
 - THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION. THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- DETAILS ARE INTENDED TO SHOW DESIGN INTENT. MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK. CONTRACTOR SHALL NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY VARIATIONS PRIOR TO PROCEEDING WITH THE WORK.
- DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK
- USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING TEMPORARY FACILITIES. AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

- 1.11 <u>UTILITIES SERVICES:</u> WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY COMPANY INVOLVED:
- 1.12 PERMITS/FEES: WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 1.13 CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.
- 1.14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM WORK AS DESCRIBED IN THE FOLLOWING INSTALLATION AND COMMISSIONING MOPS.

 - HOW TO INSTALL A NEW CABINET BASE BAND UNIT IN EXISTING UNIT
 - INSTALLATION OF BATTERIES
 - INSTALLATION OF HYBRID CABLE
 - INSTALLATION OF RRHS
 - SPRINT TS-0200 (CURRENT VERSION) ANTENNA LINE ACCEPTANCE STANDARDS SPRINT CELL SITE ENGINEERING NOTICE EN 2012-001, REV 1.
 - COMMISSIONING MOPS

 - SPRINT CELL SITE ENGINEERING NOTICE EN-2013-002
 - SPRINT ENGINEERING LETTER EL-0504 SPRINT ENGINEERING LETTER EL-0568
 - SPRINT TECHNICAL SPECIFICATION TS-0193

1.15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS:

A. CONTRACTOR WILL UTILIZE ITS BEST EFFORTS TO WORK WITH SPRINT ELECTRONIC PROJECT MANAGEMENT SYSTEMS, CONTRACTOR UNDERSTANDS THAT SUFFICIENT INTERNET ACCESS, EQUIVALENT TO "BROADBAND" OR BETTER, IS REQUIRED TO TIMELY AND EFFECTIVELY UTILIZE SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS AND AGREES TO MAINTAIN APPROPRIATE CONNECTIONS FOR CONTRACTOR'S STAFF AND OFFICES THAT ARE COMPATIBLE WITH SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS

PART 2 - PRODUCTS (NOT USED)

- 3.1 <u>TEMPORARY UTILITIES AND FACILITIES:</u> THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION, CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.
- 3.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.
- 3.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.
- 3.4 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.
- 3.5 EXISTING CONDITIONS: NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND

SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION

3.1 RECEIPT OF MATERIAL AND EQUIPMENT:

- A. COMPANY FURNISHED MATERIAL AND EQUIPMENT IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS.
- B. THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL: ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT
 - VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.
 - TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT
 - RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH.
 - PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING
 - COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE.

- COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE.
- B. IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY.
- C. UPLOAD DOCUMENTATION INTO SPRINT SITE MANAGEMENT SYSTEM (SMS) AND/OR PROVIDE HARD COPY DOCUMENTATION AS REQUESTED.

SECTION 01 300 - CELL SITE CONSTRUCTION

- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED
- 1.2 RELATED DOCUMENTS
- THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.

1.3 NOTICE TO PROCEED:

- NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF THE WORK ORDER.
- UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.

PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION

3.1 FUNCTIONAL REQUIREMENTS:

- A. THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. THE ACTIVITIES DESCRIBED ARE NOT EXHAUSTIVE, AND CONTRACTOR SHALL TAKE ANY AND ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
- SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED
- MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION.
 PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND SURFACE TREATMENTS.
- MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND TELCO BACKHAUL
- INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS
- CONDUITS, AND UNDERGROUND GROUNDING SYSTEM. INSTALL ABOVE GROUND GROUNDING SYSTEMS.
- PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS. INSTALL "H-FRAMES", CABINETS AND SHELTERS AS INDICATED.
- INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.
- PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS.
- PROVIDE SLABS AND EQUIPMENT PLATFORMS.
- INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER.
- 14. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER 15. INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
- 16. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS
- REQUIRED.

 7. INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT.

 18. PERFORM, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE
- REQUIRED BY GOVERNMENT AGENCIES AND LANDLORDS. 19. PERFORM ANTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY
- 20 REMAIN ON SITE MORILIZED THROUGHOUT HAND-OFF AND INTEGRATION TO ASSIST AS NEEDED UNTIL SITE IS DEEMED SUBSTANTIALLY COMPLETE AND PLACED "ON AIR."

- A. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- B. EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS
- C. CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
 - IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY
- CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- D. CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION
- E. CONDUCT TESTING AS REQUIRED HEREIN

- A. CONTRACTOR SHALL REVIEW, APPROVE, AND SUBMIT TO SPRINT SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND SIMILAR SUBMITTALS AS REQUIRED HEREINAFTER
- B. PROVIDE DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS.

TELCO READY DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION)

- ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS. PROJECT PROGRESS REPORTS
- CIVIL CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- ELECTRICAL SERVICE COMPLETION DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- POWER INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- PPC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- TOWER CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION) 10. TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). 11. BTS AND RADIO EQUIPMENT DELIVERED AT SITE DATE (POPULATE FIELD IN SMS AND/OR FORWARD
- NOTIFICATION). 12. NETWORK OPERATIONS HANDOFF CHECKLIST (HOC WALK) COMPLETE (UPLOAD FORM IN SMS)
- 13. CIVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
 14. SITE CONSTRUCTION PROGRESS PHOTOS UNLOADED INTO SMS.

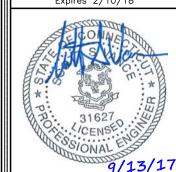
CONTINUE SHEET SP-2

134 FLANDERS ROAD, SUITE 125

WESTBOROUGH, MA 01581

CT43XC828

WINDSOR LOCKS @ **VOLUNTEER DRIVE**


2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

PROIECT NO 114957,003

ISSUED FOR: REV DATE DRWN DESCRIPTION 0 9/13/17 MDW CONSTRUCTION

CHECKED BY

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18

IT IS A VIOLATION OF LAW FOR ANY PERSON, JNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION

PART 1 - GENERAL

1.1 <u>THE WORK:</u> THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.

- A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND
- B. SUBMIT THE FOLLOWING TO COMPANY REPRESENTATIVE FOR APPROVAL.
- CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING. CONCRETE BREAK TESTS AS SPECIFIED HEREIN.
- SPECIAL FINISHES FOR INTERIOR SPACES IF ANY
- ALL EQUIPMENT AND MATERIALS SO IDENTIFIED ON THE CONSTRUCTION DRAWINGS.
- CHEMICAL GROUNDING DESIGN.
- C. ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

1.4 TESTS AND INSPECTIONS:

- A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION.
- B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE
- 1. COAX SWEEPS AND FIBER TESTS PER SPRINT TS-0200 (CURRENT VERSION) ANTENNA LINE ACCEPTANCE STANDARDS
- AGL, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE
- CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF
- C. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMITED TO THE FOLLOWING;
- 1. AZIMUTH, DOWNTILT, AGL UPLOAD REPORT FROM ANTENNA ALIGNMENT TOOL TO SITERRA TASK 465. INSTALLED AZIMUTH, DOWNTILT, AND AGL MUST CONFORM TO THE RF DATA SHEETS. SWEEP AND FIBER TESTS
- SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT ALL AVAILABLE JURISDICTIONAL INFORMATION
- PDF SCAN OF REDLINES PRODUCED IN FIELD ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS. ANY FIELD CHANGE MUST BE REFLECTED BY MODIFYING THE PLANS, ELEVATIONS, AND DETAILS IN THE DRAWING SETS. GENERAL NOTES INDICATING MODIFICATIONS WILL NOT BE ACCEPTED. CHANGES SHALL BE HIGHLIGHTED AS "CLOUDS" IDENTIFIED AS THE "AS-BUILT" CONDITION.
- LIEN WAIVERS FINAL PAYMENT APPLICATION
- REQUIRED FINAL CONSTRUCTION PHOTOS
- CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS
- 10. ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS DOCUMENT REPOSITORY OF RECORD).
- 1.5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLICABLE MOPS
- 1.6 INTEGRATION: PERFORM ALL INTEGRATION ACTIVITIES AS REQUIRED BY APPLICABLE MOPS
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION

- 3.1 <u>REQUIREMENTS FOR TESTING:</u>
 A. THIRD PARTY TESTING AGENCY: WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS.
 - THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.
 - EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.
 - EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.

3.2 REQUIRED TESTS:

- A. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- 1. CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR FOUNDATIONS AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY
- TESTING AS SPECIFIED IN SECTION: HOT MIX ASPHALT PAVING.
 FIELD QUALITY CONTROL TESTING AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE
- TESTING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AND
- ANCHOR LOCATIONS
- STRUCTURAL BACKFILL COMPACTION TESTS FOR THE TOWER FOUNDATION.

 SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE
- STANDARDS. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS
- ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION

3.3 REQUIRED INSPECTIONS:

- A. SCHEDULE INSPECTIONS WITH COMPANY REPRESENTATIVE.
- B. CONDUCT INSPECTIONS INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- GROUNDING SYSTEM INSTALLATION PRIOR TO FARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE.

 FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL
- PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE. COMPACTION OF BACKFILL MATERIALS; AGGREGATE BASE FOR ROADS. PADS. AND ANCHORS: ASPHALT PAVING; AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT
- THIRD PARTY AGENCY. PRE- AND POST-CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING
- FACILITIES. TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY
- ANTENNA AZIMUTH , DOWN TILT AND PER SUNLIGHT TOOL SUNSIGHT INSTRUMENTS -ANTENNALIGN ALIGNMENT TOOL (AAT)
- VERIFICATION DOCUMENTED WITH THE ANTENNA CHECKLIST REPORT, BY A&E, SITE DEVELOPMENT 3.5 PROJECT PHOTOGRAPHS:
- 8. FINAL INSPECTION CHECKLIST AND HANDOFF WALK (HOC.). SIGNED FORM SHOWING ACCEPTANCE
- BY FIELD OPS IS TO BE UPLOADED INTO SMS.

