

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

June 2, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 10 North Ridge Road, Windham, CT 06256 Latitude: 41.739861 Longitude: -72.172916 Site #: 842423_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 10 North Ridge Road, Windham, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 66-foot level of the existing 89-foot tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by NB+C, dated November 11, 2021, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated October 14, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was originally approved by the Connecticut Siting Council, Docket No. 275 on April 26, 2004, see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Thomas DeVivo, James Rivers, Town Manager, and Matthew Vertefeuille, Director of Code Enforcement for the Town of Windham, as well as the tower owner (Crown Castle) and property owner (Walmart Real Estate Business Trust).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 89-feet and the Dish Wireless LLC antennas will be located at a centerline height of 66-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 43.72% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Windham. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 66-foot level of the existing 89-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Windham.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Cc: Mayor Thomas DeVivo Town of Windham 979 Main Street Willimantic, CT 06226

James Rivers, Town Manager Town of Windham 979 Main Street Willimantic, CT 06226

Matthew Vertefeuille, Director of Code Enforcement Town of Windham 979 Main Street Willimantic, CT 06226

Walmart Real Estate Business Trust - Property Owner PO Box 8050 MS 0555 Bentonville, AR 72716

Crown Castle - Tower Owner

Exhibit A

Original Facility Approval

Connecticut Siting Council

CT.gov Home (/) Connecticut Siting Council (/CSC) DO 275 D&O Windham

DOCKET NO. 275 – AT&T Wireless PCS, LLC d/b/a AT&T Wireless application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications	}	Connecticut
facility at 10 North Ridge Road, Windham, Connecticut.	}	Siting
	}	Council
		April 26, 2004

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes **§** 16-50k, be issued to AT&T Wireless PCS d/b/a AT&T Wireless for the construction, maintenance and operation of a wireless telecommunications facility at 10 North Ridge Road, Windham, Connecticut. The Council approves the Alternative 1 tower configuration.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

 The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wireless PCS LLC, Omnipoint Communications, Inc. and other entities, both public and private, but such tower shall not exceed 107 feet above ground level.
 Antennas and lighting mounted on the tower shall not exceed a total height of 109 feet above ground level. Tower lighting shall consist of a single steady red beacon.

2. Construction activities shall be limited to the period of mid-August to mid-May to avoid the nesting season of rare birds that may utilize the site.

3. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:

a. a detailed site development plan that depicts the location of the access road, compound, tower, utility line, erosion and sedimentation control features, and landscaping;

b. specifications for the tower, tower foundation, antennas, equipment building, and security fence; and

c. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment</u> <u>Control</u>, as amended.

4. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided tower space is available and such antennas are compatible with the structural integrity of the tower.

5. Prior to the commencement of operation, the Certificate Holder shall provide to the Council a worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall submit a revised electromagnetic radio frequency power density report to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

6. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.

7. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.

8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.

9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes **§** 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Hartford Courant and the Willimantic Chronicle.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

<u>Applicant</u>

Intervenor

AT&T Wireless PCS, LLC d/b/a AT&T Wireless

Omnipoint Communications, Inc.

Its Representative

Christopher B. Fisher, Esq. Cuddy & Feder LLP 90 Maple Avenue White Plains, New York 10601

Its Representative

Stephen J. Humes LeBoeuf, Lamb, Greene & MacRae, LLP Goodwin Square Asylum Street Hartford, CT 06103

Exhibit B

Property Card

Property Card: 10 NORTHRIDGE DR

Town of Windham, CT

Parcel Information	
Parcel ID: 5-3-225-21 Vision ID: 5636 Owner: WALMART REAL ESTATE BUSINESS Co-Owner: TRUST Mailing Address: TAX #0555 STORE 01-2022 PO BOX 8050 MS 0555 BENTONVILLE, AR 72716	Map: 5-3 Lot: 225-21 Use Description: Commercial Zone: C4 Land Area in Acres: 24.4
Sale History	Assessed Value
Book/Page: 910/ 48 Sale Date: 3/2/2006 Sale Price: \$0	Land: \$1,214,980 Buildings: \$6,727,390 Total: \$7,942,370

Building Details: Building # 1

Model: Commercial Living Area: 167328 Appr. Year Built: 1993 Style: Retail Stories: 1.0 Occupancy: 1 No. Total Rooms: No. Bedrooms: No. Baths: No. Half Baths: Int Wall Desc 1: Int Wall Desc 2: Ext Wall Desc 1: Concrete/mas Ext Wall Desc 2: 01 Roof Cover: Roof Structure: 01 Heat Type: Heat Fuel: A/C Type: Central

www.cai-tech.com

Data shown on this report is provided for planning and informational purposes only. The municipality and CAI Technologies are not responsible for any use for other purposes or misuse or misrepresentation of this report.

Exhibit C

Construction Drawings

DISH Wireless L.L.C. SITE ID:

BOBOS00892A

DISH Wireless L.L.C. SITE ADDRESS:

10 NORTH RIDGE DRIVE WINDHAM, CT 06256

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES <u>CODE TYPE</u> <u>CODE</u> 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS BUILDING MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS

ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX	
	SHEET TITLE	SHEET NO.
and the second second	TITLE SHEET	T-1
and the second	OVERALL AND ENLARGED SITE PLAN	A—1
	FLEVATION, ANTENNA LAYOUT AND SCHEDULE	A-2
	EQUIPMENT PLATFORM AND H-FRAME DETAILS	A-3
	EQUIPMENT DETAILS	A-4
	EQUIPMENT DETAILS	A-5
	EQUIPMENT DETAILS	A-6
	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	E-1
	ELECTRICAL DETAILS	E-2
	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	E-3
	GROUNDING PLANS AND NOTES	G-1
	GROUNDING DETAILS	G-2
	GROUNDING DETAILS	G-3
	RF CABLE COLOR CODE	RF-1
	LEGEND AND ABBREVIATIONS	GN-1
	GENERAL NOTES	GN-2
	GENERAL NOTES	GN-3
FOR ROUTINE MAINTER	GENERAL NOTES	GN-4
DRAINAGE. NO SANITA SIGNAGE IS PROPOSE		
11"x17" F		

THIS IS APPROVE THE PRO	NOT ID E)JEC	T AN Equiv T Gi	ALL I /ALEN1 ENERA
TOWER S INST/ INST/ INST/ INST/ INST/ INST/	SCOF ALL ALL ALL ALL ALL ALL	PE ((3) (1) PRO (6) (1) (1) (3)	PROP PROP POSEL PROP PROP PROP DOUB
GROUND INST/ INST/ INST/ INST/ INST/ INST/ INST/	SC 4LL 4LL 4LL 4LL 4LL 4LL 4LL 4LL	OPE (1) (1) (1) (1) (1) (1) (1) (1)	OF W PROP PROP PROP PROP PROP PROP PROP

SCOPE OF WORK

INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. LLY CONSISTS OF THE FOLLOWING:

POSED PANEL ANTENNAS (1 PER SECTOR) POSED ANTENNA PLATFORM MOUNT ED JUMPERS OSED RRUs (2 PER SECTOR) POSED OVER VOLTAGE PROTECTION DEVICE (OVP) POSED HYBRID CABLE

BLE Z-BRACKETS (1 PER SECTOR) ORK:

- POSED METAL PLATFORM OSED ICE BRIDGE POSED PPC CABINET POSED EQUIPMENT CABINET POSED POWER CONDUIT POSED TELCO CONDUIT
- POSED TELCO-FIBER BOX POSED GPS UNIT
- POSED FIBER NID

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811
ITILITY NOTIFICATION CENTER OF CONNECTICUT
(800) 922-4455
WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

TY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED NE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON B SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

PROPERTY OWNER: ADDRESS:	WALMART REAL ESTATE BUSINESS PO BOX 8050 MS 0555 BENTONVILLE, AR 72716	APPLICANT:	DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
TOWER TYPE:	MONOPOLE	TOWER OWNER:	CROWN CASTLE USA INC. 2000 CORPORATE DR.
TOWER CO SITE ID:	842423		CANONSBURG, PA 15317 (877) 486-9377
TOWER APP NUMBER:	572910		
COUNTY:	WINDHAM	SITE DESIGNER:	NB+C ENGINEERING SERVICES, LLC 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075
LATITUDE (NAD 83):	41°44′23.53″N 41.739869N		(410) 712-7092
longitude (nad 83):	-72°10'22.47" W -72.172908 W		
ZONING JURISDICTION:	WINDHAM COUNTY	SITE ACQUISITION	: CORWIN DIXON CORWIN.DIXON@CROWNCASTLE.C
ZONING DISTRICT:	C4		
PARCEL NUMBER:	5-3-225-21	CONSTRUCTION N	IANAGER: JAVIER SOTO JAVIER.SOTO@DISH.COM
OCCUPANCY GROUP:	U	RF ENGINEER:	ARVIN SEBASTIAN ARVIN.SEBESTIAN@DISH.COM
CONSTRUCTION TYPE:	II-B		
POWER COMPANY:	EVERSOURCE		
TELEPHONE COMPANY	: FRONTIER		

1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.

- 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
- 3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.

$\frac{NANCE}{" AGL} \qquad \qquad$						2 VIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	"	reless L.L.C. RRH R, TOTAL 3)	EXISTIC PROPORTION
	L			ANIE	.NNA LA	<u> </u>			
	ſ	SECTOR POS.	EXISTING OR	ANTENNA MANUFACTURER – MODEL	TECH	AZIMUTH	RAD	TRANSMISSION CABLE	MANUFA
	┣	A1						(1)	FUJITSU
		A2	PROPOSED	JMA – MX08FR0665–21	5G	0.	66'-00"	HIGH-CAPACITY 1-3/8"DIA. HYBRID CABLE	FUJITSU
		A3						(105' LONG)	
		B1							FUJITSU
		82 R3	PROPOSED	JMA – MXU8FRU665–21 	5G		00 - 00"	SHAKLU W/ALPHA	FUJIISU
	⊩	C1							FUJITSU
		C2	PROPOSED	JMA – MX08FR0665–21	5G	240	66'-00"	SHARED W/ALPHA	FUJITSU
		C3							
OPOLE		NOTES 1. CON 2. ANTE EQUI THE	TRACTOR TO RE ENNA AND RRH IPMENT CHANGE PROPOSED DES	FER TO FINAL CONSTRUCTION R MODELS MAY CHANGE DUE TO S MUST BE APPROVED AND REN SIGN AND STRUCTURAL ANALYSES	RFDS FOR A EQUIPMENT MAIN IN CO S.	LL RF DETA AVAILABILIT MPLIANCE W	NLS. Y. ALL /ITH		
<u>5' 10'</u>									
=1'-0"					<u>ANT</u>	enna S	CHEDU		

PCTEL GPSGL-TMG-SPI-40NCB DIMENSIONS (DIAXH) MM/INCH 81×184mm 3.2"x7.25" WEIGHT W/ACCESSORIES 075 lbs CONNECTOR N-FEMALE FREQUENCY RANGE 1590 ± 30M	Hz				
BACH	≦		SIDE		
<u>GPS DETAIL</u>			NO SCALE	1	<u>GPS M</u>
DESC SITE ID #: TWR TYPE: HYBRID BEND RADIUS RAD CENTER (ft) ICE BRIDGE HEIGHT (ft) ICE BRIDGE LENGTH (ft) LENGTH ACROSS PLATFORM (ft) LENGTH FROM TOWER TOP TO OVP (ft)	QTY BOBOS00892A MONOPOLE 30" 66.0 10.0 10.0 6.0 6.0	The preparer must deter This is the RAD center for For a rooftop, this is the t sections of This is the length of the tor more than one ice bridge i lengths of hybrid if thi This is the length from the up the ice bridge or i OVP at the antenna leve lengths of hybrid on a supportion This is the vertical length or	mine the lengths below the antennas on towe otal length of all vertion the hybrid. The bridge coverings. The bridge covering sused or total horizon s is inside a building. The cabinet to the first boom nside a radio room. The from the tower to the lor the total horizont building or large self g tower. If hybrid that comes on reginning of the first boom	ow. ers. cal gs, if ntal end che al	
Additional Excess Hybrid to be added (To be determined by preparer)	LENGTH (ft) O	that is going into the that is going into the theta is going into theta is going into theta is going into the theta is going i	ne monopole port.		
Total Hybrid Length to Order (Rounded up to nearest whole number)	105				
HYBRID CABLE CAL	CULATOR		NO SCALE	4	
			NO SCALE	7	

MINIMUM OF 75% OR 270' IN ANY DIRECTION GPS			CU12PSM6P4XXX (4 AWG CONDUCTORS) CU12PSM6P4XXX (4 AWG CONDUCTORS) CU12PSM9P8XXX (8 AWG CONDUCTORS)	P6XXX DUCTORS)		<section-header><text><text><text><text></text></text></text></text></section-header>
INIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	<u>CABLES UNLIMITED HYBRID CABLE</u> MINIMUM REND RADIUSES	NO SCALE	3	
						NUMBER NUMPER NUMPER NUMPER <td< td=""></td<>
<u>NOT USED</u>	NO SCALE	5	<u>NOT USED</u>	NO SCALE	6	SUBMITTALS
						KEV DATE DESCRIPTION 0 11/11/2021 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 842423 DISH Wireless L.L.C. PROJECT INFORMATION BOBOS00892A 10 NORTH RIDGE DRIVE WINDHAM, CT 06256 SHEET TITLE EQUIPMENT DETAILS SHEET NUMBER A A
<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>	NO SCALE	9	A-3
				1		

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

4 Z	0	4	0		
	1/4"=	=1'-0 "		1	ELECTRICAL NOTES

NO SCALE	2

AREAS, OR DR CONCRETE AL CROSS INCLUDING, D SOIL PING, AND GOVERNED SHA CAVATION L BE JANCE WITH NAL C) OR AS OCAL JEVER IS IT. AL UNDERGROUND TRENCH DETAIL	LOCAL REGULAT TRENCHING NOTE	E SITE	PROPOSED DISH Wireless L.L.C. UNISTRUT PROPOSED DISH Wireless L.L.C. 10 AMP DISTRIBUTION BREAKER PROPOSED DISH Wireless L.L.C. 12 AWG WIRE PROPOSED DISH Wireless L.L.C. 1-1/2" POWER FROM CABINET DISH Wireless L.L.C. INSTALLS 1-1/2" CONDUITS FOR POWER AND FIBER TO CABINET DARK TELCO BOX - INTERIOR WI
<u>NOT USED</u>	NO SCALE	5	NOT_USED
<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>

			SED DOWER DROTECTIVE CARINET]			THE ENGINEER OF RECORD HAS
RVICE ENT /AC 1PH	RANCE	120/24 OVERAL	40V, 1 PH, SERVICE RATED, L UL LISTED POWER CENTER,			CHARLES NETWORK CABINET	EQUIPMENT AND THE ELECTRICA
		M/	AIN BREAKER WITH				CALCULATIONS AND ALL BRANCH (LISTED ON T-1) ARTICLE 210.
· 2		j 200a in Fe	EED, 200A 65K AIC	(2) PROPO 0.75" EMT CO	SED NDUITS		THE (2) CONDUITS WITH (4) CH THE ADJUSTMENT FACTOR OF 8
N PRESSION DKA SAD/							2020 NEC TABLE 310.15(C)(1) #12 FOR
15A	$\begin{array}{c c} 01 & 02 \\ \hline 03 & 04 \end{array}$	30A PRO	DPOSED 2 #10, 1 #10 CU GND.			- FOR RECTIFIER 1	#10 FOR 2 #8 FOR 3 #6 FOR 4
54 	05 06 CE 07 08	30A PRO	OPOSED 2 #10			- FOR RECTIFIER 2	CONDUIT SIZING: AT 40% FILL 0.5" CONDUIT – 0.12
SPA SPA	$\begin{array}{c c} & & \\ \hline \\ & & \\ \hline \\ & \\ \\ & \\ \\ & \\ \\ \\ \\$	30A PRO	DPOSED 2 #10, 1 #10 CU GND.		 	- FOR RECTIFIER 3	0.75" CONDUIT - 0.2 2.0" CONDUIT - 1.3 3.0" CONDUIT - 2.90
SPA SPA	$\begin{array}{c c} & & & & & \\ \hline \\ CE \\ \hline \\ CE \\ \hline \\ CE \\ \hline \\ \end{array}$	6 30A PRC	DPOSED 2 #10				CABINET CONVENIENCE OUTLET
SPA	$\begin{array}{c c} 15 & 16 \\ \hline \\ CE \\ 17 & 18 \\ \hline \end{array}$)	FOR RECTIFIER 4	#10 - 0.0 #10 - 0.0
SPA SPA	$\begin{array}{c c} CE \\ \hline \\ CE \\ \hline \\ 21 \\ 22 \\ \hline \end{array}$	SPACE SPACE		(1) PROPO 0.5" EMT CO	SED NDUIT		0.5" EMT CONDUIT IS ADEQUATI
SPA SPA	CE 23 24	SPACE SPACE					RECTIFIER CONDUCTORS (2 CON
		PR(DPOSED 2 #10, 1 #10 CU GND.			- FOR CONVENIENCE OUTLET	#10 - 0.0 #10 - 0.0
RCUIT WIR	ING SUPPLYING	RECTIFIER	RS ARE TO BE RATED UL1015, 105	°C, 600V, AND F	PVC INS	ULATED, IN THE SIZES SHOWN	TOTAL 0.75" EMT CONDUIT IS ADEQUA
E-LINE DIA	AGRAM. CONTRA <u>:</u>	CTOR MAY	SUBSTITUTE UL1015 WIRE FOR TH	WN-2 FOR CON	IVENIENC	CE OUTLET BRANCH CIRCUIT.	INCLUDING GROUND WIRE, AS II PPC FEED CONDUCTORS (1 CO
BREAKEBREAKE	R – SQUARE E R – SQUARE E) P/N:QO2) P/N:QO1	230 15				3/0 - 0 #6 - 0
							TOTAL
							3.0" SCH 40 PVC CONDUIT IS Including ground wire, as ii
	<u>PPC 0</u>	NE-LII	NE DIAGRAM				
	NU SCALE	2				<u>INUI USED</u>	

NOTES			
AS PERFORMED ALL REQUIRED SH ATINGS FOR EACH DEVICE IS ADE CAL SYSTEM.	ORT CIRCUIT QUATE TO PROTE	ECT THE	
AS PERFORMED ALL REQUIRED VOI CH CIRCUIT AND FEEDERS COMPLY D.19(A)(1) FPN NO. 4.	LTAGE DROP ′WITH THE NEC		
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3) FOR UL1015 WIRE.	EACH, SHALL AF 10.15(B)(3)(a) (PPLY OR	wireless
15A-20A/1PBREAKER:0.8x325A-30A/2PBREAKER:0.8x435A-40A/2PBREAKER:0.8x545A-60A/2PBREAKER:0.8x7	0A = 24.0A 0A = 32.0A 5A = 44.0A 5A = 60.0A		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
PER NEC CHAPTER 9, TABLE 4, 122 SQ. IN AREA 213 SQ. IN AREA 316 SQ. IN AREA 907 SQ. IN AREA	ARTICLE 358.		
CONDUCTORS (1 CONDUIT): USIN	IG THWN−2, CU.		
.0211 SQ. IN X 2 = 0.0422 SQ. 0211 SQ. IN X 1 = 0.0211 SQ.	IN IN <ground< td=""><td></td><td>TOTALLY COMMITTED.</td></ground<>		TOTALLY COMMITTED.
= 0.0633 SQ.	IN		NB+C ENGINEERING SERVICES, LLC.
TE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE.	WIRES,		ELKRIDGE, MD 21075 (410) 712-7092
NDUITS): USING UL1015, CU.			
.0266 SQ. IN X 4 = 0.1064 SQ. .0082 SQ IN X 1 = 0.0082 SQ	IN IN KRARF GROU	JND	
= 0.1146 SQ.	IN COARL GROU	JIND	A STATE OF CONNECTION
ATE TO HANDLE THE TOTAL OF (5	5) WIRES,		PEN 022997
ONDUIT): USING THWN. CU.			CENSED ON LEVEL
0.2679 SQ. IN X 3 = 0.8037 SG). IN		and the second
$0.0507 \text{ SQ. IN } X \ 1 = 0.0507 \text{ SQ.}$). IN <ground< td=""><td></td><td>11/11/2021</td></ground<>		11/11/2021
ADEQUATE TO HANDLE THE TOTA	L OF (4) WIRES	,	KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER
			LICENSE #PEN.0028997
	NO SCALE	1	IT IS A VIOLATION OF LAW FOR ANY PERSON
			UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY:
			AN BRN TA
			RFDS REV #:
			CONSTRUCTION
			DOCUMENTS
			SUBMITTALS
			REV DATE DESCRIPTION
			0 11/11/2021 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER
			842423
			DISH Wireless L.L.C. PROJECT INFORMATION
			BOBOSO0892A
			10 NORTH RIDGE DRIVE WINDHAM, CT 06256
			SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
	NO SCALF	2	□ □ □ □ □
		U	

				EXOTHERMIC CONNECTION MECHANICAL CONNECTION GROUND BUS BAR GROUND BUS BAR GROUND ROD
				GROUNDING
CE BRIDGE RT POSTS TO D RING BOND(s) L POSTS)	STING TOWER GROUND G (FEILD VERIFY) STING MONOPOLE			 GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLIANCE WITH NEC SECTION 250 AND DISH Wire REQUIREMENTS AND MANUFACTURER'S SPECIFICATION ALL GROUND CONDUCTORS SHALL BE COPPER; NO
				<u>GROUNDING K</u>
				A <u>Exterior ground ring:</u> #2 awg solid copper, burie grade, or 6 inches below the frost line and app or footing.
				(B) <u>Tower ground ring:</u> the ground ring system shall and/or guy anchors. Where separate systems hav building, at least two bonds shall be made betwe building ring ground system using minimum #2 awa
				C <u>INTERIOR GROUND RING:</u> #2 AWG STRANDED GREEN INSU PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECON WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR O INSULATED CONDUCTOR.
				D <u>BOND TO INTERIOR GROUND RING:</u> #2 AWG SOLID TINNE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR BUILDING.
		NO SCALE	1	E <u>GROUND ROD:</u> UL LISTED COPPER CLAD STEEL. MINIMUN RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. (GROUND RING CONDUCTOR.
	ANTENNAS AND OVP SHOWN	ARE GENERIC A	ND NOT	EmployedCell reference ground bar: Frames. All bonds are made with #2 awg unless model Copper conductors. Bond to ground ring with (2)
PROPOSED #2 AW	G STRANDED	PURPOSES ONLY		G <u>HATCH PLATE GROUND BAR:</u> BOND TO THE INTERIOR GR INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE PRESENT, THE CRGB MUST BE CONNECTED TO THE HATC USING (2) TWO #2 AWG STRANDED GREEN INSULATED
PROPOSED UPPER GROUND BAR	TOWER			(H) <u>Exterior cable entry port ground bars:</u> located to ground ring with a #2 awg solid tinned copperinspection sleeve.
				TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE
PROPOSED #2	2 AWG STRANDED			Image: Structure of the bonding for the bonds: Image: Structure of the bonds:
COPPER GREE	IN INSULATED (TYP)			L <u>FENCE AND GATE GROUNDING:</u> METAL FENCES WITHIN 7 BONDED TO THE EXTERIOR GROUND RING SHALL BE BOI TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCE
				M <u>Exterior unit bonds:</u> Metallic objects, external to to the exterior ground ring. Using #2 tinned sol
PROPOSED 4"xi SECTOR GROUN (TYP OF 3)	6"x1/4" COPPER ID BUSSBAR			N <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WEL GROUND RING.
				O DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTER INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQU CONDUCTOR FROM THE DC POWER SYSTEM COMMON RE REFERENCE GROUND BAR
PROPOSED BUS (TYP.)	S BAR			P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICA
				REFER TO DISH Wireless L.L.C. GROUNDING NOTES.
<u>N</u>		NO SCALE	2	<u>GROUNDING KEY NOT</u>

