September 23, 2014 Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 **RE:** Sprint PCS-Exempt Modification - Crown Site BU: 806353 **Sprint PCS Site ID: CT03XC369** Located at: 128 Mather Street, Wilton, CT 06897 Dear Ms. Bachman: This letter and exhibits are submitted on behalf of Sprint PCS (Sprint). Sprint is making modifications to certain existing sites in its Connecticut system in order to implement their 2.5GHz LTE technology. Please accept this letter and exhibits as notification, pursuant to § 16-50j-73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mr. William F. Brennan, First Selectman for Town of Wilton. Town of Wilton is also the Property Owner. Sprint plans to modify the existing wireless communications facility owned by Crown Castle and located at **128 Mather Street, Wilton, CT 06897**. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to Sprint's operations at the site (Exhibit-3). The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2). - 1. The proposed modifications will not result in an increase in the height of the existing tower. Sprint's additional antennas will be located at the same elevation on the existing tower. - 2. There will be no proposed modifications to the ground and no extension of boundaries. - 3. The proposed modifications will not increase noise levels at the facility by six decibels or more. - 4. A Structural Modification Report confirming that the tower and foundation can support Sprint's proposed modifications is included as Exhibit-2. - 5. The operation of the additional antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for Sprint's modified facility is included as Exhibit-3. For the foregoing reasons, Sprint respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Donna Neal. Sincerely, Raymond Perry Real Estate Specialist **Enclosures** Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes Tab 2: Exhibit-2: Structural Modification Report Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report) cc: Mr. William F. Brennan, First Selectman Wilton Town Hall 238 Danbury Road Wilton, CT 06897 SITE NUMBER: CT03XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 CROWN ID#: 806353 CROWN SITE NAME: WILTON SHEET INFORMATION SHEET INDEX VICINITY MAP (NOT TO SCALE) LANDLORD. CROWN CASTLE USA SITE NUMBER: SHEET DESCRIPTION SHT. NO. 2000 CORPORATE DRIVE CANONSBURG, PA N. WILTON SITE NAME: T-1 TITLE SHEET CONNECTICUT LIGHT AND POWER CONTACT CUSTOMER SERVICE LOCAL POWER COMPANY: SP-1 128 MATHER STREET GENERAL NOTES SITE ADDRESS: WILTON, CT 06897 GENERAL NOTES SP-2 (800) 286-2000 FAIRFIELD COUNTY: A-1SITE PLAN APPLICANT: 6580 SPRINT PARKWAY COORDINATES: 41° 14' 18 34" N OVERLAND PARK, KANSAS 66251 (NAD 83) 73° 25' 26.44" W ENLARGED EQUIPMENT LAYOUT PLANS A-3ENGINEER: JAMES QUICKSELL ANTENNA LAYOUT PLANS GROUND ELEV: 415'± AMSL (845) 567-6656 EXT. 2835 A-5 RAN WIRING DIAGRAM STRUCTURE TYPE: SELF SUPPORT TOWER GARY WOOD (860) 940-9168 SPRINT CM: A-6CABLE DETAILS STRUCTURE HEIGHT: 180'-0"± AGL gary.wood@sprint.com S-1 EQUIPMENT DETAILS CROWN CM: S-2 EQUIPMENT SCHEMATIC DETAILS JASON D'AMICO 143'-0"± AGL RAD CENTER: Four Seasons . Recquet Club ELECTRICAL & GROUNDING PLANS jason.d'amico@crowncastle.com GROUNDING DETAILS & NOTES AAV: AT&T CLASSIFICATION: MAP-BLOCK-LOT: 23//23// ## GENERAL NOTES - THIS IS AN UNMANNED TELECOMMUNICATION FACILITY AND NOT FOR HUMAN HABITATION: HANDICAP ACCESS ERQUIREMENTS ARE NOT REQUIRED. FACILITY HAS NO PLUMBING OR REFRIGERANTS. THIS FACILITY SHALL MEET OR EXCEED ALL FAA AND FCC REGULATOR REQUIREMENTS. - CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE PROJECT OWNER'S REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK - 3. DEVELOPMENT AND USE OF THIS SITE WILL CONFORM TO ALL APPLICABLE CODES - 2005 STATE OF CONNECTICUT BUILDING CODE. - ANSI/TIA/EIA-222-F-1996. NATIONAL ELECTRICAL CODE, LATEST EDITION. ### PROJECT DESCRIPTION - 1. (1) NEW 2.5 EQUIPMENT RACK INSIDE EXIST MMBTS CABINET. - 2. (3) NEW RFS APXVTM14-C-120 ANTENNAS. - 3. (3) NEW TD-RRH8x20-25 RRH. - 4. (1) NEW 5/8" FIBER CABLE. - 5. (3) NEW FIBER JUMPERS. ## **APPROVALS** THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE CHANGES OR MODIFICATIONS. | CONSTRUCTION: | DATE: | | |-------------------------------|-------|--| | LEASING/
SITE ACQUISITION: | DATE: | | | LANDLORD/
PROPERTY OWNER: | DATE: | | | R.F. ENGINEER: | DATE: | | 2.5 EQUIPMENT DEPLOYMENT 6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251** TECTONIC Engineering & Surveying 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicengineering.com | PROJECT NO: 7225.CT03XC369 NO DATE DESCRIPTION 0 06/18/14 FOR COMMENT 1 09/22/14 FOR CONSTRUCTIO | BY | |---|------| | 0 06/18/14 FOR COMMENT | | | | l II | | I 09/22/I4 FOR CONSTRUCTIO | - 0 | | | N MF | | | | | | | | | | | | + | | | + | | | _ | REVIEWED BY 7/22/14 JMG CT03XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: TITLE SHEET SHEET NO: T-1 #### DIVISION 01000-GENERAL NOTES - THE CONTRACTOR SHALL GIVE ALL NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK, THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES REGULATIONS AND ORDINANCES - 2. THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONTRACT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE CONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID CONTRACTOR FROM COMPLETING PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF - 3. THE CONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF NOTIFYING (IN WRITING) THE PROJECT OWNER'S REPRESENTATIVE OF ANY CONFLICTS, ERRORS, OR OMISSIONS PRIOR TO THE SUBMISSION OF CONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK. - 4. THE SCOPE OF WORK SHALL INCLUDE FURNISHING ALL MATERIALS, EQUIPMENT, LABOR AND ALL OTHER MATERIALS AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN. - 5. THE CONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE HIMSELF WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. - 6. ONCE THE CONTRACTOR HAS RECEIVED AND ACCEPTED THE NOTICE TO PROCEED, CONTRACTOR WILL CONTACT THE CROWN CASTLE CONSTRUCTION MANAGER OF RECORD (NOTED ON THE FIRST PAGE ON THIS CONSTRUCTION DRAWING) A MINIMUM OF 48 HOURS PRIOR TO WORK START. UPON ARRIVAL TO THE JOB SITE, CONTRACTOR CREW IS REQUIRED CALL 1–800–788–7011 TO NOTIFY THE CROWN CASTLE NOC WORK HAS - 7. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S/VENDOR'S SPECIFICATIONS UNLESS NOTED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE - B. THE CONTRACTOR SHALL PROVIDE A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE UPDATED WITH THE LATEST REVISIONS AND ADDENDUMS OR CLARIFICATIONS AVAILABLE FOR THE USE BY ALL PERSONNEL INVOLVED WITH THE PROJECT. - 9. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND POR COORDINATING ALL PORTIONS OF THE WORK UNDER - 10. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEER, THE STATE, COUNTY OR LOCAL GOVERNMENT AUTHORITY. - 11. THE CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS, EASEMENTS, PAVING, CURBING, ETC. DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE CONTRACTOR SHALL REPAIR ANY DAMAGE THAT MAY HAVE OCCURRED DUE TO CONSTRUCTION - 12. THE CONTRACTOR SHALL KEEP THE GENERAL WORK AREA CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY. PREMISES SHALL BE LEFT IN CLEAN CONDITION AND FREE FROM PAINT SPOTS, DUST, OR SMUDGES OF ANY NATURE, - 13. THE CONTRACTOR SHALL COMPLY WITH ALL PERTINENT SECTIONS OF THE HE CONTRACTOR SHALL COMPLY WITH ALL PERTINENT SECTIONS OF THE BASIC STATE BUILDING CODE, LATEST EDITION, AND ALL OSHA REQUIREMENTS AS THEY APPLY TO THIS PROJECT. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE
WORK SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK SHALL BE RELOCATED AS DIRECTED BY THE ARCHITECT/ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR VILLITIES. THE CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT LIMITED TO A) FALL PROTECTION, B) CONFINED SPACE, C) ELECTRICAL SAFETY, D) TRENCHING AND EXCAVATION OF ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHICH INTEFFERE WITH THE EXECUTION OF THE WORK SHALL BE REMOVED AND OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT THE POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK SUBJECT TO THE APPROVAL OF THE ARCHITECT/ENGINEER. - 14. THE CONTRACTOR SHALL NOTIFY THE PROJECT OWNER'S REPRESENTATIVE IN WRITING WHERE A CONFLICT OF THE WORK THAT IS IN CONFLICT UNTIL DOCUMENTS. THE CONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE LESSEE/LICENSEE REPRESENTATIVE. - 15. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES, ETC. ON THE JOB. - 16. THE CONTRACTOR SHALL NOTIFY THE THE RF ENGINEER FOR ANTENNA AZIMUTH VERIFICATION (DURING ANTENNA INSTALLATION) PRIOR TO CONDUCTING SWEEP TESTS. - 17. THE CONTRACTOR SHALL SUBMIT AT THE END OF THE PROJECT A COMPLETE SET OF AS—BUILT DRAWINGS TO THE CLIENT REPRESENTATIVE. - 18. REFER TO: CONSTRUCTION STANDARDS-SPRINT DOCUMENT EXHIBIT A-STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES REV. 4.0- 02.15.2011.DOCM. - 19. REFER TO: WEATHER PROOFING SPECS: EXCERPT EXH A-WIHRPRF-STD CONSTR SPECS._157201110421855492.DOCM. - 20. REFER TO: COLOR CODING-SPRINT NEXTEL ANT AND LINE COLOR CODING (DRAFT) V3 09-08-11.PDF - 21. REFER TO LATEST DOCUMENTATION REVISION. #### DIVISION 03000-CONCRETE #### 1.03 APPLICABLE STANDARDS (USE LATEST EDITIONS) - AC1-301 SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS. ACI-347 GUIDE TO FORM WORK FOR CONCRETE. ASTM C33- CONCRETE AGGREGATE - ASTM C94 READY MIXED CONCRETE e. ASTM C150 PORTLAND CEMENT. ASTM C260 AIR-ENTRAINING ADMIXTURES FOR CONCRETE ASTM C309- LIQUID MEMBRANE FORMING COMPOUNDS FOR CURING CONCRETE. - ASTM C494 CHEMICAL ADMIXTURES FOR CONCRETE ASTM A615— DEFORMED AND PLAIN BILLET—STEEL BARS FOR CONCRETE REINFORCEMENT - ASTM A185- STEEL WELDED WIRE FABRIC (PLAIN) FOR CONCRETE REINFORCEMENT #### 1.04 QUALITY ASSURANCE CONCRETE MATERIALS AND OPERATIONS SHALL BE TESTED AND INSPECTED BY THE ARCHITECT/ENGINEER AS DIRECTED BY THE CLIENT'S REPRESENTATIVE. A. SURFACES AGAINST WHICH BACKFILL OR CONCRETE SHALL BE PLACED REQUIRE NO TREATMENT EXCEPT REPAIR OF DEFECTIVE B. SURFACES THAT WILL BE PERMANENTLY EXPOSED SHALL PRESENT A UNIFORM FINISH PROVIDED BY THE REMOVAL OF FINS AND THE FILLING HOLES AND OTHER IRREGULARITIES WITH DRY PACK GROUT, OR BY SACKING WITH UTILITY OR ORDINARY GROUT. - C. SURFACES THAT WOULD NORMALLY BE LEVEL AND WHICH WILL BE PERMANENTLY EXPOSED TO THE WEATHER SHALL BE SLOPED FOR DRAINAGE. UNLESS ENGINEER'S DESIGN DRAWING SPECIFIES A HORIZONTAL SURFACE OR SURFACES SUCH AS STAIR TREADS, WALLS, CURBS, AND PARAPETS SHALL BE SLOPED APPROXIMATELY 1/4" PER FOOT. - SURFACES THAT WILL BE COVERED BY BACKFILL OR CONCRETE SHALL BE SMOOTH SCREENED. - E. EXPOSED SLAB SURFACES SHALL BE CONSOLIDATED, SCREENED, FLOATED, AND STEEL TROWELED. HAND OR POWER-DRIVEN EQUIPMENT MAY BE USED FOR FLOATING. FLOATING SHALL BE STARTED AS SOON AS THE SCREENED SURFACE HAS ATTAINED A STIFTNESS TO PERMIT FINISHING OPERATIONS. OPERATIONS. ALL EDGES MUST HAVE A 3/4" CHAMFER. - 1.04 QUALITY ASSURANCE CONCRETE MATERIALS AND OPERATIONS SHALL BE TESTED AND INSPECTED BY THE ENGINEER THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY UPON REMOVAL OF THE FORMS TO OBSERVE CONCRETE SURFACE CONDITIONS IMPERFECTIONS SHALL BE PATCHED ACCORDING TO THE ENGINEER'S THE CONTRACTOR SHALL NOTIFY OR REPLACE CONCRETE NOT CONFORMING TO REQUIRED LEVELS AND LINES, DETAILS, AND ELEVATIONS AS SPECIFIED IN ACI 301. - A. IMMEDIATELY AFTER PLACEMENT. THE CONTRACTOR SHALL PROTECT THE CONCRETE FROM PREMATURE DRYING, EXCESSIVELY HOT OR COLD TEMPERATURES, AND MECHANICAL INJURY. FINISHED WORK - B. CONCRETE SHALL BE MAINTAINED WITH MINIMAL MOISTURE LOSS AT RELATIVELY CONSTANT TEMPERATURE FOR PERIOD NECESSARY FOR HYDRATION OF CEMENT AND HARDENING OF CONCRETE. - C. ALL CONCRETE SHALL BE WATER CURED PER ACCEPTABLE PRACTICES SPECIFIED BY ACI CODE (LATEST EDITION) #### DIVISION 05000 - METALS #### PART 1 - GENERAL #### 1.01 WORK INCLUDED - A. THE WORK CONSISTS OF THE FABRICATION AND INSTALLATION OF ALL MATERIALS TO BE FURNISHED. AND WITHOUT LIMITING THE GENERALITY THEREOF, INCLUDING ALL EQUIPMENT, LABOR AND SERVICES REQUIRED FOR ALL STRUCTURAL STEEL WORK AND ALL ITEMS INCIDENTAL AS SPECIFIED AND AS SHOWN ON THE DRAWINGS: - STEEL FRAMING INCLUDING BEAMS, ANGLES, CHANNELS AND PLATES. WELDING AND BOLTING OF ATTACHMENTS. #### 1.02 REFERENCE STANDARDS - THE WORK SHALL CONFORM TO THE CODES AND STANDARDS OF THE FOLLOWING AGENCIES AS FURTHER CITED HEREIN: - ASTM: AMERICAN SOCIETY FOR TESTING AND MATERIALS AS PUBLISHED IN "COMPILATION OF ASTM STANDARDS IN BUILDING CODES" OR LATEST EDITION. - AWS: AMERICAN WELDING SOCIETY CODE OR LATEST EDITION. AISC: AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS" (LATEST EDITION). ### PART 2 - PRODUCTS #### 2.01 MATERIALS A. STRUCTURAL STEEL: SHALL COMPLY WITH THE REQUIREMENTS OF ASTM A36 AND A992 FOR STRUCTURAL STEEL ALL PROPOSED STRUCTURAL STEEL SHALL BE FABRICATED AND ERECTED IN ACCORDANCE WITH AISC CODE AND ASTM SPECIFICATIONS (LATEST EDITION) ALL NEW STEEL SHALL CONFORM TO THE FOLLOWING. - 1. STRUCTURAL WIDE FLANGE: ASTM A992 Fy=50KSI. 2. MISCELLANEOUS STEEL (PLATES), CHANNELS, ANGLES, ETC): ASTM A36 (Fy=36KSI). 3.STRUCTURAL TUBING: ASTM A500 Gr. B (Fy=46KSI). - 4. STEEL PIPE: ASTM A53 Gr B (Fy=35KSI) #### 2.02 WELDING - ALL WELDING SHALL BE DONE BY CERTIFIED WELDERS CERTIFICATION DOCUMENTS SHALL BE MADE AVAILABLE FOR ENGINEER'S AND/OR OWNER'S REVIEW IF REQUESTED. - WELDING ELECTRODES FOR MANUAL SHIELDED METAL ARC WELDING SHALL CONFORM TO ASTM 1-233, E70 SERIES. BARE ELECTRODES AND GRANULAR FLUX USED IN THE SUBMERGED ARC PROCESS SHALL CONFORM TO AISC SPECIFICATIONS. - C. FIELD WELDING SHALL BE DONE AS PER AWS D1.1 REQUIREMENTS VISUAL INSPECTION IS ACCEPTABLE. - D. STUD WELDING SHALL BE ACCOMPLISHED BY CAPACITOR DISCHARGE (CD) WELDING TECHNIQUE USING CAPACITOR DISCHARGE STUD WELDER. - PROVIDE STUD FASTENERS OF MATERIALS AND SIZES SHOWN ON DRAWINGS OR AS RECOMMENDED BY THE MANUFACTURER FOR STRUCTURAL LOADINGS REQUIRED. - FOLLOW MANUFACTURERS SPECIFICATIONS AND INSTRUCTIONS TO PROPERLY SELECT AND INSTALL STUD WELDS. #### 2.03 BOLTING - A. BOLTS SHALL BE CONFORMING TO ASTM A35 HIGH STRENGTH HOT DIP GALVANIZED WITH ASTM A153 HEAVY HEX TYPE NUTS. - BOLTS SHALL BE 3/4" (MINIMUM) CONFORMING TO ASTM A325, HOT DIP GALVANIZED, ASTM A153 NUTS SHALL BE HEAVY HEX TYPE. - ALL CONNECTIONS SHALL BE 2 BOLTS MINIMUM. - EXCEPT WHERE SHOWN, ALL BEAM TO BEAM AND BEAM TO COLUMN CONNECTIONS TO BE DOUBLE ANGLED CONNECTIONS WITH HIGH STRENGTH BOLTS (THREADS EXCLUDED FROM SHEAR PLANE) AND HARDENED WASHERS. - E. STANDARD, OVERSIZED OR HORIZONTAL SHORT SLOTTED HOLES. - F. SNUG-TIGHT STRENGTH BEARING BOLTS MAY BE USED IN STANDARD HOLES CONFORMING TO ACIS, USING THE TURN OF THE NUT METHOD - FULLY-TENSIONED HIGH STRENGTH (SLIP CRITICAL) SHALL BE USED IN OVERSIZED SLOT HOLES (RESPECTIVE OF SLOT ORIENTATION). - ALL BRACED CONNECTION, MOMENT CONNECTION AND CONNECTIONS NOTED AS "SLIP CRITICAL" SHALL BE BE SLIP CRITICAL JOINTS WITH CLASS A SURFACE CONDITIONS, UNLESS OTHERWISE NOTED. - EPOXY ANCHOR ASSEMBLIES SHALL BE AS MANUFACTURED BY HILTLOR ENGINEER APPROVED EQUAL, AS FOLLOWS: #### BASE MATERIAL #### ANCHOR SYSTEM HOLLOW & GROUTED CMU OR BRICK HILTI HIT-HY 200 HILTI HIT-HY 70 #### 2.04 FABRICATION A. FABRICATION OF STEEL SHALL CONFORM TO THE AISC AND AWS #### 2.05 FINISH A. STRUCTURAL STEEL EXPOSED TO WEATHER SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123. (LATEST EDITION) UNLESS OTHERWISE NOTED. #### 2.06 PROTECTION A. UPON COMPLETION OF ERECTION, INSPECT ALL GALVANIZED STEEL AND PAINT ANY FIELD CUTS, WELDS OR GALVANIZED BREAKS WITH (2) COATS OF ZINC-RICH COLD GALVANIZING PAINT. #### PART 3 - ERECTION - A. PROVIDE ALL ERECTION, EQUIPMENT, BRACING, PLANKING, FIELD BOLTS, NUTS, WASHERS, DRIFT PINS, AND SIMULAR MATERIALS WHICH DO NOT FORM A PART OF THE COMPLETED CONSTRUCTION, BUT ARE NECESSARY FOR ITS PROPER ERECTION - B. ERECT AND ANCHOR ALL STRUCTURAL STEEL IN ACCORDANCE WITH AISC REFERENCE STANDARDS ALL WORK SHALL BE ACCURATELY SET TO ESTABLISHED SUITABLE ATTACHMENTS TO THE CONSTRUCTION OF THE BUILDING - C. TEMPORARY BRACING, GUYING, AND SUPPORT SHALL BE PROVIDED TO KEEP THE STRUCTURE SET AND ALIGNED AT ALL TIMES DURING CONSTRUCTION, AND TO PREVENT DANGER TO PERSONS AND PROPERTY. CHECK ALL TEMPORARY LOADS AND STAY WITHIN SAFE CAPACITY OF ALL BUILDING COMPONENTS. 6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 ## TECTONIC TECTONIC Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicenaineerina.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNIMENT AGENCES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS | _ | CI | IDMITTALC | | |-----|-----------|------------------|----| | | 20 | JBMITTALS | | | PRO | DJECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | B' | | 0 | 06/18/14 | FOR COMMENT | J | | 1 | 09/22/14 | FOR CONSTRUCTION | М | 1 | | ı | | 9/23 | HM JMQ | |------|----------------------| | 000 | SEAE | | 100 | | | ** |
10/ | | 370 | 10.22000
