JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com

May 2, 2014

Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification Crown Castle/T-Mobile co-location Site ID CT11117
 922 Danbury Road, Wilton

Dear Attorney Bachman:

This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, the Crown Castle ("Crown") owns the flagpole tower and related facility at 922 Danbury Road, Wilton, Connecticut (latitude 41.2563556 / longitude -73.433872). TMobile intends to replace three antennas and related equipment at this existing telecommunications facility in Wilton ("Wilton Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § $16-50 \mathrm{j}-73$, a copy of this letter is being sent to the First Selectman William F. Brennan, and the property owner Remo - Wilton Asssociates.

The existing Wilton Facility consists of a 90 foot tall flagpole facility. ${ }^{1}$ The facility currently supports the equipment of T-Mobile at a centerline of 85 feet.

T-Mobile plans to replace three antennas and replace them with three antennas at an elevation of 85 feet. (See the plans revised to April 17, 2014 attached hereto as Exhibit A). TMobile will also replace an equipment cabinet, replace three existing GMA with six proposed GMAs, and reuse existing coax cable. The existing Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated April 24, 2014

[^0]May 2, 2014
Site ID CT11117
Page 2
and attached hereto as Exhibit B.
The planned modifications to the Wilton Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's replacement antennas will be installed at the 85 foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The installation of the T-Mobile replacement equipment in the existing compound, as reflected on the attached site plan, will not require an extension of the site boundaries. T-Mobile's proposed equipment will be located entirely within the existing compound and concrete pad as shown on Sheet L-1 of Exhibit A.
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated April 16, 2014 T-Mobile's operations would add 1.365\% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 6.695% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the Wilton Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).
cc: Town of Wilton, First Selectman William F. Brenhan
Crown Castle Corporation
Remo-Wilton Associates LLC
Halene Fujimoto, HPC

Julie D. Kohler, Esq.

EXHIBIT B

PAUL J. FORD AND COMPANY
STRUCTURALENGINEERS
250 East Broad Street - Suite 600 - Columbus, Ohio 43215-3708

Date: April 24, 2014

Andrew Bazinet	Paul J. Ford and Company	
Crown Castle	250 East Broad St, Suite 600	
46 Broadway	Columbus, OH 43215	
Albany, NY 12204	614.221 .6679	
Subject: Structural Analysis Report		
Carrier Designation:	T-Mobile Co-Locate	
	Carrier Site Number:	CT11117C
	Carrier Site Name:	Wilton/Georgetown/Rt7
Crown Castle Designation:	Crown Castle BU Number:	829115
	Crown Castle Site Name:	Wilton/Georgetown/Rt7
	Crown Castle JDE Job Number:	259553
	Crown Castle Work Order Number:	751467
	Crown Castle Application Number:	216340 Rev. 3
Engineering Firm Designation:	Paul J. Ford and Company Project Number:	37514-0960
Site Data:	922 Danbury Road, Wilton, Fairfield County, CT Latitude $41^{\circ} 15^{\prime} 22.964^{\prime \prime}$, Longitude $-73^{\circ} 26^{\prime} 2.209^{\prime \prime}$ 89.0625 Foot - Monopole Tower	

Dear Andrew Bazinet,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 639862, in accordance with application 216340 , revision 3.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

```
LC5: Existing + Proposed Equipment
Sufficient Capacity
Note: See Table I and Table II for the proposed and existing loading, respectively.
```

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects

Structural Designer

APR 252014

PAUL J. FORD AND COMPANY
S TRUCTURALENGINEERS 250 East Broad Street - Suite 600 - Columbus, Ohio 43215-3708

Date: April 24, 2014
Andrew Bazinet
Crown Castle
46 Broadway
Albany, NY 12204

Paul J. Ford and Company
250 East Broad St, Suite 600
Columbus, OH 43215
614.221.6679

Subject: Structural Analysis Report

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

T-Mobile Co-Locate Carrier Site Number: Carrier Site Name:

Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Application Number:

CT11117C
Wilton/Georgetown/Rt7

829115
Wilton/Georgetown/Rt7
259553
751467
216340 Rev. 3

Paul J. Ford and Company Project Number: 37514-0960
922 Danbury Road, Wilton, Fairfield County, CT Latitude $41^{\circ} 15^{\prime} 22.964^{\prime \prime}$, Longitude $-73^{\circ} 26^{\prime} 2.209^{\prime \prime}$ 89.0625 Foot - Monopole Tower