 COAX SWEEP AND FIBER TESTING DOCUMENTS SUBMITTED VIA SMS FOR RF APPROVA
- 10. SCAN-ABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT ALL AVAILABLE JURISDICTIONAL INFORMATION
- 12. PDF SCAN OF REDLINES PRODUCED IN FIELD
- c. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF
- D. CONSTRUCTION INSPECTIONS AND CORRECTIVE MEASURES SHALL BE DOCUMENTED BY THE CONTRACTOR WITH WRITTEN REPORTS AND PHOTOGRAPHS. PHOTOGRAPHS MUST BE DIGITAL AND OF SUFFICIENT QUALITY TO CLEARLY SHOW THE SITE CONSTRUCTION. PHOTOGRAPHS MUST CLEARLY IDENTIFY THE PHOTOGRAPHED ITEM AND BE LABELED WITH THE SITE CASCADE NUMBER, SITE NAME, DESCRIPTION, AND DATE.
- 3.4 DELIVERABLES: TEST AND INSPECTION REPORTS AND CLOSEOUT DOCUMENTATION SHALL BE UPLOADED TO THE SMS AND/OR FORWARDED TO SPRINT FOR INCLUSION INTO THE PERMANENT SITE FILES
 - A. THE FOLLOWING TEST AND INSPECTION REPORTS SHALL BE PROVIDED AS APPLICABLE.
 - CONCRETE MIX AND CYLINDER BREAK REPORTS.
 - STRUCTURAL BACKFILL COMPACTION REPORTS. SITE RESISTANCE TO EARTH TEST.

 - ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
 - TOWER ERECTION INSPECTIONS AND MEASUREMENTS DOCUMENTING TOWER INSTALLED PER SUPPLIER'S REQUIREMENTS AND THE APPLICABLE SECTIONS HEREIN.
 - COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE STANDARDS".
 - REQUIRED CLOSEOUT DOCUMENTATION INCLUDES THE FOLLOWING:
 - TEST WELLS AND TRENCHES: PHOTOGRAPHS OF ALL TEST WELLS; PHOTOGRAPHS SHOWING ALL OPEN EXCAVATIONS AND TRENCHING PRIOR TO BACKFILLING SHOWING A TAPE MEASURE VISIBLE IN THE EXCAVATIONS INDICATING DEPTH.
 - CONDUITS CONDUCTORS AND GROUNDING: PHOTOGRAPHS SHOWING TYPICAL INSTALLATION OF CONDUCTORS AND CONNECTORS; PHOTOGRAPHS SHOWING TYPICAL BEND RADIUS OF INSTALLED GROUND WIRES AND GROUND ROD SPACING:
 - 3. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING AT TOWER AND EQUIPMENT/SHELTER PAD/FOUNDATIONS - PHOTOGRAPHS SHOWING ALL REINFORCING STEEL, UTILITY AND CONDUIT STUB OUTS; PHOTOGRAPHS SHOWING CONCRETE POUR OF SHELTER SLAB/FOUNDATION, TOWER FOUNDATION AND GUY ANCHORS WITH VIBRATOR IN USE: PHOTOGRAPHS SHOWING EACH ANCHOR ON GUYED TOWERS, BEFORE CONCRETE POUR.
 - TOWER, ANTENNAS AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING — TOP AND BOTTOM; PHOTOS OF COAX GROUNDING—TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
 - ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION: PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF;
 - SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS. FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE
 - POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.
 - REQUIRED MATERIALS CERTIFICATIONS: CONCRETE MIX DESIGNS; MILL CERTIFICATION FOR ALL REINFORCING AND STRUCTURAL STEEL; AND ASPHALT PAVING MIX DESIGN.
 - 9. ANY AND ALL SUBMITTALS BY THE JURISDICTION OR COMPANY

SECTION 01 500 - PROJECT REPORTING

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH

PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION

3.1 WEEKLY REPORTS

A. CONTRACTOR SHALL PROVIDE SPRINT WITH WEEKLY REPORTS SHOWING PROJECT STATUS THIS STATUS REPORT FORMAT WILL BE PROVIDED TO THE CONTRACTOR BY SPRINT. THE REPORT WILL CONTAIN SITE ID NUMBER, THE MILESTONES FOR EACH SITE, INCLUDING THE BASELINE DATE, ESTIMATED COMPLETION DATE AND ACTUAL COMPLETION DATE. B REPORT INFORMATION WILL BE TRANSMITTED TO SPRINT VIA FLECTRONIC MEANS AS REQUIRED. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT.

3.2 PROJECT CONFERENCE CALLS:

A. SPRINT MAY HOLD WEEKLY PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS. MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY

3.3 PROJECT TRACKING IN SMS:

A. CONTRACTOR SHALL PROVIDE SCHEDULE UPDATES AND PROJECTIONS IN THE SMS SYSTEM ON A WEEKLY BASIS.

3.4 ADDITIONAL REPORTING:

A. ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS DETERMINED TO BE REASONABLY NECESSARY BY COMPANY.

- A. FILE DIGITAL PHOTOGRAPHS OF COMPLETED SITE IN JPEG FORMAT IN THE SMS PHOTO LIBRARY FOR THE RESPECTIVE SITE. PHOTOGRAPHS SHALL BE CLEARLY LABELED WITH SITE NUMBER, NAME AND DESCRIPTION, AND SHALL INCLUDE AT A MINIMUM THE FOLLOWING AS
 - SHELTER AND TOWER OVERVIEW.
 - TOWER FOUNDATION(S) FORMS AND STEEL BEFORE POUR (EACH ANCHOR ON GUYED TOWERS).
- TOWER FOUNDATION(S) POUR WITH VIBRATOR IN USE (EACH ANCHOR ON GUYED TOWERS).
- TOWER STEEL AS BEING INSTALLED INTO HOLE (SHOW ANCHOR STEEL ON GUYED TOWERS)
- PHOTOS OF TOWER SECTION STACKING.
- CONCRETE TESTING / SAMPLES.
- PLACING OF ANCHOR BOLTS IN TOWER FOUNDATION
- BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS. SHELTER FOUNDATION——FORMS AND STEEL BEFORE POURING.
- SHELTER FOUNDATION POUR WITH VIBRATOR IN USE. 11. COAX CABLE ENTRY INTO SHELTER.
- 12. PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- 13. ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATIONS AND INTERIOR CEILING.
- 14. PHOTOS OF TOWER TOP COAX LINE COLOR CODING AND COLOR CODING AT GROUND LEVEL.
- 15. PHOTOS OF ALL APPROPRIATE COMPANY OR REGULATORY SIGNAGE.
- 16. PHOTOS OF EQUIPMENT BOLT DOWN INSIDE SHELTER.
 17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND TELCO SUPPLY LOCATIONS INCLUDING METER/DISCONNECT.
- 18. ELECTRICAL TRENCH(S) WITH ELECTRICAL / CONDUIT BEFORE BACKFILL
- 19. ELECTRICAL TRENCH(S) WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL.
- 20. TELCO TRENCH WITH TELEPHONE / CONDUIT BEFORE BACKFILL.
- TELCO TRENCH WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL
- 22 SHELTER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFULL (SHOW ALL CAD WELDS AND BEND RADII).
- TOWER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII). 24. FENCE GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL
- (SHOW ALL CAD WELDS AND BEND RADII).
- 25. ALL BTS GROUND CONNECTIONS. 26 ALL GROUND TEST WELLS
- 27. ANTENNA GROUND BAR AND EQUIPMENT GROUND BAR
- 28. ADDITIONAL GROUNDING POINTS ON TOWERS ABOVE 200
- 29. HVAC UNITS INCLUDING CONDENSERS ON SPLIT SYSTEMS
- 30. GPS ANTENNAS
- 31. CABLE TRAY AND/OR WAVEGUIDE BRIDGE
- 32. DOGHOUSE/CABLE EXIT FROM ROOF. EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA.

- 34. MASTER BUS BAR. 35. TELCO BOARD AND NIU.
- 36. ELECTRICAL DISTRIBUTION WALL.
 37. CABLE ENTRY WITH SURGE SUPPRESSION
- 38. ENTRANCE TO EQUIPMENT ROOM.
- 39. COAX WEATHERPROOFING—TOP AND BOTTOM OF TOWER. 40. COAX GROUNDING -TOP AND BOTTOM OF TOWER.
- 42. LANDSCAPING WHERE APPLICABLE.
- FINAL PROJECT ACCEPTANCE: COMPLETE ALL REQUIRED REPORTING TASKS PER CONTRACT, CONTRACT DOCUMENTS OR THE SPRINT INTEGRATED CONSTRUCTION STANDARDS FOR WIRELESS SITES AND UPLOAD INTO SITERRA.

SECTION 07 500 - ROOF CUTTING, PATCHING AND REPAIR

THIS SECTION SPECIFIES CUTTING AND PATCHING EXISTING ROOFING SYSTEMS WHERE CONDUIT OR CABLES EXIT THE BUILDING ONTO THE ROOF OR BUILDING-MOUNTED ANTENNAS, AND AS REQUIRED FOR WATERTIGHT PERFORMANCE. ROOFTOP ENTRY OPENINGS IN MEMBRANE ROOFTOPS SHALL BE CONSTRUCTED TO COMPLY WITH LANDLORD, ANY EXISTING WARRANTY, AND LOCAL JURISDICTIONAL STANDARDS.

