

JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport
WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com

May 21, 2015

Attorney Melanie Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification

SBA Communications Corporation/T-Mobile equipment upgrade

Site ID CT11505A

349R Mountain Street, Willimantic, Connecticut

Dear Attorney Bachman:

This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, SBA Communications Corporation owns the existing self-supported communications tower and related facility located at 349R Mountain Street, Willimantic, Connecticut (Latitude: 41.70309/ Longitude: -72.221358). T-Mobile intends to add three (3) antennas and related equipment at this existing telecommunications facility in Willimantic ("Willimantic Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Mayor, Earnest Eldridge. SBA Communications Corporation is also the property owner.

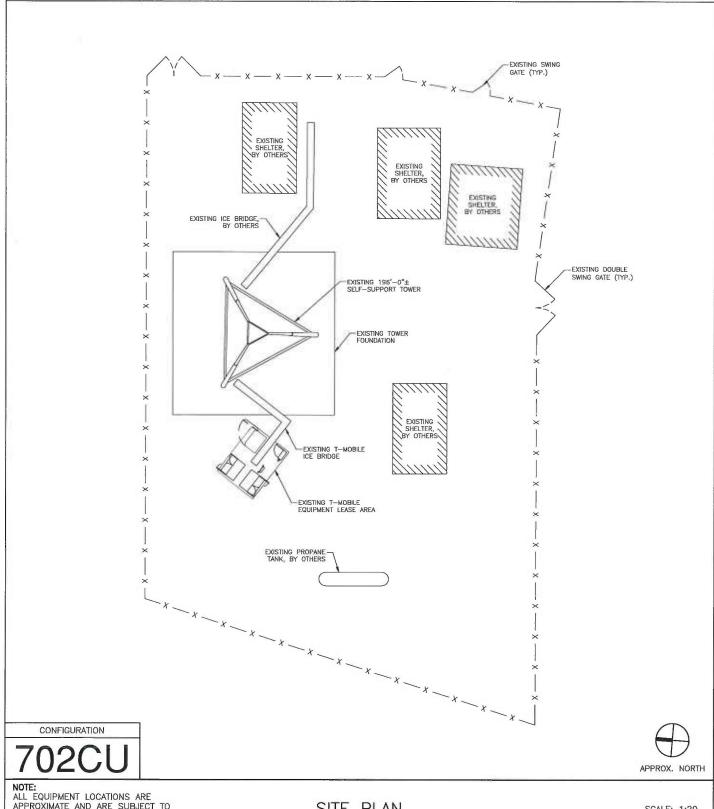
The existing Willimantic Facility consists of a 196 foot tall self-supported tower. ¹ T-Mobile plans to replace add three (3) antennas to existing mast pipes and three (3) RRUs (remote radio units) to stand-off arms at a centerline of 168 feet. (See the plans revised to May 19, 2015 attached hereto as Exhibit A). The existing Willimantic Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated April 30, 2015 and attached hereto as Exhibit B.

The planned modifications to the Willimantic Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

While the online docket for the Connecticut Siting Council does not provide a docket or petition number for the approval of this structure, it does reference this structure in connection with recent notices of intent captioned EM-VER-163-130729 and EM-T-MOBILE-163-140424.

May 21, 2015 Site ID CT11505A Page 2

- 1. The proposed modification will not increase the height of the tower. T-Mobile's antennas and equipment will be installed at a centerline of 168 feet; its existing antennas are located at the same 168 foot elevation. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
- 2. The proposed modifications will not require an extension of the site boundaries. No changes are proposed to the compound area.
- 3 . The proposed modification to the Willimantic Facility will not increase the noise levels at the existing facility by six decibels or more.
- 4. The operation of the additional antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated May 18, 2015 T-Mobile's operations would add 4.6% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 30.34% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.


