

Alex Murshteyn, Site Acquisition Consultant c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

February 1, 2018

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification // Site: Winchester East CT (ATC: 302506) 15 (108) Oakdale Avenue, Winchester, CT 06098 N 41.92170 // W 73.0495

Dear Ms. Bachman:

Cellco Partnership d/b/a Verizon Wireless currently maintains nine (9) antennas at the 125-foot mount on the existing 180-foot monopole tower, located (off Oakdale Avenue aka 15 aka) at 108 Oakdale Avenue, Winchester (Winstead), CT. The Council approved Verizon Wireless use of the existing tower in 2003. The tower and property are both owned and controlled by American Tower; latter c/o William P. Stow Revocable Trust. Verizon Wireless now intends to remove six (6) of its antennas and replace with six (6) newer JAHH-65B-R3B models on side-by-side mounts for LTE/PCS/AWS (700/850/1900/2100 MHz) upgrades. Additionally, Verizon Wireless will install twelve (12) new remote radio heads (RRHs), one (1) over surge protector box and one (1) new HYBRIFLEX cable; while updating certain leased equipment rights, as reflected by the final configuration outlined in the structural analysis and proposed hereby.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Althea Candy Perez, Mayor for the City of Winchester, Director of Planning and Community Development Steven Sadlowski, including for Winchester's Planning and Zoning Commission, and American Tower, the tower owner and ground owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Enclosed to accommodate this filing are specifications for all the new and replacement Verizon Wireless equipment, a structural analysis dated January 19,

2018 by A.T. Engineering Service, PLLC and radio frequency (RF) analysis table showing worst-case RF emission calculation by Verizon Wireless RF Design Engineering.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading, as shown in the attached structural analysis by A.T. Engineering Service, PLLC, dated January 19, 2018.

For the foregoing reasons, Verizon Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely

Alex Murshteyn, Site Acquisition Consultant c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

Attachments

cc: Althea Candy Perez, Mayor - as elected official - 1Z9Y45030319428348 Steven Sadlowski, Director of Planning - as P&Z official - 1Z9Y45030305099355 American Tower Corporation - as tower & property owner - 1Z9Y45030304972368

JAHH-65B-R3B

8-port sector antenna, 2x 698-787, 2x 824-894 and 4x 1695-2360 MHz, 65° HPBW, 3x RET and low bands have diplexers. Internal SBT's on first LB(Port 1) and first HB (Port 5).

- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One RET for 700MHz, one RET for 850MHz, and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO
- Internal filter on low band and interleaved dipole technology providing for attractive, low wind load mechanical package
- Separate RS-485 RET input/output for low and high band

Electrical Specifications

Frequency Band, MHz	698-787	824-894	1695-1880	1850-1990	1920-2200	2300-2360
Gain, dBi	14.5	15.8	18.0	18.4	18.5	18.8
Beamwidth, Horizontal, degrees	67	65	63	63	65	68
Beamwidth, Vertical, degrees	12.4	10.5	5.7	5.2	4.9	4.4
Beam Tilt, degrees	2-14	2-14	0-10	0-10	0-10	0-10
USLS (First Lobe), dB	18	18	20	20	21	23
Front-to-Back Ratio at 180°, dB	32	34	31	35	36	38
Isolation, dB	25	25	25	25	25	25
Isolation, Intersystem, dB	30	30	30	30	30	30
VSWR Return Loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port, maximum, watts	350	350	350	350	350	300
Polarization	±45°	±45°	±45°	±45°	±45°	±45°
Impedance	50 ohm					

Electrical Specifications, BASTA*

Frequency Band, MHz	698-787	824-894	1695-1880	1850-1990	1920-2200	2300-2360
Gain by all Beam Tilts, average, dBi	14.3	14.9	17.6	18.1	18.2	18.5
Gain by all Beam Tilts Tolerance, dB	±0.3	±0.5	±0.6	±0.4	±0.5	±0.6
	2° 14.3	2° 15.0	0° 17.2	0° 17.6	0° 17.7	0 ° 17.9
Gain by Beam Tilt, average, dBi	8° 14.3	8° 14.9	5° 17.6	5° 18.2	5° 18.3	5° 18.7
	14 ° 14.3	14 ° 15.4	10 ° 17.6	10° 18.2	10 ° 18.3	10 ° 18.7
Beamwidth, Horizontal Tolerance, degrees	±1.2	±1.4	±4	±2.4	±2.9	±2.7
Beamwidth, Vertical Tolerance, degrees	±0.9	±0.5	±0.3	±0.2	±0.3	±0.1
USLS, beampeak to 20° above beampeak, dB	18	17	17	18	19	18
Front-to-Back Total Power at 180° ± 30°, dB	25	24	26	29	27	29
CPR at Boresight, dB	22	23	20	21	21	24
CPR at Sector, dB	11	12	11	11	11	8

* CommScope® supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.

Array Layout

JAHH-65B-R3B

JAHH-65A-R38 JAHH-658-R38 JAHH-65C-R38

Array	Freq (MHz)	Cones	RET (SRET)	AISG RET UID
81	690-798	12	1	ANADADADADAD
82	824-894	3-4	2	ANALAMATARA ANALA
YI	1695-2360	5-6	1	ANAMAMMANA
¥2	1695-2360	7.2		

View from the front of the antenna

(Sizes of colored boxes are not true depictions of array sizes)

General Specifications

Operating Frequency Band
Antenna Type
Band
Performance Note

1695 - 2360 MHz | 698 - 787 MHz | 824 - 894 MHz Sector Multiband Outdoor usage

Mechanical Specifications

RF Connector Quantity, total	8
RF Connector Quantity, low band	4
RF Connector Quantity, high band	4
RF Connector Interface	4.3-10 Female
Color	Light gray

JAHH-65B-R3B

Grounding Type	RF connector body grounded to reflector and mounting bracket
Radiator Material	Aluminum Low loss circuit board
Radome Material	Fiberglass, UV resistant
Reflector Material	Aluminum
RF Connector Location	Bottom
Wind Loading, frontal	746.0 N @ 150 km/h 167.7 lbf @ 150 km/h
Wind Loading, lateral	243.0 N @ 150 km/h 54.6 lbf @ 150 km/h
Wind Loading, rear	776.0 N @ 150 km/h 174.5 lbf @ 150 km/h
Wind Speed, maximum	241 km/h 150 mph

Dimensions

Length	1828.0 mm 72.0 in
Width	350.0 mm 13.8 in
Depth	208.0 mm 8.2 in
Net Weight, without mounting kit	28.7 kg 63.3 lb

Remote Electrical Tilt (RET) Information

Input Voltage	10-30 Vdc
Internal Bias Tee	Port 1 Port 5
Internal RET	High band (1) Low band (2)
Power Consumption, idle state, maximum	2.0 W
Power Consumption, normal conditions, maximum	13.0 W
Protocol	3GPP/AISG 2.0 (Single RET)
RET Interface	8-pin DIN Female 8-pin DIN Male
RET Interface, quantity	2 female 2 male

Packed Dimensions

Length	1975.0 mm 77.8 in
Width	456.0 mm 18.0 in
Depth	357.0 mm 14.1 in
Shipping Weight	42.0 kg 92.6 lb

Regulatory Compliance/Certifications

AgencyClassificationRoHS 2011/65/EUCompliant by ExemptionChina RoHS SJ/T 11364-2006Above Maximum Concentration Value (MCV)ISO 9001:2008Designed, manufactured and/or distributed under this quality management system

JAHH-65B-R3B

Included Products

BSAMNT-1 — Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

BSAMNT-1

Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

General Specifications

Application	Outdoor
Includes	Brackets Hardware
Package Quantity	1

Mechanical Specifications

Color	Silver
Material Type	Galvanized steel

Dimensions

Compatible Diameter, maximum	115.0 mm	4.5 in
Compatible Diameter, minimum	60.0 mm	2.4 in
Net Weight	6.0 kg	13.3 lb

Regulatory Compliance/Certifications

AgencyClassificationRoHS 2011/65/EUCompliant by ExemptionChina RoHS SJ/T 11364-2006Above Maximum Concentration Value (MCV)ISO 9001:2008Designed, manufactured and/or distributed under this quality management system

BSAMNT-SBS-2-2

Side-by-Side Mounting Kit for these antennas: JAHH-65A/B/C, JAHH-45A, NHH-45A, SBNHH-1D45A/B

- 4x4 MIMO capability at both UMTS and LTE band for faster data throughput
- Ensures consistent distance between the antennas for each site (2 inches / 50mm)
- Forces both antennas to point to the same boresight direction
- Designed to be attached to 2.4 4.5 in (60 115mm) OD pipes

General Specifications

Application	Outdoor
Includes	Brackets Hardware
Package Quantity	1

Mechanical Specifications

Color	Silver
Material Type	Galvanized steel
D 1 1	A.

Dimensions

Compatible Diameter, maximum	115.0 mm 4.5 in
Compatible Diameter, minimum	60.0 mm 2.4 in
Net Weight	30.6 kg 67.4 lb

Regulatory Compliance/Certifications

Agency	Classification
RoHS 2011/65/EU	Compliant by Exemption
China RoHS SJ/T 11364-2006	Above Maximum Concentration Value (MCV)
ISO 9001:2008	Designed, manufactured and/or distributed under this quality management system

ALCATEL-LUCENT B66A RRH4X45

The Alcatel-Lucent B66a Remote Radio Head 4x45 is the newest addition of Remote Radio Head to the extended product line of Alcatel-Lucent's distributed Base Station solutions, aimed at facilitating smooth RF site acquisition and related civil engineering. Its operational range covers beyond that of B4 (AWS) and B10 (AWS+).

Supporting 2Tx/4Tx MIMO and 2-way/4-way Rx diversity, the Alcatel-Lucent B66a RRH4x45 allows operators to have a compact radio solution to deploy LTE in the 2100 band (3GPP band 4, 10, and 66), providing them with the means to achieve high capacity, high quality, high reliability, large instantaneous bandwidth, and high coverage with minimum site requirements.

The Alcatel-Lucent B66a RRH4x45 product has four transmit RF paths, offering the possibility to **select**, **via software only**, **2Tx or 4Tx MIMO configurations** with either 2x90W or 4x45W RF output power. It also supports 4-way Rx diversity at the 70 MHz instantaneous bandwidth.

Its compactness and slim design makes the Alcatel-Lucent B66a RRH4x45 easy to install close to the antenna: operators can therefore locate this Remote Radio Head where RF design conditions are deemed ideal, minimizing trade-offs between available sites and RF optimum sites, together with reducing the RF feeder needs and installation costs.

FEATURES

- Supporting LTE in 2110 2180 MHz band/DL, 1710-1780MHz/UL (3GPP band 4, 10, and 66a)
- LTE 2Tx or 4Tx MIMO (SW selectable)
- Configuration: 2T2R/2T4R/4T4R
- Output power: Up to 2x90W or 4x45W (SW configurable)
- 70MHz LTE carrier with 4Rx Diversity
- Convection-cooled (fan-less)
- Supports AISG 2.0 ALD devices (RET, TMA) through RS485 or RF ports

BENEFITS

- Compact to reduce additional footprint when adding LTE in AWS 1-3 band
- Selection of MIMO configuration (2Tx or 4Tx) by software only
- Improves downlink spectral efficiency through 4Tx MIMO
- Increases LTE coverage thanks to 4Rx diversity capability and best in class Rx sensitivity
- Flexible mounting options: Pole or Wall

······Alcatel·Lucent

TECHNICAL SPECIFICATIONS

Features & Performance				
Number of TX/RX paths	4 duplexed (either 4T4R or 2T4R selectable by SW)			
Frequency band	AWS 1-3, B4/B66a DL: 2110-2180 MHz / UL: 1710-1780 MHz			
Instantaneous bandwidth - #carriers	70 MHz – 4 LTE MIMO carriers (in 70 MHz occupied bandwidth)			
LTE carrier bandwidth	5, 10, 15, 20 MHz			
RF output power	2x90W or 4x45W (selectable by SW)			
Noise figure – RX Diversity scheme	2 dB typical (<2.5 dB max) – 2 or 4 way Rx diversity			
Receiver Sensivity (FRC A1-3)	-104.5 dBm maximum			
Sizes (HxWxD) in mm (in.)	655x299x182 (25.8x11.8x7.2) (with solar shield)			
Volume in Liters	640x290x160 (25.2x11.4x6.3) (without solar shield) 35.5 (with solar shield) 29.7 (without solar shield)			
Weight in kg (Ib) (w/o mounting HW)	25.8kg (56.8lb) (with solar shield)			
DC voltage range	Nominal: -48V, -40.5 to -57V at full performance, -38 to -57V with relaxation on power consumption			
DC power consumption	750W typical @100% RF load (in 2Tx or 4Tx mode); Add 58W for 2A*29V for AISG			
Environmental conditions	-40°C (-40°F) /+55°C (+131°F)			
	UL50E Type 4 Enclosure			
Wind load (@150km/h or 93mph)	250N (56ID) Frontal/150N (34ID) Lateral			
Antenna ports	4 ports 4.3-10 female (50 ohms) VSWR < 1.5			
CPRI ports	2 CPRI ports (HW ready for Rate 7, 9.8 Gbps) SFP: SMDF (HW supports also SMSF and MMDF)			
AISG interfaces	1 AISG 2.0 output (RS485) Integrated Smart Bias Tees (x2)			
Misc. Interfaces	4 external alarms (1 connector) 1 DC connector (2 pins)			
Installation conditions	Pole and wall mounting			
Regulatory compliance	3GPP 36.141 / 3GPP 36.113 / GR-487 / GR-1089-CORE / GR-3108-CORE / UL 60950-1 / FCC Part 27 / FCC Part 15 / GR-3178-CORE			

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent, All other trademarks are the property of their respective owners. The information presented is subject to change without notice, Alcatel-Lucent assumes no responsibility for inaccuracies contained herein, Copyright © 2016 Alcatel-Lucent, All Rights Reserved

700 2x60 RRH Preliminary Dimensions

Robert Thompson (robert.thompson@alcatel-lucent.com)

1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED. ALCATEL-LUCENT – CONFIDENTIAL – SOLELY FOR AUTHORIZED PERSONS HAVING A NEED TO KNOW – PROPRIETARY – USE PURSUANT TO COMPANY INSTRUCTION

700U Without Solar Shield 15 203 290 525 曹

700 U 2x60 Dimensions

Without solar shield	L	W	н	Volume	Weight	Weight of Solar shield
700U(without solar shield)- mm	525	290	203	30.9L	24.2kg	
700U(without solar shield)	21"	11.5"	8″		53.4 lb	
700U(with solar shield)	545	304	227	37.6L	25.7kg	1.5kg
700U(with solar shield)	21.5″	12"	9″		56.7 lb	3.1 lb

AirScale RRH 4T4R B5 160W AHCA

Capacity, performance, low total cost of ownership and investment protection

Nokia AirScale Remote Radio Head (RRH) AHCA supports band 5 - full band - along with 4×4 MIMO and 256QAM modulation to deliver higher data rates. It offers Nokia's unique book mounting for faster roll out and radio-integrated Passive Intermodulation (PIM) cancellation for enhanced network performance.

Furthermore, 4TX and 4RX paths in a single radio unit gives the flexibility to support 2T2R-2 sectors or 4T4R-single sector from a single unit, for cost-effective scaling of both coverage and capacity.

Capacity and performance

AirScale RRH 4T4R delivers 160 W (4×40 W) transmit power and can support 2×2 MIMO, 4×2 MIMO and 4×4 MIMO. The radio supports 256 QAM modulation in the downlink (DL) for up to 30 percent higher throughput. The Virtual Spectrum Analyzer feature enables both uplink and downlink spectrum to be analyzed.

Low total cost of ownership

With up to two sectors in a single radio, light weight and zero-bolt book mounting, AirScale RRH 4T4R allows operators to achieve faster roll outs and more cost-effective installation and maintenance of radios and tower space.

Investment protection

AirScale RRH 4T4R complements the AirScale System Module, offering a complete base station solution that is software upgradeable to 5G. AirScale System

Module offers 28 Gbps capacity that can be further enhanced by chaining more modules or through Cloud RAN AirScale RRH is part of the AirScale Base Station portfolio, the next generation Nokia base station platform, and is backwards-compatible with the Nokia Flexi Multiradio 10 Base Station to best use an operator's existing investments.

Product name	AirScale RRH 4T4R B5 160W AHCA - 473966A
Supported frequency bands	3GPP band 5
Frequencies	DL 869-894MHz, UL 824-849MHz
Number of TX/RX ports	4/4
Instantaneous Bandwidth IBW	25MHz
Occupied Bandwidth OBW	25MHz
Output power	4T4R 40 W/ 2T4R 60W
Dimensions (mm) height x width x depth	337 x 295 x 165
Volume (liters)	16.4
Weight (kg)	16
Supply Voltage / Voltage Range	DC-48V / -36V to -60V
Typical Power Consumption	207 W (ETSI 24h Avg – 4x20W mode)
Antenna ports	4TX/4RX, 4.3-10+
Optical ports	2 x CPRI 9.8 Gbps
ALD control interfaces	AISG3.0 from ANT1, 2, 3, 4 and RET (Power supply ANT1 and ANT3)
Other interfaces	External alarm MDR-26 serial connector (4 inputs, 1 output) DC circular power connector
Operational temperature range	-40°C to 55°C (with no solar load)
Ingress protection class	IP65
Installation options	Pole or wall, RAS, vertical or horizontal book mount
Surge protection	Class II 5kA

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

Nokia Oyj Karaportti 3 FI-02610 Espoo Finland Tel. +358 (0) 10 44 88 000

Product code: SR1611002341EN (April)

ALCATEL-LUCENT B25 RRH4X30

Alcatel-Lucent Band 25 Remote Radio Head 4x30W is the new addition of Remote Radio Head to the extended product line of Alcatel-Lucent's distributed Base Station solutions, aimed at facilitating smooth RF site acquisition and related civil engineering.

Supporting 2Tx/4Tx MIMO and 4-way Rx diversity, Alcatel-Lucent B25 RRH4x30 allows operators to have a compact radio solution to deploy LTE in the PCS band (1.9 GHz, 3GPP band 25), providing them with the means to achieve high capacity, high quality and high coverage with minimum site requirements.

The Alcatel-Lucent B25 RRH4x30 product has four transmit RF paths, offering the possibility to **select**, **via software only**, **2Tx or 4Tx MIMO configurations** with either 2x60 W or 4x30 W RF output power. It supports also 4-way Rx diversity, LTE carriers from 3 MHz up to 20 MHz and up to 65 MHz instantaneous bandwidth.

The Alcatel-Lucent B25 RRH4x30 is a near zero-footprint solution and operates noise free, simplifying negotiations with site property owners and minimizing environmental impacts.

Its compactness and slim design makes the Alcatel-Lucent B25 RRH4x30 easy to install close to the antenna: operators can therefore locate this Remote Radio Head where RF design conditions are deemed ideal, minimizing trade-offs between available sites and RF optimum sites, together with reducing the RF feeder needs and installation costs.

FEATURES

- Supporting LTE in 1.9 GHz band (PCS, 3GPP band 2 & 25)
- LTE 2Tx or 4Tx MIMO (SW switchable)
- Output power: Up to 2x60W or 4x30W
- Ready for 3, 5, 10, 15 or 20MHz LTE carrier operation with 4Rx Diversity
- Ready to support up to 4 carriers anywhere in 65MHz instantaneous bandwidth
- Convection-cooled (fan-less)
- Supports AISG 2.0 devices (RET, TMA) through RS485 or RF ports

BENEFITS

- Compact to reduce additional footprint when adding LTE in PCS band
- MIMO scheme operation selection (2Tx or 4Tx) by software only
- Full flexibility for multiple carriers operation over entire PCS spectrum
- Improves downlink spectral efficiency and cell edge throughput through MIMO4
- Increases LTE coverage thanks to 4-way Rx diversity capability and best in class Rx sensitivity
- Flexible mounting options (Pole or Wall)

4x30W with 4T4R or 2x60W with 2T4R

Can be switched between modes via SW w/o site visit

TECHNICAL SPECIFICATIONS

Features & performance				
Number of TX/RX paths	4 duplexed (either 4T4R or 2T4R by SW)			
Frequency band	3GPP bands 2 & 25 (PCS-G) DL: 1930 - 1995 MHz UL: 1850 - 1915 MHz			
Instantaneous bandwidth - #carriers	65MHz – Up to 4 LTE carriers (in 40MHz occupied bandwidth)			
LTE carrier bandwidth	3, 5, 10, 15 or 20 MHz			
RF output power	2x60W or 4x30W (by SW)			
Noise figure (3GPP band 2) RX Diversity scheme	2.0 dB typ. (<2.5 dB max) 2 or 4 way Rx diversity			
Sizes (HxWxD)(w/ solar shield) in mm (in.) Volume (w/ solar shield) in L Weight (w/ solar shield) in kg (lb)	538 x 304 x 182 (21.2" x 12.0" x 7.2") 30 24 (53)			
DC voltage range DC power consumption	-40.5 to -57V at full performance, -38 to -57V with relaxation on power consumption 580W typical @100% RF load			
Environmental conditions Wind load (@150km/h or 93mph)	-40°C (-40°F) /+55°C (+131°F) IP65 Frontal:<200N / Lateral :<150N			
Antenna ports	4 ports 7/16 DIN female (50 ohms) VSWR < 1.5 (> 14dB)			
CPRI ports	2 CPRI ports (HW ready for Rate7 / 9.8 Gbps)			
AISG interfaces	1 AISG2.0 output (RS485), +24V/2A DC power Integrated Smart Bias Tees (x2)			
Misc. Interfaces	1 external alarms connector (4 alarms) 4 RF Tx & 4 RF Rx monitor ports 1 DC connector (2 pins)			
Installation conditions	Pole and wall mounting			
Regulatory compliance	3GPP 36.141 / 3GPP 36.113 / GR-1089-CORE / GR-3108-CORE / UL 60950-1 / FCC Part 27			

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent, All other trademarks are the property of their respective owners. The information presented is subject to change without notice. Alcatel-Lucent assumes no responsibility for inaccuracies contained herein. Copyright © 2014 Alcatel-Lucent, All Rights Reserved

DC and Fiber Management Distribution Boxes for HYBRIFLEX[™] Cable

Product Description

RFS' flexible Tower, Base Stations and Rooftop protection and Distribution products provide protection for up to 6 Remote Radio Heads/Integrated Antennas. The solutions mitigate the risk of damage due to lightning and provide high levels of availability and reliability to radio equipment.

Features

- Employs the Strikesorb[®] 30-V1-HV Surge Protective Device (SPD) specifically designed for the Remote Radio Head (RRH) installation environment and certified for use in DC applications and at low DC operating voltages (48V).
- The Strikesorb 30-V1-HV is a Class I SPD, certified by VDE per the IEC 61643-1 standard as suitable for installation in areas where direct lightning exposure is expected. Strikesorb 30-V1-HV is able to withstand direct lightning currents of up to 5kA (10/350) and induced surge currents of up to 60kA (8/20).
- Provides very low let through / clamping voltage unique for a Class I product – as it does not employ spark gaps or other switching elements. Strikesorb offers unique protection levels to the RRH equipment as well as the Base Band Units.
- Alarms for SPD sacrifice, Moisture detection and Intrusion.
- Fully recognized to the UL 1449 3rd Edition Safety Standard.
- Patent pending design

Benefits

- Offers unique maintenance-free protection against direct lightning currents.
- Protects up to 6 Remote Radio Heads and connects up to 12 fiber pairs.
- Utilizes an IP67 rated enclosure, allowing for indoor or outdoor installation on a roof or tower top.
- Configurable cable ports are designed to accommodate varying diameters of hybrid (combined power and fiber optic) or standard cables with diameters up to 2" (will fit most standard 15/8" coax class cables) depending upon port configuration.
- Lightweight aerodynamic design provides maximum flexibility for tower top installation.

Product Diagram

Tower / Base / Rooftop / Rooftop Distribution Models: DB-T1-6Z-12AB-0Z DB-B1-6C-12AB-0Z

Companion Sector Model: DB-F1-2C-4AB-07

Please visit us on the internet at http://www.rfsworld.com

DC and Fiber Management Distribution Boxes for HYBRIFLEX[™] Cable

Technical Specifications

Electrical Specifications		
Model Numbers	DB-T1-6Z-12AB-0Z	DB-B1-6C-12AB-0Z
Nominal Operating Voltage		48 VDC
Nominal Discharge Current [In]		20 kA 8/20 µs
Maximum Surge Current [Imax]		60 kA 8/20 µs
Maximum Impulse (Lightning) Current per IEC	61643-1	5 kA 10/350 µs
Maximum Continuous Operating Voltage [Uc]	75 VDC
Voltage Protection Rating (VPR) per UL 1449	3rd Edition	400V
Protection Class as per IEC 61643-1		Class I
SPD Alarm		Upon sacrifice
Intrusion Sensor		Microswitch
Moisture Sensor	Infra	red moisture detector
Strikesorb Module Type	No Strikesorb modules installed	30-V1-HV – Strikesorb modules
	(used as Distribution Unit only)	installed to protect 6 RRHs
Mechanical Specifications		
Suppression Connection Method	Compression lug	, #20-#6 AWG (0.5 mm ² -16 mm ²)
Fiber Connection Method	L	C-LC Single mode
Pressure Equalizing Vent		Gore™ Vent
Environmental Rating		IP 67
Operating Temperature		-40° C to +80° C
UV Resistant		Yes
Weight	System: 16.0 lbs (7.25 kg)	System: 21.4 lbs (9.70 kg)
	Mount: 5.5 lbs (2.49 kg)	Mount: 5.5 lbs (2.49 kg)
	Total: 21.5 lbs (9.75 kg)	Total: 26.9 lbs (12.20 kg)
Combined Wind Loading	150mph (si	ustained): 200 lbs (889.6 N)
Standards Compliance		
Standards (Strikesorb modules ONLY)	Not Applicable	ANSI/UL 1449 3rd Edition
		IEEE C62.41, NEMA LS-1
		IEC 61643-1:2005 2nd Ed (Class I Protection)
		IEC 61643-12
		EN 61643-11:2002 (including A11:2007)

* This data is provisional and subject to change.