1.4 SUBMITTALS:

- PRE-CONSTRUCTION ROOF PHOTOS: COMPLETE A ROOF INSPECTION PRIOR TO THE INSTALLATION OF SPRINT EQUIPMENT ON ANY ROOFTOP BUILD. AT A MINIMUM INSPECT AND PHOTOGRAPH (MINIMUM 3 EA.) ALL AREAS IMPACTED BY THE ADDITION OF THE SPRINT EQUIPMENT.
- B. PROVIDE SIMILAR PHOTOGRAPHS SHOWING ROOF CONDITIONS AFTER CONSTRUCTION (MINIMUM 3 EA.)
- C. ROOF INSPECTION PHOTOGRAPHS SHOULD BE UPLOADED WITH CLOSEOUT PHOTOGRAPHS

SECTION 09 900 - PAINTING

QUALITY ASSURANCE:

- COMPLY WITH GOVERNING CODES AND REGULATIONS. PROVIDE PRODUCTS OF ACCEPTABLE MANUFACTURERS WHICH HAVE BEEN IN SATISFACTORY USE IN SIMILAR SERVICE FOR THREE YEARS, USE EXPERIENCED INSTALLERS, DELIVER, HANDLE, AND STORE MATERIALS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.
- B. COMPLY WITH ALL ENVIRONMENTAL REGULATIONS FOR VOLATILE ORGANIC COMPOUNDS.

CONTINUE SHEET SP-3

134 FLANDERS ROAD, SUITE 125

WESTBOROUGH, MA 01581

CT43XC828

WINDSOR LOCKS @ **VOLUNTEER DRIVE**

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

PROIECT NO 114957.002 CHECKED BY

ISSUED FOR: REV DATE DRWN DESCRIPTION 0 9/13/17 MDW CONSTRUCTION

31627 CENSED. SSIONAL

B&T ENGINEERING, INC.

PEC.0001564

Expires 2/10/18

IT IS A VIOLATION OF LAW FOR ANY PERSON, JNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION

9/13/17

MATERIALS:

MANUFACTURERS: BENJAMIN MOORE, ICI DEVOE COATINGS, PPG, SHERWIN WILLIAMS OR APPROVED EQUAL. PROVIDE PREMIUM GRADE, PROFESSIONAL-QUALITY PRODUCTS FOR COATING SYSTEMS

PAINT SCHEDULE:

- EXTERIOR ANTENNAE AND ANTENNA MOUNTING HARDWARE: ONE COAT OF PRIMER AND TWO FINISH COATS. PAINT FOR ANTENNAE SHALL BE NON-METALLIC BASED AND CONTAIN NO METALLIC PARTICLES. PROVIDE COLORS AND PATTERNS AS REQUIRED TO MASK APPEARANCE OF ANTENNAE ON ADJACENT BUILDING SURFACES AND AS ACCEPTABLE TO THE OWNER. REFER TO ANTENNA MANUFACTURER'S INSTRUCTIONS WHENEVER POSSIBLE.
- ROOF TOP CONSTRUCTION: TOUCH UP PREPARE SURFACES TO BE REPAIRED. FOLLOW INDUSTRY STANDARDS AND REQUIREMENTS OF OWNER TO MATCH EXISTING COATING AND

PAINTING APPLICATION:

- INSPECT SURFACES, REPORT UNSATISFACTORY CONDITIONS IN WRITING; BEGINNING WORK MEANS ACCEPTANCE OF SUBSTRATE.
- 2. COMPLY WITH MANUFACTURER'S INSTRUCTIONS AND RECOMMENDATIONS FOR PREPARATION. PRIMING AND COATING WORK. COORDINATE WITH WORK OF OTHER SECTIONS.
- MATCH APPROVED MOCK-UPS FOR COLOR, TEXTURE, AND PATTERN. RE-COAT OR REMOVE AND REPLACE WORK WHICH DOES NOT MATCH OR SHOWS LOSS OF ADHESION. 4. CLEAN UP, TOUCH UP AND PROTECT WORK

TOUCHUP PAINTING:

- GALVANIZING DAMAGE AND ALL BOLTS AND NUTS SHALL BE TOUCHED UP AFTER TOWER ERECTION WITH "GALVANOX," "DRY GALV," OR "ZINC-IT."
- FIELD TOUCHUP PAINT SHALL BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S WRITTEN INSTRUCTIONS.
- 3. ALL METAL COMPONENTS SHALL BE HANDLED WITH CARE TO PREVENT DAMAGE TO THE COMPONENTS, THEIR PRESERVATIVE TREATMENT, OR THEIR PROTECTIVE COATINGS.

SECTION 11 700 - ANTENNA ASSEMBLY, REMOTE RADIO HEADS AND CABLE INSTALLATION

SUMMARY:

THIS SECTION SPECIFIES INSTALLATION OF ANTENNAS, RRH'S, AND CABLE EQUIPMENT, INSTALLATION, AND TESTING OF COAXIAL FIBER CABLE.

ANTENNAS AND RRH'S:

THE NUMBER AND TYPE OF ANTENNAS AND RRH'S TO BE INSTALLED IS DETAILED ON THE

HYBRID CABLE:

HYBRID CABLE WILL BE DC/FIBER AND FURNISHED FOR INSTALLATION AT EACH SITE. CABLE SHALL BE INSTALLED PER THE CONSTRUCTION DRAWINGS AND THE APPLICABLE MANUFACTURER'S

JUMPERS AND CONNECTORS:

FURNISH AND INSTALL 1/2" COAX JUMPER CABLES BETWEEN THE RRH'S AND ANTENNAS. JUMPERS SHALL BE TYPE LDF 4, FLC 12-50, CR 540, OR FXL 540. SUPER-FLEX CABLES ARE NOT ACCEPTABLE. JUMPERS BETWEEN THE RRH'S AND ANTENNAS OR TOWER TOP AMPLIFIERS SHALL CONSIST OF 1/2 INCH FOAM DIELECTRIC, OUTDOOR RATED COAXIAL CABLE. DO NOT USE SUPERFLEX OUTDOORS. JUMPERS SHALL BE FACTORY FABRICATED IN APPROPRIATE LENGTHS WITH A MAXIMUM OF 4 FEET EXCESS PER JUMPER AND HAVE CONNECTORS AT EACH END, MANUFACTURED BY SUPPLIER. IF JUMPERS ARE FIELD FABRICATED, FOLLOW MANUFACTURER'S REQUIREMENTS FOR INSTALLATION OF CONNECTORS

REMOTE ELECTRICAL TILT (RET) CABLES:

MISCELLANEOUS

INSTALL SPLITTERS, COMBINERS, FILTERS PER RF DATA SHEET, FURNISHED BY SPRINT.

THE CONTRACTOR SHALL ASSEMBLE ALL ANTENNAS ONSITE IN ACCORDANCE WITH THE INSTRUCTIONS SUPPLIED BY THE MANUFACTURER. ANTENNA HEIGHT, AZIMUTH, AND FEED ORIENTATION INFORMATION SHALL BE A DESIGNATED ON THE CONSTRUCTION DRAWINGS.

- THE CONTRACTOR SHALL POSITION THE ANTENNA ON TOWER PIPE MOUNTS SO THAT THE BOTTOM STRUT IS LEVEL. THE PIPE MOUNTS SHALL BE PLUMB TO WITHIN 1 DEGREE.
- B. ANTENNA MOUNTING REQUIREMENTS: PROVIDE ANTENNA MOUNTING HARDWARE AS INDICATED

HYBRID CABLES INSTALLATION:

- THE CONTRACTOR SHALL ROUTE, TEST, AND INSTALL ALL CABLES AS INDICATED ON THE CONSTRUCTION DRAWINGS AND IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- THE INSTALLED RADIUS OF THE CABLES SHALL NOT BE LESS THAN THE MANUFACTURER'S SPECIFICATIONS FOR BENDING RADII.
- EXTREME CARE SHALL BE TAKEN TO AVOID DAMAGE TO THE CABLES DURING HANDLING AND
- FASTENING MAIN HYBRID CABLES: ALL CABLES SHALL BE PERMANENTLY FASTENED TO THE COAX LADDER AT 4'-0" OC USING NON-MAGNETIC STAINLESS STEEL CLIPS. FASTENING INDIVIDUAL FIBER AND DC CABLES ABOVE BREAKOUT ENCLOSURE (MEDUSA), WITHIN THE
- MMBTS CABINET AND ANY INTERMEDIATE DISTRIBUTION BOXES: a. FIBER: SUPPORT FIBER BUNDLES USING ½" VELCRO STRAPS OF THE REQUIRED LENGTH @ 18" OC. STRAPS SHALL BE UV, OIL AND WATER RESISTANT AND SUITABLE FOR INDUSTRIAL
- INSTALLATIONS AS MANUFACTURED BY TEXTOL OR APPROVED EQUAL.

 DC: SUPPORT DC BUNDLES WITH ZIP TIES OF THE ADEQUATE LENGTH. ZIP TIES TO BE UV
- STABILIZED, BLACK NYLON, WITH TENSILE STRENGTH AT 12,000 PSI AS MANUFACTURED BY NELCO PRODUCTS OR EQUAL. FASTENING JUMPERS: SECURE JUMPERS TO THE SIDE ARMS OR HEAD FRAMES USING STAINLESS
- STEEL TIE WRAPS OR STAINLESS STEEL BUTTERFLY CLIPS. CABLE INSTALLATION:
- a. INSPECT CABLE PRIOR TO USE FOR SHIPPING DAMAGE, NOTIFY THE CONSTRUCTION MANAGER. CABLE ROUTING: CABLE INSTALLATION SHALL BE PLANNED TO ENSURE THAT THE LINES WILL BE PROPERLY ROUTED IN THE CABLE ENVELOP AS INDICATED ON THE DRAWINGS. AVOID TWISTING AND CROSSOVERS
- HOIST CABLE USING PROPER HOISTING GRIPS. DO NOT EXCEED MANUFACTURES RECOMMENDED MAXIMUM BEND RADIUS.

