

Together with Nextel

10 Industrial Ave, Suite 3 Mahwah, NJ 07430 Phone: (845)499-4712 Jennifer Notaro Real Estate Consultant

August 22, 2014

Hand Delivered

Ms. Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

CC to Property Owner Connecticut State Police 1111 Country Club Road Middletown, CT 06457

RE: Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 46 Fernwood Lane Wilton, CT 06897. Known to Sprint Spectrum L.P. as site CT03XC360.

Dear Ms. Bachman:

In order to accommodate technological changes, implement Code Division Multiple Access ("CDMA") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the state of Connecticut, Sprint Spectrum L.P. plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

CDMA employs Spread-Spectrum technology and special coding scheme to allow multiple users to be multiplexed over the same physical channel.

LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will not be affected.
- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.
- 3. The proposed changes will not increase the noise level at the existing facility by 6 decibels or more.
- 4. Radio Frequency power density may increase due to the use of one or more CDMA transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons Sprint Spectrum L.P. respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (845)-499-4712 or email <u>JNotaro@Transcendwireless.com</u> with questions concerning this matter. Thank you for your consideration.

Sincerely,

Jennifer Notaro Real Estate Consultant

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT03XC360

CTS

46 Fernwood Lane Wilton, CT 06897

July 11, 2014

EBI Project Number: 62143782

July 11, 2014

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT03XC360 - CTS

Site Total: <u>11.87%</u> - MPE% in full compliance

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 46 Fernwood Lane, Wilton, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 46 Fernwood Lane, Wilton, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 3 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
- 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
- 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline for the proposed antennas is **106 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

	_				_											
	Site ID		CT03XC360 - CT	S												
	Site Addresss	46 Fernwo	od Lane, Wilton	, CT, 06897												
	Site Type	Se	elf Support Tow	er]											
					-		Sector 1				-				-	
						Power										
						Out Per			Antenna Gain							Power
Antenna						Channel	Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size	(dB)	Loss (dB)	ERP	Percentage
1a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	3	60	5.9	106	100	1/2 "	0.5	0	208.04	0.75%
1a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	3.4	106	100	1/2 "	0.5	0	39.00	0.25%
1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	106	100	1/2 "	0.5	0	138.69	0.88%
												Sector to	otal Power D	Density Value:	1.87%	
							Sector 2									
				1	1	-			1		1	-		1		1
						Power										
						Out Per			Antenna Gain							Power
Antenna						Channel	Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size	(dB)	Loss (dB)	ERP	Percentage
2a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	3	60	5.9	106	100	1/2 "	0.5	0	208.04	0.75%
2a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	3.4	106	100	1/2 "	0.5	0	39.00	0.25%
2B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	106	100	1/2 "	0.5	0	138.69	0.88%
												Sector to	otal Power D	Density Value:	1.87%	
							Sector 3									
						Power										
						Out Per			Antenna Gain							Power
Antenna				_		Channel	Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size	(dB)	Loss (dB)	ERP	Percentage
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	3	60	5.9	106	100	1/2 "	0.5	0	208.04	0.75%
3a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	3.4	106	100	1/2 "	0.5	0	39.00	0.25%
38	RES	APXV1MIV114-C-120	ККН	2500 MHz	CDIVIA / LTE	20	2	40	5.9	106	100	1/2	0.5	U	138.69	0.88%

Site C	Composite MPE %
Carrier	MPE %
Sprint	5.62%
Field Measurements for all additional systems on	6.25%
site	6.25%
Total Site MPE %	11.87%

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are **5.62%** (**1.87%** from sector **1**, **1.87%** from sector **2** and **1.87%** from sector **3**) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **11.87%** of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803

DETAILED STRUCTURAL ANALYSIS AND EVALUATION OF AN EXISTING 180' SELF-SUPPORTING LATTICE TOWER FOR NEW ANTENNA ARRANGEMENT

Sprint Site #: Site Name: Address: CT03XC360 Connecticut State Police Tower #31 46 Fenwood Lane Wilton, Connecticut

prepared for

1 International Blvd. Suite 800 Mahwah, NJ. 07495

prepared by

URS CORPORATION 500 ENTERPRISE DRIVE, SUITE 3B ROCKY HILL, CT 06067 TEL. 860-529-8882

> 36928700.00000 TWS-015

> > May 16, 2014

TABLE OF CONTENTS

- 1. EXECUTIVE SUMMARY
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 6. DRAWINGS AND DATA
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION CHART
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER DEFLECTION, TILT, AND TWIST
 - TNX TOWER DETAILED OUTPUT
 - ANCHOR BOLT EVALUATION
 - FOUNDATION ANALYSIS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis and evaluation of the 180' self-supporting lattice tower located at 46 Fenwood Lane in Wilton, Connecticut. The analysis was conducted in accordance with the 2005 Connecticut State Building Code, the TIA/EIA-222-F standard and additional requirements of the Connecticut State Police for wind velocity of 90 mph concurrent with $\frac{1}{2}$ " ice design wind load. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report. The proposed Sprint installation is as follows:

Antenna and Mount	Carrier	Antenna Center Elevation
<u>Install:</u> (3) RFS APXVTM14-C-20 Panel Antennas (3) TD-RRH-8x20-25 RRH Units (1) Junction Box (27) 8' Jumper cables (3) 8' Comscope AISG Cables (1) ALU Fiber Optic Cable	Sprint (Proposed)	@ 106'

The result of the analysis indicates that the existing tower, foundation and anchor bolts have sufficient capacity to support the proposed loading conditions without modification. The tower structure, foundation and anchor bolts are considered structurally adequate for the proposed antenna loading with the wind load classification specified above.

The tower deflection (sway) is 0.7097 degrees, and the tower rotation (twist) is 0.0349 degrees with a wind velocity of 90 mph concurrent with 0.5" ice. The tower deflection and rotation are within the Connecticut State Police specification of 0.75 degrees for combined deflection (sway) and rotation (twist).

The above analysis is based upon completion of tower foundation modifications required for Tmobile antenna loadings, per URS Corporation structural analysis and reinforcement design, project number HPC-070 (Rev. 1), signed and sealed April 11, 2014. If this foundation modification has not been constructed, notify the engineer in writing immediately.

1. EXECUTIVE SUMMARY - continued

This analysis is based on:

- 1) The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- 2) Tower geometry and structural member sizes utilized in the preparation of this report obtained from the manufacturers original design documents prepared by Bayar and Associates dated July 1990.
- 3) Sprint antennas taken from CT Police Sites Flat File, dated April 22, 2014.
- 4) Antenna inventory provided by the Connecticut State Police via email on February 8, 2014.
- 5) Previous structural analysis and reinforcement design performed by URS Corporation, project number HPC-070 (Rev 1), signed and sealed April 11, 2014.
- 6) Antenna and mount configuration as specified on the following page of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the assumption of the antenna and mount configuration. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

ALLE REAL PROPERTY OF THE PROP

BOOK STONAL ENG

If you should have any questions, please call.

Sincerely,

URS Corporation AES

Richard A. Sambor, P.E. Senior Structural Engineer RAS/mcd

2. INTRODUCTION

The subject tower is located at 46 Fenwood Lane in Wilton, Connecticut. The structure is a 180' four sided self-supporting lattice tower designed by Bayar and Associates.

The inventory is summarized in the table below:

Antenna Type	Carrier	Mount	Mount Elevation	Cable
(3) 6' Dishes (Wind Load)	CSP 69 to 71 (reserved)	Leg Mounted	180'	N/A
(2) Scala OGT9-806 (2) TX/RX 101-83B-09 (1) 7' Omni	CSP 1 to 4,6 (existing)	(3) 4' Stand-Off	180'	(4) 1-5/8" (1) 7/8"
(1) 10' Dipole (1) TX/RX TMA	CSP 7 & 67 (existing)	Pipe Mounted	180'	(1) 7/8" (1) 1/2"
(1) 6' Dishes	CSP – 59 (existing)	(1) Pipe Mounts	180'	(1) WEP65
(2) 6' Dishes	CSP 5 & 36 (existing)	(2) Pipe Mounts	176'	(2) WEP65
(1) 8-Bay Dipole	FCP – 12 (existing)	6' Standoff	170'	(1) 7/8"
(1) 5' Omni	CSP – 10 (existing)	6' Standoff	170'	(1) 7/8"
(1) 3' Omni	CAP – 25 (existing)	Leg Mounted	169'	(1) 7/8"
(6) Powerwave 7770 (6) LGP21401 TMAs	AT&T (existing)	(3) T-Frames	163'	(12) 1-5/8"
 (3) Powerwave P-65-16-XLH-RR (6) Ericsson RRU (12) LGP21901 Diplexers (3) Powerwave TT19-08BP111- 001 TMAs (1) RAYCAP Surge Protector 	AT&T (existing)	Shared with Above	163'	(1) 3" Flex Conduit with Fiber & DC Cables
(3) TX/RX 101-83B-08-T5 (1) TX/RX TMA	CSP 63 to 66 (existing)	Leg Mounted	160'	(3) 1-5/8" (1) 1/2"
(1) DB636	NEU – 57 (existing)	4' Standoff	150'	(1) 7/8"
(1) 3' Yagi	WTR – 28 (existing)	6' Standoff	145'	(1) 7/8"
(1) 6' Dish	CSP – 35 (existing)	Pipe Mounted	130'	(1) WEP65
 (3) Ericsson AIR21 B2A B4P Panel Antennas (3) Ericsson AIR21 B4A/B2P Panel Antennas (3) (UMTS) TMA Units (3) (LTE) TMA Units 	T-Mobile (Existing)	(3) Antenna Mounts	122'	(6) 1 1/4" (6) 1-1/4" (2) Fiber Optic Cables
(2) DB586-Y (one inverted and one upright)	NEU 30 & 31 (existing)	6' Standoff	120'	(2) 7/8"

Antenna Type	Carrier	Mount	Mount Elevation	Cable
(1) Celwave PD-128 (1) 17' Omni	WPD 33 & 55 (existing)	6' Standoff	120'	(2) 7/8"
(1) Celwave PD-128	CSP – 8 (existing)	Leg Mounted	120'	(1) 7/8"
(1) ASP-711	WTR – 29 (existing)	Leg Mounted	116'	(1) 7/8"
(1) Decibel DB-222	DHS – 9 (existing)	Leg Mounted	112'	(1) 7/8"
(3) RFS APXVTM14-C-20 Panel Antennas (3) TD-RRH-8x20-25 RRH Units (1) Junction Box	Sprint (Proposed)	See Below Mount	106'	(27) 8' Jumper cables (3) 8' Comscope AISG Cables (1) ALU Fiber Optic Cable
(3) APXVSPP18-C (6) ALU RRH	Sprint (existing)	(3) 10' Frame (existing)	106'	(3) RFS Hybriflex Cables
(1) BCD806-09NE	CSP – 62 (existing)	Leg Mounted	101'	(1) 1-5/8"
(1) 4' Grid Dish	CSP – 11 (existing)	Pipe Mounted	100'	(1) 7/8"
(1) 15' Omni	DEA – 32 (existing)	4' Standoff	100'	(1) 7/8"
(1) 20' 4-Bay Dipole	USS – 26 (existing)	3' Standoff	85'	(1) 7/8"
(1) Ice Shield for 6' Grid Dish Below	CSP (existing)	4' Standoff	80'	N/A
(1) 6' Grid Dish	CSP – 13 (existing)	Pipe Mounted	75'	(1) 1/2"
(1) GPS	Sprint (existing)	3' Standoff	56'	(1) 1/2"
(1) DB-803 Omni	CSP – 68 (existing)	3' Stand-Off	47'	(1) 1/2"

This structural analysis of the communications tower was performed by URS Corporation, AES (URS) for Sprint. The purpose of this analysis was to analyze the existing tower for its existing and proposed antenna loads. This analysis was conducted to evaluate rotation (twist), deflection (sway) and stress on the tower, and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2005 Connecticut State Building Code, TIA/EIA-222-F - Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction - Allowable Stress Design (ASD).

The analysis was conducted using TNX Tower 6.0.0.8. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Load Condition 1 = 90 mph (fastest mile) Wind Load + Tower Dead Load Load Condition 2 = 90 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

The combined axial and bending stresses on the tower structure were evaluated to compare with the allowable stress in accordance with AISC. The results of the analysis indicate that the calculated stresses under the proposed loading are within the allowable stresses for the tower structure, foundation and anchor bolts.

The tower deflection and rotation are within the Connecticut State Police specification of 0.75 degrees for deflection (sway) and rotation (twist).

Tower Base Reactions:

Description	Current
Pier Compression (kips)	453
Pier Uplift (kips)	404
Overall Overturning (kip-ft)	10769
Overall Shear (kips)	99
Shear per Leg (kips)	43

Controlling Tower Component Stress vs. Capacity Summary:

Component / (Section No.)	Critical Component Size	Controlling Elevation	Stress (% capacity)	Pass/Fail
Leg (T19)	L8x8x1 1/8"	0' – 10'	99.3	Pass
Diagonal (T12)	L3 1/2X3X1/4	80'-90'	84.8	Pass
Horizontal (T19)	2L2 1/2x2 1/2x1/4	0'-10'	53.5	Pass
Secondary Horizontal (T18)	L3 1/2x3 1/2x1/4	10'-20'	86.9	Pass
Top Girt (T3)	L2x2x3/16	159.049'-163.573'	12.9	Pass
Redund Horz 1 Bracing (T19)	L2 1/2x2 1/2x3/16	0'-10'	44.4	Pass
Redund Diag 1 Bracing (T19)	L2 1/2x2 1/2x3/16	0'-10'	73.3	Pass
Redund Hip 1 Bracing (T19)	L2 1/2x2 1/2x3/16	0'-10'	0.3	Pass
Redund Sub Horz Bracing (T19)	L3x3x5/16	0'-10'	68.4	Pass
Inner Bracing (T19)	2L2x2 1/2x3/16	0'-10'	3.5	Pass
Anchor Bolts	(4) 2-1/2" dia. A36 bolts	N/A	88	Pass

Foundation Summary:

Component	Required / Allowable	Computed	% Capacity	Pass/Fail
Overturning Moment Factor of Safety	2.0 min	2.30	87.0	Pass
Foundation Bearing Pressure	3.4 ksf max	2.4679 ksf	72.6	Pass

Tower Twist & Sway at Top:

Description	Current	Total Allowable
Tower Twist (degrees)	0.0349	
Tower Sway (degrees)	0.7097	
Total Deflection (degrees)	0.7446	0.75

5. CONCLUSIONS

The result of the analysis indicates that the existing tower, foundation and anchor bolts have sufficient capacity to support the proposed loading conditions without modification. The tower structure, foundation and anchor bolts are considered structurally adequate for the proposed antenna loading with the wind load classification specified above. The tower deflection (sway) is 0.7097 degrees, and the tower rotation (twist) is 0.0349 degrees with a wind velocity of 90 mph concurrent with 0.5" ice. The tower deflection and rotation are within the Connecticut State Police specification of 0.75 degrees for combined deflection (sway) and rotation (twist).

The above analysis is based upon completion of tower foundation modifications required for Tmobile antenna loadings, per URS Corporation structural analysis and reinforcement design, project number HPC-070 (Rev. 1), signed and sealed April 11, 2014. If this foundation modification has not been constructed, notify the engineer in writing immediately.

Limitations/Assumptions:

This report is based on the following:

- 1. Tower inventory as listed in this report.
- 2. Tower is properly installed and maintained.
- 3. All members are as specified in the original design documents and are in good condition.
- 4. All required members are in place and all previous modifications have been performed.
- 5. All bolts are in place and are properly tightened.
- 6. Tower is in plumb condition.
- 7. All member protective coatings are in good condition.
- 8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9. Foundations were properly constructed to support original design loads as specified in the original design documents.

URS is not responsible for any modifications completed prior to or hereafter in which URS is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

URS hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact URS. URS disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading condition.

6.) DRAWINGS AND DATA

TNX TOWER INPUT / OUTPUT SUMMARY

Түрг			ELEVATION
6' Standoff (CSP)	180	DB636-A (NE11 - 57)	100
OGT9-806 (CSP - 1)	180		001
3" Dia x 15' Omni (CSP - 2)	180	3' Yaqi (WTR - 28)	54 1
6' Standoff (CSP)	180	6' Standoff (CSP)	14 17
OGT9-806 (CSP - 6)	180	6' Standoff (CSP)	145
3" Dia x 15' Omni (CSP - 3)	160	6' Standoff (CSP)	143
6' Slandoff (CSP)	180	10'6"x4" Pipe Mount (CSP)	133
7 Whip (CSP - 4)	180	3' Stand-off (CSP)	132
106"x4" Pipe Mount (CSP)	180	PA6-65AC (CSP - 35)	130
TU' Dipale (USP - 7)	180	LeBlanc 10' Standoff (1) (CSP)	126
PA6-65AC (CSP - 69)	160	EUSETU-U (T-MODIE)	122
PA6-65AC (CSP - 70)	180		1 1 2
PA6-65AC (CSP - 71)	180		221
PA6-65AC (CSP - 59)	180	(2) AIR BOA/B4P (T-MODILE)	122
10'6"x4" Pipe Mount (CSP)	176	(2) AIR R2AR4P (T-Mobile)	122
10'6"x4" Pipe Mount (CSP)	176	(2) TMA (T-Mobile)	122
10'6"x4" Pipe Mount (CSP)	176	(2) TMA (T-Mobile)	122
PA6-65AC (CSP - 5)	176	(2) TMA (T-Mobile)	122
PA6-65AC (CSP - 36)	176	Rohn 6' Side-Arm(1) (NU - 3031)	120
10'6"x4" Pipe Mount (CSP)	176	3" Dia x 15' Omni (WPD - 55)	120
6' Standoff (CSP)	172	PD128-1 (CSP - 8)	120
6' Slandoff (CSP)	172	PD128-1 (WPD - 33)	120
20' B Bay Di-Pole (FCP - 12)	170	(2) DB586-Y (NU - 3031)	120
4 Omni (CSP - 10)	1/0	ASP711 (WTR - 29)	116
	109	3' Stand-off (CSP)	115
(TIW) 0////	163	6' Standoff (CSP)	115
(Z) LOF ZIBIRI (ALL) TT49-08PD111-001 TMA (ATT)	100	6' S(SID-OTT (USP)	
P65-16-XLH-RR (ATT)	163		211
(2) RRU (ATT)	163	12' Wireless Frame (Sorint)	106
Raycap DC6-48-60-18-8F DC Power Surge	163	12' Wireless Frame (Sprint)	106
Protection (ATT)		12' Wireless Frame (Sprint)	106
(1110) (ATT)	163	APXVSPP18-C (Sprint)	106
	163	APXVSPP18-C (Sprint)	106
(2) LPG214U1 IMA (ALL)	163	APXVTM14-C-1 20 (Sprint)	106
(2) LGP 249nn (ATTT)	100	APXVTM14-C-1 20 (Sprint)	106
(=) == == == = = = = = = = = = = = = = =	163	APXVTM14-C-1 20 (Sprint)	106
P65-16-XLH-RR (ATT)	163		106
(2) RRU (ATT)	163	TTT-DDH2v20-23 (Sprint)	106
(IIV) (7770 (AII)	163	Himmitian box (Second)	108
(2) LGP 219nn (ATT)	163	APXVSPP18-C (Sprint)	106
(2) LPG21401 TMA (ATT)	163	(2) ALU RRH (Sprint)	106
7770 (ATT)	163	(2) ALU RRH (Sprint)	106
(2) LGP 219nn (ATT)	163	(2) ALU RRH (Sprint)	106
DES.16-XI HRR (ATT)	103	LeBlanc 10' Standoff (1) (CSP)	101
	163	SC479-HF1LDF (CSP - 62)	101
T-Frame (ATT)	163	4' Grd Dish (CSP - 11)	100
T-Frame (ATJ)	163	3' Stand-off (CSD)	100
7770 (ATT)	163	Stand-off (CSP)	85
(2) LGP 219nn (ATT)	163	20' + Bay Dipole (USS - 26)	85
(2) LPG21401 TMA (ATI)	163	E'Ice Shield (CSP)	80
T-Frame (ATT)	163	10'6"x4" Pipe Mount (CSP)	76
a Dia X 15' Ommi (CSP - 63) 3" Dia × 15' Ommi (CSP - 64)	16U	6' Grid Dish (CSP - 13)	75
3" Dia x 15' Omni (CSP - 65)	160	3" Stand-off (Sprint)	20
TMA (CSP - 66)	160	GPS (Sprint)	20
2" Dia 10' Omni (CSP)	150	DB803M-Y (CSP - 68)	47
	SYMB	OL LIST	
MAKK A L2x2x3/16	SIZE	MARK	SIZE
		1	
	MATERIAL	L STRENGTH	
GRADE FY	Fu	GRADE Fy	Z
A36 35 35 KSI	58 ksi		

 \cap

TOWER DESIGN NOTES Tower designed for a 90 mph basic wind in accordance with the TIA/EIA-222-F Tower is also designed for a 90 mph basic wind with 0,50 in ice. Deflections are based upon a 90 mph wind.

58 ksi

lard.

t,

- с ю 4

MAX. CORNER REACTIONS AT BASE: DOWN: 453 K UPLIFT: -404 K SHEAR: 43 K

20.0 ft

0.1	50	70	*2	30	01	\$3.		12	41 K	\$3	523	0¥	59	1.1	0	4 3
01@1	1 @ 6 451		66433	£	5 @ Z							14 @ 10				
			6.32443	18848.0	\$26'9	069'2	SE207'8	6,1244	571286	9855'01	9542.11.2756	9266'11	13 4561	964141	8088.41	8225'51
		6	N			L2×2×3/16	'V'N	FS 1/5×5×3/16	WN.	L2 1/2×2×3/16	AN	5r5×5×3/16		A.N	5L2x2x3/16	"A"N
										"∀"N						
										A.N						
										A.N						
										"∀'N						
L2x2x3/16			.Α	N		Þ/	L2×2×1	L2x2x3/16	r5x5x1/4	"∀"N	L2 1/2x2 1/2x1/4	"\"N			p/L×2	/L EXZ/L ET
				V	4			L2 1/2x2 1/2x1/4	'V'N	FS 1/5×5 1/5×1/4		"A"N	2L2x2x3/16		"∀"N	
91,	L2x2x3/		7	'N	91/6×2	L2 1/2×2 1/2	1		"V"N			4/1×2/1 2×2/1 27		.A.N	2L2x2x3/16	
											9£A					
91/2×3/16	1/2	\forall		91/8×3	K2/L 27	P3×2 1/2×1/4		b/txexel		4/1×8×3/1 8J		2L2 1/2×2×3/16			8/€×	572 1/2×2
											98A					
L3 1/2x3 1/2x3/6		91/92	(SXSJ		8/Ex3x3J	72	L×9×97	9/¢	x9x97	\$/\$	x8x8J	281617x2/1 /w 1x8x81	saleig 7x2	1 /M 8/1-1×8×8J		
LL.	21	- ti	Þ1	Sil	91	21	19	61	(104)	841	-61	113	111	SIT	194.2	211

URS Corporation	180' Lattice Towe	r - CSP	
00 Enterprise Drive. Suite 3E	Project: Wilton, Connecticu	it (TWS-015)	
Rocky Hill. CT 06067	Client: Sprint	Drawn by: MCD	:p,ddY
Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 05/14/14	Scale: NTS
FAX: 860-529-3991	Path: Witnessen wooden TASJAMASTOLT	CONS. PRECRETER Factory Camera VARIA	Dwg No. E-1

10,0 ft

0.0 ft

TNX TOWER FEEDLINE DISTRIBUTION

36928700 00000 TWS-015 180' Four Sided Lattice Self Supporting Tower Wilton, CT

5/16/2014

Feedline Distribution Chart 0' - 180'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

URS Corporation	^{Job:} 180' Lattice Tower - CSP Project: Wilton, Connecticut (TWS-015)				
Bocky Hill CT 06067	Client: Sprint	Drawn by: MCD	App'd:		
Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 05/14/14	Scale: NTS		
FAX: 860-529-3991	Path: Williamsond Wealers, 1905/36828200	TV5515 WHO/DEENI Fred UP/Lative Who/CSP er	Dwg No. E-7		

Elevanon (ft)

Round

TNX TOWER FEEDLINE PLAN

Feedline Plan

App Out Face

App In Face

Round

Flat

URS Corporation	180' Lattice Tow	er - CSP		
500 Enterprise Drive, Suite 3B	Project: Wilton, Connecticut (TWS-015)			
Bocky Hill CT 06067	Client: Sprint	Drawn by: MCD	App'd;	
Phone: 860-529-8882 FAX: 860-529-3991	Code: TIA/EIA-222-F	Date: 05/14/14	Scale: NTS	
	Path: Williamsand Western TW5/3699705-1	Dwg No. E-		

TNX TOWER DEFLECTION, TILT AND TWIST

36928700 00000 TWS-015

URS Corporation	^{iob:} 180' Lattice Tow	er - CSP			
500 Enterprise Drive, Suite 3B	Project: Wilton, Connecticut (TWS-015)				
Rocky Hill_CT 06067	Client: Sprint	Drawn by: MCD	App'd:		
Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 05/14/14	Scale: NTS		
FAX: 860-529-3991	Path: Witnessent, Wohrss, TWS101018709	Dwg No E-8			

DETAILED OUTPUT

tnxTower	Job 180' Lattice Tower - CSP	Page 1 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 CI Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Tower Input Data

The main tower is a 4x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.00 ft at the top and 17.73 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Basic wind speed of 90 mph.

Nominal ice thickness of 0.5000 in.

Ice density of 56 pcf.

A wind speed of 90 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 90 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.333.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- ✓ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile
- √ Include Bolts In Member Capacity
- √ Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
- √ Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

- Distribute Leg Loads As Uniform
- Assume Legs Pinned √ Assume Rigid Index Plate
- $\sqrt{}$ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas
- SR Members Have Cut Ends
- V Sort Capacity Reports By Component
- $\sqrt{}$ Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feedline Torque Include Angle Block Shear Check Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

tnyTower	Job	Page
maromer	180' Lattice Tower - CSP	2 01 03
UBS Coursession	Project	Date
500 Enterprise Drive, Suite 3B	Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client	Designed by
Phone: 860-529-8882 FAX: 860-529-3991	Sprint	MCD

<u>Square Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			fi		ſt
T1	180.00-170.00			6.00	1	10.00
Т2	170,00-163.57			6,00	1	6.43
T3	163.57-159.05			6.00	1	4.52
T4	159.05-154.52			6.32	1	4.52
Т5	154.52-150.00			6.65	1	4.52
T6	150.00-140.00			6.97	1	10.00
Τ7	140.00-130.00			7.69	1	10.00
T8	130.00-120.00			8.41	1	10.00
T9	120.00-110.00			9.12	1	10.00
T10	110.00-100.00			9.84	1	10,00
T11	100.00-90.00			10.56	1	10.00
T12	90.00-80.00			11.28	1	10.00
T13	80.00-60.00			11,99	1	20.00
T14	60.00-50.00			13.43	1	10.00
T15	50.00-40.00			14.14	1	10.00
T16	40.00-30.00			14.86	1	10.00
T17	30.00-20.00			15,58	1	10.00
T18	20.00-10.00			16.29	I	10.00
T19	10.00-0.00			17.01	1	10.00

Tower Section Geometry (cont'd)							
Tower	Tower Elevation	Diagonal Spacing	Bracing	Has K Brace	Has	Top Girt	Bottom Girt
ection	Elevation	spacing	Type	End	monzontais	Ojjsei	0jjsei

	Job	Page
tnx I ower	180' Lattice Tower - CSP	3 of 63
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
	Client	Designed by MCD

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Öffset	Offset
				End			
	ft	ft		Panels		in	în
T1	180.00-170.00	10.00	X Brace	No	Yes	0.0000	0.0000
T2	170.00-163.57	6.43	X Brace	No	No	0.0000	0.0000
Т3	163.57-159.05	4.52	X Brace	No	No	0.0000	0.0000
T4	159.05-154.52	4.52	X Brace	No	No	0.0000	0.0000
T5	154.52-150.00	4.52	X Brace	No	No	0.0000	0.0000
Т6	150.00-140.00	5.00	X Brace	No	No	0.0000	0.0000
Т7	140.00-130.00	10.00	X Brace	No	Yes	0.0000	0.0000
T8	130.00-120.00	10.00	X Brace	No	Yes	0.0000	0,0000
Т9	120.00-110.00	10,00	X Brace	No	Yes	0.0000	0.0000
T10	110.00-100.00	10.00	X Brace	No	Yes	0.0000	0.0000
T11	100.00-90.00	10.00	X Brace	No	Yes	0.0000	0.0000
T12	90.00-80.00	10.00	X Brace	No	Yes	0.0000	0.0000
T13	80.00-60.00	10.00	X Brace	No	Yes	0.0000	0.0000
T14	60.00-50.00	10.00	X Brace	No	Yes	0.0000	0.0000
T15	50.00-40.00	10.00	X Brace	No	Yes	0.0000	0.0000
T16	40.00-30.00	10.00	X Brace	No	Yes	0.0000	0.0000
T17	30,00-20.00	10,00	X Brace	No	Yes	0.0000	0,0000
T18	20.00-10.00	10.00	X Brace	No	Yes	0.0000	0.0000
T19	10.00-0.00	10.00	K1 Down	No	Yes	0.0000	0.0000

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
T1 180.00-170.00	Single Angle	L3 1/2x3 1/2x3/8	A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T2 170.00-163.57	Single Angle	L5x5x5/16	A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T3 163.57-159.05	Single Angle	L5x5x5/16	A36	Single Angle	L2x2x3/16	A36
			(36 ksi)			(36 ksi)
T4 159.05-154.52	Single Angle	L5x5x5/16	A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T5 154.52-150.00	Single Angle	L5x5x5/16	A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
Тб 150.00-140.00	Single Angle	L5x5x3/8	A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T7 140.00-130.00	Single Angle	L6x6x1/2	A36	Single Angle	L3x2 1/2x1/4	A36
			(36 ksi)			(36 ksi)
Т8 130.00-120.00	Single Angle	L6x6x1/2	A36	Single Angle	L3x3x1/4	A36
			(36 ksi)			(36 ksi)
Т9 120.00-110.00	Single Angle	L6x6x3/4	A36	Single Angle	L3x3x1/4	A36
			(36 ksi)			(36 ksi)
T10	Single Angle	L6x6x3/4	A36	Single Angle	L3 1/2x3x1/4	A36
110.00-100.00			(36 ksi)			(36 ksi)
Т11 100.00-90.00	Single Angle	L8x8x3/4	A36	Single Angle	L3 1/2x3x1/4	A36
			(36 ksi)			(36 ksi)
T12 90.00-80.00	Single Angle	L8x8x3/4	A36	Single Angle	L3 1/2x3x1/4	A36
			(36 ksi)			(36 ksi)
T13 80.00-60.00	Arbitrary Shape	L8x8x1 w/ 1/2x7 Plates	A36	Double Angle	2L2 1/2x2x3/16	A36
			(36 ksi)	_		(36 ksi)
T14 60.00-50.00	Arbitrary Shape	L8x8x1-1/8 w/ 1/2x7 Plates	A36	Double Angle	2L2 1/2x2x3/16	A36
			(36 ksi)	-		(36 ksi)
T15 50.00-40.00	Arbitrary Shape	L8x8x1-1/8 w/ 1/2x7 Plates	A36	Double Angle	2L2 1/2x2x3/8	A36
			(36 ksi)	-		(36 ksi)
T16 40.00-30.00	Single Angle	L8x8x1 1/8	A36	Double Angle	2L2 1/2x2x3/8	A36
			(36 ksi)	1		(36 ksi)

tnxTower	Job 180' Lattice Tower - CSP	Page 4 of 63
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
	Client Sprint	Designed by MCD

Tower Elevation	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
ft	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01-0		-)pc	5130	Critic
T17 30.00-20.00	Single Angle	L8x8x1 1/8	A36	Double Angle	2L2 1/2x2x3/8	A36
			(36 ksi)			(36 ksi)
T18 20,00-10.00	Single Angle	L8x8x1 1/8	A36	Double Angle	2L2 1/2x2x3/8	A36
			(36 ksi)			(36 ksi)
T19 10.00-0.00	Single Angle	L8x8x1 1/8	A36	Double Angle	2L2 1/2x2 1/2x1/4	A36
			(36 ksi)			(36 ksi)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
1 180.00-170.00	Single Angle	L2x2x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
2 170,00-163,57	Single Angle	L2x2x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
3 163.57-159.05	Single Angle	L2x2x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
6 150,00-140.00	Single Angle	L2 1/2x2 1/2x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
7 140.00-130.00	Single Angle	L2 1/2x2 1/2x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
Г13 80.00-60.00	Single Angle	L2 1/2x2 1/2x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
Γ16 40.00-30.00	Double Angle	2L2x2x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
	Mid				• •		
ft	Girts						
T1 180.00-170.00	1	Single Angle	L2x2x3/16	A36	Double Angle		A36
				(36 ksi)			(36 ksi)
T9 120.00-110.00	1	Single Angle	L2x2x3/16	A36	Single Angle	L2 1/2x2 1/2x1/4	A36
				(36 ksi)			(36 ksi)
T11 100.00-90.00	None	Single Angle		A36	Single Angle	L2 1/2x2 1/2x1/4	A36
				(36 ksi)			(36 ksi)
T14 60.00-50.00	None	Single Angle		A36	Double Angle	2L2x2x3/16	A36
				(36 ksi)	-		(36 ksi)
T18 20.00-10.00	None	Single Angle		A36	Double Angle	2L2x2x3/16	A36
				(36 ksi)	-		(36 ksi)
T19 10.00-0.00	None	Single Angle		A36	Double Angle	2L2 1/2x2 1/2x1/4	A36
				(36 ksi)	Ũ		(36 ksi)

tnxTower	dof	180' Lattice Tower - CSP	Page 5 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Tower Elevation	Secondary Horizontal Type	Secondary [,] Horizontal Size	Secondary Horizontal	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
Dicitation	monizoniai 15pc	0.00	Grade	<i>sype</i>		Orduc
ft						
T1 180.00-170.00	Single Angle	L2x2x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T7 140 00-130 00	Equal Angle	L2x2x1/4	A36	Single Angle	L2x2x3/16	A36
			(36 ksi)			(36 ksi)
T8 130.00-120.00	Single Angle	L2x2x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T9 120.00-110.00	Single Angle	L2x2x3/16	A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T10	Single Angle	L2x2x1/4	A36	Single Angle		A36
110.00-100.00			(36 ksi)			(36 ksi)
T11 100.00-90.00	Single Angle		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T12 90.00-80.00	Single Angle	L2 1/2x2 1/2x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T13 80.00-60.00	Equal Angle		A36	Double Angle	2L2x2x3/16	A36
			(36 ksi)			(36 ksi)
T14 60.00-50.00	Single Angle		A36	Double Angle	2L2x2x3/16	A36
			(36 ksi)			(36 ksi)
T15 50.00-40.00	Single Angle	L3 1/2x3 1/2x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T16 40.00-30.00	Single Angle	L3 1/2x3 1/2x1/4	A36	Double Angle	2L2x2x3/16	A36
			(36 ksi)			(36 ksi)
T17 30.00-20.00	Single Angle	L3 1/2x3 1/2x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T18 20.00-10.00	Single Angle	L3 1/2x3 1/2x1/4	A36	Double Angle	2L2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T19 10.00-0.00	Single Angle		A36	Double Angle	2L2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
ft					
T19	A36	Horizontal (1)	Single Angle	L2 1/2x2 1/2x3/16	1
10.00-0.00	(36 ksi)	Diagonal (1)	Single Angle	L2 1/2x2 1/2x3/16	1
		Sub-Horizontal	Single Angle	L3x3x5/16	1
		Hip (1)	Single Angle	L2 1/2x2 1/2x3/16	1

			Tower	Section	Geom	etry (con	t'd)	
Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor Ar	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals
ft	ft^2	in					in	in
T1 180.00-170.00	0.00	0.0000	A36 (36 ksi)	1	1	1.02	24.0000	24.0000
T2 170.00-163.57	0.00	0.0000	A36 (36 ksi)	1	1	1.02	24.0000	24.0000

T	Job	Page
<i>tnx1ower</i>	180' Lattice Tower - CSP	6 of 63
UBC Componenties	Project	Date
500 Enterprise Drive, Suite 3B	Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client	Designed by
Phone: 860-529-8882 FAX: 860-529-3991	Sprint	MCD

Tower	Gusset	Gusset	Gusset Grade	Adjust Factor	Adjust	Weight Mult	Double Angle	Double Angle
Elevation	Area	Thickness	Onober Ordae	Ac	Factor	in orgini in mini	Stitch Bolt	Stitch Bolt
	(per face))	A		Spacing	Spacing
	u y						Diagonals	Horizontals
ft	ft^2	in					in	in
T3	0.00	0,0000	A36	1	1	1,02	24.0000	24.0000
163,57-159.05			(36 ksi)					
T4	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
159.05-154.52			(36 ksi)					
T5	0.00	0.0000	A36	1	1	1.02	24,0000	24.0000
154.52-150.00			(36 ksi)					
T6	0.00	0,0000	A36	1	1	1.02	24.0000	24.0000
150.00-140.00			(36 ksi)					
T7	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
140.00-130.00			(36 ksi)					
T8	0.00	0,0000	A36	1	1	1,02	24.0000	24,0000
130.00-120.00			(36 ksi)					
T9	0.00	0,0000	A36	1	1	1.02	24.0000	24.0000
120.00-110.00			(36 ksi)					
T10	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
110.00-100.00			(36 ksi)					
T11	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
100.00-90.00			(36 ksi)					
T12	0.00	0.0000	A36	1	1	1.02	24,0000	24.0000
90.00-80.00			(36 ksi)					
T13	0,00	0.0000	A36	1	1	1.02	24.0000	24,0000
80,00-60.00			(36 ksi)					
T14	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
60.00-50.00			(36 ksi)					
T15	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
50.00-40.00			(36 ksi)					
T16	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
40.00-30.00			(36 ksi)					
T17	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
30.00-20.00			(36 ksi)					
T18	0.00	0.0000	A36	1	1	1.02	24.0000	24.0000
20.00-10.00			(36 ksi)					
T19 10.00-0.00	0,00	0,0000	A36	1	1	1.02	24,0000	24,0000
	~	14	(36 ksi)			~		

						K Fa	ctors ¹			
Tower Elevation	Calc K	Calc K	Legs	X Brace	K Brace	Single Diags	Girts	Horiz.	Sec. Horiz	Inner Brace
	Single	Solid		Diags	Diags	0				
	Angles	Rounds		X	X	Х	Х	Х	Х	Х
ft	0			Y	Y	Y	Y	Y	Y	Y
T1	Yes	No	1	1	1	1	1	1	1	31
180.00-170.00				1	1	1	1	1	1	1
T2	Yes	No	1	1	1	1	1	1	1	1
170.00-163.57				1	1	1	1	1	1	1
T3	Yes	No	1	1	1	1	1	1	1	1
163.57-159.05				1	1	1	1	1	1	1
Τ4	Yes	No	1	1	1	1	1	T	1	1
159,05-154.52				1	1	1	1	1	1	1
T5	Yes	No	1	1	1	1	1	1	1	1
54.52-150.00				1	1	1	1	1	ũ –	1
T6	Yes	No	1	1	1	1	1	1	1	1
150 00-140 00				1	1	1	1	1	1	1

Anna Tanana an	Job	Page
<i>thx1ower</i>	180' Lattice Tower - CSP	7 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

			K Factors'											
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz	Sec. Horiz	Inner Brace				
	Angles	Rounds		X	X	Х	Х	Х	Х	X				
ft				Y	Y	Y	Y	Y	Y	Y				
T7	Yes	No	1		1	1	Ŧ	1	1	1				
140.00-130.00				1	1	1	1	1	1	1				
T8	Yes	No	1	1	1	1	1	1	1	1				
130.00-120.00				1	1	1	Î	1	1	1				
Т9	Yes	No	1	1	1	1	1	1	1	1				
120.00-110.00				1	1	1	1	1	1	1				
T10	Yes	No	1	1	1	1	1	1	1	1				
110.00-100.00				1	1	1	1	1	1	1				
T11	Yes	No	1	1	1	1	1	Ť	1	1				
100.00-90.00				1	1	1	1	1	1	1				
T12	Yes	No	1	1	1	1	1	1	1	1				
90.00-80.00				1	1	1	1	1	1	1				
T13	Yes	No	1	1	1	1	1	1	1	1				
80.00-60.00				1	1	1	1	1	1	1				
T14	Yes	No	1	1	1	1	1	1	1	1				
60.00-50.00				1	1	1	1	1	1	1				
T15	Yes	No	1	1	1	1	ĩ	1	1	1				
50.00-40.00			12	1	1	1	1	1	1	1				
T16	Yes	No	1	i i	1	1	Î	î	1	1				
40.00-30.00				1	1	1	1	1	1	1				
T17	Yes	No	ĩ	1	1	î	1	ĩ	í	1				
30.00-20.00	1 00	110		1	1	1	1	î	i	1				
T18	Yes	No	1	1	1	1	i	i	1	1				
20.00-10.00			1 4 11	i	î	1	î	î	ī	1				
T19	Yes	No	1	į	1	1	i	i	i	i				

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation	Leg		Diagonal		Top G	Top Girt		Bottom Girt		Mid Girt		rizontal	Short Horizontal	
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
-							in		in		10		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
180.00-170.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
170.00-163.57				_										
Т3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
163.57-159.05	0.0000	0.75	0.0000	0.95	0.0000	0.55	0.0000	0.75	0.0000	0.55	0.0000		0.0000	0.55
14	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
159.05-154.52	0.0000	0.75	0.0000	0.76	0.0000	0.76	0.0000	0.75	0.0000	0.75	0.0000	0.76	0.0000	0.76
15	0.0000	0.75	0.0000	0,75	0.0000	0.75	0.0000	0,75	0.0250	0.75	0.0000	0,75	0.0000	0.75
104.02-100.00 T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
150.00 140.00	0.0000	0.75	0.0000	0.75	0.0000	0,75	0,0000	0.75	0.0250	0.75	0.0000	0.75	0.0000	0.75
T7	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0:0000	0.75	0.0000	0.75
140.00-130.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0250	0.75	0.0000	0.75	0.0000	0.75
T8	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
130.00-120.00	0.0000	0.75		0		0.75	0.0000	000	0,0200	0.112		0.75		0.70

tnxTower	Job 180' Lattice Tower - CSP	Page 8 of 63		
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14		
	Client	Designed by MCD		

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T9	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
120.00-110.00 T10 110.00-100.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
T11	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
100.00-90.00	010000	017.0												-3
T12	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
90.00-80.00														
T13	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0,0000	0.75	0,0000	0.75
80.00-60.00 T14 60.00-50.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
T15	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
50.00-40.00														
T16	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
40 00-30 00)												
T17	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
30.00-20.00	0.0000	0.76	0.0000	0.76	0.0000	0.75	0.0000	0.76	0.000	0.76	0.0000	0.75	0.0000	0.75
20.00.10.00	0.0000	0.75	0,0000	0,75	0.0000	0,75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75
T19 10.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.6250	0.75	0.0000	0.75	0.0000	0.75

Tower	Connection Offsets													
Elevation		Diag	gonal		K-Bracing									
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.						
	Тор	Тор	Bot	Bot.	Тор	Тор	Bot.	Bot,						
ft	in	າ້ກ	in	in	in	in	in	in						
T1	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
180.00-170.00														
T2	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
170.00-163.57														
Т3	0.0000 3.0000		0.0000 3.0000		0.0000	0.0000	0.0000	0,0000						
163.57-159.05														
Τ4	0.0000	3.0000	0.0000	3.0000	0,0000 0,0000		0.0000	0.0000						
159.05-154.52														
T5	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
154.52-150.00														
Т6	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
150.00-140.00														
T7	0.0000	3.0000	0.0000	3.0000	0,0000	0.0000	0.0000	0.0000						
140.00-130.00														
Т8	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
130.00-120.00														
T9	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
120.00-110.00														
T10	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
110.00-100.00														