For the foregoing reasons, T-Mobile respectfully submits that the proposed additional antennas and equipment at the Willimantic Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

Julie D. Kohler, Esq

cc: Town of Willimantic (Windham) Mayor Earnest Eldridge Rick Woods, SBA Communications Corporation Jamie Ford, EBI Consulting

EXHIBIT A

NOTE:
ALL EQUIPMENT LOCATIONS ARE
APPROXIMATE AND ARE SUBJECT TO
APPROVAL BY LESSEE/LICENSEE
STRUCTURAL AND RF ENGINEERS.

CLIENT:

SITE PLAN

SCALE: 1:20

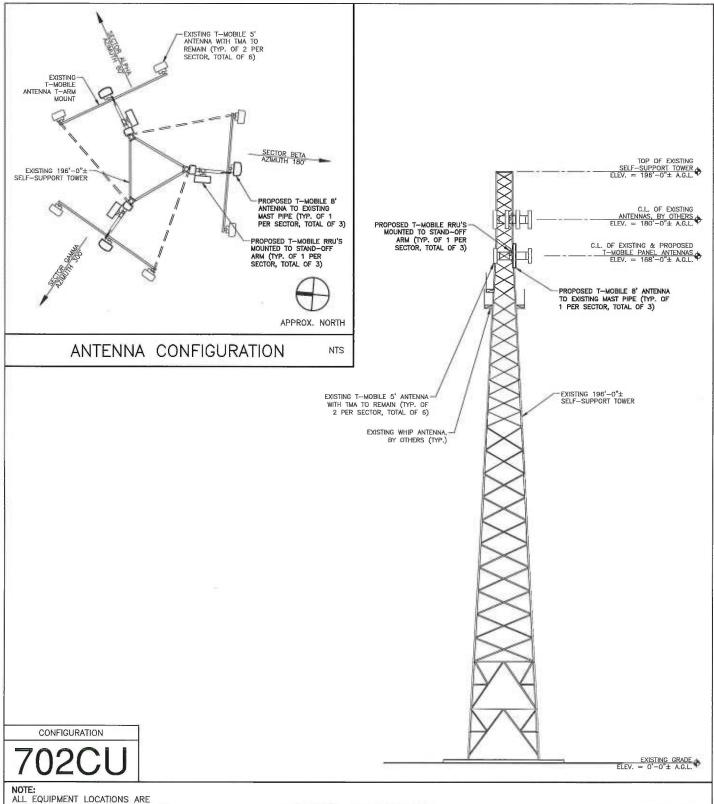
PREPARED BY:

EBI Consulting 21 B Street | Burlington, MA 01803 Tel: (781) 273-2500 | Fax: (781) 273-3311 www.ebiconsulting.com

EBI JOB NO.: 8115000120

T-Mobile Northeast, LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860.692.7100


CT11505A
WILIMANTIC -
VERIZON
3.400 MOUNTAIN CTREET

SITE INFO:

4 Per 1 11 Ten Co 1 1						
349R MOUNTAIN STREET						
WILLIMANTIC	, CT 06226					

		SUBMITTALS		DRAWN BY:
NO.	DATE	DESCRIPTION	BY	JM
Α	02/25/15	FOR REVIEW	BB	CHECKED BY:
0	05/19/15	FINAL	BB	BB
				DATE:
				02/25/15

LE-1

APPROXIMATE AND ARE SUBJECT TO APPROVAL BY LESSEE/LICENSEE STRUCTURAL AND RF ENGINEERS.

TOWER ELEVATION

SCALE: 1:30

LE-2

EBI Consulting

21 B Street | Burlington, MA 01803 Tel: (781) 273-2500 | Fax: (781) 273-3311 www.ebiconsulting.com

T-Mobile Northeast, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860,692,7100

CT11505A WILIMANTIC -

SITE INFO:

/	VERIZON				
349R	MOUNTAIN ST	REET			
WILL!	MANTIC, CT OF	5226			

		SUBMITTALS		DRAWN BY:	SHEET	NO:
NO.	DATE	DESCRIPTION	BY	JM		
Α	02/25/15	FOR REVIEW	58	CHECKED BY:	т	
0	05/19/15	FINAL	BB	BB	L	E
				DATE:	1	
_			_	02/25/15	l	

EXHIBIT B

Velocitel, Inc., d.b.a. FDH Velocitel, 6521 Meridien Drive Raleigh, NC 27616, Ph. 919.755.1012

Structural Analysis for SBA Network Services, Inc.