- 5. GROUNDING OF TRANSMISSION LINES: ALL TRANSMISSION LINES SHALL BE GROUNDED AS INDICATED SECTION 26 200 ELECTRICAL MATERIALS AND EQUIPMENT ON DRAWINGS
- HYBRID CABLE COLOR CODING: ALL COLOR CODING SHALL BE AS REQUIRED IN TS 0200 REV 4. HYBRID CABLE LABELING: INDIVIDUAL HYBRID AND DC BUNDLES SHALL BE LABELED ALPHA-NUMERICALLY ACCORDING TO SPRINT CELL SITE ENGINEERING NOTICE EN 2012—001,

WEATHERPROOFING EXTERIOR CONNECTORS AND HYBRID CABLE GROUND KITS:

- A. ALL FIBER & COAX CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED.
- B. WEATHERPROOFED USING ONE OF THE FOLLOWING METHODS. ALL INSTALLATIONS MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INDUSTRY BEST PRACTICES
 - 1. COLD SHRINK: ENCOMPASS CONNECTOR IN COLD SHRINK TUBING AND PROVIDE A DOUBLE WRAP OF 2" ELECTRICAL TAPE EXTENDING 2" BEYOND TUBING. PROVIDE 3M COLD SHRINK CXS SERIES OR EQUAL.
 - SELF-AMALGAMATING TAPE: CLEAN SURFACES. APPLY A DOUBLE WRAP OF SELF-AMALGAMATING TAPE 2" BEYOND CONNECTOR. APPLY A SECOND WRAP OF SELF-AMALGAMATING TAPE IN OPPOSITE DIRECTION. APPLY DOUBLE WRAP OF 2" WIDE ELECTRICAL TAPE EXTENDING 2" BEYOND THE SELF-AMALGAMATING TAPE.
- 3M SLIM LOCK CLOSURE 716: SUBSTITUTIONS WILL NOT BE ALLOWED. OPEN FLAME ON JOB SITE IS NOT ACCEPTABLE

SECTION 11 800 - INSTALLATION OF MULTIMODAL BASE STATIONS (MMBTS) AND RELATED EQUIPMENT

SUMMARY

- A. THIS SECTION SPECIFIES MMBTS CABINETS, POWER CABINETS, AND INTERNAL EQUIPMENT INCLUDING BY NOT LIMITED TO RECTIFIERS. POWER DISTRIBUTION UNITS BASE BAND UNITS, SURGE ARRESTORS, BATTERIES, AND SIMILAR EQUIPMENT FURNISHED BY THE COMPANY FOR INSTALLATION BY THE CONTRACTOR (OFCI).
- CONTRACTOR SHALL PROVIDE AND INSTALL ALL MISCELLANEOUS MATERIALS AND PROVIDE ALL LABOR REQUIRED FOR INSTALLATION EQUIPMENT IN EXISTING CABINET OR NEW CABINET AS SHOWN ON DRAWINGS AND AS REQUIRE BY THE APPLICABLE INSTALLATION MOPS.
- C. COMPLY WITH MANUFACTURERS INSTALLATION AND START-UP REQUIREMENTS

DC CIRCUIT BREAKER LABELING

A. LABEL CIRCUIT BREAKERS ACCORDING TO SPRINT CELL SITE ENGINEERING NOTICE - EN

SECTION 11 800 - INSTALLATION OF MULTIMODAL BASE TRANSCIEVER STATIONS (MMBTS) AND RELATED EQUIPMENT

SUMMARY:

- A. THIS SECTION SPECIFIES MMBTS CABINETS, POWER CABINETS, AND INTERNAL EQUIPMENT INCLUDING BY NOT LIMITED TO RECTIFIERS, POWER DISTRIBUTION UNITS, BASE BAND UNITS, SURGE ARRESTORS, BATTERIES, AND SIMILAR EQUIPMENT FURNISHED BY THE COMPANY FOR INSTALLATION BY THE CONTRACTOR (OFCI).
- B. CONTRACTOR SHALL PROVIDE AND INSTALL ALL MISCELLANEOUS MATERIALS AND PROVIDE ALL LABOR REQUIRED FOR INSTALLATION EQUIPMENT IN EXISTING CABINET OR NEW CABINET AS SHOWN ON DRAWINGS AND AS REQUIRE BY THE APPLICABLE INSTALLATION MOPS.
- C. COMPLY WITH MANUFACTURERS INSTALLATION AND START-UP REQUIREMENTS

SUPPORTING DEVICES:

- MANUFACTURED STRUCTURAL SUPPORT MATERIALS: SUBJECT TO COMPLIANCE WITH REQUIREMENTS, PROVIDE PRODUCTS BY THE FOLLOWING:
 - ALLIED TUBE AND CONDUIT
- B-LINE SYSTEM JNISTRUT DIVERSIFIED PRODUCTS
- THOMAS & BETTS
- B. FASTENERS: TYPES, MATERIALS, AND CONSTRUCTION FEATURES AS FOLLOWS:
 - EXPANSION ANCHORS: CARBON STEEL WEDGE OR SLEEVE TYPE.
 - POWER-DRIVEN THREADED STUDS: HEAT-TREATED STEEL, DESIGNED SPECIFICALLY FOR THE INTENDED SERVICE.
 - FASTEN BY MEANS OF WOOD SCREWS ON WOOD.

 - TOGGLE BOLTS ON HOLLOW MASONRY UNITS.

 CONCRETE INSERTS OR EXPANSION BOLTS ON CONCRETE OR SOLID MASONRY.
 - MACHINE SCREWS, WELDED THREADED STUDS, OR SPRING—TENSION CLAMPS ON STEEL.
 EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE SHALL NOT BE PERMITTED. DO NOT WELD CONDUIT, PIPE STRAPS, OR ITEMS OTHER THAN THREADED STUDS TO STEEL
 - STRUCTURES.
- 9. IN PARTITIONS OF LIGHT STEEL CONSTRUCTION, USE SHEET METAL SCREWS.

SUPPORTING DEVICES:

- INSTALL SUPPORTING DEVICES TO FASTEN ELECTRICAL COMPONENTS SECURELY AND PERMANENTLY IN ACCORDANCE WITH NEC.
- COORDINATE WITH THE BUILDING STRUCTURAL SYSTEM AND WITH OTHER TRADES
- C. UNLESS OTHERWISE INDICATED ON THE DRAWINGS, FASTEN ELECTRICAL ITEMS AND THEIR SUPPORTING HARDWARE SECURELY TO THE STRUCTURE IN ACCORDANCE WITH THE FOLLOWING:
- D. ENSURE THAT THE LOAD APPLIED BY ANY FASTENER DOES NOT EXCEED 25 PERCENT OF THE PROOF TEST LOAD.
- E. USE VIBRATION & SHOCK-RESISTANT FASTENERS FOR ATTACHMENTS TO CONCRETE SLABS. FLECTRICAL IDENTIFICATION:
- UPDATE AND PROVIDE TYPED CIRCUIT BREAKER SCHEDULES IN THE MOUNTING BRACKET. INSIDE DOORS OF AC PANEL BOARDS WITH ANY CHANGES MADE TO THE AC SYSTEM.
- BRANCH CIRCUITS FEEDING AVIATION OBSTRUCTION LIGHTING EQUIPMENT SHALL BE CLEARLY IDENTIFIED AS SUCH AT THE BRANCH CIRCUIT PANELBOARD

- RIGID GALVANIZED STEEL (RGS) CONDUIT SHALL BE USED FOR EXTERIOR LOCATIONS ABOVE GROUND AND IN UNFINISHED INTERIOR LOCATIONS AND FOR ENCASED RUNS IN CONCRETE, RIGID CONDUIT AND FITTINGS SHALL BE STEEL, COATED WITH ZINC EXTERIOR AND INTERIOR BY THE HOT DIP GALVANIZING PROCESS. CONDUIT SHALL BE PRODUCED TO ANSI SPECIFICATIONS C80.1, FEDERAL SPECIFICATION WW-C-581 AND SHALL BE LISTED WITH THE UNDERWRITERS' LABORATORIES. FITTINGS SHALL BE THREADED - SET SCREW OR COMPRESSION FITTINGS WILL NOT BE ACCEPTABLE. RGS CONDUITS SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND.
- B. UNDERGROUND CONDUIT IN CONCRETE SHALL BE POLYVINYLCHLORIDE (PVC) SUITABLE FOR DIRECT BURIAL AS APPLICABLE. JOINTS SHALL BE BELLED, AND FLUSH SOLVENT WELDED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL BE CARLON ELECTRICAL PRODUCTS OR APPROVED EQUAL.
- C. TRANSITIONS BETWEEN PVC AND RIGID (RGS) SHALL BE MADE WITH PVC COATED METALLIC LONG SWEEP RADIUS ELBOWS.
- D. EMT OR RIGID GALVANIZED STEEL CONDUIT MAY BE USED IN FINISHED SPACES CONCEALED IN WALLS AND CEILINGS. EMT SHALL BE MILD STEEL, ELECTRICALLY WELDED. ELECTRO—GALVANIZED OR HOT—DIPPED GALVANIZED AND PRODUCED TO ANSI SPECIFICATION C80.3, FEDERAL SPECIFICATION WW-C-563, AND SHALL BE UL LISTED. EMT SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND, OR APPROVED EQUAL. FITTINGS SHALL BE METALLIC COMPRESSION. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE.
- E. LIQUID TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED FOR FINAL CONNECTION TO EQUIPMENT. FITTINGS SHALL BE METALLIC GLAND TYPE COMPRESSION FITTINGS, MAINTAINING THE INTEGRITY OF CONDUIT SYSTEM, SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE. MAXIMUM LENGTH OF FLEXIBLE CONDUIT SHALL NOT EXCEED 6-FEET. LFMC SHALL BE PROTECTED AND SUPPORTED AS REQUIRE BY NEC. MANUFACTURERS OF FLEXIBLE CONDUITS SHALL BE CAROL, ANACONDA METAL HOSE OR UNIVERSAL METAL HOSE, OR APPROVED EQUAL.
- F. MINIMUM SIZE CONDUIT SHALL BE 3/4 INCH (21MM).

