

**STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL**

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

March 28, 2022

Jeffrey Barbadora
Site Acquisition Specialist
Crown Castle
1800 W. Park Drive
Westborough, MA 01581
jeff.barbadora@crowncastle.com

RE: EM-T-MOBILE-165-220214 - T-Mobile notice of intent to modify an existing telecommunications facility located at 1000 Old County Circle, Windsor Locks, Connecticut.

Dear Mr. Barbadora:

The Connecticut Siting Council (Council) is in receipt of your correspondence of March 17, 2022 submitted in response to the Council's March 9, 2022 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman
Executive Director

MAB/IN/emr

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA133A

842876

1000 Old County Circle
Windsor Locks, Connecticut 06096

March 17, 2022

EBI Project Number: 6222000663

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	98.27%

March 17, 2022

T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTHAI33A - 842876

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **1000 Old County Circle in Windsor Locks, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The number of $\mu\text{W}/\text{cm}^2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 $\mu\text{W}/\text{cm}^2$ and 467 $\mu\text{W}/\text{cm}^2$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 $\mu\text{W}/\text{cm}^2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 1000 Old County Circle in Windsor Locks, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For power density calculations, the broadcast footprint of the AIR6449 antenna has been considered. Due to the beamforming nature of this antenna, the actual beam locations vary depending on demand and are narrow in nature. Using the broadcast footprint accounts for the potential location of beams at any given time.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 1 NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 6) 2 UMTS channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 7) 2 LTE channels (AWS Band – 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 8) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 9) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antennas used in this modeling are the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector A, the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector B, the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-R1 for the 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 11) The antenna mounting height centerline of the proposed antennas is 66 feet above ground level (AGL).

EBI Consulting

environmental | engineering | due diligence

- 12) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 13) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	RFS APXVAALL24_43-U-NA20	Make / Model:	RFS APXVAALL24_43-U-NA20	Make / Model:	RFS APXVAALL24_43-U-NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd
Height (AGL):	66 feet	Height (AGL):	66 feet	Height (AGL):	66 feet
Channel Count:	5	Channel Count:	5	Channel Count:	5
Total TX Power (W):	200 Watts	Total TX Power (W):	200 Watts	Total TX Power (W):	200 Watts
ERP (W):	4,151.83	ERP (W):	4,151.83	ERP (W):	4,151.83
Antenna A1 MPE %:	9.87%	Antenna B1 MPE %:	9.87%	Antenna C1 MPE %:	9.87%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Commscope VV-65A-R1	Make / Model:	Commscope VV-65A-R1	Make / Model:	Commscope VV-65A-R1
Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz
Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd / 16.05 dBd	Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd / 16.05 dBd	Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd / 16.05 dBd
Height (AGL):	66 feet	Height (AGL):	66 feet	Height (AGL):	66 feet
Channel Count:	10	Channel Count:	10	Channel Count:	10
Total TX Power (W):	420 Watts	Total TX Power (W):	420 Watts	Total TX Power (W):	420 Watts
ERP (W):	15,863.03	ERP (W):	15,863.03	ERP (W):	15,863.03
Antenna A2 MPE %:	15.84%	Antenna B2 MPE %:	15.84%	Antenna C2 MPE %:	15.84%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449
Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz
Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd
Height (AGL):	66 feet	Height (AGL):	66 feet	Height (AGL):	66 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (W):	36,356.09	ERP (W):	36,356.09	ERP (W):	36,356.09
Antenna A3 MPE %:	36.31%	Antenna B3 MPE %:	36.31%	Antenna C3 MPE %:	36.31%

Site Composite MPE %	
Carrier	MPE %
T-Mobile (Max at Sector A):	62.02%
Dish	3.33%
Verizon	28.61%
AT&T	4.31%
Site Total MPE % :	98.27%

T-Mobile MPE % Per Sector	
T-Mobile Sector A Total:	62.02%
T-Mobile Sector B Total:	62.02%
T-Mobile Sector C Total:	62.02%
Site Total MPE % :	98.27%

T-Mobile Maximum MPE Power Values (Sector A)

T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu\text{W}/\text{cm}^2$)	Frequency (MHz)	Allowable MPE ($\mu\text{W}/\text{cm}^2$)	Calculated % MPE
T-Mobile 600 MHz LTE	2	591.73	66.0	11.82	600 MHz LTE	400	2.95%
T-Mobile 600 MHz NR	1	1577.94	66.0	15.76	600 MHz NR	400	3.94%
T-Mobile 700 MHz LTE	2	695.22	66.0	13.89	700 MHz LTE	467	2.97%
T-Mobile 1900 MHz GSM	4	1076.77	66.0	43.01	1900 MHz GSM	1000	4.30%
T-Mobile 1900 MHz LTE	2	2153.53	66.0	43.01	1900 MHz LTE	1000	4.30%
T-Mobile 2100 MHz UMTS	2	1208.15	66.0	24.13	2100 MHz UMTS	1000	2.41%
T-Mobile 2100 MHz LTE	2	2416.30	66.0	48.26	2100 MHz LTE	1000	4.83%
T-Mobile 2500 MHz LTE IC & 2C Traffic	1	11044.63	66.0	110.30	2500 MHz LTE IC & 2C Traffic	1000	11.03%
T-Mobile 2500 MHz LTE IC & 2C Broadcast	1	1074.06	66.0	10.73	2500 MHz LTE IC & 2C Broadcast	1000	1.07%
T-Mobile 2500 MHz NR Traffic	1	22089.26	66.0	220.59	2500 MHz NR Traffic	1000	22.06%
T-Mobile 2500 MHz NR Broadcast	1	2148.13	66.0	21.45	2500 MHz NR Broadcast	1000	2.15%
						Total:	62.02%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	62.02%
Sector B:	62.02%
Sector C:	62.02%
T-Mobile Maximum MPE % (Sector A):	62.02%
Site Total:	98.27%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **98.27%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.