196' Self-Support Tower

SBA Site Name: Mountain Street – Twr #2 SBA Site ID: CT06462-A-02 T-Mobile Site ID: CT11505A

FDH Velocitel Project Number 15BORD1400

Analysis Results

Tower Components	77.0%	Sufficient
Foundation	75.4%	Sufficient

Prepared By:

David D. Vaughan, El Project Engineer Reviewed By:

Dennis D. Abel, PE Director of Structural Engineering CT PE License No. 23427

Velocitel, Inc., d.b.a. FDH Velocitel

6521 Meridien Drive Raleigh, NC 27616 (919) 755-1012 info@fdh-inc.com

09-30-2015

April 30, 2015

Prepared pursuant to TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and 2005 Connecticut State Building Code

Structural Analysis Report SBA Network Services, Inc. SBA Site ID: CT06462-A-02 April 30, 2015

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
Conclusions	
Recommendation	
APPURTENANCE LISTING	4
RESULTS	
GENERAL COMMENTS	6
LIMITATIONS	6
APPENDIX	

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Velocitel performed a structural analysis of the existing self-supported tower located in Windham, CT to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the *Structural Standards for Steel Antenna Towers and Antenna Supporting Structures*, *TIA/EIA-222-F* and *2005 Connecticut State Building Code (CSBC)*. Information pertaining to the existing/proposed antenna loading, current tower geometry, the member sizes, and foundation dimensions was obtained from:

Rohn Industries, Inc (Eng. File No. 49204TT) original design drawings dated September 27, 2001
Rohn Industries, Inc (Eng. File No. 49204TT) Mat Foundation Detail dated August 31, 2001
FDH Engineering, Inc. (Job No. 1301611800) TIA Inspection Report dated May 3, 2013
SBA Network Services, Inc

The basic design wind speed per the TIA/EIA-222-F standards and 2005 CSBC is 85 mph without ice and 38 mph with 1" radial ice. Ice is considered to increase in thickness with height.

Conclusions

With the existing and proposed antennas from T-Mobile in place at 168 ft, the tower meets the requirements of the *TIA/EIA-222-F* standards and *2005 CSBC* provided the **Recommendations** listed below are satisfied. Furthermore, provided the foundation was designed and constructed to support the original design reactions (see Rohn File No. 49204TT), the foundation should have the necessary capacity to support both the proposed and existing loading. For a more detailed description of the analysis of the tower, see the **Results** section of this report.

Our structural analysis has been performed assuming all information provided to FDH Velocitel is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the *TIA/EIA-222-F* standards and *2005 CSBC* are met with the existing and proposed loading in place, we have the following recommendations:

- 1. Feed lines must be installed as shown in Figure 1.
- 2. The existing TMAs should be installed directly behind the proposed panel antennas.
- 3. RRU/RRH Stipulation: The equipment may be installed in any arrangement as determined by the client,

APPURTENANCE LISTING

The proposed and existing antennas with their corresponding cables/coax lines are shown in **Table 1**. If the actual layout determined in the field deviates from the layout, FDH Velocitel should be contacted to perform a revised analysis.

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (ft)	Description	Coax and Lines	Carrier	Mount Elevation (ft)	Mount Type
180	(3) Antel BXA-80080/4CF (3) Antel BXA-70063/6CF (3) Antel BXA-171085-8BF (3) Antel BXA-171063-8CF (3) Alcatel lucent RRH2X40-AWS (6) RFS FD9R6004/2C-3L (1) RFS DB-T1-6Z-8AB-0Z	(12) 1-5/8" (1) 1-5/8" Fiber	Verizon	180	(3) 10' T-Frames
168	(3) Ericsson Air B2A B4P (3) Ericsson Air B4A B2P (3) Ericsson KRY112 144	(12) 1-5/8" (1) 1-5/8" Fiber	T-Mobile	168	(3) 10' T-Frames
162	(1) RFS PD1142-2B	(1) 7/8"		158	(1) 1.5' Standoff
157	(1) RFS 458-2N	(1) 7/8"	Connecticut	152	(1) 4' Standoff
137	(1) Telewave ANT450D6-9	(1) 7/8"	Light and	151	(1) 4' Standoff
140	(1) RFS 220-7N		Power		
139	(1) RFS PD1142-2B	(3) 7/8"	Company	130	(3) 8' Standoffs
135	(1) Telewave ANT450D6-9				