HUBS AND BOXES:

- A. AT ENTRANCES TO CABINETS OR OTHER EQUIPMENT NOT HAVING INTEGRAL THREADED HUBS PROVIDE METALLIC THREADED HUBS OF THE SIZE AND CONFIGURATION REQUIRED. HUB SHALL INCLUDE LOCKNUT AND NEOPRENE O-RING SEAL. PROVIDE IMPACT RESISTANT 105 DEGREE C PLASTIC BUSHINGS TO PROTECT CABLE INSULATION.
- B. CABLE TERMINATION FITTINGS FOR CONDUIT

 1. CABLE TERMINATORS FOR RGS CONDUITS SHALL BE TYPE CRC BY O-Z/GEDNEY OR FOUAL.
 - 2. CABLE TERMINATORS FOR LFMC SHALL BE ETCO CL2075; OR MADE FOR THE PURPOSE PRODUCTS BY ROXTEC.
- C. EXTERIOR PULL BOXES AND PULL BOXES IN INTERIOR INDUSTRIAL AREAS SHALL BE PLATED CAST ALLOY, HEAVY DUTY, WEATHERPROOF, DUST PROOF, WITH GASKET, PLATED IRON ALLOY COVER AND STAINLESS STEEL COVER SCREWS, CROUSE-HINDS WAB SERIES OR FOUAL
- CONDUIT OUTLET BODIES SHALL BE PLATED CAST ALLOY WITH SIMILAR GASKETED COVERS. OUTLET BODIES SHALL BE OF THE CONFIGURATION AND SIZE SUITABLE FOR THE APPLICATION. PROVIDE CROUSE-HINDS FORM 8 OR EQUAL.
- E. MANUFACTURER FOR BOXES AND COVERS SHALL BE HOFFMAN, SQUARE "D", CROUSE-HINDS, COOPER, ADALET, APPLETON, O-Z GEDNEY, RACO, OR APPROVED

SUPPLEMENTAL GROUNDING SYSTEM

- A. FURNISH AND INSTALL A SUPPLEMENTAL GROUNDING SYSTEM AS INDICATED ON THE DRAWINGS. SUPPORT SYSTEM WITH NON-MAGNETIC STAINLESS STEEL CLIPS WITH RUBBER GROMMETS. GROUNDING CONNECTORS SHALL BE TINNED COPPER WIRE, SIZES AS INDICATED ON THE DRAWINGS. PROVIDE STRANDED OR SOLID BARE OR INSULATED CONDUCTORS AS INDICATED.
- SUPPLEMENTAL GROUNDING SYSTEM: ALL CONNECTIONS TO BE MADE WITH CAD WELDS, EXCEPT AT EQUIPMENT USE LUGS OR OTHER AVAILABLE GROUNDING MEANS AS REQUIRED BY MANUFACTURER: AT GROUND BARS USE TWO HOLE SPADES WITH NO OX.
- C. STOLEN GROUND—BARS: IN THE EVENT OF STOLEN GROUND BARS, CONTACT SPRINT CM FOR REPLACEMENT INSTRUCTION USING THREADED ROD KITS.

EXISTING STRUCTURE:

A. EXISTING EXPOSED WIRING AND ALL EXPOSED OUTLETS, RECEPTACLES, SWITCHES, DEVICES, BOXES, AND OTHER EQUIPMENT THAT ARE NOT TO BE UTILIZED IN THE COMPLETED PROJECT SHALL BE REMOVED OR DE-ENERGIZED AND CAPPED IN THE WALL, CEILING, OR FLOOR SO THAT THEY ARE CONCEALED AND SAFE. WALL, CEILING, OR FLOOR SHALL BE PATCHED TO MATCH THE ADJACENT CONSTRUCTION.

CONDUIT AND CONDUCTOR INSTALLATION:

- CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER, PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- B. CONDUCTORS SHALL BE PULLED IN ACCORDANCE WITH ACCEPTED GOOD PRACTICE.