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Lattice Tower - CSP	9 of 63
Project		Date
	Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Client		Designed by
	Sprint	MCD

Tower	Connection Offsets												
Elevation		Diag	gonal		K-Bracing								
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz,					
	тор	тор	Bol.	BOI.	Top	Тор	BOL	BOI.					
ft	ĩn	in	ាំរា	ĩn	in	in	in	in					
T11	0.0000	3.0000	0.0000	3,0000	0,0000	0.0000	0.0000	0.0000					
100.00-90.00													
T12	0,0000 3,0000		0.0000	0.0000 3.0000		0.0000	0.0000	0.0000					
90.00-80.00													
T13	0.0000	0.0000 3.0000		0.0000 3.0000		0.0000 0.0000		0.0000					
80.00-60.00													
T14	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000					
60.00-50.00													
T15	0.0000	3.0000	0.0000 3.0000		0.0000	0.0000	0.0000 0.0000						
50.00-40.00													
T16	0,0000	3,0000	0,0000	3,0000	0.0000 0,0000		0,0000	0,0000					
40.00-30.00													
T17	0,0000	3.0000	0.0000	3,0000	0.0000	0.0000 0.0000		0.0000					
30.00-20.00													
T18	0.0000	3.0000	0.0000	0.0000 3.0000		0.0000 0.0000		0.0000					
20.00-10.00													
T19 10.00-0.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000					

Tower	Leg	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal		
Elevation	Connection															
ft	Туре															
		Bolt Size	No.	Bolt Size	No	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No	Bolt Size	No.	
		in		in		in		in		in		in		in		
T1	Flange	0.7500	0	0.6250	2	0.6250	2	0.6250	0	0.6250	2	0,6250	0	0.6250	2	
180.00-170.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
Т2	Flange	0.7500	0	0.6250	2	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	
170.00-163.57		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
Т3	Flange	0.7500	0	0.6250	2	0.6250	2	0.6250	0	0,6250	0	0.6250	0	0.6250	0	
163.57-159.05		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
T4	Flange	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	
159.05-154.52		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
T5	Flange	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	
154.52-150.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
Т6	Flange	0.7500	0	0.6250	2	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	
150.00-140.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
Τ7	Flange	0.7500	0	0.6250	2	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	
140.00-130.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
Т8	Flange	0.7500	0	0,6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	2	
130.00-120.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
Т9	Flange	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	2	0.6250	2	
120.00-110.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
T10	Flange	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	2	
110.00-100.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
T11	Flange	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	2	0.6250	0	
100.00-90.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
T12	Flange	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	2	
90.00-80.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
T13	Flange	0.7500	0	0.6250	2	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	
80.00-60.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X		
	Job	Page														
--	--	---------------------------														
tnxlower	180' Lattice Tower - CSP	10 of 63														
URS Corporation	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14														
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD														

Tower	Leg	Leg		Diago	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T14	Flange	0.7500	0	0.6250	2	0_6250	0	0.6250	0	0.6250	2	0.6250	2	0.6250	0
60,00-50,00		A325X		A325X		A325X		A325N		A325X		A325X		A325X	
T15	Flange	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	2
50.00-40.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X	
T16	Flange	0.7500	0	0.6250	2	0.6250	2	0.0000	0	0.6250	0	0.6250	0	0.6250	2
40.00-30.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X	
T17	Flange	0,7500	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	2
30.00-20.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X	
T18	Flange	0.7500	0	0.6250	2	0,6250	0	0.6250	0	0.6250	2	0.6250	2	0.6250	2
20.00-10.00		A325X		A325X		A325X		A325N		A325X		A325X		A325X	
T19 10.00-0.00	Flange	0,7500	0	0,6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	2	0,6250	0
		A325X		A325X		A325X		A325N		A325X		A325X		A325X	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight	
	or	Shield	Туре		Offset	Offset		Per	Spacing	Diameter			
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf	
1 1/4	А	Yes	Ar (CfAe)	126.00 - 6.00	0.0000	0.33	12	6	1,5500	1.5500		0.66	Î
(T-Mobile)													
WEP65	D	Yes	Af (CfAe)	180.00 - 6.00	-12.0000	0.45	3	1	1.5836	1.5836	5.1284	0.53	
(5,36,59)													
WEP65	D	Yes	Ar (CfAe)	130.00 - 6.00	-10.0000	0.37	1	1	1.5836	1.5836		0.53	
(35)													
1/2	D	No	Ar (Leg)	180.00 - 6.00	0.0000	0.1	2	1	0.5800	0.5800		0.25	
(67)								1.47					
1/2	D	No	Ar (Leg)	160.00 - 6.00	0.0000	0.1	2	1	0.5800	0.5800		0.25	
(66)	_	~ -					-	-					
7/8	D	Yes	Ar (CIAe)	116.00 - 6.00	-10,0000	0.38	2	2	1.1100	1.1100		0.54	
(9,29)	D	Vac	A = (CfA =)	75.00 6.00	10.0000	0.20	4	1	0 5800	0.5000		0.25	
(12)	D	res	AI (CIAE)	75.00 - 0.00	-10.0000	0.39	(ð)		0.2800	0.5800		0.25	
(15)	D	Var	$A_{\rm Tr}(CfA_{\rm o})$	85.00 6.00	10.0000	0.20	1	i i	1 1 1 0 0	1 1 1 0 0		0.54	
(26)	D	1 65	AI (CIAC)	85.00 - 0.00	-10.0000	0.39	<u>т</u>	1	1.1100	1.1100		0,04	
1/2	D	Yes	Ar (CfAe)	47.00 - 6.00	-10.0000	0.4	1	1	0.5800	0.5800		0.25	
(68)	10	100		11.00 0100	10100000	011			0.2000	0.0000		0-200	
1/2	А	Yes	Ar (CfAe)	56.00 - 6.00	0.0000	0.49	1	1	0.5800	0.5800		0.25	
(56)													
1 5/8	D	Yes	Ar (CfAe)	180.00 - 6.00	-12.0000	0.43	4	2	1.9800	1.9800		1.04	
(1,2,3,6)			. ,										
7/8	D	Yes	Ar (CfAe)	180.00 - 6.00	-12.0000	0.41	2	2	1.1100	1.1100		0.54	
(4,7)													
7/8	D	Yes	Ar (CfAe)	150.00 - 6.00	-12.0000	0.4	2	2	1.1100	1.1100		0.54	
(28,57)													
7/8	D	Yes	Ar (CfAe)	120.00 - 6.00	-12.0000	0.39	5	5	1.1100	1.1100		0.54	
(8,30,31,33,55													
)				101.00 6.00	10 0000	0.4	72	2	1 0 0 0 0				
1 5/8	D	Yes	Ar (CtAe)	101-00 - 6.00	-12.0000	0.4	1	1	1,9800	1,9800		1.04	
(62)	D	V	A (C16A)	170.00 (.00	12 0000	0.20	2	2	1.1100	1.1100		0.54	
//8	D	Yes	Ar (CJAe)	1/0.00 - 6.00	-12.0000	0.38	3	5	1.1100	1 1100		0.54	
7/8	D	Vac	Ar (CfAa)	100.00 6.00	8 0000	0.41	2	2	1-1100	1 1100		0.54	
(11.32)	D	1 62	AI (CIAC)	100.00 - 0.00	-0.0000	0.41	2	7	121100	1.1100		0.34	
1 5/8	D	Ves	$\Delta r (Cf \Delta e)$	160.00 - 6.00	-10.0000	0.4	3	3	1-0800	1.0800		1-04	
1 3/0	D	1 62	AI (CIAC)	100.00 - 0.00	-10.0000	0.4	2	د	1.2000	1.9000		1-04	

AnnaTanan	Job	Page
<i>inx1ower</i>	180' Lattice Tower - CSP	11 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone; 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing	Width or Diameter	Perimeter	Weight
(63 64 65)	Deg			<i></i>		[1/uc 1/i/]		Ron		1/1		<i>P</i> 9
1 5/8	С	Yes	Ar (CfAe)	163.00 - 6.00	-8.0000	-0.45	12	6	1.9800	1.9800		1.04
(AT&T)			· · · ·									
3" Flex	С	Yes	Ar (CfAe)	163.00 - 6.00	-3,0000	-0.38	1	1	3.0000	3.0000		3.00
Conduit w 3												
Fiber & 6 DC												
(AT&T)												
RFS Hybriflex	А	Yes	Ar (CfAe)	106.00 - 6.00	0.0000	0.43	3	3	1.0900	1.0900		0.37
(3 Sector)												
(Sprint)												
1 5/8"	А	Yes	Ar (CfAe)	126.00 - 6,00	0.0000	0.27	2	2	1.6250	1.6250		0.21
Hybriflex												
(T-Mobile)												
ALU Fiber	А	Yes	Ar (CfAe)	126.00 - 6.00	0.0000	0.46	1	1	0.7000	0,7000		0.12
Optic Cable												
(Sprint)									_			

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
T1	180.00-170.00	A	0,483	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
		D	5.633	1.320	0.000	0.000	0.07
T2	170.00-163.57	А	0.311	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
		D	5.404	0.848	0.000	0.000	0.06
Т3	163,57-159.05	А	0.265	0.000	0.000	0.000	0.00
		В	0.000	0,000	0.000	0.000	0.00
		С	4.900	0.000	0.000	0.000	0.06
		D	4,321	0.597	0.000	0.000	0.04
Τ4	159.05-154.52	А	0.437	0.000	0.000	0.000	0.00
		В	0.000	0,000	0.000	0.000	0.00
		С	5.610	0.000	0.000	0.000	0.07
		D	6.262	0.597	0.000	0.000	0.06
Т5	154.52-150.00	А	0.437	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	5.610	0.000	0.000	0.000	0.07
		D	6.262	0.597	0,000	0,000	0.06
T6	150.00-140.00	A	0.967	0,000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	15.692	1.320	0.000	0.000	0.14
Τ7	140.00-130.00	А	0.967	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	15.692	1.320	0.000	0.000	0.14
Т8	130.00-120.00	А	7.592	0,000	0.000	0.000	0.05
		В	0.000	0.000	0.000	0.000	0.00
N.		С	12.400	0.000	0.000	0.000	0.15
)		D	17.011	1.320	0,000	0.000	0.14
T9	120.00-110.00	А	12.008	0.000	0.000	0.000	0.08
		В	0.000	0.000	0,000	0.000	0.00
		С	12,400	0.000	0.000	0.000	0.15

tnxTower	Job	180' Lattice Tower - CSP	Page 12 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 F4X: 860-529-3991	Client	Sprint	Designed by MCD

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	fl^2	ft^2	ft^2	K
		D	22.746	1.320	0.000	0,000	0.18
T10	110.00-100.00	А	13.643	0.000	0.000	0,000	0.09
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	23.651	1.320	0.000	0.000	0.18
T11	100.00-90.00	А	14,733	0.000	0.000	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	26.986	1.320	0.000	0.000	0.20
T12	90.00-80.00	А	14,733	0.000	0.000	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	12,400	0.000	0.000	0.000	0.15
		D	27.449	1.320	0.000	0.000	0.20
T13	80.00-60.00	А	29.467	0.000	0.000	0.000	0.19
		В	0.000	0.000	0.000	0.000	0.00
		С	24.800	0.000	0.000	0,000	0.31
		D	56.548	2.639	0.000	0.000	0.42
T14	60.00-50.00	А	15.023	0.000	0.000	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	28.395	1.320	0.000	0,000	0.21
T15	50.00-40.00	А	15.217	0.000	0.000	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
)		D	28.733	1.320	0.000	0.000	0.21
T16	40.00-30.00	А	15.217	0.000	0.000	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	28.878	1.320	0.000	0.000	0.21
T17	30.00-20.00	А	15.217	0.000	0.000	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	28.878	1.320	0.000	0.000	0.21
T18	20.00-10.00	А	15.217	0.000	0.000	0.000	0.10
		В	0.000	0.000	0,000	0,000	0.00
		С	12.400	0.000	0.000	0.000	0.15
		D	28.878	1.320	0.000	0.000	0.21
T19	10.00-0.00	А	6.087	0.000	0.000	0.000	0.04
		В	0.000	0.000	0.000	0.000	0.00
		С	4.960	0.000	0.000	0.000	0.06
		D	11.551	0.528	0.000	0.000	0.08

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	AR	AF	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
T1	180.00-170.00	А	0.500	1.317	0.000	0.000	0.000	0,00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
		D		9.800	1.875	0.000	0.000	0.21
T2	170.00-163.57	А	0.500	0.846	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
		D		9.689	1,205	0.000	0.000	0,16
Т3	163.57-159.05	А	0.500	0.721	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		7.205	0.000	0.000	0.000	0.14

500 FAX: 860-529-3991

T.	Job		Page
tnx I ower		180' Lattice Tower - CSP	13 of 63
URS Corporation	Project		Date
) Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 800-529-8882 FAX: 860-520-3001		Sprint	MCD

Tower	Tower	Face	Ice	A _R	AF	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	c.2	c.2	In Face	Out Face	77
-	jt	Leg	111	<u>jr</u>	<i>jt</i> [*]	<u>jt</u> -	ft	K
T 4	150 05 154 53	D	0.500	/.654	0.848	0,000	0.000	0.12
14	139.05-154.52	A	0.500	1.191	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
				0.249	0.000	0.000	0.000	0,16
Τ 5	154 52 150 00		0.500	1 101	0.040	0.000	0.000	0.10
15	154,52-150.00	D	0.500	0.000	0.000	0.000	0.000	0.00
		D C		0.000	0.000	0.000	0.000	0.00
		D		10.797	0.000	0.000	0.000	0.10
Τ6	150.00 140.00	10	0.500	2 633	0.040	0.000	0.000	0.10
10	150.00-140.00	B	0,500	0.000	0.000	0.000	0.000	0.00
		C		18 233	0.000	0.000	0.000	0.36
		n		27 358	1.875	0.000	0.000	0.38
Τ7	140.00-130.00	Δ	0.500	2 633	0.000	0.000	0.000	0.00
17	140,00-150.00	B	0,500	0.000	0.000	0.000	0.000	0.00
		C		18 233	0,000	0.000	0.000	0.36
		n		27 358	1 875	0.000	0.000	0.38
Τ8	130.00-120.00	Δ	0.500	13 758	0.000	0.000	0.000	0.16
10	150.00 120.00	B	0,000	0.000	0.000	0.000	0.000	0.00
		Č		18 233	0.000	0.000	0.000	0.36
		D		29 511	1.875	0,000	0.000	0.40
Т9	120.00-110.00	A	0.500	21 175	0.000	0.000	0.000	0.27
	120100 110100	B	0.000	0.000	0.000	0.000	0.000	0.00
		ĉ		18.233	0.000	0.000	0.000	0.36
)		D		40.413	1.875	0.000	0.000	0.49
T10	110.00-100.00	Ă	0.500	24.310	0.000	0.000	0.000	0.29
	110100 100100	B	01000	0.000	0:000	0.000	0.000	0.00
		Ĉ		18.233	0.000	0.000	0.000	0.36
		D		42.068	1.875	0.000	0.000	0.51
T11	100.00-90.00	Ā	0.500	26.400	0.000	0.000	0.000	0.31
		В		0.000	0.000	0.000	0-000	0.00
		C		18.233	0.000	0.000	0.000	0.36
		D		47.820	1.875	0.000	0.000	0.56
T12	90.00-80.00	A	0.500	26,400	0.000	0.000	0.000	0.31
		В		0.000	0.000	0.000	0.000	0.00
		C		18,233	0.000	0.000	0.000	0.36
		D		48.699	1.875	0.000	0.000	0.57
T13	80.00-60.00	А	0.500	52.800	0.000	0.000	0.000	0.62
		В		0.000	0.000	0.000	0.000	0.00
		С		36.467	0.000	0.000	0.000	0.72
		D		101.131	3,750	0.000	0.000	1.16
T14	60,00-50,00	A	0.500	27,190	0.000	0.000	0.000	0.31
		В		0.000	0.000	0.000	0.000	0.00
		С		18,233	0.000	0.000	0.000	0.36
		D		50.895	1.875	0.000	0.000	0.58
T15	50.00-40.00	А	0.500	27.717	0.000	0.000	0.000	0.32
		В		0.000	0.000	0.000	0.000	0.00
		С		18.233	0.000	0.000	0.000	0.36
		D		51.816	1.875	0.000	0.000	0.59
T16	40.00-30.00	А	0.500	27.717	0.000	0.000	0.000	0.32
		В		0.000	0.000	0.000	0.000	0.00
		С		18.233	0.000	0.000	0.000	0.36
		D		52,211	1.875	0.000	0.000	0.59
T17	30.00-20.00	А	0.500	27.717	0.000	0.000	0.000	0.32
		В		0.000	0.000	0.000	0.000	0.00
		С		18.233	0.000	0.000	0.000	0.36
		D		52.211	1.875	0.000	0.000	0.59
T18	20.00-10.00	A	0.500	27,717	0.000	0.000	0.000	0.32
		В		0.000	0.000	0.000	0.000	0.00
		С		18.233	0.000	0.000	0.000	0.36
		D		52.211	1.875	0.000	0.000	0.59

tnxTower	Job	Page 14 of 63	
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Tower	Tower	Face	Ice	A _R	AF	$C_A A_A$	$C_{\Lambda}A_{\Lambda}$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	-
	ft	Leg	in	ft^2	ft ²	ft^2	ft^2	K
T19	10,00-0,00	А	0.500	11.087	0.000	0.000	0.000	0.13
		В		0.000	0.000	0.000	0.000	0.00
		С		7.293	0.000	0.000	0.000	0.14
		D		20.885	0.750	0.000	0.000	0.24

Feed Line Shielding

Section	Elevation	Face	A_R	A_R	A_F	A_F
	0		<i>c</i> ,2	Ice	c2	Ice
	11		<i>jt</i> ²		ft [*]	ft
TI	180.00-170.00	A	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.000	0,000	0.000
		D	0.000	0.522	0.740	1.216
Т2	170.00-163.57	A	0.000	0.000	0.000	0,000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000
		D	0.000	0.521	0.719	1.237
Т3	163.57-159.05	А	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.462	0.628	0.924
		D	0.000	0.507	0.597	1.014
T4	159.05-154.52	А	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.370	0.630	0.926
		D	0.000	0.475	0.721	1.187
T5	154,52-150.00	A	0.000	0,000	0.000	0,000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.365	0.620	0.912
		D	0,000	0.467	0.710	1.168
T6	150.00-140.00	А	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.888	1.509	2.219
		D	0.000	1.309	1.953	3.271
T7	140.00-130.00	А	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.788	1,453	2.137
		D	0.000	1.162	1.880	3.150
Т8	130.00-120.00	А	0.000	0.374	0.613	1,029
		В	0.000	0.000	0.000	0.000
		С	0.000	0.613	1.147	1.686
		D	0.000	0.976	1.606	2.685
Т9	120.00-110.00	А	0.000	0.758	1.216	2.042
		В	0.000	0.000	0.000	0.000
		С	0.000	0.745	1.366	2.008
		D	0.000	1.632	2.544	4.398
T10	110.00-100.00	А	0.000	0.686	1.247	2.132
		В	0.000	0.000	0.000	0.000
		С	0,000	0.577	1_219	1.793
		D	0.000	1.317	2.360	4.089
T11	100.00-90.00	А	0.000	0.735	1.376	2.375
		В	0.000	0.000	0.000	0.000
		С	0.000	0.564	1.239	1.822
		D	0.000	1.464	2.732	4.730
T12	90.00-80.00	А	0.000	0.720	1.346	2.323
		В	0.000	0.000	0.000	0.000
		С	0.000	0.553	1 212	1.782

· T	Job		Page
<i>tnx1ower</i>		180' Lattice Tower - CSP	15 of 63
UPC Comparation	Project		Date
500 Enterprise Drive, Suite 3B	-	Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section	Elevation	Face	A_R	AR	A_F	A_F
				Ice		Ice
	ft		ft^2	ft^2	ft^2	ft^2
		D	0.000	1.461	2.717	4.713
T13	80.00-60.00	А	0.000	1.206	1.747	3.016
		В	0.000	0.000	0.000	0.000
		С	0.000	0,925	1.573	2.314
		D	0.000	2,542	3.633	6.356
T14	60.00-50.00	А	0.000	0.710	0.958	1.673
		В	0.000	0.000	0.000	0.000
		С	0.000	0.527	0.845	1.242
		D	0.000	1.458	1.959	3.435
T15	50.00-40.00	А	0.000	0.717	1.137	2.001
		В	0.000	0.000	0.000	0.000
		С	0.000	0.521	0.989	1.455
		D	0.000	1.467	2,320	4.095
T16	40.00-30.00	А	0.000	0.918	1.364	2.400
		В	0,000	0.000	0.000	0.000
		С	0.000	0.667	1.186	1.745
		D	0.000	1.894	2.797	4.950
T17	30.00-20.00	А	0.000	0.703	1.117	1.965
		В	0.000	0.000	0.000	0.000
		С	0.000	0.511	0.972	1.429
		D	0.000	1.449	2.290	4.053
T18	20.00-10.00	А	0,000	0.906	1.346	2.369
		В	0.000	0.000	0.000	0.000
		С	0.000	0.658	1.171	1.722
		D	0.000	1.868	2.760	4.885
T19	10.00-0.00	А	0.000	0.425	0.604	1.064
		В	0,000	0.000	0.000	0.000
		С	0.000	0.309	0.526	0.773
		D	0.000	0.878	1.240	2.194

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CPX	CP_Z
				Ice	Ice
	ft	in	in	in	īn
T1	180.00-170.00	-3.3826	2.7685	-3.8531	3.1934
T2	170.00-163.57	-3,6578	3.0306	-4.4392	3.7152
T3	163.57-159.05	-0.0465	-0.7044	-0.6833	-0.1357
Τ4	159.05-154.52	-0.8855	0.0638	-1.7348	0.8176
T5	154.52-150.00	-0.8792	0.1478	-1.7609	0.9417
Т6	150.00-140.00	-1.4265	0.8104	-2.4720	1.7730
T7	140.00-130.00	-1.3634	0.9668	-2.4818	2.0106
Т8	130.00-120.00	-4.9685	-0.2959	-6.7865	0.5263
Т9	120.00-110.00	-8,1539	0.5717	-10.4982	1.7164
T10	110.00-100.00	-9.7412	0.4492	-12.7005	1.5964
T11	100.00-90.00	-10.4376	1.2946	-13.8446	2.5397
T12	90.00-80.00	-11.0751	1.6543	-14.6978	3.0477
T13	80.00-60.00	-13.4332	2.5084	-17.6794	4.3543
T14	60.00-50.00	-14.1222	2.6899	-18.5584	4.5244
T15	50.00-40.00	-14.0874	2.8092	-18.8530	4.7382
T16	40.00-30.00	-13.9195	2.9324	-18.3797	4.8481
T17	30.00-20.00	-15,4507	3.3467	-20 6102	5.5396
T18	20.00-10.00	-14.7660	3.2923	-19.5210	5.3704
T19	10.00-0.00	-7.1714	1.6290	-9.8467	2.7506

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
r		180' Lattice Tower - CSP	16 of 63
	Project		Date
uite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
67 82 1	Client	Sprint	Designed by MCD

Discrete Tower Loads Description Face Offset Offsets: Azimuth Placement $C_A A_A$ $C_A A_A$ Weight HorzAdjustment Frontor Туре Side Lateral Leg Vert 0 ft ft2 _ft² Κ ft ft ft 6' Standoff В 0.0000 180.00 4.97 4.97 0.07 From Leg 3.00 No Ice 1/2" Ice (CSP) 0.00 6.12 6.12 0.13 0.00 From Leg 0.0000 OGT9-806 В 6.00 180.00 No Ice 2.15 2.15 0.02 (CSP - 1) 0.00 1/2" Ice 3.25 3.25 0.03 0.00 3" Dia x 15' Omni D From Leg 6.00 0.0000 180.00 No Ice 4.50 4.50 0.04 (CSP - 2) 0.00 1/2" Ice 6.00 6.00 0.07 6.00 6' Standoff 4.97 4.97 D From Leg 3.00 0.0000 180.00 No Ice 0.07 (CSP) 0.001/2" Ice 6.12 6.12 0.13 0.00 OGT9-806 В 0.0000 180.00 0.02 From Leg 6.00 No Ice 2.15 2.15 (CSP - 6) 0.00 1/2" Ice 3.25 3.25 0.03 0.00 3" Dia x 15' Omni D From Leg 6.00 0.0000 180.00 No Ice 4.50 4.50 0.04 (CSP - 3) 0.001/2" Ice 6.00 6.00 0.07 6.00 С 6' Standoff 3.00 0.0000180.00 No Ice 4.97 4,97 0.07 From Leg 0.00 1/2" Ice (CSP) 6.12 6.12 0.13 0.00 7' Whip С 0.0000 180.00 1.74 0.04 From Leg 3.00 No Ice 1.74 (CSP - 4) 0.00 1/2" Ice 2.60 2.60 0.05 0.00 10'6"x4" Pipe Mount 0.0000 180.00 0.50 4.72 4.72 0.11 A From Leg No Ice (CSP) 1/2" Ice 0.15 0.00 5.62 5.62 0.00 10' Dipole 6.00 0.0000 180.00 4.00 0.05 А From Leg No lce 4.00 0.00 1/2" Ice (CSP - 7) 6.00 6.00 0.07 0.00 ТМА С 2.00 0.0000 180.00 1.06 0.45 0.02 From Leg No Ice (CSP - 67) 0.00 1/2" Ice 0.57 0.03 1.21 0.00 10'6"x4" Pipe Mount 0.0000 176.00 4.72 А From Leg 0.50 No lce 4.72 0.11 (CSP) 0.00 1/2" Ice 5.62 5,62 0.15 0.00 10'6"x4" Pipe Mount В From Leg 0.50 0.0000 176.00 No Ice 4.72 4.72 0.11 1/2" Ice (CSP) 0.00 5.62 5.62 0.15 0.0010'6"x4" Pipe Mount С From Leg 0.50 0.0000 176.00 No Ice 4.72 4.72 0.11 1/2" Ice (CSP) 0.00 5.62 5.62 0.15 0.00 10'6"x4" Pipe Mount 0.0000 4.72 D From Leg 0.50 176.00 No Ice 4.72 0.11 (CSP) 0.00 1/2" Ice 5.62 5.62 0.15 0.00 6' Standoff D From Leg 3.00 0.0000 172.00 No Ice 4.97 4.97 0.07 (CSP) 0.00 1/2" Ice 6.12 6.12 0.13 0.00 6' Standoff С From Leg 3.00 0.0000 172.00 No Ice 4.97 4.97 0.07 1/2" Ice (CSP) 0.00 0.13 6.12 6.12 0.0020' 8 Bay Di-Pole В From Leg 6.00 0.0000 170.00 No Ice 4.00 4.00 0.06

tnxTower	dof	180' Lattice Tower - CSP	Page 17 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert ft ft	o	ft		ft^2	_ft ²	K
			ft						
(FCP - 12)			0.00			1/2" Ice	6.00	6.00	0.10
4' Omni	С	From Leg	6.00	0.0000	170.00	No Ice	0.53	0.53	0.03
(CSP - 10)	U	TTOM LOB	0.00	0.0000	110100	1/2" Ice	0.80	0.80	0.10
· · · · ·			0.00						
4' Omni	D	From Leg	0.50	0,0000	169.00	No Ice	0.53	0.53	0.03
(CAP - 25)			0.00			1/2" Ice	0.80	0.80	0,10
T-Frame	Δ	From Leg	0.00	0.0000	163.00	No Ice	10.20	10.20	0.40
(AT&T)		110III Leg	0.00	0.0000	105.00	1/2" Ice	16.20	16.20	0.60
			0.00						
T-Frame	В	From Leg	0.50	0.0000	163.00	No Ice	10.20	10.20	0.40
(AT&T)			0.00			1/2" Ice	16.20	16.20	0.60
T. Frame	C	From Lag	0,00	0.0000	163.00	No lee	10.20	10.20	0.40
(AT&T)	C	From Leg	0.00	0.0000	105.00	1/2" Ice	16.20	16.20	0.40
(11001)			0.00				10180	1997	1000
7770	А	From Face	2.00	0.0000	163.00	No Ice	10.03	5.60	0.02
(AT&T)			4.00			1/2" Ice	10.61	6,15	0.07
(2) I CD 210		E	0.00	0.0000	1 (2 00	NL L.	0.22	0.12	0.01
(2) LGP 219nn $(\Delta T \& T)$	A	From Face	2,00	0.0000	103.00	1/2" Ice	0.23	0.12	0.01
(//10/)			0.00			1/2 100	0.50	0.17	0.01
(2) LPG21401 TMA	А	From Face	2,00	0,0000	163.00	No Ice	0.95	0.37	0.02
(AT&T)			4.00			1/2" Ice	1.09	0.48	0.02
6500			0.00	0.0000	1 (2 00		10.00	5 (0	0.00
7770 (ATE)	A	From Face	0.50	0.0000	163.00	No Ice	10.03	5.60	0.02
$(A1\alpha 1)$			-4.00			1/2 100	10.01	0.15	0.07
(2) LGP 219nn	А	From Face	0.50	0.0000	163.00	No Ice	0.23	0.12	0.01
(AT&T)			-4.00			1/2" Ice	0.30	0.17	0.01
			0.00						
T19-08BP111-001 TMA	A	From Face	0.50	0.0000	163.00	No Ice	0.64	0.52	0.02
$(A \mid \& I)$			-4.00			1/2 Ice	0.76	0.02	0.02
P65-16-XLH-RR	А	From Face	1.50	0.0000	163.00	No Ice	8.40	4.70	0.06
(AT&T)			0.00			1/2" Ice	8.95	5.15	0.11
			0.00						
(2) RRU	A	From Leg	1.50	0.0000	163.00	No Ice	3.79	1.02	0.06
(A I & I)			0.00			1/2" Ice	4.10	1.23	0.08
avcan DC6-48-60-18-8F	А	From Leg	0.50	0.0000	163.00	No Ice	1.27	1.27	0-05
C Power Surge Protection		11000 2008	0.00	0.0000		1/2" Ice	1.46	1.46	0.07
(AT&T)			0.00						
7770	В	From Face	0.50	0.0000	163.00	No Ice	10.03	5.60	0.02
(AT&T)			4.00			1/2" Ice	10.61	6.15	0.07
(2) LGP 219nn	B	From Face	0.00	0.0000	163.00	No Ice	0.23	0.12	0.01
(AT&T)	U	. 101111 000	4.00	0.0000	105.00	1/2" Ice	0.30	0.17	0.01
~ - /			0.00						
(2) LPG21401 TMA	В	From Face	0.50	0.0000	163.00	No Ice	0.95	0.37	0.02
(AT&T)			4.00			1/2" lce	1.09	0.48	0.02
7770	P	From Face	0.00	0.0000	163-00	No Ice	10.03	5.60	0.02
(AT&T) =	ы	From Face	-4-00	0.0000	103-00	1/2" Ice	10.61	6.15	0.02
(0.00						
(2) LGP 219nn	В	From Face	0.50	0.0000	163.00	No Ice	0.23	0.12	0.01

 \bigcirc

T	Job		Page
tnx I ower	_	180' Lattice Tower - CSP	18 of 63
	Project		Date
UKS Corporation		Wilton Connecticut (TW/S 015)	11.00.01 05/14/14
500 Enterprise Drive, Suite 3B		willon, Connecticut (1993-015)	11.06.21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882		Sprint	Decigned by
FAX: 860-529-3991		opinit	I MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vort						
			ft	0	ft		ft^2	ft^2	K
			ft		8		0°	1	
(AT&T)			-4.00			1/2" Ice	0.30	0.17	0.01
			0,00	0.0000	1 (0 0 0		0.44		0.00
TT19-08BP111-001 TMA	х В	From Face	0.50	0.0000	163.00	No Ice	0.64	0.52	0.02
$(A \mid \& I)$			-4.00			1/2" Ice	0.76	0.62	0.02
P65-16-XLH-RR	В	From Face	0.50	0.0000	163.00	No Ice	8.40	4,70	0.06
(AT&T)		-	0.00	2		1/2" Ice	8.95	5.15	0.11
			0.00						
(2) RRU	В	From Leg	0.50	0.0000	163.00	No Ice	3.79	1.02	0.06
(AT&T)			0.00			1/2" Ice	4.16	1.23	0,08
7770	C	From Face	0.00	0.0000	163.00	No Ice	10.03	5.60	0.02
(AT&T)	C	1101111400	4.00	0.0000	105.00	1/2" Ice	10.61	6.15	0.07
()			0.00						
(2) LGP 219nn	С	From Face	0.50	0.0000	163.00	No Ice	0.23	0.12	0.01
(AT&T)			4.00			1/2" Ice	0.30	0.17	0.01
(2) I DC221401 TD 44	0		0.00	0.0000	1(2.00	NL L	0.05	0.27	0.00
$(2) LPG21401 IMA (\Delta T \& T)$	C	From Face	0.50	0.0000	163.00	1/2" Ice	1.09	0.37	0.02
(A1&1)			0.00			172 100	1.09	0.40	0.02
7770	С	From Face	4.00	0.0000	163.00	No Ice	10.03	5.60	0.02
(AT&T)			-4.00			1/2" Ice	10,61	6.15	0.07
			0,00				200		
(2) LGP 219nn	С	From Face	4.00	0.0000	163.00	No Ice	0.23	0.12	0.01
(AT&T)			-4.00			1/2" Ice	0,30	0.17	0.01
TT19-08BP111-001 TMA	C	From Face	4.00	0.0000	163.00	No Ice	0.64	0.52	0.02
(AT&T)	. 0	1101111000	-4.00	0,0000	105.00	1/2" Ice	0.76	0.62	0.02
			0.00						
P65-16-XLH-RR	С	From Face	2.00	0.0000	163.00	No Ice	8.40	4.70	0.06
(AT&T)			0.00			1/2" Ice	8,95	5.15	0.11
	C	Fuere Lee	0.00	0.0000	162.00	N. T.	2 70	1.02	0.06
(2) KKU (ATBT)	C	From Leg	2.00	0.0000	163.00	1/2" Ice	3.79	1.02	0.06
(A1&1)			0.00			172 100	4.10	1,2,7	0.00
3" Dia x 15' Omni	С	From Leg	2.00	0.0000	160.00	No Ice	4.50	4.50	0.04
(CSP - 63)		Ũ	0.00			1/2" Ice	6.00	6.00	0.07
			0.00						
3" Dia x 15' Omni	С	From Leg	2,00	0,0000	160,00	No lce	4.50	4.50	0.04
(CSP - 64)			0.00			1/2" Ice	6.00	6.00	0.07
3" Dia x 15' Omni	C	From Leg	2-00	0.0000	160.00	No Ice	4 50	4.50	0.04
(CSP - 65)	C	TIOM LOG	0.00	0.0000	100.00	1/2" Ice	6.00	6.00	0.07
()			0.00						
TMA	С	From Leg	2,00	0.0000	160.00	No Ice	1.06	0.45	0.02
(CSP - 66)			0.00			1/2" Ice	1.21	0,57	0.03
211 D' 101 O	D	D T	0.00	0.0000	150.00	NT T	2.00	2.00	0.02
2" Dia TU Omni	D	rrom Leg	0.00 0.00	0.0000	150.00	No Ice	2.00	2.00	0.03
(Cor)			0.00			172 100	5.02	5,02	0.04
DB636-A	D	From Leg	6.00	0.0000	150.00	No Ice	2.78	2.78	0.03
(NEU - 57)	~		0.00			1/2" Ice	3.96	3.96	0.05
` '			0.00						
6' Standoff	А	From Leg	3.00	0.0000	145.00	No Ice	4.97	4.97	0.07
(CSP)			0.00			1/2" Ice	6.12	6.12	0.13
0137	,	F	0.00	0.0000	145.00	NL T	2.02	0.00	0.02
3' Yagi	A	From Leg	6.00	0.0000	145.00	No Ice	2.08	2.08	0.03

	Job		Page
tnx I ower		180' Lattice Tower - CSP	19 of 63
UDS Computing	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

	Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
				Vert						
				ft ft	0	ft		ft^2	ft^2	K
	(WTR - 28)						1/2" Ice	3.79	3.79	0.05
	· · · ·			0.00						
	6' Standoff (CSP)	С	From Leg	3,00 0.00	0.0000	145.00	No Ice 1/2" Ice	4.97 6.12	4.97 6.12	0.07 0.13
	6' Standoff (CSP)	D	From Leg	3.00 0.00	0.0000	145.00	No Ice 1/2" Ice	4.97 6.12	4.97 6,12	0.07 0.13
	6' Standoff (CSP)	А	From Leg	0.00 3.00 0.00	0.0000	143.00	No Ice 1/2" Ice	4.97 6.12	4.97 6.12	0.07 0.13
				0.00						
	10'6"x4" Pipe Mount (CSP)	A	From Leg	0.50	0.0000	133,00	No Ice 1/2" Ice	4.72 5.62	4.72 5.62	0.11 0.15
	3' Stand-off (CSP)	С	From Leg	1.50 0.00	0.0000	132.00	No Ice 1/2" Ice	1.00 1.20	2.00 2.70	0.05 0.07
]	LeBlanc 10' Standoff (1) (CSP)	С	From Leg	0.00 5.00 0.00	0.0000	126.00	No Ice 1/2" Ice	17.00 22.00	17.00 22.00	0.55 0.75
	3" Dia x 15' Omni (WPD - 55)	D	From Leg	$0.00 \\ 6.00 \\ 0.00$	0.0000	120.00	No Ice 1/2" Ice	4.50 6.00	4.50 6.00	0.04 0.07
				0.00						
	PD128-1 (CSP - 8)	С	From Leg	2.00 0.00	0.0000	120.00	No Ice 1/2" Ice	1.00 1.80	$\begin{array}{c}1.00\\1.80\end{array}$	0.01 0.02
	PD128-1 (WPD - 33)	D	From Leg	2.00	0.0000	120.00	No Ice 1/2" Ice	1.00 1.80	1.00 1.80	0:01 0.02
	(2) DB586-Y (NU - 30&31)	С	From Leg	6.00 0.00	0.0000	120.00	No Ice 1/2" Ice	1.01 1.28	1.01 1.28	0.01 0.02
	Rohn 6' Side-Arm(1) (NU - 30&31)	С	From Leg	0.00 3.00 0.00	0.0000	120.00	No Ice 1/2" Ice	10.60 15.40	10.60 15.40	0.14 0.21
	ASP711 (WTR - 29)	А	From Leg	0.00 2.00 0.00	0.0000	116.00	No Ice 1/2" Ice	2.34 3.64	2.34 3.64	0.01 0.02
	6' Standoff (CSP)	D	From Leg	0.00 3.00 0.00	0.0000	115.00	No Ice 1/2" Ice	4.97 6.12	4.97 6.12	0.07 0.13
	3' Stand-off (CSP)	С	From Leg	0.00 1.50 0.00	0.0000	115.00	No Ice 1/2" Ice	1.00 1.20	2.00 2.70	0.05 0.07
	6' Stand-off	В	From Leg	0.00 3.00 0.00	0.0000	112.00	No Ice 1/2" Ice	1.20 1.40	4.50	0.07
	10'6"x4" Pipe Mount	С	From Leg	0.00	0.0000	112_00	No Ice	4.72	4.72	0.11
	(CSP) DB222	В	From Leg	0.00 0.00 2.00	0.0000	112.00	No Ice	1.60	1.60	0.15
	(DHS - 9)			0.00 0.00			1/2" Ice	2.88	2.88	0.02
	12' Wireless Frame (Sprint)	A	From Leg	1.00 0.00 0.00	0.0000	106.00	No Ice 1/2" Ice	11.07 15,53	11.07 15.53	0.24 0.35
	12' Wireless Frame	В	From Leg	1.00	0.0000	106.00	No Ice	11.07	11.07	0.24

í.

tnxTower	Job	180' Lattice Tower - CSP	Page 20 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert ft ft ft	0	ft		ft^2	ft^2	K
(Sprint)			0.00			1/2" Ice	15.53	15.53	0.35
12' Wireless Frame (Sprint)	С	From Leg	0.00 1.00 0.00	0.0000	106.00	No Ice 1/2" Ice	11.07 15.53	11.07 15.53	0.24 0.35
APXVSPP18-C (Sprint)	А	From Leg	1.50 -5.00 0.00	0.0000	106,00	No Ice 1/2" Ice	8,26 8,81	5,28 5.74	0.06 0.11
APXVSPP18-C (Sprint)	В	From Leg	1.50 -5.00 0.00	0.0000	106.00	No Ice 1/2" Ice	8.26 8.81	5.28 5.74	0.06 0.11
APXVSPP18-C (Sprint)	С	From Leg	1.50 -5.00 0.00	0.0000	106.00	No Ice 1/2" Ice	8.26 8.81	5.28 5.74	0.06 0.11
(2) ALU RRH (Sprint)	А	From Leg	1.50 0.00 0.00	0.0000	106.00	No Ice 1/2" Ice	2.25 2.45	1.23 1.39	0.05 0.07
(2) ALU RRH (Sprint)	В	From Leg	1.50 0.00 0.00	0.0000	106.00	No Ice 1/2" Ice	2.25 2.45	1.23 1,39	0.05 0.07
(2) ALU RRH (Sprint)	С	From Leg	1.50 0.00 0.00	0.0000	106.00	No Ice 1/2" Ice	2.25 2.45	1.23 1.39	0.05 0.07
LeBlanc 10' Standoff (1) (CSP)	А	From Leg	5.00 0.00 0.00	0,0000	101.00	No Ice 1/2" Ice	17.00 22.00	17.00 22.00	0.55 0.75
SC479-HF1LDF (CSP - 62)	С	From Leg	2.00 0.00 0.00	0.0000	101,00	No Ice 1/2" Ice	5.06 6.54	5.06 6.54	0.03 0.07
3" Dia x 15' Omni (DEA - 32)	D	From Leg	6.00 0.00 0.00	0.0000	100,00	No Ice 1/2" Ice	4.50 6,00	4.50 6.00	0.04 0.07
3' Stand-off (CSP)	D	From Leg	1.50 0.00 0.00	0.0000	88.00	No Ice 1/2" Ice	1.00 1.20	2.00 2.70	0.05 0.07
3' Stand-off (CSP)	D	From Leg	1.50 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice	1.00 1.20	2.00 2.70	0.05 0.07
20' 4-Bay Dipole (USS - 26)	С	From Leg	3.00 0.00 0.00	0,0000	85.00	No Ice 1/2" Ice	4 <u>.</u> 00 6.00	4.00 6.00	0.06 0.10
6' Ice Shield (CSP)	А	From Leg	4.00 0.00 0.00	0.0000	80.00	No Ice 1/2" Ice	2.60 3.00	2.60 3.00	0.13 0.15
10'6"x4" Pipe Mount (CSP)	А	From Leg	0.50 0.00 0.00	0.0000	76.00	No Ice 1/2" Ice	4.72 5.62	4.72 5.62	0.11 0.15
3' Stand-off (Sprint)	В	From Leg	1.50 0.00 0.00	0.0000	56.00	No Ice 1/2" Ice	1.00 1.20	2.00 2.70	0.05 0.07
GPS (Sprint)	В	From Leg	3.00 0.00 0.00	0.0000	56.00	No Ice 1/2" Ice	1.00 1.50	1.00 1.50	0.01 0.01
3' Stand-off (CSP)	В	From Leg	1.50 0.00	0.0000	47.00	No Ice 1/2" Ice	1.00 1.20	2.00 2.70	0.05 0.07
DB803M-Y	В	From Leg	3.00	0.0000	47,00	No Ice	0.50	0.50	0.00