Proposed Loading:

Antenna Elevation (ft)	Description	Coax and Lines	Carrier	Mount Elevation (ft)	Mount Type
168	(3) Ericsson Air B2A B4P (3) Ericsson Air B4A B2P (3) Ericsson KRY112 144 (3) Andrew LNX-6515DS-VTM (3) S11 B12	(12) 1-5/8" (1) 1-5/8" Fiber	T-Mobile	168	(3) 10' T-Frames

RESULTS

The following yield strength of steel for individual members was used for analysis:

Table 2 - Material Strength

Member Type	Yield Strength
Legs	50 ksi
Bracing	36 ksi

Table 3 displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. *Note: Capacities up to 100% are considered acceptable.* **Table 4** displays the maximum foundation reactions.

If the assumptions outlined in this report differ from actual field conditions, FDH Velocitel should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the **Appendix** for detailed modeling information.

Table 3 - Summary of Working Percentage of Structural Components

Section No.	Elevation ft	Component Type	Size	% Capacity*	Pass Fail
T1	198.475 - 190.35	Leg	ROHN 3 STD	1.4	Pass
		Diagonal	L1 3/4x1 3/4x3/16	3.2 4.5 (b)	Pass
		Top Girt	L1 3/4x1 3/4x3/16	1.3	Pass
T2	190.35 - 170.204	Leg	ROHN 3 STD	20.0	Pass
	**	Diagonal	L2x2x1/4	18.5 32.1 (b)	Pass
T3	170.204 - 162.038	Leg	ROHN 3 STD	39.6	Pass
		Diagonal	L2x2x1/4	32.0 54.7 (b)	Pass
T4	162.038 - 141.871	Leg	ROHN 3 EH	64.4	Pass
		Diagonal	L2x2x3/16	66.4 72.8 (b)	Pass
		Top Girt	L1 3/4x1 3/4x3/16	3.5	Pass
T5	141.871 - 121.683	Leg	ROHN 4 EH	65.6	Pass
		Diagonal	L2 1/2x2 1/2x1/4	48.9 61.3 (b)	Pass
T6	121.683 - 101.475	Leg	ROHN 5 EH	57.5	Pass
		Diagonal	L2 1/2x2 1/2x1/4	66.4	Pass
T7	101.475 - 81.2668	Leg	ROHN 6 EHS	62.1	Pass
		Diagonal	L3x3x1/4	54.6	Pass
T8	81.2668 - 60.996	Leg	ROHN 6 EH	65.2	Pass
		Diagonal	L3 1/2x3 1/2x1/4	55.5 56.9 (b)	Pass
Т9	60.996 - 40.663	Leg	ROHN 8 EHS	58.7	Pass
		Diagonal	L3 1/2x3 1/2x1/4	73.4	Pass

Section No.	Elevation ft	Component Type	Size	% Capacity*	Pass Fail
T10	40.663 - 20.33	Leg	ROHN 8 EHS	66.5	Pass
		Diagonal	L4x4x1/4	61.8 68.6 (b)	Pass
T11	20.33 - 0	Leg	ROHN 8 EH	57.8	Pass
		Diagonal	L4x4x1/4	77.0	Pass

^{*} Capacities include a 1/3 allowable stress increase for wind per TIA/EIA-222-F standards.