WESTBOROUGH, MA 01581

CT43XC828

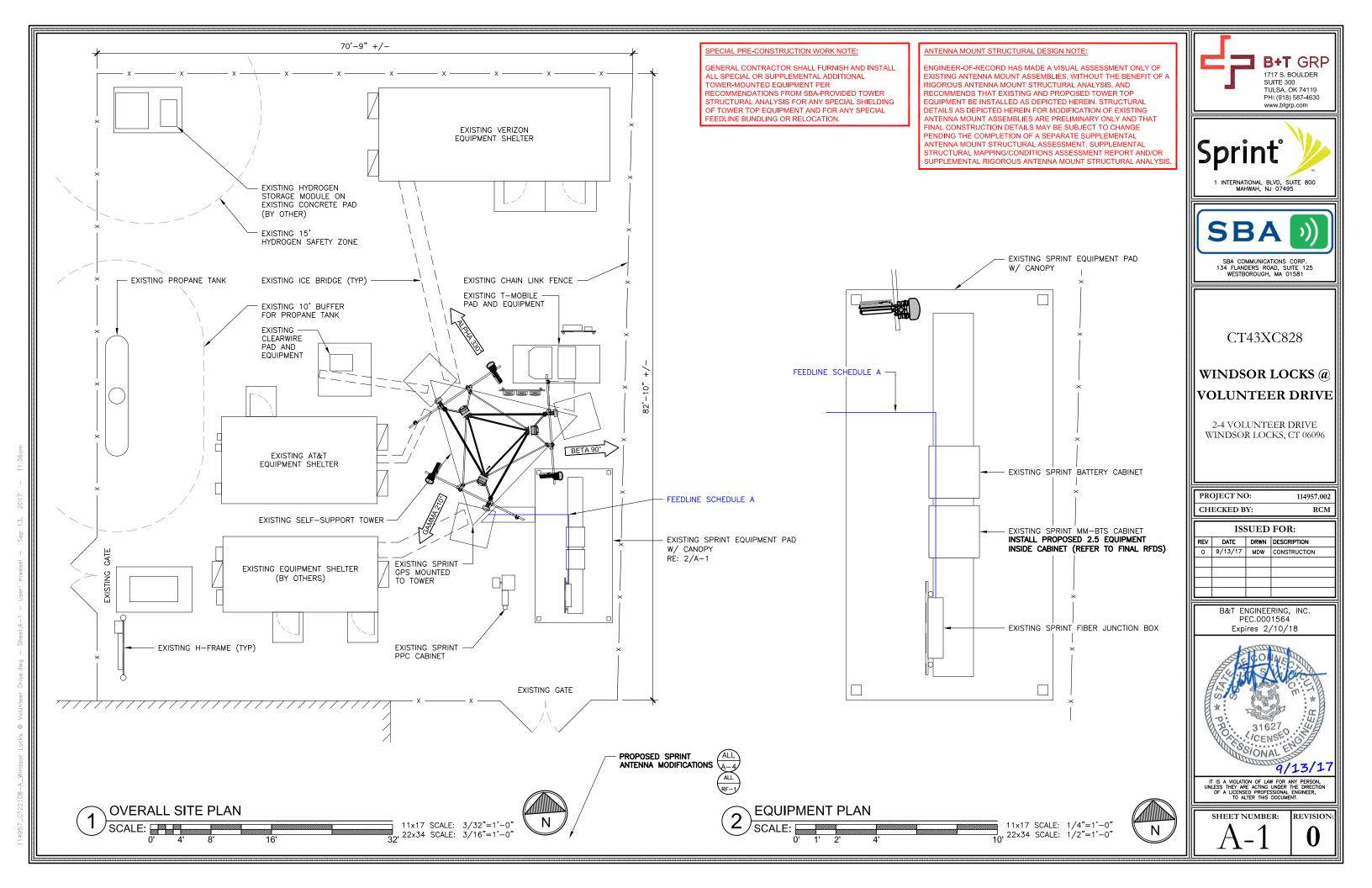
WINDSOR LOCKS @ VOLUNTEER DRIVE

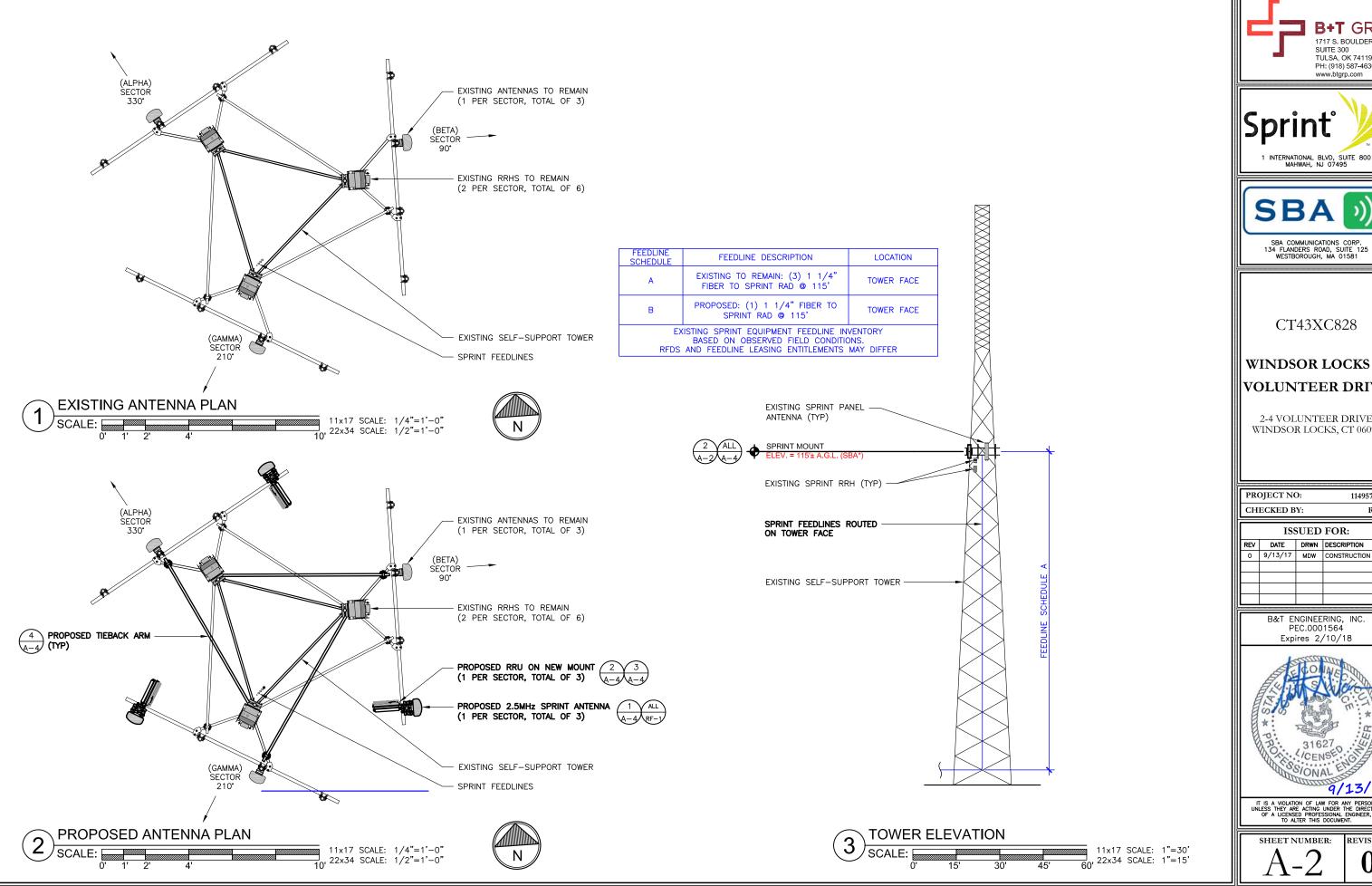
> 2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

PROIECT NO

114957.003 CHECKED BY

ISSUED FOR: REV DATE DRWN DESCRIPTION 0 9/13/17 MDW CONSTRUCTION


> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18



IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION

CT43XC828

WINDSOR LOCKS @ **VOLUNTEER DRIVE**

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

	PROJECT NO: CHECKED BY:	114957.002
ı	CHECKED BY:	RCM

I		ISSUED FOR:			
Ш	II	REV	DATE	DRWN	DESCRIPTION
Ш	II	0	9/13/17	MDW	CONSTRUCTION
Ш	II				
Ш	II				
Ш	II				
I	IL				

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

REVISION

PLUMBING DIAGRAM COULD NOT BE FOUND IN PLAYBOOK TO MATCH PROPOSED SCOPE OF WORK

SPRINT CONSTRUCTION STANDARDS:

GENERAL CONTRACTOR SHALL ADHERE TO THE FOLLOWING SPRINT CONSTRUCTION STANDARDS.

- CONSTRUCTION STANDARDS: INTEGRATED CONSTRUCTION STANDARDS FOR WIRELESS SITES — (CURRENT VERSION), INCLUDING EXHIBITS A—M.

- CONSTRUCTION SPECIFICATIONS: CONSTRUCTION STANDARDS EXHIBIT A

STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES (CURRENT VERSION).

- GROUNDING STANDARDS: EXTERIOR GROUNDING SYSTEM DESIGN. GROUNDING STANDARDS (SUPPLEMENT): ANTI-THEFT UPDATE TO SPRINT GROUNDING 082412 AND SPRINT ENGINEERING LETTER EL-0504 DATED

- WEATHER PROOFING STANDARDS: EXCERPT FROM CONSTRUCTION STANDARDS EXHIBIT A, SECTION 3.6 WEATHERPROOFING CONNECTORS AND

GROUND KITS.

- COLOR CODING: SPRINT NEXTEL ANT AND LINE COLOR CODING PER SPRINT TS-0200 CURRENT VERSION.

- GENERAL CONTRACTOR TO FIELD VERIFY AZIMUTH AND CL HEIGHT AND MECHANICAL DOWNTILT. IF DIFFERENT THAN CALLED OUT IN RFDS, HALT ANTENNA WORK FOR ONE HOUR, CALL SPRINT RF ENGINEER (OR MANAGER IF RF ENGINEER DOES NOT ANSWER, BUT STILL LEAVE A MESSAGE TO RF ENGINEER) USING SPRINT-PROVIDED CONTACT INFORMATION FOR FURTHER INSTRUCTIONS. IF SPRINT DOES NOT RESPOND WITHIN ONE HOUR, PLACE 2.5G ANTENNA AT SAME CL HEIGHT AS 1.9G ANTENNA AND EMAIL CORRECT CL HEIGHT AND AZIMUTH TO SPRINT RF ENGINEER. UPDATE AS-BUILD DRAWING WITH CORRECT CL HEIGHT. ALSO EMAIL CORRECT 1900 MHZ AND 800 MHZ ANTENNA CL HEIGHT, AZIMUTH AND MECHANICAL DOWNTILT TO RF ENGINEER.

- AISG TESTS TO VERIFY OPERATION IS TO BE PERFORMED AFTER FINAL INSTALLATION OF ANTENNAS AND AISG CABLES HAVE BEEN CONNECTED. VERIFY OPERATION OF ALL EXISTING SPRINT AISG EQUIPMENT INCLUDING 800MHZ, 1.9GHZ AND 2.5G. TEST INCLUDE COMPLETE DOWNTILT, AZIMUTH (IF APPLICABLE) AND BEAMWIDTH SWINGS (IF APPLICABLE). DOCUMENT AISG TEST RESULTS IN COAX SWEEP TEST SPREADSHEET.

- GENERAL CONTRACTOR MUST INSURE THAT NO OBJECT IS LOCATED IN

FRONT OF ANTENNA. THIS MEANS NO OBJECT IS TO BE LOCATED 45 DEGREES LEFT AND RIGHT OF FRONT OF ANTENNA OR 7 DEGREES UP AND DOWN FROM CENTER OF ANTENNA. IF THIS IS NOT POSSIBLE, CONTACT RF ENGINEER FOR FURTHER INSTRUCTION. IN ADDITION, 2.5G ANTENNA IS NOT TO BE PLACED IN FRONT OF ANY OTHER ANTENNA USING THE SAME 45 DEGREE RULE. THIS INCLUDES SPRINT AND NON-SPRINT ANTENNAS.

- GENERAL CONTRACT IS REQUIRED TO USE A DIGITAL ALIGNMENT TOOL TO SET AZIMUTH, ROLL AND DOWNTILT. AZIMUTH ACCURACY IS TO BE WITHIN 1 DEGREES. DOWNTILT AND ROLL (LEFT TO RIGHT TILT) IS TO BE WITHIN 0.1 DEGREES. IF FOR SOME REASON THIS ACCURACY CANNOT BE ACHIEVED, UPDATE AS-BUILT DRAWINGS AND EMAIL SPRINT RF ENGINEER WITH AS-BUILT SETTINGS. USE 3Z RF ALIGNMENT TOOL OR EQUIVALENT TOOL. HTTP://WWW.3ZTELECOM.COM/ANTENNA-ALIGNMENT-TOOL/.

> REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS

CT43XC828

WINDSOR LOCKS @ VOLUNTEER DRIVE

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

PROIECT NO:

114957.002

CHECKED BY: RCM

I			ISS	SUED	FOR:
Ш		REV	DATE	DRWN	DESCRIPTION
Ш	İ	0	9/13/17	MDW	CONSTRUCTION
Ш					
Ш	i				
Ш	İ				
Ш	į				

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

REVISION

SHEET NUMBER:

RF DATA SHEET SCALE: N.T.S.

SPECIAL PRE-CONSTRUCTION WORK NOTE:

GENERAL CONTRACTOR SHALL FURNISH AND INSTALL ALL SPECIAL OR SUPPLEMENTAL ADDITIONAL TOWER-MOUNTED EQUIPMENT PER RECOMMENDATIONS FROM SBA-PROVIDED TOWER STRUCTURAL ANALYSIS FOR ANY SPECIAL SHIELDING OF TOWER TOP EQUIPMENT AND FOR ANY SPECIAL FEEDLINE BUNDLING OR RELOCATION.

ANTENNA MOUNT STRUCTURAL DESIGN NOTE:

ENGINEER-OF-RECORD HAS MADE A VISUAL ASSESSMENT ONLY OF EXISTING ANTENNA MOUNT ASSEMBLIES, WITHOUT THE BENEFIT OF A RIGOROUS ANTENNA MOUNT STRUCTURAL ANALYSIS, AND RECOMMENDS THAT EXISTING AND PROPOSED TOWER TOP EQUIPMENT BE INSTALLED AS DEPICTED HEREIN. STRUCTURAL DETAILS AS DEPICTED HEREIN FOR MODIFICATION OF EXISTING ANTENNA MOUNT ASSEMBLIES ARE PRELIMINARY ONLY AND THAT FINAL CONSTRUCTION DETAILS MAY BE SUBJECT TO CHANGE PENDING THE COMPLETION OF A SEPARATE SUPPLEMENTAL ANTENNA MOUNT STRUCTURAL ASSESSMENT, SUPPLEMENTAL STRUCTURAL MAPPING/CONDITIONS ASSESSMENT REPORT AND/OR SUPPLEMENTAL RIGOROUS ANTENNA MOUNT STRUCTURAL ANALYSIS.