20.22000 | | 000 | SOMME ENGLAND | REVIEWED BY DATE SITE NUMBER: CT03XC369 SITE NAME N. WILTON 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: GENERAL NOTES SHEET NO: SP-1 #### DIVISION 13000-SPECIAL CONSTRUCTION ANTENNA INSTALLATION 1.01 WORK INCLUDED - A. ANTENNAS AND HYBRIFLEX CABLES ARE FURNISHED BY CLIENT'S REPRESENTATIVE UNDER SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OF COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROPERTY. - B. INSTALL ANTENNAS AS INDICATED ON DRAWINGS AND CLIENT'S REPRESENTATIVE SPECIFICATIONS. - INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON - D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE AND PROVIDE PRINTOUT OF THAT RESULT - INSTALL HYBRIFLEX CABLES AND TERMINATIONS BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTORS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS. - G. ANTENNA AND HYBRIFLEX CABLE GROUNDING: - ALL EXTERIOR #6 GREEN GROUND WIRE DAISY CHAIN CONNECTIONS ARE TO BE WEATHER SEALED WITH ANDREWS CONNECTOR/SPLICE WEATHERPROOFING KIT TYPE 3221213 OR - ALL HYBRIFLEX CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF HYBRIFLEX CABLE (NOT WITHIN BENDS). 1.02 RELATED WORK FURNISH THE FOLLOWING WORK AS SPECIFIED UNDER CONSTRUCTION DOCUMENTS, BUT COORDINATE WITH QOTHER TRADES PRIOR TO BID: - FLASHING OF OPENING INTO OUTSIDE WALLS. - SEALING AND CAULKING ALL OPENINGS. PAINTING. 2. SEALING AND CACESITO 3. PAINTING. 4. CUTTING AND PATCHING. - 1.03 REQUIREMENTS OF REGULATOR AGENCIES - A. FURNISH U.L. LISTED EQUIPMENT WHERE SUCH LABÉL IS - FURNISH U.L. ISHED EQUIPMENT WHERE SUCH LABEL IS AVAILABLE, INSTALL IN CONFORMANCE WITH U.L. STANDARDS WHERE APPLICABLE. INSTALL ANTENNA, ANTENNA CABLES, GROUNDING SYSTEM IN ACCORDANCE WITH DRAWINGS AND SPECIFICATIONS IN EFFECT AT PROJECT LOCATION AND RECOMMENDATIONS OF STATE AND LOCAL BUILDING CODES HAVING JURISDICTION OVER SPECIFIC PORTIONS OF WORK. THIS WORK INCLUDES, BUT IS NOT LIMITED TO THE - EIA ELECTRONIC INDUSTRIES ASSOCIATION RS-22. STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES. - 2. FAA FEDERAL AVIATION ADMINISTRATION ADVISORY CIRCULAR AC 70/7480-IH, CONSTRUCTION MARKING AND LIGHTING. - FCC FEDERAL COMMUNICATION COMMISSION RULES AND REGULATIONS FORM 715, OBSTRUCTION MARKING AND LIGHTING SPECIFICATION FOR ANTENNA STRUCTURES - AISC AMERICAN INSTITUTE OF STEEL CONSTRUCTION FOR STRUCTURAL JOINTS USING ASTM 1325 OR A490 BOLTS. - 5. NEC NATIONAL ELECTRIC CODE ON TOWER LIGHTING KITS. - UL UNDERWRITER'S LABORATORIES APPROVED ELECTRICAL - IN ALL CASES, PART 77 OF THE FAA RULES AND PARTS 17 AND 22 OF THE FCC RULES ARE APPLICABLE AND IN THE EVENT OF CONFLICT, SUPERSEDE ANY OTHER STANDARDS OR - 8. LIFE SAFETY CODE NFPA, LATEST EDITION. #### DIVISION 13000-EARTHWORK PART 1 GENERAL - 1.01 WORK INCLUDED: REFER TO SURVEY AND SITE PLAN FOR WORK INCLUDED - CONSTRUCTION OF EQUIPMENT FOUNDATIONS INSTALLATION OF ANTENNA SYSTEM PART 2 PRODUCTS - 2.01 MATERIALS - ROAD AND SITE MATERIALS; FILL MATERIAL SHALL BE ACCEPTABLE, SELECT FILL SHALL BE IN ACCORDANCE WITH LOCAL DEPARTMENT OF HIGHWAY AND PUBLIC TRANSPORTATION - SOIL STERILIZER SHALL BE EPA REGISTERED OF LIQUID COMPOSITION AND OF PRE-EMERGENCE DESIGN. - SOIL STABILIZER FABRIC SHALL BE MIRAFI OR EQUAL $-\ 600\mbox{X}$ ACCESS ROAD AND COMPOUND. - GRAVEL FILL: WELL GRADED, HARD, DURABLE, NATURAL SAND D. AND GRAVEL, FREE FROM ICE AND SNOW, ROOTS, SOD RUBBISH, AND OTHER DELETERIOUS OR ORGANIC MATTER. MATERIAL SHALL CONFORM TO THE FOLLOWING GRADATION GRAVEL FILL TO BE PLACED IN LIETS OF 9" MAXIMUM THICKNESS. AND 90 % DENSITY. COMPACTED TO 95 E. NO FILL OR EMBANKMENT MATERIALS SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OF EMBANKMENT #### 2.02 FOUIPMENT - COMPACTION SHALL BE ACCOMPLISHED BY MECHANICAL MEANS. LARGER AREAS SHALL BE COMPACTED BY SHEEPS FOOT, VIBRATORY OR RUBBER TIED ROLLERS WEIGHING AT LEAST FIVE TONS. SMALLER AREAS SHALL BE COMPACTED BY POWER-DRIVER, HAND HELD TAMPERS. - PRIOR TO OTHER EXCAVATION AND CONSTRUCTION EFFORTS GRUB ORGANIC MATERIAL TO A MINIMUM OF 6" BELOW ORIGINAL GROUND - UNLESS OTHERWISE INSTRUCTED BY CLIENT'S REPRESENTATIVE. C. REMOVE TREES, BRUSH AND DEBRIS FROM THE PROPERTY TO AN AUTHORIZED DISPOSAL LOCATION. - D. PRIOR TO PLACEMENT OF FILL OR BASE MATERIALS, ROLL THE SOIL. - WHERE UNSTABLE SOIL CONDITIONS ARE ENCOUNTERED, LINE THE AREAS WITH STABILIZER MAT PRIOR TO PLACEMENT OF #### 3.03 INSTALLATION - THE SITE AND TURNAROUND AREAS SHALL BE AT THE SUB-BASE COURSE ELEVATION PRIOR TO FORMING FOUNDATIONS. GRADE OR FILL THE SITE AND ACCESS ROAD AS REQUIRED TO PRODUCE EVEN DISTRIBUTION OF SPOILS RESULTING FROM FOUNDATION EXCAVATIONS. THE RESULTING GRADE SHALL CORRESPOND WITH SAID SUB-BASE COURSE, ELEVATIONS ARE TO BE CALCULATED FORM FINISHED GRADES OR SLOPES INDICATED. - THE ACCESS ROAD SHALL BE BROUGHT TO BASE COURSE FLEVATION PRIOR TO FOUNDATION CONSTRUCTION - DO NOT CREATE DEPRESSIONS WHERE WATER MAY POND. - THE CONTRACT INCLUDES ALL NECESSARY GRADING, BANKING, DITCHING AND COMPLETE SURFACE COURSE FOR ACCESS ROAD. ALL ROADS OR ROUTES UTILIZED FOR ACCESS TO PUBLIC THOROUGHFARE IS INCLUDED IN SCOPE OF WORK UNLESS OTHERWISE INDICATED. - E. WHEN IMPROVING AN EXISTING ACCESS ROAD, GRADE THE EXISTING ROAD TO REMOVE ANY ORGANIC MATTER AND SMOOTH THE SURFACE BEFORE PLACING FILL OR STONE. - PLACE FILL OR STONE IN 3" MAXIMUM LIFTS AND COMPACT BEFORE PLACING NEXT LIFT. - THE FINISH GRADE, INCLUDING TOP SURFACE COURSE, SHALL EXTEND A MINIMUM OF 12" BEYOND THE SITE FENCE AND SHALL COVER THE AREA AS INDICATED. - RIPRAP SHALL BE APPLIED TO THE SIDE SLOPES OF ALL FENCED H. AREAS, PARKING AREAS AND TO ALL OTHER SLOPES GREATER THAN 2:1. - RIPRAP SHALL BE APPLIED TO THE SIDES OF DITCHES OR DRAINAGE SWALES AS INDICATED ON PLANS. - RIPRAP ENTIRE DITCH FOR 6'-0" IN ALL DIRECTIONS AT CULVERT - SEED, FERTILIZER AND STRAW COVER SHALL BE APPLIED TO ALL OTHER DISTURBED AREAS AND DITCHES, DRAINAGE, SWALES, NOT OTHERWISE RIP—RAPPED. - UNDER NO CIRCUMSTANCES SHALL DITCHES, SWALES OR CULVERTS BE PLACED SO THEY DIRECT WATER TOWARDS, OR PERMIT STANDING WATER IMMEDIATELY ADJACENT TO SITE. IF OWNER DESIGNS OR IF DESIGN ELEVATIONS CONFLICT WITH THIS GUIDANCE ADVISE THE OWNER IMMEDIATELY. - IF A DITCH LIES WITH SLOPE GREATER THAN TEN PERCENT, MOUND DIVERSIONARY HEADWALL IN THE DITCH AT CULVERT ENTRANCES. RIP—RAP THE UPSTREAM SIDE OF THE HEADWALL AS WELL AS THE DITCH FOR 6'-0" ABOVE THE CULVERT. - N. IF A DITCH LIES WITH SLOPES GREATER THAN TEN PERCENT. MOUND DIVERSIONARY HEADWALLS IN THE DITCH FOR 6'-0" ABOVE THE CULVERT ENTRANCE. - SEED AND FERTILIZER SHALL BE APPLIED TO SURFACE CONDITIONS WHICH WILL ENCOURAGE ROOTING. RAKE AREAS TO BE SEEDED TO EVEN THE SURFACE AND TO LOOSEN THE SOIL. - SOW SEED IN TWO DIRECTIONS IN TWICE THE QUANTITY RECOMMENDED BY THE SEED PRODUCER. - IT IS THE CONTRACTOR'S RESPONSIBILITY TO ENSURE GROWTH OF SEEDED AND LANDSCAPED AREAS BY WATERING UP TO THE POINT OF RELEASE FROM THE CONTRACT. CONTINUE TO REWORK BARE AREAS UNTIL COMPLETE COVERAGE IS OBTAINED #### 3.04 FIFLD QUALITY CONTROL - A. COMPACTION SHALL BE D-1557 FOR SITE WORK AND 95 % MAXIMUM DENSITY UNDER SLAB AREAS. AREAS OF SETTLEMENT WILL BE EXCAVATED AND REFILLED AT CONTRACTOR'S EXPENSE. REQUIRED. USE OF EROSION CONTROL ME. SHALL BE AN ACCEPTABLE ALTERNATIVE. - B. THE COMPACTION TEST RESULTS SHALL BE AVAILABLE PRIOR TO THE CONCRETE POUR. #### 3.05 PROTECTION - PROTECT SEEDED AREAS FORM EROSION BY SPREADING STRAW TO A UNIFORM LOOSE DEPTH OF 1"-2". STAKE AND TIE DOWN AS REQUIRED. USE OF EROSION CONTROL MESH OR MULCH NET SHALL BE AN ACCEPTABLE ALTERNATIVE. - ALL TREES PLACED IN CONJUNCTION WITH A LANDSCAPE CONTRACT SHALL BE WRAPPED, TIED WITH HOSE PROTECTED WIRE AND SECURED TO STAKES EXTENDING 2'-0" INTO THE GROUND ON FOUR SIDES OF THE TREE. - ALL EXPOSED AREAS SHALL BE PROTECTED AGAINST WASHOUTS ALL EARYSED AREAS SHALL BE PROTECTED AGAINST WASHOUTS AND SOIL EROSION. STRAW BALES SHALL BE PLACED AT THE INLET APPROACH TO ALL NEW OR EXISTING CULVERTS. REFER TO DETAILS ON DRAWINGS | SYMBOLS | ABBREVIATIONS | |-------------|-------------------| | | GROUND WIRE | | — — E— — E— | ELECTRIC | | t- | TELEPHONE | | | OVERHEAD WIRE | | | PROPERTY LINE | | _xx | CHAIN LINK FENCE | | A-1 | ANTENNA MARK | | (E) | EXISTING | | (P) | PROPOSED DETAIL | | DET # | REFERENCE | | • | SURFACE ELEVATION | 2.5 EOUIPMENT DEPLOYMENT 6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251** TECTONIC TECTONIC Engineering & Surveying 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNI-ENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS | - | | IDMITTALO | _ | |-----|-----------|------------------|----| | | 20 | JBMITTALS | | | PRO | DJECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | BY | | 0 | 06/18/14 | FOR COMMENT | JT | | 1 | 09/22/14 | FOR CONSTRUCTION | MF | | | | | | | | | | | | | | 190 | | | | | | | | | | | | | | | | | | 162119 0000 MY) CX | |---| | all comments | | SEAL | | S. C. | | S S S KUNIAR S S S | | 34:00 A 7.00 | | 20:5/ | | | | | | - /- | | 5 d: No. 22038 : 45 4 | | 31:11 0:115 | | CENSEY | | 6 Ca | | | REVIEWED BY DATE SITE NUMBER CT03XC369 SITE NAME: N. WILTON SITE ADDRESS 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: GENERAL NOTES SHEET NO: SP-2 2.5 EQUIPMENT DEPLOYMENT 6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 ## TECTONIC PLANNING ENGINEERING SURVEYING CONSTRUCTIO MANAGEMENT **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567—6656 Fax: (845)
567—8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUFFLORITH CONSENT IS STRICTLY PROHIBITED. DUFFLOATION AND USE BY GOVERNIFENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED, REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED. | | SL | IBMITTALS | | |-----|-----------|------------------|----| | PRO | DJECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | BY | | 0 | 06/18/14 | FOR COMMENT | JT | | Ĩ | 09/22/14 | FOR CONSTRUCTION | MP | DATE | REVIEWED BY | |-----------|-------------| | 9/2/1400 | 3MQ | | 69.25 | SANIVALE PA | | 35,60 | SEAL C | | 5 72 : On | | | N.A. | | | | 20000 | | 1 3 N | 0. 22038 | | - | ENST. OLSO | SITE NUMBER: CT03XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: SITE PLAN SHEET NO: THE EXISTING MONOPOLE SHALL BE ANALYZED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF CONNECTICUT (TO BE COORDINATED BY OTHERS). THE EXISTING MOUNT HAS BEEN ANALYZED BY TECTONIC ENGINEERING AND FOUND TO BE ADEQUATE TO SUPPORT THE PROPOSED SPRINT UPGRADE ONCE THE PROPOSED MODIFICATIONS HAVE BEEN COMPLETED AS DETAILED IN THE STRUCTURAL ANALYSIS EVALUATION LETTER DATED 09/22/14. 2.5 EQUIPMENT DEPLOYMENT 6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 ## TECTONIC ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATUSE PURCTIONS IS SPECIFICALLY ALLOWED. | | SL | JBMITTALS | | |-----|-----------|------------------|----| | PRO | DJECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | BY | | 0 | 06/18/14 | FOR COMMENT | JT | | 1 | 09/22/14 | FOR CONSTRUCTION | MP | PATE REVIEWED BY SITE NUMBER: CT03XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: ELEVATION SHEET NO: ENLARGED EQUIPMENT LAYOUT PLAN (FINAL) SCALE: 3/4" = 1'-0" ENLARGED EQUIPMENT LAYOUT PLAN (EXIST) A-3 SCALE: 3/8" = 1'-0" EXIST FIBER DISTRIBUTION BOX SCALE: NTS 6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 ### TECTONIC PLANNING ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567—6656 Fax: (845) 567—8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS | | SU | JBMITTALS | |-----|-----------|----------------| | PRO | DJECT NO: | 7225.CT03XC369 | | NO | DATE | DESCRIPTION | | 0 | 06/18/14 | FOR COMMENT | | Ţ | 09/22/14 | FOR CONSTRUCT | DATE REVIEWED BY SITE NUMBER: CT03XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: ENLARGED EQUIPMENT LAYOUT PLANS SHEET NO: THE EXISTING MONOPOLE SHALL BE ANALYZED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF CONNECTICUT (TO BE COORDINATED BY OTHERS). THE EXISTING MOUNT HAS BEEN ANALYZED BY TECTONIC ENGINEERING AND FOUND TO BE ADEQUATE TO SUPPORT THE PROPOSED SPRINT UPGRADE ONCE THE PROPOSED MODIFICATIONS HAVE BEEN COMPLETED AS DETAILED IN THE STRUCTURAL ANALYSIS EVALUATION LETTER DATED 09/22/14. ## TECTONIC PLANNING ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT TECTONIC Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY, AUTHORIZED REGULATORY AND | | SU | JBMITTALS | |-----|-----------|------------------| | PRO | DJECT NO: | 7225.CT03XC369 | | NO | DATE | DESCRIPTION | | 0 | 06/18/14 | FOR COMMENT | | 1 | 09/22/14 | FOR CONSTRUCTION | | | | | | | | | | | | | | _ | | | | | | | DATE REVIEWED BY SITE NUMBER: CTO3XC369 SITE NAME: SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: ANTENNA LAYOUT PLANS SHEET NO: A-4 ## ANTENNA DATA | Status | Exist | Proposed | | |--------------------------|---------------------|----------------|--| | Antenna Manufacturer | RFS-CEL WAVE | RFS-CEL WAVE | | | Antenna Model Number | APXVSPP18C-A20 | APXVTM14-C-120 | | | Number of Antennas | 3 | 3 | | | Antenna RAD Center | 143' | 143' | | | Antenna Azimuth | 350/110/230 | 350/110/230 | | | Antenna RRH Model Number | 1900MHz/800MHz RRHS | TD-RRH8x20-25 | | | Number of RRH | 6 | 3 | | RRH MOUNTING DETAIL SCALE: 1 1/2" = 1'-0" TOWER (TYP PER SECTOR) EXIST MOUNTING BRACKET - EXIST ANTENNA MOUNTING PIPE > PROPOSED SPRINT TD-RRH8x20-25 2.5 CABLE COLOR CODING A-5 SCALE: N.T.S. ## TECTONIC PLANNING ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567—6656 Fax: (845) 567—8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY ANI ADMINISTRATIVE FUNCTIONS SPECIFICALLY ALLOWED. | | SU | IBMITTALS | | |-----|-----------|------------------|----| | PRO | DJECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | BY | | 0 | 06/18/14 | FOR COMMENT | JT | | 1 | 09/22/14 | FOR CONSTRUCTION | MP | DATE REVIEWED BY SITE NUMBER: CTO3XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: RAN WIRING DIAGRAM SHEET NO: IMPORTANTII LINE UP WHITE MARKINGS ON JUMPER AND RISER IP-MPO CONNECTOR. PUSH THE WHITE MARK ON THE JUMPER CONNECTOR FLUSH AGAINST THE RED SEAL ON THE RISER CONNECTION IMPORTANTII ROTATE THE BAYONET HOUSING CLOCKWISE UNTIL A CLICK SOUND IS HEARD TO ENSURE A GOOD CONNECTION 2.5 HYBRID CABLE W/FIBER & DC FEEDERS FIBER ONLY TRUNK LINES HYBRIFLEX RISER/JUMPER CONNECTION DETAILS SCALE: N.T.S. TRUNK LINE DETAILS (TYPICAL) SCALE: N.T.S. ## SPECIAL NOTES: CABLE MARKINGS AT RAD CENTER AND ALL WALL/BLDG. PENETRATIONS - ALL COLOR CODE TAPE SHALL BE 3M-35 AND SHALL BE INSTALLED USING A MINIMUM OF (3) WRAPS OF TAPE. - ALL COLOR BANDS INSTALLED AT THE TOWER TOP SHALL BE A MINIMUM OF 3" WIDE AND SHALL HAVE A MINIMUM OF 3/4" OF SPACING BETWEEN EACH COLOR. - ALL COLOR BANDS INSTALLED AT OR NEAR THE GROUND MAY BE ONLY 3/4" WIDE. EACH TOP—JUMPER SHALL BE COLOR CORDED WITH (1) SET OF 3" WIDE BANDS. - EACH MAIN COAX SHALL BE COLOR CODED WITH (1) SET OF 3" BANDS NEAR THE TOP-JUMPER CONNECTION AND WITH 3/4" COLOR BANDS JUST PRIOR TO ENTERING THE BTS OR TRANSMITTER BUILDING. - \bullet ALL BOTTOM JUMPERS SHALL BE COLOR CODED WITH (1) SET OF 3/4" BANDS ON EACH END OF THE BOTTOM JUMPER. - ALL COLOR CODES SHALL BE INSTALLED SO AS TO ALIGN NEATLY WITH ONE ANOTHER FROM SIDE—TO—SIDE. - EACH COLOR BAND SHALL HAVE A MINIMUM OF (3) WRAPS AND SHALL BE NEATLY TRIMMED AND SMOOTHED OUT AS TO AVOID UNRAVELING. - \bullet X-Pole antennas should use "XX-1" for the "+45" port, "XX-2" for the "-45" port. - COLOR BAND #4 REFERS TO THE FREQUENCY BAND: ORANGE=850, VIOLET=1900. USED ON JUMPERS ONLY. - RF FEEDLINE SHALL BE IDENTIFIED WITH A METAL TAG (STAINLESS OR BRASS) AND STAMPED WITH THE SECTOR, ANTENNA POSITION, AND CABLE NUMBER. - ANTENNAS MUST BE IDENTIFIED, USING THE SECTOR LETTER AND ANTENNA NUMBER, WITH A BLACK MARKER PRIOR TO INSTALLATION. ### TECTONIC PLANNING ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGH WORK OF SPRINT COMMUNICATIONS WORN OF REPERT TAND LUTY KINGHLED WORN OF REPERT TO AND LUTY KINGHLED WORN OF REPERT TO AND LUTY KINGHLED WORN OF REPERT ON THE WORN OF REPERT ON THE PURPOSES OF CONDUCTING THEIR LAWFULY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED. | | SU | JBMITTALS | | |-----|----------|------------------|----| | PRC | JECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | BY | | 0 | 06/18/14 | FOR COMMENT | J | | 1 | 09/22/14 | FOR CONSTRUCTION | MF | | | | 1 | DATE REVIEWED BY SITE NUMBER: CT03XC369 SITE NAME: N. WILTON CITE ADDRESS 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: CABLE DETAILS SHEET NO: CABINET FRONT 9928 MMBTS MODULAR CELL SPECIFICATIONS: HEIGHT: 70" WIDTH: 35" DEPTH: 37.8" WEIGHT: 1090 LBS. (EXIST) MMBTS CABINET (EXIST) ANTENNA DETAILS SCALE: 3/4"=1'-0" FRONT 1900 MHz 4x45W HEIGHT: 25.0" WIDTH: 11.1" DEPTH: WEIGHT: ±60 LBS. SIDE TYPE: 800 MHz 2x50W MODEL #: FD-RRH-2x50-800 HEIGHT: 19.7" 13" WIDTH: DEPTH: 10.8" WEIGHT: ±53 LBS TYPE: 2.5 RRH MODEL #: TD-RRH8x20-25 HEIGHT: 26.1" WIDTH: 18.6" DEPTH: 6.7" WEIGHT: ±70 LBS S-1 ANDREW 60ECv2 SPECIFICATIONS: HEIGHT: 60" WIDTH: 31" DEPTH: 30" WEIGHT: 2430 LBS. (EXIST) BATTERY CABINET ## (PROPOSED) ANTENNA DETAIL SCALE: 3/4"=1'-0" (PROPOSED) RRH DETAIL SCALE: N.T.S. ## TECTONIC **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh,
NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicengineering.com | | SL | JBMITTALS | | |-----|-----------|------------------|----| | PRO | DJECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | BY | | 0 | 06/18/14 | FOR COMMENT | JT | | ſ | 09/22/14 | FOR CONSTRUCTION | MP | REVIEWED BY 9/22/14 TMQ SITE NUMBER: CT03XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: EQUIPMENT DETAILS SHEET NO: S-1 SCALE: 1 1/2"=1'-0" NOTE: LOCATIONS SHOWN FOR INSTALLATION OF NEW EQUIPMENT IN EXISTING CABINET ARE APPROXIMATE.. ACTUAL SPACE AVAILABLE TO BE VERIFIED IN FIELD FRONT ELEVATION (CABINET INTERIOR) ## MMBTS INTERIOR DETAIL SCALE: N.T.S. ### RFS HYBRIFLEX RISER CABLES SCHEDULE | ly
ower) | Hybrid cable MN: HB0S8-M12-050F 12x multi-mode fiber pairs, Top: Outdoor protected connectors, Bottom:LC Connectors, 5/8 cable, 50ft | 50 ft | |-------------------------------|--|--------| | Fiber Only
Existing DC Pov | MN: HB058-M12-075F | 75 ft | | ber