RFS The Clear Choice®

DB-B1 and DB-T1 Series

Rev: P1

Unter Conductor Arr	mor. Corrugated Aluminum	FULL (H1)]	40.511.057	with an I	nternal iacket
Jacket:	Polyethylene, PE	(mm (in)]	50.3 (1.98)		1
UV-Protection	Individual and External Jacket		Yes		Aluminum OC
Shoe weeking an	6.5.5			PE/UV external jacket	1
Weight, Approximate	<u>.</u>	[kg/m (lb/ft)]	1.9 (1.30)	. 1	
Minimum Bending R	adius, Single Bending	[mm (in)]	200 (8)	1117	77
Minimum Bending Ri	adius, Repeated Bending	[mm (in)]	500 (20)	TITILI	12CL
Recommended/Maxir	mum Clamp Spacing	[m (ft)]	1.0 / 1.2 (3.25 / 4.0)	12150	XI Faith
Excercition Constantian				K GOO	
DC-Resistance Outer	Conductor Armor	[Ω/km (Ω/1000ft)]	068 (0.205)	A CO	MIM
DC-Resistance Power	Cable, 8.4mm ⁺ (8AWG)	[Ω/km (Ω/1000ft)]	2.1 (0.307)		D SIN
The Street and				NO MO	
Version			Single-mode OM3		Q AMB
Quantity, Fiber Count	1		16 (8 pairs)	N 18 VOIC	VSIA
Core/Clad		(µm)	50/125		OV/S
Primary Coating (Acr	ylate/	(µm)	245	I TED OF	
Buffer Diameter, Nor	ninal	(µm)	900	III EQU	IN A
Secondary Protection	, Jacket, Nominal	(mm (in))	2.0 (0.08)		TIP
Minimum Bending Ra	adius	(mm (in))	104 (4.1)	210	LLE
Insertion Loss @ wave	elength 850nm	dB/km	3.0	Alarm cable	with Power cable with
Insertion Loss @ wave	elength 1310nm	dB/km	1.0	an internal ja	acket an internal jacket
Standards (Meets or e	exceeds)		UL94-V0, UL1666		
			RoHS Compliant	Figure 2: Const	truction Detail
0.5 to recentive 0	10(8)(1)(8)(1)				
Size (Power)		[mm (AWG)]	8 4 (8)		
Quantity, Wire Count	(Power)		16 (8 pairs)		
Size (Alarm)		[mm (AWG)]	0.8 (18)		
Quantity, Wire Count	(Alarm)		4 (2 pairs)	- 	
lype			UV protected	Ĩ.	
strands			19	μ.	
Primary Jacket Diame	ter, Nominal	(mm (in))	6.8 (0.27)	Ē.	
Standards (Meets or e	exceeds)		NFPA 130, ICEA S-95-658		
			UL Type XHHVV-2, UL 44		
			UL-LS Limited Smoke, UL VW-1		
			IEEE-383 (1974), IEEE1202/FT4		
			RoHS Compliant		
PHI / APPL					
nstallation Temperatu	ire	[°C (°F)]	-40 to +65 (-40 to 149)		
peration Temperatur	'e	(°C (°F))	-40 to +65 (-40 to 149)		
This data is provisional an	- ad subject to change				
The data is provisional an	iu subject to change	י היישר בגרהד הר	allo 28145		1.4 Dates 57 6 2003
RFS The Cl	ear Choice"	18758-74	1212-33113	Rev: 21 - 27	ing page: 37.5.2012

16 6 (1 03)

- Features/Benefits installation time and enables mechanical protection and shielding

- Installation of tight bundled fiber optic cable pairs directly to the RRH Reduces CAPEX
- · Optical fiber and power cables housed in single corrugated cable Saves CAPEX by standarclizing RRH cable installation and reducing installation requirements
- Outdoor polyethylene jacket Ensures long-lasting cable protection

Technical Specifications

- Aluminum corrugated armor with outstanding bending characteristics minimizes Same accessories as 1 5/8" coaxial cable
- Outer conductor grounding Eliminates typical grounding requirements and saves on installation costs
- Lightweight solution and compact design Decreases tower loading
- Robust cabling Eliminates need for expensive cable trays and ducts
- and wind load by eliminating need for interconnection

Both pre-connectorized and on-site options are available.

RFS' HYBRIFLEX Remote Radio Head (RRH) hybrid feeder cabling solution combines

HYBRIFLEX™ RRH Hybrid Feeder Cabling Solution, 1-5/8", Single-Mode Fiber

optical fiber and DC power for RRHs in a single lightweight aluminum corrugated cable, making it the world's most innovative solution for RRH deployments.

It was developed to reduce installation complexity and costs at Cellular sites. HYBRIFLEX allows mobile operators deploying an RRH architecture to standardize the RRH installation process and eliminate the need for and cost of cable grounding. HYBRIFLEX combines optical fiber (multi-mode or single-mode) and power in a single corrugated cable. It eliminates the need for junction boxes and can connect multiple RRHs with a single feeder. Standard RFS CELLFLEX[®] accessories can be used with HYBRIFLEX cable.

Braduat Description

m ton 1

Casello Alton and

Figure 1: MY3RIFLEX Series

Ontical cable (pair)

Please visit us on the internet at http://www.risworld.com

R

AMERICAN TOWER®

CORPORATION

Structural Analysis Report

Structure	: 180 ft Monopole	2
ATC Site Name	: Winchester CT	3, СТ
ATC Site Number	: 302506	
Engineering Number	: OAA721430_C	3_01
Proposed Carrier	: Verizon	
Carrier Site Name	: Winchester E C	т
Carrier Site Number	: PSLC# 117770	
Site Location	: 15 Oakdale Ave Winsted, CT 06 41.921700,-73.	enue 1098-1862 049500
County	: Litchfield	
Date	: January 19, 20	18
Max Usage	: 89%	
Result	: Pass	

Prepared By: Trevor Ridilla Structural Engineer I

Turn Cliffle

Reviewed By:

Jan 19 2018 5:06 PM cosign

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	3
Proposed Equipment	3
Structure Usages	4
Foundations	4
Deflection, Twist, and Sway	4
Standard Conditions	5
Calculations A	ttached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 180 ft monopole to reflect the change in loading by Verizon.

Supporting Documents

Tower Drawings	EEI Job #7676, dated August 21, 2000		
Foundation Drawing SNET Project #F301804.10/F04, dated August 23, 2000			
Geotechnical Report Welti Project: Whalen's Hill, dated February 8, 2000			
Modifications	ATC Job #42523432, dated October 24, 2008		
	ATC Job #50492933, dated October 15, 2012		

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	90 mph (3-Second Gust, Vasd) / 115 mph (3-Second Gust, Vult)
Basic Wind Speed w/ Ice:	40 mph (3-Second Gust) w/ 1" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	HI
Exposure Category:	В
Topographic Category:	1
Crest Height:	Oft
Spectral Response:	$Ss = 0.18, S_1 = 0.06$
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevatio	vation ¹ (ft)		Antonno	Maxima Truna	these	Corrier	
Mount	RAD	LITY	Antenna	Mount Type	Lines	Camer	
	187.0	1	4' Omni			Other	
	184.0	2	Raycap DC6-48-60-18-8F (23.5" Height)				
		1	Andrew ABT-DMDF-ADBH				
		3	Powerwave TT19-08BP111-001		(12) 1 5 (0) 0		
		3	Powerwave LGP21401		(12) 1 5/8" COax		
190.0		3	Ericsson RRUS 11 (Band 12)	Lew Drofile Distform	(4) 0.78° 8 AWG 5		
100.0	183.0	3	Ericsson RRUS 32 (50.8 lbs)	Low Frome Flatform	(1) 0.40 Fiber (1) 0.20" Eiber Truck	AT&T Mobility	
		3	Ericsson RRUS-12 B2		(1) 2" Conduit		
		3	Powerwave 7770.00				
		3	KMW AM-X-CD-16-65-00T-RET				
	1	3	CCI HPA-65R-BUU-H6				
	179.0	1	2' x 4' Rectangular Grid Dish				
		3	Ericsson KRY 112 144/1		(42) 4 5 (0) 6		
167.0	167.0	3	Ericsson AIR 21, 1.3 M, B2A B4P	T-Arms	(12) 1 5/8" COax	T-Mobile	
	,	3	Ericsson AIR 21, 1.3M, B4A B2P		(1) 1 1/4 Hypriliex		
150.0	150.0	1	Sinclair SD210-SF2P4SNM	Side Arm	(1) 1 5/8" Coax	Litchfield County Dispatch	
	140.0	3	Decibel DB809K-XT		(6) 1 5/8" Coax		
140.0	149.0	1	Sinclair SC432D-HF6LDF (I40-G06)	Ciala Anna	(2) 3/8" Coax	Ch Dellas De et	
140.0	141.0	1	Telewave ANT150D (5 lbs)	Side Arms	(1) 7/8" Coax	Ct Police Dept.	
	141.0	2	Bird 432-83H-01-T		(1) 1/2" Coax		
		-	Alcatel-Lucent 800MHz RRH w/ Notch				
		5	Filter				
		3	Alcatel-Lucent 1900MHz RRH		(3) 1 1/4" Hybriflex (1) 7/8" Fiber		
135.0	135.0	2	Alcatel-Lucent TD-RRH8x20-25 w/ Solar	Platform w/ Handrails		Sprint Nextel	
			Shield				
		3	RFS APXVTM14-C-I20				
		3	RFS APXVSPP18-C-A20				
		3	Nokia B5 RRH4x40-850				
		3	Alcatel-Lucent RRH2x60 700				
		1	RFS DB-B1-6C-12AB-0Z		(C) 1 5 (0) Coov		
125.0	125.0	3	Alcatel-Lucent B66a RRH4x45 (AWS-3)	Low Profile Platform	(0) 1 5/8 COax (1) 1 5/9" Hubrifier	Verizon	
		2	Antel LPA-80080/6CF		(I) I S/O HYDEINER		
			Commscope JAHH-65B-R3B				
			Antel LPA-80063/6CF				
112.0	112.0	12	Decibel DB844H90E-XY	Low Profile Platform	(12) 1 1/4" Coax	Sprint Nextel	
105.0	105.0	3	RFS APXV18-206517S-C	Flush	(6) 1 5/8" Coax	Metro PCS	
96.0	96.0	2	Andrew DB586	Sido Arme	(2) 7/8" Coax		
50.0	30.0	1	Bird 429-83H-01-T	Side Artris	(1) 1/2" Coax	Eversource Energy	
79.0	79.0	1	PCTEL GPS-TMG-HR-26N	Flush	(1) 1/2" Coax	Sprint Nextel	
30.0	30.0	1	GPS	Flush	(1) 7/8" Coax	Verizon	

Equipment to be Removed

Elevatio	on¹ (ft)	05	Antenna	Mount Type	Lines	Carrier		
Mount	RAD	City	Antenna	wount rype				
	No loading considered as to be removed							

Proposed Equipment

Elevatio	on¹ (ft)	0	Antonna	Maximt Time	Lines	Carrier	
Mount	RAD	Quy	Antenna	iviount type	Lines		
125.0	125.0	3	Alcatel-Lucent B25 RRH4x30	Low Profile Platform	-	Verizon	

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	58%	Pass
Shaft	67%	Pass
Base Plate	30%	Pass
Reinforcement	66%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	4,116.8	46%
Axial (Kips)	70.1	6%
Shear (Kips)	34.7	89%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
125.0	Alcatel-Lucent B25 RRH4x30	Verizon	1.362	1.370

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

Job Information					
Pole : 302506	Code: ANSI/TIA-222-G				
Location : Winchester CT 3, CT					
Description: 180 ft EEI Monopole					
Client : VERIZON WIRELESS	Struct Class : Ill				
Shape : 18 Sides	Exposure: B				
Height : 180.00 (ft)	Торо: 1				
Base Elev (ft): 0.00					
Taper: 0.219444(in/ft)					

	Sections Properties							
Shaft Section	Length (ft)	Diamo Accro Top	eter (in) ss Flats Bottom	Thick (in)	Joint Type	Overlap Length (in)	Shape	Steel Grade (ksi)
1	49.040	41.98	52.75	0.438		0.000	18 Sides	65
2	49.500	33.21	44.07	0.375	Slip Joint	73.000	18 Sides	65
3	48.330	24.30	34.91	0.313	Slip Joint	59.000	18 Sides	65
4	47.880	15.00	25.50	0.188	Slip Joint	45.000	18 Sides	65

	Discrete Appurtenance						
Attach	Force		· •				
Elev (ft)	Elev (ft)	Qty	Description				
180.000	183.000	3	CCI HPA-65R-BUU-H6				
180.000	183.000	1	Andrew ABT-DMDF-ADBH				
180.000	183.000	3	Powerwave Allgon 7770.00				
180.000	184.000	2	Raycap DC6-48-60-18-8F (23.5"				
180.000	183.000	3	Powerwave Aligon TT19-				
180.000	183.000	3	Ericsson RRUS 32 (50.8 lbs)				
180.000	180.000	1	Flat Low Profile Platform				
180.000	183.000	3	KMW AM-X-CD-16-65-00T-RET				
180.000	179.000	1	2' x 4' Rectangular Grid Dish				
180.000	183.000	3	Ericsson RRUS-12 B2				
180.000	183.000	3	Ericsson RRUS 11 (Band 12)				
180.000	183.000	3	Powerwave Allgon LGP21401				
180.000	187.000	1	4' Omni				
167.000	167.000	3	Round T-Arm				
167.000	167.000	3	Ericsson AIR 21, 1.3M, B4A B2P				
167.000	167.000	3	Ericsson AIR 21, 1.3 M, B2A B4				
167.000	167.000	3	Ericsson KRY 112 144/1				
150.000	150.000	1	Round Side Arm				
150.000	150.000	1	Sinclair SD210-SF2P4SNM				
140.000	149.000	3	Decibel DB809K-XT				
140.000	149.000	1	Sinclair SC432D-HF6LDF (I40-G0				
140.000	141.000	2	Bird 432-83H-01-T				
140.000	140.000	3	Round Side Arm				
140.000	141.000	1	Telewave ANT150D (5 lbs)				
135.000	135.000	1	Flat Platform w/ Handrails				
135.000	135.000	3	RFS APXVSPP18-C-A20				
135.000	135.000	3	RFS APXVTM14-C-I20				
135.000	135.000	3	Alcatel-Lucent TD-RRH8x20-25				
135.000	135.000	3	Alcatel-Lucent 1900MHz RRH				
135.000	135.000	3	Alcatel-Lucent 800 MHz RRH				
125.000	125.000	3	Alcatel-Lucent RRH2x60 700				
125.000	125.000	2	Antel LPA-80080/6CF				
125.000	125.000	3	Alcatel-Lucent B66a RRH4x45				
125.000	125,000	1	RFS DB-B1-6C-12AB-0Z				
125.000	125.000	3	Alcatel-Lucent B25 RRH4x30				
125.000	125.000	3	Nokia B5 RRH4x40-850				
125.000	125.000	1	Round Low Profile Platform				
125.000	125.000	1	Antel LPA-80063/6CF				
125.000	125.000	6	Commscope JAHH-65B-R3B				
112.000	112.000	1	Round Low Profile Platform				
112.000	112.000	12	Decibel DB844H90E-XY				
105.000	105.000	3	RFS APXV18-206517S-C				
96.000	96.000	3	Flat Side Arm				
96,000	96.000	1	Bird 429-83H-01-T				

96.000	96.000	2	Andrew DB586
79.000	79.000	1	PCTEL GPS-TMG-HR-26N
30.000	30.000	1	GPS

		Linear App	urtenance	
Elev	(ft)	D	Exposed	
From	TO	Description	To Wind	
112.5	125.0	1 5/8" Coax	Yes	
112.5	167.0	1 5/8" Coax	Yes	
0.000	180.0	0.39" (10mm)	No	
0.000	180.0	0.40" Fiber Cable	No	
0.000	180.0	0.78" 8 AWG 6	No	
0.000	180.0	0.78" 8 AWG 6	No	
0.000	180.0	1 5/8" Coax	No	
0.000	180.0	3" Condult	No	
0.000	135.0	1 1/4" Hybriflex	No	
0.000	135.0	7/8" Fiber	No	
0.000	140.0	1 5/8" Coax	No	
0.000	140.0	1/2" Coax	No	
0.000	140.0	3/8" Coax	No	
0.000	140.0	7/8" Coax	No	
0.000	150.0	1 5/8" Coax	No	
0.000	167.0	1 1/4" Hybriflex	No	
0.000	30.000	7/8" Coax	Yes	
0.000	79.000	1/2" Coax	No	
0.000	96.000	1/2" Coax	No	
0.000	96.000	7/8" Coax	No	
0.000	105.0	1 5/8" Coax	Yes	
0.000	112.0	1 1/4" Coax	Yes	
0.000	112.5	1 5/8" Coax	Yes	
0.000	112.5	1 5/8" Coax	Yes	
0.000	112.5	Reinforcement	Yes	
0.000	125.0	1 5/8" Hybriflex	No	

	Load Cases
1.2D + 1.6W	90 mph with No Ice
0.9D + 1.6W	90 mph with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi	40 mph with 1.00 in Radial Ice
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Lateral Forces Method
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Modal Analysis Method
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Lateral
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Modai
1.0D + 1.0W	Serviceability 60 mph

R	eactions		
Load Case	Moment (kip-ft)	Shear (kip)	Axial (kip)
1.2D + 1.6W	4116.76	34.75	70.07
0.9D + 1.6W	3962.17	33.28	52.54
1.2D + 1.0Di + 1.0Wi	888.66	6.58	143.59
(1.2 + 0.2Sds) * DL + E ELFM	402.86	2.97	69.76
(1.2 + 0.2Sds) * DL + E EMAM	378.33	3.23	69.76
(0.9 - 0.2Sds) * DL + E ELFM	396.01	2.97	48.59
(0.9 - 0.2Sds) * DL + E EMAM	370.99	3.22	48.59
1.0D + 1.0W	1110.30	9.28	58.43
Dist	n Deflections	; ;	
Load Case	Attach D Elev (ft)	eflection (in)	Rotation (deg)

0.00

0.000

0.000

Site Number Site Name: Customer:	r: 302506 Winchester VERIZON V	- CT 3, CT VIRELESS	Engineer	Code: ANSI/TIA-222-	G © 2007 - 2018 by A 3_01	© 2007 - 2018 by ATC IP LLC. All rights reserved. 1/19/2018 10:02:07 AM				
			An	alysis Parameters						
Location :		LITCHFIELD C	ounty, CT	Height (ft) :		180				
Code :		ANSI/TIA-222-	G	Base Diameter (in) :		52.75				
Shape :		18 Sides		Top Diameter (in) :		15.00				
Pole Type :		Тарег		Taper (in/ft) :		0.219				
Pole Manfacti	urer :	EEI		Rotation (deg) :		0.00				
			lce (& Wind Parameters						
Structure Cla	SS:	III		Design Wind Speed Witho	out ice:	90 mph				
Exposure Category: B			Design Wind Speed With	Ice:	40 mph					
Topographic Category: 1				Operational Wind Speed:		60 mph				
Crest Height:0 ftDesign Ice Thickness:1.00 in										
			Se	ismic Parameters						
Analysis Met	hod:	Equivalent Mo	dal Analysis & Equi	valent Lateral Force Methods						
Site Class:		D - Stiff Soil								
Period Based	on Rayleigh M	ethod (sec):	2.66							
T _L (sec):	6		p:	1.3	C _s :	0.039				
S _s :	0.177		S ₁ :	0.065	C _s Max:	0.039				
F _a :	1.600		F _v :	2.400	C _s Min;	0.030				
S _{ds} :	0.189		S _{d1} :	0.104						
				Load Cases						
1.2D + 1.6W			90 mph with No Ice							
0.9D + 1.6W	0.9D + 1.6W 90 mpl		90 mph with No Ice	(Reduced DL)						
1.2D + 1.0Di +	.2D + 1.0Di + 1.0Wi 40 mph		40 mph with 1.00 in	nph with 1.00 in Radial Ice						
(1.2 ± 0.2505) $(1.2 \pm 0.25ds)$	L2 + 0.2Sds) * DL + E ELFM Seismin L2 + 0.2Sds) * DL + E EMAM Seismin		Seismic Equivalent	smic Equivalent Cateral Forces Method						
(0.9 - 0.2Sds)	* DL + E ELFM		Seismic (Reduced D	c (Reduced DL) Equivalent Lateral Forces Method						

(0.9 - 0.2Sds) * DL + E ELFM (0.9 - 0.2Sds) * DL + E EMAM

1.0D + 1.0W

Seismic (Reduced DL) Equivalent Modal Analysis Method

Serviceability 60 mph

Site Number: 302506

Site Name: Winchester CT 3, CT

Customer: VERIZON WIRELESS

Shaft Section Properties Тор Bottom Slip Sect Length Thick Fy Joint Joint Weight Dia Info (ft) (in) (ksi) Type Len (in) (lb) (in) lx (in⁴) Elev W/t D/t Dia Area Elev Area Ix W/t D/t Taper (in ²) (ft) Ratio Ratio (in) (ft) (in²) (in4) Ratio Ratio (in/ft) 0.00 10,875 52.75 1-18 49.040 0.4375 65 0.00 72.64 25115.3 19.50 120.57 41.98 49.04 57.70 12585.4 15.16 95.97 0.219444

2-18 49.500 0.3750 65 73.00 7,672 44.07 42.96 52.01 12548.0 18.96 117.53 Slip 33.21 92.46 39.08 5323.8 13.85 88.56 0.219444 3-18 48.330 0.3125 65 Slip 4,779 34.91 87.54 34.32 5191.7 17.94 111.73 24.30 135.87 59.00 23.80 1731.6 11.95 77.79 0.219444 4-18 47.880 0.1875 65 Slip 45.00 1,946 25.50 132.12 15.07 1220.4 22.22 136.04 15.00 180.00 8.81 244.4 12.34 80.00 0.219444 Shaft Weight 25,271

Discrete Appurtenance Properties

Attach Elev			Distance From Face	Vert Ecc	Weight	No Ice • EPAa (Drientation	
(ft)	Description	Qty	(ft)	(ft)	(lb)	(sf)	Factor	
180.00	2' x 4' Rectangular Grid Dish	1	0.000	-1.000	40.00	4.750	1.00	
180.00	4' Omni	1	0.000	7.000	10.00	1.000	1.00	
180.00	Andrew ABT-DMDF-ADBH	1	0.000	3.000	1.10	0.050	0.50	
180.00	CCI HPA-65R-BUU-H6	3	0.000	3.000	51.00	9.660	0.69	
180.00	Ericsson RRUS 11 (Band 12)	3	0.000	3.000	50.00	2.570	0.50	
180.00	EffCSSOFI RRUS 32 (50.8 IDS)	3	0.000	3.000	50.80	2.690	0.67	
100.00	Encsson RRUS-12 B2	3	0.000	3.000	1500.00	3.150	0.50	
180.00	KMW AM-X-CD-16-65-00T-RET	3	0.000	3 000	48.50	8 020	0.67	
180.00	Powerwaye Alloon 7770.00	3	0.000	3.000	35.00	5.510	0.65	
180.00	Powerwave Allgon I GP21401	3	0.000	3.000	14.10	1,100	0.50	
180.00	Powerwave Alloon TT19-	3	0.000	3.000	16.00	0.640	0.50	
180.00	Raycap DC6-48-60-18-8F (23.5"	ž	0.000	4.000	20.00	1.110	1.00	
167.00	Ericsson AIR 21, 1.3 M, B2A B4	3	0.000	0.000	83.00	6.050	0.71	
167.00	Ericsson AIR 21, 1.3M, B4A B2P	3	0.000	0.000	81.50	6.090	0.70	
167.00	Ericsson KRY 112 144/1	3	0.000	0.000	11.00	0.410	0.50	
167.00	Round T-Arm	3	0.000	0.000	250.00	9.700	0.67	
150.00	Round Side Arm	1	0.000	0.000	150.00	5.200	0.67	
150.00	Sinclair SD210-SF2P4SNM	1	0.000	0.000	8.30	1.370	1.00	
140.00	Bird 432-83H-01-T	2	0.000	1.000	25.00	1.400	0.50	
140.00	Decibel DB809K-XT	3	0.000	9.000	30.00	3.660	1.00	
140.00	Sinclair SC422D HEELDE (140 CO	3	0.000	0.000	150.00	5.200	0.67	
140.00	Tolowayo ANT150D (5 lbs)	1	0.000	9.000	54.00	1.000	1.00	
126.00	AlcateL ucont 1900MHz DDH	3	0.000	0.000	3.00	2 260	0.50	
135.00	Alcatel-Lucent 900 MHz DDH w/	2	0.000	0.000	61.00	2 500	0.50	
135.00	Alcatel-Lucent TD-RRH8x20-25 w	3	0.000	0.000	70.00	4 050	0.50	
135.00	Flat Platform w/ Handrails	ĭ	0.000	0.000	2000.00	31,600	1.00	
135.00	RFS APXVSPP18-C-A20	3	0.000	0.000	57.00	8.020	0.69	
135.00	RFS APXVTM14-C-120	3	0.000	0.000	52.90	6.340	0.66	
125.00	Alcatel-Lucent B25 RRH4x30	3	0.000	0.000	53.00	2.120	0.50	
125.00	Alcatel-Lucent B66a RRH4x45 (A	3	0.000	0.000	67.00	2.660	0.50	
125.00	Alcatel-Lucent RRH2x60 700	3	0.000	0.000	56.70	2.150	0.50	
125.00	Antel LPA-80063/6CF	1	0.000	0.000	27.00	9.590	0.76	
125.00	Antel LPA-80080/6CF	2	0.000	0.000	21.00	8.630	0.65	
125.00	Commscope JAHH-65B-R3B	6	0.000	0.000	60.60	9.110	0.69	
125.00		3	0.000	0.000	48.50	1.320	0.50	
125.00	RFS DB-B1-6C-12AB-0Z	1	0.000	0.000	21.40	2.510	0.67	
125.00	Decidel DB8//H90E-XX	12	0.000	0.000	1500.00	21.700	1.00	
112.00	Pound Low Profile Platform	12	0.000	0.000	1500.00	21 700	1.00	
105.00	RES APXV18.206517S.C	2	0.000	0.000	26.40	5 160	0.68	
96.00	Andrew DB586	2	0.000	0.000	8.30	0.740	1.00	
96.00	Bird 429-83H-01-T	1	0.000	0.000	20.00	0.920	0.50	
96.00	Flat Side Arm	3	0.000	0.000	150.00	6.300	0.67	
79.00	PCTEL GPS-TMG-HR-26N	1	0.000	0.000	0.60	0.090	1.00	
30.00	GPS	1	0.000	0.000	10.00	1.000	1.00	

Code: ANSI/TIA-222-G

Engineering Number: OAA721430_C3_01

1/19/2018 10:02:07 AM

2007 - 2018 by ATC IP LLC. All rights reserved.

Site Number	302506		Code: ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	Winchester CT 3, CT	Engineerin	g Number:OAA721430_C3_01	1/19/2018 10:02:07 AM
Customer:	VERIZON WIRELESS			
Totals Num	Loadings:47	117	12356.20	

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Qty	Description	Coax Diameter (in)	Coax Weight (Ib/ft)	Flat	Projected Width (in)	Exposed To Wind	Carrier
0.00	180.00	1	0.39" (10mm) Fiber	0.39	0.06	N	0.00	N	AT&T Mobility
0.00	180.00	1	0.40" Fiber Cable	0.40	0.09	Ν	0.00	N	AT&T Mobility
0.00	180.00	2	0.78" 8 AWG 6	0.78	0.59	Ν	0.00	Ν	AT&T Mobility
0.00	180.00	2	0.78" 8 AWG 6	0.78	0.59	N	0.00	N	AT&T Mobility
0.00	180.00	12	1 5/8" Coax	1.98	0.82	Ν	0.00	N	AT&T Mobility
0.00	180.00	1	3" Conduit	3.50	7.58	Ν	0.00	N	AT&T Mobility
0.00	167.00	1	1 1/4" Hybriflex	1.54	1.00	N	0.00	N	T-Mobile
112.50	167.00	12	1 5/8" Coax	1.98	0.82	N	3.96	Y	T-Mobile
0.00	150.00	1	1 5/8" Coax	1.98	0.82	Ν	0.00	N	Litchfield County Dispatch
0.00	140.00	6	1 5/8" Coax	1.98	0.82	N	0.00	N	CT Police Dept.
0.00	140.00	1	1/2" Coax	0.63	0.15	N	0.00	Ν	CT Police Dept.
0.00	140.00	2	3/8" Coax	0.44	0.08	Ν	0.00	N	CT Police Dept.
0.00	140.00	1	7/8" Coax	1.09	0.33	N	0.00	N	CT Police Dept.
0.00	135.00	3	1 1/4" Hybriflex	1.54	1.00	Ν	0.00	N	Sprint Nextel
0.00	135.00	1	7/8" Fiber	0.88	0.70	N	0.00	N	Sprint Nextel
0.00	125.00	1	1 5/8" Hybriflex	1.98	1.30	N	0.00	N	Verizon
112.50	125.00	6	1 5/8" Coax	1.98	0.82	Ν	3.96	Y	Verizon
0.00	112.50	12	1 5/8" Coax	1.98	0.82	N	0.00	Y	T-Mobile
0.00	112.50	6	1 5/8" Coax	1.98	0.82	N	0.00	Y	Verizon
0.00	112.50	1	Reinforcement	9.27	43.00	Ν	3.35	Y	
0.00	112.00	12	1 1/4" Coax	1.55	0.63	N	4.65	Y	Sprint Nextel
0.00	105.00	6	1 5/8" Coax	1.98	0.82	N	0.00	Y	Metro PCS
0.00	96.00	1	1/2" Coax	0.63	0.15	Ν	0.00	N	Eversource Energy
0.00	96.00	2	7/8" Coax	1.09	0.33	N	0.00	N	Eversource Energy
0.00	79.00	1	1/2" Coax	0.63	0.15	Ν	0.00	Ν	Sprint Nextel
0.00	30.00	1	7/8" Coax	1.09	0.33	N	0.00	Y	Verizon

Additional Steel

Elev	Elev					- Intermediate (Connecti	ons—		
From	То			Fy	Offset		Spacing	Len		
(ft)	(ft)	Qty	Description	(ksi)	(in)	Description	(in)	(in)	Connectors	Continuation?
0.00	103.7	4	SOL #20 All Thread	80	2.19	6" Angle Bracket	30.0	3.13	5/8" A36 U-Bolt	No

Site Number: 302506

er.

167.0

170.0

175.0

180.0

Site Name: Winchester CT 3, CT

VERIZON WIRELESS Customer:

Code: ANSI/TIA-222-G

Engineering Number: OAA721430_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved. 1/19/2018 10:02:07 AM

Segn	nent Properties	(Max Len : 5.	ft)						1			
Seg T	ор	Flat								Addit	ional Re	einforcing
Elev		Thick Dia	Area	Ix	W/t	D/t F'y	S	Z	Weight	Area	lx _	Weight
(ft)	Description	(in) (in)	(in²)	(in⁴)	Ratio	Ratio (ksi)	(in³)	(in³)	(lb)	(in²)	(in⁴)	<u>(Ib)</u>
0.00		0.4375 52.750	72.640	25,115.3	19.50	120.57 78.5	937.8	0.0	0.0	19.64	8.846	0.0
5.00		0.4375 51.653	71.116	23,567.9	19.05	118.06 79.0	898.7	0.0	1,222.9	19.64	8,521	334.0
10.00		0.4375 50.556	69.593	22,085.4	18.61	115.56 79.5	860.4	0.0	1,197.0	19.64	8,202	334.0
15.00		0.4375 49.458	68.069	20,666.4	18.17	113.05 80.0	823.0	0.0	1,171.1	19.64	7,889	334.0
20.00		0.4375 48.361	66.546	19,309.5	17.73	110.54 80.5	786.4	0.0	1,145.2	19.64	7,582	334.0
25.00		0.4375 47.264	65.022	18,013.3	17.29	108.03 81.1	750.7	0.0	1,119.2	19.64	7,281	334.0
30.00		0.4375 46.167	63.498	16,776.5	16.84	105.52 81.6	715.7	0.0	1,093.3	19.64	6,986	334.0
35.00		0.4375 45.069	61.975	15,597.7	16.40	103.02 82.1	681.6	0.0	1,067.4	19.64	6,698	334.0
40.00		0.4375 43.972	60.451	14,475.4	15.96	100.51 82.6	648.4	0.0	1,041.5	19.64	6,415	334.0
42.96	Bot - Section 2	0.4375 43.323	59.550	13,837.8	15.70	99.02 82.6	629.1	0.0	603.6	19.64	6,251	197.5
40.00	Top Section 1	0.43/5 42.8/5	50.928	13,408.2	10.02	98.00 82.0	515.0	0.0	1.502.0	19.64	6,327	136.5
49.04	rop - Section i	0.3750 42.736	50.421	11,432.7	10.33	113.97 79.8	520.9	0.0	1,502.0	19.04	6,105	209.9
50.00		0.3750 42.326	40.000	10,406,2	17.23	110.40 00.0	321.0	0.0	104.3	19.04	0,003	04.1
22.00		0.3750 41.431	40.003	0.604.0	17.20	107 66 01 2	494.7 460 E	0.0	042.3	19.04	5,784	334.0
65.00		0.3750 40.333	47.009	9,094.0	16.60	107.30 01.2	400.0	0.0	709.0	19.04	5,522	334.0
70.00		0.3750 39.230	40.200	8 098 5	16 17	104.03 01.0	443.0	0.0	790.0	19.04	5,200	334.0
75.00		0.3750 37.042	43 641	7 412 9	15.65	98 78 82 6	394 2	0.0	753.6	19.04	4 771	334.0
79.00		0.3750 36 164	42 596	6 893 2	15.24	96 44 82 6	375.4	0.0	586.9	19.64	4 581	267.2
80.00		0.3750 35.944	42 335	6 767 2	15 14	95 85 82 6	370.8	0.0	144 5	19.64	4 533	66.8
85.00		0.3750 34.847	41.029	6.160.0	14.62	92 93 82 6	348.2	0.0	709.2	19.64	4 302	334.0
87.54	Bot - Section 3	0.3750 34.290	40.366	5.866.0	14.36	91.44 82.6	336.9	0.0	351.7	19.64	4,186	169.7
90.00		0.3750 33.750	39.723	5.590.4	14.11	90.00 82.6	326.2	0.0	620.3	19.64	4.204	164.3
92.46	Top - Section 2	0.3125 33.836	33.250	4,721.1	17.33	108.27 81.0	274.8	0.0	609.5	19.64	4,093	164.1
95.00	•	0.3125 33.278	32.696	4,489.2	17.01	106.49 81.4	265.7	0.0	285.4	19.64	3,981	169.9
96.00		0.3125 33.058	32.479	4,400.1	16.89	105.79 81.5	262.2	0.0	110.9	19.64	3,937	66.8
100.0		0.3125 32.181	31.608	4,055.7	16.39	102.98 82.1	248.2	0.0	436.1	19.64	3,764	267.2
103.7	Reinf. Top	0.3125 31.358	30.792	3,749.5	15.93	100.34 82.6	235.5	0.0	398.1	19.64	3,605	250.5
105.0		0.3125 31.083	30.520	3,651.0	15.78	99.47 82.6	231.3	0.0	130.4			
110.0		0.3125 29.986	29.431	3,274.2	15.16	95.96 82.6	215.1	0.0	510.0			
112.0		0.3125 29.547	28.996	3,131.1	14.91	94.55 82.6	208.7	0.0	198.8			
115.0		0.3125 28.889	28.343	2,924.3	14.54	92.44 82.6	199.4	0.0	292.7			
120.0		0.3125 27.792	27.255	2,600.2	13.92	88.93 82.6	184.3	0.0	473.0			
125.0		0.3125 26.694	26.167	2,301.0	13.30	85.42 82.6	169.8	0.0	454.5			
130.0	Det Centing 4	0.3125 25.597	25.078	2,025.7	12.68	81.91 82.6	155.9	0.0	435.9			
132.1	Bot - Section 4	0.3125 25.132	24.017	1,915.9	12.42	80.42 82.6	150.2	0.0	179.2			
135.0	Top Section 2	0.3125 24.500	23.990	1,1/3.2	12.00	121 65 76 2	142.0	0.0	384.0			
133.0	Top • Section 5	0.1075 24.004	14.070	1,103.3	21.40	131.03 70.2	00.2	0.0	201.1			
145.0		0.1075 23.776	13 286	907.1 855.6	19 57	120.01 77.2	74 2	0.0	201.1			
150.0		0 1875 21 583	12 722	736 /	18.57	115 11 70 6	67.2	0.0	200.0			
155.0		0 1875 20 486	12.733	628.9	17.50	109 26 80 8	60.5	0.0	211 1			
160.0		0.1875 19.389	11 427	532.3	16 47	103.41 82.0	54 1	0.0	200.0			
165.0		0.1875 18.292	10.774	446.2	15.44	97.56 82.6	48.0	0.0	188.9			

15.03

14.41

13.37

12.34

414.5

369.8

302.8

244.4

45.7

42.4

37.0

32.1

0.0

0.0

0.0

0.0

72.4

105.3

166.6

155.5

25,271.1

95.21 82.6

91.70 82.6

85.85 82.6 80.00 82.6

10.513

10.121

9.468

8.815

0.1875 17.853

0.1875 17.194 0.1875 16.097 0.1875 15.000

Site Number: 302506

Site Name: Winchester CT 3, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G

Engineering Number:OAA721430_C3_01

2007 - 2018 by ATC IP LLC. All rights reserved. 1/19/2018 10:02:07 AM

Load Case: 1.2D + 1.6W

Gust Response Factor :1.10 Dead Load Factor :1.20

Wind Load Factor : 1.60

90 mph with No Ice

Wind Importance Factor 1.15

26 Iterations

		Shaft i	Forces		Discrete	Forces		Linear Forces			Sum of Forces		
Seg			Dead	1	Forsion I	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(Ib)	(Ib)	(Ib)	(lb-ft)	(lb-ft)	(Ib)	(lb)	(Ib)	(Ib)	(Ib)	(lb-ft)	(Ib)
0.00		230.9	0.0					0.0	0.0	230.9	0.0	0.0	0.0
5.00		458.9	1.467.5					0.0	1 023 8	458.9	2 491 3	0.0	0.0
10.00		453.0	1.436.4					0.0	1.023.8	453.0	2,460.2	0.0	0.0
15.00		447.1	1,405.3					0.0	1.023.8	447.1	2,429,1	0.0	0.0
20.00		441.3	1.374.2					0.0	1.023.8	441.3	2,398.0	0.0	0.0
25.00		435.4	1,343.1					0.0	1.023.8	435.4	2,366.9	0.0	0.0
30.00	Appurtenance(s)	434.6	1.312.0	27.9	0.0	0.0	12.0	0.0	1.023.8	462.5	2.347.8	0.0	0.0
35.00	••	442.7	1,280.9					0.0	1.021.8	442.7	2,302.7	0.0	0.0
40.00		359.4	1,249.8					0.0	1,021.8	359.4	2,271.6	0.0	0.0
42.96	Bot - Section 2	230.9	724.4					0.0	604.2	230.9	1,328,6	0.0	0,0
45.00		287.4	926.0					0.0	417.6	287.4	1,343.6	0.0	0.0
49.04	Top - Section 1	237.1	1,802.4					0.0	825.6	237.1	2,628.0	0.0	0.0
50.00		284.5	197.2					0.0	196.2	284.5	393.4	0.0	0.0
55.00		480.7	1,011.0					0.0	1,021.8	480.7	2,032.8	0,0	0,0
60.00		485.6	984.3					0.0	1,021.8	485.6	2,006.1	0.0	0.0
65.00		589.8	957.7					0.0	1,021.8	589.8	1,979.5	0.0	0.0
70.00		688.9	931.0					133.5	1,021.8	822.4	1,952.8	0,0	0.0
75.00		614.8	904.3					135.5	1,021.8	750.3	1,926.2	0.0	0.0
79.00	Appurtenance(s)	339.4	704.3	3.3	0.0	0.0	0.7	109.8	817.5	452,5	1,522.5	0.0	0.0
80.00		402.7	173.4					27.6	204.2	430.3	377.6	0.0	0.0
85.00		503.5	851.0					139.2	1,020.9	642.7	1,871.9	0.0	0.0
87.54	Bot - Section 3	333.2	422.1					71.4	518.6	404.5	940.7	0.0	0.0
90.00	Top Section 7	328.1	744.3					69.5	502.3	397.6	1,246.6	0.0	0.0
92.40	rop • Section 2	330.9	/31.5					69.8	501.6	400.7	1,233.0	0.0	0.0
95.00	A nourtananaa (a)	233.1	342.4					72.7	519.3	305.8	861.8	0.0	0.0
96.00	Appultenance(5)	325.0	133.1	565.1	0.0	0.0	583.9	28.7	204.2	918.8	921.2	0.0	0.0
100.00	Peinf Ton	499.1	323.4					115.4	762.0	014.5	1,330.2	0.0	0.0
105.75	Appurtenance(s)	310.0	4//./	420.6		0.0	05.0	109.1	162.0	427.7	1,239.8	0.0	0.0
110.00	Appartenance(s)	390.0 434.5	612.0	420.0	0.0	0.0	95.0	147.0	133.0 585 B	647.9 591.5	403.3	0.0	0.0
112.00	Appurtenance(s)	304.5	238.6	1,926.9	0.0	0.0	2 001 6	59.2	234 3	2 290 6	2 474 5	0.0	0.0
115.00		478 7	351.2	1,020.0	0.0	0.0	2,001.0	87.1	195.2	565.8	546 4	0.0	0.0
120.00		585.6	567.6					161.4	282 4	747 0	850.0	0.0	0.0
125.00	Appurtenance(s)	463.0	545.3	3 272 5	0.0	0.0	3 155 5	162.3	282.4	3 897 8	3 093 3	0.0	0.0
130.00		247.3	523.1	0,010	0.0	0.0	0,100.0	0.0	245.1	247.3	768.2	0.0	0.0
132.12	Bot - Section 4	173.1	215.1					0.0	103.9	173.1	319.0	0.0	0.0
135.00	Appurtenance(s)	130.1	460.8	2,769.0	0.0	0.0	3,428.5	0.0	141.2	2,899.1	4,030.5	0.0	0.0
135.87	Top - Section 3	170.7	136.8					0.0	38.8	170.7	175.6	0.0	0.0
140.00	Appurtenance(s)	308.2	241.3	1,131.0	0.0	5,557.5	754.8	0.0	184.1	1,439.2	1,180.2	0.0	0.0
145.00		332.2	280.0					0.0	189.5	332.2	469.5	0,0	0.0
150.00	Appurtenance(s)	326.1	266.6	202.6	0.0	0.0	190.0	0.0	189.5	528.8	646.1	0.0	0.0
155.00		319.8	253.3					0.0	184.6	319.8	437.9	0.0	0.0
160.00		374.8	240.0					0.0	184.6	374.8	424.6	0.0	0.0
165.00		300.1	226.6					84.5	184.6	384.6	411.2	0.0	0.0
167.00	Appurtenance(s)	149.7	86.9	1,626.6	0.0	0.0	1,531.8	33.9	73.8	1,810,2	1,692.6	0,0	0,0
170.00		171.5	126.4					0.0	71.7	171.5	198.1	0.0	0.0
175.00	A	204.6	200.0					0.0	119.6	204.6	319.5	0.0	0.0
180.00	Appurtenance(s)	99.2	186.6	3,892.5	0.0	7,554.8	3,073.6	0.0	119.6	3,991.7	3,379.8	0.0	0.0

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT VERIZON WIRELESS	Code: Engineering Number:	ANSI/TIA-222-G OAA721430_C3_01	@2007 - 20	18 by ATC IP LLC. 1/19/20	All rights re	eserved. :20 AM
Load Case Gust Respon Dead Lo Wind Lo	2: 1.2D + 1.6W nse Factor : 1.10 pad Factor : 1.20 pad Factor : 1.60	90 mph with No Ic	e	ŗ	Wind Importance	26 Iter Factor :	ations 1.15
			То	tals: 3	4,873.1 70,120.0	0.00	0.00

Site Name: Winchester CT 3. CT Engineering Number: OAA721430_C3_01 1/19/2016 10.02 20 AM Customer: VERIZON WRRELESS South State State South State <	Site Numb	er: 302	2506				Coc	ie: ANSI/TIA-	222-G	@2007 - 2	018 by ATC	IP LLC. /	All rights re	served.
Customer: VERIZON WIRELESS Load Case: 1.2D + 1.6W 90 mph with No Ice 26 Iterations Gust Response Factor: 1.10 Wind Importance Factor: 1.15 Dead Load Factor: 1.20 Wind Load Factor: 1.60 Calculated Forces Seg Pu Vu Tu Mu Mu Resultant Phi Phi Phi Dhi Deflect Rotation Ratio Ciboulated Forces Seg Pu Vu Tu Mu Mu Resultant Phi Phi Phi Total Deflect Rotation Ratio 0.00 -70.07 34.75 0.00 3.416.76 0.00 3.403.65 2.527.83 1.021.65.521.65.21.85 0.00 0.00 0.855 15.00 6.23.93.39 0.00 3.429.83 0.00 3.427.82 3.477.94 0.00 3.428.83 0.00 3.428.83 0.00 3.477.94 0.00 3.465.94 1.41.4 0.680.52 1.537.93 0.86 0.384 0.857 1.597.94 <td>Site Name</td> <td>: Wir</td> <td>nchester</td> <td>СТ 3, СТ</td> <td></td> <td>Engine</td> <td>ering Numbe</td> <td>r: OAA72143</td> <td>30_C3_01</td> <td></td> <td></td> <td>1/19/20</td> <td>18 10:02:</td> <td>20 AM</td>	Site Name	: Wir	nchester	СТ 3, СТ		Engine	ering Numbe	r: OAA72143	30_C3_01			1/19/20	18 10:02:	20 AM
Load Case: 1.2D + 1.6W 90 mph with No Ice 28 Iterations Gust Response Factor: 1.10 Wind Load Factor: 1.20 Seg PU Vu Tu Mu Mu Max Phi Phi Phi Phi Dhi Dhi </td <td>Customer:</td> <td>VE</td> <td>RIZON V</td> <td>VIRELESS</td> <td>i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Customer:	VE	RIZON V	VIRELESS	i									
Load Case: 1.20 + 1.6W 90 mph with No lose 28 Iterations Gust Response Factor: 1.10 Wind Load Factor: 1.50 Wind Load Factor: 1.50 Calculated Forces Seg Pu Vu Tu Mu More More Ph Ph <td></td>														
Gust Response Factor: 1.10 Wind Importance Factor: 1.15 Dead Load Factor: 1.60 Calculated Forces Total Defect Rotation Resultant phi phi<	Load C	ase: 1	.2D + 1.6	6W		90	mph with No	Ice					26 Itera	ations
Dead Load Factor: 1.20 Vind Load Factor: 1.50 Calculated Forces: Seg Pu Vu Tu Mu Mu Resultant (ft-kips) phi (ft-kips) Total (ft-kips) Deflect Rotation (ft-kips) Ratio 0.00 -70.07 -34.75 0.00 -116.76 0.00 -116.76 5.02.98 2.527.83 10.324.65 5.323.98 0.00 -0.00 0.583 1.00 -65.89 -33.84 0.00 3.265.81 0.00 3.278.52 0.97.743 2.43 0.280 0.83 0.44.74 2.22 0.44.74 2.22 0.44.74 2.22 0.44.74 2.22 0.44.74 2.22 0.44.74 2.22 0.44.74 2.22 0.44.74 2.24 0.44.74 2.24 0.44.74	Gust Re	sponse l	Factor :	1.10							Wind Im	portance	Factor :	1.15
Wind Load Factor: 1.60 Calculated Forces Seg Pu Vu Tu Mu Mu Resultant Phi	Dea	d Load	Factor :	1.20										
Calculated Forces Seg Pu Vu Tu Mu Mu Resultant phi	Win	nd Load f	Factor :	1.60										
Seg Pu Vu Tu Mu Mu Mux Resultant phi phi <td>Calculat</td> <td>ed Ford</td> <td>295</td> <td></td>	Calculat	ed Ford	295											
Seg Pu Vu Tu Mu Mu Resultant phi phi <td></td>														
Elev FY(c) FX(c) MY MZ MX Moment Pn Vn Tn Mn Deflect Rotation (ft) (fkep)	Seg	Pu	Vu	Ти	Mu	Mu	Resultant	phi	phi	phi	phi	Total	_	
$ \begin{array}{c} (10) & (10+2)$	Elev (ft)	FY (-)	FX (-) (kins)	MY (ft-kips)	MZ (ft-kips)	MX (ft-kips)	Moment (ft.kips)	Pn (kins)	Vn (kine)	Tn (ft-kips)	Mn (ft.kipc)	Deflect	Rotation	Potio
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(14)	(Kips)	(Kips)	(пекіра)	(Ilekips)	(пекіра)	(It-Kips)	(6403)	(kiha)	(It-Kips)	(II-Kips)	(01)	(deg)	Ratio
$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	0.00	-70.07	-34.75	0.00	-4,116.76	0.00	4,116.76	5,129.98	2,564.99	11,021.5	5,518.96	0.00	0.00	0.563
$ 15.00 -62.39 -33.94 0.00 -3.599.53 0.00 3.599.53 4.902.77 2.451.9 9.665.10 4.399.88 0.81 -0.51 0.537 \\ 25.00 -57.43 -33.37 0.00 -3.261.54 0.00 3.261.54 4.744.12 2.742.08 9.114.87 4.564.21 2.26 -0.86 0.518 \\ 30.00 -54.98 -33.04 0.00 -3.094.70 0.00 2.309.17 4.579 38.30.11 4.197.74 4.45 -1.22 0.497 \\ 4.000 -50.24 -32.43 0.00 -2.765.92 0.00 2.765.92 4.491.22 2.245.61 8.016.71 4.014.3 5.83 -1.4 0.466 \\ 42.96 -48.87 -32.25 0.00 -2.670.03 0.00 2.670.13 4.378.02 2.189.03 7.657 3.813.53 -7.40 -1.59 0.472 \\ 4.90.4 -44.80 -31.78 0.00 -2.474.79 0.00 2.474.79 3.622 -9.818.01 7.616.75 3.813.53 -7.40 -1.59 0.472 \\ 4.90.4 -44.80 -31.78 0.00 -2.474.79 0.00 2.474.79 3.622.99 1.811.50 6.300.42 3.164.89 8.81 -1.74 0.521 \\ 5.00 -42.43 -3.117 0.00 -2.444.28 0.00 2.246.43 3.642.98 1.771.12 5.696.37 1.285.209 1.3.30 -2.16 0.483 \\ 6.00 -40.14 -30.74 0.00 -2.286.43 0.00 2.286.43 3.542.98 1.771.12 5.696.37 1.285.209 1.3.30 -2.16 0.483 \\ 6.00 -3.409 -3.266 0.00 -1.976.89 0.00 1.376.89 3.404.08 1.702.05 5.426.16 2.717.06 15.67 -2.36 0.444 \\ 7.00 -3.607 -2.286 0.00 -1.676.77 0.1676.77 3.242.20 1.61.16 4.673.42 4.40.99 2.101 -2.74 0.446 \\ 7.00 -3.607 -2.866 0.00 -1.676.77 0.106 1.577 3.242.34 1.566.44 1.292.43 3.37 -2.86 0.444 \\ 7.00 -3.246 -2.861 0.00 -1.676.77 0.00 1.365.43 3.447.23 4.376.48 1.492.42 2.55 0.444 \\ 7.00 -3.260 -3.264 -3.264 0.00 -1.676.77 0.106 1.577 3.242.30 1.576 4.246 2.577 1.766 1.577 -2.36 0.444 \\ 7.00 -3.607 -3.607 -3.607 0.00 1.576.77 3.242.30 1.516 4.738 0.577 -2.36 0.444 \\ 7.00 -3.246 -2.35 0.00 -1.576.77 0.00 1.576.77 3.242.34 4.64 1.526.57 1.24 4.564 1.444 1.524.37 1.24 1.444 1.444 1.444 1.444 1.$	10.00	-64.91	-34.22	0.00	-3,770.60	0.00	3,770.60	4,979.93	2,489.97	10,246.6	5,130.93	0.36	-0.34	0.546
$ \begin{array}{c} 2100 & -59.49 & -33.66 \\ 2500 & -57.43 & -33.37 \\ 0.00 & -3,245.54 \\ 0.00 & 3,294.54 \\ 0.00 & 3,294.70 \\ 0.00 & 3,094.70 \\ 0.00 & 3,094.70 \\ 0.00 & 3,094.70 \\ 0.00 & 3,094.70 \\ 0.00 & 3,295.54 \\ 0.579.86 & 2,289.93 \\ 3.030 & 1,477.4 \\ 4.45 & -1.22 \\ 0.00 & -2,765.92 \\ 0.00 & -2,765.92 \\ 0.00 & -2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,765.92 \\ 0.00 & 2,767.03 \\ 0.00 & 2,442.29 \\ 2.44.49 \\ 2.212.15 & 7.778 \\ 3.389.94 \\ 9.778 \\ 3.383.01 \\ 4.197.778 \\ 3.389.94 \\ 9.778 \\ 3.383.01 \\ 0.00 \\ 4.430 \\ -31.57 \\ 0.00 \\ -2,244.28 \\ 0.00 & 2,474.79 \\ 0.00 & 2,474.79 \\ 0.00 & 2,474.79 \\ 0.00 & 2,444.28 \\ 0.00 & 2,444.28 \\ 0.00 & 2,444.28 \\ 0.00 & 2,444.29 \\ 3.610.23 \\ 1.601.23 \\ 0.00 \\ -44.435 \\ -31.57 \\ 0.00 \\ -2,286 \\ 4.3 \\ 0.00 & 2,444.28 \\ 0.00 & 2,444.28 \\ 0.00 & 2,444.28 \\ 0.00 & 2,444.29 \\ 3.610.23 \\ 1.601.26 \\ 1.698.32 \\ 2.998.10 \\ 1.113 \\ 0.198 \\ 1.30 \\ 0.113 \\ 0.10 \\ 0.2444.28 \\ 0.100 \\ 1.576 \\ 0.100 \\ -2,23 \\ 0.117 \\ 0.100 \\ -2,286 \\ 4.3 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,130.61 \\ 0.00 & 2,242.30 \\ 1.10 & 1.576 \\ 0.00 & -2,242.3 \\ 0.11 & -1.97 \\ 0.500 \\ -2,250 \\ 0.256 \\ 0.26 \\ 0.10 & -1,776 \\ 0.00 \\ 0.1576 \\ 0.00 \\ 0.1576 \\ 0.00 \\ 0.1576 \\ 0.00 \\ 0.1576 \\ 0.00 \\ 0.1576 \\ 0.00 \\ $	15.00	-62.39	-33.94	0.00	-3,599.53	0.00	3,599.53	4,902.77	2,451.39	9,865.10	4,939.88	0.81	-0.51	0.537
$ \begin{array}{c} 3000 & -54.98 & -33.04 & 0.00 & -3.094.70 & 0.00 & 3.094.70 & 1.662.73 & 2.28.93 & 8.39.01 & 4.197.74 & 3.26 & -1.04 & 0.590 \\ 3500 & -52.59 & -32.72 & 0.00 & -2.929.51 & 0.00 & 2.765.92 & 4.451.22 & 2.245.61 & 8.016.71 & 0.141.31 & 5.83 & -1.41 & 0.486 \\ 42.66 & -48.87 & -32.25 & 0.00 & -2.670.03 & 0.00 & 2.670.03 & 4.424.29 & 2.215 & 7.778 & 37 & 3.894.97 & 6.73 & -1.52 & 0.481 \\ 45.00 & -7.47 & -32.02 & 0.00 & -2.604.13 & 0.00 & 2.670.03 & 4.424.29 & 2.215 & 7.778 & 37 & 3.894.97 & 6.73 & -1.52 & 0.481 \\ 50.00 & -4.435 & -31.76 & 0.00 & -2.474.79 & 0.00 & 2.474.79 & 3.622.99 & 1.805.12 & 6.266.74 & 3.126.19 & -1.78 & 0.577 \\ 50.00 & -42.23 & -31.17 & 0.00 & -2.286.43 & 0.00 & 2.286.43 & 3.542.95 & 1.7147 & 5.969.33 & 2.989.10 & 11.13 & -1.97 & 0.500 \\ 60.00 & -0.014 & -30.74 & 0.00 & -2.130.61 & 0.002 & 1.306.13 & 3.474.23 & 1.737.12 & 5.969.71 & 2.852.09 & 13.30 & -2.16 & 0.483 \\ 65.00 & -38.08 & -30.21 & 0.00 & -1.976.89 & 0.00 & 1.976.89 & 3.494.09 1.205 & 5.426.62 & 5.160.56 & 2.584.12 & 1.5.67 & -2.36 & 0.464 \\ 70.00 & -36.07 & -29.42 & 0.00 & -1.678.77 & 0.00 & 1.678.77 & 3.242.30 & 1.621.15 & 4.7374 & 4.7374 & 4.255 & 0.444 \\ 70.00 & -32.55 & -28.21 & 0.00 & -1.678.77 & 0.00 & 1.678.77 & 3.242.30 & 1.621.51 & 5.487.12 & 1.5.67 & -2.36 & 0.464 \\ 70.00 & -32.55 & -28.21 & 0.00 & -1.578.67 & 0.00 & 1.856.33 & 1.46.28 & 1.572.64 & 4.631.92 & 2.101 & -2.74 & 0.426 \\ 79.00 & -32.55 & -28.21 & 0.00 & -1.578.67 & 0.00 & 1.864.77 & 3.242.30 & 1.821.15 & 4.584.79 & 2.295 & 0.239 & 2.93 & 0.408 \\ 85.00 & -30.24 & -27.16 & 0.00 & -1.396.71 & 0.00 & 1.396.71 & 3.048.28 & 1.572.64 & 4.641.46 & 2.324.37 & 2.3.7 & -2.89 & 0.412 \\ 85.00 & -32.44 & -27.82 & 0.00 & -1.638.83 & 0.00 & 1.356.33 & 3.197.67 & 3.238.465 & 1.660.52 & 0.869 & -3.30 & 0.363 \\ 95.00 & -25.50 & 0.25.57 & 0.00 & -1.134.41 & 0.00 & 1.131.41 & 2.395.02 & 1.197.61 & 3.238.46 & 1.660.52 & 2.837 & 3.24 & 3.24 & 0.378 \\ 90.00 & -24.44 & -3.52 & 0.00 & -1.197.27 & 0.00 & 1.737 & 2.267.66 & 1.1438.42 & 2.911.90 & 1.456.11 & 40.71 & -3.79 & 0.327 \\$	25.00	-59.69	-33.37	0.00	-3,429.83	0.00	3,429.83	4,824.18 4 744 17	2,412.09	9,487.79	4,750.94	1.44	-0.69	0.528
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30.00	-54.98	-33.04	0.00	-3,094.70	0.00	3,094.70	4,662.73	2,331.36	8,746.54	4,379.77	3.26	-1.04	0.508
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.00	-52.59	-32.72	0.00	-2,929.51	0.00	2,929.51	4,579.86	2,289.93	8,383.01	4,197.74	4.45	-1.22	0.497
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.96	-48.87	-32.25	0.00	-2,670.03	0.00	2,670.03	4,491.22	2,245.01	7.778.37	3.894.97	6.73	-1.52	0.480
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.00	-47.47	-32.02	0.00	-2,604.13	0.00	2,604.13	4,378.03	2,189.01	7,615.75	3,813.53	7.40	-1.59	0.472
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.04 50.00	-44.80	-31.78	0.00	-2,474.79	0.00	2,474.79 2 444 28	3,622.99	1,811.50	6,300.42	3,154.89	8.81	-1.74	0.521
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55.00	-42.23	-31.17	0.00	-2,286.43	0.00	2,286.43	3,542.95	1,771.47	5,969.33	2,989.10	11.13	-1.97	0.500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60.00	-40.14	-30.74	0.00	-2,130.61	0.00	2,130.61	3,474.23	1,737.12	5,695.71	2,852.09	13.30	-2.16	0.483
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65.00 70.00	-38.08	-30.21	0.00	-1,976.89	0.00	1,976.89	3,404.09	1,702.05	5,426.05	2,717.06	15.67 18 24	-2.36	0.464
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.00	-34.09	-28.68	0.00	-1,678.77	0.00	1,678.77	3,242.30	1,621.15	4,873.54	2,440.39	21.01	-2.74	0.426
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79.00	-32.55	-28.21	0.00	-1,564.04	0.00	1,564.04	3,164.68	1,582.34	4,641.84	2,324.37	23.37	-2.89	0.412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85.00	-32.14	-27.02	0.00	-1,555.65	0.00	1.396.71	3,145.26	1,572.04	4,304.79	2,295.60	23.90	-2.93	0.389
90.00 -28.01 -26.32 0.00 -1,261.94 0.00 1,261.94 2,951.23 1,475.62 4,033.76 2,019.88 30.50 -3.39 0.391 92.46 -26.77 -25.89 0.00 -1,197.27 0.00 1,197.27 2,424.49 1,212.24 3,33.485 1,669.90 32.22 -3.39 0.391 95.00 -24.99 -24.63 0.00 -1,105.85 0.00 1,105.85 2,383.33 1,191.67 3,201.50 1,603.13 34.78 -3.51 0.371 100.00 -23.64 -23.99 0.00 -1,007.32 0.00 917.35 2,287.68 1,143.84 2,911.90 1,458.11 40.71 -3.79 0.327 103.75 -22.40 -23.52 0.00 -917.35 0.00 87.95 2,267.68 1,143.84 2,911.90 1,458.11 40.71 -3.79 0.327 105.00 -21.97 -22.72 0.00 -887.95 0.00 87.95 2,267.46 1,133.73 2,860.42 1,422.33 41.71 -3.89 0.639 112.00 -18.38 <td>87.54</td> <td>-29.28</td> <td>-26.75</td> <td>0.00</td> <td>-1,327.74</td> <td>0.00</td> <td>1,327.74</td> <td>2,998.97</td> <td>1,499.48</td> <td>4,166.05</td> <td>2,086,12</td> <td>28.83</td> <td>-3.21</td> <td>0.378</td>	87.54	-29.28	-26.75	0.00	-1,327.74	0.00	1,327.74	2,998.97	1,499.48	4,166.05	2,086,12	28.83	-3.21	0.378
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90.00 92.46	-28.01	-26.32	0.00	-1,261,94	0.00	1,261,94	2,951.23	1,475.62	4,033.76	2,019.88	30.50	-3.30	0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.00	-25.90	-25.57	0.00	-1,131.41	0.00	1,131,41	2,395.02	1,197.51	3,238.97	1,621.89	34.05	-3.47	0.377
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	96.00	-24.99	-24.63	0.00	-1,105.85	0.00	1,105.85	2,383.33	1,191.67	3,201.50	1,603.13	34.78	-3.51	0.371
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.00	-23.04	-23.99	0.00	-1,007.32	0.00	917.35	2,330.02	1,168.01	3,053.03	1,528.79	37.79	-3.66	0.348
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.75	-22,40	-23.52	0.00	-917.35	0.00	917.35	2,287.68	1,143.84	2,911.90	1,458.11	40.71	-3.79	0.639
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105.00	-21.97	-22.72	0.00	-887.95	0.00	887.95	2,267.46	1,133.73	2,860.42	1,432.33	41.71	-3.83	0.630
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.00	-18.38	-19.72	0.00	-730.10	0.00	730.10	2,154.27	1,077.13	2,580.59	1,292.21	47.66	-4.29	0.574
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115.00	-17.79	-19.19	0.00	-670.94	0.00	670.94	2,105.76	1,052.88	2,465.08	1,234.37	50.42	-4.48	0.552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.00	-16.91	-18.47	0.00	-5/4.98	0.00	574.98 482.65	2,024.90	972.03	2,278.43	1,140.91	55.26 60.42	-4.78	0.513
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.00	-12,42	-14.03	0.00	-411.12	0.00	411.12	1,863.20	931.60	1,927.17	965.02	65.87	-5.35	0.433
135.00 -5.35 -10.60 0.00 -541.46 0.00 341.46 1.762.35 691.17 1.762.37 662.59 71.61 -5.62 0.392 135.87 -8.15 -10.43 0.00 -332.24 0.00 322.4 999.39 499.70 1.006.16 503.83 72.64 -5.67 0.668 140.00 -7.08 -8.92 0.00 -283.60 0.00 283.60 975.08 487.54 945.09 473.25 77.62 -5.88 0.607 145.00 -6.59 -8.58 0.00 -239.03 0.00 239.03 944.35 472.17 872.40 436.85 83.97 -6.25 0.554 150.00 -5.96 -8.02 0.00 -196.13 0.00 196.13 912.19 456.09 801.24 401.22 90.70 -6.61 0.496 155.00 -5.52 -7.68 0.00 156.04 878.60 439.30 731.82 366.45 97.80 -6.95 0.432 160.00 -5.11 -7.28 0.00 -117.65 843.59 421.80 </td <td>132.12</td> <td>-12.08</td> <td>-13.86</td> <td>0.00</td> <td>-381.37</td> <td>0.00</td> <td>381.37</td> <td>1,828.92</td> <td>914.46</td> <td>1,856.49</td> <td>929.62</td> <td>68.27</td> <td>-5.46</td> <td>0.417</td>	132.12	-12.08	-13.86	0.00	-381.37	0.00	381.37	1,828.92	914.46	1,856.49	929.62	68.27	-5.46	0.417
140.00 -7.08 -8.92 0.00 -283.60 0.00 283.60 975.08 487.54 945.09 473.25 77.62 -5.88 0.607 145.00 -6.59 -8.58 0.00 -239.03 0.00 239.03 944.35 472.17 872.40 436.85 83.97 -6.25 0.554 150.00 -5.96 -8.02 0.00 -196.13 0.00 196.13 912.19 456.09 801.24 401.22 90.70 -6.61 0.496 155.00 -5.52 -7.68 0.00 -156.04 0.00 156.04 878.60 439.30 731.82 366.45 97.80 -6.95 0.432 160.00 -5.11 -7.28 0.00 -117.65 0.00 117.65 843.59 421.80 664.33 332.66 105.23 -7.26 0.360 165.00 -4.73 -6.86 0.00 -81.24 800.44 400.22 593.98 297.43 112.97 -7.53 0.279 167.00 -3.28 -4.85 0.00 -67.52 0.00 67.52	135.00	-8.15	-10.60	0.00	-341.40	0.00	341.40	999.39	499.70	1,702.57	503.83	71.61	-5.62	0.668
145.00 -6.59 -8.58 0.00 -239.03 0.00 239.03 944.35 472.17 872.40 436.85 83.97 -6.25 0.554 150.00 -5.96 -8.02 0.00 -196.13 0.00 196.13 912.19 456.09 801.24 401.22 90.70 -6.61 0.496 155.00 -5.52 -7.68 0.00 -156.04 0.00 156.04 878.60 439.30 731.82 366.45 97.80 -6.95 0.432 160.00 -5.11 -7.28 0.00 -117.65 843.59 421.80 664.33 332.66 105.23 -7.26 0.360 165.00 -4.73 -6.86 0.00 -81.24 800.44 400.22 593.98 297.43 112.97 -7.53 0.279 167.00 -32.8 -4.85 0.00 -67.52 0.00 67.52 781.04 300.52 565.58 292.383 112.97 -7.53 0.249	140.00	-7.08	-8.92	0.00	-283.60	0.00	283.60	975.08	487.54	945.09	473.25	77.62	-5.88	0.607
155.00 -5.52 -7.68 0.00 -156.04 0.00 156.04 878.60 439.30 731.82 366.45 97.80 -6.95 0.432 160.00 -5.11 -7.28 0.00 -117.65 843.59 421.80 664.33 332.66 105.23 -7.26 0.360 165.00 -4.73 -6.86 0.00 -81.24 0.00 81.24 800.44 400.22 593.98 297.43 112.97 -7.53 0.279 167.00 -3.28 -4.85 0.00 -67.52 0.00 67.52 784.04 309.50 52.565 39.238 112.97 -7.53 0.279	145.00	-6.59	-8.58	0.00	-239.03	0.00	239.03	944.35	472.17	872.40	436.85	83.97	-6.25	0.554
160.00 -5.11 -7.28 0.00 -117.65 0.00 117.65 843.59 421.80 664.33 332.66 105.23 -7.26 0.360 165.00 -4.73 -6.86 0.00 -81.24 0.00 81.24 800.44 400.22 593.98 297.43 112.97 -7.53 0.279 167.00 -3.28 -4.85 0.00 -67.52 781.04 390.52 555.39 297.43 112.97 -7.53 0.279	155.00	-5.52	-7.68	0.00	-156.04	0.00	156.04	878.60	439.30	731.82	366.45	97.80	-0.01	0.490
167.00 -3.28 -4.85 0.00 -67.52 0.00 67.52 781.04 300.52 565.30 297.43 112.97 -7.53 0.279	160.00	-5.11	-7.28	0.00	-117.65	0.00	117.65	843.59	421.80	664.33	332.66	105.23	-7.26	0.360
	167.00	-4.73	-0.86	0.00	-81.24	0.00	67.52	800.44 781 04	400.22	565.39	297.43	112.97	-7.53	0.279
170.00 -3.09 -4.66 0.00 -52.97 0.00 52.97 751.93 375.97 523.82 262.30 120.95 -7.75 0.206	170.00	-3.09	-4.66	0.00	-52.97	0.00	52.97	751.93	375.97	523.82	262.30	120.95	-7.75	0.206
175.00 -2.79 -4.42 0.00 -29.66 0.00 29.66 703.42 351.71 458.07 229.37 129.14 -7.91 0.133 180.00 0.00 -3.99 0.00 -7.55 0.00 7.55 654.91 327.45 396.72 198.65 137.45 8.00 0.038	175.00 180.00	-2.79	-4.42	0.00	-29.66	0.00	29.66	703.42	351.71	458.07	229.37	129.14	-7.91	0.133

Site Number: 302506 Site Name: Winchester CT 3, CT Customer: VERIZON WIRELESS	Code: ANSI/TIA-222-G Engineering Number: OAA721430_C3_01	©2007 - 2018 by ATC IP LLC. All rights reserved. 1/19/2018 10:02:20 AM
Load Case: 0.9D + 1.6W Gust Response Factor : 1.10 Dead Load Factor : 0.90 Wind Load Factor : 1.60	90 mph with No Ice (Reduced DL)	26 Iterations Wind Importance Factor: 1.15

		Shaft F	orces	Discrete Forces			Linear Forces		Sum of Forces				
Seg			Dead		Torsion M	Aoment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		200,3	0.0					0.0	0.0	200.3	0.0	0.0	0.0
5.00		396.5	1,100.6					0.0	767.9	396.5	1,868.5	0.0	0.0
10.00		388.0	1,077.3					0.0	767.9	388.0	1,845.2	0.0	0.0
15.00		379.6	1,054.0					0.0	767.9	379.6	1,821.8	0.0	0.0
20.00		371.2	1,030.6					0.0	767.9	371.2	1,798.5	0.0	0.0
25.00		362,8	1,007.3					0.0	767.9	362.8	1,775.2	0.0	0.0
30.00	Appurtenance(s)	358.6	984.0	27.9	0.0	0.0	9.0	0.0	767.9	386.5	1,760.8	0.0	0.0
35.00		361.5	960.7					0,0	766.4	361.5	1,727.0	0.0	0.0
40.00	Pat Section 2	291.0	937.3					0.0	766.4	291.0	1,703.7	0.0	0.0
42.96	But - Section 2	185.5	543.3					0.0	453.2	185.5	996.4	0.0	0.0
45.00	Ten : Cestion 4	229.2	094.5					0.0	313.2	229.2	1,007.7	0.0	0.0
49.04	rup - Section 1	188.7	1,351.8					0.0	619.2	188.7	1,971.0	0.0	0.0
50.00		220.0	147.9					0.0	147.4 766.4	220.0	295.0	0.0	0.0
00.00		3/0.3	/00.2					0.0	700.4	378.3	1,524.0	0.0	0.0
55.00		3//.0	718.2					0.0	766.4	377.0	1,504.0	0.0	0.0
70.00		699.0	f 10.2					122.5	700.4	934.3	1,404.0	0.0	0.0
75.00		614 B	678 3					135.5	766.4	022.4	1,404.0	0.0	0.0
79.00	Appurtenance(s)	339.4	528.2	33	0.0	0.0	0.5	109.8	613.1	452.5	1 141 8	0.0	0.0
80.00		402.7	130.1	0.0	0.0	0.0	0.0	27.6	153.1	430.3	283.2	0.0	0.0
85.00		503.5	638.3					130.2	765.7	642.7	1 404 0	0.0	0.0
87.54	Bot - Section 3	333.2	316.6					714	389.0	404.5	705.5	0.0	0.0
90.00	501 0000010	328.1	558.2					69.5	376.7	397.6	935.0	0.0	0.0
92.46	Top - Section 2	330.9	548.6					69.8	376.2	400.7	924.8	0.0	0.0
95.00	•	233.1	256.8					72.7	389.5	305.8	646.3	0.0	0.0
96.00	Appurtenance(s)	325.0	99.8	565.1	0.0	0.0	437.9	28.7	153.1	918.8	690.9	0.0	0.0
100.00		499.1	392.5					115.4	609.6	614.5	1,002.2	0.0	0.0
103.75	Reinf. Top	318.6	358.3					109.1	571.5	427.7	929.8	0.0	0.0
105.00	Appurtenance(s)	390.8	117.4	420.6	0.0	0.0	71.3	36.5	115.4	847.9	304.0	0.0	0.0
110.00		434.5	459.0					147.0	439.3	581.5	898.3	0.0	0.0
112.00	Appurtenance(s)	304.5	178.9	1,926.9	0.0	0.0	1,501.2	59.2	175.7	2,290.6	1,855.9	0.0	0.0
115.00		478.7	263.4					87.1	146.4	565.8	409.8	0.0	0.0
120.00		585.6	425.7					161.4	211.8	747.0	637.5	0.0	0.0
125.00	Appurtenance(s)	440.6	409.0	3,272.5	0.0	0.0	2,366.6	162.3	211.8	3,875.4	2,987.4	0.0	0.0
130.00	Ret Restine 4	214.8	392.3					0.0	183.8	214.8	576.2	0.0	0.0
132.12	Bot - Section 4	148.3	161.3					0.0	77.9	148.3	239.2	0.0	0.0
135.00	Appunenance(s)	110.9	345.6	2,769.0	0.0	0.0	2,571.4	0.0	105.9	2,879.9	3,022.9	0.0	0.0
135.87	Top - Section 3	144.4	102.6					0.0	29.1	144.4	131.7	0.0	0.0
140.00	Appunenance(s)	258.1	181.0	1,131.0	0.0	5,557.5	566.1	0.0	138.1	1,389.1	885.2	0.0	0.0
145.00	Annutenance(c)	2/3.3	210.0	000 C			140.5	0.0	142.1	2/3.3	352.1	0.0	0.0
150.00	Appultenance(s)	202.0	200.0	202.0	0.0	0,0	142,5	0.0	142.1	405.2	484.0	0.0	0.0
155.00		201.0 220 6	190.0					0.0	130.5	201.0 330 F	328.4	0.0	0.0
165.00		200.1	170.0					0.0	130.3	339.0	310.4	0.0	0.0
167.00	Annurtenance(s)	149 7	65.2	1 626 6	0.0	0.0	1 148 9	33 0	130.3	304.0	1 269 4	0.0 0 0	0.0
170.00	·	171 5	04 R	1,020,0	0.0	0.0	1,140.0	0.0	50.4 52 A	171 5	148.8	0.0 0 M	0.0
175.00		204.6	150.0					0.0	80.0 80 7	204 6	230 7	0.0	0.0
180.00	Appurtenance(s)	99.2	140.0	3 892 5	0.0	7 554 8	2 305 2	0.0	80 7	3 001 7	2 534 8	0.0 0 0	0.0
	(T (-)	50.L	140.0	0,002.0	0.0	1,004.0	2100012	0.0	00.7	0,031.7	2,007.0	0.0	0.0

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT VERIZON WIRELESS	Code: Engineering Number:	ANSI/TIA-222-G OAA721430_C3_01	@2007 - 2018 by ATC	: IP LLC. All righ 1/19/2018 1	nts reserved. 0:02:32 AM
Load Case Gust Respon Dead Los Wind Lo	:0.9D + 1.6W Ise Factor : 1.10 ad Factor : 0.90 Iad Factor : 1.60	90 mph with No Ic	e (Reduced DL)	Wind Im	26 portance Fact	Iterations or : 1.15
			То	tals: 33,401.1 5	2,590.0 0.0	0.00

Site Numb	Imber: 302506					Co	de: ANSI/TIA-2	22-G	©2007 - 2018 by ATC IP LLC. All rights reserved.				
Site Name	e: Wir	nchester	ст з, ст		Engine	ering Numb	er: OAA72143	0_C3_01			1/19/20	18 10 02	32 AM
Customer	VE		VIRELESS	3	-	-							
Load C	ase: 0).9D + 1. (5W		90	mph with N	o Ice (Reduced I	DL)				26 Itera	ations
Gust Re	snonse f	Factor :	1.10							Wind Im	nortance	Factor v	1:15
Dea	ad Load	Factor:	0.90							4441G 111	pontance		1.15
Wir	nd Load F	Factor :	1.60										
					<u> </u>								
Calculat	ed Ford	ces											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
Elev	FY (-)	FX (-)	MY /# kips)	MZ (ft king)	MX (filling)	Moment (ft king)	Pn (kiina)	Vn	Tn (# kine)	Mn (fillere)	Deflect	Rotation	Delle
(11)	(kips)	(Kips)	(It-kips)	(It-Kips)	(It-Kips)	(it-kips)	(kips)	(kips)	(n-kips)	(It-KIPS)	(in)	(deg)	Ratio
0.00	-52.54	-33.28	0.00	-3,962,17	0.00	3,962.17	5,129.98	2,564.99	11,021.5	5,518.96	0.00	0.00	0.539
10.00	-50.56	-33.02	0.00	-3,795,79	0.00	3,795.79	4,979,93	2 527 83	10,032.1	5,323.99	0.09	-0.16	0.532
15.00	-46.73	-32.51	0.00	-3,466.85	0.00	3,466.85	4,902.77	2,451.39	9,865.10	4,939.88	0.78	-0.49	0.515
20.00	-44.84	-32.25	0.00	-3,304.30	0.00	3,304.30	4,824,18	2,412.09	9,487.79	4,750.94	1.39	-0.66	0.507
25.00	-42.97	-32.00	0.00	-3,143.03	0.00	2,983,05	4,744,17	2.331.36	9,114.67	4,504.21	2.17	-0.83	0.498
35.00	-39.31	-31.43	0.00	-2,824.52	0.00	2,824.52	4,579.86	2 289.93	8,383.01	4,197.74	4.28	-1.18	0.477
40.00	-37.53	-31.20	0.00	-2,667.36	0.00	2,667.36	4,491.22	2,245.61	8,016.71	4,014.31	5.61	-1.35	0.467
42.90	-35.49	-31.04	0.00	-2,575.13	0.00	2,575.13	4 424 29 4 378 03	2 212.15	7.615.75	3,894.97	6.49 7.13	-1.46	0.462
49.04	-33.42	-30.66	0.00	-2,387.05	0.00	2,387.05	3,622.99	1,811.50	6,300.42	3,154.89	8.49	-1.68	0.500
50.00	-33.07	-30.49	0.00	-2,357.61	0.00	2,357.61	3,610.23	1,805.12	6,246.74	3,128.01	8.83	-1.71	0.497
55.00 60.00	-31.40	-30.17	0.00	-2,205,16	0.00	2,205.10	3,542,95	1 737 12	5,959.33	2,989.10	10.72	-1.90	0.481
65.00	-28.32	-29.34	0.00	-1,905.13	0.00	1,905.13	3,404.09	1,702.05	5,426.05	2,717.06	15.09	-2.27	0.445
70.00	-26.80	-28.54	0.00	-1,758.44	0.00	1,758.44	3,332,53	1,666.26	5,160.56	2,584.12	17.57	-2.46	0.426
79.00	-25.31	-27.33	0.00	-1.504.52	0.00	1,015.73	3,242,30	1,621.15	4,873.54	2,440.39	20.24	-2.64	0.408
80.00	-23.83	-26.94	0.00	-1,477.19	0.00	1,477.19	3,145.28	1,572.64	4,584.79	2,295.80	23.11	-2.82	0.391
85.00	-22.40	-26.27	0.00	-1,342.52	0.00	1,342.52	3,048.26	1,524.13	4,304.87	2,155.63	26.16	-3.00	0.372
67.54 90.00	-21.00	-25.87	0.00	-1,2/0./0	0.00	1,275.78	2,998.97	1,499.48	4,166.05	2,086.12	27.78	-3.09	0.362
92.46	-19.79	-25.03	0.00	-1,149.64	0.00	1,149.64	2,424.49	1,212.24	3,334.85	1,669.90	31.05	-3.26	0.374
95.00	-19.14	-24.70	0.00	-1,085.99	0.00	1,085.99	2,395.02	1,197.51	3,238.97	1,621.89	32.81	-3.35	0.360
96.00 100.00	-18.47	-23.17	0.00	-1,061.28	0.00	1,061.28	2,383.33	1,191.67	3,201.50	1,603.13	33.51	-3.38	0.355
103.75	-16.51	-22.68	0.00	-879.41	0.00	879.41	2,287.68	1,143.84	2,911.90	1,458.11	39.22	-3.65	0.312
103.75	-16.51	-22.68	0.00	-879.41	0.00	879.41	2,287.68	1,143,84	2,911.90	1,458.11	39.22	-3.65	0.611
105.00	-16.20	-21.87	0.00	-851.06	0.00	851.06 741.73	2,267.46 2,186.61	1,133.73	2,860.42	1,432.33	40.18 44 21	-3.69 -4.00	0.602
112.00	-13.52	-18.90	0.00	-699.17	0.00	699.17	2,154.27	1,077.13	2,580.59	1,292,21	45.91	-4.12	0.548
115.00	-13.08	-18.36	0.00	-642.46	0.00	642.46	2,105.76	1,052.88	2,465.08	1,234.37	48.56	-4.31	0.527
120.00	-12.41	-17.03	0.00	-350.65	0.00	550.65 462.51	2,024.90	972.03	2,278.43	1,140.91	53.23	-4.60	0.489
130.00	-9.09	-13,33	0.00	-394.67	0.00	394.67	1,863.20	931.60	1,927.17	965.02	63.43	-5,14	0.414
132.12	-8.84	-13.18	0.00	-366.41	0.00	366.41	1,828.92	914.46	1,856.49	929.62	65.74	-5.25	0.399
135.00	-5.94	-10.04	0.00	-320.44	0.00	320.44 319 71	999.39	499.70	1,702.57	503.83	69.95	-5.40	0.376
140.00	-5.15	-8.46	0.00	-273.25	0.00	273.25	975.08	487.54	945.09	473.25	74.73	-5.65	0.583
145.00	-4.78	-8.18	0.00	-230.96	0.00	230.96	944.35	472.17	872.40	436.85	80.83	-6.01	0.534
155.00	-4.30	-7.09	0.00	-190.05	0.00	190.05	912,19 878.60	439.30	731.82	366.45	07.31 94 14	-0.30	0.479
160.00	-3.65	-7.07	0.00	-114.45	0.00	114.45	843.59	421.80	664.33	332.66	101.30	-6.99	0.349
165.00	-3.37	-6.66	0.00	-79.09	0.00	79.09	800.44	400.22	593.98	297.43	108.75	-7.25	0.270
170.00	-2.34	-4.71	0.00	-03.77	0.00	51.65	761.04	375.97	523.82	262.11	116.44	-7.34	0.235
175.00	-1.98	-4.29	0.00	-29.03	0.00	29.03	703.42	351.71	458.07	229.37	124.33	-7.62	0.130
180.00	0.00	-3.99	0.00	-7.55	0.00	7.55	654.91	327.45	396.72	198.65	132.34	-7.71	0.038

Site Number: 302506

Site Name: Winchester CT 3, CT

Customer: VERIZON WIRELESS

Load Case: 1.2D + 1.0Di + 1.0Wi	40 mph with 1.00 in Radial Ice	26 Iterations
Gust Response Factor: 1.10	Ice Dead Load Factor: 1.00	Wind Importance Factor: 1.00
Dead Load Factor: 1.20		Ice Importance Factor: 1.25
Wind Load Factor: 1.00		-

Engineering Number: OAA721430_C3_01

Code: ANSI/TIA-222-G

@2007 - 2018 by ATC IP LLC. All rights reserved.

1/19/2018 10:02:33 AM

		Shaft F	orces	Discrete Forces			Linear Forces		Sum of Forces				
Seg			Dead		Torsion I	Moment	Dead		Dead	•	Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(ib-ft)	(lb-ft)	(lb)	(lb)	(ib)	(lb)	(lb)	(lb-ft)	(lb)
0.00		42.6	0.0		2			0.0	0.0	42.6	0.0	0.0	0.0
5.00		84.7	2.115.7					0.0	1.822.6	84.7	3.938.3	0.0	0.0
10.00		83.5	2,148.0					0.0	1,922.9	83.5	4,071.0	0.0	0.0
15.00		82.2	2,140.2					0.0	1,974.9	82.2	4,115.1	0.0	0.0
20.00		80.7	2,119.3					0.0	2,011.1	80.7	4,130.3	0.0	0.0
25.00		79.2	2,091.5					0.0	2,039.2	79.2	4,130.7	0.0	0.0
30.00	Appurtenance(s)	78.6	2,059.4	6.0	0.0	0.0	45.0	0.0	2,062.4	84,6	4,166.8	0.0	0.0
35.00		79.5	2,024.3					0.0	2,031.1	79.5	4,055.5	0.0	0.0
40.00		64.2	1,987.1					0.0	2,047.2	64.2	4,034.3	0.0	0.0
42.96	Bot - Section 2	41.0	1,158.9					0.0	1,217.3	41.0	2,376.2	0.0	0.0
45.00		50.7	1,230.2					0.0	844.1	50.7	2,074.3	0.0	0.0
49.04	Top - Section 1	41.8	2,396.3					0.0	1,675.1	41.8	4,071.5	0.0	0.0
50.00		50.2	338.4					0.0	399.3	50.2	737.7	0.0	0.0
55.00		84.4	1,733.2					0.0	2,086.2	84.4	3,819.5	0.0	0.0
60.00		84.5	1,695.4					0.0	2,097.1	84.5	3,792.5	0.0	0.0
65.00		84.5	1,656.7					0.0	2,107.2	84.5	3,763.9	0.0	0.0
70.00		84.2	1,617.3					35.4	2,116.6	119.7	3,733.9	0.0	0.0
75.00	Annudonneo(a)	75.5	1,577.3					36.3	2,125.4	111.8	3,702.7	0.0	0.0
79.00	Appunenance(s)	41.8	1,234.2	1,5	0.0	0,0	7.0	29,7	1,706.3	72.9	2,947.4	0.0	0.0
80.00		49.8	305.6					7.5	427.2	57.3	732.8	0.0	0.0
85.00 87.54	Det Centine 2	62.4	1,495.7					38.0	2,140.6	100.3	3,636.3	0.0	0.0
07.54	But - Section 3	41.4	1 060 0					10.2	1,090.3	50.0	1,030.0	0.0	0.0
90.00 92.46	Ton - Section 2	41.3	1 043 0					10.2	1,057.0	59.9	2 101 0	0.0	0.0
92.40		20.1	661.0					20.2	1,000.0	40.2	4 759 9	0.0	0.0
00.00	Appurtenance(s)	40.7	257.8	111.0	0.0	0.0	036 1	20.2	1,007.2	49.3	1,700.2	0.0	0.0
100.00	, appartonance(c)	62.7	1.011.4	111.5	0.0	0,0	550.1	32.2	1 726 2	94.9	2 737 7	0.0	0.0
103 75	Reinf, Top	40.2	926.4					30.6	1 622 1	70.8	2 548 5	0.0	0.0
105.00	Appurtenance(s)	49.5	305.2	78 5	0.0	0.0	462.7	10.3	441.3	138.3	1 200 2	0.0	0.0
110.00		55.2	1,189.5	10.0	0.0	0.0	TOLI	41.6	1.551.3	96.8	2.740.9	0.0	0.0
112.00	Appurtenance(s)	38.9	467.3	371.5	0.0	0.0	5,338.0	16.8	621.9	427.2	6.427.2	0.0	0.0
115.00		61.4	688.1					23.1	525.5	84.5	1.213.6	0.0	0.0
120.00		75.5	1,111.6					42.7	803.7	118.2	1.915.3	0.0	0.0
125.00	Appurtenance(s)	74.0	1,072.3	595.1	0.0	0.0	9,306.7	43.3	806.2	712.4	11,185.2	0.0	0.0
130.00		51.8	1,032.7					0.0	579.2	51.8	1,611.9	0.0	0.0
132.12	Bot - Section 4	36.0	428.2					0.0	246.0	36.0	674.2	0.0	0.0
135.00	Appurtenance(s)	26.9	748.4	504.2	0.0	0,0	7,794,8	0.0	334.6	531.1	8,877.8	0.0	0.0
135.87	Top - Section 3	35.3	223.2					0.0	97.3	35.3	320.5	0.0	0.0
140.00	Appurtenance(s)	63.5	638.8	287.0	0,0	1,654.0	2,566.1	0.0	462.5	350.5	3,667.3	0.0	0.0
145.00		67.8	742.9					0_0	527.7	67.8	1,270.6	0.0	0.0
150.00	Appurtenance(s)	65.9	711.4	64,9	0.0	0.0	332.7	0.0	529.0	130.8	1,573.1	0.0	0.0
155.00		63.8	679.7					0.0	525.3	63.8	1,205.0	0.0	0.0
160.00		61.8	647.8					0.0	526.5	61.8	1,174.3	0.0	0.0
165.00	A	42.2	615.8				0 040 -	23.9	527.7	66.1	1,143.5	0.0	0.0
107.00	Appunenance(s)	29.3	239.7	342.5	0.0	0.0	3,613.7	9,6	211.4	381.4	4,064.8	0.0	0.0
170.00		45.6	348.7					0.0	71.7	45.6	420.4	0.0	0.0
175.00	Appurtonappoo(c)	55.2	551.2	0.57.0		4 000 0	0.000	0.0	119.6	55.2	670.8	0.0	0.0
180.00	~pputtenance(s)	27.0	518.7	957.8	0.0	1,099.3	8,836,4	0.0	119.6	984.8	9,474.7	0.0	0.0

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT VERIZON WIRELESS	Code: Engineering Number:	ANSI/TIA-222-G OAA721430_C3_01	@2007 - 20	018 by ATC IP LLC. 1/19/2	All right 018 10	ts res :02:4	erved. I5 AM
Load Case Gust Respor Dead Lo Wind Lo	e: 1.2D + 1.0Di + 1.0Wi nse Factor : 1.10 pad Factor : 1.20 pad Factor : 1.00	40 mph with 1.00 Ice Dead Load Factor : 1.00	n Radial Ice		Wind Importance Ice Importance	26 e Facto e Facto	ltera r : : : :)r : : : :	tions 1.00 1.25
_			To	tals: 6	6,576.70 143,596.	0.00)	0.00

302506 @2007 - 2018 by ATC IP LLC. All rights reserved. Site Number: Code: ANSI/TIA-222-G Site Name: Winchester CT 3, CT Engineering Number: OAA721430_C3 01 1/19/2018 10:02:45 AM **VERIZON WIRELESS** Customer: Load Case: 1.2D + 1.0Di + 1.0Wi 40 mph with 1.00 in Radial Ice 26 Iterations Ice Dead Load Factor: 1.00 Gust Response Factor: 1.10 Wind Importance Factor: 1.00 Dead Load Factor: 1.20 Ice Importance Factor: 1.25 Wind Load Factor: 1.00 Calculated Forces Seg Pu Vu Tu Mu Mu Resultant phi Total phi phi phi Elev FX (-) MY ΜZ MX FY (-) Moment **Deflect Rotation** Pn Vn Tn Mn (ft) (kips) (kips) (ft-kips) (ft-kips) (ft-kips) (ft-kips) (kips) (kips) (ft-kips) (ft-kips) (in) (deg) Ratio 0.00 -143.59 -888.66 -6.58 0.00 0.00 888.66 5,129.98 2,564.99 11,021.5 5,518.96 0.00 0.00 0.141 5,055.67 2,527.83 4,979.93 2,489.97 4,902.77 2,451.39 5.00 -139.65 -6.58 0.00 -855.76 0.00 855.76 10,632.1 5,323.99 0.02 -0.04 0.140 10.00 -135.58 -6.59 0.00 -822.84 0.00 822.84 10,246.6 5,130.93 0.08 -0.07 0.138 15.00 -6.58 -789.92 0.00 789.92 -131.46 0.00 9,865.10 4,939.88 0.18 -0.110.137 20.00 -127.32 -6.58 0.00 -756.99 0.00 756.99 4,824.18 2,412.09 9,487.79 4,750.94 0.31 -0.15 0.135 25.00 -123.19 -6.57 0.00 -724.09 0.00 724.09 4,744.17 2,372.08 9,114.87 4,564.21 0.49 -0.19 0.133 -691.22 4,662.73 2,331.36 8,746.54 4,379.77 4,579.86 2,289.93 8,383.01 4,197.74 30.00 -119.02 -6.56 0.00 0.00 691.22 0.71 -0.23 0.131 35.00 -114.96 -6.54 0.00 -658.43 0.00 658.43 0.97 -0.27 0.129 40.00 -110.92 -6.52 0.00 -625.72 0.00 625.72 4,491.22 2,245.61 8,016.71 4,014.31 1.28 -0.31 0.127 4,424.29 2,212.15 4,378.03 2,189.01 7,778.37 3,894.97 42.96 -108.540.00 -606.44 0.00 606.44 -0.34 -6.51 1.48 0.126 45.00 -106.46 -6.49 0.00 0.00 593.15 -593.15 7,615.75 3,813.53 -0.35 1.62 0.124 49.04 -102.39 -6.46 0.00 -566.92 0.00 566.92 3,622.99 1,811.50 6,300.42 3,154.89 1.94 -0.39 0.137 -560.72 3,610.23 1,805.12 6,246.74 3,128.01 50.00 -101.65 -6.45 0.00 0.00 2.02 560.72 -0.39 0.137 55.00 -97.83 -6.42 0.00 -528.46 0.00 528.46 3,542.95 1,771.47 5,969.33 2,989.10 -0.44 2.45 0.133 60.00 -94.03 -496.38 496.38 -6.38 0.00 0.00 3,474.23 1,737.12 5,695.71 2,852.09 2.94 -0.48 0.130 65.00 70.00 -90.26 -6.33 0.00 -464.50 0.00 464.50 3,404.09 1,702.05 5,426.05 2,717.06 3.47 -0.53 0.126 -86.52 -6.24 0.00 3,332.53 1,666.26 3 242.30 1,621.15 0.00 -432.85 432.85 5,160.56 2,584.12 4.05 -0.57 0.122 75.00 -82.82 -6.15 0.00 -401.64 0.00 401.64 4,873.54 2,440.39 4.68 -0.62 0.118 79.00 -79.87 -6.08 -377.04 0.00 0.00 377.04 3,164.68 1,582.34 4,641.84 2,324.37 5.21 -0.66 0.115 80.00 -79.14 -6.05 0.00 -370.96 370.96 0.00 3 145.28 1 572.64 4 584.79 2 295.80 5.35 -0.67 0.114 3 048.26 1 524.13 4,304.87 2,155.63 2 998.97 1,499.48 4,166.05 2,086.12 85.00 -75.50 -5.95 0.00 -340.72 0.00 340.72 6.07 -0.71 0.110 87.54 -73.66 -5.89 0.00 -325.61 0.00 325.61 6.46 -0.73 0.108 -5.83 -5.77 90.00 -71.54 0.00 0.00 2,951.23 1,475.62 -311.12 311.12 4,033.76 2,019.88 6.84 -0.76 0.104 92.46 -69.44 0.00 -296.79 0.00 296.79 2 424.49 1 212.24 3,334.85 1,669.90 7.23 -0.78 0.113 95.00 -67.68 -5.72 0.00 -282.11 0.00 282.11 2,395.02 1,197.51 3,238.97 1,621.89 7.65 -0.80 0.110 2,383.33 1,191.67 2,336.02 1,168.01 96.00 -66.05 -5.56 0.00 -276.39 0.00 276.39 1,603.13 7.82 3,201.50 -0.81 0.108 -254.15 100.00 -63.31 -5.46 0.00 0.00 254.15 3,053.03 1,528.79 8.52 -0.85 0.103 103.75 -5.38 -233.66 0.098 -60.76 0.00 0.00 233.66 2,287.68 1,143.84 2,911.90 1,458.11 9.19 -0.88 103.75 -60.76 -5.38 0.00 -233.66 0.00 233.66 2,287.68 1,143.84 2,911.90 1,458.11 9.19 -0.88 0.187 -5.27 -5.19 105.00 110.00 -59.55 -56.81 0.00 -226.94 -200.59 0.00 226.94 200.59 2 267.46 1 133.73 2 186.61 1 093.30 2,860.42 1,432.33 2,659.07 1,331.51 9.43 10.40 -0.89 -0.97 0.185 0.177 112.00 -50.39 -4.69 0.00 -190.210.00 190.21 2,154.27 1,077.13 2,580.59 1,292.21 10.82 -1.010.171 -49.17 -4.64 0.00 -176.16 0.00 2,105.76 1,052.88 115.00 176.16 2,465.08 1,234.37 11.47 -1.06 0.166 2,278.43 1,140.91 2,099.13 1,051.12 120.00 -47.25 -4.55 0.00 -152.98 0.00 152.98 2,024.90 1,012.45 12.62 -1.14 0.157 125.00 -36.08 -3.65 0.00 -130.250.00 130.25 1,944.05 972.03 13.85 -1.21 0.142 130.00 -34.46 -3.60 0.00 -111.990.00 111.99 1,863.20 931.60 965.02 -1.29 1,927.17 15.16 0.135 -3.57 -2.84 1,828.92 132.12 -33.79 0.00 -104.37 0.00 104.37 914.46 1,856.49 929.62 15.74 -1.32 0.131 135.00 -24.92 891.17 0.00 -94.10 0.00 94.10 1,782.35 1.762.57 882.59 16.55 -1.36 0.121 -2.81 135.87 -24.60 0.00 -91.63 0.00 91.63 999.39 499.70 1,006.16 503.83 16.80 -1.38 0.207 140.00 -20.94 -78.36 0.00 78.36 975.08 487.54 945.09 473.25 0.00 18.02 -1.44 0.187 145.00 -19.67 -2.34 0.00 -66.35 0.00 66.35 944.35 472.17 872.40 436.85 19.58 -1.54 0.173 -54.66 150.00 -18.10 -2.19 0.00 0.00 912.19 54.66 456.09 801.24 401.22 21.25 -1.64 0.156 155.00 -16.89 -2.12 0.00 -43.70 0.00 43.70 878.60 439.30 731.82 366.45 23.02 -1.74 0.138 -33.10 843.59 160.00 -15.72 -2.04 0.00 0.00 33.10 421.80 664.33 332.66 24.88 -1.82 0.118 165.00 -14.57 -1.95 0.00 0.00 22.87 800.44 400.22 593.98 297.43 26.83 -1.900.095 565.39 167.00 -10.52 -1.44 0.00 -18.96 0.00 18.96 781.04 390.52 283.11 27.63 -1.92 0.080 170.00 -10.10 -1.39 0.00 -14.64 0.00 14.64 751.93 375.97 523.82 262.30 28.85 -1.96 0.069 -9.43 0.00 175.00 -1.32 0.00 -7.69 7.69 703.42 351.71 458.07 229.37 30.93 -2.00 0.047 -2.02 180.00 0.00 -0.98 0.00 -1.10 0.00 1.10 654.91 327.45 396.72 198.65 33.03 0.006

Site Number: 302506 Code: ANSI/TIA-222-G @2007 - 2018 by ATC IP LLC. All rights reserved. Site Name: Winchester CT 3, CT Engineering Number: OAA721430_C3_01 1/19/2018 10:02:45 AM **VERIZON WIRELESS** Customer: Load Case: 1.0D + 1.0W Serviceability 60 mph 25 Iterations Gust Response Factor: 1.10 Wind Importance Factor: 1.15 Dead Load Factor: 1.00 Wind Load Factor: 1.00

		Shaft F	orces	Discrete Forces			Linear Forces		Sum of Forces				
Seg		-	Dead		Torsion I	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(ib)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(ib-ft)	(lb)
0.00	······	55.6	0.0					0.0	0.0	55,6	0.0	0.0	0.0
5.00		110.1	1,222.9					0.0	853.2	110.1	2,076.1	0.0	0.0
10.00		107.8	1,197.0					0.0	853.2	107.8	2,050.2	0.0	0.0
15.00		105.4	1,171.1					0.0	853.2	105.4	2,024.3	0.0	0.0
20.00		103.1	1,145.2					0.0	853.2	103.1	1,998.3	0.0	0.0
25.00		100.8	1,119.2					0.0	853.2	100.8	1,972.4	0.0	0.0
30.00	Appurtenance(s)	99.6	1,093.3	7.8	0.0	0.0	10.0	0.0	853.2	107.4	1,956.5	0.0	0.0
35.00		100.4	1,067.4					0.0	851.5	100.4	1,918.9	0.0	0.0
40.00		80.8	1,041.5					0.0	851.5	80.8	1,893.0	0.0	0.0
42.96	Bot - Section 2	51.5	603.6					0.0	503.5	51.5	1,107.2	0.0	0.0
45.00		63.7	771.7					0.0	348.0	63.7	1,119.7	0.0	0.0
49.04	Top - Section 1	52.4	1,502.0					0.0	688.0	52.4	2,190.0	0.0	0.0
50.00		62.6	164.3					0.0	163.5	62.6	327.8	0.0	0.0
55.00		105.1	842.5					0.0	851.5	105.1	1,694.0	0.0	0.0
60.00		104.9	820.3					0.0	851.5	104.9	1,671.8	0.0	0.0
65.00		148.4	798.0					0.0	851.5	148.4	1,649.6	0.0	0.0
70.00		191.3	775.8					39.1	851.5	230.5	1,627.4	0.0	0.0
70.00	Appurtepapeo/s)	170.8	703.0		0.0		0.0	39.9	801.0	210.7	1,605.1	0.0	0.0
79.00	Appullenatice(s)	94.3	586.9	0.9	0.0	0.0	0.6	32.5	681.2	127.7	1,268.7	0.0	0.0
80.00		111.9	144.5					8.2	170.2	120.1	314.7	0.0	0.0
03.00	Pot Section 7	138.9	709.2					41.4	422.2	181.3	1,559.9	0.0	0.0
07.04	But - Section 5	92.0	620.3					21.5	432.2	113.9	1 039 0	0.0	0.0
92.46	Ton - Section 2	91.0	600 5					21.0	418.0	112.0	1 027 5	0.0	0.0
95.00		64.7	285.4					21.0	410.0 432.8	86.6	718.1	0.0	0.0
95,00 96,00	Appurtenance(s)	00.3	110 0	157 0	0.0	0.0	486.6	86	170.2	255.0	767.6	0.0	0.0
100.00	·	138.6	436.1	101.0	0.0	0.0	400.0	34.8	677.4	173.5	1 113 5	0.0	0.0
103.75	Reinf, Top	88.5	398.1					33.0	635.0	121.5	1 033 2	0.0	0.0
105.00	Appurtenance(s)	108.6	130.4	116.8	0.0	0.0	79 2	11 1	128.2	236.5	337.8	0.0	0.0
110.00		120.7	510.0	110.0	0.0	0.0		44.7	488.1	165.4	998.1	0.0	0.0
112.00	Appurtenance(s)	84.6	198.8	535.2	0.0	0.0	1,668.0	18.0	195.3	637.9	2,062.1	0.0	0.0
115.00		133.0	292.7					24.4	162.7	157.3	455.4	0.0	0.0
120.00		162.7	473.0					45.4	235.3	208.1	708.3	0.0	0.0
125.00	Appurtenance(s)	122.4	454.5	909.0	0.0	0.0	2,629.6	45.9	235.3	1,077.3	3,319.4	0.0	0.0
130.00		59.7	435.9					0.0	204.2	59.7	640.2	0.0	0.0
132.12	Bot - Section 4	41.2	179,2					0.0	86.6	41.2	265.8	0.0	0.0
135.00	Appurtenance(s)	30.8	384.0	769.2	0.0	0.0	2,857.1	0.0	117.6	800.0	3,358.8	0.0	0.0
135.87	Top - Section 3	40.1	114.0					0.0	32.3	40.1	146.3	0.0	0.0
140.00	Appurtenance(s)	71.7	201.1	314.2	0.0	1,543.7	629.0	0.0	153.4	385.9	983.5	0.0	0.0
145.00		75.9	233.3					0.0	157.9	75.9	391.2	0.0	0.0
150.00	Appurtenance(s)	72.9	222.2	56.3	0.0	0.0	158.3	0.0	157.9	129.2	538.4	0.0	0.0
155.00		69.9	211.1					0.0	153.8	69.9	364.9	0.0	0.0
160.00		94.3	200.0					0.0	153.8	94.3	353.8	0.0	0.0
165.00	Annumeronales	83.4	188.9	454.5				24.9	153.8	108.2	342.7	0.0	0.0
107.00	Appuncenance(s)	41.6	12.4	451.8	0.0	0,0	1,276.5	10.0	61.5	503.4	1,410.5	0.0	0.0
170.00		47.6	105.3					0.0	59.8	47.6	165.1	0.0	0.0
1/5.00	Appurtor appeade)	55.8	166.6	4 004 0		0.000.0	0.004.0	0.0	99.6	56.8	266.3	0.0	0.0
180.00	~hhniteirguce(2)	27.6	155.5	1,081.2	0.0	2,098.6	2,561.3	0.0	99.6	1,108.8	2,816.5	0.0	0.0

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT VERIZON WIRELESS	Code: Engineering Number:	ANSI/TIA-222-G OAA721430_C3_01	@2007 - 2018 by	ATC IP LLC. 1/19/2	All rights r 018 10:02	eserved. 2:56 AM
Load Case Gust Respor Dead Lo Wind Lo	e: 1.0D + 1.0W nse Factor : 1.10 pad Factor : 1.00 pad Factor : 1.00	Serviceability 60 n	որի	Wind	d Importance	25 Ite Factor :	rations 1.15
•			To	tals: 9,310.0	9 58,433.3	0.00	0.00

	Site Numbe	er: 302	2506				Co	ode: ANSI/TIA-	222-G	©2007 - 20	018 by ATC	IP LLC. A	All rights re	served.
	Site Name:	: Wir	IChester (CT 3, CT		Engine	ering Numb	er: OAA72143	30_C3_01			1/19/20	18 10:02:	56 AM
				VINELESS								2.5.2		
	Load C	ase: 1	.0D + 1.0	W		Se	erviceability (60 mph					25 Itera	ations
	Gust Res	sponse F	Factor :	1.10							Wind Im	portance	Factor :	1,15
	Dead Wind	d Load I d Load F	Factor : Factor :	1.00 1.00										
		ed Forc	200											
			<u></u>	-			D							
	Seg Elev	Pu FY (-)	Vu FX (-)	MY	MU MZ	MU MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Defiect	Rotation	
-	(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
	0.00 5.00	-58.43 -56.35	-9.28 -9.21	0.00 0.00	-1,110.30	0.00	1,110.30 1,063.92	5,129.98 5,055.67	2,564.99	11,021.5	5,518,96	0.00	0.00 -0.05	0.158
	10.00	-54.29	-9.15	0.00	-1,017.86	0.00	1,017.86	4 979 93	2,489.97	10,246.6	5,130.93	0.10	-0.09	0.153
	20.00	-50.25	-9.00	0.00	-926.74	0.00	926.74	4,824,18	2,451.39	9,665.10	4,939.88	0.22	-0.14	0.151
	25.00	-48.27	-8.94	0.00	-881.68	0.00	881.68	4,744.17	2,372.08	9,114.87	4,564.21	0.61	-0.23	0.145
	30.00 35.00	-46.31	-8.87	0.00	-836.96	0.00	836.96 792.63	4,662,73	2,331.36	8,746.54	4,379.77	0.88	-0.28	0.143
	40.00	-42.48	-8.73	0.00	-748.66	0.00	748.66	4,491.22	2,245.61	8,016.71	4,014.31	1.57	-0.38	0.136
	42.96	-41.37	-8.69	0.00	-722.84	0.00	722.84	4,424,29	2,212.15	7,778.37	3,894.97	1.82	-0.41	0.135
	45.00	-40.25	-0.04	0.00	-705.09	0.00	670.18	4,376.03	1 811 50	6 300 42	3 154 89	2.00	-0.43	0.133
	50.00	-37.72	-8.54	0.00	-661.94	0.00	661.94	3,610.23	1,805.12	6,246.74	3,128.01	2.48	-0.48	0.145
	55.00	-36.02	-8.45	0.00	-619.23	0.00	619.23	3,542.95	1,771.47	5,969.33	2,989.10	3.01	-0.53	0.140
	65.00	-34.55	-8.23	0.00	-576.96	0.00	576,90	3,404.09	1.702.05	5,426.05	2,652.09	3.59 4.23	-0.59	0.135
	70.00	-31.06	-8.01	0.00	-493.99	0.00	493.99	3,332.53	1,666.26	5,160.56	2,584.12	4.93	-0.69	0.125
	75.00 79.00	-29.45	-7.80	0.00	-453.96	0.00	453.96	3,242.30	1,621.15	4,873.54	2,440.39	5.68	-0.74	0.119
	80.00	-27.86	-7.56	0.00	-415.09	0.00	415.09	3,145.28	1,572.64	4,584.79	2,295.80	6.48	-0.79	0.113
	85.00	-26.30	-7.37	0.00	-377.29	0.00	377.29	3,048.26	1,524.13	4,304.87	2,155.63	7.34	-0.84	0.109
	87.54 90.00	-25.52	-7.20	0.00	-358.57	0.00	358.57	2,998.97	1,499.48	4,166.05	2,086.12	7.79 8.25	-0.87	0.106
	92.46	-23.45	-7.02	0.00	-323.17	0.00	323.17	2,424.49	1,212.24	3,334.85	1,669.90	8.71	-0.92	0.110
	95.00	-22.73	-6.93	0.00	-305.32	0.00	305.32	2,395.02	1,197.51	3,238.97	1,621.89	9.21	-0.94	0.106
	96.00	-21.96	-6.67	0.00	-298.39	0.00	298.39 271.70	2,383.33 2,336.02	1,191.67	3,201.50	1,603.13	9.41 10.22	-0.95 -0.99	0.104
	103.75	-19.81	-6.36	0.00	-247.36	0.00	247.36	2,287.68	1,143.84	2,911.90	1,458.11	11.01	-1.02	0.092
	103.75	-19.81	-6.36	0.00	-247.36	0.00	247.36	2,287.68	1,143.84	2,911.90	1,458.11	11.01	-1.02	0.178
	105.00	-19.48	-6.13	0.00	-239.41	0.00	239.41 208.74	2,267.46 2,186.61	1,133.73	2,860.42	1.432.33	11.28	-1.04 -1.12	0.176
	112.00	-16.42	-5.30	0.00	-196.80	0.00	196.80	2,154.27	1,077.13	2,580.59	1,292.21	12.89	-1.16	0.160
	115.00	-15.96	-5.16	0.00	-180.88	0.00	180.88	2,105.76	1,052.88	2,465.08	1,234.37	13.63	-1.21	0.154
	125.00	-11.95	-4.95	0.00	-130.34	0.00	130.34	1,944.05	972.03	2.099.13	1,051.12	16.34	-1.29	0.144
	130.00	-11.31	-3.75	0.00	-111.26	0.00	111.26	1,863.20	931.60	1,927.17	965.02	17.82	-1.44	0.121
	132.12	-11.04	-3.71	0.00	-103.31	0.00	103.31	1,828.92	914.46	1,856.49	929.62	18.46	-1.48	0.117
	135.87	-7.56	-2.03	0.00	-92.02	0.00	90.17	999.39	499.70	1.006.16	503.83	19.57	-1.52	0.109
	140.00	-6.58	-2.38	0.00	-77.11	0.00	77.11	975.08	487.54	945.09	473.25	21.00	-1.59	0.170
	145.00 150.00	-0.19 -5.65	-2.31	0.00	-65.20	0.00	65.20 53.66	944.35	4/2.17	8/2.40	436.85 401 22	22.71	-1.69 -1.70	0.156
	155.00	-5.29	-2.10	0.00	-42.80	0.00	42.80	878.60	439.30	731.82	366.45	26.46	-1.88	0.123
	160.00	-4.93	-2.00	0.00	-32.31	0.00	32.31	843.59	421.80	664.33	332.66	28.48	-1.97	0.103
	167.00	-4.59	-1.08	0.00	-22.32	0.00	22.32 18.56	800.44 781.04	390.52	565 39	297.43	30.58	-2.04 -2.07	0.081
	170.00	-3.04	-1.28	0.00	-14.56	0.00	14.56	751.93	375.97	523.82	262.30	32.75	-2.10	0.060
	175.00	-2.77	-1.21	0.00	-8.17	0.00	8.17	703.42	351.71	458.07	229.37	34.98	-2.14	0.040
	100.00	0.00		0.00	-2.10	0.00	Z. IU	034.91	327.40	330./Z	130.00	37.24	-2.17	0.011

Site Number:	302506	Code:	ANSI/TIA-222-G	©2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	Winchester CT 3, CT	Engineering Number:	OAA721430_C3_01	1/19/2018 10:02:56 AM
Customer:	VERIZON WIRELESS			

Equivalent Lateral Forces	Viethod Analysis
(Based on ASCE7-10 Chapt	ters 11, 12, 15)
Spectral Response Acceleration for Short Period (S	0.18
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Long-Period Transition Period (T L):	6
Importance Factor (1 _E):	1.50
Site Coefficient F a:	1.60
Site Coefficcient F v:	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.19
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10
Seismic Response Coefficient (C s):	0.04
Upper Limit C s	0.04
Lower Limit C s	0.03
Period based on Rayleigh Method (sec):	2.66
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	2.00
Total Unfactored Dead Load:	58.43 k
Seismic Base Shear (E):	2.96 k

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C vx	(lb)	(lb)
47	177.50	255	8,040	0.015	46	316
46	172.50	266	7,924	0.015	45	330
45	168.50	165	4,688	0.009	27	204
44	166.00	134	3,692	0.007	21	166
43	162.50	343	9,049	0.017	51	424
42	157.50	354	8,777	0.017	50	438
41	152.50	365	8,487	0.016	48	452
40	147.50	380	8,270	0.016	47	471
39	142.50	391	7,945	0.015	45	484
38	137.93	355	6,745	0.013	38	439
37	135.43	146	2,684	0.005	15	181
36	133.56	502	8,949	0.017	51	621
35	131.06	266	4,566	0.009	26	329
34	127.50	640	10,407	0.020	59	792
33	122.50	690	10,351	0.020	59	854
32	117.50	708	9,779	0.019	55	877
31	113.50	455	5,866	0.011	33	564
30	111.00	394	4,855	0.009	28	488
29	107.50	998	11,535	0.022	65	1,235
28	104.38	259	2,817	0.005	16	320
27	101.88	1,033	10,723	0.021	61	1,279
26	98,00	1,114	10,694	0.020	61	1,378
25	95.50	281	2,563	0.005	15	348

Site Number: 302506		Code	ANSI/TIA-22	2-G	@2007 - 2018 by ATC IP LL	C. All rights reserved.
Site Name: Winchester C	T 3. CT	Engineering Number	OAA721430	C3 01	1/10	9/2018 10:02:57 AM
Customer: VERIZON WI	RELESS	Engineering namber.	0/01/21400_	_00_01		5/2010 10:02:07 AM
24	93.73	718	6,309	0.012	36	889
23	91.23	1,028	8,552	0.016	49	1,272
22 21	88.77	1,039 784	8,186	0.016	45	1,286
20	82.50	1,560	10.617	0.020	60	1.931
19	79.50	315	1,989	0,004	11	389
18	77.00	1,268	7,519	0.014	43	1,570
17	72.50	1,605	8,437	0.016	48	1,987
15	62.50	1,627	7,415	0.014	42	2,014 2,042
14	57.50	1,672	5,527	0.011	31	2,069
13	52.50	1,694	4,669	0.009	26	2,097
12	49.52	328	804	0.002	5	406
11	47.02	2,190	4,842	0.009	27	2,711
9	43.98	1,120	2,100	0.004	12	1,386
8	37,50	1,893	2,662	0.005	15	2,343
7	32.50	1,919	2,027	0.004	11	2,375
6	27.50	1,946	1,472	0.003	8	2,409
5	22.50	1,972	999	0.002	6	2,441
3	12.50	2 024	012	0.001	3 2	2,473
2	7.50	2,050	115	0.000	1	2,538
1	2.50	2,076	13	0.000	0	2,570
Andrew ABT-DMDF-ADBH	180.00	1	36	0.000	0	1
Powerwave Aligon 111	180.00	48	1,555	0.003	9	59
4 Onini Powerwaye Allonn I GP	180.00	42	324	0.001	2	12
Raycap DC6-48-60-18-	180.00	40	1,371	0.002	7	50
Ericsson RRUS 11 (Ba	180.00	150	4,860	0.009	28	186
Ericsson RRUS 32 (50	180.00	152	4,938	0.009	28	189
Ericsson RRUS-12 B2	180.00	174	5,638	0.011	32	215
2 X 4 Rectangular Powerwaye Alloon 777	180.00	40	1,296	0.002	19	50 130
KMW AM-X-CD-16-65-00	180.00	146	4,714	0.009	27	180
CCI HPA-65R-BUU-H6	180.00	153	4,957	0.009	28	189
Flat Low Profile Pla	180.00	1,500	48,600	0.093	276	1,857
Encsson KRY 112 144	167.00	33	920	0.002	5	41
Ericsson AIR 21, 1.3	167.00	245	6 819	0.013	39	303
Round T-Arm	167.00	750	20,917	0.040	119	928
Sinclair SD210-SF2P4	150.00	8	187	0.000	1	10
Round Side Arm	150.00	150	3,375	0.006	19	186
Bird 432-83H-01-T	140.00	50	98	0.000	6	62
Decibel DB809K-XT	140.00	90	1.764	0.002	10	111
Sinclair SC432D-HF6L	140.00	34	666	0.001	4	42
Round Side Arm	140.00	450	8,820	0.017	50	557
Alcatel-Lucent 800 M	135.00	185	3,379	0.006	19	229
Alcatel-Lucent TD-RR	135.00	210	2,400	0.003	22	260
RFS APXVTM14-C-I20	135.00	159	2,892	0.006	16	196
RFS APXVSPP18-C-A20	135.00	171	3,116	0.006	18	212
Flat Platform w/ Han	135.00	2,000	36,450	0.070	207	2,476
NOKIA 65 RRH4x40-850	125.00	146	2,273	0.004	13	180
Alcatel-Lucent RRH2x	125.00	170	2,404 2,658	0.005	14	197 211
RFS DB-B1-6C-12AB-0Z	125.00	21	334	0.001	2	26
Alcatel-Lucent B66a	125.00	201	3,141	0.006	18	249
Antel LPA-80080/6CF	125.00	42	656	0.001	4	52
Commscope JAHH-65B-R	125.00	364	5,681	0.011	32	450
Round Low Profile Pl	125.00	1.500	422	0.001	2	33 1 857
Decibel DB844H90E-XY	112.00	168	2,107	0.004	12	208

Cite Muset	202506		A - 1				abia econor d
	302506		Code:	ANSI/11A-222	-G	10 All fi 2018 by ATC IP LLC. All fi	gnis reserved.
Site Name:	vvinchester CT 3, CT		Engineering Number:	OAA721430_0	C3_01	1/19/2018	10:02:57 AM
Customer:	VERIZON WIRELESS						
Round Low F	Profile Pl	112.00	1,500	18,816	0.036	107	1,857
RFS APXV1	B-206517S-C	105.00	79	873	0.002	5	98
Bird 429-83F	80 {-01-T	96.00 96.00	17 20	153 184	0.000	1	21 25
Flat Side Arr	n	96.00	450	4,147	0.008	24	557
PCTEL GPS	-TMG-HR-26N	79.00	1	4	0.000	0	1
GPS		30.00	10	9	0.000	0	12
			58,433	522,763	1.000	2,965	72,326
Load Case	(0.9 - 0.2Sds) * DL + E	ELFM	Seismic (Reduced I	DL) Equivalen	t Latera	I Forces Method	
		Height					
		Above	***-1-*-4			Horizontal	Vertical
		Base	vveight	VV _z	~	Force	Force
Segi	ment	(ft)	(lb)	(lb-fl)	Cvx	(lb)	(lb)
47		177.50	255	8,040	0.015	46	220
40		172.50	200	7,924	0.015	45	230
44		166.00	134	3.692	0.003	21	116
43		162.50	343	9,049	0.017	51	295
42		157.50	354	8,777	0.017	50	305
41 40		152.50	305	8,487	0.016	48	315
39		142.50	391	8,270 7,945	0.010	45	328
38		137.93	355	6,745	0.013	38	306
37		135.43	146	2,684	0.005	15	126
36		133.56	502	8,949	0.017	51	433
34		127.50	200	4,566	0.009	20 59	229 552
33		122,50	690	10,351	0.020	59	595
32		117.50	708	9,779	0.019	55	611
31		113.50	455	5,866	0.011	33	393
30		111.00	394	4,855	0.009	28	340
28		104.38	259	2.817	0.0022	16	223
27		101.88	1,033	10,723	0.021	61	891
26		98.00	1,114	10,694	0.020	61	960
25		95.50	281	2,563	0.005	15	242
24		93.73	1 028	6,309 8,552	0.012	30	619 886
22		88.77	1,039	8,186	0.016	46	896
21		86.27	784	5,834	0.011	33	676
20		82.50	1,560	10,617	0.020	60	1,345
19		79.50	315	1,989	0.004	11	2/1
17		72.50	1,605	8.437	0.014	45	1,055
16		67.50	1,627	7,415	0.014	42	1,403
15		62.50	1,650	6,444	0.012	37	1,422
14		57.50	1,672	5,527	0.011	31	1,441
12		52.50 49.52	328	4,669	0.009	20	1,401
11		47.02	2,190	4.842	0.009	27	1,888
10		43.98	1,120	2,166	0.004	12	965
9		41.48	1,107	1,905	0.004	11	955
0 7		37.50	1,893	2,662	0.005	15	1,632
6		27.50	1.946	1.472	0.003	8	1.678
5		22.50	1,972	999	0.002	6	1,701
4		17.50	1,998	612	0.001	3	1,723
3		12.50	2,024	316	0.001	2	1,745
1		2.50	2,076	13	0.000	ò	1,790

Site Number:	302506		Code:	ANSI/TIA-22	2-G	@2007 - 2018 by ATC IP LL	C. All rights reserved,
Site Name:	Winchester CT 3, CT		Engineering Number:	OAA721430	_C3_01	1/1	9/2018 10:02:57 AM
Customer:	VERIZON WIRELESS				105-00		
Andrew ABT	-DMDF-ADBH	180.00	1	36	0.000	0	1
Powerwave /	Aligon TT1	180.00	48	1,555	0.003	9	41
4' Omni		180.00	10	324	0.001	2	9
Powerwave /	Allgon LGP	180.00	42	1,371	0.003	8	36
Raycap DC6	-48-60-18-	180.00	40	1,296	0.002	7	34
Ericsson RR	US 11 (Ba	180.00	150	4,860	0.009	28	129
Encsson RR	US 32 (50	180.00	152	4,938	0.009	28	131
Ericsson RR	US-12 B2	180.00	174	5,638	0.011	32	150
2' x 4' Rectai	ngular	180.00	40	1,296	0.002	7	34
Powerwave /		180.00	105	3,402	0.007	19	91
	CD-10-03-00	180.00	140	4,714	0,009	21	125
Elat Low Pro	file Pla	180.00	1 500	4,907	0,009	20	1 202
Edgecon KD		167.00	1,500	48,600	0.093	2/0	1,293
Ericsson AIP	1 112 199	167.00	240	920	0,002	. J	20
Ericsson AlR	21,1.5	167.00	245	0,544	0.013	30	210
Round T-Arn	n	167.00	750	20 019	0.013	110	647
Sinclair SD2	 10-SF2P4	150.00	8	20,517	0.000	113	7
Round Side	Arm	150.00	150	3 375	0.006	19	129
Telewave AN	JT150D (5	140.00	5	98	0.000	1	,25 A
Bird 432-83H	H-01-T	140.00	50	980	0.002	6	43
Decibel DB8	09K-XT	140.00	90	1 764	0.003	10	78
Sinclair SC4	32D-HF6L	140.00	34	666	0.001	4	29
Round Side	Arm	140.00	450	8.820	0.017	50	388
Alcatel-Luces	nt 800 M	135.00	185	3,379	0.006	i 19	160
Alcatel-Luce	nt 1900M	135.00	132	2,406	0.005	i 14	114
Alcatel-Luce	nt TD-RR	135.00	210	3,827	0.007	22	181
RFS APXVT	M14-C-I20	135.00	159	2,892	0.006	16	137
RFS APXVS	PP18-C-A20	135.00	171	3,116	0.006	i 18	147
Flat Platform	w/ Han	135.00	2,000	36,450	0.070	207	1,724
Nokia B5 RR	(H4x40-850	125.00	146	2,273	0.004	13	125
Alcatel-Luce	nt B25 R	125.00	159	2,484	0.005	14	137
Alcatel-Luce	nt RRH2x	125.00	170	2,658	0.005	15	147
RFS DB-B1-	6C-12AB-0Z	125.00	21	334	0.001	2	18
Alcatel-Luce	nt B66a	125.00	201	3,141	0.006	18	173
Antel LPA-8L	JU80/6CF	125.00	42	656	0.001	4	36
Commscope	JAHH-03B-K	125.00	364	5,681	0.011	32	314
Anter LPA-ou		125.00	27	422	0.001	2	23
Round Low P		125.00	1,500	23,438	0.045	133	1,293
Bound Low P		112.00	1 500	2,107	0.004	12	145
	-10110 F1 8-2065178-0	105.00	70	18,816	0.030	10/	1,293
	86	00,00	19	8/3	0.002	5	68
Bird 429-83F	-01-T	96.00	20	103	0.000	· 1	14
Flat Side Am	n	96.00	450	A 147	0.000	24	10
PCTEL GPS	-TMG-HR-26N	79.00	1		0.000) 24) N	
GPS	u uuu uun titti kaanan t	30.00	10	9	0.000) 0	9
.		00.00	58.433	522,763	1.000) 2.965	50 384
			,	,		_,	00,004

Site Number:	302506
--------------	--------

Site Name: Winchester CT 3, CT

Customer: VERIZON WIRELESS

Load Case (1.2 + 0.2Sds) * DL + E ELFM Seismic Equivalent Lateral Forces Method

Calculated Forces

	Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
	Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	ััโก	Mn	Deflect	Rotation	
	(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(dea)	Ratio
-										<u> </u>		· · ·		
	0.00	-69.76	-2.97	0.00	-402.86	0.00	402.86	5,129.98	2,564.99	11,021.5	5,518.96	0,00	0.00	0.065
	5.00	-67.22	-2.99	0.00	-387.99	0.00	387.99	5,055.67	2,527.83	10,632.1	5,323.99	0.01	-0.02	0.064
	10.00	-64.71	-3.01	0.00	-373.03	0.00	373.03	4,979.93	2,489.97	10,246.6	5,130.93	0.04	-0.03	0.063
	15.00	-62.24	-3.02	0.00	-357.98	0.00	357.98	4,902.77	2,451.39	9,865.10	4,939.88	0.08	-0.05	0.062
	20.00	-59.79	-3.03	0.00	-342.87	0.00	342.87	4,824.18	2,412.09	9,487.79	4,750.94	0.14	-0.07	0.061
	25.00	-57.38	-3.04	0.00	-327.71	0.00	327.71	4,744.17	2,372.08	9,114.87	4,564.21	0.22	-0.09	0.060
	30.00	-55.00	-3.04	0.00	-312.51	0.00	312.51	4,662.73	2,331.36	8,746.54	4,379.77	0.32	-0.10	0.059
	35.00	-52.65	-3.04	0.00	-297.31	0.00	297.31	4,579.86	2,289.93	8,383.01	4,197.74	0.44	-0.12	0.058
	40.00	-51.28	-3.04	0.00	-282.12	0.00	282.12	4,491,22	2.245.61	8.016.71	4.014.31	0.58	-0.14	0.057
	42.96	-49.89	-3.03	0.00	-273.14	0.00	273.14	4,424,29	2,212,15	7 778 37	3 894 97	0.67	-0.15	0.057
	45.00	-47.18	-3.00	0.00	-266.95	0.00	266.95	4,378.03	2,189.01	7.615.75	3 813 53	0.74	-0.16	0.056
	49.04	-46.78	-3.01	0.00	-254.81	0.00	254.81	3.622.99	1.811.50	6.300.42	3 154.89	0.88	-0.17	0.062
	50.00	-44.68	-2.98	0.00	-251.92	0.00	251.92	3.610.23	1.805.12	6 246 74	3 128 01	0.91	-0.18	0.061
	55.00	-42.61	-2.96	0.00	-237.01	0.00	237.01	3 542 95	1 771 47	5 969 33	2 989 10	1.11	-0.20	0.060
	60.00	-40.57	-2.93	0.00	-222 21	0.00	222.21	3 474 23	1 737 12	5 695 71	2 852 09	1.33	-0.22	0.058
	65.00	-38.55	-2.89	0.00	-207.56	0.00	207.56	3 404 09	1 702 05	5 426 05	2 717 06	1.57	-0.24	0.056
	70.00	-36.56	-2.85	0.00	-193 10	0.00	193 10	3 332 53	1 666 26	5 160 56	2 584 12	1.83	-0.26	0.054
	75.00	-34,99	-2.81	0.00	-178.85	0.00	178.85	3 242 30	1,621,15	4 873 54	2 440 39	2.11	-0.28	0.052
	79.00	-34.60	-2.80	0.00	-167.60	0.00	167.60	3 164 68	1,582,34	4 641 84	2 324 37	2 35	-0.30	0.051
	80.00	-32 67	-2 74	0.00	-164.80	0.00	164.80	3 145 28	1 572 64	4 584 79	2 295 80	2 42	-0.30	0.001
	85.00	-31 70	-2 71	0.00	-151 10	0.00	151 10	3 048 26	1 524 13	4 304 87	2 155 63	2 74	-0.32	0.000
	87 54	-30.42	-2.66	0.00	-144 21	0.00	144 21	2 998 97	1 499 48	4 166 05	2,100.00	2.01	-0.33	0.040
	90.00	-29 14	-2.61	0.00	-137.66	0.00	137.66	2 951 23	1 475 62	4 033 76	2,000,12	3 00	-0.30	0.046
	92.46	-28 25	-2.57	0.00	-131 25	0.00	131 25	2,331.23	1 212 24	3 334 85	1,669,90	3.26	-0.35	0.040
	95.00	-27 91	-2.56	0.00	-124 70	0.00	124 70	2 305 02	1 107 51	3 238 07	1 621 89	3.45	-0.36	0.048
	96.00	-25.93	-2.47	0.00	-122.14	0.00	122 14	2,383,33	1 191 67	3 201 50	1 603 13	3.53	-0.36	0.040
	100.00	-24 65	-2.41	0.00	-112 27	0.00	112.27	2,336,02	1.168.01	3 053 03	1 528 79	3.84	-0.38	0.045
	103 75	-24 33	-2.30	0.00	-103 25	0.00	103 25	2 287 68	1 143 84	2 911 90	1 458 11	4 14	_0.30	0.043
	103 75	-24.33	-2.30	0.00	-103.25	0.00	103.25	2 287 68	1 143 84	2 011 00	1 468 11	A 1A	-0.00	0.040
	105.00	-22.99	-2.32	0.00	-100.20	0.00	100.20	2 267 46	1 133 73	2,860.42	1 432 33	4 25	-0.00	0.001
	110.00	-22.50	-2.30	0.00	-88.66	0.00	88.66	2 186 61	1 093 30	2,659,07	1 331 51	4 68	-0.40	0.000
	112.00	-19.88	-2.13	0.00	-84 07	0.00	84.07	2 154 27	1.077.13	2 580 59	1 292 21	4.87	-0.45	0.074
	115.00	-19.00	-2.08	0.00	-77.67	0.00	77.67	2 105 76	1 052 88	2 465 08	1 234 37	5 16	-0.47	0.072
	120.00	-18 14	-2.03	0.00	-67.27	0.00	67.27	2 024 00	1 012 45	2,400.00	1 140 01	5.67	-0.51	0.072
	125.00	-14 10	-1 70	0.00	-57 14	0.00	57 14	1 944 05	972.03	2,270.43	1 051 12	6.22	-0.54	0.000
	130.00	-13 77	-1.68	0.00	-48.62	0.00	48.62	1 863 20	031.60	1 0 27 17	065.02	6.91	0.57	0.002
	132 12	-13.15	-1.63	0.00	-45.02	0.00	45.02	1 929 02	014.46	1,927.17	020 62	7.07	0.57	0.000
	135.00	-0.43	-1.03	0.00	-40.37	0.00	40.00	1 792 35	801 17	1,000.49	929.02	7.07	-0.59	0.050
	135.87	-9.90	-1.20	0.00	-39.26	0.00	39.26	000 30	499 70	1,006,16	503.83	7.43	-0.61	0.031
	140.00	-7 73	-1 12	0.00	-34 14	0.00	34 14	975.08	487.54	045.00	473.25	8.09	-0.64	0.007
	145.00	-7.26	-1.07	0.00	-28 56	0.00	28.56	044 35	472 17	872 40	436.85	9.00 9.77	-0.68	0.000
	145.00	6.62	1.07	0.00	-20.00	0.00	20.00	012 10	468.00	012.40	400.00	0.77	-0.08	0.073
	155.00	-6.18	-0.95	0.00	-18 23	0.00	18 23	878.60	430.09	731.82	366.45	10.20	-0.73	0.005
	160.00	-5.75	_0.00	0.00	-13.40	0.00	13 /0	843.50	421.90	664 33	332 66	11 11	0.90	0.037
	165.00	-5.75	-0.09	0.00	-13.49	0.00	9 03	800 44	421.00	503.02	207 /2	11.11	-0.00	0.047
	167.00	-3.81	-0.67	0.00	_7 20	0.00	7 20	781 04	300 62	565 20	282 11	12 22	-0.00	0.031
	170.00	-3.49	-0.02	0.00	-7.23	0.00	5 14	751.04	375.07	500.0 0 573 93	200.11	17 95	-0.04	0.031
	175.00	-3.16	-0.57	0.00	-2.50	0.00	2 50	703 42	351 71	458.07	202.30	13.76	-0.85	0.025
	180.00	0.10	_0.02	0.00	0.00	0.00	0.00	A5/ 01	307 /5	306 72	109.65	1/ 67	-0.07	0.010
	100.00	0.00	-9.47	0.00	0.00	0,00	0.00	004.01	021.70	000.1Z	100,00	191.07	-0.00	0.000

Code: ANSI/TIA-222-G

Engineering Number: OAA721430_C3_01

@2007 - 2018 by ATC IP LLC. All rights reserved.

1/19/2018 10:02:57 AM

Site Numl Site Name Customer	ber: 302 e: Wir :: VEI	2506 Inchester RIZON V	CT 3, CT VIRELESS		Engine	Coc eering Numbe	©2007 - 2018 by ATC IP LLC. All rights reserved. 1/19/2018 10:02:57 AM						
Load Ca Calculat	ed Force	- 0.2Sd	s) * DL +	E ELFM	Seisn	nic (Reduce	d DL) Equival	ent Later	al Forces	Method			
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 5.00 10.00 15.00 20.00	-48.59 -46.82 -45.08 -43.35 -41.65	-2.97 -2.98 -2.99 -3.00 -3.01	0.00 0.00 0.00 0.00 0.00	-396.01 -381.15 -366.24 -351.27 -336.25	0.00 0.00 0.00 0.00 0.00	396.01 381.15 366.24 351.27 336.25	5,129.98 5,055.67 4,979.93 4,902.77 4,824.18	2,564.99 2,527.83 2,489.97 2,451.39 2,412.09	11,021.5 10,632.1 10,246.6 9,865.10 9,487.79	5,518.96 5,323.99 5,130.93 4,939.88 4,750.94	0.00 0.01 0.03 0.08 0.14	0.00 -0.02 -0.03 -0.05 -0.07	0.061 0.060 0.059 0.058 0.057
25.00 30.00 35.00 40.00 42.96 45.00	-39.97 -38.31 -36.68 -35.72 -34.75 -32.87	-3.01 -3.01 -3.00 -3.00 -2.99	0.00 0.00 0.00 0.00 0.00	-321.22 -306.17 -291.14 -276.14 -267.28 -261.18	0.00 0.00 0.00 0.00 0.00 0.00	321.22 306.17 291.14 276.14 267.28 261.18	4,744.17 4,662.73 4,579.86 4,491.22 4,424.29 4,378.03	2,372.08 2,331.36 2,289.93 2,245.61 2,212.15 2,189.01	9,114.87 8,746.54 8,383.01 8,016.71 7,778.37 7,615.75	4,564.21 4,379.77 4,197.74 4,014.31 3,894.97 3,813.53	0.22 0.32 0.43 0.57 0.66 0.72	-0.08 -0.10 -0.12 -0.14 -0.15	0.057 0.056 0.055 0.054 0.053
49.04 50.00 55.00 60.00 65.00	-32.58 -31.12 -29.68 -28.26 -26.85	-2.96 -2.94 -2.91 -2.88 -2.84	0.00 0.00 0.00 0.00 0.00 0.00	-249.22 -246.38 -231.70 -217.14 -202.75	0.00 0.00 0.00 0.00 0.00 0.00	249.22 246.38 231.70 217.14 202.75	3,622.99 3,610.23 3,542.95 3,474.23 3,404.09	1,805.12 1,805.12 1,771.47 1,737.12 1,702.05	6,300.42 6,246.74 5,969.33 5,695.71 5,426.05	3,154.89 3,128.01 2,989.10 2,852.09 2,717.06	0.72 0.86 0.90 1.09 1.30 1.54	-0.10 -0.17 -0.17 -0.19 -0.21 -0.23	0.052 0.058 0.057 0.056 0.054 0.052
70.00 75.00 79.00 80.00 85.00	-25.47 -24.37 -24.10 -22.76 -22.08	-2.80 -2.76 -2.75 -2.68 -2.65	0.00 0.00 0.00 0.00 0.00	-188.55 -174.57 -163.55 -160.81 -147.39	0.00 0.00 0.00 0.00 0.00	188.55 174.57 163.55 160.81 147.39	3,332.53 3,242.30 3,164.68 3,145.28 3,048.26	1,666.26 1,621.15 1,582.34 1,572.64 1,524.13	5,160.56 4,873.54 4,641.84 4,584.79 4,304.87	2,584.12 2,440.39 2,324.37 2,295.80 2,155.63	1.79 2.07 2.31 2.37 2.69	-0.25 -0.27 -0.29 -0.29 -0.31	0.050 0.049 0.047 0.047 0.045
87.54 90.00 92.46 95.00 96.00	-21.18 -20.30 -19.68 -19.44 -18.06 -17.17	-2.61 -2.56 -2.52 -2.51 -2.41	0.00 0.00 0.00 0.00	-140.65 -134.24 -127.96 -121.55 -119.05 -109.39	0.00 0.00 0.00 0.00 0.00	140.65 134.24 127.96 121.55 119.05 109.39	2,998.97 2,951.23 2,424.49 2,395.02 2,383.33 2 336.02	1,499.48 1,475.62 1,212.24 1,197.51 1,191.67	4,166.05 4,033.76 3,334.85 3,238.97 3,201.50	2,086.12 2,019.88 1,669.90 1,621.89 1,603.13 1,528.79	2.86 3.02 3.20 3.38 3.46 3.76	-0.32 -0.33 -0.34 -0.35 -0.36	0.044 0.043 0.046 0.045 0.044
103.75 103.75 105.00 110.00 112.00	-16.94 -16.94 -16.01 -15.67 -13.84	-2 34 -2 34 -2 27 -2 24 -2 08	0.00 0.00 0.00 0.00 0.00	-100.57 -100.57 -97.65 -86.32 -81.83	0.00 0.00 0.00 0.00 0.00 0.00	100.57 100.57 97.65 86.32 81.83	2,287.68 2,287.68 2,267.46 2,186.61 2,154.27	1,143.84 1,143.84 1,133.73 1,093.30 1.077.13	2,911.90 2,911.90 2,860.42 2,659.07 2,580.59	1,458.11 1,458.11 1,432.33 1,331.51 1.292.21	4.06 4.06 4.16 4.59 4.77	-0.37 -0.39 -0.39 -0.43 -0.43	0.042 0.040 0.076 0.075 0.072 0.070
115.00 120.00 125.00 130.00 132.12	-13.23 -12.64 -9.82 -9.59 -9.16	-2.03 -1.97 -1.66 -1.64 -1.58	0.00 0.00 0.00 0.00 0.00	-75.58 -65.44 -55.58 -47.28 -43.81	0.00 0.00 0.00 0.00 0.00	75.58 65.44 55.58 47.28 43.81	2,105.76 2,024.90 1,944.05 1,863.20 1,828.92	1,052.88 1,012.45 972.03 931.60 914.46	2,465.08 2,278.43 2,099.13 1,927.17 1,856.49	1,234.37 1,140.91 1,051.12 965.02 929.62	5.05 5.55 6.09 6.66 6.92	-0.46 -0.50 -0.53 -0.56 -0.57	0.068 0.064 0.058 0.054 0.052
135.00 135.87 140.00 145.00 150.00	-6.57 -6.26 -5.38 -5.06 -4.61	-1.25 -1.21 -1.09 -1.04 -0.97	0.00 0.00 0.00 0.00 0.00	-39.25 -38.17 -33.18 -27.74 -22.54	0.00 0.00 0.00 0.00 0.00	39.25 38.17 33.18 27.74 22.54	1,782.35 999.39 975.08 944.35 912.19	891.17 499.70 487.54 472.17 456.09	1,762.57 1,006.16 945.09 872.40 801.24	882.59 503.83 473.25 436.85 401.22	7.27 7.38 7.90 8.58 9.30	-0.59 -0.60 -0.62 -0.67 -0.71	0.048 0.082 0.076 0.069 0.061
155.00 160.00 165.00 167.00 170.00	-4.30 -4.00 -3.89 -2.65 -2.42	-0.92 -0.87 -0.84 -0.60 -0.55	0.00 0.00 0.00 0.00 0.00	-17.69 -13.09 -8.76 -7.07 -5.28	0.00 0.00 0.00 0.00 0.00	17.69 13.09 8.76 7.07 5.28	878.60 843.59 800.44 781.04 751.93	439.30 421.80 400.22 390.52 375.97	731.82 664.33 593.98 565.39 523.82	366.45 332.66 297.43 283.11 262.30	10.06 10.86 11.70 12.04 12.56	-0.75 -0.78 -0.81 -0.82 -0.83	0.053 0.044 0.034 0.028 0.023
180.00	0.00	-0.47	0.00	0.00	0.00	0.00	654.91	327.45	396.72	198.65	14.33	-0.85	0.000

Site Number:	302506	Code:	ANSI/TIA-222-G	@2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	Winchester CT 3, CT	Engineering Number:	OAA721430_C3_01	1/19/2018 10:02:57 AM
Customer:	VERIZON WIRELESS			

Equivalent Modal Forces Analysis

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S s):	0.18
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Importance Factor (I E):	1.50
Site Coefficient F a:	1.60
Site Coefficient F	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.19
Desing Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10
Period Based on Rayleigh Method (sec):	2.66
Redundancy Factor (p):	1.30

Load Case (1.2 + 0.2Sds) * DL + E EMAM

Seismic Equivalent Modal Analysis Method

Segment	Height Above Base (ft)	Weight (lb)	а	Ь	с	Saz	Horizontal Force (lb)	Vertical Force (lb)
47	177.50	255	1.838	1.716	1.044	0.325	108	316
46	172.50	266	1.736	1.263	0.871	0.264	91	330
45	168.50	165	1.656	0.963	0.749	0.219	47	204
44	166.00	134	1.607	0.802	0.680	0,193	34	166
43	162.50	343	1.540	0.605	0.592	0.159	71	424
42	157.50	354	1.447	0.379	0.482	0.115	53	438
41	152.50	365	1.357	0.207	0.388	0.076	36	452
40	147.50	380	1.269	0.080	0.309	0.043	21	471
39	142.50	391	1.185	-0.009	0.243	0.015	7	484
38	137.93	355	1,110	-0.064	0.193	-0.007	-3	439
37	135.43	146	1.070	-0.085	0.169	-0.016	-3	181
36	133.56	502	1.041	-0.097	0.152	-0.023	-15	621
35	131.06	266	1.002	-0.109	0.132	-0.030	-10	329
34	127.50	640	0.948	-0.119	0.107	-0.038	-32	792
33	122.50	690	0.875	-0.121	0.078	-0.045	-41	854
32	117.50	708	0.805	-0.113	0.055	-0.047	-44	877
31	113.50	455	0.751	-0.101	0.041	-0.045	-27	564
30	111.00	394	0.719	-0.092	0.034	-0.042	-22	488
29	107.50	998	0.674	-0.079	0.025	-0.036	-47	1,235
28	104.38	259	0.635	-0.066	0.019	-0.029	-10	320
27	101.88	1,033	0.605	-0.055	0.015	-0.023	-31	1,279
26	98.00	1,114	0.560	-0.038	0.011	-0.012	-17	1,378
25	95,50	281	0.532	-0.028	0.009	-0.004	-2	348
24	93.73	718	0.512	-0.021	0.008	0.001	1	889
23	91.23	1,028	0.485	-0.011	0.007	0.008	11	1,272
22	88.77	1,039	0.460	-0.002	0.006	0.015	21	1,286
21	86.27	784	0.434	0.007	0.006	0.022	22	970
20	82.50	1,560	0.397	0.019	0.007	0.031	62	1.931
19	79.50	315	0.369	0.028	0.008	0.036	15	389
18	77.00	1,268	0.346	0.034	0.009	0.040	67	1,570
17	72.50	1,605	0.307	0.044	0.012	0.046	96	1,987
16	67.50	1,627	0.266	0.052	0.015	0.050	106	2,014
15	62.50	1,650	0.228	0.059	0.020	0.052	111	2,042
14	57.50	1,672	0.193	0.064	0.024	0.052	114	2,069

Site Number:	302506				Code:	ANSI/TIA-222-	-G (2007 - 2018 by ATC	IP LLC. All rights reserved.
Site Name:	Winchester	СТ 3, СТ		Engineering No	umber:	OAA721430_0	C3_01		1/19/2018 10:02:57 AM
Customer:	VERIZON V	VIRELESS							
13		52.50	1,694	0.161	0.067	0.029	0.052	115	2,097
12		49.52	328	0.143	0.068	0.031	0.052	22	406
10		43.98	1.120	0.113	0.009	0.035	0.051	74	1.386
9		41.48	1,107	0.100	0.071	0.037	0.050	72	1,370
8		37.50	1,893	0.082	0.072	0.039	0.049	122	2,343
7		32.50	1,919	0.062	0.072	0.041	0.048	121	2,375
5		27.50	1,940	0.044	0.069	0.042	0.047	119	2,409
4		17.50	1,998	0.018	0.063	0.037	0.043	110	2,441
3		12.50	2,024	0.009	0.054	0.031	0.038	99	2,506
2		7.50	2,050	0.003	0.039	0.022	0.029	77	2,538
1	DUDE	2.50	2,076	0.000	0.015	0.008	0.013	35	2,570
Andrew AB I		180.00	1 49	1.890	1.980	1.140	0.358	1	1
4' Omni		180.00	10	1.890	1.980	1.140	0.358	5	12
Powerwave	Allgon LGP	180.00	42	1.890	1.980	1.140	0.358	20	52
Raycap DC6	5-48-60-18-	180.00	40	1.890	1.980	1.140	0.358	19	50
Ericsson RR	US 11 (Ba	180.00	150	1.890	1.980	1.140	0.358	70	186
Ericsson RR	US 32 (50	180.00	152	1.890	1.980	1.140	0.358	71	189
2' x 4' Recta	100-12 02	180.00	40	1.090	1.900	1.140	0.358	01 10	215
Powerwave	Allaon 777	180.00	105	1.890	1.980	1.140	0.358	49	130
KMW AM-X-	CD-16-65-00	180.00	146	1.890	1.980	1.140	0.358	68	180
CCI HPA-65	R-BUU-H6	180.00	153	1.890	1.980	1.140	0.358	71	189
Flat Low Pro	file Pla	180.00	1,500	1.890	1.980	1.140	0.358	698	1,857
Ericsson KR	Y 112 144	167.00	33	1.627	0.864	0.707	0.204	9	41
Ericsson AlF	(21, 1.3 2 21 1 2	167.00	249	1.027	0.804	0.707	0.204	60 65	308
Round T-Arr	יבו, ו.ט ח	167.00	750	1.627	0.864	0.707	0.204	198	928
Sinclair SD2	10-SF2P4	150.00	8	1.312	0.138	0.347	0.059	1	10
Round Side	Arm	150.00	150	1.312	0.138	0.347	0.059	11	186
Telewave Al	NT150D (5	140.00	5	1.143	-0.042	0.215	0.002	0	6
Bird 432-83h	H-01-T	140.00	50	1.143	-0.042	0.215	0.002	0	62
Sinclair SC4	32D-HE6I	140.00	34	1.143	-0.042	0.215	0.002	0	42
Round Side	Arm	140.00	450	1.143	-0.042	0.215	0.002	1	557
Alcatel-Luce	nt 800 M	135.00	185	1.063	-0.088	0.165	-0.018	-4	229
Alcatel-Luce	nt 1900M	135.00	132	1.063	-0.088	0.165	-0.018	-3	163
Alcatel-Luce	Int TD-RR	135.00	210	1.063	-0.088	0.165	-0.018	-5	260
RES APXVI	M14-0-120	135.00	159	1.003	-0.088	0.165	-0.018	-4	196
Flat Platform	w/Han	135.00	2.000	1.063	-0.088	0.165	-0.018	-46	212
Nokia B5 RF	RH4x40-850	125.00	146	0.911	-0.122	0.092	-0.043	-8	180
Alcatel-Luce	nt B25 R	125.00	159	0.911	-0.122	0.092	-0.043	-9	197
Alcatel-Luce	nt RRH2x	125.00	170	0.911	-0.122	0.092	-0.043	-9	211
Alcatel-Luce	6C-12AB-02	125.00	21	0.911	-0.122	0.092	-0.043	-1	26
Antel I PA-8	0080/6CF	125.00	42	0.911	-0.122	0.092	-0.043	-11	249 52
Commscope	JAHH-65B-	125.00	364	0.911	-0.122	0.092	-0.043	-20	450
Antel LPA-8	0063/6CF	125.00	27	0.911	-0.122	0.092	-0.043	-1	33
Round Low	Profile Pl	125.00	1,500	0.911	-0,122	0.092	-0.043	-83	1,857
Decidel DB8	H44H90E-XY	112.00	168	0.732	-0.096	0.036	-0.043	-9	208
	R.2065175.C	105.00	1,500	0.732	-0.096	0.030	-0.043	-85	1,85/
Andrew DB5	i86	96.00	17	0.043	-0.008	0.009	0.031	-3 0	90 21
Bird 429-831		96.00	20	0.538	-0.030	0.009	-0.006	0	25
Flat Side An	n	96.00	450	0.538	-0.030	0.009	-0.006	-3	557
PCTEL GPS	5-TMG-HR-	79.00	1	0.364	0.029	0.008	0.037	0	1
GPS		30.00	10	0.053	0.071	0.042	0.048	1	12
			30,433	91.991	33.283	28.349	0.998	3,252	12,320

Site Number:	302506				Code: A	NSI/TIA-22	22-G @2007 ·	- 2018 by ATC IP LLC	. All rights reserved.
Site Name:	Winchester CT	3. CT		Engineering Nu	imber C	AA721430	C3_01	- 1/19	/2018 10 02 57 AM
Customori				2.19.1001119110					2010 10:02:07 7.11
	VENIZON MIN								
Load Case (0 9 - 0 2Sds) *		ЕМАМ	Seismic (Red	luced DL) Equivale	nt Modal Anal	usis Method	
<u></u>	0.0 0.2003)	aiabt					int woodal Analy		
	AI	bove							N 40 41 - 1
	1	Base	Weight					Force	Force
Segment		(ft)	(lb)	а	Ь	с	Saz	(lb)	(lb)
47		177.50	255	1.838	1.716	1.044	0.325	108	220
46		172.50	266	1.736	1.263	0.871	0.264	91	230
45		168.50	165	1.656	0.963	0.749	0.219	47	142
44		165.00	134	1.607	0.802	0.000	0.193	34	116
43		102.50	354	1.540	0.005	0.392	0,159	53	295
41		152.50	365	1.357	0.207	0.388	0.076	36	315
40		147.50	380	1.269	0.080	0.309	0.043	21	328
39		142.50	391	1.185	-0.009	0.243	0.015	7	337
38		137.93	355	1.110	-0.064	0.193	-0.007	-3	306
37		135.43	146	1.070	-0.085	0.169	-0.016	-3	126
36		133.56	502	1.041	-0.097	0.152	-0.023	-15	433
35		131.06	266	1.002	-0.109	0.132	-0.030	-10	229
34		127.50	640	0.948	-0.119	0.107	-0.038	-32	552
33		122.30	090	0.875	-0.121	0.076	-0.045	-41	595
31		117.50	455	0.000	-0.113	0.033	-0.047	-44	303
30		111.00	394	0.719	-0.092	0.034	-0.042	-27	340
29		107.50	998	0.674	-0.079	0.025	-0.036	-47	861
28		104.38	259	0.635	-0.066	0.019	-0.029	-10	223
27		101.88	1,033	0.605	-0.055	0.015	-0.023	-31	891
26		98.00	1,114	0.560	-0.038	0.011	-0.012	-17	960
25		95.50	281	0.532	-0.028	0.009	-0.004	-2	242
24		93.73	718	0.512	-0.021	0.008	0.001	1	619
23		91.23	1,028	0.485	-0.011	0.007	0.008	11	886
22		00.//	1,039	0.400	-0.002	0.000	0.015	21	896
20		82 50	1 560	0.434	0.007	0.000	0.022	62	1 345
19		79.50	315	0.369	0.028	0.008	0.036	15	271
18		77.00	1,268	0.346	0.034	0.009	0.040	67	1,093
17		72.50	1,605	0.307	0.044	0.012	0.046	96	1,384
16		67.50	1,627	0.266	0.052	0.015	0.050	106	1,403
15		62.50	1,650	0.228	0.059	0.020	0.052	111	1,422
14		57.50	1,672	0.193	0.064	0.024	0.052	114	1,441
13		52.50	1,694	0.161	0.067	0.029	0.052	115	1,461
12		49.52	2 190	0.145	0.000	0.031	0.052	22 146	203 1 888
10		43.98	1.120	0.113	0.070	0.035	0.051	74	965
9		41.48	1,107	0.100	0.071	0.037	0.050	72	955
8		37.50	1,893	0.082	0.072	0.039	0.049	122	1.632
7		32.50	1,919	0.062	0.072	0.041	0.048	121	1,655
6		27.50	1,946	0.044	0.071	0.042	0.047	119	1,678
5		22.50	1,972	0.030	0.068	0.040	0.045	116	1,701
4		17.50	1,998	0.018	0.063	0.037	0.042	110	1,723
3		12.50	2,024	0.009	0.054	0.031	0.038	99	1,745
2		7.00	2,030	0.003	0.039	0.022	0.029	11	1,708
	DMDF-	180.00	2,070	1 800	1 980	1.140	0.013	30	1,790
Powerwave A	llaon TT1	180.00	48	1 890	1 980	1.140	0.358	22	41
4' Omni		180.00	10	1.890	1.980	1.140	0.358	5	9
Powerwave A	ligon LGP	180.00	42	1.890	1.980	1.140	0.358	20	36
Raycap DC6-	48-60-18-	180.00	40	1.890	1.980	1.140	0.358	19	34
Ericsson RRU	IS 11 (Ba	180.00	150	1.890	1.980	1.140	0.358	70	129
Ericsson RRU	JS 32 (50	180.00	152	1.890	1.980	1.140	0.358	71	131
Ericsson RRU	IS-12 B2	180.00	174	1.890	1.980	1.140	0.358	81	150
Z' X 4' Rectan	gular	190.00	40	1.890	1.980	1.140	0.358	19	34

U

•

Site Number:	302506				Code:	ANSI/TIA-222-	-G (2007 - 2018 by ATC	IP LLC. All rights reserved.
Site Name:	Winchester	СТ 3. СТ		Enaineerina N	umber:	OAA721430 (C3 01		1/19/2018 10:02:57 AM
0									
Customer:	VERIZON	IRELESS							
Powerwave	Allaon 777	180.00	105	1.890	1.980	1.140	0 358	49	
KMW AM-X-	CD-16-65-00	180.00	146	1.890	1.980	1.140	0.358	68	125
CCI HPA-65	R-BUU-H6	180.00	153	1.890	1.980	1.140	0.358	71	132
Flat Low Pro	file Pla	180.00	1,500	1.890	1.980	1.140	0.358	698	1,293
Ericsson KR	Y 112 144	167.00	33	1.627	0.864	0.707	0.204	9	28
Ericsson AIR	₹21, 1.3	167.00	249	1.627	0.864	0.707	0.204	66	215
Ericsson AIR	21, 1.3	167.00	244	1.627	0.864	0.707	0.204	65	211
Round T-Arn	n	167.00	750	1.627	0.864	0.707	0.204	198	647
Sinclair SD2	10-SF2P4	150.00	8	1.312	0.138	0.347	0.059	1	7
Round Side /	Arm	150.00	150	1.312	0.138	0.347	0.059	11	129
Telewave AN	NT150D (5	140.00	5	1.143	-0.042	0.215	0.002	0	4
Bird 432-83H	1-01-T	140.00	50	1.143	-0.042	0.215	0.002	0	43
Decibel DB8	09K-XT	140.00	90	1.143	-0.042	0.215	0.002	0	78
Sinclair SC4	32D-HF6L	140.00	34	1.143	-0.042	0.215	0.002	0	29
Round Side	Arm	140.00	450	1.143	-0.042	0.215	0.002	1	388
Alcatel-Luce	nt 800 M	135.00	185	1.063	-0.088	0.165	-0.018	-4	160
Alcatel-Luce	nt 1900M	135.00	132	1.063	-0.088	0.165	-0.018	-3	114
Alcatel-Luce	nt TD-RR	135.00	210	1.063	-0.088	0.165	-0.018	-5	181
RFS APXVT	M14-C-I20	135.00	159	1.063	-0.088	0.165	-0.018	-4	137
RFS APXVS	PP18-C-A20	135.00	171	1.063	-0.088	0.165	-0.018	-4	147
Flat Platform	w/Han	135.00	2,000	1.063	-0.088	0.165	-0.018	-46	1,724
Nokia B5 RR	RH4x40-850	125.00	146	0.911	-0.122	0.092	-0.043	-8	125
Alcatel-Luce	nt B25 R	125.00	159	0.911	-0.122	0.092	-0.043	-9	137
Alcatel-Luce	nt RRH2x	125.00	170	0.911	-0.122	0.092	-0.043	-9	147
RFS DB-B1-	6C-12AB-0Z	125.00	21	0.911	-0.122	0.092	-0.043	-1	18
Alcatel-Luce	ni Boba	125.00	201	0.911	-0.122	0.092	-0.043	-11	173
Antel LPA-8	0080/6CF	125.00	42	0.911	-0.122	0.092	-0.043	•2	36
Commscope	JAHH-65B-	125.00	364	0.911	-0.122	0.092	-0.043	-20	314
Antel LPA-80		125.00	27	0.911	-0.122	0.092	-0.043	-1	23
Round Low I		125.00	1,500	0.911	-0.122	0.092	-0.043	-83	1,293
Decider DBo		112.00	100	0.732	-0.090	0.030	-0.043	-9	145
		112.00	1,500	0.732	-0.090	0.030	-0.043	-65	1,293
KES APAVI	8-2003173-0	105.00	79	0.043	-0.008	0.020	-0.031	-3	68
Andrew UBS		96.00	17	0.538	-0.030	0.009	-0.006	U	14
Elet Side Arr	1*U I*I	90.00	2U 450	0.538	-0.030	0.009	-0.006	U	17
		30.00	450	0.538	-0.030	0.009	-0.006	-3	388
CDS		79.00	10	0.304	0.029	0.000	0.037	U 4	1
953		30.00	10	0.000	0.071	0.042	0.048	1	9
			58,433	87.991	33.295	28.349	6.989	3,252	50,384

Site Number:	302506
--------------	--------

Site Name: Winchester CT 3, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G

@2007 - 2018 by ATC IP LLC. All rights reserved.

Engineering Number: OAA721430_C3_01

1/19/2018 10:02:57 AM

Load Case (1.2 + 0.2Sds) * DL + E EMAM Seismic Equivalent Modal Analysis Method

Calculated Forces

	Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
	Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
	(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
-					,									
	0.00	-69.76	-3.23	0.00	-378.33	0.00	378.33	5,129.98	2,564.99	11,021.5	5,518.96	0.00	0.00	0.061
	5.00	-67.22	-3.17	0.00	-362.21	0.00	362.21	5,055.67	2,527.83	10,632.1	5,323.99	0.01	-0.02	0.060
	10.00	-64.71	-3.08	0.00	-346.38	0.00	346,38	4,979.93	2,489.97	10,246.6	5,130.93	0.03	-0.03	0.059
	15.00	-62.24	-2.99	0.00	-330.95	0.00	330,95	4,902.77	2,451.39	9,865.10	4,939.88	0.07	-0.05	0.058
	20.00	-59.80	-2.89	0.00	-316.00	0.00	316.00	4,824.18	2,412.09	9,487.79	4,750.94	0.13	-0.06	0.057
	25.00	-57.39	-2.78	0.00	-301.56	0.00	301.56	4,744,17	2,372.08	9,114.87	4,564.21	0.21	-0.08	0.056
	30.00	-55.00	-2.67	0.00	-287.65	0.00	287.65	4,662.73	2,331.36	8,746.54	4,379.77	0.30	-0.10	0.055
	35.00	-52.65	-2.56	0.00	-274.29	0.00	274.29	4,579.86	2,289.93	8,383.01	4,197.74	0.41	-0.11	0.054
	40.00	-51.28	-2.50	0.00	-261.47	0.00	261.47	4 491 22	2,245.61	8,016.71	4,014.31	0.54	-0.13	0.054
	42.96	-49.90	-2.43	0.00	-254.08	0.00	254.08	4,424.29	2,212.15	7,778.37	3,894.97	0.62	-0.14	0.053
	45.00	-47.19	-2.29	0.00	-249.11	0.00	249.11	4,378.03	2,189.01	7,615.75	3,813.53	0.68	-0.15	0.052
	49.04	-46.78	-2.27	0.00	-239.87	0.00	239,87	3,622.99	1,811.50	6,300.42	3,154.89	0.81	-0.16	0.059
	50.00	-44.68	-2.16	0.00	-237.70	0.00	237.70	3,610.23	1,805.12	6,246.74	3,128.01	0.85	-0.17	0.058
	55.00	-42.61	-2.05	0.00	-226.90	0.00	226.90	3.542.95	1.771.47	5,969.33	2,989,10	1.03	-0.18	0.057
	60.00	-40.57	-1.95	0.00	-216.64	0.00	216.64	3,474,23	1.737.12	5,695,71	2,852.09	1.23	-0.20	0.056
	65.00	-38.56	-1.85	0.00	-206.90	0.00	206.90	3,404,09	1,702.05	5.426.05	2,717.06	1.46	-0.22	0.056
	70.00	-36.57	-1.76	0.00	-197.66	0.00	197.66	3.332.53	1.666.26	5,160.56	2,584.12	1.70	-0.24	0.055
	75.00	-35.00	-1.70	0.00	-188.87	0.00	188.87	3,242.30	1,621.15	4,873.54	2,440.39	1.97	-0.27	0.055
	79.00	-34.61	-1.69	0.00	-182.09	0.00	182.09	3,164,68	1.582.34	4.641.84	2.324.37	2.20	-0.28	0.055
	80.00	-32.68	-1.62	0.00	-180.40	0.00	180.40	3,145,28	1.572.64	4.584.79	2,295,80	2.26	-0.29	0.054
	85.00	-31.71	-1.60	0.00	-172.30	0.00	172.30	3.048.26	1 524 13	4.304.87	2,155.63	2.57	-0.31	0.054
	87.54	-30.42	-1.58	0.00	-168.22	0.00	168.22	2,998,97	1,499,48	4,166.05	2.086.12	2.74	-0.32	0.054
	90.00	-29.15	-1.57	0.00	-164.33	0.00	164.33	2,951,23	1 475 62	4,033,76	2,019,88	2.91	-0.33	0.053
	92.46	-28.26	-1.57	0.00	-160.48	0.00	160.48	2,424,49	1.212.24	3.334.85	1.669.90	3.08	-0.34	0.059
	95.00	-27.91	-1.57	0.00	-156.49	0.00	156.49	2,395,02	1,197,51	3,238,97	1.621.89	3.27	-0.36	0.058
	96.00	-25.93	-1.59	0.00	-154.91	0.00	154.91	2.383.33	1.191.67	3.201.50	1.603.13	3.34	-0.36	0.058
	100.00	-24.65	-1.62	0.00	-148.57	0.00	148.57	2.336.02	1.168.01	3.053.03	1.528.79	3.66	-0.38	0.057
	103.75	-24.33	-1.63	0.00	-142.50	0.00	142.50	2,287,68	1,143.84	2,911,90	1.458.11	3.97	-0.40	0.056
	103.75	-24.33	-1.63	0.00	-142.50	0.00	142 50	2 287.68	1 143 84	2 911 90	1 458 11	3.97	-0.40	0.108
	105.00	-23.00	-1.68	0.00	-140.46	0.00	140.46	2.267.46	1.133.73	2,860.42	1.432.33	4.07	-0.41	0.108
	110.00	-22.51	-1.72	0.00	-132.04	0.00	132.04	2,186.61	1.093.30	2,659.07	1.331.51	4.53	-0.46	0.109
	112.00	-19.88	-1.83	0.00	-128.61	0.00	128.61	2,154.27	1.077.13	2.580.59	1.292.21	4.73	-0.48	0.109
	115.00	-19.00	-1.88	0.00	-123.13	0.00	123.13	2,105.76	1.052.88	2,465.08	1,234,37	5.04	-0.52	0.109
	120.00	-18.14	-1.93	0.00	-113.74	0.00	113.74	2.024.90	1.012.45	2,278,43	1.140.91	5.62	-0.58	0.109
	125.00	-14.09	-2.08	0.00	-104.10	0.00	104.10	1,944.05	972.03	2.099.13	1.051.12	6.25	-0.64	0.106
	130.00	-13.76	-2.09	0.00	-93.71	0.00	93.71	1.863.20	931.60	1,927,17	965.02	6.95	-0.70	0.105
	132 12	-13 14	-2 11	0.00	-89 27	0.00	89 27	1 828 92	914 46	1 856 49	929.62	7 27	-0.72	0.103
	135.00	-9.42	-2.13	0.00	-83.20	0.00	83.20	1,782.35	891.17	1,762,57	882.59	7.72	-0.76	0.100
	135.87	-8,98	-2.14	0.00	-81.34	0.00	81.34	999.39	499.70	1.006.16	503.83	7.86	-0.77	0.170
	140.00	-7.71	-2.12	0.00	-72.52	0.00	72.52	975.08	487.54	945.09	473.25	8.55	-0.83	0.161
	145.00	-7.24	-2.10	0.00	-61.92	0.00	61.92	944.35	472.17	872.40	436.85	9.46	-0.92	0.149
	150.00	-6.59	-2.05	0.00	-51.40	0.00	51 40	912 19	456.09	801 24	401 22	10.48	-1.02	0 135
	155.00	-6.15	-2.00	0.00	-41.13	0.00	41.13	878.60	439.30	731.82	366.45	11.60	-1.11	0.119
	160.00	-5.73	-1.93	0.00	-31.11	0.00	31.11	843.59	421.80	664.33	332.66	12.80	-1.19	0.100
	165.00	-5.56	-1.90	0.00	-21.46	0.00	21.46	800.44	400.22	593,98	297.43	14.08	-1.26	0.079
	167.00	-3.78	-1.48	0.00	-17.66	0.00	17.66	781.04	390.52	565.39	283.11	14.61	-1.28	0.067
	170.00	-3.45	-1.38	0.00	-13.23	0.00	13.23	751.93	375.97	523.82	262.30	15.43	-1.31	0.055
	175.00	-3.14	-1.27	0.00	-6.33	0.00	6.33	703.42	351.71	458.07	229.37	16.83	-1.35	0.032
	180.00	0.00	-1.19	0.00	0.00	0.00	0.00	654.91	327.45	396.72	198.65	18.26	-1.37	0.000

Site Numb	per: 302	506				Code:	ANSI/TIA-	222-G	@007 - 20	18 by ATC	IP LLC. A	Il rights res	served.
Site Name	e: Wir	chester	ст з, ст		Engine	ering Number:	OAA72143	30_C3_01			1/19/20	18 10:02:	57 AM
Customer	: VEI		VIRELESS		-			_					
Load Ca	se (0.	9 - 0.2S	ds) * DL -		Seisn	nic (Reduced [DL) Equiva	lent Moda	al Analysi	s Method			
Calculate	ad Force	e			-				······································				
Oalculate		<u> </u>											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
Elev	FY (-)	FX (-)	MY	MŽ (filiar)	MX	Moment	Pn	Vn	Tn	Mn (ft. luine)	Deflect	Rotation	D _1'-
(π)	(KIPS)	(KIPS)	(п-кірз)	(п-кips) (π-кірs)	(π-kips)	(KIPS)	(KIPS)	(п-кірз)	(π-kips)	(III)	(aeg)	Ratio
0.00	-48.59	-3.22	0.00	-370.99	0.00	370.99	5,129.98	2,564.99	11,021.5	5,518.96	0.00	0.00	0.057
10.00	-45.08	-3.07	0.00	-339.09	0.00	339.09	4,979,93	2,489.97	10,246.6	5,130.93	0.01	-0.02	0.055
15.00	-43.35	-2.97	0.00	-323.74	0.00	323,74	4,902.77	2,451.39	9,865.10	4,939.88	0.07	-0.05	0.054
20.00	-41.65	-2.86	0.00	-308.89	0.00	308.89	4,824.18	2,412,09	9,487.79	4,750.94	0.13	-0.06	0.053
30.00	-38.31	-2.64	0.00	-280.79	0.00	280.79	4,662.73	2,331.36	8,746.54	4,379.77	0.20	-0.09	0.052
35.00	-36.68	-2.53	0.00	-267.58	0.00	267.58	4,579.86	2,289.93	8,383.01	4,197.74	0.40	-0.11	0.051
40.00	-35.72	-2.46	0.00	-254.95	0.00	254.95	4,491.22	2,245.61	8,016.71	4,014.31	0.53	-0.13	0.050
42.90	-34.70	-2.39	0.00	-247.67 -242.78	0.00	247.67	4,424.29	2,212.15	7 615 75	3,894.97	0.61	-0.14 -0.14	0.050
49.04	-32.59	-2.23	0.00	-233.71	0.00	233.71	3,622.99	1,811.50	6,300.42	3,154.89	0.80	-0.16	0.055
50.00	-31.13	-2.11	0.00	-231.57	0.00	231.57	3,610.23	1,805.12	6,246.74	3,128.01	0.83	-0.16	0.054
55.00	-29.68	-2.01	0.00	-221.00	0.00	221.00	3,542.95	1,//1.4/	5,969.33	2,989.10	1.01	-0.18	0.053
65.00	-26.86	-1.80	0.00	-201.47	0.00	201.47	3,404.09	1,702.05	5,426.05	2,717.06	1.43	-0.20	0.053
70.00	-25.47	-1.71	0.00	-192.48	0.00	192.48	3,332.53	1,666.26	5,160.56	2,584.12	1.66	-0.24	0.051
75.00	-24.38	-1.64	0.00	-183.95	0.00	183.95	3,242.30	1,621.15	4,873.54	2,440.39	1.93	-0.26	0.051
80.00	-24.11	-1.57	0.00	-175.75	0.00	175.75	3,145,28	1,562.54	4,041.04	2,324.37	2.15	-0.28	0.051
85.00	-22.09	-1.55	0.00	-167.92	0.00	167.92	3,048.26	1,524.13	4,304.87	2,155.63	2.51	-0.30	0.051
87.54	-21.19	-1.53	0.00	-163.99	0.00	163.99	2,998.97	1,499.48	4,166.05	2,086.12	2.68	-0.31	0.051
90.00	-20.30	-1.51	0.00	-160.23	0.00	160.23	2,951.23	1,4/5.62	4,033.76	2,019.88	2.84	-0.32	0.050
95.00	-19.44	-1.52	0.00	-152.66	0.00	152.66	2,395.02	1,197.51	3,238.97	1.621.89	3.19	-0.35	0.055
96.00	-18.06	-1.53	0.00	-151.14	0.00	151.14	2,383.33	1,191.67	3,201.50	1,603.13	3.27	-0.35	0.054
100.00	-17.17	-1.56	0.00	-145.01	0.00	145.01	2,336.02	1,168.01	3,053.03	1,528.79	3.57	-0.37	0.054
103.75	-16.95	-1.50	0.00	-139.15	0.00	139.15	2,207.00	1,143,04	2,911.90	1,450.11	3.87	-0.39	0.000
105.00	-16.02	-1.63	0.00	-137.18	0.00	137.18	2,267.46	1,133.73	2,860.42	1,432.33	3.97	-0.40	0.103
110.00	-15.68	-1.66	0.00	-129.04	0.00	129.04	2,186.61	1,093.30	2,659.07	1,331.51	4.42	-0.45	0.104
112.00	-13.84	-1.77	0.00	-125.72	0.00	125.72	2,154.27	1,077,13	2,580.59	1,292.21	4.61	-0.47	0.104
120.00	-12.63	-1.87	0.00	-111.32	0.00	111.32	2.024.90	1.012.45	2,403.00	1.140.91	5.48	-0.56	0.104
125.00	-9.81	-2.03	0.00	-101.98	0.00	101.98	1,944.05	972.03	2,099.13	1,051.12	6.10	-0.62	0.102
130.00	-9.58	-2.04	0.00	-91.86	0.00	91.86	1,863.20	931.60	1,927.17	965.02	6.79	-0.68	0.100
132.12	-9.15	-2.05	0.00	-81.61	0.00	87.53 81.61	1,828.92	914.40	1,850.49	929.62	7.09	-0.71	0.099
135.87	-6.25	-2.10	0.00	-79.79	0.00	79.79	999.39	499.70	1,006.16	503.83	7.67	-0.76	0.165
140.00	-5.37	-2.08	0.00	-71.13	0.00	71.13	975.08	487.54	945.09	473.25	8.35	-0.81	0.156
145.00	-5.03	-2.06	0.00	-60.73	0.00	60.73 50.40	944.35	4/2.17	801.240	436.85	9,24	-0.90	0.144
155.00	-4.27	-1.96	0.00	-40.33	0.00	40.33	878.60	439.30	731.82	366.45	11.33	-1.08	0.115
160.00	-3.98	-1.89	0.00	-30.51	0.00	30.51	843.59	421.80	664.33	332.66	12.50	-1.16	0.096
165.00	-3.86	-1.86	0.00	-21.05	0.00	21.05	800.44	400.22	593.98	297.43	13.76	-1.23	0.076
170.00	-2.03	-1.40	0.00	-17.55	0.00	12.98	761.04	375.97	523.89	262.11	14.28	-1.20	0.053
175.00	-2.18	-1.24	0.00	-6.21	0.00	6.21	703.42	351.71	458.07	229.37	16.45	-1.32	0.030
180.00	0.00	-1.19	0.00	0.00	0.00	0.00	654.91	327.45	396.72	198.65	17.84	-1.34	0.000

Site Number:	302506	Code:	ANSI/TIA-222-G	2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	Winchester CT 3, CT	Engineering Number:	OAA721430_C3_01	1/19/2018 10:02:57 AM
Customer:	VERIZON WIRELESS			

Analysis Summary

	•		- Rea	actions –			Ma	x Usage
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.6W	34.75	0.00	70.07	0.00	0.00	4116.76	135.87	0.67
0.9D + 1.6W	33.28	0.00	52.54	0.00	0.00	3962.17	135.87	0.64
1.2D + 1.0Di + 1.0Wi	6.58	0.00	143.59	0.00	0.00	888.66	135.87	0.21
(1.2 + 0.2Sds) * DL + E ELFM	2.97	0.00	69.76	0.00	0.00	402.86	135.87	0.09
(1.2 + 0.2Sds) * DL + E EMAM	3.23	0.00	69.76	0.00	0.00	378.33	135.87	0.17
(0.9 - 0.2Sds) * DL + E ELFM	2.97	0.00	48.59	0.00	0.00	396.01	135.87	0.08
(0.9 - 0.2Sds) * DL + E EMAM	3.22	0.00	48.59	0.00	0.00	370.99	135.87	0.16
1.0D + 1.0W	9.28	0.00	58.43	0.00	0.00	1110.30	135.87	0.19

Additional Steel Summary

		Interme	diate Co	nnectors	Upp	per Terr	ninatior	1	Low	er Tem	ninatio	٦			
Flev	Flev		Shear	Shear		Co	nnector	5		Co	nnecto	rs	Ma	x Memi	рег
From	То	VQ/I	Applied	phiVn	MQ/I	phiVn	Num	Num	MQ/I	phiVn	Num	Num	Pu	phiPn	
(ft)	(ft) Member	(lb/in)	(kips)	(kips)	(kips)	(kips)	Reqd /	Actual	(kips)	(kips)	Reqd	Actual	(kip)	(kip)	Ratio
0.00 1	03. (4) SOL-#20 All Thre	300.5	5 9.0	16.8	140.7	12.0	12	24	0.0	12.0	0	0	218.0	330.5	0.660

Site Name: Site Number:	Winchester CT 3, CT 302506		Program Las American To	t Updated: wer Corporation	5/13/2014
Engineer:	Trevor.Ridilla				
Engineering Number:	OAA721430				Ţ
Date:	01/19/18				
Design Base Loads (Factored) - Analy	sis per TIA-222-G Sta	ndards			
Analyze or Design a Foundation?	Analyze				1 + 1
Foundation Mapped:	N				
Moment (M):	4116.8	k-ft			
Shear/Leg (V):	37.8	k			
Axial Load (P):	70.1	k			
Uplift/Leg (U):	0.0	k		L	
Tower Type (GT / SST / MP):	MP				
Diameter of Caisson (d):			7.0	ft	
Caisson Embedment (L-h):			17.0	ft 📃	Engineer Notes
Caisson Height Above Ground (h):			1.0	ft	
Depth Below Ground Surface to Wate	er Table (w):		99.0	ft	/// A6
Unit Weight of Concrete:			150.0	pcf	
Unit Weight of Water:			62.4	pcf	
Tension Skin Friction/Compression Sk	in Friction:		1.00		
Pullout Angle:			30.0	degrees	$\mathbf{u} = \mathbf{u} + \mathbf{x} = \mathbf{u}$
Soil Mechanical Properties					

Soil Mechanical Properties

Dep	th (ft)	Ysoil	Cohesion	ф	Ultimate Skin	Ultimate Bearing
Тор	Bottom	(pcf)	(psf)	(degree)	Friction (psf)	Pressure (psf)
0.0	3.5	165	0	0	0	0
3.5	7.5	165	6000	D	2700	0
7.5	18.0	165	6000	0	2700	11277
2.1						

Required Embedment:	14.0 ft - OK, Caisson Embedment Satisfactory
Volume of Concrete:	$692.7 \text{ ft}^3 = 25.7 \text{ yd}^3$
Weight of Concrete (Buoyancy Effect Considered):	103.9 k
Average Soil Unit Weight:	165.0 pcf
Skin Friction Resistance:	801.6 k
Compressive Bearing Resistance:	434.0 k
Pullout Weight (Minus Concrete Weight):	585.7 k
Nominal Uplift Capacity per Leg ($\phi_s T_n$):	439.3 k
Nominal Compressive Capacity per Leg ($\phi_s P_n$):	926.7 k
P _u :	58.3 k
$T_u/\phi_s T_n$:	0.00 Result: OK
Pu/øsPn:	0.06 Result: OK
Total Lateral Resistance:	4082.8 k
Inflection Point (Below Ground Surface):	10.8 ft
Design Overturning Moment At Inflection Point (M _p):	4561.1 k-ft
Nominal Moment Capacity (φ _s M _n):	9851.4 k-ft
M _D /\$ _s M _n :	0.46 Result: OK
φ s :	0.75

Caisson Strength Capacity

Concrete Compressive Strength (f'_c): Vertical Steel Rebar Size #: Vertical Steel Rebar Area: # of Vertical Steel Rebars: Vertical Steel Rebar Yield Strength (F_v): Horizontal Tie / Stirrup Size #: Horizontal Tie / Stirrup Area: Design Horizontal Tie / Stirrup Spacing: Horizontal Tie / Stirrup Steel Yield Strength (F_v): Rebar Cage Diameter: Strength Bending/Tension Reduction Factor (ϕ_B): Strength Shear Reduction Factor (ϕ_v) : Strength Compression Reduction Factor (ϕ_v): Steel Elastic Modulus: Design Moment (M_u): Nominal Moment Capacity ($\phi_B M_n$): $M_u/\phi_B M_n$: Design Shear (V_u): Nominal Shear Capacity $(\phi_V V_n)$: $V_u/\phi_V V_n$: Design Tension (T_u): Nominal Tension Capacity $(\phi_T T_n)$: $T_{u}/\phi_{T}T_{n}$: Design Compression (P_u): Nominal Compression Capacity ($\phi_P P_n$): $P_u/\phi_P P_n$: Bending Reinforcement Ratio:

 $M_u/\phi_B M_n + T_u/\phi_T T_n$:

4000 psi 11 1.56 in² 42 60 ksi 5 0.31 in² 12.0 in 60 ksi 76.0 in 0.90 ACI318-05 - 9.3.2.1 0.75 ACI318-05 - 9.3.2.3 0.65 ACI318-05 - 9.3.2.2 29000 ksi 4164.5 k-ft 10956.3 k-ft - ACI318-005 - 10.2 0.38 Result: OK 612.4 k 685.3 k - ACI318-05 - 11.3.1.1 or 11.5.7.2 0.89 Result: OK 0.0 k 3538.1 k - ACI318-05 - 10.2 0.00 Result: OK 58.3 k 9682.0 k - ACI318-05 - 10.3.6.2 0.01 Result: OK 0.012 ACI318-05 - 10.8.4 & 10.9.1

0.38 Result: OK

	Plate Type	Baseplate	
a	Pole Diameter	52.75	in
late	Pole Thickness	0.4375	in
Β	Plate Diameter	68	in
Bue	Plate Thickness	2	in
ΪĮ,	Plate Fy	50	ksi
ase	Weld Length	0.375	in
ö		1448.04	k-in
	Applied	435.00	k-in
	#	12	Show
	Thickness	0.75	in
SI 8	Length	6	in
fen	Height	15	in
Stif	Chamfer	1	in
	Offset Angle	22.5	0
	Fy	36	ksi
_			
	#	16	
	Bolt Circle	62	in
	(R)adiai / (S)quare	R	
	Diameter	2 25	in
S.	Hole Diameter	2.25	in
in the second se		A615-75	
"	Fv	75	ksi
	Fu	100	ksi
	ه. Resistance	259.82	k
	Applied	151.30	k
	# ~	4	
	DYW Circle	59 625	in
١Ŧ	Offset Angle	11.25	0
lan I	Type	#20	
Ce l	Diameter	2.5	in
ĮŠ.	Fu	100	ksi
ĉi.	ϕ_s Resistance	392.70	k
Ľ	Applied	212.73	k
	#	0	
Í			
Í			
0			
뙾			
8			
a l			
ШЩ.			
Í			
Í			
L			

Reinforcement Stress Ratio:

(Pass)

0.54

Site Name: Winchester East CT Cumulative Power Density

Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
1970	1	5062	5062	125	0.1165	1.0	11.65%
869	1	3709	3709	125	0.0854	0.579333333	14.74%
880	3	498	1494	125	0.0344	0.586666667	5.86%
2145	1	7770	7770	125	0.1788	1.0	17.88%
746	1	2062	2062	125	0.0475	0.497333333	9.54%
	Operating Frequency (MHz) 1970 869 2145 746	Operating Frequency Number of Trans. (MHz) 1 1970 1 869 1 880 3 2145 1 746 1	Operating Frequency Number of Trans. ERP Per Trans. (MHz) (watts) 1970 1 5062 869 1 3709 880 3 498 2145 1 7770 746 1 2062	Operating Frequency Number of Trans. ERP Per Trans. Total ERP (MHz) (watts) (watts) 1970 1 5062 5062 869 1 3709 3709 880 3 498 1494 2145 1 7770 7770 746 1 2062 2062	Operating FrequencyNumber of Trans.ERP Per Trans.Total ERPDistance to Target(MHz)(watts)(watts)(feet)1970150625062125869137093709125880349814941252145177707770125746120622062125	Operating FrequencyNumber of Trans.ERP Per Trans.Total ERPDistance to TargetCalculated Power Density(MHz)(watts)(watts)(feet)(mW/cm^2)19701506250621250.11658691370937091250.0854880349814941250.034421451777077701250.17887461206220621250.0475	Operating FrequencyNumber of Trans.ERP Per Trans.Total ERPDistance to TargetCalculated Power DensityMaximum Permissible Exposure*(MHz)(watts)(watts)(feet)(mW/cm^2)(mW/cm^2)19701506250621250.11651.08691370937091250.08540.57933333880349814941250.03440.5866666721451777077701250.17881.07461206220621250.04750.497333333

Total Percentage of Maximum Permissible Exposure

59.67%

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1997

MHz = Megahertz mW/cm² = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

1. closest accessible point is distance from antenna to base of pole;

2. continuous transmission from all available channels at full power for indefinite time period; and,

3. all RF energy is assumed to be directed solely to the base of the pole.

108 OAKDALE AVE

Location	108 OAKDALE AVE	Mblu	028/ 151/ 002-1/ /
Acct#	103466	Owner	STOW WILLIAM P REVOCABLE TRUST
Assessment	\$94,850	Appraisal	\$135,500
PID	4991	Building Count	1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2017	\$25,900	\$109,600	\$135,500		
	Assessment				
Valuation Year	Improvements	Land	Total		
2017	\$18,13	\$76,720	\$94,850		

Owner of Record

Owner	STOW WILLIAM P REVOCABLE TRUST	Sale Price	\$0
Co-Owner	C/O AMERICAN TOWER #302506	Certificate	
		Book & Page	411/ 779
		Sale Date	03/12/2013
		Instrument	29

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
STOW WILLIAM P REVOCABLE TRUST	\$0		411/ 779	29	03/12/2013
STOW WILLIAM P & RICHARD D	\$0		00260/0171		11/16/1995

Building Information

Building 1 : Section 1

Field		Description		
Building Attributes				
Less Depreciation:	\$13,5	00		
Replacement Cost				
Living Area:	360			
Year Built:	2004			

STYLE	Warehse Prefab
MODEL	Ind/Comm
Stories:	1
Occupancy	1
Exterior Wall 1	Pre-cast Concr
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Metal/Tin
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Concrete Slab
Interior Floor 2	
Heating Fuel	Gas/Oil
Heating Type	Hot Air-no Duc
АС Туре	None
Bldg Use	Tele Tower
Heat/AC	NONE
Frame Type	MASONRY
Baths/Plumbing	NONE
Ceiling/Wall	NONE
Rooms/Prtns	LIGHT
Wall Height	12

Building Photo

(http://images.vgsi.com/photos/WinchesterCTPhotos//\01\00\49,

Building Layout

(http://images.vgsi.com/photos/WinchesterCTPhotos//Sketches/4

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	360	360
SLB	Slab	360	0
		720	360

•

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use

Use Code	4310
Description	Tele Towe

Land Line Valuation

Size (Acres) 3.39 Depth Zone RR Alt Land Appr No Category

Outbuildings

	Outbuildings <u>Legen</u>					Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SHD8	Shd Com Mas			252 S.F.	\$6,200	1
SHD8	Shd Com Mas			252 S.F.	\$6,200	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2017	\$25,900	\$109,600	\$135,500		
2016	\$19,900	\$109,600	\$129,500		
2012	\$13,700	\$109,600	\$123,300		

Assessment					
Valuation Year	Improvements	Land	Total		
2017	\$18,130	\$76,720	\$94,850		
2016	\$13,930	\$76,720	\$90,650		
2012	\$9,590	\$76,720	\$86,310		

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

STATE OF STATE	Town of Winchester Timmons Group Web LoGI Stics™	List View	Map View	7	
Search By Add	iress		Search By Land Owner		
Search By Pro	përty ID		Default Advanced	Search	
			Parcel IDS OAKD Owner: ST Property J Acreage: 3 Zoning: RU Zoom to	ALE AVE TOW WILLIAM P REVOCABLE 0.28 151 002-1 3.39 J-2 Show Adjoiners More Details	E TRUST
Basema	ps 922478 ¹	A REAL			

