

56 Prospect Street, P.O. Box 270 Hartford, CT 06103

Kathleen M. Shanley Manager – Transmission Siting Tel: (860) 728-4527

August 23, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification Eversource Site # ES-055 Willimantic 349R Mountain Street, Windham, CT 06280 Latitude: 41-42-10.84 N / Longitude: 72-13-17.01 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains multiple antennas at various mounting heights on an existing 196-foot self-support tower located at 349R Mountain Street in Windham. See <u>Attachment A</u>, Parcel Map and Property Card. The tower and property are owned by SBA Properties Inc., doing business as SBA Communications Corporation ("SBA"). Eversource and SBA have entered into an agreement allowing the modification of Eversource's equipment on the existing tower. See <u>Attachment B</u>, Letter of Authorization. Eversource is seeking the Connecticut Siting Council's authorization for the installation of one 20-foot dipole antenna to be mounted at 153 feet above ground level ("AGL") on a four-foot stand-off mount. See <u>Attachment C</u>, Mount Analysis. Eversource also plans the removal of one 15-foot 8-inch omni-directional antenna and its associated mount. There will be no changes to the area of the fenced compound, the tower or other existing antennas and equipment. The tower and existing and proposed equipment are depicted on <u>Attachment D</u>, Construction Drawings, dated July 21, 2022 and <u>Attachment E</u>, Structural Analysis, dated June 14, 2022. The Connecticut Siting Council approved Eversource's use of the tower at this location in Petition No. 910 in August 2009.

The modification is required to eliminate transmitter induced noise issues from two antennas previously installed as part of Eversource's program to update its obsolete analog voice radio communications system to a modern digital voice communications system (refer to EM-EVER-163-201002, dated October 19, 2020, and EM-EVER-163-220308, dated April 4, 2022). The transmitter issue manifests as passive intermodulation, or PIM, noise located on the receive frequencies, which limits the system level coverage capability of the site.

Please accept this letter as notification, pursuant to Regulations of Connecticut State Agencies ("R.C.S.A.") §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this notice is being delivered to Tom DeVivo, Mayor of the Town of Windham, Jim Rivers, Town Manager of the Town of Windham, and

Matthew Vertefeuille, Director of Code Enforcement of the Town of Windham, via private carrier. Proof of delivery is attached. See <u>Attachment F</u>, Proof of Delivery of Notice.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

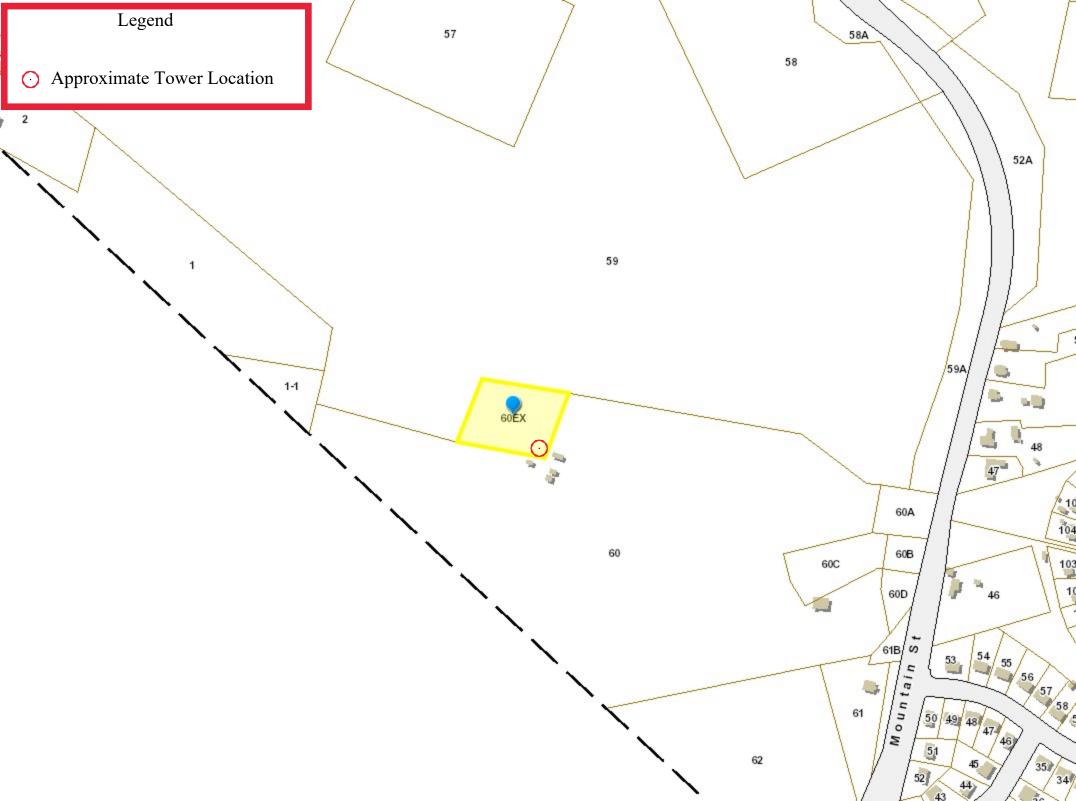
- 1. There will be no change to the height of the existing tower.
- 2. The proposed modifications will not require extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated August 8, 2022. (<u>Attachment G</u> – Power Density Report¹)
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). One original and two copies of this notice are enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

By:

Kathleen M. Shanley Manager – Transmission Siting


cc: Honorable Tom DeVivo, Mayor, Town of Windham Jim Rivers, Town Manager, Town of Windham Matthew Vertefeuille, Director of Code Enforcement SBA

Attachments

- A. Parcel Map and Property Card
- B. Letter of Authorization
- C. Mount Analysis
- D. Construction Drawings
- E. Structural Analysis
- F. Proof of Delivery of Notice
- G. Power Density Report

¹ Receive-only antennas are not included in the Power Density Report, as they are irrelevant to the % MPE calculations.

ATTACHMENT A – PARCEL MAP AND PROPERTY CARD

Proper	ty L	ocation: 3	649R N	IOUNTA	IN ST				MA	AP ID: 3/9	0 154/ 6)/EX /			Bldg	Nan	ne:						State	Use:	304	
Visior	ID:	5568				Accou	int # 00004	100			E	Bldg #:	1 of 1		Sec #:		1 of	1 Care	d 1	l of	1	Р	rint 1	Date:	12/05/20)18 18:06
	CL	RRENT (OWNE	R	TOI			ITIES		STRT./RO.	AD	LOC	ATION					<u>URRENT</u>	ASS	ESSM.	ENT					
SBA PF	ROPE	RTIES IN	2		2 Above S	Street	5 Well		3 U	Jnpaved							iption	Code	Ap	praised		Assessed				
8051 C	ONGI	RESS AVE			5 Steep		6 Septic											4-1			24,400		87,08	30		163
							0 None								UTL BI UTL O			4-2 4-3			29,900 17,020		20,93 11,92	30 20	WINDI	НАМ, СТ
BOCA Additio		ON, FL 33	487					UPPLE	EMEN	TAL DAT	A				0120	012	-				1.,010		11,22			
Auunuo		whet s:			Other ID:		3- 9/154/ 60	EX		LCI	С															
					Zoning		R4			ParcelStatu	5															
					Neighborh Living Un		250 - 0 0			Cost Flag Lot Number	• •														710	ΙΟΝΙ
					Census	115	8004			A D	U														71	ION
					District N	0	2			-																
					GIS ID:					ASSOC PIL) #			ľ				Tot	al	1	71,320		19,93	50		
		RECORD	OF 0	WNERSH	IIP		BK-VOL/P	AGE	SALE	E DATE q	/u v/i							PREV	VIOU	<mark>IS ASS</mark> I	ESSM.	ENTS (HIS	TOR	Y)		
		RTIES IN		001 (D 1) I	. 7		631/29	9			UI		108,650			Code	Assessed		Yr.	Code	Asse	essed Value		. Cod		essed Value
				COMPANY COMPANY			343/ 13 304/ 27		09		U I O I		0 75,000		2017 4 2017 4	4-1 4-2		87,080 26,810	2016	4-1 4-2				5 300 5 300		26,810 87,080
SYNCO	OM C.	APITAL C	ORPOI	RATION			285/64	7		0/09/1987 9/01/1985			0			4-3			2016			20,01	0	5 500		07,000
		MMUNICA EROME &		S CORPOR	RATION		263/ 63 241/ 10				U I U I		0													
DAWS	JN JI	LKOWIE &	HILDA	1			241/10	U	0-	4/01/19/3			U													
															T	otal:		113,890		Total:		113,89		Tota		113,890
V	1 7			<u> XEMPTIO</u>	DNS		4	6.1			<u>OTHE</u>		SSMENT				L i	This sign	natur	e ackn	owledg	ges a visit b	v a D	ata Co	ollector of	or Assessor
Year		Type Descr	iption				Amount	Code	e Des	scription		Num	ber	Ame	ount		omm. Int.									
																	-			AP	PRAIS	ED VALUI	7 SU	MMA	2V	
																			DII					, 1, 1, 1 , 11		20.000
		· · ·			Tota													Appraised	-							29,900
			_			AS	SESSING											Appraised				-				0
Λ		/ SUB		NBHI	D Name		Street	ndex Nar	me		Tracing				Batch		/	Appraised	OB ((L) Val	ue (Blo	dg)				17,020
	0001	l/A									433				I		1	Appraised	Lanc	l Value	(Bldg)				124,400
							Ν	OTES										Special La	nd V	alue						0
																	- -	Fotal Ann	roica	Dorad	l Volu	•				171,320
																		Fotal App			i value	e				171,520 C
																		Valuation	Meth	ioa:						t
																	I	Adjustmer	nt:							0
																		let Total	Appr	aised l	Parcel	Value				171,320
								DEDI																CTTO D	7	,
Perm	it ID	Issue 1	Data	Type	Descriptio		BUILDING	PERM Amount		Insp. Date	% Co		Date Com	. (Commer	110		Dat	e a	Typ		<mark>T/ CHANG</mark> IS ID		STOK . Cd.		se/Result
342		03/12/2		<u> </u>	Cell Towe				,000	msp. Dute	0		suc comp	<u>, c</u>	Jonaner			10/02/20			-	BN			TRY + S	
321		09/13/2		53	Cell Towe	er/Ante	ennae		,651		0															
140 137		07/01/2		BP BP						07/10/2003 09/10/2003			07/10/200. 09/10/200.	5 U 3 3	6-26 4-26											
114	53	03/13/2	2002	BP				30	,000	09/09/2002	0		09/09/200	23	4-26											
105 30		04/16/2		BP BP				2	,000	04/17/2001			04/17/200		6-26 6 26 #2	74										
50	50	05/01/1		Ы					U I					ľ	0 20 72	., 4										
							<u> </u>			LA	ND LIN	E VAL	UATION	<u>SE</u>	<u>CTIO</u> N	V										
$\begin{array}{c} B \\ \# \\ C \end{array}$		U.							Unit			Acre		-	ST.							-	Adj			
# Co		Descr	*		e D Front	Depth			Price	1.140			C. Facto	-		dj.	Notes		_	Speci	al Prici	ng F	act	~	nit Price	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 Pü 4 Pi	ıblic Utility ıblic Utility	C	R4			1.00 0.05	AC AC	80,00 1,40)0.00 1.0)0.00 1.0	0000 0 0000 0	1.0000	1.0	00 2 00 2		.00 .00	Topography Topography	/; /:					1.00 1.00			80,000 70
1 30	4 Pu	iblic Utility	č				1.00	AČ	44,33			1.0000				.00	b. Srabil)	,					1.00			44,330
	I			T	Total Card L	Land U	nits:	2.05 AC	Pare	cel Total La	nd Area	: 2.05 AC	2		I						1	J	To	tal Lar	d Value:	124,400
L									-			-1														· · ·

Property Loc	cation: 3	49R I	MOUNTAIN S						MA	P ID: 3	/9 154/ 60/EX /		Bldg	Name:						S	State Use	e: 304		
Vision ID:	5568				Acco	unt # 00	0041	00			Bldg #:	1 of 1	Sec #:	: 1 of	1	Card	1	of	1	Pı	rint Date	e: 12/05/20)18 18:	06
(CONSTR	UCT	ON DETAIL		<u> </u>	CO	NSTR	UCT	ON DI	ETAIL (CONTINUED)													
Element	Cd.	Ch.	Descriptio	on		Elen	nent	Ca	. Ch.		Description													
Style	79	Т	elephone Bldg																					
Model	94	C	ommercial		ļ	1																		
Grade	03	А	verage		ļ	1																		
Stories	1.0				ļ	1																		
Occupancy	0								MIXE	D USE			1	BAS										
Exterior Wall 1	15	C	oncrete/mas		ļ	Code		Desc	ription		Percentage													
Level From	01	0			ļ	304	Public	Utility	v C		100													
Level To	01	0	1		ļ	1																		
Uncov Parking	0				ļ	ĺ																		
Perimeter	68				ļ																			
Identical Units	1							OST/M	IARKE		UATION													
Efficiency	0				ļ	Adj. Base	e Rate:			146.2	9													
1 Bedroom	0				ļ	1															14			
2 Bedroom	0				ļ	1																		
3 Bedroom	0				ļ	AYB				1975														
AC Type	03		entral		ļ	1																		
Structure Type	720		20			Dep Code				A														
Bldg Use	304	Р	ublic Utility C			Remodel																		
						Year Ren	nodeled	t		_														
						Dep %	1.01-1			27			l				2	0						
						Functiona External (-						
L	1.0.0					Cost Trer																		
Percent Finish	100					Condition																		
Heating	07		lectr Basebrd			% Compl																		
Frame Type	02		Vood Frame			Overall %		l		73						AL-27								
Plumbing	00		one		ļ	Apprais V Dep % O	/al			29,90	0	and a	1882	ALC: TO SE	Ser 1	R				A PARTY OF	A COLORADO			Part Ton
Local Modifier	2.75		f			Dep % O Dep Ovr		ent		U				AT out			l Ca	2th rates		and the	1			es/
Partitions	00		one			Misc Imp		ciit		0		100	Entre P		1. 21	A ANTE		1	701	Salt-	2517			
Wall Height Size	10 280					Misc Imp		Commen	nt	-		- 15					1 m					1. 10 12		
Size	280				ļ	Cost to C	ure Ov	r		0		S. S. S.	5 2	t to present	12		- 1	1.4			11 30	17 J.		1000
						Cost to C	ure Ov	r Com	nent							Terry	-	1		the set of	at the second			
OB.	OUTRI		ING & YARD	ITEN		/ YE-R		INC	FYTR	A FEAT	TIRES(R)							ALT TO				بعث استعد		
	cription		Sub Descript							Cnd %				2					1 1-		RA ARE T	L DE		
	N LINK		Sub Descripi				1975	Gue		50		March 2											1 2	The /
SH10 SHEE) FRAME	:		L 28	88 15	5.00	1990			70	3,020	8	1	2 1							and the second s	TTT		
FN3O CHAI FN4O CHAI	N LINK	6		L 80	$\begin{array}{ccc} 0 & 16 \\ 20 & 22 \end{array}$	5.90 2.25	1990 2002			70 70	950 4,980			HT H	-	-		$\overline{1}$ $\overline{1}$	1 15	TIT	10000	THE OWNER	N D	100
	NG CON			L 1,	,296 6.8	81	2002			80			1	This to	ALL	CAR ST	STATE	dia dia	1 6 50	ALIAN ?	BBS	11/11	1/7	773
											ŕ		An An	AN TOTOTAL				2115		atel ()	<i>3131</i> 4	1974	113	$\leq \leq$
														TRACTOR -	· conte		19 M	Sec.		≈ 100	RH	9723	15.18	3
															182226		RH_{2}	1777		17861	3772	$\gamma\gamma\gamma\gamma\gamma$	$\gamma_{2,7,\gamma}$	222
						CI II (I						222			1 and	in states		233	- 2	mm	1999.	QY XI.	XXX.	84
Cada		Jacari	BUILDING S			Living A		Eff. A							4007	1735		1946		22222	1222	6999		65
Code BAS Fi	rst Floor	Descriț	bilon	Gross	280	<u> </u>	280	EJJ. I	irea			S.A.	STATES -		1220		1777	H_{1}		333377	$\mathcal{M}\mathcal{M}$	13377	74	222
	150 11001				200		200						a zelone		obiji i	1111	$\mathcal{M}\mathcal{H}$	275		88977	XXX ?	d_{M}	1	200
												Preistant	Contraction of the second		State.	Trider.	and the second			8822.00	$\mathcal{W}\mathcal{W}$	13415	17-	ALL.
												States .	Color and	Contractor of	- Chily	1.142	1977	117.		- Santa	ANX)	2013	$\langle \gamma \rangle_{\gamma}$	15
													- Terrerit	m the	and the	M/M	0H	$\langle T \rangle _{f}$		QBQ	1937	110.10	North In	44
												(inst)	e nevering i	学想要		anta	277	911		1997.22	1-1-1-2	72-74	$l \leq l$	Just -
																	600	12		27.24		1993	they'	
																2.10		120	S I B	STR.		1.1.1	(server	26
						<u> </u>	200					24.84		The second		2021				1214		在 在 2	Ster H	
	Ttl. Gro	oss Li	v/Lease Area:		280		280					The second		State of the second	Company of	S.F.S.M.F.	12-25	ALC: NO	S. TR. IRS	A STATE AND	2 AT	and the s	THAT	SEVER

ATTACHMENT B – LETTER OF AUTHORIZATION

SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487-1307

> T + 561.995.7670 F + 561.995.7626

> > sbasite.com

LETTER OF AUTHORIZATION

SBA Site ID: CT06462-A, Mountain Street

Property Located at: 349 Mountain Street, Windham, CT, 06226

THE CITY/COUNTY OF: Windham / Windham/Windham

APPLICATION FOR ZONING/USE/BUILDING PERMIT

This letter authorizes Eversource and its authorized agents to file for all necessary zoning, planning and building permits (local, state and federal) for the purposes of installing, operating and maintaining a telecommunications facility on the existing tower on the property referenced above on behalf of SBA Properties, LLC.

All approval conditions that may be granted to Eversource in connection with above referenced facility relating to this specific application are the sole responsibility of Eversource.

SBA Properties, LLC

Jason Silberstein Executive VP, Site Leasing Date: 3/02/2022

ATTACHMENT C – MOUNT ANALYSIS

BLACK & VEATCH Building a world of difference. BLACK & VEATCH CORPORATION 6800 W 115TH ST, SUITE 2292, OVERLAND PARK, KS 66211 +1 913-458-2522 | RILEYJJ@BV.COM

May 26, 2022

MOUNT EVALUATION LETTER

Site Number:	5568
Site Name:	WILLIMANTIC
Site Data:	349 Mountain St.
	Windham, CT 06280
Latitude:	41° 42′ 10.84″
Longitude:	-72° 13′ 17.01″

Black & Veatch Corporation is pleased to submit this "Mount Evaluation Letter" to determine the structural integrity of antenna mounting system on the above-mentioned site. The purpose of this evaluation is to determine the capacity of the system in supporting the final loading in the attached "Loading Summary".

Based on our evaluation we have determined the existing antenna mounting system to be:	<u>SUFFICIENT</u>	
Structure Rating (max from all components) =	85.8%	

	Proposed Mounting System	
Sit	ePro 1 (USF-4U) 48" Ultimate Universal Stand-off Frame	

This analysis analyzes the worst-case scenario for the proposed custom omni stand-off frame. All levels are deemed sufficient. The proposed mounting system will be capable of supporting the proposed equipment, under the following conditions:

- Contractor shall be responsible for the means and methods of construction.
- Contractor shall inspect the condition of all existing and proposed structural members, all relevant members and connections and report any deficiencies to the engineer prior to installation of any new antennas and other equipment.

The scope of this evaluation pertains only to the proposed antenna mounting system and does not include examination of the loads imparted by the antenna mounting system to the existing tower and its structural components. This document was prepared based on information provided to Black & Veatch. If existing conditions do not reflect those represented, this analysis is no longer valid.

Please contact Josh Riley in our Overland Park Office at 913-458-2522 if you have any questions or comments.

Sincerely, Black & Veatch Corporation

Prepared By: Joohwan Jung Submitted By: Josh Riley, P.E.

TABLE OF CONTENTS

- 1. LOADING SUMMARY
- 2. ANALYSIS CRITERIA SUMMARY
- 3. REFERENCES
- 4. ASSUMPTIONS
- 5. RESULTS SUMMARY

APPENDICES

APPENDIX 1: MOUNT ANALYSIS REPORT

APPENDIX 2: RISA PRINTOUTS

APPENDIX 3: ATTACHMENTS

WILLIMANTIC

1. LOADING SUMMARY

	Appurtenance									
Carrier	Position	Sector	Antenna RAD Center (ft)	Mount Centerline (ft)	Qty	Туре	Manufacturer	Model		
Eversource	1	-	163.625	153	1	Dipole	COMPROD	876F-70-2HSMP40DF1/2		

2. ANALYSIS CRITERIA SUMMARY

ANALYSIS CRITERIA							
STANDARD	ТІА-222-Н						
WIND SPEED	Ultimate of 140 mph						
WIND SPEED WITH ICE	50 mph with 1" radial ice thickness						
EXPOSURE CATEGORY	В						
RISK CATEGORY	III						
TOPO CATEGORY	Flat						
CREST HEIGHT	N/A						

3. REFERENCES

- American Institute of Steel Construction, AISC 15th Edition
- Telecommunications Industry Association Standard, TIA-222-H & 2018 Connecticut State Building Code
- Antenna Mount Assembly Drawing (Model: USF-4U) by SitePro 1, dated 02/16/2011

4. ASSUMPTIONS

This analysis may be affected if any assumptions are not valid or have been made in error. Black & Veatch should be notified to determine the effect on the structural integrity of the antenna mounting system.

- The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- The configuration of antennas, mounts, and other appurtenances are as specified in the Loading Summary and the referenced drawings.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- Sector frame center line: located equidistant between top & bottom boom; Platform center line: located at the base perimeter of platform, unless otherwise specified.
- Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
Pipe	ASTM A53 (GR B-35)
Connection Bolts	ASTM A325

WILLIMANTIC

5. RESULTS SUMMARY

Name	Bending Str	ess Ratio	Shear Stress Ratio		
Arm: HSS3X3X3	85.8%	Pass	35.0%	Pass	
Bracing: Pipe 2.0 Std	60.9%	Pass	10.9%	Pass	
Mount Pipe: Pipe 3.0 Std	65.6%	Pass	35.1%	Pass	

*Von Mises SR = (Max Von Mises Value From RISA-3D)/(0.9*Fy)

**Capacity rating per TIA-222-H Section 15.5.

May 26, 2022

WILLIMANTIC

APPENDIX 1: MOUNT ANALYSIS REPORT

Client: E	versource	Computed By: Joohwan Jung
Site Name: V	VILLIMANTIC (5568)	Date: 5/26/2022
		Verified By: Josh Riley
Title: N	/IOUNT ANALYSIS REPORT	Date: 5/26/2022

Dead and Live Loads

Maintenance Live Load:	$L_V =$	250	lb	
Installation Live Load:	L _M =	0	lb	

Appurtenance Dead Loads							
Name	Weight (lb)						
876F-70-2HSMP40DF1/2	130						

876F-70-2HSMP40DF1/2

Client: Ev

20.00

Computed By: Jooh

2.00

9.00

488.00

488.00

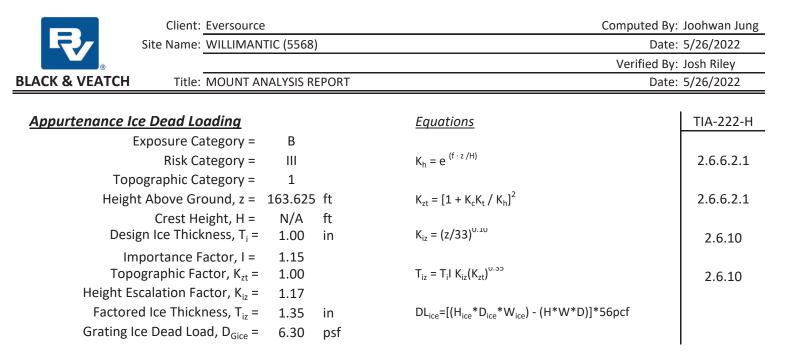
	Client: Eversource	ć	Computed By: Joohwan Jung							van Jung		
	Site Name: WILLIMAN	TIC (5568)						I	Date: 5,	/26/	2022
®									Verifie	d By: Jo	osh F	Riley
BLACK & VEATCH	Title: MOUNT A	NALYSIS R	EPORT						I	Date: 5,	/26/	2022
Appurtenance	Wind Loading				<u>Equation</u>						TIA	-222-H
	Exposure Category =	В			K _z = 2.01 (z / z _g) ²	2/α				2.	6.5.2
	Risk Category =	111										
То	pographic Category =	1			$K_h = e^{(f \cdot z)}$	H)					2.6	5.6.2.1
E	Basic Wind Speed, V =	140	mph									
Heig	ht Above Ground, z =	163.625	5 ft		K _{zt} = [1 + K	K _c K _t / K	_h] ²				2.6	5.6.2.1
Velocity Pre	Crest Height, H = ssure Coefficient, K ₇ =	N/A 1.14	ft		K _e = e ^{-0.000}	U32~2S					-	
•	bographic Factor, $K_{zt} =$	1.00			ite c						2	.6.8
•	ectionality Factor, $K_d =$	0.95			$q_z = 0.00256 \ K_z K_z t K_e K_d V^2$				2.6	5.11.6		
	Shielding Factor, K _a =	0.90										
Ground	Elevation Factor, K_e =	1.000			$F_A = q_z G_h (I$	EPA)					2.6	5.11.2
Wind	Velocity Pressure, q _z =	54.22	psf									
G	ust Effect Factor, G _h =	1.00			$F_M = q_z G_h G_h$	C _f D _p					2.6	5.11.2
		4	Appurt	enance W	ind Loads							
	Name	He	eight	Width	Depth		Norma	I		Tange	entia	d .
	Name	(ft)	(ft)	(ft)	Ca	EPA FT2	F _A (lb)	Ca	EPA F	T2	F _A (lb)
									T. C.	T		

3.58

0.25

2.00

9.00


Client: Eversource

Computed By: Joohwan Jung

Site Name: WILLIMAN	ITIC (5568)			Date:	5/26/2022
				Verified By:	Josh Riley
Title: MOUNT A	NALYSIS RE	PORT		Date:	5/26/2022
.oading			<u>Equations</u>		TIA-222-H
Exposure Category =	В		$K_z = 2.01 (z / z_g)^{2/\alpha}$		2.6.5.2
Risk Category =	III				
ographic Category =	1		$K_{h} = e^{(f \cdot z/H)}$		2.6.6.2.1
asic Wind Speed, V =	140	mph			
nt Above Ground, z =	163.625	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$		2.6.6.2.1
Crest Height, H =	N/A	ft			
	Title: MOUNT A Coading Exposure Category = Risk Category = pographic Category = asic Wind Speed, V = ht Above Ground, z =	Title: MOUNT ANALYSIS RE Coading Exposure Category = B Risk Category = III pographic Category = 1 asic Wind Speed, V = 140 asic Wind Speed, Z = 163.625	Exposure Category = B Risk Category = III oographic Category = 1 asic Wind Speed, V = 140 mph nt Above Ground, z = 163.625 ft	Title: MOUNT ANALYSIS REPORTLoadingEquationsExposure Category =B $K_z = 2.01 (z / z_g)^{2/\alpha}$ Risk Category =IIIpographic Category =1 $K_h = e^{(f \cdot z / H)}$ asic Wind Speed, V =140mphat Above Ground, z =163.625ftft $K_{zt} = [1 + K_c K_t / K_h]^2$	Verified By:Title:MOUNT ANALYSIS REPORTDate:LoadingEquationsExposure Category =B $K_z = 2.01 (z / z_g)^{2/\alpha}$ Risk Category =IIIPographic Category =1 $K_h = e^{(f \cdot z / H)}$ Pasic Wind Speed, V =140mphPut Above Ground, z =163.625 ft $K_{zt} = [1 + K_c K_t / K_h]^2$

Velocity Pressure Coefficient, $K_z = 1$	14		K _e = 6	e-n.nnnn37s		2.6.8
Topographic Factor, K _{zt} = 1	.00					
Wind Directionality Factor, $K_d = 0$.95		$q_z = 0$	0.00256 K _z K _z	$_{t}K_{e}K_{d}V^{2}$	2.6.11.6
Shielding Factor, K _a = 0	.90					
,	.000		$F_A = 0$	q _z G _h (EPA)		2.6.11.2
Wind Velocity Pressure, $q_z = 54$	•					
Gust Effect Factor, G _h = 1	.00		F _M =	$q_z G_h C_f D_p$		2.6.11.2
Member V	Nind Loads					
Nama	Depth	Width		Dp	F _M	

Name	Depth (ft)	Width (ft)	C _f	D _p (ft)	F _M (Ib)
Arm: HSS3X3X3	0.25	0.25	2	0.25	27.11
Bracing: Pipe 2.0 Std	0.20		1.2	0.20	12.88
Mount Pipe: Pipe 3.0 Std	0.29		1.2	0.29	18.98

Appurtenance Ice Dead Loads									
Name	Height w/ ice	Width w/ice	Depth w/ ice	V _{ice}	DL _{ice}				
Name	(ft)	(ft)	(ft)	(ft ³)	(lb)				
876F-70-2HSMP40DF1/2	20.22	3.81	0.47	3.31	185.49				

Client: Eversource

Computed By: Joohwan Jung

	Site Name: WILLIMANTIC (5568)	Date: 5/26/2022
		Verified By: Josh Riley
BLACK & VEATCH	Title: MOUNT ANALYSIS REPORT	Date: 5/26/2022

<u>Member Ice Dead Loading</u>			<u>Equations</u>	TIA-222-H
Exposure Category =	В			
Risk Category =	111		$K_h = e^{(f \cdot z/H)}$	2.6.6.2.1
Topographic Category =	1			
Height Above Ground, z =	163.625	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$	2.6.6.2.1
Crest Height, H = Design Ice Thickness, T _i =	,	ft in	$K_{iz} = (z/33)^{0.10}$	2.6.10
Importance Factor, I = Topographic Factor, K _{zt} = Height Escalation Factor, K _{iz} =	1.15 1.00 1.17		$T_{iz} = T_{i} I \; K_{iz} (K_{zt})^{0.35}$	2.6.10
Factored Ice Thickness, T_{iz} = Grating Ice Dead Load, D_{Gice} =		in nof	Aiz = pi*Tiz*(Dc+Tiz)	2.6.10
Grating ice Dead Load, D _{Gice} –	6.30	psf	DL _{ice} =Aiz*56pcf	

Member Ice Dead Loads									
Name	Depth w/ ice (ft)	Width w/ ice (ft)	Dc (ft)	Aiz (ft ²)	DL _{ice} (lb/ft)				
Arm: HSS3X3X3	0.47	0.47	0.35	0.16	9.22				
Bracing: Pipe 2.0 Std	0.42		0.20	0.11	6.14				
Mount Pipe: Pipe 3.0 Std	0.52		0.29	0.14	8.00				

Client: Eversource	2		Computed By:	Joohwan Jung
Site Name: WILLIMAN	TIC (5568)		Date:	5/26/2022
			Verified By:	Josh Riley
BLACK & VEATCH Title: MOUNT AN	NALYSIS RE	PORT	Date:	5/26/2022
Appurtenance Ice Wind Loading			<u>Equations</u>	TIA-222-H
Exposure Category =	В		$K_z = 2.01 (z / z_g)^{2/\alpha}$	2.6.5.2
Risk Category =	Ш			
Topographic Category =	1		$K_{h} = e^{(f \cdot z/H)}$	2.6.6.2.1
Ice Wind Speed, V_{ice} =	50	mph		
Height Above Ground, z =	163.625	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$	2.6.6.2.1
Crest Height, H =	N/A	ft		
Velocity Pressure Coefficient, K _z =	1.14	psf	$K_e = e^{-0.000032^{-25}}$	2.6.8
Topographic Factor, K _{zt} =	1.00			
Wind Directionality Factor, K _d =	0.95		$q_z = 0.00256 K_z K_{zt} K_e K_d V^2$	2.6.11.6
Shielding Factor, K _a =	0.90			
Ground Elevation Factory, $K_e =$	1.000		$F_{A(ice)} = q_{z(ice)}G_{h}(EPA)_{A(ice)}$	2.6.11.2
Ice Wind Velocity Pressure, q _{z(ice)} =	6.916			
Factored Ice Thickness, T _{iz} =	1.35	in	$F_{M(ice)} = q_{z(ice)}G_hC_fD_{p(ice)}$	2.6.11.2
Gust Effect Factor, G _h =	1			1

Appurtenance Ice Wind Loads									
Name	Height	Height Width		Normal			Tangential		
Name	w/ Ice (ft)	w/ Ice (ft)) w/ Ice (ft)	Ca	EPA FT2	F _A (lb)	Ca	EPA FT2	F _A (lb)
876F-70-2HSMP40DF1/2	20.22	3.81	0.47	-	13.97	96.65	-	13.97	96.65

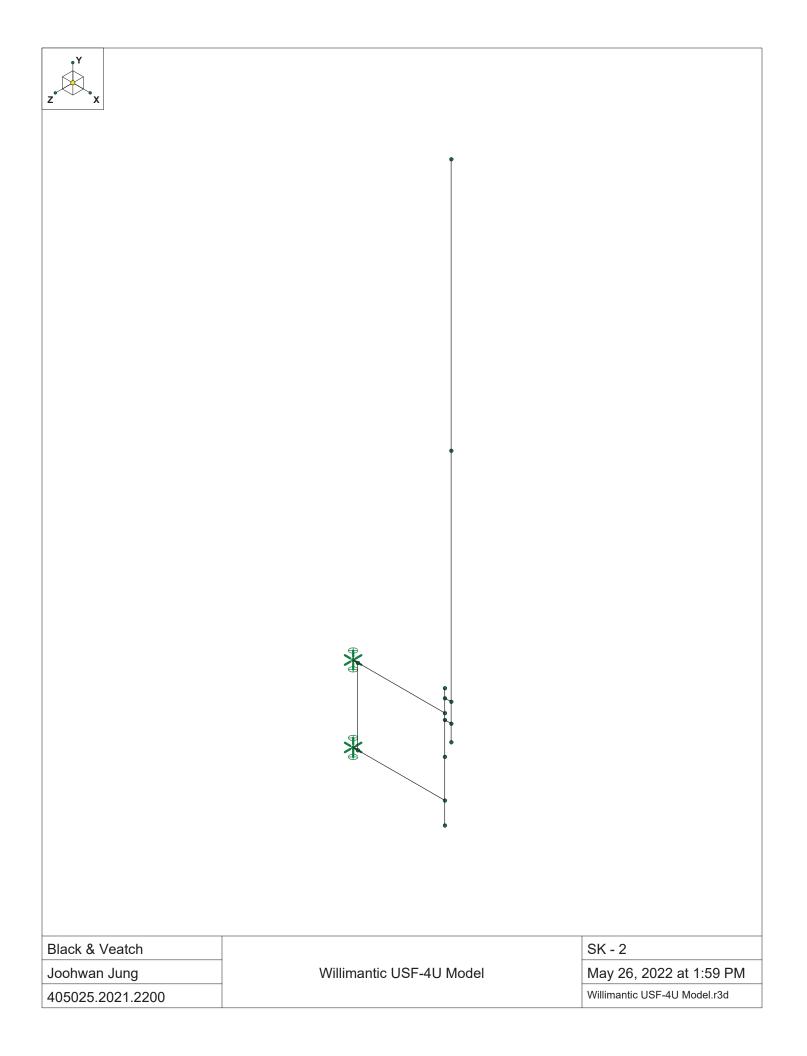
Client: Eversource

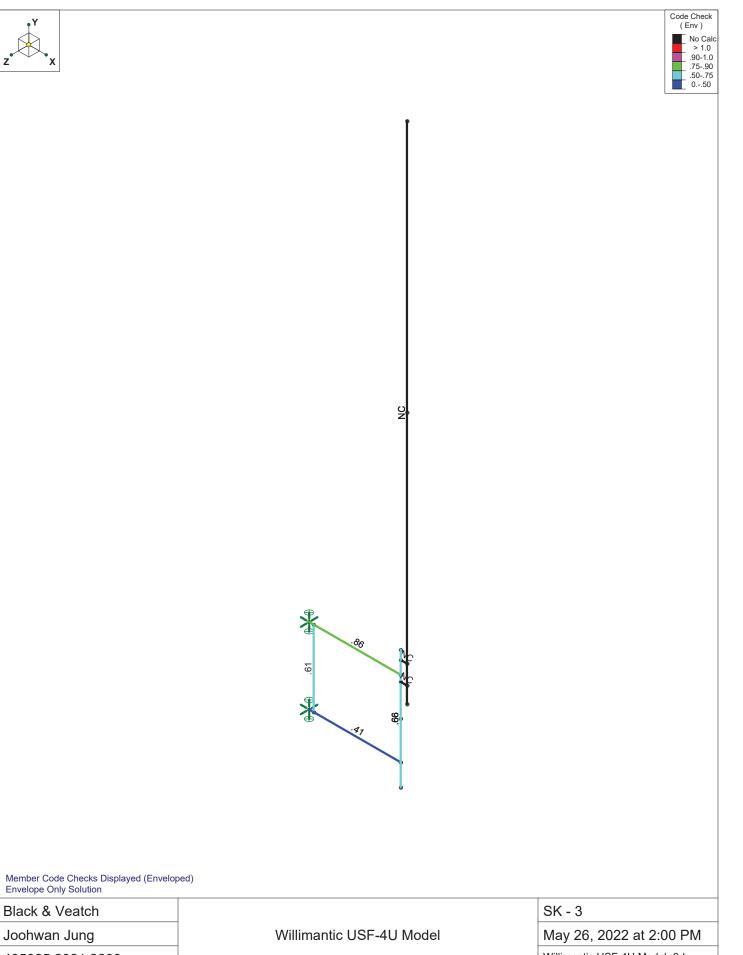
Computed By: Joohwan Jung

	Site Name: WILLIMANTIC (5568)		Date: 5/26/2022
R			Verified By: Josh Riley
BLACK & VEATCH	Title: MOUNT ANALYSIS REPORT		Date: 5/26/2022
Member Ice Wir	nd Loading	<u>Equations</u>	TIA-222-H
	Exposure Category - B	$K = 2.01 (-1)^{2/\alpha}$	2652

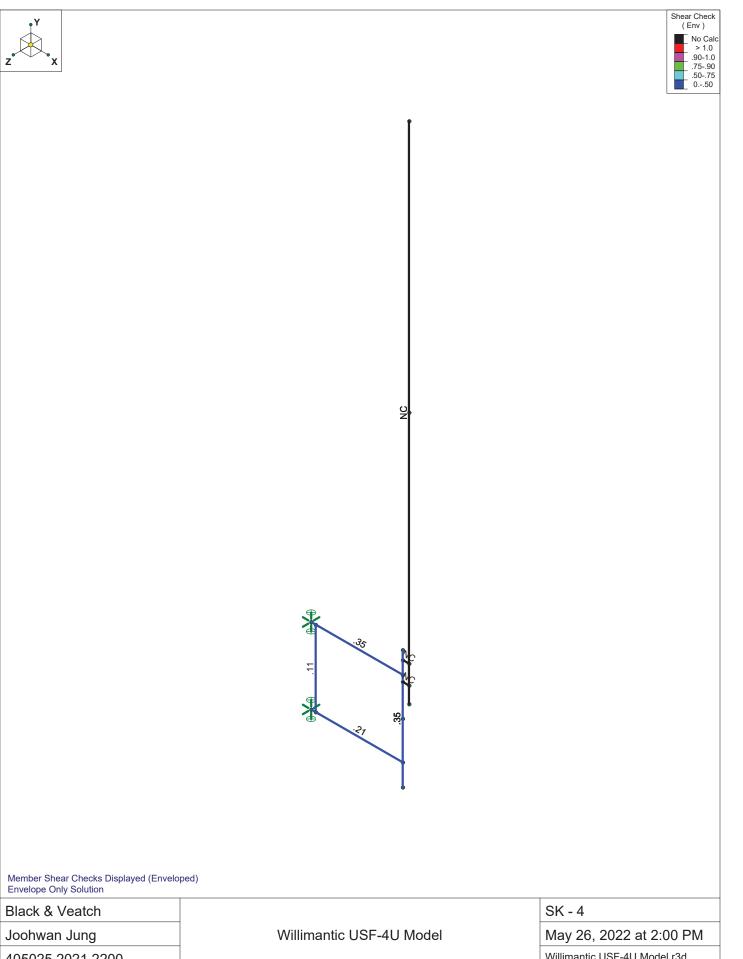
Exposure Category =	В		$K_z = 2.01 (z / z_g)^{2/\alpha}$	2.6.5.2
Risk Category =	111			
Topographic Category =	1		$K_h = e^{(f \cdot z/H)}$	2.6.6.2.1
Ice Wind Speed, V_{ice} =	50	mph		
Height Above Ground, z =	163.625	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$	2.6.6.2.1
Crest Height, H =	N/A	ft		
Velocity Pressure Coefficient, $K_z =$	1.14	psf	$K_e = e^{-0.000032^{-25}}$	2.6.8
Topographic Factor, K _{zt} =	1.00			
Wind Directionality Factor, K _d =	0.95		$q_z = 0.00256 K_z K_{zt} K_e K_d V^2$	2.6.11.6
Shielding Factor, K _a =	0.90			
Ground Elevation Factory, K_e =	1.000		$F_{A(ice)} = q_{z(ice)}G_{h}(EPA)_{A(ice)}$	2.6.11.2
Ice Wind Velocity Pressure, q _{z(ice)} =	6.916			
Factored Ice Thickness, T _{iz} =	1.35	in	$F_{M(ice)} = q_{z(ice)}G_hC_fD_{p(ice)}$	2.6.11.2
Gust Effect Factor, G _h =	1		ľ	

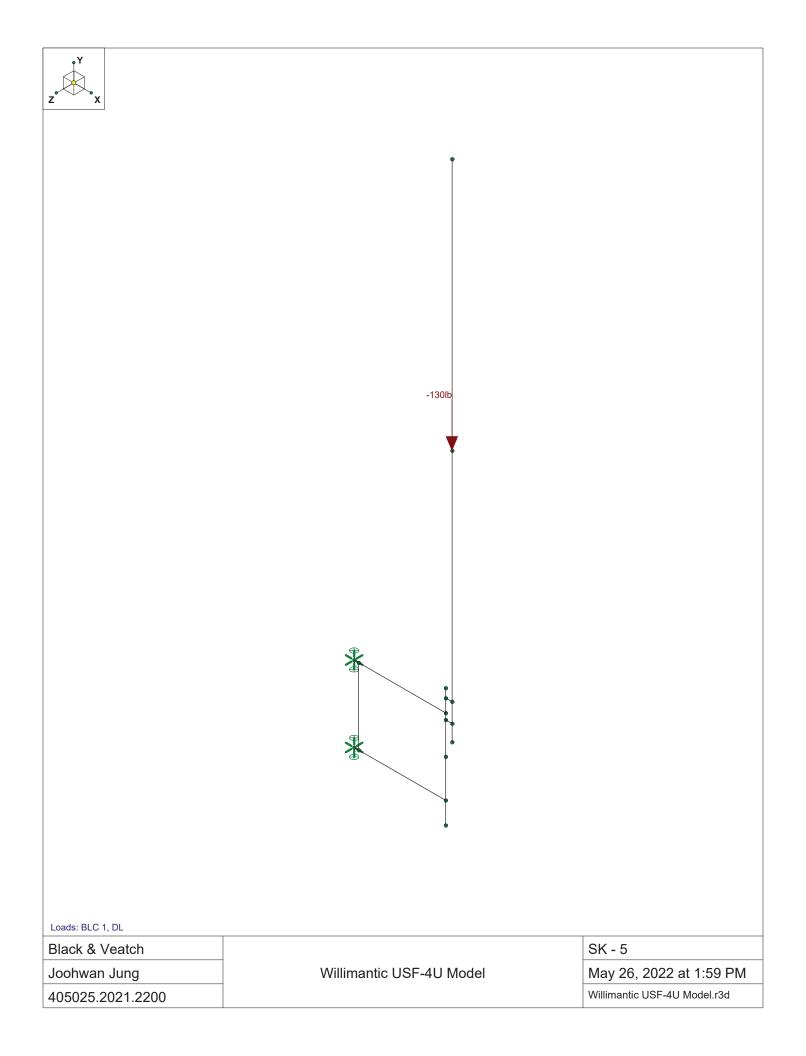
Member Ice Wind Loads												
Name	Depth w/ Ice (ft)	Width w/ Ice (ft)	C _f	D _{p(ice)} (ft)	F _{M(ice)} (Ib/ft)							
Arm: HSS3X3X3	0.47	0.47	2	0.47	6.57							
Bracing: Pipe 2.0 Std	0.42		1.2	0.42	3.51							
Mount Pipe: Pipe 3.0 Std	0.52		1.2	0.52	4.29							




May 26, 2022

WILLIMANTIC


APPENDIX 2: RISA PRINTOUTS



Willimantic USF-4U Model.r3d

405025.2021.2200

Willimantic USF-4U Model.r3d

May 26, 2022 2:00 PM Checked By:_

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in ²)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company : Black & Veatch Designer : Joohwan Jung Job Number : 405025.2021.2200

(Global) Model Settings, Continued

Seismic Code	ASCE 7-16
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/f	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Arm	HSS3X3X3	Beam	None	A53 Gr.B	Typical	1.89	2.46	2.46	4.03
2	Bracing	PIPE 2.0	Column	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
3	Mount Pipe	PIPE 3.0	Column	None	A53 Gr.B	Typical	2.07	2.85	2.85	5.69

General Material Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]
1	gen Conc3NW	3155	1372	.15	.6	.145
2	gen Conc4NW	3644	1584	.15	.6	.145
3	gen Conc3LW	2085	906	.15	.6	.11
4	gen Conc4LW	2408	1047	.15	.6	.11
5	gen Alum	10100	4077	.3	1.29	.173
6	gen Steel	29000	11154	.3	.65	.49
7	gen Plywood	1800	38	0	.3	.035
8	RIGID	1e+6		.3	0	0

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction		Reaction	
2	N3	Reaction	Reaction	Reaction		Reaction	

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N2			Arm	Beam	None	A53 Gr.B	Typical
2	M2	N3	N4			Arm	Beam	None	A53 Gr.B	Typical
3	M3	N5	N6			Bracing	Column	None	A53 Gr.B	Typical
4	M4	N7	N8			Mount Pipe	Column	None	A53 Gr.B	Typical
5	M5	N9	N10			RIGID	None	None	RIGID	Typical
6	M6	N12	N13			RIGID	None	None	RIGID	Typical
7	M7	N15	N14			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M1					-	Yes				None
2	M2						Yes				None
3	M3						Yes	** NA **			None
4	M4						Yes	** NA **			None
5	M5						Yes	** NA **			None
6	M6						Yes	** NA **			None
7	M7						Yes	** NA **			None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	[Lcomp bot[in]	L-torqu	. Kyy	Kzz	Cb	Function
1	M1	Arm	43.5			Lbyy						Lateral
2	M2	Arm	43.5			Lbyy						Lateral
3	M3	Bracing	36									Lateral
4	M4	Mount Pipe	56.5									Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	DL	DĹ	_	-1		1				-
2	Maintenance LL - LV	LL				1				
3	Installation LL - LM	LL				1				
4	Wind - 0 Deg (X)	WL				1		4		
5	Wind - 30 Deg (X)	WL				1		4		
6	Wind - 60 Deg (X)	WL				1		4		
7	Wind - 90 Deg (X)	WL				1		4		
8	Wind - 120 Deg (X)	WL				1		4		
9	Wind - 150 Deg (X)	WL				1		4		
10	Wind - 180 Deg (X)	WL				1		4		
11	Wind - 210 Deg (X)	WL				1		4		
12	Wind - 240 Deg (X)	WL				1		4		
13	Wind - 270 Deg (X)	WL				1		4		
14	Wind - 300 Deg (X)	WL				1		4		
15	Wind - 330 Deg (X)	WL				1		4		
16	Wind - 0 Deg (Z)	WL				1		4		
17	Wind - 30 Deg (Z)	WL				1		4		
18	Wind - 60 Deg (Z)	WL				1		4		

Company:Black & VeatchDesigner:Joohwan JungJob Number:405025.2021.2200Model Name:Willimantic USF-4U Model

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
19	Wind - 90 Deg (Z)	WĽ	-	-	-	1		4	·	·
20	Wind - 120 Deg (Z)	WL				1		4		
21	Wind - 150 Deg (Z)	WL				1		4		
22	Wind - 180 Deg (Z)	WL				1		4		
23	Wind - 210 Deg (Z)	WL				1		4		
24	Wind - 240 Deg (Z)	WL				1		4		
25	Wind - 270 Deg (Z)	WL				1		4		
26	Wind - 300 Deg (Z)	WL				1		4		
27	Wind - 330 Deg (Z)	WL				1		4		
28	Ice DL	DL				1		4		
29	Ice Wind - 0 Deg (X)	WL				1		4		
30	Ice Wind - 30 Deg (X)	WL				1		4		
31	Ice Wind - 60 Deg (X)	WL				1		4		
32	Ice Wind - 90 Deg (X)	WL				1		4		
33	Ice Wind - 120 Deg (X)	WL				1		4		
34	Ice Wind - 150 Deg (X)	WL				1		4		
35	Ice Wind - 180 Deg (X)	WL				1		4		
36	Ice Wind - 210 Deg (X)	WL				1		4		
	Ice Wind - 240 Deg (X)	WL				1		4		
	Ice Wind - 270 Deg (X)	WL				1		4		
39	Ice Wind - 300 Deg (X)	WL				1		4		
40	Ice Wind - 330 Deg (X)	WL				1		4		
41	Ice Wind - 0 Deg (Z)	WL				1		4		
42	Ice Wind - 30 Deg (Z)	WL				1		4		
43	Ice Wind - 60 Deg (Z)	WL				1		4		
44	Ice Wind - 90 Deg (Z)	WL				1		4		
45	Ice Wind - 120 Deg (Z)	WL				1		4		
	Ice Wind - 150 Deg (Z)	WL				1		4		
	Ice Wind - 180 Deg (Z)	WL				1		4		
	Ice Wind - 210 Deg (Z)	WL				1		4		
49	Ice Wind - 240 Deg (Z)	WL				1		4		
50	Ice Wind - 270 Deg (Z)	WL				1		4		
51	Ice Wind - 300 Deg (Z)	WL				1		4		
52	Ice Wind - 330 Deg (Z)	WL				1		4		

Load Combinations

	Description	S	P	SR	.B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	WIND LOAD COMBOS (140 MPH)																							
2	1.2DL + WL (0 DEG)	Yes	Υ		1	1.2	4	1	16	1														
3	1.2DL + WL (30 DEG)	Yes	Y		1	1.2	5	1	17	1														
4	1.2DL + WL (60 DEG)	Yes	Υ		1	1.2	6	1	18	1														
5	1.2DL + WL (90 DEG)	Yes	Υ		1	1.2	7	1	19	1														
6	1.2DL + WL (120 DEG)	Yes	Υ		1	1.2	8	1	20	1														
7	1.2DL + WL (150 DEG)	Yes	Υ		1	1.2	9	1	21	1														
8	1.2DL + WL (180 DEG)	Yes	Υ		1	1.2	10	1	22	1														
9	1.2DL + WL (210 DEG)	Yes	Υ		1	1.2	11	1	23	1														
10	1.2DL + WL (240 DEG)	Yes	Υ		1	1.2	12	1	24	1														
11	1.2DL + WL (270 DEG)	Yes	Υ		1	1.2	13	1	25	1														
12	1.2DL + WL (300 DEG)	Yes			1	1.2	14	1	26	1														
13	1.2DL + WL (330 DEG)	Yes	Υ		1	1.2	15	1	27	1														
14																								
15	MOUNT LOAD COMBOS (30 MPH)																							
16	1.4DL	Yes	Y		1	1.4																		
17	1.2DL + 1.5LV	Yes	Υ		1	1.2	2	1.5																
18	1.2DL + 1.5LM + WL (0 DEG)	Yes	Y		1	1.2	3	1.5	4	.046	16	.046												

Company:Black & VeatchDesigner:Joohwan JungJob Number<td:</td>405025.2021.2200Model Name:Willimantic USF-4U Model

Load Combinations (Continued)

	Description	S I	P SF	RВ.	Fa.	.B	. Fa	.B	Fa	.B	FaE	3 F	a	В	Fa	В	Fa	.B	Fa	.B	Fa	В	Fa
19	1.2DL + 1.5LM + WL (30 DEG)	Yes	Y	1	1.2	3	1.5	5	.046	۶ 17	.046												
20	1.2DL + 1.5LM + WL (60 DEG)			1	1.2						.046												
21	1.2DL + 1.5LM + WL (90 DEG)			1	1.2		1.5				.046												
22	1.2DL + 1.5LM + WL (120 DEG)	Yes		1	1.2	3	1.5	8	.046	20	.046												
23	1.2DL + 1.5LM + WL (150 DEG)	Yes	Y	1	1.2		1.5		.046	21	.046												
24	1.2DL + 1.5LM + WL (180 DEG)	Yes	Y	1	1.2						.046												
25	1.2DL + 1.5LM + WL (210 DEG)	Yes	Y	1	1.2	3	1.5	11	.046	23	.046												
26	1.2DL + 1.5LM + WL (240 DEG)	Yes	Y	1	1.2	3	1.5	12	.046	824	.046												
27	1.2DL + 1.5LM + WL (270 DEG)	Yes	Y	1	1.2	3	1.5	13	.046	25	.046												
28	1.2DL + 1.5LM + WL (300 DEG)	Yes	Y	1	1.2	3					.046												
29	1.2DL + 1.5LM + WL (330 DEG)	Yes	Y	1	1.2						.046												
30																							
31	ICE LOAD COMBOS (1", 50 MPH)																						
32	1.2DL + Ice DL + Ice WL (0 DEG)	Yes	Y	1	1.2	28	1	29	1	41	1												
33	1.2DL + Ice DL + Ice WL (30 DEG)	Yes	Y	1	1.2	28	1	30		42	1												
34	1.2DL + Ice DL + Ice WL (60 DEG)	Yes	Y	1	1.2			31		43	1												
35	1.2DL + Ice DL + Ice WL (90 DEG)	Yes	Y	1	1.2	28	1	32	1	44	1												
36	1.2DL + Ice DL + Ice WL (120 DEG)	Yes	Y	1	1.2	28	1	33	1	45	1												
37	1.2DL + Ice DL + Ice WL (150 DEG)	Yes	Y	1	1.2	28	1	34	1	46	1												
38	1.2DL + Ice DL + Ice WL (180 DEG)	Yes	Y	1	1.2	28	1	35	1	47	1												
39	1.2DL + Ice DL + Ice WL (210 DEG)	Yes	Y	1		28		36		48	1												
40	1.2DL + Ice DL + Ice WL (240 DEG)	Yes	Y	1		28		37		49													
41	1.2DL + Ice DL + Ice WL (270 DEG)	Yes	Y	1	1.2			38		50													
42	1.2DL + Ice DL + Ice WL (300 DEG)	Yes	Y	1	1.2	28		39		51	1												
43	1.2DL + Ice DL + Ice WL (330 DEG)	Yes	Y	1		28		40		52	1												
44																							

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N1	max	1852.977	2	1370.544	8	2145.448	5	Ō	43	3939.198	11	Ō	43
2		min	-2419.34	8	-1095.428	2	-2145.448	11	0	2	-3939.198	5	0	2
3	N3	max	1606.784	8	1359.675	2	1332.903	11	0	43	1368.688	5	0	43
4		min	-1040.422	2	-1106.311	8	-1332.903	5	0	2	-1368.688	11	0	2
5	Totals:	max	812.555	2	639.233	17	812.544	5						
6		min	-812.556	8	264.234	8	-812.544	11						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[LC	Shear.	Loc[Dir	LC	phi*Pnc	phi*Pnt	.phi*Mn	.phi*MnCb	Eqn
1	M1	HSS3X3X3	.858	2.266	11	.350	2.266	z	11	55265	59535	5171.25	5171.25 2	H3-6
2	M2	HSS3X3X3	.408	43.5	10	.208	43.5	Ζ	11	55265	59535	5171.25	5171.25 2	.H1-1b
3	M3	PIPE 2.0	.609	0	11	.109	0		11	28843	32130	1871.625	1871.6252	.H1-1b
4	M4	PIPE 3.0	.656	13.5	11	.351	13.5		11	57908	65205	5748.75	5748.75 1	H3-6

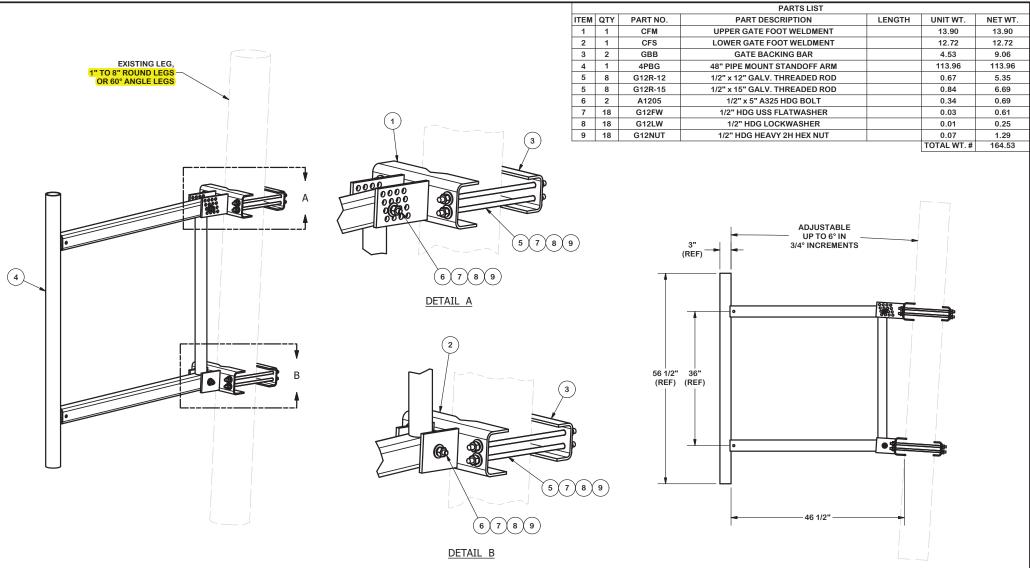
WILLIMANTIC

APPENDIX 3: ATTACHMENTS

870 SERIES DUAL EXPOSED DIPOLE

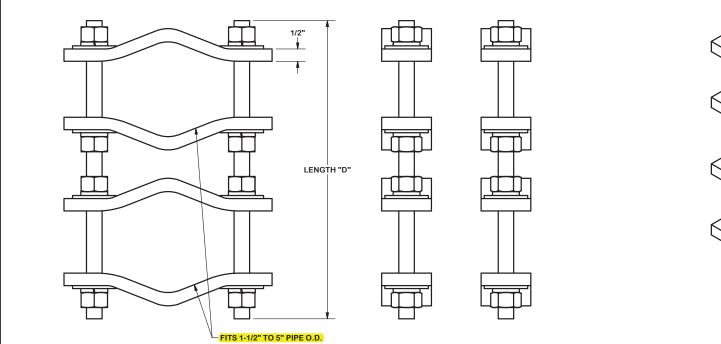
876F-70-2HSMP40DF1/2

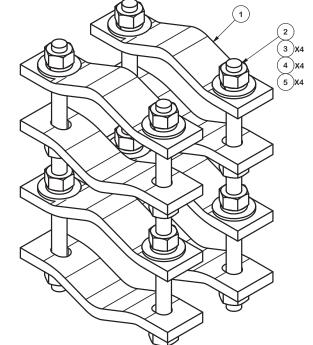
The 876F-70-2HSMP40DF1/2 Dual Exposed Dipole is well suited for multicoupled RF system. It has an extremely rugged design for use in severe environmental conditions. It has internal cabling and a fix dipoleto-mast spacing. This antenna is a special version of the 876F-70 with increased spacing between the two antennas, giving an isolation of 40 dB. It's heavy duty and Low PIM deign. This antenna can be black anodized, please contact technical support for more information.


The 1/2 wave pattern spacing version offer bidirectional pattern with more than 5 dBd Gain at 220 MHz.

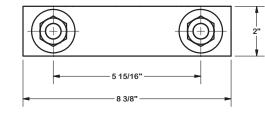
Electrical Specifications	876F-70-2HSMP40DF1/2
Frequency Range, MHz	215-225
Nominal Gain, dBd	5.0 (5.2 @ 220MHz)
Isolation , dB	40
Bandwidth 1.5:1 VSWR, MHz	1.5:1 (10)
Polarization	Vertical
Pattern	Bidirectional
Power Rating, Watts	300
PIM. (2x20W, 3rd ord.), dBc	150
Nominal Impedance, Ohms	50
Lightning Protection	DC Ground
Termination	Dual Feeds Terminating in 7/16 DIN F
Mechanical Specifications	876F-70-HDWSM-40
Length, in (mm)	240 (6096)
Width (1/2 Wave Spacing), in (mm)	43 (1092)
Weight, lbs. (kg)	130 (59)
Rated Wind Velocity, No Ice, mph (km/h)	140 (225)
Rated Wind Velocity, 1/2" ice, mph (km/h)	105 (169)
Lateral Thrust @ 100 mph, wind, lbs. (N)	222 (988)
Torsional Moment (N•M)	471 (638)
Projected Area, ft ² (m ²)	8.5 (0.78)

TOWER/MAST SIZE AT PROPOSED ANTENNA ATTACHMENT = 3.5"± DIAMETER.

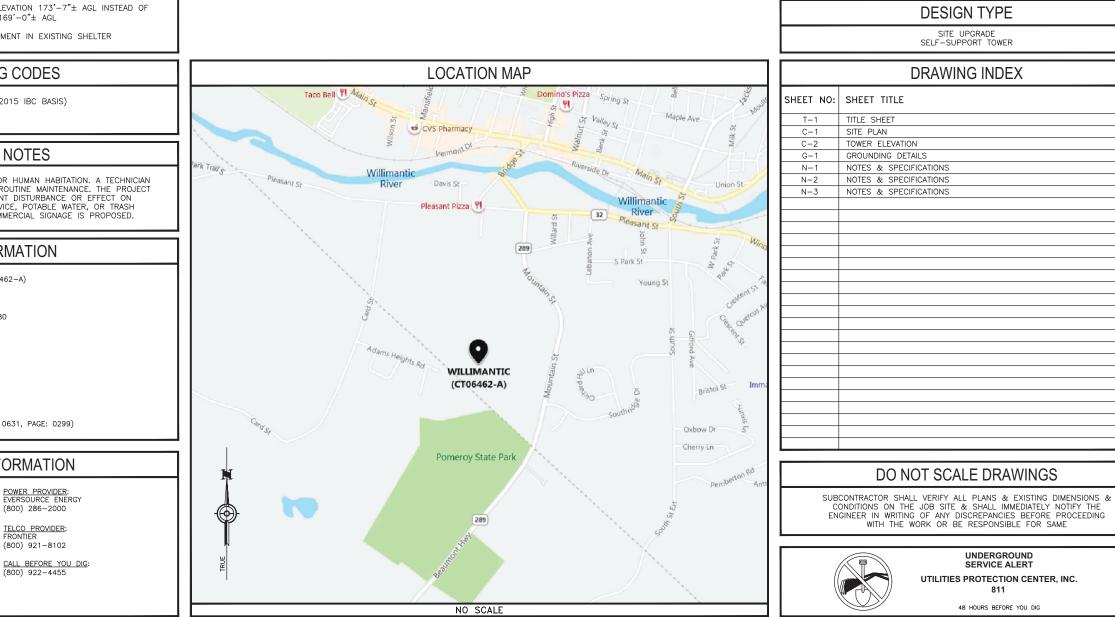



SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060") PROPERTARY MOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT MOUSTREA AND CONSIDERED A TRADE SECRET. ANY USE ON DISCLOSURE WITHOUT THE COMENTO SALE OF THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT MOUSTREA AND CONSIDERED A TRADE SECRET. ANY USE ON DISCLOSURE WITHOUT THE COMENTO SALE OF THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT MOUSTREAS AND CONSIDERED A TRADE SECRET. ANY USE ON DISCLOSURE WITHOUT THE COMENTO SALE OF THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT MOUSTREAS AND CONSIDERED A TRADE SECRET. ANY USE ON DISCLOSURE WITHOUT THE COMENTO SALE OF THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT MOUSTREAS AND CONSIDERED A TRADE SECRET. ANY USE ON DISCLOSURE WITHOUT THE COMENTO SALE OF THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT MOUSTREAS AND CONSIDERED A TRADE SECRET. ANY USE ON DISCLOSURE WITHOUT THE COMENTO SALE OF THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT MOUSTREAS AND CONSIDER OF A TRADE SECRET. ANY USE ON DISCLOSURE WITHOUT THE COMENTOR OF THE DATA AND THE DATA	48" ULTIMATE UNI STANDOFF FRA				Engineering Support Team: 888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	, 		
	CPD NO.		DRAWN BY RCH 2/4/2011	ENG. APPROVAL	PART NO.	USF	-4U		1 PA
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060") Ropretation vote: In bata and develonquee contained in this drawing are proprietary information of validoit			DRAWING USAGE CUSTOMER	СНЕСКЕД ВУ ВМС 2/16/2011	DWG. NO.	USF	-4U)F 1

|--|--|


	PARTS LIST								
ITEM Q		QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.		
	1	8	DCP	CLAMP HALF, 1/2" THICK, 8-3/8"		2.40	19.20		
	2	В	С	5/8" THREADED ROD	D	E	F		
	3	16	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	2.08		
	4	16	G58LW	5/8" HDG LOCKWASHER		0.03	0.42		
	5	16	G58FW	5/8" HDG USS FLATWASHER		0.07	1.13		

		VA	RIABLE PARTS T	ABLE		
ASSEMBLY "A"	QTY "B"	PART "C"	LENGTH "D"	UNIT WT. "E"	NET WT. "F"	TOTAL WEIGHT
DCP12K	4	G58R-12	12"	1.05	4.18	27.01
DCP18K	4	G58R-18	18"	1.57	6.27	29.10


TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	RIPTIO	N PIPE TO PIPE CLA 1-1/2" TO 5" PI 1/2" THICK CLA	IPE	STRE Engineering Att Support Team: Lo 1-888-753-7446 Pl Sa		Locations: New York, NY Atlanta, GA Los Angeles, Ca Plymouth, IN Salem, OR Dallas, TX	A		
	CPD NO).	DRAWN BY KC8 8/21/2012	ENG. APPROVAL	P/	ART NO.	EE AS	SEMBLY "A	\"	<u> 1</u> ⊳
PROPRETARY MOTE: THE DATA MAY TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISOLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROVINED.	CLASS 81	^{SUB}	DRAWING USAGE CUSTOMER	СНЕСКЕД ВУ СЕК 1/22/2013	1	WG. NO.	D	СРххК		1 -

ATTACHMENT D – CONSTRUCTION DRAWINGS

ENERGY

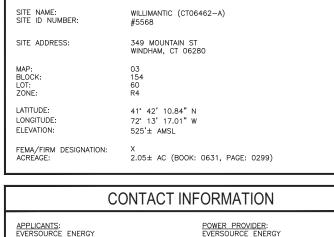
WILLIMANTIC (CT06462-A) **349 MOUNTAIN ST WINDHAM, CT 06280**

PROJECT SUMMARY

THE GENERAL SCOPE OF WORK CONSISTS OF THE FOLLOWING:

1. INSTALL (1) NEW DIPOLE ANTENNA AT ELEVATION 173'-7"± AGL INSTEAD OF (1) OMNI/WHIP ANTENNA AT ELEVATION 169'-0"± AGL

2. INSTALL (1) NEW RACK WITH DMR EQUIPMENT IN EXISTING SHELTER


GOVERNING CODES

2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS) 2017 NATIONAL ELECTRIC CODE TIA-222-H

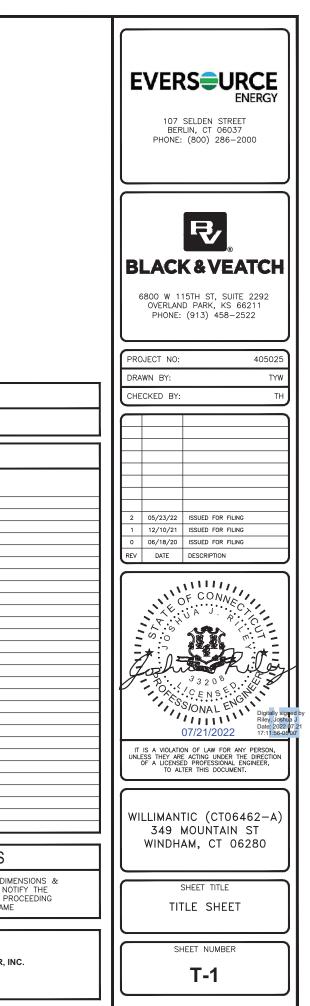
GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

SITE INFORMATION

(800) 286-2000

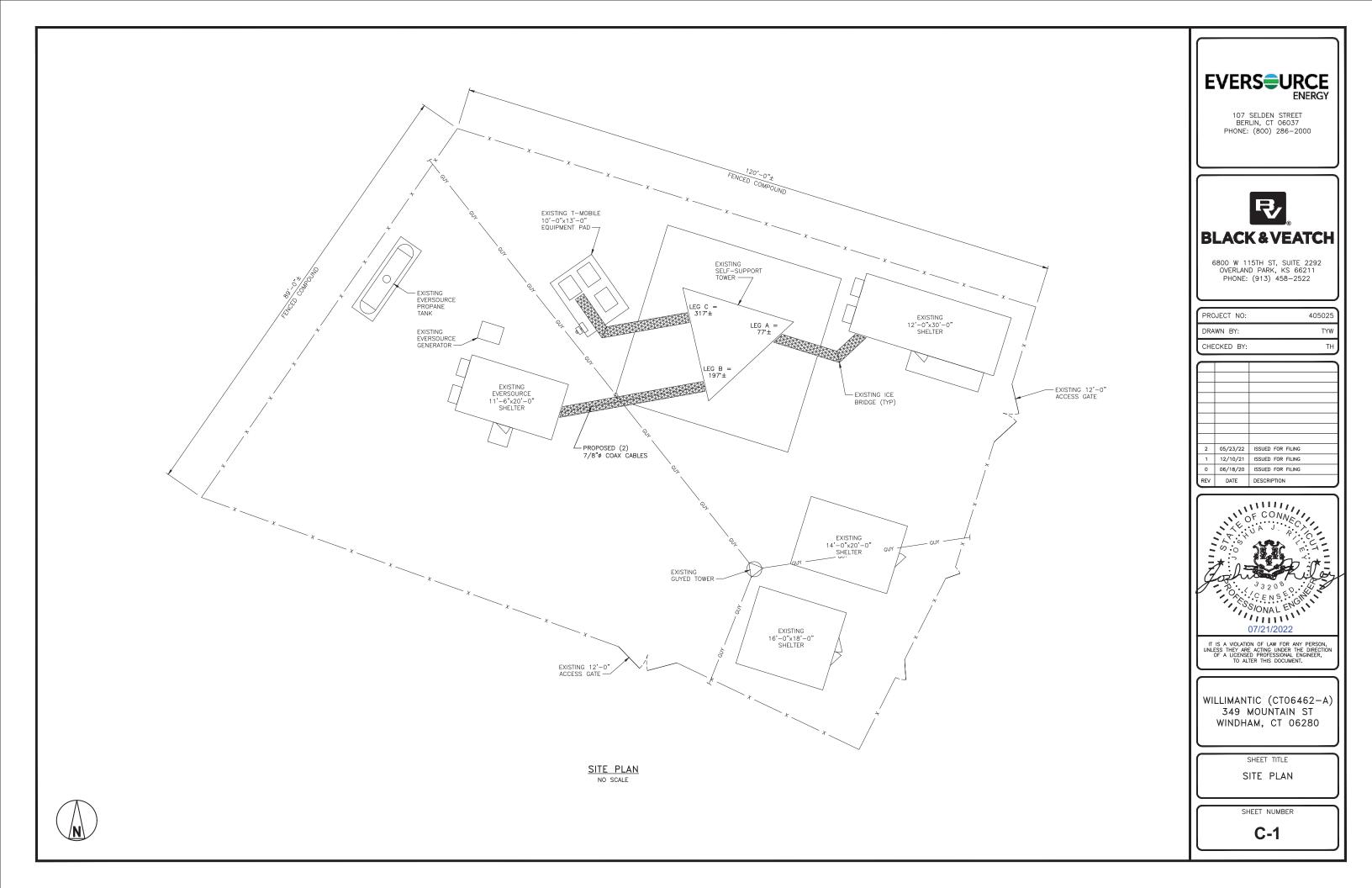
TELCO PROVIDER: FRONTIER

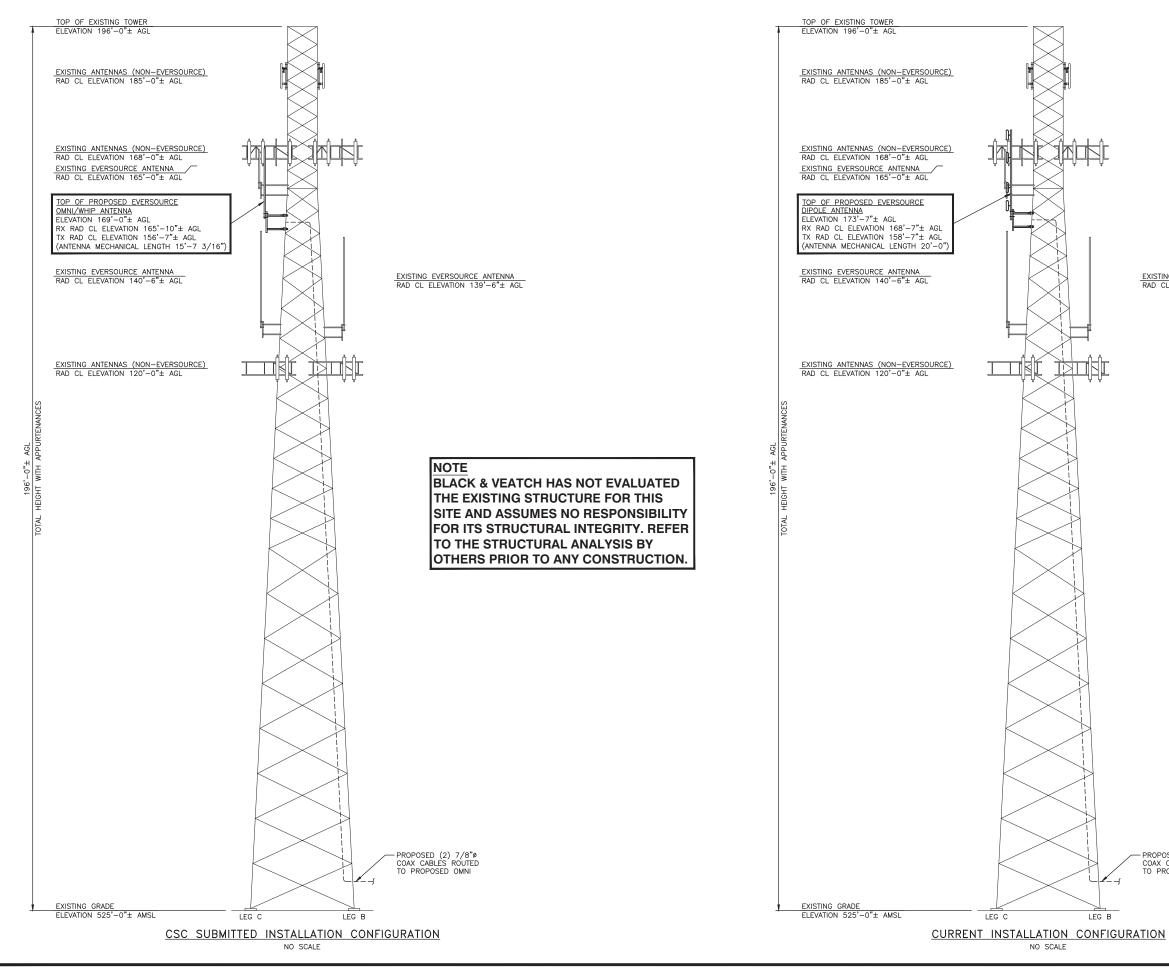

(800) 921-8102

(800) 922-4455

PROPERTY OWNER: SBA PROPERTIES INC 8051 CONGRESS AVE BOCA RATON, FL 33487

EVERSOURCE_ENERGY PROJECT_MANAGER: NIKOLL_PRECI (860) 655-3079

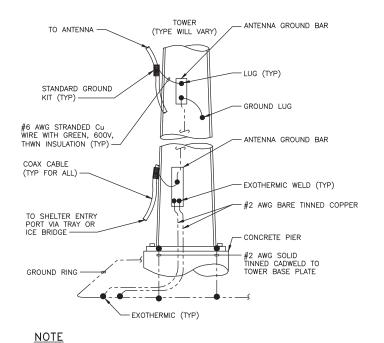


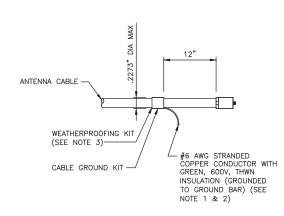

DESIGN TYPE

DRAWING INDEX

UNDERGROUND SERVICE ALERT UTILITIES PROTECTION CENTER, INC. 811

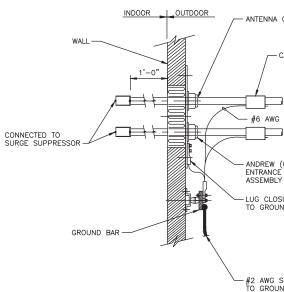
48 HOURS BEFORE YOU DIG

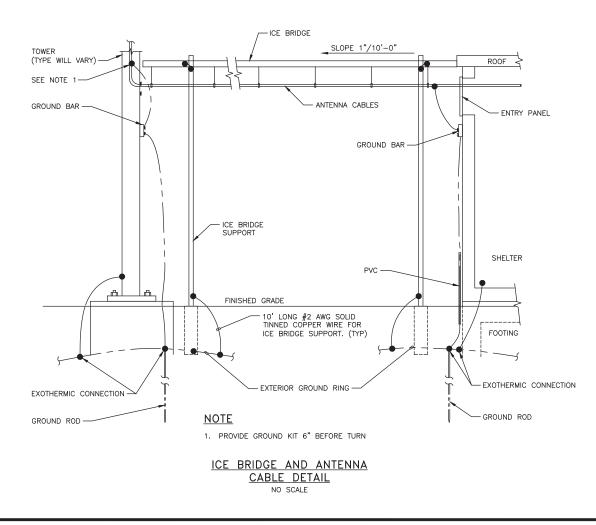



EVERS URC 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000	E SY
BLACK & VEATO 0VERLAND PARK, KS 66211 PHONE: (913) 458–2522	
PROJECT NO: 403 DRAWN BY:	5025 TYW
CHECKED BY:	TH
2 05/23/22 ISSUED FOR FILING 1 12/10/21 ISSUED FOR FILING	
0 06/18/20 ISSUED FOR FILING REV DATE DESCRIPTION	\exists
С С С С С С С С С С С С С С	411111111
IT IS A VIOLATION OF LAW FOR ANY PERS UNLESS THEY ARE ACTING UNDER THE DIRE OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.	ON, CTION R,
WILLIMANTIC (CT06462-	
349 MOUNTAIN ST WINDHAM, CT 06280	
349 MOUNTAIN ST	
349 MOUNTAIN ST WINDHAM, CT 06280 SHEET TITLE TOWER ELEVATION &	

EXISTING EVERSOURCE ANTENNA RAD CL ELEVATION 139'-6"± AGL

- PROPOSED (2) 7/8"ø COAX CABLES ROUTED TO PROPOSED DIPOLE


1. NUMBER OF GROUND BARS MAY VARY DEPENDING ON THE TYPE OF TOWER, ANTENNA LOCATION AND CONNECTION ORIENTATION. PROVIDE AS REQUIRED.


<u>NOTES</u>

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.
- 3. WEATHER PROOFING SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.

CONNECTION OF CABLE GROUND KIT TO ANTENNA CABLE

CABLE INSTALLATION WITH WALL FEED THRU ASSEMBLY

ANTENNA CABLE GROUNDING NO SCALE

CABLES (TYP) CABLE GROUNDING KIT	EVERS EVERS ENERGY 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000
G (TYP) G (OR EQUAL) MULTIPLE E WALL FEED THRU Y ISURE PLATE IND BAR	BLACK & VEATCH 6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458–2522
SOLID TINNED BCW JND RING	PROJECT NO: 405025 DRAWN BY: TYW CHECKED BY: TH Image: Checked BY: TH
	WILLIMANTIC (CT06462-A) 349 MOUNTAIN ST WINDHAM, CT 06280 SHEET TITLE GROUNDING DETAILS SHEET NUMBER G-1

DESIGN BASIS

1. GOVERNING CODE: 2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS).

GENERAL CONDITIONS

- IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO COMPLY WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL BUILDING CODES, PERMIT CONDITIONS AND SAFETY CODES DURING CONSTRUCTION. 1.
- 2. THE ENGINEER IS NOT: A GUARANTOR OF THE INSTALLING CONTRACTOR'S WORK; RESPONSIBLE FOR SAFETY IN, ON OR ABOUT THE WORK SITE; IN CONTROL OF THE SAFETY OR ADEQUACY OF ANY BUILDING COMPONENT, SCAFFOLDING OR SUPERINTENDING THE WORK.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL PERMITS, INSPECTIONS, TESTING AND 3. CERTIFICATES NEEDED FOR LEGAL OCCUPANCY OF THE FINISHED PROJECT.
- THE CONTRACTOR IS RESPONSIBLE TO REVIEW THIS COMPLETE PLAN SET AND VERIFY THE EXISTING 4. INCOMPTICATIONS SHOWN IN THESE PLANS AS THEY RELATE TO THE WORK PRIOR TO SUBMITTING PRICE. SIGNIFICANT DEVIATIONS FROM WHAT IS SHOWN AFFECTING THE WORK SHALL BE REPORTED IMMEDIATELY TO THE CONSTRUCTION MANAGER.
- 5. DETAILS INCLUDED IN THIS PLAN SET ARE TYPICAL AND APPLY TO SIMILAR CONDITIONS.
- EXISTING ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIRING, AND EQUIPMENT OBSTRUCTING 6. THE WORK SHALL BE REMOVED AND/OR RELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER. TEMPORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.
- 7. THE CONTRACTOR SHALL DILIGENTLY PROTECT THE EXISTING BUILDING/SITE CONDITIONS AND THOSE OF ANY ADJOINING BUILDING/SITES AND RESTORE ANY DAMAGE CAUSED BY HIS ACTIVITIES TO THE PRE-CONSTRUCTION CONDITION
- 8. THE CONTRACTOR SHALL SAFEGUARD AGAINST: CREATING A FIRE HAZARD, AFFECTING TENANT EGRESS OR COMPROMISING BUILDING SITE SECURITY MEASURES.
- 9. THE CONTRACTOR SHALL REMOVE ALL DEBRIS AND CONSTRUCTION WASTE FROM THE SITE EACH DAY. WORK AREAS SHALL BE SWEPT AND MADE CLEAN AT THE END OF EACH WORK DAY.
- 10. THE CONTRACTOR'S HOURS OF WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND ORDINANCES AND BE APPROVED BY OWNER.
- 11. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE CONSTRUCTION MANAGER IF ASBESTOS IS ENCOUNTERED DURING THE EXECUTION OF HIS WORK. THE CONTRACTOR SHALL CEASE ALL ACTIVITIES WHERE THE ASBESTOS MATERIAL IS FOUND UNTIL NOTIFIED BY THE CONSTRUCTION MANAGER TO RESUME OPERATIONS.

THERMAL & MOISTURE PROTECTION

- FIRE-STOP ALL PENETRATIONS FOR ELECTRICAL CONDUITS OR WAVEGUIDE CABLING THROUGH BUILDING WALLS, FLOORS, AND CEILINGS SHALL BE FIRESTOPPED WITH ACCEPTED MATERIALS TO MAINTAIN THE FIRE RATING OF THE EXISTING ASSEMBLY. ALL FILL MATERIAL SHALL BE SHAPED, FITTED, AND PERMANENTLY SECURED IN PLACE. FIRESTOPPING SHALL BE INSTALLED IN ACCORDANCE
- 2. HILTI CP620 FIRE FOAM OR 3M FIRE BARRIER FILL, VOID OR CAVITY MATERIAL OR ACCEPTED EQUAL SHALL BE APPLIED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS AND ASSOCIATED UNDERWRITERS LABORATORIES (UL) SYSTEM NUMBER.
- FIRESTOPPING SHALL BE APPLIED AS SOON AS PRACTICABLE AFTER PENETRATIONS ARE MADE AND 3. EQUIPMENT INSTALLED.
- FIRESTOPPED PENETRATIONS SHALL BE LEFT EXPOSED AND MADE AVAILABLE FOR INSPECTION BEFORE CONCEALING SUCH PENETRATIONS. FIRESTOPPING MATERIAL CERTIFICATES SHALL BE MADE AVAILABLE AT THE TIME OF INSPECTION.
- 5. ANY BUILDING ROOF PENETRATION AND/OR RESTORATION SHALL BE PERFORMED SO THAT THE ROOF WARRANTY IN PLACE IS NOT COMPROMISED. CONTRACTOR SHALL ARRANGE FOR OWNER'S ROOFING CONTRACTOR TO PERFORM ANY AND ALL ROOFING WORK IF SO REQUIRED BY EXISTING ROOF WARRANTY. OTHERWISE, ROOF SHALL BE MADE WATERTIGHT WITH LIKE CONSTRUCTION AS SOON AS PRACTICABLE AND AT COMPLETION OF CONSTRUCTION.
- ALL PENETRATIONS INTO AND/OR THROUGH BUILDING EXTERIOR WALLS SHALL BE SEALED WITH 6. SILICONE SEALER.
- WHERE CONDUIT AND CABLES PENETRATES FIRE RATED WALLS AND FLOORS, FIRE GROUT ALL PENETRATIONS IN ORDER TO MAINTAIN THE FIRE RATING USING A LISTED FIRE SEALING DEVICE OR GROUT
- 8. CONTRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS REQUIRED DURING CONSTRUCTION

SUBMITTALS

- 1. CONTRACTOR TO SUBMIT SHOP DRAWINGS TO ENGINEER FOR REVIEW PRIOR TO FABRICATION.
- 2. CONTRACTOR TO NOTIFY ENGINEER FOR INSPECTION PRIOR TO CLOSING PENETRATIONS.
- CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION 3. AND ERECTION OF ANY MATERIAL. THE ENGINEER SHALL BE NOTIFIED OF ANY CONDITIONS WHICH PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 " ZINC (HOT-DIPPED GALVANIZED) COATINGS" ON IRON AND STEEL PRODUCTS
- 5. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS FOR REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.

STEEL

1. MATERIAL

WIDE FLANGE:	ASTM A572, GR 50
TUBING:	ASTM A500, GR C
PIPE:	ASTM A53, GR B AND ASTM A572, GR 50
ANGLE:	ASTM A570, GR 50 AND ASTM A36
BOLTS:	ASTM A325
GRATING:	TYPE GW-2 (1"x3/16" BARS)
MISC. MATERIAL:	ASTM A36

ALL STEEL SHAPES SHALL BE HOT-DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A123 WITH A COATING WEIGHT OF 2 07/SE.

- DAMAGED GALVANIZED SURFACES SHALL BE CLEANED WITH A WIRE BRUSH AND PAINTED WITH TWO COATS OF COLD ZINC, "GALVANOX", "DRY GALV", "ZINC IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURER'S GUIDELINES. TOUCH UP DAMAGED NON GALVANIZED STEEL WITH CAUGE DAVID, WILCORD REFLECTION. SAME PAINT IN SHOP OR FIELD.
- 3. DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC "MANUAL OF STEEL CONSTRUCTION" 13TH EDITION.
- 4. THE STEEL STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER COMPLETION. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO INSURE THE SAFETY OF THE BUILDING AND ITS COMPONENT PARTS DURING ERECTION.
- 5. ALL STEEL ELEMENTS SHALL BE INSTALLED PLUMB AND LEVEL.
- 6. TOWER MANUFACTURER'S DESIGNS SHALL PREVAIL FOR TOWER

SITE GENERAL

- 1. CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORDANCE WITH OSHA REGULATIONS.
- 2. THESE PLANS DEPICT KNOWN UNDERGROUND STRUCTURES, CONDUITS, AND/OR PIPELINES. THE LOCATIONS FOR THESE ELEMENTS ARE BASED UPON THE VARIOUS RECORD DRAWINGS AVAILABLE. THE CONTRACTOR IS HEREBY ADVISED THAT THESE DRAWINGS MAY NOT ACCURATELY DEPICT AS-BUILT LOCATIONS AND OTHER UNKNOWN STRUCTURES. THE CONTRACTOR SHALL THEREFORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND ELEMENTS AND EXCAVATE WITH CARE BLASTING.
- 3. CONTRACTOR SHALL HAND DIG UTILITIES AS NEEDED, CONTRACTOR SHALL PROVIDE, BUT IS NOT AND D) TRENCHING AND EXCAVATION
- 4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 5. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, OR OTHER UTILITIES, WHICH THE WORK, SUBJECT TO THE APPROVAL OF THE CONSTRUCTION MANAGER
- 6. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED DURING CONSTRUCTION
- 7. MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE.
- SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER.
- THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF EXCAVATIONS TO PROTECT ADJACENT PROPERTIES AND NEW WORK. GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION AND EROSION CONTROL GUIDELINES.

AFTER CALLING MARKOUT SERVICE AT 1-800-272-4480 48 HOURS BEFORE DIGGING, DRILLING OR

ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTILITIES WHERE ENCOUNTERED, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION, SHALL BE RELOCATED AS DIRECTED BY ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. LIMITED TO, APPROPRIATE A) FALL PROTECTION, B) CONFINED SPACE ENTRY, C) ELECTRICAL SAFETY,

INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED, AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT THE POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF

CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE OR PRE-CONSTRUCTION CONDITION WITH AS GOOD, OR BETTER,

THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATIONS GREATER THAN 5 FEET IN DEPTH OR LESS WHERE SOIL CONDITIONS ARE DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-2522

PROJECT NO:	405025
DRAWN BY:	TYW
CHECKED BY:	тн

2	05/23/22	ISSUED FOR FILING
1	12/10/21	ISSUED FOR FILING
0	06/18/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION
· · · ·		

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

WILLIMANTIC (CT06462-A) 349 MOUNTAIN ST WINDHAM, CT 06280

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-1

ELECTRICAL

- CONTRACTOR SHALL VERIFY EXISTING ELECTRIC SERVICE TYPE AND CAPACITY AND ORDER NEW ELECTRIC SERVICE FROM LOCAL ELECTRIC UTILITY, WHERE APPLICABLE.
- 2. ALL ELECTRICAL WORK SHALL BE IN ACCORDANCE WITH ALL APPLICABLE CODES, AND SHALL BE ACCEPTABLE TO ALL AUTHORITIES HAVING JURISDICTION. WHERE A CONFLICT EXISTS BETWEEN CODES, PLAN AND SPECIFICATIONS, OR AUTHORITIES HAVING JURISDICTION, THE MORE STRINGENT AUTHORITIES SHALL APPLY.
- 3. CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, ETC, FOR A COMPLETE AND PROPERLY OPERATIVE SYSTEM ENERGIZED THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SPECIFIED HEREIN AND/OR HERWISE REQUIRED.
- 4. ALL ELECTRICAL CONDUCTORS SHALL BE 100% COPPER AND SHALL HAVE TYPE THHN INSULATION UNLESS INDICATED OTHERWISE.
- CONDUIT SHALL BE THREADED RIGID GALVANIZED STEEL OR EMT WITH ONLY COMPRESSION TYPE 5. COUPLINGS AND CONNECTORS. ALL MADE UP WRENCH TIGHT.
- 6. ALL BURIED CONDUIT SHALL BE MINIMUM SCH 40 PVC UNLESS NOTED OTHERWISE, OR AS PER LOCAL CODE REQUIREMENTS.
- PROVIDE FLEXIBLE STEEL CONDUIT OR LIQUID TIGHT FLEXIBLE STEEL CONDUIT TO ALL VIBRATING EQUIPMENT, INCLUDING HVAC UNITS, TRANSFORMERS, MOTORS, ETC, OR WHERE EQUIPMENT IS PLACED UPON A SLAB ON GRADE. 7.
- 8. ALL BRANCH CIRCUITS AND FEEDERS SHALL HAVE A SEPARATE GREEN INSULATED EQUIPMENT GROUNDING CONDUCTOR BONDED TO ALL ENCLOSURES, PULLBOXES, ETC.
- 9. CONDUIT AND CABLE WITHIN CORRIDORS SHALL BE CONCEALED AND EXPOSED ELSEWHERE, UNLESS NOTED OTHERWISE.
- 10. ELECTRICAL MATERIALS INSTALLED ON ROOFTOP SHALL BE LISTED FOR NEMA 3R USE. —AND ALL WIRING WITHIN A VENTILATION DUCT SHALL BE LISTED FOR SUCH USE. IN GENERAL WIRING METHODS WITHIN A DUCT SHALL BE AN MC CABLE WITH SMOOTH OR CORRUGATED METAL JACKET AND HAVE NO OUTER COVERING OVER THE METAL JACKET. INTERLOCKED ARMOR TYPE OF MC CABLE IS NOT ACCEPTABLE FOR THIS APPLICATION. CONTRACTOR CAN ALSO USE TYPE MI CABLE IN THE VENTILATION DUCT PROVIDED IT DOES NOT HAVE ANY OUTER COVERINGS OVER THE METAL EXTERIOR.
- 11. WIRING DEVICES SHALL BE SPECIFICATION GRADE, AND WIRING DEVICE COVER PLATES SHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED.

GROUNDING

- 1. #6 THWN SHALL BE STRANDED #6 COPPER WITH GREEN THWN INSULATION SUITABLE FOR WET **INSTALLATIONS**
- 2. #2 THWN SHALL BE STRANDED #2 COPPER WITH THWN INSULATION SUITABLE FOR WET
- 3. #2 BARE TINNED SHALL BE SOLID COPPER TINNED. ALL BURIED WIRE SHALL MEET THIS CRITERIA.
- 4. ALL LUGS SHALL BE 2-HOLE, LONG BARREL, TINNED SOLID COPPER UNLESS OTHERWISE SPECIFIED, LUGS SHALL BE THOMAS AND BETTS SERIES 548##BE OR EQUIVALENT (IE #2 THWN - 54856BE, #2 SOLID - 54856BE, AND #6 THWN - 54852BE).
- ALL HARDWARE, BOLTS, NUTS, AND WASHERS SHALL BE 18-8 STAINLESS STEEL. EVERY CONNECTION SHALL BE BOLT-FLAT WASHER-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT IN THAT EXACT ORDER. BACK-TO-BACK LUGGING, BOLT-FLAT WASHER-LUG-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT, IN THAT EXACT ORDER, IS ACCEPTED WHERE NECESSARY TO CONNECT MANY LUGS TO A BUSS BAR. STACKING OF LUGS, BUSS-LUG-LUG, IS NOT ACCEPTABLE.
- 6. WHERE CONNECTIONS ARE MADE TO STEEL OR DISSIMILAR METALS, A THOMAS AND BETTS DRAGON TOOTH WASHER MODEL DTWXXX SHALL BE USED BETWEEN THE LUG AND THE STEEL, BOLT-FLAT WASHER-STEEL-DRAGON TOOTH WASHER-LUG-FLAT WASHER-BELEVILE WASHER-NUT.
- ALL CONNECTIONS, INTERIOR AND EXTERIOR, SHALL BE MADE WITH THOMAS AND BETTS KPOR-SHIELD. COAT ALL WIRES BEFORE LUGGING AND COAT ALL SURFACES BEFORE CONNECTING.
- THE MINIMUM BEND RADIUS SHALL BE 8 INCHES FOR #6 WIRE AND SMALLER AND 12 INCHES FOR 8. WIRE LARGER THAN #6.
- 9. ALL CONNECTIONS TO THE GROUND RING SHALL BE EXOTHERMIC WELD.
- 10. BOND THE FENCE TO THE GROUND RING AT EACH CORNER, AND AT EACH GATE POST WITH #2 SOLID TINNED WIRE, EXOTHERMIC WELD BOTH ENDS.
- 11. GROUND KITS SHALL BE SOLID COPPER STRAP WITH #6 WIRE 2-HOLE COMPRESSION CRIMPED LUGS AND SHALL BE SEALED ACCORDING TO MANUFACTURER INSTRUCTIONS.
- 12. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL BE USED.
- 13. GROUND BARS SHALL BE FURNISHED AND INSTALLED WITH PRE-DRILLED HOLE DIAMETERS AND SPACINGS GROUND BARS SHALL NEITHER BE FIELD FABRICATED NOR NEW HOLES DRILLED GROUND LUGS SHALL MATCH THE SPACING ON THE BAR. HARDWARE DIAMETER SHALL BE MINIMUM 3.8 INCH.
- 14. MGB GROUND CONNECTION SHALL BE EXOTHERMIC WELDED TO THE GROUND SYSTEM.
- 15. ALL CABLE TRAY AND/OR PLATFORM STEEL SHALL BE BONDED TOGETHER WITH JUMPERS (#6 IN EQUIPMENT ROOM, #2 ELSEWHERE AND HOMERUN).

ANTENNA & CABLE NOTES

- 1. THE CONTRACTOR SHALL FURNISH AND INSTALL ALL TRANSMISSION CABLES, JUMPERS, CONNECTORS, GROUNDING STRAPS, ANTENNAS, MOUNTS AND HARDWARE. ALL MATERIALS SHALL BE INSPECTED BY THE CONTRACTOR FOR DAMAGE UPON DELIVERY. JUMPERS SHALL BE SUPPLIED AT ANTENNAS AND EQUIPMENT INSIDE SHELTER COORDINATE LENGTH OF JUMP CABLES WITH EVERSOURCE. COORDINATE AND VERIFY ALL OF THE MATERIALS TO BE PROVIDED WITH EVERSOURCE PRIOR TO SUBMITTING BID ANTENNAS. AND ORDERING MATERIALS.
- 2. AFTER INSTALLATION, THE TRANSMISSION LINE SYSTEM SHALL BE PIM/SWEEP TESTED FOR PROPER INSTALLATION AND DAMAGE WITH ANTENNAS CONNECTED. CONTRACTOR TO OBTAIN LATEST TESTING PROCEDURES FROM EVERSOURCE PRIOR TO BIDDING.
- 3. ANTENNA CABLES SHALL BE COLOR CODED AT THE FOLLOWING LOCATIONS:
- AT THE ANTENNAS. - AT THE WAVEGUIDE ENTRY PLATE ON BOTH SIDES OF THE EQUIPMENT SHELTER WALL. - JUMPER CABLES AT THE EQUIPMENT ENTER.
- 4. SYSTEM INSTALLATION:
- THE CONTRACTOR SHALL INSTALL ALL CABLES AND ANTENNAS TO THE MANUFACTURER'S SPECIFICATIONS. THE CONTRACTOR IS RESPONSIBLE FOR THE PROCUREMENT AND INSTALLATION OF THE FOLLOWING:
- ALL CONNECTORS, ASSOCIATED CABLE MOUNTING, AND GROUNDING HARDWARE. - WALL MOUNTS, STANDOFFS, AND ASSOCIATED HARDWARE.
 - 1/2 INCH HELIAX ANTENNA JUMPERS OF APPROPRIATE LENGTHS.
- 5. MINIMUM BENDING RADIUS FOR COAXIAL CABLES: -7/8 INCH, RMIN = 15 INCHES -15/8 INCH, RMIN = 25 INCHES
- 6. CABLE SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS WHERE POSSIBLE. CABLE SHALL NOT BE LEFT UNTERMINATED AND SHALL BE SEALED IMMEDIATELY AFTER BEING INSTALLED.
- 7. ALL CABLE CONNECTIONS OUTSIDE SHALL BE COVERED WITH WATERPROOF SPLICING KIT.
- 8. CONTRACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAVEL IN FIELD PRIOR TO
- 9. CABLE SHALL BE FURNISHED WITHOUT SPLICES AND WITH CONNECTORS AT EACH END.

EVERSURCE ENERGY 107 SELDEN STREET

BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-2522

PROJECT NO:	405025
DRAWN BY:	TYW
CHECKED BY:	TH

\square		
2	05/23/22	ISSUED FOR FILING
1	12/10/21	ISSUED FOR FILING
0	06/18/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

WILLIMANTIC (CT06462-A) 349 MOUNTAIN ST WINDHAM, CT 06280

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-2

IBOLS					J
		A 1			
-	EXOTHERMIC CONNECTIO				
	COMPRESSION CONNECT 5/8"øx10-'0" COPPER			EVERS = L	
_	,				ENERGY
	TEST GROUND ROD WIT GROUNDING CONDUCTOF		TION SLEEVE	107 SELDEN ST	
	KEY NOTES			BERLIN, CT 06 PHONE: (800) 286	
\bigcirc					
ILINK FENCE	× >		x x x		ļ
FENCE]	000		\equiv
AREA				lí]
RIDGE					
E TRAY					
LINE	G O	;	C C C		®
RGROUND	F / T	F /T	F/T F/T	BLACK&VE	EATCH
RICAL/TELCO	E/T	E/1 -	E/T E/T		
RGROUND TRICAL/CONTROL	E/C	— E/C -	E/C E/C	6800 W 115TH ST, S OVERLAND PARK, K PHONE: (913) 458	S 66211
RGROUND TRICAL	ΕΕ	:	— E ——— E ———		
RGROUND D	T T		T T T	PROJECT NO:	405025
ERTY LINE (PL)				DRAWN BY:	TYW
REVIATIONS				CHECKED BY:	
ALTERNATING CURRE	INT	MGB	MASTER GROUNDING BAR		
AMPERAGE INTERRU		MIN	MINIMUM		
AUXILIARY NETWORK		MW	MICROWAVE		
ASYNCHRONOUS TRA	ANSFER MODE	MTS	MANUAL TRANSFER SWITCH		
AUTOMATIC TRANSFE	R SWITCH	NEC	NATIONAL ELECTRICAL CODE		
AMERICAN WIRE GAU	JGE	ос	ON CENTER		511,110
ADVANCED WIRELESS	S SERVICES	PP	POLARIZING PRESERVING	2 05/23/22 ISSUED FOR 1 12/10/21 ISSUED FOR	
BATTERY		PCU	PRIMARY CONTROL UNIT	0 06/18/20 ISSUED FOR	
BASEBAND UNIT		PDU	PROTOCOL DATA UNIT	REV DATE DESCRIPTION	
BARE TINNED COPPE	ER CONDUCTOR	PWR	POWER		
BASE TRANSCEIVER	STATION	RECT	RECTIFIER		11,
CLIMATE CONTROL U	JNIT	RET	REMOTE ELECTRICAL TILT	NE OF CONN	EC
CODE DIVISION MUL	TIPLE ACCESS	RMC	RIGID METALLIC CONDUIT	TH	P
CHARGING		RF	RADIO FREQUENCY	20:0 DEC	m. T
CLIMATE UNIT		RUC	RACK USER COMMISSIONING		
COMMON		RRH	REMOTE RADIO HEAD	1) Joshu (riley
DIRECT CURRENT		RRU	REMOTE RADIO UNIT	POLICENCE	0.14
DIAMETER		RWY	RACEWAY	SS/ONAL F	NGUIN
DRAWING		SFP	SMALL FORM-FACTOR PLUGGABLE		11
ELECTRICAL CONDUC	TOR	SIAD	SMART INTEGRATED ACCESS DEVICE	07/21/202	2
ELECTRICAL METALLI	C TUBING	SSC	SITE SOLUTIONS CABINET	IT IS A VIOLATION OF LAW FO UNLESS THEY ARE ACTING UNDE OF A LICENSED PROFESSION	R ANY PERSON, R THE DIRECTION
FACILITY INTERFACE	FRAME	Τ1	1544KBPS DIGITAL LINE	OF A LICENSED PROFESSION TO ALTER THIS DOCU	AL ENGINEER, JMENT.
GENERATOR		TDMA	TIME-DIVISION MULTIPLE ACCESS		\equiv
GLOBAL POSITIONING	S SYSTEM	TMA	TOWER MOUNT AMPLIFIER		1
GLOBAL SYSTEM FO	R MOBILE	TVSS	TRANSIENT VOLTAGE SUPPRESSION SYSTEM	WILLIMANTIC (CT	
HEAT/VENTILATION/A	IR CONDITIONING	TYP	TYPICAL	349 MOUNTA	
INTERCONNECTION F	RAME	UMTS	UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM	WINDHAM, CT	00280
INTERIOR GROUNDIN	G RING (HALO)	UPS	UNINTERRUPTIBLE POWER SUPPLY (DC POWER PLANT)		
LONG TERM EVOLUT	ION			SHEET TITLE	
				NOTES	
				& SPECIFICA	TIONS

<u>SYMBOLS</u>				
•	EXOTHERMIC CONNEC	TION		
	COMPRESSION CONNE	ECTION		
ս⊨●	5/8"øx10-'0" COPPE	TEEL GROUND ROD.	ENERGY	
ч⊢●	TEST GROUND ROD V	WITH INSPE	CTION SLEEVE	107 SELDEN STREET
	GROUNDING CONDUCT	TOR		BERLIN, CT 06037
(A)	KEY NOTES			PHONE: (800) 286-2000
CHAINLINK FENC	E X	- x	x x x	
WOOD FENCE	<u> </u>	-0	00	
LEASE AREA				
ICE BRIDGE				
CABLE TRAY				
GAS LINE	G	- G	— C — — C — — C — —	®
UNDERGROUND ELECTRICAL/TELC	сое/т	—— е/т	Е/Т Е/Т	BLACK&VEATCH
UNDERGROUND ELECTRICAL/CON	ITROL E/C	—— E/C	——————————————————————————————————————	6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211
UNDERGROUND ELECTRICAL		- E	— E — — E — — E — — —	PHONE: (913) 458-2522
UNDERGROUND	т	- T —	T T T	
TELCO		- 1		PROJECT NO: 405025
PROPERTY LINE	(PL)			DRAWN BY: TYW
ABBREVIATI	ONS			CHECKED BY: TH
AC ALTERNATI	NG CURRENT	MGB	MASTER GROUNDING BAR	
AIC AMPERAGE	INTERRUPTION CAPACITY	MIN	MINIMUM	
ANI AUXILIARY	NETWORK INTERFACE	MW	MICROWAVE	
ATM ASYNCHRO	DNOUS TRANSFER MODE	MTS	MANUAL TRANSFER SWITCH	
ATS AUTOMATIC	C TRANSFER SWITCH	NEC	NATIONAL ELECTRICAL CODE	
AWG AMERICAN	WIRE GAUGE	ос	ON CENTER	2 05/23/22 ISSUED FOR FILING
AWS ADVANCED	WIRELESS SERVICES	PP	POLARIZING PRESERVING	1 12/10/21 ISSUED FOR FILING
BATT BATTERY		PCU	PRIMARY CONTROL UNIT	0 06/18/20 ISSUED FOR FILING
BBU BASEBAND	UNIT	PDU	PROTOCOL DATA UNIT	REV DATE DESCRIPTION
BTC BARE TINK	NED COPPER CONDUCTOR	PWR	POWER	
BTS BASE TRA	NSCEIVER STATION	RECT	RECTIFIER	OF CONNE
CCU CLIMATE C	CONTROL UNIT	RET	REMOTE ELECTRICAL TILT	A J C A
CDMA CODE DIVI	ISION MULTIPLE ACCESS	RMC	RIGID METALLIC CONDUIT	
CHG CHARGING		RF	RADIO FREQUENCY	
CLU CLIMATE U	JNIT	RUC	RACK USER COMMISSIONING	
COMM COMMON		RRH	REMOTE RADIO HEAD	- 3: , ³ 320 ⁸
DC DIRECT CU	JRRENT	RRU	REMOTE RADIO UNIT	CENSE
DIA DIAMETER		RWY	RACEWAY	SIONAL ENUL
DWG DRAWING		SFP	SMALL FORM-FACTOR PLUGGABLE	07/21/2022
	L CONDUCTOR	SIAD	SMART INTEGRATED ACCESS DEVICE	
	L METALLIC TUBING	SSC	SITE SOLUTIONS CABINET	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,
	NTERFACE FRAME	T1	1544KBPS DIGITAL LINE	TO ALTER THIS DOCUMENT.
GEN GENERATO		TDMA	TIME-DIVISION MULTIPLE ACCESS	
	OSITIONING SYSTEM	TMA	TOWER MOUNT AMPLIFIER	
	YSTEM FOR MOBILE	TVSS	TRANSIENT VOLTAGE SUPPRESSION SYSTEM	WILLIMANTIC (CT06462-A) 349 MOUNTAIN ST
	TILATION/AIR CONDITIONING	TYP UMTS	TYPICAL UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM	WINDHAM, CT 06280
	OPOLINDING PING (HALO)	UPS	UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM	11
	GROUNDING RING (HALO)	0.0	(DC POWER PLANT)	
LIL LUNG IER				SHEET TITLE
				NOTES
				& SPECIFICATIONS

SHEET NUMBER

N-3

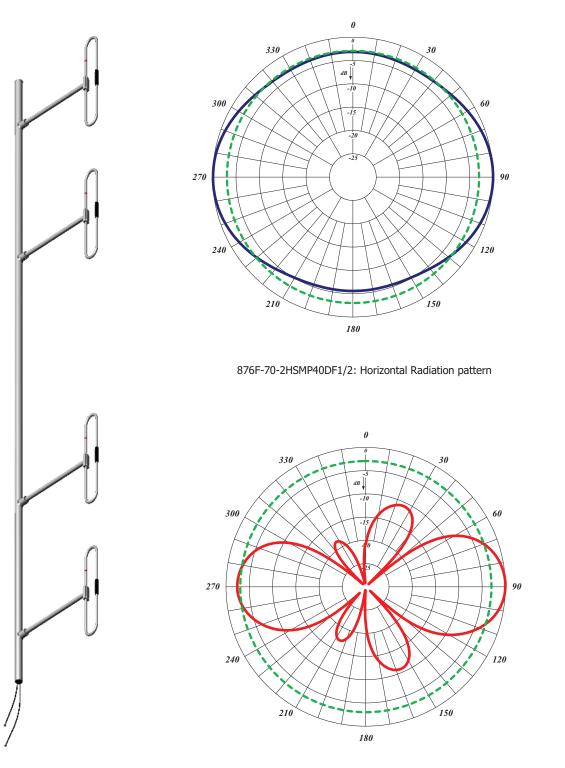
REFERENCE CUTSHEETS

870 SERIES DUAL EXPOSED DIPOLE

876F-70-2HSMP40DF1/2

The 876F-70-2HSMP40DF1/2 Dual Exposed Dipole is well suited for multicoupled RF system. It has an extremely rugged design for use in severe environmental conditions. It has internal cabling and a fix dipoleto-mast spacing. This antenna is a special version of the 876F-70 with increased spacing between the two antennas, giving an isolation of 40 dB. It's heavy duty and Low PIM deign. This antenna can be black anodized, please contact technical support for more information.

The 1/2 wave pattern spacing version offer bidirectional pattern with more than 5 dBd Gain at 220 MHz.


Electrical Specifications	876F-70-2HSMP40DF1/2
Frequency Range, MHz	215-225
Nominal Gain, dBd	5.0 (5.2 @ 220MHz)
Isolation , dB	40
Bandwidth 1.5:1 VSWR, MHz	1.5:1 (10)
Polarization	Vertical
Pattern	Bidirectional
Power Rating, Watts	300
PIM. (2x20W, 3rd ord.), dBc	150
Nominal Impedance, Ohms	50
Lightning Protection	DC Ground
Termination	Dual Feeds Terminating in 7/16 DIN F
Mechanical Specifications	876F-70-HDWSM-40
Length, in (mm)	240 (6096)
Width (1/2 Wave Spacing), in (mm)	43 (1092)
Weight, lbs. (kg)	130 (59)
Rated Wind Velocity, No Ice, mph (km/h)	140 (225)
Rated Wind Velocity, 1/2" ice, mph (km/h)	105 (169)
Lateral Thrust @ 100 mph, wind, lbs. (N)	222 (988)
Torsional Moment (N•M)	471 (638)
Projected Area, ft ² (m ²)	8.5 (0.78)

870 SERIES DUAL EXPOSED DIPOLE

876F-70-2HSMP40DF1/2: Vertical Radiation pattern

Tel: US 1.877.825.2007 / CAN 1.800.603.1454 *Email:* sales@comprodcom.com *Fax:* 1.800.554.1033

215-225 MHz

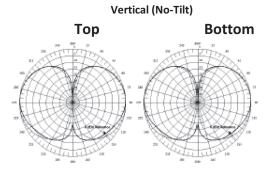
220 MHz Antenna – Omnidirectional, Low-PIM/Hi-PIP, Unity Gain Models - SP2D00P36D-D

Specifications							
· · · ·							
Design Type	True Corporate Feed						
Frequency Range	217-220 MHz						
Passive Intermodulation – PIM (2 x 20W sources)	-150 dBc, 3 rd Order						
Bandwidth	3 MHz						
Gain - dBd (average over BW)	0 dBd						
Isolation, min.	40 dB						
Configuration	Dual antenna						
Beam Tilt (electrical down-tilt)	None (0°)						
Vertical Beamwidth (E-Plane)	60°						
Impedance Ohms	50						
VSWR / Return Loss dB	1.5 : 1 / 14 dB (min.)						
Average Power Rating	500 W (each antenna)						
Peak Instantaneous Power	25 kW (each antenna)						
Polarization	Vertical						
Lightning Protection	Direct Ground						
Connector	7/16 DIN female						
Equivalent Flat-Plate Area	2.59 sq. ft.						
Lateral Wind-load Thrust @100mph	109 lbf.						
Wind Speed rating	160 mph (without ice) 136 mph (½" radial ice)						
Total Length	15.6 feet						
Mounting Mast Length	35 inches						
Mounting Hardware (Included)	DSH3V4N						
Top Sway Brace	DSH2H3S						
(Recommended if side mounting antennas)	(order separately)						
Mast O.D.	3.5 inches						
Radome color	Horizon Blue						
Radome O.D.	3.0 inches						
Weight, antenna, and hardware	45 lbs. (approx.)						
Shipping Weight	80 lbs. (approx.)						
Invertibility	Antennas are physically invertible, but the patterns are optimized for upright mount.						

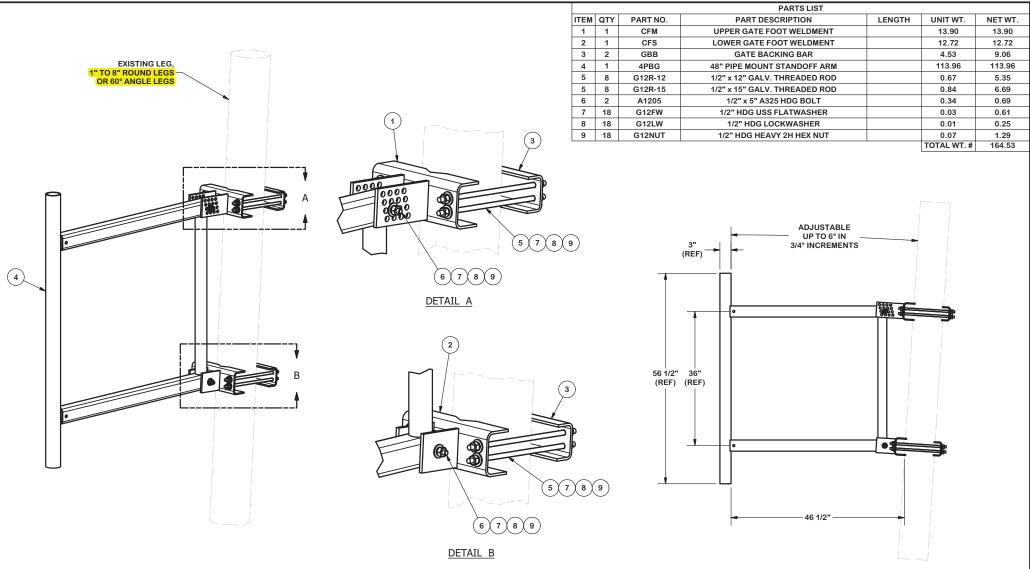
Features and Benefits

Antennas from dbSpectra provide long term, trouble-free service in severe environments!

Design is tested to stringent Peak Instantaneous Power (PIP) levels of 25 KW using dbSpectra's 12-channel P25 PIP test bed. High PIP level is demanded by today's digital systems.


True Corporate Feed Array – provides for excellent gain and pattern consistency across a wider frequency range.

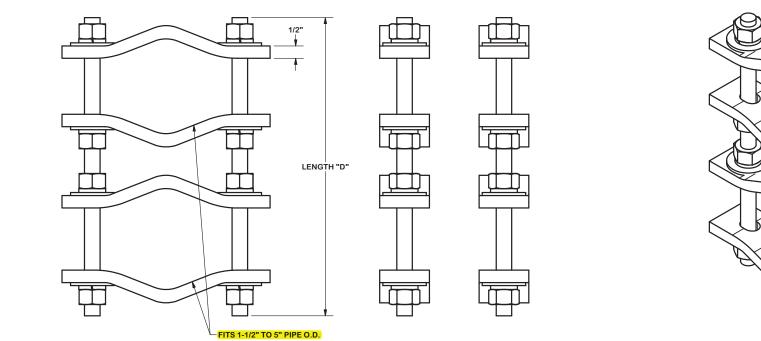
PIM Rated Design – better than -150 dBc.


Sturdy Construction – Heavy-wall fiberglass radome minimizes tip deflection.

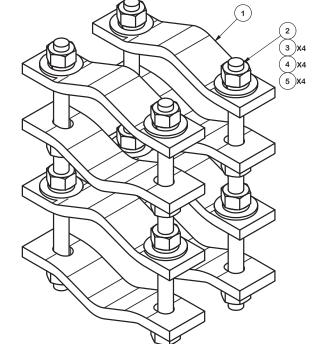
Excellent Lightning Protection – heavy internal conductor DC ground.

Radiation Pattern

TOWER/MAST SIZE AT PROPOSED ANTENNA ATTACHMENT = 3.5"± DIAMETER.


TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.0307) DRILLED AND GAS CUT HOLES (± 0.0307) - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.0107) - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	RIPTIO	N 48" ULTIMATE UNI STANDOFF FR		SITH PRC A valmont	Engineering Support Team: 1-868-753-744	Locations: New York, NY Atlanta, GA Los Angeles, CA 6 Plymouth, IN Salem, OR Dallas, TX	A
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO		RCH 2/4/2011	ENG. APPROVAL	PART NO.	USF-4U		1 PA
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT INFORTIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROVINETED.		^{SUB} 01	DRAWING USAGE CUSTOMER	снескер ву ВМС 2/16/2011	DWG. NO.	USF-4U		т А

|--|--|


- 5 15/16" ----- 8 3/8" ---

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	8	DCP	CLAMP HALF, 1/2" THICK, 8-3/8"		2.40	19.20
2	В	С	5/8" THREADED ROD	D	E	F
3	16	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	2.08
4	16	G58LW	5/8" HDG LOCKWASHER		0.03	0.42
5	16	G58FW	5/8" HDG USS FLATWASHER		0.07	1.13

VARIABLE PARTS TABLE									
ASSEMBLY "A"	QTY "B"	PART "C"	LENGTH "D"	UNIT WT. "E"	NET WT. "F"	TOTAL WEIGHT			
DCP12K	4	G58R-12	12"	1.05	4.18	27.01			
DCP18K	4	G58R-18	18"	1.57	6.27	29.10			

2"

TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESCRIPTION PIPE TO PIPE CLAMP SET 1-1/2" TO 5" PIPE 1/2" THICK CLAMP					Locations: New York, NY A valmont V Commun. A valmont Commun. Lass-753-7446			A	
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO	D.	DRAWN BY КС8 8/21/2012	ENG. APPROVAL		PART NO.	SEE ASS	SEMBLY "A	."	_ 0 ₽
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROHIBITED.	CLASS	suв 01	DRAWING USAGE CUSTOMER	СНЕСКЕД ВУ СЕК 1/22/2013	1	DWG. NO.	DC	PxxK		1 -

ATTACHMENT E – STRUCTURAL ANALYSIS

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 196 ft Rohn Self Supporting Tower Customer Name: SBA Communications Corp Customer Site Number: CT06462-A-2 Customer Site Name: Mountain Street Carrier Name: Connecticut Light & Power (App#: 186494, V2) Carrier Site ID / Name: ES-055 / Willimantic Site Location: 349 Mountain Street Windham, Connecticut Windham County Latitude: 41.703011 Longitude: -72.221391

<u>Analysis Result:</u> Max Structural Usage: 56.0% [Pass] Max Foundation Usage: 46.0% [Pass] Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Sital Shrestha

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 196 ft Rohn Self Supporting Tower Customer Name: SBA Communications Corp Customer Site Number: CT06462-A-2 Customer Site Name: Mountain Street Carrier Name: Connecticut Light & Power (App#: 186494, V2) Carrier Site ID / Name: ES-055 / Willimantic Site Location: 349 Mountain Street Windham, Connecticut Windham County Latitude: 41.703011 Longitude: -72.221391

<u>Analysis Result:</u> Max Structural Usage: 56.0% [Pass] Max Foundation Usage: 46.0% [Pass] Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Sital Shrestha

Introduction

The purpose of this report is to summarize the analysis results on the 196 ft Rohn Self Supporting Tower to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	ROHN Industries, Inc. Dated 09-27-2001. Drawing No C011214. Eng. File No 49204TT. Previous structural report prepared by FDH Velocitel. Dated 05-10-2017. Project No 17QEIQ1400.
Foundation Drawing	ROHN Industries, Inc. Dated 08-31-2001. Drawing No A012046-1. Eng. File No 49204TT.
Geotechnical Report	BL Companies. Dated 12-01-2000. Project No 00C672-C.
Modification Drawings	N/A

Analysis Criteria

The comprehensive analysis was performed in accordance with the requirements and stipulations of the TIA-222-H. In accordance with this standard, the structure was analyzed using **TESTowers**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis: Wind Speed with Ice:	121.0 mph (3-Sec. Gust) (Ultimate wind speed) 50 mph (3-Sec. Gust) with 1" radial ice concurrent
Service Load Wind Speed:	60 mph + 0" Radial ice
Standard/Codes:	TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code
Exposure Category:	В
Risk Category:	II
Topographic Category:	1
Crest Height:	0 ft
Seismic Parameters:	$S_S = 0.192, S_1 = 0.055$

This structural analysis is based upon the tower being classified as a Risk Category II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft.)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner	
1	185.0	3	Antel BXA-80080/4CF - Panel	Direct	(3) 1 5/8"	Verizon	
2	185.0	6	Rfs Celwave FD9R6004/2C-3L Diplexers	Direct	(3) 1 5/8	venzon	
3		3	Ericsson AIR21-6449 B41 - Panel				
4		3	RFS APXVAARR24_43-U-NA20 - Panel				
5		3	Ericsson AIR32 KRD901146-1 - Panel		(9) 1 5/8" Coax	Verizon/T-	
6	169.0	3	72" x 12" x 6" Panel	(3) 10' T Frames	(9) 1 5/8 COax (2) 1 5/8"	Mobile	
7	109.0	3	Ericsson KRY11271 TMA's	(3) 10 1 Hames	Hybrid	(A-11)1	
8		3	Commscope SDX192 6Q-43 Diplexers		Публа	(^-11)1	
9		3	Ericsson 4449 B71 + B85 RRU's				
10		3	Ericsson 4415 B25 RRU's				
-	167.0	1	Commscope DB586-Y -Omni	(1) Sidearm (Commscope S-200)			
-	166.5	1	RFS 458-2-Omni	(1) Sidearm (Commscope S-400)			
-	165.0	1	RFS BA1312-0- Omni	(1) Side and (Commence of C 100)			
-	164.0	1	Powerwave LGP104- TMA	(1) Sidearm (Commscope S-400)	(0) 7/0" Coou	Connecticut	
-	161.2	1	dbSpectra SP2D00P36D-D-Omni	(1) Sidearm (Site Pro USF-4U)	 (8) 7/8" Coax (1) 1/2" Coax 	Light &	
-	140.4	1	RFS 220-3AN- Omni	(1) Sidearm (Commscope S-600)	(1) 1/2 COax	Power	
-	139.5	1	RFS 220-7N- Omni	(1) Sidearm (Wireless Solutions WS-S400)			
-	137.0	1	Kreco CO-36A- Omni	(1) Sidearm (Commscope S-600)			
19		2	Commscope sbnhh-1d45b - Panel				
20		4	Commscope SBNHH-1D65B - Panel				
21		3	Samsung MT6407-77A - Panel				
22		3	Samsung B2/B66A RRH-BR049		(8) 1 5/8"		
22	120.0	5	(RFV01U-D1A) RRU's	(3) 10' T-Frames	(2) 1 5/8"	Verizon	
23		3	Samsung B5/B13 RRH-BR04C (RFV01U-D2A) RRU's		Fiber		
24		2	Rfs Celwave DB-T1-6Z-8AB-0Z				
		Junction Box					
25		3	JMA Wireless MX08FRO665-21- Panel				
26	107.0	3	Fujitsu TA08025-B605- RRH	(3) Commscope MTC3975083	(1) 1.60"	Dish	
27	107.0	3	Fujitsu TA08025-B604- RRH		Hybrid	Wireless	
28		1	Raycap RDIDC-9181-PF-48- OVP				

1 Verizon has a separate lease under (A-09).

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (ft)	Qty.	Qty. Antenna Descriptions Mount Type & Qty.		Transmissio n Lines	Owner
11	164'-170'	1	Commscope DB586-Y -Omni			
12	159.9'-173.2'	1	RFS 458-2- Omni	(1) Commscope S-400 @ 161'		
13	161'-169'	1	RFS BA1312-0- Omni	(1) Commscope S-400 @ 159.9'		
14	164'	1	Powerwave LGP104- TMA	(1) Commscope S-200 @164'	(9) 7/9" Coov	Connecticut
15	163.6′	1	Comprod 876F-70- 2HSMP40DF1/2- Dipole	(1) Wireless Solutions WS-S400 @130'	(8) 7/8" Coax (1) 1/2" Coax	Connecticut Light & Power
16	130′-150.7′	1	RFS 220-3AN- Omni	(2) Commscope S-600 @ 130'		
17	130'-149'	1	RFS 220-7N- Omni	(1) Site Pro USF-4U @ 152'		
18	131'-143'	1	Kreco CO-36A- Omni			

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

Tower Component	Legs	Diagonals	Horizontals	Anchor Bolts
Max. Usage:	55.8%	56.0%	3.2%	37.0%
Pass/Fail	Pass	Pass	Pass	Pass

Foundations

	Compression (Kips)	Uplift (Kips)	Shear (Kips)
Analysis Reactions	248.2	206.7	26.8

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Service Load Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 0.1589 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

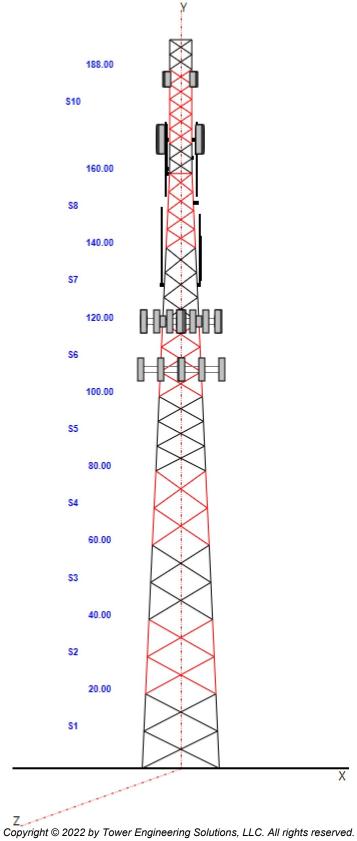
Based on the analysis results, the existing structure and its foundation were found to be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA-222 Standard under the design basic wind speed as specified in the Analysis Criteria.

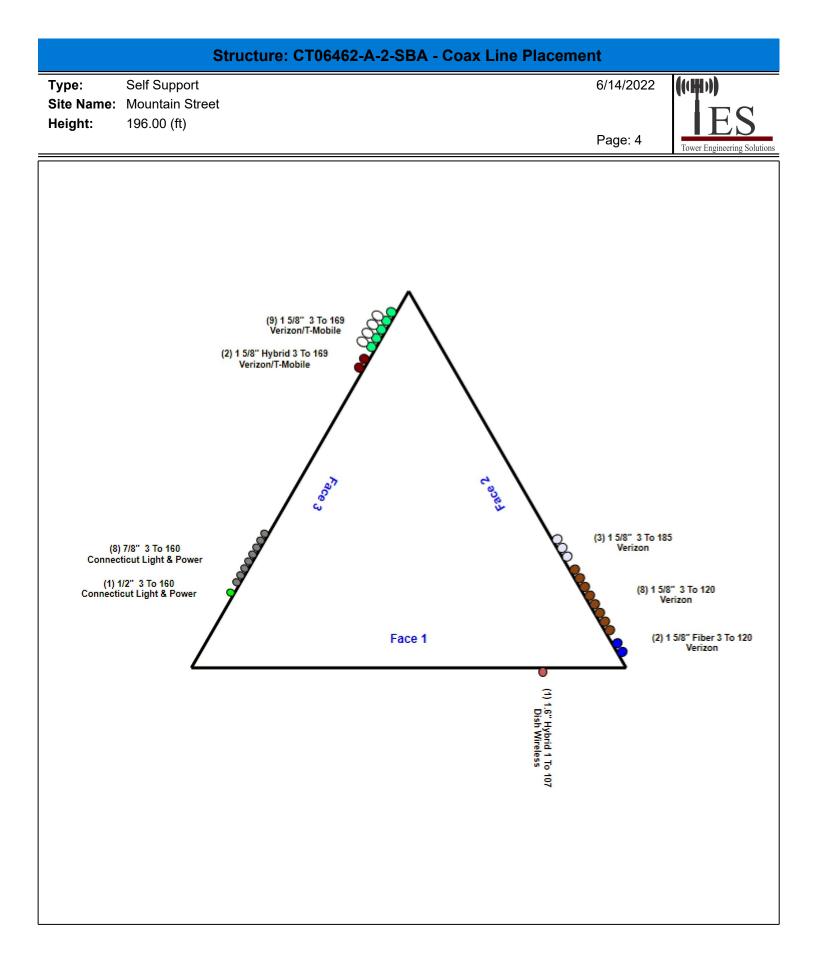
Standard Conditions

- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions**, **LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of **TES**. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the ANSI/TIA-222 standard or other codes, **TES** should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

Structure: CT06462-A-2-SBA

Site Name:	Mountain Street			Code: TIA-222-H		6/14/2022	((H)))
Туре:	Self Support	Base Shape:	Ũ	Basic WS:	121.00		TC
Height:	196.00 (ft)	Base Width:	23.00	Basic Ice WS:	50.00	– (IES
Base Elev:	0.00 (ft)	Top Width:	6.60	Operational WS:	60.00	Page: 1	Tower Engineering Solutions


		S	ection Properties			Y
Sect	Leg Memb	ore	Diagonal Members	Horizontal Members		
1	PX 8" DIA PIPE	013	SAE 4X4X0.25			
2	PSP ROHN 8 EHS		SAE 4X4X0.25		188.00	
2	PSP ROHN 8 EHS		SAE 4.4X0.25 SAE 3.5X3.5X0.25			
4	PX 6" DIA PIPE		SAE 3.5X3.5X0.25		S10	
5	PSP ROHN 6 EHS		SAE 3X3X0.25			
6	PX 5" DIA PIPE		SAE 2.5X2.5X0.25			
7	PX 4" DIA PIPE		SAE 2.5X2.5X0.25			
8	PX 3" DIA PIPE		SAE 2X2X0.1875	SAE 1.75X1.75X0.1875	160.00	
9-10	PST 3" DIA PIPE		SAE 2X2X0.25		100.00	
11	PST 3" DIA PIPE		SAE 1.75X1.75X0.1875	SAE 1.75X1.75X0.1875		
		Disc	rete Appurtenances	s	S8	
Attac				<u> </u>	140.00	
Elev (Qty	Description		140.00	
185.0		-	Antel BXA-80080/4CF			
185.0			Rfs Celwave FD9R6004/2C	-3L Diplexers	S7	4×4
169.0		3	Ericsson AIR21-6449 B41			KХ
169.0	0 169.00	3	RFS APXVAARR24_43-U-N	IA20	120.00	0-040206040-0
169.0	00 169.00	3	Ericsson AIR32 KRD901146	5-1		C-CHARTER CHART
169.0	00 169.00	3	72" x 12" x 6" Panel			K X
169.0	00 169.00	3	Ericsson KRY11271 TMA's		S6	
169.0	00 169.00	3	Commscope SDX192 6Q-43	3 Diplexers		
169.0	00 169.00	3	Ericsson 4449 B71 + B85 R	RU's	100.00	
169.0		3	Ericsson 4415 B25 RRU's			
169.0		3	10' T Frames		S5	KA
164.8		1	Commscope DB586-Y Omn	i		
164.8		1	Powerwave LGP104 TMA			
164.0		1	Sidearm (Commscope/Andr	,	80.00	
161.0		1	Sidearm (Commscope S-40	0)		
160.6		1	RFS BA1312-0 Omni	0)	S4	
159.9		1	Sidearm (Commscope S-40	0)		
159.8 153.6		1	RFS 458-2 Omni 876F-70-2HSMP40DF1/2		60.00	
153.0		1	Sidearm (Site Pro USF-4U)			
131.0		1	Kreco CO-36A Omni			
130.0		1	RFS 220-3AN Omni		\$3	K X
130.0		1	RFS 220-7N Omni			
130.0			4' Sidearm (Wireless Solution	ons WS-S400)	40.00	
130.0		1	6' Sidearm (Commscope/An	'		
130.0		1	6' Sidearm (Commscope S-	,	S2	
120.0			Commscope sbnhh-1d45b	,	UL.	K A
120.0			Commscope SBNHH-1D65	В		
120.0			Samsung MT6407-77A		20.00	$\langle \rangle$
120.0		3	Samsung B2/B66A RRH-BR	R049 (RFV01U-D1A)		
120.0	00 120.00	3	Samsung B5/B13 RRH-BR0	04C (RFV01U-D2A)	S1	\lor
120.0	00 120.00	2	Rfs Celwave DB-T1-6Z-8AB	8-0Z Junction Box		\square
120.0	00 120.00	3	10' T-Frames			
107.0	00 107.00	3	MX08FRO665-21			
107.0			TA08025-B604			and the second se
107.0		3	TA08025-B605		And the second sec	
107.0		1	RDIDC-9181-OF-48		and the second se	
107.0	0 107.00	1	(3) MTC3975083	4		


Structure: CT06462-A-2-SBA

Site Name:	Mountain Street			Code: TIA-222-H		6/14/2022	(((HI)))
Туре:	Self Support	Base Shape:	Triangle	Basic WS:	121.00		
Height:	196.00 (ft)	Base Width:	23.00	Basic Ice WS:	50.00		IES
Base Elev:	0.00 (ft)	Top Width:	6.60	Operational WS:	60.00	Page: 2	Tower Engineering Solutions

Elev	Elev				
From (ft)	To (ft)	Qty	Descriptior	า	
1.00	196.00	1	Safety Climb)	
3.00	196.00	0	Step bolts (la	adder)	
3.00	196.00	0	Step bolts (la	adder)	
3.00	196.00	0	Step bolts (la	adder)	
0.00	185.00	1	W/G Ladder	(VZW)	
3.00	185.00	3	1 5/8" Coax		
0.00	169.00	1	W/G Ladder	(TMO)	
3.00	169.00	9	1 5/8" Coax		
3.00	169.00	2	1 5/8" Hybric	1	
0.00	160.00	1	W/G Ladder	(CLP)	
3.00	160.00	1	1/2" Coax		
3.00	160.00	8	7/8" Coax		
3.00	120.00	8	1 5/8" Coax		
3.00	120.00	2	1 5/8" Fiber		
1.00	107.00	1	1.6" Hybrid		
			Base Rea	ctions	
L	eg		Over	turning	
Max Uplift:	-206.74	(kips	Moment:	4618.96	(ft-kips)
Max Down:	248.23	(kips	Total Down:	49.03	(kips)
Max Shear:	26.79	(kips	Total Shear:	43.88	(kips)

	Structure: CT06462-A-2-SBA														
Site Name:	Site Name: Mountain Street Code: TIA-222-H 6/14/2022 (() () () () () () ()														
Туре:	Self Support	Base Shape:	Triangle	Basic WS:	121.00										
Height:	196.00 (ft)	Base Width:	23.00	Basic Ice WS:	50.00		IES								
Base Elev:	0.00 (ft)	Top Width:	6.60	Operational WS:	60.00	Page: 3	Tower Engineering Solutions								

	Loading Summary														
Structure:	CT06462-A-2-SBA			Cod	e:	TIA-2	222-H		6/14/2	2022					
Site Name:				Exp	osure:	В					((#))				
				-	st Height							\sim			
Height:	196.00 (ft)														
Base Elev:	0.000 (ft)			Site	Class:	D - S	Stiff Soil					<u> </u>			
Gh:	0.85 To	pograp	hy: 1	Stru	ict Class:	II			Pag	e: 5	Tower Engineering	3 Solutions			
Discrete A	ppurtenances Pro	opertie	es												
	••	-		lo Ice	lce	Э									
Attach	ttach														
Elev		_	Weight	CaAa	Weight		Len	Width	Depth		Orientation				
(ft)	Description	Qty	(lb)	(sf)	(lb)	(sf)	(in)	(in)	(in)	Ka	Factor	(ft)			
185.00 Antel B		3	14.30	4.800	87.68	6.070	48.200	11.200	5.900	1.00	1.00	0.000			
	wave FD9R6004/2C-3L n AIR21-6449 B41	6 3	3.10 103.00	0.310 22.840	8.54 195.23	0.569	6.500 88.000	5.800 33.000	1.500	1.00	0.60 0.82	0.000			
	2XVAARR24_43-U-NA20	3	128.00	22.840	405.88		95.900	24.000	20.000 8.700	0.80 0.80	0.82	0.000			
	n AIR32 KRD901146-1	3	132.20	6.050	242.46	6.768	56.000	12.000	8.700	0.80	0.67	0.000			
169.00 72" x 12		3	45.00	8.130	156.02		72.000	12.000	6.000	0.80	0.79	0.000			
	n KRY11271 TMA's	3	11.00	1.140	20.59	2.000	13.230	10.340	6.300	0.80	0.60	0.000			
	cope SDX192 6Q-43	3	6.50	0.240	17.55	0.256	6.930	4.170	2.910	0.80	0.60	0.000			
	n 4449 B71 + B85 RRU's	3	75.00	1.950	125.69	2.335	17.900	13.100	10.600	0.80	0.67	0.000			
169.00 Ericssor	n 4415 B25 RRU's	3	46.00	1.840	79.29	2.221	16.500	13.400	5.900	0.80	0.67	0.000			
169.00 10' T Fr	ames	3	500.00	15.000	734.78	23.804	0.000	0.000	0.000	0.75	0.75	0.000			
164.81 Comms	cope DB586-Y Omni	1	8.25	1.010	39.42	1.657	52.560	2.500	2.500	1.00	1.00	2.190			
164.81 Powerw	vave LGP104 TMA	1	7.00	0.230	12.73	0.386	7.000	4.000	1.200	1.00	1.00	-0.810			
164.00 Sidearm	n (Commscope/Andrew	1	21.90	2.630	51.46	6.645	10.000	0.000	0.000	1.00	1.00	0.000			
161.00 Sidearm	n (Commscope S-400)	1	41.00	3.500	95.90	8.829	10.000	0.000	0.000	1.00	1.00	0.000			
160.67 RFS BA	1312-0 Omni	1	4.40	1.730	55.43	3.804	104.000	2.000	2.000	1.00	1.00	4.330			
159.90 Sidearm	n (Commscope S-400)	1	41.00	3.500	95.86	8.795	10.000	0.000	0.000	1.00	1.00	0.000			
159.85 RFS 45	8-2 Omni	1	22.00	3.720	58.09	6.679	159.600	2.800	2.800	1.00	1.00	6.650			
)-2HSMP40DF1/2	1	60.00	7.520	207.83	15.443	240.000	3.000	3.000	1.00	1.00	10.00			
	n (Site Pro USF-4U)	1	165.00	5.150	329.55	9.688	20.000	0.000	0.000	1.00	1.00	0.000			
131.00 Kreco C		1	12.00	0.750	29.94	1.339	144.000	0.620	0.620	1.00	1.00	6.000			
130.07 RFS 22		1	24.00	5.680		10.490	248.400	2.750	2.750	1.00	1.00	10.33			
130.00 RFS 22		1	22.00	5.320	157.72	9.776	228.000	2.800	2.800	1.00	1.00	9.500			
	arm (Wireless Solutions	1	41.00	3.500	95.12		10.000	0.000	0.000	1.00	1.00	0.000			
	arm (Commscope/Andrew	1	54.00	5.150	107.09	9.623	15.000	0.000	0.000	1.00	1.00	0.000			
	arm (Commscope S-600) cope sbnhh-1d45b	1	54.00 96.00	5.150 14.770	125.23 328.32		15.000 76.800	0.000 22.300	0.000 12.200	1.00 0.80	1.00 0.80	0.000			
	cope SBNHH-1D65B	4	50.71	8.050	171.98	8.865	72.000	11.850	7.100	0.80	0.83	0.000			
120.00 Samsur	•	3	87.10	4.700	169.00	5.385	35.120	16.060	5.510	0.80	0.70	0.000			
	ng B2/B66A RRH-BR049	3	84.40	1.880	129.75	2.229	15.000	15.000	10.000	0.80	0.67	0.000			
	ng B5/B13 RRH-BR04C	3	70.30	1.880	111.17		15.000	15.000	8.100	0.80	0.67	0.000			
	wave DB-T1-6Z-8AB-0Z	2	44.00	4.800	131.14		24.000	24.000	10.000	0.80	0.67	0.000			
120.00 10' T-Fr		3	500.00	17.000	838.38		0.000	0.000	0.000	0.75	0.75	0.000			
107.00 MX08FF		3	64.50	12.490	252.49		72.000	20.000	8.000	0.80	0.74	0.000			
107.00 TA0802		3	63.90	1.960	96.62	2.323	15.800	15.000	7.900	0.80	0.67	0.000			
107.00 TA0802	5-B605	3	75.00	1.960	108.80	2.323	15.800	15.000	9.100	0.80	0.67	0.000			
107.00 RDIDC-	9181-OF-48	1	21.90	2.010	56.31	2.377	16.600	14.600	8.500	0.80	1.00	0.000			
107.00 (3) MTC	3975083	1	1242.0	28.050	2026.51	50.830	0.000	0.000	0.000	0.75	1.00	0.000			

Totals:

1242.0 28.050 8,361.49

82

16,635.55

Number of Appurtenances : 38

			Loa	Loading Summary														
Structure:																		
Site Name:	Mountain Street			Exposure:	В	(((H)))												
Height:	196.00 (ft)			Crest Height:	0.00													
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil													
Gh:	0.85	Topography:	1	Struct Class:	I	Page: 6												

Linear Appurtenances Properties

Elev. From (ft)	Elev. To (ft)	Description	Qty	Width (in)	Weight (Ib/ft)	Pct In Block	Spread On Faces	Bundling Arrangement	Cluster Dia (in)	Out of Zone		Orientation Factor	Ka Override
1.00	196.00	Safety Climb	1	0.38	0.27	100.00	1	Individual NR		Ν	1.00	1.00	
3.00	196.00	Step bolts (ladder)		0.63	1.04	100.00	3	Individual NR		Ν	1.00	1.00	
3.00	196.00	Step bolts (ladder)		0.63	1.04	100.00	1	Individual NR		Ν	1.00	1.00	
3.00	196.00	Step bolts (ladder)		0.63	1.04	100.00	2	Individual NR		Ν	1.00	1.00	
0.00	185.00	W/G Ladder (VZW)	1	2.00	6.00	100.00	2	Individual NR		Ν	1.00	1.00	
3.00	185.00	1 5/8" Coax	3	1.98	1.04	100.00	2	Individual IR		Ν	0.50	0.64	
0.00	169.00	W/G Ladder (TMO)	1	2.50	6.00	100.00	3	Individual NR		Ν	1.00	1.00	
3.00	169.00	1 5/8" Coax	9	1.98	1.04	50.00	3	Block		Ν	0.50	1.00	
3.00	169.00	1 5/8" Hybrid	2	2.00	1.10	100.00	3	Individual IR		Ν	0.50	1.00	
0.00	160.00	W/G Ladder (CLP)	1	3.00	6.00	100.00	3	Individual NR		Ν	1.00	1.00	
3.00	160.00	1/2" Coax	1	0.65	0.16	100.00	3	Individual IR		Ν	1.00	1.00	
3.00	160.00	7/8" Coax	8	1.11	0.52	100.00	3	Individual IR		Ν	0.50	1.00	
3.00	120.00	1 5/8" Coax	8	1.98	1.04	100.00	2	Individual IR		Ν	0.50	0.42	
3.00	120.00	1 5/8" Fiber	2	1.98	1.04	100.00	2	Individual IR		Ν	0.50	0.76	
1.00	107.00	1.6" Hybrid	1	1.60	1.82	100.00	1	Individual NR		Ν	1.00	1.00	

							Ę	Sect	ion l	orce	s						
Stru	cture:	CT06462	-A-2-SE	3A			Code: TIA-222-H					6/1	4/2022	4			
Site	Name	: Mountain	Street					Е	xpos	ure:	В				VA	(((卅))	
Heig		196.00 (f							•	Height	: 0.00						
-	e Elev:		-)						ite C	-		Stiff So	il.	~	×		1.5
	e ciev.	()				_						Sun Su	11	4		Tower Engi	neering Solutions
Gh:		0.85		Торо	grapr	ıy:	1	5	struct	Class	: 11				Page: 7		
Load	d Case	: 1.2D + 1	.0W No	rmal W	ind							1.2D +	+ 1.0W ′	121 mph	Wind at	Normal	To Face
		Wind Load Fa	actor:	1.00										Wind I	mportand	e Factor:	1.00
		Dead Load Fa	actor:	1.20													
	lce	Dead Load Fa	actor:	0.00										Ice li	mportano	e Factor:	1.00
		Total	Total	Ice								Ice					
Sact	Wind	Flat	Round Area	Round Area	Sol				lce Thick	Eff Area	Linear Area	Linear Area	Total Weight	Weight	Struct Force	Linear Force	Total Force
Sect	Height (ft)	qz Area (psf) (sqft)	(sqft)	(sqft)	Ratio	Cf	Df	Dr	(in)	(sqft)	(sqft)	(sqft)	(lb)	lce (lb)	(lb)	(lb)	(lb)
1	10.0	22.30 31.267	28.80	0.00	0.13	2.84	1.00	1.00	0.00	43.67	88.12	0.00	6,508.6	0.0	2349.60	1260.18	3.609.78
2	30.0	22.32 28.860	28.80	0.00	0.14	2.81	1.00	1.00	0.00	41.35	101.08	0.00	5,699.0		2205.88		3,654.28
3	50.0	25.83 23.184	28.80	0.00	0.14	2.81	1.00	1.00	0.00	35.08	101.08	0.00	5,293.3	0.0	2166.27	1676.00	3,842.27
4	70.0	28.43 21.246	22.13	0.00	0.13	2.84	1.00	1.00	0.00	31.63	101.08	0.00	4,819.4	0.0	2171.13	1845.12	4,016.25
5	90.0	30.55 22.280	22.12	0.00	0.15	2.76	1.00	1.00	0.00	32.63	101.08	0.00	4,465.4	0.0	2336.98	1982.48	4,319.46
6	110.0	32.35 16.430	18.58	0.00	0.14	2.80	1.00	1.00	0.00	25.69	99.34	0.00	3,864.7	0.0	1979.23	2065.14	4,044.38
7	130.0	33.93 14.331	15.03	0.00	0.14	2.79	1.00	1.00	0.00	22.39	65.41	0.00	3,024.9	0.0	1803.83	1461.38	3,265.21
8	150.0	35.35 12.808	11.69	0.00	0.15	2.76	1.00	1.00	0.00	19.44	65.41	0.00	2,332.0	0.0	1613.38	1522.36	3,135.74
9	164.0	36.26 4.976	4.67	0.00	0.17	2.69	1.00	1.00	0.00	7.64	17.81	0.00	833.3	0.0	632.37	439.28	1,071.66
10	178.0	37.12 12.376	11.67	0.00	0.17	2.68	1.00	1.00	0.00	19.03	13.41	0.00	1,645.7		1611.60		1,921.82
11	192.0	37.93 5.252	4.67	0.00	0.18	2.66	1.00	1.00	0.00	7.92	0.25	0.00	506.9	0.0	_	5.80	686.04
Load	d Case	: 1.2D + 1	.0W 60	° Wind									38,993.3 + 1.0W	0.0 121 mph	-	at 60° Fr	33,566.89 om Face
		Wind Load Fa		1.00													
		Dead Load Fa		1.20										wind i	nportant	e Factor:	1.00
	lce	Dead Load Fa	actor:	0.00										Ice li	mportanc	e Factor:	1.00
Sect Seq	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df		lce Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (Ib)	Weight Ice (Ib)	Struct Force (Ib)	Linear Force (lb)	Total Force (lb)
1	10.0	22.30 31.267	28.80	0.00	0.13	2.84	0.80	1.00	0.00	37.42	88.12	0.00	6,508.6	0.0	2013.18	1260.18	3,273.36
2	30.0	22.32 28.860	28.80	0.00	0.14		0.80			35.58	101.08	0.00	5,699.0		1897.97		3,346.36
3	50.0	25.83 23.184		0.00	0.14				0.00		101.08	0.00	5,293.3		1879.96		3,555.95
4	70.0	28.43 21.246	22.13	0.00	0.13	2.84	0.80	1.00	0.00	27.38	101.08	0.00	4,819.4	0.0	1879.45	1845.12	3,724.57
5	90.0	30.55 22.280	22.12	0.00	0.15	2.76	0.80	1.00	0.00	28.18	101.08	0.00	4,465.4	0.0	2017.89	1982.48	4,000.36
6	110.0	32.35 16.430	18.58	0.00		2.80			0.00	22.40	99.34	0.00	3,864.7	0.0	1726.05	2065.14	3,791.20
7	130.0	33.93 14.331	15.03	0.00		2.79			0.00	19.53	65.41	0.00	3,024.9		1572.97		3,034.35
8	150.0	35.35 12.808	11.69	0.00	0.15				0.00	16.88	65.41	0.00	2,332.0		1400.83		2,923.19
9	164.0	36.26 4.976	4.67	0.00	0.17	2.69	0.80	1.00	0.00	6.64	17.81	0.00	833.3	0.0	549.98	439.28	989.26

13.41 0.00

1,645.7

38,993.3

506.9

0.0 1402.00 310.22

0.0 589.99 5.80

0.0

1,712.21

595.80

30,946.62

0.17 2.68 0.80 1.00 0.00 16.56

11 192.0 37.93 5.252 4.67 0.00 0.18 2.66 0.80 1.00 0.00 6.87 0.25 0.00

10 178.0 37.12 12.376 11.67 0.00

							ę	Sect	ion	Force	S						
Stru	cture:	CT06462	-A-2-SE	3A				Code: TIA-222-H				6/1	4/2022	4			
Site	Name	: Mountain	Street					E	xpos	ure:	В				YA	(((붜))	
Heig	iht:	196.00 (fl	t)						-	Height	: 0.00)			x	llт	
-	e Elev:		,						ite C	-		Stiff So	il	7	S		
Gh:		0.85		Tono	aronk		1			Class				*	0000.0	Tower Engi	neering Solutions
		0.65		Торо	grapi	iy.	1	3	otruct	CIdSS	. 11			Γ	Page: 8		_
Load	d Case	: 1.2D + 1	.0W 90	° Wind								1.2D	+ 1.0W	121 mph	wind a	at 90° Fr	om Face
		Wind Load Fa	actor:	1.00										Wind I	mportand	e Factor:	1.00
		Dead Load Fa	actor:	1.20													
	lce	Dead Load Fa	actor:	0.00										Ice I	mportano	ce Factor:	1.00
	Martin al	Total	Total	Ice								Ice	T . (.)		O 11		T - 4 - 1
Sect	Wind Height	Flat qz Area	Round Area	Round Area	Sol				lce Thick	Eff Area	Linear Area	Linear Area	Total Weight	Weight	Struct Force	Linear Force	Total Force
Seq	(ft)	(psf) (sqft)	(sqft)	(sqft)	Ratio	Cf	Df	Dr	(in)	(sqft)	(sqft)	(sqft)	(lb)	Ice (lb)	(lb)	(lb)	(lb)
1	10.0	22.30 31.267	28.80	0.00	0.13	2.84	0.85	1.00	0.00	38.98	88.12	0.00	6,508.6	0.0	2097.28	1260.18	3,357.47
2	30.0	22.32 28.860	28.80	0.00	0.14	2.81	0.85	1.00	0.00	37.02	101.08	0.00	5,699.0	0.0	1974.94	1448.40	3,423.34
3	50.0	25.83 23.184	28.80	0.00	0.14	2.81	0.85	1.00	0.00	31.60	101.08	0.00	5,293.3	0.0	1951.54	1676.00	3,627.53
4	70.0	28.43 21.246	22.13	0.00	0.13	2.84		1.00	0.00	28.44	101.08	0.00	4,819.4		1952.37		3,797.49
5	90.0	30.55 22.280	22.12	0.00	0.15	2.76	0.85	1.00	0.00	29.29	101.08	0.00	4,465.4		2097.66		4,080.14
6	110.0	32.35 16.430	18.58	0.00	0.14	2.80	0.85		0.00	23.22	99.34	0.00	3,864.7		1789.35		3,854.49
7	130.0	33.93 14.331	15.03	0.00	0.14	2.79	0.85	1.00	0.00	20.25	65.41	0.00	3,024.9		1630.69		3,092.06
8	150.0	35.35 12.808	11.69	0.00	0.15			1.00	0.00	17.52	65.41	0.00	2,332.0		1453.97		2,976.33
9	164.0	36.26 4.976	4.67	0.00	0.17	2.69		1.00	0.00	6.89	17.81	0.00	833.3	0.0		439.28	1,009.86
10	178.0	37.12 12.376	11.67	0.00	0.17	2.68	0.85	1.00	0.00	17.18	13.41	0.00	1,645.7		1454.40		1,764.62
11	192.0	37.93 5.252	4.67	0.00	0.18	2.66	0.85	1.00	0.00	7.13	0.25	0.00	506.9 38,993.3	0.0	_	5.80	618.36 31,601.69
													30,993.3	0.	0		51,001.09
Load	d Case	: 0.9D + 1	.0W No	rmal W	ind							0.9D -	+ 1.0W [·]	121 mph	Wind at	t Normal	To Face
		Wind Load Fa	actor:	1.00										Wind I	mportand	e Factor:	1.00
		Dead Load Fa	actor:	0.90											-		
	lce	Dead Load Fa	actor:	0.00										Ice I	mportano	ce Factor:	1.00
		Total	Total	lce					_			Ice			_		
•	Wind	Flat	Round	Round	<u>.</u>				Ice	Eff		Linear	Total		Struct		Total
Sect Seq	Height (ft)	qz Area (psf) (sqft)	Area (sqft)	Area (sqft)	Sol Ratio	Cf	Df		Thick (in)	Area (sqft)	Area (sqft)	Area (sqft)	Weight (lb)	Weight Ice (lb)	Force (lb)	Force (lb)	Force (lb)
1	10.0	22.30 31.267	28.80	0.00	0.13	2.84	1.00	1.00	0.00	43.67	88.12	0.00	4,881.5	0.0	2349.60	1260.18	3,609.78
2	30.0	22.32 28.860	28.80	0.00	0.14		1.00	1.00	0.00	41.35	101.08	0.00	4,274.3		2205.88		3,654.28
3	50.0	25.83 23.184	28.80	0.00	0.14	2.81			0.00	35.08	101.08	0.00	3,970.0	0.0	2166.27	1676.00	3,842.27
4	70.0	28.43 21.246	22.13	0.00	0.13	2.84	1.00	1.00	0.00	31.63	101.08	0.00	3,614.5		2171.13		4,016.25
5	90.0	30.55 22.280	22.12	0.00	0.15	2.76	1.00	1.00	0.00	32.63	101.08	0.00	3,349.0	0.0	2336.98	1982.48	4,319.46
6	110.0	32.35 16.430	18.58	0.00	0.14	2.80	1.00	1.00	0.00	25.69	99.34	0.00	2,898.6	0.0	1979.23	2065.14	4,044.38
7	130.0	33.93 14.331	15.03	0.00	0.14	2.79	1.00	1.00	0.00	22.39	65.41	0.00	2,268.6	0.0	1803.83	1461.38	3,265.21
8	150.0	35.35 12.808	11.69	0.00	0.15				0.00	19.44	65.41	0.00	1,749.0		1613.38		3,135.74
0	164.0	26 26 4 076	4 67	0.00	0 17	2 60	1 00	1 00	0.00	761	17 01	0.00	625.0	0.0	620.27	120.00	1 071 66

7.64

17.81

13.41

0.25 0.00

0.00

0.00

625.0

380.2

1,234.3

29,245.0

0.0 632.37 439.28

0.0 1611.60 310.22

0.0 680.23 5.80

0.0

1,071.66

1,921.82

33,566.89

686.04

9

10

164.0 36.26 4.976 4.67

11 192.0 37.93 5.252 4.67 0.00

178.0 37.12 12.376

0.00

11.67 0.00

0.17 2.69 1.00 1.00 0.00

0.17 2.68 1.00 1.00 0.00 19.03

0.18 2.66 1.00 1.00 0.00 7.92

							ę	Sect	tion l	Force	es						
Stru	cture:	CT06462	-A-2-SF	3A				C	Code:		TIA-	·222-H		6/1	4/2022		
Sito	Name							F	xpos	uro.	В					((Щ))	
									•			`			*		
Heig	int:	196.00 (fi	L)							Height							
Base	e Elev:	: 0.000 (ft)						S	Site C	lass:	D - 3	Stiff So	bil	Z			
Gh:		0.85		Торо	grapł	ıy:	1	S	Struct	Class	: 11			F	Page: 9	Tower Engi	neering Solutions
Load	d Case	: 0.9D + 1	.0W 60	° Wind								0.9D	+ 1.0W	121 mph	Wind a	at 60° Fr	om Face
		Wind Load Fa	actor:	1.00										Wind li	mnortan	e Factor:	1.00
		Dead Load Fa	actor:	0.90										wind i	mportant	Je i actor.	1.00
	Ice	Dead Load Fa	actor:	0.00										Ice li	mportan	e Factor:	1.00
		Total	Total	lce								Ice			-		
	Wind	Flat	Round	Round					Ice	Eff	Linear	Linear	Total		Struct	Linear	Total
	Height	qz Area	Area	Area	Sol				Thick	Area	Area	Area	Weight	Weight	Force	Force	Force
Seq	(ft)	(psf) (sqft)	(sqft)	(sqft)	Ratio	Cf	Df	Dr	(in)	(sqft)	(sqft)	(sqft)	(lb)	lce (lb)	(lb)	(lb)	(lb)
1	10.0	22.30 31.267	28.80	0.00	0.13	2.84	0.80	1.00	0.00	37.42	88.12	0.00	4,881.5	0.0	2013.18	1260.18	3,273.36
2	30.0	22.32 28.860	28.80	0.00	0.14	2.81	0.80	1.00	0.00	35.58	101.08	0.00	4,274.3	0.0	1897.97	1448.40	3,346.36
3	50.0	25.83 23.184	28.80	0.00	0.14	2.81	0.80	1.00	0.00	30.44	101.08	0.00	3,970.0	0.0	1879.96	1676.00	3,555.95
4	70.0	28.43 21.246	22.13	0.00	0.13	2.84	0.80	1.00	0.00	27.38	101.08	0.00	3,614.5	0.0	1879.45	1845.12	3,724.57
5	90.0	30.55 22.280	22.12	0.00	0.15	2.76	0.80	1.00	0.00	28.18	101.08	0.00	3,349.0	0.0	2017.89	1982.48	4,000.36
6	110.0	32.35 16.430	18.58	0.00	0.14	2.80	0.80	1.00	0.00	22.40	99.34	0.00	2,898.6	0.0	1726.05	2065.14	3,791.20
7	130.0	33.93 14.331	15.03	0.00	0.14	2.79	0.80	1.00	0.00	19.53	65.41	0.00	2,268.6	0.0	1572.97	1461.38	3,034.35
8	150.0	35.35 12.808	11.69	0.00	0.15	2.76	0.80	1.00	0.00	16.88	65.41	0.00	1,749.0	0.0	1400.83	1522.36	2,923.19
9	164.0	36.26 4.976	4.67	0.00	0.17	2.69	0.80	1.00	0.00	6.64	17.81	0.00	625.0	0.0	549.98	439.28	989.26
10	178.0	37.12 12.376	11.67	0.00	0.17	2.68	0.80	1.00	0.00	16.56	13.41	0.00	1,234.3	0.0	1402.00	310.22	1,712.21
11	192.0	37.93 5.252	4.67	0.00	0.18	2.66	0.80	1.00	0.00	6.87	0.25	0.00	380.2	0.0	589.99	5.80	595.80
													29,245.0	0.0	0		30,946.62
Load		: 0.9D + 1 Wind Load Fa		° Wind 1.00								0.9D	+ 1.0W			at 90° Fr ce Factor:	om Face
		Dead Load Fa	actor:	0.90													
	Ice	Dead Load Fa	actor:	0.00										Ice I	mportan	ce Factor:	1.00
Sect Seq	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	lce Round Area (sqft)	Sol Ratio	Cf	Df	Dr	lce Thick (in)	Eff Area (sqft)	Linear Area (sqft)	lce Linear Area (sqft)	Total Weight (Ib)	Weight Ice (Ib)	Struct Force (lb)	Linear Force (Ib)	Total Force (lb)
1	10.0	22.30 31.267	28.80	0.00	0.13	2.84	0.85	1.00	0.00	38.98	88.12	0.00	4,881.5	0.0	2097.28	1260.18	3,357.47
2	30.0	22.32 28.860	28.80	0.00	0.14				0.00		101.08		4,274.3		1974.94		3,423.34
3	50.0	25.83 23.184	28.80	0.00		2.81			0.00		101.08		3,970.0		1951.54		3,627.53
4	70.0	28.43 21.246	22.13	0.00		2.84			0.00	28.44			3,614.5		1952.37		3,797.49
5	90.0	30.55 22.280	22.12	0.00		2.76			0.00	29.29	101.08		3,349.0		2097.66		4,080.14
6	110.0	32.35 16.430	18.58	0.00		2.80			0.00	23.22	99.34		2,898.6		1789.35		3,854.49
7	130.0	33.93 14.331	15.03	0.00		2.79			0.00	20.25	65.41	0.00	2,268.6		1630.69		3,092.06
8	150.0	35.35 12.808	11.69	0.00		2.76			0.00	17.52	65.41	0.00	1,749.0		1453.97		2,976.33
9	164.0	36.26 4.976	4.67	0.00		2.69			0.00	6.89	17.81	0.00	625.0		570.57		1,009.86
10	170.0	27 10 10 276	44.67		0.47	2.00	0.00	1.00		17 10	10.44	0.00	1 024 0	0.0	1454.40		1,000.00

13.41 0.00

1,234.3

29,245.0

380.2

0.0 1454.40 310.22

0.0 612.55 5.80

0.0

1,764.62

618.36

31,601.69

0.17 2.68 0.85 1.00 0.00 17.18

11 192.0 37.93 5.252 4.67 0.00 0.18 2.66 0.85 1.00 0.00 7.13 0.25 0.00

10 178.0 37.12 12.376 11.67 0.00

Section Forces Structure: CT06462-A-2-SBA Code: TIA-222-H Bite Name: Mountain Street Height: 0.00 Base Elev: 0.000 (ft) Code: TIA-222-H Exposure: B O O O Base Elev: 0.000 (ft) Struct Class: D D: Sitte Class: D D: Sitte Class: D O O <th <="" colspan="2" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									_	_									
Site Name: Mountain Street Exposure: B Mile Street Note: Site Class: D D D Site Class: Site Class: Site Class: Site C								S	Sect	tion l	Force	es								
Vind Land Divert Modulation Survey Description Description <thdescription< th=""> Description</thdescription<>	Stru	cture:	CT06462	-A-2-SE	3A				C	code:		TIA-	-222-H		6/1	4/2022	4			
Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Page: 10 Image: Telepoleting Solution Gh: 0.85 Topography: 1 Site Class: II Page: 10 Image: Telepoleting Solution Load Case: 1.2D + 1.0Di + 1.0Wi Normal Wind 1.00 Image: Telepoleting Solution Image: Telepoleting Solution Total	Site	Name:	Mountain	Street					E	xpos	ure:	В			,	YA	(((#)))			
Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Page: 10 Image: Telepoleting Solution Gh: 0.85 Topography: 1 Site Class: II Page: 10 Image: Telepoleting Solution Load Case: 1.2D + 1.0Di + 1.0Wi Normal Wind 1.00 Image: Telepoleting Solution Image: Telepoleting Solution Total	Heia	ht:	196.00 (f	t)					C	Crest	Heiaht	t: 0.00)				Г			
Gh: 0.85 Topography: 1 Struct Class: II Page: 10 Tope Page: 10 Load Case: 1.2D + 1.0Di + 1.0Wi Normal Wind 1.2D + 1.0Di + 1.0Wi S0 mph Wind at Normal Form Face Normal Form Face 1.00 Wind Load Factor: 1.00 Image: 10 Wind Importance Factor: 1.00 Image: 10	-		`	,							-			vil	7	S				
Oni: 0.03 10p0graphy: 1 Struct Cisss: n Prage: n N N N N N N N N N N N N N <th< td=""><td></td><td></td><td>()</td><td></td><td>T</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>///</td><td>1</td><td></td><td>Tower Engir</td><td>eering Solutions</td></th<>			()		T				-					///	1		Tower Engir	eering Solutions		
Wind Load Factor: 1.00 1.20 Wind Load Factor: 1.00 1.20 Wind Load Factor: 1.00 Ite Boad Load Factor: 1.00 Nind Sign 1/2 (signt) Total for Round Round Sol 1/2 (signt) None Round Sol 1/2 (signt) Sol 1/2 (signt) Colspan="4">Total for Read Read Read Read Read Read Read Read	Gn:		0.85		Горо	grapr	ıy:	1	2	Struct	Class	: 11			Pa	ige: 10				
Dead Load Factor: 1.20 Ice Importance Factor: 1.00 total Factor: 1.00 Vind Importance Factor: 1.00 total (gaf) (sqf) ce Importance Factor: 1.00 Sol Inter Importance Factor: 1.00 Sol Inter Importance Factor: Total (gaf) (sqf) Sol Sol Inter Importance Factor: Total (gaf) (sqf) Sol Sol Inter Importance Factor: Total (gaf) (sqf) Sol Inter Importance Factor: Total (gaf) (sqf) Sol Inter Importance Factor: Total (gaf) (sqf) Sol Sol Sol Sol Sol Sol <th colspan<="" td=""><td>Load</td><td>d Case</td><td>: 1.2D + 1</td><td>.0Di + 1</td><td>I.0Wi N</td><td>ormal</td><td>Win</td><td>d</td><td></td><td></td><td>1.2</td><td>2D + 1.</td><td>0Di + 1</td><td>1.0Wi 50</td><td>) mph Wir</td><td>nd at No</td><td>ormal Fro</td><td>om Face</td></th>	<td>Load</td> <td>d Case</td> <td>: 1.2D + 1</td> <td>.0Di + 1</td> <td>I.0Wi N</td> <td>ormal</td> <td>Win</td> <td>d</td> <td></td> <td></td> <td>1.2</td> <td>2D + 1.</td> <td>0Di + 1</td> <td>1.0Wi 50</td> <td>) mph Wir</td> <td>nd at No</td> <td>ormal Fro</td> <td>om Face</td>	Load	d Case	: 1.2D + 1	.0Di + 1	I.0Wi N	ormal	Win	d			1.2	2D + 1.	0Di + 1	1.0Wi 50) mph Wir	nd at No	ormal Fro	om Face	
ite best Load Factor i.00 ite best Load Factor ite best Load Factor <th< th=""><th></th><th></th><th>Wind Load Fa</th><th>actor:</th><th>1.00</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Wind I</th><th>nportano</th><th>e Factor:</th><th>1.00</th></th<>			Wind Load Fa	actor:	1.00										Wind I	nportano	e Factor:	1.00		
Vind Seet Height (ft) Total (g, fr) Total Round (g, fr) Ice Round (g, fr)			Dead Load Fa	actor:	1.20															
Nind SecNind (ps)Nind <br< th=""><th></th><th>lce</th><th>Dead Load Fa</th><th>actor:</th><th>1.00</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Ice li</th><th>nportan</th><th>e Factor:</th><th>1.00</th></br<>		lce	Dead Load Fa	actor:	1.00										Ice li	nportan	e Factor:	1.00		
sec Height gar Area Kead																.				
seq (r)	Sect					Sol									Weight					
2 30.0 3.81 28.80 50.18 21.38 0.19 2.63 1.00 1.00 1.04 51.90 1.04.40 17.37 9.893.0 4599.7 50.99 443.67 952.68 3 50.0 4.41 23.184 50.07 21.27 0.19 2.62 1.00 1.00 51.90 140.40 17.37 9.893.90 4495.9 543.05 543.07 526.67 1.009.74 5 90.0 5.22 22.280 46.53 24.41 0.24 2.48 1.00 1.00 1.11 49.34 141.87 18.43 9.201.3 4735.9 543.07 526.67 1.009.74 6 110.0 5.79 14.331 40.81 1.00.6 1.636 8.085.5 423.8 474.89 543.91 1.018.06 8 150.0 6.04 12.808 35.04 23.35 0.29 2.32 1.00 1.00 1.17 13.42 23.51 4.70 1.899.8 1065.5 156.71 119.00 275.72 10 178.0 6.34 12.37 34.78 23.11 <	-						Cf	Df	Dr											
3 50.0 4.41 23.184 50.07 21.27 0.19 2.62 1.00 1.04 51.90 140.40 17.37 9.893.0 4599.7 508.99 443.67 952.66 5 90.0 5.22 22.80 46.53 24.41 0.24 2.48 1.00 1.00 1.11 49.34 141.37 7.97 9.26.89 444.95 495.52 493.64 989.15 6 110.0 5.52 16.430 41.48 2.29 0.23 2.50 1.00 1.01 1.14 49.34 141.87 18.43 9.201.3 474.59 543.91 1.018.60 7 130.0 5.79 14.33 36.28 21.26 0.02 2.32 1.00 1.00 1.16 33.70 9.28.9 6.312.3 3192.3 401.03 467.48 886.51 8 160.0 6.19 4.976 13.87 9.20 0.32 2.22 1.00 1.00 1.18 33.42 23.51 1.28 160.71 140.04 17.40 400.41 97.52 1 178.0	1	10.0	3.81 31.267	49.02	20.23	0.18	2.68	1.00	1.00	0.89	59.24	118.47	14.50	10,641.	4132.8	513.83	326.39	840.21		
4 70.0 4.86 21.246 42.84 20.72 0.19 2.62 1.00 1.00 1.00 1.11 49.34 17.97 9.268.9 444.95 495.52 493.64 989.15 5 90.0 5.52 22.22.80 46.53 24.41 0.24 2.45 1.00 1.00 1.13 40.51 141.87 18.43 9.201.3 473.5 543.07 526.67 1.009.74 7 130.0 5.79 14.331 36.28 21.26 0.22 2.20 1.00 1.00 1.15 35.51 92.66 6.322.3 312.3 410.3 467.6 889.51 8 150.0 6.04 12.808 35.04 23.35 0.29 2.22 1.00 1.00 1.16 33.76 82.51 1.30 1.60.5 165.61 110.00 275.72 10 178.0 6.34 2.375 3.78 2.311 0.33 2.22 1.00 1.00 1.11 33.58 18.61 7.50 373.0 174.03 7.57 181.78 10 164.0 6.34 1.05 + 1.0DF +	2	30.0	3.81 28.860	50.18	21.38	0.19	2.63	1.00	1.00	0.99	57.60	139.19	16.51	10,425.	4726.3	491.16	378.36	869.52		
5 90.0 5.22 22.280 46.53 24.41 0.24 2.48 1.00 1.01 49.34 14.87 18.43 9.201.3 4735.9 543.07 56.67 1.069.74 6 110.0 5.52 16.403 41.48 22.00 0.23 2.50 1.00 1.05 15.05 16.26 16.24 24.85 8.098.5 192.86 6.312.3 3287.5 429.30 455.81 885.11 8 150.0 6.04 12.808 36.04 23.35 0.29 2.32 1.00 1.00 1.16 33.70 89.25 19.39 5.524.3 3182.3 401.03 467.46 886.50 9 164.0 6.19 4.976 13.87 9.20 0.33 2.21 1.00 1.00 1.16 33.75 18.01 7.00 3.752.4 3.752.4 2107.1 400.41 97.63 489.04 119.00 275.72 181.76 1.20 1.20 1.20 1.20 1.20 1.20 1.20 7.630.7 7.83.0 17.03 7.75 181.76 10 102 5.2	3	50.0	4.41 23.184	50.07	21.27	0.19	2.62	1.00	1.00	1.04	51.90	140.40	17.37	9,893.0	4599.7	508.99	443.67	952.66		
6 110.0 5.52 16.430 41.48 22.90 0.23 2.50 1.00 1.00 1.13 40.51 140.66 16.36 9.098.5 423.38 474.69 543.91 1.018.60 7 130.0 5.79 14.31 36.28 21.26 0.24 2.45 1.00 1.00 1.15 35.51 92.86 15.29 6.312.3 3287.5 429.30 455.81 885.11 8 150.0 6.04 12.808 35.04 23.35 0.29 2.32 1.00 1.00 1.18 33.58 18.61 7.50 3.752.8 210.71 400.41 97.63 498.04 11 192.0 6.48 5.252 15.29 10.63 0.36 2.14 1.00 1.00 1.18 33.58 18.61 7.50 3.752.8 210.71 400.41 97.63 498.04 11 192.0 6.48 5.252 15.29 10.63 5.64 3.76.7 37314.4 7.75 181.78 Locat Last - Lop + LoDi + LoWid - Eator: 1.00 1.08 1.00 1.18 35.6<	4	70.0	4.86 21.246	42.84	20.72	0.19	2.62	1.00	1.00	1.08	45.80	141.23	17.97	9,268.9	4449.5	495.52	493.64	989.15		
7 130.0 5.79 ± 4.331 36.28 21.26 0.24 2.45 1.00 1.00 1.15 35.51 92.86 15.29 6,312.3 3287.5 429.30 455.81 885.11 8 150.0 6.04 ± 2.808 35.04 23.35 0.29 2.32 1.00 1.00 1.17 33.70 89.25 19.39 5.524.3 3192.3 401.03 467.46 886.50 9 164.0 6.34 ± 2.376 3.478 23.11 0.03 2.21 1.00 1.00 1.18 33.58 4.70 3.928.5 210.71 400.41 97.63 498.04 11 192.0 6.48 5.252 15.29 10.63 0.36 2.14 1.00 1.18 3.58 1.59 3.75.8 210.71 400.41 97.63 498.04 Into boot set to the se	5	90.0	5.22 22.280	46.53	24.41	0.24	2.48	1.00	1.00	1.11	49.34	141.87	18.43	9,201.3	4735.9	543.07	526.67	1,069.74		
8 150.0 6.04 12.808 35.04 23.35 0.29 2.32 1.00 1.00 1.17 13.42 23.51 4.70 1.89.88 1066.5 156.71 119.00 275.72 10 178.0 6.34 12.376 34.78 23.11 0.33 2.21 1.00 1.00 1.18 33.58 18.61 7.50 3.752.8 210.1 400.14 97.63 498.04 11 192.0 6.48 5.252 15.29 10.63 0.36 2.14 1.00 1.00 1.16 33.56 18.61 7.50 3.752.8 210.1 400.41 97.63 498.04 11 192.0 6.48 5.252 15.29 10.63 0.36 2.14 1.00 1.00 1.07 1.20 1.20 1.20 7.6307.7 373.01 1.00 7.75 8.49.04 Loc Lic Lic Lic Lic Lic Lic Lic Lic Lic Li	6	110.0	5.52 16.430	41.48	22.90	0.23	2.50	1.00	1.00	1.13	40.51	140.66	16.36	8,098.5	4233.8	474.69	543.91	1,018.60		
9 164.0 6.19 4.976 13.87 9.20 0.33 2.22 1.00 1.01 13.42 23.51 4.70 1,899.8 1066.5 156.71 119.00 275.72 10 178.0 6.34 12.376 34.78 23.11 0.33 2.21 1.00 1.00 1.18 33.58 18.61 7.50 3,752.8 210.71 400.41 97.63 498.04 11 192.0 6.48 5.252 15.29 10.63 0.26 2.14 1.00 1.00 1.18 33.58 18.61 7.50 128.99 783.0 174.03 7.75 181.78 Lot Lint	7	130.0	5.79 14.331	36.28	21.26	0.24	2.45	1.00	1.00	1.15	35.51	92.86	15.29	6,312.3	3287.5	429.30	455.81	885.11		
178.0 6.34 12.376 34.78 23.11 0.33 2.21 1.00 1.00 1.18 33.58 18.61 7.50 3,752.8 2107.1 400.41 97.63 498.04 11 192.0 6.48 5.252 15.29 10.63 0.36 2.14 1.00 1.00 1.19 14.75 0.25 1.59 1,289.9 783.0 743.0 74.03 7.57 481.78 Regular Sector: 1.20 1.20 1.00 1.00 1.00 1.47 0.25 1.59 1,289.9 783.0 743.0 74.03 7.50 4849.04 Regular Sector: 1.20 1.00 1.00 1.00 1.2D 1.0D 1.0D 1.00	8	150.0	6.04 12.808	35.04	23.35	0.29	2.32	1.00	1.00	1.16	33.70	89.25	19.39	5,524.3	3192.3	401.03	467.46	868.50		
11 192.0 6.48 5.252 15.29 10.63 0.36 2.14 1.00 1.19 14.75 0.25 1.59 1,289.9 783.0 174.03 7.75 181.78 Load Case: 1.2D + 1.0Di + 1.0Wi 60° Wind 1.0Wi 60° Wind 1.2D + 1.0Di + 1.0Wi 60° Wind 1.2D + 1.0Di + 1.0Wi 50° Wind 1.2D + 1.0Di + 1.0Wi 60° Wind 1.2D + 1.0Di + 1.0Wi 50° Wind 1.00 1.00 Wind Load Factor: 1.20 Vind Load Factor: 1.2D 1.2D 1.2D + 1.0Di + 1.0Wi 70° Wind 1.00 1.00 Kind Load Factor: 1.20 Vind Scieve to the tototototototototototototototototototo	9	164.0	6.19 4.976	13.87	9.20	0.33	2.22	1.00	1.00	1.17	13.42	23.51	4.70	1,899.8	1066.5	156.71	119.00	275.72		
Total Total Ice	10	178.0	6.34 12.376	34.78	23.11	0.33	2.21	1.00	1.00	1.18	33.58	18.61	7.50	3,752.8	2107.1	400.41	97.63	498.04		
I.2D + I	11	192.0	6.48 5.252	15.29	10.63	0.36	2.14	1.00	1.00	1.19	14.75	0.25	1.59	1,289.9	783.0	174.03	7.75	181.78		
Wind Load Fact: 1.00														76,307.7	37314.4	1		8,449.04		
Wind Load Fact: 1.00																				
Vind Load Factor: 1.20 Interpretation Miniparticity Miniparity Miniparticity <t< td=""><td>Load</td><td></td><td></td><td></td><td></td><td></td><td>nd</td><td></td><td></td><td></td><td></td><td>1.2D</td><td>+ 1.0D</td><td>i + 1.0W</td><td>/i 50 mph</td><td>Wind a</td><td>at 60° Fro</td><td>om Face</td></t<>	Load						nd					1.2D	+ 1.0D	i + 1.0W	/i 50 mph	Wind a	at 60° Fro	om Face		
Ice Dead Load Factor:1.00Ice Interaction In															Wind I	nportano	e Factor:	1.00		
Wind Sect Total rgs Total Round Area (sqft) Ice Round Area (sqft) Ice Round Area (sqft) Ice Round Round Area (sqft) Ice Round Round Area (sqft) Ice Round Round Area (sqft) Ice Round Area (sqft) Ice Round Ro																nnortan	e Factor	1 00		
Wind begin Flat gz Round Area (sft) Round Meight Round Meight <t< th=""><th></th><th>ICe</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th><u> </u></th><th></th><th>ice ii</th><th>nportant</th><th></th><th>1.00</th></t<>		ICe											<u> </u>		ice ii	nportant		1.00		
Sect SeqHeight (psf) (sqft)Area (sqft)Area (sqft)Sol (sqft)The (sqft)Area (sqft)Area (sqft)Area (sqft)Area (sqft)Meight (sqft)Force (lb		Wind								lco	Eff	Linoar		Total		Struct	Linoar	Total		
Seq (ft) (psf) (sqft) (sqft) (sqft) Ratio Cf Df Dr (in) (sqft) (sqft) (lb)	Sect					Sol									Weight					
1 10.0 3.81 31.267 49.02 20.23 0.18 2.68 0.80 1.00 0.89 52.99 118.47 14.50 10,641. 4132.8 459.59 326.39 785.97 2 30.0 3.81 28.860 50.18 21.38 0.19 2.63 0.80 1.00 0.99 51.82 139.19 16.51 10,425. 4726.3 441.94 378.36 820.30 3 50.0 4.41 23.184 50.07 21.27 0.19 2.62 0.80 1.00 1.04 47.26 140.40 17.37 9,893.0 4599.7 463.51 443.67 907.18 4 70.0 4.86 21.246 42.84 20.72 0.19 2.62 0.80 1.00 1.08 41.55 141.23 17.97 9,268.9 4449.5 449.55 493.64 943.18 5 90.0 5.22 22.280 46.53 24.41 0.24 2.48 0.80 1.00 1.11 44.88 141.87 18.43 9,201.3 4735.9 494.02 526.67 1,020.69 6 110.0	-						Cf	Df												
2 30.0 3.81 28.860 50.18 21.38 0.19 2.63 0.80 1.00 0.99 51.82 139.19 16.51 10,425. 4726.3 441.94 378.36 820.30 3 50.0 4.41 23.184 50.07 21.27 0.19 2.62 0.80 1.00 1.04 47.26 140.40 17.37 9,893.0 4599.7 463.51 443.67 907.18 4 70.0 4.86 21.246 42.84 20.72 0.19 2.62 0.80 1.00 1.08 41.55 141.23 17.97 9,268.9 4449.5 449.55 493.64 943.18 5 90.0 5.22 22.280 46.53 24.41 0.24 2.48 0.80 1.00 1.11 44.88 141.87 18.43 9,201.3 4735.9 494.02 526.67 1,020.69 6 110.0 5.52 16.430 41.48 22.90 0.23 2.50 0.80 1.00 1.13 37.23 140.66 16.36 8,098.5 4233.8 436.19 543.91 980.10	1				,															
3 50.0 4.41 23.184 50.07 21.27 0.19 2.62 0.80 1.00 1.04 47.26 140.40 17.37 9,893.0 4599.7 463.51 443.67 907.18 4 70.0 4.86 21.246 42.84 20.72 0.19 2.62 0.80 1.00 1.08 41.55 141.23 17.97 9,268.9 4449.5 449.55 493.64 943.18 5 90.0 5.22 22.280 46.53 24.41 0.24 2.48 0.80 1.00 1.11 44.88 141.87 18.43 9,201.3 4735.9 494.02 526.67 1,020.69 6 110.0 5.52 16.430 41.48 22.90 0.23 2.50 0.80 1.00 1.13 37.23 140.66 16.36 8,098.5 4233.8 436.19 543.91 980.10																				
4 70.0 4.86 21.246 42.84 20.72 0.19 2.62 0.80 1.00 1.08 41.55 141.23 17.97 9,268.9 4449.5 449.55 493.64 943.18 5 90.0 5.22 22.280 46.53 24.41 0.24 2.48 0.80 1.00 1.11 44.88 141.87 18.43 9,201.3 4735.9 494.02 526.67 1,020.69 6 110.0 5.52 16.430 41.48 22.90 0.23 2.50 0.80 1.00 1.13 37.23 140.66 16.36 8,098.5 4233.8 436.19 543.91 980.10																				
5 90.0 5.22 22.280 46.53 24.41 0.24 2.48 0.80 1.00 1.11 44.88 141.87 18.43 9,201.3 4735.9 494.02 526.67 1,020.69 6 110.0 5.52 16.430 41.48 22.90 0.23 2.50 0.80 1.00 1.13 37.23 140.66 16.36 8,098.5 4233.8 436.19 543.91 980.10																				
6 110.0 5.52 16.430 41.48 22.90 0.23 2.50 0.80 1.00 1.13 37.23 140.66 16.36 8,098.5 4233.8 436.19 543.91 980.10																				
8 150.0 6.04 12.808 35.04 23.35 0.29 2.32 0.80 1.00 1.16 31.14 89.25 19.39 5,524.3 3192.3 370.55 467.46 838.02																				
9 164.0 6.19 4.976 13.87 9.20 0.33 2.22 0.80 1.00 1.17 12.42 23.51 4.70 1,899.8 1066.5 145.09 119.00 264.09																				

18.61 7.50 3,752.8

76,307.7

2107.1 370.90

37314.4

783.0 161.63 7.75

97.63

468.53

169.39

8,047.91

 $6.34\ 12.376 \quad 34.78 \quad 23.11 \quad 0.33 \ 2.21 \quad 0.80 \ 1.00 \quad 1.18 \quad 31.11$

11 192.0 6.48 5.252 15.29 10.63 0.36 2.14 0.80 1.00 1.19 13.69 0.25 1.59 1,289.9

10 178.0

CT06462	-A-2-SE	3A		_		C	ode:		TIA-	222-H		6/1	4/2022		
						_		ure:						(((#)))	
							•					:	1		
`	,							-					×		
. ,										Stiff So	11	Z		Taura En sia	
0.85		Торо	graph	y:	1	S	Struct	Class	:			Pa	age: 11	Tower Engin	eering Solution
: 1.2D + 1	.0Di + 1	1.0Wi 9	0° Wir	nd					1.2D ·	+ 1.0Di	+ 1.0W	/i 50 mph	Wind a	at 90° Fro	om Face
Wind Load Fa	actor:	1.00													1.00
Dead Load Factor: 1.20														1.00	
Dead Load Fa	actor:	1.00										Ice Ir	nportano	ce Factor:	1.00
Total Total Ice Ice															
			Sol									Woight			Total Force
(psf) (sqft)	(sqft)	(sqft)		Cf	Df	Dr	(in)	(sqft)	(sqft)	(sqft)	(lb)	Ice (lb)	(lb)	(lb)	(lb)
3.81 31.267	49.02	20.23	0.18	2.68	0.85	1.00	0.89	54.55	118.47	14.50	10,641.	4132.8	473.15	326.39	799.53
3.81 28.860	50.18	21.38	0.19	2.63	0.85	1.00	0.99	53.27	139.19	16.51	10,425.	4726.3	454.24	378.36	832.61
	50.07	01 07		~ ~ ~											040 55
4.41 23.184	50.07	21.27	0.19	2.62	0.85	1.00	1.04	48.42	140.40	17.37	9,893.0	4599.7	474.88	443.67	918.55
4.41 23.184 4.86 21.246	42.84	21.27	0.19 0.19					48.42 42.62	140.40 141.23		9,893.0 9,268.9	4599.7 4449.5	474.88 461.04	443.67 493.64	
				2.62			1.08			17.97	,				954.67
4.86 21.246	42.84	20.72	0.19	2.62 2.48	0.85	1.00	1.08 1.11	42.62	141.23	17.97 18.43	9,268.9	4449.5	461.04	493.64	954.67 1,032.95
4.86 21.246 5.22 22.280	42.84 46.53	20.72 24.41	0.19 0.24	2.62 2.48 2.50	0.85 0.85 0.85	1.00 1.00	1.08 1.11 1.13	42.62 46.00	141.23 141.87	17.97 18.43 16.36	9,268.9 9,201.3	4449.5 4735.9	461.04 506.28	493.64 526.67 543.91	954.67 1,032.95 989.73
4.86 21.246 5.22 22.280 5.52 16.430	42.84 46.53 41.48	20.72 24.41 22.90	0.19 0.24 0.23	2.62 2.48 2.50 2.45	0.85 0.85 0.85	1.00 1.00 1.00 1.00	1.08 1.11 1.13 1.15	42.62 46.00 38.05	141.23 141.87 140.66	17.97 18.43 16.36 15.29	9,268.9 9,201.3 8,098.5	4449.5 4735.9 4233.8	461.04 506.28 445.82	493.64 526.67 543.91 455.81	954.67 1,032.95 989.73
4.86 21.246 5.22 22.280 5.52 16.430 5.79 14.331	42.84 46.53 41.48 36.28	20.72 24.41 22.90 21.26	0.19 0.24 0.23 0.24	2.62 2.48 2.50 2.45 2.32	0.85 0.85 0.85 0.85	1.00 1.00 1.00 1.00 1.00	1.08 1.11 1.13 1.15 1.16	42.62 46.00 38.05 33.36	141.23 141.87 140.66 92.86	17.97 18.43 16.36 15.29	9,268.9 9,201.3 8,098.5 6,312.3	4449.5 4735.9 4233.8 3287.5	461.04 506.28 445.82 403.31	493.64 526.67 543.91 455.81	918.55 954.67 1,032.95 989.73 859.12 845.64 267.00
4.86 21.246 5.22 22.280 5.52 16.430 5.79 14.331 6.04 12.808	42.84 46.53 41.48 36.28 35.04	20.72 24.41 22.90 21.26 23.35	0.19 0.24 0.23 0.24 0.29	2.62 2.48 2.50 2.45 2.32 2.22	0.85 0.85 0.85 0.85 0.85 0.85	1.00 1.00 1.00 1.00 1.00	1.08 1.11 1.13 1.15 1.16 1.17	42.62 46.00 38.05 33.36 31.78	141.23 141.87 140.66 92.86 89.25	17.97 18.43 16.36 15.29 19.39	9,268.9 9,201.3 8,098.5 6,312.3 5,524.3	4449.5 4735.9 4233.8 3287.5 3192.3	461.04 506.28 445.82 403.31 378.17	493.64 526.67 543.91 455.81 467.46	954.67 1,032.95 989.73 859.12 845.64
4.86 21.246 5.22 22.280 5.52 16.430 5.79 14.331 6.04 12.808 6.19 4.976	42.84 46.53 41.48 36.28 35.04 13.87 34.78	20.72 24.41 22.90 21.26 23.35 9.20	0.19 0.24 0.23 0.24 0.29 0.33	2.62 2.48 2.50 2.45 2.32 2.22 2.21	0.85 0.85 0.85 0.85 0.85 0.85 0.85	1.00 1.00 1.00 1.00 1.00 1.00	1.08 1.11 1.13 1.15 1.16 1.17 1.18	42.62 46.00 38.05 33.36 31.78 12.67	141.23 141.87 140.66 92.86 89.25 23.51	17.97 18.43 16.36 15.29 19.39 4.70	9,268.9 9,201.3 8,098.5 6,312.3 5,524.3 1,899.8	4449.5 4735.9 4233.8 3287.5 3192.3 1066.5	461.04 506.28 445.82 403.31 378.17 148.00 378.28	493.64 526.67 543.91 455.81 467.46 119.00	954.67 1,032.95 989.73 859.12 845.64 267.00
	 Mountain 196.00 (ft) 0.000 (ft) 0.85 1.2D + 1 Wind Load Fa Dead Load Fa Dead Load Fa Dead Load Fa Total Flat qz Area (psf) (sqft) 3.81 31.267 3.81 28.860 	 Mountain Street 196.00 (ft) 0.000 (ft) 0.85 1.2D + 1.0Di + 7 Wind Load Factor: Dead Load Factor: Dead Load Factor: Dead Load Factor: Dead Load Factor: Dead Load Factor: Dead Load Factor: 0.81 Street 3.81 Street 3.81 Street 3.81 Street St	196.00 (ft) 0.000 (ft) 0.85 Topo : 1.2D + 1.0Di + 1.0Wi 9 Wind Load Factor: 1.00 Dead Load Factor: 1.20 Dead Load Factor: 1.00 Dead Load Factor: 1.00 Total Flat Round qz Area (psf) (sqft) Area (sqft) 3.81 31.267 49.02 20.23 3.81 28.860 50.18 21.38	Mountain Street 196.00 (ft) 0.000 (ft) 0.85 Topograph : 1.2D + 1.0Di + 1.0Wi 90° Wir Wind Load Factor: 1.00 Dead Load Factor: 1.20 Dead Load Factor: 1.00 Total Flat Round qz Area Area Area Area (psf) (sqft) (sqft) (sqft) Sol (sqft) Ratio 3.81 31.267 49.02 20.23 0.18 3.81 28.860 50.18 21.38 0.19	Mountain Street 196.00 (ft) 0.000 (ft) 0.85 Topography: Stopography: 0.85 Topography: Stopography: Use of the stopography: Colspan="2">Stopography: Interview of the stopography: Mound Factor: 1.00 Dead Load Factor: 1.00 Total Flat Round Area Area Sol (sqft) Gent (sqft) (sqft) 3.81 31.267 49.02 20.23 0.18 2.68 3.81 31.267 49.02 20.23 0.18 2.68 3.81 31.267 49.02 20.23 0.18 2.68 3.81 28.860 50.18 21.38 0.19 2.63	Mountain Street 196.00 (ft) 0.000 (ft) 0.85 Topography: 1 I.2D + 1.0Di + 1.0Wi 90° Wind Wind Load Factor: 1.00 Dead Load Factor: 1.20 Total Round Round qz Area Area Area Area Area Sol (psf) (sqft) Ice Round (sqft) 3.81 31.267 3.81 31.267 3.81 31.267 3.81 28.860	Mountain Street Image: Stre	Mountain Street Expos 196.00 (ft) Crest 0.000 (ft) Site C 0.85 Topography: 1 Struct 0.85 Topography: 1 Struct Crest 0.85 Topography: 1 Struct Wind Wind Wind Opead Load Factor: 1.00 Total Total Ice Flat Round Round Round qz Area Area Sol (psf) (sqft) (sqft) Ratio Cf Df Dr Thick 3.81 31.267 49.02 20.23 0.18 2.68 0.85 1.00 0.89	Exposure: 196.00 (ft) Crest Height 196.00 (ft) Site Class: Site Class: 0.85 Topography: 1 Struct Class 0.85 Topography: 1 Struct Class : 1.2D + 1.0Di + 1.0Wi 90° Wind Struct Class Wind Load Factor: 1.00 Struct Class Dead Load Factor: 1.00 Struct Class Total Total Ice Flat Round Round Thick qz Area Area Sol Sol (sqft) (sqft) Ratio Cf Df Dr Thick Area 3.81 31.267 49.02 20.23 0.18 2.68 0.85 1.00 0.89 54.55	Exposure: B 196.00 (ft) Crest Height: 0.00 0.000 (ft) Site Class: D - 5 0.85 Topography: 1 Site Class: D - 5 0.85 Topography: 1 Site Class: D - 5 O.85 Topography: 1 Struct Class: 0.5 Topography: 1 1.20 Dead Load Factor: 1.00 Ice Eff Total Round Round Crest Meight: Area Area Area Area Area Area Area Area	Exposure: B 196.00 (ft) Crest Height: 0.00 0.000 (ft) Site Class: D - Stiff So 0.85 Topography: 1 Struct Class: II 1.2D + 1.0Di + 1.0Wi 90° Wind Site Class: 0.2 Dead Load Factor: 1.00 Dead Load Factor: 1.20 Dead Load Factor: 1.20 Ice Fff Flat Round Area (sqft) Gound Area Sol (sqft) (sqft) 49.02 20.23 3.81 31.267 49.02 20.23 0.18 2.68 0.85 1.00 0.89 54.55 118.47 14.50 3.81 31.267 49.02 20.23 0.18 2.68 0.85 1.00 0.99 53.27 139.19 16.51	Exposure: B 196.00 (ft) 0.000 (ft) O.000 (ft) Site Class: D - Stiff Soil 0.85 Topography: 1 Topography: 1 Struct Class: II I.2D + 1.0Di + 1.0Wi 90° Wind Mound Factor: 1.00 Dead Load Factor: 1.20 Dead Load Factor: 1.20 Ice Fift Round Round Round Round (sqft) Ratio Ice Crest Height: 0.00 1.2D + 1.0Di + 1.0Wi 90° Wind I.2D + 1.0Di + 1.0Wi 90° Wind Total I.20 Dead Load Factor: 1.20 Dead Load Factor: 1.20 Dead Load Factor: 1.20 Total Round Round Round Round Round (sqft) Ratio Ice Eff Thick Area Area Area Area Area (sqft)	Mountain Street Exposure: B 196.00 (ft) Crest Height: 0.00 0.000 (ft) Site Class: D - Stiff Soil 0.85 Topography: 1 Struct Class: II Pa 0.85 Topography: 1 Struct Class: II Pa : 1.2D + 1.0Di + 1.0Wi 90° Wind Struct Class: II Pa Wind Load Factor: 1.20 1.2D + 1.0Di + 1.0Wi 50 mph Wind In Dead Load Factor: 1.20 Vind Vind In Dead Load Factor: 1.00 Vind In Vind In Total Flat Round Area (sqft) Sol Cf Df Dr Linear Area Area Area (sqft) Veight Weight (sqft) Veight (sqft) Veig	Image: Mountain Street Exposure: B 196.00 (ft) 0.000 (ft)	

	Ice	Dead Load Fa	actor:	0.00										Ice Ir	nportano	e Factor:	1.00
Sect Seq	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	lce Round Area (sqft)	Sol Ratio	Cf	Df	Dr	lce Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (Ib)	Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)
1	10.0	5.48 31.267	28.80	0.00	0.13	2.84	1.00	1.00	0.00	47.57	88.12	0.00	5,423.9	0.0	629.21	309.86	939.07
2	30.0	5.49 28.860	28.80	0.00	0.14	2.81	1.00	1.00	0.00	45.17	101.08	0.00	4,749.2	0.0	592.56	356.14	948.70
3	50.0	6.35 23.184	28.80	0.00	0.14	2.81	1.00	1.00	0.00	39.50	101.08	0.00	4,411.1	0.0	599.72	412.10	1,011.82
4	70.0	6.99 21.246	22.13	0.00	0.13	2.84	1.00	1.00	0.00	33.77	101.08	0.00	4,016.1	0.0	569.94	453.69	1,023.62
5	90.0	7.51 22.280	22.12	0.00	0.15	2.76	1.00	1.00	0.00	34.84	101.08	0.00	3,721.1	0.0	613.49	487.46	1,100.95
6	110.0	7.96 16.430	18.58	0.00	0.14	2.80	1.00	1.00	0.00	26.96	99.34	0.00	3,220.6	0.0	510.73	507.79	1,018.52
7	130.0	8.34 14.331	15.03	0.00	0.14	2.79	1.00	1.00	0.00	22.85	65.41	0.00	2,520.7	0.0	452.57	359.33	811.90
8	150.0	8.69 12.808	11.69	0.00	0.15	2.76	1.00	1.00	0.00	19.44	65.41	0.00	1,943.4	0.0	396.71	374.33	771.03
9	164.0	8.92 4.976	4.67	0.00	0.17	2.69	1.00	1.00	0.00	7.64	17.81	0.00	694.4	0.0	155.49	108.01	263.50
10	178.0	9.13 12.376	11.67	0.00	0.17	2.68	1.00	1.00	0.00	19.03	13.41	0.00	1,371.4	0.0	396.27	76.28	472.55
11	192.0	9.33 5.252	4.67	0.00	0.18	2.66	1.00	1.00	0.00	7.92	0.25	0.00	422.4	0.0	167.26	1.43	168.69
													32,494.4	0.0)	-	8,530.34

							ę	Sect	ion	Force	s						
Stru	cture:	CT06462	-A-2-SE	3A				C	ode:		TIA-	222-H		6/1	4/2022	4	
Site	Name:	Mountain	Street					Е	xpos	ure:	В				VA	(((井)))	
Heig		196.00 (ft	+)						•	Height		`			` 1		D
-		`	L)							-					× ×		
Base	e Elev:	0.000 (ft)							ite C			Stiff So		z		T F	
Gh:		0.85		Торо	grapł	ıy:	1	S	struct	Class	: 11			Pa	ige: 12	Tower Engin	eering Solutions
Load	d Case	: 1.0D + 1	.0W 60	° Wind								1.0	D + 1.0V	V 60 mph	Wind a	at 60° Fro	om Face
		Wind Load Fa	actor:	1.00										Wind Ir	nportano	e Factor:	1.00
		Dead Load Fa	actor:	1.00											nportant		1.00
	lce	Dead Load Fa	actor:	0.00										Ice Ir	nportanc	e Factor:	1.00
		Total	Total	lce								lce					
0	Wind	Flat	Round	Round	0.1				Ice	Eff		Linear	Total	M/ . ! I. 4	Struct	Linear	Total
Sect	Height (ft)	qz Area (psf) (sqft)	Area (sqft)	Area (sqft)	Sol Ratio	Cf	Df	Dr	Thick (in)	Area (sqft)	Area (sqft)	Area (sqft)	(lb)	Weight Ice (lb)	Force (lb)	Force (lb)	Force (lb)
1	10.0	5.48 31.267	28.80	0.00	0.13	2.84	0.80	1.00	. ,	41.31	88.12	0.00	5,423.9	0.0	546.49	309.86	856.35
2	30.0	5.49 28.860	28.80	0.00	0.14	2.81	0.80	1.00	0.00	39.40	101.08	0.00	4,749.2	0.0	516.85	356.14	872.99
3	50.0	6.35 23.184	28.80	0.00	0.14	2.81		1.00		34.86	101.08	0.00	4,411.1	0.0	529.31	412.10	941.42
4	70.0	6.99 21.246	22.13	0.00	0.13	2.84	0.80	1.00	0.00	29.52	101.08	0.00	4,016.1	0.0	498.22	453.69	951.90
5	90.0	7.51 22.280	22.12	0.00	0.15	2.76	0.80	1.00	0.00	30.39	101.08	0.00	3,721.1	0.0	535.03	487.46	1,022.49
6	110.0	7.96 16.430	18.58	0.00	0.14	2.80	0.80	1.00	0.00	23.67	99.34	0.00	3,220.6	0.0	448.48	507.79	956.26
7	130.0	8.34 14.331	15.03	0.00	0.14	2.79	0.80	1.00	0.00	19.98	65.41	0.00	2,520.7	0.0	395.80	359.33	755.13
8	150.0	8.69 12.808	11.69	0.00	0.15	2.76	0.80	1.00	0.00	16.88	65.41	0.00	1,943.4	0.0	344.44	374.33	718.77
9	164.0	8.92 4.976	4.67	0.00	0.17	2.69	0.80	1.00	0.00	6.64	17.81	0.00	694.4	0.0	135.23	108.01	243.24
10	178.0	9.13 12.376	11.67	0.00	0.17	2.68	0.80	1.00	0.00	16.56	13.41	0.00	1,371.4	0.0	344.73	76.28	421.01
11	192.0	9.33 5.252	4.67	0.00	0.18	2.66	0.80	1.00	0.00	6.87	0.25	0.00	422.4	0.0	145.07	1.43	146.50
													32,494.4	0.0)	-	7,886.06
Load		: 1.0D + 1										1.01	ל + 1.0V	V 60 mph	Wind a	at 90° Fro	om Face
		Wind Load Fa		1.00										Wind Ir	nportanc	e Factor:	1.00
		Dead Load Fa		1.00													
	lce	Dead Load Fa	actor:	0.00										Ice Ir	nportanc	e Factor:	1.00
		Total	Total	Ice								Ice	T . (.)		0		T . 4 . 1
Sect	Wind Height	Flat qz Area	Round	Round Area	Sol				lce Thick	Eff Area	Linear Area	Linear	Total Weight	Weight	Struct Force	Linear Force	Total Force
Sect	ft)	(psf) (sqft)	Area (sqft)	Area (sqft)	Ratio	Cf	Df		(in)	Area (sqft)	(sqft)	Area (sqft)	(lb)	lce (lb)	(lb)	(lb)	(lb)
1	10.0	5.48 31.267	28.80	0.00	0.13	2.84	0.85	1.00	0.00	42.88	88.12	0.00	5,423.9	0.0	567.17		877.03
2	30.0	5.49 28.860	28.80	0.00	0.14				0.00	40.85	101.08	0.00	4,749.2	0.0	535.77		891.91
3	50.0	6.35 23.184	28.80	0.00	0.14	2.81	0.85	1.00	0.00	36.02	101.08	0.00	4,411.1	0.0	546.91	412.10	959.02
4	70.0	6.99 21.246	22.13	0.00	0.13	2.84			0.00	30.58	101.08	0.00	4,016.1	0.0	516.15	453.69	969.83
5	90.0	7.51 22.280	22.12	0.00	0.15	2.76	0.85	1.00	0.00	31.50	101.08	0.00	3,721.1	0.0	554.64	487.46	1,042.10
6	110.0	7.96 16.430	18.58	0.00	0.14	2.80	0.85	1.00	0.00	24.49	99.34	0.00	3,220.6	0.0	464.04	507.79	971.83
7	130.0	8.34 14.331	15.03	0.00		2.79			0.00	20.70	65.41	0.00	2,520.7	0.0	409.99	359.33	769.32
8	150.0	8.69 12.808	11.69	0.00		2.76			0.00	17.52	65.41	0.00	1,943.4	0.0		374.33	731.83
9	164.0	8.92 4.976	4.67	0.00		2.69			0.00	6.89	17.81	0.00	694.4	0.0	140.30	108.01	248.31
10	178.0	9.13 12.376	11.67	0.00	0.17				0.00	17.18	13.41	0.00	1,371.4	0.0		76.28	433.89
11	192.0	9.33 5.252	4.67	0.00	0.18	2.66	0.85	1.00	0.00	7.13	0.25	0.00	422.4	0.0	_ 150.62	1.43	152.04

32,494.4

0.0

8,047.13

		Force/S	Stress C	ompressio	n Su	mmar	У					
Structure:	CT06462-A-2-SE	BA	C	Code:	EIA/	TIA-222	-H		6/14/2	022	4	
Site Name:	Mountain Street		E	xposure:	В				Y			
Height:	196.00 (ft)		C	Crest Height:	0.00				I	x	Ιт	
Base Elev:	0.000 (ft)		5	Site Class:	D - S	Stiff Soil			2			
Gh:	0.85	Topography:	1 S	Struct Class:	П				Page	: 13	Tower Engin	eering Solutions
			LEC	G MEMBERS								
Top Sect Elev	Member	Force (kips)	Load	-	Len (ft)	Bracin X Y	•	KL/R	Fy (ksi)	Mem Cap (kips)	Leg	Controls

1	20 PX - 8" DIA PIPE	-241.73	1.2D + 1.0W Normal Wind	10.02	100	100	100	41.77	50.00	505.44	47.8 Member X
2	40 PSP - ROHN 8 EHS	-215.81	1.2D + 1.0W Normal Wind	10.02	100	100	100	41.17	50.00	386.42	55.8 Member X
3	60 PSP - ROHN 8 EHS	-187.65	1.2D + 1.0W Normal Wind	10.02	100	100	100	41.17	50.00	386.42	48.6 Member X
4	80 PX - 6" DIA PIPE	-159.05	1.2D + 1.0W Normal Wind	10.02	100	100	100	54.90	50.00	303.24	52.5 Member X
5	100 PSP - ROHN 6 EHS	-131.83	1.2D + 1.0W Normal Wind	6.68	100	100	100	36.01	50.00	274.76	48.0 Member X
6	120 PX - 5" DIA PIPE	-100.29	1.2D + 1.0W Normal Wind	6.68	100	100	100	43.56	50.00	239.34	41.9 Member X
7	140 PX - 4" DIA PIPE	-69.34	1.2D + 1.0W Normal Wind	6.68	100	100	100	54.15	50.00	160.15	43.3 Member X
8	160 PX - 3" DIA PIPE	-45.63	1.2D + 1.0W Normal Wind	5.01	100	100	100	52.73	50.00	110.90	41.1 Member X
9	168 PST - 3" DIA PIPE	-19.37	1.2D + 1.0W Normal Wind	4.00	100	100	100	41.38	50.00	88.54	21.9 Member X
10	188 PST - 3" DIA PIPE	-7.98	1.2D + 1.0W Normal Wind	4.00	100	100	100	41.38	50.00	88.54	9.0 Member X
11	196 PST - 3" DIA PIPE	-0.65	1.2D + 1.0W Normal Wind	4.00	100	100	100	41.38	50.00	88.54	0.7 Member X

Splices

			Top Splic	е					Bottom Sp	lice			
Sect	Top Elev	Load Case	Force (kips)	Cap (kips)	Use %	Bolt Type	Num Bolts	Load Case	Force (kips)	Cap (kips)	Use %	Bolt Type	Num Bolts
1	20	1.2D + 1.0W Normal Wind	222.61	0.00	0.0			1.2D + 1.0W Normal Wind	248.62	0.00			
2	40	1.2D + 1.0W Normal Wind	194.89	0.00	0.0			1.2D + 1.0W Normal Wind	222.61	0.00		1 A325	8
3	60	1.2D + 1.0W Normal Wind	166.07	0.00	0.0			1.2D + 1.0W Normal Wind	194.89	0.00		1 A325	8
4	80	1.2D + 1.0W Normal Wind	137.15	0.00	0.0			1.2D + 1.0W Normal Wind	166.07	0.00		1 A325	8
5	100	1.2D + 1.0W Normal Wind	105.35	0.00	0.0			1.2D + 1.0W Normal Wind	137.15	0.00		1 A325	6
6	120	1.2D + 1.0W Normal Wind	74.79	0.00	0.0			1.2D + 1.0W Normal Wind	105.35	0.00		1 A325	6
7	140	1.2D + 1.0W Normal Wind	48.68	0.00	0.0			1.2D + 1.0W Normal Wind	74.79	0.00		1 A325	4
8	160	1.2D + 1.0W Normal Wind	22.45	0.00	0.0			1.2D + 1.0W Normal Wind	48.68	0.00	7	7/8 A325	4
9	168	1.2D + 1.0W Normal Wind	10.74	0.00	0.0			1.2D + 1.0W Normal Wind	22.45	0.00	7	7/8 A325	4
10	188	1.2D + 1.0W Normal Wind	0.99	0.00	0.0			1.2D + 1.0W Normal Wind	10.74	0.00	7	7/8 A325	4
11	196	1.2D + 1.0Di + 1.0Wi 60° Wind	0.21	0.00	0.0			1.2D + 1.0W Normal Wind	0.99	0.00	3	8/4 A325	4

					HORIZO	NTAI	_ MEI	MBEF	RS								
Sect	Top Elev		[∋] orce [kips)	Load Case	Len (ft)		acing Y		KL/R	Fy (ksi)		Num Bolts		Shear Cap (kips)	Сар	Use %	Controls
1	20										0.00	0	0				
2	40										0.00	0	0				
3	60										0.00	0	0				
4	80										0.00	0	0				
5	100										0.00	0	0				
6	120										0.00	0	0				
7	140										0.00	0	0				
8	160	SAE - 1.75X1.75X0.1878	-0.29	1.2D + 1.0W 90° Wind	6.69	50	50	50	118.51	36.00	12.46	1	1	13.81	13.05	2.3	Member Z
9	168										0.00	0	0				
10	188										0.00	0	0				
11	196	SAE - 1.75X1.75X0.1878	-0.01	0.9D + 1.0W 60° Wind	6.60	100	100	100	230.90	36.00	3.33	1	1	13.81	13.05	0.3	Member Z

					DIAGO	NAL	MEM	BER	s								
Sect	Top Elev	Member	Force (kips)	Load Case	Len (ft)	Br X	racing Y	g% Z	KL/R	Fy (ksi)	Mem Cap (kips)	Num Bolts	Num Holes		Сар		Controls
1	20	SAE - 4X4X0.25	-7.90	1.2D + 1.0W 90° Wind	24.62	50	50	50	185.84	36.00	16.08	1	1	19.87	20.8	49.1	Member Z
2	40	SAE - 4X4X0.25	-8.18	1.2D + 1.0W 90° Wind	22.81	50	50	50	172.16	36.00	18.73	1	1	19.87	20.8	43.7	Member Z
3	60	SAE - 3.5X3.5X0.25	-7.82	1.2D + 1.0W 90° Wind	21.03	50	50	50	181.81	36.00	14.63	1	1	19.87	20.8	53.4	Member Z

Copyright $\textcircled{\mbox{$\odot$}}$ 2022 by Tower Engineering Solutions, LLC. All rights reserved.

	Force/Stress Compression Summary										
Structure:	CT06462-A-2-8	BA	Code:	EIA/TIA-222-H	6/14/2022						
Site Name:	Mountain Stree	t	Exposure:	В	<u>х</u> а (((Щ)))						
Height:	196.00 (ft)		Crest Height:	0.00							
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil							
Gh:	0.85	Topography: 1	Struct Class:	II	Page: 14 Tower Engineering Solutions						
			DIAGONAL MEMBER	S							
Top Sect Elev	For Member (kip		Len Bracing % (ft) X Y Z	Mem Fy Cap Num KL/R (ksi) (kips) Bolts	Shear Bear Num Cap Cap Use Holes (kips) (kips) % Controls						

4 80 SAE - 3.5X3.5X0.25 -7.16 1.2D + 1.0W 90° Wind 19.26 50 50 50 166.49 36.00 17.45 1 1 19.87 20.8 4	.0 Member Z
5 100 SAE - 3X3X0.25 -6.55 1.2D + 1.0W 90° Wind 15.99 50 50 162.02 36.00 15.70 1 1 19.87 20.8 4	.7 Member Z
6 120 SAE - 2.5X2.5X0.25 -5.85 1.2D + 1.0W 90° Wind 14.23 50 50 50 173.91 36.00 11.26 1 1 19.87 20.8 50	.9 Member Z
7 140 SAE - 2.5X2.5X0.25 -4.05 1.2D + 1.0W Normal Wind 12.43 50 50 50 151.85 36.00 14.77 1 1 13.81 17.4 29	9.4 Bolt Shear
8 160 SAE - 2X2X0.1875 -3.15 1.2D + 1.0W 90° Wind 9.86 50 50 50 150.21 36.00 9.01 1 1 13.81 13.0 38	5.0 Member Z
9 168 SAE - 2X2X0.25 -3.25 1.2D + 1.0W 90° Wind 7.78 50 50 50 119.49 36.00 18.65 1 1 13.81 17.4 23	8.6 Bolt Shear
10 188 SAE - 2X2X0.25 -1.36 1.2D + 1.0W Normal Wind 7.72 50 50 50 118.82 36.00 18.82 1 1 13.81 17.4 9	9.9 Bolt Shear
11 196 SAE - 1.75X1.75X0.187{ -0.23 1.2D + 1.0W 90° Wind 7.72 50 50 50 135.00 36.00 9.74 1 1 13.81 13.0 2	2.4 Member Z

	Force/Stress Tension Summary										
Structure:	CT06462-A-2-SE	BA		Code:	EIA/TIA-222-H	6/14/2022	4				
Site Name:	Mountain Street			Exposure:	В	YA	(((井)))				
Height:	196.00 (ft)			Crest Height:	0.00	I x					
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil	z	IES				
Gh:	0.85	Topography:	1	Struct Class:	II	Page: 15	Tower Engineering Solutions				
LEG MEMBERS											

						Mem		
	Тор		Force		Fy	Сар	Leg	
Sect	Elev	Member	(kips)	Load Case	(ksi)	(kips)	Use %	Controls
1	20	PX - 8" DIA PIPE	202.01	0.9D + 1.0W 60° Wind	50	574.20	35.2	Member
2	40	PSP - ROHN 8 EHS	180.09	0.9D + 1.0W 60° Wind	50	437.40	41.2	Member
3	60	PSP - ROHN 8 EHS	156.74	0.9D + 1.0W 60° Wind	50	437.40	35.8	Member
4	80	PX - 6" DIA PIPE	132.60	0.9D + 1.0W 60° Wind	50	378.00	35.1	Member
5	100	PSP - ROHN 6 EHS	109.43	0.9D + 1.0W 60° Wind	50	302.09	36.2	Member
6	120	PX - 5" DIA PIPE	81.76	0.9D + 1.0W 60° Wind	50	274.95	29.7	Member
7	140	PX - 4" DIA PIPE	57.37	0.9D + 1.0W 60° Wind	50	198.45	28.9	Member
8	160	PX - 3" DIA PIPE	37.04	0.9D + 1.0W 60° Wind	50	135.90	27.3	Member
9	168	PST - 3" DIA PIPE	14.14	0.9D + 1.0W 60° Wind	50	100.35	14.1	Member
10	188	PST - 3" DIA PIPE	5.96	0.9D + 1.0W 60° Wind	50	100.35	5.9	Member
11	196	PST - 3" DIA PIPE	0.30	0.9D + 1.0W 60° Wind	50	100.35	0.3	Member

Splices

			Top Splice						Bottom Spli	ice			
Sect	Top Elev	Load Case	Force (kips)	Cap (kips)	Use %	Bolt Type	Num Bolts	Load Case	Force (kips) (•	Use %	Bolt Type	Num Bolts
1	20	0.9D + 1.0W 60° Wind	185.12	0.00	0.0			0.9D + 1.0W 60° Wind	208.2	0.00			
2	40	0.9D + 1.0W 60° Wind	161.85	0.00	0.0			0.9D + 1.0W 60° Wind	185.1 4	124.08	43.7	1 A32	58
3	60	0.9D + 1.0W 60° Wind	137.71	0.00	0.0			0.9D + 1.0W 60° Wind	161.8 4	124.08	38.2	1 A32	58
4	80	0.9D + 1.0W 60° Wind	113.07	0.00	0.0			0.9D + 1.0W 60° Wind	137.7 4	124.08	32.5	1 A32	58
5	100	0.9D + 1.0W 60° Wind	85.76	0.00	0.0			0.9D + 1.0W 60° Wind	113.0 3	818.06	35.6	1 A32	56
6	120	0.9D + 1.0W 60° Wind	59.91	0.00	0.0			0.9D + 1.0W 60° Wind	85.76 3	818.06	27.0	1 A32	56
7	140	0.9D + 1.0W 60° Wind	39.41	0.00	0.0			0.9D + 1.0W 60° Wind	59.91 2	212.04	28.3	1 A32	54
8	160	0.9D + 1.0W 60° Wind	16.62	0.00	0.0			0.9D + 1.0W 60° Wind	39.41 1	66.24	23.7	7/8 A32	54
9	168	0.9D + 1.0W 60° Wind	6.18	0.00	0.0			0.9D + 1.0W 60° Wind	16.62 1	166.24	10.0	7/8 A32	54
10	188	0.9D + 1.0W 60° Wind	0.42	0.00	0.0			0.9D + 1.0W 60° Wind	6.18 1	66.24	3.7	7/8 A32	54
11	196		0.00	0.00	0.0			0.9D + 1.0W 60° Wind	0.42 1	20.40	0.3	3/4 A325	54

	HORIZONTAL MEMBERS												
Sect	Top Elev	Member	Force (kips)	Load Case	Fy (ksi)	Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	B.S. Cap (kips)	Use %	Controls
1	20	-			36	0.00	0	0					
2	40	-			36	0.00	0	0					
3	60	-			36	0.00	0	0					
4	80	-			36	0.00	0	0					
5	100	-			36	0.00	0	0					
6	120	-			36	0.00	0	0					
7	140	-			36	0.00	0	0					
8	160	SAE - 1.75X1.75X0.1875	0.24 0.9	D + 1.0W 90° Wind	36	20.09	1	1	13.81	9.79	7.50	3.2	Blck Shear
9	168	-			36	0.00	0	0					
10	188	-			36	0.00	0	0					
11	196	SAE - 1.75X1.75X0.1875	0.02 1.2	D + 1.0W Normal Wi	36	20.09	1	1	13.81	9.79	7.50	0.3	Blck Shear

	DIAGONAL MEMBERS												
Sect	Top Elev	Member	Force (kips)	Load Case	Fy (ksi)	Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	B.S. Cap (kips)	Use %	Controls
1	20	SAE - 4X4X0.25	8.04 1.2	O + 1.0W 90° Wind	36	62.86	1	1	19.87	14.35	16.62	56.0	Bolt Bear
2	40	SAE - 4X4X0.25	8.01 0.9	D + 1.0W 90° Wind	36	62.86	1	1	19.87	14.35	16.62	55.8	Bolt Bear
3	60	SAE - 3.5X3.5X0.25	7.68 0.90	D + 1.0W 90° Wind	36	54.76	1	1	19.87	14.35	16.62	53.5	Bolt Bear
4	80	SAE - 3.5X3.5X0.25	7.11 1.2[D + 1.0W 90° Wind	36	54.76	1	1	19.87	14.35	16.62	49.5	Bolt Bear

Copyright $\textcircled{\mbox{\scriptsize opt}}$ 2022 by Tower Engineering Solutions, LLC. All rights reserved.

Force/Stress Tension Summary													
Stru	icture:	CT06462-A-2-SB	A	Cod	le:	E	EIA/TIA-222-H			6/14/2022			
Site	Name:	Mountain Street		Exp	osure	: E	3			YA		((#)))	
Heig	ght:	196.00 (ft)		Cre	st Heig	ght: 0	00.0			1	x	Ιт	70
Bas	e Elev:	0.000 (ft)		Site	Class	s: C) - Stif	f Soil		z			2.2
Gh:		0.85	Topography:	1 Str u	ict Cla	ss: I	I			Pag	e: 16 ^T	ower Engi	neering Solutions
DIAGONAL MEMBERS													
				DIAGONAL	MEMB	ERS							
Sect	Top Elev	Member	Force (kips)	DIAGONAL Load Case	- MEMB Fy (ksi)	ERS Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	B.S. Cap (kips)	Use %	Controls
Sect	•	Member SAE - 3X3X0.25	(kips)		Fy	Mem Cap			Сар	Сар	Сар		Controls Blck Shear
	Elev		(kips) 6.49 1.2D	Load Case	Fy (ksi)	Mem Cap (kips)	Bolts	Holes	Cap (kips)	Cap (kips)	Cap (kips)	%	
5	Elev	SAE - 3X3X0.25	(kips) 6.49 1.2D 5.80 1.2D	Load Case + 1.0W 90° Wind	Fy (ksi) 36	Mem Cap (kips) 46.66	Bolts	Holes	Cap (kips) 19.87	Cap (kips) 14.35	Cap (kips) 13.90	% 46.7	Blck Shear
5 6	Elev 100 120	SAE - 3X3X0.25 SAE - 2.5X2.5X0.25	(kips) 6.49 1.2D 5.80 1.2D 4.04 0.9D	Load Case + 1.0W 90° Wind + 1.0W 90° Wind	Fy (ksi) 36 36	Mem Cap (kips) 46.66 38.56	Bolts 1 1	Holes 1	Cap (kips) 19.87 19.87	Cap (kips) 14.35 14.35	Cap (kips) 13.90 12.54	% 46.7 46.3	Blck Shear Blck Shear
5 6 7	Elev 100 120 140	SAE - 3X3X0.25 SAE - 2.5X2.5X0.25 SAE - 2.5X2.5X0.25	(kips) 6.49 1.2D 5.80 1.2D 4.04 0.9D 3.26 1.2D	Load Case + 1.0W 90° Wind + 1.0W 90° Wind + 1.0W 90° Wind	Fy (ksi) 36 36 36	Mem Cap (kips) 46.66 38.56 38.56	Bolts 1 1 1 1	Holes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cap (kips) 19.87 19.87 13.81	Cap (kips) 14.35 14.35 13.05	Cap (kips) 13.90 12.54 12.71	% 46.7 46.3 31.8	Blck Shear Blck Shear Blck Shear

9.79 7.50 3.2 Blck Shear

196 SAE - 1.75X1.75X0.1875 0.24 1.2D + 1.0W 90° Wind 36 20.09 1 1 13.81

11

				0.1				
				Seisr	nic Section			
Struct	ture:	CT06462-A-2-8	SBA		Code:	TIA-222-H		6/14/2022
Site N	lame:	Mountain Stree	et		Exposure:	В		
Heigh	t:	196.00 (ft)			Crest Heigh	nt: 0.00		
-		0.000 (ft)			Site Class:	D - Stiff Soi	I	
			_					Tower Engineering Solutions
Gh:		0.85	Topograp	hy: 1	Struct Clas	s:		Page: 17
Load	l Case:	1.2D + 1.0Ev +	+ 1.0Eh					
	Dea	d Load Factor	1.20	Sds 0.204	Ss 0.1920	Fa 1.6000	Ke 1.0696	6.0000 TL 6.0000
	Seismi	c Load Factor	1.00	Sd1 0.088	S1 0.0550	Fv 2.4000	Kg 0.0000) Cs 0.0459
Seismi	ic Impo	ortance Factor	1.00	W1 19.94	R 3.0000	Vs 1.8756	T 0.6393	3 f1 1.5643
					Vertical			
Sect	Elev	Wz		Fsz	Ev			
#	(ft)	(lb)		(lbs)	(lbs)			
1	10.00	5423.8		24.39	222.27			
2		4749.1		68.52	194.62			
3	50.00			109.35	180.77			
4		4016.1		141.76	164.58			
5	90.00			170.95	152.49			
6	110.0	0 7802.9		467.79	319.77			
7	130.0	0 2727.7		181.72	111.78			
8	150.0	0 2231.3		170.84	91.44			
9	164.0	0 777.00		60.81	31.84			
10	178.0	0 4573.0		442.00	187.40			
11	192.0	0 422.41		37.51	17.31			
Load	l Case:	0.9D + 1.0Ev +	+ 1.0Eh					
	Dea	d Load Factor	0.90	Sds 0.204	Ss 0.1920	Fa 1.6000	Ke 1.0696	6.0000 TL 6.0000
	Seismi	c Load Factor	1.00	Sd1 0.088	S1 0.0550	Fv 2.4000	Kg 0.0000) Cs 0.0459
Seismi	ic Impo	ortance Factor	1.00	W1 19.94	R 3.0000	Vs 1.8756	T 0.6393	3 f1 1.5643
Sect #	Elev (ft)	Wz (lb)		Lateral Fsz (Ibs)	Vertical Ev (Ibs)			
1	10.00	5423.8		24.39	222.27			
2	30.00	4749.1		68.52	194.62			
3	50.00	4411.0		109.35	180.77			
4		4016.1		141.76	164.58			
5		3721.1		170.95	152.49			
6		0 7802.9		467.79	319.77			
7	130.0	0 2727.7		181.72	111.78			
8	150.0	0 2231.3		170.84	91.44			
9		0 777.00		60.81	31.84			
10		0 4573.0		442.00	187.40			
11		0 422.41		37.51	17.31			

Structure:CT06462-A-2-SBASite Name:Mountain StreetHeight:196.00 (ft)Base Elev:0.000 (ft)Gh:0.85	A Topography: 1	Ex Ci	ode: kposure:	TIA-222-ł B	H 6/14/2022
Height:196.00 (ft)Base Elev:0.000 (ft)	Topography: 1	C	-	в	
Base Elev: 0.000 (ft)	Topography: 1			0	
	Topography: 1	6	rest Height	0.00	
	Topography: 1	3	te Class:	D - Stiff S	Soil Z
		St	ruct Class:	II	Page: 18
Load Case	Node	FX (kips)	FY (kips)	FZ (kips)	(-) = Uplift (+) = Down
1.2D + 1.0W Normal Wind	1	0.00	248.23	-26.79	
	1a	8.76	-99.63	-8.55	
	1b	-8.76	-99.58	-8.54	
1.2D + 1.0W 60° Wind	1	-2.79		-13.20	
	1a	-12.78	125.66	4.23	
	1b	-20.15	-202.84	-11.66	
1.2D + 1.0W 90° Wind	1	-3.32	16.35	-1.06	
	1a 1b	-20.16 -18.43	208.65 -175.97	9.82 -8.76	
0.9D + 1.0W Normal Wind	1	0.00	243.94	-26.52	
	1a 1b	8.99 -8.99	-103.60 -103.56	-8.68 -8.68	
0.9D + 1.0W 60° Wind	1 1a	-2.80 -12.55	122.02 121.49	-12.92 4.09	
	1b	-20.38	-206.74	-11.80	
0.9D + 1.0W 90° Wind	1	-3.33	12.26	-0.79	
0.90 + 1.000 90 Willia	1a	-3.33	204.39	9.68	
	1b	-18.66	-179.88	-8.89	
1.2D + 1.0Di + 1.0Wi Normal Wind	1	0.00	88.90	-5.04	
	1a	3.64	1.29	-2.94	
	1b	-3.64	1.36	-2.93	
1.2D + 1.0Di + 1.0Wi 60° Wind	1	-0.70	58.79	-1.71	
	1a	-1.81	58.62	0.26	
	1b	-6.59	-25.86	-3.81	
1.2D + 1.0Di + 1.0Wi 90° Wind	1	-0.82	30.50	1.40	
	1a	-3.68	79.70	1.67	
	1b	-6.11	-18.64	-3.07	
1.2D + 1.0Ev + 1.0Eh	1	0.00	28.53	5.12	
	1a	5.86	11.09	-3.48	
	1b	-5.86	11.09	-3.48	
0.9D + 1.0Ev + 1.0Eh	1	0.00	24.43	5.40	
	1a 1b	6.10 -6.10	7.01 7.01	-3.62 -3.62	
1.0D + 1.0W Normal Wind	1 1a	0.00 1.64	71.17 -15.18	-7.37 -1.83	
	1b	-1.64	-15.14	-1.83	
1.0D + 1.0W 60° Wind	 1	-0.72	40.91	-3.95	
	1a	-0.72	40.91	-3.95 1.36	
	1b	-4.50	-40.81	-2.61	
1.0D + 1.0W 90° Wind	1	-0.85	13.62	-0.90	
	1a	-5.63	61.36	2.78	
	1b	-4.07	-34.12	-1.87	

Max Reactions

	Leg		Ove	Overturning		
Max Uplift:	-206.74	(kips)	Moment:	4618.96	(ft-kips)	
Max Down:	248.23	(kips)	Total Down:	49.03	(kips)	
Max Shear:	26.79	(kips)	Total Shear:	43.88	(kips)	

	Analysis Summary										
Structure:	CT06462-A-2-SB	A	Code:	TIA-222-H	6/14/2022	44.000.53					
Site Name:	Mountain Street		Exposure:	В		((cHes))					
Height:	196.00 (ft)		Crest Height:	0.00		EC					
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil							
Gh:	0.85	Topography: 1	Struct Class:	II	Page: 20	Tower Engineering Solutions					

Max Reactions

	Leg		Ove	rturning		
Max Uplift:	-206.74	(kips)	Moment:	4618.96	(ft-kips)	
Max Down:	248.23	(kips)	Total Down:	49.03	(kips)	
Max Shear:	26.79	(kips)	Total Shear:	43.88	(kips)	

Anchor Bolts

Bo	lt Size (in.)	: 1.00		Number Bolts:	10	Type:	UnGrouted
Yield Str	ength (Ksi)	: 109.00		Tensile Strength (Ksi):	125.00		
	Interacti	on Ratios:		Length:	0.85		
Tensile:	0.37	Compression:	0.33				

Max Usages

Max Leg: 55.8% (1.2D + 1.0W Normal Wind - Sect 2) Max Diag: 56.0% (1.2D + 1.0W 90° Wind - Sect 1) Max Horiz: 3.2% (0.9D + 1.0W 90° Wind - Sect 8)

Max Deflection, Twist and Sway

Load Case	Elevation (ft)	Deflection (ft)	Twist (deg)	Sway (deg)
0.9D + 1.0Ev + 1.0Eh - Normal To Face	106.67	0.0198	-0.0010	0.0209
	120.00	0.0247	-0.0011	0.0231
	126.67	0.0274	-0.0012	0.0250
	133.33	0.0303	-0.0013	0.0270
	150.00	0.0388	-0.0014	0.0322
	155.00	0.0416	-0.0015	0.0345
	160.00	0.0424	0.0000	0.0357
	164.00	0.0471	0.0015	0.0369
	168.00	0.0498	-0.0014	0.0386
	184.00	0.0607	-0.0012	0.0397
0.9D + 1.0W 121 mph Wind at 60° From Face	106.67	0.3315	-0.1226	0.3599
	120.00	0.4202	-0.1566	0.4024
	126.67	0.4685	-0.1929	0.4267
	133.33	0.5196	-0.2258	0.4491
	150.00	0.6629	0.1404	0.5373
	155.00	0.7102	-0.3276	0.5318
	160.00	0.7592	-0.3390	0.5318
	164.00	0.7976	0.0768	0.5805
	168.00	0.8401	-0.3376	0.5842
	184.00	1.0039	-0.3341	0.5931

0.9D + 1.0W 121 mph Wind at 90° From Face	106.67	0.3352	-0.1666	0.3629
	120.00	0.4251	-0.2135	0.4086
	126.67	0.4733	-0.2635	0.4296
	133.33	0.5253	-0.3092	0.4508
	150.00	0.6698	0.0963	0.5440
	155.00	0.7181	-0.4569	0.5109
	160.00	0.7679	-0.4750	0.5057
	164.00	0.8068	0.1586	0.5789
	168.00	0.8498	-0.4751	0.5902
	184.00	1.0151	-0.4728	0.6003
	104.00	1.0101	-0.4720	0.0000
0.9D + 1.0W 121 mph Wind at Normal To Face	106.67	0.3500	-0.0657	0.3847
	120.00	0.4438	-0.0902	0.4252
	126.67	0.4949	-0.1146	0.4992
	133.33	0.5491	0.0397	0.5294
	150.00	0.7008	0.0797	0.5565
	155.00	0.7514	-0.1735	0.6437
	160.00	0.8032	0.0016	0.6472
	164.00	0.8457	-0.1724	0.6270
	168.00	0.8898	-0.1710	0.6230
	184.00	1.0645	-0.1681	0.6326
1.0D + 1.0W 60 mph Wind at 60° From Face	106.67	0.0820	-0.0295	0.0887
	120.00	0.1038	-0.0378	0.0990
	126.67	0.1156	-0.0466	0.1047
	133.33	0.1282	-0.0546	0.1105
	150.00	0.1633	0.0262	0.1314
	155.00	0.1750	-0.0763	0.1306
	160.00	0.1870	-0.0779	0.1305
	164.00	0.1964	0.0101	0.1423
	168.00	0.2068	-0.0739	0.1434
	184.00	0.2469	-0.0680	0.1451
1.0D + 1.0W 60 mph Wind at 90° From Face	106.67	0.0829	-0.0353	0.0895
	120.00	0.1051	-0.0451	0.1003
	126.67	0.1169	-0.0557	0.1055
	133.33	0.1297	-0.0652	0.1110
	150.00	0.1650	0.0195	0.1332
	155.00	0.1769	-0.0915	0.1256
	160.00	0.1891	-0.0934	0.1245
	164.00	0.1987	0.0302	0.1240
	168.00	0.2092	-0.0886	0.1450
	184.00	0.2496	-0.0814	0.1469
			-0.0014	0.1405
1.0D + 1.0W 60 mph Wind at Normal To Face	106.67	0.0867	-0.0144	0.0947
	120.00	0.1098	-0.0199	0.1047
	126.67	0.1224	-0.0254	0.1226
	133.33	0.1357	0.0081	0.1299
	150.00	0.1728	0.0168	0.1363
	155.00	0.1854	-0.0362	0.1578
	160.00	0.1980	0.0004	0.1589
	164.00	0.2084	-0.0344	0.1538
	168.00	0.2192	-0.0333	0.1529
	184.00	0.2621	-0.0306	0.1551
1.2D + 1.0Di + 1.0Wi 50 mph Wind at 60° From Face	106.67	0.0867	-0.0376	0.0932
	120.00	0.1094	-0.0483	0.1040
	126.67	0.1217	-0.0599	0.1098
		0.1349	-0.0702	0.1161
	133.33			0.1372
	150.00	0.1715	0.0370	
	150.00 155.00	0.1834	-0.0996	0.1348
	150.00			
	150.00 155.00	0.1834	-0.0996	0.1348
	150.00 155.00 160.00	0.1834 0.1950	-0.0996 -0.1015	0.1348 0.1341

1.2D + 1.0Di + 1.0Wi 50 mph Wind at 90° From Face	106.67	0.0869	-0.0450	0.0935
·	120.00	0.1098	-0.0578	0.1048
	126.67	0.1221	-0.0716	0.1102
	133.33	0.1354	-0.0841	0.1155
	150.00	0.1721	0.0255	0.1385
	155.00	0.1840	-0.1196	0.1261
	160.00	0.1964	-0.1220	0.1251
	164.00	0.2057	0.0392	0.1461
	168.00	0.2171	-0.1156	0.1504
	184.00	0.2591	-0.1062	0.1521
1.2D + 1.0Di + 1.0Wi 50 mph Wind at Normal From Face	106.67	0.0889	-0.0207	0.0979
	120.00	0.1126	-0.0282	0.1081
	126.67	0.1255	-0.0357	0.1293
	133.33	0.1391	0.0140	0.1364
	150.00	0.1775	0.0273	0.1390
	155.00	0.1901	-0.0530	0.1669
	160.00	0.2022	0.0005	0.1652
	164.00	0.2138	-0.0508	0.1570
	168.00	0.2248	-0.0493	0.1565
	184.00	0.2687	-0.0453	0.1588
1.2D + 1.0Ev + 1.0Eh - Normal To Face	106.67	0.0198	-0.0010	0.0209
	120.00	0.0247	-0.0011	0.0231
	126.67	0.0274	-0.0012	0.0251
	133.33	0.0304	-0.0013	0.0271
	150.00	0.0388	-0.0014	0.0322
	155.00	0.0416	-0.0015	0.0347
	160.00	0.0424	0.0000	0.0358
	164.00	0.0472	0.0015	0.0369
	168.00	0.0499	-0.0014	0.0387
	184.00	0.0608	-0.0012	0.0398
1.2D + 1.0W 121 mph Wind at 60° From Face	106.67	0.3318	-0.1226	0.3604
	120.00	0.4207	-0.1566	0.4029
	126.67	0.4691	-0.1929	0.4272
	133.33	0.5202	-0.2258	0.4498
	150.00	0.6637	0.1404	0.5379
	155.00	0.7110	-0.3276	0.5325
	160.00	0.7602	-0.3390	0.5326
	164.00	0.7986	0.0769	0.5814
	168.00	0.8412	-0.3376	0.5849
	184.00	1.0052	-0.3341	0.5939
I.2D + 1.0W 121 mph Wind at 90° From Face	106.67	0.3355	-0.1666	0.3635
	120.00	0.4256	-0.2135	0.4091
	126.67	0.4738	-0.2636	0.4301
	133.33	0.5259	-0.3093	0.4515
	150.00	0.6706	0.0964	0.5446
	155.00	0.7189	-0.4570	0.5118
	160.00	0.7688	-0.4751	0.5065
	164.00	0.8078	0.1586	0.5798
	168.00	0.8508	-0.4752	0.5913
	184.00	1.0164	-0.4730	0.6012
I.2D + 1.0W 121 mph Wind at Normal To Face	106.67	0.3504	-0.0656	0.3852
	120.00	0.4444	-0.0902	0.4259
	126.67	0.4955	-0.1146	0.4998
	133.33	0.5498	0.0397	0.5300
	150.00	0.7017	0.0797	0.5573
	155.00	0.7524	-0.1734	0.6447
	160.00	0.8042	0.0016	0.6482
	164.00	0.8468	-0.1723	0.6280
	168.00	0.8910	-0.1709	0.6238
	184.00	1.0660	-0.1681	0.6336

		Mat Foundati	on Des	ian f	or S	Self Supp	orting Tower		Date
(((単))		Mat Foundati	UII Des	igni		ben Supp	oning rower		6/14/2022
		Customer Name:	SBA Com	munica	ations	Corp	TIA Standard:		TIA-222-H
		Site Name:					Structure Height (Ft.):	196
		Site Nmber:	CT06462-/	4-2-SB/	A		Engineer Name:		J. Tibbetts
Tower Engineering Solutions		Engr. Number:	130376				Engineer Login ID		
Foundation Info Obtained from:		Drawings/Calculations							
Analysis or Design?		Analysis					,		
Number of Tower Legs:		3 Legs					K		
Base Reactions (Factored):						2.2'	*		0.00
(1). Individual Leg:					0'		1		
Axial Load (Kips):	248.2	Uplift Force (Kips):	206.7	-	$\frac{1}{\sqrt{2}}$				Y_
Shear Force (Kips):	26.8				///				
(2). Tower Base:								8	# 4
Total Vertical Load (Kips):	49.0	Total Shear Force (Kips):	43.9		99	μ		20	# 7
Moment (Kips-ft):	4619.0			3.5	51			T	
Foundation Geometries:						, ⊻		40	# 7
Leg distance (Center-to-Center ft.):	23.0	Mods required -Yes/No ?:	No					40	# 7
Diameter of Pier (ft.): Round	2.2	Pier Height A. G. (ft.):	0.00					$X \nabla$	
Tower center to mat center (ft):	0	Depth of Base BG (ft.):	3.5			• •	0000		
Length of Pad (ft.):	36	Width of Pad (ft.):	36						4'
Thickness of Pad (ft):	4.00			-	\checkmark	<u> </u>			
Material Properties and Reabr Info: Concrete Strength (psi):	3000	Steel Elastic Modulus:	29000	ksi	(W)	18.0 Mat Center	6.640 0.00 Towe	11.36	*
Vertical bar yield (ksi)	60	Tie steel yield (ksi):	60		36'				23.0
Vertical Rebar Size #:	7	Tie / Stirrup Size #:	4						
Qty. of Vertical Rebars:	20	Tie Spacing (in):	6.0						\checkmark
Pad Rebar Yield (Ksi):	60	Pad Steel Rebar Size (#):	7			4.72	13.279		<u> </u>
Concrete Cover (in.):	3	Unit Weight of Concrete:	150.0	pcf					
Rebar at the bottom of the concrete					⊻		19.919	×	
Qty. of Rebar in Pad (L):	40	Qty. of Rebar in Pad (W):	40			1	36' (L)		
Rebar at the top of the concrete pad						<	36' (L)		\rightarrow
Qty. of Rebar in Pad (L):	40	Qty. of Rebar in Pad (W):	40		$\overline{\mathbf{A}}$				
Soil Design Parameters:						<		/	
Soil Unit Weight (pcf):	120.0	Soil Buoyant Weight:	50.0	Pcf					
Water Table B.G.S. (ft):	99.0	Unit Weight of Water:	62.4	pcf			/ ((
Ultimate Bearing Pressure (psf):	4000	Consider ties in concrete shear st	trength:	Yes					
Consider Soil Lateral Resistance ?	Yes	Enter soil C (psf) or Phi (deg.):	30.0	Deg.	(W)	Mat Center 🔍	Towe	r Center	
		Depth to ignor lateral resistance	1.0	Ft.	36'				
								J	

Apply 1.35 for e/w per G/H: 1.35

Apply 1.55 for e/w per G/H. 1.55		
Foundation Analysis and Design: Uplift Strength Reduction Factor:	0.75	Compression Strength Reduction Factor:
Total Dry Soil Volume (cu. Ft.):	2.57	Total Dry Soil Weight (Kips):
Total Buoyant Soil Volume (cu. Ft.):	0.00	Total Buoyant Soil Weight (Kips):
Total Effective Soil Weight (Kips):	0.31	Weight from the Concrete Block at Top (K):
Total Dry Concrete Volume (cu. Ft.):	5184.08	Total Dry Concrete Weight (Kips):
Total Buoyant Concrete Volume (cu. Ft.):	0.00	Total Buoyant Concrete Weight (Kips):
Total Effective Concrete Weight (Kips):	777.61	Total Vertical Load on Base (Kips):
Check Soil Capacities:		
Calculated Maxium Net Soil Pressure under the base (psf):	1210.26	< Allowable Factored Soil Bearing (psf):
Allowable Foundation Overturning Resistance (kips-ft.):	13484.8	> Design Factored Momont (kips-ft):
Factor of Safety Against Overturning (O. R. Moment/Design Moment):	2.81	OK!
Check the capacities of Reinforceing Concrete:		
Strength reduction factor (Flexure and axial tension):	0.90	Strength reduction factor (Shear):
Strength reduction factor (Axial compresion):	0.65	Wind Load Factor on Concrete Design:
(1) Concrete Pier:		
Vertical Steel Rebar Area (sq. in./each):	0.60	Tie / Stirrup Area (sq. in./each):
Calculated Moment Capacity (Mn,Kips-Ft):	363.9	> Design Factored Moment (Mu, Kips-Ft)
Calculated Shear Capacity (Kips):	69.3	> Design Factored Shear (Kips):
Calculated Tension Capacity (Tn, Kips):	648.0	> Design Factored Tension (Tu Kips):
Calculated Compression Capacity (Pn, Kips):	709.9	> Design Factored Axial Load (Pu Kips):
Moment & Tension Strength Combination:	0.00	OK! Check Tie Spacing (Design/Req'd):
Pier Reinforcement Ratio:	0.022	Reinforcement Ratio is satisfied per ACI
(2).Concrete Pad:		
One-Way Design Shear Capacity (L or W Direction, Kips):	1581.6	> One-Way Factored Shear (L/W-Dir Kips
One-Way Design Shear Capacity (Diagonal Dir., Kips):	1332.7	> One-Way Factored Shear (Dia. Dir, Kips
Lower Steel Pad Reinforcement Ratio (L or W-Direct.):	0.0012	Lower Steel Reinf. Ratio (Dia. Dir.):
Lower Steel Pad Moment Capacity (L or W-Dir. Kips-ft):	4742.2	> Moment at Bottom (L-Direct. K-Ft):
Lower Steel Pad Moment Capacity (Dia. Direction,K-ft):	4597.7	> Moment at Bottom (Dia. Dir. K-Ft):
Upper Steel Pad Reinforcement Ratio (L or W -Direction):	0.0012	Upper Steel Reinf. Ratio (Dia. Dir.):
Upper Steel Pad Moment Capacity (L or W-Dir., Kips-ft):	4742.2	> Moment at the top (L-Dir Kips-Ft):
Upper Steel Pad Moment Capacity (Dia. Direction, K-ft):	4597.7	> Moment at the top (Dia. Dir., K-Ft):
Punching Failure Capacity From Down Load (Kips):	1632.4	> Punch. Failure Factored Shear (K):
Punching Failure Capacity From Uplift (Kips):	1474.3	> Punch. Failure Factored Shear (K):
(3). Check Max. eccentricity of Loading:		
The maximum eccentricity of Loading:	5.80	ft. Allowable eccentricity (0.45 W, ft.):

0.75 0.31 0.00

0.00 777.61

0.00 826.95

3000

4795

0.75

1.00

0.20

0.2 26.8

206.7

248.2

0.57

399.0

358.9

0.0011

2161.3

623.1

0.0011

1015.1

628.9

248.2

206.7

16.2

Load/

Capacity Ratio 0.40

0.36

Load/ Capacity

Ratio

0.00

0.39

0.32

0.35

0.25

0.27

0.46

0.14

0.21

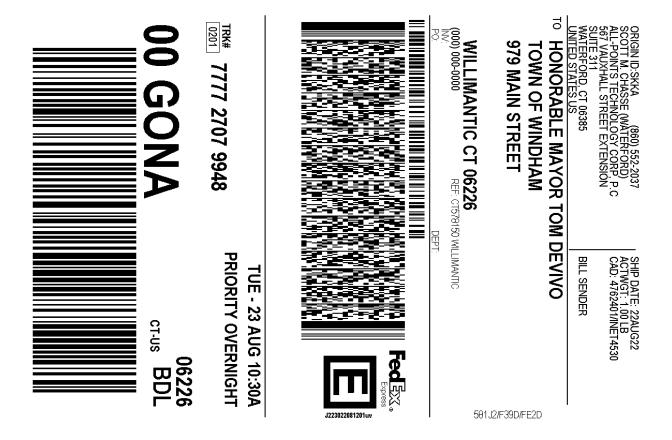
0.14

0.15

0.14

OK!

ATTACHMENT F – PROOF OF DELIVERY OF NOTICE

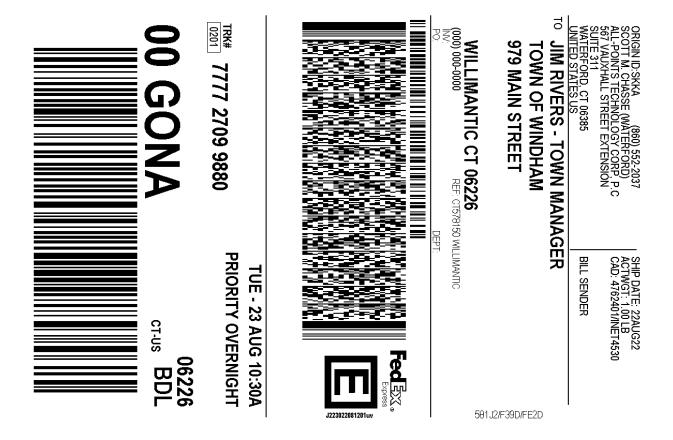

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.


1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

ATTACHMENT G - POWER DENSITY REPORT

C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 603-644-2800 support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

ES-055 – Willimantic

349 Mountain Road

Windham, CT 06280

August 8, 2022

Table of Contents

1. Introduction	1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits	2
3. Power Density Calculation Methods	3
4. Proposed Antenna Configuration	3
5. Measurement Procedure	4
6. Surveyed and Calculated % MPE Results	5
7. Conclusion	7
8. Statement of Certification	7
Attachment A: References	8
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	9
Attachment C: Eversource Antenna Data Sheet and Electrical Patterns	11

List of Tables

Table 1: Survey Information	1
Table 2: Eversource Antenna Configuration (Proposed)	3
Table 3: Instrumentation Information	4
Table 4: Measured and Calculated % MPE Results	5
Table 5: FCC Limits for Maximum Permissible Exposure (MPE)	9

List of Figures

Figure 1: View of ES-055 Willimantic	1
Figure 2: Measurement Points – Zoom In	6
Figure 3: All Measurement Points	6
Figure 4: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	10

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the Eversource installation on the self-support tower at 349 Mountain Street in Windham, CT. Eversource is proposing to replace a recently installed omnidirectional antenna for both transmit and receive purposes as part of its 220 MHz communications system.

This report considers the proposed updated antenna configuration as detailed by Eversource along with % MPE (Maximum Permissible Exposure) measurements around the existing tower taken prior to the modifications to determine FCC compliance of the facility. Please note that there is a guyed tower within the same compound (see below), which would contribute to the % MPE measurements recorded during the field survey.

In order to account for any configuration changes by others since the field measurements were recorded in June 2020, application materials posted on the CT Siting Council website for the subject site were reviewed. That research indicates that in August 2021 Verizon had completed modifications to their equipment and the power density information for that installation as detailed in its Notice of Exempt Modification filing dated August 4, 2021 (EM-VER-163-210805) is considered in this analysis. Please note that this updated Verizon configuration was also included in Eversource's most recent filing for this site in March 2022 (EM-EVER-163-220308). Additionally, on May 13, 2022, Dish Wireless LLC received approval to add their equipment as detailed in its Tower Share Application dated April 11, 2022 (TS-DISH-163-220419). The power density information for DISH as provided in that application is also considered here for completeness.

Figure 1: View of ES-055 Willimantic

Site Address	349 Mountain Street
Latitude	41° 42' 10.84" N
Longitude	73° 13' 17.01" W
Site Elevation AMSL	525'
Survey Engineer	Marc Salas
Survey Date/Time	6/29/2020; 1:30 PM – 2:15 PM

Table 1: Survey Information

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

3. Power Density Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

Power Density =
$$\left(\frac{1.6^2 \times 1.64 \times \text{ERP}}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power = 1.64 x ERP

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna

V = Vertical Distance from radiation center of antenna

Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the calculated power density and corresponding % MPE levels reported below are much higher than the actual levels will be from the installation.

4. Installed Antenna Configuration

Table 2 below lists the technical details of the proposed Eversource installation. These parameters are applied to the above calculation methods in order to calculate the % MPE values of the proposed Eversource equipment. Any receive only antennas are not included in the % MPE calculations and are therefore not listed in the table below.

Operator	Antenna Model	TX Freq. (MHz)	Ant Gain (dBd)	Power ERP (Watts)	Number of Channels	Vertical Beamwidth	Length (ft)	Antenna Centerline Height (ft)
Eversource	Comprod 876F-70-2HSMP40DF1/2	217	5.0	124	4	32°	20	158.5

Table 2: Eversource Antenna	Configuration	(Proposed) ^{1 2}
-----------------------------	---------------	---------------------------

¹ Transmit power assumes 0 dB of cable loss.

² Transmit antenna height listed is based on the Tower Engineering Solutions Structural Analysis Report dated June 14, 2022 and the site drawings prepared by Black & Veatch dated May 23, 2022 (Rev. 2).

5. Measurement Procedure

Frequencies from 300 KHz to 50 GHz were measured using the Narda Probe EA 5091, E-Field, shaped, FCC probe in conjunction with the NBM550 survey meter. The EA 5091 probe is "shaped" such that in a mixed signal environment (i.e.: more than one frequency band is used in a particular location), it accurately measures the percent of MPE.

From FCC OET Bulletin No. 65 - Edition 97-01 – "A useful characteristic of broadband probes used in multiple-frequency RF environments is a frequency-dependent response that corresponds to the variation in MPE limits with frequency. Broadband probes having such a "shaped" response permit direct assessment of compliance at sites where RF fields result from antennas transmitting over a wide range of frequencies. Such probes can express the composite RF field as a percentage of the applicable MPEs".

Probe Description - As suggested in FCC OET Bulletin No. 65 - Edition 97-01, the response of the measurement instrument should be essentially isotropic, (i.e., independent of orientation or rotation angle of the probe). For this reason, the Narda EA 5091 probe was used for these measurements.

Sampling Description - At each measurement location, a spatially averaged measurement is collected over the height of an average human body. The NBM550 survey meter performs a time average measurement while the user slowly moves the probe over a distance range of 20 cm to 200 cm (about 6 feet) above ground level. The results recorded at each measurement location include average values over the spatial distance.

Instrumentation Information - A summary of specifications for the equipment used is provided in the table below.

Manufacturer	Narda Microwave				
Probe	EA 5091, Serial# 0116				
Calibration Date	May 2020				
Calibration Interval	24 Months				
Meter	NBM550, Serial# E-1069				
Calibration Date	May 2020				
Calibration Interval	24 Months				
Probe Specifications	Frequency Range	Field Measured	Standard	Measurement Range	
ribbe opecifications	300 KHz-50 GHz	Electric Field	U.S. FCC 1997 Occupational/Controlled	0.2 – 600 % of Standard	

Table 3: Instrumentation Information

Instrument Measurement Uncertainty - The total measurement uncertainty of the NARDA measurement probe and meter is no greater than $\pm 3 \text{ dB} (0.5\% \text{ to } 6\%), \pm 1 \text{ dB} (6\% \text{ to } 100\%), \pm 2 \text{ dB} (100\% \text{ to } 600\%)$. The factors which contribute to this include the probe's frequency response deviation, calibration uncertainty, ellipse ratio, and isotropic response³. Every effort is taken to reduce the overall uncertainty during measurement collection including pointing the probe directly at the likely highest source of emissions.

³ For further details, please refer to Narda Safety Test Solutions NBM550 Probe Specifications, pg. 64 <u>http://www.narda-sts.us/pdf_files/DataSheets/NBM-Probes_DataSheet.pdf</u>

6. Surveyed and Calculated % MPE Results

Measured and calculated results and a description of each survey location are detailed in the table below. Measurements were recorded on June 29, 2020 between 1:30 PM and 2:15 PM. The net change of Verizon's % MPE from its most recent petition (13.70%)⁴ compared to Verizon's % MPE (10.00%) as listed in the CT Siting Council power density database at the time of the measurements was included as part of the "Composite % MPE" column. To account for the approved DISH installation, the maximum % MPE as detailed in its Tower Share Application (2.32%)⁵ was also included as part of the overall "Composite % MPE" column.

The calculated values for the proposed Eversource 220 MHz equipment incorporate the antenna pattern of the antenna model specified by Eversource to determine the "Off Beam Loss" factor shown in the power density formula from Section 3. All % MPE values are in reference to the FCC Uncontrolled/General Population exposure limit.

Table 4 below lists 16 measurements recorded in the vicinity of the tower. The highest spatially averaged measurement was 5.71% (Average Uncontrolled / General Population MPE) and was recorded at Location 11 by the mailbox for 875 Mountain Street. The highest composite (measured + calculated) % MPE value is calculated to be 11.78% (Average Uncontrolled / General Population) and is also calculated to occur at Location 11.

Location Description	Latitude	Longitude	Dist. From Site (feet)	Measured % MPE (Uncontrolled / General)	Calculated % MPE (Eversource Proposed)	0	Max. Calculated Dish Wireless % MPE from TS- DISH-163-220419	Composite % MPE (Uncontrolled / General)
Double swing gate on east side of fenced compound	41.70297	-72.22119	56	1.86%	0.28%			8.16%
Single swing on east side of fenced compound near wood framed shelter	41.70285	-72.22124	72	2.58%	0.26%			8.86%
Double swing gate on south side of fenced compound	41.70282	-72.22148	74	2.31%	0.26%	1	-	8.59%
Near the NE corner of the fenced compound	41.70310	-72.22131	40	< 1.00%	0.29%			< 7.31%
Near the NW corner of the fenced compound	41.70318	-72.22157	80	< 1.00%	0.25%			< 7.27%
NE of compound, along power line access way	41.70308	-72.22095	121	1.19%	0.14%			7.35%
Along gravel access road	41.70283	-72.22066	208	< 1.00%	0.06%			< 7.08%
Along gravel access road	41.70271	-72.22025	328	< 1.00%	0.19%	3.70%	2.32%	< 7.21%
Along gravel access road at bend	41.70261	-72.21965	495	< 1.00%	0.20%	5.70%	2.3270	< 7.22%
At tower access road gate	41.70199	-72.21879	801	< 1.00%	0.10%			< 7.12%
By mailbox for 875 Mountain Street	41.70191	-72.21744	1149	5.71%	0.05%			11.78%
By stop sign on Southridge Drive at Mountain Street intersection	41.70127	-72.21729	1284	5.12%	0.04%			11.18%
Spring View Lane, end of cul-de-sac	41.69999	-72.21718	1593	3.45%	0.03%	Ĩ		9.50%
SW corner of Orchard Hill Lane split	41.70165	-72.21337	2244	3.82%	0.02%	Ĩ		9.86%
By stop sign on Young Street at Lebanon Avenue intersection	41.70667	-72.21476	2246	3.01%	0.02%	Ī		9.05%
Adam Heights Road, at dead end	41.70277	-72.22406	735	1.52%	0.12%			7.66%

Table 4: Measured and Calculated % MPE Results ⁶

⁴ Connecticut Siting Council Notice of Exempt Modification, 349R Mountain Street, Windham (Willimantic), CT dated August 4, 2021 <u>https://portal.ct.gov/-/media/CSC/2_EMS-medialibrary/Windham_Willimantic/MountainSt/Verizon/em-ver-163-210805_filing_349R-Mountain-Street-Windham-Willimantic-CT-with-Attachments.pdf</u>

⁵ Connecticut Siting Council Town Share Application, 349R Mountain Street, Windham (Willimantic), CT dated April 11, 2022 <u>https://portal.ct.gov/-/media/CSC/2_EMS-medialibrary/Windham_Willimantic/MountainSt/DISH/TS-DISH-163-</u> 220419 filing MOUNTAIN-STREET-WINDHAM.pdf

⁶ Due to measurement uncertainty at low levels (See Table 3), any readings outside the measurement range of the probe (< 1.00 % FCC General Population/Uncontrolled MPE) are noted as such.

Figures 2 and 3 below are aerial views⁷ of the tower location and the surrounding area, along with the measurement locations listed in Table 4.

Figure 2: Measurement Points – Zoom In

Figure 3: All Measurement Points

⁷ Map showing location of telecommunications facility and the surrounding area. *Google Earth*, <u>https://earth.google.com/web/</u>.

7. Conclusion

A number of accessible areas around the tower at 349 Mountain Street in Windham, CT were surveyed and found to be well within the mandated General Population/Uncontrolled limits for Maximum Permissible Exposure, as delineated in the Federal Communications Commission's Radio Frequency exposure rules published in 47 CFR 1.1307(b)(1)-(b)(3).

The highest spatially averaged % MPE measurement of all surveyed points based on the 1997 FCC standard for exposure to the general population is 5.71% MPE. This measurement was recorded at Location 11 by the mailbox for 875 Mountain Street.

The highest composite (measured + calculated) power density is **11.78% of the FCC General Population MPE limit**, which includes the proposed Eversource 220 MHz equipment, the net % MPE change of Verizon's equipment modifications, and the maximum calculated % MPE reported by Dish Wireless LLC's in its previously referenced Tower Share Application. This maximum composite % MPE value is also calculated to occur at Location 11.

The above analysis concludes that RF exposure at ground level around the tower will be below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01.

As noted previously, the calculated % MPE levels are more conservative (higher) than the actual levels will be from the finished installation.

8. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Report Prepared By:

Ram Acharya RF Engineer C Squared Systems, LLC

Keith Vellante

Report Reviewed/Approved By:

Keith Vellante Director of RF Services C Squared Systems, LLC <u>August 8, 2022</u>

August 4, 2022

Date

Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

A) Limits for Occu	pational/Control	olled Exposure ⁸		
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(B) Limits for General Population/Uncontrolled Exposure⁹

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

Table 5: FCC Limits for Maximum Permissible Exposure (MPE)

⁸ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure

⁹ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

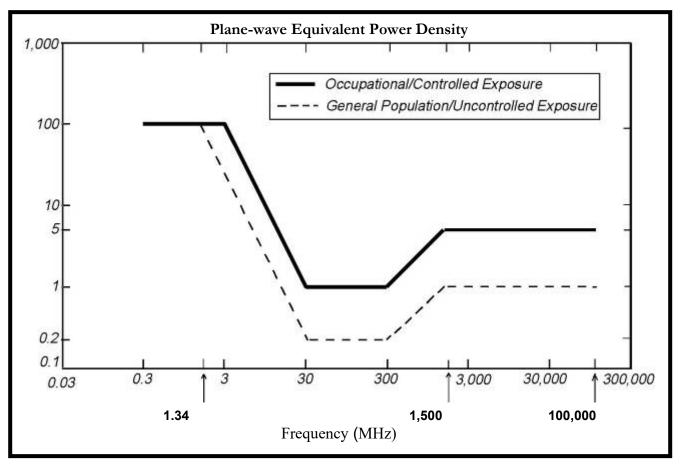
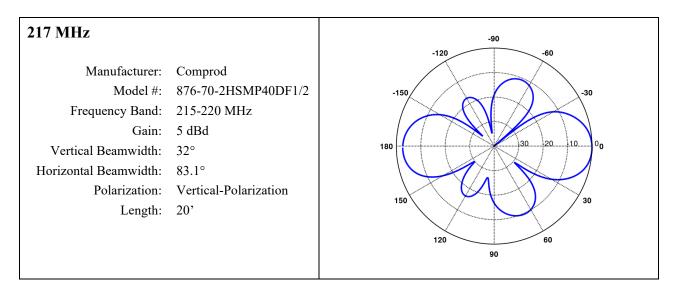



Figure 4: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Eversource Antenna Data Sheet and Electrical Patterns