Jg [| MN: HB058-M12-100F | 100 ft | | 표별 | MN:HB058-M12-125F | 125 ft | | Ä | MN:HB058-M12-150F | 150 ft | | | MN:HB058-M12-175F | 175 ft | | | MN:HB058-M12-200F | 200 ft | | 8 AWG Power | Hybrid cable MN: HB114-08U3M12-050F 3x 8 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC Connectors, 11/4 cable, 50ft | 50 ft | |-------------|--|--------| | | MN: HB114-08U3M12-075F | 75 ft | | | MN: HB114-08U3M12-100F | 100 ft | | | MN: HB114-08U3M12-125F | 125 ft | | | MN: HB114-08U3M12-150F | 150 ft | | | MN: HB114-08U3M12-175F | 175 ft | | | MN: HB114-08U3M12-200F | 200 ft | | 6 AWG Power | Hybrid cable MN: HB114-13U3M12-225F 3x 6 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC Connectors, 1 1/4 cable, 225ft | 225 ft | |-------------|--|--------| | 6 AW | MN: HB114-13U3M12-250F | 250 ft | | | MN: HB114-13U3M12-275F | 275 ft | | | MN: HB114-13U3M12-300F | 300 ft | | AWG Power | Hybrid cable MN: HB114-21U3M12-225F 3x 6 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC Connectors, 11/4 cable, 225ft | 325 ft | |-----------|---|--------| | 4 | MN: HB114-21U3M12-350F | 350 ft | | | MN: HB114-21U3M12-375F | 375 ft | #### RFS HYBRIFLEX JUMPER CABLE SCHEDULE | | Hybrid Jumper cable | | |------------|---|-------| | Fiber Only | MN: HBF012-M3-5F1 | 5 ft | | | 5 ft, 3x multi-mode fiber pairs, Outdoor & LC connectors, 1/2 cable | | | | MN: HBF012-M3-10F1 | 10 ft | | | MN: HBF012-M3-15F1 | 15 ft | | | MN: HBF012-M3-20F1 | 20 ft | | | MN: HBF012-M3-25F1 | 25 ft | | | MN: HBF012-M3-30F1 | 30 ft | | 8 AWG Power | Hybrid Jumper cable MN: HBF0S8-08U1M3-5F1 5ft, 1x 8 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 5/8 cable | 5 ft | |-------------|---|-------| | | MN: HBF058-08U1M3-10F1 | 10 ft | | ₹ | MN: HBF058-08U1M3-15F1 | 15 ft | | 8 | MN: HBF058-08U1M3-20F1 | 20 ft | | | MN: HBF058-08U1M3-25F1 | 25 ft | | | MN: HBF058-08U1M3-30F1 | 30 ft | | 6 AWG Power | Hybrid Jumper cable MN: HBF058-13U1M3-5F1 5ft, 1x 6 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 5/8 cable | 5 ft | |-------------|---|-------| | | MN: HBF058-13U1M3-10F1 | 10 ft | | | MN: HBF058-13U1M3-15F1 | 15 ft | | | MN: HBF058-13U1M3-20F1 | 20 ft | | | MN: HBF058-13U1M3-25F1 | 25 ft | | | MN: HBF058-13U1M3-30F1 | 30 ft | | 4 AWG Power | Hybrid Jumper cable MN: HBF078-21U1M3-SF1 5 ft, 1x 4 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 7/8 cable | 5 ft | |-------------|--|-------| | | MN: HBF078-21U1M3-10F1 | 10 ft | | | MN: HBF078-21U1M3-15F1 | 15 ft | | | MN: HBF078-21U1M3-20F1 | 20 ft | | | MN: HBF078-21U1M3-25F1 | 25 ft | | | MN: HBF078-21U1M3-30F1 | 30 ft | | HYBRID CABLE | DC CONDUCTO | OR SIZE GUIDELINE | | |--------------|---------------|-------------------|----------------| | MANUF: | RFS | | | | <u>CABLE</u> | <u>LENGTH</u> | DC CONDUCTOR | CABLE DIAMETER | | FIBER ONLY | VARIES | USE NV HYBRIFLEX | 7/8" | | HYBRIFLEX | <200' | 8 AWG | 1-1/4" | | HYBRIFLEX | 225-300' | 6 AWG | 1-1/4" | | HYBRIFLEX | 325-375' | 4 AWG | 1-1/4" | 6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251** ### TECTONIC **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 | | SU | JBMITTALS | |-----|-----------|------------------| | PRO | DJECT NO: | 7225.CT03XC369 | | NO | DATE | DESCRIPTION | | 0 | 06/18/14 | FOR COMMENT | | 1 | 09/22/14 | FOR CONSTRUCTION | | | | | | | | | | | | A)
(00) | | | | | | | | , | | | | | REVIEWED BY 9/2/14 JMQ CT03XC369 SITE NAME: N. WILTON SITE ADDRESS 128 MATHER STREET WILTON, CT 06897 EQUIPMENT SCHEMATIC DETAILS SHEET NO: S-2 TYPICAL ANTENNA GROUNDING PLAN TYPICAL GROUNDING ONE LINE DIAGRAM SCALE: NTS ■ CADWELD CONNECTION MECHANICAL CONNECTIONCOMPRESSION CONNECTION LEGEND TYPICAL ELECTRICAL & TELCO PLAN SCALE: NTS 6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 ## TECTONIC PLANNING ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567—6656 Fax: (845) 567—8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNIHENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY, AUTHORIZED, REGULATORY AN | | SL | JBMITTALS | | |-----|-----------|------------------|----| | PRO | DJECT NO: | 7225.CT03XC369 | | | NO | DATE | DESCRIPTION | BY | | 0 | 06/18/14 | FOR COMMENT | JT | | Ī | 09/22/14 | FOR CONSTRUCTION | MF | 2 | | | | | | | PATE REVIEWED BY SITE NUMBER: CT03XC369 SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: ELECTRICAL & GROUNDING PLANS SHEET NO: E-1 #### CONNECTION OF CABLE GROUND KIT TO ANTENNA CABLE #### NOTES: DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER. WEATHER PROOFING SHALL BE (TYPE AND PART NUMBER) AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER AND APPROVED BY CONTRACTOR. ## CABLE GROUNDING KIT DETAIL SCALE: N.T.S. ## GROUNDING BAR CONN. DETAIL - 1- COPPER TINNED GROUND BAR, 1/4"X 4"X 20", OR OTHER LENGTH AS REQUIRED, HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION - 2- INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4 OR EQUAL - 3- 5/8" LOCKWASHERS OR EQUAL - 4- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056 OR EQUAL - 5- 5/8-11 X 1" H.H.C.S.BOLTS NOTE: ALL BOLTS, NUTS, WASHERS AND LOCK WASHERS SHALL BE 18-8 STAINLESS STEEL. - * GROUND BARS AT THE BOTTOM OF TOWERS/MONOPOLES SHALL - ATTACH "DO NOT DISCONNECT" LABELS TO GROUND BARS. CAN USE BRASS TAG "DO NOT DISCONNECT" AT EACH HYBRID GROUND POINT OR BACK-A-LITE PLATE LABEL ON GROUND BAR. - CONNECT SEQUENCE- BOLT/WASHER/NO-OX/GROUND BAR/NO-OX/WASHER/LOCK-WASHER/NUT. THIS IS REPEATED FOR EACH LUG CONNECTION POINT. ## ANTENNA GROUND BAR DETAIL SCALE: NIS ## GROUNDING NOTES: - 1. GROUNDING SHALL BE IN ACCORDANCE WITH NEC ARTICLE 250-GROUNDING AND BONDING. - 2. ALL GROUND WIRES SHALL BE #2 AWG UNLESS NOTED OTHERWISE. - 3. ALL GROUNDING WIRES SHALL PROVIDE A STRAIGHT, DOWNWARD PATH TO GROUND WITH GRADUAL BENDS AS REQUIRED. GROUND WIRES SHALL NOT BE LOOPED OR SHARPLY BENT. - 4. EACH EQUIPMENT CABINET SHALL BE CONNECTED TO THE MASTER ISOLATION GROUND BAR (MGB) WITH #2 AWG INSULATED STRANDED COPPER WIRE. EQUIPMENT CABINETS WALL HAVE (2) - 5. PROVIDE DEDICATED #2 AWG COPPER GROUND WIRE FROM EACH ANTENNA MOUNTING PIPE - 6. THE CONTRACTOR SHALL VERIFY THAT THE EXISTING GROUND BARS HAVE ENOUGH SPACE/HOLES FOR ADDITIONAL TWO HOLE LUGS. - 7. ALL CONDUITS SHALL BE RIGID GALVANIZED STEEL AND SHALL BE PROVIDED WITH GROUNDING BUSHINGS. - 8. PROVIDE GROUND CONNECTIONS FOR ALL METALLIC STRUCTURES, ENCLOSURES, RACEWAYS AND OTHER CONDUCTIVE ITEMS ASSOCIATED WITH THE INSTALLATION OF CARRIER'S EQUIPMENT. - 9. WHEN CABLE LENGTH IS OVER 20' THE MANUFACTURERS GROUND KIT MUST BE INSTALLED PER THE MANUFACTURERS SPECIFICATIONS. - 10. REFER TO "ANTI-THEFT UPDATE TO SPRINT GROUNDING 082412.PDF" FOR GUIDELINE TO SUSPECTED OR ACTUAL THEFT OF GROUNDING. - 11. HOME RUN GROUNDS ARE NOT APPROVED BY CROWN CASTLE CONSTRUCTION STANDARDS AND THAT ANTENNA BUSS BARS SHOULD BE INSTALLED DIRECTLY TO TOWER STEEL WITHOUT INSULATORS OR DOWN CONDUCTORS. ### PROTECTIVE GROUNDING SYSTEM GENERAL NOTES: - 1. AT ALL TERMINATIONS AT EQUIPMENT ENCLOSURES, PANEL, AND FRAMES OF EQUIPMENT AND WHERE EXPOSED FOR GROUNDING. CONDUCTOR TERMINATION SHALL BE PERFORMED UTILIZING TWO HOLE BOLTED TONGUE COMPRESSION TYPE LUGS WITH STAINLESS STEEL SELF—TAPPING SCREWS. - 2. ALL CLAMPS AND SUPPORTS USED TO SUPPORT THE GROUNDING SYSTEM CONDUCTORS AND PVC CONDUITS SHALL BE PVC TYPE (NON
CONDUCTIVE). DO NOT USE METAL BRACKETS OR SUPPORTS WHICH WOULD FORM A COMPLETE RING AROUND ANY GROUNDING CONDUCTOR. - 3. ALL GROUNDING CONNECTIONS SHALL BE COATED WITH A COPPER SHIELD ANTI-CORROSIVE AGENT SUCH AS T&B KOPR SHIELD. VERIFY PRODUCT WITH $\,$ PROJECT MANAGER. - 4. ALL BOLTS, WASHERS, AND NUTS USED ON GROUNDING CONNECTIONS SHALL BE STAINLESS STEEL. - 5. INSTALL GROUND BUSHING ON ALL METALLIC CONDUITS AND BOND TO THE EQUIPMENT GROUND BUS IN THE PANEL BOARD. - 6. GROUND ANTENNA BASES, FRAMES, CABLE RACKS, AND OTHER METALLIC COMPONENTS WITH #2 INSULATED TINNED STRANDED COPPER GROUNDING CONDUCTORS AND CONNECT TO INSULATED SURFACE MOUNTED GROUND BARS. CONNECTION DETAILS SHALL FOLLOW MANUFACTURER'S SPECIFICATIONS FOR GROUNDING. - 7. GROUND HYBRID CABLE SHIELD AT BOTH ENDS USING MANUFACTURER'S GUIDELINES. ### ELECTRICAL AND GROUNDING NOTES - ALL ELECTRICAL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE NATIONAL ELECTRICAL CODE (NEC) AS WELL AS APPLICABLE STATE AND LOCAL CODES. - ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED AND PROCURED PER SPECIFICATION REQUIREMENTS. - 3. ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING AND EXPOSED TO WEATHER SHALL BE IN WATER TIGHT GALVANIZED RIGID STEEL CONDUITS OR SCHEDULE 80 PVC (AS PERMITTED BY CODE) AND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE METAL OR NONMETALLIC CONDUITS. - 4. BURIED CONDUIT SHALL BE SCHEDULE 40 PVC. - 5. ELECTRICAL WIRING SHALL BE COPPER WITH TYPE XHHW, THWN, OR THNN INSULATION. - 6. RUN TELCO CONDUIT OR CABLE BETWEEN TELEPHONE UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE TELCO CABINET AND BTS CABINET AS INDICATED ON THIS DRAWING PROVIDE FULL LENGTH PULL ROPE IN INSTALLED TELCO CONDUIT. PROVIDE GREENLEE CONDUIT MEASURING TAPE AT EACH END. - 7. WHERE CONDUIT BETWEEN BTS AND PROJECT OWNER CELL SITE PPC AND BETWEEN BTS AND PROJECT OWNER CELL SITE TELCO SERVICE CABINET ARE UNDERGROUND USE PVC, SCHEDULE 40 CONDUIT. ABOVE THE GROUND PORTION OF THESE CONDUITS SHALL BE PVC CONDUIT. - 8. ALL EQUIPMENT LOCATED OUTSIDE SHALL HAVE NEMA 3R ENCLOSURE. - 9. GROUNDING SHALL COMPLY WITH NEC ART, 250 - GROUND HYBRID CABLE SHIELDS AT 3 LOCATIONS USING MANUFACTURER'S HYBRID CABLE GROUNDING KITS SUPPLIED BY PROJECT OWNER. - 11. USE #2 COPPER STRANDED WIRE WITH GREEN COLOR INSULATION FOR ABOVE GRADE GROUNDING (UNLESS OTHERWISE SPECIFIED) AND #2 SOLID TINNED BARE COPPER WIRE FOR BELOW GRADE GROUNDING AS INDICATED ON THE DRAWING. - 12. ALL GROUND CONNECTIONS TO BE BURNDY HYGROUND COMPRESSION TYPE CONNECTORS OR CADWELD EXOTHERMIC WELD. DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH GALVANIZED STEEL. - 13. ROUTE GROUNDING CONDUCTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, EXCEPT AS OTHERWISE INDICATED. GROUNDING LEADS SHOULD NEVER BE BENT AT RIGHT ANGLE. ALWAYS MAKE AT LEAST 12" RADIUS BENDS. #2 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY. BOND ANY METAL OBJECTS WITHIN 6 FEET OF PROJECT OWNER EQUIPMENT OR CABINET TO MASTER GROUND BAR OR GROLINDING RING - 14. CONNECTIONS TO GROUND BARS SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS. - APPLY OXIDE INHIBITING COMPOUND TO ALL COMPRESSION TYPE GROUND CONNECTIONS. - 16. BOND ANTENNA MOUNTING BRACKETS, HYBRID CABLE GROUND KITS, AND RRHs TO EGB PLACED NEAR THE ANTENNA LOCATION. - 17. BOND ANTENNA EGB'S AND MGB TO GROUND RING. - CONTRACTOR SHALL TEST COMPLETED GROUND SYSTEM AND RECORD RESULT FOR PROJECT CLOSE-OUT DOCUMENTATION. 5 OHMS MINIMUM RESISTANCE REQUIRED. - 19. CONTRACTOR SHALL CONDUCT ANTENNA, HYBRID CABLES, GPS COAX AND RRH RETURN-LOSS AND DISTANCE- TO-FAULT MEASUREMENTS (SWEEP TESTS) AND RECORD RESULTS FOR PROJECT CLOSE OUT. - 20. CONTRACTOR SHALL CHECK CAPACITY OF EXISTING SERVICE & PANEL ON SITE TO DETERMINE IF CAPACITY EXISTS TO ACCOMMODATE THE ADDED LOAD OF THIS PROJECT. ADVISE ENGINEER OF ANY DISCREPANCY. - 21. LOCATION OF ALL OUTLET, BOXES, ETC, AND THE TYPE OF CONNECTION (PLUG OR DIRECT) SHALL BE CONFIRMED WITH THE OWNER'S REPRESENTATIVE PRIOR TO ROUGH-IN - 22. ELECTRICAL CHARACTERISTICS OF ALL EQUIPMENT.(NEW AND EXISTING) SHALL BE FIELD VERIFIED WITH THE OWNERS REPRESENTATIVE AND EQUIPMENT SUPPLIER PRIOR TO ROUGH—IN OF CONDUIT AND WIRE. ALL EQUIPMENT SHALL BE PROPERLY CONNECTED ACCORDING TO THE NAMEPLATE DATA FURNISHED ON THE EQUIPMENT. 6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 TECTONIC ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT **TECTONIC** Engineering & Surveying Consultants P.C. 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicengineering.com THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED. | | SL | JBMITTALS | |-----|-----------|------------------| | PRO | DJECT NO: | 7225.CT03XC369 | | NO | DATE | DESCRIPTION | | 0 | 06/18/14 | FOR COMMENT | | ì | 09/22/14 | FOR CONSTRUCTION | SITE NUMBER: CT03XC369 CIODACO SITE NAME: N. WILTON SITE ADDRESS: 128 MATHER STREET WILTON, CT 06897 SHEET TITLE: GROUNDING DETAILS & NOTES SHEET NO: E-2 Date: June 09, 2014 Patrick Byrum Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277 Paul J Ford and Company 250 E. Broad Street Suite 600 Columbus, OH 43215 614,221,6679 Subject: Structural Analysis Report Carrier Designation: Sprint PCS Co-Locate Carrier Site Number: 2.5 Scenario A CT03XC369 Crown Castle Designation: Crown Castle BU Number: 806353 BRG 124 943066 Crown Castle Site Name: Crown Castle JDE Job Number: 288072 772280 Crown Castle Work Order Number: Crown Castle Application Number: 245864 Rev. 3 Engineering Firm Designation: Paul J Ford and Company Project Number: 37514-0096.002.8700 Site Data: 128 MATHER STREET, WILTON, Fairfield County, CT Latitude 41° 14' 18.34", Longitude -73° 25' 26.44" 180 Foot - Self Support Tower Dear Patrick Byrum, Paul J Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 652820, in accordance with application 245864, revision 3. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC11: Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. **Sufficient Capacity** The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 Connecticut Building Code based upon a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads. We at Paul J Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call. Respectfully submitted by: Structural Designer Date: June 09, 2014 Patrick Byrum Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277 Paul J Ford and Company 250 E. Broad Street Suite 600 Columbus, OH 43215 614.221.6679 Subject: Structural Analysis Report Carrier Designation: Sprint PCS Co-Locate 2.5 Scenario A Carrier Site Number: CT03XC369 Crown Castle Designation: Crown Castle BU Number: 806353 Crown Castle Site Name: BRG 124 943066 **Crown Castle JDE Job Number:** 288072 **Crown Castle Work Order Number:** 772280 **Crown Castle Application Number:** 245864 Rev. 3 **Engineering Firm Designation:** Paul J Ford and Company Project Number: 37514-0096.002.8700 Site Data: 128 MATHER STREET, WILTON, Fairfield County, CT Latitude 41° 14′ 18.34″, Longitude -73° 25′ 26.44″ 180 Foot - Self Support Tower Dear Patrick Byrum, Paul J Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 652820, in accordance with application 245864, revision 3. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC11: Existing + Reserved + Proposed Equipment **Sufficient Capacity** Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 Connecticut Building Code based upon a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads. We at *Paul J Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call. Respectfully submitted by: Charles J. Weir, E.I. Structural Designer ### **TABLE OF CONTENTS** ## 1) INTRODUCTION ## 2) ANALYSIS CRITERIA Table 1 - Proposed Antenna and Cable Information Table 2 - Existing and Reserved Antenna and Cable Information ## 3) ANALYSIS PROCEDURE Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions ### 4) ANALYSIS RESULTS Table 4 - Section Capacity (Summary) Table 5 - Tower Components vs. Capacity 4.1) Recommendations ### 5) APPENDIX A tnxTower Output ### 6) APPENDIX B Base Level Drawing ## 7) APPENDIX C **Additional Calculations** ### 1) INTRODUCTION This tower is a 180 ft Self
Support tower designed by FWT INC. in May of 1988. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-E. ## 2) ANALYSIS CRITERIA The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads. Table 1 - Proposed Antenna and Cable Information | - 1 | Mounting
Level (ft) | F1 | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | |-----|------------------------|----|--------------------------|-------------------------|---------------------------------|----------------------------|---------------------------| | | | 3 | | Alcatel Lucent | TD-RRH8x20-25 | | | | | 143.0 143.0 | | 3 | RFS Celwave | APXVTM14-C-120 w/ Mount
Pipe | 1 | 1-1/4 | Table 2 - Existing and Reserved Antenna and Cable Information | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Michael | | Feed
Line
Size (in) | Note | |------------------------|-------------------------------------|--------------------------|---------------------------|-----------------------------------|----|---------------------------|------| | 178.0 | 184.0 | 1 | RFS Celwave | PD10017 | 2 | 7/8 | 1 | | 177.0 | 183.0 | 12 | Decibel | DB844H90E-XY w/ Mount
Pipe | 12 | 1-1/4 | 3 | | | 177.0 | 1 | - | Sector Mount [SM 307-3] | | | | | | 171.0 | 3 | Kathrein | 800 10504 w/ Mount Pipe | | | | | 170.0 | 170.0 | 3 | Kathrein | 860 10025 | 6 | 1-5/8 | 1 | | | 170.0 | 1 | - | Side Arm Mount [SO 103-3] | | | | | | 163.0 | 3 | Alcatel Lucent | RRH2X40-AWS | | | | | | | 3 | Kathrein | 742 213 w/ Mount Pipe | 7 | 1-5/8 | 2 | | | | 1 | RFS Celwave | DB-T1-6Z-8AB-0Z | | | | | 162.0 | | 6 | RFS Celwave | APL868013-42T0 w/ Mount
Pipe | 6 | 1-5/8 | | | 162.0 | | 3 | RFS Celwave | APX75-866512-CT2 w/
Mount Pipe | | | 1 | | | | 3 | Rymsa Wireless | MG D3-800Tx w/ Mount Pipe | | | ĺ | | | 162.0 | 6 | RFS Celwave | FD9R6004/2C-3L | | | li | | | 162.0 | 1 | - | Sector Mount [SM 602-3] | | | | | | | 6 | Ericsson | RRUS-11 | | | | | | | 6 | Powerwave
Technologies | 7770.00 w/ Mount Pipe | | 5/8
3/8 | | | 154.0 | 158.0 | 6 | Powerwave
Technologies | LGP21401 | 2 | | 1 | | | | 6 | Powerwave
Technologies | LGP21901 | | | | | | | 3 | Powerwave
Technologies | P65-16-XLH-RR w/ Mount
Pipe | | | | | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-------------------------------------|--------------------------|-------------------------|--|----------------------------|---------------------------|----------| | | 154.0 | | Raycap | DC6-48-60-18-8F | | | | | | 134.0 | 1 | - | Sector Mount [SM 602-3] | | | | | | | 3 | Alcatel Lucent | 800 EXTERNAL NOTCH
FILTER | | | | | 146.0 | 146.0 | 3 | Alcatel Lucent | TME-800MHZ 2X50W RRH | - | - | 1 | | | | 3 | Alcatel Lucent | TME-PCS 1900 MHz 4x45W-
65MHz | | | | | | | 9 | RFS Celwave | ACU-A20-N | | | | | 143.0 | 143.0 | 3 | RFS Celwave | APXVSPP18-C-A20 w/
Mount Pipe | 3 | 1-1/4 | 1 | | | | 1 | - | Sector Mount [SM 701-3] | | | | | 124.0 | 131.0 | 2 | RFS Celwave | 1142-2C | 2 | 1/2 | 1 | | 124.0 | 124.0 | 2 | - | Side Arm Mount [SO 306-1] | | | ' | | | 111.0 | 1 | RFS Celwave | 1142-2C | 4 | 7/0 | | | 104.0 | 108.0 | 1 | RFS Celwave | 220-3BN | 1 1 | 7/8
1/2 | 1 | | 104.0 | | 2 | - | Side Arm Mount [SO 306-1] | ' | | | | | | 3 | EMS Wireless | RR90-17-02DP w/ Mount
Pipe | 1 | 5/16 | | | | | 6 | Remec | S20057A1 | 1 | 3/10 | 3 | | | | 1 | - | Side Arm Mount [SO 308-3] | | | | | 93.0 | 93.0 | 3 | Ericsson | ERICSSON AIR 21 B2A B4P w/ Mount Pipe | | | | | | | 3 | Ericsson | ERICSSON AIR 21 B4A B2P
w/ Mount Pipe | 6
1 | 1-1/4
1-5/8 | 2 | | | | 3 | Ericsson | KRY 112 144/1 | | | | | | | 1 | - | Side Arm Mount [SO 101-3] | | | | | | | - | - | - | | 1-1/4 | 1 | | 62.0 | | 1 | GPS | GPS_A | 1 | 1/2 | 1 | | 02.0 | 62.0 | 1 | - | Side Arm Mount [SO 301-1] | ' | 1/2 | | | 42.0 | 44.0 | 1 | GPS | GPS_A | 1 | 1/2 | 1 | | 72.0 | 42.0 | 1 | - | Side Arm Mount [SO 301-1] | ' | 1/2 | | | 31.0 | 32.0 | 1 | GPS | GPS_A | 1 | 1/2 | 1 | | 31.0 | 31.0 | 1 | - | Side Arm Mount [SO 301-1] | ' | 1/2 | <u> </u> | Notes: - 1) Existing Equipment - 2) Reserved Equipment 3) Equipment to be Rem - 3) Equipment to be Removed, Not Considered in this Analysis ## 3) ANALYSIS PROCEDURE **Table 3 - Documents Provided** | Document | Remarks | Reference | Source | |------------------------------|---|-----------|----------| | GEOTECHNICAL REPORTS | FDH, 09-04219E G1 - 4/29/2009 | 262283 | CCISITES | | POST-MODIFICATION INSPECTION | Paul J. Ford, 37509-0801 -
1/11/2010 | 2575710 | CCISITES | | Document | Remarks | Reference | Source | |--|--------------------------------------|-----------|----------| | TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | FWT, 18888-81 - 5/31/1988 | 262285 | CCISITES | | TOWER MANUFACTURER DRAWINGS | FWT, 18888-81 - 5/6/1988 | 217757 | CCISITES | | TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA | Paul J. Ford, 37509-0801 - 12/8/2009 | 2434484 | CCISITES | | TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA | HEB, 98124A - 1/7/2000 | 3290324 | CCISITES | | TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA | APT, CT105271 - 1/17/2003 | 801524 | CCISITES | | FOUNDATION MAPPING | FDH, 09-11077 E N1 - 8/7/2012 | - | - | ### 3.1) Analysis Method tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. ### 3.2) Assumptions - 1) Tower and structures were built in accordance with the manufacturer's specifications. - 2) The tower and structures have been maintained in accordance with the manufacturer's specification. - The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings. - 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F. This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the tower. ## 4) ANALYSIS RESULTS Table 4 - Section Capacity (Summary) | Section
No. | | Component Type | | Critical
Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | |----------------|-----------|----------------|--------------------------------------|---------------------|--------|-------------------|---------------|-------------| | T1 | 180 - 168 | Leg | Pipe 2.375" x 0.154" (2
STD) | 2 | -2.48 | 24.25 | 10.2 | Pass | | T2 | 168 - 160 | Leg | Pipe 2.375" x 0.154" (2
STD) (GR) | 25 | -9.18 | 35.52 | 25.9 | Pass | | Т3 | 160 - 140 | Leg | Pipe 3.5" x 0.216" (3 STD)
(GR) | 40 | 39.58 | 62.38 | 63.4 | Pass | | T4 | 140 - 120 | Leg | Pipe 4" x 0.318" (3.5 XS)
(GR) | 67 | -83.27 | 112.76 | 73.8 | Pass | | T5 | 120 - 100 | Leg | Pipe 4.5" x 0.337" (4 XS)
(GR) | 88 | 98.97 | 123.38 | 80.2 | Pass | | Т6 | 100 - 80 | Leg | Pipe 5.563" x 0.375" (5
XS) (GR) | 109 | 123.19 | 171.09 | 72.0 | Pass | | T7 | 80 - 60 | Leg | Pipe 6.625" x 0.432" (6
XS) (GR) | 130 | 144.23 | 235.28 | 61.3 | Pass | | Т8 | 60 - 40 | Leg | Pipe 6.625" x 0.432" (6
XS) (GR) | 145 | 165.64 | 235.28 | 70.4 | Pass | | Т9 | 40 - 20 | Leg | Pipe 6.625" x 0.432" (6
XS) (GR) | 160 | 185.61 | 235.28 | 78.9 | Pass | | Section
No. | Elevation (ft) | Component Type | Size | Critical Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | |----------------|----------------|-------------------------|-------------------------------------|------------------|--------|---------------------------------|---------------|-------------| | T10 | 20 - 0 | Leg | Pipe 8.625" x 0.500" (8
XS) (GR) | 181 | 205.08 | 357.27 | 57.4 | Pass | | T1 | 180 - 168 | Diagonal | L 2 x 1.5 x 3/16 LLV | 10 | -0.69 | 11.64 | 6.0 | Pass | | T2 | 168 - 160 | Diagonal | L 2 x 1.5 x 3/16 LLV | 28 | -1.95 | 11.64 | 16.8 | Pass | | T3 | 160 - 140 | Diagonal | L 2 x 1.5 x 3/16 LLV | 44 | -4.48 | 8.26 | 54.3 | Pass | | T4 | 140 - 120 | Diagonal | L 2 x 2 x 3/16 | 71 | -4.77 | 7.23 | 65.9 | Pass | | T5 | 120 - 100 | Diagonal | L 2.5 x 2 x 3/16 LLV | 92 | -4.76 | 7.03 | 67.7 | Pass | | T6 | 100 - 80 | Diagonal | L 2.5 x 2.5 x 3/16 | 113 | -5.28 | 7.87 | 67.1 | Pass | | T7 | 80 - 60 | Diagonal | L 3 x 3 x 3/16 | 133 | -6.28 | 8.53 | 73.6 | Pass | | T8 | 60 - 40 | Diagonal | L 3.5 x 3 x 1/4 LLV | 148 | -6.65 | 11.26 | 59.0 | Pass | | Т9 | 40 - 20 | Diagonal | L 3.5 x 3 x 1/4 LLV | 163 | -7.31 | 9.07 | 80.6 | Pass | | T10 | 20 - 0 | Diagonal | L 3.5 x 3.5 x 1/4 | 184 | -7.75 | 10.44 | 74.2 | Pass | | Т9 | 40 - 20 | Secondary
Horizontal | L3 1/2x3 1/2x1/4 | 169 | -3.78 | 15.70 | 24.1 | Pass | | T1 | 180 - 168 | Top Girt | L 2 x 1.5 x 3/16 LLH | 5 | -0.11 | 7.05 | 1.5 | Pass | | | | | | | | | Summary | | | | | | | | | Leg (T5) | 80.2 | Pass | | | | | | | | Diagonal
(T9) | 80.6 | Pass | | | | | | | | Secondary
Horizontal
(T9) | 24.1 | Pass | | | | | | | | Top Girt
(T1) | 1.5 | Pass | | | | | | | | Bolt Checks | 90.2 | Pass | | | | | | | | Rating = | 90.2 | Pass | Table 5 - Tower Component Stresses vs. Capacity - LC11 | Notes | Component | Component Elevation (ft) | | Pass / Fail | |-------|-------------------------------------|--------------------------|------|-------------| | 1 | Anchor Rods | -
| 75.8 | Pass | | 1 | Base Foundation | - | 48.7 | Pass | | 1 | Base Foundation
Soil Interaction | - | 67.5 | Pass | | Structure Rating (max from all components) = | 90.2% | |--|-------| |--|-------| Notes: ¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed. # APPENDIX A TNXTOWER OUTPUT ## **Tower Input Data** The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line. The face width of the tower is 4.00 ft at the top and 20.00 ft at the base. This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply: - Tower is located in Fairfield County, Connecticut. 1) - 2) Basic wind speed of 85 mph. - Nominal ice thickness of 0.75 in. 3) - Ice thickness is considered to increase with height. 4) - 5) Ice density of 56 pcf. - A wind speed of 38 mph is used in combination with ice. 6) - 7) Deflections calculated using a wind speed of 50 mph. - 8) A non-linear (P-delta) analysis was used. - Grouted pipe f'c is 7 ksi. 9) - Pressures are calculated at each section. 10) - Stress ratio used in tower member design is 1.333. 11) ## Options Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals **Use Moment Magnification** - Use Code Stress Ratios - Use Code Safety Factors Guys - Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section - Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area - Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks - Use Azimuth Dish Coefficients - Project Wind Area of Appurt. - Autocalc Torque Arm Areas SR Members Have Cut Ends - Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules - Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation - Consider Feedline Torque - Include Angle Block Shear Check Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Triangular Tower | Tower | Section | Geometry | |-------|---------|----------| |-------|---------|----------| | Tower
Section | Tower
Elevation | Assembly
Database | Description | Section
Width | Number
of | Section
Length | |------------------|--------------------|----------------------|-------------|------------------|--------------|-------------------| | Section | Lievation | Dalabase | | vvidiri | Sections | Lengur | | | ft | | | ft | | ft | | T1 | 180.00-168.00 | | | 4.00 | 1 | 12.00 | | T2 | 168.00-160.00 | | | 4.00 | 1 | 8.00 | | T3 | 160.00-140.00 | | | 4.00 | 1 | 20.00 | | T4 | 140.00-120.00 | | | 6.00 | 1 | 20.00 | | T5 | 120.00-100.00 | | | 8.00 | 1 | 20.00 | | T6 | 100.00-80.00 | | | 10.00 | 1 | 20.00 | | T7 | 80.00-60.00 | | | 12.00 | 1 | 20.00 | | T8 | 60.00-40.00 | | | 14.00 | 1 | 20.00 | | T9 | 40.00-20.00 | | | 16.00 | 1 | 20.00 | | T10 | 20.00-0.00 | | | 18.00 | 1 | 20.00 | ## **Tower Section Geometry** (cont'd) | Tower | Tower | Diagonal | Bracing | Has | Has | Top Girt | Bottom Girt | |---------|---------------|----------|---------|----------------|-------------|----------|-------------| | Section | Elevation | Spacing | Type | K Brace
End | Horizontals | Offset | Offset | | | ft | ft | | Panels | | in | in | | T1 | 180.00-168.00 | 4.00 | X Brace | No | No | 0.00 | 0.00 | | T2 | 168.00-160.00 | 4.00 | X Brace | No | No | 0.00 | 0.00 | | Т3 | 160.00-140.00 | 5.00 | X Brace | No | No | 0.00 | 0.00 | | T4 | 140.00-120.00 | 6.67 | X Brace | No | No | 0.00 | 0.00 | | T5 | 120.00-100.00 | 6.67 | X Brace | No | No | 0.00 | 0.00 | | T6 | 100.00-80.00 | 6.67 | X Brace | No | No | 0.00 | 0.00 | | T7 | 80.00-60.00 | 10.00 | X Brace | No | No | 0.00 | 0.00 | | T8 | 60.00-40.00 | 10.00 | X Brace | No | No | 0.00 | 0.00 | | T9 | 40.00-20.00 | 10.00 | X Brace | No | Yes | 0.00 | 0.00 | | T10 | 20.00-0.00 | 10.00 | X Brace | No | No | 0.00 | 0.00 | ## **Tower Section Geometry** (cont'd) | Tower | Leg | Leg | Leg | Diagonal | Diagonal | Diagonal | |----------------|---------------------|-----------------------------|----------|--------------|----------------------|----------| | Elevation | Type | Size | Grade | Type | Size | Grade | | ft | • • | | | • • | | | | T1 180.00- | Pipe | Pipe 2.375" x 0.154" (2 | A53-B-35 | Single Angle | L 2 x 1.5 x 3/16 LLV | A36 | | 168.00 | | STD) | (35 ksi) | | | (36 ksi) | | T2 168.00- | Grouted Pipe | Pipe 2.375" x 0.154" (2 | A53-B-35 | Single Angle | L 2 x 1.5 x 3/16 LLV | A36 | | 160.00 | | STD) | (35 ksi) | | | (36 ksi) | | T3 160.00- | Grouted Pipe | Pipe 3.5" x 0.216" (3 STD) | A53-B-35 | Single Angle | L 2 x 1.5 x 3/16 LLV | A36 | | 140.00 | | | (35 ksi) | | | (36 ksi) | | T4 140.00- | Grouted Pipe | Pipe 4" x 0.318" (3.5 XS) | A53-B-35 | Single Angle | L 2 x 2 x 3/16 | A36 | | 120.00 | | | (35 ksi) | | | (36 ksi) | | T5 120.00- | Grouted Pipe | Pipe 4.5" x 0.337" (4 XS) | A53-B-35 | Single Angle | L 2.5 x 2 x 3/16 LLV | A36 | | 100.00 | | | (35 ksi) | | | (36 ksi) | | T6 100.00- | Grouted Pipe | Pipe 5.563" x 0.375" (5 XS) | A53-B-35 | Single Angle | L 2.5 x 2.5 x 3/16 | A36 | | 80.00 | | | (35 ksi) | | | (36 ksi) | | T7 80.00-60.00 | Grouted Pipe | Pipe 6.625" x 0.432" (6 XS) | A53-B-35 | Single Angle | L 3 x 3 x 3/16 | A36 | | | | | (35 ksi) | | | (36 ksi) | | T8 60.00-40.00 | Grouted Pipe | Pipe 6.625" x 0.432" (6 XS) | A53-B-35 | Single Angle | L 3.5 x 3 x 1/4 LLV | A36 | | | | | (35 ksi) | | | (36 ksi) | | T9 40.00-20.00 | Grouted Pipe | Pipe 6.625" x 0.432" (6 XS) | A53-B-35 | Single Angle | L 3.5 x 3 x 1/4 LLV | ` A36 ´ | | | · | . , | (35 ksi) | 0 0 | | (36 ksi) | | T10 20.00-0.00 | Grouted Pipe | Pipe 8.625" x 0.500" (8 XS) | A53-B-35 | Single Angle | L 3.5 x 3.5 x 1/4 | ` A36 ´ | | | · | . , | (35 ksi) | 5 0 | | (36 ksi) | ## Tower Section Geometry (cont'd) | Tower
Elevation
ft | Top Girt
Type | Top Girt
Size | Top Girt
Grade | Bottom Girt
Type | Bottom Girt
Size | Bottom Girt
Grade | |--------------------------|------------------|----------------------|-------------------|---------------------|---------------------|----------------------| | T1 180.00- | Single Angle | L 2 x 1.5 x 3/16 LLH | A36 | Single Angle | | A36 | | Tower
Elevation
ft | Top Girt
Type | Top Girt
Size | Top Girt
Grade | Bottom Girt
Type | Bottom Girt
Size | Bottom Girt
Grade | |--------------------------|------------------|------------------|-------------------|---------------------|---------------------|----------------------| | 168.00 | | | (36 ksi) | | | (36 ksi) | ## **Tower Section Geometry** (cont'd) | Tower
Elevation | Secondary
Horizontal Type | Secondary Horizontal
Size | Secondary
Horizontal
Grade | Inner Bracing
Type | Inner Bracing Size | Inner Bracing
Grade | |--------------------|------------------------------|------------------------------|----------------------------------|-----------------------|--------------------|------------------------| | T9 40.00-20.00 | Single Angle | L3 1/2x3 1/2x1/4 | A36
(36 ksi) | Single Angle | | A36
(36 ksi) | ## **Tower Section Geometry** (cont'd) | Tower | Gusset | Gusset | Gusset Grade | Adjust. Factor | Adjust. | Weight Mult. | Double Angle | Double Angle | |----------------------|--------------------|-----------|--------------------------------|----------------|--------------------------|--------------|-------------------------------------|---------------------------------------| | Elevation | Area
(per face) | Thickness | | A_f | Factor
A _r | Ç | Stitch Bolt
Spacing
Diagonals | Stitch Bolt
Spacing
Horizontals | | ft | ft ² | in | | | | | in | in | | T1 180.00-
168.00 | 0.00 | 0.38 | A36
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T2 168.00-
160.00 | 0.00 | 0.38 | `A36 [´]
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T3 160.00-
140.00 | 0.00 | 0.38 | `A36 [´]
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T4 140.00-
120.00 | 0.00 | 0.38 | ` A36 [′]
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T5 120.00-
100.00 | 0.00 | 0.38 | A36
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T6 100.00-
80.00 | 0.00 | 0.38 | `A36 [′]
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T7 80.00-
60.00 | 0.00 | 0.38 | ` A36 [′]
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T8 60.00-
40.00 | 0.00 | 0.38 | A36
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T9 40.00-
20.00 | 0.00 | 0.38 | A36
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | | T10 20.00-
0.00 | 0.00 | 0.38 | A36
(36 ksi) | 1 | 1 | 1 | 0.00 | 0.00 | ## **Tower Section Geometry** (cont'd) | | | | | | | K Fad | ctors ¹ | | | | |----------------------|---------------------|--------------------|------|---------------------|---------------------|-----------------|--------------------|--------|----------------|----------------| | Tower
Elevation | Calc
K
Single | Calc
K
Solid | Legs | X
Brace
Diags | K
Brace
Diags | Single
Diags | Girts | Horiz. | Sec.
Horiz. | Inner
Brace | | ft | Angles | Rounds | | X | X | X
Y | X
Y | X
Y | X
Y | X
Y | | T1 180.00-
168.00 | Yes | No | 1 | 1
1 | 1 | 1 | 1 | 1 | 1
1 | 1 | | T2 168.00-
160.00 | Yes | No | 1 | 1
1 | T3 160.00-
140.00 | Yes | No | 1 | 1
1 | T4 140.00-
120.00 | Yes | No | 1 | 1
1 | T5 120.00-
100.00 | Yes | No | 1 | 1
1 | T6 100.00-
80.00 | Yes | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T7 80.00-
60.00 | Yes | No | 1 | 1
1 | T8
60.00-
40.00 | Yes | No | 1 | 1
1 | i
1
1 | 1 | 1 | 1
1 | 1
1 | 1
1 | | T9 40.00- | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 0.5 | 1 | | | K Factors ¹ | | | | | | | | | | | |--------------------|------------------------|--------------------|------|---------------------|---------------------|-----------------|--------|--------|----------------|----------------|--| | Tower
Elevation | Calc
K
Single | Calc
K
Solid | Legs | X
Brace
Diags | K
Brace
Diags | Single
Diags | Girts | Horiz. | Sec.
Horiz. | Inner
Brace | | | ft | Angles | Rounds | | X | X | X
Y | X
Y | X
Y | X
Y | X
Y | | | 20.00 | | | | 1 | 1 | 1 | 1 | 1 | 0.5 | 1 | | | T10 20.00- | Yes | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 0.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length. ## **Tower Section Geometry** (cont'd) | Tower
Elevation
ft | Leg | | Diago | nal | Тор G | irt | Bottor | n Girt | Mid | Girt | Long Ho | rizontal | Short Ho | orizontal | |--------------------------|---------------------------|---|------------------------------|------|---------------------------|------|------------------------------|--------|------------------------------|------|------------------------------|----------|------------------------------|-----------| | | Net Width
Deduct
in | U | Net
Width
Deduct
in | U | Net Width
Deduct
in | U | Net
Width
Deduct
in | U | Net
Width
Deduct
in | U | Net
Width
Deduct
in | U | Net
Width
Deduct
in | U | | T1 180.00-
168.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T2 168.00-
160.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T3 160.00-
140.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T4 140.00-
120.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T5 120.00-
100.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T6 100.00-
80.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T7 80.00-
60.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T8 60.00-
40.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T9 40.00-
20.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T10 20.00-
0.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | ## **Tower Section Geometry** (cont'd) | Tower | | | | Connection | on Offset | s | | | |----------------------|--------------|---------------|---------------|----------------|--------------|---------------|---------------|----------------| | Elevation | | Diag | onal | | | K-Br | acing | | | | Vert.
Top | Horiz.
Top | Vert.
Bot. | Horiz.
Bot. | Vert.
Top | Horiz.
Top | Vert.
Bot. | Horiz.
Bot. | | ft | in | T1 180.00-
168.00 | 4.50 | 4.19 | 4.50 | 4.19 | 0.00 | 0.00 | 0.00 | 0.00 | | T2 168.00-
160.00 | 4.50 | 4.19 | 4.50 | 4.19 | 0.00 | 0.00 | 0.00 | 0.00 | | T3 160.00-
140.00 | 4.60 | 4.75 | 4.60 | 4.75 | 0.00 | 0.00 | 0.00 | 0.00 | | T4 140.00-
120.00 | 4.50 | 5.00 | 4.00 | 5.00 | 0.00 | 0.00 | 0.00 | 0.00 | | T5 120.00-
100.00 | 3.50 | 5.25 | 3.50 | 5.25 | 0.00 | 0.00 | 0.00 | 0.00 | | T6 100.00-
80.00 | 2.50 | 5.78 | 2.50 | 5.78 | 0.00 | 0.00 | 0.00 | 0.00 | | T7 80.00-
60.00 | 4.00 | 6.31 | 4.00 | 6.31 | 0.00 | 0.00 | 0.00 | 0.00 | | T8 60.00-
40.00 | 4.00 | 6.31 | 4.00 | 6.31 | 0.00 | 0.00 | 0.00 | 0.00 | | T9 40.00-
20.00 | 3.90 | 6.31 | 3.90 | 6.31 | 0.00 | 0.00 | 0.00 | 0.00 | | Tower | | Connection Offsets | | | | | | | | | | | | |--------------------|-------|--------------------|-------|--------|-------|--------|-------|--------|--|--|--|--|--| | Elevation | | Diag | gonal | | | K-Br | acing | | | | | | | | | Vert. | Horiz. | Vert. | Horiz. | Vert. | Horiz. | Vert. | Horiz. | | | | | | | | Тор | Тор | Bot. | Bot. | Тор | Тор | Bot. | Bot. | | | | | | | ft | in | | | | | | T10 20.00-
0.00 | 4.00 | 7.31 | 4.00 | 7.31 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | ## **Tower Section Geometry** (cont'd) | Tower
Elevation | Leg
Connection | Leg | | Diagonal Top | | Top G | irt | Bottom | Girt | Mid Gi | irt | Long Horiz | zontal | Shor
Horizor | | |--------------------|-------------------|-----------|-----|--------------|-----|-----------|-----|-----------|------|-----------|-----|------------|--------|-----------------|-----| | ft | Type | Bolt Size | No. | | | in | T1 180.00- | Flange | 0.00 | 0 | 0.63 | 1 | 0.63 | 1 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 168.00 | · · | A325N | | T2 168.00- | Flange | 0.63 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 160.00 | _ | A325N | | T3 160.00- | Flange | 0.63 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 140.00 | | A325N | T4 140.00- | Flange | 0.75 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 120.00 | | A325N | T5 120.00- | Flange | 0.88 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 100.00 | | A325N | T6 100.00- | Flange | 0.88 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 80.00 | | A490N | | A325N | | | T7 80.00- | Flange | 1.00 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 60.00 | | A325N | T8 60.00- | Flange | 1.13 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 40.00 | | A325N | T9 40.00- | Flange | 1.13 | 4 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.50 | 1 | | 20.00 | | A325N | T10 20.00- | Flange | 1.50 | 6 | 0.63 | 1 | 0.00 | 0 | 0.00 | 0 | 0.63 | 0 | 0.00 | 0 | 0.00 | 0 | | 0.00 | | F1554-36 | | A325N | | ## **Grouted Pipe Properties** | Size | F _y
ksi | A _s
in² | A _c
in² | Wt
plf | E _c
ksi | E _m
ksi | F _{ym}
ksi | |---|-----------------------|-----------------------|-----------------------|-----------|-----------------------|-----------------------|------------------------| | Pipe 2.375" x
0.154" (2 STD)
(GR) | 35 | 1.07 | 3.36 | 10.65 | 4769 | 40914 | 54 | | Pipe 3.5" x 0.216"
(3 STD) (GR) | 35 | 2.23 | 7.39 | 22.98 | 4769 | 41656 | 55 | | Pipe 4" x 0.318"
(3.5 XS) (GR) | 35 | 3.68 | 8.89 | 31.03 | 4769 | 38218 | 49 | | Pipe 4.5" x 0.337"
(4 XS) (GR) | 35 | 4.41 | 11.50 | 38.95 | 4769 | 38952 | 51 | | Pipe 5.563" x
0.375" (5 XS)
(GR) | 35 | 6.11 | 18.19 | 58.70 | 4769 | 40357 | 53 | | Pipe 6.625" x
0.432" (6 XS) (GR) | 35 | 8.40 | 26.07 | 82.91 | 4769 | 40832 | 53 | | Pipe 8.625" x
0.500" (8 XS) (GR) | 35 | 12.76 | 45.66 | 138.56 | 4769 | 42650 | 56 | ## Feed Line/Linear Appurtenances - Entered As Round Or Flat | Description | | Allow
Shield | Component
Type | Placement
ft | Face
Offset
in | Lateral
Offset
(Frac FW) | # | #
Per
Row | Clear
Spacing
in | Width or
Diameter
in | Perimete
r | Weight
plf | |------------------------------|---|-----------------|-------------------|-----------------|----------------------|--------------------------------|---|-----------------|------------------------|----------------------------|---------------|---------------| | 2" flat Cable
Ladder Rail | С | Yes | Af (CfAe) | 180.00 - 5.00 | 0.00 | 0 | 2 | 2 | 2.00 | 2.00 | 7.00 | 2.12 | | Description | Face
or | Allow
Shield | Component
Type | Placement | Face
Offset | Lateral
Offset | # | #
Per | Clear
Spacing | | Perimete
r | Weight | |--|------------|-----------------|-------------------|----------------|----------------|-------------------|----|----------|----------------------|------|---------------|--------| | | Leg | | | ft | in | (Frac FW) | | Row | in | in | in | plf | | 5/8" ladder
rung (12"
long 12" oc) | С | Yes | Ar (CfAe) | 180.00 - 5.00 | 0.00 | 0 | 1 | 1 | 0.63 | 0.63 | | 1.04 | | Safety Line 3/8 | С | Yes | Ar (CfAe) | 180.00 - 5.00 | 3.00 | 0 | 1 | 1 | 0.38 | 0.38 | | 0.22 | | 1.5" flat
Cable Ladder
Rail | Α | Yes | Af (CfAe) | 180.00 - 5.00 | 0.00 | 0 | 2 | 2 | 48.00
1.50 | 1.50 | 6.00 | 1.80 | | FSJ4-
50B(1/2'') | Α | Yes | Ar (CfAe) | 42.00 - 5.00 | 0.00 | -0.1 | 4 | 4 | 0.52 | 0.52 | | 0.14 | | LDF4-
50A(1/2") | Α | Yes | Ar (CfAe) | 62.00 - 42.00 | 0.00 | -0.1 | 3 | 3 | 0.63 | 0.63 | | 0.15 | | LDF4- ´ | Α | Yes | Ar (CfAe) | 124.00 - 62.00 | 0.00 | -0.1 | 2 | 2 | 0.63 | 0.63 | | 0.15 | | 50A(1/2")
HB114-1-
0813U4- | Α | Yes | Ar (CfAe) | 143.00 - 5.00 | 0.00 | -0.075 | 4 | 4 | 1.50
0.50 | 1.54 | | 1.20 | | M5J(1 1/4")
LDF5- | Α | Yes | Ar (CfAe) | 178.00 - 5.00 | 0.00 | -0.05 | 2 | 1 | 1.09 | 1.09 | | 0.33 | | 50A(7/8'')
561(1-5/8'') | Α | Yes | Ar (CfAe) | 162.00 - 5.00 | 0.00 | 0 | 6 | 2 | 1.00 | 1.63 | | 1.35 | | HB158-1-
08U8-S8J18(
1-5/8) | Α | Yes | Ar (CfAe) | 162.00 - 5.00 | 0.00 | 0.075 | 7 | 4 | 0.50
1.00
0.50 | 1.98 | | 1.30 | | 1.5" flat
Cable Ladder | В | Yes | Af (CfAe) | 54.00 - 5.00 | 0.00 | 0.12 | 2 | 2 | 36.00
1.50 | 1.50 | 6.00 | 1.80 | | Rail
1.5" flat
Cable Ladder | В | Yes | Af (CfAe) | 93.00 - 5.00 | 0.00 | 0.38 | 2 | 2 | 36.00
1.50 | 1.50 | 6.00 | 1.80 | | Rail
LDF6-50A(1- | В | Yes | Ar (CfAe) | 93.00 - 5.00 | 0.00 | 0.15 | 12 | 6 | 1.55
0.50 | 1.55 | | 0.66 | | 1/4") MLE Hybrid 9Power/18Fi ber RL 2(1 | В | Yes | Ar (CfAe) | 93.00 - 0.00 | 0.00 | 0.1 | 1 | 1 | 1.63 | 1.63 | | 1.07 | | 5/8)
LCF158-
50JA-A0(1
5/8") | В | Yes | Ar
(CfAe) | 154.00 - 5.00 | 0.00 | 0.35 | 12 | 6 | 1.00
0.50 | 1.98 | | 0.08 | | 5/6)
LDF4-
50A(1/2'') | В | Yes | Ar (CfAe) | 104.00 - 5.00 | 0.00 | 0.4 | 1 | 1 | 0.63 | 0.63 | | 0.15 | | LDF5-
50A(7/8") | В | Yes | Ar (CfAe) | 104.00 - 5.00 | 0.00 | 0.41 | 1 | 1 | 1.09 | 1.09 | | 0.33 | | 2" Conduit (1
1/2" EMT) | В | Yes | Ar (CfAe) | 104.00 - 5.00 | 0.00 | 0.43 | 1 | 1 | 1.74 | 1.74 | | 1.16 | | FB-L98B-
002-75000(| В | Yes | Ar (CaAa) | 154.00 - 5.00 | 0.00 | 0.43 | 1 | 1 | 0.39 | 0.39 | | 0.06 | | 3/8")
WR-
VG82ST-
BRDA(5/8") | В | Yes | Ar (CaAa) | 154.00 - 5.00 | 0.00 | 0.43 | 2 | 2 | 0.65 | 0.65 | | 0.31 | | 1.5" flat
Cable Ladder
Rail | С | Yes | Af (CfAe) | 180.00 - 5.00 | -1.00 | -0.35 | 4 | 2 | 36.00
1.50 | 1.50 | 6.00 | 1.80 | | CR 50
1873PE(1- | С | Yes | Ar (CfAe) | 170.00 - 5.00 | 0.00 | -0.35 | 6 | 4 | 1.00
0.50 | 1.98 | | 0.83 | | 5/8")
LDF4-
50A(1/2")
*** | С | Yes | Ar (CfAe) | 31.00 - 5.00 | -1.00 | -0.32 | 1 | 1 | 0.63 | 0.63 | | 0.15 | ## Feed Line/Linear Appurtenances Section Areas | Tower | Tower | Face | A_R | A_F | $C_A A_A$ | C_AA_A | Weigh | |--------|---------------|------|-----------------|-----------------|-----------------|-----------------|-------| | Sectio | Elevation | | _ | | In Face | Out Face | | | n | ft | | ft ² | ft ² | f t² | f t² | K | | T1 | 180.00-168.00 | Α | 0.908 | 3.000 | 0.000 | 0.000 | 0.05 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | | | С | 2.320 | 7.000 | 0.000 | 0.000 | 0.16 | | T2 | 168.00-160.00 | Α | 2.588 | 2.000 | 0.000 | 0.000 | 0.07 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | | | С | 5.947 | 4.667 | 0.000 | 0.000 | 0.14 | | T3 | 160.00-140.00 | Α | 21.973 | 5.000 | 0.000 | 0.000 | 0.44 | | | | В | 13.860 | 0.000 | 2.357 | 0.000 | 0.02 | | | | С | 14.867 | 11.667 | 0.000 | 0.000 | 0.35 | | T4 | 140.00-120.00 | Α | 31.120 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 19.800 | 0.000 | 3.367 | 0.000 | 0.03 | | | | С | 14.867 | 11.667 | 0.000 | 0.000 | 0.35 | | T5 | 120.00-100.00 | Α | 32.800 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 20.953 | 0.000 | 3.367 | 0.000 | 0.04 | | | | С | 14.867 | 11.667 | 0.000 | 0.000 | 0.35 | | T6 | 100.00-80.00 | Α | 32.800 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 37.402 | 3.250 | 3.367 | 0.000 | 0.23 | | | | С | 14.867 | 11.667 | 0.000 | 0.000 | 0.35 | | T7 | 80.00-60.00 | Α | 32.905 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 43.775 | 5.000 | 3.367 | 0.000 | 0.32 | | | | С | 14.867 | 11.667 | 0.000 | 0.000 | 0.35 | | T8 | 60.00-40.00 | Α | 33.882 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 43.775 | 8.500 | 3.367 | 0.000 | 0.37 | | | | С | 14.867 | 11.667 | 0.000 | 0.000 | 0.35 | | T9 | 40.00-20.00 | Α | 34.167 | 5.000 | 0.000 | 0.000 | 0.54 | | | | В | 43.775 | 10.000 | 3.367 | 0.000 | 0.39 | | | | С | 15.444 | 11.667 | 0.000 | 0.000 | 0.36 | | T10 | 20.00-0.00 | Α | 25.625 | 3.750 | 0.000 | 0.000 | 0.40 | | | | В | 33.508 | 7.500 | 2.526 | 0.000 | 0.30 | | | | С | 11.938 | 8.750 | 0.000 | 0.000 | 0.27 | ## Feed Line/Linear Appurtenances Section Areas - With Ice | Tower | Tower | Face | Ice | A_R | A_F | C_AA_A | C_AA_A | Weight | |--------|---------------|------|-----------|-----------------|-----------------|-----------------|-----------------|--------| | Sectio | Elevation | or | Thickness | | | In Face | Out Face | _ | | n | ft | Leg | in | ft ² | ft ² | ft ² | ft ² | K | | T1 | 180.00-168.00 | Α | 0.916 | 2.434 | 5.442 | 0.000 | 0.000 | 0.18 | | | | В | | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | | | С | | 5.298 | 13.373 | 0.000 | 0.000 | 0.48 | | T2 | 168.00-160.00 | Α | 0.909 | 3.146 | 5.544 | 0.000 | 0.000 | 0.22 | | | | В | | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | | | С | | 5.623 | 13.859 | 0.000 | 0.000 | 0.46 | | T3 | 160.00-140.00 | Α | 0.899 | 17.654 | 30.552 | 0.000 | 0.000 | 1.29 | | | | В | | 4.409 | 17.383 | 9.501 | 0.000 | 0.50 | | | | С | | 13.961 | 34.562 | 0.000 | 0.000 | 1.14 | | T4 | 140.00-120.00 | Α | 0.884 | 22.979 | 43.824 | 0.000 | 0.000 | 1.58 | | | | В | | 6.247 | 24.833 | 13.450 | 0.000 | 0.71 | | | | С | | 13.808 | 34.426 | 0.000 | 0.000 | 1.13 | | T5 | 120.00-100.00 | Α | 0.867 | 25.885 | 45.426 | 0.000 | 0.000 | 1.61 | | | | В | | 9.075 | 24.833 | 13.310 | 0.000 | 0.73 | | | | С | | 13.632 | 34.270 | 0.000 | 0.000 | 1.11 | | T6 | 100.00-80.00 | Α | 0.846 | 25.541 | 45.335 | 0.000 | 0.000 | 1.58 | | | | В | | 27.452 | 47.319 | 13.145 | 0.000 | 1.50 | | | | С | | 13.426 | 34.086 | 0.000 | 0.000 | 1.09 | | T7 | 80.00-60.00 | Α | 0.821 | 25.122 | 45.433 | 0.000 | 0.000 | 1.56 | | | | В | | 30.775 | 59.315 | 12.944 | 0.000 | 1.81 | | | | С | | 13.175 | 33.863 | 0.000 | 0.000 | 1.07 | | T8 | 60.00-40.00 | Α | 0.788 | 24.562 | 47.279 | 0.000 | 0.000 | 1.55 | | | | В | | 30.125 | 65.123 | 12.684 | 0.000 | 1.90 | | | | С | | 12.850 | 33.574 | 0.000 | 0.000 | 1.04 | | T9 | 40.00-20.00 | Α | 0.750 | 23.758 | 48.008 | 0.000 | 0.000 | 1.51 | | | | В | | 54.775 | 41.500 | 12.377 | 0.000 | 1.86 | | | | С | | 14.419 | 33.233 | 0.000 | 0.000 | 1.02 | | T10 | 20.00-0.00 | Α | 0.750 | 17.819 | 36.006 | 0.000 | 0.000 | 1.13 | | Tower | Tower | Face | Ice | A_R | A_F | $C_A A_A$ | $C_A A_A$ | Weight | |--------|-----------|------|-----------|-----------------|-----------------|-----------------|-----------------|--------| | Sectio | Elevation | or | Thickness | | | In Face | Out Face | | | n | ft | Leg | in | ft ² | ft ² | ft ² | ft ² | K | | | | В | | 42.383 | 31.125 | 9.283 | 0.000 | 1.41 | | | | С | | 12.012 | 24.925 | 0.000 | 0.000 | 0.77 | ## Feed Line Shielding | Section | Elevation | Face | A_R | A_R | A_F | A_F | |---------|---------------|--------|-----------------|-----------------|-----------------|-----------------| | | | | | Ice | | Ice | | | ft | | ft ² | ft ² | ft ² | ft ² | | T1 | 180.00-168.00 | Α | 0.000 | 1.097 | 0.501 | 1.167 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | | | | С | 0.000 | 2.547 | 1.195 | 2.708 | | T2 | 168.00-160.00 | Α | 0.000 | 1.018 | 0.541 | 1.119 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | | | | С | 0.000 | 2.261 | 1.251 | 2.486 | | T3 | 160.00-140.00 | Α | 0.000 | 4.290 | 2.563 | 4.770 | | | | В | 0.000 | 2.453 | 1.504 | 2.727 | | | | С | 0.000 | 4.488 | 2.521 | 4.990 | | T4 | 140.00-120.00 | Α | 0.000 | 4.213 | 2.503 | 4.765 | | | | В | 0.000 | 2.503 | 1.566 | 2.831 | | | | С | 0.000 | 3.195 | 1.838 | 3.614 | | T5 | 120.00-100.00 | Α | 0.000 | 3.956 | 2.945 | 5.706 | | | | В | 0.000 | 2.353 | 1.851 | 3.394 | | | | С | 0.000 | 2.795 | 2.067 | 4.032 | | T6 | 100.00-80.00 | Α | 0.000 | 3.602 | 2.765 | 5.322 | | | | B
C | 0.000 | 4.233 | 3.179 | 6.255 | | | | С | 0.000 | 2.538 | 1.941 | 3.750 | | T7 | 80.00-60.00 | Α | 0.000 | 2.500 | 2.393 | 4.569 | | | | В | 0.000 | 3.498 | 3.256 | 6.392 | | | | С | 0.000 | 1.751 | 1.675 | 3.199 | | T8 | 60.00-40.00 | Α | 0.000 | 2.325 | 2.727 | 5.162 | | | | В | 0.000 | 3.392 | 3.863 | 7.530 | | | | С | 0.000 | 1.577 | 1.861 | 3.502 | | T9 | 40.00-20.00 | Α | 0.000 | 3.048 | 3.794 | 7.113 | | | | В | 0.000 | 4.504 | 5.481 | 10.50 | | | | С | 0.000 | 2.117 | 2.626 | 4.939 | | T10 | 20.00-0.00 | Α | 0.000 | 1.556 | 1.937 | 3.631 | | | | В | 0.000 | 2.336 | 2.843 | 5.451 | | | | С | 0.000 | 1.114 | 1.364 | 2.600 | ## **Feed Line Center of Pressure** | Section | Elevation | CP _X | CPz | CP _X | CPz | |---------|---------------|-----------------|------|-----------------|------| | | | | | Ice | Ice | | | ft | in | in | in | in | | T1 | 180.00-168.00 | 0.45 | 2.30 | 0.07 | 2.02 | | T2 | 168.00-160.00 | 1.71 | 3.38 | 0.75 | 2.57 | | T3 | 160.00-140.00 | 2.97 | 2.46 | 2.12 | 2.24 | | T4 | 140.00-120.00 | 3.62 | 3.05 | 2.65 | 2.80 | | T5 | 120.00-100.00 | 4.18 | 3.59 | 3.45 | 3.46 | | T6 | 100.00-80.00 | 8.71 | 4.41 | 8.16 | 4.50 | | T7 | 80.00-60.00 | 11.17 | 4.90 | 10.88 | 5.18 | | T8 | 60.00-40.00 | 12.48 | 5.12 | 12.33 | 5.47 | | T9 | 40.00-20.00 | 12.41 | 5.02 | 13.11 | 5.42 | | T10 | 20.00-0.00 | 12.17 | 4.87 | 13.68 | 5.64 | | | | | Disc | rete Tov | ver Loa | ds | | | | |-------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|---|--|--|--------------------------------------| | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | | | | | ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | PD10017 | Α | From Leg | 0.50
0
6 | 0.000 | 178.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 4.11
5.64
7.19
10.32
14.45 | 4.11
5.64
7.19
10.32
14.45 | 0.03
0.06
0.09
0.20
0.54 | | *** | | | | | | | | | | | ***
800 10504 w/ Mount Pipe | Α | From Leg | 2.00
0
1 | 0.000 | 170.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 3.59
4.01
4.42
5.34
7.38 | 3.18
3.91
4.58
5.98
8.98 | 0.04
0.07
0.11
0.21
0.51 | | 800 10504 w/ Mount Pipe | В | From Leg | 2.00
0
1 | 0.000 | 170.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 3.59
4.01
4.42
5.34
7.38 | 3.18
3.91
4.58
5.98
8.98 | 0.04
0.07
0.11
0.21
0.51 | | 800 10504 w/ Mount Pipe | С | From Leg | 2.00
0
1 | 0.000 | 170.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 3.59
4.01
4.42
5.34
7.38 | 3.18
3.91
4.58
5.98
8.98 | 0.04
0.07
0.11
0.21
0.51 | | 860 10025 | Α | From Leg | 2.00
0
0 | 0.000 | 170.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 0.16
0.23
0.30
0.48
0.93 | 0.14
0.20
0.27
0.44
0.88 | 0.00
0.00
0.01
0.01
0.05 | | 860 10025 | В | From Leg | 2.00
0
0 | 0.000 | 170.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 0.16
0.23
0.30
0.48
0.93 |
0.14
0.20
0.27
0.44
0.88 | 0.00
0.00
0.01
0.01
0.05 | | 860 10025 | С | From Leg | 2.00
0
0 | 0.000 | 170.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 0.16
0.23
0.30
0.48
0.93 | 0.14
0.20
0.27
0.44
0.88 | 0.00
0.00
0.01
0.01
0.05 | | Side Arm Mount [SO 103-3] | A | None | | 0.000 | 170.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 9.50
11.80
14.10
18.70
27.90 | 9.50
11.80
14.10
18.70
27.90 | 0.22
0.32
0.41
0.60
0.97 | | (2) APL868013-42T0 w/
Mount Pipe | Α | From Leg | 4.00
0
1 | 0.000 | 162.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 2.87
3.18
3.52
4.27
5.88 | 3.73
4.10
4.48
5.25
6.91 | 0.02
0.05
0.07
0.15
0.35 | | (2) APL868013-42T0 w/
Mount Pipe | В | From Leg | 4.00
0
1 | 0.000 | 162.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 2.87
3.18
3.52
4.27
5.88 | 3.73
4.10
4.48
5.25
6.91 | 0.02
0.05
0.07
0.15
0.35 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |-------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|--|---------------------------------------|--------------------------------------| | | | | Vert
ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | (2) APL868013-42T0 w/
Mount Pipe | С | From Leg | 4.00 | 0.000 | 162.00 | 4" Ice
No Ice
1/2" | 2.87
3.18 | 3.73
4.10 | 0.02
0.05 | | | | | 1 | | | lce
1" lce
2" lce | 3.52
4.27
5.88 | 4.48
5.25
6.91 | 0.07
0.15
0.35 | | APX75-866512-CT2 w/
Mount Pipe | Α | From Leg | 4.00
0
1 | 0.000 | 162.00 | 4" Ice
No Ice
1/2"
Ice | 6.43
6.92
7.41 | 3.89
4.59
5.25 | 0.04
0.09
0.14 | | APX75-866512-CT2 w/ | В | Erom Log | 4.00 | 0.000 | 162.00 | 1" Ice
2" Ice
4" Ice
No Ice | 8.43
10.58
6.43 | 6.63
9.77
3.89 | 0.27
0.64
0.04 | | Mount Pipe | Ь | From Leg | 0
1 | 0.000 | 102.00 | 1/2"
Ice
1" Ice | 6.92
7.41
8.43 | 4.59
5.25
6.63 | 0.09
0.14
0.27 | | APX75-866512-CT2 w/
Mount Pipe | С | From Leg | 4.00
0 | 0.000 | 162.00 | 2" Ice
4" Ice
No Ice
1/2" | 10.58
6.43
6.92 | 9.77
3.89
4.59 | 0.64
0.04
0.09 | | Mount 1 ipe | | | 1 | | | lce
1" lce
2" lce
4" lce | 7.41
8.43
10.58 | 5.25
6.63
9.77 | 0.14
0.27
0.64 | | MG D3-800Tx w/ Mount
Pipe | Α | From Leg | 4.00
0
1 | 0.000 | 162.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 3.57
3.98
4.39
5.33
7.34 | 3.42
4.12
4.78
6.16
9.18 | 0.03
0.07
0.11
0.21
0.52 | | MG D3-800Tx w/ Mount
Pipe | В | From Leg | 4.00
0
1 | 0.000 | 162.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 3.57
3.98
4.39
5.33
7.34 | 3.42
4.12
4.78
6.16
9.18 | 0.03
0.07
0.11
0.21
0.52 | | MG D3-800Tx w/ Mount
Pipe | С | From Leg | 4.00
0
1 | 0.000 | 162.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.57
3.98
4.39
5.33
7.34 | 3.42
4.12
4.78
6.16
9.18 | 0.03
0.07
0.11
0.21
0.52 | | (2) FD9R6004/2C-3L | Α | From Leg | 4.00
0
0 | 0.000 | 162.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.37
0.45
0.54
0.75
1.28 | 0.08
0.14
0.20
0.34
0.74 | 0.00
0.01
0.01
0.02
0.06 | | (2) FD9R6004/2C-3L | В | From Leg | 4.00
0
0 | 0.000 | 162.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.37
0.45
0.54
0.75
1.28 | 0.08
0.14
0.20
0.34
0.74 | 0.00
0.01
0.01
0.02
0.06 | | (2) FD9R6004/2C-3L | С | From Leg | 4.00
0
0 | 0.000 | 162.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.37
0.45
0.54
0.75
1.28 | 0.08
0.14
0.20
0.34
0.74 | 0.00
0.01
0.01
0.02
0.06 | | 742 213 w/ Mount Pipe | Α | From Leg | 4.00
0
1 | 0.000 | 162.00 | No Ice
1/2"
Ice
1" Ice | 5.37
5.95
6.50
7.61 | 4.62
6.00
6.98
8.85 | 0.05
0.09
0.15
0.28 | | Description | Face
or | Offset
Type | Offsets:
Horz | Azimuth
Adjustmen | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------|------------|----------------|-----------------------------|----------------------|-----------|------------------|--|---------------------------------------|--------------| | | Leg | | Lateral
Vert
ft
ft | t
° | ft | | ft ² | ft ² | К | | | | | ft | | | 2" Ice | 9.93 | 12.79 | 0.68 | | | _ | | | | | 4" Ice | | | | | 742 213 w/ Mount Pipe | В | From Leg | 4.00 | 0.000 | 162.00 | No Ice | 5.37 | 4.62 | 0.05 | | | | | 0 | | | 1/2'' | 5.95 | 6.00 | 0.09 | | | | | 1 | | | Ice
1" Ice | 6.50 | 6.98 | 0.15 | | | | | | | | 2" Ice | 7.61
9.93 | 8.85
12.79 | 0.28
0.68 | | | | | | | | 4" Ice | 9.93 | 12.79 | 0.00 | | 742 213 w/ Mount Pipe | С | From Leg | 4.00 | 0.000 | 162.00 | No Ice | 5.37 | 4.62 | 0.05 | | 742 213 W/ Would 1 Ipc | O | 1 Tom Log | 0 | 0.000 | 102.00 | 1/2" | 5.95 | 6.00 | 0.09 | | | | | 1 | | | Ice | 6.50 | 6.98 | 0.15 | | | | | · | | | 1" Ice | 7.61 | 8.85 | 0.28 | | | | | | | | 2" Ice | 9.93 | 12.79 | 0.68 | | | | | | | | 4" Ice | | | | | RRH2X40-AWS | Α | From Leg | 4.00 | 0.000 | 162.00 | No Ice | 2.52 | 1.59 | 0.04 | | | | | 0 | | | 1/2" | 2.75 | 1.80 | 0.06 | | | | | 1 | | | Ice | 2.99 | 2.01 | 0.08 | | | | | | | | 1" Ice | 3.50 | 2.46 | 0.13 | | | | | | | | 2" Ice | 4.61 | 3.48 | 0.28 | | 551101/10 11110 | _ | | | | | 4" Ice | | | | | RRH2X40-AWS | В | From Leg | 4.00 | 0.000 | 162.00 | No Ice | 2.52 | 1.59 | 0.04 | | | | | 0 | | | 1/2" | 2.75 | 1.80 | 0.06 | | | | | 1 | | | Ice
1" Ice | 2.99 | 2.01 | 0.08 | | | | | | | | 2" Ice | 3.50
4.61 | 2.46
3.48 | 0.13
0.28 | | | | | | | | 4" Ice | 4.01 | 3.40 | 0.26 | | RRH2X40-AWS | С | From Leg | 4.00 | 0.000 | 162.00 | No Ice | 2.52 | 1.59 | 0.04 | | MMIZA40 AWO | O | 1 Ioni Log | 0 | 0.000 | 102.00 | 1/2" | 2.75 | 1.80 | 0.06 | | | | | 1 | | | Ice | 2.99 | 2.01 | 0.08 | | | | | - | | | 1" Ice | 3.50 | 2.46 | 0.13 | | | | | | | | 2" Ice | 4.61 | 3.48 | 0.28 | | | | | | | | 4" Ice | | | | | DB-T1-6Z-8AB-0Z | С | From Leg | 4.00 | 0.000 | 162.00 | No Ice | 5.60 | 2.33 | 0.04 | | | | | 0 | | | 1/2" | 5.92 | 2.56 | 0.08 | | | | | 1 | | | Ice | 6.24 | 2.79 | 0.12 | | | | | | | | 1" Ice | 6.91 | 3.28 | 0.21 | | | | | | | | 2" Ice | 8.37 | 4.37 | 0.45 | | Sector Mount [SM 602-3] | ۸ | None | | 0.000 | 162.00 | 4" Ice
No Ice | 33.11 | 22.44 | 1 5 1 | | Sector Mount [SIM 602-3] | Α | None | | 0.000 | 102.00 | 1/2" | 44.90 | 33.11
44.90 | 1.54
2.16 | | | | | | | | Ice | 56.69 | 56.69 | 2.78 | | | | | | | | 1" Ice | 80.27 | 80.27 | 4.01 | | | | | | | | 2" Ice | 127.43 | 127.43 | 6.49 | | *** | | | | | | 4" Ice | | | | | (2) 7770.00 w/ Mount Pipe | Α | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 6.12 | 4.25 | 0.06 | | (=) | | | 0 | | | 1/2" | 6.63 | 5.01 | 0.10 | | | | | 4 | | | Ice | 7.13 | 5.71 | 0.16 | | | | | | | | 1" Ice | 8.16 | 7.16 | 0.29 | | | | | | | | 2" Ice | 10.36 | 10.41 | 0.66 | | | | | | | | 4" Ice | | | | | (2) 7770.00 w/ Mount Pipe | В | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 6.12 | 4.25 | 0.06 | | | | | 0 | | | 1/2'' | 6.63 | 5.01 | 0.10 | | | | | 4 | | | Ice | 7.13 | 5.71 | 0.16 | | | | | | | | 1" Ice | 8.16 | 7.16 | 0.29 | | | | | | | | 2" Ice
4" Ice | 10.36 | 10.41 | 0.66 | | (2) 7770.00 w/ Mount Pipe | С | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 6.12 | 4.25 | 0.06 | | () | - | | 0 | 2.300 | | 1/2" | 6.63 | 5.01 | 0.10 | | | | | 4 | | | Ice | 7.13 | 5.71 | 0.16 | | | | | | | | 1" Ice | 8.16 | 7.16 | 0.29 | | | | | | | | 2" Ice | 10.36 | 10.41 | 0.66 | | | | | | | | 4" Ice | | | | | P65-16-XLH-RR w/ Mount | Α | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 8.64 | 6.36 | 0.08 | | Pipe | | | 0 | | | 1/2" | 9.29 | 7.54 | 0.14 | | | | | | | | | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |--------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|----------------------------|--|---------------------------------------|--------------| | | | | Vert
ft
ft
ft | o | ft | | ft ² | ft ² | K | | | | | 4 | | | Ice | 9.91 | 8.43 | 0.22 | | | | | | | | 1" Ice
2" Ice
4" Ice | 11.18
13.83 | 10.24
14.10 | 0.39
0.89 | | P65-16-XLH-RR w/ Mount | В | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 8.64 | 6.36 | 0.08 | | Pipe | | | 0
4 | | | 1/2"
Ice | 9.29
9.91 | 7.54
8.43 | 0.14
0.22 | | | | | 4 | | | 1" Ice | 11.18 | 10.24 | 0.39 | | | | | | | | 2" Ice
4" Ice | 13.83 | 14.10 | 0.89 | | P65-16-XLH-RR w/ Mount
Pipe | С | From Leg | 4.00
0 | 0.000 | 154.00 | No Ice
1/2" | 8.64
9.29 | 6.36
7.54 | 0.08
0.14 | | Fipe | | | 4 | | | Ice | 9.29 | 8.43 | 0.14 | | | | | • | | | 1" Ice | 11.18 | 10.24 | 0.39 | | | | | | | | 2" Ice | 13.83 | 14.10 | 0.89 | | (0) 1 0 0 0 1 0 0 1 | | | 4.00 | 0.000 | 454.00 | 4" Ice | 0.07 | 0.40 | 0.04 | | (2) LGP21901 | Α | From Leg | 4.00
0 | 0.000 | 154.00 | No Ice
1/2" | 0.27
0.34 | 0.18
0.25 | 0.01
0.01 | | | | | 4 | | | Ice | 0.43 | 0.23 | 0.01 | | | | | · | | | 1" Ice | 0.62 | 0.49 | 0.02 | | | | | | | | 2" Ice | 1.10 | 0.94 | 0.07 | | (0) 1 0 004 004 | - | F | 4.00 | 0.000 | 454.00 | 4" Ice | 0.07 | 0.40 | 0.04 | | (2) LGP21901 | В | From Leg | 4.00
0 | 0.000 | 154.00 | No Ice
1/2" | 0.27
0.34 |
0.18
0.25 | 0.01
0.01 | | | | | 4 | | | Ice | 0.43 | 0.23 | 0.01 | | | | | | | | 1" Ice | 0.62 | 0.49 | 0.02 | | | | | | | | 2" Ice | 1.10 | 0.94 | 0.07 | | (2) I CD24004 | С | From Log | 4.00 | 0.000 | 154.00 | 4" Ice
No Ice | 0.27 | 0.18 | 0.01 | | (2) LGP21901 | C | From Leg | 4.00
0 | 0.000 | 154.00 | 1/2" | 0.27 | 0.16 | 0.01 | | | | | 4 | | | Ice | 0.43 | 0.32 | 0.01 | | | | | | | | 1" Ice | 0.62 | 0.49 | 0.02 | | (0) 5540 44 | | | | | | 2" Ice
4" Ice | 1.10 | 0.94 | 0.07 | | (2) RRUS-11 | Α | From Leg | 4.00
0 | 0.000 | 154.00 | No Ice
1/2" | 3.25
3.49 | 1.37
1.55 | 0.05
0.07 | | | | | 4 | | | Ice | 3.74 | 1.74 | 0.07 | | | | | · | | | 1" Ice | 4.27 | 2.14 | 0.15 | | | | | | | | 2" Ice
4" Ice | 5.43 | 3.04 | 0.31 | | (2) RRUS-11 | В | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 3.25 | 1.37 | 0.05 | | . , | | J | 0 | | | 1/2" | 3.49 | 1.55 | 0.07 | | | | | 4 | | | Ice | 3.74 | 1.74 | 0.09 | | | | | | | | 1" Ice
2" Ice | 4.27
5.43 | 2.14
3.04 | 0.15
0.31 | | | | | | | | 4" Ice | 0.40 | 3.04 | 0.51 | | (2) RRUS-11 | С | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 3.25 | 1.37 | 0.05 | | | | | 0 | | | 1/2" | 3.49 | 1.55 | 0.07 | | | | | 4 | | | Ice
1" Ice | 3.74
4.27 | 1.74
2.14 | 0.09
0.15 | | | | | | | | 2" Ice
4" Ice | 5.43 | 3.04 | 0.31 | | (2) LGP21401 | Α | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 1.29 | 0.23 | 0.01 | | | | | 0
4 | | | 1/2"
Ice | 1.45
1.61 | 0.31
0.40 | 0.02
0.03 | | | | | 4 | | | 1" Ice | 1.01 | 0.40 | 0.05 | | | | | | | | 2" Ice
4" Ice | 2.79 | 1.12 | 0.14 | | (2) LGP21401 | В | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 1.29 | 0.23 | 0.01 | | | | | 0 | | | 1/2" | 1.45 | 0.31 | 0.02 | | | | | 4 | | | Ice
1" Ice | 1.61
1.97 | 0.40
0.61 | 0.03
0.05 | | | | | | | | 2" Ice | 2.79 | 1.12 | 0.03 | | (=) A = - · · · · · | .= | | | | | 4" Ice | | | | | (2) LGP21401 | С | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 1.29 | 0.23 | 0.01 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | Vert
ft
ft
ft | o | ft | | ft ² | ft² | K | | | | | 0 | | | 1/2" | 1.45 | 0.31 | 0.02 | | | | | 4 | | | Ice | 1.61 | 0.40 | 0.03 | | | | | | | | 1" Ice
2" Ice | 1.97
2.79 | 0.61
1.12 | 0.05
0.14 | | | | | | | | 4" Ice | 2.19 | 1.12 | 0.14 | | DC6-48-60-18-8F | В | From Leg | 4.00 | 0.000 | 154.00 | No Ice | 2.22 | 2.22 | 0.02 | | | | | 0 | | | 1/2" | 2.44 | 2.44 | 0.04 | | | | | 0 | | | Ice | 2.66 | 2.66 | 0.06 | | | | | | | | 1" Ice
2" Ice | 3.15
4.21 | 3.15
4.21 | 0.12
0.27 | | | | | | | | 4" Ice | 4.21 | 4.21 | 0.21 | | Sector Mount [SM 602-3] | Α | None | | 0.000 | 154.00 | No Ice | 33.11 | 33.11 | 1.54 | | | | | | | | 1/2" | 44.90 | 44.90 | 2.16 | | | | | | | | Ice | 56.69 | 56.69 | 2.78 | | | | | | | | 1" Ice
2" Ice | 80.27
127.43 | 80.27
127.43 | 4.01
6.49 | | | | | | | | 4" Ice | 127.40 | 127.40 | 0.40 | | *** | | | | | | | | | | | 800 EXTERNAL NOTCH | Α | From Leg | 1.00 | 0.000 | 146.00 | No Ice | 0.77 | 0.37 | 0.01 | | FILTER | | | 0
0 | | | 1/2"
Ice | 0.89
1.02 | 0.46
0.56 | 0.02
0.02 | | | | | Ü | | | 1" Ice | 1.30 | 0.79 | 0.04 | | | | | | | | 2" Ice | 1.97 | 1.34 | 0.11 | | 000 5/7555141 NOTOLL | _ | | 4.00 | 0.000 | 4.40.00 | 4" Ice | | 0.07 | 0.04 | | 800 EXTERNAL NOTCH
FILTER | В | From Leg | 1.00
0 | 0.000 | 146.00 | No Ice
1/2" | 0.77
0.89 | 0.37
0.46 | 0.01
0.02 | | HEILK | | | 0 | | | Ice | 1.02 | 0.46 | 0.02 | | | | | | | | 1" Ice | 1.30 | 0.79 | 0.04 | | | | | | | | 2" Ice | 1.97 | 1.34 | 0.11 | | 800 EXTERNAL NOTCH | С | From Leg | 1.00 | 0.000 | 146.00 | 4" Ice | 0.77 | 0.37 | 0.01 | | FILTER | C | Fioni Leg | 0 | 0.000 | 146.00 | No Ice
1/2" | 0.77 | 0.37 | 0.01 | | | | | Ö | | | Ice | 1.02 | 0.56 | 0.02 | | | | | | | | 1" Ice | 1.30 | 0.79 | 0.04 | | | | | | | | 2" Ice
4" Ice | 1.97 | 1.34 | 0.11 | | TME-800MHZ 2X50W | Α | From Leg | 1.00 | 0.000 | 146.00 | No Ice | 2.49 | 2.07 | 0.05 | | RRH | | | 0 | | | 1/2" | 2.71 | 2.27 | 0.07 | | | | | 0 | | | Ice | 2.93 | 2.48 | 0.10 | | | | | | | | 1" Ice
2" Ice | 3.41
4.46 | 2.93
3.93 | 0.16
0.32 | | | | | | | | 4" Ice | 4.40 | 3.93 | 0.32 | | TME-800MHZ 2X50W | В | From Leg | 1.00 | 0.000 | 146.00 | No Ice | 2.49 | 2.07 | 0.05 | | RRH | | | 0 | | | 1/2" | 2.71 | 2.27 | 0.07 | | | | | 0 | | | Ice
1" Ice | 2.93
3.41 | 2.48
2.93 | 0.10
0.16 | | | | | | | | 2" Ice | 4.46 | 3.93 | 0.10 | | | | | | | | 4" Ice | | | | | TME-800MHZ 2X50W | С | From Leg | 1.00 | 0.000 | 146.00 | No Ice | 2.49 | 2.07 | 0.05 | | RRH | | | 0
0 | | | 1/2''
Ice | 2.71
2.93 | 2.27
2.48 | 0.07
0.10 | | | | | U | | | 1" Ice | 2.93
3.41 | 2.46 | 0.16 | | | | | | | | 2" Ice | 4.46 | 3.93 | 0.32 | | *** | | | | | | 4" Ice | | | | | TME-PCS 1900 MHz | Α | From Leg | 2.00 | 0.000 | 146.00 | No Ice | 2.71 | 2.61 | 0.06 | | 4x45W-65MHz | ^ | 1 Tolli Leg | 0 | 0.000 | 140.00 | 1/2" | 2.95 | 2.85 | 0.08 | | | | | 0 | | | Ice | 3.20 | 3.09 | 0.11 | | | | | | | | 1" Ice | 3.72 | 3.61 | 0.17 | | | | | | | | 2" Ice
4" Ice | 4.86 | 4.74 | 0.35 | | TME-PCS 1900 MHz | В | From Lea | 2.00 | 0.000 | 146.00 | | 2.71 | 2.61 | 0.06 | | 4x45W-65MHz | _ | o g | 0 | 3.000 | | 1/2" | 2.95 | 2.85 | 0.08 | | | | | 0 | | | Ice | 3.20 | 3.09 | 0.11 | | | | | | | | 1" Ice | 3.72 | 3.61 | 0.17 | | TME-PCS 1900 MHz
4x45W-65MHz | В | From Leg | | 0.000 | 146.00 | No Ice
1/2" | | | 0.08 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |----------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | Vert
ft
ft
ft | ۰ | ft | | ft² | ft ² | К | | | | | | | | 2" Ice | 4.86 | 4.74 | 0.35 | | TME-PCS 1900 MHz | С | From Leg | 2.00 | 0.000 | 146.00 | 4" Ice
No Ice | 2.71 | 2.61 | 0.06 | | 4x45W-65MHz | C | Fioni Leg | 0 | 0.000 | 140.00 | 1/2" | 2.71 | 2.85 | 0.08 | | | | | 0 | | | Ice | 3.20 | 3.09 | 0.11 | | | | | | | | 1" Ice | 3.72 | 3.61 | 0.17 | | | | | | | | 2" Ice | 4.86 | 4.74 | 0.35 | | APXVSPP18-C-A20 w/ | Α | From Leg | 2.00 | 0.000 | 143.00 | 4" Ice
No Ice | 8.50 | 6.95 | 0.08 | | Mount Pipe | ^ | Fioni Leg | 0 | 0.000 | 143.00 | 1/2" | 9.15 | 8.13 | 0.08 | | oupo | | | Ö | | | Ice | 9.77 | 9.02 | 0.23 | | | | | | | | 1" Ice | 11.03 | 10.84 | 0.41 | | | | | | | | 2" Ice | 13.68 | 14.85 | 0.91 | | APXVSPP18-C-A20 w/ | В | From Leg | 2.00 | 0.000 | 143.00 | 4" Ice
No Ice | 8.50 | 6.95 | 0.08 | | Mount Pipe | ь | Fioni Leg | 0 | 0.000 | 143.00 | 1/2" | 9.15 | 8.13 | 0.08 | | Wodin 1 ipo | | | Ö | | | Ice | 9.77 | 9.02 | 0.23 | | | | | | | | 1" Ice | 11.03 | 10.84 | 0.41 | | | | | | | | 2" Ice | 13.68 | 14.85 | 0.91 | | ADV/CDD40 C A20/ | _ | Г., | 0.00 | 0.000 | 4.40.00 | 4" Ice | 0.50 | C 0F | 0.00 | | APXVSPP18-C-A20 w/
Mount Pipe | С | From Leg | 2.00
0 | 0.000 | 143.00 | No Ice
1/2" | 8.50
9.15 | 6.95
8.13 | 0.08
0.15 | | Would Tipe | | | 0 | | | Ice | 9.77 | 9.02 | 0.13 | | | | | ŭ | | | 1" Ice | 11.03 | 10.84 | 0.41 | | | | | | | | 2" Ice | 13.68 | 14.85 | 0.91 | | (0) A O I I A O O A I | | | 0.00 | 0.000 | 4.40.00 | 4" Ice | 0.00 | 0.44 | 0.00 | | (3) ACU-A20-N | Α | From Leg | 2.00 | 0.000 | 143.00 | No Ice
1/2" | 0.08
0.12 | 0.14
0.19 | 0.00
0.00 | | | | | 0
0 | | | Ice | 0.12 | 0.19 | 0.00 | | | | | ŭ | | | 1" Ice | 0.30 | 0.40 | 0.01 | | | | | | | | 2" Ice | 0.67 | 0.80 | 0.04 | | (2) 121 122 1 | _ | | | | | 4" Ice | | | | | (3) ACU-A20-N | В | From Leg | 2.00
0 | 0.000 | 143.00 | No Ice
1/2" | 0.08
0.12 | 0.14
0.19 | 0.00
0.00 | | | | | 0 | | | Ice | 0.12 | 0.19 | 0.00 | | | | | Ü | | | 1" Ice | 0.30 | 0.40 | 0.01 | | | | | | | | 2" Ice | 0.67 | 0.80 | 0.04 | | (2) 121 122 1 | _ | | | | | 4" Ice | | | | | (3) ACU-A20-N | С | From Leg | 2.00
0 | 0.000 | 143.00 | No Ice
1/2" | 0.08
0.12 | 0.14
0.19 | 0.00
0.00 | | | | | 0 | | | Ice | 0.12 | 0.19 | 0.00 | | | | | ŭ | | | 1" Ice | 0.30 | 0.40 | 0.01 | | | | | | | | 2" Ice | 0.67 | 0.80 | 0.04 | | Castan Marriet [CM 704 2] | ^ | Nana | | 0.000 | 4.42.00 | 4" Ice | 40.70 | 40.70 | 0.00 | | Sector Mount [SM 701-3] | Α | None | | 0.000 | 143.00 | No Ice
1/2" | 19.73
27.41 | 19.73
27.41 | 0.82
1.17 | | | | | | | | Ice | 35.09 | 35.09 | 1.51 | | | | | | | | 1" Ice | 50.45 | 50.45 | 2.19 | | | | | | | | 2" Ice | 81.17 | 81.17 | 3.55 | | *** | | | | | | 4" Ice | | | | | 1142-2C | В | From Leg | 4.00 | 0.000 | 124.00 | No Ice | 2.09 | 2.09 | 0.02 | | 1142 20 | | 1 Tom Log | 0 | 0.000 | 124.00 | 1/2" | 3.37 | 3.37 | 0.04 | | | | | 7 | | | Ice | 4.67 | 4.67 | 0.07 | | | | | | | | 1" Ice | 7.32 | 7.32 | 0.14 | | | | | | | | 2" Ice | 10.79 | 10.79 | 0.39 | | 1142-2C | С | From Leg | 4.00 | 0.000 | 124.00 | 4" Ice
No Ice | 2.09 | 2.09 | 0.02 | | 1172 20 | 9 | om Log | 0 | 5.000 | 12-7.00 | 1/2" | 3.37 | 3.37 | 0.02 | | | | | 7 | | | Ice | 4.67 | 4.67 | 0.07 | | | | | | | | 1" Ice | 7.32 | 7.32 | 0.14 | | | | | | | | 2" Ice | 10.79 | 10.79 | 0.39 | | Side Arm Mount [SO 306- | В | From Leg | 2.00 | 0.000 | 124.00 | 4" Ice
No Ice | 0.98 | 2.18 | 0.04 | | 1] | ٦ | | 0 | 5.000 | .200 | 1/2" | 1.70 | 3.80 | 0.06 | | • | | | | | | | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight |
-------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|--|--|--------------------------------------| | | | | Vert
ft
ft
ft | o | ft | | ft ² | ft ² | K | | | | | 0 | | | Ice
1" Ice
2" Ice
4" Ice | 2.42
3.86
6.74 | 5.42
8.66
15.14 | 0.08
0.12
0.20 | | Side Arm Mount [SO 306-
1] | С | From Leg | 2.00
0
0 | 0.000 | 124.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.98
1.70
2.42
3.86
6.74 | 2.18
3.80
5.42
8.66
15.14 | 0.04
0.06
0.08
0.12
0.20 | | 220-3BN | В | From Leg | 4.00
0
4 | 0.000 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 5.72
7.83
9.96
14.27
22.63 | 5.72
7.83
9.96
14.27
22.63 | 0.02
0.07
0.12
0.27
0.73 | | 1142-2C | С | From Leg | 4.00
0
7 | 0.000 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 2.09
3.37
4.67
7.32
10.79 | 2.09
3.37
4.67
7.32
10.79 | 0.02
0.04
0.07
0.14
0.39 | | Side Arm Mount [SO 306-
1] | В | From Leg | 2.00
0
0 | 0.000 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.98
1.70
2.42
3.86
6.74 | 2.18
3.80
5.42
8.66
15.14 | 0.04
0.06
0.08
0.12
0.20 | | Side Arm Mount [SO 306-
1] | С | From Leg | 2.00
0
0 | 0.000 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.98
1.70
2.42
3.86
6.74 | 2.18
3.80
5.42
8.66
15.14 | 0.04
0.06
0.08
0.12
0.20 | | GPS_A | С | From Leg | 2.00
0
3 | 0.000 | 62.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.30
0.37
0.46
0.65
1.15 | 0.30
0.37
0.46
0.65
1.15 | 0.00
0.00
0.01
0.02
0.08 | | Side Arm Mount [SO 301-
1] | С | From Leg | 1.00
0
0 | 0.000 | 62.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.00
1.39
1.78
2.56
4.12 | 0.90
1.42
1.94
2.98
5.06 | 0.02
0.03
0.04
0.06
0.10 | | GPS_A | С | From Leg | 2.00
0
2 | 0.000 | 42.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.30
0.37
0.46
0.65
1.15 | 0.30
0.37
0.46
0.65
1.15 | 0.00
0.00
0.01
0.02
0.08 | | Side Arm Mount [SO 301-
1] | С | From Leg | 1.00
0
0 | 0.000 | 42.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.00
1.39
1.78
2.56
4.12 | 0.90
1.42
1.94
2.98
5.06 | 0.02
0.03
0.04
0.06
0.10 | | ***
GPS_A | С | From Leg | 2.00 | 0.000 | 31.00 | No Ice
1/2" | 0.30
0.37 | 0.30
0.37 | 0.00
0.00 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |--|-------------------|----------------|-----------------------------|---------------------------|-----------|---|--|---------------------------------------|--------------------------------------| | | | | Vert
ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | | | | 1 | | | Ice
1" Ice
2" Ice
4" Ice | 0.46
0.65
1.15 | 0.46
0.65
1.15 | 0.01
0.02
0.08 | | Side Arm Mount [SO 301-1] | С | From Leg | 1.00
0
0 | 0.000 | 31.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.00
1.39
1.78
2.56
4.12 | 0.90
1.42
1.94
2.98
5.06 | 0.02
0.03
0.04
0.06
0.10 | | ERICSSON AIR 21 B2A
B4P w/ Mount Pipe | Α | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 6.83
7.35
7.86
8.93
11.18 | 5.64
6.48
7.26
8.86
12.29 | 0.11
0.17
0.23
0.38
0.81 | | ERICSSON AIR 21 B4A
B2P w/ Mount Pipe | Α | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 6.82
7.34
7.85
8.92
11.17 | 5.63
6.47
7.25
8.85
12.28 | 0.11
0.17
0.23
0.38
0.81 | | KRY 112 144/1 | Α | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.41
0.50
0.59
0.81
1.36 | 0.20
0.27
0.35
0.53
1.00 | 0.01
0.01
0.02
0.03
0.08 | | ERICSSON AIR 21 B2A
B4P w/ Mount Pipe | В | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 6.83
7.35
7.86
8.93
11.18 | 5.64
6.48
7.26
8.86
12.29 | 0.11
0.17
0.23
0.38
0.81 | | ERICSSON AIR 21 B4A
B2P w/ Mount Pipe | В | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 6.82
7.34
7.85
8.92
11.17 | 5.63
6.47
7.25
8.85
12.28 | 0.11
0.17
0.23
0.38
0.81 | | KRY 112 144/1 | В | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.41
0.50
0.59
0.81
1.36 | 0.20
0.27
0.35
0.53
1.00 | 0.01
0.01
0.02
0.03
0.08 | | ERICSSON AIR 21 B2A
B4P w/ Mount Pipe | С | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 6.83
7.35
7.86
8.93
11.18 | 5.64
6.48
7.26
8.86
12.29 | 0.11
0.17
0.23
0.38
0.81 | | ERICSSON AIR 21 B4A
B2P w/ Mount Pipe | С | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 6.82
7.34
7.85
8.92
11.17 | 5.63
6.47
7.25
8.85
12.28 | 0.11
0.17
0.23
0.38
0.81 | | KRY 112 144/1 | С | From Leg | 4.00
0
0 | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.41
0.50
0.59
0.81
1.36 | 0.20
0.27
0.35
0.53
1.00 | 0.01
0.01
0.02
0.03
0.08 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|---|---|---|--------------------------------------| | | | | ft
ft
ft | o | ft | | ft ² | ft ² | K | | Side Arm Mount [SO 101-3] | С | None | | 0.000 | 93.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 7.50
8.90
10.30
13.10
18.70 | 7.50
8.90
10.30
13.10
18.70 | 0.25
0.33
0.41
0.58
0.90 | | TD-RRH8x20-25 | Α | From Leg | 4.00
0
0 | 0.000 | 143.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 4.72
5.01
5.32
5.95
7.31 | 1.70
1.92
2.15
2.62
3.68 | 0.07
0.10
0.13
0.20
0.40 | | APXVTM14-C-120 w/
Mount Pipe | Α | From Leg | 4.00
0
0 | 0.000 | 143.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | | TD-RRH8x20-25 | В | From Leg | 4.00
0
0 | 0.000 | 143.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 4.72
5.01
5.32
5.95
7.31 | 1.70
1.92
2.15
2.62
3.68 | 0.07
0.10
0.13
0.20
0.40 | | APXVTM14-C-120 w/
Mount Pipe | В | From Leg | 4.00
0
0 | 0.000 | 143.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | | TD-RRH8x20-25 | С | From Leg | 4.00
0
0 | 0.000 | 143.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 4.72
5.01
5.32
5.95
7.31 | 1.70
1.92
2.15
2.62
3.68 | 0.07
0.10
0.13
0.20
0.40 | | APXVTM14-C-120 w/
Mount Pipe | С | From Leg | 4.00
0
0 | 0.000 | 143.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | ## **Load Combinations** | Comb. | Description | |-------|----------------------------| | No. | | | 1 | Dead Only | | 2 | Dead+Wind 0 deg - No Ice | | 3 | Dead+Wind 30 deg - No Ice | | 4 | Dead+Wind 60 deg - No Ice | | 5 | Dead+Wind 90 deg - No Ice | | 6 | Dead+Wind 120 deg - No Ice | | 7 | Dead+Wind 150 deg - No Ice | | 8 | Dead+Wind 180 deg - No Ice | | 9 | Dead+Wind 210 deg - No Ice | | 10 | Dead+Wind 240 deg - No Ice | | 11 | Dead+Wind 270 deg - No Ice | | 12 | Dead+Wind 300 deg - No Ice | | 13 | Dead+Wind 330 deg - No Ice | | 14 | Dead+Ice | | 15 | Dead+Wind 0 deg+Ice | | | - | | Comb. | Description | | |-------|-----------------------------|--| | No. | | | | 16 | Dead+Wind 30 deg+lce | | | 17 | Dead+Wind 60 deg+lce | | | 18 | Dead+Wind 90 deg+lce | | | 19 | Dead+Wind 120 deg+lce | | | 20 | Dead+Wind 150 deg+lce | | | 21 | Dead+Wind 180 deg+lce | | | 22 | Dead+Wind 210 deg+lce | | | 23 | Dead+Wind 240 deg+lce | | | 24 | Dead+Wind 270 deg+lce | | | 25 | Dead+Wind 300 deg+lce | | | 26 | Dead+Wind 330 deg+lce | | | 27 | Dead+Wind 0 deg - Service | | | 28 | Dead+Wind 30 deg - Service | | | 29 | Dead+Wind 60 deg - Service | | | 30 | Dead+Wind 90 deg - Service | | | 31 | Dead+Wind 120 deg - Service | | | 32 | Dead+Wind 150 deg - Service | | | 33 | Dead+Wind 180 deg - Service | | | 34 | Dead+Wind 210 deg - Service | | | 35 | Dead+Wind 240 deg - Service | | | 36 | Dead+Wind 270 deg - Service | | | 37 | Dead+Wind 300 deg - Service | | | 38 | Dead+Wind 330 deg - Service | | ## **Maximum Tower Deflections - Service Wind** | Section | Elevation | Horz. | Gov. | Tilt | Twist | |---------|-----------|------------|-------|-------|-------
 | No. | | Deflection | Load | | | | | ft | in | Comb. | 0 | 0 | | T1 | 180 - 168 | 5.32 | 35 | 0.292 | 0.024 | | T2 | 168 - 160 | 4.60 | 35 | 0.288 | 0.025 | | T3 | 160 - 140 | 4.12 | 35 | 0.277 | 0.025 | | T4 | 140 - 120 | 3.00 | 35 | 0.231 | 0.022 | | T5 | 120 - 100 | 2.08 | 35 | 0.181 | 0.019 | | T6 | 100 - 80 | 1.39 | 35 | 0.132 | 0.015 | | T7 | 80 - 60 | 0.86 | 35 | 0.097 | 0.011 | | T8 | 60 - 40 | 0.48 | 35 | 0.071 | 0.007 | | T9 | 40 - 20 | 0.21 | 35 | 0.044 | 0.005 | | T10 | 20 - 0 | 0.06 | 35 | 0.017 | 0.002 | # **Critical Deflections and Radius of Curvature - Service Wind** | Elevation | Appurtenance | Gov.
Load | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|-----------------------------|--------------|------------|-------|-------|------------------------| | ft | | Comb. | in | 0 | 0 | ft | | 178.00 | PD10017 | 35 | 5.20 | 0.292 | 0.024 | 187836 | | 170.00 | 800 10504 w/ Mount Pipe | 35 | 4.71 | 0.290 | 0.025 | 97431 | | 162.00 | (2) APL868013-42T0 w/ Mount | 35 | 4.24 | 0.281 | 0.025 | 143151 | | | Pipe | | | | | | | 154.00 | (2) 7770.00 w/ Mount Pipe | 35 | 3.77 | 0.265 | 0.024 | 53544 | | 146.00 | 800 EXTERNAL NOTCH FILTER | 35 | 3.32 | 0.246 | 0.023 | 26434 | | 143.00 | APXVSPP18-C-A20 w/ Mount | 35 | 3.16 | 0.239 | 0.023 | 22284 | | | Pipe | | | | | | | 124.00 | 1142-2C | 35 | 2.25 | 0.191 | 0.019 | 20453 | | 104.00 | 220-3BN | 35 | 1.51 | 0.141 | 0.016 | 27567 | | 93.00 | ERICSSON AIR 21 B2A B4P w/ | 35 | 1.19 | 0.118 | 0.013 | 31504 | | | Mount Pipe | | | | | | | 62.00 | GPS_A | 35 | 0.51 | 0.073 | 0.008 | 38717 | | 42.00 | GPS_A | 35 | 0.23 | 0.047 | 0.005 | 43441 | | 31.00 | GPS_A | 35 | 0.13 | 0.031 | 0.004 | 43932 | ## **Maximum Tower Deflections - Design Wind** | Section | Elevation | Horz. | Gov. | Tilt | Twist | |---------|-----------|------------|-------|-------|-------| | No. | | Deflection | Load | | | | | ft | in | Comb. | 0 | 0 | | T1 | 180 - 168 | 15.34 | 10 | 0.840 | 0.070 | | T2 | 168 - 160 | 13.26 | 10 | 0.830 | 0.072 | | T3 | 160 - 140 | 11.90 | 10 | 0.799 | 0.072 | | T4 | 140 - 120 | 8.66 | 10 | 0.667 | 0.064 | | T5 | 120 - 100 | 6.01 | 10 | 0.522 | 0.054 | | T6 | 100 - 80 | 4.01 | 10 | 0.382 | 0.043 | | T7 | 80 - 60 | 2.49 | 10 | 0.280 | 0.031 | | T8 | 60 - 40 | 1.38 | 10 | 0.204 | 0.021 | | T9 | 40 - 20 | 0.62 | 10 | 0.127 | 0.014 | | T10 | 20 - 0 | 0.18 | 10 | 0.049 | 0.007 | ## **Critical Deflections and Radius of Curvature - Design Wind** | Elevation | Appurtenance | Gov.
Load | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|--|--------------|------------|-------|-------|------------------------| | ft | | Comb. | in | 0 | 0 | ft | | 178.00 | PD10017 | 10 | 14.99 | 0.840 | 0.070 | 66754 | | 170.00 | 800 10504 w/ Mount Pipe | 10 | 13.60 | 0.835 | 0.071 | 34636 | | 162.00 | (2) APL868013-42T0 w/ Mount
Pipe | 10 | 12.24 | 0.809 | 0.072 | 51490 | | 154.00 | (2) 7770.00 w/ Mount Pipe | 10 | 10.89 | 0.765 | 0.070 | 18786 | | 146.00 | 800 EXTERNAL NOTCH FILTER | 10 | 9.58 | 0.711 | 0.067 | 9189 | | 143.00 | APXVSPP18-C-A20 w/ Mount
Pipe | 10 | 9.11 | 0.689 | 0.065 | 7735 | | 124.00 | 1142-2C | 10 | 6.49 | 0.551 | 0.056 | 7102 | | 104.00 | 220-3BN | 10 | 4.37 | 0.407 | 0.045 | 9573 | | 93.00 | ERICSSON AIR 21 B2A B4P w/
Mount Pipe | 10 | 3.43 | 0.341 | 0.038 | 10933 | | 62.00 | GPS_A | 10 | 1.47 | 0.212 | 0.022 | 13413 | | 42.00 | GPS_A | 10 | 0.68 | 0.135 | 0.015 | 15038 | | 31.00 | GPS_A | 10 | 0.38 | 0.090 | 0.011 | 15215 | ## **Bolt Design Data** | Section | Elevation | Component | Bolt | Bolt Size | Number | Maximum | Allowable | Ratio | Allowable | Criteria | |---------|-----------|-----------|-------|-----------|--------|-----------|-----------|-----------|-----------|-----------------------| | No. | | Type | Grade | | Of | Load per | Load | Load | Ratio | | | | ft | | | in | Bolts | Bolt
K | K | Allowable | | | | T1 | 180 | Diagonal | A325N | 0.63 | 1 | 0.66 | 4.76 | 0.139 🗸 | 1.333 | Member Block
Shear | | | | Top Girt | A325N | 0.63 | 1 | 0.07 | 3.40 | 0.020 🗸 | 1.333 | Member Block
Shear | | T2 | 168 | Leg | A325N | 0.63 | 4 | 1.60 | 13.50 | 0.118 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 1.88 | 4.76 | 0.395 | 1.333 | Member Block
Shear | | T3 | 160 | Leg | A325N | 0.63 | 4 | 9.89 | 13.50 | 0.733 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 4.42 | 4.76 | 0.929 | 1.333 | Member Block
Shear | | T4 | 140 | Leg | A325N | 0.75 | 4 | 18.04 | 19.44 | 0.928 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 5.13 | 4.76 | 1.077 | 1.333 | Member Block
Shear | | T5 | 120 | Leg | A325N | 0.88 | 4 | 24.74 | 26.46 | 0.935 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 4.76 | 6.44 | 0.739 | 1.333 | Bolt Shear | | T6 | 100 | Leg | A490N | 0.88 | 4 | 30.80 | 32.47 | 0.948 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 5.28 | 6.44 | 0.820 | 1.333 | Bolt Shear | | T7 | 80 | Leg | A325N | 1.00 | 4 | 36.06 | 34.56 | 1.043 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 6.28 | 6.44 | 0.974 | 1.333 | Bolt Shear | | Section | Elevation | Component | Bolt | Bolt Size | Number | Maximum | Allowable | Ratio | Allowable | Criteria | |---------|-----------|-------------------------|----------|-----------|--------|-----------|-----------|-----------|-----------|--------------| | No. | | Type | Grade | | Of | Load per | Load | Load | Ratio | | | | ft | | | in | Bolts | Bolt
K | K | Allowable | • | | | Т8 | 60 | Leg | A325N | 1.13 | 4 | 41.41 | 43.74 | 0.947 🖊 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 6.65 | 6.44 | 1.031 🖊 | 1.333 | Bolt Shear | | Т9 | 40 | Leg | A325N | 1.13 | 4 | 46.30 | 43.74 | 1.059 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 7.31 | 6.44 | 1.135 🖊 | 1.333 | Bolt Shear | | | | Secondary
Horizontal | A325N | 0.50 | 1 | 3.78 | 4.12 | 0.917 🗸 | 1.333 | Bolt Shear | | T10 | 20 | Leg | F1554-36 | 1.50 | 6 | 34.18 | 33.82 | 1.011 🖊 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 7.75 | 6.44 | 1.203 🗸 | 1.333 | Bolt Shear | # Compression Checks | | Leg Design Data (Compression) | | | | | | | | | | |----------------|-------------------------------|--------------------------------------|-------|-------|----------------|-------|-------|-------------|--------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | A | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in² | K | K | P_a | | T1 | 180 - 168 | Pipe 2.375" x 0.154" (2
STD) | 12.00 | 4.00 | 61.0
K=1.00 | 16.93 | 1.07 | -2.48 | 18.20 | 0.136 | | T2 | 168 - 160 | Pipe 2.375" x 0.154" (2
STD) (GR) | 8.00 | 4.00 | 61.0
K=1.00 | 24.80 | 1.07 | -9.18 | 26.65 | 0.345 | | Т3 | 160 - 140 | Pipe 3.5" x 0.216" (3 STD)
(GR) | 20.03 | 5.01 | 51.7
K=1.00 | 26.83 | 2.23 | -47.31 | 59.80 | 0.791 | | T4 | 140 - 120 | Pipe 4" x 0.318" (3.5 XS)
(GR) | 20.03 | 6.68 | 61.3
K=1.00 | 23.00 | 3.68 | -83.27 | 84.59 | 0.984 | | T5 | 120 - 100 | Pipe 4.5" x 0.337" (4 XS)
(GR) | 20.03 | 6.68 | 54.3
K=1.00 | 24.54 | 4.41 | -113.31 | 108.17 | 1.048 | | Т6 | 100 - 80 | Pipe 5.563" x 0.375" (5
XS) (GR) | 20.03 | 6.68 | 43.6
K=1.00 | 27.10 | 6.11 | -141.78 | 165.62 | 0.856 | | T7 | 80 - 60 | Pipe 6.625" x 0.432" (6
XS) (GR) | 20.03 | 10.02 | 54.8
K=1.00 | 25.76 | 8.40 | -166.70 | 216.54 | 0.770 | | T8 | 60 - 40 | Pipe 6.625" x 0.432" (6
XS) (GR) | 20.03 | 10.02 | 54.8
K=1.00 | 25.76 | 8.40 | -192.90 | 216.54 | 0.891 | | Т9 | 40 - 20 | Pipe 6.625" x 0.432" (6
XS) (GR) | 20.03 | 5.15 | 28.2
K=1.00 | 29.47 | 8.40 | -218.06 | 247.73 | 0.880 | | T10 | 20 - 0 | Pipe 8.625" x 0.500" (8
XS) (GR) | 20.03 | 10.02 | 41.8
K=1.00 | 29.10 | 12.76 | -243.89 | 371.42 | 0.657 | | | | Diagonal | Desig | n Dat | ta (Cor | npres | sion) | | | | |----------------|-----------|----------------------|-------|-------|-----------------|-------|-----------------|-------------|--------------------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual
P | Allow.
P _a | Ratio
P | | | ft | | ft | ft | | ksi | in ² | K | ĸ | Pa | | T1 | 180 - 168 | L 2 x 1.5 x 3/16 LLV | 4.63 | 2.19 | 91.3
K=1.12 | 14.05 | 0.62 | -0.69 | 8.73 | 0.079 | | T2 | 168 - 160 | L 2 x 1.5 x 3/16 LLV | 4.63 | 2.19 | 91.3
K=1.12 | 14.05 | 0.62 | -1.95 | 8.73 | 0.224 | | T3 | 160 - 140 | L 2 x 1.5 x 3/16 LLV | 6.52 | 3.28 | 122.1
K=1.00 | 9.97 | 0.62 | -4.48 | 6.19 | 0.724 | | T4 | 140 - 120 | L 2 x 2 x 3/16 | 9.07 | 4.61 | 140.3
K=1.00 | 7.59 | 0.71 | -4.77 | 5.43 | 0.879 | | T5 | 120 - 100 | L 2.5 x 2 x 3/16 LLV | 10.69 | 5.38 | 151.3
K=1.00 | 6.52 | 0.81 | -4.76 | 5.28 | 0.903 | | T6 | 100 - 80 | L 2.5 x 2.5 x 3/16 | 12.40 | 6.23 | 151.0
K=1.00 | 6.55 | 0.90 | -5.28 | 5.91 | 0.894 | | Section | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual | Allow. | Ratio | |---------|-----------|---------------------|-------|-------|--------|------|------|--------|--------|-------| | No. | | | | | | | 2 | P | P_a | P | | | ft | | ft | ft | | ksi | in² | K | K | P_a | | | | | | | | | | | | ~ | | T7 | 80 - 60 | L 3 x 3 x 3/16 | 15.56 | 7.92 | 159.4 | 5.87 | 1.09 | -6.28 | 6.40 | 0.981 | | | | | | | K=1.00 | | | | | ~ | | T8 | 60 - 40 | L 3.5 x 3 x 1/4 LLV | 17.20 | 8.73 | 166.1 | 5.41 | 1.56 | -6.65 | 8.45 | 0.787 | | | | | | | K=1.00 | | | | | ~ | | Т9 | 40 - 20 | L 3.5 x 3 x 1/4 LLV | 18.92 | 9.73 | 185.1 | 4.36 | 1.56 | -7.31 | 6.80 | 1.075 | | | | | | | K=1.00 | | | | | _ | | T10 | 20 - 0 | L 3.5 x 3.5 x 1/4 | 20.53 | 10.38 | 179.5 | 4.63 | 1.69 | -7.75 | 7.83 | 0.989 | | | | | | | K=1.00 | | | | | _ | | | Secondary Horizontal Design Data (Compression) | | | | | | | | | | | |----------------|--|------------------|-------|-------|-----------------|----------------|------|-------------|--------------|------------|--| |
Section
No. | Elevation | Size | L | Lu | KI/r | F _a | Α | Actual
P | Allow.
Pa | Ratio
P | | | | ft | | ft | ft | | ksi | in² | K | K | Pa | | | Т9 | 40 - 20 | L3 1/2x3 1/2x1/4 | 17.49 | 16.93 | 146.4
K=0.50 | 6.97 | 1.69 | -3.78 | 11.77 | 0.321 | | | | Top Girt Design Data (Compression) | | | | | | | | | | |----------------|------------------------------------|----------------------|------|------|-----------------|------|-----------------|-------------|--------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in ² | K | ĸ | Pa | | T1 | 180 - 168 | L 2 x 1.5 x 3/16 LLH | 4.00 | 3.55 | 132.4
K=1.00 | 8.52 | 0.62 | -0.11 | 5.29 | 0.020 | # Tension Checks | | Leg Design Data (Tension) | | | | | | | | | | |----------------|---------------------------|--------------------------------------|-------|-------|------|-------|-------|-------------|--------------------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual
P | Allow.
P _a | Ratio
P | | | ft | | ft | ft | | ksi | in² | K | K | P_a | | T1 | 180 - 168 | Pipe 2.375" x 0.154" (2
STD) | 12.00 | 4.00 | 61.0 | 21.00 | 1.07 | 1.77 | 22.57 | 0.078 | | T2 | 168 - 160 | Pipe 2.375" x 0.154" (2
STD) (GR) | 8.00 | 4.00 | 61.0 | 21.00 | 1.07 | 6.39 | 22.57 | 0.283 | | Т3 | 160 - 140 | Pipe 3.5" x 0.216" (3 STD)
(GR) | 20.03 | 5.01 | 51.7 | 21.00 | 2.23 | 39.58 | 46.80 | 0.846 | | T4 | 140 - 120 | Pipe 4" x 0.318" (3.5 XS)
(GR) | 20.03 | 6.68 | 61.3 | 21.00 | 3.68 | 72.16 | 77.25 | 0.934 | | T5 | 120 - 100 | Pipe 4.5" x 0.337" (4 XS)
(GR) | 20.03 | 6.68 | 54.3 | 21.00 | 4.41 | 98.97 | 92.56 | 1.069 | | Т6 | 100 - 80 | Pipe 5.563" x 0.375" (5
XS) (GR) | 20.03 | 6.68 | 43.6 | 21.00 | 6.11 | 123.19 | 128.35 | 0.960 | | T7 | 80 - 60 | Pipe 6.625" x 0.432" (6
XS) (GR) | 20.03 | 10.02 | 54.8 | 21.00 | 8.40 | 144.23 | 176.50 | 0.817 | | Т8 | 60 - 40 | Pipe 6.625" x 0.432" (6
XS) (GR) | 20.03 | 10.02 | 54.8 | 21.00 | 8.40 | 165.64 | 176.50 | 0.938 | | Т9 | 40 - 20 | Pipe 6.625" x 0.432" (6
XS) (GR) | 20.03 | 4.87 | 26.6 | 21.00 | 8.40 | 185.61 | 176.50 | 1.052 | | T10 | 20 - 0 | Pipe 8.625" x 0.500" (8
XS) (GR) | 20.03 | 10.02 | 41.8 | 21.00 | 12.76 | 205.08 | 268.02 | 0.765 | | | Diagonal Design Data (Tension) | | | | | | | | | | |----------------|--------------------------------|----------------------|-------|-------|-------|----------------|------|-------------|--------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | F _a | Α | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in² | K | K | P_a | | T1 | 180 - 168 | L 2 x 1.5 x 3/16 LLV | 4.63 | 2.19 | 63.2 | 29.00 | 0.36 | 0.66 | 10.45 | 0.063 | | T2 | 168 - 160 | L 2 x 1.5 x 3/16 LLV | 4.63 | 2.19 | 63.2 | 29.00 | 0.36 | 1.88 | 10.45 | 0.180 | | Т3 | 160 - 140 | L 2 x 1.5 x 3/16 LLV | 6.52 | 3.28 | 92.9 | 29.00 | 0.36 | 4.42 | 10.45 | 0.423 | | T4 | 140 - 120 | L 2 x 2 x 3/16 | 8.11 | 4.14 | 83.0 | 29.00 | 0.43 | 5.13 | 12.49 | 0.410 | | T5 | 120 - 100 | L 2.5 x 2 x 3/16 LLV | 10.69 | 5.38 | 110.7 | 29.00 | 0.50 | 4.65 | 14.54 | 0.320 | | Т6 | 100 - 80 | L 2.5 x 2.5 x 3/16 | 12.40 | 6.23 | 98.2 | 29.00 | 0.57 | 5.20 | 16.56 | 0.314 | | T7 | 80 - 60 | L 3 x 3 x 3/16 | 15.56 | 7.92 | 103.1 | 29.00 | 0.71 | 6.11 | 20.65 | 0.296 | | Т8 | 60 - 40 | L 3.5 x 3 x 1/4 LLV | 17.20 | 8.73 | 116.7 | 29.00 | 1.03 | 6.48 | 29.85 | 0.217 | | Т9 | 40 - 20 | L 3.5 x 3 x 1/4 LLV | 18.92 | 9.73 | 127.9 | 29.00 | 1.03 | 6.86 | 29.85 | 0.230 | | T10 | 20 - 0 | L 3.5 x 3.5 x 1/4 | 20.53 | 10.38 | 115.8 | 29.00 | 1.13 | 7.43 | 32.68 | 0.227 | | | Secondary Horizontal Design Data (Tension) | | | | | | | | | | |----------------|--|------------------|-------|-------|-------|-------|-----------------|-------------|--------------|-------------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in ² | K | ĸ | $\frac{P_a}{P_a}$ | | Т9 | 40 - 20 | L3 1/2x3 1/2x1/4 | 17.49 | 16.93 | 186.4 | 29.00 | 1.15 | 3.78 | 33.36 | 0.113 | | | Top Girt Design Data (Tension) | | | | | | | | | | |----------------|--------------------------------|----------------------|------|------|-------|-------|-----------------|-------------|--------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in ² | K | ĸ | Pa | | T1 | 180 - 168 | L 2 x 1.5 x 3/16 LLH | 4.00 | 3.55 | 103.8 | 29.00 | 0.36 | 0.07 | 10.45 | 0.006 | | | Section Capacity Table | | | | | | | | | | |----------------|------------------------|-------------------|--------------------------------------|---------------------|--------|----------------------------|---------------|--------------|--|--| | Section
No. | Elevation
ft | Component
Type | Size | Critical
Element | P
K | SF*P _{allow}
K | %
Capacity | Pass
Fail | | | | T1 | 180 - 168 | Leg | Pipe 2.375" x 0.154" (2 STD) | 2 | -2.48 | 24.25 | 10.2 | Pass | | | | T2 | 168 - 160 | Leg | Pipe 2.375" x 0.154" (2 STD)
(GR) | 25 | -9.18 | 35.52 | 25.9 | Pass | | | | Т3 | 160 - 140 | Leg | Pipe 3.5" x 0.216" (3 STD)
(GR) | 40 | 39.58 | 62.38 | 63.4 | Pass | | | | T4 | 140 - 120 | Leg | Pipe 4" x 0.318" (3.5 XS)
(GR) | 67 | -83.27 | 112.76 | 73.8 | Pass | | | | T5 | 120 - 100 | Leg | Pipe 4.5" x 0.337" (4 XS)
(GR) | 88 | 98.97 | 123.38 | 80.2 | Pass | | | | T6 | 100 - 80 | Leg | Pipe 5.563" x 0.375" (5 XS)
(GR) | 109 | 123.19 | 171.09 | 72.0 | Pass | | | | Section
No. | Elevation
ft | Component
Type | Size | Critical
Element | P
K | SF*P _{allow}
K | %
Capacity | Pass
Fail | |----------------|-----------------|-------------------------|-------------------------------------|---------------------|--------|---------------------------------|---------------|--------------| | T7 | 80 - 60 | Leg | Pipe 6.625" x 0.432" (6 XS)
(GR) | 130 | 144.23 | 235.28 | 61.3 | Pass | | Т8 | 60 - 40 | Leg | Pipe 6.625" x 0.432" (6 XS)
(GR) | 145 | 165.64 | 235.28 | 70.4 | Pass | | Т9 | 40 - 20 | Leg | Pipe 6.625" x 0.432" (6 XS)
(GR) | 160 | 185.61 | 235.28 | 78.9 | Pass | | T10 | 20 - 0 | Leg | Pipe 8.625" x 0.500" (8 XS)
(GR) | 181 | 205.08 | 357.27 | 57.4 | Pass | | T1 | 180 - 168 | Diagonal | L 2 x 1.5 x 3/16 LLV | 10 | -0.69 | 11.64 | 6.0 | Pass | | T2 | 168 - 160 | Diagonal | L 2 x 1.5 x 3/16 LLV | 28 | -1.95 | 11.64 | 16.8 | Pass | | T3 | 160 - 140 | Diagonal | L 2 x 1.5 x 3/16 LLV | 44 | -4.48 | 8.26 | 54.3 | Pass | | T4 | 140 - 120 | Diagonal | L 2 x 2 x 3/16 | 71 | -4.77 | 7.23 | 65.9 | Pass | | T5 | 120 - 100 | Diagonal | L 2.5 x 2 x 3/16 LLV | 92 | -4.76 | 7.03 | 67.7 | Pass | | T6 | 100 - 80 | Diagonal | L 2.5 x 2.5 x 3/16 | 113 | -5.28 | 7.87 | 67.1 | Pass | | T7 | 80 - 60 | Diagonal | L 3 x 3 x 3/16 | 133 | -6.28 | 8.53 | 73.6 | Pass | | T8 | 60 - 40 | Diagonal | L 3.5 x 3 x 1/4 LLV | 148 | -6.65 | 11.26 | 59.0 | Pass | | T9 | 40 - 20 | Diagonal | L 3.5 x 3 x 1/4 LLV | 163 | -7.31 | 9.07 | 80.6 | Pass | | T10 | 20 - 0 | Diagonal | L 3.5 x 3.5 x 1/4 | 184 | -7.75 | 10.44 | 74.2 | Pass | | Т9 | 40 - 20 | Secondary
Horizontal | L3 1/2x3 1/2x1/4 | 169 | -3.78 | 15.70 | 24.1 | Pass | | T1 | 180 - 168 | Top Girt | L 2 x 1.5 x 3/16 LLH | 5 | -0.11 | 7.05 | 1.5 | Pass | | | | • | | | | | Summary | | | | | | | | | Leg (T5) | 80.2 | Pass | | | | | | | | Diagonal
(T9) | 80.6 | Pass | | | | | | | | Secondary
Horizontal
(T9) | 24.1 | Pass | | | | | | | | Top Girt
(T1) | 1.5 | Pass | | | | | | | | Bolt
Checks | 90.2 | Pass | | | | | | | | RATING = | 90.2 | Pass | # APPENDIX B BASE LEVEL DRAWING # APPENDIX C ADDITIONAL CALCULATIONS #### **DESIGNED APPURTENANCE LOADING** | TYPE | ELEVATION | TYPE | ELEVATION | |----------------------------------|-----------|---------------------------------------|-----------| | PD10017 | 178 | 800 EXTERNAL NOTCH FILTER | 146 | | 800 10504 w/ Mount Pipe | 170 | 800 EXTERNAL NOTCH FILTER | 146 | | 800 10504 w/ Mount Pipe | 170 | TME-800MHZ 2X50W RRH | 146 | | 800 10504 w/ Mount Pipe | 170 | TME-800MHZ 2X50W RRH | 146 | | 860 10025 | 170 | TME-800MHZ 2X50W RRH | 146 | | 860 10025 | 170 | TME-PCS 1900 MHz 4x45W-65MHz | 146 | | 860 10025 | 170 | TME-PCS 1900 MHz 4x45W-65MHz | 146 | | Side Arm Mount [SO 103-3] | 170 | TME-PCS 1900 MHz 4x45W-65MHz | 146 | | (2) APL868013-42T0 w/ Mount Pipe | 162 | APXVSPP18-C-A20 w/ Mount Pipe | 143 | | (2) APL868013-42T0 w/ Mount Pipe | 162 | APXVSPP18-C-A20 w/ Mount Pipe | 143 | | (2) APL868013-42T0 w/ Mount Pipe | 162 | APXVSPP18-C-A20 w/ Mount Pipe | 143 | | APX75-866512-CT2 w/ Mount Pipe | 162 | (3) ACU-A20-N | 143 | | APX75-866512-CT2 w/ Mount Pipe | 162 | (3) ACU-A20-N | 143 | | APX75-866512-CT2 w/ Mount Pipe | 162 | (3) ACU-A20-N | 143 | | MG D3-800Tx w/ Mount Pipe | 162 | Sector Mount [SM 701-3] | 143 | | MG D3-800Tx w/ Mount Pipe | 162 | TD-RRH8x20-25 | 143 | | MG D3-800Tx w/ Mount Pipe | 162 | APXVTM14-C-120 w/ Mount Pipe | 143 | | (2) FD9R6004/2C-3L | 162 | TD-RRH8x20-25 | 143 | | (2) FD9R6004/2C-3L | 162 | APXVTM14-C-120 w/ Mount Pipe | 143 | | (2) FD9R6004/2C-3L | 162 | TD-RRH8x20-25 | 143 | | 742 213 w/ Mount Pipe | 162 | APXVTM14-C-120 w/ Mount Pipe | 143 | | 742 213 w/ Mount Pipe | 162 | 1142-2C | 124 | | 742 213 w/ Mount Pipe | 162 | 1142-2C | 124 | | RRH2X40-AWS | 162 | Side Arm Mount [SO 306-1] | 124 | | RRH2X40-AWS | 162 | Side Arm Mount [SO 306-1] | 124 | | RRH2X40-AWS | 162 | Side Arm Mount [SO 306-1] | 104 | | DB-T1-6Z-8AB-0Z | 162 | Side Arm Mount [SO 306-1] | 104 | | Sector Mount [SM 602-3] | 162 | 220-3BN | 104 | | (2) 7770.00 w/ Mount Pipe | 154 | 1142-2C | 104 | | (2) 7770.00 w/ Mount Pipe | 154 | ERICSSON AIR 21 B2A B4P w/ Mount Pipe | 93 | | (2) 7770.00 w/ Mount Pipe | 154 | ERICSSON AIR 21 B4A B2P w/ Mount Pipe | 93 | | P65-16-XLH-RR
w/ Mount Pipe | 154 | KRY 112 144/1 | 93 | | P65-16-XLH-RR w/ Mount Pipe | 154 | ERICSSON AIR 21 B2A B4P w/ Mount Pipe | 93 | | P65-16-XLH-RR w/ Mount Pipe | 154 | ERICSSON AIR 21 B4A B2P w/ Mount Pipe | 93 | | (2) LGP21901 | 154 | KRY 112 144/1 | 93 | | (2) LGP21901 | 154 | ERICSSON AIR 21 B2A B4P w/ Mount Pipe | 93 | | (2) LGP21901 | 154 | ERICSSON AIR 21 B4A B2P w/ Mount Pipe | 93 | | (2) RRUS-11 | 154 | KRY 112 144/1 | 93 | | (2) RRUS-11 | 154 | Side Arm Mount [SO 101-3] | 93 | | (2) RRUS-11 | 154 | GPS_A | 62 | | (2) LGP21401 | 154 | Side Arm Mount [SO 301-1] | 62 | | (2) LGP21401 | 154 | GPS_A | 42 | | (2) LGP21401 | 154 | Side Arm Mount [SO 301-1] | 42 | | DC6-48-60-18-8F | 154 | GPS_A | 31 | | Sector Mount [SM 602-3] | 154 | Side Arm Mount [SO 301-1] | 31 | | 800 EXTERNAL NOTCH FILTER | 146 | | | #### SYMBOL LIST | MARK | SIZE | MARK | SIZE | |------|------------------------------|------|-----------------------------------| | Α | Pipe 2.375" x 0.154" (2 STD) | В | Pipe 2.375" x 0.154" (2 STD) (GR) | #### **MATERIAL STRENGTH** | GRADE | Fy | Fu | GRADE | Fy | Fu | |----------|--------|--------|-------|--------|--------| | A53-B-35 | 35 ksi | 60 ksi | A36 | 36 ksi | 58 ksi | #### **TOWER DESIGN NOTES** Paul J Ford and Company 250 E. Broad Street Suite 600 Columbus, OH 43215 Phone: 614.221.6679 FAX: 614.448.4105 | ob: 180-ft S/S Tower - Wilton, CT | | | | | | | | |-----------------------------------|--|-------------|--|--|--|--|--| | Project: PJF# 37514-009 | | | | | | | | | Client: Crown Castle | Drawn by: Charles Weir | App'd: | | | | | | | Code: TIA/EIA-222-F | | Scale: NTS | | | | | | | Path: | 8053551WO 777280 N 1806363 - 012 SAIC-w-vi37554-00088w/Lee | Dwg No. E-1 | | | | | | Job Number: 37514-0096.002.8700 Site Number: BU 806353 Site Name: Page: Bv: **CJW** 6/3/2014 BRG 124 943066 Date: #### DRILLED PIER SOIL AND STEEL ANALYSIS - TIA/EIA-222-F #### Unfactored Base Reactions from RISA | | Comp. (+) | Tension (-) | _ | |-----------------|-----------|-------------|------| | Moment, M = | | | k-ft | | Shear, V = | 25.0 | 22.0 | kips | | Axial Load, P = | 250.0 | -209.0 | kips | | | | | | OTM = 5.5 k-ft @ Ground 6.3 Safety Factors / Load Factors / Φ Factors | Tower Type = | Self-Supported | |---------------------------|----------------| | ACI Code = | ACI 318-02 | | Seismic Design Category = | D | | Reference Standard = | TIA/EIA-222-F | | Use 1.3 Load Factor? | Yes | | Load Factor = | 1.30 | | | | **Drilled Pier Parameters** | Diameter = | 2.5 | ft | |----------------------|-------|-------| | Height Above Grade = | 0.25 | ft | | Depth Below Grade = | 13.5 | ft | | fc' = | 3 | ksi | | = 23 | 0.003 | in/in | | | | | Mat Ftdn. Cap Width = Mat Ftdn. Cap Length = Depth Below Grade = ### Load Combinations Checked per TIA/EIA-222-F Safety Factor 2.00 2.00 2.00 Φ Factor 0.75 0.75 0.75 1. Ult. Skin Friction/2.00 + Ult. End Bearing/2.00 + Effective Soil Wt. - Buoyant Conc. Wt. ≥ Comp. 2. Ult. Skin Friction/2.00 + Buoyant Conc. Wt./1.25 ≥ Uplift 3. Ult. Skin Friction/1.50 + Buoyant Conc. Wt./1.50 ≥ Uplift Steel Parameters | <u> Ctoorr arannotoro</u> | | | |----------------------------|-------|-----| | Number of Bars = | 14 | | | Rebar Size = | #8 | | | Rebar Fy = | 60 | | | Rebar MOE = | 29000 | ksi | | Tie Size = | #4 | | | Side Clear Cover to Ties = | 3 | in | | | | | Soil Parameters Soil Lateral Resistance = Concrete Wt. Resist Uplift = Skin Friction = End Bearing = | 99.00 | t | |--------|---| | 5.00 | t | | 0 1 | t | | Ground | | | | | Above Full Cohesion Lateral Resistance = 4(Cohesion)(Dia)(H) Below Full Cohesion Lateral Resistance = 8(Cohesion)(Dia)(H) | Direct Embed Pole Shaft Parameters | | | | | | | | |------------------------------------|--|-----|--|--|--|--|--| | Dia @ Grade = | | in | | | | | | | Dia @ Depth Below Grade = | | in | | | | | | | Number of Sides = | | | | | | | | | Thickness = | | in | | | | | | | Fy = | | ksi | | | | | | | Backfill Condition = | | | | | | | | **Maximum Capacity Ratios** | Maximum Soil Ratio = | 100.0% | |-----------------------|--------| | Maximum Steel Ratio = | 100.0% | #### **Define Soil Layers** Note: Cohesion = Undrained Shear Strengh = Unconfined Compressive Strength / 2 | | Thickness | Unit Weight | Cohesion | Friction
Angle | | Ultimate
End Bearing | Comp. Ult.
Skin Friction | Tension Ult.
Skin Friction | Depth | |-------|-----------|-------------|----------|-------------------|-----------|-------------------------|-----------------------------|-------------------------------|-------| | Layer | ft | pcf | psf | degrees | Soil Type | psf | psf | psf | ft | | 1 | 5 | 110 | 0 | 30 | Sand | 0 | 0 | 0 | 5 | | 2 | 99 | 140 | 8000 | 0 | Clay | 56000 | 8000 | 8000 | 104 | | 3 | | | | | | | | | | | 4 | | | | | | | | | | | 5 | | | | | | | | | | | 6 | | | | | | | | | | | 7 | | | | | | | | | | | 8 | | | | | | | | | | | 9 | | | | | | | | | • | | 10 | | | | | | | | | | | 11 | | | | | | | | | | | 12 | | | | | | | | | | Soil Results: Overturning | CONTINUOUNICON CITORICAN | | | | |--------------------------|------------------------|-----------------------|-------------| | Depth to COR = | 10.16 ft, from Grade | Shear, V = | 25.00 kips | | Bending Moment, M = | 260.18 k-ft, from COR | Resisting Shear, Va = | 145.17 kips | | Resisting Moment, Ma = | 1510.86 k-ft, from COR | | | SHEAR RATIO = 17.2% **MOMENT RATIO =** 17.2% OK OK Soil Results: Uplift | Uplift, T = | 209.00 kips | |-----------------------------|-------------| | Allowable Uplift Cap., Ta = | 309.84 kips | | LIDI IET DATIO = | 67.5% OK | Soil Results: Compression | COMPRESSION RATIO = | 64.1% OK | |----------------------------|-------------| | Allowable Comp. Cap., Ca = | 389.81 kips | | Compression, C = | 250.00 kips | Steel Results (ACI 318-02): | Oleci Nesulis (Aoi s | 10 0 <u>2).</u> | | | |----------------------|-----------------|-----------------------|-----------| | Minimum Steel Area = | 2.36 sq in | Axial Load, P = | -151.40 k | | Actual Steel Area = | 11.06 sq in | Moment, M = | 133.53 k | | | <u> </u> | Allowable Moment Ma = | 274 03 | -459.42 kips, Where Ma = 0 k-ft Allowable Min Axial, Pa = 48.7% OK MOMENT RATIO = Allowable Max Axial, Pa = 975.15 kips, Where Ma = 0 k-ft k-ft kips @ 6.25 ft Below Grade c-ft @ 6.25 ft Below Grade # RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT **Sprint Existing Facility** Site ID: CT03XC369 North Wilton 128 Mather Street Wilton, CT 06897 **September 16, 2014** EBI Project Number: 62144684 21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311 September 16, 2014 Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495 Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT03XC369 - North Wilton Site Total: 34.65% - MPE% in full compliance EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at **128 Mather Street, Wilton, CT**, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits. All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density. All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below. General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density. Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65. #### **CALCULATIONS** Calculations were
done for the proposed upgrades to the existing Sprint Wireless antenna facility located at **128 Mather Street, Wilton, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower. For all calculations, all emissions were calculated using the following assumptions: - 1) 2 channels in the 1900 MHz Band were considered for each sector of the proposed installation. - 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation. - 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation. - 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous. - 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 7) The antenna mounting height centerline for the proposed antennas is **143 feet** above ground level (AGL). - 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves. All calculation were done with respect to uncontrolled / general public threshold limits | Site ID CT03XC369 - North Wilton Site Addresss 128 Mather Street, Wilton, CT, 06897 Site Type Self Support Tower | 0.13% | |---|--------------------------------| | Site Type Self Support Tower Sector 1 | Density Percentage 0.27% 0.13% | | Sector 1 | Density Percentage 0.27% 0.13% | | Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) Height (ft) height Cable Size (dB) Loss (dB) ERP 1a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 138.61 1a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 143 137 1/2 0.5 0 39.00 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 39.00 Sector total Power Density Value: 0.87% | Density Percentage 0.27% 0.13% | | Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) Height (ft) height Cable Size (dB) Loss (dB) ERP 1a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 138.61 1a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 143 137 1/2 0.5 0 39.00 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 39.00 Sector total Power Density Value: 0.87% | Density Percentage 0.27% 0.13% | | Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) 1 a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 39.00 18 RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 39.00 18 RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 39.00 138.61 Sector total Power Density Value: 0.87% | Density Percentage 0.27% 0.13% | | Antenna Antenna Make Antenna Model Radio Type Frequency Band Technology Channel Number of Channel Number of Channel Power reduction Height (ft) | Density Percentage 0.27% 0.13% | | Antenna Antenna Make Antenna Model Radio Type Frequency Band Technology Channel Number of Channel Number of Channel Power reduction Height (ft) | Density Percentage 0.27% 0.13% | | Antenna
Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels
Channels Power (I0 db
reduction) Antenna analysis
Height (ft) Cable Loss
(dB) Additional
Loss (dB) ERP 1a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 138.69 1a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 143 137 1/2 " 0.5 0 39.00 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 39.00 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 138.69 Sector total Power Density Value: <td< td=""><td>Density Percentage 0.27% 0.13%</td></td<> | Density Percentage 0.27% 0.13% | | Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction Height (ft) (f | Percentage
0.27%
0.13% | | 1a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 138.69 1a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 143 137 1/2 " 0.5 0 39.00 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 138.69 Sector total Power Density Value: 0.87% | 0.27%
0.13% | | 1a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 3.4 143 137 1/2 " 0.5 0 39.00 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 138.69 Sector total Power Density Value: 0.87% | 0.13% | | 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 138.69 Sector total Power Density Value: | | | Sector total Power Density Value: 0.87% | | | · | | | Sector 2 | | | | | | | | | Power | | | Out Per Antenna Gain | Power | | Antenna Channel Number of Composite (10 db Antenna analysis Cable Loss Additional | Density | | Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction Height (ft) height (able Size (dB) Loss (dB) ERP | Percentage | | 2a RFS APX/SPP18-C-A20 RRH 1900 MHz CDMA/LTE 20 2 40 5.9 143 137 1/2" 0.5 0 138.6 | | | 2a RFS APX/SPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 3.4 143 137 1/2" 0.5 0 39.00 | 0.13% | | 28 RFS APXYTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 143 137 1/2" 0.5 0 138.6 | | | Sector total Power Density Value: 0.87% | | | | | | Sector 3 | | | | | | Power | | | Out Per Antenna Gain | Power | | Antenna Channel Number of Composite (10 db Antenna analysis Cable Loss Additional | Density | | Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) Height (ft) height Cable Size (dB) Loss (dB) ERP | Percentage | | 3a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 0.5 0 138.60 | | | 3a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 143 137 1/2 " 0.5 0 39.00 | 0.13% | | 3B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 143 137 1/2 " 0.5 0 138.69 | 0.47% | | Sector total Power Density Value: 0.87% | | | Site Composite MPE % | | | |----------------------|--------|--| | Carrier | MPE % | | | Sprint | 2.60% | | | Verizon Wireless |
15.37% | | | AT&T | 8.22% | | | MetroPCS | 1.68% | | | T-Mobile | 0.40% | | | Nextel | 1.76% | | | Town | 4.62% | | | Total Site MPE % | 34.65% | | ### **Summary** All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy. The anticipated Maximum Composite contributions from the Sprint facility are 2.60% (0.87% from sector 1, 0.87% from sector 2 and 0.87% from sector 3) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level. The anticipated composite MPE value for this site assuming all carriers present is **34.65**% of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions. FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government. Scott Heffernan RF Engineering Director **EBI Consulting** 21 B Street Burlington, MA 01803