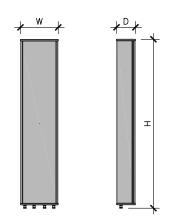
CT43XC828

WINDSOR LOCKS @ VOLUNTEER DRIVE

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

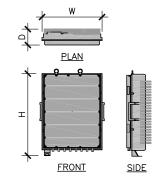
PROJECT NO:	114957.002
CHECKED BY:	RCM

	ISSUED FOR:		
REV	DATE	DRWN	DESCRIPTION
0	9/13/17	MDW	CONSTRUCTION
		REV DATE	REV DATE DRWN

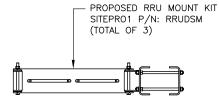

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

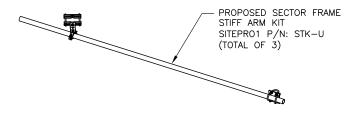
SHEET NUMBER:


MBER: REVISION:

2.5MHz ANTENNA SPECS

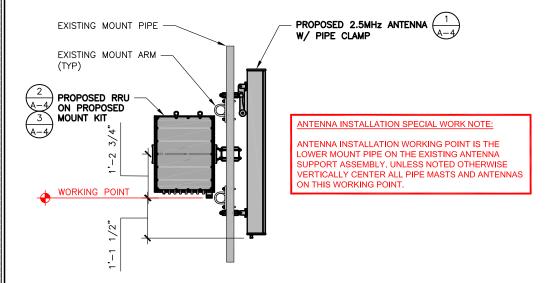

RFS
APXV9TM14-ALU-I20
12.6"
6.3"
56.3"
56.2 LBS

2.5MHz ANTENNA DETAIL
SCALE: N.T.S.



2.5MHz RRH SPECS			
MANUFACTURER	NOKIA/ALU		
MODEL #	TD-RRH8X20-25		
WIDTH	18.6"		
DEPTH	6.7"		
HEIGHT	26.1"		
WEIGHT	70 LBS		

2.5MHz RRH DETAIL
SCALE: N.T.S.


RRU MOUNT
SCALE: N.T.S.

TIEBACK ARM DETAIL SCALE: N.T.S.

	MAJOR RF EQUIPEMENT LIST (GC SHALL FURNISH AND INSTALL ALL OTHER MATERIAL AND EQUIPMENT NOT SUPPLIED BY SPRINT)				
DESCRIPTION QUANTITY		UNITS	MAKE/MODEL/MATERIAL	PROVIDED BY	
	ANTENNA	3	EA	RFS APXVTM14-ALU-I20	SPRINT
	2500 RRH	3	EA	ALCATEL LUCENT TD-RRH8×20-25	SPRINT
ĺ	HYBRID TRUNK	1 @ 140'±	LINEAR FEET LISTED (APPROX. 115'+15%)	1 1/4" HYBRID TRUNK	SPRINT

NOTE: REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS

PROPOSED 2.5MHz ANTENNA & RRU MOUNTING DETAIL SCALE: N.T.S.

<u>NOTE:</u> AT TIME OF CONSTRUCTION, CONTRACTOR TO VERIFY AZIMUTHS OF EXISTING ANTENNAS. IF DIFFERENT FROM RFDS, PLEASE NOTIFY THE RF ENGINEER AND CONSTRUCTION MANAGER WITH ACTUAL AZIMUTH TO ENSURE SPRINT'S DATABASE IS ACCURATE AND UP-TO-DATE.

SPECIAL PRE-CONSTRUCTION WORK NOTE:

GENERAL CONTRACTOR SHALL FURNISH AND INSTALL ALL SPECIAL OR SUPPLEMENTAL ADDITIONAL TOWER-MOUNTED EQUIPMENT PER RECOMMENDATIONS FROM SBA-PROVIDED TOWER STRUCTURAL ANALYSIS FOR ANY SPECIAL SHIELDING OF TOWER TOP EQUIPMENT AND FOR ANY SPECIAL FEEDLINE BUNDLING OR RELOCATION.

CT43XC828

WINDSOR LOCKS @ **VOLUNTEER DRIVE**

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

PROJECT NO: 114957.002 CHECKED BY:

ISSUED FOR: REV DATE DRWN DESCRIPTION 0 9/13/17 MDW CONSTRUCTION

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:

ELECTRICAL NOTES

- ALL ELECTRICAL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE NATIONAL ELECTRICAL CODE (NEC) AS WELL AS APPLICABLE STATE AND LOCAL CODES.
- THE ELECTRICAL CONTRACTOR SHALL COORDINATE ALL CONDUIT ROUTING WITH LOCAL UTILITY COMPANIES AND SPRINT CONSTRUCTION MANAGER.
- ALL CONDUITS ROUTED BELOW GRADE SHALL TRANSITION TO RIGID GALVANIZED ELBOWS WITH RIGID GALVANIZED STEEL CONDUIT ABOVE GRADE.
- ALL METAL CONDUITS SHALL BE PROVIDED WITH GROUNDING BUSHINGS.
- GENERAL CONTRACTOR SHALL PROVIDE ALL DIRECT BURIED CONDUITS WITH PLASTIC WARNING TAPE IDENTIFYING CONTENTS. TAPE COLORS SHALL BE ORANGE FOR TELEPHONE AND RED FOR ELECTRIC.
- ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED AND PROCURED PER SPECIFICATION REQUIREMENTS.
- THE ELECTRICAL WORK INCLUDES ALL LABOR AND MATERIALS DESCRIBED BY DRAWINGS AND SPECIFICATIONS INCLUDING INCIDENTAL WORK TO PROVIDE COMPLETE OPERATING AND APPROVED ELECTRICAL SYSTEM.
- GENERAL CONTRACTOR SHALL PAY FEES FOR PERMITS. AND IS RESPONSIBLE FOR OBTAINING SIAD PERMITS AND
- ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING AND EXPOSED TO WEATHER SHALL BE IN WATER TIGHT GALVANIZED RIGID STEEL CONDUITS OR SCHEDULE 80 PVC (AS PERMITTED BY CODE) AND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE METAL OR NONMETALLIC CONDUITS.
- 10. BURIED CONDUIT SHALL BE SCHEDULE 40 PVC.
- 11. ELECTRICAL WIRING SHALL BE COPPER WITH TYPE XHHW. THWN OR THIN INSULATION
- 12. RUN ELECTRICAL CONDUIT OR CABLE BETWEEN ELECTRICAL UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE PPC AS INDICATED ON THIS DRAWING. PROVIDE FULL LENGTH PULL ROPE. COORDINATE INSTALLATION WITH
- 13. RUN TELCO CONDUIT OR CABLE BETWEEN TELEPHONE UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE TELCO CABINET AND BTS CABINET AS INDUCATED OIN THIS DRAWING. PROVIDE FULL LENGTH PULL ROPE IN INSTALLED TELCO CONDUIT. PROVIDE GREENLEE CONDUIT MEASURE TAPE AT EACH END.
- 14. FIBER OPTIC CIRCUITS SHALL BE IN ACCORDANCE WITH NEC ARTICLE 770-OPTICAL FIBER CABLES AND RACEWAYS.
- COMMUNICATIONS CIRCUITS SHALL BE IN ACCORDANCE WITH NEC ARTICLE 800-COMMUNICATIONS SYSTEMS.

SPECIAL WORK NOTES

- G.C TO FURNISH AND INSTALL ALL COMPONENTS TO UPGRADE EXISTING ELECTRICAL SERVICE, CONDUIT CONDUCTOR, PPC AND MCP IN ACCORDANCE WITH SPRINT CONSTRUCTION STANDARDS NV 2.5 ADDENDUM "ENGINEERING NOTICE 2013-002 (POWER UPGRADES)
- G.C. TO FURNISH AND INSTALL UPGRADE AT THE EXISTING MMBTS BREAKER, CONDUCTOR AND CONDUIT TO A MINIMUM NEC RATING FOR A 100 AMP, 240V CIRCUIT.
- FOR NEW OR REPAIRED GROUNDING EQUIPMENT, REFER TO SPRINT GROUNDING STANDARDS AND FOLLOWING -ANTI-THEFT UPDATE TO SPINT GROUNDING

DATED 08-24-12 -SPRINT ENGINEERING LETTER EL-0504 DATED 04-20-12

ELECTRICAL LEGEND

EXOTHERMIC CONNECTION (CAD WELD)

MECHANICAL CONNECTION

CABLE GROUNDING KIT

UNLESS NOTED OTHERWIRE, ALL BONDING CONDUCTORS ARE #2 SOLID TINNED BCW

B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btarp.com

SBA

134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581

CT43XC828

WINDSOR LOCKS @ **VOLUNTEER DRIVE**

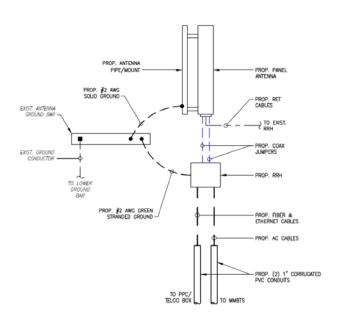
2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

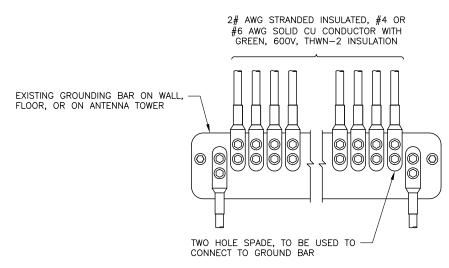
PROIECT NO:

114957.002

CHECKED BY: RCM

I		ISS	SUED	FOR:
Ш	REV	DATE	DRWN	DESCRIPTION
Ш	0	9/13/17	MDW	CONSTRUCTION
Ш				
Ш				
Ш				
Ш				

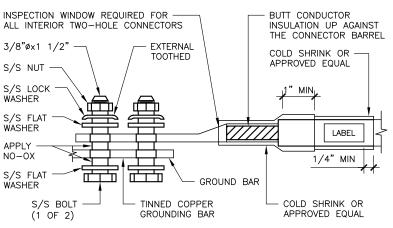

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION

EQUIPMENT GROUNDING SCHEMATIC SCALE: N.T.S.