 \bigcirc

	Job		Page
<i>tnx1ower</i>		180' Lattice Tower - CSP	21 of 63
UPS Computing	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			ft	0	ft		ft^2	ft^2	K
			ft		<i></i>		D.		
(CSP - 68)			0.00			1/2" Ice	0.68	0.68	0.01
()			0.00				0100	0100	0101
EUSF10-U	А	From Leg	0.50	0.0000	122.00	No Ice	8.91	3.67	0.41
(T-Mobile)			0.00			1/2" Ice	12,66	5.24	0.51
EUSEIQ U	D	Energy Tara	0.00	0.0000	100.00	N. I.	0.01	2 67	0.41
EUSFIU-U (T. Mobile)	D	From Leg	0.50	0.0000	122,00	1/2" Ice	0.91	3.07	0.41
(1-100016)			0.00			172 100	12.00	J.24	0.51
EUSF10-U	В	From Leg	0.50	0.0000	122.00	No Ice	8.91	3.67	0.41
(T-Mobile)			0.00			1/2" Ice	12.66	5.24	0.51
× /			0,00						
(2) AIR B2A/B4P	А	From Leg	1.00	0.0000	122.00	No Ice	6.42	4.22	0.08
(T-Mobile)			0.00			1/2" Ice	6.86	4.64	0.12
	D		0.00	0.0000	100.00		6.40	1.00	0.00
(2) AIR B2A/B4P	В	From Leg	1.00	0.0000	122.00	No Ice	6.42	4.22	0.08
(1-Mobile)			0.00			1/2" ice	0.80	4.04	0.12
(2) AIR B2A/B4P	D	From Leg	1.00	0.0000	122.00	No Ice	6.42	4 22	0.08
(T-Mobile)	D	TTOM LOB	0.00	010000	122.00	1/2" Ice	6.86	4.64	0.12
()			0.00						
(2) TMA	А	From Leg	1.00	0.0000	122.00	No Ice	1.00	1.00	0.01
(T-Mobile)			0.00			1/2" Ice	1,50	1.50	0.02
			0.00						
(2) TMA	В	From Leg	1.00	0.0000	122,00	No Ice	1.00	1.00	0.01
(T-Mobile)			0.00			1/2" Ice	1.50	1.50	0.02
(2) TMA	D	Erom Log	0.00	0.0000	122.00	No loo	1.00	1.00	0.01
(T-Mobile)	D	From Leg	0.00	0.0000	122.00	1/2" Ice	1.50	1.00	0.01
(1 1100110)			0.00			1/2 100	1.50	1.50	0.02
APXVTM14-C-1 20	А	From Leg	1.50	0.0000	106.00	No Ice	6.90	4.34	0.07
(Sprint)		0	0.00			1/2" Ice	7.35	4.74	0.11
			0.00						
APXVTM14-C-1 20	В	From Leg	1.50	0.0000	106.00	No Ice	6.90	4.34	0.07
(Sprint)			0.00			1/2" Ice	7.35	4.74	0.11
A D323/T23 41 4 C 1 20	0	Γ	0.00	0.0000	107.00	M. L.	6.00	4.2.4	0.07
APX V IMI4-C-1 20 (Sprint)	C	From Leg	1.50	0.0000	106.00	INO ICE	0.90	4,34	0.07
(Sprint)			0.00			172 100	1.55	4.74	0.11
TD-RRH8x20-25	А	From Leg	1.50	0.0000	106.00	No Ice	4.32	1.41	0.07
(Sprint)		B	0.00	010000	100100	1/2" Ice	4.60	1.61	0.09
			0.00						
TD-RRH8x20-25	В	From Leg	1.50	0.0000	106.00	No Ice	4.32	1.41	0.07
(Sprint)			0.00			1/2" Ice	4.60	1.61	0.09
	G		0.00	0.0000	106.00	N	4.00		0.05
TD-RRH8x20-25	C	From Leg	1.50	0.0000	106.00	No Ice	4.32	1.41	0.07
(Sprint)			0.00			1/2" Ice	4.00	1.01	0.09
junction hox	А	None	0.00	0.000	106.00	No Ice	1 87	1 40	0.05
(Sprint)				0.0000	100.00	1/2" Ice	2.05	1.57	0.06

tnxTower	Job	180' Lattice Tower - CSP	Page 22 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Description	Face	Dish	Offset	Offsets:	Azimuth	3 dB	Elevation	Outside		Aperture	Weight
	or	Туре	Туре	Horz	Adjustment	Beam		Diameter		Area	
	Leg			Lateral		Width					
				Vert							
				ft	0	0	ft	ft		ft^2	K
PA6-65AC	А	Paraboloid w/o	From	1.00	Worst		180.00	6.00	No Ice	28.27	0.09
(CSP - 69)		Radome	Leg	0.00					1/2" lce	29.05	0.24
				0.00							
PA6-65AC	В	Paraboloid w/o	From	1.00	Worst		180.00	6.00	No Ice	28.27	0.09
(CSP - 70)		Radome	Leg	0.00					1/2" Ice	29.05	0.24
				0.00							
PA6-65AC	С	Paraboloid w/o	From	1.00	Worst		180.00	6.00	No Ice	28.27	0.09
(CSP - 71)		Radome	Leg	0.00					1/2" Ice	29.05	0.24
				0.00							
4' Grid Dish	А	Grid	From	1.00	Worst		100.00	4.00	No Ice	12.57	0.08
(CSP - 11)			Leg	0.00					1/2" Ice	13.10	0.15
			•	0.00							
6' Grid Dish	А	Grid	From	1.00	Worst		75.00	6.00	No Ice	28.27	0.13
(CSP - 13)			Leg	0.00					1/2" Ice	29.07	0.28
				0.00							
PA6-65AC	А	Paraboloid w/o	From	1.00	Worst		176.00	6.00	No Ice	28.27	0.09
(CSP - 5)		Radome	Leg	0.00					1/2" Ice	29.05	0.24
			U	0.00							
PA6-65AC	С	Paraboloid w/o	From	1.00	Worst		176.00	6.00	No lce	28,27	0.09
(CSP - 36)		Radome	Leg	0.00					1/2" Ice	29.05	0.24
			0	0.00							
PA6-65AC	D	Paraboloid w/o	From	1.00	Worst		180.00	6.00	No Ice	28.27	0.09
(CSP - 59)		Radome	Leg	0.00					1/2" Ice	29.05	0.24
			U	0.00							
PA6-65AC	А	Paraboloid w/o	From	1.00	Worst		130.00	6.00	No Ice	28.27	0.09
(CSP - 35)		Radome	Leg	0.00					1/2" Ice	29.05	0.24
. ,			Ŭ	0.00							

Tower Pressures - No Ice

 $G_H = 1.121$

Section	Z	Kz	q_z	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	$-ft^2$		ft^2	ft^2
T1	175.00	1.611	33	61.674	Α	12.491	0.483	5.833	44.96	0.000	0,000
180.00-170.00	~				В	12,491	0.000		46.70	0.000	0.000
					С	12.491	0.000		46.70	0.000	0.000
					D	13.071	5,633		31,19	0.000	0.000
T2	166.79	1,589	33	40.022	Α	9.832	0.311	5.356	52,81	0.000	0.000
170.00-163.57					В	9.832	0.000		54.47	0.000	0.000
					С	9,832	0.000		54,47	0,000	0.000
					D	9.961	5.404	1	34.86	0.000	0.000
T3	161,31	1,574	33	28.908	Α	7,122	0.265	3.775	51.11	0.000	0.000
163.57-159.05					В	7.122	0.000		53.00	0.000	0.000
					С	6.494	4.900		33.13	0.000	0.000
					D	7.123	4.321		32,99	0.000	0.000
T4	156.79	1.561	32	30.376	Α	6.903	0.437	3.775	51.43	0.000	0.000
159.05-154.52					В	6.903	0.000		54,69	0_000	0.000
					С	6.273	5.610		31.77	0.000	0.000
					D	6,779	6.262		28.95	0.000	0.000
T5	152,26	1.548	32	31.844	Α	7.011	0.437	3.775	50.68	0.000	0.000
154.52-150.00					В	7.011	0.000		53.84	0.000	0.000

	71
tnx	ower

L 500 E 1 ŀ FAX: 860-529-3991

. T	Job		Page
nxIower		180' Lattice Tower - CSP	23 of 63
UDC Commention	Project		Date
Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882		Sprint	MCD

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Section Elevation	,Z	K _Z	qz	AG	F a	A _F	A_R	Aleg	Leg %	$C_A A_A$ In	$C_A A_A$ Out
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					- 1	с		.1			Face	Face
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ft	ft		psf	ft²	e	ft ²	ft ²	ft²	21.40	ft ²	ft ²
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							6,391	5.610		31.46	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	т	145.00	1 5 2 6	22	75 634		16 767	0.202	8 3 4 4	20.00	0,000	0,000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	150.00-140.00	145.00	1.520	32	75.054	R	16 767	0.907	0.544	49.76	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	150,00 140,00					C C	15.258	12,400		30.17	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D	16,134	15.692		26.22	0.000	0.000
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т7	135.00	1,496	31	83.296	A	19,051	0.967	10.013	50.02	0.000	0.000
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	140.00-130.00					В	19.051	0.000		52.56	0.000	0.000
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $						C	17,598	12,400		33.38	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						D	18,490	15.692		29.29	0.000	0.000
$ \begin{bmatrix} 130.00-120.00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	Т8	125.00	1.463	30	90,466	A	17.265	7.592	10.013	40.28	0.000	0.000
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.00-120.00					B	17.878	0,000		56,01	0,000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							16.731	12.400		34.37	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TO	116.00	1.420	20	07 774		1/,591	17,011	10.012	28.94	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120.00.110.00	113,00	1,429	- 50	97.774	R	20.028	12,008	10.015	32.49 40.00	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120.00-110.00					Ċ	18 662	12 400		32.23	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						D	18.804	22.746		24.10	0.000	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T10	105.00	1.392	29	104,945	Ā	18.510	13.643	10.013	31.14	0.000	0.000
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.00-100.00					В	19.757	0.000		50.68	0.000	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						С	18,538	12,400		32,36	0,000	0,000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						D	18.716	23.651		23,63	0.000	0.000
$ \begin{bmatrix} 100.00-90.00 \\ 100.00-90.00 \\ T12 \\ 90.00-80.00 \\ 90.00-80.00 \\ 90.00-80.00 \\ 90.00-80.00 \\ 1.31 \\ 2.5,00 \\ 1.31 \\ 2.7 \\ 120,155 \\ 1.31 \\ 2.7 \\ 120,155 \\ 120,155 \\ 1.31 \\ 2.7 \\ 120,155 \\ 120,$	T11	95.00	1.353	28	112.984	А	22,496	14.733	13.350	35.86	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100.00-90.00					В	23.872	0.000		55.93	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						C	22.633	12.400		38.11	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	751.0	05.00	1.21	27	100 165		22,460	26.986	12.250	27.00	0.000	0,000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		85.00	1:31	27	120,155	A D	23.020	14.733	13.350	30.30 54.70	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	90.00-80.00					С	24,303	12 400		37.55	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D D	22,968	27.449		26.48	0.000	0,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т13	70.00	1.24	26	263.233	Ā	13.769	57.836	28.370	39.62	0.000	0.000
$ \begin{bmatrix} 1 \\ 114 \\ 55.00 \\ 1.157 \\$	80.00-60.00					В	15.516	28.370		64.64	0.000	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						С	13,943	53,170		42.27	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D	14.523	84.917		28,53	0.000	0.000
$ \begin{bmatrix} 60.00-50,00 \\ 0.00-50,00 \\ 0 \\ 115 \\ 50.00-40.00 \\ 50.00-40.00 \\ 1 \\ 10 \\ 50.00-40.00 \\ 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	T14	55.00	1,157	24	142,444	А	8.092	29.208	14.185	38.03	0.000	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60.00-50.00					B	9.050	14.185		61.05	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						C	8.205	26.585		40.77	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	716	45.00	1 002	22	140 614		8.411	42.580	14 196	27.82	0.000	0.000
30.00-40.00 5.00 1.017 21 156.196 A 26.585 38.56 0.000 0.000 T16 35.00 1.017 21 156.196 A 26.004 15.217 13.350 32.39 0.000 0.000 40.00-30.00 B 27.367 0.000 48.78 0.000 0.000 40.00-30.00 C 26.181 12.400 34.60 0.000 0.000 T17 25.00 1 21 163.366 A 24.350 15.217 13.350 33.74 0.000 0.000 30.00-20.00 T17 25.00 1 21 163.366 A 24.350 15.217 13.350 33.74 0.000 0.000 30.00-20.00 T18 15.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 T18 15.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 20.00-10.00 D Z Z	50.00.40.00	45.00	1.093	23	149,014	A D	10,055	29.402	14-185	55.95	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.00-40.00					C	10 202	26 585		38.56	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						D	10.191	42 918		26.71	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T16	35.00	1.017	21	156,196	A	26.004	15.217	13.350	32.39	0.000	0.000
T17 25.00 1 21 163.366 A 24.350 28.878 24.38 0.000 0.000 0.000 30.00-20.00 1 21 163.366 A 24.350 15.217 13.350 33.74 0.000 0.000 0.000 30.00-20.00 -	40.00-30.00				10.0	В	27.367	0.000		48.78	0.000	0.000
T17 25.00 1 21 163.366 A 24.350 13.350 33.74 0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td>С</td> <td>26.181</td> <td>12.400</td> <td></td> <td>34.60</td> <td>0.000</td> <td>0.000</td>						С	26.181	12.400		34.60	0.000	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						D	25.890	28.878		24.38	0.000	0.000
30,00-20,00 B 25,467 0,000 52,42 0,000 0,000 0,00-20,00 C 24,495 12,400 36,18 0,000 0,000 T18 15,00 1 21 170,539 A 27,188 15,217 13,350 31,48 0,000 0,000 20,00-10,00 C 27,362 12,400 33,58 0,000 0,000 C 27,362 12,400 33,58 0,000 0,000 0,000 T19 10,00-0,00 5,00 1 21 177,715 A 29,084 6,087 13,350 37,96 0,000 0,000 T19 10,00-0,00 5,00 1 21 177,715 A 29,084 6,087 13,350 37,96 0,000 0,000 T19 10,00-0,00 5,00 1 21 177,715 A 29,084 6,087 13,350 37,96 0,000 0,000 C 29,162 4,960 39,13 0,000 0,000 <td>T17</td> <td>25.00</td> <td>1</td> <td>21</td> <td>163.366</td> <td>Α</td> <td>24.350</td> <td>15.217</td> <td>13.350</td> <td>33.74</td> <td>0.000</td> <td>0.000</td>	T17	25.00	1	21	163.366	Α	24.350	15.217	13.350	33.74	0.000	0.000
T18 15,00 1 21 170,539 A 27,188 15,217 13,350 31,48 0.000 0.000 20,00-10,00 1 21 170,539 A 27,188 15,217 13,350 31,48 0.000 0.000 20,00-10,00 1 21 170,539 A 27,188 15,217 13,350 31,48 0.000 0.000 20,00-10,00 0 0 C 27,362 12,400 33,58 0.000 0.000 T19 10,00-0,00 5,00 1 21 177,715 A 29,084 6.087 13,350 37,96 0.000 0.000 T19 10,00-0,00 5,00 1 21 177,715 A 29,084 6.087 13,350 37,96 0.000 0.000 B 29,084 6,087 13,350 37,96 0.000 0.000 0.000 C 29,162 4,960 39,13 0.000 0.000 0.000 0.000	30.00-20.00					В	25,467	0.000		52.42	0,000	0.000
T18 15.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 20.00-10.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 20.00-10.00 C 27.362 12.400 33.58 0.000 0.000 T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 C 29.162 4.960 39.13 0.000 0.000						C	24.495	12.400		36.18	0.000	0.000
118 15,00 1 21 170,539 A 27,188 15,217 13,350 31,48 0,000 0,000 20,00-10,00 B 28,533 0,000 46,79 0,000 0,000 0,000 T19 10,00-0,00 5,00 1 21 177,715 A 29,084 6,087 13,350 37,96 0,000 0,000 T19 10,00-0,00 5,00 1 21 177,715 A 29,084 6,087 13,350 37,96 0,000 0,000 C 29,162 4,960 39,13 0,000 0,000		15.00			170 500	D	24.496	28.878	10.000	25.01	0.000	0.000
20.00-10.00 46.79 0.000	20.00.10.00	15,00		21	170.539	A D	27.188	15.217	13.350	51.48	0.000	0.000
T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 B 29.084 0.000 44.97 0.000 0.000 0.000 C 29.162 4.960 39.13 0.000 0.000 0.000	20.00-10.00					в С	20:000	12 400		40:19	0.000	0.000
T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 <t< td=""><td></td><td></td><td></td><td>9</td><td></td><td>n l</td><td>27.302</td><td>28.878</td><td></td><td>23.85</td><td>0,000</td><td>0.000</td></t<>				9		n l	27.302	28.878		23.85	0,000	0.000
B 29.688 0.000 44.97 0.000 0.000 C 29.162 4.960 39.13 0.000 0.000	T19 10.00-0.00	5:00	1	21	177-715	Ă	29.084	6.087	13,350	37.96	0.000	0.000
C 29.162 4.960 39.13 0.000 0.000		5.00	i i			В	29.688	0.000		44.97	0.000	0.000
						С	29.162	4.960		39.13	0.000	0.000
D 28.976 11.551 32.94 0.000 0.000						D	28.976	11.551		32.94	0.000	0.000

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

The All	Job		Page
er		180' Lattice Tower - CSP	24 of 63
tion	Project		Date
, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
16067 -8882 3991	Client	Sprint	Designed by MCD

Tower Pressure - With Ice

$G_H = 1.$	121
------------	-----

Section Elevation	Ζ	K _Z	q_z	tz	A_G	F	A _F	A _R	A _{leg}	Leg %	$C_A A_A$ In	$C_A A_A$ Out
Ditrutton						c				,,,	Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	175.00	1.611	33	0.5000	62.507	Α	12.491	5.837	7.500	40.92	0.000	0.000
180.00-170.00						В	12,491	4.520		44.09	0.000	0.000
						C	12.491	4.520	(44.09	0,000	0.000
						D	13.151	13,798		27.83	0.000	0,000
T2	166,79	1.589	33	0.5000	40.557	A	9.832	3.803	6.427	47.14	0.000	0.000
170.00-163.57						В	9.832	2.957		50.26	0.000	0.000
						C	9.832	2.957		50.26	0.000	0.000
						D	9.800	12.124		29.31	0.000	0.000
T3	161.31	1.574	33	0.5000	29,285	A	7.122	3,150	4.530	44.10	0.000	0.000
163 57-159 05						B	7,122	2.429		47.43	0.000	0.000
1 1						C	6,198	9,171		29.47	0.000	0.000
				20.202.202		D	6.957	9,576		27.40	0.000	0.000
T4	156.79	1.561	32	0.5000	30.753	A	6.903	3.197	4.530	44,85	0.000	0.000
159.05-154.52						В	6.903	2.006		50.85	0.000	0.000
						C	5.976	9.885		28.56	0.000	0.000
	1.50 8.6	1 5 40		0.0000	22.201		6.564	12,318	1 620	23,99	0.000	0.000
154.52.150.00	152.26	1.548	32	0.5000	32,221	A	7.011	3.241	4.530	44.19	0.000	0.000
154.52-150.00						B	/.011	2.050		50.00	0.000	0.000
							6.099	9.934		28.25	0.000	0.000
	145 00	1.600		0.5000	76 467		0.091	12.369	10.012	23.77	0.000	0.000
160 00 140 00	145.00	1.526	52	0.5000	/6.46/	A	16.767	/.0/1	10.013	40.97	0.000	0.000
150.00-140.00						В	10.707	5.038		45.92	0.000	0.000
							14.348	22,384		27.11	0.000	0.000
777	125.00	1.406	21	0.5000	04.100		10.051	31,088	11.693	42.33	0.000	0.000
140 00 120 00	155.00	1.490	51	0.5000	04:129		19.051	1.023	11.062	43.79	0.000	0.000
140.00-130,00						C	16.014	22 427		20.60	0.000	0.000
							17 776	31 188		23.03	0.000	0.000
78	125.00	1 463	30	0.5000	01 300		16 840	17 004	11 683	23.60	0.000	0.000
130.00-120.00	125.00	1.405	50	0.5000	71.500	R	17 878	4 520	11.062	52.16	0.000	0.000
130.00-120.00						C	16 191	22 140		30.48	0.000	0.000
							17.068	33.055		23 31	0.000	0.000
T9	115.00	1 429	30	0.5000	98.608	A	17.986	25,793	11-682	26.68	0.000	0.000
120.00-110.00	115.00	0.000	5×	0.0000	,0.000	B	20.028	5.376	1 4002	45.98	0.000	0.000
120100 110100						Ĉ	18.020	22.864		28.57	0.000	0.000
						D	17.505	44.157		18.94	0.000	0.000
T10	105.00	1.392	29	0,5000	105.778	A	17.625	28,422	11.682	25.37	0.000	0.000
110.00-100.00						В	19.757	4.799		47.57	0.000	0.000
0.01/202						С	17.964	22.455		28.90	0.000	0.000
						D	17.543	45.550		18.52	0.000	0.000
T11	95.00	1.353	28	0.5000	113.818	Α	21,497	30.579	15.019	28.84	0.000	0.000
100.00-90.00						В	23.872	4.914	~	52.17	0.000	0.000
						С	22,050	22.584		33,65	0.000	0.000
						D	21.017	51.270		20.78	0.000	0.000
T12 90.00-80.00	85.00	1.31	27	0.5000	120.989	А	22.043	30.757	15.019	28,45	0.000	0.000
	~			10000		В	24.365	5.077		51.01	0.000	0.000
						С	22.583	22.758		33.13	0.000	0.000
						D	21.528	52.314		20.34	0.000	0.000
T13 80.00-60.00	70.00	1.24	26	0.5000	264.901	Α	12.500	89,507	31.707	31.08	0.000	0.000
						В	15.516	37.914		59.34	0.000	0.000
						С	13.202	73,455		36.59	0.000	0.000
	2.2.4					D	12.911	136.503	1.2.2.2	21.22	0.000	0.000
T14 60.00-50.00	55.00	1.157	24	0.5000	143.277	Α	7.377	46.165	15.854	29.61	0.000	0.000

T	Job		Page
tnxlower		180' Lattice Tower - CSP	25 of 63
	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section	Ζ	Kz	q_z	tz	A_G	F	A _F	A_R	Alcg	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft2
						В	9,050	19.686		55.17	0.000	0.000
						С	7.807	37.392		35.08	0,000	0.000
						D	7.490	69,122		20.69	0.000	0_000
T15 50.00-40.00	45,00	1.093	23	0.5000	150.448	А	9.191	46,871	15,854	28.28	0,000	0.000
						В	11.192	19.871		51.04	0.000	0,000
						С	9.737	37.583		33.50	0.000	0.000
						D	8,972	70.220		20.02	0.000	0.000
T16 40.00-30.00	35.00	1.017	21	0,5000	157.030	А	24.967	33,825	15,019	25.55	0.000	0.000
						В	27,367	7.027		43.67	0.000	0,000
						С	25.623	24.592		29.91	0.000	0.000
						D	24.293	57.344		18.40	0.000	0.000
T17 30.00-20.00	25.00	1	21	0,5000	164.200	А	23,501	33,021	15.019	26.57	0.000	0.000
						В	25.467	6.007		47.72	0.000	0.000
						С	24.038	23,729		31.44	0.000	0.000
						D	23.289	56.769		18.76	0.000	0.000
T18 20.00-10.00	15.00	1	21	0.5000	171.373	A	26.165	34.281	15.019	24.85	0.000	0.000
						В	28.533	7,470		41.72	0.000	0.000
						C	26.811	25.045		28.96	0.000	0.000
						D	25.523	57.813		18.02	0.000	0,000
T19 10,00-0.00	5.00	1	21	0.5000	178.549	A	28.624	18.717	15.019	31.73	0.000	0.000
						В	29.688	8.056		39,79	0.000	0.000
						С	28.915	15.040		34,17	0.000	0.000
						D	28.244	28.063		26.67	0.000	0.000

Tower Pressure - Service

Section	Ζ	Kz	q_z	AG	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			, ,	%	Ĭn	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	fl^2		ft^2	ft^2
T1	175.00	1.611	33	61,674	Α	12.491	0.483	5.833	44,96	0,000	0.000
180.00-170.00					В	12.491	0.000		46.70	0.000	0.000
					С	12.491	0,000		46.70	0.000	0.000
					D	13.071	5.633		31.19	0.000	0.000
T2	166.79	1.589	33	40.022	Α	9.832	0.311	5,356	52.81	0.000	0.000
170.00-163.57					В	9.832	0.000		54.47	0,000	0.000
					С	9,832	0.000		54,47	0.000	0.000
					D	9.961	5.404		34.86	0.000	0.000
T3	161.31	1.574	33	28,908	Α	7.122	0.265	3.775	51.11	0.000	0.000
163.57-159.05					В	7.122	0.000		53.00	0.000	0.000
<u></u>					С	6.494	4.900		33.13	0.000	0.000
					D	7.123	4.321		32,99	0.000	0.000
T4	156.79	1.561	32	30,376	Α	6.903	0.437	3.775	51.43	0.000	0.000
159.05-154.52					В	6,903	0.000		54.69	0.000	0.000
					С	6.273	5.610		31.77	0.000	0.000
					D	6,779	6.262		28.95	0.000	0,000
T5	152.26	1.548	32	31.844	Α	7.011	0.437	3.775	50.68	0.000	0.000
154.52-150.00					В	7.011	0.000		53.84	0.000	0.000
					С	6.391	5.610		31.46	0.000	0.000
					D	6.898	6.262		28.68	0.000	0.000
Т6	145.00	1.526	32	75.634	Α	16.767	0.967	8.344	47.05	0.000	0.000
150.00-140.00					В	16.767	0.000		49.76	0.000	0.000
			l ,		С	15.258	12,400		30.17	0,000	0.000

 $G_H = 1.121$

50

	Job		Page
tnxlower		180' Lattice Tower - CSP	26 of 63
URS Cornoration	Project		Date
00 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882		Sprint	MCD

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Section	Z	Kz	qz	AG	F	A _F	AR	Aleg	Leg	$C_A A_A$	$C_A A_A$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation									70	Face	Face
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ft	ft		psf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
135.00 1.496 31 83.296 A 19.051 0.067 10.013 50.265 0.0000 0.0000 140.00-130.00 125.50 1.463 30 90.466 A 17.578 12.400 52.56 0.000 0.000 0.000 130.00-120.00 1.463 30 90.466 A 17.255 7.592 10.013 40.28 0.000 0.000 130.00-120.00 1.497 A 0.90.466 A 17.255 7.592 10.013 32.49 0.000 0.000 130.00-120.00 1.497 A 18.812 17.011 23.49 0.000 0.000 120.00-110.00 1.497 A 18.812 17.011 23.49 0.000 0.000 0.000 110.00-100.00 1.99 1.39 2.2 P P P 18.40 12.400 22.36 0.000 0.000 100.00-90.00 1.39 P P P 18.330 15.36 0.000	X					D	16.134	15.692		26,22	0.000	0.000
140.00-130.00	Т7	135.00	1.496	31	83,296	Α	19.051	0.967	10,013	50.02	0.000	0.000
Image: state	140.00-130.00					В	19.051	0.000		52.56	0.000	0.000
110,00-120,00 1.463 30 90.466 A 17,275 7.592 10.013 40.28 0.000 0.000 130,00-120,00 1.463 30 90.466 A 17,275 17,011 28.94 0.000 0.000 120,00-110.00 1.429 30 97.74 A 18.812 10.013 32.23 0.000 0.000 120,00-110.00 1.392 29 104.945 A 18.812 12.000 32.23 0.000 0.000 110,00-100.00 1.392 29 104.945 A 18.810 13.643 10.013 31.14 0.000 0.000 110,00-100.00 0.00 1.383 28 11.284 A 22.466 14.733 13.50 35.86 0.000 0.000 100.00-90.00 0.43 23.72 10.015 34.14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000						C	17.598	12.400		33.38	0.000	0.000
T8 125.00 1.463 30 90.466 A 17.265 7.592 10.013 40.28 0.000 0.000 130,00-120,00 -						D	18,490	15,692		29,29	0,000	0.000
130.00-120.00 - <	Т8	125.00	1.463	30	90.466	A	17.265	7.592	10.013	40.28	0.000	0.000
T9 115.00 1.429 30 97.774 A 18.812 12.008 10.013 32.49 0.000 0.000 120,00-110.00 1 1.429 30 97.774 A 18.812 12.008 10.013 32.49 0.000 0.000 120,00-110.00 1.392 2.9 104.945 A 18.810 13.643 10.013 31.14 0.000 0.000 110.00-100.00 1.352 2.8 112.984 A 18.716 0.000 50.68 0.000 0.000 110.00-100.00 1.353 2.8 112.984 A 2.446 14.733 13.350 35.66 0.000 0.000 100.00-90.00 1.31 2.7 120.15 A 23.621 0.400 55.93 0.000 0.000 100.00-90.00 1.31 2.7 120.15 A 23.020 14.73 13.350 35.66 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	130,00-120,00					В	17.878	0.000		56.01	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						C	16.731	12.400		34.37	0.000	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		115.00	1 400		0.7.774		17.591	17.011	10.010	28,94	0,000	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 00 110 00	115.00	1.429	30	97.774	A	18.812	12.008	10,013	32,49	0,000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120.00-110.00					R	20.028	0.000		49.99	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Т				18.002	12.400		32.23	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T10	105.00	1 202	20	104 045		18.510	13 643	10.013	24.10	0.000	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110 00 100 00	103.00	1.392	29	104.943	R	10.757	0.000	10.015	50.68	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	110.00-100.00					C	18 538	12 400		32 36	0,000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D	18,556	23 651		23.63	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T11	95.00	1 3 5 3	28	112,984	Ă	22.496	14,733	13,350	35.86	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100.00-90.00	5 5400	1.505			В	23.872	0.000		55.93	0.000	0.000
12 85.00 1.31 27 120.155 A 23.000 14.733 13.350 35.36 0.000 0.000 90.00-80.00 6 24.365 0.000 54.79 0.000 0.000 T13 70.00 1.24 26 26.3.23 A 13.769 7.7.55 0.000 0.000 T13 70.00 1.24 26 26.3.23 A 13.769 7.7.49 26.48 0.000 0.000 80.00-60.00 6 1.157 24 142.444 A 8.092 29.208 14.185 38.03 0.000 0.000 T14 55.00 1.157 24 142.444 A 8.092 29.208 14.185 38.03 0.000 0.000 60.00-50.00 1.157 24 142.444 A 8.092 14.185 35.05 0.000 0.000 50.00-50.00 1.019 23 149.614 A 10.052 26.585 40.77 0.000 <) I		С	22.633	12,400		38.11	0.000	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						D	22.460	26.986		27.00	0.000	0.000
90,00-80,00 90,00-80,00 54,79 0,000 0,000 T13 70,00 1,24 26 23,233 A 10,000 37,55 0,000 0,000 80,00-60,00 - - - 22,956 27,440 37,55 0,000 0,000 80,00-60,00 - - - - - 64,64 0,000 0,000 60,00-50,00 - - - - - 64,64 0,000 0,000 60,00-50,00 - - - - - - 28,53 0,000 0,000 60,00-50,00 - - - - - 28,255 40,77 0,000 0,000 0,000 60,00-50,00 1,093 23 149,614 A 10,055 29,402 14,185 35,59 0,000 0,000 50,00-40,00 - - - - 10,055 29,402 14,185 35,59 0,000 0	T12	85.00	1.31	27	120.155	Α	23.020	14.733	13.350	35.36	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	90,00-80.00					В	24.365	0.000		54.79	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						С	23.153	12.400		37.55	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D	22,968	27.449		26.48	0.000	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T13	70.00	1,24	26	263.233	A	13.769	57.836	28.370	39.62	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80.00-60.00					В	15.516	28.370		64.64	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						C	13.943	53.170		42.27	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		55.00	1 1 6 7	24	1 40 444	D	14.523	84.917	14.105	28.53	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	114	55=00	1.157	24	142,444	A	8,092	29,208	14.185	38.03	0.000	0,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60.00-50.00					В	9.050	14,185		01.05 40.77	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							8,203 8,411	42 580		40.77	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T15	45.00	1 093	23	149 614	Δ	10.055	29 402	14 185	35.95	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.00-40.00	+5.00	1.095	25	147.014	R	11,192	14 185	14,105	55.90	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.00 40.00					Ĉ	10.202	26.585		38.56	0.000	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						D	10.191	42.918		26.71	0.000	0.000
40,00-30,00 48.78 0,000 0.000 40,00-30,00 25,00 1 21 6 26,181 12,400 34,60 0,000 0,000 T17 25,00 1 21 163.366 A 24,350 15,217 13,350 33,74 0,000 0,000 30,00-20,00 - - - - - - - - 0,000	T16	35.00	1.017	21	156.196	А	26.004	15.217	13.350	32.39	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40.00-30.00					В	27.367	0.000		48.78	0.000	0.000
T17 25,00 I 21 163,366 A 24,350 15,217 13,350 33,74 0,000 </td <td>- 14 - 25</td> <td></td> <td></td> <td></td> <td></td> <td>С</td> <td>26.181</td> <td>12.400</td> <td></td> <td>34.60</td> <td>0.000</td> <td>0.000</td>	- 14 - 25					С	26.181	12.400		34.60	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D	25.890	28.878		24.38	0.000	0.000
30.00-20.00 B 25.467 0.000 52.42 0.000 0.000 T18 15.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 20.00-10.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 20.00-10.00 0 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 20.00-10.00 0 1 21 177.575 A 27.362 12.400 33.58 0.000 0.000 T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 T19 10.00-0.00 5.00 1 21 177.715 A 29.688 0.000 44.97 0.000 0.000 C 29.162 4.960 39.244 0.000 0.000 0.000	T17	25.00	1	21	163.366	Α	24.350	15.217	13,350	33.74	0.000	0.000
T18 15.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 </td <td>30.00-20.00</td> <td></td> <td></td> <td></td> <td></td> <td>В</td> <td>25.467</td> <td>0.000</td> <td></td> <td>52.42</td> <td>0.000</td> <td>0.000</td>	30.00-20.00					В	25.467	0.000		52.42	0.000	0.000
T18 15.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>С</td> <td>24.495</td> <td>12.400</td> <td></td> <td>36.18</td> <td>0.000</td> <td>0.000</td>						С	24.495	12.400		36.18	0.000	0.000
T18 15.00 1 21 170.539 A 27.188 15.217 13.350 31.48 0.000 0.000 20.00-10.00 B 28.533 0.000 46.79 0.000 0.000 T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 31.48 0.000 0.000 T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 C 29.162 4.960 39.13 0.000 0.000 0.000 D 28.976 11.551 32.94 0.000 0.000 0.000						D	24.496	28.878		25.01	0.000	0.000
20,00-10,00 B 28,533 0.000 46,79 0.000 0.000 T19 10,00-0,00 5.00 1 21 177.715 A 29,084 6.087 13,350 37.96 0.000 0.000 B 29,688 0.000 44.77 0.000 0.000 0.000 C 29,162 4.960 33,18 0.000 0.000 0.000 D 27.093 28.878 23.85 0.000 0.000 0.000 D 29,084 6.087 13,350 37.96 0.000 0.000 D 29,162 4.960 39.13 0.000 0.000	T18	15.00	1	21	170.539	A	27.188	15.217	13.350	31.48	0.000	0.000
T1910.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 T1910.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 B 29.688 0.000 44.97 0.000 0.000 D 28.976 11.551 32.94 0.000 0.000	20.00-10.00					B	28.533	0.000		46.79	0.000	0.000
T19 10.00-0.00 5.00 1 21 177.715 A 29.084 6.087 13.350 37.96 0.000 0.000 D 29.162 4.960 39.13 0.000						C	27.362	12.400		33.58	0.000	0.000
119 10.00-0.00 5.00 1 21 177.15 A 29.084 6.087 13.350 37.96 0.000 0.000 B 29.688 0.000 44.97 0.000 0.000 C 29.162 4.960 39.13 0.000 0.000 D 28.976 11.551 32.94 0.000 0.000	T10 10 00 0 00	5.00			100.010	D	27.093	28.8/8	12.200	23.85	0.000	0.000
B 29.088 0.000 44.97 0.000 0.000 C 29.162 4.960 39.13 0.000 0.000 D 28.976 11.551 32.94 0.000 0.000	11910.00-0.00	5.00	1	21	1772/15	A D	29.084	0.087	13,350	3/.90	0.000	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						р С	29.088	4 960		44.97	0.000	0,000
							29.102	11:551		32 94	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	dof		Page
		180' Lattice Tower - CSP	27 of 63
D	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Б	Client	Sprint	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a	е	C _F	R_R	D_F	D_R	A_E	F	w	Ctrl. Face
A	K	ĸ	C						θ^2	ĸ	nlf	
<u></u>	0.07	0.75	A	0.21	2.936	0.593	1	1	12.778	1.60	159.73	D
180.00-170.00	0.07	0.75	B	0.203	2.969	0.591	i	i	12,491	1.00	100.10	2
			C	0.203	2.969	0.591	1	1	12,491			
			D	0.303	2.579	0.617	1	1	16.547			
T2	0.06	0.54	A	0.253	2,762	0.603	1	1	10.019	1.15	179.59	D
170.00-163.57			B	0.246	2,792	0,601	1	1	9.832			
			C	0,246	2,792	0.601	1	1	9.832			
			D	0.384	2.324	0.645	1	1	13.448			
Т3	0,11	0,39	A	0.256	2.754	0.603	1	1	7,282	0.83	183.94	D
163.57-159.05			B	0.246	2.789	0.601	1	1	7,122			
			C	0.394	2.296	0.649	1	1	9.675			
	0.12	0.27		0,396	2.291	0.65			9.931	0.07	102.21	D
14	0.13	0.30		0.242	2.000	0.0		<u>1</u>	7.103	0.67	193.31	D
139.05-134.32				0.227	2.800	0.390	24 27	1	0.903			
				0,391	2,304	0.664	4		10.937			
Т5	0.13	0.37		0.429	2.839	0.598	- â	î.	7 273	0.89	196.59	р
154 52-150 00	0.15	0.57	B	0.22	2,895	0.595	1	È	7.011	0.05	150,55	2
101.02 100.00			Ĩ	0.377	2.345	0.642	î	1	9,995			
			D	0.413	2.245	0.657	1	1	11.014			
Т6	0.29	0.97	A	0.234	2.837	0.598	1	1	17,345	2.09	209.20	D
150.00-140.00			В	0.222	2,889	0.595	1	1	16.767	~		
			C	0.366	2.377	0.638	1	1	23.172	1		
			D	0,421	2,226	0.66	1	1	26.495			
Т7	0.29	1.53	A	0.24	2,813	0.599	1	1	19.630	2.25	225.35	D
140,00-130.00			В	0.229	2.86	0.597	1	1	19.051			
			C	0.36	2.394	0.636	1	1	25.486			
			D	0.41	2.252	0.656	1		28.782			
T8	0.35	1.43	A	0.275	2.681	0.609	1 1		21.884	2,26	226.11	D
130.00-120.00			B	0.198	2.99	0.59	4		17.878			
				0.322	2.313	0.625	1		24.434			
то	0.41	2.05		0.315	2.520	0.621	4	4	26.357	2.49	249.07	п
120.00-110.00	0.41	2.05	R	0.205	2 9 5 9	0.591	1		20.205	2,77	272.07	<i>D</i>
120.00-110.00			Ĉ	0.318	2.529	0.621	1	1	26.369			
			D	0.425	2.215	0.662	1	1	33.864			
T10	0.43	1.91	A	0.306	2,568	0.618	1	1	26.940	2.51	250.90	D
110.00-100.00			В	0.188	3.031	0.588	1	1	19.757			
			C	0.295	2.608	0.614	1	1	26.155			
			D	0.404	2.27	0.653	1	1	34.163			
T11	0.45	2.50	A	0.33	2.49	0.625	1	1	31.710	2.78	277.95	D
100.00-90.00			B	0.211	2,932	0,593	1	1	23.872			
				0.31	2.555	0.619	1	1	30.309			
710	0.45	2 42		0.438	2.184	0.668	1	1	40.478	2.70	270 02	P
	0.45	2.43	A D	0,314	2,541	0.62	1	1	32,100	2.79	2/8.82	U
90.00-80.00			В	0.203	2,908	0.591	÷	1	24.303			
				0.290	2,004	0.015	- i I		41 078			
T13	0.92	7.96	A	0.272	2 691	0.608	- î l	1	48 919	4 66	233 17	D
80.00-60.00	0.72	120	B	0.167	3,128	0.584	î	i	32.089	1.00	200.17	2
			C	0.255	2,756	0,603	i	1	46.012			
			D	0.378	2,342	0.643	1	1	69.106			
T14	0.46	4,57	Α	0.262	2.729	0.605	1	1	25,762	2.29	228.96	D
60.00-50.00		1.0	В	0.163	3.144	0.584	1	1	17.328		~	
			С	0.244	2.798	0.6	1	1	24,167			
			D	0.358	2.401	0.635	1	1	35,464			
T15	0.46	5.12	A	0.264	2.722	0.605	1	1	27.857	2.29	228,95	D
50.00-40.00			В	0.17	3.114	0.585	1	1	19.485			
			C	0.246	2.791	0.601	1	1	26,175			
		ι ,	D	0.355	2.41	0.634	1	ा	37.412			

tnxTower	Job	180' Lattice Tower - CSP	Page 28 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl
Elevation	Weight	Weight	a									Face
			С									
ft	K	K	е			-			ft^2	K	plf	
T16	0.46	4.78	A	0.264	2.722	0.606	1	- E	35.218	2,53	252,92	D
40.00-30.00			В	0.175	3,089	0.586	1	1	27.367			
			C	0.247	2.787	0.601	1	1	33,635			
			D	0,351	2,423	0.633	1	1	44,161			
T17	0,46	4.27	A	0.242	2.806	0.6	1	1	33.479	2.47	247.05	D
30.00-20.00			В	0.156	3.177	0.582	1	1	25.467			
1.22			C	0.226	2.872	0.596	3	1	31.886			
			D	0.327	2.499	0,624	1	1	42.529			
T18	0,46	5.02	A	0.249	2,78	0.602	1	1	36.341	2,62	261,71	D
20.00-10.00			В	0.167	3,125	0.584	1	1	28.533			
			С	0.233	2.842	0.598	1	1	34.774			
			D	0.328	2,494	0.625	1	1	45.139			
T19	0.19	4.70	Α	0.198	2:989	0.59	1	1	32.675	2.39	238.63	D
10,00-0.00			В	0.167	3.126	0.584	1	- I)	29.688			
			С	0.192	3.015	0.589	1	1	32.083			
			D	0.228	2.863	0.597	1	1	35.867			
Sum Weight:	6.59	51.64						OTM	3576.82	41.77		
									kip-ft			

			Το	wer Fo	orce	s - N	o Ice	e - W	ind 45	To Face)	
Section	Add	Self	F	e	Cr	Re	DE	Dp	Ar	F	w	Ctrl
Elevation	Weight	Weight	a		~p				E	î		Face
			- C									
ft	K	K	e						$-ft^2$	Κ	plf	
T1	0.07	0.75	Α	0.21	2.936	0.593	1,158	1.158	14,794	1,92	191.67	D
180.00-170.00			В	0.203	2,969	0.591	1.152	1.152	14,389			
			C	0.203	2.969	0.591	1.152	1.152	14.389			
			D	0,303	2.579	0.617	1.2	1.2	19.856			
T2	0.06	0.54	A	0.253	2,762	0.603	1,19	1.19	11.923	1.39	215.51	D
170.00-163.57			В	0.246	2.792	0.601	1.184	1.184	11.643			
-			C	0.246	2.792	0.601	1,184	1.184	11.643			
1			D	0.384	2.324	0.645	1.2	1.2	16.138			
T3	0.11	0,39	A	0,256	2.754	0.603	1.192	1.192	8.677	1.00	220,73	D
163.57-159.05		10	В	0.246	2.789	0.601	1.185	1.185	8,438			
			С	0.394	2.296	0.649	1.2	1.2	11.610			
			D	0.396	2.291	0.65	1.2	1.2	11.917			
Т4	0.13	0.36	A	0.242	2.808	0.6	1.181	1.181	8.463	1.05	231.97	D
159.05-154.52			В	0.227	2.866	0.596	1.17	1.17	8.079			
- ×			С	0.391	2.304	0.648	1.2	1.2	11.890			
			D	0.429	2.204	0.664	1.2	1.2	13.124			
T5	0.13	0.37	Α	0.234	2.839	0.598	1.175	1,175	8.549	1.07	235.91	D
154.52-150.00			В	0.22	2.895	0.595	1.165	1.165	8.169			
			С	0.377	2.345	0.642	1.2	1.2	11.994			
			D	0.413	2.245	0.657	1.2	1.2	13.216		1	
т6	0.29	0.97	A	0.234	2.837	0.598	1.176	1.176	20.395	2.51	251.04	D
150.00-140.00		12	В	0.222	2.889	0.595	1.166	1.166	19.555		- N	2
			C	0.366	2.377	0.638	1.2	12	27.806			
	9		D	0.421	2 226	0.66	12	12	31 794			
T7	0.29	1.53	A	0.24	2.813	0.599	1.18	1-18	23 169	2 70	270 42	D
140.00-130.00	0.27	1.55	R	0.229	2.86	0.597	1.172	1.172	22,319	2.70	270112	2
			C	0.36	2 394	0.636	1.2	1.2	30,583			
			Ď	0.41	2 2 5 2	0.656	1.2	1.2	34,539			
TR	0.35	1 4 3	Ă	0.275	2 681	0.609	12	12	26 261	2.71	271.33	D
130-00-120-00	0.00	, T.S	B	0.198	2 99	0.59	1 1 4 8	1-148	20 527	2. / 1	2,1.55	P
			C	0.322	2.515	0.623	1.2	1.2	29 345			

tnxT	ower
------	------

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

			Baaa
er	Job	180' Lattice Tower - CSP	29 of 63
tion Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
6067 8882 991	Client	Sprint	Designed by MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl
Elevation	Weight	Weight	а									Face
			С						-2			
ft	K	K	е						ft^2	K	plf	
			D	0.382	2.328	0.645	1.2	1.2	34.268			
Т9	0.41	2.05	A	0.315	2.538	0.621	1.2	1.2	31,518	2,99	298,88	D
120,00-110.00			B	0.205	2.959	0.591	1,154	1.154	23.105			
			C	0.318	2.529	0.621	1.2	1.2	31.642			
	0.10		D	0.425	2.215	0.662	1.2	1.2	40.637	2.01	0.01.05	
T10	0.43	1.91	A	0,306	2.568	0.618	1.2	1.2	32.328	3.01	301.07	D
110.00-100.00			B	0,188	3.031	0.588	1.141	1.141	22,546			
				0.295	2,608	0.614	1.2	1,2	31,386			
7011	0.45	0.50		0.404	2.27	0.653	1.2	1.2	40.996	2.24	222.54	
	0,45	2.50	A	0.33	2.49	0.625	1.159	1.2	38.052	3.34	333.34	
100.00-90.00			B	0.211	2.932	0.593	1.158	1.158	27.000			
				0.31	2.555	0.619	1.2	1.2	30.371			
7710	0.45	2.42		0,438	2.104	0.000	1.2	1.2	40.374	2.25	224.50	D
	0,45	2,43	A	0.314	2.541	0.62	1 1 5 2	1 1 5 2	38.392	3.33	334.39	
90.00-80.00			в	0,203	2.908	0.391	1.152	1.132	26.071			
	1			0.290	2.004	0.015	1.2	1.2	40.204			
T12	0.02	7.06		0.42	2.229	0.00	1.2	1.2	49,294	5.60	270.90	D
80.00.60.00	0.92	7.90		0.272	2.091	0.000	1.125	1.125	36.702	5.00	279.00	
80.00-00.00				0.107	2 756	0.504	1 101	1 1 1 0 1	54.810			
				0.235	2.750	0.005	1.191	1.191	\$2.027			
T14	0.46	157		0.370	2.342	0.605	1 1 0 6	1 1 1 0 6	20,822	2 75	274 75	D
60.00.50.00	0,40	4.07		0.202	2.129	0.003	1.190	1 1 2 2	10 / 17	2.15	214.15	D
00.00-30.00				0.103	2 708	0.504	1,122	1,122	28 504			
				0.244	2.790	0.635	1,165	1,105	42 556			
T15	0.46	5 1 2		0.356	2.401	0.035	1 1 0 8	1 1 0 8	42,550	2.75	274 74	D
50.00.40.00	0.40	5.12		0.204	3 1 1 /	0.005	1.190	1.190	21.964	2.15	2/4./4	D
50.00-40.00				0.246	2,701	0.585	1.127	1.127	31.002			
			n n	0.355	2 41	0.634	1.104	1.104	44 895		1	
т16	0.46	178		0.355	2.71	0.606	1 1 0 8	1 1 0 8	42 188	3.04	303 50	п
40.00.30.00	0.40	4.70	R	0.204	3 080	0.586	1 1 3 1	1 131	30.964	5.04	505.50	D
40.00-50.00			C	0.175	2 7 8 7	0.500	1 1 1 8 5	1 1 85	39,866			
			n	0.351	2.707	0.633	1.105	1.105	52,993			
T17	0.46	4 27	Δ	0.242	2 806	0.000	1 1 8 2	1 1 8 2	39,560	2.96	296.46	D
30.00-20.00	0.10		B	0.156	3,177	0.582	1.117	1 1 1 1 7	28 444	2,90	290.10	5
50.00-20.00			C	0.226	2 872	0.502	1169	1 1 69	37 287			
			D	0.327	2 4 9 9	0.624	1.105	1.105	51.034			
т18	0.46	5.02	A	0.249	2 78	0.602	1 186	1 186	43 118	3-14	314.05	D
20.00-10.00	0.10	5102	R	0.167	3 1 2 5	0.584	1 1 2 5	1 1 2 5	32 114	5111	51 1105	2
20,00-10.00			C	0.233	2 842	0.598	1.175	1.175	40.855			
			Ď	0.328	2 4 9 4	0.625	1.2	1.2	54 167			
T19	0.19	4 70	Δ	0.198	2 989	0.59	1 1 4 8	1 1 4 8	37 524	2 79	279 44	р
10:00-0:00	0.15	1.70	B	0 167	3.126	0 584	1 1 2 5	1.125	33,408	2.17	2.28	~
10:00-0.00			C	0.192	3.015	0.589	1.144	1.144	36,702			
			Ď	0.228	2.863	0.597	1,171	1.171	42.001			
Sum Weight:	6.59	51.64	~	0,220	2.000	0.027		OTM	4291,84	50.05		
		2.101							kip-ft			

	Tower Forces - With Ice - Wind Normal To Face												
	Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D _R	A _E	F	W	Ctrl. Face
4	ft	K	K	e e						ft^2	Κ	plf	
ĺ	T1	0.21	1.18	Α	0,293	2.614	0.614	1	1	16.074	1.84	183.84	D
I	180.00-170.00			В	0.272	2.691	0.608	1.	1	15,239	, j		

	—
tny	ower

. T	Job		Page
tnx1ower		180' Lattice Tower - CSP	30 of 63
URS Corporation	Project		Date
Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a						1 /			Face
fi.	K	K	e c						ft^2	K	plf	
			C	0.272	2.691	0.608	1	1	15.239	1	1	-
	[]		D	0.431	2.2	0,665	1	1	22.324			
T2	0.16	0.86	A	0.336	2,469	0.628	1	1	12.219	1.35	210.60	D
170.00-163.57	6 /	1	B	0.315	2.537	0.621		1	11,667	1	/	
	()	1	C	0.315	2.537	0.621		1	11.667	1	b /	
	0.27	0.02		0.541	1.979	0.719	1 4	1 1	18.518	0.00	210.57	
162 57 150 05	0.27	0.03	A	0.351	2.423	0.033			9,113	0.99	219.57	U D
103.57-159.05	í 1		L C	0.520	2 005	0.024	1 1	1	0.030		1 /	
	í – 1	(7		0.525	1.944	0.73		1 17	13.971	1 /	1 1	
Т4	0.32	0.56		0.305	2 4 9 4	0.625	1 11	1 17	8 901	1.09	241 19	П
159 05-154.52	0.52	0.50	B	0.29	2 627	0.613	1	1 17	8.132	1.05	471.12	
155.05 10	í –)	1 /	Ĩ	0.516	2.021	0.706	1 11	1	12,952	1 /	/	
	0 I	(7	D	0.614	1.885	0.762	1	1	15.954	1 /	1 1	
Т5	0.32	0.57	A	0.318	2.528	0.622	1	1	9.026	1.10	242.18	D
154.52-150.00	1 1	1 1	В	0.281	2.657	0.61	1 î !	1	8.262	l l		
	1 1	l – 7	С	0.498	2,055	0.696	1	1	13.016	1 7	!	
l	i	(7	D	0.592	1.91	0.748	1 1	1	15.949	1 /	[]	
Т6	0.74	1.49	A	0.32	2.523	0.622	1	1	21.539	2.61	261.39	D
150.00-140.00		1 7	В	0.285	2.643	0.611	1	1	19.848	1		
	1 1	6 /	C	0,483	2.084	0.689	1	1	29.969	1 /		
	1 1	1	D	0,608	1.892	0.758	1	1	38.943	1 7		
T7	0.74	2.18	Α	0.317	2.531	0.621	1	1	23.788	2.73	273.40	D
140.00-130.00		1 7	В	0.286	2,641	0.612	(-1)	1	22.104	1 /		
		1 1	C	0.468	2,115	0.682	[1]	1 1	32.207	1 7	1 1	14
		1 !	D	0.582	1.921	0.743		1	40.941	1	[
T8	0.92	1.98	Α	0.381	2.334	0.644	1 11	1	28.377	2.74	274,10	D
130.00-120.00	1	1 7	B	0.245	2.793	0.601	1 1	1	20.592	1 /		
	1 1	1 1	C	0.42	2.228	0.66	1 1	1	30.801	1 /		
770	1.12	0.70	D	0.549	1.967	0.724	1 11	1	40.990	2.20	220.45	
100 00 110 00	1.12	2.78	A	0.444	2.169	0.671	1 1	는 것!	35,281	3.20	320.45	D
120.00-110.00	, j	1 1	В	0.258	2.745	0.604	1 1		23.274	1 7		
1	.	1 1		0.415	2.241	0.658	늰		51.490	1 1	1 1	
T10	1.16	2.52		0.025	2.10	0.709	1 1	1 1	26 573	3.10	218.80	П
110.00.100.00	1.10	2,94		0.232	2846	0.007	1 41	1	22 624	112	510.05	D
110.00-100.00		l I		0.382	2.040	0.597	1 11	(i)	32 435	[]	í II	
		b I		0.502	1.904	0.751	i 11	1 1	51.771	1 1	1	
T11	1 23	3 28	A	0.458	2.138	0.677	i îl	i il	42-192	3.57	356.68	D
100.00-90.00			B	0.253	2.764	0.603	î	i	26.833	(550.00	Ľ
100100 2010		A 1	l č !	0.392	2.301	0.648	î	1	36.694	i –)	í]]	
		1 I	D	0.635	1.866	0.776	1	1	60.788	i)	i	
T12	1.23	3.15	A	0.436	2.187	0.667	1	1	42.561	3.53	352.60	D
90.00-80.00			в	0.243	2.801	0.6	1	1	27.413			
		. I I	C	0.375	2.351	0.642	1	1	37.185	i – 1		
		. 1	D	0.61	1.889	0.76	1	1	61.285	1 1		
T13	2.50	9.49	A	0.385	2.321	0.646	1	1	70.289	6.32	316.21	D
80.00-60.00		1 1	B	0.202	2.973	0.591	1	1	37.914	1		
		/ J	C	0.327	2.498	0.625	1	1	59.081	1 1		
		1	D	0.564	1.945	0.732	1		112.865	1 1		
T14	1.26	5.52	A	0.374	2.354	0.641	1	1 1	36.979	3.05	304.72	D
60.00-50.00			B	0.201	2.978	0.591	1	1 11	20.674			
		(I	C	0.315	2.537	0.621	1		31.018	1 1		
	1.05		D	0.535	1.989	0.716	1	1 11	56,969			
T15	1.27	5.97	A	0.373	2.357	0.641		- 81	39.226	3.00	299.66	D
50.00-40.00			B	0.206	2.952	0.592			22.950			
		A	CI	0.315	2.54	0.62	1		33.056	1		
	1.07	5.00	D	0.526	2.003	0.711		1 81	58.919	2.00	200.04	5
116	1.27	5.99	A	0.574	2,352	0.641	5		46.666	3,09	308.84	D
40.00-30.00			I B I	0.219	2.9	0.594		(P.)	31.544	4 I		

T	Job		Page
tnx 1 ower		180' Lattice Tower - CSP	31 of 63
UPS Componition	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	W	Ctrl
Elevation	Weight	Weight	а					1				Face
			С									
ft	K	K	е						ft^2	K	plf	
			С	0,32	2.522	0.622	1	1.	40,923		1	
			D	0.52	2.014	0.708	1	1	64,883			
T17	1.27	5.18	Α	0.344	2.443	0.63	1	1	44.319	3.01	301,46	D
30.00-20.00			В	0.192	3.016	0.589	1	1	29.003			
			C	0.291	2.622	0.613	1	1	38,588			
			D	0.488	2.074	0.691	1	T.	62.529			
T18	1.27	6.32	Α	0.353	2.417	0,633	1	1	47.880	3.16	315.92	D
20.00-10.00			В	0.21	2.937	0.593	1	ť	32.959			
			С	0.303	2,581	0,617	1	1	42.256			
			D	0.486	2,077	0.691	1	1	65.449			
T19	0.51	6,11	Α	0.265	2.717	0.606	1	Ĩ	39,964	2.69	269.28	D
10.00-0.00			В	0.211	2.932	0.593	1	1	34.463			
			С	0.246	2.79	0.601	1	1	37.952			
			D	0.315	2,537	0.621	1	1	45.663			
Sum Weight:	17.73	65.76						OTM	4467.74	52.27		
									kip-ft			

Tower Forces - With Ice - Wind 45 To Face													
Section	Add	Self	F	е	$C_{\mathcal{E}}$	Re	D_F	DR	A.	F	w	Ctrl	
Elevation	Weight	Weight	a		- Cr	2.17	-1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E			Face	
	0	0	с										
ft	K	K	е						ft^2	K	plf		
T1	0.21	1.18	Α	0,293	2.614	0.614	1.2	1.2	19.289	2.21	220.61	D	
180.00-170.00			В	0.272	2.691	0.608	1.2	1.2	18,286				
			С	0.272	2.691	0.608	1.2	1.2	18.286				
			D	0,431	2.2	0.665	1.2	1.2	26.789				
T2	0.16	0.86	Α	0.336	2.469	0.628	1.2	1.2	14.662	1.62	252.72	D	
170.00-163.57			В	0.315	2.537	0.621	1.2	1.2	14.001		-		
			С	0.315	2.537	0.621	1.2	1.2	14.001				
			D	0.541	1,979	0.719	1.2	1.2	22.222				
T3	0.27	0.63	Α	0.351	2,423	0.633	1.2	1.2	10.938	1.19	263.48	D	
163.57-159.05			В	0.326	2.501	0.624	1.2	1.2	10.366				
			С	0.525	2.005	0.71	1.2	1.2	15.257				
			D	0.565	1.944	0.733	1.2	1.2	16.766				
T4	0.32	0.56	Α	0.328	2.494	0.625	1.2	1.2	10.681	1,31	289.43	D	
159.05-154.52			В	0.29	2.627	0.613	1.2	1,2	9,758				
			С	0.516	2.021	0.706	1.2	1.2	15.542				
	I		D	0.614	1,885	0.762	1.2	1.2	19.145				
T5	0.32	0.57	Α	0.318	2.528	0.622	1.2	1.2	10.831	1.31	290.61	D	
154.52-150.00			В	0.281	2.657	0.61	1.2	1.2	9,915				
			С	0.498	2.055	0.696	1.2	1.2	15.620				
			D	0.592	1.91	0,748	1.2	1.2	19.139				
Т6	0.74	1.49	Α	0.32	2.523	0.622	1.2	1.2	25.847	3.14	313.67	D	
150.00-140.00		0474	В	0.285	2.643	0.611	1.2	1.2	23.817				
			С	0.483	2.084	0.689	1.2	1.2	35,963				
			D	0.608	1.892	0.758	1.2	1.2	46,732				
T7	0.74	2.18	Ā	0.317	2.531	0.621	1.2	1.2	28.546	3.28	328-08	D	
140.00-130.00			В	0.286	2.641	0.612	1.2	1.2	26.525	- 27 - 1			
			C	0.468	2.115	0.682	1.2	1.2	38.648				
			Ď	0.582	1.921	0.743	1.2	1.2	49,130				
T8	0.92	1.98	Ã	0.381	2.334	0.644	1.2	1.2	34.052	3.29	328-92	D	
130.00-120.00	0,72	1.50	в	0.245	2,793	0.601	1.184	1.184	24.381	5.25	520.72		
			č	0.42	2 228	0.66	1.2	1.2	36 962				
			Ď	0 549	1.967	0.724	1.2	1.2	49.188				
Т9	1.12	2.78	Ã	0.444	2.169	0.671	1.2	1.2	42.337	3.85	384 54	D	

· T	Job		Page
tnx I ower		180' Lattice Tower - CSP	32 of 63
URS Corporation	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882		Sprint	MCD
FAX: 860-529-3991			

Section	Add	Self	F	e	Cr	R _P	Dr	D_{P}	A.E	F	W	Ctrl
Elevation	Weight	Weight		Ľ.	U Vr	, ra	Dr	D K	E	ŕ		Face
Dicyunon	,, c.g.n	17 Signi	c									
ft	K	K	e						ft^2	K	plf	
120.00-110.00			В	0.258	2.745	0.604	1,193	1,193	27,771			
			C	0.415	2.241	0.658	1.2	1.2	39.668			
			D	0,625	1.875	0.769	1.2	1.2	61.776			
T10	1.16	2,52	A	0,435	2.19	0.667	1.2	1.2	43.888	3.83	382.67	D
110.00-100.00			В	0.232	2.846	0.597	1.174	1,174	26.563			
			C	0,382	2.33	0.644	1.2	1.2	38.922			
			D	0.596	1.904	0.751	1.2	1.2	62,125			
T11	1.23	3.28	A	0.458	2.138	0.677	1.2	1.2	50.631	4.28	428.02	D
100.00-90.00			В	0.253	2,764	0.603	1.19	1.19	31,923			
			C	0.392	2,301	0,648	1.2	1.2	44.033			
		1	D	0.635	1.866	0.776	1.2	1.2	72.945			_
T12	1.23	3,15	Α	0.436	2,187	0.667	1,2	1.2	51.073	4.23	423.12	D
90.00-80.00			В	0.243	2.801	0.6	1.183	1.183	32.416			
			С	0,375	2,351	0.642	1.2	1.2	44.622			
			D	0.61	1.889	0.76	1,2	1.2	73.542			
T13	2.50	9.49	Α	0.385	2.321	0.646	1.2	1.2	84.346	7.59	379.45	D
80.00-60.00			В	0.202	2.973	0,591	1,151	1,151	43,649			
			С	0.327	2.498	0.625	1.2	1.2	70,897			
			D	0.564	1,945	0,732	1.2	1.2	135.438			
T14	1.26	5.52	A	0.374	2.354	0.641	1.2	1.2	44.374	3.66	365.67	D
60.00-50.00			В	0.201	2.978	0.591	1.15	1.15	23.784			
			С	0.315	2,537	0.621	1,2	1.2	37.222			
1			D	0.535	1.989	0.716	1.2	1.2	68,363			
T15	1.27	5.97	A	0.373	2.357	0.641	1.2	1.2	47,071	3.60	359.60	D
50.00-40.00			В	0.206	2.952	0,592	1.100	1.155	26,504			
1 1				0.315	2.54	0.62	1.2	1,2	39.667			
T1(1.07	5.00		0.520	2.003	0.711	1.2	1.2	70.703	2 71	270 61	D
10 00 20 00	1.27	5.99	A	0.374	2.332	0.041	1.2	1.2	33.999	5.71	570.01	D
40.00-30.00			В	0.219	2.9	0.394	1.104	1,104	30,720			
				0.52	2.014	0.022	1.2	1.2	49.108			
T17	1 27	5 1 9		0.32	2.014	0.700	1.2	1.2	52 192	2.67	261 75	D
20.00.20.00	1.27	5.10	D	0.344	2,445	0.03	1.144	1 1 4 4	22 172	5.02	301,75	D
30.00-20.00			ь С	0,192	2,622	0,567	1.2	1.144	46 306			
			D D	0.291	2.022	0.601	1.2	1,2	75 035			
T19	1.27	632		0.400	2.074	0.633	1.2	1.2	57 456	3 70	370.11	D
20.00-10.00	1.27	0.52	R	0.555	2.417	0.033	1 1 5 8	1 1 5 8	38 152	577	577.11	D
20.00-10.00			C	0 303	2.581	0.575	1.150	1.150	50,708			
			ň	0.303	2 077	0.691	12	1 2	78 530			
T19	0.51	6.11	A	0.265	2 717	0.606	1.190	1 1 9 9	47.911	3.23	323 13	D
10.00-0.00	0.51	0.11	R	0.211	2.932	0.593	1:159	1=1.59	39 927	5.25	223.22	~
10,00-0.00			č	0.246	2.79	0.601	1.185	1.185	44 960			
			Ď	0.315	2 537	0.621	1.2	1.105	54 796			
Sum Weight	17.73	65 76	~	01010	2.001	01041	1.2	OTM	5361.29	62.72		
Sum nongine	1 181.2	00.10						0.1.1	kip-ft	51.72		

Tower Forces - Service - Wind Normal To Face												
Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D_R	A _E	F	W	Ctrl. Face
ft	K	K	с е						ft^2	K	plf	
Tl	0.07	0.75	A	0.21	2.936	0.593	1	1	12,778	1.60	159.73	D
180.00-170.00			В	0.203	2.969	0.591	1	1	12.491			
			С	0.203	2.969	0.591	1	1	12.491			
			D	0.303	2.579	0.617	1	1	16.547			

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
r		180' Lattice Tower - CSP	33 of 63
าท	Project		Date
ite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
67	Client		Designed by
82 1		Sprint	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A _E	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
ft	K	K	e						ft^2	K	nlf	
T2	0.06	0,54	A	0.253	2.762	0.603	1	1	10.019	1.15	179.59	D
170.00-163.57			В	0.246	2.792	0.601	1	1	9.832		2	
			C	0,246	2,792	0.601	1	1	9.832			
	0.11	0.20	D	0.384	2.324	0.645	1	1	13.448	0.02	102.04	D
162 57 150 05	0.11	0.39	A	0.256	2.754	0.603	1	1	7.282	0.83	183,94	D
103-57-159.05			B	0.240	2.709	0.601	1		0.675			
			D	0.396	2.290	0.65	Ť.	i	9 931			
Т4	0.13	0.36	Ā	0.242	2.808	0.6	î	î	7.165	0.87	193.31	D
159.05-154.52		100	В	0,227	2.866	0.596	1	1	6.903			
			С	0.391	2.304	0.648	1	1	9.908			
			D	0.429	2,204	0.664	1	1	10.937			
T5	0.13	0.37	A	0.234	2.839	0.598	1	1	7,273	0.89	196,59	D
154.52-150.00			B	0.22	2.895	0.595	I	1	7.011			
				0.377	2.345	0.642	1		9,995			0
та	0.29	0.97		0.415	2.245	0.037	1		17 345	2.00	200.20	D
150 00-140 00	0.29	0.57	B	0.227	2.889	0.595	i	1	16 767	2.07	207.20	D
150.00 110.00			Č	0.366	2.377	0.638	î	î	23.172			
			D	0.421	2.226	0.66	1	1	26,495			
Т7	0.29	1.53	A	0.24	2.813	0.599	1	1	19.630	2.25	225.35	D
140.00-130.00			В	0.229	2.86	0.597	1	1	19.051			
			С	0.36	2.394	0.636	1	1	25.486			
	0.25	1.42	D	0.41	2.252	0.656	1	1	28.782	2.07	226.11	
120 00 120 00	0,35	1,43	A	0.275	2,681	0.609	1	1	21.884	2.26	226,11	D
130.00-120.00			В	0.198	2.99	0.39	1	1	17.878			
			D	0.382	2.313	0.645	î	1	28 557			
Т9	0.41	2.05	Ă	0.315	2.538	0.621	î	i	26.265	2.49	249.07	D
120.00-110.00			В	0,205	2.959	0.591	1	1	20.028			_
			С	0.318	2.529	0.621	1	1	26.369			
			D	0.425	2.215	0.662	1	1	33.864			
T10	0.43	1.91	Α	0.306	2.568	0.618	1	1	26.940	2.51	250.90	D
110.00-100.00			В	0.188	3.031	0.588	1	1	19.757			
			C	0.295	2.608	0.614	1	4	26.155			
T11	0.45	2.50		0.404	2.27	0.033			34.105	2.78	277 05	D
100.00-90:00	0.45	2.50	B	0.55	2.932	0.593	i i	î	23 872	2.70	211.75	D
			C	0.31	2.555	0.619	1	ű.	30.309			
			D	0.438	2.184	0.668	1	1	40.478			
T12	0.45	2.43	А	0.314	2.541	0.62	1	1	32.160	2.79	278.82	D
90.00-80.00			В	0.203	2.968	0.591	1	1	24.365			
			С	0.296	2.604	0.615	1	1	30.775			
T12	0.02	7.06		0.42	2 2 2 2 9	0,66	1	4	41.078	1 66	222.17	D
80.00.60.00	0.92	7.90	R	0.272	3 1 2 8	0.584	1		46.919	4.00	233,17	D
80.00-00.00			Ċ	0.255	2 756	0.603	÷.	- ÷	46.012			
			D	0.378	2.342	0.643	1	i	69,106			
T14	0.46	4.57	Α	0.262	2,729	0.605	1	1	25,762	2,29	228.96	D
60.00-50.00			В	0.163	3.144	0.584	1	1	17.328			
			С	0.244	2.798	0.6	1	1	24.167			
	0.4-		D	0.358	2,401	0.635	1	1	35,464			
F15	0.46	5.12	A	0.264	2.722	0.605	1	1	27.857	2.29	228.95	ע
50.00-40.00			в С	0.17	3.114 2.701	0.585	1	4	19,485			
				0.240	2.791	0.634	1	1	37 412			
т16	0.46	4.78	Ă	0.264	2.722	0.606	i	i	35.218	2.53	252.92	D
40.00-30.00			В	0.175	3.089	0.586	1	1	27.367			
			С	0.247	2.787	0.601	1	1	33,635			
j L			D	0.351	2.423	0.633	1	1	44.161	j j		1

tnxTower	Job	180' Lattice Tower - CSP	Page 34 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	W	Ctrl.
Elevation	Weight	weight	а									Face
ft	K	K	c e						ft^2	K	plf	
T17	0.46	4.27	Α	0.242	2.806	0.6	1	1	33.479	2,47	247.05	D
30.00-20.00			В	0,156	3.177	0.582	1	1	25.467			
			С	0.226	2.872	0.596	1	E I	31.886			
			D	0.327	2.499	0.624	- 1	1	42.529			
T18	0.46	5.02	Α	0.249	2.78	0.602	1	1	36.341	2,62	261.71	D
20.00-10.00			В	0.167	3,125	0.584	1	1	28.533			
N 12			С	0.233	2,842	0.598	1	1	34.774			
			D	0.328	2,494	0.625	1	1	45.139			
T19	0.19	4.70	A	0.198	2.989	0.59	1	1	32.675	2.39	238.63	D
10.00-0.00			В	0,167	3.126	0.584	1	1	29.688			
			С	0.192	3.015	0.589	1	1	32.083			
1. C			D	0.228	2,863	0.597	1	1	35.867			
Sum Weight:	6.59	51.64						OTM	3576.82	41.77		
									kip-ft			

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D_R	A _E	F	w	Ctrl Fac
ft	K	K	e c						ft^2	K	nlf	
	0.07	0.75	A	0.21	2.936	0.593	1.158	1.158	14,794	1.92	191.67	D
180.00-170.00			В	0.203	2.969	0.591	1.152	1.152	14.389			
			l c	0.203	2.969	0.591	1.152	1.152	14.389			
			D	0.303	2.579	0.617	1.2	1.2	19.856			
T2	0.06	0.54	A	0.253	2.762	0.603	1.19	1.19	11.923	1.39	215.51	D
170.00-163.57			В	0.246	2.792	0.601	1.184	1.184	11.643		- 25	
			С	0.246	2.792	0.601	1.184	1.184	11.643			
			D	0,384	2.324	0.645	1.2	1.2	16.138			
Т3	0.11	0.39	A	0.256	2.754	0.603	1.192	1,192	8.677	1.00	220.73	D
163.57-159.05			В	0.246	2.789	0.601	1.185	1.185	8.438			
			С	0.394	2.296	0.649	1.2	1.2	11.610			
			D	0.396	2.291	0.65	1.2	1.2	11.917			
T4	0.13	0.36	Α	0.242	2.808	0.6	1.181	1.181	8.463	1.05	231.97	D
159.05-154.52			В	0.227	2.866	0.596	1.17	1.17	8.079			
			С	0.391	2.304	0.648	1.2	1.2	11.890			
			D	0.429	2.204	0.664	1.2	1.2	13.124			
Т5	0.13	0.37	A	0.234	2.839	0.598	1.175	1.175	8.549	1.07	235.91	D
154.52-150.00			В	0.22	2.895	0.595	1.165	1.165	8.169			
1000			С	0.377	2.345	0.642	1.2	1.2	11,994			
			D	0.413	2.245	0.657	1.2	1.2	13.216			
Т6	0.29	0.97	A	0.234	2.837	0.598	1.176	1.176	20.395	2.51	251.04	D
150.00-140.00			В	0.222	2,889	0,595	1.166	1.166	19.555			
			С	0.366	2.377	0.638	1.2	1.2	27.806			
			D	0.421	2.226	0.66	1.2	1.2	31.794			
T7	0.29	1.53	Α	0.24	2.813	0.599	1.18	1.18	23.169	2.70	270.42	D
140.00-130.00			В	0.229	2.86	0.597	1.172	1.172	22.319			
			С	0.36	2.394	0.636	1.2	1.2	30.583	1		
			D	0.41	2.252	0.656	1.2	1,2	34,539			
T8	0.35	1.43	Α	0.275	2.681	0.609	1.2	1.2	26.261	2.71	271.33	D
130.00-120.00			В	0.198	2.99	0.59	1.148	1.148	20.527			_
n n n n n n n n n n n n n n n n n n n			С	0.322	2.515	0.623	1.2	1.2	29.345			
			D	0.382	2.328	0.645	1.2	1.2	34.268			
Т9	0.41	2.05	А	0.315	2.538	0.621	1.2	1.2	31.518	2,99	298.88	D
120.00-110.00			В	0.205	2,959	0.591	1.154	1.154	23,105			
			С	0318	2.529	0.621	1.2	1.2	31 642		1	

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
•		180' Lattice Tower - CSP	35 of 63
	Project		Date
te 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
7	Client		Designed by
2		Sprint	MCD

Section Elevation	Add Weight	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	weigni	weigni										Face
ft	K	K	e						ft ²	K	plf	
			D	0.425	2.215	0.662	1.2	1.2	40.637			
T10	0.43	1.91	A	0.306	2.568	0.618	1.2	1.2	32.328	3.01	301.07	D
110.00-100.00			B	0.188	3.031	0.588	1.141	1.141	22.546			
				0.295	2.608	0.614	1.2	1.2	31.386			
TT11	0.45	2.50		0.404	2.27	0.655	1.2	1.2	40.996	2.24	222 54	D
100.00.00.00	0.45	2.50		0.55	2.49	0.023	1 1 1 5 8	1 1 1 5 8	27 655	5,34	555.54	D
100.00-90,00				0.211	2.555	0.619	1.158	1.158	36 371			
			Ď	0.438	2.184	0.668	1.2	1.2	48 574			
T12	0.45	2.43	Ā	0.314	2.541	0.62	1.2	1.2	38.592	3.35	334.59	D
90.00-80.00			В	0.203	2.968	0.591	1.152	1.152	28.071			
			C	0.296	2.604	0.615	1.2	1.2	36.930			
			D	0.42	2.229	0.66	1.2	1.2	49.294			
T13	0.92	7.96	A	0.272	2.691	0.608	1.2	1.2	58.702	5.60	279.80	D
80.00-60.00			В	0.167	3.128	0.584	1.125	1.125	36.101			
			C	0.255	2.756	0.603	1.191	1.191	54.810			
	0.46	4.45	D	0.378	2.342	0.643	1.2	1.2	82.927			
T14	0.46	4.57	A	0.262	2.729	0.605	1.196	1.196	30.822	2.75	274.75	D
60.00-50.00			B	0.163	3.144	0.584	1.122	1.122	19,447			
				0.244	2.798	0.0	1.103	1.103	28.394			
Т15	0.46	5 12		0.358	2.401	0.605	1 1 9 8	1 1 9 8	33 366	2 75	274 74	D
50.00-40.00	0.40	5.12	B	0.204	3 1 1 4	0.585	1.127	1 1 1 2 7	21.964	2.15	2/7./7	D
50.00 10.00			Č	0.246	2.791	0.601	1.184	1.184	31.002			
			D	0.355	2.41	0.634	1.2	1.2	44.895			
T16	0.46	4.78	Α	0.264	2.722	0.606	1.198	1.198	42.188	3.04	303.50	D
40.00-30.00			В	0.175	3.089	0.586	1.131	1.131	30.964			
			С	0.247	2.787	0.601	1.185	1.185	39.866			
			D	0.351	2.423	0.633	1.2	1.2	52.993			
T17	0.46	4.27	Α	0.242	2.806	0.6	1.182	1.182	39,560	2.96	296.46	D
30.00-20.00			В	0.156	3.177	0.582	1=117	1.117	28.444			
			C	0.226	2.872	0.596	1.169	1.169	37.287			
T 10	0.46	c 00	D	0.327	2.499	0.624	1.2	1.2	51.034	2.14	214.05	D
118	0.46	5.02	A	0.249	2,78	0.602	1.180	1,180	43.118	3,14	314.05	D
20.00-10.00			В	0.10/	3.123	0.584	1.125	1.125	32,114			
				0.233	2.042	0.596	1.175	1.175	40.655			
T19	0.19	4 70	Δ	0.198	2.424	0.025	1 1 4 8	1 148	37 524	2 79	279 44	D
10.00-0.00	0.19	4.70	B	0.150	3.126	0.584	1 1 2 5	1 1 2 5	33 408	2.15	215.44	D
10.00 0.00			č	0.192	3.015	0.589	1.144	1.144	36.702			
			D	0.228	2.863	0.597	1.171	1.171	42,001			
Sum Weight:	6.59	51.64						OTM	4291,84	50.05		
									kip-ft			

Force Totals										
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques				
Case	Forces	Forces	Forces	Overturning	Overturning					
		X	Z	Moments, M_x	Moments, M_z					
	K	K	K	kip-ft	kip-ft	kip-ft				
Leg Weight	30.80			The second second	MINNELLI CSU	al any				
Bracing Weight	20.84		1. M			아이 프로그램을 가장				
Total Member Self-Weight	51.64			-11.13	10.48	A Side Charles				
Total Weight	68.76	S-195 20 100	NATH YEAR	-11.13	10.48	3				
Wind 0 deg - No Ice	Contact of the	-0.21	-71.45	-8070.12	35.04	-42.38				
Wind 30 deg - No Ice		39.95	-68.94	-7597.36	-4398.04	-45.44				

	Job	Page
tnx1ower	180' Lattice Tower - CSP	36 of 63
UDS Componention	Project	Date
500 Enterprise Drive, Suite 3B	Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client	Designed by
Phone: 860-529-8882 FAX: 860-529-3991	Sprint	MCD

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M _z	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 45 deg - No Ice	a share the state	56.60	-56.23	-6197.92	-6236,82	-38.98
Wind 60 deg - No Ice	N WWW. Spint of	69,40	-39,68	-4376.86	-7649.86	-29.88
Wind 90 deg - No Ice	1. 1. 1. S	71.97	0.21	13.43	-8134.08	-7.53
Wind 120 deg - No Ice		69.61	40.05	4397.15	-7674.42	18,95
Wind 135 deg - No Ice	in a star an	56.90	56.53	6210.40	-6271.55	30.07
Wind 150 deg - No Ice		40.31	69.15	7599.67	-4440.58	39.13
Wind 180 deg - No Ice		0.21	71.45	8047.86	-14.09	42.38
Wind 210 deg - No Ice	STLL DOLMARS	-39.95	68.94	7575.10	4418.99	45.44
Wind 225 deg - No Ice	E. S. Siddler	-56.60	56.23	6175.66	6257.77	38.98
Wind 240 deg - No Ice		-69.40	39.68	4354.60	7670.81	29.88
Wind 270 deg - No Ice		-71.97	-0.21	-35,69	8155.03	7.53
Wind 300 deg - No Ice		-69.61	-40.05	-4419.41	7695.37	-18.95
Wind 315 deg - No Ice	- 10 p	-56.90	-56.53	-6232.66	6292,51	-30.07
Wind 330 deg - No Ice		-40.31	-69,15	-7621.93	4461.54	-39.13
Member Ice	14.12	The second second	25 102 - 20 X L	1 wither 5 9	27414	STR VIE
Total Weight Ice	100.21		요즘과 지도가 ??	-14.38	37.97	1001 2051
Wind 0 deg - Ice		-0.21	-88.06	-9747.26	60.97	-72.15
Wind 30 deg - Ice		49.35	-85.21	-9205.64	-5299.03	-74.88
Wind 45 deg - Ice	5 8 LWALS D	69.89	-69.51	-7512.14	-7521.59	-62.89
Wind 60 deg - Ice		85.68	-49.08	-5307.68	-9228,98	-46.60
Wind 90 deg - Ice		88.60	0.21	8.61	-9782.31	-8.61
Wind 120 deg - Ice	Mark States 1	85.89	49.44	5318.74	-9251.98	36.49
Wind 135 deg - Ice		70.19	69.81	7515.89	-7554.11	54.63
Wind 150 deg - Ice		49.71	85,42	9199.87	-5338,86	69.04
Wind 180 deg - Ice	and the second	0.21	88.06	9718.49	14.98	72.15
Wind 210 deg - Ice		-49.35	85.21	9176.87	5374.97	74.88
Wind 225 deg - Ice		-69.89	69.51	7483.37	7597.53	62.89
Wind 240 deg - Ice	The share year	-85.68	49.08	5278.91	9304.92	46.60
Wind 270 deg - Ice	A FARMAN (74	-88.60	-0.21	-37.38	9858.26	8.61
Wind 300 deg - Ice	1 Mar 8 A 17-1	-85.89	-49.44	-5347.51	9327.92	-36.49
Wind 315 deg - Ice		-70.19	-69.81	-7544.66	7630.06	-54.63
Wind 330 deg - Ice		-49.71	-85.42	-9228.64	5414.80	-69.04
Total Weight	68.76		24 S. S. S. S. S.	-11.13	10.48	VISIN DX L ST
Wind 0 deg - Service	13.9/L S	-0.21	-71.45	-8067.82	25.54	-42.38
Wind 30 deg - Service		39.95	-68.94	-7595.06	-4407.54	-45,44
Wind 45 deg - Service		56.60	-56.23	-6195.62	-6246,32	-38.98
Wind 60 deg - Service	나는 다 아니가 가 봐.	69.40	-39.68	-4374.56	-7659.36	-29.88
Wind 90 deg - Service		71.97	0.21	15.74	-8143.58	-7.53
Wind 120 deg - Service	M. 1	69.61	40.05	4399.45	-7683.92	18,95
Wind 135 deg - Service	1.5 x 1 W 7.5 Y 1.5 Y	56.90	56.53	6212.70	-6281.06	30.07
Wind 150 deg - Service		40.31	69.15	7601.97	-4450.09	39.13
Wind 180 deg - Service		0.21	71.45	8050.16	-23.59	42.38
Wind 210 deg - Service		-39.95	68.94	7577.41	4409.49	45.44
Wind 225 deg - Service		-56.60	56.23	6177.97	6248.27	38.98
Wind 240 deg - Service		-69.40	39.68	4356.91	7661.31	29.88
Wind 270 deg - Service	-W	-71.97	-0.21	-33.39	8145.53	7.53
Wind 300 deg - Service		-69.61	-40.05	-4417.10	7685.87	-18.95
Wind 315 deg - Service	Contraction of the second	-56.90	-56.53	-6230.36	6283.01	-30.07
Wind 330 deg - Service	STER WEIZER	-40.31	-69.15	-7619.62	4452.03	-39.13

Load Combinations

Comb. No.