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GI BAR, ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	ROUND MIC LARGER. ES WITH IPOUND IDUCTOR DLTED ON TOR. S ERS).	EXTERNAL TOOTHED S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT U 1/16" MINIMUM SPACING	PUCTOR INSULATION TO UP AGAINST THE IECTOR BARREL	EXTERNAL TOOTHED 3/8" DIA x1 1/2" S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING	DR INSULATION TO AGAINST THE DR BARREL	<section-header><text><text><text><text></text></text></text></text></section-header>
TYPICAL GROUNDING NOTES	NO SCALE	1 TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE 2	TYPICAL INTERIOR TWO HOLE LUG	NO SCALE 3	
NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) S/S SPLIT W	TYP) Washer (Typ) Masher (Typ)					11/11/2021
2 HOLE LONG BARREL TINNED SOLID COPPER LUG (TYP) TIN COATED SOLID COPPER BUS BAR	'ASHER (TYP) YP)					KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997
CHERRY INSULATOR INSTALLED IF REQUIRED						UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: AN BRN TA RFDS REV #:
						CONSTRUCTION
LUG DETAIL	NO SCALE	4 <u>NOT USED</u>	NO SCALE 5	NOT USED	NO SCALE 6	DOCUMENTS SUBMITTALS
						NEV DATE DESCRIPTION 0 11/11/2021 ISSUED FOR CONSTRUCTION 1 1 </td
						SHEET NUMBER GROUNDING DETAILS
<u>NOT USED</u>	NO SCALE	7 <u>NOT USED</u>	NO SCALE 8	NOT USED	NO SCALE 9	

AWS (N66+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE		BADE SOLUTION
OR GAMMA SECTOR GREEN		NB+C ENGINEERING SERVICES, LLC. B095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092
	2	IIIIII/2021 IIIIII/2021 KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997 III IS A VIOLATION OF LAW FOR ANY PERSON, ILICENSE #PEN.0028997 III IS A VIOLATION OF LAW FOR ANY PERSON, ILICENSE #PEN.0028997 III IS A VIOLATION OF LAW FOR ANY PERSON, ILICENSE #PEN.0028997 III IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, INT IS A VIOLATION OF LAW FOR ANY PERSON, <td colspan="</th>
	3	SUBMITTALS REV DATE DESCRIPTION 0 11/11/2021 ISSUED FOR CONSTRUCTION 0 A&E PROJECT NUMBER A&E PROJECT NUMBER 842423 DISH Wireless L.L.C. PROJECT INFORMATION BOBOSO0892A 10 NORTH RIDGE DRIVE WINDHAM, CT 06256 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1
	4	

<u>LEGEND</u>

ABBREVIATIONS

AB	ANCHOR BOLT	IN	INCH
ABV	ABOVE	INT	INTERIOR
AC	ALTERNATING CURRENT	LB(S)	POUND(S)
ADDL	ADDITIONAL	l F	LINFAR FET
AFF	ABOVE FINISHED FLOOR		
		MAS	MASUNRY
AGL	ABOVE GROUND LEVEL	MAX	MAXIMUM
AIC	AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE	MFR	MANUFACTURER
ANT	ANTENNA	MGB	MASTER GROUND BAR
APPROX	APPROXIMATE	MIN	МІЛІМИМ
ARCH	ARCHITECTURAL	MISC	
ATS	AUTOMATIC TRANSFER SWITCH	MISO	
	AMERICAN WIRE GAUGE	MIS	MANUAL IRANSFER SWITCH
BATT	BATTERT	MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	NUMBER
BM	BEAM	#	NUMBER
BTC	BARE TINNED COPPER CONDUCTOR	" NTS	NOT TO SCALE
BOF	BOTTOM OF FOOTING	00	
CAB	CABINET		
CANT		USHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
		OPNG	OPENING
CHG		P/C	PRECAST CONCRETE
CLG		PCS	PERSONAL COMMUNICATION SERVICES
CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
COL	COLUMN	PRC	PRIMARY RADIO CABINET
СОММ	COMMON		
CONC	CONCRETE		POLINDS DED SOLADE FOOT
CONSTR	CONSTRUCTION	PSF	POUNDS PER SQUARE FOOT
DRI		PSI	POUNDS PER SQUARE INCH
		PT	PRESSURE TREATED
		PWR	POWER CABINET
DEPT		QTY	QUANTITY
DF	DOUGLAS FIR	RAD	RADIUS
DIA	DIAMETER	RECT	RECTIFIER
DIAG	DIAGONAL	RFF	REFERENCE
DIM	DIMENSION		
DWG	DRAWING		
DWL	DOWEL	REQD	REQUIRED
DWL FA	DOWEL FACH	REQ D RET	REQUIRED REMOTE ELECTRIC TILT
DWL EA EC	DOWEL EACH ELECTRICAL CONDUCTOR	REQ'D RET RF	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY
DWL EA EC	DOWEL EACH ELECTRICAL CONDUCTOR	REQ'D RET RF RMC	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT
DWL EA EC EL.	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION	REQ D RET RF RMC RRH	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD
DWL EA EC EL. ELEC	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL	REQ'D RET RF RMC RRH RRU	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT
DWL EA EC EL. ELEC EMT	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING	REQ'D RET RF RMC RRH RRU RWY	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY
DWL EA EC EL. ELEC EMT ENG	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER	REQ'D RET RF RMC RRH RRU RWY SCH	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY
DWL EA EC EL. ELEC EMT ENG EQ	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL	REQID RET RF RMC RRH RRU RWY SCH	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE
DWL EA EC EL. ELEC EMT ENG EQ EXP	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION	REQID RET RF RMC RRH RRU RWY SCH SHT	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY	REQ D RET RF RMC RRH RRU RWY SCH SHT SIAD SIM	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION	REQ'D RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION	REQ D RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH FLOOR	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED)	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR	DOWEL EACH ELECTRICAL CONDUCTOR ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIR FLR FDN	DOWEL EACH ELECTRICAL CONDUCTOR ELECTRICAL CONDUCTOR ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIEIER
DWL EA EC EL. ELEC EMT ENG EQ EXT EXT EW FAB FF FG FIF FIN FLR FDN FOC	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAU
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FOC FOM	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL
DWL EA EC EL. ELEC EMT ENG EQ EXT EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FLR FDN FOC FOM FOS	DOWEL EACH ELECTRICAL CONDUCTOR ELECTRICAL CONDUCTOR ELECTRICAL METALLIC TUBING ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FG FIF FIN FLR FDN FOC FOM FOS FOW FS 	DOWEL EACH ELECTRICAL CONDUCTOR ELECTRICAL CONDUCTOR ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FLR FDN FOC FOM FOS FOW	DOWEL EACH ELECTRICAL CONDUCTOR ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FACILITY INTERFACE FRAME FINISH(ED) FLOOR FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET)
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT 	DOWEL EACH ELECTRICAL CONDUCTOR ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH GRADE FINISH GEN FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL
 DWL EA EC EL. ELEC EMT ENG EQ EXT EW FAB FF FG FIF FG FIN FLR FDN FOC FOM FOS FOW FS FT FTG 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOP TOS TOW	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FLR FDN FCG FOM FOS FOW FS FT FTG GA 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOP TOS TOW TVSS	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION
 DWL EA EC EL. ELEC EMT ENG EQ EXT EW FAB FF FG FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN 	DOWEL EACH ELECTRICAL CONDUCTOR ELECTRICAL CONDUCTOR ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH FLOOR FINISH GRADE FINISH GRADE FINISH GRADE FINISH GRADE FLOOR FLOOR FLOOR FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOF TOP TOS TOW TVSS	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GEN 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOTING GAUGE GAUGE GRUND FAULT CIRCUIT INTERRUPTER	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOF TOP TOS TOW TVSS TYP	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FG FIF FG FIN FLR FDN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLB 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOT GOTING GAUGE GRUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLB GLW 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOT GOT GAUGE GRUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOF TOF TOF TOF TOS TOW TVSS TYP UG UL	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FG FIN FLR FDN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLP GLV GPS 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF MALL FINISH SURFACE FOOT GOUND FAULT CIRCUIT INTERRUPTER GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOF TOF TOF TOF TOS TOW TVSS TYP UG UL UNO	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FG FIF FG FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLV GPS GND 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF MASONRY FACE OF WALL FINISH SURFACE FOOT GOUND FAULT CIRCUIT INTERRUPTER GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM	REQID RET RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOF TOF TOF TOF TOF TOF TOF TOF UG UL UNO UMTS	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FG FIF FON FLR FDN FLR FDN FCG FOW FS FT FTG GA GEN GLV GPS GND 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GROUND FAULT CIRCUIT INTERRUPTER GLUBAL POSITIONING SYSTEM GROUND GLUBAL SYSTEM FOR MORILE	REQ'D RET RF RMC RRH RRU RWY SCH SIM SPEC SQ SS STD STL TEMP THK TOA TOC TOF TOS TOW TVSS TYP UG UL UNO UMTS	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FURB TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNICESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FG FIF FG FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLV GSM HDC 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT GOUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE	REQ'D RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TOA TOC TOF TOP TOS TOW TVSS TYP UG UNO UNTS VIF	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNITERNUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLB GLV GPS GND GSM HDG 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF MALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED </td <td>REQ'D RET RF RMC RRH RRU SCH SIM SPEC SQ SS STD STL TEMP THK TOA TOC TOF TOS TOW TVSSS TYP UG UL UNO UMTS VIF</td> <td>REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD</td>	REQ'D RET RF RMC RRH RRU SCH SIM SPEC SQ SS STD STL TEMP THK TOA TOC TOF TOS TOW TVSSS TYP UG UL UNO UMTS VIF	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FG FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLB GLV GPS GND GSM HDG HDR 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH GRADE FOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GOUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HODPED HEADER	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOF TOF TOF TOF TOF TOF TOF TOF TOF UG UL UNO UL UNO UMTS UPS VIF W	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WIDE
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIR FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GEN GLB GLV GPS GND GSM HDG HDR HGR 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT GOUND FAULT CIRCUIT INTERRUPTER GUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TN TOA TOF TOF TOF TOF TOF TOF UG UL UNO UL UNO UMTS UPS VIF W	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNICESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FG FIN FLR FDN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLV GPS GND GSM HDG HDR HGR HVAC 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF FONCRETE FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT GOUND FAULT CIRCUIT INTERRUPTER GUUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TN TOA TOF TOF TOF TOF TOF TOF TOF TOF TOS TOF UC UL UNO UL UNO UL UNO UL UNO UL UNO UL UNO	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNICESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH WOOD
 DWL EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FG FIF FG FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GLV GPS GND GSM HDG HDR HUAC HT 	DOWEL EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT GOUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HANGER HANGER HANGER	REQID RET RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOF TOF TOF TOF TOF TOF TOF TOF UG UL UNO UL UNO UL UNO UL SVIF W W/ WD	REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FURB TOP OF STEEL TOP OF STEEL STENT VOLTAGE SURGE SUPPRESSION TYPICAL WITH WOOD WEATHERPROOF

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
 REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS. PAVEMENTS. CURBS. LANDSCAPING AND STRUCTURES. ANY

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

<u>GENERAL NOTES:</u>

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. wireless SCREW FITTINGS ARE NOT ACCEPTABLE. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90° f AT TIME OF PLACEMENT. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. 5701 SOUTH SANTA FE DRIVE CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. LITTLETON, CO 80120 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY). 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE #5 BARS AND LARGER 60 ksi MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR TOTALLY COMMITTED. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT **NB+C ENGINEERING SERVICES, LLC.** FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED 6095 MARSHALEE DRIVE, SUITE 300 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. ELKRIDGE, MD 21075 • CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" (410) 712-7092 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. • SLAB AND WALLS 3/4" 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. ● BEAMS AND COLUMNS 1-1/2" 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 11/11/2021 THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. KRUPAKARAN KOLANDAIVELU, P.E. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. STATE OF CONNECTICUT **PROFESSIONAL ENGINEER** INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. LICENSE #PEN.0028997 ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED TO ALTER THIS DOCUMENT. WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. DRAWN BY: CHECKED BY: APPROVED BY: ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. BRN TA AN THE NATIONAL ELECTRICAL CODE. RFDS REV #: ___ 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CONSTRUCTION CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 11/11/2021 ISSUED FOR CONSTRUCTION ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. A&E PROJECT NUMBER ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) 842423 DISH Wireless L.L.C. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. PROJECT INFORMATION BOBOS00892A **10 NORTH RIDGE DRIVE** 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH WINDHAM, CT 06256 SHEET TITLE GENERAL NOTES RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND SHEET NUMBER 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR GN-3

AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. psf. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: #4 BARS AND SMALLER 40 ksi DRAWINGS: IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. ELECTRICAL INSTALLATION NOTES: 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. AND TRIP HAZARDS ARE ELIMINATED. 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). 8. 9. WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE). 14. NEC. EXPOSED INDOOR LOCATIONS.

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE. BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED 8. COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16.

MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND 17. RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: October 14, 2021

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630

Subject:	Structural Analysis Report		
Carrier Designation:	<i>Dish Wireless</i> Co-Locate Site Number:	BOBOS00892A	
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	842423 Windham North Ridge Road 671468 2013128 572910 Rev. 1	
Engineering Firm Designation:	B+T Group Project Number:	95362.015.01	
Site Data:	10 North Ridge Drive, Windham, Windham County, CT Latitude <i>41° 44' 23.53"</i> , Longitude <i>-</i> 72° <i>10' 22.47"</i> 88.7 Foot - Monopole Tower		

B+T Group is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 81.8%

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Massood Sattari, EIT

Respectfully submitted by: B+T Engineering, Inc. COA: PEC.0001564; Expires: 02/10/2022

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

- Table 5 Tower Component Stresses vs. Capacity
- 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is 88.7 ft. Monopole designed by Engineered Endeavors Incorporated.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	120 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	JMA Wireless	MX08FRO665-21		
		3	Fujitsu	TA08025-B604		
66.0	66.0	3	Fujitsu	TA08025-B605	1	1-3/8
		1	Raycap	RDIDC-9181-PF-48		
		1	Commscope	MC-PK8-DSH (1)		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
		3	CCI Antennas	DMP65R-BU8D			
		3	CCI Antennas	OPA-65R-LCUU-H8			
		3	CCI Antennas	OPA65R-BU8D			
		3	Ericsson	RRUS 4449 B5/B12		1-5/8 7/8 3/8	
		3	Ericsson	RRUS 4478 B14_CCIV2			
		3	Ericsson	RRUS 8843 B2/B66A_CCIV2	12		
84.0	84.0	3	Ericsson	RRUS E2 B29	6		
		3	Ericsson	RRUS-32 B30	3		
			3	Powerwave Tech.	7770.00		
		6	Powerwave Tech.	LGP21401			
			3	Raycap	DC6-48-60-18-8C-EV		
		1		Platform Mount [LP 715-1_KCKR]			
		3	Antel	BXA-70063/6CF			
		6	Commscope	NHH-65B-R2B			
		1	Raycap	RRFDC-3315-PF-48			
74.0	75.0	1	RFS Celwave	DB-T1-6Z-8AB-0Z	8	1-5/8	
		3	Samsung Telecomm.	MT6407-77A			
		3	Samsung Telecomm.	RF4439D-25A			
		3	Samsung Telecomm.	RF4440D-13A			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)												
	74.0	1		Platform Mount [LP 303-1]														
	74.0	3	Commscope	BSAMNT-SBS-1-2														
		3	Ericsson	AIR6449 B41_T-MOBILE														
	64.0	3	Ericsson	RADIO 4460 B2/B25 B66_TMO														
64.0		64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	3	Ericsson	RADIO 4480 B71_TMO	2	1 5/0
04.0													3	RFS Celwave	APX16DWV-16DWV-S-E-A20	3	1-5/0	
		3	RFS Celwave	APXVAALL24_43-U- NA20_TMO														
		1	Site Pro1	RMQP-496-HK Platform Mount														

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
Tower Manufacturer Drawing	4943145	CCI Sites
Foundation Drawing	4712164	CCI Sites
Geotech Report	4290426	CCI Sites
Crown CAD Package	Date: 10/12/2021	CCI Sites

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) The tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	88.7 - 47.57	Pole	TP30.46x21.89x0.25	1	-16.837	1428.483	49.6	Pass
L2	47.57 - 0	Pole	TP39.75x29.058x0.313	2	-27.721	2402.767	81.8	Pass
							Summary	
						Pole (L2)	81.8	Pass
						Rating =	81.8	Pass

Table 4 - Section Capacity (Summary)

Table 5 - T	ower Component	Stresses vs	. Capacity
	• · · • · · · · · · · · · · · · · · · ·		

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Anchor Rods	Base	59.9	Pass
1,2	Base Plate	Base	79.4	Pass
1,2	Base Foundation (Structure)	Base	62.0	Pass
1,2	Base Foundation (Soil Interaction)	Base	63.3	Pass

Structure Rating (max from all components) =	81.8%
--	-------

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in Windham County, Connecticut.
- Tower designed for Exposure C to the TIA-222-H Standard. 2.
- 3. Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase Iower is also designed for a 50 mph basic wind with ' in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.000 ft
 TIA-222-H Annex S
 TOWER RATING: 81.8%

AXIAL 47 K

1

AXIAL 31 K

MOMENT

MOMENT

1833 kip-ft

¥ 453 kip-ft

Г	B+T Group	^{Job:} 95362.015.01 - WIN	DHAM NORTH RID	GE ROAD, CT (BU# 84242	
TTTT S Boulder Suite 300		Project:			
B+T GRP	Tulsa OK 74119	Client: Crown Castle	Drawn by: V. RAO	App'd:	
	Phone: (918) 587-4630	Code: TIA-222-H	Date: 10/14/21	^{Scale:} NTS	
	FAX: (918) 295-0265	Path:	adVerwaikBacAnard OCDTex 015 0116582 315 01 WWDHAM NORTH REGE ROAD C	Dwg No. E-1	

Г	B+T Group	^{Job:} 95362.015.01 - WIN	DHAM NORTH RIDO	GE ROAD, CT (BU# 84242
	1717 S. Boulder, Suite 300	Project:		
B+T GRP	Tulsa OK 74119	Client: Crown Castle	Drawn by: V. RAO	App'd:
	Phone: (918) 587-4630	^{Code:} TIA-222-H	Date: 10/14/21	^{Scale:} NTS
	FAX: (918) 295-0265	Path:	Dwg No. E-4	
		-		

TIA-222-H - Service - 60 mph

Г	B+T Group	^{Job:} 95362.015.01 - WIN	IDHAM NORTH RID	GE ROAD, CT (BU# 84242			
	1717 S. Boulder, Suite 300	Project:					
B+T GRP	Tulsa OK 74119	Client: Crown Castle	Drawn by: V. RAO	App'd:			
	Phone: (918) 587-4630	^{Code:} TIA-222-H	Date: 10/14/21	^{Scale:} NTS			
	FAX: (918) 295-0265	Path:	Dwg No. E-5				

Feed Line Distribution Chart 0' - 88'8-13/32"

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Г	B+T Group	^{Job:} 95362.015.01 - WIN	DHAM NORTH RIDO	GE ROAD, CT (BU# 84242			
	1717 S Boulder Suite 300	Project:					
B+T GRP	Tulsa OK 74119	^{Client:} Crown Castle	Drawn by: V. RAO	App'd:			
	Phone: (918) 587-4630	^{Code:} TIA-222-H	Date: 10/14/21	^{Scale:} NTS			
	FAX: (918) 295-0265	Path: EVRAG.JOSESS/20110CTOBER 201114-10-20118582 MUSE2 Windows Nutl Rose Ro	Dwg No. E-7				

Elevation (ft)

Round

tnxTower	Јов 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)	Page 1 of 16
B+T Group 1717 S. Boulder, Suite 300	Project	Date 18:35:36 10/14/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by V. RAO

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Windham County, Connecticut. Tower base elevation above sea level: 313.000 ft. Basic wind speed of 120 mph. Risk Category II. Exposure Category C. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.000 ft. Nominal ice thickness of 1.000 in. Ice thickness is considered to increase with height. Ice density of 56.000 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50.000 °F. Deflections calculated using a wind speed of 60 mph. TIA-222-H Annex S. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Tower analysis based on target reliabilities in accordance with Annex S. Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$. Maximum demand-capacity ratio is: 1.05. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification ↓ Use Code Stress Ratios ↓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
 - SR Members Have Cut Ends SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate
- ✓ Assume Kight mack Flate
 ✓ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Job 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by V. RAO

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	88.700-47.570	41.130	4.330	18	21.890	30.460	0.250	1.000	A572-65 (65 ksi)
L2	47.570-0.000	51.900		18	29.058	39.750	0.313	1.250	A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area in ²	I in ⁴	r in	C in	I/C in ³	J in^4	It/Q in ²	w in	w/t
L1	22.189	17.171	1015.912	7.682	11.120	91.358	2033.161	8.587	3.413	13.651
	30.891	23.972	2763.991	10.725	15.474	178.625	5531.618	11.988	4.921	19.684
L2	30.364	28.512	2976.420	10.205	14.761	201.636	5956.757	14.259	4.564	14.605
	40.315	39.117	7686.392	14.000	20.193	380.646	15382.898	19.562	6.446	20.627

T	Const	Current	Const Const.	Allow Ender	A 1	W. S. L. Male	D	D	Deulite Auele
Tower	Gusset	Gusset	Gusset Graae	Aajust. Factor	Aajust.	weight muit.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			v	A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
L1				1	1	1			
88.700-47.570									
L2				1	1	1			
47.570-0.000									

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Component	Placement	Total	Number	Start/End	Width or	Perimeter	Weight	
		From	Type		Number	Per Row	Position	Diameter			
		Torque		ft				in	in	klf	
		Calculation									
*											Ĩ
HB158-21U6S24-xxM T	С	No	Surface Ar	64.000 -	3	3	0.000	1.996		0.003	
MO(1-5/8) -			(CaAa)	0.000			0.150				
*											

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	Type		Number			
	Leg		Torque		ft			ft²/ft	klf
			Calculation						
LDF7-50A(1-5/8)	А	No	No	Inside Pole	84.000 - 0.000	12	No Ice	0.000	0.001
							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
2" Rigid Conduit	Α	No	No	Inside Pole	84.000 - 0.000	3	No Ice	0.000	0.003
-							1/2" Ice	0.000	0.003

2 of 16 Date 18:35:36 10/14/21

Page

tnxTower	Јов 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)	Page 3 of 16
B+T Group 1717 S. Boulder, Suite 300	Project	Date 18:35:36 10/14/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by V. RAO

Description	Face	Allow	Exclude	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	Type		Number			
	Leg		Torque		ft			ft²/ft	klf
			Calculation						
							1" Ice	0.000	0.003
FB-L98B-034-XXX(Α	No	No	Inside Pole	84.000 - 0.000	1	No Ice	0.000	0.000
3/8)							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
FB-L98B-034-XXX	А	No	No	Inside Pole	84.000 - 0.000	2	No Ice	0.000	0.000
XXX(3/8)							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
WR-VG66ST-BRD	А	No	No	Inside Pole	84.000 - 0.000	6	No Ice	0.000	0.001
CCIV2(7/8)							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
*									
LDF7-50A(1-5/8)	В	No	No	Inside Pole	74.000 - 0.000	8	No Ice	0.000	0.001
							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
*									
CU12PSM9P8XXX(А	No	No	Inside Pole	66.000 - 0.000	1	No Ice	0.000	0.002
1-3/8)							1/2" Ice	0.000	0.002
,							1" Ice	0.000	0.002
*									
*									

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	ft		ft^2	ft^2	ft^2	ft^2	K
L1	88.700-47.570	А	0.000	0.000	0.000	0.000	0.893
		В	0.000	0.000	0.000	0.000	0.173
		С	0.000	0.000	9.838	0.000	0.123
L2	47.570-0.000	А	0.000	0.000	0.000	0.000	1.205
		в	0.000	0.000	0.000	0.000	0.312
		С	0.000	0.000	28.485	0.000	0.357

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
L1	88.700-47.570	А	0.913	0.000	0.000	0.000	0.000	0.893
		В		0.000	0.000	0.000	0.000	0.173
		С		0.000	0.000	16.047	0.000	0.234
L2	47.570-0.000	А	0.822	0.000	0.000	0.000	0.000	1.205
		В		0.000	0.000	0.000	0.000	0.312
		С		0.000	0.000	46.462	0.000	0.678

Feed Line Center of Pressure

tnxTower	Јов 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)	Page 4 of 16
B+T Group 1717 S. Boulder, Suite 300	Project	Date 18:35:36 10/14/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by V. RAO

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	88.700-47.570	-0.310	1.959	-0.275	1.733
L2	47.570-0.000	-0.628	3.964	-0.546	3.449

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L1	11	HB158-21U6S24-xxM_TMO	47.57 - 64.00	1.0000	1.0000
		(1-5/8)			
L2	11	HB158-21U6S24-xxM_TMO	0.00 - 47.57	1.0000	1.0000
		(1-5/8)			