NOTES

- APPLY NO-OX TO LUG AND BAR CONTACT SURFACE. DO NOT COAT INLINE LUG.
- IF STOLEN GROUND BARS ARE ENCOUNTERED, CONTACT SPRINT CM OR REPLACEMENT THREADED ROD KIT.

INSTALLATION OF GROUNDING CONDUCTOR TO GROUND BAR

SCALE: N.T.S.

NOTES:

- 1. PROVIDE 2-HOLE, LONG BARREL, TINNED SOLID COPPER LUGS WHEREVER LUGS ARE SHOWN. ERICO B-122-CE PREFERRED WITH CADWELD TYPE GL CONNECTION. THOMAS AND BETTS 54800BE SERIES WHERE CRIMP CONNECTOR IS REQUIRED
- 2. ALL CRIMP CONNECTIONS MUST BE MADE USING HYDRAULIC TOOLS AND THREE POINT NHEXAGONAL COMPRESSION MOLDS ON LONG BARREL LUGS.
- 3. ALL MECHANICAL CONNECTIONS MUST BE MADE USING THOMAS AND BETTS "KOPR-SHIELD". COAT ALL WIRES BEFORE LUGGING. COAT ALL SURFACES BEFORE CONNECTING
- 4. ALL HARDWARE 18/8 STAINLESS STEEL INCLUDING BELLEVILLE, COAT ALL SURFACES WITH "KOPR-SHIELD" BEFORE MATING.
- 5. FOR GROUNDING BOND TO STEEL ONLY: INSERT A DRAGON TOOTH WASHER BETWEEN LUG AND STEEL, COAT ALL SURFACES WITH "KOPR-SHIELD".
- 6. NO SLOTTED HOLES ON BUS BAR OR LUGS ARE PERMITTED.
- 7. ALL LUG SHANKS AND LEAD JOINTS SHALL HAVE HEAT SHRINK MATERIAL.

ELECTRICAL LEGEND

EXOTHERMIC CONNECTION (CAD WELD) MECHANICAL CONNECTION

CABLE GROUNDING KIT

GROUND COPPER WIRE, SIZED AS NOTED

UNLESS NOTED OTHERWIRE, ALL BONDING CONDUCTORS ARE #2 SOLID TINNED BCW

PROTECTIVE GROUNDING SYSTEMS GENERAL NOTES

- GROUNDING SHALL BE IN ACCORDANCE WITH NEC ARTICLE 250-GROUNDING AND BONDING.
- GROUNDING SHALL BE IN ACCORDANCE WITH SPRINT SSEO DOCUMENTS 3.018.02.004 "BONDING, GROUNDING AND TRANSIENT PROTECTION FOR CELL SITES" AND 3.018.10.002 "SITE RESISTANCE TO EARTH TESTING".
- PROVIDE GROUND CONNECTIONS FOR ALL METALLIC STRUCTURES. ENCLOSURES, RACEWAYS AND OTHER CONDUCTIVE ITEMS ASSOCIATED WITH THE INSTALLATION OF CARRIER'S EQUIPMENT.
- GROUND CONNECTIONS: CLEAN SURFACES THOROUGHLY BEFORE APPLYING GROUND LUGS OR CLAMPS. IF SURFACE IS COATED, REMOVE THE COATING, APPLY A NON-CORROSIVE APPROVED COMPOUND TO CLEAN SURFACE AND INSTALL LUGS OR CLAMPS. WHERE GALVANIZING IS REMOVED FROM METAL, IT SHALL BE PAINTED OR TOUCHED UP WITH "GALVAMOX" OR EQUAL.
- ALL GROUNDING WIRES SHALL PROVIDE A STRAIGHT, DOWNWARD PATH TO GROUND WITH GRADUAL BENDS AS REQUIRED. GROUND WIRES SHALL NOT BE LOOPED OR SHARPLY BENT.
- ALL CLAMPS AND SUPPORTS USED TO SUPPORT THE GROUNDING SYSTEM CONDUCTORS AND PVC CONDUITS SHALL BE PVC TYPE (NON CONDUCTIVE). DO NOT USE METAL BRACKETS OR SUPPORTS WHICH WOULD FORM A COMPLETE RING AROUND ANY GROUNDING
- ALL GROUND WIRES SHALL BE #2 SOLID TINNED BCW UNLESS NOTED OTHERWISE.
- PROVIDE DEDICATED #2 AWG COPPER GROUND WIRE FROM EACH ANTENNA MOUNTING PIPE TO ASSOCIATED CIGBE.
- GROUND ANTENNA BASES, FRAMES, CABLE RACKS, AND OTHER METALLIC COMPONENTS WITH #2 INSULATED TINNED STRANDED COPPER GROUNDING CONDUCTORS AND CONNECT TO INSULATED SURFACE MOUNTED GROUND BARS. CONNECTION DETAILS SHALL FOLLOW MANUFACTURER'S SPECIFICATIONS FOR GROUNDING.
- 10. EACH EQUIPMENT CABINET SHALL BE CONNECTED TO THE MASTER ISOLATION GROUND BAR (MGB) WITH #2 SOLID TINNED BCW EQUIPMENT CABINETS WALL HAVE (2) CONNECTIONS.
- GROUND HYBRIFLEX SHIELD AT TOP, BOTTOM AND AT TRANSITION TO HYBRIFLEX JUMPER CABLES AT EQUIPMENT CABINET ENTRANCE USING MANUFACTURER'S GUIDELINES. WHEN HYBRIFLEX CABLE EXCEEDS 200', GROUND AT INTERVALS NOT EXCEEDING 100'.
- 12. THE CONTRACTOR SHALL VERIFY THAT THE EXISTING GROUND BARS HAVE ENOUGH SPACE/HOLES FOR ADDITIONAL TWO HOLE LUGS.
- 13. EXOTHERMIC WELDING IS RECOMMENDED FOR GROUNDING CONNECTION WHERE PRACTICAL OTHERWISE. THE CONNECTION SHALL BE MADE USING COMPRESSION TYPE-2 HOLES, LONG BARREL LUGS OR DOUBLE CRIMP "C" CLAMP. THE COPPER CABLES SHALL BE COATED WITH AN ANTI-OXIDANT (THOMAS BETTS KOPR-SHILD) BEFORE MAKING THE CRIMP CONNECTIONS THE CONTRACTOR SHALL FOLLOW MANUFACTURER'S RECOMMENDED TORQUES ON THE BOLT ASSEMBLY TO SECURE CONNECTIONS.
- AT ALL TERMINATIONS AT EQUIPMENT ENCLOSURES, PANEL, AND FRAMES OF FOLIPMENT AND WHERE EXPOSED FOR GROUNDING CONDUCTOR TERMINATION SHALL BE PERFORMED UTILIZING TWO HOLE BOLTED TONGUE COMPRESSION TYPE LUGS WITH STAINLESS STEEL SELF-TAPPING SCREWS.
- THE MASTER GROUND BAR (MGB) SHALL BE MADE OF BARE 1/4"x2" COPPER (FOR OUTDOOR APPLICATIONS IT SHALL BE TINNED COPPER) AND LARGE ENOUGH TO ACCOMMODATE THE REQUIRED NUMBER OF GROUND CONNECTIONS. THE HARDWARE SECURING THE MGB SHALL ELECTRICAL INSULATE THE MGB FROM ANY STRUCTURE TO WHICH IT IS FASTENED.
- 16. ALL BOLTS, WASHERS, AND NUTS USED ON GROUNDING CONNECTIONS SHALL BE STAINLESS STEEL.
- 17. ALL GROUNDING CONNECTIONS SHALL BE COATED WITH A COPPER SHIELD ANTI-CORROSIVE AGENT SUCH AS T&B KOPR SHIELD. VERIFY PRODUCT WITH SPRINT CONSTRUCTION MANAGER.
- 18. FOR NEW OR REPAIRED GROUNDING EQUIPMENT. REFER TO SPRINT GROUNDING STANDARDS AND FOLLOWING (SUPPLEMENTS): -ANTI-THEFT UPDATE TO SPRINT GROUNDING DATED: 08-24-12 (OR CURRENT VERSION)
- -SPRINT ENGINEERING LETTER EL-0504 DATED: 04-20-12 (OR CURRENT VERSION)

B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

134 FLANDERS ROAD, SUITE 125

WESTBOROUGH, MA 01581

CT43XC828

WINDSOR LOCKS @

VOLUNTEER DRIVE

2-4 VOLUNTEER DRIVE WINDSOR LOCKS, CT 06096

PROIECT NO:

114957.002 CHECKED BY:

ISSUED FOR: REV DATE DRWN DESCRIPTION 0 9/13/17 MDW CONSTRUCTION

> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/18

IT IS A VIOLATION OF LAW FOR ANY PERSON, JNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION