

Alex Murshteyn, Site Acquisition Consultant c/o T-Mobile Northeast LLC ("T-Mobile") Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

June 14, 2018

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CTNH403A (ATC: 302506) 15 (108) Oakdale Avenue, Winchester, CT 06098 N 41.9217 // W 73.0495

Dear Ms. Bachman:

T-Mobile Northeast LLC ("T-Mobile") currently maintains 6 antennas at the 166-foot level of the existing 180-foot monopole tower located (off Oakdale Avenue aka 15 aka) at 108 Oakdale Avenue, Winchester (Winstead), CT. The Council approved T-Mobile use of the existing tower in 2008. The tower and property are both owned and controlled by American Tower; latter c/o William P. Stow Revocable Trust. T-Mobile now intends to install 1 temporary new microwave backhaul channel (5.0 GHz) at the 166-foot level of the tower. T-Mobile will also install 2 new CATs and 1 new fiber cable in order to connect the microwave dish.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Althea Candy Perez, Mayor for the City of Winchester, Director of Planning and Community Development Steven Sadlowski, including for Winchester's Planning and Zoning Commission, and American Tower, the tower owner and ground owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Enclosed to accommodate this filing are construction drawings dated June 4, 2018 by A.T. Engineering Service, PLLC a structural analysis dated May 14, 2018 by A.T. Engineering Service, PLLC and an RF Emissions Analysis Report dated April 16, 2018 by EBI Consulting.

1. The proposed modifications will not result in an increase in the height of the existing structure.

Mobile

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the new antenna will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading, as shown in the attached structural analysis by A.T. Engineering Service, PLLC, dated May 14, 2018.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Alex Murshteyn, Site Acquisition Consultant c/o T-Mobile Northeast LLC Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

Attachments

cc: Althea Candy Perez, Mayor - as elected official - 1Z9Y45030335286677 Steven Sadlowski, Director of Planning - as P&Z official - 1Z9Y45030327977285 American Tower Corporation - as tower & property owner - 1Z9Y45030338460893

AMERICAN TOWER®

CORPORATION

Structural Analysis Report

Structure	: 180 ft Monopole	
ATC Site Name	: Winchester CT 3, CT	
ATC Site Number	: 302506	
Engineering Number	: OAA727483_C3_02	
Proposed Carrier	: T-Mobile	
Carrier Site Name	: CTNH403A	
Carrier Site Number	: CTNH403A	
Site Location	: 15 Oakdale Avenue Winsted, CT 06098-1862 41.921700,-73.049500	
County	: Litchfield	
Date	: May 14, 2018	
Max Usage	: 94%	
Result	: Pass	

Prepared By: Trevor Ridilla, E.I. Structural Engineer I

Jum Cliffle

Authorized by "EOR" May 14 2018 5:06 PM cosign

COA: PEC.0001553

Reviewed By:

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	. 2
Equipment to be Removed	3
Proposed Equipment	3
Structure Usages	4
Foundations	4
Deflection, Twist, and Sway	. 4
Standard Conditions	5
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 180 ft monopole to reflect the change in loading by T-Mobile.

Supporting Documents

Tower Drawings	EEI Job #7676, dated August 21, 2000
Foundation Drawing	SNET Project #F301804.10/F04, dated August 23, 2000
Geotechnical Report	Welti Project: Whalen's Hill, dated February 8, 2000
Modifications	ATC Job #42523432, dated October 24, 2008
	ATC Job #50492933, dated October 15, 2012

<u>Analysis</u>

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	90 mph (3-Second Gust, Vasd) / 115 mph (3-Second Gust, Vult)
Basic Wind Speed w/ Ice:	40 mph (3-Second Gust) w/ 1" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	
Exposure Category:	В
Topographic Category:	1
Crest Height:	0 ft
Spectral Response:	Ss = 0.18, S ₁ = 0.06
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevatio	on ¹ (ft)	1(ft) Oh (Antonna Mount Type Lines		Camian			
Mount	RAD	Uty	Antenna	iviount Type	unes	Camer	
	184.0	2	Raycap DC6-48-60-18-8F (23.5" Height)				
		1	Andrew ABT-DMDF-ADBH				
		6	Powerwave LGP21401				
		3	Ericsson RRUS 11 (Band 12)		(12) 1 5/8" Coax		
	192.0	3	Ericsson RRUS 32 (50.8 lbs)		(4) 0.78" 8 AWG 6		
180.0	3	Ericsson RRUS-12 B2	Low Profile Platform	(1) 0.40" Fiber	ATOCI MODILLY		
		3	Powerwave 7770.00		(1) 0.39" Fiber Trunk		
		3	KMW AM-X-CD-16-65-00T-RET		(1) 3" Conduit		
		3	CCI HPA-65R-BUU-H6				
	179.0		2' x 4' Rectangular Grid Dish				
	182.0	1	4' Omni			Other	
		3	Ericsson KRY 112 144/1		(12) 1 E/9" Conv		
166.0	166.0	3	Ericsson AIR 21, 1.3 M, B2A B4P	T-Arms	(12) 1 5/6 COax (1) 1 1/4" Hybrifley	T-Mobile	
		3	Ericsson AIR 21, 1.3M, B4A B2P		(1) 1 1/4 Hydrinex		
150.0	150.0	1	Sinclair SD210-SF2P4SNM	Side Arm	(1) 1 5/8" Coax	Litchfield County Dispatch	
		1	Sinclair SC479-HF1LDF(E5765)				
140.0	1/0.0	2	Decibel DB809DK-XT	Sido Armo	(8) 1 5/8" Coax		
140.0	145.0	1	Sinclair SC442D-HF1LDF(DXX-I30-G9-			Ct Police Dept	
140.0		-	NUFP)	Side Arris	(2) 1/2" Coax	ct rolice Dept.	
	141 0	1	Telewave ANT150D (5 lbs)				
	141.0	1	Bird 432-83H-01-T				
	1	3	Alcatel-Lucent 800MHz RRH w/ Notch				
]		Filter				
	1	3	Alcatel-Lucent 1900MHz RRH		(3) 1 1/4" Hybriflex (1) 7/8" Fiber		
135.0	135.0	135.0 3	Alcatel-Lucent TD-RRH8x20-25 w/ Solar	Platform w/ Handrails		Sprint Nextel	
		_	Shield				
		3	RFS APXV1M14-C-I20				
		3	RFS APXVSPP18-C-A20				
		3					
		3	Alcatel-Lucent B25 KRH4x30				
		3	Alcatel-Lucent RKH2X60 700				
125.0	125.0	1	Alertel Lucest BCC- DDLMUAE (AMUE 2)	Low Profile Platform	(6) 1 5/8" COax	Verizon	
		3	Actacle-Lucent Boba KRH4X45 (AVVS-3)		(1)15/8 Hypriliex		
		2					
		1					
112.0	112.0	17	Desibel D8844H905-YV	Low Profile Platform	(12) 1 1/4" Copy	Sprint Novtol	
105.0	105.0	3	RES ADV/18-2065175 C	Eluch	(12) 1 1/4 COax (6) 1 5/8" Coax	Metro PCS	
103.0	105.0	2	Δndrow/DR596		(2) 7/8" Copy	i menorea	
96.0	96.0	1	Bird 429-82H-01-T	Side Arms	(1) 1/2" Coax	Eversource Energy	
80.0	80.0	1	RFS PA6-65AC	e e	(1) FW63	Ct Police Dent	
79.0	79.0	1	PCTEL GPS-TMG-HR-26N	Fluch	(1) 1/2" Coax	Sprint Nevtel	
30.0	30.0	1	GPS	Fluch	(1) 7/8" Coax	Verizon	
	1.000	<u> </u>		1020	(4/7/0 COUX	*CILOII	

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919-468-0112 Office - 919-466-5414 Fax - www.americantower.com

Equipment to be Removed

Elevatio Mount	Elevation ¹ (ft) Mount RAD Qty		Antenna Mount Type		Lines Carrier	
			No loading cons	idered as to be removed		

Proposed Equipment

Elevation ¹ (ft)		(ft) Oty Antenna		Mount Type	Lines	Carrier	
Mount	RAD	Quy	Antenna	would type	Eines	camer	
166.0	166.0	1	Fastback Networks Intelligent Backhaul Radio 1300 Series	T-Arms	(2) 0.25" Cat 6 UTP (1) 1.4" Hybrid	T-Mobile	

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	55%	Pass
Shaft	68%	Pass
Base Plate	70%	Pass
Reinforcement	69%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	4,335. 9	48%
Axial (Kips)	71.0	6%
Shear (Kips)	37.0	94%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
166.0	Fastback Networks Intelligent Backhaul Radio 1300 Series	T-Mobile	2.681	2.104
80.0	RFS PA6-65AC	CT Police Dept.	0.567	0.827

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

Job Information					
Pole : 302506	Code: ANSI/TIA-222-G				
Location : Winchester CT 3, CT					
Description : 180 ft EEI Monopole					
Client : T-MOBILE	Struct Class : III				
Shape : 18 Sides	Exposure : B				
Height: 180.00 (ft)	Торо: 1				
Base Elev (ft): 0.00					
Taper: 0.219444in/ft)					

© 2007 - 2018 by ATC IP LLC. All rights reserved.

	Sections Properties							
Shaft Section	Length (ft)	Diam Accro Top	eter (in) ss Flats Bottom	Thick (in)	Joint Type	Overlap Length (in)	Shape	Steel Grade (ksi)
1	49.040	41.98	52.75	0.438		0.000	18 Sides	65
2	49.500	33.21	44.07	0.375	Slip Joint	73.000	18 Sides	65
3	48.330	24.30	34.91	0.313	Slip Joint	59.000	18 Sides	65
4	47.880	15.00	25,50	0.188	Slip Joint	45.000	18 Sides	65

		Disc	rete Appurtenance	
Attach	Force			
Elev (ft)	Elev (ft)	Qty	Description	
180.000	183.000	3	CCI HPA-65R-BUU-H6	
180.000	183.000	1	Andrew ABT-DMDF-ADBH	
180.000	183.000	3	Powerwave Allgon 7770.00	
180.000	184.000	2	Raycap DC6-48-60-18-8F (23.5"	
180.000	183.000	3	Ericsson RRUS 32 (50.8 lbs)	
180.000	180.000	1	Flat Low Profile Platform	
180.000	183.000	3	KMW AM-X-CD-16-65-00T-RET	
180.000	179.000	1	2' x 4' Rectangular Grid Dish	
180.000	183.000	3	Ericsson RRUS-12 B2	
180.000	183.000	3	Ericsson RRUS 11 (Band 12)	
180.000	183,000	6	Powerwave Aligon LGP21401	
160.000	102.000	1	4 Unini Eslaggan AID 24 4 254 D44 D25	
100.000	100.000	ა ი	Ericsson Alk 21, 1.3M, B4A B2P Devied T Arm	
166.000	166,000	3	ROUND I-ARM Eastback Notworks Intelligent	
166.000	166.000	1	Fastback Networks Interrigent	
166.000	166.000	3	Ericsson KDV 112 144/4	
150.000	150.000	4	Bound Side Arm	
150.000	150.000		Sinclair SD210-SE2D4SNM	
140.000	149.000	- i	Sinclair SC442D-HF1LDF(DXX-	
140.000	149.000	2	Decibel DB809DK-XT	
140.000	149.000	1	Sinclair SC479-HE1LDE(E5765)	
140.000	141.000	i	Bird 432-83H-01-T	
140.000	140.000	3	Round Side Arm	
140.000	141.000	Ť	Telewave ANT150D (5 lbs)	
135.000	135.000	1	Flat Platform w/ Handrails	
135.000	135.000	3	RFS APXVSPP18-C-A20	
135.000	135.000	3	RFS APXVTM14-C-I20	
135.000	135.000	3	Aicatel-Lucent TD-RRH8x20-25	
135.000	135.000	3	Alcatel-Lucent 1900MHz RRH	
135.000	135.000	3	Alcatel-Lucent 800 MHz RRH	
125.000	125.000	3	Alcatel-Lucent RRH2x60 700	
125.000	125.000	2	Antel LPA-80080/6CF	
125.000	125.000	3	Alcatel-Lucent B66a RRH4x45	
125.000	125.000	1	RFS DB-B1-6C-12AB-0Z	
125.000	125.000	3	Alcatel-Lucent B25 RRH4x30	
125.000	125.000	3	Nokia B5 RRH4x40-850	
125.000	125.000	1	Round Low Profile Platform	
125.000	125.000	1		
125.000	125.000	6	Commscope JAHH-658-K3B	
112.000	112.000	1	Round LOW Profile Platform	
105 000	112,000	12		
96 000	103.000	3	RF3 AFAV 10-20031/3-6 Elat Sida Arm	
00.000	30.000	3	Flat Sille Affil	

96.000 96.000 80.000 79.000 30.000	96.000 96.000 80.000 79.000 30.000	1 2 1 1	Bird 429-83H-01-T Andrew DB586 RFS PA6-65AC PCTEL GPS-TMG-HR-26N GPS	
--	--	------------------	--	--

	Linear Appurtenance											
Elev	' (ft)		Exposed									
From	То	Description	To Wind									
112.5	125.0	1 5/8" Coax	Yes									
112.5	166.0	1 5/8" Coax	Yes									
0.000	180.0	0.39" (10mm)	No									
0.000	180.0	0.40" Fiber Cable	No									
0.000	180.0	0.78" 8 AWG 6	No									
0.000	180.0	0.78" 8 AWG 6	No									
0.000	180.0	1 5/8" Coax	No									
0.000	180.0	3" Conduit	No									
0.000	135.0	1 1/4" Hybriflex	No									
0.000	135.0	7/8" Fiber	No									
0.000	140.0	1 5/8" Coax	No									
0.000	140.0	1/2" Coax	No									
0.000	150.0	1 5/8" Coax	No									
0.000	166.0	0.25" (6.4mm) Cat	No									
0.000	166.0	1 1/4" Hybriflex	No									
0.000	166.0	1.4" (35.6mm)	No									
0.000	30.000	7/8" Coax	Yes									
0.000	79,000	1/2" Coax	No									
0.000	80.000	EW63	No									
0.000	96.000	1/2" Coax	No									
0.000	96.000	7/8" Coax	No									
0.000	105.0	1 5/8" Coax	Yes									
0.000	112.0	1 1/4" Coax	Yes									
0.000	112.0	Reinforcement	Yes									
0.000	112.5	1 5/8" Coax	Yes									
0.000	112.5	1 5/8" Coax	Yes									
0.000	125.0	1 5/8" Hybrifiex	No									

	Load Cases
1.2D + 1.6W	90 mph with No Ice
0.9D + 1.6W	90 mph with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi	40 mph with 1.00 in Radial Ice
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Lateral Forces Method
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Modal Analysis Method
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Lateral
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Modal
1.0D + 1.0W	Serviceability 60 mph

Reactions											
Moment Shear Axial Load Case (kip-ft) (kip) (kip)											
1.2D + 1.6W	4335.86	36.97	71.01								
0.9D + 1.6W	4178.32	35.50	53.25								
1.2D + 1.0DI + 1.0Wi	930.93	6.92	146.16								
(1.2 + 0.2Sds) * DL + E ELFM	406.37	3.01	70.72								
(1.2 + 0.2Sds) * DL + E EMAM	376.13	3.23	70.72								
(0.9 - 0.2Sds) * DL + E ELFM	399.40	3.00	49.26								
(0.9 - 0.2Sds) * DL + E EMAM	368.79	3.23	49.26								
1.0D + 1.0W	1170.71	9.89	59.22								

Dish Deflections										
Load Case	Attach Elev (ft)	Deflection (in)	Rotation (deg)							
1.0D + 1.0W	80.00	6.802	0.827							

Site Number:	302506			Code: ANSI/TIA-22	2-G © 200	07 - 2018 by ATC I	P LLC. All rights reserved	
Site Name:	Winchester	СТ 3, СТ	Engineering	Number: OAA727483	_C3_02		5/14/2018 1:20:26 PM	
Customer:	T-MOBILE							
(11) (1) (1) (1) (1) (1) (1) (1) (1) (1)								
			Analy	<u>ysis Parameters</u>				
Location :		LITCHFIELD County, C	т	Height (ft) :			180	
Code :		ANSI/TIA-222-G		Base Diameter (in)		5	2.75	
Shape :		18 Sides		Top Diameter (in) :		1	5.00	
Pole Type :		Taper		Taper (in/ft) :		0	.219	
Pole Manfactur	er :	EEI		Rotation (deg) :			0.00	
			Ice & V	Vind Parameters				
Structure Class	s:	Ш		Design Wind Speed Wi	ithout Ice:	90 r	nph	
Exposure Cate	gory:	В		Design Wind Speed Wi	ith Ice:	40 r	nph	
Topographic Ca	ategory:	1		Operational Wind Spee	ed:	60 mph		
Crest Height:		0 ft		Design Ice Thickness:		1.0	00 in	
			Seisi	mic Parameters				
Analysis Meth	od:	Equivalent Modal Anal	vsis & Equivale	ent Lateral Force Method	is			
Site Class:		D - Stiff Soil						
Period Based o	n Rayleigh Me	ethod (sec):	2.67					
T _L (sec):	6		p:	1.3		С.:	0.039	
Ss	0,177		S ₁ :	0.065		C Max:	0.039	
F _a :	1.600		F _v :	2.400		C _s Min: 0.030		
S _{ds} :	0.189		S _{d1} :	0.104				
			1	oad Cases				

Load Cases

1.2D + 1.6W 0.9D + 1.6W 1.2D + 1.0Di + 1.0Wi (1.2 + 0.2Sds) * DL + E ELFM (1.2 + 0.2Sds) * DL + E EMAM (0.9 - 0.2Sds) * DL + E ELFM (0.9 - 0.2Sds) * DL + E EMAM 1.0D + 1.0W 90 mph with No Ice 90 mph with No Ice (Reduced DL) 40 mph with 1.00 in Radial Ice Seismic Equivalent Lateral Forces Method Seismic Equivalent Modal Analysis Method Seismic (Reduced DL) Equivalent Lateral Forces Method Seismic (Reduced DL) Equivalent Modal Analysis Method Serviceability 60 mph

.

Site Name: Winchester CT 3, CT

Customer: T-MOBILE

Code: ANSI/TIA-222-G Code: ANSI/TIA-222-G Code: Engineering Number: OAA727483_C3_02

© 2007 - 2018 by ATC IP LLC. All rights reserved. 5/14/2018 1:20:26 PM

Shaft Section Properties

Slip						Bottom					10p								
Sect Info	Length (ft)	Thick (in)	Fy (ksi)	Joint . Type l	Joint _en (in)	Weight (lb)	Dia (in)	Elev (ft)	Area (in ²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-18	49.040	0.4375	i 65		0.00	10,875	52.75	0.00	72.64	25115.3	19.85	120.57	41.98	49,04	57,70	12585,4	15.51	95.97	0.219444
2-18	49.500	0.3750	65	Slip	73.00	7,672	44.07	42.96	52.01	12548.0	19.31	117.53	33.21	92.46	39.08	5323.8	14.21	88.56	0.219444
3-18	48.330	0.3125	i 65	Slip	59.00	4,77 9	34.91	87.54	34.32	5191.7	18.29	111.73	24.30	135.87	23.80	1731.6	12.31	77.79	0.219444
4-18	47.880	0.1875	i 65	Slip	45.00	1,946	25.50	132.12	15.07	1220.4	22.58	136.04	15.00	180.00	8.81	244.4	12.70	80.00	0.219444
			St	naft We	ight	25,271													

Discrete Appurtenance Properties

Attach			Distance	Vert	187-1-1-1	No Ice	Oniontation		
Elev (ft)	Description	Otv	From Face (ft)	ECC (ft)	(lh)	EPAa ((sf)	Factor		
- (15)		40	0.000	1.000	(10)	(37)	1.00		
180.00	2' x 4' Rectangular Grid Dish	1	0.000	-1.000	40.00	4.750	1.00		
180.00		1	0.000	2.000	1 10	0.050	0.50		
180.00	CCI HPA-65R-BUU-H6	3	0.000	3.000	51.00	9.660	0.50		
180.00	Fricsson RRUS 11 (Band 12)	3	0.000	3,000	50.00	2 570	0.50		
180.00	Fricsson RRUS 32 (50.8 lbs)	3	0.000	3.000	50.80	2,690	0.67		
180.00	Ericsson RRUS-12 B2	3	0.000	3.000	58.00	3.150	0.50		
180.00	Flat Low Profile Platform	ī	0.000	0.000	1500.00	26.100	1.00		
180.00	KMW AM-X-CD-16-65-00T-RET	3	0.000	3.000	48.50	8.020	0.67		
180.00	Powerwave Allgon 7770.00	3	0.000	3.000	35.00	5.510	0.65		
180.00	Powerwave Allgon LGP21401	6	0.000	3.000	14.10	1.100	0.50		
180.00	Raycap DC6-48-60-18-8F (23.5"	2	0.000	4.000	20.00	1.110	1.00		
166.00	Ericsson AIR 21, 1.3 M, B2A B4	3	0.000	0.000	83.00	6.050	0.71		
166.00	Ericsson AIR 21, 1.3M, B4A B2P	3	0.000	0.000	81.50	6.090	0.70		
166.00	Ericsson KRY 112 144/1	3	0.000	0.000	11.00	0.410	0.50		
166.00	Pastback Networks Intelligent	1	0.000	0.000	8.80	0.780	0.50		
166.00	Round I-Arm Doubd Side Arm	3	0.000	0.000	250.00	9.700	0.67		
150.00	Singlair SD210 SE2D4SMM	1	0.000	0.000	150.00	3.200	1.00		
130.00	Bird 422 924 01 T	1	0.000	1,000	25.00	1.370	0.50		
140.00	Diru 432-030-01-1 Decibal DB900DK XT	2	0.000	0.000	64.00	6 250	1.00	- N	
140.00	Round Side Arm	3	0.000	0.000	150.00	5.200	0.67		
140.00	Sinclair SC442D-HF1LDF(DXX-I30	ĭ	0.000	9.000	79.00	10.480	1.00		
140.00	Sinclair SC479-HF1LDF(E5765)	1	0.000	9.000	34.00	5.030	1.00		
140.00	Telewave ANT150D (5 lbs)	1	0.000	1.000	5.00	1.090	0.50		
135.00	Alcatel-Lucent 1900MHz RRH	3	0.000	0.000	44.00	3.260	0.50		
135.00	Alcatel-Lucent 800 MHz RRH w/	3	0.000	0.000	61.80	2.500	0.50		
135.00	Alcatel-Lucent TD-RRH8x20-25 w	3	0.000	0.000	70.00	4.050	0.50		
135.00	Flat Platform w/ Handrails	1	0.000	0.000	2000.00	31.600	1.00		
135.00	RFS APXVSPP18-C-A20	3	0.000	0.000	57.00	8.020	0.69		
135.00	RFS APXVIMI4-C-120	3	0.000	0.000	52.90	0.340	0.66		
125.00	Alcatel-Lucent B25 RRH4X30	3	0.000	0.000	53.00	2.120	0.50		
125.00	Alcatel Lucent Boba KKH4X45 (A	3	0.000	0.000	67.00	2.000	0.50		
125.00	Artal L RA-80063/605	3	0.000	0.000	27.00	0.500	0.50		
125.00	Antel L PA-80080/6CF	2	0.000	0.000	21.00	8.630	0.65		
125.00	Commiscone IAHH-65B-R3B	ā	0.000	0.000	60.60	9,110	0.69		
125.00	Nokia B5 RRH4x40-850	3	0.000	0.000	48.50	1.320	0.50		
125.00	RFS DB-B1-6C-12AB-0Z	1	0.000	0.000	21.40	2.510	0.67		
125.00	Round Low Profile Platform	1	0.000	0.000	1500.00	21.700	1.00		
112.00	Decibel DB844H90E-XY	12	0.000	0.000	14.00	3.610	0.74		
112.00	Round Low Profile Platform	1	0.000	0.000	1500.00	21.700	1.00		
105.00	RFS APXV18-206517S-C	3	0.000	0.000	26.40	5.160	0.68		
96.00	Andrew DB586	2	0.000	0.000	8.30	0.740	1.00		
96.00	Bird 429-83H-01-T	1	0.000	0.000	20.00	0.920	0.50		
96.00	Flat Side Arm	3	0.000	0.000	150.00	6.300	0.67		
80.00	RES PA6-65AC	1	0.000	0.000	278.00	47.050	1.00		

Site Name: Winchester CT 3, CT

Customer: T-MOBILE

	· · · · · · · · · · · · · · · · · · ·							
79.00	PCTEL GPS-TMG-HR-26N	1	0.000	0.000	0.60	0.090	1.00	
30.00	GPS	1	0.000	0.000	10.00	1.000	1.00	
			0.000	0.000				
Totals	Num Loadings:49	118			12729.30			

Code: ANSI/TIA-222-G

Engineering Number:OAA727483_C3_02

© 2007 - 2018 by ATC IP LLC. All rights reserved.

5/14/2018 1:20:26 PM

Linear Appurtenance Properties

Elev From	Elev To			Coax Diameter	Coax Weight	1	Projected Width	Exposed	
(ft)	(ft)	Qty	Description	(in)	(lb/ft)	Flat	(in)	To Wind	Carrier
0.00	180.00	1	0.39" (10mm) Fiber	0.39	0.06	Ν	0.00	N	AT&T Mobility
0.00	180.00	1	0.40" Fiber Cable	0.40	0.09	Ν	0.00	N	AT&T Mobility
0.00	180.00	2	0.78" 8 AWG 6	0.78	0.59	Ν	0.00	N	AT&T Mobility
0.00	180.00	2	0.78" 8 AWG 6	0.78	0.59	Ν	0.00	N	AT&T Mobility
0.00	180.00	12	1 5/8" Coax	1.98	0.82	N	0.00	N	AT&T Mobility
0.00	180.00	1	3" Conduit	3.50	7.58	N	0.00	N	AT&T Mobility
0.00	166.00	2	0.25" (6.4mm) Cat 6	0.25	0.04	Ν	0.00	N	T-Mobile
0.00	166.00	1	1 1/4" Hybriflex	1.54	1.00	N	0.00	N	T-Mobile
0.00	166.00	1	1.4" (35.6mm) Hybrid	1.40	1.30	N	0.00	N	T-Mobile
112.50	166.00	12	1 5/8" Coax	1.98	0.82	N	3.96	Y	T-Mobile
0.00	150.00	1	1 5/8" Coax	1.98	0.82	N	0.00	N	Litchfield County Dispatch
0.00	140.00	8	1 5/8" Coax	1.98	0.82	Ν	0.00	Ν	CT Police Dept
0.00	140.00	2	1/2" Coax	0.63	.0.15	N	0.00	N	CT Police Dept.
0.00	135.00	3	1 1/4" Hybriflex	1.54	1.00	N	0.00	N	Sprint Nextel
0.00	135.00	1	7/8" Fiber	0.88	0.70	Ν	0.00	N	Sprint Nextel
0.00	125.00	1	1 5/8" Hybriflex	1.98	1.30	N	0.00	N	Verizon
112.50	125.00	6	1 5/8" Coax	1.98	0.82	N	3.96	Y	Verizon
0.00	112.50	6	1 5/8" Coax	1.98	0.82	Ν	0.00	Y	Verizon
0.00	112.50	12	1 5/8" Coax	1.98	0.82	N	0.00	Y	T-Mobile
0.00	112.00	12	1 1/4" Coax	1.55	0.63	N	4.65	Y	Sprint Nextel
0.00	112.00	1	Reinforcement	9.27	43.00	Ν	3.35	Y	
0.00	105.00	6	1 5/8" Coax	1.98	0.82	N	0.00	Y	Metro PCS
0.00	96.00	1	1/2" Coax	0.63	0.15	N	0.00	N	Eversource Energy
0.00	96.00	2	7/8" Coax	1.09	0.33	N	0.00	N	Eversource Energy
0.00	80.00	1	EW63	2.01	0.51	Ν	0.00	N	CT Police Dept.
0.00	79.00	1	1/2" Coax	0.63	0.15	Ν	0.00	Ν	Sprint Nextel
0.00	30.00	1	7/8" Coax	1.09	0.33	Ν	0.00	Y	Verizon

Additional Steel

Elev	Elev		- Intermediate Connections-											
From	То			Fy	Offset		Spacing	Len						
(ft)	(ft)	Qty	Description	(ksi)	(in)	Description	(in)	(in)	Connectors	Continuation?				
0.00	103.7	4	SOL #20 All Thread	80	2.19	6" Angle Bracket	30.0	3.13	5/8" A36 U-Bolt	No				

Site Name: Winchester CT 3, CT

Code: ANSI/TIA-222-G Engineering Number:OAA727483_C3_02

2007 - 2018 by ATC IP LLC. All rights reserved. 5/14/2018 1:20:26 PM

Customer: T-MOBILE

Segr	ent Properties	(Max L	.en : 5.1	ft)							6 . 1 . 1 . 1 . 1		· • • • • • • •
Seg To	qq	Thick	Flat					-	_		Adalt	ional Re	enforcing
Elev (ft)	Description	(in)	Dia (in)	Area (in²)	lx (in⁴)	W/t Ratio	D/t F'y Ratio (ksi)	S (in³)	Z (in³)	(Ib)	Area (in²)	ix (in⁴)	Weight (Ib)
0.00		0.4375	52.750	72.640	25,115.3	19.85	120.57 78.1	937.8	0.0	0.0	19.64	8,846	0.0
10.00		0.4375	50.556	69.593	22,085.4	18.96	115.56 79.1	860.4	0.0	1,197.0	19.64	8,202	334.0
15.00		0.4375	49.458	68.069	20,666.4	18.52	113.05 79.6	823.0	0.0	1,171.1	19.64	7,889	334.0
20.00		0.4375	48.361	66.546	19,309.5	18.08	110.54 80.1	786.4	0.0	1,145.2	19.64	7,582	334.0
25.00		0.4375	47.264	65.022	18,013.3	17.64	108.03 80.7	750.7	0.0	1,119.2	19.64	7,281	334.0
30.00		0.4375	46.167	63.498	16,//6.5	17.20	105.52 81.2	691.6	0.0	1,093.3	19.64	6,980	334.0
40.00		0.4375	43.009	60 451	14 475 4	16 31	100.51 82.2	648.4	0.0	1 041 5	19.64	6.415	334.0
42.96	Bot - Section 2	0.4375	43.323	59.550	13.837.8	16.05	99.02 82.5	629.1	0.0	603.6	19.64	6.251	197.5
45.00		0.4375	42.875	58.928	13,408.2	15.87	98.00 82.6	616.0	0.0	771.7	19.64	6,327	136.5
49.04	Top - Section 1	0.3750	42.738	50.421	11,432.7	18.69	113.97 79.4	526.9	0.0	1,502.0	19.64	6,105	269.9
50.00		0.3750	42.528	50.171	11,263.0	18.59	113.41 79.5	521.6	0.0	164.3	19.64	6,053	64.1
55.00		0.3750	41.431	48.865	10,406.2	18.07	110.48 80.1	494.7	0.0	842.5	19.64	5,784	334.0
65.00		0.3750	40.333	47.009	9,394.0	17.55	107.50 80.8	400.5	0.0	798 0	19.04	5,322	334.0
70.00		0.3750	38.139	44.947	8.098.5	16.52	101.70 82.0	418.2	0.0	775.8	19.64	5,015	334.0
75.00		0.3750	37.042	43.641	7,412.9	16.01	98.78 82.6	394.2	0.0	753.6	19.64	4,771	334.0
79.00		0.3750	36.164	42.596	6,893.2	15.59	96.44 82.6	375.4	0.0	586.9	19.64	4,581	267.2
80.00		0.3750	35.944	42.335	6,767.2	15.49	95.85 82.6	370.8	0.0	144.5	19.64	4,533	66.8
85.00	Pot Section 2	0.3750	34.847	41.029	6,160.0	14.97	92.93 82.0	348.2	0.0	709.2	19.64	4,302	334.0
01.04	DOL - SECTION 2	0.3750	34.290	40.300	5,500.0	14.71	90.00 82.6	326.2	0.0	620.3	19.04	4,100	164.3
92.46	Top - Section 2	0.3125	33.836	33.250	4.721.1	17.68	108.27 80.6	274.8	0.0	609.5	19.64	4,093	164.1
95.00	· · · · · · · · · · · · · · · · · · ·	0.3125	33.278	32.696	4,489.2	17.37	106.49 81.0	265.7	0.0	285.4	19.64	3,981	169.9
96.00		0.3125	33.058	32.479	4,400.1	17.24	105.79 81.1	262.2	0.0	110.9	19.64	3,937	66.8
100.0		0.3125	32.181	31.608	4,055.7	16.75	102.98 81.7	248.2	0.0	436.1	19.64	3,764	267.2
103.7	Reinf. Top	0.3125	31.358	30.792	3,749.5	16.28	100.34 82.2	235.5	0.0	398.1	19.64	3,605	250.5
105.0		0.3125	31.083	30.520	3,031.0	10.13	99.47 82.4	231.3	0.0	510.0			
112.0		0.3125	29.547	28.996	3,131.1	15.26	94.55 82.6	208.7	0.0	198.8			
115.0		0.3125	28.889	28.343	2,924.3	14.89	92.44 82.6	199.4	0.0	292.7			
120.0		0.3125	27.792	27.255	2,600.2	14.27	88.93 82.6	184.3	0.0	473.0			
125.0		0.3125	26.694	26.167	2,301.0	13.65	85.42 82.6	169.8	0.0	454.5			
130.0	Pot Section 4	0.3125	25.597	25.078	2,025.7	13.03	81.91 82.6	155.9	0.0	435.9			
132.1	DOL - SECTION 4	0.3125	23.132	24.017	1,913.9	12.77	78 40 82 6	142.6	0.0	384.0			
135.8	Top - Section 3	0.1875	24.684	14.578	1.105.3	21.80	131.65 75.8	88.2	0.0	114.0			
140.0	· - F	0.1875	23.778	14.039	987.1	20.95	126.81 76.8	81.8	0.0	201.1			
145.0		0.1875	22.681	13.386	855.6	19.92	120.96 78.0	74.3	0.0	233.3			
150.0		0.1875	21.583	12.733	736.4	18.89	115.11 79.2	67.2	0.0	222.2			
155.0		0.1875	20.486	12.080	628.8	17.85	109.26 80.4	60.5 54.1	0.0	211.1			
160.0		0.1875	19.369	10 774	332.3 446 2	15.02	97.56 82.6	48.0	0.0	188.9			
166.0		0.1875	18.072	10.643	430.1	15.58	96.39 82.6	46.9	0.0	36.4			
170.0		0.1875	17.194	10.121	369.8	14.76	91.70 82.6	i 42.4	0.0	141.3			
175.0		0.1875	16.097	9.468	302.8	13.73	85.85 82.6	37.0	0.0	166.6			
180.0		0.1875	15.000	8.815	244.4	12.70	80.00 82.6	i 32.1	0.0	155.5			
									2	5,271.1			6,930.5

Site Name: Winchester CT 3, CT

Customer: T-MOBILE

Code: ANSI/TIA-222-G Engineering Number:OAA727483_C3_02

90 mph with No Ice

2007 - 2018 by ATC IP LLC. All rights reserved. 5/14/2018 1:20:26 PM

Load Case: 1.2D + 1.6W

Gust Response Factor :1.10

Dead Load Factor :1.20

Wind Load Factor : 1.60

Applied Segment Forces Summary

		Shaft I	Forces		Discrete	Forces		Linear F	orces		Sum of	Forces	
Seg			Dead	-	Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(ID)	(lb)	(b)	(lb-ft)	(lb-ft)	(lb)	(15)	(lb)	(lb)	(1b)	(lb.ft)	(15)
0.4		()	()	(/	(((10)	(10)	(/	(12)	(15)	(ID-11)	(10)
0.00		230.9	0.0					0.0	0.0	230. 9	0.0	0.0	0.0
5.00		458.9	1,467.5					0.0	1,042.9	458.9	2,510.5	0.0	0.0
10.00		453.0	1,436.4					0.0	1,042.9	453.0	2,479.3	0.0	0.0
15.00		447.1	1,405.3					0.0	1,042,9	447.1	2,448.2	0.0	0.0
20.00		441.3	1,374.2					0.0	1,042.9	441.3	2,417,1	0.0	0.0
25.00	Annustananna(a)	435.4	1,343.1					0.0	1,042.9	435.4	2,385.0	0.0	0.0
30.00	Apprilenance(5)	434.6	1,312.0	27.9	0.0	0.0	12.0	0.0	1,042,9	462.5	2,366.9	0.0	0.0
40.00		444.7 250.4	1,200.9					0.0	1,041.0	442.7	2,321.0	0.0	0.0
40.00	Bot - Section 2	220.0	724 3.0					0.0	615 5	230.0	1 220 0	0.0	0.0
45.00		287.4	026 A					0.0	125 A	297 4	1 251 5	0.0	0.0
49.00	Ton - Section 1	237.1	1 802 4					0.0	941.1	237 1	2 6/1 5	0.0	0.0
50.00		284.5	197.2					0.0	199.9	284.5	397.1	0.0	0.0
55.00		480.7	1.011.0					0.0	1 041.0	480.7	2 051 9	0.0	0.0
60.00		485.6	984.3					0.0	1.041.0	485.6	2 0 2 5 3	0.0	0.0
65.00		589.8	957.7					0.0	1.041.0	589.8	1.998.6	0.0	0.0
70.00		688.9	931.0					133.5	1.041.0	822.4	1.972.0	0.0	0.0
75.00		614.8	904.3					135.5	1,041.0	750.3	1,945.3	0.0	0.0
79.00	Appurtenance(s)	339.4	704.3	3.3	0.0	0.0	0.7	109.8	832.8	452.5	1,537.8	0.0	0.0
80.00	Appurtenance(s)	402.7	173.4	1,739.4	0.0	0.0	333.6	27.6	208.0	2,169.6	715.0	0.0	0.0
85.00		503,5	851.0					139.2	1,037.0	642.7	1,888.0	0.0	0.0
87.54	Bot - Section 3	333.2	422.1					71:4	526.8	404.5	948.9	0.0	0.0
90.00		328.1	744.3					69.5	510.2	3 9 7.6	1,254.6	0.0	0.0
92.46	Top - Section 2	330.9	731.5					69.8	509.5	400.7	1,240.9	0.0	0.0
95.00		233.1	342.4					72.7	527.5	305.8	870.0	0.0	0.0
96.00	Appurtenance(s)	325.0	133.1	565.1	0.0	0.0	583.9	28.7	207.4	918.8	924.4	0.0	0.0
100.00	Dalaf Tee	499.1	523.4					115.4	825.7	614.5	1,349.1	0.0	0.0
103.75	Appurtanence(c)	318.6	4//./	400.0				109.1	//4.1	427.7	1,251.9	0.0	0.0
105.00	Appurtenance(s)	390.8	130.5	420.6	0.0	0.0	95.0	35.5	157.8	847.9	409.3	0.0	0.0
112.00	Appurtenance(s)	434,3	238.6	1 026 0	0.0	0.0	2 001 6	147.0	240.7	2 200 6	2 400 0	0.0	0.0
115.00	Appurtenance(s)	479.7	250.0	1,320.3	0.0	0.0	2,001.0	80.3	170.1	2,230.0	520.3	0.0	0.0
120.00		585.6	567.6					161.4	298.5	747.0	866 O	0.0	0.0
125.00	Appurtenance(s)	463.0	545 3	3 272 5	0.0	0.0	3 155 5	162 3	298.5	3 897 8	3 000.0	0.0	0.0
130.00		247.3	523.1	0,4,74,0	0.0	0.0	3,130.0	0.0	261.2	247.3	784.3	0.0	0.0
132.12	Bot - Section 4	173.1	215.1					0.0	110.7	173.1	325.8	0.0	0.0
135.00	Appurtenance(s)	130.1	460.8	2,769.0	0.0	0.0	3,428.5	0.0	150.4	2,899.1	4,039.8	0.0	0.0
135.87	Top - Section 3	170.7	136.8					0.0	41.6	170.7	178.4	0.0	0.0
140.00	Appurtenance(s)	308.2	241.3	1,630.2	0.0	10,244.9	865.2	0.0	197.4	1,938.4	1,303.9	0.0	0.0
145.00		332.2	280.0					0.0	197.8	332.2	477.8	0.0	0.0
150.00	Appurtenance(s)	326.1	266.6	202.6	0.0	0.0	190.0	0.0	197.8	528.8	654.4	0.0	0.0
155.00		319.8	253.3					0.0	192.9	319.8	446.2	0.0	0.0
160.00		374.8	240.0					0.0	192.9	374.8	432.8	0.0	0.0
165.00		258.5	226.6					84.5	192.9	343.0	419.5	0.0	0.0
166.00	Appurtenance(s)	130.6	43.7	1,638.0	0.0	0.0	1,542.4	16.9	38.6	1,785.6	1,624.7	0.0	0.0
170.00		194.0	169.6					0.0	95.7	194.0	265.2	0.0	0.0
175.00	A == () = 1	204.6	200.0					0.0	119.6	204.6	319.5	0.0	0.0
180.00	Appurtenance(S)	99.2	186.6	3,918.0	0.0	7,443.3	3,066.7	0.0	119.6	4,017.3	3,372.9	0.0	0.0

26 Iterations

Wind Importance Factor 1.15

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT T-MOBILE	Code: Engineering Number:	ANSI/TIA-222-G OAA727483_C3_02	@2007 - 2	2018 by ATC IP LLC. 5/14/	All rights 2018 1:2	reserved. 20:37 PM
Load Case Gust Respo Dead Lo Wind Lo	2: 1.2D + 1.6W nse Factor : 1.10 Dad Factor : 1.20 Dad Factor : 1.60	90 mph with No Ic	e		Wind Importance	26 It Factor	erations : 1.15
P			To	tals:	37,086.7 71,071.1	0.00	0.00

Site Nu Site Na Custom	mber: 30 me: W ier: T-	02506 /inchester -MOBILE	СТ 3, СТ		Engine	Coc eering Numbe	le: ANSI/TIA-2 r: OAA72748	22-G 3_C3_02	@2007 - 20)18 by ATC	IP LLC. / 5/14/2	All rights res 018 1:20:	served. 37 PM
Load Gust C	I Case: Response Dead Load Wind Load	1.2D + 1.0 Factor : Factor : Factor :	6W 1.10 1.20 1.60		90) mph with No	lce			Wind Im	portance	26 Itera Factor :	itions 1.15
Calcu	lated Fo	rces											
Seg Elev (ft)	Pu / FY (- (kips)	Vu -) FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
(0,0) 0.00 5.00 10.00 20.00 25.00 35.00 40.00 42.90 45.00 49.00 55.00 60.00 75.00 65.00 75.00 75.00 79.00 80.00 87.5^{-1} 90.00 100.00 103.7^{-1} 105.00 1120.00 1120.00 125	((1,0,3)) (-71,01) (-68,39) (-63,24) (-63,24) (-63,24) (-53,31) (-55,74) (-5	-36.97 -36.72 -36.72 -36.46 -35.93 -35.93 -35.93 -35.93 -35.93 -35.93 -35.93 -35.93 -35.93 -34.73 -34.55 -34.55 -34.82 -33.88 -33.88 -33.88 -31.74 -31.74 -31.74 -31.74 -31.74 -31.74 -32.52 -31.74 -26.88 -27.72 -27.72 -26.88 -26.12 -26.25.19 -24.54 -22.68 -22.268 -22.268 -22.268 -22.268 -22.268 -22.268 -22.268 -22.268 -22.268 -22.261 -14.57		-4,335.86 -4,151.02 -3,967.43 -3,785.13 -3,604.14 -3,424.51 -3,246.28 -3,069.66 -2,894.60 -2,894.60 -2,791.91 -2,721.31 -2,582.66 -2,549.94 -2,380.54 -2,549.94 -2,380.54 -2,549.94 -2,380.54 -2,549.94 -2,213.15 -2,047.85 -1,602.53 -1,726.54 -1,602.53 -1,572.00 -1,430.06 -1,359.66 -1,292.49 -1,226.45 -1,159.18 -1,133.06 -1,032.32 -940.29 -940		4,335.86 4,151.02 3,967.43 3,785.13 3,604.14 3,246.28 3,069,66 2,894.60 2,791.91 2,721.31 2,582.66 2,549.94 2,380.54 2,213.15 2,047.85 1,852.23 1,726.54 1,602.53 1,572.00 1,430.06 1,359.66 1,292.49 1,226.45 1,159.18 1,133.06 1,032.32 940.29 94	5,102.86 5,029.12 4,953.95 4,877.36 4,799.34 4,719.90 4,639.03 4,556.73 4,473.00 4,422.82 4,378.03 3,604.17 3,591.50 3,524.70 3,456.48 3,366.83 3,315.75 3,242.30 3,164.68 3,145.28 3,048.26 2,998.97 2,951.23 2,412.07 2,382.81 2,371.21 2,324.22 2,279.33 2,2412.07 2,382.81 2,371.21 2,324.22 2,279.33 2,2412.07 2,382.81 2,371.21 2,324.22 2,279.33 2,264.20 2,186.61 2,154.27 2,105.76 2,024.90 1,944.05 1,828.92 1,782.35	(14) 2,551.43 2,551.43 2,551.43 2,476.98 2,476.98 2,399.67 2,359.95 2,319.51 2,236.50 2,211.41 2,189.01 1,802.08 1,795.75 1,762.35 1,728.24 1,657.87 1,621.15 1,582.34 1,572.64 1,524.13 1,499.48 1,475.62 1,206.04 1,139.67 1,132.10 1,077.13 1,052.88 1,012.45 972.03 931.60 931.61	10,963.2 10,576.3 10,193.1 9,813.98 9,438.93 9,068.23 8,702.08 8,702.08 8,702.08 8,702.08 8,702.08 8,702.08 7,984.18 7,775.79 7,615.75 6,267.69 6,214.33 5,938.60 5,398.53 5,134.58 4,873.54 4,641.84 4,641.84 4,584.79 4,304.87 4,166.05 4,033.76 3,317.78 3,222.46 3,222.46 3,222.46 3,222.46 3,222.46 3,222.46 3,222.46 3,222.46 3,222.46 3,222.46 3,227.47 3,222.46 3,2	5,489.79 5,296.03 5,104.17 4,914.28 4,726.48 4,526.48 4,357.51 4,176.53 3,998.03 3,893.68 3,813.53 3,138.50 3,111.78 2,973.71 2,837.51 2,440.39 2,324.37 2,295.80 2,155.63 2,086.12 2,019.88 1,661.362 1,552.80 1,452.80 1,	0.00 0.10 0.38 0.85 1.52 2.37 3.43 4.63 7.08 7.78 9.26 9.63 11.69 13.965 16.45 19.14 22.04 25.14 22.04 25.14 22.04 25.14 31.94 33.73 35.63 36.39 39.526 42.566 43.59 47.94 49.78 52.63 57.666 63.000 68.644 7.78 57.66 63.000 68.642 7.7458	(329) 0.00 -0.18 -0.36 -0.54 -0.54 -0.72 -0.91 -1.10 -1.29 -1.67 -1.83 -1.67 -1.83 -1.67 -2.27 -2.47 -2.47 -2.67 -2.47 -2.67 -3.06 -3.25 -3.43 -3.522 -3.65 -3.944 -3.944 -4.955 -5.5555 -5.555 -5.555 -5.555 -5.555 -5.555 -5.5555 -5.5555 -5.555	0.595 0.587 0.577 0.568 0.558 0.558 0.547 0.535 0.535 0.547 0.535 0.541 0.503 0.511 0.503 0.546 0.542 0.544 0.504 0.544 0.504 0.544 0.504 0.546 0.544 0.504 0.546 0.546 0.447 0.398 0.387 0.372 0.388 0.382 0.359 0.366 0.647 0.503 0.525 0.526 0.525 0.525 0.526 0.525 0.527 0.526 0.526 0.525 0.526 0.525 0.527 0.526 0.526 0.525 0.527 0.526 0.526 0.526 0.525 0.527 0.526 0.526 0.525 0.527 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.527 0.526
135.8 140.00 145.00 155.00 160.00 166.00 170.00 175.00	7 -8.22 0 -7.08 0 -6.59 0 -5.96 0 -5.50 0 -5.00 0 -4.70 0 -3.32 0 -3.07 0 -2.77	2 -10.95 3 -8.93 9 -8.59 5 -8.02 0 -7.68 3 -7.28 0 -6.90 2 -4.91 7 -4.75 7 -4.45 7 -4.45	6 0.00 8 0.00 9 0.00 2 0.00 8 0.00 8 0.00 8 0.00 9 0.00 9 0.00 9 0.00 9 0.00 9 0.00 9 0.00	-337.69 -282.21 -237.58 -194.66 -154.55 -116.14 -79.75 -72.85 -53.19 -29.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	337.69 282.21 237.58 194.66 154.55 116.14 79.75 72.85 53.19 29.71	993.95 969.84 939.35 907.44 874.09 839.33 800.44 790.74 751.93 703.42	496.97 484.92 469.68 453.72 437.05 419.66 400.22 395.37 375.97 351.71	1,000.68 940.01 867.78 797.07 728.06 660.97 593.98 579.60 523.82 458.07	501.09 470.70 434.53 399.13 364.57 330.98 297.43 290.23 262.30 229.37	75.64 80.79 87.34 94.28 101.57 109.20 117.13 118.74 125.30 133.66	-5.86 -6.07 -6.45 -6.81 -7.14 -7.45 -7.71 -7.76 -7.93 -8.09	0.683 0.607 0.554 0.495 0.431 0.357 0.274 0.255 0.207 0.134

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT T-MOBILE	Code: ANSI/TIA-222-G Engineering Number: OAA727483_C3_02	©2007 ·	- 2018 by ATC IP LLC. All rights reserved. 5/14/2018 1:20:37 PM
Load Case Gust Respo Dead Lo Wind L	2: 0.9D + 1.6W nse Factor : 1.10 pad Factor : 0.90 pad Factor : 1.60	90 mph with No Ice (Reduced DL)		26 Iterations Wind Importance Factor: 1.15

Applied Segment Forces Summary

Seg Dead Torsion Moment Dead Dead Dead Torsion Elev Wind FX Load Wind FX MY MZ Load Wind FX Load	Forsion Moment MY MZ
Elev Wind FX Load Wind FX MY MZ Load Wind FX Load Wind FX Load	MY MZ
(ft) Description (lb) (lb) (lb) (lb-ft) (lb-ft) (lb) (lb) (lb) (lb) (lb) (lb)	(lb-ft) (lb)
0.00 200.3 0.0 0.0 200.3 0.0	0.0 0.0
5.00 396.5 1,100.6 0.0 782.2 396.5 1,882.8	0.0 0.0
10.00 380.0 1,077.3 0.0 782.2 388.0 1,099.5	0.0 0.0
13.00 379.0 1,004.0 0.0 702.2 379.0 1,006.2 20.00 271.2 1.02.6 0.0 72.2 379.0 1,005.2	0.0 0.0
20.00 371.2 1,030.0 0.0 702.2 371.2 1,012.9	0.0 0.0
23.00 Appudeparce(s) 352.0 (,007.3 0.0 0.0 0.0 0.0 0.0 0.0 702.2 302.0 (,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0
30.00 Application (3) 300.0 904.0 27.9 0.0 0.0 9.0 0.0 702.2 300.3 1,73.2 35.0 35.0 36.1 5 0.60.7	
40.00 291.0 937.3 0.0 780.7 201.0 1718.0	0.0 0.0
42.96 Bot - Section 2 185.5 543.3 0.0 461.7 185.5 1.004.9	0.0 0.0
45.00 229.2 694.5 0.0 319.1 229.2 1.013.6	0.0 0.0
49.04 Top - Section 1 188.7 1 351.8 0.0 630.8 188.7 1 982.6	0.0 0.0
50.00 2255 1479 0.0 149.9 2255 297.8	0.0 0.0
55.00 378.3 758.2 0.0 780.7 378.3 1 539.0	0.0 0.0
60.00 377.6 738.2 0.0 780.7 377.6 1519.0	0.0 0.0
65.00 534.3 718.2 0.0 780.7 534.3 1.499.0	0.0 0.0
70.00 688.9 698.2 133.5 780.7 822.4 1.479.0	0.0 0.0
75.00 614.8 678.3 135.5 780.7 750.3 1,459.0	0.0 0.0
79.00 Appurtenance(s) 339.4 528.2 3.3 0.0 0.0 0.5 109.8 624.6 452.5 1,153.3	0.0 0.0
80.00 Appurtenance(s) 402.7 130.1 1,739.4 0.0 0.0 250.2 27.6 156.0 2,169.6 536.3	0.0 0.0
85.00 503.5 638.3 139.2 777.8 642.7 1,416.0	0.0 0.0
87.54 Bot - Section 3 333.2 316.6 71.4 395.1 404.5 711.6	0.0 0.0
90.00 328.1 558.2 69.5 382.7 397.6 940.9	0.0 0.0
92.46 Top - Section 2 330.9 548.6 69.8 382.1 400.7 930.7	0.0 0.0
95.00 233.1 256.8 72.7 395.6 305.8 652.5	0.0 0.0
96.00 Appurtenance(s) 325.0 99.8 565.1 0.0 0.0 437.9 28.7 155.6 918.8 693.3	0.0 0.0
100.00 499.1 392.5 115.4 619.3 614.5 1,011.8	0.0 0.0
103.75 Reint 10p 318.6 358.3 109.1 580.6 427.7 938.9	0.0 0.0
105.00 Appurcenance(s) 390.8 117.4 420.6 0.0 0.0 71.3 36.5 118.4 847.9 307.0	0.0 0.0
110.00 434.5 459.0 147.0 451.4 581.5 910.4 112.00 Apputationson(a) 204.5 479.0 1.035.0 0.0 0.0 1.501.2 50.0 400.5 0.000.4 100.7	0.0 0.0
112.00 Appartenance(s) 304.5 176.9 1,920.9 0.0 0.0 1,501.2 59.2 100.5 2,290.5 1,500.7	0.0 0.0
130.00 4/0.7 203.4 80.3 134.3 336.9 397.7	0.0 0.0
120.00 Appurtementer(s) 300.0 420.7 101.4 223.9 747.0 049.0 101.4 223.9 747.0 049.0 125.0 Appurtementer(s) 440.6 400.0 3.072.5 0.0 0.0 2.056.6 460.0 000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0
130.00 (https://definite(3) 440.0 409.0 3,272.3 0.0 0.0 2,300.0 102.3 223.9 3,073.4 2,999.3 130.00 0.0 105.0 214.8 302.3	0.0 0.0
132 12 Bot - Section 4 148 3 161 3 0.0 83.0 148 3 244 3	0.0 0.0
135.00 Appurtenance(s) 110.9 3456 2769.0 0.0 0.0 2571.4 0.0 112.8 2.879.9 3.029.8	0.0 0.0
135.87 Top - Section 3 144.4 102.6 0.0 31.2 144.4 133.8	0.0 0.0
140.00 Apputtenance(s) 258.1 181.0 1.630.2 0.0 10.244.9 648.9 0.0 148.0 1.888.3 977.9	0.0 0.0
145.00 273.3 210.0 0.0 148.4 273.3 358.3	0.0 0.0
150.00 Appurtenance(s) 262.6 200.0 202.6 0.0 0.0 142.5 0.0 148.4 465.2 490.8	0.0 0.0
155.00 251.6 190.0 0.0 144.7 251.6 334.6	0.0 0.0
160.00 339.5 180.0 0.0 144.7 339.5 324.6	0.0 0.0
165.00 258.5 170.0 84.5 144.7 343.0 314.6	0.0 0.0
166.00 Appurtenance(s) 130.6 32.8 1,638.0 0.0 0.0 1,156.8 16.9 28.9 1,785.6 1,218.5	0.0 0.0
170.00 194.0 127.2 0.0 71.7 194.0 198.9	0.0 0.0
175.00 204.6 150.0 0.0 89.7 204.6 239.7	0.0 0.0
180.00 Appurtenance(s) 99.2 140.0 3,918.0 0.0 7,443.3 2,300.0 0.0 89.7 4,017.3 2,529.7	0.0 0.0

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT T-MOBILE	Code: Engineering Number:	ANSI/TIA-222-G OAA727483_C3_02	@007·	2018 by ATC IP LLC. 5/14/	All rights re: 2018 1:20:	served. 48 PM
Load Case Gust Responded Log Dead Log Wind Log	e:0.9D + 1.6W nse Factor : 1.10 pad Factor : 0.90 pad Factor : 1.60	90 mph with No Ic	e (Reduced DL)	15	Wind Importance	26 Itera Factor :	ations 1,15
			То	tals:	35,614.7 53,303.3	0.00	0.00

Site Numb	oer: 302	506				Code	: ANSI/TIA-2	222-G	@2007 - 20	018 by ATC	IP LLC. A	All rights re	served.
Site Name	e: Wir	chester (СТ 3, СТ		Engine	ering Number:	OAA72748	3_C3_02			5/14/2	018 1:20	48 PM
Customer	: T-M	OBILE			·	•							
Load C	ase: 0	.9D + 1.6	6W		90	mph with No I	ce (Reduced	DL)				26 Itera	ations
Gust Re	soonse F	Factor ·	1 10			·				Wind Im	oortance	Factor 3	1.15
Dea	d Load	Factor :	0.90									20	10.1
Wir	nd Load F	factor :	1.60										
Calculat	ed Ford	ces				· · · · ·							
	Bu	<u></u>	τ	Mu	Mu	Pocultant	an In J		an In i	abi	Total		
Elev	FU FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	рні Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-53.25	-35.50	0.00	-4,178.32	0.00	4,178.32	5,102.86	2,551.43	10,963.2	5,489.79	0.00	0.00	0.571
5.00 10.00	-51.26 -49.30	-35.25	0.00	-4,000.85	0.00	4,000.85 3.824.60	5,029.12	2,514.56	10,576.3	5,296.03	0.09	-0.17 -0.34	0.563
15.00	-47.36	-34.76	0.00	-3,649.58	0.00	3,649.58	4,877.36	2,438.68	9,813.98	4,914.28	0.82	-0.52	0.545
20.00 25.00	-45.44	-34.51	0.00	-3,475.80	0.00	3,475.80	4,799.34	2,399.67	9,438.93	4,726.48	1.46	-0.70	0.536
30.00	-41.67	-33.97	0.00	-3,131.98	0.00	3,131.98	4,639.03	2,319.51	8,702.08	4,357.51	3.31	-1.06	0.515
35.00	-39.83	-33.70	0.00	-2,962.11	0.00	2,962.11	4,556.73	2,278.36	8,340.67	4,176.53	4.51	-1.24	0.503
40.00	-36.98	-33.32	0.00	-2,694.63	0.00	2,694.63	4,422.82	2,230.30	7,775.79	3,893.68	6,83	-1.53	0.483
45.00	-35.91	-33.13	0.00	-2,626.55	0.00	2,626.55	4,378.03	2,189.01	7,615.75	3,813.53	7.50	-1.61	0.474
49.04 50.00	-33.88 -33.52	-32.94	0.00	-2,492.69	0.00	2,492.69 2,461.06	3,604.17	1,802.08	6,267.69	3,138.50	9.29	-1.80	0.525
55.00	-31.89	-32.46	0.00	-2,297.19	0.00	2,297.19	3,524.70	1,762.35	5,938.60	2,973.71	11.28	-1.99	0.503
60.00 65.00	-30.27	-32.13	0.00	-2,134.91	0.00	2,134.91	3,455.48	1,728.24	5,666,60	2,837.51	13.47	-2.19	0.484
70.00	-27.15	-30.83	0.00	-1,816.15	0.00	1,816.15	3,315.75	1,657.87	5,134.58	2,571.11	18.46	-2.57	0.442
75.00	-25.64	-30.09	0.00	-1,661.99	0.00	1,661.99	3,242.30	1,621.15	4,873.54	2,440.39	21.25	-2.76	0.420
80.00	-23.98	-27.47	0.00	-1,512.00	0.00	1,512.00	3,145.28	1,572.64	4,584.79	2,295.80	24.24	-2.95	0.400
85.00	-22.54	-26.81	0.00	-1,374.63	0.00	1,374.63	3,048.26	1,524.13	4,304.87	2,155.63	27.43	-3.13	0.381
87.54 90.00	-21.61	-25.98	0.00	-1,306,54	0.00	1,306.54	2,990.97	1,499.40	4,100.05	2.019.88	30.80	-3.22	0.371
92.46	-19.91	-25.56	0.00	-1,177.76	0.00	1,177.76	2,412.07	1,206.04	3,317.78	1,661.36	32.53	-3.40	0.385
95.00 96.00	-19.25	-25.24	0.00	-1,112.75	0.00	1,112.75	2,382.81	1,191.41	3,222.46	1,613.62	34,36	-3.48	0.371
100.00	-17.54	-23.67	0.00	-990.30	0.00	990.30	2,324.22	1,162.11	3,037.61	1,521.06	38.11	-3.66	0.343
103.75	-16.60	-23.21	0.00	-901.53	0.00	901.53	2,279.33	1,139.67	2,901.28	1,452.80	41.04	-3.79	0.321
105.00	-16.00	-23.21	0.00	-901.53	0.00	872.53	2,279.33	1,139.07	2,901.20	1,432.80	42.03	-3.84	0.618
110.00	-15.33	-21.81	0.00	-760.56	0.00	760.56	2,186.61	1,093,30	2,659.07	1,331.51	46.22	-4.15	0.579
112.00	-13.59	-19.42	0.00	-658.67	0.00	658.67	2,154.27	1.052.88	2,580.59	1,292.21	50.74	-4.47	0.540
120.00	-12.47	-18.16	0.00	-564.21	0.00	564.21	2,024.90	1,012.45	2,278.43	1,140.91	55.57	-4.77	0.501
125.00	-9.75	-14.09	0.00	-4/3.41	0.00	4/3.41	1,944.05	972.03	2,099.13	965.02	66.15	-5.05	0.455
132.12	-8.88	-13.70	0.00	-373.60	0.00	373.60	1,828.92	914.46	1,856.49	929.62	68.53	-5.44	0.407
135.00	-6.12	-10.56	0.00	-334.13	0.00	334.13	1,782.35	891.17	1,762.57	882.59	71.85	-5.59	0.382
140.00	-5.96	-10.41	0.00	-324.95 -271.71	0.00	271.71	969.84	484.92	940.01	470.70	77.83	-5.84	0.583
145.00	-4.77	-8.18	0.00	-229.40	0.00	229.40	939.35	469.68	867.78	434.53	84.14	-6.20	0.533
150.00 155.00	-4.29	-7.69	0.00	-188.49	0.00	188.49 150.04	907.44 874 09	453.72	797.07 728.0P	399.13 364.57	90.81	-0.55	0.416
160.00	-3.63	-7.06	0.00	-112.93	0.00	112.93	839.33	419.66	660.97	330.98	105.18	-7.17	0.346
165.00 166.00	-3.35	-6.69 -4 77	0.00	-77.61	0.00	77.61 70.92	800,44 790 74	400.22	593.98 579.60	297.43	112.81	-7.43	0.265
170.00	-2.18	-4.56	0.00	-51.85	0.00	51,85	751.93	375.97	523.82	262.30	120.69	-7.64	0.201
175.00 180.00	-1.96	-4.32	0.00	-29.07 -7.44	0.00	29.07 7.44	703.42 654.91	351.71 327.45	458.07 396.72	229.37 198.65	128.75 136.94	-7.79	0.130

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT , T-MOBILE	Code: ANSI/TIA-222-G Engineering Number: OAA727483_C3_02	©2007 - 2018 by ATC IP LLC. All rights reserved. 5/14/2018 1:20:49 PM
Load Case Gust Responded Log Dead Log Wind Log	e:1.2D + 1.0Di + 1.0Wi nse Factor :1.10 pad Factor :1.20 pad Factor :1.00	40 mph with 1.00 in Radial Ice Ice Dead Load Factor: 1.00	26 Iterations Wind Importance Factor: 1.00 Ice Importance Factor: 1.25

Applied Segment Forces Summary

		Shaft F	orces		Discrete	Forces		Linear F	orces		Sum of	Forces	
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(ib)	(lb)	(lb)	(lb-ft)	(lb)
0.00		42.6	0.0					0,0	0.0	42.6	0.0	0.0	0.0
5.00		84.7	2,115.7					0.0	1,841.8	84.7	3,957.5	0.0	0.0
10.00		83.5	2,148.0					0.0	1,942.1	83.5	4,090.1	0.0	0.0
15.00		82.2	2,140.2					0.0	1,994.0	82.2	4,134.2	0.0	0.0
20.00		80.7	2,119.3					0,0	2,030.2	80.7	4,149.5	0.0	0.0
25.00		79.2	2,091.5					0.0	2,058.4	79.2	4,149.8	0.0	0.0
30.00	Appurtenance(s)	78.6	2,059.4	6.0	0.0	0.0	45.0	0.0	2,081.6	84.6	4,185.9	0.0	0.0
35.00		79.5	2,024.3					0.0	2,050.3	79.5	4,074.6	0.0	0.0
40.00	Data Dasting 0	64.2	1,987.1					0.0	2,066.3	64.2	4,053.4	0,0	0.0
42.96	Bot - Section 2	41.0	1,158.9					0.0	1,228.7	41.0	2,387.5	0.0	0.0
45.00	Tee Deeller A	50.7	1,230.2					0.0	851.9	50.7	2,082.1	0.0	0,0
49.04	rop - Section 1	41.8	2,396.3					0.0	1,690.6	41.8	4,086.9	0.0	0.0
50.00		50.2	338.4					0.0	402.9	50.2	741.4	0.0	0.0
55.00		84.4	1,733.2					0.0	2,105.4	84.4	3,838.0	0.0	0.0
60.00		84.5	1,695.4					0.0	2,110.2	84.5	3,811.0	0.0	0.0
70.00		04.0	1,000.7					0.0	2,120.3	04.3	3,703.0	0.0	0.0
70.00		04.Z 75.5	1,017.3					30.4	2,133.7	111.8	3,703.0	0.0	0.0
79.00	Appurtenance(s)	70.0 A1.8	1 234 2	1.5	0.0	0.0	7.0	20.3	1 721 6	72 0	2 062 8	0.0	0.0
90.00	Annurtenance(s)	41.0 AQ B	305.6	215.3	0.0	0.0	038.7	23.7	1,721.0	272.6	1 675 3	0.0	0.0
95.00	(appartenance(s)	43.0 62.4	1 405 7	610.0	0.0	0.0	550.7	38.0	2 156 7	100.3	3 652 4	0.0	0.0
87.54	Bot - Section 3	41 A	746.2					19.6	1 098 4	61.0	1 844 7	0.0	0.0
90.00		40.8	1.060.0					19.2	1.065.7	59.9	2.125.7	0.0	0.0
92.46	Top - Section 2	41.3	1.043.0					19.3	1.065.9	60.6	2.108.9	0.0	0.0
95.00	·	29.1	661.0					20.2	1.105.4	49.3	1.766.4	0.0	0.0
96.00	Appurtenance(s)	40.7	257.8	111.9	0.0	0.0	936.1	8.0	435.1	160.6	1.629.0	0.0	0.0
100.00		62.7	1,011.4		- 25			32.2	1,739.1	94.9	2,750.5	0.0	0.0
103.75	Reinf. Top	40.2	926.4					30.6	1,634.1	70.8	2,560.6	0.0	0.0
105.00	Appurtenance(s)	49.5	305.2	78.5	0.0	0,0	462.7	10.3	445.3	138.3	1,213.2	0.0	0.0
110.00		55.2	1,189.5					41.6	1,567.4	96.8	2,756.9	0.0	0.0
112.00	Appurtenance(s)	38.9	467.3	371.5	0.0	0,0	5,338.0	16.8	628.4	427.2	6,433.6	0.0	0.0
115.00		61.4	688.1					21.1	490.6	82.5	1,178.7	0.0	0.0
120.00		75.5	1,111.6					42.7	819.8	118.2	1,931.4	0.0	0.0
125.00	Appurtenance(s)	74.0	1,072.3	595.1	0.0	0,0	9,306.7	43.3	822.2	712.4	11,201.3	0.0	0.0
130.00		51.8	1,032.7					0.0	595.3	51.8	1,628.0	0.0	0.0
132.12	Bot - Section 4	36.0	428.2					0.0	252.8	36.0	681.0	0.0	0.0
135.00	Appunenance(s)	26.9	748.4	504.2	0.0	0.0	7,794.8	0.0	343.9	531.1	8,887.0	0.0	0.0
135.87	Top - Section 3	35.3	223.2					0.0	100.1	35.3	323.3	0.0	0.0
140.00	Appurtenance(s)	63.5	638.8	407.5	0.0	2,778,8	3 513.1	0.0	475.7	471.0	4,627.6	0.0	0.0
145.00	App://doppend/c)	67.8	742.9				000 7	0.0	0.000	07.0	1,278.9	0.0	0.0
150.00	Appultenance(s)	63.9	211.4	04.9	0.0	0.0	332.1	0.0	537.3	130.0	1,001.4	0.0	0.0
100.00		03.0	0/9./					0.0	533.0 534 B	61.9	1 192 6	0.0	0.0
165.00		26.3	615.9					23.0	539.0	60.2	1 161 7	0.0	0.0
166.00	Annurtenance(s)	20.3	120 0	345 5	0.0	0.0	3 929 3	23.9 4 A	107 3	379.6	4 157 5	0.0	0.0
170.00	- aparteriarios(a)	51.5	465.0	0-010		0.0	0,020.0		95.7	51.5	561.6	0.0	0.0
175.00		55.2	551 2					0.0	119.6	55.2	670 B	0.0	0.0
180.00	Appurtenance(s)	27.0	518.7	961 7	0.0	1.061.3	8.784 4	0.0	119.6	988.7	9,422.7	0.0 0 0	0.0
100.00		21.0	010.1	501.9	0.0	1,001.0	0,104.4	0.0	110.0	555.7	wy rinina f	0.0	0,0

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT T-MOBILE	Code: Engineering Number:	ANSI/TIA-222-G OAA727483_C3_02	©2007 - 2018 by ATC IP LLC. All rights reserved 5/14/2018 1:21:00 Pl					
Load Case Gust Respon Dead Lo Wind Lo	2: 1.2D + 1.0Di + 1.0Wi nse Factor : 1.10 pad Factor : 1.20 pad Factor : 1.00	40 mph with 1.00 Ice Dead Load Factor : 1.00	in Radial Ice		Wind Importance Ice Importance	26 It Factor Factor	eratior : 1.0 : 1.2	ns 0 5	
.	· · · · · · · · · · · · · · · · · · ·	· ···· · · · · · · · · · · · · · · · ·	T o	tals: 6	,912.62 146,159.	0.00	0	0.00	

Site Num	iber: 302	2506				Code	ANSI/TIA-2	222-G	@2007 - 2	018 by ATC	IP LLC. /	All rights re	served.
Site Nam	ne: Wir	nchester	СТ 3, СТ		Engine	ering Number:	OAA72748	3_C3_02			5/14/2	2018 1:21:	00 PM
Custome	er: T-N	IOBILE			÷	-							
Load	Case: 1	.2D + 1.(Di + 1.0W	i	40) mph with 1.00	in Radial Ice					26 Itera	ations
Gust R	esponse l	Factor :	1.10	Ice E)ead Load	Factor: 1.00				Wind Im	portance	Factor :	1.00
De	ad Load	Factor :	1.20							Ice Im	portance	Factor :	1.25
W	ind Load I	Factor :	1.00										
Calcula	ted Ford	ces							, and a				
Sea	Pu	Vu	Tu	Mu	Мц	Resultant	phi	phi	phi	ohi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-146.16	-6.92	0.00	-930.93	0.00	930.93	5,102,86	2,551.43	10,963.2	5,489.79	0.00	0.00	0.148
10.00	-138.10	-6.94	0.00	-861.69	0.00	861.69	4,953.95	2,476.98	10,193.1	5,104.17	0.08	-0.08	0.145
15.00	-133.96	-6.94 -6.94	0.00	-827.01	0.00	827.01 792.30	4,877.36	2,438.68	9,813.98	4,914.28	0.18	-0.12	0,143
25.00	-125.65	-6.94	0.00	-757.59	0.00	757.59	4,719,90	2,359.95	9,068.23	4,540.86	0.51	-0.20	0.139
30.00	-121.46	-6.93	0.00	-722.89	0.00	722.89	4,639,03	2,319.51	8,702.08 8,340.67	4,357.51	0.74	-0.24	0.137
40.00	-113.33	-6.90	0.00	-653.66	0.00	653.66	4,473.00	2,236.50	7,984.18	3,998.03	1.34	-0.32	0.132
42.96	-110.94	-6.89	0.00	-633.26	0.00	633.26	4,422.82	2,211.41	7,775.79	3,893.68	1.55	-0.35	0.131
49.04	-108.85	-6.85	0.00	-591.41	0.00	591.41	3 604 17	1,802.08	6,267.69	3,138.50	2.03	-0.40	0.129
50.00	-104.02	-6.84	0.00	-584.84	0.00	584.84	3,591.50	1,795.75	6,214.33	3,111.78	2.11	-0.41	0.143
55.00 60.00	-100.17	-6.77	0.00	-550.64	0.00	516.60	3,524,70	1,728.24	5,938.60	2,973.71	3.07	-0.46	0.139
65.00	-92.57	-6.73	0.00	-482.74	0.00	482.74	3,386,83	1,693.41	5,398.53	2,703.28	3.63	-0.55	0.131
70.00	-88.81 -85.09	-6.64	0.00	-449.11 -415.89	0.00	449.11 415.89	3,315.75	1,657.87	5,134.58	2,571.11	4.23	-0.60	0.127
79.00	-82.12	-6.48	0.00	-389.68	0.00	389.68	3,164.68	1,582.34	4,641.84	2,324.37	5.45	-0.68	0,118
80.00	-80.45	-6.23	0.00	-383.20	0.00	383.20 352.07	3,145.28	1,572.64	4,584.79	2,295.80	5.59 6.34	-0.69	0.117
87.54	-74.95	-6.07	0.00	-336.51	0.00	336.51	2,998.97	1,499.48	4,166.05	2,086.12	6.75	-0.76	0.111
90.00	-72.82	-6.01	0.00	-321.57	0.00	321.57 306.81	2,951.23	1,475.62	4,033.76	2,019.88	7.15	-0.79	0.107
95.00	-68.94	-5.90	0.00	-291.67	0.00	291.67	2,382.81	1,191.41	3,222.46	1,613.62	7.99	-0.83	0.114
96.00	-67.31	-5.74	0.00	-285.78	0.00	285.78	2,371.21	1,185.60	3,185.22	1,594.98	8.17	-0.84	0.112
103.75	-62.00	-5.56	0.00	-241.66	0.00	241.66	2,279.33	1,139.67	2,901.28	1,452.80	9.60	-0.91	0.101
103.75	-62.00	-5.56	0.00	-241.66	0.00	241.66	2,279.33	1,139.67	2,901.28	1,452.80	9.60	-0.91	0.194
110.00	-58.03	-5.37	0.00	-234.72	0.00	207.46	2,186.61	1,093.30	2,659.07	1,331.51	10.85	-0.93	0.182
112.00	-51.60	-4.87	0.00	-196.72	0.00	196.72	2,154.27	1,077.13	2,580.59	1,292.21	11.29	-1.05	0.176
120.00	-48.48	-4.73	0.00	-158.03	0.00	158.03	2,024.90	1,012.45	2,405.08	1,140.91	13.16	-1.18	0.172
125.00	-37.29	-3.83	0.00	-134.36	0.00	134.36	1,944.05	972.03	2,099.13	1,051.12	14.44	-1.26	0.147
130.00	-35.66	-3.76	0.00	-115.20	0.00	107.20	1.828.92	931.60	1,927.17	905.02	16.40	-1.34	0.139
135.00	-26.10	-3.01	0.00	-96.40	0.00	96.40	1,782.35	891.17	1,762.57	882.59	17.24	-1.42	0.124
135.87	-25.78 -21.16	-2.99 -2.43	0.00	-93.78 -78.66	0.00	93.78 78.66	993.95 969.84	496.97 484.92	940.01	470.70	17.50	-1.43	0.213
145.00	-19.88	-2.36	0.00	-66.51	0.00	66.51	939.35	469.68	867.78	434.53	20.38	-1.59	0.174
150.00	-18.30	-2.22 -2 14	0.00 0 00	-54.70 -43.60	0.00 0.00	54.70 43.60	907.44 874 09	453.72	797.07	399.13 364.57	22.10	-1.69	0.157
160.00	-15.90	-2.07	0.00	-32.88	0.00	32.88	839.33	419.66	660.97	330.98	25.85	-1.87	0.118
165.00	-14.75 -10.61	-1.98 -1 46	0.00	-22.54	0,00	22.54 20.56	800.44 790 74	400.22	593.98 579.60	297.43 290.23	27.85	-1.95	0.094
170.00	-10.05	-1.40	0.00	-14.71	0.00	14.71	751.93	375.97	523.82	262.30	29.93	-2.01	0.069
175.00 180.00	-9.38 0.00	-1.33 -0.99	0.00	-7.70 -1.06	0.00	7.70 1.06	703.42 654.91	351.71 327.45	458.07 396.72	229.37	32.06 34.22	-2.05	0.047 0.005

Site Number: Site Name:	302506 Winchester CT 3, CT	Code: ANSI/TIA Engineering Number: OAA7274	A-222-G @2007 - 2018 by ATC IP LLC. All rights reserved. 483_C3_02 5/14/2018 1:21:00 PM
Customer:	T-MOBILE		
Load Case Gust Respon Dead Loa	::1.0D + 1.0W ise Factor :1.10 ad: Factor :00	Serviceability 60 mph	25 Iterations Wind Importance Factor: 1.15

Applied Segment Forces Summary

Wind Load Factor : 1.00

		Shaft F	orces		Discrete F	forces		Linear Fo	rces		Sum of	Forces	
Seg			Dead		Torsion	Noment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(Ib)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		55.6	0.0					0.0	0.0	55.6	0.0	0.0	0.0
5.00		110.1	1.222.9					0.0	869.1	110.1	2.092.0	0.0	0.0
10.00		107.8	1,197.0					0.0	869.1	107.8	2,066.1	0.0	0.0
15.00		105.4	1,171.1					0.0	869.1	105.4	2,040.2	0.0	0.0
20.00		103.1	1,145.2					0.0	869.1	103.1	2,014.3	0.0	0.0
25.00		100.8	1,119.2					0.0	869.1	100.8	1,988.4	0.0	0.0
30.00	Appurtenance(s)	99.6	1,093.3	7.8	0.0	0.0	10.0	0.0	869.1	107.4	1,972.4	0.0	0.0
35.00		100.4	1,067.4					0.0	867.5	100.4	1,934.9	0.0	0.0
40.00		80.8	1,041.5					0.0	867.5	80.8	1,908.9	0.0	0.0
42.96	Bot - Section 2	51.5	603.6					0.0	512.9	51.5	1,116.6	0.0	0,0
45.00	T OIA	63.7	771.7					0.0	354.5	63.7	1,126.2	0.0	0.0
49.04	Top - Section 1	52.4	1,502.0					0.0	700.9	52.4	2,202.9	0.0	0.0
50.00		62.6	164.3					0.0	166.6	62.6	330.9	0.0	0.0
55.00		105.1	842.5					0.0	867.5	105.1	1,710.0	0.0	0.0
60.00	<i>3</i>	104.9	820.3					0.0	807.5	104.9	1,687.7	0.0	0.0
70.00		140.4	790.0					0.0	007.0	140.4	1,000.0	0.0	0.0
70.00		191.3 170 B	753.6					39.1	867.5	230.5	1,043.3	0.0	0.0
79.00	Appurtenance(s)	94.3	586.9	na	0.0	0.0	0.6	32.5	694.0	127 7	1 281 5	0.0	0.0
80.00	Annuttenance(s)	111 0	144 5	6.0 2 FRA	0.0	0.0	278.0	82	173.3	603.2	505.9	0.0	0.0
85.00	(pputertailise(s)	130.0	709.2	400.2	0.0	0,0	270,0	41.4	864.2	181 3	1 573 3	0.0	0.0
87.54	Bot - Section 3	92.6	351.7					21.3	439.0	113.9	790.7	0.0	0.0
90.00		91.1	620.3					20.8	425.2	111.9	1.045.5	0.0	0.0
92.46	Top - Section 2	91.9	609.5					21.0	424.6	112.9	1,034.1	0.0	0.0
95.00		64.7	285.4					21.9	439.6	86.6	725.0	0.0	0.0
96.00	Appurtenance(s)	90.3	110.9	157.0	0.0	0.0	486.6	8.6	172.8	255.9	770.3	0.0	0.0
100.00		138.6	436.1					34.8	688.1	173.5	1,124.2	0.0	0.0
103.75	Reinf. Top	88.5	398.1					33.0	645.1	121.5	1,043.2	0.0	0.0
105.00	Appurtenance(s)	108.6	130.4	116.8	0.0	0.0	79,2	11.1	131.5	236,5	341.1	0.0	0.0
110.00		120.7	510.0					44.7	501.5	165.4	1,011.5	0.0	0.0
112.00	Appurtenance(s)	84.6	198.8	535.2	0.0	0.0	1,668.0	18.0	200.6	637.9	2,067.4	0.0	0.0
115.00		133.0	292.7					22.5	149.2	155.4	441.9	0.0	0.0
120.00	Annustranna (a)	162.7	473.0					45.4	248.7	208.1	721.7	0.0	0.0
125.00	Appunenance(s)	122.4	454.5	909.0	0.0	0.0	2,629,6	45.9	248.7	1,077.3	3,332.8	0.0	0.0
120.00	Bot - Section 4	39.7	433.9					0.0	217.0	39.7	000,0	0.0	0.0
132.12	Appurtenance(s)	41.2	384.0	760.2	0.0	0.0	2 857 1	0.0	92.3 125 A	800.0	3 366 5	0.0	0.0
135.87	Top - Section 3	40.1	114.0	100.2	0.0	0.0	2,001.1	0.0	34.6	40.1	148.7	0.0	0.0
140.00	Appurtenance(s)	71 7	201.1	452.8	0.0	2 845 8	721.0	0.0	164.5	524.5	1 086 6	0.0	0.0
145.00	· • • • • • • • • • • • • • • • • • • •	75.9	233.3	702.0	0.0	2,010.0	1210	0.0	164.8	75.9	398.1	0.0	0.0
150.00	Appurtenance(s)	72.9	222.2	56.3	0.0	0.0	158.3	0.0	164.8	129.2	545.3	0.0	0.0
155.00		69.9	211.1			105	1	0.0	160.7	69.9	371.8	0.0	0.0
160.00		94.3	200.0					0.0	160.7	94.3	360.7	0,0	0.0
165.00		71.8	188.9					24.9	160.7	96.7	349.6	0.0	0.0
166.00	Appurtenance(s)	36.3	36.4	455.0	0.0	0.0	1,285.3	5.0	32.1	496.3	1,353.9	0.0	0.0
170.00		53.9	141.3					0.0	79.7	53,9	221.0	0.0	0.0
175.00		56.8	166.6					0.0	99.6	56.8	266.3	0.0	0.0
180.00	Appurtenance(s)	27.6	155.5	1,088.3	0.0	2,067.6	2,555.6	0.0	99.6	1,115.9	2,810.8	0.0	0.0

Site Number: Site Name: Customer:	302506 Winchester CT 3, CT T-MOBILE	Code: Engineering Number:	ANSI/TIA-222-G OAA727483_C3_02	@007 - 2	018 by ATC IP LLC. 5/14/	All rights r 2018 1:21	eserved. :11 PM
Load Case Gust Respo Dead Lo Wind Lo	e:1.0D + 1.0W nse Factor :1.10 pad Factor :1.00 pad Factor :1.00	Serviceability 60 n	nph		Wind Importance	25 Iter Factor :	ations 1.15
			To	tals:	9,924.68 59,225.9	0.00	0.00

Site Number: 302506						Code	ANSI/TIA-2	22-G	@2007 - 20	018 by ATC	IP LLC.	All rights re	served.
Site Name	e: Wi	nchester	СТ 3, СТ		Engine	ering Number:	OAA727483	3_C3_02			5/14/2	2018 1:21:	:11 PM
Customer	r: T-N	IOBILE			-	-							
											· · · ·	· · · ·	
Load (Case: 1	I 0D + 1.()W(Se	erviceability 60 r	noh					25 Iter	ations
Cust R		Easter 1	1.10							Wind Im	oodoooo	Easter	1 15
Dea	ad Load	Factor	1.00							VALUE IL LI	portance		1,10
Wi	nd Load	Factor	1.00										
Colouloi	tod Ear		~			· · · · · ·							
Calculat		Jes											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
Elev	FY (-)	FX (-) (kips)	MY (ft.kins)	MZ (ft-kips)	MX (ft-kins)	Moment (ft-kips)	Pn (kins)	Vn (kins)	Tn (ft-kips)	Mn (ft-kips)	Deflect	Rotation	Ratio
(11)	(Kips)	(kips)	(It-Kips)	(iekipa)	(IPRIPS)	(1041)	(nips)		(It-Rips)		(11)	(deg/	0.40
0.00	-59.22	-9.89 -9.83	0.00	-1 170 71	0.00	1,170.71	5,102.86 5,029.12	2,551.43	10,963.2	5,489.79	0.00	0.00	0.16/
10.00	-55.05	-9.77	0.00	-1.072.09	0.00	1,072.09	4,953.95	2,476.98	10,193.1	5,104.17	0.10	-0.10	0.16
15.00	-53.00	-9.70	0.00	-1,023.26	0.00	1,023.26	4,877.36	2,438.68	9,813.98	4,914.28	0.23	-0.15	0.159
20.00	-30.98	-9.64	0.00	-974.74	0.00	974.74 926.55	4,799.34	2,399.07	9,436.93	4,720.40	0.41	-0.20	0.15
30.00	-47.00	-9.50	0.00	-878.68	0.00	878.68	4,639.03	2,319.51	8,702.08	4,357.51	0.93	-0.30	0.150
35.00	-45.06	-9.43	0.00	-831.19	0.00	831.19	4,556.73	2,278.36	8,340.67	4,176.53	1.26	-0.35	0.14
40.00	-43.14	-9.37	0.00	-756.36	0.00	756.36	4,473.00	2,230.50	7,775.79	3.893.68	1.00	-0.40	0.14
45.00	-40.89	-9.28	0.00	-737.31	0.00	737.31	4,378.03	2,189.01	7,615.75	3,813.53	2.10	-0.45	0.13
49.04	-38.68	-9.22	0.00	-699.84	0.00	699.84 690.98	3,604.17 3,591.50	1,802.08	6 267 69	3,138.50	2.50	-0.49	0.15
55.00	-36.63	-9.09	0.00	-645.09	0.00	645.09	3,524.70	1,762.35	5,938.60	2,973.71	3.16	-0.56	0.14
60.00	-34,94	-9.00	0.00	-599,62	0.00	599.62	3,456.48	1,728.24	5,666.60	2,837.51	3.78	-0.61	0.14
65.00 70.00	-33.26	-8.87 -8.65	0.00	-554.61	0.00	554.61 510.26	3,386.83	1,693.41	5,398.53	2,703.28	4.45	-0.67	0.13
75.00	-29.99	-8.44	0.00	-467.03	0.00	467.03	3,242.30	1,621.15	4 873.54	2,440.39	5.96	-0.77	0.12
79.00	-28.71	-8.31	0.00	-433.27	0.00	433.27	3,164,68	1,582.34	4,641.84	2,324.37	6.63	-0.82	0.11
85.00	-26.54	-7.52	0.00	-386.40	0.00	386.40	3.048.26	1.524.13	4,304.87	2,255.60	7.70	-0.88	0.11
87.54	-25.75	-7.41	0.00	-367.29	0.00	367.29	2 998.97	1,499.48	4,166.05	2,086.12	8.17	-0.90	0.10
90.00 92.46	-24.70	-7.29 -7 17	0.00	-349.06	0.00	349.06 331.15	2,951.23	1,475.62	4,033,76	2,019,88	8.64	-0.93	0.10
95.00	-22.94	-7.08	0.00	-312.91	0.00	312.91	2,382,81	1,191.41	3,222.46	1,613.62	9.64	-0.98	0.10
96.00	-22.17	-6.82	0.00	-305.83	0.00	305.83	2,371.21	1,185.60	3,185.22	1,594.98	9.85	-0.99	0.10
100.00	-21.05	-0.04	0.00	-278.55	0.00	253.64	2.279.33	1.139.67	2.901.28	1.452.80	11.52	-1.06	0.09
103.75	-20.00	-6.51	0.00	-253.64	0.00	253.64	2,279.33	1,139.67	2,901.28	1,452.80	11.52	-1.06	0.18
105.00	-19.66	-6.28	0.00	-245.50	0.00	245.50 214.08	2,264.20	1,132.10	2,856.29	1,430.27	11.80) -1.08	0.18
112.00	-16.59	-5.45	0.00	-201.84	0.00	201.84	2,154.27	1,077.13	2,580,59	1,292.21	13.47	-1.20	0.16
115.00	-16.14	-5.31	0.00	-185.49	0.00	185.49	2,105.76	1,052.88	2,465.08	1,234.37	14.24	-1.26	0.15
120.00	-15.42	-5.10	0.00	-158.95	0.00	158.95	2,024.90	972.03	2,278.43	1,140.91	15.61	-1.34	0.14
130.00	-11.45	-3.90	0.00	-113.62	0.00	113.62	1,863.20	931.60	1,927.17	965.02	18.58	-1.50	0.12
132.12	-11.18	-3.86	0.00	-105.35	0.00	105.35	1,828.92	914.46	1,856.49	929.62	19.25	i -1.53	0.11
135.87	-7.68	-2.97	0.00	-91.66	0.00	91.66	993.95	496.97	1,000.68	501.09	20.47	-1.58	0.19
140.00	-6.61	-2.39	0.00	-76.71	0.00	76.71	969.84	484.92	940.01	470.70	21.87	-1.64	0.17
145.00	-6.21	-2.31 -2.17	0.00	-64.79	0.00	64.79 53.25	939.35	409.68	867.78 797.07	434.53	25.64	-1.74	0.15
155.00	-5.29	-2.10	0.00	-42.39	0.00	42.39	874.09	437.05	728.06	364.57	27.50	-1.93	0.12
160.00	-4.93	-2.00	0.00	-31.90	0.00	31.90	839.33	419.66	660.97	330.98	29.57	-2.02	0.10
166.00	-4.59	-1.09	0.00	-20.02	0.00	20.02	790.74	395.37	579.60	290.23	32.17	· -2.09	0.07
170.00	-3.03	-1.29	0.00	-14.63	0.00	14.63	751.93	375.97	523.82	262.30	33.95	-2.15	0.06
175.00	-2.77	-1.22	0.00	-8,18	0.00	8.18 2.07	703.42	351.71	458.07 396 72	229.37	36.23	5 -2.19 1 -2.22	0.04

Site Number: 302506 Site Name: Winchester CT 3, CT Customer:

Code:	ANSI/TIA-222-G	@2007 - 2018 by ATC IP LLC. All rights reserved.
Engineering Number:	OAA727483_C3_02	5/14/2018 1:21:12 PM

T-MOBILE

Equivalent Lateral Forces M	lethod Analysis
(Based on ASCE7-10 Chapte	ers 11, 12, 15)
Spectral Response Acceleration for Short Period (S	0.18
Spectral Response Acceleration at 1.0 Second Period (S	0.06
Long-Period Transition Period (T	6
Importance Factor (I E):	1,50
Site Coefficient F a:	1.60
Site Coefficcient F v:	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.19
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10
Seismic Response Coefficient (C s):	0.04
Upper Limit C s	0.04
Lower Limit C s	0.03
Period based on Rayleigh Method (sec):	2,67
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	2.00
Total Unfactored Dead Load:	59.23 k
Seismic Base Shear (E):	3.00 k

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C vx	(lb)	(lb)
47	177.50	255	8,040	0.015	46	316
46	172.50	266	7,924	0.015	45	330
45	168.00	221	6,238	0.012	35	274
44	165.50	69	1,879	0.004	11	85
43	162.50	350	9,232	0.017	52	433
42	157.50	361	8,948	0.017	51	446
41	152.50	372	8,647	0.016	49	460
40	147.50	387	8,420	0.016	48	479
39	142.50	398	8,085	0.015	46	493
38	137.93	366	6,956	0.013	39	453
37	135.43	149	2,727	0.005	15	184
36	133.56	509	9,087	0.017	52	631
35	131.06	271	4,663	0.009	26	336
34	127.50	654	10,625	0.020	60	809
33	122.50	703	10,552	0.020	60	870
32	117.50	722	9,964	0.019	56	893
31	113.50	442	5,693	0.011	32	547
30	111.00	399	4,921	0.009	28	494
29	107.50	1,012	11,689	0.022	66	1,252
28	104.38	262	2,853	0.005	16	324
27	101.88	1,043	10,827	0.020	61	1,291
26	98.00	1,124	10,797	0.020	61	1,392
25	95.50	284	2,588	0.005	15	351

Site Number:	302506		Code	ANSI/TIA-222	2-G	@2007 - 2018 by ATC IP LLC. All r	ights reserved.
Site Name:	Winchester CT 3, CT		Engineering Number:	OAA727483_	C3_02	5/14/201	8 1:21:12 PM
Customer:	T-MOBILE						
24		93.73	725	6,369	0.012	36	897
23		91.23	1,034	8,607	0.016	49	1,280
22		88.77	1,045	8,238	0.016	47	1,294
21		00.27 82.50	1573	5,885	0.011	33	979
19		79.50	318	2 009	0.020	11	393
18		77.00	1.281	7,594	0.014	43	1,585
= 17		72.50	1,621	8,521	0.016	48	2,007
16		67.50	1,643	7,487	0.014	42	2,034
15		62.50	1,666	6,506	0.012	37	2,062
14		57.50	1,688	5,580	0.011	32	2,089
13		32.30	331	4,/13	0.009	21	∠,117 410
11		43.32	2 203	4 870	0.002	28	2 727
10		43.98	1.126	2.178	0.004	12	1.394
9		41.48	1,117	1,921	0.004	11	1,382
8		37.50	1,909	2,684	0.005	15	2,363
7		32.50	1,935	2,044	0.004	12	2,395
5		27.50	1,962	1,484	0.003	8	2,429
2		22.50	1,900	617	0.002	3	2,401
3		12.50	2.040	319	0.001	2	2,525
2		7.50	2,066	116	0.000	1	2,557
1		2.50	2,092	13	0.000	0	2,589
Andrew ABT	-DMDF-ADBH	180.00	1	36	0.000	0	1
4' Omni		180.00	10	324	0.001	2	12
Powerwave /	Aligon LGP	180.00	85	2,741	0.005	16	105
Friceson PR	-40-00-10- 119 11 /8a	180.00	40	1,296	0.002	/ 28	196
Ericsson RR	US 32 (50	180.00	152	4,938	0.009	28	189
Ericsson RR	US-12 B2	180.00	174	5,638	0.011	32	215
2' x 4' Recta	ngular	180.00	40	1,296	0.002	7	50
Powerwave	Allgon 777	180,00	105	3,402	0.006	19	130
KMW AM-X-	CD-16-65-00	180.00	146	4,714	0.009	27	180
Elat Low Pro	K-BUU-HD file Dia	180.00	153	4,957	0.009	28	1 857
Ericsson KR	Y 112 144	166.00	33	40,000	0.002	273	41
Fastback Ne	tworks In	166.00	9	242	0.000	1	11
Ericsson AIR	21, 1.3	166.00	249	6,861	0.013	39	308
Ericsson AIF	21, 1.3	166.00	244	6,737	0.013	38	303
Round T-Arn		166.00	750	20,667	0.039	117	928
Sinclair SD2	10-SF2P4	150.00	8	187	0.000	1	10
Telewave Al	Ann NT150D (5	150.00	150	3,375	0.000	19	100
Bird 432-83H	H-01-T	140.00	25	490	0.001	3	31
Sinclair SC4	79-HF1LD	140.00	34	666	0.001	4	42
Round Side	Arm	140.00	450	8,820	0.017	50	557
Decibel DB8	09DK-XT	140.00	128	2,509	0.005	14	158
Sinclair SC4	42D-HF1L	140.00	79	1,548	0.003	9	98
	nt 1900M	135.00	132	3,379	0.000	14	163
Alcatel-Luce	nt TD-RR	135.00	210	3.827	0.007	22	260
RFS APXVT	M14-C-120	135.00	159	2,892	0.005	16	196
RFS APXVS	PP18-C-A20	135,00	171	3,116	0.006	18	212
Flat Platform	i w/ Han	135.00	2,000	36,450	0.069	207	2,476
Nokia B5 RF	RH4x40-850	125.00	146	2,273	0.004	13	180
Alcatel-Luce	nt 825 K at 8842y	125.00	159	2,484	0.005	14	197
RES DR.R1.	6C-12AB-0Z	125.00	21	220,2	0.005	· · · · · · · · · · · · · · · · · · ·	26
Alcatel-Luce	nt B66a	125.00	201	3.141	0.006	i 18	249
Antel LPA-8	0080/6CF	125.00	42	656	0.001	4	52
Commscope	JAHH-65B-R	125.00	364	5,681	0.011	32	450
Antel LPA-8	0063/6CF	125.00	27	422	0.001	2	33
Round Low	Profile Pl	125.00	1,500	23,438	0,044	133	1,857

Site Number:	302506		Code	ANSI/TIA-222	2.6 @	2007 • 2018 by ATC IP LLC	All rights reserved
Site Name	Minchester CT 3 CT		Engineering Number	044727483	C3 02	5/1 <i>//</i>	2018 1-21-12 DM
Site Name.	THORE STOLES		Engineering Number.	OAA121403_	03_02	U/ 14/	2010 1.21.12 191
Customer:							
Decibel DB8	44H90E-XY	112.00	168	2,107	0.004	12	208
Round Low F	Profile PI	112.00	1,500	18,816	0.036	107	1,857
RFS APXV1	8-206517S-C	105.00	79	873	0.002	5	98
Andrew DB5	86 1.04 T	96.00	17	153	0.000	1	21
Flat Side Am	n	96.00	450	4.147	0.008	24	557
RFS PA6-65	AC	80.00	278	1,779	0.003	10	344
PCTEL GPS	-TMG-HR-26N	79.00	1	ି 4	0.000	0	1
GPS		30.00	10	9	0.000	0	12
			59,226	528,780	1.000	2,997	73,308
Load Case	(0.9 - 0.2Sds) * DL + I	ELFM	Seismic (Reduced I	DL) Equivaler	nt Lateral	Forces Method	
		Height				Listentei	Vertical
	· •	Above	Weight	w.		Force	Force
Seg	ment	(ft)	(lb)	(lb-ft)	Cvx	(lb)	(lb)
47		177.50	255	8 040	0.015	46	220
46		172.50	266	7,924	0.015	45	230
45		168.00	221	6,238	0.012	35	191
44		165.50	69	1,879	0.004	11	59
43		102.50	350	9,232	0.017	52	301
41		152.50	372	8.647	0.016	49	321
40		147.50	387	8,420	0.016	48	334
39		142.50	398	8,085	0.015	46	343
38		137.93	366	6,956	0.013	39	315
36		133.43	500	2,727	0.005	13	120
35		131.06	271	4,663	0.009	26	234
34		127.50	654	10,625	0.020	60	564
33		122.50	703	10,552	0.020	60	606
32		117.50	722	9,964	0.019	56	622
30		113.50	442	3,093	0.009	32	361
29		107.50	1,012	11.689	0.022	66	872
28		104.38	262	2,853	0.005	16	226
27		101.88	1,043	10,827	0.020	61	900
26		98.00	1,124	10,797	0.020	61	969
25		95.50	284	2,588	0.005	15	245
23		91.23	1.034	8,607	0.012	49	892
22		88.77	1,045	8,238	0.016	47	901
21		86.27	791	5,885	0.011	33	682
20		82.50	1,573	10,709	0.020	61	1,357
19 18		79.50	318	2,009	0.004	11 43	2/4 1 104
17		72.50	1,621	8.521	0.016	48	1,398
16		67.50	1,643	7,487	0.014	42	1,417
15		62.50	1,666	6,506	0.012	37	1,436
14		57.50	1,688	5,580	0.011	32	1,455
12		49.52	331	4,/13	0.009	5	1,974
11		47.02	2,203	4.870	0.009	28	1,899
10		43.98	1,126	2,178	0.004	12	971
9		41.48	1,117	1,921	0.004	11	963
8		37.50	1,909	2,684	0.005	15	1,646
6		32.3U 27 50	1,930	2,044	0.004	12	1,000
5		22.50	1,988	1.007	0.002	6	1.714
4		17.50	2,014	617	0.001	3	1,737
3		12.50	2,040	319	0.001	2	1,759

Site Number:	302506		Code	: ANSI/TIA-222	2-G	@2007 - 2018 by ATC IP LLC	. All rights reserved.
Site Name:	Winchester CT 3, CT		Engineering Number:	OAA727483_	_C3_02	5/14	/2018 1:21:12 PM
Customer:	T-MOBILE						
2		7.50	2,066	116	0.000	1	1,781
1		2.50	2,092	13	0.000	0	1,804
Andrew ABT	-DMDF-ADBH	180.00	1	36	0.000	0	1
4' Omni		180.00	10	324	0.001	2	9
Powerwave /	Aligon LGP	180.00	85	2,741	0.005	16	73
Friceson RR	-40-00-10- LIS 11 /8a	180.00	40	1,290	0.002	28	129
Ericsson RRI	US 17 (58 US 32 (50	180.00	150	4,000	0.003	28	123
Ericsson RRI	US-12 82	180.00	174	4,530	0.011	32	151
2' x 4' Rectar	ngular	180.00	40	1.296	0.002	7	34
Powerwave /	Alloon 777	180.00	105	3,402	0.006	19	91
KMW AM-X-	CD-16-65-00	180.00	146	4,714	0.009	27	125
CCI HPA-651	R-BUU-H6	180.00	153	4,957	0.009	28	132
Flat Low Pro	file Pla	180.00	1,500	48,600	0.092	275	1,293
Ericsson KR'	Y 112 144	166.00	33	909	0.002	5	28
Fastback Ne	tworks In	166.00	9	242	0.000	1	8
Ericsson AIR	21, 1.3	166.00	249	6,861	0.013	39	215
Ericsson AIR	21, 1,3	166.00	244	6,737	0.013	38	211
Round T-Am	n 	166.00	750	20,667	0.039	117	647
Sinclair SD2	10-SF2P4	150.00	8	187	0.000	1	7
Kound Side /		150.00	150	3,375	0.000	19	129
Telewave An		140.00	5	98	0.000	1	4
Sinclair SC4	1-01-1 79-HF11 D	140.00	20	490	0.001	3 A	22
Round Side	Arm	140.00	450	8 820	0.017	50	388
Decibel DB8	09DK-XT	140.00	128	2 509	0.005	14	110
Sinclair SC4	42D-HF1L	140.00	79	1 548	0.003	9	68
Alcatel-Luce	nt 800 M	135.00	185	3,379	0.006	19	160
Alcatel-Lucer	nt 1900M	135.00	132	2,406	0.005	14	114
Alcatel-Lucer	nt TD-RR	135.00	210	3,827	0.007	22	181
RFS APXVT	M14-C-I20	135.00	159	2,892	0.005	16	137
RFS APXVS	PP18-C-A20	135.00	171	3,116	0.006	18	147
Flat Platform	w/ Han	135.00	2,000	36,450	0.069	207	1,724
Nokia B5 RR	H4x40-850	125.00	146	2,273	0.004	13	125
Alcatel-Luce	nt B25 R	125.00	159	2,484	0.005	14	137
Alcatel-Luce	nt RRH2x	125.00	170	2,658	0.005	15	147
Alectel Luce	bu-12AB-UZ	125.00	21	334	0.001	2	18
Alcatel-Lucel		125.00	201	3,141	0.000	18	1/3
Commiscone		125.00	42 364	000	0.001	4	JO 314
Antel I PA-80	063/6CE	125.00	27	2,001	0.001	2	23
Round Low F	Profile Pl	125.00	1.500	23 438	0.001	133	1 293
Decibel DB8	44H90F-XY	112 00	168	2 107	0.004	12	145
Round Low F	Profile PI	112.00	1,500	18.816	0.036	107	1,293
RF\$ APXV1	8-206517S-C	105.00	79	873	0.002	5	68
Andrew DB5	86	96.00	17	153	0.000	1	14
Bird 429-83H	I-01-T	96.00	20	184	0.000	1	17
Flat Side Am	n	96,00	450	4,147	0.008	24	388
RFS PA6-65	AC	80.00	278	1,779	0.003	10	240
PCTEL GPS	-TMG-HR-26N	79.00	1	4	0.000	0	1
GPS		30.00	10	9	0.000	0	9
			59,226	528,780	1.000) 2.997	51.067

Site Name: Winchester CT 3, CT

Code: ANSI/TIA-222-G

@2007 - 2018 by ATC IP LLC. All rights reserved.

Engineering Number: OAA727483_C3_02

5/14/2018 1:21:12 PM

Customer: T-MOBILE

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

Calculated Forces

	Seg Elev (ft)	Pu FY (-) (kins)	Vu FX (-) (kips)	Tu MY (ft-kins)	Mu MZ (ft-kips)	Mu MX (ff-kips)	Resultant Moment (ft-kins)	t phi Pn (kins)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect	Rotation	Ratio
-	(14)	(mps)	(mpo)	(it-itipo)	(it-hipo)	(re-rapa)	(п-проу	(mpo)	(1100)	(re-rapo)	(it-itipo)	(00)	(dog)	11000
	0.00	-70.72	-3.01	0.00	-406.37	0.00	406,37	5,102.86 2	2,551.43	10,963.2	5,489.79	0.00	0.00	0.066
	5.00	-68.16	-3.03	0.00	-391.34	0.00	391.34	5,029.12 2	2,514.50	10,575.3	5,296.03	0.01	-0.02	0.065
	10.00	-05.03	-3.04	0.00	-3/0.21	0.00	3/0.21	4,953.95 2	470.98	10,193.1	5,104.17	0.04	-0.03	0.062
	20.00	-03.14	-3.00	0.00	-301.00	0.00	345 72) 4,077.302) 700373	2,430.00	9,013.90	4,914.20	0.00	-0.05	0.003
	20.00	-00.00	-3.07	0.00	-330.30	0.00	330.30	4,755,042	2 350 05	0,400.55	4,720.40	0.14	-0.07	0.002
	30.00	-55.84	-3.07	0.00	-315.02	0.00	315 02	4,719,90 2	2 319 51	8 702 08	4 357 51	0.22	-0.03	0.001
	35.00	-53.48	-3.07	0.00	-299 64	0.00	299.64	4 556 73 2	278.36	8 340 67	4 176 53	0.44	-0.12	0.059
	40.00	-52.09	-3.07	0.00	-284 28	0.00	284.28	4 473 00 2	2 236 50	7 984 18	3 998 03	0.58	-0.14	0.058
	42.96	-50.70	-3.06	0.00	-275.19	0.00	275.19	4 422 82 2	2 211 41	7 775 79	3 893 68	0.67	-0.15	0.057
	45.00	-47.97	-3.04	0.00	-268.93	0.00	268.93	4.378.03 2	2 189 01	7.615.75	3.813.53	0.74	-0.16	0.056
	49.04	-47.56	-3.04	0.00	-256.65	0.00	256.65	5 3,604.17 1	1.802.08	6,267.69	3,138.50	0.88	-0.18	0.063
	50.00	-45.44	-3.02	0.00	-253.73	0.00	253.73	3,591.50 1	1,795.75	6,214.33	3,111.78	0.92	-0.18	0.062
	55.00	-43.35	-2.99	0.00	-238.64	0.00	238.64	3,524.70 1	1,762.35	5,938.60	2,973.71	1.12	-0.20	0.060
	60.00	-41.29	-2.96	0.00	-223.67	0.00	223.67	7 3,456.48 1	1,728.24	5,666.60	2,837.51	1.34	-0.22	0.058
	65.00	-39.26	-2.93	0.00	-208.85	0.00	208.85	5 3,386.83 1	1,693.41	5,398.53	2,703.28	1.58	-0.24	0.057
	70.00	-37.25	-2.88	0.00	-194.21	0.00	194,21	3,315.75 1	1,657.87	5,134.58	2,571.11	1.85	-0.26	0.054
	75.00	-35.66	-2.85	0.00	-179.78	0.00	179.78	3,242.30 1	1,621.15	4,873.54	2,440.39	2.13	-0.28	0.052
	79.00	-35.27	-2.84	0.00	-168.40	0.00	168.40	3,164.68 1	1,582.34	4,641.84	2,324.37	2.37	-0.30	0.051
	80.00	-32.98	-2.76	0.00	-165.57	0.00	165.57	3,145.28 1	1,572.64	4,584.79	2,295.80	2.44	-0.30	0.050
	85.00	-32.00	-2.73	0.00	-151.70	0.00	151.70	0 3,048.20 1	1,024,13	4,304.87	2,100.03	2.70	-0.32	0.049
	07.04	-30.70	-2.00	0.00	-144.02	0.00	144.02	2,990,97 1	1,499.40	4,100.00	2,000.12	2.94	-0.33	0.047
	90.00	-29.42	-2.03	0.00	-130.22	0.00	130.22	2,901.201	1 206 04	3 317 78	2,019.00	3.11	-0.34	0.040
	92.40	-20.33	-2.00	0.00	-125 15	0.00	125.15	2,712.07	1 101 /1	3 222 /6	1,613,62	3.25	-0.35	0.000
	96.00	-26.18	-2.49	0.00	-122.57	0.00	122.57	2,302.01	1 185 60	3,185,22	1.594.98	3.55	-0.37	0.047
	100.00	-24.89	-2.42	0.00	-112.62	0.00	112.62	2.324.22.1	1,162,11	3.037.61	1.521.06	3.87	-0.38	0.045
	103.75	-24.56	-2.41	0.00	-103.53	0.00	103.53	2,279,33 1	1.139.67	2,901.28	1.452.80	4.17	-0.40	0.043
	103.75	-24.56	-2.41	0.00	-103.53	0.00	103.53	2.279.33	1.139.67	2,901.28	1,452,80	4.17	-0.40	0.082
	105.00	-23.21	-2.34	0.00	-100.52	0.00	100.52	2 2 264.20 1	1,132.10	2,856.29	1,430.27	4.28	-0.40	0.081
	110.00	-22.72	-2.32	0.00	-88.83	0.00	88.83	3 2,186.61 1	1,093.30	2,659.07	1,331.51	4.72	-0.44	0.077
	112.00	-20.11	-2.15	0.00	-84.19	0.00	84.19	2,154.27 1	1,077.13	2,580.59	1,292.21	4.91	-0.45	0.074
	115.00	-19.21	-2.10	0.00	-77.74	0.00	77.74	4 2,105.76 1	1,052.88	2,465.08	1,234.37	5.20	-0.48	0.072
	120.00	-18.34	-2.04	0.00	-67.25	0.00	67.25	5 2,024.90 1	1,012.45	2,278.43	1,140.91	5.71	-0.51	0.068
	125.00	-14 28	-1.72	0.00	-57.04	0.00	57.04	1,944.05	972.03	2,099.13	1,051.12	6.27	-0.54	0.062
	130.00	-13.94	-1.70	0.00	-48.44	0.00	48.44	1,863.20	931.60	1,927.17	965.02	6.86	-0.58	0.058
	132.12	-13.31	-1.64	0.00	-44.84	0.00	44.84	1,828.92	914.46	1,856.49	929.62	/.11	-0.59	0.055
	135.00	-9.00	-1.29	0.00	-40.12	0.00	40.12		406.07	1,/02.0/	501.00	7.40	-0.01	0.001
	130.07	-3.14	-1.25	0.00	-33.82	0.00	33.95	060.84	450.57	1,000.00	A70 70	8 13	-0.64	0.007
	1/15 00	-7.70	-1.12	0.00	-28.24	0.00	28.24	1 030.35	404.52	867 78	470.70	8.83	-0.69	0.000
	140.00	-6.62	-1.07	0.00	-20.24	0.00	20.24		453 72	707.07	300 13	0.00	-0.73	0.075
	155.00	-6.18	-0.94	0.00	-17.92	0.00	17.92	874.09	437.05	728.06	364 57	10.35	-0.73	0.000
	160.00	-5.75	-0.89	0.00	-13.20	0.00	13.20	839.33	419.66	660.97	330.98	11.17	-0.80	0.047
	165.00	-5.66	-0.88	0.00	-8.76	0.00	8.76	5 800.44	400.22	593.98	297.43	12.03	-0.83	0.037
	166.00	-3.80	-0.62	0.00	-7.89	0.00	7.89	9 790.74	395.37	579.60	290.23	12.20	-0.84	0.032
	170.00	-3.47	-0.57	0.00	-5.42	0.00	5.42	2 751.93	375.97	523.82	262.30	12.91	-0.85	0.025
	175.00	-3.16	-0.52	0.00	-2.59	0.00	2.59	703.42	351.71	458.07	229.37	13.81	-0.87	0.016
	180.00	0.00	-0.47	0.00	0.00	0.00	0.00	0 654.91	327.45	396.72	198.65	14.73	-0.87	0.000

Site Name: Winchester CT 3, CT

T-MOBILE

Code: ANSI/TIA-222-G

@2007 - 2018 by ATC IP LLC. All rights reserved.

Engineering Number: OAA727483_C3_02

5/14/2018 1:21:12 PM

Load Case (0.9 - 0.2Sds) * DL + E ELFM

Seismic (Reduced DL) Equivalent Lateral Forces Method

Calculated Forces

Customer:

Seg Elev	Pu FY (-) (kipe)	Vu FX (-) (kins)	Tu MY (ft-kips)	Mu MZ (ft-kios)	Mu MX (ft kins)	Resultant Moment	phi Pn (kips)	phi Vn (kipp)	phi Tn (ft kins)	phi Mn (ft kips)	Total Deflect	Rotation	Potio
(11)	(kips)	(kiha)	(IL-KIPS)	(It-Kips)	(IL-KIPS)	(IL-KIPS)	(viha)	(kips)	(It-Kips)	(IL-KIPS)	(00)	(deg)	Ralio
0.00	-49.26	-3.00	0.00	-399.40	0.00	399.40	5,102.86 3	2.551.43	10.963.2	5,489,79	0.00	0.00	0.061
5.00	-47.48	-3.02	0.00	-384.38	0.00	384.38	5,029.12	2,514.56	10,576.3	5,296.03	0.01	-0.02	0.061
10.00	-45.72	-3.03	0.00	-369.30	0.00	369.30	4,953.95	2,476.98	10,193.1	5,104.17	0.03	-0.03	0.060
15.00	-43.98	-3.04	0.00	-354.17	0.00	354.17	4,877.36	2,438.68	9,813.98	4,914.28	0.08	-0.05	0.059
20.00	-42.27	-3.04	0.00	-338.99	0.00	338.99	4,799.34	2,399.67	9,438.93	4,726,48	0.14	-0.07	0.058
25.00	-40.57	-3.04	0.00	-323.79	0.00	323.79	4,719.90	2,359.95	9.068.23	4.540.86	0.22	-0.08	0.057
30.00	-38.90	-3.04	0.00	-308.57	0.00	308.57	4,639.03	2,319.51	8,702.08	4.357.51	0.32	-0.10	0.056
35.00	-37.25	-3.03	0.00	-293.37	0.00	293.37	4,556.73	2,278.36	8,340.67	4,176,53	0.44	-0.12	0.055
40.00	-36.29	-3.03	0.00	-278.20	0.00	278.20	4,473.00	2,236,50	7,984.18	3,998,03	0.57	-0.14	0.054
42.96	-35.31	-3.02	0.00	-269.25	0.00	269.25	4,422.82	2.211.41	7.775.79	3,893,68	0.66	-0.15	0.054
45.00	-33.41	-2.99	0.00	-263.07	0.00	263.07	4,378.03	2,189.01	7,615.75	3,813.53	0.73	-0.16	0.053
49.04	-33.13	-2.99	0.00	-250.97	0.00	250.97	3,604.17	1,802.08	6,267.69	3,138.50	0.87	-0.17	0.059
50.00	-31.65	-2.97	0.00	-248.10	0.00	248.10	3,591.50	1,795.75	6,214.33	3,111.78	0.90	-0.18	0.058
55.00	-30.20	-2,94	0.00	-233.25	0.00	233.25	3,524.70	1,762.35	5,938.60	2,973.71	1.10	-0.20	0.057
60.00	-28.76	-2.91	0.00	-218.53	0.00	218.53	3,456.48	1,728.24	5.666.60	2,837.51	1.31	-0.22	0.055
65.00	-27.34	-2.87	0.00	-203.97	0.00	203.97	3,386.83	1,693.41	5,398.53	2,703.28	1.55	-0.24	0.053
70.00	-25.94	-2.83	0.00	-189.60	0.00	189.60	3,315.75	1,657.87	5,134.58	2,571.11	1.81	-0.26	0.051
75.00	-24.84	-2.79	0.00	-175.46	0.00	175.46	3,242.30	1,621.15	4,873.54	2,440.39	2.09	-0.28	0.049
79.00	-24,56	-2.78	0.00	-164.31	0.00	164.31	3,164.68	1,582.34	4,641.84	2,324.37	2.33	-0.29	0.048
80.00	-22.97	-2.71	0.00	-161.53	0.00	161.53	3,145.28	1,572.64	4,584.79	2,295.80	2.39	-0.30	0.047
85.00	-22.29	-2.67	0.00	-148.00	0.00	148.00	3,048.26	1,524.13	4,304.87	2,155.63	2.71	-0.31	0.045
87.54	-21.38	-2.63	0.00	-141,21	0.00	141.21	2,998.97	1,499,48	4,166.05	2,086.12	2.88	-0.32	0.044
90.00	-20.49	-2.58	0.00	-134.75	0.00	134.75	2,951.23	1,475.62	4,033.76	2,019.88	3.05	-0.33	0.043
92.46	-19.87	-2.54	0.00	-128.43	0.00	128.43	2,412.07	1,206.04	3,317.78	1,661.36	3.22	-0.34	0.047
95.00	-19.62	-2.53	0.00	-121.97	0.00	121.97	2,382.81	1,191.41	3,222.46	1,613.62	3.41	-0.35	0.045
96.00	-18.23	-2.43	0.00	-119.44	0.00	119.44	2,371.21	1,185.60	3,185.22	1,594.98	3.48	-0.36	0.044
100.00	-17.33	-2.37	0.00	-109.71	0.00	109.71	2,324.22	1,162.11	3,037.61	1,521.06	3.79	-0.37	0.042
103.75	-17.11	-2.36	0.00	-100.82	0.00	100.82	2,279.33	1,139.67	2,901.28	1,452.80	4.09	-0.39	0.040
103.75	-17.11	-2.36	0.00	-100.82	0.00	100.82	2,279.33	1,139.67	2,901.28	1,452.80	4.09	-0.39	0.077
105.00	-16.17	-2.28	0.00	-97.88	0.00	97.88	2,264.20	1,132.10	2,856.29	1,430.27	4.19	-0.39	0.076
110.00	-15.82	-2.26	0.00	-86.46	0.00	86.46	2,186.61	1,093.30	2,659.07	1,331.51	4.62	-0.43	0.072
112.00	-14.00	-2.10	0.00	-81.94	0.00	81.94	2,154.27	1,077.13	2,580.59	1,292.21	4.80	-0.44	0.070
115.00	-13.38	-2.05	0.00	-75.64	0.00	75.64	2,105.76	1,052.88	2,465.08	1,234.37	5.09	-0.46	0.068
120.00	-12.77	-1.99	0.00	-65.41	0.00	65.41	2,024.90	1,012.45	2,278.43	1,140.91	5.59	-0.50	0.064
125.00	-9.94	-1.68	0.00	-55.47	0.00	55.47	1,944.05	972.03	2,099.13	1,051,12	6.13	-0.53	0.058
130.00	-9.71	-1.65	0.00	-47.10	0.00	47.10	1,863.20	931.60	1,927.17	965.02	6.71	-0.56	0.054
132.12	-9.27	-1.60	0.00	-43.60	0.00	43.60	1,828.92	914.46	1,856.49	929.62	6.96	-0.58	0.052
135.00	-0.00	-1.20	0.00	-39.00	0.00	39.00	1,782.35	891.17	1,762.57	882.59	7.31	-0.59	0.048
130.07	-0.37	-1.22	0.00	-37.90	0.00	37.90	993.93	490.97	1,000.00	301.09	7.42	-0.60	0.002
140.00	-5.40	-1.09	0.00	-32.07	0.00	32.87	909.84	464.92	940.01	470.70	7.95	-0.62	0.075
145.00	-5.07	-1.04	0.00	-27.43	0.00	27.43	939.35	469.68	867.78	434.53	8.63	-0.67	0.069
100.00	-4.01	-0.97	0.00	-22.23	0.00	22.23	907.44	453.72	797.07	399.13	9.35	-0.71	0.061
100.00	-4.30	-0.92	0.00	-17.39	0.00	17.39	0/4.09	437.03	120.00	304.37	10.11	-0.70	0.003
165.00	-4.00	-0.00	0.00	-12.01	0.00	9 50	039.33 800.44	419.00	603.00	330.98	11.92	-0.70	0.043
166.00	-0.94	-0.05	0.00	-0.30		7.50		205 27	570 60	201.43	11.70	-0.01	0.034
170.00	-2.04	-0.00	0.00	-7.00		1.00	751.02	375.07	573.00	280.23	10.84	-0.01	0.030
175.00	-2.42	-0.00	0.00	-0.20	0.00	0.20	701.83	351 71	123.02 158.07	202.30	12.01	-0.03	0.023
180.00	0.00	-0.00	0.00	0.00) 0.00	0.00	654.91	327.45	396 72	198.65	14 38	-0.00	0.014
	0.00		0.00	U.UL		0.00				100.10	17.40	-0.03	U.UUU

Site Number:	302506	Code:	ANSI/TIA-222-G	@2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	Winchester CT 3, CT	Engineering Number:	OAA727483_C3_02	5/14/2018 1:21:12 PM
Customer:	T-MOBILE			
			<u></u>	

Equivalent Modal Forces Analysis

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA+G, section 2.7)

Spectral Response Acceleration for Short Period (S s):	0.18
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Importance Factor (I E):	1,50
Site Coefficient F a:	1.60
Site Coefficient F	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.19
Desing Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10
Period Based on Rayleigh Method (sec):	2.67
Redundancy Factor (p):	1.30

Load Case (1.2 + 0.2Sds) * DL + E EMAM

.

Seismic Equivalent Modal Analysis Method

	Height							
	Above						Horizontal	Vertical
	Base	Weight					Force	Force
Segment	(ft)	(lb)	а	b	с	Saz	(lb)	(lb)
47	477.50	055	4 828	4 716	1 044	0.225	109	216
4/	177.50	200	1.030	1 263	0.871	0.325	00	330
45	168.00	200	1 646	0.929	0.735	0.214	61	274
44	165.50	69	1 598	0 772	0.667	0.188	17	85
43	162.50	350	1 540	0.605	0.592	0.159	72	433
42	157.50	361	1 447	0.379	0.482	0.115	54	446
41	152.50	372	1.357	0.207	0.388	0.076	37	460
40	147.50	387	1.269	0.080	0.309	0.043	21	479
70	147.50	398	1 185	-0.009	0.243	0.014	7	493
38	137.93	366	1.110	-0.064	0.193	-0.007	-3	453
37	135.43	149	1.070	-0.085	0.169	-0.016	-3	184
36	133.56	509	1.041	-0.097	0.152	-0.023	-15	631
35	131.06	271	1.002	-0.109	0.132	-0.030	-11	336
34	127.50	654	0.948	-0.119	0.107	-0.038	-33	809
33	122.50	703	0.875	-0.121	0.078	-0.046	-42	870
32	117.50	722	0.805	-0.113	0.055	-0.047	-45	893
31	113.50	442	0.751	-0.101	0.041	-0.045	-26	547
30	111.00	399	0.719	-0.092	0.034	-0.042	-22	494
29	107.50	1.012	0.674	-0.079	0.025	-0.036	-48	1,252
28	104.38	262	0.635	-0.066	0.019	-0.029	-10	324
27	101.88	1,043	0.605	-0.055	0.015	-0.023	-31	1,291
26	98.00	1.124	0.560	-0.038	0.011	-0.012	-17	1,392
25	95.50	284	0.532	-0.028	0.009	-0.004	-2	351
24	93.73	725	0.512	-0.021	0.008	0.001	1	897
23	91.23	1,034	0.485	-0.011	0.007	0.008	11	1,280
22	88.77	1,045	0.460	-0.002	0.006	0.015	21	1,294
21	86.27	791	0.434	0.007	0.006	0.022	22	979
20	82.50	1,573	0.397	0.019	0.007	0.031	63	1,947
19	79.50	318	0.369	0.028	0.008	0.036	15	393
18	77.00	1,281	0.346	0.034	0.009	0.040	67	1,585
17	72.50	1,621	0.307	0.044	0.012	0.046	97	2,007
16	67.50	1,643	0.266	0.052	0.015	0.050	107	2,034
15	62.50	1,666	0.228	0.059	0.020	0.052	112	2,062
14	57.50	1,688	0.193	0.064	0.024	0.053	115	2,089

Site Number:	302506				Code:	ANSI/TIA-222-0	G	2007 - 2018 by ATC II	P LLC. All rights reserved.
Site Name:	Winchester (СТ 3, СТ		Engineering Nun	nber:	OAA727483_C	3_02		5/14/2018 1:21:12 PM
Customer:	T-MOBILE								
						0.000			
13		52.50 49.52	1,710	0.161	0.067	0.029	0.052	116 22	2,117
11		47.02	2.203	0.129	0.069	0.033	0.051	147	2.727
10		43.98	1,126	0.113	0.070	0.035	0.051	74	1,394
9		41.48	1,117	0.100	0.071	0.037	0.050	73	1,382
8		37.50	1,909	0.082	0.072	0.039	0.050	123	2,363
7		32.50	1,935	0.062	0.072	0.041	0.048	122	2,395
5		27.50	1,902	0.044	0.071	0.042	0.047	120	2,429 2 AB1
4		17.50	2.014	0.018	0.063	0.037	0.043	111	2,493
3		12.50	2,040	0.009	0.054	0.031	0.038	100	2,525
2		7.50	2,066	0.003	0.039	0.022	0.029	77	2,557
1		2.50	2,092	0.000	0.015	0.008	0.013	35	2,589
Andrew ABT-	DMDF-	180.00	1	1.890	1.980	1.140	0.358	1	1
4' Omni Rowonursko A		180.00	10	1.890	1.980) 1.140 1.140	0.358	5	12
Raycan DC6-	48-60-18-	180.00	40	1.890	1.980	1.140	0.358	19	50
Ericsson RRL	JS 11 (Ba	180.00	150	1.890	1,980	1.140	0.358	70	186
Ericsson RRL	JS 32 (50	180.00	152	1.890	1.980	1.140	0.358	71	189
Ericsson RRL	JS-12 B2	180.00	174	1.890	1,980	1.140	0.358	81	215
2' x 4' Rectan	ıgular	180.00	40	1.890	1.980	1.140	0.358	19	50
Powerwave A	ligon 777	180.00	105	1.890	1.980	1.140	0.358	49	130
KMW AM-X-C	CD-16-65-00	180.00	146	1.890	1.980	1.140	0.358	68	180
Eist Low Prof	1-800-110 No Dia	180.00	1 500	1.090	1.900	1 140	0.356	808	1 857
Ericsson KRY	(112 144	166.00	33	1.607	0.802	0.680	0.193	8	41
Fastback Net	works In	166.00	9	1.607	0.802	0.680	0.193	2	11
Ericsson AIR	21, 1.3	166.00	249	1.607	0.802	0.680	0.193	63	308
Ericsson AIR	21, 1.3	166.00	244	1.607	0.802	0.680	0.193	61	303
Round T-Arm		166.00	750	1.607	0.802	0.680	0.193	188	928
Sinciair SD21	10-SF2P4	150.00	0 150	1.312	0.138) U.347) 0.347	0.059	1	10
Telewaye AM	17150D (5	140.00	150	1.312	-0.130	0.215	0.059	0	6
Bird 432-83H	-01-T	140.00	25	1.143	-0.042	0.215	0.002	Ő	31
Sinclair SC47	9-HF1LD	140.00	34	1.143	-0.042	0.215	0.002	ō	42
Round Side A	Arm	140.00	450	1.143	-0.042	0.215	0.002	1	557
Decibel DB80	J9DK-XT	140.00	128	1.143	-0.042	0.215	0.002	0	158
Sinclair SC44	12D-HF1L	140.00	79	1.143	-0.042	0.215	0.002	0	98
Alcatel-Lucer	11 800 M	135.00	185	1.063	-0.088	0.105	-0.018	-4	163
Alcatel-Lucer	nt TD-RR	135.00	210	1.063	-0.088	0.165	-0.018	-5	260
RFS APXVT	M14-C-I20	135.00	159	1.063	-0.088	0.165	-0.018	-4	196
RFS APXVS	PP18-C-A20	135.00	171	1.063	-0.088	0.165	-0.018	-4	212
Flat Platform	w/ Han	135.00	2,000	1.063	-0.088	3 0.165	-0.018	-47	2,476
Nokia B5 RR	H4x40-850	125.00	146	0.911	-0.122	2 0.092	-0.043	-8	180
Alcatel-Lucer	11 B25 R	125.00	159	0.911	-0.122	0.092	-0.043	-9	197
RES DB-B1-6	11 KKHZX 5C-12AB-07	125.00	21	0.911	-0.122	0.032	-0.043	-9 -1	26
Alcatel-Lucer	nt B66a	125.00	201	0.911	-0.122	0.092	-0.043	-11	249
Antel LPA-80	080/6CF	125.00	42	0.911	-0.122	0.092	-0.043	-2	52
Commscope	JAHH-65B-	125.00	364	0.911	-0.122	0.092	-0.043	-20	450
Antel LPA-80	063/6CF	125.00	27	0.911	-0.122	2 0.092	-0.043	-1	33
Round Low P	rofile Pl	125.00	1,500	0.911	-0.122	2 0.092	-0.043	-83	1,857
Decidel DB84		112.00	168	0.732	-0.096	0.030	-0.044	-10	208
	-101112 171 R-2065175-C	105.00	1,300	U.732 0.643	-0.090	3 0.020	-0.044	د" دو•	1,00/
Andrew DR5	86	96.00	17	0.538	-0.030	0.009	-0.031	-3	21
Bird 429-83H	I-01-T	96.00	20	0.538	-0.030	0.009	-0.006	ŏ	25
Flat Side Arm	n	96.00	450	0.538	-0.030	0.009	-0.006	-3	557
RFS PA6-65/	AC	80.00	278	0.373	0.026	6 0.007	0.036	13	344
PCTEL GPS	-TMG-HR-	79.00	1	0.364	0.029	9 0.008	0.037	0	1
GPS		30.00	10	0.053	0.071	i 0.042	0.048	1	12
			59.226	89.128	31:787	7 27.976	6.805	3.259	73,308

Site Name: Winchester CT 3, CT

T-MOBILE Customer:

Code: ANSI/TIA-222-G Engineering Number: OAA727483_C3_02

@2007 - 2018 by ATC IP LLC. All rights reserved,

5/14/2018 1:21:12 PM

Load Case (0.9 - 0.2Sds) * DL + E EMAM

	Height Above Base	Weight					Horizontal Force	Vertical Force
Segment	(ft)	(lb)	а	b	с	Saz	(lb)	(lb)
47	177.50	255	1.838	1.716	1.044	0.325	108	220
46	172.50	266	1.736	1.263	0.871	0.264	91	230
45	168.00	221	1.646	0.929	0.735	0.214	61	191
44	165.50	69	1.598	0.772	0.667	0.188	17	59
43	162.50	350	1.540	0.605	0.592	0.159	72	301
42	157.50	361	1.447	0.379	0.482	0.115	54	311
41	152.50	372	1.357	0.207	0.388	0.076	37	321
40	147.50	387	1.269	0.080	0.309	0.043	21	334
39	142.50	398	1.185	-0.009	0.243	0.014	7	343
38	137.93	300	1.110	-0.064	0.193	-0.007	-3	315
37	135.43	149	1.070	-0.085	0.169	-0.016	-3	128
30	133.50	509	1.041	-0.097	0.102	-0.023	-10	439
35	131.00	271	1.002	-0.109	0.102	+0.030	-11	234
34	127.30	702	0.940	-0.119	0.107	-0,030	-33	504
33	122.30	703	0.070	-0.121	0.075	-0.040	-42	600
31	113.50	447	0.005	-0.113	0.041	-0.047		381
30	111.00	300	0.710	-0.092	0.034	-0.043	-20	344
29	107.50	1.012	0.674	-0.079	0.025	-0.036	-48	872
28	104.38	262	0.635	-0.066	0.019	-0.029	-10	226
27	101.88	1.043	0.605	-0.055	0.015	-0.023	-31	900
26	98.00	1,124	0.560	-0.038	0.011	-0.012	-17	969
25	95.50	284	0.532	-0.028	0.009	-0.004	-2	245
24	93.73	725	0.512	-0.021	0.008	0.001	1	625
23	91.23	1,034	0.485	-0.011	0.007	0.008	11	892
22	88.77	1,045	0.460	-0.002	0.006	0.015	21	901
21	86.27	791	0.434	0.007	0.006	0.022	22	682
20	82.50	1,573	0.397	0.019	0.007	0.031	63	1,357
19	79.50	318	0.369	0.028	0.008	0.036	15	274
18	77.00	1,281	0.346	0.034	0.009	0.040	67	1,104
17	72.50	1,621	0.307	0.044	0.012	0.046	97	1,398
16	67.50	1,643	0.266	0.052	0.015	0.050	107	1,417
15	62.50	1,666	0.228	0.059	0.020	0.052	112	1,436
14	57.50	1,688	0.193	0.064	0.024	0.053	115	1,455
13	52.50	1,710	0.161	0.067	0.024	0.052	116	1,4/4
12	49.02	2 203	0.143	0.000	0.031	0.052	147	1 800
10	47.02 43 QR	1 126	0.123	0.003	0.035	0.051	74	971
0	41 AR	1 117	0.110	0.070	0.037	0.050	73	963
8	37.50	1 909	0.100	0.071	0.039	0.050	123	1 646
7	32.50	1,935	0.062	0.072	0.041	0.048	123	1,668
6	27.50	1.962	0.044	0.071	0.042	0.047	120	1.692
5	22.50	1.988	0.030	0.068	0.040	0.045	117	1.714
4	17.50	2,014	0.018	0.063	0.037	0.043	111	1,737
3	12.50	2,040	0.009	0.054	0.031	0.038	100	1,759
2	7.50	2,066	0.003	0.039	0.022	0.029	77	1,781
1	2.50	2,092	0.000	0.015	0.008	0.013	35	1,804
Andrew ABT-DMDF-	180.00	1	1.890	1.980	1.140	0.358	1	1
4' Omni	180.00	10	1.890	1.980	1.140	0.358	5	9
Powerwave Allgon LGP	180.00	85	1.890	1.980	1.140	0.358	39	73
Raycap DC6-48-60-18-	180.00	40	1.890	1.980	1.140	0.358	19	34
Ericsson RRUS 11 (Ba	180.00	150	1.890	1.980	1.140	0.358	70	129
Ericsson RRUS 32 (50	180.00	152	1.890	1.980	1.140	0.358	71	131
Ericsson RRUS-12 B2	180.00	174	1.890	1.980	1.140	0.358	81	150
2' x 4' Rectangular	180.00	40	1.890	1.980	1.140	0.358	19	34
Powerwave Allgon 777	180.00	105	1.890	1.980	1.140	0.358	49	91

Site Number:	302506				Code:	ANSI/TIA-222	2-G ©	2007 - 2018 by ATC II	P LLC. All rights reserved.
Site Name:	Winchester	CT 3, CT		Engineering N	umber:	OAA727483_	C3_02		5/14/2018 1:21:12 PM
Customer:	T-MOBILE				35	_			23
KMW AM-X-	CD-16-65-00	180.00	146	1.890	1.980	1.140	0.358	68	125
CCI HPA-65	R-BUU-H6	180.00	153	1.890	1.980	1.140	0.358	71	132
Flat Low Pro	file Pla	180.00	1,500	1.890	1.980	1.140	0.358	698	1,293
Ericsson KR	Y 112 144	166.00	33	1.607	0.802	0.680	0.193	8	28
Fastback Ne	tworks In	166.00	9	1.607	0.802	0.680	0,193	2	8
Ericsson AIR	21, 1.3	166.00	249	1.607	0.802	0.680	0.193	63	215
Ericsson AlR	21, 1.3	166.00	244	1.607	0.802	0.680	0.193	61	211
Round T-Arn	n	166.00	750	1.607	0.802	0.080	0,193	188	647
Sinclair SD2	10-SF2P4	150.00	8	1.312	0.138	0.347	0.059	1	7
Round Side		150.00	150	1.312	0.130	0.347	0.009	11	129
Pird 432-931	1.01-T	140.00	25	1.143	-0.042	0.215	0.002	0	4 22
Sinclair SCA	70-HE11 D	140.00	20	1.145	-0.042	0.215	0.002	0	22
Round Side	Arm	140.00	450	1 143	-0.042	0.215	0.002	1	388
Decibel DB8		140.00	128	1 143	-0.042	0.215	0.002	0	110
Sinclair SC4	42D-HF1L	140.00	79	1.143	-0.042	0.215	0.002	õ	68
Alcatel-Luce	nt 800 M	135.00	185	1.063	-0.088	0.165	-0.018	-4	160
Alcatel-Luce	nt 1900M	135.00	132	1.063	-0.088	0.165	-0.018	-3	114
Alcatel-Luce	nt TD-RR	135.00	210	1.063	-0.088	0.165	-0.018	-5	181
RFS APXVT	M14-C-I20	135.00	159	1.063	-0.088	0.165	-0.018	-4	137
RFS APXVS	PP18-C-A20	135.00	171	1.063	-0.088	0.165	-0.018	-4	147
Flat Platform	n w/ Han	135.00	2,000	1.063	-0.088	0.165	-0.018	-47	1,724
Nokia 85 RF	RH4x40-850	125.00	146	0.911	-0.122	0.092	-0.043	-8	125
Alcatel-Luce	nt B25 R	125.00	159	0.911	-0.122	0.092	-0.043	-9	137
Alcatel-Luce	nt RRH2x	125.00	170	0.911	-0.122	0.092	-0.043	-9	147
RFS DB-B1-	6C-12AB-0Z	125.00	21	0.911	-0.122	0.092	-0.043	-1	18
Alcatel-Luce	nt B66a	125.00	201	0.911	-0.122	0.092	-0.043	-11	173
Antel LPA-8	0080/6CF	125.00	42	0.911	-0.122	0.092	-0.043	-2	36
Commscope	JAHH-65B-	125.00	364	0.911	-0.122	0.092	-0.043	-20	314
Antel LPA-8	0063/6CF Brofile Bl	125.00	1 500	0.911	-0.122	0.092	-0.043	-1	23
Round Low I		123.00	1,300	0.911	-0.122	0.092	-0.043	-03	1,293
Decider Doo	Refie Di	112.00	1 500	0.732	-0.090	0.036	-0,044	-10	140
	0 0065178 C	105.00	1,500	0.732	-0.090	0.020	-0.044	-00	1,293
	0-2003173-C	96.00	17	0.645	-0.000	0.020	-0.031	-3	14
Rind 429-831	-01_T	96.00	20	0.538	-0,000	0.009	-0,000	Ő	17
Flat Side Arr	n	96.00	450	0.538	-0.030	0.009	-0.006	-3	388
RES PA6-65	AC	80.00	278	0.373	0.026	0.007	0.036	13	240
PCTEL GPS	-TMG-HR-	79.00	1	0.364	0.020	0.008	0.037	.0	
GPS		30.00	10	0.053	0.071	0.042	0.048	1	9
			59,226	89,128	31,787	27.976	6.805	3,259	51,067

Code: ANSI/TIA-222-G

@2007 - 2018 by ATC IP LLC. All rights reserved. 5/14/2018 1:21:12 PM

Site Name: Winchester CT 3, CT Customer:

Engineering Number: OAA727483_C3_02

T-MOBILE

(1.2 + 0.2Sds) * DL + E EMAM Seismic Equivalent Modal Analysis Method Load Case

Calculated Forces

.

	Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation	D-ti-
_	(II)	(kips)	(KIPS)	(it-kips)	(n-kips)	(it-kips)	(п-кірз)	(Kips)	(Kips)	(IT-KIPS)	(π-kips)	(in)	(aeg)	Ratio
	0.00	-70.72	-3.23	0.00	-376.13	0.00	376.13	5,102.86	2,551.43	10,963.2	5,489.79	0.00	0.00	0.062
	5.00	-68.16	-3.17	0.00	-359.97	0.00	359.97	5,029.12	2,514.56	10,576.3	5,296.03	0.01	-0.02	0.061
	10.00	-65.63	-3.09	0.00	-344.11	0.00	344.11	4,953.95	2,476.98	10,193.1	5,104.17	0.03	-0.03	0.059
	15.00	-63.14	-2.99	0.00	-328.66	0.00	328.66	4,877.36	2,438.68	9,813.98	4,914.28	0.07	-0.05	0.058
	20.00	-60.68	-2.89	0.00	-313.68	0.00	313.68	4,799.34	2,399.67	9,438.93	4,726.48	0.13	-0.06	0.057
	25.00	-58.25	-2.79	0.00	-299.23	0.00	299.23	4,719.90	2,359.95	9,068.23	4,540.86	0.21	-0.08	0.056
	30.00	-55.84	-2.68	0.00	-285.30	0.00	285.30	4,639.03	2,319.51	8,702.08	4,357.51	0.30	-0.10	0.055
	35.00	-53.48	-2.56	0.00	-271.93	0.00	271.93	4,556.73	2,278.36	8,340.67	4,176.53	0.41	-0.11	0.054
	40.00	-52.09	-2.50	0.00	-259.11	0.00	259.11	4,473.00	2,236.50	7,984.18	3,998.03	0.53	-0.13	0.054
	42.96	-50.70	-2.43	0.00	-251.72	0.00	251.72	4,422.82	2,211.41	7,775.79	3,893.68	0.62	-0.14	0.053
	45.00	-47.97	-2.20	0.00	-240.75	0.00	240.75	4,378.03	2,189.01	7,015.75	3,813.53	0.68	-0.15	0.052
	49.04	-47.00	-2.21	0.00	-237,32	0.00	237.32	3,004.17	1,002.00	6.214.22	3,130.00	0.01	-0.10	0.059
	50.00	43.43	-2.10	0.00	-230.34	0.00	233.34	3,391.30	1,793.73	5,029,60	3,111.70	1.02	-0.10	0.050
	55.00	-43.30	-2.03	0.00	-224.00	0.00	224.00	0 3,324.70	1,702.30	5,930.00	2,973.71	1.02	-0.10	0.057
	65.00	-41.50	-1.94	0.00	-214.32	0.00	214.32	. 3,400.40 3,386,83	1,720.24	5,000.00	2,037.31	1.44	-0.20	0.050
	70.00	-37 25	_1 75	0.00	-195.40	0.00	105.40	3 315 75	1,055.41	5 13/ 58	2,703.20	1.40	-0.22	0.000
	75.00	-35.67	-1.69	0.00	-186.64	0.00	186.64	3 242 30	1 621 15	4 873 54	2 440 39	1.05	-0.24	0.053
	79.00	-35.27	-1.68	0.00	-179.89	0.00	179.89	3,164,68	1.582.34	4 641 84	2 324 37	2.18	-0.28	0.054
	80.00	-32.98	-1.60	0.00	-178.21	0.00	178.21	3 145 28	1.572.64	4.584.79	2,295,80	2.24	-0.28	0.054
	85.00	-32.00	-1.58	0.00	-170.22	0.00	170.22	3.048.26	1.524.13	4.304.87	2,155.63	2.55	-0.31	0.054
	87.54	-30.71	-1.56	0.00	-166.21	0.00	166.21	2,998.97	1,499,48	4,166.05	2.086.12	2.72	-0.32	0.053
	90.00	-29.43	-1.55	0.00	-162.37	0.00	162.37	2,951.23	1.475.62	4,033.76	2.019.88	2.88	-0.33	0.053
	92.46	-28.53	-1.55	0.00	-158.57	0.00	158.57	2,412.07	1,206.04	3,317.78	1,661.36	3.06	-0.34	0.059
	95.00	-28.18	-1.55	0.00	-154.64	0.00	154.64	2,382.81	1,191.41	3,222.46	1,613.62	3.24	-0.35	0.058
	96.00	-26.19	-1.56	0.00	-153.09	0.00	153.09	2,371.21	1,185.60	3,185.22	1,594.98	3.32	-0.36	0.058
	100.00	-24.89	-1.60	0.00	-146.83	0.00	146.83	2,324.22	1,162.11	3,037.61	1,521.06	3.63	-0.38	0.057
	103.75	-24.57	-1.61	0.00	-140.85	0.00	140.85	2,279.33	1,139.67	2,901.28	1,452.80	3.93	-0.40	0.056
	103.75	-24.57	-1.61	0.00	-140.85	0.00	140.85	2,279.33	1,139.67	2,901.28	1,452.80	3.93	-0.40	0.108
	105.00	-23.22	-1.66	0.00	-138.84	0.00	138.84	2,264.20	1,132.10	2,856.29	1,430.27	4.04	-0.40	0.107
	110.00	-22.72	-1.70	0.00	-130.52	0.00	130.52	2,186.61	1,093.30	2,659.07	1,331.51	4.49	-0.46	0.108
	112.00	-20.11	-1.81	0.00	-127.13	0.00	127.13	2,154.27	1,077,13	2,580.59	1,292.21	4.68	-0.48	0.108
	115.00	-19.21	-1.86	0.00	-121.72	0.00	121.72	2,105.76	1,052.88	2,465.08	1,234.37	5.00	-0.51	0.108
	120.00	-18.34	-1.91	0.00	-112.43	0.00	112.43	2,024.90	1,012.45	2,278.43	1,140.91	5.57	-0.57	0.108
	120.00	-14.27	-2.00	0.00	-102.00	0.00	102.00	1,944.00	972:03	2,099.13	1,051.12	0.19	-0.63	0.100
	130.00	13.94	-2.00	0.00	-92.00	0.00	92.30	1 1,003.20	931.00	1,927,17	900.02	7 70	-0.09	0.103
	135.00	-13.30	-2.09	0.00	-00.10	0.00	00.10 92.15	1,020.92	914.40	1,000.49	929.02	7.20	-0.72	0.102
	135.87	-9.30	-2.12	0.00	-80.31	0.00	80.31	993.95	496.97	1,702,57	501.09	7.04	-0.75	0.050
	140.00	-7.74	-2 10	0.00	-71 55	0.00	71.55	969.84	484 92	940.01	470 70	8 47	-0.70	0.160
	145.00	-7.26	-2.09	0.00	-61.04	0.00	61.04	939.35	469.68	867.78	434 53	9.37	-0.02	0.100
	150.00	-6.60	-2.04	0.00	-50.61	0.00	50.61	907.44	453.72	797.07	399 13	10.38	-1.00	0.134
	155.00	-6.15	-1.98	0.00	-40.44	0.00	40.44	874.09	437.05	728.06	364.57	11.48	-1.09	0.118
	160.00	-5.72	-1.91	0.00	-30.52	0,00	30,52	839.33	419.66	660.97	330.98	12.67	-1.17	0.099
	165.00	-5.63	-1.89	0.00	-20.97	0.00	20.97	800.44	400.22	593.98	297.43	13.93	-1.24	0.078
	166.00	-3.78	-1.47	0.00	-19.08	0.00	19.08	790.74	395,37	579.60	290.23	14.19	-1.25	0.071
	170.00	-3.45	-1.38	0.00	-13.19	0.00	13.19	751.93	375.97	523.82	262.30	15.26	-1.30	0.055
	175.00	-3.13	-1.26	0.00	-6.31	0.00	6.31	703.42	351.71	458.07	229.37	16.65	-1.33	0.032
	180.00	0.00	-1.19	0.00	0.00	0.00	0.00	654.91	327.45	396.72	198.65	18.05	-1.35	0.000

Code: ANSI/TIA-222-G

@2007 - 2018 by ATC IP LLC. All rights reserved.

Site Name: Winchester CT 3, CT

Engineering Number: OAA727483_C3_02

5/14/2018 1:21:12 PM

Customer: T-MOBILE

Load Case (0.9 - 0.2Sds) * DL + E EMAM Seismic (Reduced DL) Equivalent Modal Analysis Method

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	t phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	40.00	2.02	0.00	260.70	0.00	260.70	E 102 86	0 664 49	40.062.0	E 490 70	0.00	0.00	0.057
5.00	-49.20	-3.23	0.00	-300.79	0.00	300.79	5 020 12	2,001.43	10,903.2	5,409.79	0.00	-0.00	0.057
10.00	-45.72	-3.08	0.00	-336.82	0.00	336.82	4 953 95	2 476 08	10,070.0	5 104 17	0.01	-0.02	0.000
15.00	-43.98	-2.98	0.00	-321 44	0.00	321 44	4 877 36	2 438 68	9 813 98	4 914 28	0.00	-0.05	0.054
20.00	-42 27	-2.87	0.00	-306 57	0.00	306 57	4 799 34	2 399 67	9 438 93	4 726 48	0.13	-0.06	0.053
25.00	-40.58	-2.76	0.00	-292 23	0.00	292.23	4 719 90	2 359 95	9 068 23	4 540 86	0.20	-0.08	0.052
30.00	-38.90	-2.64	0.00	-278.44	0.00	278.44	4.639.03	2.319.51	8,702.08	4.357.51	0.29	-0.09	0.052
35.00	-37.25	-2.53	0.00	-265.23	0.00	265.23	4.556.73	2,278.36	8.340.67	4.176.53	0.40	-0.11	0.051
40.00	-36.29	-2.46	0.00	-252.59	0.00	252.59	4,473.00	2,236,50	7,984.18	3,998.03	0.52	-0.13	0.050
42.96	-35.32	-2.39	0.00	-245.31	0.00	245.31	4,422.82	2,211,41	7,775.79	3,893.68	0.60	-0.14	0.049
45.00	-33.42	-2.24	0.00	-240.43	0.00	240.43	4,378.03	2,189.01	7,615.75	3,813.53	0.66	-0.14	0.049
49.04	-33.13	-2.23	0.00	-231.37	0.00	231.37	3,604.17	1,802.08	6,267.69	3,138.50	0.79	-0.16	0.055
50.00	-31,66	-2.11	0.00	-229.23	0.00	229.23	3,591.50	1,795,75	6,214.33	3,111.78	0.82	-0.16	0.054
55.00	-30.20	-2.00	0.00	-218.67	0.00	218.67	3,524.70	1,762.35	5,938.60	2,973.71	1.00	-0.18	0.053
60.00	-28.77	-1.89	0.00	-208.66	0.00	208.66	3,456.48	1,728,24	5,666.60	2,837.51	1.20	-0.20	0.053
65.00	-27.35	-1.79	0.00	-199.19	0.00	199.19	3,386.83	1,693.41	5,398.53	2,703.28	1.41	-0.22	0.052
70.00	-25.95	-1.70	0.00	-190.23	0.00	190.23	3,315.75	1,657.87	5,134.58	2,571.11	1.65	-0.24	0.051
75.00	-24.85	-1.63	0.00	-181.74	0.00	181.74	3,242.30	1,621,15	4,8/3.54	2,440.39	1.91	-0.26	0.051
79.00	-24.57	-1.62	0.00	-1/5.21	0.00	175.21	3,164.68	1,582.34	4,641.84	2,324.37	2.13	-0.27	0.051
80.00	-22.97	-1.54	0.00	-1/3.59	0.00	1/3.59	3,145.28	1,572,64	4,584.79	2,295.80	2.19	-0.28	0.050
85.00	-22.29	-1.52	0.00	-100.07	0.00	100.07	3,046.20	1,024,10	4,304.07	2,100.00	2.49	-0.30	0.050
07.54	-21.39	-1.50	0.00	-101.99	0.00	101.99	2,990.97	1,499,40	4,100.00	2,000.12	2.00	-0.31	0.000
90.00	-20.50	-1.49	0.00	-100.00	0.00	150.30	2,901.20	1,475.02	3 317 78	2,019.00	2.02	-0.32	0.049
92.40	-10.63	-1.49	0.00	-150.84	0.00	150.84	2,412.07	1 101 /1	3 222 /6	1,613,62	2.30	-0.33	0.000
95.00	-18.03	-1.49	0.00	-149.35	0.00	149 35	2,302.01	1 185 60	3 185 22	1 594 98	3.24	-0.34	0.053
100.00	-17.34	-1.54	0.00	-143.31	0.00	143 31	2 324 22	1 162 11	3 037.61	1.521.06	3.54	-0.37	0.053
103.75	-17.11	-1.55	0.00	-137.52	0.00	137.52	2 279 33	1 139.67	2 901 28	1 452 80	3.84	-0.39	0.053
103.75	-17 11	-1.55	0.00	-137 52	0.00	137 52	2 279 33	1 139 67	2 901 28	1 452 80	3.84	-0.39	0.102
105.00	-16.17	-1.61	0.00	-135.58	0.00	135.58	2,264,20	1.132.10	2.856.29	1.430.27	3.94	-0.40	0.102
110.00	-15.83	-1.64	0.00	-127.55	0.00	127.55	2,186.61	1,093.30	2,659.07	1,331.51	4.38	-0.45	0.103
112.00	-14.00	-1.75	0.00	-124.27	0.00	124.27	2,154.27	1,077.13	2,580.59	1,292.21	4.57	-0.47	0.103
115.00	-13.38	-1.80	0.00	-119.02	0.00	119.02	2,105.76	1,052.88	2,465.08	1,234.37	4.88	-0.50	0.103
120.00	-12.77	-1.85	0.00	-110.03	0.00	110.03	3 2,024.90	1,012.45	2,278.43	1,140.91	5.43	-0.56	0.103
125.00	-9.94	-2.01	0.00	-100.79	0.00	100.79	9 1,944.05	972.03	2,099.13	1,051.12	6.05	-0.61	0.101
130.00	-9.70	-2.02	0.00	-90.75	0.00	90.75	5 1,863.20	931.60	1,927.17	965.02	6.72	-0.67	0.099
132.12	-9.26	-2.04	0.00	-86.46	0.00	86.46	5 1,828.92	914.46	1,856.49	929.62	7.03	-0.70	0.098
135.00	-6.67	-2.08	0.00	-80.59	0.00	80.59	1,782.35	891.17	1,762.57	882.59	7.46	-0.74	0.095
135.87	-6.35	-2.08	0.00	-78.79	0.00	78.79	993.95	496.97	1,000.68	501.09	7.60	-0.75	0.164
140.00	-5.38	-2.06	0.00	-70.19	0.00	70.19	969.84	484.92	940.01	470.70	8.26	-0.80	0.155
145.00	-5,05	-2.05	0.00	-59.87	0.00	59.87	939.35	469.68	867.78	434.53	9.15	-0.89	0.143
150.00	-4.59	-2.00	0.00	-49.64	0.00	49.64	907.44	453.72	797.07	399.13	10.13	-0.98	0.129
155.00	-4.20	-1.94	0.00	-39.00		39.05		437.03	720.00	304.37	11.21	-1.07	0.114
165.00	-3.97	-1.0/	0.00	-29.94		29.94	+ 009.00	419.00	502.97	207 42	12.3/	-1.10	0.090
166.00	-2.91	-1.00	0.00	-20.00	, 0.00 I 0.00	18 73	3 700.44	305 37	570 80	200.23	13.01	-1.23	0.014
170.00	-2.02	-1.40	0.00	-10.73	, 0.00 , n.nn	12.73	5 751 02	375 07	522.82	280.23	14 02	_1 27	0.000
175.00	-2.39	-1.35	0.00	-12.90	, 0.00 a 0.00	6 19	703.42	351.71	458.07	229.30	16 27	-1.27	0.030
180.00	0.00	-1.19	0.00	0.0	0.00	0.00) 654.91	327.45	396.72	198.65	17.64	-1.32	0.000

Site Number:	302506	Code:	ANSI/TIA-222-G	@2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	Winchester CT 3, CT	Engineering Number:	OAA727483_C3_02	5/14/2018 1:21:12 PM
Customer:	T-MOBILE			

Analysis Summary

	-		- Rea	actions –		·	Ма	x Usage
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.6W	36.97	0.00	71.01	0.00	0.00	4335.86	135.87	0.68
0.9D + 1.6W	35.50	0.00	53.25	0.00	0.00	4178.32	135.87	0.65
1.2D + 1.0Di + 1.0Wi	6.92	0.00	146.16	0.00	0.00	930.93	135.87	0.21
(1.2 + 0.2Sds) * DL + E ELFM	3.01	0.00	70.72	0.00	0.00	406.37	135.87	0.09
(1.2 + 0.2Sds) * DL + E EMAM	3.23	0.00	70.72	0.00	0.00	376.13	135.87	0.17
(0.9 - 0.2Sds) * DL + E ELFM	3.00	0.00	49.26	0.00	0.00	399.40	135.87	0.08
(0.9 - 0.2Sds) * DL + E EMAM	3.23	0.00	49.26	0.00	0.00	368.79	135.87	0.16
1.0D + 1.0W	9.89	0.00	59.22	0.00	0.00	1170.71	135.87	0.19

Additional Steel Summary

		Intermediate Co	Upp	Upper Termination				Lower Termination						
Elov	Flow	Shear	Shear		Co	nnector	5		Ço	nnecto	s	Max	< Memb	ber
From		VQ/I Applied	l phiVn	MQ/I	phiVn	Num	Num	MQ/I	phiVn	Num	Num	Pu	phiPn	
(ft)	(ft) Member	(lb/in) (kips)	(kips)	(kips)	(kips)	Reqd /	Actual	(kips)	(kips)	Reqd	Actual	(kip)	(kip)	Ratio
0.00	103. (4) SOL-#20 All Thre	307.5 9.2	16.8	144.2	12.0	13	24	0.0	12.0	0	0	229.5	330.5	0.694

Base Plate & Anchor Rod Analysis

Pole Dimensions				
Number of Sides	18	•		
Diameter	52.75	in		
Thickness	0.438	in		
Orlentation Offset	0	•	1	

Base	Plate	
Shape	Round	•
Diameter, ø	68	in
Thickness	2	In
Grade	A572-50	-
Yield Strength, Fy	50	ksi
Tensile Strength, Fu	65	ksi
Clip	N/A	in
Orientation Offset	0	•
Anchor Rod Detail	d	η=0.S
Clear Distance	3	in
Applied Moment, Mu	1253.4	k
Bending Stress, ¢Mn	1793.3	k

Original A	nchor Rods	1. 1. 1.
Arrangement	Radial	-
Quantity	16	
Diameter, ø	2 1/4	in
Bolt Circle	62	in
Grade	A615-75	
Yield Strength, Fy	75	ksi
Tensile Strength, Fu	100	ksi
Spacing	12.2	in
Orientation Offset	8	•
Applied Force, Pu	156.5	k
Anchor Rods, ¢Pn	259.8	k

Stiffeners			
Arrangement	Radial	-	
Quantity	12	•	
Height	15	in	
Width	6	in	
Effective Width	6.000	in	
Thickness	3/4	in	
Effective Thickness	0.670	in	
Notch	0.5	in	
Flat Edge	1	in	
Grade	A36	-	
Yield Strength, Fy	36	ksi	
Tensile Strength, Fu	58	ksi	
Horizontal Weld	Fillet		
Horizontal Fillet Size	5/16	in	
Bevel Depth		in	
Vertical Weld	Fillet		
Vertical Fillet Size	5/16	in	
Weld Strength	70	ksi	
Electrode Coefficient	1	-	
Orientation Offset	0	•	
Vertical Weld, ¢ Rn	209.3	k	
Horz. Weld, ¢ Rn	88:7	k	
Ten. Capacity, ϕ Tn	133:7	k	
Comp. Capacity, dPn	430.4	k	

B	ase Reactions	North All
Moment, Mu	4335.9	k-ft
Axial, Pu	71.0	k
Shear, Vu	37.0	k
Neutral Axis	108	•

Report Capacities				
Component	Capacity	Result		
Base Plate	70%	Pass		
Anchor Rods	60%	Pass		
Dwyidag	55%	Pass		

Dywidag R	einforcemen	t
Quantity	4	•
Bar Size	#20	in
Diameter, ø	2.5	in
Bracket Type	Angle	-
Circle	59.63	in
Orientation Offset	0	
Applied Force, Pu	217.0	k
Dywldag Bar, фPn	392.7	k

Calculations for Monopole Base Plate & Anchor Rod Analysis

Reaction Distribution				<u>Geometric</u>	Properties				
Reaction	Shear Vu	Moment Mu	Factor	Section	Gross Area	Net Area	Individual Inertia	Threads per Inch	Moment of Inertia
	k	k-ft	-	-	in ²	in²	in ⁴	#	in ⁴
Base Forces	37.0	3216.0	0.74	Pole	71.5363	3.9742	0.2546		24475.33
Anchor Rod Forces	37.0	3216.0	0.74	Bolt	3.9761	3.2477	0.8393	4.5	24981.67
Additional Bolt (Grp1) Forces				Bolt1					
Additional Bolt (Grp2) Forces				Bolt2					
Dywidag Forces		1119.9	0.26	Dywidag	4.9087	4.9087	1.9175		8523.19
Stiffener Forces	15.3	1333.5	0.31	Stiffener	3.6850	3.3165	48.2400		17337.81

Applied Axial Force, Pu91.7Applied Horizontal Force, Vu0.64Vertical WeldVertto-Stiffener a=e_n/l0.133Spacing Ratio, k0.050Weld Coefficient, C3.720Compressive Capacity, ϕ Pn209.3Vertto-Plate a=e_n/l0.333Spacing Ratio, k0.050Weld Coefficient, C2.940Shear Capacity, ϕ Vn165.4P_u/ ϕ_p P_n + V_u/ ϕ_v Vn0.442Horizontal WeldHorzto-Stiffener a=e_n/l0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313	k k
Applied Horizontal Force, Vu0.64Vertical WeldVertto-Stiffener a=e_n/l0.133Spacing Ratio, k0.050Weld Coefficient, C3.720Compressive Capacity, ϕ Pn209.3Vertto-Plate a=e_n/l0.333Spacing Ratio, k0.050Weld Coefficient, C2.940Shear Capacity, ϕ Vn165.4 $P_u/\phi_P P_n + V_u/\phi_V V_n$ 0.442Horizontal WeldHorzto-Stiffener a=e_n/l0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313	k
Vertical Weld Vertto-Stiffener $a=e_n/l$ 0.133 Spacing Ratio, k 0.050 Weld Coefficient, C 3.720 Compressive Capacity, ϕ Pn 209.3 Vertto-Plate $a=e_n/l$ 0.333 Spacing Ratio, k 0.050 Weld Coefficient, C 2.940 Shear Capacity, ϕ Vn 165.4 $P_u/\phi_P P_n + V_u/\phi_V V_n$ 0.442 Horizontal Weld Horzto-Stiffener $a=e_n/l$ 0.167 Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313 6.023.7 0.313	
Vertical WeldVertto-Stiffener $a=e_n/l$ 0.133Spacing Ratio, k0.050Weld Coefficient, C3.720Compressive Capacity, ϕ Pn209.3Vertto-Plate $a=e_n/l$ 0.333Spacing Ratio, k0.050Weld Coefficient, C2.940Shear Capacity, ϕ Vn165.4 $P_u/\phi_P P_n + V_u/\phi_V V_n$ 0.442Horizontal WeldHorzto-Stiffener $a=e_n/l$ 0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313	- - k - k
Vertto-Stiffener $a=e_n/l$ 0.133Spacing Ratio, k0.050Weld Coefficient, C3.720Compressive Capacity, ϕ Pn209.3Vertto-Plate $a=e_n/l$ 0.333Spacing Ratio, k0.050Weld Coefficient, C2.940Shear Capacity, ϕ Vn165.4 $P_u/\phi_P P_n + V_u/\phi_V V_n$ 0.442Horizontal WeldHorzto-Stiffener $a=e_n/l$ 0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313	- - - - k
Spacing Ratio, k 0.050 Weld Coefficient, C 3.720 Compressive Capacity, ϕ Pn 209.3 Vertto-Plate a=e_/l 0.333 Spacing Ratio, k 0.050 Weld Coefficient, C 2.940 Shear Capacity, ϕ Vn 165.4 $P_{u}/\phi_{P}P_{n} + V_{u}/\phi_{v}V_{n}$ 0.442 Horizontal Weld Horzto-Stiffener a=e_/l 0.167 Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313	- k - - k
Weld Coefficient, C3.720Compressive Capacity, ϕ Pn209.3Vertto-Plate $a=e_x/l$ 0.333Spacing Ratio, k0.050Weld Coefficient, C2.940Shear Capacity, ϕ Vn165.4 $P_u/\phi_P P_n + V_u/\phi_v V_n$ 0.442Horizontal WeldHorzto-Stiffener $a=e_x/l$ 0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313	- k - - k
Compressive Capacity, ϕ Pn 209.3 Vertto-Plate $a=e_x/l$ 0.333 Spacing Ratio, k 0.050 Weld Coefficient, C 2.940 Shear Capacity, ϕ Vn 165.4 $P_w/\phi_P P_n + V_w/\phi_V V_n$ 0.442 Horizontal Weld Horzto-Stiffener $a=e_x/l$ 0.167 Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313 Communication of the page 27	k - - k
Vertto-Plate $a=e_x/l$ 0.333Spacing Ratio, k0.050Weld Coefficient, C2.940Shear Capacity, ϕ Vn165.4 $P_u/\phi_P P_n + V_u/\phi_V V_n$ 0.442Horizontal WekdHorzto-Stiffener $a=e_x/l$ 0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313Constrained Paralleling0.28.7	- - k
Spacing Ratio, k 0.050 Weld Coefficient, C 2.940 Shear Capacity, ϕ Vn 165.4 $P_{w}/\phi_{P}P_{n} + V_{w}/\phi_{v}V_{n}$ 0.442 Horizontal Weld Horzto-Stiffener a=e_y/1 0.167 Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313	- k
Weld Coefficient, C2.940Shear Capacity, ϕ Vn165.4 $P_u/\phi_P P_n + V_u/\phi_V V_n$ 0.442Horizontal WeldHorzto-Stiffener a=e_u/l0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313Consume table	- k
Shear Capacity, ϕVn 165.4 $P_u/\phi_P P_n + V_u/\phi_V V_n$ 0.442Horizontal WeldHorzto-Stiffener a=e_I/I0.167Spacing Ratio, k0.125Weld Coefficient, C3.940Effective Fillet0.313Conscisue Approximation Approximation0.27	k
P _u /\phipP _n + V _u /\phivV _n 0.442 Horizontal Weld Horzto-Stiffener a=e _u /l 0.167 Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313	
Horizontal Weld Horzto-Stiffener a=e,/1 0.167 Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313	OK
Horzto-Stiffener a=e_/I 0.167 Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313	
Spacing Ratio, k 0.125 Weld Coefficient, C 3.940 Effective Fillet 0.313	-
Weld Coefficient, C 3.940 Effective Fillet 0.313	-
Effective Fillet 0.313	-
Concernsion Concerns Altern 00.7	in
Compressive Capacity, open 68.7	k
Horzto-Pole a=e_/I 0.417	-
Spacing Ratio, k 0.125	-
Weld Coefficient, C 2.670	-
Shear Capacity, фVn 60.1	k
$P_u/\phi_P P_n + V_u/\phi_V V_n = 1.045$	OK
Plate Tension	
Gross Cross Section 3.685	in ²
Net Cross Section 3.317	ln ²
Tensile Capacity, ϕ Tn 133.7	k
Capacity, Tu/фTn 0.343	OK
	_
Plate Compression	
Radius of Gyration 0.193	in
kl/r 46.53	•
4.71 √(E/Fy) 133.68	•
Buckling Stress(Fe) 132.2	-
Crit. Buckling Stress(Fcr) 115.9	
Compressive Capacity, ϕ Pn 430.4	ks
Capacity, Pu/фPn 0.107	ksi k

Anches Dode		
Anchor Rods	16	
Anchor Rod Quantity, N	1.0	-
Rod Diameter, d	2.23 67	in in
Boit Circle, BC	702	lii Ioni
Teld Strength, Fy	100	KSI
rensile Strength, Fu	100	KSI
Applied Axial, Pu	120.5	ĸ
Applied Shear, Vu	0.0	ĸ
Compressive Capacity, oPn	259.8	ĸ
Tensile Capacity, ¢Rnt	0.602	OK
Interaction Capacity	0.602	OK
Additional Bolt Grou	p 1	
Bolt Quantity, N	0	
Bolt Diameter, d	0	in
Bolt Circle, BC	0	In
Yield Strength, Fy	0	ksi
Tensile Strength, Fu	0	ksi
Applied Axial, Pu	0.0	k
Applied Shear, Vu	0.0	k
Compressive Capacity, oPn	0.0	k
Compressive Capacity, ϕ Pn		
Interaction Capacity		
Additional Rolt Crow	- 3	
Relt Quantity, N	р <u>х</u>	
Bolt Quantity, N	0	-
Bolt Diameter, u	0	
Bolt Circle, BC	0	lin trat
Tieki Strength, Fy	0	KSI
Tensile Strength, Fu	0	KSI
Applied Axial, Pu	0.0	ĸ
Applied Shear, Vu	0.0	ĸ
Compressive Capacity, oPn	U.U	к
Compressive Capacity, pPn		
Interaction Capacity		
Dywidag Reinforcem	ent	
Dywidag Quantity, N	4	-
Dywidag Diameter, d	2.5	in
Bolt Circle, BC	59.63	in
Yield Strength, Fy	80	ksi
Tensile Strength, Fu	100	ksi
Applied Axial, Pu	217.0	k
Compressive Capacity, ϕ Pn	392.7	k
Capacity, Pu/фPn	0.553	ОК

Anchor Rod Forces		37.0
Additional Bolt (Grp1) Force	s	
Additional Bolt (Grp2) Force	s	
Dywidag Forces		
Stiffener Forces		15.3
Base Plate		
Shape	Round	-
Diameter, D	68	in
Thickness, t	2	in
Yield Strength, Fy	50	ksi
Tensile Strength, Fu	65	ksi
Base Plate Chord	42.912	in

Detail Type	d	-
Detail Factor	0.50	-
Clear Distance	3	-
External Base Pla	ate	
Chord Length AA	37.117	in
Additional AA	9.983	In
Section Modulus, Z	47.101	In ³
Applied Moment, Mu	1253.4	k-ft
Bending Capacity, φ Mn	2119.5	k-ft
Capacity, Mu/фMn	0.591	OK
Chord Length AB	35.933	in
Additional AB	9.258	in
Section Modulus, Z	45.191	in ^a
Applied Moment, Mu	1126.6	k-ft
Bending Capacity, ϕ Mn	2033.6	k-ft
Capacity, Mu/фMn	0.554	QК
Bend Line Length	28.491	in
Additional Bend Line	11.360	in
Section Modulus, Z	39.852	in ³
Applied Moment, Mu	1253.4	k-ft
Bending Capacity, φ Mn	1793.3	k-ft
Capacity, Mu/фMn	0.699	ОК

ite	
0.000	in
0.000	in³
0.000	in
0.0	k-ft
0.0	k-ft
	ite 0.000 0.000 0.000 0.0 0.0

Depth (ft)		Ysoll	Cohesion	φ	Ultimate Skin	Ultimate Bearing	
	Тор	Bottom	(pcf)	(psf)	(degree)	Friction (psf)	Pressure (psf)
	0.0	3.5	165	0	0	0	0
	3.5	7.5	165	6000	0	2700	0
	7.5	18.0	165	6000	0	2700	11277
1							

Required Embedment:	14.5 ft - OK, Caisson Embedment Satisfactory
Volume of Concrete:	$692.7 \text{ ft}^3 = 25.7 \text{ yd}^3$
Weight of Concrete (Buoyancy Effect Considered):	103.9 k
Average Soil Unit Weight:	165.0 pcf
Skin Friction Resistance:	801.6 k
Compressive Bearing Resistance:	434.0 k
Pullout Weight (Minus Concrete Weight):	585.7 k
Nominal Uplift Capacity per Leg ($\phi_s T_n$):	439.3 k
Nominal Compressive Capacity per Leg ($\phi_s P_n$):	926.7 k
P _u :	59.2 k
Τ _u /φ _s Τ _n :	0.00 Result: OK
₽ _u /φ _s ₽ _n :	0.06 Result: OK
Total Lateral Resistance:	4082.8 k
Inflection Point (Below Ground Surface):	10.8 ft
Design Overturning Moment At Inflection Point (M _D):	4771.0 k-ft
Nominal Moment Capacity (¢ _s M _n):	9851.4 k-ft
M _D /¢ _s M _n :	0.48 Result: OK
φ₅:	0.75

Caisson Strength Capacity

Concrete Compressive Strength (f'c): Vertical Steel Rebar Size #: Vertical Steel Rebar Area: # of Vertical Steel Rebars: Vertical Steel Rebar Yield Strength (F_v): Horizontal Tie / Stirrup Size #: Horizontal Tie / Stirrup Area: Design Horizontal Tie / Stirrup Spacing: Horizontal Tie / Stirrup Steel Yield Strength (F_v): **Rebar Cage Diameter:** Strength Bending/Tension Reduction Factor (ϕ_B): Strength Shear Reduction Factor (ϕ_v) : Strength Compression Reduction Factor (ϕ_v) : Steel Elastic Modulus: Design Moment (M_u): Nominal Moment Capacity ($\phi_B M_n$): $M_u/\phi_B M_n$: Design Shear (V_u): Nominal Shear Capacity $(\phi_v V_n)$: $V_{\mu}/\phi_{V}V_{n}$: Design Tension (T_u): Nominal Tension Capacity $(\phi_T T_n)$: $T_u/\phi_T T_n$: Design Compression (P_u): Nominal Compression Capacity $(\phi_P P_n)$: $P_u/\phi_P P_n$: **Bending Reinforcement Ratio:**

 $M_u/\phi_B M_n + T_u/\phi_T T_n$:

4000 psi 11 1.56 in² 42 60 ksi 5 0.31 in² 12.0 in 60 ksi 76.0 in 0.90 ACI318-05 - 9.3.2.1 0.75 ACI318-05 - 9.3.2.3 0.65 ACI318-05 - 9.3.2.2 29000 ksi 4383.0 k-ft 10956.3 k-ft - ACI318-005 - 10.2 0.40 Result: OK 644.6 k 685.3 k - ACI318-05 - 11.3.1.1 or 11.5.7.2 0.94 Result: OK 0.0 k 3538.1 k - ACI318-05 - 10.2 0.00 Result: OK 59.2 k 9682.0 k - ACI318-05 - 10.3.6.2 0.01 Result: OK 0.012 ACI318-05 - 10.8.4 & 10.9.1 0.40 Result: OK

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTNH403A

ATC Winchester CT3 15 Oakdale Avenue Winsted, CT 06098

April 16, 2018

EBI Project Number: 6218003016

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of					
FCC general	10 070%				
population	10.07970				
allowable limit:					

April 16, 2018

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CTNH403A – ATC Winchester CT3

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **15 Oakdale Avenue**, **Winsted**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 5 GHz Microwave bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **15 Oakdale Avenue, Winsted, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas for broadcast and microwave backhaul, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 5) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
- 6) 1 microwave backhaul channel (5 GHz) was considered for the proposed facility. This channel has a transmit power of 1 Watt.

- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas for broadcast and microwave backhaul, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P & Ericsson AIR21 B2A/B4P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Fastback IBR1300 for the proposed 5 GHz microwave backhaul. This is based on feedback from the carrier with regard to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of 15.9 dBd at its main lobe at 1900 MHz and 2100 MHz. The Ericsson AIR21 B2A/B4P has a maximum gain of 15.9 dBd at its main lobe at 1900 MHz and 2100 MHz. The Fastback IBR1300 has a maximum gain of 10 dBd at its main lobe at 5 GHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas for broadcast and microwave backhaul, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antenna mounting height centerline of the proposed antennas (both panel antennas and microwave radio / antenna) is **166 feet** above ground level (AGL).
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 12) All calculations were done with respect to uncontrolled / general population threshold limits.

	1-woone Site inventory and I ower Data								
Sector:	А	Sector:	В	Sector:	С				
Antenna #:	1	Antenna #:	1	Antenna #:	1				
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P				
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd				
Height (AGL):	166	Height (AGL):	166	Height (AGL):	166				
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)				
Channel Count	4	Channel Count	4	Channel Count	4				
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240				
ERP (W):	9,337.08	ERP (W):	9,337.08	ERP (W):	9,337.08				
Antenna A1 MPE%	1.311	Antenna B1 MPE%	1.311	Antenna C1 MPE%	1.311				
Antenna #:	2	Antenna #:	2	Antenna #:	2				
Make / Model:	Ericsson AIR21 B2A/B4P	Make / Model:	Ericsson AIR21 B2A/B4P	Make / Model:	Ericsson AIR21 B2A/B4P				
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd				
Height (AGL):	166	Height (AGL):	166	Height (AGL):	166				
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)				
Channel Count	6	Channel Count	6	Channel Count	6				
Total TX Power(W):	180	Total TX Power(W):	180	Total TX Power(W):	180				
ERP (W):	7,002.81	ERP (W):	7,002.81	ERP (W):	7,002.81				

T-Mobile	Site	Inventory	and	Power	Data
----------	------	-----------	-----	-------	------

Microwave Backhaul Data								
Make /		Height	Frequency	Channel	Total TX			
Model:	Gain	(AGL):	Bands	Count	Power(W)	ERP (W)	MPE %	Sector
Fastback								
IBR1300	10 dBd	166	5 GHz	1	1	10.00	0.004	А

Site Composite MPE%					
Carrier	MPE%				
T-Mobile (Sector A)	2.299%				
AT&T	1.530%				
MetroPCS	0.690%				
CTPD	0.570%				
Sprint	0.960%				
Verizon Wireless	3.360%				
Nextel	0.480%				
Northeast Utilities	0.190%				
Site Total MPE %:	10.079%				

T-Mobile Sector A Total:	2.299 %
T-Mobile Sector B Total:	2.295 %
T-Mobile Sector C Total:	2.295 %
Site Total:	10.079 %

T-Mobile Max Power Values (Sector A)

T-Mobile _per sector	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
		2 22 4 27	1.00		AWS - 2100	1000	0.65.60/
T-Mobile AWS - 2100 MHz LTE	2	2,334.27	166	6.56	MHz	1000	0.656%
					PCS - 1900		
T-Mobile PCS - 1900 MHz LTE	2	2,334.27	166	6.56	MHz	1000	0.656%
					AWS - 2100		
T-Mobile AWS - 2100 MHz UMTS	2	1,167.14	166	3.28	MHz	1000	0.328%
					PCS - 1900		
T-Mobile PCS - 1900 MHz UMTS	2	1,167.14	166	3.28	MHz	1000	0.328%
					PCS - 1900		
T-Mobile PCS - 1900 MHz GSM	2	1,167.14	166	3.28	MHz	1000	0.328%
T-Mobile 5 GHz Microwave	1	10.00	166	0.040	5 GHz	1000	0.004%
						Total:	2.299%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	2.299 %
Sector B:	2.295 %
Sector C:	2.295 %
T-Mobile Per Sector	2 200 %
Maximum (Sector A):	2.299 %
Site Total:	10.079 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **10.079%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

108 OAKDALE AVE

Location	108 OAKDALE AVE	Mblu	028/ 151/ 002-1/ /
Acct#	103466	Owner	STOW WILLIAM P REVOCABLE TRUST
Assessment	\$94,850	Appraisal	\$135,500
PID	4991	Building Count	1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2017	\$25,900	\$109,600	\$135,500		
Assessment					
Valuation Year	Improvements	Land	Total		
2017	\$18,13	\$76,720	\$94,850		

Owner of Record

Owner	STOW WILLIAM P REVOCABLE TRUST	Sale Price	\$0
Co-Owner	C/O AMERICAN TOWER #302506	Certificate	
		Book & Page	411/ 779
		Sale Date	03/12/2013
		Instrument	29

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
STOW WILLIAM P REVOCABLE TRUST	\$0		411/ 779	29	03/12/2013
STOW WILLIAM P & RICHARD D	\$0		00260/0171		11/16/1995

Building Information

Building 1 : Section 1

Field		Description			
Building Attributes					
Less Depreciation:	\$13,500				
Replacement Cost					
Living Area:	360	360			
Year Built:	2004				

STYLE	Warehse Prefab
MODEL	Ind/Comm
Stories:	1
Occupancy	1
Exterior Wall 1	Pre-cast Concr
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Metal/Tin
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Concrete Slab
Interior Floor 2	
Heating Fuel	Gas/Oil
Heating Type	Hot Air-no Duc
АС Туре	None
Bldg Use	Tele Tower
Heat/AC	NONE
Frame Type	MASONRY
Baths/Plumbing	NONE
Ceiling/Wall	NONE
Rooms/Prtns	LIGHT
Wall Height	12

Building Photo

(http://images.vgsi.com/photos/WinchesterCTPhotos//\01\00\49,

Building Layout

(http://images.vgsi.com/photos/WinchesterCTPhotos//Sketches/4

	<u>Legend</u>		
Code	Description	Gross Area	Living Area
BAS	First Floor	360	360
SLB	Slab	360	0
		720	360
			1

•

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use

Use Code	4310
Description	Tele Towe

Land Line Valuation

Size (Acres) 3.39 Depth Zone RR Alt Land Appr No Category

Outbuildings

Outbuildings Lege					Legend	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SHD8	Shd Com Mas			252 S.F.	\$6,200	1
SHD8	Shd Com Mas			252 S.F.	\$6,200	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2017	\$25,900	\$109,600	\$135,500		
2016	\$19,900	\$109,600	\$129,500		
2012	\$13,700	\$109,600	\$123,300		

Assessment					
Valuation Year	Improvements	Land	Total		
2017	\$18,130	\$76,720	\$94,850		
2016	\$13,930	\$76,720	\$90,650		
2012	\$9,590	\$76,720	\$86,310		

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

	Town of Winchester Timmons Group Web LoGI Stics TM	List View	Map View	Ŷ	
Search By Add	dress		Search By Land Owner		
Search By Pro	operty ID		Default Advanced	Search	
			Parcel INS OAN Owner: Property Acreage Zoning: Zoom to	KOALE AVE STOW WILLIAM P REVOCAT (1D: 028 151 002-1 :: 3.39 RU-2 Show Adjoiners More Details	Layers Layers
Basema	9022478	AT R			

AMERICAN TOWER®

ATC SITE NAME: WINCHESTER CT 3 ATC SITE NUMBER: 302506 T-MOBILE SITE ID: CTNH403A SITE ADDRESS: 15 OAKDALE AVENUE WINSTED, CT 06098-1862

T-MOBILE ANTENNA TEMPORARY ODU ADD

COMPLIANCE CODE	PROJECT SUMMARY	PROJECT DESCRIPTION	SHEET INDEX				
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE	SITE ADDRESS:	THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:	SHEET NO:	DESCRIPTION:	REV:		
FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS	15 OAKDALE AVENUE	INSTALL (1) TEMPORARY RADIO/ODU, (1) 1.4" HYBRID CABLES, (2)	G-001	TITLE SHEET	0		
TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.	COUNTY: LITCHFIELD	.25" CAT 6 CABLES	G-002	GENERAL NOTES	0		
	GEOGRAPHIC COORDINATES:	EXISTING (6) PANELS, (3) TTAS, (12) 1-5/8" COAX CABLES, (1) 1-1/4" HYRBID CABLES TO REMAIN	C-101	DETAILED SITE PLAN & TOWER ELEVATION	0		
1. INTERNATIONAL BUILDING CODE (IBC)	LATITUDE: 41.92169444		C-501	ANTENNA INFORMATION & SCHEDULE	0		
2. NATIONAL ELECTRIC CODE (NEC)		PROJECT NOTES	E-501	GROUNDING DETAILS	0		
3. LOCAL BUILDING CODE	GROUND ELEVATION 1073 AMSL	1. THE FACILITY IS UNMANNED.					
4. CITY/COUNTY ORDINANCES		2. A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A MONTH FOR ROUTINE INSPECTION AND MAINTENANCE.					
		3. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE.					
		4. NO SANITARY SEWER, POTABLE WATER OR TRASH DISPOSAL IS REQUIRED.					
UTILITY COMPANIES	PROJECT TEAM	5. HANDICAP ACCESS IS NOT REQUIRED.					
	TOWER OWNER: APPLICANT:						
POWER COMPANY: EVERSOURCE PHONE: (866) 554-6025	AMERICAN TOWER T-MOBILE 10 PRESIDENTIAL WAY 15 COMMERCE WAY, SUITE B WOBURN, MA 01801 NORTON, MA 02766						
TELEPHONE COMPANY: FRONTIER	ENGINEER:						
PHONE: (877) 870-4601	ATC TOWER SERVICES, LLC 3500 REGENCY PKWY STE 100 RICH BANCROFT	PROJECT LOCATION DIRECTIONS					
	CARY, NC 27518 (617) 586-6776						
011	PROPERTY OWNER: RICHARD D. STOW 52 MILLSTONE RD WILTON, CT 06897	FROM HARTFORD, CT:			-		
		TAKE RT 44 TO WINCHESTER, JUST BEFORE JUNCTION FOR RT 8 TURN RIGHT AT LIGHT, TAKE SECOND LEFT ONTO OAKDALE AVENUE, GO TO END OF STREET AND THROUGH ACCESS ROAD					
Know what's below.	13	GATE TO SITE.					
Call before you dig.					0		

GENERAL CONSTRUCTION NOTES:

- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC MASTER SPECIFICATIONS.
- 2. CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- 3. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 5. DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS.
- DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 8. CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- 9. CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING WORK.
- 10. INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE T-MOBILE WRELESS REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE T-MOBILE WRELESS REP PRIOR TO PROCEEDING.
- 11. EACH CONTRACTOR SHALL COOPERATE WITH THE T-MOBILE WRELESS REP, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- 12. CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE T-MOBILE WIRELESS CONSTRUCTION MANAGER.
- 13. ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION USING A SILICONE SEALANT.
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR SHALL NOTIFY THE T-MOBILE WIRELESS REP IMMEDIATELY.
- 15. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- 16. CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- 17. CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH LANDLORD AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- 18. CONTRACTOR SHALL FURNISH T-MOBILE WIRELESS WITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF WORK.
- 19. PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH T-MOBILE WIRELESS REP TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL ALL ITEMS PROVIDED.
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH T-MOBILE WIRELESS REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL REQUIRED PERMITS NOT OBTAINED BY T-MOBILE WIRELESS MUST BE OBTAINED, AND PAID FOR, BY THE CONTRACTOR.
- 21. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH T-MOBILE WIRELESS SPECIFICATIONS AND REQUIREMENTS.
- 22. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO T-MOBILE WIRELESS FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO T-MOBILE WIRELESS SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- 24. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY T-MOBILE WIRELESS REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES. FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW AND APPROVAL.
- 26. CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.

- 27. THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD. ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, EITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- 28. ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE T-MOBILE WIRELESS REP. ANY WORK FOUND BY THE T-MOBILE WIRELESS REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS OBTAINED.
- 29. IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OR MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS AS SPECIFIED.

STRUCTURAL STEEL NOTES:

- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
 - A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
 - B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE.
 - C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
 - D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
 - E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- 3. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- 4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- 6. CONNECTIONS:
 - A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
 - B. ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
 - C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
 - D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNINGWELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
 - E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
 - F. MINIMUM WELD SIZE TO BE 0,1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE,
 - G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING ½" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.

SECTOR	ANT.	MANUFACTURER (MODEL #)	RAD CENTER	AZIMUTH (TN)	MECH. D-TILT	ELEC. D-TILT	ADDITIONAL TOWER	ANTENNA COAX DESCRIPTION
ALPHA	At	AIR 21 82A 84P	166'-0"	20'	343		KRY 112 144/1	(4) 1-5/8"
ALPHA	A2	AIR 21 B4A B2P	166'-0"	20*	$\sim + \infty$	-	-	SEE NOTE 1
BETA	81	AIR 21 B2A B4P	166'-0"	190*	8.52		KRY 112 144/1	(4) 1-5/8"
BETA	B2	AIR 21 B4A B2P	166'-0"	190*	24	2	2	SEE NOTE 1
GAMMA	CI	AIR 21 B2A B4P	166'-0"	280*	- 19		KRY 112 144/1	(4) 1-5/8"
GAMMA	C2	AIR 21 844 82P	166'-0"	280°		-	-	SEE NOTE 1

FINAL ANTENNA/ COAX SCHEDULE							
SECTOR	ANT.	MANUFACTURER (MODEL #)	RAD CENTER	AZIMUTH (TN)	MECH. D-TILT	ELEC D-TILT	ADDITIONAL 1 MOUNTED EQU
ALPHA	AI	AIR 21 824 84P	166'0"	20°	9 <u>12</u> 27	<u></u>	KRY 112 1
ALPHA	A2	AIR 21 B4A B2P	166'-0"	20'	-	+	-
BETA	81	AIR 21 B2A B4P	166'-0"	190*	1	17.2	KRY 112 1
BETA	<i>B2</i>	AIR 21 B4A B2P	166'-0"	190*	223	243	2
GAMMA	C1	AIR 21 B2A B4P	166'-0"	280*	(#*)	(#))	KRY 112 1
GAMMA	C2	AIR 21 B4A B2P	166'-0"	280*	1	175	77
DELTA	D1	-	166'-0"	5.9°	-	-	INTELLIGENT B/ RADIO 1300 S

1. BASED ON APPROVED ATC APPLICATION OAA727483, DATED 03-26-2018. CONFIRM WITH T-MOBILE REP FOR APPLICABLE UPDATES/REVISIONS AND MOST RECENT RFDS. 2. (1) 1-1/4" HYBRID CABLE (TO REMAIN).