Table 4 - Maximum Base Reactions

Load Type	Direction	Current Analysis (TIA/EIA-222-F)	Original Design (TIA/EIA-222-F)
Individual Foundation	Horizontal	27 k	
	Uplift	214 k	301 k
	Compression	250 k	345 k
Overturning Moment		4,733 k-ft	6,281 k-ft

GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Velocitel should be notified immediately to perform a revised analysis.

LIMITATIONS

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Velocitel.

APPENDIX

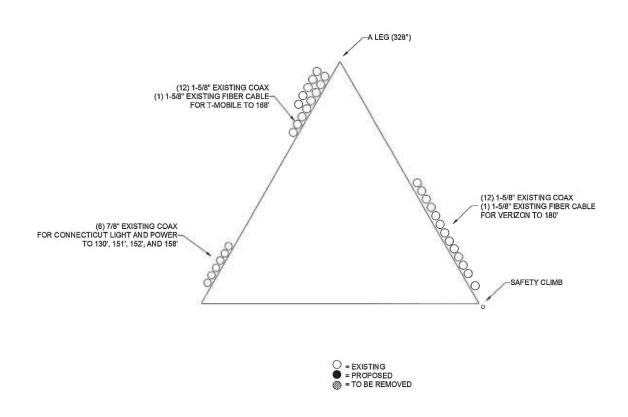
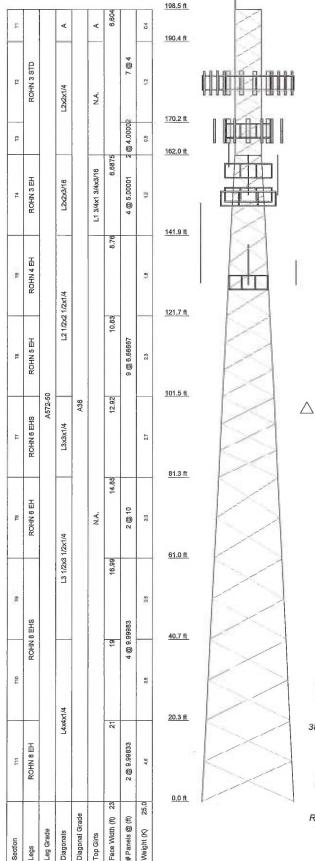



Figure 1 - Assumed Feed Line Layout

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod	198.475	AIR 21 B4A/B2P w/Mount Pipe	168
Antel BXA-70063/6CF w/ Mount Pipe	180	AIR 21 B4A/B2P w/Mount Pipe	168
Antel BXA-70063/6CF w/ Mount Pipe	180	KRY 112 144 TMA	168
BXA-80080/4CF w/ Mount Pipe	180	KRY 112 144 TMA	168
BXA-80080/4CF w/ Mount Pipe	180	KRY 112 144 TMA	168
BXA-80080/4CF w/ Mount Pipe	180	S11B12	168
(2) FD9R6004/2C-3L Diplexers	180	S11B12	168
(2) FD9R6004/2C-3L Diplexers	180	S11B12	168
(2) FD9R6004/2C-3L Diplexers	180	LNX-6515DS-VTM w/ Mount Pipe	168
Antel BXA-171085-8BF w/ Mount Pipe	180	LNX-6515DS-VTM w/ Mount Pipe	168
Antel BXA-171085-8BF w/ Mount Pipe	180	LNX-6515DS-VTM w/ Mount Pipe	168
Antel BXA-171085-8BF w/ Mount Pipe	180	(3) 10' T-Frames	168
Antel BXA-171063-8CF w/Mount Pipe	180	AIR 21 B2A/B4P w/Mount Pipe	168
Antel BXA-171063-8CF w/Mount Pipe	180	(1) 1.5' Standoff	158
Antel BXA-171063-8CF w/Mount Pipe	180	RFS PD1142-2B Omni	158
RRH2X40-AWS	180	458-2N Omni	152
RRH2X40-AWS	180	(1) 4' Standoff	152
RRH2X40-AWS	180	(1) 4' Standoff	151
DB-T1-6Z-8AB-0Z Distribution Box	180	ANT450D6-9 Dipole	151
(3) 10' T-Frames	180	RFS 220-7N Omni	130
Antel BXA-70063/6CF w/ Mount Pipe	180	RFS PD1142-2B Omni	130
AIR 21 B2A/B4P w/Mount Pipe	168	ANT450D6-9 Dipole	130
AIR 21 B2A/B4P w/Mount Pipe	168	(3) 8' Standoffs	130
AIR 21 B4A/B2P w/Mount Pipe	168		

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	L1 3/4x1 3/4x3/16		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in Windham County, Connecticut.

- 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- Tower is also designed for a 38 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 50 mph wind.
- 5. TOWER RATING: 77%

MAX. CORNER REACTIONS AT BASE:

DOWN: 250 K SHEAR: 27 K

UPLIFT: -214 K SHEAR: 23 K

AXIAL 85 K SHEAR MOMENT 13 K 1512 kip-ft

TORQUE 5 kip-ft 38 mph WIND - 1.0000 in ICE

AXIAL 38 K SHEAR MOMENT 44 K 4733 kip-ft

TORQUE 21 kip-ft REACTIONS - 85 mph WIND

Velocitel, Inc., d.b.a. FDH Velocitel b: Mountain Street Tower #2, CT06462-A-02 FDH VELOCITEL Project: 15BORD1400 6521 Meridien Drive, Suite 107 Client: SBA Network Services, Inc. Drawn by: DVaughan App'd: Raleigh, North Carolina 27616 EERING HINDRATION Scale: NTS Code: TIA/EIA-222-F Date: 04/30/15 Phone: 919-755-1012 Tower Analysis Dwg No. E-1 FAX: 919-755-1031

EXHIBIT C

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11505A

Wilimantic- Verizon 349 R Mountain Street Willimantic, CT 06226

May 18, 2015

EBI Project Number: 6215003016

Site Compliance	e Summary
Compliance Status:	COMPLIANT
Site total MPE% of	
FCC general public allowable limit:	30.34 %

May 18, 2015

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11505A - Wilimantic- Verizon

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **349 R Mountain Street, Willimantic, CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is 467 μ W/cm², and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **349 R Mountain Street, Willimantic, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antennas used in this modeling are the Ericsson AIR21 (B4A/B2P & B2A/B4P) for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 (B4A/B2P & B2A/B4P) have a maximum gain of 15.9 dBd at their main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of 14.6 dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antenna mounting height centerline of the proposed antennas is **168 feet** above ground level (AGL).
- 9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	В	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	168	Height (AGL):	168	Height (AGL):	168
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	2	Channel Count	2	# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	# AWS Channels:	120
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A1 MPE%	0.64	Antenna B1 MPE%	0.64	Antenna C1 MPE%	0,64
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR21 B2A/B4P	Make / Model:	Ericsson AIR21 B2A/B4P	Make / Model:	Ericsson AIR21 B2A/B4P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	168	Height (AGL):	168	Height (AGL):	168
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A2 MPE%	0.64	Antenna B2 MPE%	0.64	Antenna C2 MPE%	0.64
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	168	Height (AGL):	168	Height (AGL):	168
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A3 MPE%	0.25	Antenna B3 MPE%	0.25	Antenna C3 MPE%	0.25

Site Composite MPE%		
Carrier	MPE%	
T-Mobile	4.60	
Verizon Wireless	9.39 %	
CL&P	16.35 %	
Site Total MPE %:	30.34 %	

bile Sector 2 Total: 1.53 %	T-Mobile Sector 1 Total:	1.53 %
bile Sector 3 Total: 1.53 %	T-Mobile Sector 2 Total:	
	T-Mobile Sector 3 Total:	1.53 %

Tel: (781) 273.2500 Fax: (781) 273.3311

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector 1:	1.53 %
Sector 2:	1.53 %
Sector 3:	1.53 %
T-Mobile Total:	4.60 %
Site Total:	30.34 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **30.34%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803

21 B Street Burlington, MA 01803

Tel: (781) 273.2500

Fax: (781) 273.3311