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	K
7770.00 w/ Mount Pipe	А	From Leg	4.000 0.000 0.000	0.000	84.000	No Ice 1/2" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157
7770.00 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	84.000	No Ice 1/2" Ice	5.746 6.179	4.254 5.014	0.055 0.103
7770.00 w/ Mount Pipe	С	From Leg	4.000 0.000	0.000	84.000	No Ice 1/2" Ice	5.746 6.179	4.254 5.014	0.157 0.055 0.103
OPA65R-BU8D w/ Mount Pipe	А	From Leg	4.000 0.000 0.000	0.000	84.000	No Ice 1/2" Ice	6.607 17.460 18.460	5./11 8.580 9.490	0.157 0.109 0.224 0.252
OPA65R-BU8D w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	84.000	No Ice 1/2" Ice	19.480 17.460 18.460	8.580 9.490	0.353 0.109 0.224 0.252
OPA65R-BU8D w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	84.000	No Ice 1/2" Ice	19.480 17.460 18.460 19.480	8.580 9.490	0.333 0.109 0.224 0.353
OPA-65R-LCUU-H8 w/ Mount Pipe	А	From Leg	4.000 0.000 0.000	0.000	84.000	No Ice 1/2" Ice 1" Ice	11.930 12.880 13.840	8.060 8.960 9.890	0.103 0.191 0.292
OPA-65R-LCUU-H8 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	84.000	No Ice 1/2" Ice 1" Ice	11.930 12.880 13.840	8.060 8.960 9.890	0.103 0.191 0.292

Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Crown Castle

Page 5 of 16

B+T Group 1717 S. Boulder, Suite 300

Client

Job

Project

Designed by

Date

V. RAO

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	0		Vert ft ft	o	ft		ft ²	ft ²	Κ
			ft					0.070	
OPA-65R-LCUU-H8 w/	С	From Leg	4.000	0.000	84.000	No Ice	11.930	8.060	0.103
Mount Pipe			0.000			1/2" Ice	12.880	8.900	0.191
DMP65R-BU8D w/ Mount	А	From Leg	4 000	0.000	84 000	No Ice	15.840	7 890	0.292
Pipe	11	Tiom Leg	0.000	0.000	01.000	1/2" Ice	16.810	8.740	0.252
1			0.000			1" Ice	17.760	9.600	0.380
DMP65R-BU8D w/ Mount	В	From Leg	4.000	0.000	84.000	No Ice	15.890	7.890	0.139
Pipe			0.000			1/2" Ice	16.810	8.740	0.252
			0.000			1" Ice	17.760	9.600	0.380
DMP65R-BU8D w/ Mount	С	From Leg	4.000	0.000	84.000	No Ice	15.890	7.890	0.139
Ріре			0.000			1/2" Ice	16.810	8.740	0.252
(2) I C D 21401		Enom Lag	0.000	0.000	84.000	I" Ice	1/./60	9.600	0.380
(2) LGP21401	А	From Leg	4.000	0.000	84.000	1/2" Lee	1.104	0.207	0.014
			0.000			172 ICC 1" Icc	1.239	0.274	0.021
(2) I GP21401	в	From Leg	4 000	0.000	84 000	No Ice	1.301	0.207	0.014
(2) 20121101	D	r tom Leg	0.000	0.000	01.000	1/2" Ice	1.239	0.274	0.021
			0.000			1" Ice	1.381	0.348	0.030
(2) LGP21401	С	From Leg	4.000	0.000	84.000	No Ice	1.104	0.207	0.014
		C	0.000			1/2" Ice	1.239	0.274	0.021
			0.000			1" Ice	1.381	0.348	0.030
RRUS-32 B30	Α	From Leg	4.000	0.000	84.000	No Ice	3.314	2.424	0.077
			0.000			1/2" Ice	3.558	2.638	0.105
			0.000	0.000	04.000	1" Ice	3.809	2.860	0.136
RRUS-32 B30	В	From Leg	4.000	0.000	84.000	No Ice	3.314	2.424	0.077
			0.000			1/2" Ice	3.338	2.638	0.105
RRUS-32 B30	C	From Leg	4 000	0.000	84 000	No Ice	3.809	2.800	0.130
KK05-52 B50	C	FIOIDLeg	4.000	0.000	84.000	1/2" Ice	3 558	2.424	0.105
			0.000			1" Ice	3.809	2.860	0.136
RRUS E2 B29	А	From Leg	4.000	0.000	84.000	No Ice	3.145	1.285	0.060
		6	0.000			1/2" Ice	3.365	1.438	0.083
			0.000			1" Ice	3.592	1.600	0.110
RRUS E2 B29	В	From Leg	4.000	0.000	84.000	No Ice	3.145	1.285	0.060
			0.000			1/2" Ice	3.365	1.438	0.083
			0.000			1" Ice	3.592	1.600	0.110
RRUS E2 B29	С	From Leg	4.000	0.000	84.000	No Ice	3.145	1.285	0.060
			0.000			1/2" Ice	3.365	1.438	0.083
DC6 49 60 19 9C EV		Enom Lag	0.000	0.000	84.000	I" Ice	3.592	1.600	0.110
DC0-48-00-18-8C-EV	А	From Leg	2.000	0.000	84.000	1/2" Lee	2.730	2.730	0.026
			0.000			172 ICC 1" Ice	3 195	3 195	0.032
DC6-48-60-18-8C-EV	в	From Leg	2.000	0.000	84.000	No Ice	2.736	2.736	0.026
200 10 00 10 00 21	2	TTOIL 200	0.000	01000	0.11000	1/2" Ice	2.962	2.962	0.052
			0.000			1" Ice	3.195	3.195	0.082
DC6-48-60-18-8C-EV	С	From Leg	2.000	0.000	84.000	No Ice	2.736	2.736	0.026
		-	0.000			1/2" Ice	2.962	2.962	0.052
			0.000			1" Ice	3.195	3.195	0.082
RRUS 4478 B14_CCIV2	А	From Leg	4.000	0.000	84.000	No Ice	2.021	1.246	0.059
			0.000			1/2" Ice	2.200	1.396	0.077
DDUG 4470 D14 COUVE	P	F I	0.000	0.000	04.000	1" Ice	2.386	1.554	0.097
KRUS 4478 B14_CCIV2	В	From Leg	4.000	0.000	84.000	No Ice	2.021	1.246	0.059
			0.000			1/2" Ice	2.200	1.396	0.077
						1 10.64	/ 100	1 1 14	0.097
RRUS 4478 R14 CCIV2	C	From Leg	4 000	0.000	84 000	No Ice	2.000	1.334	0.059
RRUS 4478 B14_CCIV2	С	From Leg	4.000	0.000	84.000	No Ice 1/2" Ice	2.021 2.200	1.246	0.059

95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Crown Castle

Page 6 of 16

Date

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job

Project

Client

Designed by V. RAO

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft ²	ft^2	Κ
RRUS 4449 B5/B12	А	From Leg	4.000	0.000	84.000	No Ice	1.968	1.408	0.071
			0.000			1/2" Ice	2.144	1.564	0.090
			0.000			1" Ice	2.328	1.727	0.111
RRUS 4449 B5/B12	В	From Leg	4.000	0.000	84.000	No Ice	1.968	1.408	0.071
			0.000			1/2" Ice	2.144	1.564	0.090
DDUS 4440 D5/D12	C	Enom Lag	0.000	0.000	84.000	I" Ice	2.328	1./2/	0.111
KKUS 4449 B5/B12	C	FIOII Leg	4.000	0.000	84.000	1/2" Ice	2 144	1.408	0.071
			0.000			1" Ice	2.144	1.304	0.050
RRUS 8843	А	From Leg	4.000	0.000	84.000	No Ice	1.980	1.695	0.075
B2/B66A CCIV2		8	0.000			1/2" Ice	2.157	1.861	0.096
—			0.000			1" Ice	2.341	2.035	0.119
RRUS 8843	В	From Leg	4.000	0.000	84.000	No Ice	1.980	1.695	0.075
B2/B66A_CCIV2			0.000			1/2" Ice	2.157	1.861	0.096
			0.000			1" Ice	2.341	2.035	0.119
RRUS 8843	С	From Leg	4.000	0.000	84.000	No Ice	1.980	1.695	0.075
B2/B66A_CC1V2			0.000			1/2" Ice	2.157	1.861	0.096
61 y 2" Mount Ding	•	Enom Lag	0.000	0.000	84.000	I" Ice	2.341	2.035	0.119
6 x 2 Mount Pipe	A	From Leg	2.000	0.000	84.000	1/2" Ice	1.425	1.423	0.022
			3,000			1" Ice	2 294	2 294	0.033
6' x 2" Mount Pipe	В	From Leg	2.000	0.000	84.000	No Ice	1.425	1.425	0.022
• • • • • • • • • • • • • • • • • • •		8	0.000			1/2" Ice	1.925	1.925	0.033
			3.000			1" Ice	2.294	2.294	0.048
6' x 2" Mount Pipe	С	From Leg	2.000	0.000	84.000	No Ice	1.425	1.425	0.022
			0.000			1/2" Ice	1.925	1.925	0.033
	~		3.000			1" Ice	2.294	2.294	0.048
Platform Mount [LP	С	None		0.000	84.000	No Ice	57.990	57.990	2.050
/15-1_KCKR] *						1/2" Ice 1" Ice	64.470 71.360	64.470 71.360	3.301 4.691
BXA-70063/6CF w/ Mount	А	From Leg	4,000	0.000	74,000	No Ice	7.340	5.510	0.058
Pipe		TTOIL 200	0.000	01000	/ 110000	1/2" Ice	8.080	6.220	0.115
1			1.000			1" Ice	8.830	6.940	0.183
BXA-70063/6CF w/ Mount	В	From Leg	4.000	0.000	74.000	No Ice	7.340	5.510	0.058
Pipe			0.000			1/2" Ice	8.080	6.220	0.115
	~		1.000			1" Ice	8.830	6.940	0.183
BXA-70063/6CF w/ Mount	С	From Leg	4.000	0.000	74.000	No Ice	7.340	5.510	0.058
Pipe			1.000			1/2" Ice	8.080	6.220	0.115
RREDC-3315-PE-48	Δ	From Leg	4 000	0.000	74 000	No Ice	3 364	2 192	0.185
KKI DC-5515-11-46	А	110III Leg	0.000	0.000	74.000	1/2" Ice	3.597	2.395	0.021
			1.000			1" Ice	3.838	2.606	0.082
DB-T1-6Z-8AB-0Z	А	From Leg	1.000	0.000	74.000	No Ice	4.800	2.000	0.044
		C	0.000			1/2" Ice	5.070	2.193	0.080
			1.000			1" Ice	5.348	2.393	0.120
(2) NHH-65B-R2B w/ Mount	А	From Leg	4.000	0.000	74.000	No Ice	4.090	3.290	0.069
Pipe			0.000			1/2" Ice	4.480	3.670	0.132
(2) NULL (5D D2D/ Mount	р	F	1.000	0.000	74.000	I" Ice	4.880	4.060	0.205
(2) NHH-65B-R2B W/ Mount	В	From Leg	4.000	0.000	/4.000	No Ice	4.090	3.290	0.069
r ihe			1 000			1" Ice	4 880	4 060	0.132
(2) NHH-65B-R2B w/ Mount	С	From Leg	4.000	0.000	74,000	No Ice	4.090	3.290	0.069
Pipe	2		0.000	0.000		1/2" Ice	4.480	3.670	0.132
1			1.000			1" Ice	4.880	4.060	0.205
MT6407-77A w/ Mount Pipe	А	From Leg	4.000	0.000	74.000	No Ice	4.907	2.682	0.096
			0.000			1/2" Ice	5.256	3.145	0.136

95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Crown Castle

Page 7 of 16

Date

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job

Project

Client

Designed by V. RAO

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			vert ft	0	ft		ft ²	ft^2	K
			ft		ji		Ji	Ji	n
			ft						
			1.000			1" Ice	5.615	3.624	0.180
MT6407-77A w/ Mount Pipe	В	From Leg	4.000	0.000	74.000	No Ice	4.907	2.682	0.096
			0.000			1/2" Ice	5.256	3.145	0.136
	~		1.000			1" Ice	5.615	3.624	0.180
MT6407-77A w/ Mount Pipe	С	From Leg	4.000	0.000	74.000	No Ice	4.907	2.682	0.096
			0.000			1/2" Ice	5.256	3.145	0.136
DE4420D 25A		Enom Lag	1.000	0.000	74.000	I" Ice	5.015 1.965	3.624	0.180
KF4439D-23A	A	From Leg	4.000	0.000	/4.000	1/2" Ice	2.035	1.232	0.073
			1.000			172 ICC 1" Ice	2.035	1.594	0.093
RF4439D-25A	в	From Leg	4.000	0.000	74,000	No Ice	1.865	1.252	0.075
	5	rioni 20g	0.000	01000	,	1/2" Ice	2.035	1.394	0.093
			1.000			1" Ice	2.212	1.544	0.114
RF4439D-25A	С	From Leg	4.000	0.000	74.000	No Ice	1.865	1.252	0.075
		C	0.000			1/2" Ice	2.035	1.394	0.093
			1.000			1" Ice	2.212	1.544	0.114
RF4440D-13A	А	From Leg	4.000	0.000	74.000	No Ice	1.865	1.129	0.073
			0.000			1/2" Ice	2.035	1.267	0.090
	-		1.000			1" Ice	2.212	1.411	0.110
RF4440D-13A	В	From Leg	4.000	0.000	74.000	No Ice	1.865	1.129	0.073
			0.000			1/2" Ice	2.035	1.267	0.090
DE4440D 124	C	Enom Lag	1.000	0.000	74.000	I" Ice	2.212	1.411	0.110
KF4440D-13A	C	From Leg	4.000	0.000	/4.000	1/2" Lee	1.805	1.129	0.073
			1.000			1/2 ICC	2.033	1.207	0.090
Platform Mount [LP 303-1]	С	None	1.000	0.000	74,000	No Ice	14.690	14.690	1.250
1 maiorini filomite [21 000 1]	Ū.	110110		01000	,	1/2" Ice	18.010	18.010	1.569
						1" Ice	21.340	21.340	1.942
Side Arm Mount [SO 102-3]	С	None		0.000	74.000	No Ice	3.600	3.600	0.075
						1/2" Ice	4.180	4.180	0.105
						1" Ice	4.750	4.750	0.135
Mount Reinforcement	С	None		0.000	74.000	No Ice	28.630	28.630	0.280
Specifications						1/2" Ice	37.310	37.310	0.670
J.						1" Ice	45.800	45.800	0.940
* MY00EDO((5.21/ Marriet		F	4 000	0.000	((000	N. L.	0.010	4 2 2 0	0.109
MA08FR0665-21 W/ Mount	А	From Leg	4.000	0.000	66.000	No Ice 1/2" Ice	8.010	4.230	0.108
Pipe			0.000			1/2 ICe	8.320 9.040	4.090	0.194
MX08FRO665-21 w/ Mount	в	From Leg	4 000	0.000	66 000	No Ice	8 010	4 230	0.292
Pine	D	Tiom Leg	0.000	0.000	00.000	1/2" Ice	8.520	4.690	0.194
			0.000			1" Ice	9.040	5.160	0.292
MX08FRO665-21 w/ Mount	С	From Leg	4.000	0.000	66.000	No Ice	8.010	4.230	0.108
Pipe		-	0.000			1/2" Ice	8.520	4.690	0.194
			0.000			1" Ice	9.040	5.160	0.292
RDIDC-9181-PF-48	Α	From Leg	4.000	0.000	66.000	No Ice	2.012	1.168	0.022
			0.000			1/2" Ice	2.189	1.311	0.040
T . 00025 D . 05		F I	0.000	0.000	((000	1" Ice	2.373	1.461	0.060
TA08025-B605	А	From Leg	4.000	0.000	66.000	No Ice	1.964	1.129	0.075
			0.000			1/2 ICe	2.138	1.207	0.093
TA08025 D605	D	From Log	0.000	0.000	66 000	I ICE	2.520	1.411	0.114
1A00023-B003	Ъ	r tom Leg	0.000	0.000	00.000	1/2" Ice	2.138	1.129	0.093
			0.000			1" Ice	2.320	1.411	0.114
TA08025-B605	С	From Leg	4.000	0.000	66.000	No Ice	1.964	1.129	0.075
	-	8	0.000			1/2" Ice	2.138	1.267	0.093
			0.000			1" Ice	2.320	1.411	0.114
TA08025-B604	А	From Leg	4.000	0.000	66.000	No Ice	1.964	0.981	0.064

95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Crown Castle

Page 8 of 16

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job

Project

Client

Date

Designed by V. RAO

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral Vort						
			ft	0	ft		ft^2	ft^2	Κ
			ft		5		5	5	
			ft						
			0.000			1/2" Ice	2.138	1.112	0.081
TA 09025 DC04	D	E I	0.000	0.000	((000	1" Ice	2.320	1.250	0.100
1A08025-B604	в	From Leg	4.000	0.000	66.000	No Ice	1.964	0.981	0.064
			0.000			1/2" Ice	2.138	1.112	0.081
TA08025-B604	C	From Leg	4 000	0.000	66,000	No Ice	1.964	0.981	0.100
1408025-0004	C	I Iom Leg	0.000	0.000	00.000	1/2" Ice	2.138	1.112	0.081
			0.000			1" Ice	2.320	1.250	0.100
(2) 8' x 2" Mount Pipe	А	From Leg	4.000	0.000	66.000	No Ice	1.900	1.900	0.029
		C	0.000			1/2" Ice	2.728	2.728	0.044
			0.000			1" Ice	3.401	3.401	0.063
(2) 8' x 2" Mount Pipe	в	From Leg	4.000	0.000	66.000	No Ice	1.900	1.900	0.029
			0.000			1/2" Ice	2.728	2.728	0.044
	~		0.000			1" Ice	3.401	3.401	0.063
(2) 8' x 2" Mount Pipe	С	From Leg	4.000	0.000	66.000	No Ice	1.900	1.900	0.029
			0.000			1/2" Ice	2.728	2.728	0.044
Commercene MC DK8 DSU	C	None	0.000	0.000	66.000	I lee	3.401	3.401	0.063
Commscope MC-PK8-DSH	C	None		0.000	00.000	1/2" Ice	54.240 62.950	54.240 62.950	2 000
						172 ICC 1" Icc	02.950 91.660	91 660	2.099
*						1 100	91.000	91.000	2.450
AIR6449 B41 T-MOBILE	А	From Leg	4.000	0.000	64.000	No Ice	5.190	2.710	0.128
w/ Mount Pipe		U	0.000			1/2" Ice	5.590	3.040	0.174
			0.000			1" Ice	6.020	3.380	0.227
AIR6449 B41_T-MOBILE	В	From Leg	4.000	0.000	64.000	No Ice	5.190	2.710	0.128
w/ Mount Pipe			0.000			1/2" Ice	5.590	3.040	0.174
			0.000			1" Ice	6.020	3.380	0.227
AIR6449 B41_T-MOBILE	С	From Leg	4.000	0.000	64.000	No Ice	5.190	2.710	0.128
w/ Mount Pipe			0.000			1/2" Ice	5.590	3.040	0.174
ADVVAALL24 42 LUNA20	٨	From Log	0.000	0.000	64,000	In Ice	0.020	5.580	0.227
TMO w/ Mount Pine	А	From Leg	4.000	0.000	04.000	1/2" Ice	14.090	0.870	0.185
			0.000			1" Ice	16 230	8 250	0.453
APXVAALL24 43-U-NA20	В	From Leg	4.000	0.000	64.000	No Ice	14.690	6.870	0.183
TMO w/ Mount Pipe	_		0.000			1/2" Ice	15.460	7.550	0.311
_ 1			0.000			1" Ice	16.230	8.250	0.453
APXVAALL24_43-U-NA20	С	From Leg	4.000	0.000	64.000	No Ice	14.690	6.870	0.183
_TMO w/ Mount Pipe			0.000			1/2" Ice	15.460	7.550	0.311
			0.000			1" Ice	16.230	8.250	0.453
APX16DWV-16DWV-S-E-A	Α	From Leg	4.000	0.000	64.000	No Ice	6.290	2.760	0.061
20 w/ Mount Pipe			0.000			1/2" Ice	6.860	3.270	0.105
ADVICDWAY ICDWAY S E A	D	Enom Lag	0.000	0.000	64.000	I" Ice	6 200	3.790	0.157
APA10DW V-10DW V-S-E-A	В	From Leg	4.000	0.000	64.000	1/2" Lee	6.290	2.760	0.061
20 w/ Would Fipe			0.000			1/2 ICC	7 450	3.270	0.103
APX16DWV-16DWV-S-F-A	С	From Leg	4 000	0.000	64 000	No Ice	6 2 9 0	2 760	0.061
20 w/ Mount Pipe	e	Tiom Leg	0.000	0.000	01.000	1/2" Ice	6.860	3.270	0.105
1			0.000			1" Ice	7.450	3.790	0.157
RADIO 4460 B2/B25	А	From Leg	4.000	0.000	64.000	No Ice	2.139	1.686	0.109
B66_TMO		-	0.000			1/2" Ice	2.321	1.850	0.131
			0.000			1" Ice	2.511	2.022	0.156
RADIO 4460 B2/B25	В	From Leg	4.000	0.000	64.000	No Ice	2.139	1.686	0.109
B66_TMO			0.000			1/2" Ice	2.321	1.850	0.131
	C	г т	0.000	0.000	(1.000	1" Ice	2.511	2.022	0.156
KADIO 4460 B2/B25	C	From Leg	4.000	0.000	64.000	No Ice	2.139	1.686	0.109
B00_IMO			0.000			1/2" Ice	2.521	1.850	0.151
			0.000			1 Ice	2.311	2.022	0.156

95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Crown Castle

Page 9 of 16

Date

Job

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Designed by V. RAO

18:35:36 10/14/21

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert						
			ft	0	ft		ft^2	ft^2	K
			ft						
			ft						
RADIO 4480 B71_TMO	А	From Leg	4.000	0.000	64.000	No Ice	2.852	1.383	0.093
			0.000			1/2" Ice	3.064	1.543	0.114
			0.000			1" Ice	3.284	1.710	0.139
RADIO 4480 B71_TMO	В	From Leg	4.000	0.000	64.000	No Ice	2.852	1.383	0.093
			0.000			1/2" Ice	3.064	1.543	0.114
			0.000			1" Ice	3.284	1.710	0.139
RADIO 4480 B71_TMO	С	From Leg	4.000	0.000	64.000	No Ice	2.852	1.383	0.093
			0.000			1/2" Ice	3.064	1.543	0.114
			0.000			1" Ice	3.284	1.710	0.139
5' x 2" Pipe Mount	Α	From Leg	4.000	0.000	64.000	No Ice	1.188	1.188	0.018
			0.000			1/2" Ice	1.496	1.496	0.027
			0.000			1" Ice	1.807	1.807	0.040
5' x 2" Pipe Mount	В	From Leg	4.000	0.000	64.000	No Ice	1.188	1.188	0.018
			0.000			1/2" Ice	1.496	1.496	0.027
			0.000			1" Ice	1.807	1.807	0.040
5' x 2" Pipe Mount	С	From Leg	4.000	0.000	64.000	No Ice	1.188	1.188	0.018
			0.000			1/2" Ice	1.496	1.496	0.027
			0.000			1" Ice	1.807	1.807	0.040
8' x 2" Mount Pipe	Α	From Leg	4.000	0.000	64.000	No Ice	1.900	1.900	0.029
			0.000			1/2" Ice	2.728	2.728	0.044
			0.000			1" Ice	3.401	3.401	0.063
8' x 2" Mount Pipe	В	From Leg	4.000	0.000	64.000	No Ice	1.900	1.900	0.029
			0.000			1/2" Ice	2.728	2.728	0.044
			0.000			1" Ice	3.401	3.401	0.063
8' x 2" Mount Pipe	С	From Leg	4.000	0.000	64.000	No Ice	1.900	1.900	0.029
			0.000			1/2" Ice	2.728	2.728	0.044
			0.000			1" Ice	3.401	3.401	0.063
RMQP-496-HK	С	None		0.000	64.000	No Ice	23.140	23.140	1.945
						1/2" Ice	28.170	28.170	2.335
						1" Ice	33.200	33.200	2.725
*									

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
	-

tnxTower	Јов 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)	Page 10 of 16
B+T Group 1717 S. Boulder, Suite 300	Project	Date 18:35:36 10/14/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by V. RAO

Comb.	Description
No.	
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	Κ	kip-ft	kip-ft
L1	88.7 - 47.57	Pole	Max Tension	27	0.000	0.000	-0.002
			Max. Compression	26	-34.818	0.000	0.674
			Max. Mx	8	-19.822	-538.405	0.183
			Max. My	2	-19.804	0.000	542.340
			Max. Vy	8	23.257	-538.405	0.183
			Max. Vx	14	23.430	0.000	-541.941
			Max. Torque	9			0.713
L2	47.57 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-47.145	0.000	-0.511
			Max. Mx	8	-31.068	-1819.581	-0.487
			Max. My	14	-31.068	0.000	-1832.630
			Max. Vy	8	25.884	-1819.581	-0.487
			Max. Vx	14	26.050	0.000	-1832.630
			Max. Torque	9			0.712

Job 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265 Project

Client

Crown Castle

Designed by V. RAO

18:35:36 10/14/21

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	Κ	Κ	Κ
		Comb.			
Pole	Max. Vert	33	47.145	0.000	-6.470
	Max. H _x	20	31.107	25.838	0.000
	Max. Hz	2	31.107	0.000	26.003
	Max. M _x	2	1831.664	0.000	26.003
	Max. Mz	8	1819.581	-25.838	0.000
	Max. Torsion	9	0.710	-25.838	0.000
	Min. Vert	7	23.330	-22.376	13.002
	Min. H _x	8	31.107	-25.838	0.000
	Min. Hz	14	31.107	0.000	-26.003
	Min. M _x	14	-1832.630	0.000	-26.003
	Min. Mz	20	-1819.581	25.838	0.000
	Min. Torsion	21	-0.710	25.838	0.000

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M_x	Overturning Moment, M _z	Torque
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	25.922	0.000	0.000	0.398	0.000	0.000
1.2 Dead+1.0 Wind 0 deg - No	31.107	0.000	-26.003	-1831.664	0.000	0.000
Ice						
0.9 Dead+1.0 Wind 0 deg - No Ice	23.330	0.000	-26.003	-1814.462	0.000	0.000
1.2 Dead+1.0 Wind 30 deg - No Ice	31.107	12.919	-22.519	-1586.212	-909.785	-0.352
0.9 Dead+1.0 Wind 30 deg - No	23.330	12.919	-22.519	-1571.328	-901.180	-0.354
1.2 Dead+1.0 Wind 60 deg - No	31.107	22.376	-13.002	-915.600	-1575.804	-0.611
0.9 Dead+1.0 Wind 60 deg - No	23.330	22.376	-13.002	-907.059	-1560.901	-0.613
1.2 Dead+1.0 Wind 90 deg - No	31.107	25.838	-0.000	0.488	-1819.581	-0.707
0.9 Dead+1.0 Wind 90 deg - No	23.330	25.838	-0.000	0.365	-1802.376	-0.710
1.2 Dead+1.0 Wind 120 deg -	31.107	22.376	13.002	916.573	-1575.800	-0.614
No Ice 0.9 Dead+1.0 Wind 120 deg -	23.330	22.376	13.002	907.786	-1560.898	-0.616
No Ice 1.2 Dead+1.0 Wind 150 deg -	31.107	12.919	22.519	1587.180	-909.781	-0.355
0.9 Dead+1.0 Wind 150 deg -	23.330	12.919	22.519	1572.052	-901.178	-0.356
1.2 Dead+1.0 Wind 180 deg -	31.107	0.000	26.003	1832.630	0.000	0.000
0.9 Dead+1.0 Wind 180 deg -	23.330	0.000	26.003	1815.184	0.000	0.000
1.2 Dead+1.0 Wind 210 deg -	31.107	-12.919	22.519	1587.180	909.781	0.355
0.9 Dead+1.0 Wind 210 deg -	23.330	-12.919	22.519	1572.052	901.178	0.356
1.2 Dead+1.0 Wind 240 deg - No Ice	31.107	-22.376	13.002	916.573	1575.800	0.614
0.9 Dead+1.0 Wind 240 deg -	23.330	-22.376	13.002	907.786	1560.898	0.616

Job

Project

Client

95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Page 12 of 16

Date

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by V. RAO

18:35:36 10/14/21

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment M.	Overturning Moment M-	Torque
computation	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
No Ice				Tr Ji	ing ji	
1.2 Dead+1.0 Wind 270 deg -	31.107	-25.838	-0.000	0.488	1819.581	0.707
0.9 Dead+1.0 Wind 270 deg -	23.330	-25.838	-0.000	0.365	1802.376	0.710
1.2 Dead+1.0 Wind 300 deg -	31.107	-22.376	-13.002	-915.600	1575.804	0.611
No Ice 0.9 Dead+1.0 Wind 300 deg -	23.330	-22.376	-13.002	-907.059	1560.901	0.613
No Ice 1.2 Dead+1.0 Wind 330 deg -	31.107	-12.919	-22.519	-1586.212	909.785	0.352
No Ice						
0.9 Dead+1.0 Wind 330 deg - No Ice	23.330	-12.919	-22.519	-1571.328	901.180	0.354
1.2 Dead+1.0 Ice+1.0 Temp	47.145	0.000	0.000	0.511	0.000	0.000
1.2 Dead+1.0 Wind 0 deg+1.0	47.145	0.000	-6.470	-451.916	0.000	0.000
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	47.145	3.220	-5.603	-391.315	-225.025	-0.071
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	47.145	5.577	-3.235	-225.719	-389.755	-0.124
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	47.145	6.440	-0.000	0.490	-450.039	-0.143
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	47.145	5.577	3.235	226.698	-389.754	-0.124
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	47.145	3.220	5.603	392.294	-225.025	-0.071
deg+1.0 Ice+1.0 Temp		0.000	< 17 0	152 005	0.000	0.000
1.2 Dead+1.0 Wind 180	47.145	0.000	6.470	452.895	0.000	0.000
deg+1.0 Ice+1.0 Temp	47 1 45	2 220	5 (02	202.204	225.025	0.071
1.2 Dead+1.0 Wind 210	47.145	-3.220	5.603	392.294	225.025	0.071
deg+1.0 Ice+1.0 Temp	47 1 45		2 225	22((00	200 754	0.124
1.2 Dead+1.0 Wind 240	47.145	-5.5//	3.235	226.698	389.754	0.124
deg+1.0 Ice+1.0 Temp	47 145	C 110	0.000	0.400	450.020	0.142
1.2 Dead+1.0 wind 2/0	47.145	-0.440	-0.000	0.490	450.039	0.143
$deg = 1.0$ Ice ± 1.0 Temp	47 145	5 577	2 225	225 710	200 755	0.124
$d_{ag+1} 0 l_{cg+1} 0 T_{amp}$	47.145	-5.577	-3.235	-223./19	369.733	0.124
1.2 Dead + 1.0 Wind 330	47 145	3 220	5 603	301 315	225 025	0.071
deg+1 0 Ice+1 0 Temp	47.145	-5.220	-5.005	-391.313	225.025	0.071
Dead+Wind 0 deg - Service	25 922	0.000	-6 123	-428 699	0.000	0.000
Dead+Wind 30 deg - Service	25.922	3 042	-5 302	-371 211	-213.076	-0.084
Dead+Wind 60 deg - Service	25.922	5 269	-3.061	-214 149	-369.058	-0.145
Dead+Wind 90 deg - Service	25.922	6.084	0.000	-214.149	-426 152	-0.145
Dead+Wind 120 deg - Service	25.922	5 269	3.061	214 952	-369.058	-0.146
Dead+Wind 150 deg - Service	25.922	3.042	5 302	372 014	-213 076	-0.084
Dead+Wind 180 deg - Service	25.922	0.000	6.123	429.502	0.000	0.000
Dead+Wind 210 deg - Service	25.922	-3.042	5.302	372.014	213.076	0.084
Dead+Wind 240 deg - Service	25.922	-5.269	3.061	214.952	369.058	0.146
Dead+Wind 270 deg - Service	25.922	-6.084	0.000	0.402	426.152	0.168
Dead+Wind 300 deg - Service	25.922	-5.269	-3.061	-214.149	369.058	0.145
Dead+Wind 330 deg - Service	25.922	-3.042	-5.302	-371.211	213.076	0.084

Solution Summary

	Sur	n of Applied Forces	5		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	Κ	Κ	Κ	K	Κ	K	
1	0.000	-25.922	0.000	0.000	25.922	0.000	0.000%
2	0.000	-31.107	-26.003	0.000	31.107	26.003	0.000%

95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)

Page 13 of 16

Date

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Project

Client

Job

Crown Castle

Designed by V. RAO

18:35:36 10/14/21

	Sum of Applied Forces						
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
3	0.000	-23.330	-26.003	0.000	23.330	26.003	0.000%
4	12.919	-31.107	-22.519	-12.919	31.107	22.519	0.000%
5	12.919	-23.330	-22.519	-12.919	23.330	22.519	0.000%
6	22.376	-31.107	-13.002	-22.376	31.107	13.002	0.000%
7	22.376	-23.330	-13.002	-22.376	23.330	13.002	0.000%
8	25.838	-31.107	0.000	-25.838	31.107	0.000	0.000%
9	25.838	-23.330	0.000	-25.838	23.330	0.000	0.000%
10	22.376	-31.107	13.002	-22.376	31.107	-13.002	0.000%
11	22.376	-23.330	13.002	-22.376	23.330	-13.002	0.000%
12	12.919	-31.107	22.519	-12.919	31.107	-22.519	0.000%
13	12.919	-23.330	22.519	-12.919	23.330	-22.519	0.000%
14	0.000	-31.107	26.003	0.000	31.107	-26.003	0.000%
15	0.000	-23.330	26.003	0.000	23.330	-26.003	0.000%
16	-12.919	-31.107	22.519	12.919	31.107	-22.519	0.000%
17	-12.919	-23.330	22.519	12.919	23.330	-22.519	0.000%
18	-22.376	-31.107	13.002	22.376	31.107	-13.002	0.000%
19	-22.376	-23.330	13.002	22.376	23.330	-13.002	0.000%
20	-25.838	-31.107	0.000	25.838	31.107	0.000	0.000%
21	-25.838	-23.330	0.000	25.838	23.330	0.000	0.000%
22	-22.376	-31.107	-13.002	22.376	31.107	13.002	0.000%
23	-22.376	-23.330	-13.002	22.376	23.330	13.002	0.000%
24	-12.919	-31.107	-22.519	12.919	31.107	22.519	0.000%
25	-12.919	-23.330	-22.519	12.919	23.330	22.519	0.000%
26	0.000	-47.145	0.000	0.000	47.145	0.000	0.000%
27	0.000	-47.145	-6.470	0.000	47.145	6.470	0.000%
28	3.220	-47.145	-5.603	-3.220	47.145	5.603	0.000%
29	5.577	-47.145	-3.235	-5.577	47.145	3.235	0.000%
30	6.440	-47.145	0.000	-6.440	47.145	0.000	0.000%
31	5.577	-47.145	3.235	-5.577	47.145	-3.235	0.000%
32	3.220	-47.145	5.603	-3.220	47.145	-5.603	0.000%
33	0.000	-47.145	6.470	0.000	47.145	-6.470	0.000%
34	-3.220	-47.145	5.603	3.220	47.145	-5.603	0.000%
35	-5.577	-47.145	3.235	5.577	47.145	-3.235	0.000%
36	-6.440	-47.145	0.000	6.440	47.145	0.000	0.000%
37	-5.577	-47.145	-3.235	5.577	47.145	3.235	0.000%
38	-3.220	-47.145	-5.603	3.220	47.145	5.603	0.000%
39	0.000	-25.922	-6.123	0.000	25.922	6.123	0.000%
40	3.042	-25.922	-5.302	-3.042	25.922	5.302	0.000%
41	5.269	-25.922	-3.061	-5.269	25.922	3.061	0.000%
42	6.084	-25.922	0.000	-6.084	25.922	0.000	0.000%
43	5.269	-25.922	3.061	-5.269	25.922	-3.061	0.000%
44	3.042	-25.922	5.302	-3.042	25.922	-5.302	0.000%
45	0.000	-25.922	6.123	0.000	25.922	-6.123	0.000%
46	-3.042	-25.922	5.302	3.042	25.922	-5.302	0.000%
47	-5.269	-25.922	3.061	5.269	25.922	-3.061	0.000%
48	-6.084	-25.922	0.000	6.084	25.922	0.000	0.000%
49	-5.269	-25.922	-3.061	5.269	25.922	3.061	0.000%
50	-3.042	-25.922	-5.302	3.042	25.922	5.302	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00009826
3	Yes	4	0.00000001	0.00003019

trxTower Job 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423) Page 14 of 16 B+T Group Project Project Date 18.35.36 10/14/21 Client Cown Castle V:RAO 4 Ye 5 0.0000001 0.00027072 5 Ye 5 0.0000001 0.00012363 7 Ye 5 0.0000001 0.00012763 8 Ye 5 0.0000001 0.00012763 9 Ye 4 0.0000001 0.00012763 9 Ye 5 0.0000001 0.00012763 11 Ye 5 0.0000001 0.00012763 12 Ye 5 0.0000001 0.00012763 13 Ye 5 0.0000001 0.00012763 14 Ye 5 0.0000001 0.00012763 15 Ye 5 0.0000001 0.0002763 14 Ye 5 0.0000001 0.0002763 15 Ye 5 0.000000						_
Intra L OWER 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU#) 14 of 16 B-17 Group These, 00 7210 These,	4	Tana	Job			Page
842423) 100000000000000000000000000000000000	l Inx	ci ower	95362 015	5.01 - WINDHAM	NORTH RIDGE ROAD CT (BU#	14 of 16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			00002.010		12/22)	
Project Date 18:35:35:36 10/14/21 T777 S. Boulder, Suite 300 Date 18:35:35:36 10/14/21 District (018) 220-2605 Crown Castle Designed by V. RAO 4 Yes 5 0.00000001 0.00027072 5 0.00000001 0.00027072 5 0.00000001 0.00000001 0.00000001 4 0.00000001 0.0000001 0.0000001 0.0000001 4 0.00000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0				84	+2420)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R	+T Group	Project			Date
Tutus, OK 7419 Phone: (\$173) 357-450 7AX: (\$170) 225-0205 Client Designed by V. RAO 4 Yes 5 0.0000001 0.00027072 5 Yes 5 0.0000001 0.0001863 6 Yes 5 0.0000001 0.0001273 8 Yes 5 0.0000001 0.0001273 9 Yes 4 0.0000001 0.0001273 10 Yes 5 0.0000001 0.000173 11 Yes 5 0.0000001 0.0001763 12 Yes 5 0.0000001 0.00017612 13 Yes 5 0.0000001 0.00017612 14 Yes 5 0.0000001 0.00017612 15 Yes 5 0.0000001 0.00017612 16 Yes 5 0.0000001 0.00017612 17 Yes 5 0.0000001 0.0001763 20 Yes 4 0.0000001 0.0001735 21	1717 S	Roulder Suite 300				18:35:36 10/14/21
Phone: Crown Castle Designed by V. RAO 4 Yes 5 0.00000001 0.00012702 5 Yes 5 0.00000001 0.00012363 7 Yes 5 0.00000001 0.00012363 9 Yes 4 0.00000001 0.00012363 9 Yes 4 0.00000001 0.00012363 9 Yes 5 0.00000001 0.00012363 10 Yes 5 0.0000001 0.00012762 11 Yes 5 0.0000001 0.00017672 13 Yes 4 0.0000001 0.00017672 14 Yes 5 0.0000001 0.00012563 15 Yes 5 0.0000001 0.00012762 16 Yes 5 0.0000001 0.00012763 20 Yes 5 0.0000001 0.00012762 18 Yes 5 0.0000001 0.00012763 21 Yes <	1/1/ S T1	og OV 74110	Client			
Image: 1510/2005 (2005) Clowit Castle V. RAO 4 Yes 5 0.00000001 0.00027072 5 Yes 5 0.0000001 0.00027363 6 Yes 5 0.0000001 0.00027363 7 Yes 5 0.0000001 0.00027363 9 Yes 4 0.0000001 0.00027672 11 Yes 5 0.0000001 0.00027363 12 Yes 5 0.0000001 0.00027672 13 Yes 5 0.0000001 0.00027672 14 Yes 5 0.0000001 0.00027672 15 Yes 4 0.0000001 0.00027672 16 Yes 5 0.0000001 0.00027672 17 Yes 5 0.0000001 0.00027672 18 Yes 5 0.0000001 0.00027363 20 Yes 5 0.0000001 0.00027363 21 Yes	I ul. Phone	su, OK 14119 • (018) 587-1630	Cilent	0	wn Caatla	Designed by
4 Yes 5 0.0000001 0.00027072 5 Yes 5 0.0000001 0.0011863 6 Yes 5 0.0000001 0.0012363 7 Yes 4 0.0000001 0.0012363 9 Yes 4 0.0000001 0.0012363 10 Yes 5 0.0000001 0.0012364 11 Yes 5 0.0000001 0.00127672 12 Yes 5 0.0000001 0.0002772 13 Yes 5 0.0000001 0.00027672 14 Yes 5 0.0000001 0.0002772 15 Yes 5 0.0000001 0.0002772 16 Yes 5 0.0000001 0.0002772 18 Yes 5 0.0000001 0.0012363 20 Yes 5 0.0000001 0.0012363 21 Yes 5 0.0000001 0.0012363 22 Yes	Fnone. FAY:	(918) 205-0265		Cro	wit Castle	V. RAO
4 Yes 5 0.0000001 0.0027072 6 Yes 5 0.0000001 0.0027833 7 Yes 5 0.0000001 0.00027833 8 Yes 4 0.0000001 0.00027633 9 Yes 4 0.0000001 0.00027633 10 Yes 5 0.0000001 0.00027672 11 Yes 5 0.0000001 0.00027672 13 Yes 5 0.0000001 0.00027672 14 Yes 4 0.0000001 0.00027672 15 Yes 4 0.0000001 0.00027672 16 Yes 5 0.0000001 0.00027672 17 Yes 5 0.0000001 0.00027672 18 Yes 5 0.0000001 0.00027672 19 Yes 5 0.0000001 0.00027672 20 Yes 5 0.0000001 0.00027363 21 Yes 5 0.0000001 0.00027363	1 /1A.	(210) 220 0200				
4 Yes 5 0.0000001 0.00027072 5 Yes 5 0.0000001 0.00027833 7 Yes 5 0.0000001 0.00027853 7 Yes 4 0.0000001 0.00027853 9 Yes 4 0.0000001 0.00027863 9 Yes 5 0.0000001 0.00027863 10 Yes 5 0.0000001 0.0002772 13 Yes 5 0.0000001 0.0002772 14 Yes 4 0.0000001 0.0002772 15 Yes 5 0.0000001 0.0002772 16 Yes 5 0.0000001 0.00027872 17 Yes 5 0.0000001 0.000278645 19 Yes 5 0.0000001 0.00027863 21 Yes 5 0.0000001 0.00017363 221 Yes 5 0.0000001 0.000127853 23 Yes 5 0.0000001 0.00007972 25 Yes						
4 Yes 5 0.0000001 0.00027072 5 Yes 5 0.0000001 0.00027853 6 Yes 5 0.0000001 0.00027463 8 Yes 4 0.0000001 0.00027463 9 Yes 4 0.0000001 0.00027463 10 Yes 5 0.0000001 0.0002783 11 Yes 5 0.0000001 0.00027643 12 Yes 5 0.0000001 0.00027672 13 Yes 5 0.0000001 0.000276172 14 Yes 4 0.0000001 0.000276172 15 Yes 4 0.0000001 0.000276175 16 Yes 5 0.0000001 0.000276175 17 Yes 5 0.0000001 0.0002761763 20 Yes 5 0.0000001 0.0001763 21 Yes 5 0.0000001 0.0001763 22 Yes 5 0.0000001 0.0001763 23 Yes						
5 Yes 5 0.0000001 0.0001863 7 Yes 5 0.0000001 0.00012363 7 Yes 4 0.0000001 0.00017363 9 Yes 4 0.0000001 0.00017363 10 Yes 5 0.0000001 0.0001763 11 Yes 5 0.0000001 0.00017672 13 Yes 5 0.0000001 0.00027672 14 Yes 5 0.0000001 0.00027672 15 Yes 4 0.0000001 0.00027672 16 Yes 5 0.0000001 0.00027612 17 Yes 5 0.0000001 0.00027612 18 Yes 5 0.0000001 0.0001763 20 Yes 4 0.0000001 0.0001283 21 Yes 5 0.0000001 0.0001283 22 Yes 5 0.0000001 0.00012468 22 Yes 5 0.0000001 0.00012363 23 Yes 5<	4	Yes	5	0.00000001	0.00027072	
6 Yes 5 0.0000001 0.00027853 8 Yes 4 0.0000001 0.00027363 9 Yes 4 0.0000001 0.00027853 10 Yes 5 0.0000001 0.00027643 11 Yes 5 0.0000001 0.00027672 13 Yes 5 0.0000001 0.00027672 14 Yes 4 0.0000001 0.00027672 15 Yes 4 0.0000001 0.00027672 16 Yes 5 0.0000001 0.00027672 17 Yes 5 0.0000001 0.00027672 18 Yes 5 0.0000001 0.00027853 20 Yes 4 0.0000001 0.00027853 21 Yes 5 0.0000001 0.00027853 22 Yes 5 0.0000001 0.00027853 23 Yes 5 0.0000001 0.0	5	Yes	5	0.00000001	0.00011863	
/Yes50.00000010.000737639Yes40.00000010.0002786310Yes50.00000010.0002684511Yes50.00000010.0002767213Yes40.00000010.00032767214Yes40.00000010.0003767215Yes50.00000010.0003767216Yes50.00000010.0002767217Yes50.00000010.0002767218Yes50.00000010.0002767219Yes50.00000010.0002767220Yes50.00000010.0002767221Yes50.00000010.0002764522Yes50.00000010.000276323Yes50.00000010.000278324Yes50.00000010.000278325Yes50.00000010.000278326Yes50.00000010.000795630Yes50.00000010.000795633Yes50.00000010.000795634Yes50.00000010.000795635Yes50.00000010.000795636Yes40.00000010.000795637Yes40.00000010.000795638Yes40.00000010.000795639Yes40.00000010.0007956 </th <th>6</th> <th>Yes</th> <th>5</th> <th>0.00000001</th> <th>0.00027853</th> <th></th>	6	Yes	5	0.00000001	0.00027853	
8 Yes 4 0.0000001 0.0002/363 9 Yes 5 0.0000001 0.0002645 11 Yes 5 0.0000001 0.00027672 13 Yes 5 0.0000001 0.00027672 14 Yes 5 0.0000001 0.000321 15 Yes 4 0.0000001 0.00027672 16 Yes 4 0.0000001 0.00027672 17 Yes 5 0.0000001 0.0002763 20 Yes 4 0.0000001 0.0002763 21 Yes 5 0.0000001 0.0002763 22 Yes 5 0.0000001 0.00027763 23 Yes 5 0.0000001 0.00027763 24 Yes 5 0.0000001 0.0007772 25 Yes 5 0.0000001 0.0007928 29 Yes 5 0.0000001 0.00007928 33 Yes	7	Yes	5	0.00000001	0.00012246	
9 Yes 4 0.0000001 0.00026845 11 Yes 5 0.0000001 0.00027672 13 Yes 5 0.0000001 0.00027672 14 Yes 4 0.0000001 0.00027672 15 Yes 4 0.0000001 0.00027672 16 Yes 5 0.0000001 0.00027672 17 Yes 5 0.0000001 0.00027672 18 Yes 5 0.0000001 0.0002763 20 Yes 5 0.0000001 0.0002763 21 Yes 5 0.0000001 0.0002733 22 Yes 5 0.0000001 0.00012246 24 Yes 5 0.00000001 0.00012246 25 Yes 4 0.00000001 0.00007928 26 Yes 5 0.00000001 0.00007928 27 Yes 4 0.00000001 0.00007928 30	8	Yes	4	0.00000001	0.00027363	
1016850.00000010.000268511Yes50.00000010.0002767213Yes50.00000010.0000302114Yes40.000000010.0000302116Yes50.000000010.0000302116Yes50.000000010.0002767217Yes50.000000010.000276518Yes50.000000010.000276519Yes40.000000010.0002785321Yes50.000000010.0002785323Yes50.000000010.0002785324Yes50.000000010.0002785325Yes50.000000010.0000777225Yes40.000000010.0000792829Yes50.000000010.0000792829Yes50.000000010.0000783333Yes40.000000010.0000783333Yes50.000000010.000783334Yes50.000000010.0000783335Yes40.000000010.0000798336Yes40.000000010.0000798337Yes40.000000010.0000798338Yes40.000000010.0000798339Yes40.000000010.0000798339Yes40.000000010.000079638Yes40.00	9	Yes	4	0.00000001	0.00016488	
11res5 0.0000001 $0.0001/63$ 12Yes5 0.0000001 0.00027672 13Yes4 0.0000001 0.0000835 14Yes4 0.0000001 0.00002150 15Yes5 0.00000001 0.00027672 17Yes5 0.00000001 0.00027632 18Yes5 0.00000001 0.00012150 18Yes5 0.00000001 0.0001763 20Yes4 0.0000001 0.0001733 21Yes5 0.00000001 0.0002772 23Yes5 0.0000001 0.0002772 24Yes5 0.0000001 0.00007928 25Yes5 0.0000001 0.00007928 26Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.0007935 30Yes4 0.0000001 0.0007935 33Yes5 0.0000001 0.0007935 35Yes5 0.0000001 0.0007935 36Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.00007983 36Yes4 0.0000001 0.00007928 39Yes4 0.0000001 0.00007985 34Yes4 0.0000001	10	Yes	5	0.0000001	0.00026845	
12res5 0.00000011 0.0002150 14Yes4 0.00000011 0.0000351 15Yes4 0.000000101 0.0000321 16Yes5 0.00000011 0.00027672 17Yes5 0.00000011 0.0002763 18Yes5 0.00000011 0.0002783 20Yes4 0.00000011 0.00027363 21Yes5 0.00000011 0.00027833 23Yes5 0.00000011 0.00027833 24Yes5 0.00000011 0.00027833 25Yes5 0.00000011 0.00027833 26Yes4 0.00000011 0.00001883 26Yes5 0.00000011 0.00007928 29Yes5 0.00000011 0.00007935 30Yes5 0.00000011 0.00007935 31Yes5 0.00000011 0.00007935 33Yes5 0.00000011 0.00007935 34Yes5 0.00000011 0.00007935 35Yes5 0.00000011 0.00007935 36Yes4 0.00000011 0.00007935 37Yes5 0.000000011 0.00007935 38Yes4 0.00000011 0.00007935 39Yes4 0.00000011 0.00007935 39Yes4 0.000000011 0.00007935 44Yes<	11	Yes	5	0.0000001	0.00011/63	
131683 0.00000011 0.00001301 14Yes4 0.00000011 0.00009335 15Yes5 0.00000011 0.00027672 17Yes5 0.00000011 0.00021501 18Yes5 0.00000011 0.000217631 19Yes4 0.00000011 0.000117631 20Yes4 0.00000011 0.0001488 21Yes5 0.00000011 0.000123631 23Yes5 0.00000011 0.0002772331 24Yes5 0.00000011 0.00027722 25Yes5 0.00000011 0.0000184331 28Yes5 0.00000011 0.000079281 29Yes5 0.00000011 0.000079281 29Yes5 0.00000011 0.000079351 31Yes5 0.00000011 0.000079351 33Yes4 0.00000011 0.000079351 35Yes5 0.00000011 0.000079351 36Yes5 0.00000011 0.000079351 37Yes5 0.00000011 0.000079351 38Yes5 0.00000011 0.000079281 39Yes4 0.00000011 0.000079281 39Yes4 0.00000011 0.000079281 34Yes4 0.00000011 0.000079281 35Yes4 0.000000011 0.000079281 <	12	Y es	5	0.0000001	0.00027672	
1-71 cs90.00000010.00036315Yes40.00000010.000302116Yes50.00000010.0001215018Yes50.00000010.000236320Yes40.00000010.000176320Yes40.00000010.000278321Yes50.00000010.000278323Yes50.00000010.000278324Yes50.00000010.000278325Yes50.00000010.000278326Yes40.00000010.000278327Yes50.00000010.000124628Yes50.00000010.000184328Yes50.00000010.000792829Yes50.00000010.000792830Yes40.00000010.000793531Yes50.00000010.000793533Yes40.00000010.000793534Yes50.00000010.000793535Yes40.00000010.000792839Yes40.00000010.000792639Yes40.00000010.000792639Yes40.00000010.00017644Yes40.00000010.00017645Yes40.00000010.000177644Yes40.00000010.00017764	15	r es Vac	5	0.0000001	0.00012130	
1-31 cs 9 0.00000010.0002767217Yes50.00000010.0002767218Yes50.00000010.000276319Yes40.00000010.000276320Yes40.00000010.000276321Yes50.00000010.0002783323Yes50.00000010.0002707224Yes50.00000010.0002707225Yes50.00000010.0002707226Yes40.00000010.000186327Yes50.00000010.0001792828Yes50.00000010.000792629Yes50.00000010.0008138131Yes50.00000010.000793533Yes40.00000010.000793534Yes50.00000010.000793535Yes40.00000010.000793536Yes40.00000010.000793537Yes50.00000010.000792538Yes40.00000010.000178336Yes40.00000010.000192641Yes40.00000010.000118540Yes40.00000010.00017644Yes40.00000010.00017645Yes40.00000010.00017646Yes40.00000010.000176 <th>14</th> <td>I es</td> <td>4</td> <td>0.0000001</td> <td>0.00009855</td> <td></td>	14	I es	4	0.0000001	0.00009855	
101650.00000010.0001215018Yes50.00000010.0001215019Yes50.00000010.000176320Yes40.00000010.0002786321Yes50.00000010.0002785323Yes50.00000010.000270225Yes50.00000010.0002707225Yes50.00000010.000078326Yes40.00000010.000079227Yes50.00000010.000079228Yes50.00000010.0000793530Yes40.00000010.000078331Yes50.00000010.000793533Yes40.00000010.000793534Yes50.00000010.000793535Yes50.00000010.000793536Yes40.00000010.000793538Yes50.00000010.000793539Yes40.00000010.000188140Yes40.00000010.000118541Yes40.00000010.000118542Yes40.00000010.000118543Yes40.00000010.0001185440.00000010.000118545Yes40.000000144Yes40.000000145Yes40.0000001 <t< th=""><th>15</th><th>I CS</th><th>+ 5</th><th>0.0000001</th><th>0.00003021</th><th></th></t<>	15	I CS	+ 5	0.0000001	0.00003021	
1.1.520.00000010.00111018Yes50.00000010.0012684519Yes40.00000010.000276320Yes40.00000010.0002785321Yes50.00000010.00012785323Yes50.00000010.00012785324Yes50.00000010.0001270225Yes50.00000010.000186326Yes40.00000010.000184328Yes50.00000010.0000795629Yes50.00000010.0000795331Yes50.00000010.0000793532Yes50.00000010.000793533Yes40.00000010.000793534Yes50.00000010.000793535Yes40.00000010.000793536Yes40.00000010.000793537Yes50.00000010.000795638Yes40.00000010.00018540Yes40.00000010.000118541Yes40.00000010.000118542Yes40.00000010.000118643Yes40.00000010.000118644Yes40.00000010.000118645Yes40.00000010.000118646Yes40.00000010.0001176<	10	I CS Vec	5	0.0000001	0.00027072	
10Yes5 0.0000001 0.00010753 20Yes4 0.0000001 0.0001763 21Yes4 0.0000001 0.00027363 22Yes5 0.0000001 0.00027853 23Yes5 0.0000001 0.0002772 24Yes5 0.0000001 0.0002772 25Yes4 0.0000001 0.0000772 26Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007928 30Yes4 0.0000001 0.00007935 31Yes5 0.0000001 0.0007935 33Yes4 0.0000001 0.0007935 34Yes5 0.0000001 0.0007935 35Yes5 0.0000001 0.0007935 36Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.0007935 38Yes5 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 34Yes4 0.0000001 0.0001786 40Yes4 0.0000001 0.0001786 41Yes4 0.0000001 0.0001185 42Yes4 0.0000001 0.0001186 45Yes4 0.0000001	1 / 1 8	Vec	5	0.0000001	0.00012130	
20Yes4 0.0000001 0.0001705 21Yes4 0.0000001 0.00016488 22Yes5 0.0000001 0.00012246 23Yes5 0.0000001 0.00027072 25Yes5 0.0000001 0.00011863 26Yes4 0.0000001 0.00001843 28Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007956 30Yes4 0.0000001 0.00007833 32Yes5 0.0000001 0.00007883 33Yes4 0.0000001 0.0007935 33Yes5 0.0000001 0.0007883 36Yes5 0.0000001 0.0007883 36Yes4 0.0000001 0.0007883 36Yes5 0.0000001 0.0007883 36Yes4 0.0000001 0.0007883 36Yes4 0.0000001 0.0007883 36Yes4 0.0000001 0.0007926 38Yes4 0.0000001 0.0001786 40Yes4 0.0000001 0.0001185 41Yes4 0.0000001 0.0001185 42Yes4 0.0000001 0.0001776 43Yes4 0.0000001 0.0001186 45Yes4 0.0000001 <t< th=""><th>19</th><th>Yes</th><th>5</th><th>0.0000001</th><th>0.00011763</th><th></th></t<>	19	Yes	5	0.0000001	0.00011763	
2.1Yes4 0.0000001 0.00016488 22Yes5 0.00000001 0.0001246 23Yes5 0.0000001 0.0001246 24Yes5 0.0000001 0.0001246 25Yes5 0.0000001 0.00001001 26Yes4 0.0000001 0.0000001 27Yes4 0.0000001 0.00007928 28Yes5 0.0000001 0.0007956 30Yes4 0.0000001 0.0007956 30Yes5 0.0000001 0.0007935 31Yes5 0.0000001 0.0007935 33Yes5 0.0000001 0.0007935 34Yes5 0.0000001 0.0007935 35Yes5 0.0000001 0.0007935 36Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 40Yes4 0.0000001 0.0007928 41Yes4 0.0000001 0.0001726 43Yes4 0.0000001 0.0001726 44Yes4 0.0000001 0.000176 45Yes4 0.0000001 0.0001185 46Yes4 0.0000001 0.0001185 47Yes4 0.0000001 0.0001185 48Yes4 0.0000001 0.0	20	Yes	4	0.0000001	0.00027363	
22Yes5 0.0000001 0.00027833 23Yes5 0.00000001 0.00027072 24Yes5 0.00000001 0.00027072 25Yes5 0.00000001 0.00001833 26Yes4 0.00000001 0.00001843 28Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007928 30Yes4 0.0000001 0.00007935 31Yes5 0.0000001 0.00007935 32Yes5 0.0000001 0.00007935 33Yes5 0.0000001 0.00007935 34Yes5 0.0000001 0.00007935 35Yes4 0.0000001 0.00007935 36Yes4 0.0000001 0.00007983 37Yes5 0.0000001 0.00007985 38Yes4 0.0000001 0.00007985 39Yes4 0.0000001 0.00007928 39Yes4 0.0000001 0.0001185 40Yes4 0.0000001 0.0001185 41Yes4 0.0000001 0.00011850 42Yes4 0.0000001 0.00011850 43Yes4 0.0000001 0.00011850 44Yes4 0.0000001 0.00011850 45Yes4 0	20	Yes	4	0.0000001	0.00016488	
23Yes5 0.0000001 0.00012246 24Yes5 0.0000001 0.0001722 25Yes5 0.0000001 0.00011863 26Yes4 0.0000001 0.0000101 27Yes4 0.0000001 0.00001843 28Yes5 0.0000001 0.00007928 29Yes5 0.0000001 0.00007936 30Yes4 0.0000001 0.00007935 31Yes5 0.0000001 0.00007935 32Yes5 0.0000001 0.00007935 33Yes4 0.0000001 0.00007935 34Yes5 0.0000001 0.00007935 35Yes4 0.0000001 0.0007935 36Yes5 0.0000001 0.0007935 37Yes5 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.00017926 41Yes4 0.0000001 0.0001726 42Yes4 0.0000001 0.0001185 40Yes4 0.0000001 0.0001185 41Yes4 0.0000001 0.0001185 42Yes4 0.0000001 0.0001185 43Yes4 0.0000001 0.0001185 44 0.0000001 0.00011850 45Yes4 0.0000001 0.0001176 </th <th>22</th> <th>Yes</th> <th>5</th> <th>0.00000001</th> <th>0.00027853</th> <th></th>	22	Yes	5	0.00000001	0.00027853	
24Yes5 0.0000001 0.00027072 25Yes5 0.0000001 0.00000001 26Yes4 0.00000001 0.00000001 27Yes4 0.00000011 0.00007928 28Yes5 0.000000011 0.0007928 29Yes4 0.00000011 0.0007956 30Yes4 0.00000011 0.0007935 31Yes5 0.000000011 0.00007935 33Yes4 0.00000011 0.00007935 34Yes5 0.000000011 0.00007935 35Yes4 0.00000011 0.00007935 36Yes4 0.00000011 0.00007935 37Yes5 0.000000011 0.00007935 38Yes4 0.00000011 0.00007928 39Yes4 0.00000011 0.00007928 39Yes4 0.00000011 0.00001185 40Yes4 0.00000011 0.0001134 41Yes4 0.00000011 0.0001185 42Yes4 0.00000011 0.0001185 45Yes4 0.00000011 0.0001185 46Yes4 0.00000011 0.0001185 45Yes4 0.00000011 0.0001185 46Yes4 0.00000011 0.0001185 47Yes4 0.00000011 0.00011776 48Yes <t< th=""><th>23</th><th>Yes</th><th>5</th><th>0.00000001</th><th>0.00012246</th><th></th></t<>	23	Yes	5	0.00000001	0.00012246	
25Yes5 0.0000001 0.0011863 26Yes4 0.0000001 0.0000001 27Yes4 0.0000001 0.0000791843 28Yes5 0.0000001 0.00007928 29Yes4 0.0000001 0.0007956 30Yes5 0.0000001 0.0007833 31Yes5 0.0000001 0.0007935 33Yes4 0.0000001 0.0007935 34Yes5 0.0000001 0.0007935 35Yes5 0.0000001 0.0007935 36Yes4 0.0000001 0.0007935 37Yes5 0.0000001 0.0007935 38Yes5 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 40Yes4 0.0000001 0.00007928 41Yes4 0.0000001 0.00007928 42Yes4 0.0000001 0.0001185 44Yes4 0.0000001 0.00011850 45Yes4 0.0000001 0.00011850 45Yes4 0.0000001 0.00011850 46Yes4 0.0000001 0.00011850 47Yes4 0.0000001 0.0001292 48Yes4 0.0000001 0.0001292 49Yes4 0.0000001 0.0001292 50Yes4 0.0000001 <t< th=""><th>24</th><th>Yes</th><th>5</th><th>0.00000001</th><th>0.00027072</th><th></th></t<>	24	Yes	5	0.00000001	0.00027072	
26Yes4 0.0000001 0.0000001 27 Yes4 0.0000001 0.00007928 28 Yes5 0.0000001 0.0007956 30 Yes4 0.0000001 0.0007956 30 Yes5 0.0000001 0.0007935 31 Yes5 0.0000001 0.0007935 33 Yes4 0.0000001 0.0007935 33 Yes5 0.0000001 0.0007935 34 Yes5 0.0000001 0.0007935 35 Yes4 0.0000001 0.0007935 36 Yes5 0.0000001 0.0007935 37 Yes5 0.0000001 0.0007935 38 Yes5 0.0000001 0.0007956 38 Yes5 0.0000001 0.00007928 39 Yes4 0.0000001 0.00007928 40 Yes4 0.0000001 0.0001185 41 Yes4 0.0000001 0.0001185 42 Yes4 0.0000001 0.0001176 44 Yes4 0.0000001 0.00011850 45 Yes4 0.0000001 0.00011850 46 Yes4 0.0000001 0.00011850 47 Yes4 0.0000001 0.0001176 48 Yes4 0.0000001 0.0001176 49 Yes4 0.0000001 0.0001176 49 <th>25</th> <th>Yes</th> <th>5</th> <th>0.00000001</th> <th>0.00011863</th> <th></th>	25	Yes	5	0.00000001	0.00011863	
27Yes4 0.0000001 0.00081843 28Yes5 0.0000001 0.0007928 29Yes5 0.0000001 0.0007956 30Yes4 0.0000001 0.0007833 31Yes5 0.0000001 0.0007935 33Yes4 0.0000001 0.0007935 34Yes5 0.0000001 0.0007935 35Yes4 0.0000001 0.0007833 36Yes5 0.0000001 0.0007935 37Yes5 0.0000001 0.0007935 38Yes4 0.0000001 0.0007928 39Yes4 0.0000001 0.0001728 40Yes4 0.0000001 0.0001728 41Yes4 0.0000001 0.0001185 42Yes4 0.0000001 0.00012150 43Yes4 0.0000001 0.00011850 44Yes4 0.0000001 0.00011850 45Yes4 0.0000001 0.00011850 46Yes4 0.0000001 0.00011850 47Yes4 0.0000001 0.00011850 48Yes4 0.0000001 0.0001176 48Yes4 0.0000001 0.0001176 49Yes4 0.0000001 0.0001176 50Yes4 0.0000001 0.0001176	26	Yes	4	0.00000001	0.00000001	
28Yes5 0.0000001 0.0007928 29Yes5 0.0000001 0.0007956 30Yes4 0.0000001 0.0007883 31Yes5 0.0000001 0.0007883 32Yes4 0.0000001 0.0007935 33Yes4 0.0000001 0.0007935 35Yes5 0.0000001 0.0007883 36Yes5 0.0000001 0.0007883 37Yes5 0.0000001 0.0007926 38Yes5 0.0000001 0.00007926 39Yes4 0.0000001 0.00007928 40Yes4 0.0000001 0.0001185 41Yes4 0.0000001 0.00011250 42Yes4 0.0000001 0.00010776 43Yes4 0.0000001 0.0001185 45Yes4 0.0000001 0.00011850 45Yes4 0.0000001 0.00011850 47Yes4 0.0000001 0.00011850 47Yes4 0.0000001 0.00011850 48Yes4 0.0000001 0.00011850 49Yes4 0.0000001 0.00012022 49Yes4 0.0000001 0.00012022 49Yes4 0.0000001 0.00012022 49Yes4 0.0000001 0.0001202 40Yes4 0.0000001	27	Yes	4	0.00000001	0.00081843	
29Yes5 0.0000001 0.0007956 30Yes4 0.0000001 0.000181381 31Yes5 0.0000001 0.0007935 32Yes5 0.0000001 0.0007935 33Yes4 0.0000001 0.0007935 34Yes5 0.0000001 0.0007935 35Yes5 0.0000001 0.0007935 36Yes4 0.0000001 0.0007956 38Yes5 0.0000001 0.0007928 39Yes4 0.0000001 0.0007928 40Yes4 0.0000001 0.0001134 41Yes4 0.0000001 0.00012150 42Yes4 0.0000001 0.0001276 44Yes4 0.0000001 0.00012150 45Yes4 0.0000001 0.00011850 46Yes4 0.0000001 0.00011850 47Yes4 0.0000001 0.00011850 48Yes4 0.0000001 0.00011850 49Yes4 0.0000001 0.0001076 49Yes4 0.0000001 0.00012150 50Yes4 0.0000001 0.00012150	28	Yes	5	0.00000001	0.00007928	
30Yes4 0.0000001 0.00081381 31 Yes5 0.00000001 0.0007935 32 Yes4 0.0000001 0.00081652 34 Yes5 0.0000001 0.0007935 35 Yes4 0.0000001 0.0007935 36 Yes4 0.0000001 0.0007935 37 Yes5 0.0000001 0.0007935 38 Yes5 0.0000001 0.0007956 38 Yes5 0.0000001 0.0007928 39 Yes4 0.0000001 0.0001185 40 Yes4 0.0000001 0.00012150 42 Yes4 0.0000001 0.0001185 43 Yes4 0.0000001 0.00011850 45 Yes4 0.0000001 0.00011850 46 Yes4 0.0000001 0.00011850 47 Yes4 0.0000001 0.00011850 48 Yes4 0.0000001 0.00011850 47 Yes4 0.0000001 0.00011850 48 Yes4 0.0000001 0.00012150 49 Yes4 0.0000001 0.00012150 50 Yes4 0.0000001 0.00012150	29	Yes	5	0.00000001	0.00007956	
31Yes 5 0.0000001 0.0007883 32 Yes 5 0.0000001 0.0007935 33 Yes 4 0.0000001 0.0007935 34 Yes 5 0.0000001 0.0007935 35 Yes 5 0.0000001 0.0007983 36 Yes 4 0.0000001 0.0007983 37 Yes 5 0.0000001 0.0007926 38 Yes 5 0.0000001 0.00007928 39 Yes 4 0.0000001 0.0001185 40 Yes 4 0.0000001 0.00012150 42 Yes 4 0.0000001 0.00010776 43 Yes 4 0.0000001 0.00011850 45 Yes 4 0.0000001 0.00011850 46 Yes 4 0.0000001 0.00011850 47 Yes 4 0.0000001 0.00010776 48 Yes 4 0.0000001 0.00010776 49 Yes 4 0.00000001 0.0001292 49 Yes 4 0.00000001 0.00010776 49 Yes 4 0.00000001 0.0001176 49 Yes 4 0.00000001 0.00012150 50 Yes 4 <	30	Yes	4	0.00000001	0.00081381	
32Yes5 0.0000001 0.0007935 33 Yes4 0.0000001 0.00081652 34 Yes5 0.0000001 0.00007935 35 Yes5 0.0000001 0.00007883 36 Yes4 0.0000001 0.0007956 38 Yes5 0.0000001 0.00007928 39 Yes4 0.0000001 0.0001185 40 Yes4 0.0000001 0.0001134 41 Yes4 0.0000001 0.00012150 42 Yes4 0.0000001 0.0001176 44 Yes4 0.0000001 0.0001185 45 Yes4 0.0000001 0.00011850 45 Yes4 0.0000001 0.00011850 46 Yes4 0.0000001 0.00011850 47 Yes4 0.0000001 0.00011850 48 Yes4 0.0000001 0.00012022 49 Yes4 0.0000001 0.00011850 49 Yes4 0.0000001 0.00012022 49 Yes4 0.0000001 0.00012022 49 Yes4 0.0000001 0.0001202 49 Yes4 0.0000001 0.00012034	31	Yes	5	0.00000001	0.00007883	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	Yes	5	0.00000001	0.00007935	
34Yes 5 0.0000001 0.0007935 35 Yes 5 0.0000001 0.0007983 36 Yes 4 0.0000001 0.00081381 37 Yes 5 0.0000001 0.0007956 38 Yes 5 0.0000001 0.0007928 39 Yes 4 0.0000001 0.0001185 40 Yes 4 0.0000001 0.00011034 41 Yes 4 0.0000001 0.000120292 43 Yes 4 0.0000001 0.0001776 44 Yes 4 0.0000001 0.0001776 45 Yes 4 0.0000001 0.00011850 45 Yes 4 0.0000001 0.00011850 46 Yes 4 0.0000001 0.00011850 47 Yes 4 0.0000001 0.00011850 48 Yes 4 0.0000001 0.00012150 49 Yes 4 0.0000001 0.00012150 50 Yes 4 0.0000001 0.00012150	33	Yes	4	0.00000001	0.00081652	
35Yes5 0.0000001 0.0007883 36Yes4 0.0000001 0.00081381 37Yes5 0.0000001 0.0007956 38Yes5 0.0000001 0.0007928 39Yes4 0.0000001 0.0001185 40Yes4 0.0000001 0.0001250 41Yes4 0.0000001 0.00010776 42Yes4 0.0000001 0.00010776 44Yes4 0.0000001 0.00011850 45Yes4 0.0000001 0.00011850 46Yes4 0.0000001 0.00011850 47Yes4 0.0000001 0.00011850 48Yes4 0.0000001 0.00010776 49Yes4 0.0000001 0.00010776 50Yes4 0.0000001 0.00010776	34	Yes	5	0.00000001	0.00007935	
36Yes4 0.0000001 0.00081381 37 Yes5 0.0000001 0.0007956 38 Yes5 0.0000001 0.0007928 39 Yes4 0.0000001 0.0001185 40 Yes4 0.0000001 0.00011034 41 Yes4 0.0000001 0.0002092 43 Yes4 0.0000001 0.00010776 44 Yes4 0.0000001 0.00011850 45 Yes4 0.0000001 0.0001186 46 Yes4 0.0000001 0.0001186 47 Yes4 0.0000001 0.00011850 47 Yes4 0.0000001 0.00011850 47 Yes4 0.0000001 0.00010776 48 Yes4 0.0000001 0.00011250 49 Yes4 0.0000001 0.00010776 49 Yes4 0.0000001 0.00010776 50 Yes4 0.0000001 0.00010776	35	Yes	5	0.00000001	0.00007883	
	36	Yes	4	0.00000001	0.00081381	
38Yes 5 0.0000001 $0.0000/928$ 39 Yes 4 0.0000001 0.0001185 40 Yes 4 0.0000001 0.00011034 41 Yes 4 0.0000001 0.00012150 42 Yes 4 0.0000001 0.00010776 43 Yes 4 0.0000001 0.00011850 45 Yes 4 0.0000001 0.00011850 46 Yes 4 0.0000001 0.00011850 47 Yes 4 0.0000001 0.00011850 48 Yes 4 0.0000001 0.00010776 49 Yes 4 0.0000001 0.00010776 50 Yes 4 0.0000001 0.00011250	37	Yes	5	0.00000001	0.00007956	
59Yes4 0.0000001 0.0001185 40Yes4 0.0000001 0.00011034 41Yes4 0.0000001 0.00012150 42Yes4 0.0000001 0.0001076 43Yes4 0.0000001 0.000176 44Yes4 0.0000001 0.00011850 45Yes4 0.0000001 0.00011850 46Yes4 0.0000001 0.00011850 47Yes4 0.0000001 0.00011850 48Yes4 0.0000001 0.00010776 49Yes4 0.0000001 0.00012150 50Yes4 0.0000001 0.00011034	38	Y es	S	0.0000001	0.0000/928	
40 $1\mathrm{cs}$ 4 0.0000001 0.00011034 41 Yes 4 0.0000001 0.00012150 42 Yes 4 0.0000001 0.0002092 43 Yes 4 0.0000001 0.00010776 44 Yes 4 0.0000001 0.00011850 45 Yes 4 0.0000001 0.00011850 46 Yes 4 0.0000001 0.00011850 47 Yes 4 0.0000001 0.00010776 48 Yes 4 0.0000001 0.00010776 49 Yes 4 0.0000001 0.00012150 50 Yes 4 0.0000001 0.00012150	39 40	Y es Vac	4	0.0000001	0.00011034	
42Yes4 0.0000001 0.00012130 42 Yes4 0.0000001 0.00002092 43 Yes4 0.0000001 0.0001076 44 Yes4 0.0000001 0.00011850 45 Yes4 0.0000001 0.00011850 46 Yes4 0.0000001 0.00011850 47 Yes4 0.0000001 0.00010776 48 Yes4 0.0000001 0.00010776 49 Yes4 0.0000001 0.0002092 49 Yes4 0.0000001 0.00012150 50 Yes4 0.0000001 0.00011034	40	I es	4	0.0000001	0.00011034	
42 105 4 0.0000001 0.0002092 43 Yes 4 0.0000001 0.00010776 44 Yes 4 0.0000001 0.00011850 45 Yes 4 0.0000001 0.0001186 46 Yes 4 0.0000001 0.00011850 47 Yes 4 0.0000001 0.00010776 48 Yes 4 0.0000001 0.00010776 49 Yes 4 0.0000001 0.00012150 50 Yes 4 0.0000001 0.00011034	41 12	I CS Vac	+ 1	0.0000001	0.00012130	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+2 A3	Vec	+ 4	0.0000001	0.00010776	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	Yes		0.0000001	0.00011850	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	Yes	<u>т</u> Д	0.0000001	0.00001186	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46	Yes	4	0.0000001	0.00011850	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	Yes	4	0.00000001	0.00010776	
49 Yes 4 0.0000001 0.00012150 50 Yes 4 0.0000001 0.00011034	48	Yes	4	0.00000001	0.00002092	
50 Yes 4 0.0000001 0.00011034	49	Yes	4	0.00000001	0.00012150	
	50	Yes	4	0.00000001	0.00011034	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	88.7 - 47.57	11.578	45	1.000	0.001
L2	51.9 - 0	4.419	45	0.761	0.001

tnxTower	Јов 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)	Page 15 of 16
B+T Group 1717 S. Boulder, Suite 300	Project	Date 18:35:36 10/14/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by V. RAO

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
84.000	7770.00 w/ Mount Pipe	45	10.559	0.977	0.001	23847
74.000	BXA-70063/6CF w/ Mount Pipe	45	8.438	0.925	0.001	8111
66.000	MX08FRO665-21 w/ Mount Pipe	45	6.843	0.876	0.001	5252
64.000	AIR6449 B41_T-MOBILE w/	45	6.465	0.862	0.001	4827
	Mount Pipe					

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	88.7 - 47.57	49.459	14	4.272	0.005
L2	51.9 - 0	18.873	14	3.253	0.003

Critical Deflections and Radius of Curvature - Design Wind

Elsustian	A	Carr	Deflection	T:14	Teniat	Dading of
Elevation	Appurtenance	Gov.	Deflection	1111	1 Wisi	Kaatus oj
		Load				Curvature
ft		Comb.	in	0	0	ft
84.000	7770.00 w/ Mount Pipe	14	45.104	4.176	0.005	5633
74.000	BXA-70063/6CF w/ Mount Pipe	14	36.043	3.955	0.004	1915
66.000	MX08FRO665-21 w/ Mount Pipe	14	29.228	3.746	0.004	1238
64.000	AIR6449 B41_T-MOBILE w/	14	27.614	3.687	0.003	1138
	Mount Pipe					

Compression Checks

	Pole Design Data								
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
L1	88.7 - 47.57 (1)	TP30.46x21.89x0.25	41.130	0.000	0.0	23.256	-19.804	1360.460	0.015
L2	47.57 - 0 (2)	TP39.75x29.058x0.313	51.900	0.000	0.0	39.117	-31.068	2288.350	0.014

Pole Bending Design Data

tnxTower	Јов 95362.015.01 - WINDHAM NORTH RIDGE ROAD, CT (BU# 842423)	Page 16 of 16
B+T Group 1717 S. Boulder, Suite 300	Project	Date 18:35:36 10/14/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by V. RAO

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{nv}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1 88	3.7 - 47.57 (1)	TP30.46x21.89x0.25	542.340	982.733	0.552	0.000	982.733	0.000
L2 4	47.57 - 0 (2)	TP39.75x29.058x0.313	1832.633	2172.667	0.843	0.000	2172.667	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	88.7 - 47.57 (1)	TP30.46x21.89x0.25	23.430	408.138	0.057	0.000	1047.542	0.000
L2	47.57 - 0 (2)	TP39.75x29.058x0.313	26.050	686.505	0.038	0.000	2371.008	0.000

			F	Pole Int	eractio	on Des	ign Da	ta	
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V_u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	88.7 - 47.57 (1)	0.015	0.552	0.000	0.057	0.000	0.570	1.050	4.8.2 🖌
L2	47.57 - 0 (2)	0.014	0.843	0.000	0.038	0.000	0.859	1.050	4.8.2 🖌

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
L1	88.7 - 47.57	Pole	TP30.46x21.89x0.25	1	-19.804	1428.483	54.3	Pass
L2	47.57 - 0	Pole	TP39.75x29.058x0.313	2	-31.068	2402.767	81.8 Summary	Pass
							Summary	-
						Pole (L2)	81.8	Pass
						RATING =	81.8	Pass

APPENDIX B

BASE LEVEL DRAWING

BUSINESS UNIT: 842423

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info		
	BU #	842423
	Site Name	HAM NORTH RIDGE RO
	Order #	572910, Rev# 1

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	Yes
I _{ar} (in)	0

Applied Loads	
Moment (kip-ft)	1832.63
Axial Force (kips)	31.07
Shear Force (kips)	26.05

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 47" BC

Base Plate Data

53" OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data

N/A

Pole Data

39.75" x 0.3125" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary	(ι	inits of kips, kip-in)
Pu_t = 153.23	φPn_t = 243.75	Stress Rating
Vu = 2.17	φVn = 149.1	59.9%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	45.04	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	79.4%	Pass

CCIplate - Version 4.1.2

Analysis Date: 14-10-2021

CROWN

Foundation Analysis Checks Capacity

187.62

12.54

3202.57

2973.04

13497.04

1523.05

617.33

0.164

2142.83

Demand

26.00

2.41

2026.92

1937.00

51.36

765.18

140.32

0.025

1162.20

Pier and Pad Foundation

BU # : 842423 Site Name: WINDHAM NORTH App. Number: 572910, Rev# 1

> Н Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Lateral (Sliding) (kips)

Bearing Pressure (ksf)

Pier Compression (kip)

Pad Shear - 1-way (kips)

Pad Shear - 2-way (Comp) (ksi)

Flexural 2-way (Comp) (kip*ft)

Pad Flexure (kip*ft)

Pier Flexure (Comp.) (kip*ft)

Overturning (kip*ft)

TIA-222 Revision: Tower Type:

Superstructure Analysis Re	eactions	
Compression, P_{comp} :	31	kips
Base Shear, Vu_comp:	26	kips
Moment, M _u :	1833	ft-kips
Tower Height, H :	88.7	ft
BP Dist. Above Fdn, bp_{dist}:	5.5	in
i i i i i i i i i i i i i i i i i i i		

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	6	ft
Ext. Above Grade, E:	1	ft
Pier Rebar Size, Sc :	9	
Pier Rebar Quantity, mc :	22	
Pier Tie/Spiral Size, St:	3	
Pier Tie/Spiral Quantity, mt:	6	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	4	in

Pad Properties		
Depth, D :	6	ft
Pad Width, W ₁ :	20	ft
Pad Thickness, T :	3	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	9	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	11	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δc :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	120	pcf
Ultimate Net Bearing, Qnet:	16.000	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, φ :	30	degrees
SPT Blow Count, N _{blows} :	99	
Base Friction, μ :	0.5	
Neglected Depth, N:	3.33	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	n/a	ft

<--Toggle between Gross and Net

*Rating per TIA-222-H Section 15.5

Structural Rating*:	62.0%
Soil Rating*:	63.3%

Rating*

13.2%

19.2%

63.3%

62.0%

0.4%

47.8%

21.6%

14.3%

51.7%

Check

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

ASCE 7 Hazards Report

Section 11.4.3)

Address: No Address at This Location Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Default (see

 Elevation:
 312.63 ft (NAVD 88)

 Latitude:
 41.739869

 Longitude:
 -72.172908

Wind

Results:

Wind Speed:	120 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	93 Vmph
100-year MRI	99 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Tue Sep 07 2021

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Default (see Sec	tion 11.4.3)	
S _s :	0.188	S _{D1} :	0.087
S ₁ :	0.055	Τ _L :	6
F _a :	1.6	PGA :	0.102
F _v :	2.4	PGA M :	0.163
S _{MS} :	0.301	F _{PGA} :	1.596
S _{M1} :	0.131	l _e :	1
S _{DS} :	0.201	C _v :	0.7
Seismic Design Category	В		

Data Accessed: Date Source: Tue Sep 07 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Tue Sep 07 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: November 2, 2021

Darcy Tarr Crown Castle		Trylon	
Charlotte, NC 28277 (704) 405-6589		Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730	
Subject:	Mount Replacement Analysis Repo	rt	
Carrier Designation:	DISH Wireless Dish 5G Carrier Site Number: Carrier Site Name:	BOBOS00892A -	
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Order Number:	842423 WINDHAM NORTH RIDGE ROAD 671468 572910 Rev. 1	
Engineering Firm Designation:	Trylon Report Designation:	195376	
Site Data:	10 North Ridge Drive, Windham, Windham County, CT, 06256 Latitude 41°44'23.53" Longitude -72°10'22.47"		
Structure Information:	Tower Height & Type: Mount Elevation: Mount Type:	88.7 ft Monopole 66.0 ft 8.0 ft Platform	
Dear Darcy Tarr,			

. X . A .

Trylon is pleased to submit this "**Mount Replacement Analysis Report**" to determine the structural integrity of DISH Wireless's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient* * *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Vlad Barbu

Respectfully Submitted by: Cliff Abernathy, P.E.

November 2, 2021 CCI BU No 842423 Page 2

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

November 2, 2021 CCI BU No 842423 Page 3

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC / 2018 CTSBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	130 mph
Exposure Category:	С
Topographic Factor at Base:	1.00
Topographic Factor at Mount:	1.00
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S₅:	0.173
Seismic S₁:	0.062
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA WIRELESS	MX08FRO665-21	9.0 ft Diatform
66.0 66.0	3	FUJITSU	TA08025-B604		
	3 3 1	3	FUJITSU	TA08025-B605	
		1	RAYCAP	RDIDC-9181-PF-48	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	DISH Wireless Application	572910, Rev. 0	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM A500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP3		34.4	Pass
	Horizontal(s)	H1		9.9	Pass
	Standoff(s)	M12		45.4	Pass
1,2	Bracing(s)	M4	66.0	15.1	Pass
	Handrail(s)	M19		11.9	Pass
	Plate(s)	M15		24.7	Pass
	Mount Connection(s)	-		18.6	Pass

	Structure Rating (max from all components) =	45.4%
Notes: 1)	See additional documentation in "Appendix C - Software Analysis Output" for calculations supp	orting the % capacity

2) Rating per TIA-222-H, Section 15.5

8.0 ft Platform Mount Replacement Analysis Order 572910, Revision 1 November 2, 2021 CCI BU No 842423 Page 5

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C

No structural modifications are required at this time, provided that the above-listed changes are implemented.

8.0 ft Platform Mount Replacement Analysis Order 572910, Revision 1 November 2, 2021 CCI BU No 842423 Page 6

APPENDIX A

WIRE FRAME AND RENDERED MODELS

ENG-FRM-10208, Rev. D

Tedan		SK 1
i ryion		SR - 1
VB	842423	Nov 1, 2021 at 6:40 PM

APPENDIX B

SOFTWARE INPUT CALCULATIONS

ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 312.63 ft (NAVD 88) Latitude: 41.739869 Longitude: -72.172908

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.173	S _{DS} :	0.185	
S ₁ :	0.062	S _{D1} :	0.099	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.086	
S _{MS} :	0.277	PGA M :	0.138	
S _{M1} :	0.149	F _{PGA} :	1.6	
			1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Nov 01 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

	Ice Thickness:	0.75 in.
	Concurrent Temperature:	15 F
	Gust Speed:	50 mph
Data	Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date	Accessed:	Mon Nov 01 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.1

PROJECT DATA		
Job Code:	195376	
Carrier Site ID:	BOBOS00892A	
Carrier Site Name:	-	

CODES AND STANDARDS		
Building Code:	2015 IBC	
Local Building Code:	Connecticut State Building	
Design Standard:	TIA-222-H	

STRUCTURE DETAILS		
Mount Type:	Platform	
Mount Elevation:	66.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	-
Structure Height:	88.7	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	I	
Exposure Category:	С	
Site Class:	D - Default	
Ground Elevation:	312.63	ft.

TOPOGRAP	HIC DATA	
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAM	ETERS	
Design Wind Speed:	130	mph
Wind Escalation Factor (K_s):	1.00	
Velocity Coefficient (Kz):	1.16	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q _z):	47.12	psf
Ground Elevation Factor (K_e):	0.99	

ICE PARAMETERS		
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (q _{zi}):	47.12	psf
Mount Ice Thickness (t _{iz}):	1.61	in

WIND STRUCTURE CALCULATIONS		
Flat Member Pressure:	84.82	psf
Round Member Pressure:	50.89	psf
Ice Wind Pressure:	6.96	psf

SEISMIC PARA	METERS	
Importance Factor (I_e) :	1.00	ł
Short Period Accel .(S _s):	0.173	g
1 Second Accel (S ₁):	0.062	g
Short Period Des. (S _{DS}):	0.18	g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	1
1 Second Coeff. (F_v):	2.40	1
Response Coefficient (Cs):	0.09	-
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
20	0.9DL + 1WL 180 AZI
21	0.9DL + 100L 210 AZI
20	
29	
30	
32	0.901 + 11/1 315 AZI
33	0.901 + 11/1 330 AZI
34	1 2DL + 1DLi + 1WLi 0 AZL
35	1 2DL + 1DL i + 1WL i 30 AZI
36	1 2DL + 1DLi + 1WLi 45 A7L
37	
30	
30	
39	
40	1.2DL + 1DLI + 1WLI 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
/4	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description	#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1	121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1	122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1	123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1	124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1	125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1	126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1	127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1	128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1	129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1	130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1	131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1	132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1	133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1	134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1	135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1	136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2	137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2	138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2	139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2	140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2	141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2	142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2	143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2	144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2	145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2	146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2	147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2	148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2	149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2	150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2	151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2	152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name	Qty.	Elevation [ft]	-	EPA _N (ft2)	ΕΡΑ _Τ (ft2)	Weight (lbs)
MX08FRO665-21	3	66	No Ice	8.01	3.21	82.50
			w/ Ice	9.62	4.62	261.32
TA08025-B604	3	66	No Ice	1.96	0.98	63.90
			w/ Ice	2.35	1.28	63.74
TA08025-B605	3	66	No Ice	1.96	1.13	75.00
			w/ Ice	2.35	1.45	67.95
RDIDC-9181-PF-48	1	66	No Ice	2.01	1.17	21.85
			w/ Ice	2.41	1.50	66.95
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			Nolce			
			w/ ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	66	1.00	1.16	0.95	1.61	47.12	6.97
TA08025-B604	3	66	1.00	1.16	0.95	1.61	47.12	6.97
TA08025-B605	3	66	1.00	1.16	0.95	1.61	47.12	6.97
RDIDC-9181-PF-48	1	66	1.00	1.16	0.95	1.61	47.12	6.97

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	339.72	187.04	288.83	136.14	288.83	187.04
		w/ Ice	60.36	36.84	52.52	29.01	52.52	36.84
TA08025-B604	3	No Ice	83.28	52.03	72.86	41.61	72.86	52.03
		w/ Ice	14.77	9.74	13.09	8.06	13.09	9.74
TA08025-B605	3	No Ice	83.28	56.75	74.43	47.90	74.43	56.75
		w/ Ice	14.77	10.50	13.35	9.07	13.35	10.50
RDIDC-9181-PF-48	1	No Ice	85.33	58.49	76.38	49.55	76.38	58.49
		w/ Ice	15.11	10.82	13.68	9.40	13.68	10.82
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		Nolce						
		w/ loo						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	3	66	82.5	9.13
TA08025-B604	3	66	63.9	7.08
TA08025-B605	3	66	75	8.30
RDIDC-9181-PF-48	1	66	21.85	2.42

*Elevation View Shows Alpha Sector Only

Equipment Name	Total Quantity	Antenna Centerline	Mount Pipe Positions	Equipment Azimuths
MX08FRO665-21	3	66	MP2/MP5/MP8	0/120/240
TA08025-B604	3	66	MP1/MP4/MP7	0/120/240
TA08025-B605	3	66	MP3/MP6/MP9	0/120/240
RDIDC-9181-PF-48	1	66	MP2	0

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include S hear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P -Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Ζ
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISI S100-12: LRFD
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
CtExp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
OmZ	1
Om X	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E[ksi]	G [ksi]	Nu	Therm (/1E.	.Density[k/ft	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft ^3]	Yie l d[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Des ign	Material	Des ign	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Brac	L2x2x3	Beam	Single A	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bra	C 3X 5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Cor	L6.6"X4.46"X0.25"	Beam	Single A	A36 Gr.36	Typical	2.703	4.759	12.473	.055
7	Horizontals	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Туре	Des ign	Material	Des ign	A [in2]	lyy [in4]	lzz [in4]	J [in4]
8	MountPipes	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Cold Formed Steel Section Sets

	Label	Shape	Туре	Des ign List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8C U1.25X 057	Beam	None	A653 SS Gr33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N 13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	Area (Me	Surface(P
1	Self Weight	DL			-1		13		3	
2	Structure Wind X	WLX						51		
3	Structure Wind Y	WLY						51		
4	Wind Load 0 AZI	WLX					26			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLY					26			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	51	3	
13	Ice Structure Wind X	OL2						51		
14	Ice Structure Wind Y	OL3						51		
15	Ice Wind Load 0 AZ I	OL2					26			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					26			
20	Ice Wind Load 120 AZ I	None					26			
21	Ice Wind Load 135 AZ I	None					26			
22	Ice Wind Load 150 AZ I	None					26			
23	Seismic Load X	ELX	111				13			
24	Seismic Load Y	ELY		111			13			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	Surface(P
34	Maintenance Load 1 (None					1			
35	Maintenance Load 2 (None					1			
36	Maintenance Load 3 (None					1			
37	Maintenance Load 4 (None					1			
38	Maintenance Load 5 (None					1			
39	Maintenance Load 6 (None					1			
40	Maintenance Load 7 (None					1			
41	Maintenance Load 8 (None					1			
42	Maintenance Load 9 (None					1			
43	BLC 1 Transient Area	None						9		
44	BLC 12 Transient Are	None						9		

Load Combinations

	Des cription	Sol	РD	SR	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact								
1	1.4DL	Yes	Y		DL	1.4																		
2	1.2DL + 1	Yes	Y		DL	1.2	2	1	3		4	1												
3	1.2DL + 1	Yes	Υ		DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1	Yes	Y		DL	1.2	2	.707	3	.707	6	1												
5	1.2DL + 1	Yes	Υ		DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1	Yes	Υ		DL	1.2	2		3	1	8	1												
7	1.2DL + 1	Yes	Υ		DL	1.2	2	5	3	.866	9	1												
8	1.2DL + 1	Yes	Υ		DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1	Yes	Υ		DL	1.2	2	866	3	.5	11	1												
10	1.2DL + 1	Yes	Υ		DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1	Yes	Υ		DL	1.2	2	866	3	5	5	-1												
12	1.2DL + 1	Yes	Y		DL	1.2	2	707	3	707	6	-1												
13	1.2DL + 1	Yes	Υ		DL	1.2	2	5	3	866	7	-1												
14	1.2DL + 1	Yes	Υ		DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1	Yes	Υ		DL	1.2	2	.5	3	866	9	-1												
16	1.2DL + 1	Yes	Υ		DL	1.2	2	.707	3	707	10	-1												
17	1.2DL + 1	Yes	Υ		DL	1.2	2	.866	3	5	11	-1												
18	0.9DL + 1	Yes	Υ		DL	.9	2	1	3		4	1												
19	0.9DL + 1	Yes	Υ		DL	.9	2	.866	3	.5	5	1												
20	0.9DL + 1	Yes	Υ		DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1	Yes	Υ		DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1	Yes	Υ		DL	.9	2		3	1	8	1												
23	0.9DL + 1	Yes	Υ		DL	.9	2	5	3	.866	9	1												
24	0.9DL + 1	Yes	Υ		DL	.9	2	707	3	.707	10	1												
25	0.9DL + 1	Yes	Υ		DL	.9	2	866	3	.5	11	1												
26	0.9DL + 1	Yes	Υ		DL	.9	2	-1	3		4	-1												
27	0.9DL + 1	Yes	Υ		DL	.9	2	866	3	5	5	-1												
28	0.9DL + 1	Yes	Υ		DL	.9	2	707	3	707	6	-1												
29	0.9DL + 1	Yes	Υ		DL	.9	2	5	3	866	7	-1												
30	0.9DL + 1	Yes	Y		DL	.9	2		3	-1	8	-1												
31	0.9DL + 1	Yes	Y		DL	.9	2	.5	3	866	9	-1												
32	0.9DL + 1	Yes	Y		DL	.9	2	.707	3	707	10	-1												
33	0.9DL + 1	Yes	Y		DL	.9	2	.866	3	5	11	-1												
34	1.2DL + 1	Yes	Y		DL	1.2	OL1	1	13	1	14		15	1										
35	1.2DL + 1	Yes	Υ		DL	1.2	OL1	1	13	.866	14	.5	16	1										
36	1.2DL + 1	Yes	Y		DL	1.2	OL1	1	13	.707	14	.707	17	1										

Load Combinations (Continued)

	Des cription	Sol	PDS	RBLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact								
37	1.2DL + 1	Yes	Y	DL	1.2	OL1	1	13	.5	14	.866	18	1										
38	1.2DL + 1	Yes	Y	DL	1.2	OL1	1	13		14	1	19	1										
39	1.2DL + 1	Yes	Y	DL	1.2	OL1	1	13	5	14	.866	20	1										
40	1.2DL + 1	Yes	Y	DL	1.2	OL1	1	13	707	14	.707	21	1										
41	1.2DL + 1	Yes	Y	DL	1.2	OL1	1	13	866	14	.5	22	1										
42	1.2DL + 1	Yes	Y	DL	1.2	OL1	1	13	-1	14		15	-1										
43	1,2DL + 1	Yes	Y		12	OL1	1	13	866	14	- 5	16	-1										
44	1.2DL + 1	Yes	Y	DI	12	OL1	1	13	707	14	707	17	-1										
45	1.2DL + 1	Yes	Y		1.2	OL1	1	13	- 5	14	866	18	-1										
46	1.2DL + 1	Yes	Y		12	OL1	1	13	.0	14	-1	19	-1										
47	1.2DL + 1	Yes	Y		12	OL1	1	13	5	14	866	20	-1										
48	1.2DL + 1	Yes	Y		12	OL1	1	13	707	14	707	21	-1										
49	1.2DL + 1	Yes	Y	DI	1.2	OL1	1	13	866	14	- 5	22	-1										
50	(1.2+0.25	Yes	V	DI	1.237	23	1	24	.000		.0												
51	(1.2+0.25	Yes	v	DI	1.237	23	866	24	5														
52	(1.2+0.25	Yes	Y		1.237	23	707	24	707														
53	(1.2+0.25	Yes	Y		1.237	23	5	24	866														
54	(1.2+0.25	Yes	Y		1.237	23		24	.000														
55	(1.2+0.25	Yes	Y		1.237	23	- 5	24	866														
56	(1.2+0.25	Yes	Y	DI	1.237	23	707	24	707														
57	(1.2+0.25	Yes	Y		1.237	23	866	24	5	-													
58	(1.2+0.25	Yes	Y	DI	1.237	23	-1	24															
59	(1.2+0.2S	Yes	Y	DI	1,237	23	866	24	- 5														
60	(1.2+0.25	Yes	Y	DI	1.237	23	707	24	707														
61	(1.2+0.25	Yes	Y		1.237	23	- 5	24	866	-													
62	(1.2+0.25	Yes	Y	DI	1.237	23	.0	24	-1														
63	(1.2+0.25	Yes	Y		1.237	23	5	24	866														
64	(1.2+0.25	Yes	Y	DI	1.237	23	707	24	707														
65	(1.2+0.2S	Yes	Y	DL	1.237	23	.866	24	5														
66	(0.9-0.2Sd.	.Yes	Y	DI	863	23	1	24															
67	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	.866	24	.5														
68	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	.707	24	707														
69	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	5	24	.866														
70	(0.9-0.2Sd.	.Yes	Y	DL	.863	23		24	1														
71	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	5	24	.866														
72	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	707	24	.707														
73	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	866	24	.5														
74	(0.9-0.2Sd.	.Yes	Υ	DL	.863	23	-1	24															
75	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	866	24	5														
76	(0.9-0.2Sd.	.Yes	Υ	DL	.863	23	707	24	707														
77	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	5	24	866														
78	(0.9-0.2Sd.	.Yes	Y	DL	.863	23		24	-1														
79	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	.5	24	866														
80	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	.707	24	707														
81	(0.9-0.2Sd.	.Yes	Y	DL	.863	23	.866	24	5														
82	1.2DL + 1	Yes	Y	DL	1.2	25	1.5																
83	1.2DL + 1	Yes	Y	DL	1.2	26	1.5																
84	1.2DL + 1	Yes	Y	DL	1.2	27	1.5																
85	1.2DL + 1	Yes	Y	DL	1.2	28	1.5																
86	1.2DL + 1	Yes	Y	DL	1.2	29	1.5																
87	1.2DL + 1	Yes	Y	DL	1.2	30	1.5																
88	1.2DL + 1	Yes	Y	DL	1.2	31	1.5																

Load Combinations (Continued)

89 1.20L + 1. Yes Y DL 1.2 23 1.5		Des cription	Sol	PD\$	SRBLC	Fact.	BLC	Fact	.BLC	Fact	BLC	Fact												
90 1:20L + 1Yes Y DL 1:23 1:5 - <td>89</td> <td>1.2DL + 1</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>32</td> <td>1.5</td> <td></td>	89	1.2DL + 1	Yes	Y	DL	1.2	32	1.5																
91 12DL +1Yes Y DL 1.2 34 1.5 2 0.653 0.27 5 0.553 0.4 0.4 93 12DL +1Yes Y DL 1.2 34 1.5 2 0.67 0.5 0.53 0.4	90	1.2DL + 1	Yes	Υ	DL	1.2	33	1.5																
92 120L + 1. Yes Y DL 12 34 15 2 0.46 3 0.27 5 0.53 94 120L + 1. Yes Y DL 12 34 15 2 0.06 7 0.53 95 120L + 1. Yes Y DL 12 34 15 2 0.07 3 0.46 9 0.53 97 120L + 1. Yes Y DL 1.2 34 1.5 2 0.663 0.63 91 120L + 1. Yes Y DL 1.2 34 1.5 2 0.63 0.27 1 0.53 91 120L + 1. Yes Y DL 1.2 34 1.5 2 0.63 0.633 0.633 0.633 101 120L + 1. Yes Y DL 1.2 34 1.5 2 0.633 0.633 0.633 0.633 101 120L + 1. Yes Y DL 1.2 35	91	1.2DL + 1	Y es	Y	DL	1.2	34	1.5	2	.053	3		4	.053										
93 1.20L + 1Yes Y DL 1.23 1.52 2.038 3.048 6.053 Image: Constraint of the con	92	1.2DL + 1	.Yes	Y	DL	1.2	34	1.5	2	.046	3	.027	5	.053										
94 12DL +1Yes Y DL 12 34 1.5 2 0.053 0.053 96 12DL +1Yes Y DL 1.2 34 1.5 2 0.053 0.053 96 1.2DL +1Yes Y DL 1.2 34 1.5 2 0.033 0.053 97 1.2DL +1Yes Y DL 1.2 34 1.5 2 0.033 0.053 98 1.2DL +1Yes Y DL 1.2 34 1.5 2 0.033 0.033 101 1.2DL +1Yes Y DL 1.2 34 1.5 2 0.033 0.033 103 1.2DL +1Yes Y DL 1.2 34 1.5 2 0.033 0.033 104 1.2DL +1Yes Y DL 1.2 35 1.5 2 0.033 105 1.2DL +1Yes Y DL 1.2 1.5 2 <	93	1.2DL + 1	.Yes	Υ	DL	1.2	34	1.5	2	.038	3	.038	6	.053										
96 1 20L + 1. Yes Y DL 1 2 34 1.5 2 3 0.63 0.65 97 1 20L + 1. Yes Y DL 1 2 34 1.5 2 -0.03 3 0.66 9 0.53 98 1 20L + 1. Yes Y DL 1 2 34 1.5 2 -0.04 3 0.27 1 0.53 99 1 20L + 1. Yes Y DL 1 2 34 1.5 2 -0.04 3 -0.03 4 -0.03 100 1 20L + 1. Yes Y DL 1 2 34 1.5 2 -0.04 3 -0.03 6 -0.03 102 1 20L + 1. Yes Y DL 1 2 34 1.5 2 -0.03 3 -0.03 1 1.03 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.05 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.04<	94	1.2DL + 1	.Yes	Υ	DL	1.2	34	1.5	2	.027	3	.046	7	.053										
86 12DL +1Yes Y DL 1 2 34 1.5 2 .027 3 .046 9 .053 97 12DL +1Yes Y DL 1 2 34 1.5 2 .033 3 .038 10 .053 98 12DL +1Yes Y DL 1 2 34 1.5 2 .033 3 .027 11 .053 99 12DL +1Yes Y DL 1 2 34 1.5 2 .033 3 .027 11 .053 101 12DL +1Yes Y DL 1 2 34 1.5 2 .033 3 .038 6 .033 101 12DL +1Yes Y DL 1 2 34 1.5 2 .033 3 .036 6 .033 101 12DL +1Yes Y DL 1 2 34 1.5 2 .037 3 .046 7 .053 103 12DL +1Yes Y DL 1 2 34 1.5 2 .027 3 .046 9 .053 104 12DL +1Yes Y DL 1 2 34 1.5 2 .046 3 .037 1 .053 105 12DL +1Yes Y DL 1 2 34 1.5 2 .046 3 .027 5 .053 106 12DL +1Yes Y DL 1 2 35 1.5 2 .037 3 .046 7 .053 107 12DL +1Yes Y DL 1 2 35 1.5 2 .037 3 .046 7 .053 108 12DL +1Yes Y DL 1 2 35 1.5 2 .037 3 .046 7 .053 111 12DL +1Yes Y DL 1 2 35 1.5 2 .037 3 .046 7 .053 111 12DL +1Yes Y DL 1 2 35 1.5 2 .037 3 .046 7 .053 111 <td>95</td> <td>1.2DL + 1</td> <td>.Yes</td> <td>Υ</td> <td>DL</td> <td>1.2</td> <td>34</td> <td>1.5</td> <td>2</td> <td></td> <td>3</td> <td>.053</td> <td>8</td> <td>.053</td> <td></td>	95	1.2DL + 1	.Yes	Υ	DL	1.2	34	1.5	2		3	.053	8	.053										
97 12DL + 1Yes Y DL 1.2 34 1.5 2 .038 3 0.38 10 .053	96	1.2DL + 1	Yes	Y	DL	1.2	34	1.5	2	027	3	.046	9	.053										
88 12DL + 1. Yes Y DL 1.2 34 1.5 2 -066 3 027 11 053	97	1.2DL + 1	Yes	Υ	DL	1.2	34	1.5	2	038	3	.038	10	.053										
99 12DL + 1Yes Y DL 1.2 34 1.5 2 .003 3 -4 1.003 .00 .00 .00 1.2DL + 1Yes Y DL 1.2 34 1.5 2 .003 3 .003 6 .003 .001 .001 .001 .001 1.2DL + 1Yes Y DL 1.2 34 1.5 2 .003 8 .003 .005 .005 .001	98	1.2DL + 1	Yes	Y	DL	1.2	34	1.5	2	046	3	.027	11	.053										
100 1.2DL + 1Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .063	99	1.2DL + 1	.Yes	Y	DL	1.2	34	1.5	2	053	3		4	053										
101 1.2DL + 1Yes Y DL 1.2 34 1.5 2 .028 3 .033 6 .053	100	1.2DL + 1	.Yes	Y	DL	1.2	34	1.5	2	046	3	027	5	053										
102 12DL + 1 Yes Y DL 1.2 34 1.5 2 -027 3 -046 7 -063 1 103 1.2DL + 1 Yes Y DL 1.2 34 1.5 2 3 -033 0 0 0 0 106 1.2DL + 1 Yes Y DL 1.2 34 1.5 2 0.27 3 0.66 0 0.63 106 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.53 1.5 0.53 109 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.38 3 0.38 6 0.53 109 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.27 3 0.46 9 0.53 111 $1.2DL + 1 Yes$ Y DL 1.2 35 1.5 2 0.27 3 0.46 9 0.53 113 <th< td=""><td>101</td><td>1.2DL + 1</td><td>Yes</td><td>Ý</td><td>DL</td><td>1.2</td><td>34</td><td>1.5</td><td>2</td><td>038</td><td>3</td><td>038</td><td>6</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	101	1.2DL + 1	Yes	Ý	DL	1.2	34	1.5	2	038	3	038	6	053										
103 1201 1.1. Yes Y DL 1.2 34 1.5 2 3 0.63 8 0.03 104 1.201 1Yes Y DL 1.2 34 1.5 2 0.027 3 0.46 9 0.053	102	1.2DL + 1	Yes	Y	DL	1.2	34	1.5	2	027	3	046	7	053										
104 1.2DL 1Yes Y DL 1.2 34 1.5 2 0.07 3 -046 9 -053 106 1.2DL 1Yes Y DL 1.2 34 1.5 2 0.038 10 -053 107 1.2DL 1Yes Y DL 1.2 35 1.5 2 0.046 3 0.27 11 -053 107 1.2DL 1Yes Y DL 1.2 35 1.5 2 0.046 3 0.27 5 0.53 109 1.2DL 1Yes Y DL 1.2 35 1.5 2 0.23 3 0.46 9 0.53 111 1.2DL 1Yes Y DL 1.2 35 1.5 2 -033 3 0.046 9 0.53 114 1.2DL 1Yes Y DL 1.2 35 1.5 2 -033 3 0.053 114 1.2DL 1Yes Y DL	103	1.2DL + 1	Yes	Ý	DL	1.2	34	1.5	2		3	053	8	053										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	104	1.2DL + 1	Yes	Y	DI	1.2	34	1.5	2	.027	3	046	9	053										
106 1.2DL + 1Yes Y DL 1.2 34 1.5 2 0.046 3 0.027 11 0.03 107 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 5 0.53	105	1.2DL + 1	Yes	Y	DI	1.2	34	1.5	2	.038	3	038	10	053										
100 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.053 4 0.53 108 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.064 3 0.27 5 0.53 109 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.046 7 0.53 111 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.027 3 0.46 7 0.53 112 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.027 3 0.46 9 0.53 113 1.2DL + 1Yes Y DL 1.2 35 1.5 2 -038 3 0.038 0 0.53 114 1.2DL + 1Yes Y DL 1.2 35 1.5 2 -038 3 -033 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 <td< td=""><td>106</td><td>1.2DL + 1</td><td>Yes</td><td>Y</td><td></td><td>12</td><td>34</td><td>1.5</td><td>2</td><td>.046</td><td>3</td><td>027</td><td>11</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	106	1.2DL + 1	Yes	Y		12	34	1.5	2	.046	3	027	11	053										
108 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.04 3 0.27 5 0.53 109 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.038 3 0.038 6 0.53 110 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.038 3 0.038 6 0.53 111 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.027 3 0.046 9 0.53 113 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 -003 3 0.38 10 0.53 114 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 -003 3 0.33 1 0.53 114 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 -033 3 0.33 0 0.53 118 1.2DL + 1 Yes Y DL 1.2 <t< td=""><td>107</td><td>1.2DL + 1</td><td>Yes</td><td>Ŷ</td><td></td><td>12</td><td>35</td><td>1.5</td><td>2</td><td>053</td><td>3</td><td></td><td>4</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	107	1.2DL + 1	Yes	Ŷ		12	35	1.5	2	053	3		4	053										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108	1.2DL + 1	Yes	Y	DL	1.2	35	1.5	2	.046	3	.027	5	.053										
110 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.27 3 0.46 7 0.63 111 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.27 3 0.46 7 0.63 112 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.07 3 0.46 9 0.53 114 1.2DL + 1Yes Y DL 1.2 35 1.5 2 -0.03 3 0.38 10 0.53 114 1.2DL + 1Yes Y DL 1.2 35 1.5 2 -0.046 3 0.027 5 -0.53	109	1.2DL + 1	Yes	Ý	DL	1.2	35	1.5	2	.038	3	.038	6	.053										
111 1.2DL + 1Yes Y DL 1.2 35 1.5 2 3 0.053 8 0.053 112 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.027 3 0.046 9 0.053 113 1.2DL + 1Yes Y DL 1.2 35 1.5 2 0.027 11 0.053 114 1.2DL + 1Yes Y DL 1.2 35 1.5 2 -046 3 0.027 11 0.53 115 1.2DL + 1Yes Y DL 1.2 35 1.5 2 -046 3 -027 5 -053 116 1.2DL + 1Yes Y DL 1.2 35 1.5 2 -046 3 -053 0.033 0.046 9 -053 0.12 1.12 1.2DL 1.12 1.12 1.12 1.12 1.5 2 0.038 0.053 0.12 1.12	110	1.2DL + 1	Yes	Y	DL	1.2	35	1.5	2	.027	3	.046	7	.053										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	1.2DL + 1	Yes	Ý	DL	1.2	35	1.5	2		3	.053	8	.053										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112	1,2DL + 1	Yes	Y		12	35	1.5	2	027	3	046	9	053										
114 1.200 1.2 1.2 1.5 1.5 2 -0.46 3 0.027 11 1.053 115 1.200 1 Yes Y DL 1.2 35 1.5 2 -0.63 3 4 -0.53 116 1.200 1 Yes Y DL 1.2 35 1.5 2 -0.63 3 4 -0.53 117 1.200 Yes Y DL 1.2 35 1.5 2 -0.027 3 -0.46 7 -0.53 118 1.200 1 Yes Y DL 1.2 35 1.5 2 -0.027 3 -0.46 7 -0.53 120 1.200 1 Yes Y DL 1.2 35 1.5 2 -0.027 3 -0.46 9 -0.53 121 1.200 1 Yes Y DL 1.2 36 1.5 2 .038 10 -0.53 121 1.200 1	113	1.2DL + 1	Yes	Ŷ		12	35	1.5	2	038	3	038	10	053										
115 1.2DL + 1 Yes Y DL 1.2 1.5 1.5 2 -0.63 3 4 -0.63 116 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 -0.63 3 -0.63 117 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 -0.63 3 -0.63 118 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 -0.63 8 -0.63 119 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.027 3 -0.46 9 -0.53 120 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.038 10 -0.63 121 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 0.053 2 1.2 3 0.027 5 0.53 122 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 0.053 2 1.2	114	1.2DL + 1	Yes	Y		12	35	1.5	2	046	3	027	11	053										
116 1.20. + 1 Yes Y DL 1.2 35 1.5 2 -046 3 -027 5 -053 117 1.20. + 1 Yes Y DL 1.2 35 1.5 2 -038 3 -033 6 -053 118 1.20. + 1 Yes Y DL 1.2 35 1.5 2 -027 3 -046 9 -053 119 1.20. + 1 Yes Y DL 1.2 35 1.5 2 -027 3 -046 9 -053 120 1.20. + 1 Yes Y DL 1.2 35 1.5 2 .027 3 -046 9 -053 121 1.20. + 1 Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 123 1.20. + 1 Yes Y DL 1.2 36 1.5 2 .038 3 .027 3 .053 124 1.20. + 1 Yes Y DL 1.2 36 <td>115</td> <td>1.2DL + 1</td> <td>Yes</td> <td>Ý</td> <td></td> <td>12</td> <td>35</td> <td>1.5</td> <td>2</td> <td>053</td> <td>3</td> <td>1021</td> <td>4</td> <td>053</td> <td></td>	115	1.2DL + 1	Yes	Ý		12	35	1.5	2	053	3	1021	4	053										
117 120L + 1 Yes Y DL 12 35 1.5 2 -0.38 3 -0.38 6 -0.53 118 120L + 1 Yes Y DL 1.2 35 1.5 2 -0.38 3 -0.083 119 1.20L + 1 Yes Y DL 1.2 35 1.5 2 -0.27 3 -0.46 7 -0.53 120 1.20L + 1 Yes Y DL 1.2 35 1.5 2 0.27 3 -0.46 9 -0.53 121 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.27 3 -0.46 9 -0.53 121 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.046 3 -0.27 11 -0.53 122 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 0.33 3 0.38 6 0.53 125 1.2DL + 1 Yes Y DL 1.2 36 1.5	116	1.2DL + 1	Yes	Y		12	35	1.5	2	046	3	027	5	053										
118 12DL + 1 Yes Y DL 1.2 35 1.5 2 -0.27 3 -0.46 7 -0.53 119 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 -0.27 3 -0.46 9 -0.53 120 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 .027 3 -0.46 9 -0.53 121 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 .027 1 -0.53 122 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 .046 3 -027 51 -053 123 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .046 3 .027 5 .053 124 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .038 3 .038 6 .053 126 1.2DL + 1 Yes Y DL 1.2 36 1.5 <	117	1.2DL + 1	Yes	Ý		12	35	1.5	2	038	3	038	6	053										
119 12DL + 1 Yes Y DL 1.2 35 1.5 2 3 -053 8 -053 120 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.27 3 -046 9 -053 121 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 .038 3 -033 122 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 .046 3 .027 1 -053 123 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .046 3 .027 5 .053 124 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .038 3 .038 0.053 126 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .027 3 .046 9 .053 120 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .027 3	118	1.2DL + 1	Yes	Ý	DI	12	35	1.5	2	027	3	046	7	053										
120 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 </td <td>119</td> <td>1.2DL + 1</td> <td>Yes</td> <td>Ý</td> <td>DL</td> <td>1.2</td> <td>35</td> <td>1.5</td> <td>2</td> <td></td> <td>3</td> <td>053</td> <td>8</td> <td>053</td> <td></td>	119	1.2DL + 1	Yes	Ý	DL	1.2	35	1.5	2		3	053	8	053										
121 1.2DL + 1 Yes Y DL 1.2 35 1.5 2 0.38 3 -0.03 10 -0.53 1	120	1.2DL + 1	Yes	Y	DI	12	35	1.5	2	027	3	046	9	053										
122 1.2DL + 1,Yes Y DL 1.2 35 1.5 2 0.46 3 -0.27 11 -0.53 <td< td=""><td>121</td><td>1.2DL + 1</td><td>Yes</td><td>Ý</td><td>DL</td><td>1.2</td><td>35</td><td>1.5</td><td>2</td><td>.038</td><td>3</td><td>038</td><td>10</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	121	1.2DL + 1	Yes	Ý	DL	1.2	35	1.5	2	.038	3	038	10	053										
123 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 0.53 3 4 0.53	122	1.2DL + 1	Yes	Y	DL	1.2	35	1.5	2	.046	3	027	11	053										
124 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 0.46 3 0.27 5 0.53 </td <td>123</td> <td>1.2DL + 1</td> <td>Yes</td> <td>Ý</td> <td>DL</td> <td>1.2</td> <td>36</td> <td>1.5</td> <td>2</td> <td>.053</td> <td>3</td> <td></td> <td>4</td> <td>.053</td> <td></td>	123	1.2DL + 1	Yes	Ý	DL	1.2	36	1.5	2	.053	3		4	.053										
125 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 0.038 3 0.038 6 0.053 <td< td=""><td>124</td><td>1.2DL + 1</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>36</td><td>1.5</td><td>2</td><td>.046</td><td>3</td><td>.027</td><td>5</td><td>.053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	124	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2	.046	3	.027	5	.053										
126 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 0.27 3 0.46 7 0.53 <td>125</td> <td>1.2DL + 1</td> <td>.Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>36</td> <td>1.5</td> <td>2</td> <td>.038</td> <td>3</td> <td>.038</td> <td>6</td> <td>.053</td> <td></td>	125	1.2DL + 1	.Yes	Y	DL	1.2	36	1.5	2	.038	3	.038	6	.053										
127 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 3 .053 8 .053	126	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2	.027	3	.046	7	.053										
128 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .027 3 .046 9 .053 129 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .038 3 .038 10 .053 130 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .046 3 .027 11 .053 130 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .046 3 .027 11 .053 131 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .046 3 .027 5 .053 132 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .038 3 .038 6 .053 133 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .027 3 .046 7 .053 11 .053	127	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2		3	.053	8	.053										
129 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 038 3 .038 10 .053	128	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2	027	3	.046	9	.053										
130 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 046 3 .027 11 .053 131 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 046 3 .027 11 .053 <t< td=""><td>129</td><td>1.2DL + 1</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>36</td><td>1.5</td><td>2</td><td>038</td><td>3</td><td>.038</td><td>10</td><td>.053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	129	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2	038	3	.038	10	.053										
131 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 053 3 4 053 1	130	1.2DL + 1	Yes	Y	DI	1.2	36	1.5	2	046	3	.027	11	.053										
132 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 046 3 027 5 053 <td< td=""><td>131</td><td>1.2DL + 1</td><td>.Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>36</td><td>1.5</td><td>2</td><td>053</td><td>3</td><td></td><td>4</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	131	1.2DL + 1	.Yes	Y	DL	1.2	36	1.5	2	053	3		4	053										
133 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 038 3 038 6 053 <td< td=""><td>132</td><td>1.2DL + 1</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>36</td><td>1.5</td><td>2</td><td>046</td><td>3</td><td>027</td><td>5</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	132	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2	046	3	027	5	053										
134 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 027 3 046 7 053 <td< td=""><td>133</td><td>1.2DL + 1</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>36</td><td>1.5</td><td>2</td><td>038</td><td>3</td><td>038</td><td>6</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	133	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2	038	3	038	6	053										
135 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 3 053 8 053 <td>134</td> <td>1.2DL + 1</td> <td>Yes</td> <td>Υ</td> <td>DL</td> <td>1.2</td> <td>36</td> <td>1.5</td> <td>2</td> <td>027</td> <td>3</td> <td>046</td> <td>7</td> <td>053</td> <td></td>	134	1.2DL + 1	Yes	Υ	DL	1.2	36	1.5	2	027	3	046	7	053										
136 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .027 3 .046 9 .053 </td <td>135</td> <td>1.2DL + 1</td> <td>Yes</td> <td>Υ</td> <td>DL</td> <td>1.2</td> <td>36</td> <td>1.5</td> <td>2</td> <td></td> <td>3</td> <td>053</td> <td>8</td> <td>053</td> <td></td>	135	1.2DL + 1	Yes	Υ	DL	1.2	36	1.5	2		3	053	8	053										
137 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .038 3 038 10 053 <td< td=""><td>136</td><td>1.2DL + 1</td><td>Yes</td><td>Υ</td><td>DL</td><td>1.2</td><td>36</td><td>1.5</td><td>2</td><td>.027</td><td>3</td><td>046</td><td>9</td><td>053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	136	1.2DL + 1	Yes	Υ	DL	1.2	36	1.5	2	.027	3	046	9	053										
138 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .046 3 027 11 053 Image: Constraint of the structure Image: Co	137	1.2DL + 1	Yes	Y	DL	1.2	36	1.5	2	.038	3	038	10	053										
139 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .053 3 4 .053	138	1.2DL + 1	Yes	Υ	DL	1.2	36	1.5	2	.046	3	027	11	053										
140 1.2DL + 1, Yes Y DL 1.2 37 1.5 2 .046 3 .027 5 .053	139	1.2DL + 1	.Yes	Υ	DL	1.2	37	1.5	2	.053	3		4	.053										
	140	1.2DL + 1	.Yes	Υ	DL	1.2	37	1.5	2	.046	3	.027	5	.053										

RISA-3D Version 17.0.4 [C:\...\...\...\Engineering\MA_11.01.2021\01.RISA\842423_loaded.r3d] Page 6

Load Combinations (Continued)

	Description Sol	<u>PDSR.</u>	BLCF	act	BLC	Fact.	BLC	Fact	BLC	Fact	BLC	FactBLC FactBL	<u>C FactB</u>	LC Fact	BLC F	actBL	C Fact
141	1.2DL + 1Yes	Υ	DL	1.2	37	1.5	2	.038	3	.038	6	.053					
142	1.2DL + 1Yes	Y	DL	1.2	37	1.5	2	.027	3	.046	7	.053					
143	1.2DL + 1Yes	Y	DL	1.2	37	1.5	2		3	.053	8	.053					
144	1.2DL + 1Yes	Y	DL	1.2	37	1.5	2	027	3	.046	9	.053					
145	1.2DL + 1Yes	Y	DL	1.2	37	1.5	2	038	3	.038	10	.053					
146	1.2DL + 1Yes	Y	DL	1.2	37	1.5	2	046	3	.027	11	.053					
147	1.2DL + 1 Yes	Y	DL	1.2	37	1.5	2	053	3		4	053					
148	1.2DL + 1Yes	Y	DL	1.2	37	1.5	2	046	3	027	5	053					
149	1.2DL + 1Yes	Y	DL	1.2	37	1.5	2	038	3	038	6	053					
150	1.2DL + 1Yes	Y	DI	12	37	1.5	2	027	3	046	7	053					
151	1.2DL + 1Yes	Y	DI	12	37	1.5	2		3	053	8	053					
152	1.2DL + 1Yes	Y	DI	12	37	1.5	2	027	3	046	9	053					
153	1.2DL + 1Yes	Y	DI	12	37	1.5	2	038	3	038	10	053					
154	1.2DL + 1Yes	Y	DI	12	37	1.5	2	.046	3	027	11	053					
155	1.2DL + 1Yes	Y		1.2	38	1.5	2	053	3		4	053					
156	1.2DL + 1. Yes	Y		1.2	38	1.5	2	046	3	027	5	053					
157	1.2DL + 1 Yes	V		1.2	38	1.5	2	028	3	021	6	053					
158	1.2DL + 1 Yes	V		1.2	38	1.5	2	027	3	0/6	7	053					
150	12DL + 1 Yes	V		1.2	38	1.5	2	.021	2	052	2	053					
160	12DL + 1 Yes	V		1.2	20	1.5	2	- 027	2	.033	0	053					
161	1.2DL + 1 Ves	V		1.2	20	1.5	2	- 038	<u>ງ</u>	.040	9	052					
162	12DL + 1 Ves	T V	DL	1.2	20	1.5	2	030	<u>っ</u>	.030	10	.053					+
162	1.2DL + 11es	T V		1.2	30 20	1.0	2	040	<u>ა</u>	.027	1	.053					-
103	1.2DL + 1Tes	Y		1.2	38	1.5	2	055	3	0.27	4	053					
164	1.2DL + 1 Tes	Y	DL	1.2	38	1.5	2	040	3	027	5	053					
165	1.2DL + 1Yes	Y	DL	1.2	38	1.5	2	038	3	038	6	053					
166	1.2DL + 1Yes	Y	DL	1.2	38	1.5	2	027	3	040	<u>/</u>	053					
167	1.2DL + 1Yes	Y	DL	1.2	38	1.5	2	0.07	3	053	8	053	_				_
168	1.2DL + 1Yes	Y	DL	1.2	38	1.5	2	.027	3	046	9	053					
169	1.2DL + 1Yes	Y	DL	1.2	38	1.5	2	.038	3	038	10	053					
170	1.2DL + 1Yes	Y	DL	1.2	38	1.5	2	.046	3	027	11	053					
171	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	.053	3		4	.053					
172	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	.046	3	.027	5	.053					
173	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	.038	3	.038	6	.053					
174	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	.027	3	.046	7	.053					
175	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2		3	.053	8	.053					
176	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	027	3	.046	9	.053					
177	1.2DL + 1Yes	Υ	DL	1.2	39	1.5	2	038	3	.038	10	.053					
178	1.2DL + 1Yes	Υ	DL	1.2	39	1.5	2	046	3	.027	11	.053					
179	1.2DL + 1Yes	Υ	DL	1.2	39	1.5	2	053	3		4	053					
180	1.2DL + 1Yes	Υ	DL	1.2	39	1.5	2	046	3	027	5	053					
181	1.2DL + 1Yes	Υ	DL	1.2	39	1.5	2	038	3	038	6	053					
182	1.2DL + 1Yes	Υ	DL	1.2	39	1.5	2	027	3	046	7	053					
183	1.2DL + 1Yes	Υ	DL	1.2	39	1.5	2		3	053	8	053					
184	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	.027	3	046	9	053					
185	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	.038	3	038	10	053					
186	1.2DL + 1Yes	Y	DL	1.2	39	1.5	2	.046	3	027	11	053					
187	1.2DL + 1Yes	Y	DL	1.2	40	1.5	2	.053	3		4	.053					
188	1.2DL + 1, Yes	Y	DL	1.2	40	1.5	2	.046	3	.027	5	.053					
189	1.2DL + 1, Yes	Y	DL	1.2	40	1.5	2	.038	3	.038	6	.053					
190	1.2DL + 1 Yes	Y	DL	1.2	40	1.5	2	.027	3	.046	7	.053					
191	1.2DL + 1Yes	Y	DI	1.2	40	1.5	2		3	.053	8	.053					
192	1.2DL + 1Yes	Y	DI	12	40	1.5	2	027	3	046	9	053					
192	1.1.1.00			1.4	τU	1.0	4		5	0+0	3	.000					

RISA-3D Version 17.0.4 [C:\...\...\...\Engineering\MA_11.01.2021\01.RISA\842423_loaded.r3d] Page 7

Load Combinations (Continued)

Description SolPD	SRBLC FactBLC Fact	BLC FactBLC Fac	tBLC FactI	BLC FactBLC Fact.	BLC FactBLC FactB	LC Fact
193 1.2DL + 1 Yes Y	DL 1.2 40 1.5	2038 3 .03	8 10 .053			
194 1.2DL + 1 Yes Y	DL 1.2 40 1.5	2046 3 .02	7 11 .053			
195 1.2DL + 1 Yes Y	DL 1.2 40 1.5	2053 3	4053			
196 1.2DL + 1Yes Y	DL 1.2 40 1.5	2046 302	27 5053			
197 1.2DL + 1Yes Y	DL 1.2 40 1.5	2038 303	8 6053			
198 1.2DL + 1Yes Y	DL 1.2 40 1.5	2027 304	6 7053			
199 1.2DL + 1Yes Y	DL 1.2 40 1.5	2 305	63 8053			
200 1.2DL + 1, Yes Y	DL 1.2 40 1.5	2 .027 304	6 9053			
201 1.2DL + 1Yes Y	DL 1.2 40 1.5	2 .038 303	88 10053			
202 1.2DL + 1Yes Y	DL 1.2 40 1.5	2 .046 302	27 11053			
203 1.2DL + 1Yes Y	DL 1.2 41 1.5	2 .053 3	4 .053			
204 1.2DL + 1, Yes Y	DL 1.2 41 1.5	2 .046 3 .02	7 5 .053			
205 1.2DL + 1Yes Y	DL 1.2 41 1.5	2 .038 3 .03	8 6 .053			
206 1.2DL + 1, Yes Y	DL 1.2 41 1.5	2 .027 3 .04	6 7 .053			
207 1.2DL + 1, Yes Y	DL 1.2 41 1.5	2 3 .05	3 8 .053			
208 1.2DL + 1Yes Y	DL 1.2 41 1.5	2027 3 .04	6 9 .053			
209 1.2DL + 1Yes Y	DL 1.2 41 1.5	2038 3 .03	8 10 .053			
210 1.2DL + 1Yes Y	DL 1.2 41 1.5	2046 3 .02	7 11 .053			
211 1.2DL + 1Yes Y	DL 1.2 41 1.5	2053 3	4053			
212 1.2DL + 1Yes Y	DL 1.2 41 1.5	2046 302	27 5053			
213 1.2DL + 1Yes Y	DL 1.2 41 1.5	2038 303	88 6053			
214 1.2DL + 1Yes Y	DL 1.2 41 1.5	2027 304	6 7053			
215 1.2DL + 1 Yes Y	DL 1.2 41 1.5	2 305	3 8053			
216 1.2DL + 1, Yes Y	DL 1.2 41 1.5	2 .027 304	6 9053			
217 1.2DL + 1 Yes Y	DL 1.2 41 1.5	2 038 3 -03	88 10053			
218 1.2DL + 1Yes Y	DL 1.2 41 1.5	2 .046 302	27 11053			
219 1.2DL + 1Yes Y	DL 1.2 42 1.5	2 .053 3	4 .053			
220 1.2DL + 1Yes Y	DL 1.2 42 1.5	2 .046 3 .02	7 5 .053			
221 1.2DL + 1Yes Y	DL 1.2 42 1.5	2 .038 3 .03	8 6 .053			
222 1.2DL + 1, Yes Y	DL 1.2 42 1.5	2 .027 3 .04	6 7 .053			
223 1.2DL + 1, Yes Y	DL 1.2 42 1.5	2 3 .05	3 8 .053			
224 1.2DL + 1 Yes Y	DL 1.2 42 1.5	2027 3 .04	6 9 .053			
225 1.2DL + 1, Yes Y	DL 1.2 42 1.5	2038 3 .03	8 10 .053			
226 1.2DL + 1 Yes Y	DL 1.2 42 1.5	2046 3 .02	7 11 .053			
227 1.2DL + 1, Yes Y	DL 1.2 42 1.5	2053 3	4053			
228 1.2DL + 1, Yes Y	DL 1.2 42 1.5	2046 302	27 5053			
229 1.2DL + 1 Yes Y	DL 1.2 42 1.5	2038 303	8 6053			
230 1.2DL + 1 Yes Y	DL 1.2 42 1.5	2027 304	6 7053			
231 1.2DL + 1 Yes Y	DL 1.2 42 1.5	2 305	3 8053			
232 1.2DL + 1, Yes Y	DL 1.2 42 1.5	2 .027 304	6 9053			
233 1.2DL + 1 Yes Y	DL 1.2 42 1.5	2 038 303	88 10053			
234 1.2DL + 1Yes Y	DL 1.2 42 1.5	2 .046 302	27 11053			

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1635.399	3	999.194	20	1835.409	39	320.731	31	407.962	33	1881.466	3
2		min	-1631.415	27	-1005.636	12	-28.602	31	-3242.037	38	-2029.578	130	-1880.684	27
3	N1	max	1635.327	17	1005.24	8	1835.408	45	3246.423	46	412.532	19	1880.859	25
4		min	-1631.169	25	-998.9	32	-28.594	21	-318.229	21	-2023.733	116	-1881.253	17
5	N13	max	423.082	18	1628.045	6	1768.519	34	685.04	167	3649.502	34	1565.894	30

Envelope Joint Reactions (Continued)

	Joint		X [b]	LC	Y [b]	LC	Z [İ b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
6		min	-431.354	10	-1627.954	30	-64.545	26	-691.787	223	-457.535	26	-1565.728	22
7	Totals:	max	3280.963	18	3066.873	22	5110.893	42						
8		min	-3280.965	10	-3066.873	30	1369.577	66						

Envelope A ISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear.	.Loc[in]	Dir	LC	phi*Pnc	phi*Pnt	phi*Mnphi*MnCb	Eqn
1	M12	PIPE 3.5	.477	40	39	.182	40		11	64491.4	78750	7953.75 7953.75 2	H1-1b
2	M2	PIPE 3.5	.477	40	45	.181	40		9	64491.4	78750	7953.75 7953.75 2	H1-1b
3	M7	PIPE_3.5	.459	40	34	.163	40		6	64491.4	78750	7953.75 7953.75 2	H1-1b
4	M11	C 3X 5	.375	34.8	39	.131	63.1	у	34	32858.7	47628	981.263 4104 1	H1-1b
5	M1	C 3X 5	.374	34.8	45	.131	6.536	y	34	32858.7	47628	981.263 4104 1	H1-1b
6	MP3	PIPE_2.0	.362	57	5	.047	57		9	20866.7	32130	1871.625 1871.625 1	H1-1b
7	MP1	PIPE_2.0	.360	57	15	.047	57		11	20866.7	32130	1871.625 1871.625 1	H1-1b
8	MP9	PIPE 2.0	.357	57	10	.036	57		15	20866.7	32130	1871.625 1871.625 1	H1-1b
9	MP4	PIPE 2.0	.355	57	10	.036	57		5	20866.7	32130	1871.625 1871.625 1	H1-1b
10	M6	C 3X 5	.354	34.8	34	.125	6.536	y	39	32858.7	47628	981.263 4104 1	H1-1b
11	MP6	PIPE 2.0	.327	57	15	.044	57		4	20866.7	32130	1871.625 1871.625 1	H1-1b
12	MP7	PIPE 2.0	.325	57	5	.045	57		16	20866.7	32130	1871.625 1871.625 1	H1-1b
13	MP2	PIPE 2.0	.318	57	14	.046	57		14	20866.7	32130	1871.625 1871.625 1	H1-1b
14	MP5	PIPE 2.0	.290	57	10	.041	57		10	20866.7	32130	1871.625 1871.625 1	H1-1b
15	MP8	PIPE 2.0	.290	57	10	.041	57		10	20866.7	32130	1871.625 1871.625 1	H1-1b
16	M15	6.5"x0.37"	.260	21	8	.085	21	y	42	27548.2	75757.5	583.963 6407.946 1	H1-1b
17	M5	6.5"x0.37"	.260	21	12	.085	21	y	42	27548.2	75757.5	583.963 6399.06 1	H1-1b
18	M10	6.5"x0.37"	.258	21	2	.082	21	y	37	27548.2	75757.5	583.963 6174.65 1	H1-1b
19	M4	L2x2x3	.159	0	13	.027	0	y	41	18084.2	23392.8	557.717 1182.442 1	H2-1
20	M13	L2x2x3	.157	0	31	.027	0	z	43	18084.2	23392.8	557.717 1182.442 1	H2-1
21	M9	L2x2x3	.143	0	2	.027	0	у	46	18084.2	23392.8	557.717 1182.442 1	H2-1
22	M8	L2x2x3	.141	0	26	.027	0	Z	38	18084.2	23392.8	557.717 1182.442 1	H2-1
23	M14	L2x2x3	.141	0	8	.028	0	у	35	18084.2	23392.8	557.717 1182.442 1	H2-1
24	M3	L2x2x3	.140	0	20	.028	0	z	49	18084.2	23392.8	557.717 1182.442 1	H2-1
25	M19	PIPE 2.0	.125	72	10	.123	24		2	14916.0	32130	1871.625 1871.625 1	H1-1b
26	M21	PIPE 2.0	.125	72	4	.118	24		12	14916.0	32130	1871.625 1871.625 1	H1-1b
27	M20	PIPE 2.0	.124	24	16	.117	72		8	14916.0	32130	1871.625 1871.625 1	H1-1b
28	H1	PIPE 3.5	.104	48	106	.101	72		10	60666.1	78750	7953.75 7953.75 1	H1-1b
29	H2	PIPE_3.5	.101	48	196	.094	72		5	60666.1	78750	7953.75 7953.75 1	H1-1b
30	H3	PIPE_3.5	.101	48	146	.094	24		15	60666.1	78750	7953.75 7953.75 1	H1-1b
31	M22	L6 6"X4 46	.049	0	20	.041	0	y	3	51170.9	87561	2464.809 7125.374 1	H2-1
32	M23	L6 6"X4 46	.049	42	31	.041	42	у	17	51170.9	87561	2464.809 7125.374 1	H2-1
33	M24	L6 6"X4 46	.047	21	18	.038	42	y	6	51170.9	87561	2464.809 7125.374 1	H2-1

Envelope AISIS 100-12: LRFD Cold Formed Steel Code Checks

Member Shape Code...Loc[in] LC Shear..Loc[in] Dir LC phi*Pn[lb]phi*Tn[lb]phi*Mny...phi*Mnz...Cb Cmyy Cmzz Eqn No Data to Print... APPENDIX D

ADDITIONAL CALCUATIONS

BOLT TOOL 1.5.2

Project Data							
Job Code:	195376						
Carrier Site ID:	BOBOS00892A						
Carrier Site Name:	_						

Code							
Design Standard:	TIA-222-H						
Slip Check:	No						
Pretension Standard:	AISC						

Bolt Properties								
Connection Type:	Bolt							
Diameter:	0.625	in						
Grade:	A325							
Yield Strength (Fy):	92	ksi						
Ultimate Strength (Fu):	120	ksi						
Number of Bolts:	4							
Threads Included:	Yes							
Double Shear:	No							
Connection Pipe Size:	-	in						

Connection Description

Standoff to tower collar

Bolt Check*							
Tensile Capacity (φT _n):	20340.1	lbs					
Shear Capacity (φV _n):	13805.8	lbs					
Tension Force (T_u) :	3974.1	lbs					
Shear Force (V _u):	575.2	lbs					
Tension Usage:	18.6%						
Shear Usage:	4.0%						
Interaction:	18.6%	Pass					
Controlling Member:	M2						
Controlling LC:	42						

*Rating per TIA-222-H Section 15.5

APPENDIX E

SUPPLEMENTAL DRAWINGS

<u> </u>	L L	<u>12-</u>	<l.< th=""></l.<>
REV. ECN BY DATE REV. ECN DESCRPTION BY DATE A MITLL RELEASE DRR 1/22/14 B 8000005979 CHANCE NOSE CONNEE BRG. ADD GUB-4240 MSM 1/22/14 C 8000007579 NEW RIVGMOUNT WELDMENT DESIGN RJC 04/07/15			Then provide all standing and the properties in the strang and standing and the properties of the strang and standing and the properties in the strang and strang and the properties in the strang and strang and the properties in the strang and the strang and the properties in the strang and the strang and the strang and the strang and the strang and the strang and the strang and the strang and the strang and the strang and the strang an
TIEM PART NO. 1 MTC30065B STEEL BUNDLE FOR SNUB NOSE PLATFORM 1 402.64 LBS NOTE NO. 2 MCPK8CSB PIPE STEEL BUNDLE FOR MC-PK8-C 1 464.27 LBS 0 3 MCPK8CHWK HARDWARE KIT FOR MC-PK8-C 1 543.22 LBS 0 FOR BOM ENTRY ONLY			NOTES: NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 842423

BOBOS00892A 10 North Ridge Drive Windham, Connecticut 06256

May 23, 2022

EBI Project Number: 6222003240

Site Compliance Summary							
Compliance Status:	COMPLIANT						
Site total MPE% of FCC general population allowable limit:	43.72%						

environmental | engineering | due diligence

May 23, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 842423 - BOBOS00892A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **10 North Ridge Drive** in **Windham, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 10 North Ridge Drive in Windham, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

environmental | engineering | due diligence

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 66 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	Frequency Bands: 600 MHz / 1900 MHz Frequence		600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	66 feet	Height (AGL):	66 feet	Height (AGL):	66 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (VV):	1,424.17	ERP (VV):	1,424.17	ERP (W):	1,424.17
Antenna AI MPE %:	2.09%	Antenna BI MPE %	2.09%	Antenna CI MPE %:	2.09%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	2.09%			
AT&T	18.49%			
Verizon	23.14%			
Site Total MPE % :	43.72%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	2.09%			
Dish Wireless Sector B Total:	2.09%			
Dish Wireless Sector C Total:	2.09%			
Site Total MPE % :	43.72%			

Dish Wireless Maximum MPE Power Values (Sector A) **Dish Wireless Frequency** Watts ERP **Total Power** # Height Frequency Allowable MPE Band / Calculated % MPE (Per Density Technology Channels (MHz) (µW/cm²) (feet) Channel) (µW/cm²) (Sector A) Dish Wireless 600 MHz n71 110.82 66.0 4.43 600 MHz n71 400 1.11% 4 Dish Wireless 1900 MHz n70 1900 MHz n70 1000 4 245.22 66.0 9.80 0.98% Total: 2.09%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	2.09%		
Sector B:	2.09%		
Sector C:	2.09%		
Dish Wireless			
Maximum MPE %	2.09%		
(Sector A):			
Site Total:	43.72%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **43.72%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application Crown Castle telecommunications site at: 10 NORTH RIDGE DRIVE, WINDHAM, CT 06256

NEW CINGULAR WIRELESS PCS, LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name
Customer Site ID:
Site Address:

842423/WINDHAM NORTH RIDGE ROAD BOBOS00892A/ 10 NORTH RIDGE DRIVE, WINDHAM, CT 06256

Crown Castle

By:

Date: 6/1/2022

Richard Zajac Site Acquisition Specialist

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office[™], or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0264 0293 34 Priority Mail® Postage: \$8.95 Trans. #: 564798695 Total. \$8.95 Print Date: 06/02/2022 06/02/2022 Ship Date: xpected Delivery Date: 06/04/2022 From: DEBORAH CHASE Ref#: DS-842423 NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359 To: THOMAS DEVIVO MAYOR -TOWN OF WINDHAM 979 MAIN ST WILLIMANTIC CT 06226-2217 * Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office[™], or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office[™], or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

7

06/03/2022			04:	25	PM
Product	Qty	Unit Price		Pri	ce
Prepaid Mail Willimantic, (Weight: 0 lb Acceptance Dat Fri 06/03/ Tracking #: 9405 5036	1 2T 06226 9.20 oz te: /2022 9930 026	64 0293	72	\$0.	00
Prepaid Mail West Henrietta Weight: 0 lb Acceptance Da Fri 06/03/ Tracking #: 9405 5036	1 2.00 oz te: 2022 9930 026	586 54 0293	10	\$0.	00
Prepaid Mail Bentonville, A Weight: O lb Acceptance Dat Fri 06/03/ Tracking #: 9405 5036	1 9.20 oz te: /2022 9930 026	54 0293	96	\$0.	00
Prepaid Mail Willimantic, (Weight: O lb Acceptance Dat Fri O6/03/ Tracking #: 9405 5036	1 06226 9.20 oz te: /2022 9930 026	54 0293	58	\$0.	00
Prepaid Mail Willimantic, (Weight: O lb Acceptance Dat Fri 06/03, Tracking #: 9405 5036	1 27 06226 9.20 oz te: /2022 9930 026	54 0293	34	\$0.	00
Grand Total:				\$0.	00
******************** Every househo eligible to of 8 1 Go to w ***************** Prev Track	bld in th receive free test ww.covidi *********	Attion a third kits. cests.gu Mail Mail ckages	is no d set ov	****	:**
Sign https://infor	up for F rmeddeliv	REE 🛛	os.com		

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code/with your mobile device,