Description

Dead Only Dead+Wind 0 deg - No Ice 1 2

T.	Job		Page
tnxlower		180' Lattice Tower - CSP	37 of 63
URS Cornoration	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Comb No		Description
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 60 deg - No Ice	
6	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No Ice	
9	Dead+Wind 150 deg - No Ice	
10	Dead+Wind 180 deg - No Ice	
11	Dead+Wind 210 deg - No Ice	
12	Dead+Wind 225 deg - No Ice	
13	Dead+Wind 240 deg - No Ice	
14	Dead+Wind 270 deg - No Ice	
15	Dead+Wind 300 deg - No Ice	
16	Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice+Temp	
19	Dead+Wind 0 deg+Ice+Temp	
20	Dead+Wind 30 deg+Ice+Temp	
21	Dead+Wind 45 deg+Ice+Temp	
22	Dead+Wind 60 deg+Ice+Temp	
23	Dead+Wind 90 deg+Ice+Temp	
24	Dead+Wind 120 deg+Ice+Temp	
25	Dead+Wind 135 deg+Ice+Temp	
26	Dead+Wind 150 deg+Ice+Temp	
27	Dead+Wind 180 deg+Ice+Temp	
28	Dead+Wind 210 deg+Ice+Temp	
29	Dead+Wind 225 deg+Ice+Temp	
30	Dead+Wind 240 deg+Ice+Temp	
31	Dead+Wind 270 deg+Ice+Temp	
32	Dead+Wind 300 deg+Ice+Temp	
33	Dead+Wind 315 deg+Ice+Temp	
34	Dead+Wind 330 deg+Ice+Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	
37	Dead+Wind 45 deg - Service	
38	Dead+Wind 60 deg - Service	
39	Dead+Wind 90 deg - Service	
40	Dead+Wind 120 deg - Service	
41	Dead+Wind 135 deg - Service	
42	Dead+Wind 150 deg - Service	
43	Dead+Wind 180 deg - Service	
44	Dead+Wind 210 deg - Service	
45	Dead+Wind 225 deg - Service	
46	Dead+Wind 240 deg - Service	
47	Dead+Wind 270 deg - Service	
48	Dead+Wind 300 deg - Service	
49	Dead+Wind 315 deg - Service	
50	Dord+Wind 230 dog Sorvice	

	Maximum Member Forces						
Section No	Elevation ft	Component Type	Condition	Gov Load Comb	Force K	Major Axis Moment kin-ft	Minor Axis Moment kin-ft
T1	180 - 170	Leg	Max Tension	21	6.70	-0.86	-0.83
		5	Max. Compression	29	-6.92	-0.99	-1.14
			Max. Mx	34	1.14	3.29	-2.58
			Max. My	24	1.15	-2.62	3.33
			Max. Vy	27	-2.81	1.25	-0.33

T	Job		Page
tnx I ower		180' Lattice Tower - CSP	38 of 63
UPC Companyion	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
- 51	2	<i>JF</i> -		Comb.	K	kip-ft	kip-ft
			Max. Vx	19	-2.81	-0,32	1.25
		Diagonal	Max Tension	27	5.71	0.00	0.00
		_	Max. Compression	19	-6.55	0.00	0.00
			Max. Mx	29	4.56	0.02	-0.00
			Max. My	17	4.23	0.01	0.00
			Max. Vy	29	0.01	0.02	-0.00
			Max, Vx	17	0.00	0.00	0.00
		Secondary	Max Tension	23	0.78	0.00	0.00
		Horizontal		22	0.00	0.00	0.00
			Max. Compression	23	-0.80	0.00	0.00
			Max. Mx	18	0.01	-0.02	0.00
			Max. My	26	0.39	0.00	0.00
			Max. Vy	18	0.01	0.00	0.00
		m c	Max. Vx	26	-0.00	0.00	0.00
		Top Girt	Max Tension	27	0.51	0.00	0.00
			Max. Compression	14	-0.12	0.00	0.00
			Max. Mx	18	0.12	-0.02	0.00
			Max. My	34	0.03	0.00	0.00
			Max, Vy	18	0.01	0.00	0.00
-			Max. Vx	34	-0.00	0.00	0.00
12	170 - 163.573	Leg	Max Tension	29	19.66	-0.68	-0.82
			Max. Compression	29	-21.37	-1.00	-1.05
			Max. Mx	31	-15.04	1,44	-0.40
			Max. My	23	-14.89	-0,40	1.44
			Max. Vy	27	0.35	1.34	-0.30
			Max. Vx	19	0.35	-0.30	1.34
		Diagonal	Max Tension	32	6.52	0.00	0.00
			Max. Compression	24	-7.13	0.00	0,00
			Max. Mx	25	5.84	0.03	-0.00
			Max. My	15	4.23	0.00	0.00
			Max. Vy	25	0.01	0.03	-0.00
			Max. Vx	15	-0.00	0.00	0.00
		Top Girt	Max Tension	27	1.25	0.00	0.00
			Max. Compression	10	-0.73	0.00	0.00
			Max. Mx	18	0.34	-0.02	0.00
			Max. My	28	-0.09	0.00	0.00
			Max. Vy	18	0.01	0.00	0.00
			Max, Vx	28	-0.00	0.00	0.00
Т3	163.573 -	Leg	Max Tension	25	32.78	-0.65	-0.65
	1.55.045		Max Compression	25	-36.54	-1.05	-1.10
			Max Mx	31	-25 51	1 74	-0.06
			Max. My	23	-26.00	-0.04	1 74
			Max Vy	23	1.06	-0.69	-0.23
			Max Vy	31	1.08	-0.23	-0.69
		Diagonal	Max Tension	31	5.69	0.00	0.02
		Durgonar	Max Compression	31	-5.90	0.00	0.00
			May My	24	3 20	0.00	0.00
			Max My	10	5.20	0.02	0.00
			Max Vy	24	0.01	0.00	0.01
			May Vy	10	0.01	0.02	0.00
		Top Girt	Max Tension	27	1.52	0.00	0.00
		rop Ont	Max Compression	14	_0 00	0.00	0.00
			May My	19	0.25	_0.00	0.00
			May Ma	20	0.25	-0.02	0.00
			Max Wy	∠o 19	0.44	0.00	0.00
			May Vy	20	0.01	0.00	0.00
Τ4	159.049 -	Leg	Max Tension	25	43.19	-0.39	-0.42
	154.524						0.14
			Max. Compression	25	-48.73	-0.53	-0.51
			Max. Mx	30	8.90	1.33	-0.96

· T	Job	Page	
tnxTower		39 of 63	
UPC Comparation	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	<i>J1</i>	Туре		Load	V	Moment	Moment
				Como.	<u> </u>	кір-л	kip-ji
			Max. My	24	9.30	-0.90	1.33
			Max. Vy	34	-0.41	1.30	-0.95
		D'1	Max, VX	24	-0.41	-0.96	0.00
		Diagonal	Max Tension	27	0.40	0.00	0.00
			Max, Compression	19	-6.15	0.00	0.00
			Max. Mx	24	2.68	0.04	0.00
			Max. My	27	-6,10	-0.01	0.01
			Max. Vy	24	0.02	0.04	0.00
-			Max. Vx	27	-0.00	0.00	0.00
15	154,524 - 150	Leg	Max Tension	25	52.82	-0.66	-0.61
			Max, Compression	25	-58.08	-0,91	-0.92
			Max. Mx	20	-55.82	-1.01	-0.74
			Max, My	30	-55,44	-0, 74	-1.02
			Max, Vy	20	0.41	-1.01	-0.74
			Max. Vx	30	0.42	-0.74	-1.02
		Diagonal	Max Tension	31	6.02	0.00	0.00
			Max. Compression	31	-6.40	0.00	0.00
			Max, Mx	24	2.36	0.05	-0.00
			Max. My	27	-5.98	-0.01	0.01
			Max. Vy	24	-0.02	0.05	-0_00
			Max, Vx	27	-0,00	-0.01	0.01
T6	150 - 140	Leg	Max Tension	25	74.80	-0.68	-0.71
			Max. Compression	25	-81.08	-0.89	-0.79
			Max. Mx	30	14.11	1.66	-1.23
			Max. My	24	14.35	-1.24	1.67
			Max. Vy	30	-0.56	1.66	-1.23
			Max. Vx	24	-0.57	-1.24	1.67
		Diagonal	Max Tension	31	6.75	0.00	0.00
			Max. Compression	31	-6.84	0.00	0.00
			Max, Mx	24	3.07	0.07	-0.00
			Max. My	23	-6.30	-0.02	-0.01
			Max. Vy	24	-0.02	0.07	-0.00
			Max, Vx	23	0.00	0.00	0.00
		Top Girt	Max Tension	23	1.05	0.00	0.00
			Max. Compression	6	-0.91	0.00	0.00
			Max. Mx	27	1.04	-0.03	0.00
			Max. My	28	-0.38	0.00	0.00
			Max. Vy	27	0.02	0.00	0.00
			Max, Vx	28	-0.00	0.00	0.00
Г7	140 - 130	Leg	Max Tension	25	89,59	-1.01	-1.02
		5	Max. Compression	25	-97.27	-0.22	-0.07
			Max. Mx	29	-3.77	4.88	-4.73
			Max. My	21	-5.06	-4.73	4.88
			Max. Vy	33	-1.03	4.79	-4.66
			Max, Vx	25	-1.03	-4.65	4.79
		Diagonal	Max Tension	31	8.96	0.00	0.00
		.0	Max, Compression	24	-9.13	0,00	0.00
			Max. Mx	24	5,77	0.13	-0-00
			Max. Mv	23	-9.03	-0.03	-0.05
			Max. Vv	24	0.03	0.13	-0.00
			Max Vx	23	0.01	0.00	0.00
		Secondary Horizontal	Max Tension	25	1,46	0.00	0.00
		11011201101	Max Compression	25	-1.46	0.00	0.00
			May My	27	-0.82	-0.04	0.00
			May Mu	28	0.02	0.04	0.00
			May Wy	20	0.42	0.00	0.00
			Max Vy	21	0.02	0.00	0.00
		Ton Cit	IVIAX, VX Max Tanaian	20	0.00	0.00	0.00
		rop ant	Max Compression	J∠ 21	0.90	0.00	0.00
			Max Compression	21 10	-0,92	-0.09	0.00
			IVIAX, IVIX	19	-0.90	-0.12	0.00

tnxTower		Job		Page
			180' Lattice Tower - CSP	40 of 63
	UPS Comparation	Project		Date
	500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
	Rocky Hill, CT 06067	Client		Designed by
	Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section No	Elevation ft	Component Type	Condition	Gov Load	Force	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. My	19	-0.90	-0.12	0.01
			Max. Vy	19	-0.04	0.00	0.00
			Max, Vx	19	-0.00	0.00	0.00
		Inner Bracing	Max Tension	33	0.17	0.00	0.00
			Max. Compression	33	-0.17	0.00	0.00
			Max. Mx	18	0.00	-0.03	0,00
			Max, My	31	-0.00	0.00	0.00
			Max. Vy	18	0.02	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
T8	130 - 120	Leg	Max Tension	25	110.86	0.90	0.89
			Max. Compression	25	-120.84	-1.03	-0.73
			Max, Mx	30	-115.14	3.17	1.83
			Max. My	20	-114.83	1.83	3.16
			Max. Vv	20	1.33	2.20	-0.88
			Max	30	1:34	-0.86	2 25
		Diagonal	Max Tension	30	10.53	0.00	0.00
		Diagonal	Max Compression	22	-10.76	0.00	0.00
			May My	24	3.84	0.00	0.00
			Max MA	∠ 1 วว	10.10	0.17	-0.02
			Max Max	23 24	-10,10	-0.03	0.00
			Max. Vy	24	-0.04	0.17	-0.02
		0		23	-0.01	-0.03	0.06
		Secondary Horizontal	Max Tension	25	1:81	0.00	0.00
			Max. Compression	25	-1.81	0.00	0.00
			Max. Mx	27	-1.38	-0.05	0.00
			Max. My	28	0.52	0.00	0.00
			Max. Vy	27	-0.02	0.00	0.00
			Max. Vx	28	0.00	0.00	0.00
T9	120 - 110	Leg	Max Tension	25	133.20	-1.87	-1.85
		Ũ	Max. Compression	25	-146.56	-0.42	-0.40
			Max. Mx	21	-5.82	5.80	-5.61
			Max, My	29	-7.73	-5.61	5.80
			Max Vv	33	-1-27	5 75	-5.56
			Max Vx	25	-1.27	-5.58	5 76
		Diagonal	Max Tension	32	11.02	0.00	0.00
		Diligonai	Max Compression	24	11.02	0.00	0.00
			Max Max	24	7.10	0.00	0.00
			Max My	24	10.00	0.12	-0.00
			Max. My	23	-10.99	-0.02	-0.06
			Max. vy	24	0.04	0.12	-0.00
		XX / 1	Max. Vx	23	0.01	0.00	0.00
		Horizontal	Max Tension	23	0.97	0.00	0.00
			Max. Compression	23	-1.16	-0.15	0.01
			Max. Mx	27	-1, 14	-0.20	0.01
			Max. My	19	-1.12	-0.20	0.01
			Max. Vy	27	-0,06	0.00	0.00
			Max. Vx	19	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	25	2,20	0.00	0.00
			Max. Compression	25	-2.20	0.00	0.00
			Max. Mx	27	-1-17	-0.05	0.00
			Max. Mv	28	0.63	0.00	0.00
			Max Vv	27	-0.02	0.00	0.00
			Max Vy	28	-0.00	0.00	0.00
		Inner Bracing	Max Tension	20	0.11	0.00	0.00
		miler bracing	Max Commension	25	0+11 D 11	0.00	0.00
			Max Max	10	-0,11	0.00	0.00
			IVIAX IVIX	10	0.00	-U.U-	0.00
			Max. My	ا ک	-0.00	0.00	0.00
			Max, Vy	18	0.02	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
T10	110 - 100	Leg	Max Tension	25	157.46	-2.01	-2.30
			Max. Compression	33	-173.77	-2.02	-1-75

T	Job	Page	
<i>tnx1ower</i>		41 of 63	
UDS Companying	Project		Date
500 Enterprise Drive, Suite 3B	١	Vilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section	n Elevation	Component	Condition	Gov	Force	Major Axis	Minor Axis
No_*	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max, Mx	23	-117.68	3.77	-0.06
			Max. My	31	-117.99	-0.01	3.66
			Max. Vy	34	1.43	-1.18	-0.55
			Max. Vx	24	1.45	-0.60	-1.14
		Diagonal	Max Tension	26	12.31	0.00	0.00
			Max. Compression	34	-12.55	0.00	0.00
			Max, Mx	24	4,90	0.21	-0.01
			Max. My	31	-12.17	-0.03	0.04
			Max. Vy	24	-0.05	0.21	-0.01
			Max. Vx	27	0.01	-0.03	-0.04
		Secondary Horizontal	Max Tension	33	2.61	0.00	0.00
			Max, Compression	33	-2.61	0.00	0.00
			Max. Mx	27	-1.49	-0.07	0.00
			Max, My	28	0.75	0.00	0.00
			Max Vy	27	0.03	0.00	0.00
			Max Vx	28	0.00	0.00	0.00
T11	100 - 90	Leo	Max Tension	33	183.09	-1.79	-1 39
	100 90	Dep	Max Compression	33	-202.52	-0.52	_0.90
			May My	34	28 58	6.53	-0.90
			Max Max	24	20.20	5.60	-5.00
			Mar Va	24	40,91	-3.09	0.33
			Max. Vy	34	-1.01	0,03	-5,08
				24	-1.00	-5.69	0.55
1		Diagonal	Max Tension	27	12.96	0.00	0.00
/			Max. Compression	27	-13.16	0.00	0.00
			Max. Mx	32	7.36	0.15	0.00
			Max. My	19	-13.07	-0,02	0.05
			Max, Vy	32	0.04	0.15	0.00
			Max. Vx	19	-0.01	0.00	0.00
		Horizontal	Max Tension	23	1.55	0.00	0.00
			Max. Compression	23	-1.65	-0.21	0.01
			Max. Mx	19	-1.61	-0.29	0.01
			Max. My	19	-1.60	-0.29	0.01
			Max, Vy	19	-0.07	0.00	0.00
			Max, Vx	19	-0.00	0,00	0.00
		Inner Bracing	Max Tension	25	0.12	0.00	0.00
			Max. Compression	25	-0.12	0.00	0.00
			Max, Mx	18	0.00	-0.07	0.00
			Max. My	31	-0.00	0.00	0.00
			Max, Vv	18	0.03	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
т12	90 - 80	Leu	Max Tension	33	209.04	-1.95	-2.17
		248	Max Compression	33	-230.26	-1.08	-1.20
			Max Mx	31	-155.62	3.86	-0.31
			Max My	23	-155.62	-0.28	3.84
			Max Vy	30	1-27	2 53	1 75
			Max. Vy	20	1.27	-2.55	-1.75
		Disconal	Man Tanaian	20	1.20	-1.05	-2.44
		Diagonai	Max relision	27	13.70	0.00	0.00
			Max. Compression	27	-13.97	0.00	0.00
			Max. Mx	34	5.61	0.18	0.01
			Max. My	19	-12.49	-0.01	0.03
			Max, Vy	34	-0.05	0.18	0.01
			Max. Vx	19	-0.01	-0.01	0.03
		Secondary Horizontal	Max Tension	33	3.46	0.00	0.00
			Max, Compression	33	-3.46	0.00	0.00
Ω.			Max, Mx	27	-1.54	-0.11	0,00
			Max. My	28	0.98	0.00	0.00
			Max. Vy	27	0.04	0.00	0,00
			Max. Vx	28	-0.00	0.00	0.00
T13	80 - 60	Leg	Max Tension	33	260.62	0.77	0.22

T T	Job	Page	
tnxlower		42 of 63	
UDC Companyion	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882		Sprint	MCD
FAX: 800-529-3991	-		I.IIOB

Section No	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
				Comb	<u>K</u>	kip-ft	kip-ft
			Max. Compression	33	-287-22	7.03	-0.04
			Max. Mx	33	-287.22	7.03	-0.04
			Max, My	21	-12,56	-1.27	6,85
			Max. Vy	25	-1.09	7.02	-0.41
			Max, Vx	21	-1.46	-1.27	6.85
		Diagonal	Max Tension	27	14.25	0.00	0.00
			Max. Compression	27	-14.93	0.00	0.00
			Max. Mx	34	6.15	-0.09	-0.01
			Max, My	19	-13.72	-0.03	-0.03
			Max. Vy	34	0.04	-0.09	-0.01
			Max. Vx	19	0.01	0.00	0.00
		Top Girt	Max Tension	26	1.08	0.00	0.00
		*	Max. Compression	30	-0.87	-0.34	0.01
			Max. Mx	27	-0.72	-0.48	0.02
			Max. My	19	-0.72	-0.48	0.02
			Max. Vv	27	-0.10	0.00	0.00
			Max Vx	19	-0.00	0.00	0.00
		Inner Bracing	Max Tension	25	0.16	0.00	0.00
		inner bracing	Max Compression	25	-0.16	0.00	0.00
			Max My	18	-0.10	0.00	0.00
			Mar Mar	21	0.00	0.14	0.00
			Mara Mar	.)] 10	0.00	0.00	-0,00
			Max. Vy	18	0.05	0.00	0.00
T	() 50	×	Max. Vx	31	-0.00	0.00	0.00
114	60 - 50	Leg	Max Tension	33	283.24	0.67	-0.43
			Max, Compression	33	-314.06	-0.34	0.51
			Max, Mx	25	279.90	-4.34	0.15
			Max, My	21	-15.56	-2.25	9.12
			Max. Vy	25	0.64	-4.34	0.15
			Max. Vx	21	-1.48	-2.25	9.12
		Diagonal	Max Tension	20	14.12	0.00	0.00
			Max. Compression	28	-14.48	0.00	0.00
			Max. Mx	32	7.66	-0.08	-0.01
			Max. My	28	-14.43	-0.03	0.03
			Max Vy	33	-0.04	-0.08	-0.01
			Max. Vx	19	0.00	0.00	0.00
		Horizontal	Max Tension	19	2.52	0.00	0.00
			Max. Compression	14	-1.35	0.34	-0.02
			Max Mx	19	-0.64	0.66	-0.04
			Max My	27	-0.63	0.66	-0.04
			Max Vy	19	0.12	0.00	0.00
			Max Vy	27	0.01	0.00	0.00
		Inner Presing	Max Tension	27	0.15	0.00	0.00
		miller bracing	Max Compagaion	22	0.15	0.00	0.00
			Max Compression	33	-0.15	0.00	0.00
			IVIAX IVIX	10	0.00	0.17	0.00
			Max. My	31	0.00	0.00	-0.00
			Max. Vy	18	-0.05	0.00	0.00
		_	Max. Vx	31	0.00	0.00	0.00
T15	50 - 40	Leg	Max Tension	33	307.24	0.13	0.43
			Max. Compression	33	-339.75	2.16	-0.20
			Max. Mx	33	-339.22	5.92	0.07
			Max. My	33	-18.52	1.22	5.77
			Max. Vy	33	-2.20	5.92	0.07
			Max. Vx	33	-1.58	1.22	5.77
		Diagonal	Max Tension	20	14.31	0.00	0.00
		0	Max. Compression	28	-15.89	0.00	0.00
			Max. Mx	34	4.74	-0.16	-0.02
			Max Mv	20	6.51	-0.15	-0.02
			Max Vv	32	-0.07	-0.16	0.02
			Max Vy	20	-0.00	0.00	0.02
		Secondary Horizontal	Max Tension	33	5.10	0.00	0.00

	Job		Page
tnxTower		180' Lattice Tower - CSP	43 of 63
UDC Componetion	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
	~			Comb	K	kip-ft	kip-fl
			Max. Compression	33	-5.10	0.00	0.00
			Max. Mx	27	-2.06	-0,24	0.00
			Max. My	28	1.46	0.00	0.01
			Max. Vy	27	0.06	0.00	0.00
			Max. Vx	28	0,00	0.00	0.00
T16	40 - 30	Leg	Max Tension	33	327.83	-2.83	-1.91
			Max. Compression	33	-365.07	2.28	1.56
			Max, Mx	20	-107.92	7.70	-5.86
			Max. My	26	-106.61	-5.88	7.69
			Max. Vy	20	-1.82	7.70	-5.86
			Max, Vx	26	-1.82	-5.88	7.69
		Diagonal	Max Tension	20	15.27	0.00	0.00
		U	Max. Compression	28	-16.23	0.00	0.00
			Max. Mx	33	11.46	-0.17	-0.02
			Max. My	22	-15.94	-0.04	-0.05
			Max. Vy	33	-0.07	-0.17	-0.02
			Max Vx	22	0.01	0.00	0.00
		Secondary	Max Tension	33	5 48	0.00	0.00
		Horizontal	Max relision	55	5.10	0.00	0.00
			Max. Compression	33	-5.48	0.00	0.00
			Max. Mx	27	-2.01	-0.26	0.00
			Max. My	28	1.58	0.00	0.01
			Max. Vv	27	-0.07	0.00	0.00
			Max Vx	28	-0.00	0.00	0.00
)		Top Girt	Max Tension	34	3 04	0.00	0.00
		TOP OIL	Max Compression	14	-1.25	0.43	-0.03
			Max My	10	-0.01	0.73	-0.05
			Max My	19	-0.01	0.73	-0.04
			Max Wy	10	-0.01	0.75	0.04
			Max Vy	10	0.15	0.00	0.00
		Inner Presing	Max Tansian	22	0.01	0.00	0.00
		miler bracing	May Compression	22	0.20	0.00	0.00
			Max. Compression	10	-0.20	0.00	0.00
			Mari Mari	10	0.00	0.21	0.00
			Max. My	-51 19	0.00	0.00	-0.00
			Max. Vy	18	-0.00	0.00	0.00
m1.0	20 00	Y	Iviax. VX	22	-0.00	0.00	0.00
3.17	30 - 20	Leg	Max Tension	33	351.40	-2.57	-3.23
			Max. Compression	33	-392.79	0.22	0.39
			Max. Mx	27	-259.11	6.54	0.56
			Max. My	19	-258,88	0.52	6.56
			Max. Vy	26	2.09	-3.70	-3.34
			Max. Vx	20	2,10	-3.31	-3,71
		Diagonal	Max Tension	20	14.87	0.00	0.00
			Max. Compression	28	-14.94	0.00	0.00
			Max. Mx	34	6.02	-0.20	-0.02
			Max. My	20	6.88	-0.19	-0.02
			Max. Vy	33	-0.07	-0.19	0.02
			Max. Vx	20	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	33	5.90	0,00	0.00
			Max. Compression	33	-5.90	0.00	0.00
			Max. Mx	27	-2.59	-0.28	0.00
			Max. My	28	1.71	0.00	0.01
			Max. Vy	27	0.07	0.00	0.00
			Max. Vx	28	0.00	0.00	0.00
T18	20 - 10	Lep	Max Tension	33	372.69	-3.58	-2.72
	••		Max. Compression	33	-411 29	0.72	0.50
			Max Mx	25	-18-91	-4 50	4.10
			Max My	21	-19 77	4 08	_4 48
			May Vy	34	-1 40	2.47	1 70
			May Vy	28	-1 40	1.77	2 47
			1114A. TA	20	1.10	A = 7 - 7	4.71

	Job		Page
tnxTower		180' Lattice Tower - CSP	44 of 63
UPC Carroution	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
		Diagonal	Max Tension	20	14.90	0.00	0.00
			Max. Compression	22	-20,29	0.00	0.00
			Max. Mx	33	11.25	-0.18	-0.02
			Max. My	19	-9.71	-0.10	-0,06
			Max. Vy	34	-0.08	-0.18	-0.02
			Max. Vx	19	0.01	0.00	0.00
		Horizontal	Max Tension	19	6.08	0.00	0.00
			Max. Compression	14	-1.12	0.57	-0.03
			Max. Mx	19	0.97	0.79	-0.05
			Max. My	19	0.98	0.79	-0.05
			Max, Vy	19	-0.13	0.00	0.00
			Max. Vx	19	-0.01	0.00	0.00
		Secondary Horizontal	Max Tension	33	6,17	0.00	0.00
			Max. Compression	33	-6.17	0.00	0.00
			Max Mx	18	0.31	-0.31	0.00
			Max. Mv	28	1.77	0.00	0.01
			Max-Vv	18	-0.07	0-00	0.00
			Max Vy	28	-0.00	0.00	0.00
		Inner Bracing	Max Tension	32	0.08	0.00	0.00
		miler briteing	Max Compression	32	-0.06	0.00	0.00
			Max My	18	0.00	0.00	0.00
			Max My	33	0.00	0.00	0.00
			Max Vy	18	-0.07	0.00	0.00
			Max Vy	10	0.07	0.00	0.00
T10	10 - 0	Lea	Max Tension	22	360.65	-2.08	-2.32
117	10-0	LLE	Max Compression	22	426.50	-2.08	-2.52
			Max Mx	22	-420.39	4.25	-0.00
			Max Mu	10	-202.90	4.2.5	-0.33
			Max Va	19	-202.00	-0.35	4.20
			Max. Vy	24	1,52	-3.01	-3.41
		Diagonal	Max Tanaian	28	1.52	-3.30	-3.83
		Diagonai	Max Commencient	20	20.85	-0.04	-0.00
			Max. Compression	28	-21.38	0.00	0.00
			Max. Mx	3	13.15	-0.06	0.03
			Max, My	34	-21.22	0.01	-0.09
			Max. Vy	20	0.03	-0.06	-0.00
		TT 1 1	Max. Vx	34	-0.02	0.00	0.00
		Horizontal	Max Tension	28	16.90	0.00	0.00
			Max. Compression	20	-16.66	-0.06	0.02
			Max. Mx	31	7.51	-0.14	-0.03
			Max. My	27	-5.17	-0.04	0.03
			Max. Vy	31	-0.07	-0.14	-0.03
			Max. Vx	27	-0.01	-0.04	0.03
		Redund Horz 1 Bracing	Max Tension	33	6.40	0.00	0,00
			Max. Compression	33	-6.40	0.00	0.00
			Max. Mx	28	6.16	-0.01	0.00
			Max. My	28	-1.17	0.00	0.00
			Max, Vy	28	0.01	0.00	0.00
			Max. Vx	28	0.00	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	19	10.47	0.00	0.00
			Max. Compression	14	-6.38	0.00	0.00
			Max. Mx	34	4.70	-0.02	0.00
			Max. My	20	10,42	0.00	-0.00
			Max. Vy	34	0.01	0.00	0.00
			Max, Vx	20	0.00	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	19	0.01	0.00	0.00
		U U	Max. Compression	16	-0.03	0.00	0.00
			Max. Mx	18	0.01	-0.02	0.00
			AMPENS A. A.A.	* U			0.00

tnxTower	Job	180' Lattice Tower - CSP	Page 45 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
	5-	-)r-		Comb.	K	kip-ft	kip-ft
			Max, Vy	18	0.02	0.00	0.00
		Redund Sub Horz Bracing	Max Tension	19	12.84	0.00	0.00
			Max. Compression	14	-7.43	0.00	0.00
			Max, Mx	18	4.30	-0.09	0.00
			Max, My	18	4.30	0.00	0.00
			Max. Vy	18	0.04	0.00	0.00
			Max, Vx	18	0.00	0.00	0.00
		Inner Bracing	Max Tension	33	0.17	0.00	0.00
			Max. Compression	33	-0.20	0.00	0.00
			Max, Mx	18	-0.00	0.32	0.00
			Max. My	31	0.00	0.00	-0.00
			Max, Vy	18	-0.07	0.00	0.00
			Max. Vx	31	0.00	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Leg D	Max. Vert	29	450,73	26.55	-28.40
	Max. H _x	30	436.73	27.41	-25.67
	Max. Hz	20	-384.87	-26.24	31.55
	Min. Vert	21	-399.86	-29.07	30.76
	Min. H _x	22	-385,77	-29.96	27.91
	Min. Hz	28	435,82	23.84	-29.14
Leg C	Max, Vert	25	450.42	-28.31	-26.76
	Max. H _x	32	-389.70	31.27	26.97
	Max. Hz	34	-388,80	28.42	29.72
	Min. Vert	33	-403,85	30.88	29.33
	Min. H _x	24	436.36	-28.67	-24.51
	Min, Hz	26	435.45	-25.98	-27.14
Leg B	Max. Vert	21	449.39	-28,35	26,53
	Max. H _x	30	-387.10	31.26	-26.70
	Max. H _z	20	434.49	-25.98	26.95
	Min. Vert	29	-401_19	30.83	-29.08
	Min. H _x	22	435.40	-28.75	24.25
	Min. H _z	28	-386.21	28.33	-29.52
Leg A	Max, Vert	33	453.37	26.83	28.40
	Max. H _x	32	439.32	27.71	25.65
	Max, H _z	34	438.41	24.09	29.17
	Min. Vert	25	-400.88	-29.27	-30.77
	Min. H _x	24	-386.74	-30,18	-27.89
	Min. Hz	26	-385.84	-26.41	-31,58

Tower Mast Reaction Summa	ry
---------------------------	----

	Load Combination	Vertical	Shear,	Shear ₂	Overturning Moment, M _x	Overturning Moment, M₂	Torque
1.		K	K	K	kip-ft	kip-ft	kip-ft
1	Dead Only	68.76	0.00	0.00	-11.13	10.48	0.00
	Dead+Wind 0 deg - No Ice	68.76	-0.21	-71.45	-8077.54	35.16	-42.39
	Dead+Wind 30 deg - No Ice	68.76	39.95	-68.94	-7603.64	-4401.62	-45.47
T.	Job		Page				
--------------------------------	---------	-------------------------------	-------------------				
thxlower		180' Lattice Tower - CSP	46 of 63				
UPS Comparation	Project		Date				
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14				
Rocky Hill, CT 06067	Client		Designed by				
Phone: 860-529-8882		Sprint	MCD				
FAX: 80(1-529-3991							

Load Combination	Vertical	Shearx	Shear ₂	Overturning Moment M	Overturning Moment M	Torque
Combination	K	K	K	kin-ft	kin-ft	kin_ft
Dead+Wind 45 deg - No Ice	68.76	56.60	-56.23	-6203.05	-6241.96	-39.03
Dead+Wind 60 deg - No Ice	68.76	69.40	-39.68	-4380.49	-7656.20	-29.93
Dead+Wind 90 deg - No Ice	68.76	71.97	0.21	13 45	-8141.64	-7.58
Dead+Wind 120 deg - No Ice	68.76	69.61	40.05	4400.80	-7680-81	18.91
Dead+Wind 135 deg - No Ice	68.76	56.90	56.53	6215.54	-6276.77	30.05
Dead+Wind 150 deg - No Ice	68.76	40.31	69.15	7605.95	-4444.26	39.13
Dead+Wind 180 deg - No Ice	68.76	0.21	71.45	8055.23	-14.06	42.39
Dead+Wind 210 deg - No Ice	68.76	-39.95	68.94	7581.26	4422.74	45.48
Dead+Wind 225 deg - No Ice	68.76	-56.60	56.23	6180.66	6263.02	39.03
Dead+Wind 240 deg - No Ice	68.76	-69.40	39.68	4358.11	7677.23	29.93
Dead+Wind 270 deg - No Ice	68.76	-71.97	-0.21	-35.77	8162.62	7.58
Dead+Wind 300 deg - No Ice	68.76	-69.61	-40.05	-4423.05	7701.83	-18.92
Dead+Wind 315 deg - No Ice	68.76	-56.90	-56.53	-6237.77	6297.81	-30.04
Dead+Wind 330 deg - No Ice	68.76	-40.31	-69.15	-7628.17	4465.35	-39.12
Dead+Ice+Temn	100 21	0.00	0.00	-14 41	38.01	0.00
Dead+Wind 0 deg+Ice+Temp	100.21	-0.21	-88.06	-9763.79	61.21	-72.23
Dead+Wind 30 deg+Ice+Temp	100.21	49.35	-85.21	-9220.06	-5307.22	-75.00
Dead+Wind 45 deg+Ice+Temp	100.21	69.89	-69.51	-7523.92	-7533.31	-63.00
Dead+Wind 60 deg+Ice+Temp	100.21	85.68	-49.08	-5316.02	-9243 43	-46 71
Dead+Wind 90 deg+Ice+Temp	100.21	88.60	0.21	8.64	-9799.00	-8.67
Dead+Wind 120 deg+Ice+Temp	100.21	85.89	49.44	5327.13	-9266.47	36.49
Dead+Wind 135 deg+Ice+Temp	100.21	70.19	69.81	7527.70	-7565.90	54.65
Dead+Wind 150 deg+Ice+Temp	100.21	49.71	85.42	9214.27	-5347-14	69.10
Dead+Wind 180 deg+Ice+Temp	100.21	0.21	88.06	9734.95	15.11	72.24
Dead+Wind 210 deg+Ice+Temp	100.21	-49.35	85.21	9191.08	5383.54	74.99
Dead+Wind 225 deg+Ice+Temp	100.21	-69.89	69.51	7494.92	7609.54	63.00
Dead+Wind 240 deg+Ice+Temp	100.21	-85.68	49.08	5287.04	9319.58	46.70
Dead+Wind 270 deg+Ice+Temp	100.21	-88.60	-0.21	-37.48	9875.08	8.67
Dead+Wind 300 deg+Ice+Temp	100.21	-85.89	-49.44	-5355.81	9342.63	-36.47
Dead+Wind 315 deg+Ice+Temp	100.21	-70.19	-69.81	-7556.36	7642.15	-54.64
Dead+Wind 330 deg+Ice+Temp	100.21	-49.71	-85.42	-9242.97	5423.48	-69.08
Dead+Wind 0 deg - Service	68.76	-0.21	-71.45	-8077.54	35.16	-42.39
Dead+Wind 30 deg - Service	68.76	39,95	-68,94	-7603.64	-4401.62	-45.47
Dead+Wind 45 deg - Service	68.76	56.60	-56.23	-6203.05	-6241.96	-39.03
Dead+Wind 60 deg - Service	68.76	69.40	-39.68	-4380,49	-7656.20	-29.93
Dead+Wind 90 deg - Service	68.76	71.97	0.21	13,45	-8141,64	-7,58
Dead+Wind 120 deg - Service	68.76	69.61	40.05	4400.80	-7680.81	18.91
Dead+Wind 135 deg - Service	68.76	56.90	56.53	6215.54	-6276.77	30.05
Dead+Wind 150 deg - Service	68.76	40.31	69.15	7605.95	-4444.26	39.13
Dead+Wind 180 deg - Service	68.76	0.21	71.45	8055.23	-14.06	42.39
Dead+Wind 210 deg - Service	68.76	-39.95	68,94	7581.26	4422,74	45.48
Dead+Wind 225 deg - Service	68.76	-56.60	56.23	6180.66	6263.02	39.03
Dead+Wind 240 deg - Service	68.76	-69.40	39.68	4358,11	7677.23	29.93
Dead+Wind 270 deg - Service	68.76	-71.97	-0.21	-35.77	8162.62	7.58
Dead+Wind 300 deg - Service	68.76	-69.61	-40.05	-4423.05	7701.83	-18.92
Dead+Wind 315 deg - Service	68.76	-56.90	-56.53	-6237.77	6297.81	-30.04
Dead+Wind 330 deg - Service	68.76	-40.31	-69.15	-7628.17	4465.35	-39.12

Solution Summary

-		Su	m of Applied Force.	5		Sum of Reaction	5	
	Load	PX	PY	PZ	PX	PY	PZ	% Error
	Comb.	K	K	K	K	K	K	
	1	0.00	-68.76	0.00	-0.00	68.76	0.00	0.000%
3.	2	-0.21	-68.76	-71.45	0.21	68.76	71,45	0.000%
2 -	3	39.95	-68.76	-68.94	-39.95	68.76	68.94	0.000%
	4	56.60	-68.76	-56.23	-56.60	68.76	56.23	0.000%
	5	69.40	-68.76	-39.68	-69.40	68.76	39-68	0.000%

tnxTower	Job	180' Lattice Tower - CSP	Page 47 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

	.S.	un of Applied Force	c				
Load	PX	ΡΥ	PZ	PX	PY	PZ	% Error
Comb	K	K	K	K	K	K	
6	71.97	-68.76	0.21	-71.97	68.76	-0.21	0.000%
7	69-61	-68.76	40.05	-69.61	68.76	-40.05	0.000%
8	56.90	-68.76	56.53	-56.90	68.76	-56.53	0.000%
9	40.31	-68.76	69.15	-40.31	68-76	-69.15	0.000%
10	0.21	-68.76	71.45	-0.21	68.76	-71.45	0.000%
11	-39.95	-68.76	68.94	39.95	68.76	-68-94	0.000%
12	-56.60	-68.76	56.23	56.60	68.76	-56.23	0.000%
13	-69.40	-68.76	39.68	69,40	68.76	-39.68	0.000%
14	-71.97	-68.76	-0.21	71.97	68.76	0.21	0.000%
15	-69.61	-68.76	-40.05	69.61	68.76	40.05	0.000%
16	-56.90	-68.76	-56.53	56.90	68.76	56.53	0.000%
17	-40.31	-68.76	-69.15	40.31	68.76	69.15	0.000%
18	0.00	-100,21	0.00	-0.00	100.21	-0.00	0.000%
19	-0.21	-100,21	-88.06	0.21	100.21	88.06	0.000%
20	49.35	-100.21	-85.21	-49.35	100,21	85.21	0.000%
21	69.89	-100.21	-69,51	-69.89	100.21	69.51	0.001%
2.2	85.68	-100.21	-49.08	-85.68	100.21	49.08	0.000%
23	88.60	-100.21	0.21	-88.60	100.21	-0.21	0.000%
24	85.89	-100.21	49.44	-85.89	100.21	-49.44	0.000%
25	70.19	-100.21	69.81	-70.19	100.21	-69.81	0.001%
26	49.71	-100.21	85.42	-49.71	100.21	-85.42	0.000%
27	0.21	-100.21	88.06	-0.21	100.21	-88.06	0.000%
28	-49.35	-100.21	85.21	49.35	100.21	-85.21	0.001%
29	-69.89	-100.21	69.51	69.89	100.21	-69.51	0.001%
30	-85.68	-100.21	49.08	85.68	100.21	-49.08	0.000%
31	-88.60	-100.21	-0.21	88.60	100.21	0.21	0.000%
32	-85.89	-100.21	-49.44	85.89	100.21	49.44	0.000%
33	-70.19	-100.21	-69.81	70.19	100.21	69.81	0,001%
34	-49.71	-100.21	-85.42	49.71	100.21	85.42	0.001%
35	-0.21	-68,76	-71.45	0.21	68.76	71.45	0.000%
36	39.95	-68.76	-68,94	-39,95	68.76	68.94	0.000%
37	56.60	-68.76	-56.23	-56.60	68.76	56.23	0.000%
38	69.40	-68.76	-39.68	-69,40	68.76	39.68	0.000%
39	71.97	-68.76	0.21	-71.97	68.76	-0.21	0.000%
40	69.61	-68.76	40.05	-69.61	68.76	-40.05	0.000%
41	56.90	-68.76	56.53	-56.90	68.76	-56.53	0.000%
42	40.31	-68.76	69.15	-40.31	68.76	-69.15	0.000%
43	0.21	-68.76	71.45	-0.21	68.76	-71.45	0.000%
44	-39.95	-68.76	68.94	39.95	68.76	-68.94	0.000%
45	-56,60	-68.76	56.23	56.60	68.76	-56.23	0.000%
46	-69.40	-68.76	39.68	69.40	68.76	-39.68	0.000%
47	-71.97	-68.76	-0.21	71.97	68.76	0.21	0.000%
48	-69.61	-68.76	-40.05	69.61	68.76	40.05	0.000%
49	-56.90	-68.76	-56.53	56.90	68.76	56.53	0.000%
50	-40,31	-68.76	-69.15	40.31	68.76	69.15	0.000%

Non-Linear Convergence Results

-	Load	Converged?	Number	Displacement	Force
(Combination		of Cycles	Tolerance	Tolerance
	1	Yes	4	0.0000001	0.00080087
	2	Yes	6	0.00070591	0.00026647
10	3	Yes	5	0.00082153	0,00034561
).	4	Yes	5	0.00052442	0.00026055
	5	Yes	5	0.00086647	0.00029255
	6	Yes	6	0.00078687	0.00021839

	tnx7	Fower	Job	180' Lattic	e Tower - CSP	Page 48 of 63
	URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill CT 06067		Project	ecticut (TWS-015)	Date 11:06:21 05/14/14	
	Rocky Hil Phone: 80 FAX: 86	ll, CT 06067 60-529-8882 0-529-3991	Client	Sprint	Designed by MCD	
	7	Yes	5	0.00087492	0,00029386	
	8	Yes	5	0.00052947	0.00026231	
	9	Yes	5	0.00081949	0.00034597	
	10	Yes	6	0.00069777	0.00026444	
	11	Yes	5	0.00051482	0.00034477	
	12	Yes	5	0.00052482	0.00020137	
	1.4	I CS Vec	5	0.00087074	0.00029421	
	15	Ves	5	0.00079007	0.00022010	
	16	Yes	5	0.00053515	0.00026346	
	17	Yes	5	0.00082756	0.00034717	
	18	Yes	5	0.00000001	0.00054990	
	19	Yes	7	0.00099477	0.00038415	
	20	Yes	6	0.00092845	0.00040174	
	21	Yes	6	0.00083428	0.00035581	
	22	Yes	9	0.00079693	0.00024253	
	23	Yes	11	0.00087677	0.00024619	
	24	Yes	9	0.00080773	0.00024525	
	25	Yes	6	0.00084303	0.00035816	
	26	Yes	6	0.00092392	0.00040076	
	27	Yes	7	0.00098060	0.00038024	
	28	Yes	6	0.00091711	0.00039848	
	29	Yes	6	0.00085704	0.00036109	
	30	Yes	9	0.00083981	0.00025285	
	31	Yes	11	0.00093018	0.00025842	
	32	Yes	9	0.00084808	0.00025471	
5	33	Yes	6	0.00086805	0.00036460	
)	34	Yes	6	0.00093467	0.00040365	
	35	Yes	6	0.00070591	0.00026647	
	36	Yes	2	0.00082153	0,00034561	
	16	Y es	2	0.00052442	0.00026055	
	38	Yes	5	0.00078687	0.00029255	
	39	Yes	0	0.00078087	0.00021839	
	40	Var	5	0.00087492	0.00029380	
	41	Ver	5	0.00032947	0.00020231	
	43	Ves	6	0.00061747	0.00034577	
	44	Yes	5	0.00081313	0.00034477	
	45	Yes	5	0.00052482	0.00026137	
	46	Yes	5	0.00087674	0.00029421	
	47	Yes	6	0.00079667	0.00022016	
	48	Yes	5	0.00088301	0.00029585	
	49	Yes	5	0.00053515	0.00026346	
	50	Yes	5	0.00082756	0.00034717	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov	Tilt	Twist
No.		Deflection	Load		
	ft	în	Comb.	0	o
T1	180 - 170	12.325	48	0.6165	0.0227
Т2	170 - 163.573	10.870	48	0.6053	0.0212
Т3	163.573 - 159.049	9.959	48	0.5870	0.0215
Τ4	159.049 - 154.524	9.334	48	0.5699	0.0217
T5	154 524 - 150	8.734	48	0.5469	0.0229
T6	150 - 140	8,161	48	0.5203	0.0239
Т7	140 - 130	6,996	48	0.4586	0.0250
Т8	130 - 120	5.971	48	0.4114	0.0248
Т9	120 - 110	5.059	48	0.3610	0.0224
T10	110 - 100	4.250	48	0.3204	0.0211

tnxTower	Job 180' Lattice Tower - CSP	Page 49 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Section No.	Elevation	Horz, Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb	0	ø
T11	100 - 90	3.533	48	0,2781	0.0199
T12	90 - 80	2.902	48	0.2424	0.0175
T13	80 - 60	2.349	48	0.2061	0.0153
T14	60 - 50	1.416	48	0.1659	0.0101
T15	50 - 40	1.017	48	0.1460	0.0076
T16	40 - 30	0.689	48	0.1252	0.0063
T17	30 - 20	0.417	48	0.0940	0.0050
T18	20 - 10	0,213	48	0.0626	0,0037
T19	10 - 0	0.076	40	0.0307	0.0024

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb	in	0	0	ft
180.00	PA6-65AC	48	12.325	0.6165	0.0227	40708
176.00	PA6-65AC	48	11.740	0.6137	0.0218	40708
172.00	6' Standoff	48	11.158	0.6090	0.0213	26063
170.00	20' 8 Bay Di-Pole	48	10.870	0.6053	0.0212	22252
169.00	4' Omni	48	10,726	0.6031	0.0212	21256
163.00	T-Frame	48	9.879	0.5850	0.0215	15392
160.00	3" Dia x 15' Omni	48	9.464	0.5739	0.0216	11105
150.00	2" Dia 10' Omni	48	8.161	0.5203	0.0239	8594
145.00	6' Standoff	48	7.561	0.4885	0.0245	8353
143.00	6' Standoff	48	7.331	0.4760	0.0247	8270
133.00	10'6"x4" Pipe Mount	48	6.266	0.4253	0.0251	10120
132.00	3' Stand-off	48	6.167	0.4207	0.0250	10444
130.00	PA6-65AC	48	5.971	0.4114	0.0248	10983
126.00	LeBlanc 10' Standoff (1)	48	5,594	0.3912	0.0239	11315
122.00	EUSF10-U	48	5.233	0.3706	0.0229	11312
120.00	3" Dia x 15' Omni	48	5.059	0.3610	0.0224	11416
116.00	ASP711	48	4.723	0.3440	0.0218	12015
115.00	6' Standoff	48	4.642	0.3401	0.0216	12218
112.00	6' Stand-off	48	4.404	0.3284	0,0213	12809
106.00	12' Wireless Frame	48	3.952	0.3034	0.0207	13356
101.00	LeBlanc 10' Standoff (1)	48	3.600	0.2821	0.0201	13569
100.00	4' Grid Dish	48	3,533	0.2781	0.0199	13656
88.00	3' Stand-off	48	2.786	0.2350	0.0171	16256
85.00	3' Stand-off	48	2,617	0,2236	0.0164	16998
80.00	6' Ice Shield	48	2.349	0.2061	0.0153	18550
76.00	10'6"x4" Pipe Mount	48	2.146	0.1952	0.0144	20641
75.00	6' Grid Dish	48	2.097	0.1928	0.0142	21294
56.00	3' Stand-off	48	1.250	0,1581	0.0090	22444
47.00	3' Stand-off	48	0.911	0.1403	0.0071	15906

Maximum Tower Deflections - Design Wind

Section No	Elevation	Horz. Deflection	Gov Load	Tilt	Twist
110	ft	in	Comb.	٥	0
T1	180 - 170	14.496	32	0.7097	0.0349
T2	170 - 163.573	12.824	32	0.6975	0.0316

· T	Job		Page
<i>tnx1ower</i>		50 of 63	
UDS Componition	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Sprint	MCD

Section No	Elevation	Horz. Deflection	Gov. Logd	Tilt	Twist
110 80	ft	in	Comb	0	٥
T3	163 573 - 159 049	11,776	32	0.6777	0.0319
Т4	159.049 - 154 524	11,055	32	0.6594	0.0323
T5	154,524 - 150	10.360	32	0.6342	0.0339
T6	150 - 140	9.695	32	0.6048	0.0352
T7	140 - 130	8.338	32	0.5360	0.0366
Т8	130 - 120	7.138	32	0.4827	0.0362
T9	120 - 110	6.066	32	0.4255	0.0339
T10	110 - 100	5,111	32	0.3791	0.0328
T11	100 - 90	4.260	32	0.3304	0.0316
T12	90 - 80	3.509	32	0,2890	0.0283
T13	80 - 60	2.846	32	0.2466	0.0253
T14	60 - 50	1,722	32	0.1994	0.0169
T15	50 - 40	1,237	32	0.1758	0.0126
T16	40 - 30	0.840	32	0.1510	0.0104
T17	30 - 20	0.511	32	0.1135	0.0082
T18	20 - 10	0.262	32	0.0756	0.0061
T19	10 - 0	0.094	24	0.0372	0.0040

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
fi		Comb.	in	0	0	ft
180.00	PA6-65AC	32	14.496	0.7097	0.0349	37045
176.00	PA6-65AC	32	13.824	0.7067	0,0334	37045
172.00	6' Standoff	32	13.155	0.7015	0.0318	23764
170.00	20' 8 Bay Di-Pole	32	12.824	0.6975	0.0316	20473
169.00	4' Omni	32	12,659	0.6950	0.0316	19745
163.00	T-Frame	32	11.683	0.6756	0.0319	14941
160.00	3" Dia x 15' Omni	32	11.204	0.6637	0.0321	10305
150.00	2" Dia 10' Omni	32	9.695	0.6048	0.0352	7773
145.00	6' Standoff	32	8.997	0.5694	0.0361	7496
143.00	6' Standoff	32	8,729	0.5555	0.0363	7392
133.00	10'6"x4" Pipe Mount	32	7.484	0.4985	0.0366	8909
132,00	3' Stand-off	32	7,367	0.4933	0.0365	9182
130.00	PA6-65AC	32	7.138	0.4827	0.0362	9644
126.00	LeBlanc 10' Standoff (1)	32	6.695	0.4598	0.0353	9983
122.00	EUSF10-U	32	6.271	0.4364	0.0343	10053
120.00	3" Dia x 15' Omni	32	6.066	0.4255	0.0339	10158
116,00	ASP711	32	5.671	0.4061	0.0333	10628
115.00	6' Standoff	32	5.575	0.4016	0.0332	10781
112.00	6' Stand-off	32	5.293	0.3882	0.0329	11220
106.00	12' Wireless Frame	32	4.758	0.3595	0.0325	11708
101.00	LeBlanc 10' Standoff (1)	32	4.341	0.3350	0.0318	11957
100,00	4' Grid Dish	32	4.260	0.3304	0.0316	12031
88.00	3' Stand-off	32	3.370	0.2803	0.0277	13962
85.00	3' Stand-off	32	3.167	0.2671	0.0268	14666
80.00	6' Ice Shield	32	2.846	0.2466	0.0253	16143
76.00	10'6"x4" Pipe Mount	32	2.602	0.2338	0.0239	17989
75.00	6' Grid Dish	32	2.543	0.2311	0.0235	18556
56.00	3' Stand-off	32	1.520	0.1902	0.0150	18683
47.00	3' Stand-off	32	1.109	0.1690	0.0118	13069

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
		180' Lattice Tower - CSP	51 of 63
	Project		Date
		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
2	Client		Designed by
		Sprint	MCD

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of Bolts	Maximum Load per Bolt	Allowable Load K	Ratio Load	Allowable Ratio	Criteria
	<i>Jt</i>			1/1	DOUS	K	A	Allowable		
Τ1	180	Diagonal	A325X	0.6250	2	3.27	8.16	0.401	1.333	Member Bearing
		Secondary Horizontal	A325X	0.6250	2	0.40	8,16	0.049	1.333	Member Bearing
		Top Girt	A325X	0.6250	2	0.25	8.16	0.031	1.333	Member Bearing
Т2	170	Diagonal	A325X	0.6250	2	3.56	8.16	0.437	1.333	Member Bearing
		Top Girt	A325X	0.6250	2	0.63	8.16	0.077	1,333	Member Bearing
Т3	163.573	Diagonal	A325X	0.6250	2	2.95	8.16	0.361	1.333	Member Bearing
		Top Girt	A325X	0.6250	2	0.76	8.16	0.093	1.333	Member Bearing
T4	159.049	Diagonal	A325X	0.6250	2	3.23	8.16	0.396	1.333	Member Bearing
T5	154.524	Diagonal	A325X	0.6250	2	3.20	8.16	0.392	1.333	Member Bearing
Т6	150	Diagonal	A325X	0.6250	2	3.42	8,16	0.420	1,333	Member Bearing
		Top Girt	A325X	0.6250	2	0.53	8.16	0.065	1.333	Member Bearing
T7	140	Diagonal	A325X	0.6250	2	4.57	9.20	0.496	1.333	Bolt Shear
		Top Girt	A325X	0.6250	2	0.46	8.16	0.056	1.333	Member Bearing
T8	130	Diagonal	A325X	0.6250	2	5.38	9.20	0.585	1.333	Bolt Shear
		Secondary Horizontal	A325X	0.6250	2	0.91	9,20	0.099	1.333	Bolt Shear
Т9	120	Diagonal	A325X	0.6250	2	5.62	9.20	0.610	1.333	Bolt Shear
		Horizontal	A325X	0.6250	2	0.58	9.20	0.063	1.333	Bolt Shear
		Secondary Horizontal	A325X	0,6250	2	1.10	8.16	0.135	1.333	Member Bearing
T10	110	Diagonal	A325X	0.6250	2	6.27	9.20	0.682	1.333	Bolt Shear
		Secondary Horizontal	A325X	0.6250	2	1.30	9.20	0.142	1.333	Bolt Shear
T11	100	Diagonal	A325X	0.6250	2	6.58	9.20	0.715	1.333	Bolt Shear
		Horizontal	A325X	0.6250	2	0.82	9.20	0.089	1.333	Bolt Shear
T12	90	Diagonal	A325X	0.6250	2	6.99	9.20	0.759	1.333	Bolt Shear
		Secondary Horizontal	A325X	0.6250	2	1.73	9.20	0.188	1.333	Bolt Shear
113	80	Diagonal	A325X	0.6250	2	7.46	16.31	0.458	1.333	Member Bearing
		Top Girt	A325X	0.6250	2	0.54	9.20	0.059	1.333	Bolt Shear
114	60	Diagonal	A325X	0.6250	2	7.24	16.31	0.444	1.333	Member Bearing
-		Horizontal	A325X	0.6250	2	1.26	16.31	0.077	1.333	Member Bearing
T15	50	Diagonal	A325X	0.6250	2	7.95	18.41	0.432	1.333	Bolt Shear
T 1 (40	Secondary Horizontal	A325X	0.6250	2	2.55	9.20	0.277	1.333	Bolt Shear
116	40	Diagonal	A325X	0.6250	2	8.11	18:41	0.441	1.333	Bolt Shear
		Secondary Horizontal	A325X	0.6250	2	2.74	9.20	0.298	1.333	Bolt Shear
T17	20	Disconst	A323A	0.0230	2	7.47	10.51	0.093	1 2 2 2	Dolt Shoor
11/	00	Diagonal	A323A	0.6250	2	2.05	10.41	0.406	222	Duit Shear
		Secondary Horizontal	A323X	0.0200	2	2.90	9.20	0.320	1,333	Bon Shear

tnxTower	Job 180' Lattice Tower - CSP	Page 52 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	Bolt K	K	Allowable		
T18	20	Diagonal	A325X	0.6250	2	10,14	18.41	0.551	1,333	Bolt Shear
		Horizontal	A325X	0.6250	2	3.04	16.31	0.186	1.333	Member Bearing
		Secondary Horizontal	A325X	0.6250	2	3.09	9.20	0,335	1.333	Bolt Shear
T19	10	Diagonal	A325X	0.6250	2	13.41	18.41	0.729	1.333	Bolt Shear
		Horizontal	A325X	0.6250	2	8.45	18.41	0.459	1.333	Bolt Shear

Compression Checks

		Leg [Desig	n Dat	a (Con	npres	sion)			
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	A	Actual P	Allow. Pa	Ratic P
	ft		ft	ft		ksi	in ²	Κ	K	P _a
T1	180 - 170	L3 1/2x3 1/2x3/8	10.00	5.00	87.3 K=1.00	14.519	2.4800	-6.92	36.01	0.192
T2	170 - 163.573	L5x5x5/16	6.43	6.43	77.6 K=1.00	15,232	3.0300	-21.37	46.15	0,463
Т3	163.573 - 159.049	L5x5x5/16	4.53	4.53	54.7 K=1.00	17.404	3.0300	-36.54	52.74	0.693
T4	159.049 - 154.524	L5x5x5/16	4.53	4.53	54.7 K=1.00	17.404	3.0300	-48.73	52.74	0.924
T5	154.524 - 150	L5x5x5/16	4.53	4.53	54.7 K=1.00	17.404	3,0300	-58,08	52.74	1.101
Т6	150 - 140	L5x5x3/8	10.01	5.01	60.7 K=1.00	17.364	3.6100	-81.08	62,68	1.293
Т7	140 - 130	L6x6x1/2	10.01	5.23	53.2 K=1.00	18.066	5,7500	-97.27	103.88	0,936
Т8	130 - 120	L6x6x1/2	10.01	5.21	53.0 K=1.00	18.083	5.7500	-120.85	103.98	1:162
Т9	120 - 110	L6x6x3/4	10.01	5.20	53.3 K=1.00	18,057	8_4400	-146.56	152.40	0.962
T10	110 - 100	L6x6x3/4	10.01	5.18	53.2 K=1.00	18.069	8.4400	-173.77	152.50	1.139
T11	100 - 90	L8x8x3/4	10.01	10.01	76.0 K=1.00	15.789	11.4000	-202.51	180.00	1.125
T12	90 - 80	L8x8x3/4	10.01	5.16	39.2 K=1.00	19.253	11.4000	-230.26	219.49	1.049
T13	80 - 60	L8x8x1 w/ 1/2x7 Plates	20.03	10.01	48.3 K=1.00	18.499	22.0000	-287,22	406.97	0.706
T14	60 - 50	L8x8x1-1/8 w/ 1/2x7 Plates	10.01	10.01	48.6 K=1.00	18.477	23.7340	-314.06	438.54	0.716
T15	50 - 40	L8x8x1-1/8 w/ 1/2x7 Plates	10.01	5.13	24.9 K=1.00	20.291	23.7340	-339.75	481=58	0.705
T16	40 - 30	L8x8x1 1/8	10.01	5.12	39.4	19.236	16.7000	-365.07	321.24	1.136

tnxTower	Job 180' Lattice Tower - CSP	Page 53 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Section No.	Elevation	Size	L	L_{μ}	Kl/r	F_{a}	А	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	K	K	P_d
					K=1.00					V
T17	30 - 20	L8x8x1 1/8	10,01	5,12	39.4 K=1.00	19,239	16.7000	-392.79	321.29	1,223
T18	20 - 10	L8x8x1 1/8	10.01	5.11	39.3 K=1.00	19.242	16.7000	-411.29	321.34	1.280
T19	10 - 0	L8x8x1 1/8	10.01	5.01	38.5 K=1.00	19,307	16,7000	-426.58	322,43	1.323

Diagonal Design Data (Compression)

A										
Section No.	Elevation	Size	L	Lu	Kl/r	F_{a}	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	K	K	P,,
T1	180 - 170	L2 1/2x2 1/2x3/16	11.41	5.49	130.1 K=0.98	8.827	0.9020	-6.55	7.96	0.823
T2	170 - 163.573	L2 1/2x2 1/2x3/16	8.46	4.02	103.0 K=1.06	12.592	0.9020	-7.13	11,36	0.628
Т3	163.573 - 159.049	L2x2x3/16	7.25	3.51	110.1 K=1.03	11.658	0.7150	-5,90	8.34	0.707
Τ4	159.049 - 154.524	L2 1/2x2x3/16	7.51	3.63	106.6 K=1.04	12.128	0.8090	-6.15	9.81	0.627
Т5	154.524 - 150	L2 1/2x2x3/16	7.77	3.76	109.3 K=1.03	11.766	0.8090	-6.40	9.52	0.672
Т6	150 - 140	L2 1/2x2x3/16	8.61	4.20	118.4 K=1.00	10.505	0.8090	-6.84	8.50	0.805
Τ7	140 - 130	L3x2 1/2x1/4	12.53	6.33	138.3 K=0.96	7.810	1,3100	-9,13	10.23	0.893
Т8	130 - 120	L3x3x1/4	12.98	6.54	129.6 K=0.98	8.886	1.4400	-10.76	12.80	0.841
T9	120 - 110	L3x3x1/4	13.45	6.76	133.1 K=0.97	8,432	1.4400	-11.24	12,14	0.925
T10	110 - 100	L3 1/2x3x1/4	13.94	7.00	130.0 K=0.98	8.832	1.5600	-12.55	13.78	0.911
T11	100 - 90	L3 1/2x3x1/4	14.44	7.25	133.6 K=0.97	8.366	1.5600	-13.16	13.05	1.008
T12	90 - 80	L3 1/2x3x1/4	14.97	7.50	137.3 K=0.96	7.920	1.5600	-13.97	12,36	1.131
T13	80 - 60	2L2 1/2x2x3/16	16.07	8.04	122.1 K=1.00	9.977	1.6200	-14,93	16.16	0.924
T14	60 - 50	2L2 1/2x2x3/16	16.63	8.32	126.4 K=1.00	9.352	1,6200	-14.48	15.15	0.956
T15	50 - 40	2L2 1/2x2x3/8	17.21	8.60	131.0 K=0.97	8.696	3.0900	-15.89	26,87	0,592
T16	40 - 30	2L2 1/2x2x3/8	17,80	8,90	134.5 K=0.97	8.254	3.0900	-16.23	25.50	0.636
T17	30 - 20	2L2 1/2x2x3/8	18.40	9.19	138.0 K=0.96	7.837	3.0900	-14.94	24,22	0.617
T18	20 - 10	2L2 1/2x2x3/8	19.00	9.49	141.6 K=0.95	7.446	3.0900	-20.29	23.01	0.882
T19	10 - 0	2L2 1/2x2 1/2x1/4	13.37	6.47	110.5	11.606	2.3800	-21.38	27.62	0.774

	tnxTower	Job	Job 180' Lattice Tower - CSP								
500	URS Corporation Enterprise Drive, Suite 3B	Project	Project Wilton, Connecticut (TWS-015)								
	Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Client Sprint							Designed by MCD	
		uk.									
Section No.	Elevation	Size	L	Lu	Kl/r	F_a	A	Actual P	Allow P _a	Ratio P	
	ft		ft	ft		ksi	in^2	K	K	Pa	
					K=1,09					V	

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	Κ	P_a
T9	120 - 110	L2 1/2x2 1/2x1/4	9.12	4.10	110.1 K=1.10	11.660	1.1900	-1.16	13.88	0.084
T11	100 - 90	L2 1/2x2 1/2x1/4	10.56	4.82	118.8 K=1.01	10.447	1.1900	-1.65	12.43	0.132
T14	60 - 50	2L2x2x3/16	13,43	6.15	119.8 K=1.00	10,316	1.4300	-1.35	14.75	0.091
T18	20 - 10	2L2x2x3/16	16.29	7.60	141.2 K=0.96	7.486	1,4300	-1.12	10.70	0.104
T19	10 - 0	2L2 1/2x2 1/2x1/4	17.01	7.96	123.2 K=0.99	9.813	2.3800	-16.66	23.35	0.713

Secondary Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	Κ	K	\overline{P}_a
T1	180 - 170	L2x2x3/16	6.00	5.28	141.5 K=0.88	7.454	0,7150	-0.80	5.33	0.151
Τ7	140 - 130	L2x2x1/4	8.03	7.53	192.1 K=0.83	4.048	0.9380	-1.46	3.80	0.384
Т8	130 - 120	L2x2x1/4	8,75	7.82	198.2 K=0.83	3.802	0.9380	-1.81	3.57	0.509
Т9	120 - 110	L2x2x3/16	9.47	8.54	211.7 K=0.81	3.331	0.7150	-2.20	2.38	0.924
T10	110 - 100	L2x2x1/4	10,19	9.26	228.0 K=0.80	2.873	0.9380	-2.61	2.69	0.968
T12	90 - 80	L2 1/2x2 1/2x1/4	11.62	10,53	209.8 K=0.82	3,392	1.1900	-3.46	4.04	0,856
T15	50 - 40	L3 1/2x3 1/2x1/4	14.49	13.36	191.8 K=0,83	4.061	1.6900	-5.10	6.86	0.743
T16	40 - 30	L3 1/2x3 1/2x1/4	15.21	14.12	200.8 K=0.82	3.705	1,6900	-5.48	6.26	0.875
T17	30 - 20	L3 1/2x3 1/2x1/4	15.93	14.83	209.2 K=0.82	3.412	1.6900	-5.90	5.77	1.022
T18	20 - 10	L3 1/2x3 1/2x1/4	16.65	15.55	217.6 K=0.81	3.154	1.6900	-6.17	5.33	1,158

tnx7	ower
tnx I	ower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
		180' Lattice Tower - CSP	55 of 63
	Project		Date
3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
	Client	Sprint	Designed by MCD

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	Fa	А	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in ²	K	K	P_a
T1	180 - 170	L2x2x3/16	6.00	5.28	145.1 K=0.90	7.091	0,7150	-0.12	5.07	0.024
T2	170 - 163.573	L2x2x3/16	6.00	5.28	145.1 K=0.90	7.091	0.7150	-0.73	5.07	0.144
Т3	163.573 - 159.049	L2x2x3/16	6.00	5.16	142.8 K=0,91	7.325	0.7150	-0.90	5,24	0.172
Т6	150 - 140	L2 1/2x2 1/2x3/16	6.97	6.13	137,6 K=0.93	7,889	0.9020	-0.91	7,12	0.127
Τ7	140 - 130	L2 1/2x2 1/2x3/16	7.69	3.42	101.5 K=1.22	12.788	0,9020	-0.92	11.53	0.080
T13	80 - 60	L2 1/2x2 1/2x1/4	11.99	5.45	130.1 K=0.98	8,825	1,1900	-0.87	10,50	0.083
T16	40 - 30	2L2x2x3/16	14.86	6.86	130.3 K=0.98	8.795	1.4300	-1.25	12.58	0.099

	F	Redundant Horizontal (1) Design Data (Compression)											
Section No.	Elevation	Size	L	L_{μ}	Kl/r	F _a	A	Actual P	Allow, Pa	Ratio P			
	ft		ft	ft		ksi	in ²	Κ	ĸ	Pa			
T19	10 - 0	L2 1/2x2 1/2x3/16	4.25	3.92	107.5 K=1.13	12.004	0.9020	-6.40	10,83	0.591			

		Redundant Dia	agonal	(1) D	esign	Data	(Comp	ressio	n)	
Section No.	Elevation	Size	L	L _u	Kl/r	Fa	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
T19	10 - 0	L2 1/2x2 1/2x3/16	6,45	5.92	143.6 K=1.00	7.239	0.9020	-6.38	6.53	0.977

Redundant Hip (1) Design Data (Compression)										
Section No.	Elevation	Size	L	L _u	Kl/r	Fa	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	K	K	P
T19	10 - 0	L2 1/2x2 1/2x3/16	6.01	6.01	145.8 K=1.00	7,024	0.9020	-0.03	6.34	0.005

	T
tnx l	ower
	V

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
•		180' Lattice Tower - CSP	56 of 63
и	Project		Date
te 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
7	Client		Designed by
2		Sprint	MCD

Redundant Sub-Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	Fa	А	Actual P	Allow Pa	Ratio P
	ft		ft	ft		ksi	in^2	K	K	
T19	10 - 0	L3x3x5/16	8,86	8.86	180.6 K=1.00	4,578	1.7800	-7.43	8.15	0.911

Inner Bracing Design Data (Compression)

Section No	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in^2	K	K	Pa
Έ7	140 - 130	L2x2x3/16	5.44	5.44	165.6 K=1.00	5,444	0.7150	-0.17	3.89	0.044
Т9	120 - 110	L2 1/2x2x3/16	6.45	6.45	181.3 K=1.00	4.542	0.8090	-0.11	3.67	0.031
T11	100 - 90	L2 1/2x2x3/16	7.47	7.47	209.8 K=1.00	3.392	0.8090	-0.12	2.74	0.044
T13	80 - 60	2L2x2x3/16	8.48	8.48	164.9 K=1.00	5.490	1.4300	-0.16	7.85	0.020
T14	60 - 50	2L2x2x3/16	9.49	9.49	184.6 K=1.00	4.380	1.4300	-0.15	6.26	0.024
T16	40 - 30	2L2x2x3/16	10.51	10.51	204.4 K=1.00	3.575	1.4300	-0.20	5.11	0.038
T18	20 - 10	2L2x2 1/2x3/16	11.52	11.52	230.4 K=1.00	2.812	1.6200	-0.06	4.56	0.013
T19	10 - 0	2L2x2 1/2x3/16	12.03	12.03	240.6 K=1.00	2.580	1.6200	-0.20	4.18	0.047

Tension Checks

			eg Des	ign D	ata (1	Fensio	n)			
Section No.	Elevation	Size	L	Lii	Kl/r	F _a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	K	K^*	Pa
T1	180 - 170	L3 1/2x3 1/2x3/8	10.00	5.00	56.1	21.600	2.4800	6.70	53.57	0.125
T2	170 - 163 573	L5x5x5/16	6.43	6.43	49.1	21,600	3.0300	19,66	65.45	0.300
Т3	163.573 - 159.049	L5x5x5/16	4,53	4.53	34.6	21.600	3.0300	32,78	65.45	0.501
Т4	159.049 - 154.524	L5x5x5/16	4.53	4,53	34.6	21.600	3.0300	43.19	65.45	0,660
Т5	154.524 - 150	L5x5x5/16	4.53	4.53	34.6	21.600	3.0300	52.82	65.45	0.807
Т6	150 - 140	L5x5x3/8	10.01	5.01	38.5	21.600	3.6100	74.65	77.98	0,957

tnxTower	Job 180' Lattice Tower - CSP	Page 57 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	K	K	P _{er}
Τ7	140 - 130	L6x6x1/2	10.01	5.23	33.7	21.600	5,7500	89.59	124,20	0.721
Т8	130 - 120	L6x6x1/2	10.01	5.21	33.6	21.600	5.7500	110.86	124.20	0.893
Т9	120 - 110	L6x6x3/4	10.01	5.20	34.1	21.600	8.4400	133.20	182.30	0.731
T10	110 - 100	L6x6x3/4	10.01	5.18	34.0	21,600	8.4400	157.46	182.30	0.864
T11	100 - 90	L8x8x3/4	10.01	10.01	48.6	21.600	11,4000	183.09	246.24	0.744
T12	90 - 80	L8x8x3/4	10.01	5.16	25.1	21.600	11.4000	209.04	246.24	0,849
T13	80 - 60	L8x8x1 w/ 1/2x7 Plates	20.03	10.01	48.3	21,600	22.0000	260.62	475,20	0.548
T14	60 - 50	L8x8x1-1/8 w/ 1/2x7 Plates	10.01	10.01	48.6	21.600	23.7340	283.25	512.65	0.553
T15	50 - 40	L8x8x1-1/8 w/ 1/2x7 Plates	10.01	5.13	24.9	21.600	23.7340	307.24	512.65	0.599
T16	40 - 30	L8x8x1 1/8	10.01	5.12	25.4	21.600	16.7000	327.83	360.72	0.909
T17	30 - 20	L8x8x1 1/8	10.01	5.12	25.4	21.600	16.7000	351.40	360.72	0.974
T18	20 - 10	L8x8x1 1/8	10.01	5,11	25.4	21.600	16.7000	372,69	360.72	1.033
T19	10 - 0	L8x8x1 1/8	10.01	5.01	24.8	21,600	16.7000	369.65	360.72	1.025

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
T1	180 - 170	L2 1/2x2 1/2x3/16	11.41	5.49	88.0	29.000	0.5710	5.71	16.56	0.345
										-
T2	170 - 163,573	L2 1/2x2 1/2x3/16	8.46	4.02	65.2	29.000	0.5710	6.52	16.56	0.393
										- V
T3	163.573 -	L2x2x3/16	7.25	3.51	72.4	29.000	0.4308	5.69	12.49	0.455
	159.049									
T4	159.049 -	L2 1/2x2x3/16	7.51	3.63	77.0	29.000	0.5013	6.46	14.54	0,445
	154.524									
T5	154.524 - 150	L2 1/2x2x3/16	7.77	3.76	79.6	29.000	0.5013	6.02	14.54	0.414
Т6	150 - 140	L2 1/2x2x3/16	8.61	4.20	88.2	29.000	0.5013	6.75	14.54	0.464
Т7	140 - 130	L3x2 1/2x1/4	12.53	6.33	104.5	29.000	0.8419	8.96	24.41	0.367
										1
T8	130 - 120	L3x3x1/4	12.98	6.54	87.2	29,000	0.9394	10.53	27.24	0.386
										V
Т9	120 - 110	L3x3x1/4	13.45	6.76	90.0	29.000	0.9394	11.02	27.24	0.404

turTowar	Job	Page
InxTower	180' Lattice Tower - CSP	58 of 63
URS Corporation	Project	Date
500 Enterprise Drive, Suite 3B	Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client	Designed by
Phone: 860-529-8882 FAX: 860-529-3991	Sprint	MCD

Section No.	Elevation	Size	L	Lu	Kl/r	F_{a}	Α	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	K	K	Pa
										~
T10	110 - 100	L3 1/2x3x1/4	13,94	7.00	94.8	29.000	1,0294	12.31	29.85	0.412
										~
T11	100 - 90	L3 1/2x3x1/4	14.44	7.25	98.1	29.000	1.0294	12,96	29.85	0.434
T10	00 80	$I = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4}$	14.07	7.50	101.4	20.000	1.0204	12 70	20.95	0.450
112	90 - 80	L3 1/2X3X1/4	14.97	7.50	101.4	29.000	1.0294	15.70	29.03	0.439
T13	80 - 60	2L2 1/2x2x3/16	16.07	8.04	125.4	29.000	1.0041	14.25	29.12	0.489
										4
T14	60 - 50	2L2 1/2x2x3/16	16,63	8.32	129.6	29.000	1.0041	14.12	29.12	0.485
T15	50 - 40	2L2 1/2x2x3/8	17.21	8,60	137.8	29.000	1.8956	14.31	54.97	0.260
T16	40 - 30	2121/22223/8	17.80	8 00	1423	20.000	1 8056	15 27	54 07	0.278
110	40-50	LEL IILALAJIO	17.00	0.70	172,5	29.000	1.0750	1.5.47	54.97	0.276
T17	30 - 20	2L2 1/2x2x3/8	18.40	9.19	147.0	29.000	1.8956	14.87	54.97	0.271
										1
T18	20 - 10	2L2 1/2x2x3/8	19.00	9.49	151,6	29,000	1,8956	14.90	54.97	0.271
-										
119	10 - 0	2L2 1/2x2 1/2x1/4	13.37	6.47	104.3	29.000	1.5037	26.83	43.61	0.615

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	F_{a}	A	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in^2	Κ	Κ	Pa
T9	120 - 110	L2 1/2x2 1/2x1/4	9.12	4.10	67.3	29.000	0.7519	0.97	21.80	0.045
T11	100 - 90	L2 1/2x2 1/2x1/4	10.56	4.82	78.5	29.000	0.7519	1,55	21.80	0.071
T14	60 - 50	2L2x2x3/16	13.43	6.15	123.7	29.000	0.8616	2.52	24.99	0.101
T18	20 - 10	2L2x2x3/16	16.29	7.60	152.0	29.000	0.8616	6.08	24,99	0.243
T19	10 - 0	2L2 1/2x2 1/2x1/4	17.01	7.96	127.5	29.000	1-5037	16.90	43.61	0.388

Secondary Horizontal Design Data (Tension)										
Section No.	Elevation	Size	L	L _u	Kl/r	F _a	А	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in^2	Κ	K	P_{ii}
T1	180 - 170	L2x2x3/16	6.00	5.28	111.0	29.000	0.4308	0.78	12.49	0.063
Т7	140 - 130	L2x2x1/4	8.03	7.53	148.4	21.600	0,9380	1.46	20.26	0.072

tnxTower	Job 180' Lattice Tower - CSP	Page 59 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Section No.	Elevation	Size	L	L_{μ}	Kl/r	F_a	А	Actual P	Allow Pa	Ratio P
	ft		ft	ft		ksi	in^2	Κ	K	P _a
Т8	130 - 120	L2x2x1/4	8.75	7.82	162.6	29.000	0,5629	1.81	16.32	0.111
T9	120 - 110	L2x2x3/16	9.47	8.54	174.4	29.000	0.4308	2,20	12,49	0.176
T10	110 - 100	L2x2x1/4	10,19	9.26	190,9	29.000	0.5629	2.61	16.32	0.160
T12	90 - 80	L2 1/2x2 1/2x1/4	11.62	10.53	171.0	29.000	0.7519	3.46	21.80	0.159
T15	50 - 40	L3 1/2x3 1/2x1/4	14.49	13,36	151.8	29.000	1.1269	5,10	32.68	0.156
T16	40 - 30	L3 1/2x3 1/2x1/4	15.21	14.12	160.1	29.000	1.1269	5.48	32.68	0.168
T17	30 - 20	L3 1/2x3 1/2x1/4	15.93	14.83	168.0	29.000	1.1269	5,90	32,68	0.180
T18	20 - 10	L3 1/2x3 1/2x1/4	16.65	15.55	175.9	29.000	1.1269	6.17	32.68	0.189

Section	Elevation	Size	L	L_{μ}	Kl/r	F_a	A	Actual	Allow.	Ratio
No								Р	P_{a}	Р
	ft		ft	ft		ksi	in ²	K	K	Pa
T1	180 - 170	L2x2x3/16	6.00	5.28	111.0	29.000	0.4308	0.51	12.49	0.040
T2	170 - 163,573	L2x2x3/16	6.00	5.28	111.0	29,000	0.4308	1.25	12.49	0.100
Т3	163.573 -	L2x2x3/16	6.00	5.16	108.6	29.000	0.4308	1.52	12.49	0.122
	159,049									
T6	150 - 140	L2 1/2x2 1/2x3/16	6.97	6.13	101.1	29.000	0.5710	1.05	16,56	0.064
Т7	140 - 130	L2 1/2x2 1/2x3/16	7.69	3.42	56.1	29.000	0.5710	0.90	16.56	0.054
T13	80 - 60	L2 1/2x2 1/2x1/4	11.99	5.45	88.4	29.000	0.7519	1.08	21.80	0.050
										V
T16	40 - 30	2L2x2x3/16	14.86	6.86	137.6	29.000	0.8616	3.04	24.99	0.122

Redundant Horizontal (1) Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	F _a	А	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
T19	10 - 0	L2 1/2x2 1/2x3/16	4.25	3.92	60.5	21.600	0.9020	6.40	19,48	0.329

tnxTower	Job	180' Lattice Tower - CSP	Page 60 of 63
URS Corporation 500 Enterprise Drive, Suite 3B	Project	Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint	Designed by MCD

	Redundant Diagonal (1) Design Data (Tension)											
Section No.	Elevation	Size	L	Lu	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P		
	ft		ft	ft		ksi	in ²	Κ	ĸ	Pa		
T19	10 - 0	L2 1/2x2 1/2x3/16	6.45	5.92	91.4	21.600	0.9020	10.47	19.48	0.537		

	Redundant Hip (1) Design Data (Tension)											
Section No	Elevation	Size	L	L_{μ}	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P		
	ft		ft	ft		ksi	in ²	K	K	$\overline{P_a}$		
T19	10 - 0	L2 1/2x2 1/2x3/16	6.01	6.01	92.8	21.600	0,9020	0.01	19.48	0.000		

* DL controls

	Redundant Sub-Horizontal Design Data (Tension)											
Section No.	Elevation	Size	L	L_{u}	Kl/r	F _a	A	Actual P	Allow. Pa	Ratio P		
1.120	ft		ft	ft		ksi	in ²	Κ	K	Pa		
T19	10 - 0	L3x3x5/16	8.86	8.86	115.4	21,600	1.7800	12.84	38.45	0.334		

		Inner	Bracin	g Des	ign D	ata (Te	ension)		
Section No.	Elevation	Size	L	Lu	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	Κ	ĸ	Pa
Τ7	140 - 130	L2x2x3/16	5.44	5.44	105.8	21.600	0.7150	0,17	15,44	0.011
T9	120 - 110	L2 1/2x2x3/16	6.45	6.45	129.1	21.600	0.8090	0.11	17.47	0.006
T11	100 - 90	L2 1/2x2x3/16	7.47	7.47	149.4	21.600	0.8090	0.12	17.47	0.007
T13	80 - 60	2L2x2x3/16	8.48	8.48	164.9	21.600	1,4300	0.16	30.89	0.005
T14	60 - 50	2L2x2x3/16	9.49	9.49	184.6	21.600	1.4300	0.15	30,89	0.005
T16	40 - 30	2L2x2x3/16	10.51	10.51	204.4	21.600	1.4300	0.20	30.89	0.007
T18	20 - 10	2L2x2 1/2x3/16	11,52	11,52	230,4	21.600	1,6200	0.08	34.99	0.002
T19	10 - 0	2L2x2 1/2x3/16	12.03	12.03	240.6	21.600	1.6200	0.17	34.99	0.005

	tnxTower	Job	Job 180' Lattice Tower - CSP								
500	URS Corporation Enterprise Drive, Suite 3B	Project	Project Wilton, Connecticut (TWS-015)							21 05/14/14	
	Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Client Sprint							Designed by MCD	
Section No.	Elevation	Size	L	L_{μ}	Kl/r	F_{a}	Å	Actual P	Allow. P _a	Ratio P	
	ft		ft	ft		ksi	in^2	K	K	Pa	

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	SF*Pallow	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T1	180 - 170	Leg	L3 1/2x3 1/2x3/8	1	-6.92	48.00	14.4	Pass
T2	170 - 163.573	Leg	L5x5x5/16	21	-21.37	61.52	34.7	Pass
Т3	163,573 -	Leg	L5x5x5/16	38	-36.54	70,30	52.0	Pass
	159.049	0						
T4	159.049 -	Leg	L5x5x5/16	54	-48.73	70,30	69.3	Pass
	154.524	5						
T5	154,524 - 150	Leg	L5x5x5/16	66	-58.08	70.30	82.6	Pass
Т6	150 - 140	Leg	L5x5x3/8	78	-81.08	83.56	97.0	Pass
Τ7	140 - 130	Leg	L6x6x1/2	102	-97.27	138.47	70.2	Pass
T8	130 - 120	Leg	L6x6x1/2	127	-120.85	138.60	87.2	Pass
Т9	120 - 110	Leg	L6x6x3/4	143	-146.56	203.15	72.1	Pass
T10	110 - 100	Leg	L6x6x3/4	170	-173.77	203,29	85.5	Pass
T11	100 - 90	Leg	L8x8x3/4	186	-202.51	239.94	84.4	Pass
T12	90 = 80	Leg	L8x8x3/4	207	-230,26	292,58	78.7	Pass
T13	80 - 60	Leg	L8x8x1 w/ 1/2x7 Plates	223	-287,22	542,49	52.9	Pass
T14	60 - 50	Leg	L8x8x1-1/8 w/ 1/2x7 Plates	252	-314.06	584.58	53.7	Pass
T15	50 - 40	Leg	L8x8x1-1/8 w/ 1/2x7 Plates	273	-339.75	641.95	52.9	Pass
T16	40 - 30	Leg	L8x8x1 1/8	289	-365.07	428.21	85.3	Pass
T17	30 - 20	Leg	L8x8x1 1/8	314	-392,79	428,28	91.7	Pass
T18	20 - 10	Leg	L8x8x1 1/8	330	-411.29	428.35	96.0	Pass
T19	10 - 0	Leg	L8x8x1 1/8	355	-426.58	429.80	99.3	Pass
T1	180 - 170	Diagonal	L2 1/2x2 1/2x3/16	15	-6.55	10.61	61.7	Pass
Т2	170 - 163,573	Diagonal	L2 1/2x2 1/2x3/16	30	-7.13	15.14	47.1	Pass
Т3	163.573 - 159.049	Diagonal	L2x2x3/16	50	-5.90	11,11	53.1	Pass
T4	159.049 -	Diagonal	L2 1/2x2x3/16	60	-6.15	13.08	47.0	Pass
ТS	154 524 - 150	Diagonal	$L_{2} \frac{1}{2} \frac{x^{2}}{x^{3}}$	69	-6.40	12:69	50.4	Pass
T6	150 - 140	Diagonal	$L_2 1/2x2x3/16$	85	-6.84	11 33	60.4	Pass
T7	140 - 130	Diagonal	$L_{3x2} \frac{1}{2x1/4}$	115	-9.13	13.64	67.0	Pass
T8	130 - 120	Diagonal	$L_3x_3x_1/4$	134	-10.76	17.06	63.1	Pass
T9	120 - 110	Diagonal	L3x3x1/4	156	-11.24	16.19	69.4	Pass
T10	110 - 100	Diagonal	L3 1/2x3x1/4	177	-12.55	18.37	68.3	Pass
T11	100 - 90	Diagonal	L3 1/2x3x1/4	203	-13.16	17.40	75.6	Pass
T12	90 - 80	Diagonal	$L_3 \frac{1}{2x^3x^{1/4}}$	215	-13.97	16 47	84.8	Pass
T13	80 - 60	Diagonal	2L2 1/2x2x3/16	240	-14.93	21.54	69.3	Pass
T14	60 - 50	Diagonal	$2L_2 \frac{1}{2x^2x^3}$	269	-14.48	20.20	71.7	Pass
T15	50 - 40	Diagonal	2L2 1/2x2x3/8	281	-15.89	35.82	= 44.4	Pass
T16	40 - 30	Diagonal	$2L_2 \frac{1}{2x^2x^3/8}$	306	-16.23	34.00	47.7	Pass
T17	30 - 20	Diagonal	$2L_2 \frac{1}{2x^2x^3/8}$	322	-14.94	32.28	46.3	Pass
T18	20 - 10	Diagonal	$2L_2 \frac{1}{2x^2x^3/8}$	344	-20.29	30.67	66.1	Pass
T19	10 - 0	Diagonal	$2I_{2} \frac{1}{2x^{2}} \frac{1}{2x^{1/4}}$	386	-21 38	36.82	58.1	Pass
Τ9	120 - 110	Horizontal	$L_2 1/2x^2 1/2x^{1/4}$	149	-1.16	18.50	6.3	Pass
T11	100 - 90	Horizontal	$L_2 \frac{1}{2x^2} \frac{1}{2x^{1/4}}$	190	-1.65	16 57	9.9	Pass
T14	60 - 50	Horizontal	2L2x2x3/16	255	2.52	33 31	7.6	Pass
T18	20 - 10	Horizontal	2L2x2x3/16	333	6.08	33 31	18.2	Pass
T19	10 - 0	Horizontal	$2L_2 \frac{1}{2x^2} \frac{1}{2x^{1/4}}$	382	-16.66	31.13	53.5	Pass
TI	180 - 170	Secondary Horizontal	L2x2x3/16	20	-0.80	7 10	113	Pass
T 7	140 - 130	Secondary Horizontal	L2x2x1/4	122	-1.46	5.06	28.8	Pass
TO	130 - 120	Secondary Horizontal	$I_{2x2x1/4}$	138	-1.81	4.75	38.2	Pace

	Job		Page
thxlower		180' Lattice Tower - CSP	62 of 63
UPS Comparation	Project		Date
500 Enterprise Drive, Suite 3B		Wilton, Connecticut (TWS-015)	11:06:21 05/14/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882		Sprint	MCD
FAX: 860-529-3991			INCD

Section	Elevation	Component	Size	Critical	Р	SF^*P_{allow}	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T9	120 - 110	Secondary Horizontal	L2x2x3/16	163	-2.20	3.17	69.3	Pass
T10	110 - 100	Secondary Horizontal	L2x2x1/4	181	-2.61	3.59	72.6	Pass
T12	90 - 80	Secondary Horizontal	L2 1/2x2 1/2x1/4	219	-3.46	5,38	64.2	Pass
T15	50 - 40	Secondary Horizontal	L3 1/2x3 1/2x1/4	284	-5.10	9.15	55.7	Pass
T16	40 - 30	Secondary Horizontal	L3 1/2x3 1/2x1/4	309	-5,48	8.35	65.7	Pass
T17	30 - 20	Secondary Horizontal	L3 1/2x3 1/2x1/4	325	-5.90	7.69	76.7	Pass
T18	20 - 10	Secondary Horizontal	L3 1/2x3 1/2x1/4	350	-6.17	7,11	86.9	Pass
T1	180 - 170	Top Girt	L2x2x3/16	5	0.51	16.65	3.0	Pass
T2	170 - 163 573	Top Girt	L2x2x3/16	27	-0.73	6.76	10.8	Pass
Т3	163.573 -	Top Girt	L2x2x3/16	42	-0.90	6.98	12.9	Pass
	159.049							
T6	150 - 140	Top Girt	L2 1/2x2 1/2x3/16	84	-0.91	9.49	9.5	Pass
T7	140 - 130	Top Girt	L2 1/2x2 1/2x3/16	106	-0.92	15.38	6.0	Pass
T13	80 - 60	Top Girt	L2 1/2x2 1/2x1/4	225	-0.87	14.00	6.2	Pass
T16	40 - 30	Top Girt	2L2x2x3/16	292	3.04	33.31	9.1	Pass
T19	10 - 0	Redund Horz 1 Bracing	L2 1/2x2 1/2x3/16	378	-6.40	14.43	44.4	Pass
T19	10 - 0	Redund Diag 1 Bracing	L2 1/2x2 1/2x3/16	385	-6.38	8.70	73.3	Pass
T19	10 - 0	Redund Hip 1 Bracing	L2 1/2x2 1/2x3/16	372	-0.03	8.44	0,3	Pass
T19	10 - 0	Redund Sub Horz Bracing	L3x3x5/16	389	-7.43	10.86	68.4	Pass
Τ7	140 - 130	Inner Bracing	L2x2x3/16	112	-0.17	5.19	3.3	Pass
T9	120 - 110	Inner Bracing	L2 1/2x2x3/16	151	-0.11	4.90	2.3	Pass
T11	100 - 90	Inner Bracing	L2 1/2x2x3/16	192	-0.12	3.66	3.3	Pass
T13	80 - 60	Inner Bracing	2L2x2x3/16	229	-0.16	10.46	1.5	Pass
T14	60 - 50	Inner Bracing	2L2x2x3/16	258	-0.15	8.35	1.8	Pass
T16	40 - 30	Inner Bracing	2L2x2x3/16	297	-0.20	6.82	2.9	Pass
T18	20 - 10	Inner Bracing	2L2x2 1/2x3/16	336	-0.06	6.07	1.0	Pass
T19	10 - 0	Inner Bracing	2L2x2 1/2x3/16	395	-0.20	5 57	35	Pass

10.46	1.5	Pass
8.35	1.8	Pass
6.82	2.9	Pass
6.07	1.0	Pass
5.57	3.5	Pass
	Summary	
Leg (T19)	99.3	Pass
Diagonal	84.8	Pass
(T12)		
Horizontal	53.5	Pass
(T19)		
Secondary	86.9	Pass
Horizontal		
(T18)		
Top Girt	12.9	Pass
(T3)		
Redund	44.4	Pass
Horz 1		
Bracing		
(T19)		
Redund	73.3	Pass
Diag 1		
Bracing		
(T19)		
Redund Hip	0.3	Pass
1 Bracing		
(T19)		
Redund Sub	68.4	Pass
Horz		
Bracing		
(T19)		
Inner	3.5	Pass
Bracing		
(T19)		
Bolt Checks	56.9	Pass

tnxTower	Job	Page 63 of 63
the content	180 Lattice Tower - CSP	00 01 00
URS Corporation 500 Enterprise Drive, Suite 3B	Project Wilton, Connecticut (TWS-015)	Date 11:06:21 05/14/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint	Designed by MCD

Section	Elevation	Component	Size	Critical	P	SF^*P_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
						RATING =	99.3	Pass

Program Version 6.0.0.8 - 9/7/2011 File:W:/Transcend_Wireless_TWS/36928700-TWS015_Wilton/08/ERI Files/180' Lattice Wilton CSP.eri

ANCHOR BOLT EVALUATION

ob Description	180' Self-Supporting Latt Anchor Bolt Evaluation	tice Tower - Wilton, CT	Project No. Computed by Checked by	TWS-015 MCD	Page of Sheet <u>1</u> of Date 05/14/ Date
	AN	CHOR BOLT	ANALY	SIS	
nput Dat	ta n Decetience				
Uplif	r Reactions:	Unlift := 404 kins	user input		
Shea	ar:	Shear := 43-kips	user input		
Com	pression:	Compression := 453kips	user input		
Anchor	<u>Bolt Data:</u>				
Use	ASTM A36				
Num	ber of Anchor Bolts = N	<u>N</u> := 4	user input		
Bolt	Ultimate Strength:	$F_u := 58 \cdot ksi$	user input		
Bolt	Yield Strength:	Fy:= 36 ksi	user input		
Bolt	Modulus:	E := 29000 ksi	user input		
Thick	ness of Anchor Bolts	D:= 2.5in	user input		
Threa	ads per Inch:	n := 4	user input		

URS				Page of
Job	180' Self-Supporting Lattice Tower - Wilton, CT	Project No.	TWS-015	Sheet 2 of 3
Description	Anchor Bolt Evaluation	Computed by	MCD	Date 05/14/14
		Checked by		Date

Anchor Bolt Area:

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} \cdot D^2$$
 $A_g = 4.909 \text{ in}^2$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 \qquad A_n = 3.999 \cdot in^2$$

Check Tensile Forces:

Maximum Tensile Force (Gross Area):

AllowableTension := $1.33 \cdot (0.33 \cdot A_g \cdot F_u)$

Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

 $F_{net,area} := 1.33 \cdot (0.60 \cdot A_n \cdot Fy)$ $F_{net,area} = 114.9 \cdot kips$

Note: 1.33 increase allowed per TIA/EIA

Applied Tension:

MaxTension :=
$$\frac{\text{Uplift}}{N}$$
 MaxTension = 101.0 kips

Check Stresses:

$$\frac{\text{MaxTension}}{\text{F}_{\text{net,area}}} = 0.88$$
Condition1 := if $\left(\frac{\text{MaxTension}}{\text{F}_{\text{net,area}}} \le 1.00, \text{"OK"}, \text{"Overstressed"}\right)$
Condition1 = "OK"

URS				Page	of
Job	180' Self-Supporting Lattice Tower - Wilton, CT	Project No.	TWS-015	Sheet	3 of 3
Description	Anchor Bolt Evaluation	Computed by	MCD	Date	05/14/14
1		Checked by		Date	

Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Stell Transmission Structures

Required Area:

$$A_{s1} := \frac{\text{Uplift}}{\text{Fy}} + \frac{\text{Shear}}{\mu \cdot 0.85 \cdot \text{Fy}} \qquad A_{s1} = 13.8 \cdot \text{in}^2$$
$$A_{s2} := \left| \frac{\text{Shear} - (0.3 \cdot \text{Compression})}{\mu \cdot 0.85 \cdot \text{Fy}} \right| \qquad A_{s2} = 5.5 \cdot \text{in}^2$$

Provided Area:

$$A_{sprovided} := A_n N$$

$$A_{sprovided} = 16.0 \cdot in^2$$

Condition2 := if
$$\left(\frac{A_{s1}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s1}}{A_{sprovided}} = 0.86$
Condition2 = "OK"

Condition3 := if
$$\left(\frac{A_{s2}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s2}}{A_{sprovided}} = 0.35$
Condition3 = "OK"

FOUNDATION ANALYSIS

Job

180' Self-Supporting Lattice Tower - Wilton, CT

Description Foundation Analysis

		Page		of	
Project No.	TWS-015	Sheet	1	of	10
Computed by	MCD	Date	5/	14/	14
Checked by		Date			
PC:		51 - IS			

FOOTING WITH FOUR CONCRETE PIERS

INPUT DATA

TOWER FORCES:

Moment Caused by Tower	$M_t := 10769 \cdot kip \cdot ft$
Shear at Base of Tower	S _t := 99kip
Max Compressive Force	$C_t := 453 kip$
Max Uplift	$U_t := 404 kip$
Max Pier Shear	S _p := 43kip
Height of Tower	$H_t := 180 \cdot ft$
Width of Tower at Base	$W_t := 17.729 \text{ ft}$
Weight of Tower	$WT_t := 1 \cdot kip$

NOTE: Weight of Tower is incorporated into the other loads listed above and is therefore set equal to one for programming.

Yield Strength of Steel Reinforcement fy:= 60000 psi

MATERIAL PROPERTIES:

Internal Friction Angle of Soil

Allowable Bearing Capacity

Stability Factor of Safety

Compressive Strength of Concrete

FOOTING DIMENSIONS:

Width of Footing	$W_f := 37 \cdot ft + 0 ft$
Overall Depth of Footing	$D_{f} := 9.5 ft$
Length of Pier	$L_p := 6.5 \text{ ft} - 0 \text{ ft}$
Extension of Pier Above Grade	$L_{pag} := 1.0 \text{ ft}$
Square Dimension of Pier	$d_p := 4.0 \text{ ft}$
Thickness of Footing	$T_{f} := 3.0 \text{ ft} + 0 \text{ft}$
Reinforement Cover:	Cvr:= 3in
Ftg. Edge To Pier CL:	$X_t := 8.635 ft$

Unit Weight of Soil	$\gamma_s := 100 pcf$
Unit Weight of Concrete	$\gamma_c := 150 \cdot pcf$
Depth to Neglect	n := 1.5 ft
Cohesion of Clay Type Soil	$c = 0 \cdot ksf$
Note: Use 0 for Sandy Soil	

Coefficient of Lateral Soil Pressure

$$\frac{1 + \sin(\phi_s)}{1 - \sin(\phi_s)}$$

fc:= 3000 psi

 $\phi_s := 30 \text{ deg}$

 $q_s := 3400 \text{ psf}$

 $FS_{reg} := 2.0$

K_p:=

 $K_{p} = 3$

1=Offset 2=Not Offset

 $Pos_{tower} := 1$

PIER REINFORCEMENT:

Bar Size	BSpier := 9	Bar Diameter	d _{bpier} := 1.128 in
Number of Bars	NBpier := 24	Bar Area	$A_{bpier} := 1.00 \cdot in^2$

What is Position of Center of Tower with respect to Center of Pad?

PAD REINFORCEMENT:

Bar Size	$BS_{pad} := 9$	Bar Diameter	d _{bpad} := 1.128 in
Number of Bars	$NB_{pad} := 42$	Bar Area	$A_{bpad} := 1.00 \cdot in^2$

Ja	DB escription	180' Self-Suppo Foundation Ana	rting Lattice Tower - Wilton, CT Iysis	Project No. Computed by	TWS-015 MCD	Page of Sheet <u>3</u> of <u>10</u> Date <u>5/14/14</u>
			NG			
5	Pressu	re at Neglect:	$P \rightarrow K \rightarrow n + c_{2} \sqrt{K}$		р	-0.45 ksf
	Dressu	no at Fastian Tan	$r_{pn} = \kappa_p r_s n + c 2 \sqrt{\kappa_p}$		¹ pn	- 0.451 8
	Pressu	ie al Fooling Top	$P_{\text{pt}} := K_{\text{p}} \cdot \gamma_{\text{s}} \left(D_{\text{f}} - I_{\text{f}} \right) + c \cdot 2 \cdot,$	/Kp	P _{pt}	= 1.95·kst
	Pressu	re at Top:	$P_{top} := if [n < (D_f - T_f), P_{pt}]$	Ppn	P _{top}	$= 1.95 \cdot \text{ksf}$
	Pressu	re at Bottom:	$P_{bot} := K_p \cdot \gamma_s \cdot D_f + c \cdot 2 \cdot \sqrt{K_p}$		Pbo	$t = 2.85 \cdot ksf$
	Average	e Pressure:	$P_{ave} := \frac{P_{top} + P_{bot}}{2}$		Pave	$c_{2} = 2.4 \mathrm{ksf}$
100	Soil Shea	ar:				
	Effective	Soil Depth:	$T_{pp} := if[n < (D_f - T_f), T_f, (I)]$	$D_{f} - n$	Т _{рр}	$= 3 \cdot \mathrm{ft}$
	Area of F	Resistance:	$A_{pp} := W_{f} T_{pp}$		A _{pp}	$= 111 \cdot \mathrm{ft}^2$
	Shear Re	esistance:	$S_u := P_{ave} \cdot A_{pp}$		S _u =	= 266.4 kip
S	Stabilizin	g Dead Load	<u>:</u>			
)	Weight o	f	$WT_{c} := \left(W_{f}^{2} \cdot T_{f}\right) \gamma_{c}$		WT	$c = 616.05 \cdot \text{kip}$
	Concrete Weight o above Fo	Pad: f Soil: poting:	Depth := $\begin{bmatrix} D_f - n - T_f & \text{if } n < 0 & \text{otherwise} \end{bmatrix}$	$\left(D_{f} - T_{f} \right)$	Dep	$th = 5 \cdot ft$
			$WT_{s1} := W_f^2 \cdot Depth \cdot \gamma_s$		WT	₃₁ = 684.5 kip
	Weight o Wedge a	f Soil t Back Face:	$WT_{s2} := \left[\frac{\left(D_{f} - n\right)^{2} \cdot \tan(\phi_{s})}{2} \cdot V_{s2}\right]$	v_{f} · γ_{s}	WT ₅	₃₂ = 68.3583 · kip
	Distance Tower Le of Footin	to center of g from Edge g:	$X_{t1} := \frac{W_f}{2} - \frac{W_t}{2}$ $X_{t2} := \frac{W_f}{2}$	$\frac{f}{2} - \frac{W_t}{2}$ $X_{t} = if(1)$	$Pos_{tower} = 1, X_{t1}$, x _{t2})
	Additic Footin	onal Offset of g:	$X_{off1} := \frac{W_f}{2} - \left(\frac{W_f \cos(30 \cdot \deg)}{3} + \right)$	xt	= 10.63541667ft	$X_{off2} := 0$
			$X_{off} := if(Pos_{tower} = 1, X_{off1}, X_{off1})$	ff2)		$X_{off} = 10.6354 \cdot ft$
S	Stability A	Analysis:				
	Resisting	Moment:	$M_{r} := \left(WT_{c} + WT_{s1}\right) \cdot \frac{W_{f}}{2} + V$	$VT_{f}\left(\frac{W_{f}}{2} - X_{off}\right) +$	$S_u^* \frac{T_{pp}}{3} + WT_{s2}^*$	$\left(W_{f} + \frac{T_{pp} \tan(\phi_{s})}{3}\right)$
			$M_{f} = 26903.1623 \cdot kip \cdot ft$			
F	Overturni	ng Moment:	$M_{ot} := M_t + S_t (L_p + T_f) + W_t$	/T _t ·X _{off}	M _{ot}	= 11720.1354 kip ft
)	Factor of	Safety:	$FS := \frac{M_r}{M_{ot}}$		FS =	: 2.3
			SafetyCheck := $if(FS > FS_{req})$	"Okay", "No Good")	Safe	tyCheck = "Okay"

URS Job Description	180' Self-Supporting Lattice Tower - W Foundation Analysis PRESSURES	ilton, CT Projec Compi	t No. uted by ed by	TWS-015 MCD	Page of Sheet 4 of 10 Date 5/14/14 Date
<u>Loadin</u>	<u>g Eccentricity:</u>				
Total	Axial Load: $LOAD_{tot} := WT_c$	+ WT_{s1} + WT_t			$LOAD_{tot} = 1301.55 \cdot kip$
Total	Moment: $M_{t} = M_{t} + S_{t} (L)$	$(p + T_f) + WT_t$			$M_{ot} = 11710.5 \cdot kip \cdot ft$
Ecce	entricity: $e:=\frac{M_{ot}}{LOAD_{tot}}$				$e = 8.9973 \cdot ft$
Dist.	From Ftg. CL to Kern Edge: $X_k := \frac{W_k}{C}$	$\frac{l_{f}}{5}$			$X_{k} = 6.1667 \cdot ft$
Maxi	mum Contact Pressures. $P_{max} := \begin{bmatrix} \frac{LOAD_{tot}}{W_{f}^{2}} \cdot \left(1 + \frac{6 \cdot e}{W_{f}}\right) & \text{if } e \leq \frac{2 \cdot LOAD_{tot}}{3 \cdot W_{f} \cdot \left(\frac{W_{f}}{2} - e\right)} & \text{otherwise} \end{bmatrix}$	s X _k			P _{max} = 2.4679 ksf
Minin	num Contact Pressure:				
	$P_{\min} := \left \frac{LOAD_{tot}}{W_{f}^{2}} \left(1 - \frac{6 \cdot e}{W_{f}} \right) \right \text{ if } e$ 0 ksf otherwise	≤ X _k			P _{min} = 0·ksf
Lengt	th of Applied Pressure:				
	$X_{p} := \begin{bmatrix} W_{f} & \text{if } e \leq X_{k} \\ 3 \cdot \left(\frac{W_{f}}{2} - e\right) & \text{otherwise} \end{bmatrix}$				$X_p = 28.508 \cdot ft$
Press	sure Slope:				
	$m_p := \frac{P_{max} - P_{min}}{X_p}$:	$m_p = 0.0866 \cdot ksf$

Soil Bearing Pressure Check:

BearingStatus := $if(P_{max} < q_s, "Okay", "No Good")$

BearingStatus = "Okay"

Job Descriptio	180' Self-Supportin Foundation Analys	g Lattice Tower - Wilton, CT is	Project No. Computed by Checked by	TWS-015 MCD	Page of Sheet <u>5</u> of <u>10</u> Date <u>5/14/14</u> Date
Concret	e Bearing Capaci	ity (ACI 10.17):			
	(ACI 9.3.2.2)	$\phi_c := 0.75$			
		$P_b := \phi_c \cdot 0.85 \cdot fc \cdot \frac{d_p^2 \cdot \pi}{4}$		$P_b = 3$	460.7785 kip
		BearingCheck := $if(P_b > C_t, "C_b)$	Dkay", "No Good")	Bearin	gCheck = "Okay"
SHEAR	STRENGTH OF C	ONCRETE			
Bean	n (One-Way) Shea	r Action (ACI 11.3.1.1):			
Load (EIA	d Factor: \ 3.1.1)	$LF := if \left[H_t \le 700 \cdot ft, 1.3, if \right] H_t$	≥ 1200, 1.7, 1.3 + (-	$\left(\frac{H_t - 700}{1200 - 700}\right) 0.4$	LF = 1.3
"d"	Distance:	$d := T_f - Cvr5 in$			$d = 32.5 \cdot in$
Fact at "c	tored Pressure d" Distance:	$P_d := LF \cdot \left[P_{max} - \left(X_t - \frac{d_p}{2} - \right) \right]$	$d \int m_p d$		$P_d = 2.6537 \cdot ksf$
Fact at E	tored Pressure dge:	$P_{edge} := LF \cdot P_{max}$			$P_{edge} = 3.2082 \cdot ksf$
Ave	rage Pressure:	$P_{axxev} = \frac{P_d + P_{edge}}{2}$			$P_{ave} = 2.931 \cdot ksf$
Cap (ACI	acity Reduction Factor I 9.3.2.3)	∵ .85			
Appl	lied Shear Force:	$V_{req} := \frac{P_{ave} \cdot \left(X_t - 0.5 \cdot d_p - d\right)}{\Phi_c}$) [.] w _f		V _{req} = 628.6289 kip
Avai (ACI	ilable Shear: I 11.3.1.1)	$V_{Avail} := 2 \cdot \sqrt{f c \cdot psi} W_{f} \cdot d$			V _{Avail} = 1580.7273 ki
Chee	ck Capacity:	BeamShearCheck := $if(V_{req} < $	V _{Avail} , "Okay", "No	Good")	
		BeamShearCheck = "Okay"			
)					

Job Description	180' Self-Supporting L Foundation Analysis	attice Tower - Wilton, CT	Project No. Computed by Checked by	TWS-015 MCD	Page of Sheet 6 of 10 Date 5/14/14 Date
Punchin	g (Two-Way) Shear	Action (ACI 11.12.2.1)	<u>):</u>		
Critica	al Perimeter:	$\mathbf{b}_{0} := 4 \left(\mathbf{d}_{\mathbf{p}} + \mathbf{d} \right)$		ł	$p_0 = 26.8333 \cdot \text{ft}$
Capa (ACI s	city Reduction Factor: 9.3.2.3)		= 453· kip		
Facto Puncl	red Maximum hing Shear Force	$FL := \frac{LF \cdot C_t}{\phi_c}$		Ι	FL = 692.8235 kip
Availa	able Shear:	Variable = 4. Vfc psi bod		x.	V _{Avail} = 2292.7666∙kip
Check	< Capacity:	PunchingShearCheck := if(V	, req < V _{Avail} , "Okay	", "No Good")	
BENDIN	G	PunchingShearCheck = "Oka	У"		
<u>Maximim</u>	Bending Moment:				
Distar To Fa	nce From Edge of FTG ce of Pier:	$X_{b} := \frac{W_{f}}{2} - e - \frac{d_{p}}{2}$		2	$K_{b} = 7.5027 \cdot ft$
Mome	ent Due To Overturning	<u>.</u>			
Facto at "d"	red Pressure Distance:	$P_{face} := LF \cdot (P_{max} - X_b \cdot m_p)$)	ŀ	$P_{\text{face}} = 2.3639 \cdot \text{ksf}$
Facto at Edg	red Pressure ge:	Product = LF. Pmax		F	$P_{edge} = 3.2082 \cdot ksf$
Mome Loadi	nt Due To Rectangular ng:	$\mathbf{M}_{1} := \left(\mathbf{P}_{\text{face}} \cdot \mathbf{X}_{b} \cdot \mathbf{W}_{f}\right) \cdot \left(\frac{1}{2} \cdot \mathbf{X}_{b} \cdot \mathbf{W}_{f}\right)$	b	Ν	$M_1 = 2461.674 \cdot \text{kip} \cdot \text{ft}$
Mome Loadir	nt Due to Triangular ng:	$M_2 := \left[\frac{1}{2} X_b (P_{edge} - P_{face})\right]$	$\left[\frac{2}{3}, X_{b}\right]$	Ν	$A_2 = 15.8425 \cdot \text{kip} \cdot \text{ft}$
Sum I	Moments:	$M_1 = M_1 + M_2$		Ν	$A_{\rm ot} = 2477.5165 \cdot {\rm kip} \cdot {\rm ft}$

Job Description	180' Self-Supporting La Foundation Analysis	attice Tower - Wilton, CT Pro Cor Che	ject No nputed by ecked by	TWS-015 MCD	Page Sheet 7 Date 5/1 Date	of of 44/14
Mom	ent Due To Uplift:	Γ		٦		
Pier F	Forces:	$M_{nT} := LF \cdot \left[U_{t} \left(W_{f} - 2 \cdot X_{b} - \frac{d}{2} \right) \right]$	$\left(-d \right) + S_{t} \left(D_{f} \right)$	$+ L_{pag} $	nT = 10769.34	07∙ kip∙ ft
Conci	rete Resistance:	$M_{nS} := \frac{1}{2} \cdot \left(W_f - X_b - d_p \right)^2 \cdot \left(T_f \right)$	$\cdot W_f \cdot \gamma_s$	М	nS = 3608.137	3∙kip∙ft
Soil F	Resistance:	$M_{nC} := \frac{1}{2} \cdot \left(W_{f} - X_{b} - d_{p} \right)^{2} \cdot \left(T_{f} \right)^{2}$	$- W_f \cdot \gamma_c$	М	nC = 5412.205	9∙kip∙ft
Sum I	Moments	$M_{uplift} := M_{nT} - M_{nS} - M_{nC}$		М	uplift = 1748.9	976 kips f
<u>Select</u>	Controlling Moment:	$M_{u} := \begin{bmatrix} M_{ot} & \text{if } M_{ot} \ge M_{uplift} \\ M_{uplift} & \text{otherwise} \end{bmatrix}$		М	u = 2477.5165	kips∙ ft
Strengt (ACI 9.	h Reduction Factor: 3.2.2)	φ _m := .90				
Design	Moment:	$M_n := \frac{M_u}{\phi_m}$		M	₁ = 2752.7961.	kips∙ ft
<u>Size R</u>	einforcing Steel:					
Effectiv	ve Width:	$b_{eff} := W_f$			$b_{eff} = 444 \cdot in$	1
Stress	Block:	$a := d \cdot \left(1 - \sqrt{1 - 2.3529} \cdot \frac{M_n}{f c \cdot b_{eff}} \right)$	$\left(\frac{1}{d^2}\right)$		a = 0.9105 · ir	1
Steel R	eq'd For Bending:	$A_{s} := \frac{M_{n}}{fy\left(d - \frac{a}{2}\right)}$			A _s = 17.1809). in ²
Reinfor	cement Ratio:	$\rho := \frac{A_s}{b_{eff} d}$			$\rho=0.0012$	
Steel R Temper (ACI 7.	eq'd For ature and Shrinkage: 12.2.1b)	$\rho_{sh} := \text{ if } (fy \ge 60000 \cdot psi, 0.0018, 0.0018)$	0.0020)		$ \rho_{sh} = 0.0018 $	
		$As := if \left(\rho \geq \rho_{sh}, A_s, \rho_{sh} \cdot b_{eff} \cdot d \right)$			As = 25.974.	in ²
		$As_{prov} := A_{bpad} NB_{pad}$			$As_{prov} = 42$ ·	in ²
Check I	Provided Steel:	PadReinforcement := if(As _{prov} > PadReinforcement = "Okay"	As, "Okay", "No	o Good")		

URS Job	180' Self-Supporting L	attice Tower - Wilton, CT	Project No.	TWS-015	Page of Sheet 8 of 10
Description	Foundation Analysis		Computed by	MCD	Date
DEVEL	OPMENT LENGTH	OF PAD REINFORCI	Checked by		Date
Bar Spaci	ng:	$B_{sPad} := \frac{W_{f} - 2 \cdot Cvr - NB}{NB_{pad} - }$	<mark>³pad dbpad 1</mark>		$B_{sPad} = 9.5274 \text{ in}$
Developm	ent Length Factors:	Reinforcement Location Fa	actor $\alpha := 1.0$		
		Coating Factor	$\beta := 1.0$		
		Concrete strength Factor	$\lambda := 1.0$		
		Reinforcement Size Factor	$\gamma := 1.0$		
Spacing o	r Cover Dimension:	$c = if \left(Cvr < \frac{B_sPad}{2}, Cvr, -\frac{B_sPad}{2} \right)$	$\left(\frac{B_{sPad}}{2}\right)$		$c = 3 \cdot in$
Transverse	e Reinforcement Index:	As allowed by ACI 12.2.4	$k_{tr} := 0$		
)		$L_{dbt} := \frac{3}{40} \cdot \frac{fy}{\sqrt{fc psi}} \cdot \frac{\alpha \beta \gamma}{c + k_{tr}}$	$\frac{\lambda}{d}$ bpad	:	$L_{dbt} = 34.8457 \cdot in$ $L_{dbmin} := 12 \cdot in$
Minimum De (ACI	evelopment Length: I 12.2.1)	$L_{dbtCheck} := if(L_{dbt} \ge L_{dbt})$	omin, "Use L.dbt" , "Use	e L.dbmin") L	dbtCheck = "Use L.dbt"
Available Le	ength in Pad:	$L_{\text{Pad}} := \frac{W_{\text{f}}}{2} - \frac{W_{\text{t}}}{2} - \text{Cvr}$	1	$L_{]}$	$P_{ad} = 112.626 \cdot in$
		LpadTension := $if(L_{Pad} > L)$	dbt, "Okay", "No Good	d") Li	padTension = "Okay"
REINFOR	CEMENT IN PIER	2			
Pier Area:		$A_p := \frac{\pi \cdot d_p^2}{4}$		Ap	$= 1809.5574 \cdot \text{in}^2$
(ACI 10.8.4	and 10.9.1)	$A_{smin} := 0.01 \cdot 0.5 \cdot A_p$		A _{sn}	$nin = 9.0478 \cdot in^2$
		A _{sprov} := NBpier A _{bpier}		A _{sp}	$rov = 24 \cdot in^2$
		SteelAreaCheck := $if(A_{sprov})$	v > A _{smin} , "Okay", "N	o Good") Stee	elAreaCheck = "Okay"
)		NOTE: Anchor Bolts are no provide additional reinforce	ot accounted for in re ment to satisfy minin	inforcement ca num requireme	alculation and will ant of steel.

Job Description	180' Self-Supporting La Foundation Analysis	attice Tower - Wilton	, CT	_Project No. _Computed by _Checked by	TWS-015 MCD	Page of Sheet 9 of 10 Date 5/14/14 Date
Bar Spacing	g In Pier:	$B_{sPier} := \frac{d_p \cdot \pi}{NBpier} -$	d _{bpier}		B _{sI}	$p_{jer} = 5.1552 \cdot in$
Diameter of	Reinforcement Cage:	$Diam_{cage} := d_p - 2$	· Cvr		Dia	$m_{cage} = 42 \cdot in$
Maximum N	<i>l</i> oment in Pier:	$\mathbf{M}_{p} := \left(\mathbf{S}_{p} \cdot \mathbf{L}_{p}\right) \cdot \mathbf{LF}$			Mp	= 4360 kips in
Pier Check	evaluated from outside	program and results	are liste	ed below;		
(defined var	iables)		$(f_c f_y)$, cl Spiral) = $(3$	60 4 0)	
The required number of re factored axi inches:	d input is column diame einforcing bars, bar size al load in kips and mon	ter in inches, number, nent in kip	(D N	$m P_u M_{xu} := (4)$	18 24 9 144 1	6045)
Clears any p	previous output:		$\left(\varphi P_{n}\right)$	$\phi M_{xn} f_{sp} (\rho) := 0$	(0 0 0 0)	
)			(Print	¢Mxxxxx fyp ():= a	$\phi P'_n(D, N, n, P_u)$	M _{xu}) ^T
The Output kips, mome stress in ks	is given as useable axi nt capacity in kip inches i, and reinforcement rat	al load in s, splicing o:	$(\phi P_n$	$\phi M_{xn} f_{sp} \rho = (1)$	208.5987 23242.	8205 -60 0.0133)
Column size	e and reinforcement may	/ be changed to mat	ch capa	city to the applied	oad.	

 $\begin{aligned} &\text{AxialLoadCheck} := \text{ if} \Big(\varphi P_n \geq P_u, \text{"Okay", "No Good"} \Big) & \text{AxialLoadCheck} = \text{"Okay"} \end{aligned} \\ &\text{BendingCheck} := \text{ if} \Big(\varphi M_{xn} \geq M_{xu}, \text{"Okay", "No Good"} \Big) & \text{BendingCheck} = \text{"Okay"} \end{aligned}$

Job Description	180' Self-Supp Foundation An	orting Lattice Tower - Wilton, CT alysis	Project No. Computed by Checked by	TWS-015 MCD	Page of Sheet <u>10</u> of <u>10</u> Date <u>5/14/14</u> Date
DEVELOP		GTH OF PIER REINFORCE	MENT		
TENSION (A	ACI 12.2.3)				
Spacing and	Cover:	$Cvr = 3 \cdot in$ $B_{sPier} = 5.1552 \cdot$	in		
Factors for de	evelopment:	Reinforcement Location Factor Coating Factor Concrete strength Factor Reinforcement Size Factor			
Spacing or C Transverse R	over Dimension: einforcement:	$c:= if\left(Cvr < \frac{B_{sPier}}{2}, Cvr, \frac{B_{sPier}}{2}\right)$ As allowed by ACI 12.2.4	$c = 2.5776 \text{ in}$ $k_{\text{tark}} = 0$		
		$I_{\text{wdbt}} := \frac{3}{40} \cdot \frac{\text{fy}}{\sqrt{\text{fc} \text{psi}}} \cdot \frac{\alpha \cdot \beta \cdot \gamma \cdot \lambda}{\frac{c+k_{\text{tr}}}{dt}} \cdot d_{\text{br}}$	vier	L	$dbt = 40.5561 \cdot in$
)		appier			
Minimum Dev	elopment Lengt	th: (ACI 12.2.1)		Ť	dominia = 12 in
		$L_{dbt} = if (L_{dbt} \ge L_{dbmin}, "C$	Use L.dbt" , "Use L.dbn	nin") L	dbtCheck = "Use L.dbt"
COMPRESS	ION: (ACI 12.3	3.2)			
		$L_{dbc1} := \frac{.02 \cdot d_{bpier} \cdot fy}{\sqrt{fc psi}}$		L	$dbc1 = 24.7132 \cdot in$
		$\underline{L}_{\text{the barries}} = 0.0003 \cdot \frac{\text{in}^2}{\text{lb}} \cdot (d_{\text{bpier}} \cdot \text{fy})$		L	dbmin = 20.304 in
		$L_{dbc} := if (L_{dbc1} \ge L_{dbmin}, L_{dbc1})$, L _{dbmin})	L	$dbc = 24.7132 \cdot in$
Available L	ength in Pier:	$L_{pier} := L_p - 3 \cdot in$		L	pier = $75 \cdot in$
Available L	ength in Pad:	$L_{pad} := T_f - 3 \cdot in$		L	$pad = 33 \cdot in$
Available L	ength:	$L_{total} := L_{pad} + L_{pier}$		L ₁	total = 108·in
)		$L_{tension} := if(L_{total} > L_{dbt}, "Okay]$ $L_{compression} := if(L_{total} > L_{dbc}, "Data)$	", "No Good") "Okay", "No Good")	L ₁ L	tension = "Okay" compression = "Okay"

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	TM	PROJECT: SITE NAME: SITE CASCADE: SITE ADDRESS: SITE TYPE:	2.5 EQUIPMENT D CTS CTO3XC360-E 46 FERNWOOD LA WILTON, CT 0689 I 80'-0" SELF SUPP TOWER

SHEET INDEX AREA MAP SITE INFORMATION PROJECT DESCRIPTION SHT NO: SHEET TITLE Wilton PROPERTY OWNER: T-1 TITLE SHEET THE STATE OF CONNECTICUT DEPARTMENT OF PUBLIC SAFETY DIVISION OF STATE POLICE INSTALL NEW 2.5 EQUIPMENT IN EXISTING BTS CABINET SP-1 SPRINT SPECIFICATIONS IIII COUNTY CLUB ROAD MIDDLETOWN, CT 06457 *(1) RECTIFIER SHELF AND (3) RECTIFIERS *(1) BASE BAND UNIT SP-2 SPRINT SPECIFICATIONS Gilbert SP-3 SPRINT SPECIFICATIONS SITE ADDRESS: SITE LOCATION INSTALL (2) NEW BATTERY STRINGS IN EXISTING BATTERY CABINET Corners 46 FERNWOOD LANE WILTON, CT 06897 A-1 SITE PLAN INSTALL (3) PANEL ANTENNAS A-2 EQUIPMENT PLAN FAIRFIELD COUNTY INSTALL (3) RRH'S ON TOWER A-3 BUILDING ELEVATION & ANTENNA D GEOGRAPHIC COORDINATES: INSTALL (2) FIBER CABLES AND (3) FIBER JUMPERS A-4 RF DATA SHEET LATITUDE: 41° 10' 20.7798" (41.1724393 N) LONGITUDE: 73° 26' 3.6954" (-73.4343597 W) INSTALL (27) ANTENNA / RRH JUMPERS A-5 FIBER PLUMBING DIAGRAM A-6 CABLE COLOR CODING ZONING JURISDICTION: A-7 ANTENNA & HYBRID CABLE DETAILS THE CONNECTICUT SITING COUNCIL I O FRANKLIN SQUARE A-8 EQUIPMENT DETAILS NEW BRITAIN, CT OGO5 I E-I EQUIPMENT UTILITY & GROUNDING ZONING DISTRICT: 匌 E-2 GROUNDING DETAILS CSC APPROVED E-3 DC POWER DETAILS & PANEL SCHEE POWER COMPANY: NORTHEAST UTILITIES (CONNECTICUT LIGHT & POWER) LOCATION MAP APPLICABLE CODES PH.: (800) 286-2000 AAV PROVIDER: FIBERTECH PH.: (866) 697-5100 * ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE SPRINT CONSTRUCTION MANAGER: NAME: GARY WOOD PHONE: (860) 940-9168 CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES. E-MAIL: gary.wood@sprint.com EQUIPMENT SUPPLIER: I. INTERNATIONAL BUILDING CODE ALCATEL-LUCENT 600-700 MOUNTAIN AVENUE 2. ANSI/TIA-222 STRUCTURAL STANDARD FOR ANTENNA STRUCTURES MURRAY HILL NJ 07974 PH.: (908) 508-8080 3. NFPA 780 - LIGHTNING PROTECTION CODE PLANS PREPARED BY: 4. NATIONAL ELECTRIC CODE RAMAKER & ASSOCIATES, INC. CONTACT: KEITH BOHNSACK, PROJECT MANAGER PH.: (608) 643-4100 EMAIL: kbohnsack@ramaker.com Know what's below. 分 Call before you dig. www.call811.com

PEPLOYMENT

ANE 97

PORT

:	REV:	ENGINEER:	
	С	JRS	
	В	JRS	
	В	JRS	
	В	JRS	
	С	JRS	
	С	JRS	
ETAILS	С	JRS	
	С	JRS	
	В	JRS	Ú
	В	JRS	ſ
5	С	JRS	
	С	JRS	
PLAN	С	JRS	
	В	JRS	
DULES	В	JRS	
			A MAR
			155
			PRO
			PRC
			46
			WI
			۲A
			SHL
			c

SHEET

T-1

SECTION OI 100 - SCOPE OF WORK

R

201

THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE CONSTRUCTION DRAWINGS AND ASSOCIATED OUTLINE SPECIFICATIONS AND THE SITE SPECIFIC WORK ORDER, DESCRIBE THE WORK TO BE PERFORMED BY THIS CONSTRUCTION CONTRACTOR (SUPPLIER).

- A. THE REQUIREMENTS OF EACH SECTION OF THIS SPECIFICATION APPLY TO ALL SECTIONS, INDIVIDUALLY
- B. RELATED DOCUMENTS: THE CONTRACTOR SHALL COMPLY WITH THE MOST CURRENT VERSION OF THE FOLLOWING SUPPLEMENTAL REQUIREMENTS FOR INSTALLATION AND TESTING
- I. EN-2012-001: (FIBER OPTIC, DC CABLE, AND DC CIRCUIT BREAKER TAGGING STANDARDS) 2.TS-0200 (TRANSMISSION ANTENNA LINE ACCEPTANCE STANDARDS)
- 3 EL-0568: (FIBER TESTING POLICY)
- 4.NP-312-201: (EXTERIOR GROUNDING SYSTEM TESTING)
- 5.NP-760-500: ETHERNET, MICROWAVE, TESTING AND ACCEPTANCE

SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.

- NATIONALLY RECOGNIZED CODES AND STANDARDS: THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
- A. GR-G3-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF
- TELECOMMUNICATIONS EQUIPMENT.
- C. GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT. D. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70
- (NATIONAL ELECTRICAL CODE "NEC") AND NFPA I O I (LIFE SAFETY CODE). E. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
- F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE) G. AMERICAN CONCRETE INSTITUTE (ACI)
- AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
- CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
- K. PORTLAND CEMENT ASSOCIATION (PCA)
- NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
- M. BRICK INDUSTRY ASSOCIATION (BIA)
- I. AMERICAN WELDING SOCIETY (AWS)
- O. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
- Q DOOR AND HARDWARE INSTITUTE (DHI)
- R. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA)
- S. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

- DEFINITIONS: A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS. B. COMPANY: "SPRINT NEXTEL CORPORATION AND ITS OPERATING ENTITIES.
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- D. CONTRACTOR: CONSTRUCTION CONTRACTOR, SUPPLIER, CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK
- . CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT.

CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS. FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.

INT OF CONTACT

COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.

THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.

DRAWINGS REQUIRED AT JOBSITE

THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.

- . THE JOBSITE DRAWINGS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS IOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A≰E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS
- B. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK

THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY COMPANY INVOLVED

WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTUITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

CONTRACTOR: CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.

JSE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS: CONTRACTOR WILL UTILIZE ITS BEST EFFORTS TO WORK WITH SPRINT ELECTRONIC PROJECT MANAGEMENT SYSTEMS, CONTRACTOR UNDERSTANDS THAT SUFFICIENT INTERNET ACCESS, EQUIVALENT TO "BROADBAND" OR BETTER, IS REQUIRED TO TIMELY AND EFFECTIVELY UTILIZE SPRINT DATA AND DOCUMENT MANAGEMENT STEMS AND AGREES TO MAINTAIN APPROPRIATE CONNECTIONS FOR CONTRACTOR'S STAFF AND OFFICES THAT ARE COMPATIBLE WITH SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS

TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSOR'S OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.

THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.

VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.

EVISTING CONDITIONS

NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

SECTION OI 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

FURNISHED MATERIALS: COMPANY FURNISHED MATERIALS AND EQUIPMENT TO BE INSTALLED BY THE CONTRACTOR (OFIC) IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS.

RECEIPT OF MATERIAL AND EQUIPMENT: A.THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL

- L ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT
- B.RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH.

- C.PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING. D.COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE.

DELIVERABLES

A.COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE. B.IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY.

SECTION 01 300 - CELL SITE CONSTRUCTION

A NO WORK SHALL COMMENCE PRIOR TO COMPANYS ISSUANCE OF THE WORK ORDER. B.UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.

GENERAL REQUIREMENTS FOR CONSTRUCTION: A.CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.

- B.EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS. C.CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION
- I IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY. 2. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL
- OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD
- D.CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION

FUNCTIONAL REQUIREMENTS

A. THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. CONTRACTOR SHALL TAKE ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.

B.SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED.

4.INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS

C.MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES

5.INSTALL ABOVE GROUND GROUNDING SYSTEMS, CONDUIT AND BOXES 6.PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.

8.INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.

3. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.

7.INSTALL "H-FRAMES", CABINETS AND PADS AND PLATFORMS AS INDICATED.

- D.PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING: I. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION.

CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.

- 2. PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND SURFACE TREATMENTS.
- MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND BACKHAUL (FIBER, COPPER, OR MICROWAVE).

INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.

LO. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS

CONDUCT ALL REQUIRED TESTS AND INSPECTIONS

PROVIDE SLABS AND EQUIPMENT PLATFORMS.

11.

15.

17.

REQUIRED

AND LANDLORDS.

NOT LIMITED TO THE FOLLOWING

4 ALL REQUIRED TEST REPORTS

. FINAL PAYMENT APPLICATION

h. LISTS OF SUBCONTRACTORS

3. PRE-CONSTRUCTION MEETING NOTES

2. PROJECT PROGRESS REPORTS

F. REQUIRED FINAL CONSTRUCTION PHOTOS

d.LIEN WAIVERS

CLOSEOUT

TESTS AND INSPECTIONS

STANDARDS

3. CONCRETE BREAK TESTS

4. SITE RESISTANCE TO EARTH TEST 5. STRUCTURAL BACKFILL COMPACTION TESTS

CHEMICAL GROUNDING SYSTEM

STRUCTURAL BACKFILL TEST RESULTS

AASJTO, AND OTHER METHODS IS NEEDED. B.REQUIRED THIRD PARTY TESTS:

SITE RESISTANCE TO EARTH TEST PER NP-312-201

COAX SWEEP TESTS PER SPRINT STANDARD TS-0200 2 FIBER TESTS PER SPRINT STANDARD FL-0568

REBAR PLACEMENT VERIFICATION WITH REPORT TESTING TENSION STUDY FOR ROCK ANCHORS

MICROWAVE LINK TESTS PER NP-760-500

INSTALLATION SPECIFICATION HEREIN

8 POST CONSTRUCTION HEIGHT VERIFICATION

ANTENNA AZIMUTH AND DOWN-TILT VERIFICATION

4 REINFORCEMENT CERTIFICATIONS

6. SWEEP AND FIBER TESTS

TESTING BY THIRD PARTY AGENCY

STANDARDS

C.REQUIRED TESTS BY CONTRACTOR

DOCUMENTATION

SPECIFICATIONS

INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS

INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT.

19. PERFORM, DOCUMENT, AND CLOSE OUT ALL JURISDICTIONAL PERMITTING REQUIREMENTS AND ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES

20. PERFORM ALL ADDITIONAL WORK AS IDENTIFIED IN SCOPE OF SERVICES ATTACHED TO THE SUPPLIER AGREEMENT FOR THIS PROJECT. THIS WORK MAY INCLUDE COMMISSIONING INTEGRATION, SPECIAL WAREHOUSING, REVERSE LOGISTICS ACTIVITIES, ETC. PERFORM COMMISSIONING AND INTEGRATION ACTIVITIES PER APPLICABLE MOPS

 $\frac{\text{DELIVERABLES:}}{\text{A. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED TEST REPORTS AND DOCUMENTATION INCLUDED BUT}$

I PRODUCT SPECIFICATIONS FOR MATERIALS OR SPECIAL CONSTRUCTION IF REQUESTED BY SPRINT 2. ACTUALIZE ALL CONSTRUCTION RELATED MILESTONES IN SITERRA AND COMPLETE ALL ON-LINE FORMS AND COMPLETE DOCUMENT UP-LOADS. UPLOAD ALL REQUIRED CLOSEOUT DOCUMENTS AND FINAL

3. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT LEFT ON SITE INSIDE BASE OF MAIN RF CABINET IN A PROTECTIVE POUCH.

5. REQUIRED CLOSEOUT DOCUMENTATION INCLUDING BUT NOT LIMITED TO: a. ALL JURISDICTIONAL PERMITTING AND OCCUPANCY INFORMATION b. PDF SCAN OF REDLINES PRODUCED IN THE FIELD

c. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS

CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS

B.PROVIDE ADDITIONAL DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.

SECTION OI 400 - TESTS, INSPECTIONS, SUBMITTALS, AND PROJECT

A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT

B.CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING 1. COAX SWEEPS AND FIBER TESTS PER TS-0200 (CURRENT VERSION) ANTENNA LINE ACCEPTANCE

2. POST CONSTRUCTION HEIGHT VERIFICATION, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL.

6. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING. 7. ADDITIONAL TESTING AS REQUIRED ELSEWHERE IN THIS SPECIFICATION.

A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE

B.UPLOAD THE FOLLOWING TO SITERRA AS APPLICABLE INCLUDING BUT NOT LIMITED TO THE FOLLOWING: CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING.
 CONCRETE BREAK TESTS AS SPECIFIED HEREIN.

ADDITIONAL SUBMITTALS MAY BE REQUIRED FOR SPECIAL CONSTRUCTION OR MINOR MATERIALS C.ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

A.EMPLOY AN AGENCY OF ENGINEERS AND SCIENTISTS WHO IS REGULARLY ENGAGED IN FIELD AND LABORATORY TESTING AND ANALYSIS. AGENCY SHALL HAVE BEEN IN BUSINESS A MINIMUM OF FIVE YEARS, AND BE LICENSED AS PROFESSIONAL ENGINEERS IN THE STATE WHERE THE PROJECT IS LOCATED.

AGENCY IS SUBJECT TO APPROVAL BY COMPANY. I. AGENCY MUST HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS. 2. AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE,

EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES. 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM,

2. CONCRETE CYLINDER BREAK TESTS FOR TOWER PIER AND ANCHORS PER NATIONALLY RECOGNIZED

3. STRUCTURAL SOILS COMPACTION TESTS PER NATIONALLY RECOGNIZED STANDARDS

ALL THIRD PARTY TESTS AS REQUIRED BY LOCAL JURISDICTION

4. ANTENNA AZIMUTHS AND DOWN TILT USING ELECTRONIC ALIGNMENT TOOL PER ANTENNA

SP-

SHEET

 (\mathbf{O})

- POST CONSTRUCTION HEIGHT VERIFICATION AS REQUIRED HEREWITH IN THE TOWER INSTALLATION SPECIFICATIONS
- ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY TESTING AS SPECIFIED HEREWITH IN THE ASPHALT PAVING SPECIFICATIONS
- FIELD QUALITY CONTROL TESTING AS SPECIFIED HEREWITH IN THE CONCRETE PAVING
- SPECIFICATIONS
- TESTING REQUIRED HEREWITH UNDER SPECIFICATIONS FOR AGGREGATE BASE FOR ROADWAYS
- 9. ALL OTHER TESTS REQUIRED BY LOCAL JURISDICTION D.INSPECTIONS BY COMPANY: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN INSPECTION ACTIVITIES, FINAL ACCEPTANCE / PUNCH WALK REVIEW, AND/OR AS A RESULT OF TESTING
- E. SPRINT RESERVES THE RIGHT TO INSPECT THE CONSTRUCTION SITE AT ANY TIME VIA SITE WALKS AND/OR PHOTO REVIEWS. CONTRACTOR SHALL GIVE SPRINT 24 HOURS NOTICE PRIOR TO THE COMMENCEMENT
- OF THE FOLLOWING CONSTRUCTION ACTIVITIES AND PHOTOGRAPHS OF THE IN-PROGRESS WORK. I. GROUNDING SYSTEM AND BURIED UTILITIES INSTALLATION PRIOR TO EARTH CONCEALMENT
- DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A E OR SPRINT REPRESENTATIVE
- FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A4E OR SPRINT REPRESENTATIVE. COMPACTION OF BACKFUL MATERIALS AGGREGATE BASE FOR ROADS PADS AND ANCHORS
- ASPHALT PAVING, AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY.
- PRE AND POST CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES. PRIOR TO CONSTRUCTION ACTIVITIES AND AFTER CONSTRUCTION IS COMPLETE, PROVIDE PHOTOGRAPHIC DOCUMENTATION OF ROOF, FLASHINGS, AND PARAPETS, BOTH BEFORE AND AFTER. CONSTRUCTION IS COMPLETE
- TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL HOTOGRAPHS BY THIRD PARTY AGENCY.
- 6 TOWER TOP AND INACCESSIBLE EQUIPMENT (RRUS, ANTENNAS, AND CABLING): PROVIDE PHOTOS OF THE BACKS OF ALL ANTENNAS, RRUS, COMBINERS, FILTERS, FIBER AND DC CABLING, CABLE COLOR CODING, EQUIPMENT GROUNDING AND CONNECTOR WATER PROOFING INCLUDING NAME PLATE AND SERIAL NUMBER FOR ALL SERIALIZED EQUIPMENT.

DJECT CLOSEOUT

A.FINAL ACCEPTANCE PUNCH WALK AND INSPECTION: AS IDENTIFIED IN THE SCOPE OF SERVICES, SPRINT WILL CONDUCT A FINAL PUNCH WALK OR FINAL DESK TOP PHOTO REVIEW (SITE MODIFICATIONS). PUNCI WALKS MUST BE SCHEDULED IN ADVANCE AS REQUIRED. AT THE PUNCH WALK / REVIEW. SPRINT MAY IDENTIFY CRITICAL DEFICIENCIES WHICH MUST BE CORRECTED PRIOR TO PUTTING SITE ON AIR. MINOR DEFICIENCIES MUST BE CORRECTED WITHIN 30 DAYS EXCEPT AS OTHERWISE REQUIRED. VERIFICATIONS OF CORRECTIONS MAY BE MADE BY COMPANY DURING A REPEAT SITE WALK OR DESK TOP PHOTO REVIEW AT COMPANYS SOLE DISCRETION. B.CLOSEOUT DOCUMENTATION: ALL CLOSEOUT DOCUMENTATION AND PHOTOGRAPHS SHALL BE UPLOADED

- PRIOR TO FINAL ACCEPTANCE. SPRINT WILL REVIEW CLOSEOUT DOCUMENTATION FOR PRESENCE AND CONTENT. CLOSEOUT DOCUMENTATION SHALL INCLUDE BUT IS NOT LIMITED TO THE FOLLOWING AS
- APPLICABLE:
- COAX SWEEP TESTS:
- FIBER TESTS: JURISDICTION FINAL INSPECTION DOCUMENTATION
- REINFORCEMENT CERTIFICATION (MILL CERTIFICATION) CONCRETE MIX DESIGN AND PRODUCT DATA (TOWER FOUNDATION)
- LIEN WAIVERS AND RELEASES. POST -CONSTRUCTION HEIGHT VERIFICATION
- JURISDICTION CERTIFICATE OF OCCUPANCY ELECTRONIC ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
- STRUCTURAL BACKFILL TEST RESULTS (IF APPLICABLE)
- CELL SITE UTILITY SETUP
- AS-BUILT REDLINE CONSTRUCTION DRAWINGS (PDF SCAN OF FIELD MARKS)
- 13. AS-BUILT CONSTRUCTION DRAWINGS IN DWG AND PDF FORMATS
- 14. LIST OF SUB CONTRACTORS
- 1.5. APPROVED PERMITTING DOCUMENTS
- 16. FINAL SITE PHOTOS UP-LOADED TO SITERRA. INCLUDE THE FOLLOWING AS APPLICABLE: a. TOWER, ANTENNAS, RRUS, AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING PHOTOS OF TOWER COAX/CABLE LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET .; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR, PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA. PHOTOS OF COAN WEATHERPROOFING - TOP AND BOTTOM; PHOTOS OF COAX GROUNDING--TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- b. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF;
- c. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS. ALTINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.
- PROJECT PHOTOGRAPHS

A.PROVIDE PROJECT CLOSEOUT GENERAL ARRANGEMENT PHOTOS OF ALL NEW WORK. THE FOLLOWING LIST REPRESENTS MINIMUM REQUIREMENTS AND MINIMUM QUANTITY. ADDITIONAL PHOTOS MAY BE REQUIRED TO ADEQUATELY DOCUMENT THE WORK.

- ASR AND RF MPE SIGNAGE (IF NOT IN PLACE, SUPPLIER NOTIFIES EMS FIELD REPRESENTATIVE)
- BACK OF ANTENNAS AND RRUS (I EACH SECTOR) BACK OF ANTENNAS AND RRUS (I EACH SECTOR) GROUNDING (AS REQUIRED). CLOSE-UP OF BACK SIDE OF EACH PERMANENT RRU SHOWING SERIAL NUMBER/BAR CODE
- VIEW (I EACH SECTOR) ALONG THE AZIMUTH AND TILT OF THE ANTENNAS
- TOP OF TOWER FROM GROUND, I EACH SECTOR MAINLINE HYBRID CABLE ROUTE DOWN TOWER SHOWING FASTENERS AND SUPPORT MAINLINE/HYBRID CABLE ROUTE ALONG ICE BRIDGE OR IN CABLE TRAY SHOWING FASTENERS AND SUPPORT
- GROUND MOUNTED RELL RACKS (FRONT AND BACK)
- FRONT, SIDE AND BACK ELEVATIONS OF ALL GROUND CABINETS
- 1.0 VIEW OF COMPOUND FROM A DISTANCE
- 11. VIEW OF EACH GROUND CABINET (POWER, RF, FIBER SPOOL, PPC POWER, PPC TELCO WITH DOOR OPENI)
- 12. BACKHAUL FIBER MEET-ME-POINT AND CONDUIT ROUTE (MICROWAVE INSTALLATION IF NOT FIBER) 13. AAV NETWORK INTERFACE DEVICE OR MICROWAVE RADIO INSTALLATION

CONTRACTOR IS RESPONSIBLE FOR ALL CORRECTIONS TO DEFICIENCIES IDENTIFIED THROUGH TESTING, REVIEW OF SUBMITTALS, INSPECTIONS AND CLOSEOUT REVIEWS.

SECTION 01 500 - PROJECT REPORTING

A CONTRACTOR SHALL REPORT TO SPRINT AT MINIMUM ON A WEEKLY BASIS VIA SITERRA BY UPDATING ALL APPLICABLE POST END KEEPING MILESTONES WITH ACTUAL AND FORECASTED COMPLETION DATES. B.ADDITIONAL REQUIREMENTS FOR REPORTING MAY BE IDENTIFIED ELSEWHERE OR REQUIRED BY THE SCOPE OF SERVICES OR SPRINTS LOCAL MARKET CONSTRUCTION MANAGER. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT.

PROJECT CONFERENCE CALL

SPRINT MAY HOLD PERIODIC PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY.

FINAL PROJECT ACCEPTANCE: PRIOR TO SPRINTS FINAL PROJECT ACCEPTANCE. ALL REQUIRED MILESTONE ACTUALS MUST BE UPDATED IN SITERRA AND ALL REQUIRED REPORTING TASKS MUST BE COMPLETE.

SECTION 11 700 - ANTENNA ASSEMBLY, REMOTE RADIO UNITS AND CABLE INSTALLATION

THIS SECTION SPECIFIES INSTALLATION OF ANTENNAS, RRU'S, AND CABLE EQUIPMENT, INSTALLATION, AND TESTING OF COAXIAL FIBER CABLE.

ANTENNAS AND RRUS

THE NUMBER AND TYPE OF ANTENNAS AND RRU'S TO BE INSTALLED IS DETAILED ON THE CONSTRUCTION DRAWINGS.

HYBRID CABLE WILL BE DC/FIBER AND FURNISHED FOR INSTALLATION AT EACH SITE. CABLE SHALL BE INSTALLED PER THE CONSTRUCTION DRAWINGS AND THE APPLICABLE MANUFACTURER'S REQUIREMENTS

JUMPERS AND CONNECTORS: FURNISH AND INSTALL 1/2" COAX JUMPER CABLES BETWEEN THE RRU'S AND ANTENNAS, JUMPERS SHALL BE TYPE LDF 4, FLC 12-50, CR 540, OR FXL 540. SUPER-FLEX CABLES ARE NOT ACCEPTABLE. JUMPERS BETWEEN THE RRU'S AND ANTENNAS OR TOWER TOP AMPLIFIERS SHALL CONSIST OF 1/2 INCH FOAM DIELECTRIC, OUTDOOR RATED COAXIAL CABLE, MIN. LENGTH FOR JUMPER SHALL BE I O"-O".

REMOTE ELECTRICAL TILT (RET) CABLES:

MISCELLANEOUS

INSTALL SPLITTERS, COMBINERS, FILTERS PER RF DATA SHEET, FURNISHED BY SPRINT.

NTENNA INSTALLATION

THE CONTRACTOR SHALL ASSEMBLE ALL ANTENNAS ONSITE IN ACCORDANCE WITH THE INSTRUCTIONS SUPPLIED BY THE MANUFACTURER. ANTENNA HEIGHT, AZIMUTH, AND FEED ORIENTATION INFORMATION SHALL BE A DESIGNATED ON THE CONSTRUCTION DRAWINGS.

A. THE CONTRACTOR SHALL POSITION THE ANTENNA ON TOWER PIPE MOUNTS SO THAT THE BOTTOM STRUT IS LEVEL. THE PIPE MOUNTS SHALL BE PLUMB TO WITHIN I DEGREE.

B.ANTENNA MOUNTING REQUIREMENTS: PROVIDE ANTENNA MOUNTING HARDWARE AS INDICATED ON THE DRAWINGS

HYBRID CABLE INSTALLATION:

- A. THE CONTRACTOR SHALL ROUTE, TEST, AND INSTALL ALL CABLES AS INDICATED ON THE CONSTRUCTION DRAWINGS AND IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS
- B THE INSTALLED RADIUS OF THE CABLES SHALL NOT BE LESS THAN THE MANUFACTURER'S SPECIFICATIONS FOR BENDING RADII.
- C.EXTREME CARE SHALL BE TAKEN TO AVOID DAMAGE TO THE CABLES DURING HANDLING AND INSTALLATION.
- I. FASTENING MAIN HYBRID CABLES: ALL CABLES SHALL BE INSTALLED INSIDE MONOPOLE WITH CABLE SUPPORT GRIPS AS REQUIRED BY THE MANUFACTURER.
- 2. FASTENING INDIVIDUAL FIBER AND DC CABLES ABOVE BREAKOUT ENCLOSURE (MEDUSA), WITHIN THE MMBS CABINET AND ANY INTERMEDIATE DISTRIBUTION BOXES:
 - a. FIBER: SUPPORT FIBER BUNDLES USING 1/2" VELCRO STRAPS OF THE REQUIRED LENGTH AT 18" O.C. STRAPS SHALL BE UV, OIL AND WATER RESISTANT AND SUITABLE FOR INDUSTRIAL INSTALLATIONS AS MANUFACTURED BY TEXTOL OR APPROVED EQUAL.
 - b. DC: SUPPORT DC BUNDLES WITH ZIP TIES OF THE ADEQUATE LENGTH. ZIP TIES TO BE UV STABILIZED, BLACK NYLON, WITH TENSILE STRENGTH AT 12,000 PSI AS MANUFACTURED BY NELCO PRODUCTS OR EQUAL.
- 3. FASTENING JUMPERS: SECURE JUMPERS TO THE SIDE ARMS OR HEAD FRAMES USING STAINLESS STEEL TIE WRAPS OR STAINLESS STEEL BUTTERFLY CLIPS.
- 4. CABLE INSTALLATION
 - a. INSPECT CABLE PRIOR TO USE FOR SHIPPING DAMAGE, NOTIFY THE CONSTRUCTION MANAGER
 - b. CABLE ROUTING: CABLE INSTALLATION SHALL BE PLANNED TO ENSURE THAT THE LINES MILL BE PROPERLY ROUTED IN THE CABLE ENVELOP AS INDICATED ON THE DRAWINGS. AVOID TWISTING AND CROSSOVERS.
 - c. HOIST CABLE USING PROPER HOISTING GRIPS. DO NOT EXCEED MANUFACTURER'S RECOMMENDED MAXIMUM BEND RADIUS
- 5. GROUNDING OF TRANSMISSION LINES: ALL TRANSMISSION LINES SHALL BE GROUNDED AS INDICATED ON DRAWINGS
- 6. HYBRID CABLE COLOR CODING: ALL COLOR CODING SHALL BE AS REQUIRED IN TS 0200 (CURRENT
- 7. HYBRID CABLE LABELING: INDIVIDUAL HYBRID AND DC BUNDLES SHALL BE LABELED ALPHA-NUMERICALLY ACCORDING TO SPRINT CELL SITE ENGINEERING NOTICE - EN 2012-001, REV 1

WEATHERPROOFING EXTERIOR CONNECTORS AND HYBRID CABLE GROUND KITS:

- A.ALL FIBER & COAX CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED
- B. WEATHERPROOFED USING ONE OF THE FOLLOWING METHODS. ALL INSTALLATIONS MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INDUSTRY BEST PRACTICES
- COLD SHRINK: ENCOMPASS CONNECTOR IN COLD SHRINK TUBING AND PROVIDE A DOUBLE WRAP OF " ELECTRICAL TAPE EXTENDING 2" BEYOND TUBING. PROVIDE 3M COLD SHRINK CXS SERIES OR EQUAL
- 2. SELF-AMALGAMATING TAPE: CLEAN SURFACES. APPLY A DOUBLE WRAP OF SELF-AMALGAMATING TAPE 2" BEYOND CONNECTOR. APPLY A SECOND WRAP OF SELF-AMALGAMATING TAPE IN OPPOSITE DIRECTION. APPLY DOUBLE WRAP OF 2" WIDE ELECTRICAL TAPE EXTENDING 2" BEYOND THE SELE-AMALGAMATING TAPE
- 3. 3M SLIM LOCK CLOSURE 716: SUBSTITUTIONS WILL NOT BE ALLOWED.
- 4. OPEN FLAME ON JOB SITE IS NOT ACCEPTABLE

SECTION 1 1 800 - INSTALLATION OF MULTIMODAL BASE STATIONS (MMBS) AND RELATED EQUIPMENT

SUMMARY

DC CIRCUIT BREAKER LABELING

SERVICED.

QUALITY ASSURANCE:

AND FREE FROM DEFECTS.

PROVIDE PRODUCTS BY THE FOLLOWING:

3. UNISTRUT DIVERSIFIED PRODUCTS.

3. FASTEN BY MEANS OF WOOD SCREWS ON WOOD

4. TOGGLE BOLTS ON HOLLOW MASONRY UNITS.

I. ALLIED TUBE AND CONDUIT.

SUPPORTING DEVICES

2. B-LINE SYSTEM.

4. THOMAS ∉ BETTS

SERVICE

- A. THIS SECTION SPECIFIES MMBS CABINETS, POWER CABINETS, AND INTERNAL EQUIPMENT INCLUDING BY NOT LIMITED TO RECTIFIERS, POWER DISTRIBUTION UNITS, BASE BAND UNITS, SURGE ARRESTORS, BATTERIES, AND SIMILAR EQUIPMENT FURNISHED BY THE COMPANY FOR INSTALLATION BY THE CONTRACTOR (OFCI)
- B.CONTRACTOR SHALL PROVIDE AND INSTALL ALL MISCELLANEOUS MATERIALS AND PROVIDE ALL LABOR REQUIRED FOR INSTALLATION EQUIPMENT IN EXISTING CABINET OR NEW CABINET AS SHOWN ON DRAWINGS AND AS REQUIRED BY THE APPLICABLE INSTALLATION MOPS.
- C.COMPLY WITH MANUFACTURER'S INSTALLATION AND START-UP REQUIREMENTS.

LABELS AND LISTINGS ARE AVAILABLE IN THE INDUSTRY.

A.NEW DC CIRCUIT IS REQUIRED IN MMBS CABINET SHALL BE CLEARLY IDENTIFIED AS TO RRU BEING

SECTION 26 100 - BASIC ELECTRICAL REQUIREMENTS

DUNIVIANT. THIS SECTION SPECIFIES BASIC ELECTRICAL REQUIREMENTS FOR SYSTEMS AND COMPONENTS

A.ALL EQUIPMENT FURNISHED UNDER DIVISION 26 SHALL CARRY UL LABELS AND LISTINGS WHERE SUCH

B.MANUFACTURERS OF EQUIPMENT SHALL HAVE A MINIMUM OF THREE YEARS EXPERIENCE WITH THEIR EQUIPMENT INSTALLED AND OPERATING IN THE FIELD IN A USE SIMILAR TO THE PROPOSED USE FOR THIS

C.MATERIALS AND EQUIPMENT: ALL MATERIALS AND EQUIPMENT SPECIFIED IN DIVISION 26 OF THE SAME TYPE SHALL BE OF THE SAME MANUFACTURER AND SHALL BE NEW, OF THE BEST QUALITY AND DESIGN,

A.MANUFACTURED STRUCTURAL SUPPORT MATERIALS: SUBJECT TO COMPLIANCE WITH REQUIREMENTS,

B.FASTENERS: TYPES, MATERIALS, AND CONSTRUCTION FEATURES AS FOLLOWS:

I. EXPANSION ANCHORS: CARBON STEEL WEDGE OR SLEEVE TYPE.

2. POWER-DRIVEN THREADED STUDS: HEAT-TREATED STEEL, DESIGNED SPECIFICALLY FOR THE INTENDED

5. CONCRETE INSERTS OR EXPANSION BOLTS ON CONCRETE OR SOLID MASONRY.

6. MACHINE SCREWS, WELDED THREADED STUDS, OR SPRING-TENSION CLAMPS ON STEEL

7. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE SHALL NOT BE PERMITTED

8. DO NOT WELD CONDUIT, PIPE STRAPS, OR ITEMS OTHER THAN THREADED STUDS TO STEEL

9. IN PARTITIONS OF LIGHT STEEL CONSTRUCTION, USE SHEET METAL SCREWS.

SCALE: NONE

SHEET

28731 SP-2
SUPPORTING DEVICES:

- B. COORDINATE WITH THE BUILDING STRUCTURAL SYSTEM AND WITH OTHER TRADES.
- C. UNLESS OTHERWISE INDICATED ON THE DRAWINGS, FASTEN ELECTRICAL ITEMS AND THEIR SUPPORTING HARDWARE SECURELY TO THE STRUCTURE IN ACCORDANCE WITH THE FOLLOWING:
- I. ENSURE THAT THE LOAD APPLIED BY ANY FASTENER DOES NOT EXCEED 25 PERCENT OF THE PROOF TEST LOAD.
- 2. USE VIBRATION AND SHOCK-RESISTANT FASTENERS FOR ATTACHMENTS TO CONCRETE SLABS.

ELECTRICAL IDENTIFICATION:

- A. UPDATE AND PROVIDE TYPED CIRCUIT BREAKER SCHEDULES IN THE MOUNTING BRACKET, INSIDE DOORS OF AC PANEL BOARDS WITH ANY CHANGES MADE TO THE AC SYSTEM.
- B. BRANCH CIRCUITS FEEDING AVIATION OBSTRUCTION LIGHTING EQUIPMENT SHALL BE CLEARLY IDENTIFIED AS SUCH AT THE BRANCH CIRCUIT PANELBOARD.

SECTION 26 200 - ELECTRICAL MATERIALS AND EQUIPMENT

- A. RIGID GALVANIZED STEEL (RG5) CONDUIT SHALL BE USED FOR EXTERIOR LOCATIONS ABOVE GROUND AND IN UNFINISHED INTERIOR LOCATIONS AND FOR UNDERGROUND RUNS. RIGID CONDUIT AND FITTINGS SHALL BE STEEL, COATED WITH ZINC EXTERIOR AND INTERIOR BY THE HOT DIP GALVANIZING PROCESS. CONDUIT SHALL BE PRODUCED TO ANSI SPECIFICATIONS C80.1, FEDERAL SPECIFICATION WW-C-581 AND SHALL BE LISTED WITH THE UNDERWRITERS' LABORATORIES. FITTINGS SHALL BE THREADED - SET SCREW OR COMPRESSION FITTINGS WILL NOT BE ACCEPTABLE. RGS CONDUITS SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND.
- B. UNDERGROUND CONDUIT IN CONCRETE SHALL BE POLYVINYLCHLORIDE (PVC) SUITABLE FOR DIRECT BURIAL AS APPLICABLE. JOINTS SHALL BE BELLED, AND FLUSH SOLVENT WELDED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL BE CARLON ELECTRICAL PRODUCTS OR APPROVED EQUAL.
- C. TRANSITIONS BETWEEN PVC AND RIGID (RGS) SHALL BE MADE WITH PVC COATED METALLIC LONG SWEEP RADIUS ELBOWS.
- D. EMT OR RIGID GALVANIZED STEEL CONDUIT MAY BE USED IN FINISHED SPACES CONCEALED IN WALLS AND CEILINGS. EMT SHALL BE MILD STEEL, ELECTRICALLY WELDED, ELECTRO-GALVANIZED OR HOT-DIPPED GALVANIZED AND PRODUCED TO ANSI SPECIFICATION UW-C-563, AND SHALL BE UL LISTED. EMT SHALL BE MANUFACTURED BY ALLED, REPUBLIC OR WHEATLAND, OR APPROVED EQUAL. FITTINGS SHALL BE METALLIC COMPRESSION. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE.
- E. LIQUID TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED FOR FINAL CONNECTION TO EQUIPMENT. FITTINGS SHALL BE METALLIC GLAND TYPE COMPRESSION FITTINGS, MAINTAINING THE INTEGRITY OF CONDUIT SYSTEM. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE. MAXIMUM LENGTH OF FLEXIBLE CONDUIT SHALL NOT EXCEED G-FEET. LFMC SHALL BE PROTECTED AND SUPPORTED AS REQUIRED BY NEC. MANUFACTURERS OF FLEXIBLE CONDUITS SHALL BE CAROL, ANACONDA METAL HOSE OR UNIVERSAL METAL HOSE, OR APPROVED EQUAL.
- F. MINIMUM SIZE CONDUIT SHALL BE 3/4 INCH (2 I MM).

HUBS AND BOXES:

- A. AT ENTRANCES TO CABINETS OR OTHER EQUIPMENT NOT HAVING INTEGRAL THREADED HUBS PROVIDE METALLIC THREADED HUBS OF THE SIZE AND CONFIGURATION REQUIRED. HUB SHALL INCLUDE LOCKNUT AND NEOPRENE O-RING SEAL. PROVIDE IMPACT RESISTANT 105 DEGREE C PLASTIC BUSHINGS TO PROTECT CABLE INSULATION.
- B. CABLE TERMINATION FITTINGS FOR CONDUIT
- I. CABLE TERMINATORS FOR RGS CONDUITS SHALL BE TYPE CRC BY O-Z/GEDNEY OR EQUAL BY ROXTEC.
- 2. CABLE TERMINATORS FOR LFMC SHALL BE ETCO CL2075; OR MADE FOR THE PURPOSE PRODUCTS BY ROXTEC.
- C. EXTERIOR PULL BOXES AND PULL BOXES IN INTERIOR INDUSTRIAL AREAS SHALL BE PLATED CAST ALLOY, HEAVY DUTY, WEATHERPROOF, DUST PROOF, WITH GASKET, PLATED IRON ALLOY COVER AND STAINLESS STEEL COVER SCREWS, CROUSE-HINDS WAB SERIES OR EQUAL.
- D. CONDUIT OUTLET BODIES SHALL BE PLATED CAST ALLOY WITH SIMILAR GASKET COVERS, OUTLET BODIES SHALL BE OF THE CONFIGURATION AND SIZE SUITABLE FOR THE APPLICATION. PROVIDE CROUSE-HINDS FORM & OR EQUAL.
- E. MANUFACTURER FOR BOXES AND COVERS SHALL BE HOFFMAN, SQUARE "D", CROUSE-HINDS, COOPER, ADALET, APPLETON, O-Z GEDNEY, RACO, OR APPROVED EQUAL.

SUPPLEMENTAL GROUNDING SYSTEM:

- A. FURNISH AND INSTALL A SUPPLEMENTAL GROUNDING SYSTEM TO THE EXTENT INDICATED ON THE DRAWINGS. SUPPORT SYSTEM WITH NON-MAGNETIC STAINLESS STEEL CLIPS WITH RUBBER GROMMETS. GROUNDING CONNECTORS SHALL BE TINNED COPPER WIRE, SIZES AS INDICATED ON THE DRAWINGS. PROVIDE STRANDED OR SOLID BARE OR INSULATED CONDUCTORS EXCEPT AS OTHERWISE NOTED.
- B. SUPPLEMENTAL GROUNDING SYSTEM: ALL CONNECTIONS TO BE MADE WITH CAD WELDS, EXCEPT AT EQUIPMENT USE LUGS OR OTHER AVAILABLE GROUNDING MEANS AS REQUIRED BY MANUFACTURER; AT GROUND BARS USE TWO HOLE SPADES WITH NO-OX.
- C. STOLEN GROUND-BARS: IN THE EVENT OF STOLEN GROUND BARS, CONTACT SPRINT CM FOR REPLACEMENT INSTRUCTION USING THREADED ROD KITS.

EXISTING STRUCTURE:

A. EXISTING EXPOSED WIRING AND ALL EXPOSED OUTLETS, RECEPTACLES, SWITCHES, DEVICES, BOXES, AND OTHER EQUIPMENT THAT ARE NOT TO BE UTILIZED IN THE COMPLETED PROJECT SHALL BE REMOVED OR DE-ENERGIZED AND CAPPED IN THE WALL, CEILING, OR FLOOR SO THAT THEY ARE CONCEALED AND SAFE. WALL, CEILING, OR FLOOR SHALL BE PATCHED TO MATCH THE ADJACENT CONSTRUCTION.

CONDUIT AND CONDUCTOR INSTALLATION:

A. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER, PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CELLING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEADEL IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

B.CONDUCTORS SHALL BE PULLED IN ACCORDANCE WITH ACCEPTED GOOD PRACTICE.

-EXISTING RAISED STEEL EQUIPMENT PLATFORM W/ ICE CANOPY ABOVE

- EXISTING SPRINT EQUIPMENT ON CONCRETE

EXISTING ICE BRIDGE. FOLLOW EXISTING

RFDS Sheet

General Site Information

Site ID Market Region MLA Structure Type	CT03XC360 Southern Connecticut Northeast N/A	Equipment Vendor Lattitude Longitude LL SITE ID	Alcatel-Lucent 41.1724393 -73.4343597 N/A		
BTS Type					
ызтурс				Incremental Power Draw	
Solution ID		Siterra SR Equipment type		needed by added Equipment	
		Equipment Vendor	Alcatel-Lucent	N/A	
Base Equipmer	nt				
BBU Kit		ALU BBU Kit Top F		None	
BBU Kit Qty		1	Top Hat Qty	N/A	
			Top Hat Dimenstions		
Growth Cabinet	:		Top Hat Weight (lbs)	N/A	
		None			
Growth Cabinet	Qty	N/A			
Growth Cabinet	Dimensions	N/A			
Growth Cabinet	Weight	N/A			
	-		-		
RF Path Inform	nation				
RRH		TD-RRH8x20-25			
RRH Qty		3			
RRH Dimensions	s	25.4"x17.5"x5.7"]		
RRH Weight. lbs	S.	66			
RRH Mount Wei	ght. Lbs.	TBD			
Power and Fiber	r Cable	ALU Fiber Only			
Cable Qty		2	1		
Weight per foot	. Lbs.	0.242	1		
Diameter. Inche	·S.	0.73	1		
Length Ft.		175'	(calculated as antenna height plus 20%)		
Coax Jumper		TBD			
Coax Jumper Qt	y	27			
Coax Jumper Length. Feet.		8	7		
Coax Jumper Weight		TBD	5		
Coax Jumper Diameter. Inches		0.5			
AISG Cable		Commscope ATCB-B01-006			
AISG Cable Qty		3	1		
AISG Diameter. Inches.		0.315	1		
AISG Cable length.		8			
Weight of entire AISG cable. Lbs.		1.3			
	-				

Antenna Sector Information

Antenna make/model
Antenna qty
Antenna Dimensions. Inches
Antenna Weight. Lbs
Antenna Mounting Kit Weight. Lbs
CL Height
Antenna Azimuth
Antenna Mechanical Downtilt
Antenna etilt

Sector 1	Sector 2	Sector 3
RFS APXVTM14-C-I20	RFS APXVTM14-C-I20	RFS APXVTM14-C-I20
1	1	1
56.3"x12.6"x7.9"	56.3"x12.6"x7.9"	56.3"x12.6"x7.9"
54	54	54
11	11	11
105	105	105
15	120	250
0	0	0
-2	-2	-2

*REDS SHEET WAS GENERATED BY RAMAKER & ASSOCIATES FROM PLAN OF RECORD (POR) PROVIDED BY SPRINT. CONTRACTOR SHALL VERIFY AND OBTAIN FINAL RFDS FROM SPRINT CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION.

NOTES:

- ENGINEER
- SWEEP TEST SPREADSHEET.
- SPRINT AND NON-SPRINT ANTENNAS.
- TOOL OR EQUIVALENT TOOL.

I. GENERAL CONTRACTOR TO FIELD VERIFY AZIMUTH AND C/L HEIGHT AND MECHANICAL DOWNTILT. IF DIFFERENT THAN CALLED OUT BELOW, HALT ANTENNA WORK FOR IN AN CALLE OUT DELOW, THAT ANTONY ON ON ONE HOUR, CALL SPRINT RF ENGINEER (OR MANAGER IF RF ENGINEER DOES NOT ANSWER, BUT STILL LEAVE A MESSAGE TO RF ENGINEER) USING CONTACT INFORMATION ABOVE FOR FURTHER INSTRUCTIONS. IF SPRINT DOES NOT RESPOND WITHIN ONE HOUR, PLACE 2.5GHZ ANTENNA AT SAME C/L HEIGHT AS PLACE 2.5GHZ ANI ENNA AT SAME CL HEIGHT AS 1.9GHZ ANTENNA AND EMAIL CORRECT CL HEIGHT AND AZIMUTH TO SPRINT RF ENGINEER. UPDATE AS-BUILD DRAWING WITH CORRECT CL HEIGHT. ALSO EMAIL CORRECT 1.9GHZ AND &OOMHZ ANTENNA CL HEIGHT, AZIMUTH AND MECHANICAL DOWNTILT TO RF ENCINEER

2. AISG TESTS TO VERIPY OPERATION IS TO BE PERFORMED AFTER FINAL INSTALLATION OF ANTENNAS AND AISG CABLES HAVE BEEN CONNECTED. VERIPY OPERATION OF ALL EXISTING SPRINT AISG EQUIPMENT INCLUDING 800MHz, 1.9GHZ AND 2.5GHZ. TEST TO INCLUDE COMPLETE DOWNTILT, AZIMUTH (IF APPLICABLE) AND BEAMWIDTH SWINGS (IF APPLICABLE). DOCUMENT AISG TEST RESULTS IN COAX

3. GENERAL CONTRACTOR MUST ENSURE THAT NO OBJECT IS LOCATED WITHIN 45 DEGREES OF LEFT AND RIGHT OF FRONT OF ANTENNA OR 7 DEGREES UP AND DOWN FROM CENTER OF ANTENNA. IF THIS IS NOT POSSIBLE, CONTACT RF ENGINEER FOR FURTHER INSTRUCTION. IN ADDITION, 2.5GHZ ANTENNA IS NOT TO BE PLACED IN FRONT OF ANY OTHER ANTENNA USING THE SAME 45 DEGREE RULE. THIS INCLUDES

4. 2.5GHZ ANTENNA MUST BE AT LEAST 6" FROM 1.9GHZ ANTENNA, 30" FROM 800MHZ ANTENNA AND 30" FROM DUAL BAND 1.9GHZ AND 800MHZ ANTENNA.

 GENERAL CONTRACT IS REQUIRED TO USE A DIGITAL ALIGNMENT TOOL TO SET AZIMUTH, ROLL AND DOWNTILT. AZIMUTH ACCURACY IS TO BE WITHIN I DEGREE. DOWNTILT AND ROLL (LEFT TO RIGHT TILT) IS TO BE WITHIN O. I DEGREES. IF FOR SOME REASON THIS ACCURACY CANNOT BE ACHIEVED, UPDATE AS-BUILT DRAWINGS AND EMAIL SPRINT RF ENGINEER WITH AS-BUILT SETTINGS. USE 32 RF ALIGNMENT

Copyright 2014 - Ramaker & Associates, Inc. - All Rights Reserved DRAWN DY: TWS CHECKED DY: KAB

1:/28700/28731/CAD(Sprint 2.5/28731 Sprint 2.5 CD.dwg Printed by: steves on Aug 08, 2014 - 11:29am

2.5			
FREQUENCY	INDICATOR		ID
2500 -1	YEL	WHT	GRN
2500 -2	YEL	WHT	RED
2500 -3	YEL	WHT	BRN
2500 -4	YEL	WHT	BLU
2500 -5	YEL	WHT	SLT
2500 -6	YEL	WHT	ORG
2500 -7	YEL	WHT	WHT
2500 -8	YEL	WHT	PPL

NV FREQUENCY	INDICATOR	ID
800-1	YEL	GRN
1900-1	YEL	RED
1900-2	YEL	BRN
1900-3	YEL	BLU
1900-4	YEL	SLT
800-1	YEL	ORG
RESERVED	YEL	WHT
RESERVED	YEL	PPL

			Cocord	
Sector	Cable	First Ring	Rina	Third Ring
1 Alpha	1	Green	No Tape	No Tape
1	2	Blue	No Tape	No Tape
1	3	Brown	No Tape	No Tape
1	4	White	No Tape	No Tape
1	5	Red	No Tape	No Tape
1	6	Grev	No Tape	No Tape
1	7	Purple	No Tape	No Tape
1	8	Orange	No Tape	No Tape
2 Beta	1	Green	Green	No Tape
2	2	Blue	Blue	No Tape
2	3	Brown	Brown	No Tape
2	4	White	White	No Tape
2	5	Red	Red	No Tape
2	6	Grey	Grey	No Tape
2	7	Purple	Purple	No Таре
2	8	Orange	Orange	No Tape
3 Gamma	1	Green	Green	Green
3	2	Blue		
3	3	Brown	Brown	Brown
3	4	White	White	White
3	5	Red	Red	Red
3	6	Grey	Grey	Grey
3	7	Purple	Purple	Purple
3	8	Orange	Orange	Orange

1 |)

COLOR CODING CHARTS SCALE: NTS

CABLE MARKING NOTES

- I. ALL CABLES SHALL BE MARKED WITH 2" WIDE, UV STABILIZED, UL APPROVED TAPE.
- THE FIRST RING SHALL BE CLOSEST TO THE END OF THE CABLE AND SPACED APPROXIMATELY 2" FROM THE END CONNECTOR, WEATHERPROOFING, OR BREAKOUT UNIT. THERE SHALL BE 1" SPACE BETWEEN EACH RING.
- 3. A 2" GAP SHALL SEPARATE THE CABLE COLOR CODE FROM THE FREQUENCY COLOR CODE. THE 2" COLOR RINGS FOR THE FREQUENCY CODE SHALL BE PLACED NEXT TO EACH OTHER WITH NO SPACES.
- 4. THE 2" COLORED TAPE(S) SHALL BE WRAPPED A MINIMUM OF 3 TIMES AROUND THE INDIVIDUAL CABLES, AND THE TAPE SHALL BE KEPT IN THE SAME LOCATION AS MUCH AS POSSIBLE.
- 5. SITES WITH MORE THAN FOUR (4) SECTORS WILL REQUIRE ADDITIONAL RINGS FOR EACH SECTOR, FOLLOWING THE PATTERN. HIGH CAPACITY SITES WILL USE THE SECOND CABLE IDENTIFIED BY BLUE BANDS OF TAPE
- 6. HYBRID FIBER CABLE SHALL BE SECTOR IDENTIFIED INSIDE THE CABILE ON REQUENCY BUNDLES, ON THE SEALTITE, ON THE MAIN LINE UPON EXIT OF SEALTITE, AND BEFORE AND AFTER THE BREAKOUT UNIT (MEDUSA), AS WELL AS BEFORE AND AFTER ANY ENTRANCE OR EXIT.
- 7. HFC "MAIN TRUNK" WILL NOT BE MARKED WITH THE FREQUENCY CODES, AS IT CONTAINS ALL FREQUENCIES.
- 8. INDIVIDUAL POWER PAIRS AND FIBER BUNDLES SHALL BE LABELED WITH BOTH THE CABLE AND FREQUENCY.

- 56.3" x 12.6" x 6.3"
- 55.12 lbs
- (9) MINI-DIN FEMALE/BOTTOM

ĉ

- PROPOSED 2.5 EQUIPMENT AND RECTIFIER UNIT TO BE INSTALLED IN EXISTING 9927

- EXISTING STEEL BEAM, TYPICAL

- EXISTING CONCRETE EQUIPMENT PAD

PROJECT NUMBER

SHEET

28731

A-8

AII F XFI 2014 ° Co \odot

Kest AB AII R ^KFI Ramaker 2014 Cob \odot

DUND BOND:	YES	
TVSS:	YES	Sprint 📈
	3	
BAR:	YES	6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251
DESCRIPTION CKT PROTECTOR 7 B TOWER LIGHT 9 NOT LABELED 10 GFI 11 ANK (UNUSED) 12		RAMAKER & ASSOCIATES, INC. 1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com
		48 SPRUCE STREET OAKLAND, NJ 07346 Certification 4 Seat: I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u> .
- INSTALL NEW 2.5 EQUIPMENT AND RECTIFIER UNIT IN EXISTING CABINET EXISTING BBU CABINET		Jane Signature: Bio 20266 Signature: Bio 20266 Signature: Bio 20266 Signature: Bio 20266 Signature: Bio 20266 Bio 2026 Bio 20
		A 08/08/14 FINAL CONSTRUCTION DRAWINGS MARK DATE DESCRIPTION ISSUE FINAL DATE 08/08/2014 PROJECT TITLE:
JRATION TING TING (G, (1) #8 (G, (1) #12 (G, (1) #12 (G, (1) #12		CTS CTO3XC360-A PROJECT INFORMATION: 46 FERNWOOD LANE WILTON, CT 06897 FAIRFIELD COUNTY SHEET TITLE: DC POWER DETAILS & PANEL SCHEDULES
		SCALE: AS NOTED PROJECT NUMBER 2873
4)		SHEET F 2