Dear Andrew Bazinet,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 639862, in accordance with application 216340 , revision 3.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment
Sufficient Capacity
Note: See Table I and Table II for the proposed and existing loading, respectively.
The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Thomas J. Dehnke, E.I.T.
Structural Designer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 89.0625 ft Monopole tower designed by Stealth in July of 2009. The tower was originally designed for a wind speed of 105 mph per TIA-222-G.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
85.0	85.0	3	rfs celwave	APX16DWV-16DWVS-C	-	-	-

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
85.0	85.0	6	andrew	ETW190VS12UB	12 (I)	7/8	1
		3	andrew	TMBXX-6516-R2M	--	--	2
76.0	76.0	3	andrew	ETW190VS12UB	6 (I)	$7 / 8$	1
		6	kaelus	DBC2046F1V2-1			
		3	powerwave technologies	P65-16-XLH-RR			

Notes

1) Existing Equipment
2) Equipment To Be Removed
(I) Coax mounted internally and shielded from the wind. See coax layout in Appendix B.

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Size (in)
--	--	-	-	--	--	

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, 10/13/2000	3594542	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	PJF, 31908-0121, 07/22/2009	3886758	CCISITES
4-TOWER MANUFACTURER DRAWINGS	PJF, 31908-0121,07/22/2009	3777970	CCISITES

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	$\mathbf{P (K)}$	SF*P_allow (\mathbf{K})	\% Capacity	Pass /Fail
L1	$90-70$	Pole	MT 4" X 0.5	1	-1.32	329.78	76.0	Pass
L2	$70-35.9375$	Pole	P24x0.375	2	-5.00	779.12	21.9	Pass
L3	$35.9375-$ 1.9375	Pole	P24x0.375	3	-8.45	779.12	50.1	Pass
L4	$1.9375-$ 0.9375	Pole	P20x0.5	4	-8.56	857.44	56.5	Pass
							Summary	
					Pole (L1)	76.0	Pass	

Table 6 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	46.0	Pass
1	Base Plate	0	48.7	Pass
1	Base Foundation Soil Interaction	0	99.4	Pass
1	Base Foundation Structural Steel	0	19.7	Pass
1	Flange Connection	1	33.8	Pass
1	Flange Connection	35.9	25.2	Pass
Structure Rating (max from all components) =				99.4\%

Notes:

1) See additional documentation in "Appendix C-Additional Calculations" for calculations supporting the \% capacity consumed.

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Fairfield County, Connecticut.
Basic wind speed of 85 mph .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
$\sqrt{ }$ Escalate Ice
Always Use Max Kz
Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension

$\sqrt{ }$ Bypass Mast Stability Checks

$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Use TIA-222-G Tension Splice
Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feedline Torque Include Angle Block Shear Check Poles
$\sqrt{ }$ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
Pole Section Geometry

Section	Elevation ft	Section Length ft	Pole Size	Pole Grade	Socket Length ft
L1	90.00-70.00	20.00	MT $4^{\prime \prime} \times 0.5$	ASTM A513 D.O.M. (75 ksi)	
L2	70.00-35.94	34.06	P24x0.375	$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$	
L3	35.94-1.94	34.00	P24x0.375	$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$	
14	1.94-0.94	1.00	P20x0.5	$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$	

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{aligned} & \text { Face } \\ & \text { or } \\ & \text { Leg } \end{aligned}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
LDF5-50A(7/8')	C	No	Inside Pole	85.94-0.94	12	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
						1" Ice	0.00	0.33
						2" Ice	0.00	0.33
						4" Ice	0.00	0.33

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $t^{2} / f t$	Weight plf
LDF5-50A(7/8')	C	No	Inside Pole	76.94-0.94	6	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
						1" Ice	0.00	0.33
						2" Ice	0.00	0.33
						4"Ice	0.00	0.33

User Defined Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Elevation
ft \& Offset From Centroid ft \& \begin{tabular}{l}
Azimuth Angle \\
-
\end{tabular} \& \& Weight
K \& \(F_{X}\)
\(K\) \& \& \(F^{2}\)
\(K\) \& \& Wind Force
K \& \(C_{A} A_{C}\)

t^{2}

\hline \multirow[t]{3}{*}{Flag} \& \multirow[t]{3}{*}{90.94} \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{0.0000} \& No Ice \& 0.26 \& \& 0.00 \& \& 0.00 \& 0.29 \& 6.92

\hline \& \& \& \& Ice \& 0.41 \& \& 0.00 \& \& 0.00 \& 0.07 \& 8.95

\hline \& \& \& \& Service \& 0.26 \& \& 0.00 \& \& 0.00 \& 0.12 \& 7.98

\hline
\end{tabular}

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
ft \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
-
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front $f t^{2}$ \& $\mathrm{C}_{A} A_{A}$
Side

$f t^{2}$ \& Weight
K

\hline \multirow{11}{*}{(2) DBC2046F1V2-1} \& \multirow{11}{*}{C} \& \multirow{11}{*}{From Leg} \& 0.00 \& \multirow{11}{*}{0.0000} \& \multirow{11}{*}{76.94} \& 1/2" \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& 0.00 \& \& \& Ice \& 0.00 \& 0.00 \& 0.02

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.00 \& 0.09

\hline \& \& \& \& \& \& 4 " Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& 0.00 \& \& \& Ice \& 0.00 \& 0.00 \& 0.02

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.00 \& 0.09

\hline \& \& \& \& \& \& 4 " Ice \& \& \&

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.690
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
$$
f t
$$ \& z
ft \& K_{z} \& q_{z}

$p s f$ \& A_{G}

ft^{2} \& F
a
c
e \& AF

Hf^{2} \& AR

$f t^{2}$ \& $A_{\text {leg }}$

f^{2} \& \[
$$
\begin{gathered}
\operatorname{Leg} \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face $f t^{2}$ |

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline \text { L1 } 90.00- \\
70.00
\end{array}
$$} \& \multirow[t]{3}{*}{80.00} \& \multirow[t]{3}{*}{1.288} \& \multirow[t]{3}{*}{24} \& \multirow[t]{3}{*}{6.667} \& A \& 0.000 \& 0.000 \& \multirow[t]{3}{*}{0.000} \& 0.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 0.000 \& \& 0.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 0.000 \& \& 0.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L2 } 70.00- \\
35.94
\end{array}
$$} \& \multirow[t]{3}{*}{53.36} \& \multirow[t]{3}{*}{1.147} \& \multirow[t]{3}{*}{21} \& \multirow[t]{3}{*}{68.125} \& A \& 0.000 \& 68.125 \& \multirow[t]{3}{*}{68.125} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 68.125 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 68.125 \& \& 100.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L3 35.94-1.94} \& \multirow[t]{3}{*}{18.94} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{18} \& \multirow[t]{3}{*}{68.000} \& A \& 0.000 \& 68.000 \& \multirow[t]{3}{*}{68.000} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 68.000 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 68.000 \& \& 100.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L4 1.94-0.94} \& \multirow[t]{3}{*}{1.44} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{18} \& \multirow[t]{3}{*}{1.667} \& A \& 0.000 \& 1.667 \& \multirow[t]{3}{*}{1.667} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 1.667 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 1.667 \& \& 100.00 \& 0.000 \& 0.000

\hline
\end{tabular}

Tower Pressure - With Ice

$$
G_{H}=1.690
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \(z\)
ft \& \(K_{z}\) \& \(q_{z}\)
\(p s f\) \& \(t_{z}\)
in \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}
f^{2} \& AR

ff^{2} \& Aleg

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| f^{2} | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 90.00-70.00} \& \multirow[t]{3}{*}{80.00} \& \multirow[t]{3}{*}{1.288} \& \multirow[t]{3}{*}{5} \& \multirow[t]{3}{*}{0.8341} \& \multirow[t]{3}{*}{9.447} \& A \& 0.000 \& 0.000 \& \multirow[t]{3}{*}{0.000} \& 0.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 0.000 \& \& 0.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 0.000 \& \& 0.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L2 70.00-35.94} \& \multirow[t]{3}{*}{53.36} \& \multirow[t]{3}{*}{1.147} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{0.7945} \& \multirow[t]{3}{*}{72.636} \& A \& 0.000 \& 72.636 \& \multirow[t]{3}{*}{72.636} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 72.636 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 72.636 \& \& 100.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L3 35.94-1.94} \& \multirow[t]{3}{*}{18.94} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{0.7500} \& \multirow[t]{3}{*}{72.250} \& A \& 0.000 \& 72.250 \& \multirow[t]{3}{*}{72.250} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 72.250 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 72.250 \& \& 100.00 \& 0.000 \& 0.000

\hline L. 1.94-0.94 \& \multirow[t]{3}{*}{1.44} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{0.7500} \& \multirow[t]{3}{*}{1.792} \& A \& 0.000 \& 1.792 \& \multirow[t]{3}{*}{1.792} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 1.792 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 1.792 \& \& 100.00 \& 0.000 \& 0.000

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.690
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation ft \& z
ft \& K_{z} \& q_{z}
$p s f$ \& A_{G}

f^{2} \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

f^{2} \& A_{R}

ft^{2} \& $A_{\text {leg }}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\operatorname{Leg} \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\ln \\
\text { Face } \\
f^{2}
\end{gathered}
$$
\] \& $C_{A} A_{A}$ Out Face t^{2}

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline \text { L1 } 90.00- \\
70.00
\end{array}
$$} \& \multirow[t]{3}{*}{80.00} \& \multirow[t]{3}{*}{1.288} \& \multirow[t]{3}{*}{8} \& \multirow[t]{3}{*}{6.667} \& A \& 0.000 \& 0.000 \& \multirow[t]{3}{*}{0.000} \& 0.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 0.000 \& \& 0.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 0.000 \& \& 0.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L2 70.00- } \\
35.94
\end{array}
$$} \& \multirow[t]{3}{*}{53.36} \& \multirow[t]{3}{*}{1.147} \& \multirow[t]{3}{*}{7} \& \multirow[t]{3}{*}{68.125} \& A \& 0.000 \& 68.125 \& \multirow[t]{3}{*}{68.125} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 68.125 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 68.125 \& \& 100.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L3 35.94-1.94} \& \multirow[t]{3}{*}{18.94} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{68.000} \& A \& 0.000 \& 68.000 \& \multirow[t]{3}{*}{68.000} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 68.000 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 68.000 \& \& 100.00 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L4 1.94-0.94} \& \multirow[t]{3}{*}{1.44} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{1.667} \& A \& 0.000 \& 1.667 \& \multirow[t]{3}{*}{1.667} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 1.667 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 1.667 \& \& 100.00 \& 0.000 \& 0.000

\hline
\end{tabular}

Load Combinations

Comb. No.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No lce	
3	Dead+Wind 30 deg - No lce	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No lce	
6	Dead+Wind 120 deg - No lce	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No lce	
10	Dead+Wind 240 deg - No lce	
11	Dead+Wind 270 deg - No lce	
12	Dead+Wind 300 deg - No lce	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+lce+Temp	
17	Dead+Wind $60 \mathrm{deg}+\mathrm{lce}+$ Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+lce+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind $180 \mathrm{deg}+$ Ice + Temp	
22	Dead+Wind $210 \mathrm{deg}+$ Ice+Temp	
23	Dead+Wind $240 \mathrm{deg}+$ lce+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind $300 \mathrm{deg}+$ Ice+Temp	
26	Dead+Wind $330 \mathrm{deg}+$ Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Member Forces

Sectio n No.	Elevation H	Component Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	90-70	Pole	Max Tension	15	0.00	0.00	-0.00
			Max. Compression	14	-2.61	0.00	0.00
			Max. Mx	5	-1.32	-17.86	0.00
			Max. My	2	-1.32	0.00	17.86

$\begin{gathered} \text { Sectio } \\ n \\ \text { No. } \\ \hline \end{gathered}$	Elevation f	Component Type	Condition	Gov. Load Comb	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L2	70-35.9375	Pole	Max. Vy	5	1.13	-11.22	0.00
			Max. Vx	2	-1.13	0.00	11.22
			Max. Torque	4			0.00
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-7.24	0.00	0.00
			Max. Mx	5	-5.00	-88.15	0.00
			Max. My	2	-5.00	0.00	88.15
			Max. Vy	5	2.78	-88.15	0.00
			Max. Vx	2	-2.78	0.00	88.15
			Max. Torque	3			-0.00
L3	$\begin{gathered} 35.9375- \\ 1.9375 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-11.43	0.00	0.00
			Max. Mx	5	-8.45	-203.38	0.00
			Max. My	2	-8.45	0.00	203.38
			Max. Vy	5	3.98	-203.38	0.00
			Max. Vx	2	-3.98	0.00	203.38
			Max. Torque	3			-0.00
L4	$\begin{gathered} 1.9375- \\ 0.9375 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-11.56	0.00	0.00
			Max. Mx	5	-8.56	-207.36	0.00
			Max. My	2	-8.56	0.00	207.36
			Max. Vy	5	4.00	-207.36	0.00
			Max. Vx	2	-4.00	0.00	207.36
			Max. Torque	3			-0.00

Maximum Tower Deflections = Service					
Section No.	Elevation $f t$	Horz. Deflection in	Gov. Load Comb	Tilt	Twist
L1	90-70	10.422	27	2.2903	0.0000
L2	70-35.9375	3.394	30	0.3527	0.0000
L3	35.9375-1.9375	1.116	30	0.2653	0.0000
L4	1.9375-0.9375	0.001	29	0.0142	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb	Deflection in	Tilt	Twist .	Radius of Curvature ft
90.94	Flag	27	10.422	2.2903	0.0000	2826
90.75	Truck Ball	27	10.422	2.2903	0.0000	2826
90.00	Canister Load1	27	10.422	2.2903	0.0000	2826
85.94	(2) ETW190VS12UB	30	8.774	1.8218	0.0000	2826
80.00	Canister Load2	30	6.483	1.1771	0.0000	1412
76.94	P65-16-XLH-RR	30	5.407	0.8806	0.0000	1081
70.00	Canister Load3	30	3.394	0.3527	0.0000	760

Maximum			ower Defiections - Design Win		
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	f	in	Comb.	-	-
L1	90-70	28.768	2	6.2322	0.0000
L2	70-35.9375	9.578	2	0.9929	0.0000
L3	35.9375-1.9375	3.155	2	0.7492	0.0000
L4	1.9375-0.9375	0.004	4	0.0401	0.0000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance			Gov.	Deflection	Tilt

Compression Checks

Pole Design Data

Section No.	Elevation ft	Size	L ft	L_{u} ft	Kl/r	F_{a} ksi	A $i n^{2}$	Actual P K	Allow. P_{a} K	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$
L1	90-70 (1)	MT 4" $\times 0.5$	20.00	0.00	0.0	45.000	5.4978	-1.32	247.40	0.005
L2	$\begin{gathered} 70-35.9375 \\ (2) \end{gathered}$	P24x0.375	34.06	0.00	0.0	21.000	27.8325	-5.00	584.48	0.009
L3	$\begin{aligned} & 35.9375- \\ & 1.9375(3) \end{aligned}$	P24×0.375	34.00	0.00	0.0	21.000	27.8325	-8.45	584.48	0.014
L4	$\begin{aligned} & 1.9375- \\ & 0.9375(4) \end{aligned}$	P20x0.5	1.00	0.00	0.0	21.000	30.6305	-8.56	643.24	0.013

Pole Bending Design Data

Section No.	Elevation ft	Size	Actual M_{x} kip-ft	Actual $f_{b x}$ ksi	Allow. $F_{b x}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Actual } \\ M_{y} \\ \text { kip-ft } \\ \hline \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{b y} \\ k s i \end{gathered}$	Allow. $F_{b y}$ $k s i$	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \\ \hline \end{gathered}$
L1	90-70 (1)	MT 4"X0.5	17.86	49.899	49.500	1.008	0.00	0.000	49.500	0.000
L2	$\begin{gathered} 70-35.9375 \\ (2) \end{gathered}$	P24×0.375	88.15	6.536	23.100	0.283	0.00	0.000	23.100	0.000
L3	$\begin{aligned} & 35.9375- \\ & 1.9375(3) \end{aligned}$	P24×0.375	203.38	15.078	23.100	0.653	0.00	0.000	23.100	0.000
L4	$\begin{aligned} & 1.9375- \\ & 0.9375(4) \end{aligned}$	P20x0.5	207.36	17.080	23.100	0.739	0.00	0.000	23.100	0.000

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V K	$\begin{gathered} \text { Actual } \\ f_{v} \\ \mathrm{ksi} \end{gathered}$	Allow. Fv ksi	$\begin{gathered} \text { Ratio } \\ f_{v} \\ \hline F_{v} \end{gathered}$	Actual kip-ft	$\begin{gathered} \text { Actual } \\ f_{v t} \\ \mathrm{ksi} \end{gathered}$	Allow. $F_{v t}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ \hline F_{v t} \end{gathered}$
L1	90-70(1)	MT 4"X0.5	1.08	0.393	30.000	0.013	0.00	0.000	30.000	0.000
L2	$\begin{gathered} 70-35.9375 \\ (2) \end{gathered}$	P24x0.375	2.78	0.200	14.000	0.014	0.00	0.000	14.000	0.000
L3	$\begin{aligned} & 35.9375- \\ & 1.9375(3) \end{aligned}$	$\mathrm{P} 24 \times 0.375$	3.98	0.286	14.000	0.020	0.00	0.000	14.000	0.000
L4	$\begin{gathered} 1.9375- \\ 0.9375(4) \end{gathered}$	P20x0.5	4.00	0.261	14.000	0.019	0.00	0.000	14.000	0.000

Pole Interaction Design Data

No.	Elevation	$\begin{gathered} \text { Ratio } \\ P \end{gathered}$	Ratio $f_{b x}$	$\begin{gathered} \text { Ratio } \\ f_{b y} \end{gathered}$	$\overline{R_{\mathrm{Ratio}}^{f_{v}}}$	$\begin{aligned} & \text { Ratio } \\ & f_{\mathrm{vt}} \end{aligned}$		Allow. Stress	Criteria
	ft	P_{a}	$F_{b x}$	$F_{b y}$	F_{v}	$F_{v t}$	Ratio	Ratio	

Section No.	Elevation ft	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{b x} \end{array} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ F_{b y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v} \\ F_{v} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ F_{v t} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	90-70(1)	0.005	1.008	0.000	0.013	0.000	1.014	1.333	$\mathrm{H} 1-3+\mathrm{VT}$
L2	$\begin{gathered} 70-35.9375 \\ (2) \end{gathered}$	0.009	0.283	0.000	0.014	0.000	0.292	1.333	H1-3+VT
L3	$\begin{aligned} & 35.9375- \\ & 1.9375(3) \end{aligned}$	0.014	0.653	0.000	0.020	0.000	0.668	1.333	H1-3+VT $/$
L4	$\begin{gathered} 1.9375- \\ 0.9375(4) \end{gathered}$	0.013	0.739	0.000	0.019	0.000	$\begin{gathered} 0.753 \\ \end{gathered}$	1.333	H1-3+VT

Section Capacity Table

Section No.	$\begin{aligned} & \text { Elevation } \\ & f t \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & p \\ & K \end{aligned}$	$\begin{gathered} \mathrm{SF}^{* P_{\text {allow }}} \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
L1	90-70	Pole	MT 4"X 0.5	1	-1.32	329.78	76.0	Pass
L2	70-35.9375	Pole	P24x0.375	2	-5.00	779.12	21.9	Pass
L3	$\begin{gathered} 35.9375- \\ 1.9375 \end{gathered}$	Pole	P24x0.375	3	-8.45	779.12	50.1	Pass
L4	1.9375-0.9375	Pole	P20x0.5	4	-8.56	857.44	$\begin{gathered} 56.5 \\ \text { Summary } \end{gathered}$	Pass
						Pole (L1) RATING =	$\begin{array}{r} 76.0 \\ 76.0 \\ \hline \end{array}$	Pass Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Section 4	3	2	1
Size Prox	P. 5 P24×0.375	P24×0.375	MT 4" ${ }^{\text {P }} 0.5$
Length (f) \quad. 0 (34.00	34.06	20.00
Grade	A53-B-35		ASTM A513 D.O.M.
Weight (K) 6.90 .1	13.2	3.2	0.4

90.0 ft
70.0 ft
$\xrightarrow{70.012}$

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Flag	90.9375	P65-16-XLH-RR	76.9375
Truck Ball	90.75	P65-16-XLH-RR	76.9375
Canister Load1	90	P65-16-XLH-RR	76.9375
(2) ETW190VS12UB	85.9375	ETW190VS12UB	76.9375
(2) ETW190VS12UB	85.9375	ETW190VS12UB	76.9375
(2) ETW190VS12UB	85.9375	ETW190VS12UB	76.9375
APX16DWV-16DWVS-C	85.9375	(2) DBC2046F1V2-1	76.9375
APX16DWV-16DWVS-C	85.9375	(2) DBC2046F1V2-1	76.9375
APX16DWV-16DWVS-C	85.9375	(2) DBC2046F1V2-1	76.9375
Canister Load2	80	Canister Load3	70

MATERIAL STRENGTH

GRADE	Fy	Fu		GRADE	Fy	Fu
ASTMA513 D.O.M.	75 ksi		85 ksi	A.53-8-35	35 ksi	

TOWER DESIGN NOTES

Tower is located in Fairfield County, Connecticut.

2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.
5. TOWER RATING: 76\%

38 mph WIND - 0.7500 in ICE
1.9 ft $\frac{1.9 \mathrm{ft}}{0.9 \mathrm{ft}}$ \qquad

REACTIONS - 85 mph WIND

Paul J. Ford and Company	Fob: 90-ft Flag Pole: 927 Danbury Rd.: Wilton, CT		
250 East Broad St, Suite 600 Columbus, OH 43215 Phone: 614.221.6679 FAX:	Project: 31908-0121		
	Client: ATTW-80583W-33R5	TDehnke	App'd:
	Code: TIA/EIA-222-F	Date: $04 / 25 / 14$	NTS
			和 No. E-1

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G
Assumptions:

1) Rod groups at corners. Total \# rods divisible by 4. Maximum total \# of rods $=48$ (12 per Corner).
2) Rod Spacing $=$ Straight Center-to-Center distance between any (2) adjacent rods (same corner)
3) Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter)

BU\#:		
Site Name:		
App \#:		
Anchor Rod Data		
Qty:	4	
Diam:	2.25	in
Rod Material:	A615-J	
Yield, Fy:	75	ksi
Strength, Fu:	100	ksi
Bolt Circle:	27	in

Base Reactions		
TIA Revision:	F	
Unfactored Moment, M:	207	ft-kips
Unfactored Axial, P:	9	kips
Unfactored Shear, V:	4	kips

Anchor Rod Results

TIA F --> Maximum Rod Tension	89.8 Kips
Allowable Tension:	195.0 Kips
Anchor Rod Stress Ratio:	46.0% Pass

Plate Data		
W=Side:	25.5	in
Thick:	2.25	in
Grade	50	ksi
Clip Distance:	1.75	in

Base Plate Results	Flexural Check	PL Ref. Data
Base Plate Stress:	24.3 ksi	Yield Line $(\mathrm{n}):$
Allowable PL Bending Stress:	50.0 ksi	16.06
Base Plate Stress Ratio:	48.7% Pass	Max PL Length:
		16.06

Stiffener Data (Welding at both sides)		
Configuration: Weld Type: Groove Depth: Groove Angle: Fillet H. Weld: Fillet V. Weld: Width: Height: Thick: Notch: Grade: Weld str::	Unstiffened	
Clear Space between Stiffeners at B.C.		in

Pole Data		
Diam:	20	in
Thick:	0.5	in
Grade	35	ksi
\# of Sides:	0	"0"IF Round

Stiffener Results

Horizontal Weld:	N/A
Vertical Weld:	N/A
Plate Flex+Shear, fb/Fb+(fv/Fv)^2:	N/A
Plate Tension+Shear, ft/Ft+(fv/Fv) 2 :	N/A
Plate Comp. (AISC Bracket):	N/A
Pole Results	

Stress Increase Factor		
ASD ASIF:		1.333

[^1]
Stiffened or Unstiffened, Interior Flange Plate - Any Bolt Material TIA Rev F

Site Data

BU\#:

Site Name:
App \#:

Manufacturer: ${ }^{\text {Other }}$

PLATE CHECK ONLY

Elevation: 1 feet

Plate Data		
Plate Outer Diam:	23.25	in
Plate Inner Diam:	20	in (Hole @ Ctr)
Thick:	2	in
Grade:	50	ksi
Effective Width:	3.04	in

Stiffener Data (Welding at Both Sides)		
Config:	0	in **
Weld Type:		
Groove Depth:		
Groove Angle:		degrees
Fillet H. Weld:		<-- Disregard
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

	Pole Data	
Pole OuterDiam:	24	in
Thick:	0.375	in
Pole Inner Diam:	23.25	in
Grade:	35	ksi
\# of Sides:	0	"0" 1 F Round
Fu	50	ksi

| Stress Increase Factor | |
| :---: | :---: | :---: |
| ASIF: 1.333 | |

* $0=$ none, $1=$ every bolt, $2=$ every 2 bolts, $3=2$ per bolt
** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

Stiffened or Unstiffened, Interior Flange Plate - Any Bolt Material TIA Rev F

Bolt Data		
Qty:	12	
Diam:	1.25	
	Bolt Fu:	
Bolt Material:	A325	Bolt Fy:
N/A:- Disregard		
N/A:	100	75
<- Disregard		
Circle:	18.75	in

Plate Data		
Plate Outer Diam:	23.25	in
Plate Inner Diam:	15	in (Hole @ Ctr)
Thick:	2.25	in
Grade:	50	ksi
	6.09	in

Stiffener Data (Welding at Both Sides)		
Config:	0	in **
Weld Type:		
Groove Depth:		
Groove Angle:		degrees
Fillet H. Weld:		<-- Disregard
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

	Pole Data	
Pole OuterDiam:	24	in
Thick:	0.375	in
Pole Inner Diam:	23.25	in
Grade:	35	ksi
\# of Sides:	0	"O" IF Round
Fu	50	ksi

Stress Increase Factor	
ASIF:	

	Reactions		
	Moment:	88.31	ft-kips
	Axial:	8.54	kips
	Shear:	2.75	kips
Exterior Flange Run, $T+Q$:		0	kips

Elevation: 35.9375 feet

Interior Flange Bolt Results
Maximum Bolt Tension: $\quad 18.1 \mathrm{Kips}$, Ext. T=Interior T
Allowable Tension:
Bolt Stress Ratio:

Interior Flange Plate Results	Flex
Controlling Bolt Axial Force:	
Plate Stress:	
Allowable Plate Stress:	
Plate Stress Ratio:	
n/a	
Stiffener Results	n / a
Horizontal Weld:	n / a
Vertical Weld:	n / a
Plate Flex+Shear, fb/Fb+(fv/Fvv ${ }^{\wedge} 2:$	
Plate Tension+Shear, ft/Ft+(fv/Fv) $2:$	n / a
Plate Comp. (AISC Bracket):	n / a

Pole Results
Pole Punching Shear Check: n/a

* $0=$ none, $1=$ every bolt, 2 = every 2 bolts, $3=2$ per bolt
** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

CCI Flagpole Tool

WCROWN

FLANGE PLATE (TYPE 3: SOLIDITY RATIO 0.5)

Canister Section Number *:	Canister Assembly Length (ft):	Canister Assembly Diameter (in):	Number of Sides Canister Section	$\frac{\text { Plate }}{\text { Type: }}$	Mating Flange Plate Thickness (in)**:	Mating Flange Plate Diameter (in):	Solidity Ratio	Plate Weight (Kip):	Canister Weight (Kip)
1	10	23.125	Round	3	0.00	23.125	0.5	0.000	0.121
2	10	24	Round	3	1.50	24	0.5	0.192	0.126

Flag on Tower:	Yes
Flag Width:	18 ft
Flag Height:	12 ft
Flag Elevation(z):	90 ft

Truck Ball on Tower:	Yes
Diameter of Ball:	18 in

Discrete Loads: Truck Ball	Apply $C_{a} A_{A}$ at Elevation(z) (ft)	$\begin{gathered} C_{z} A_{A} \\ \text { No ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{\mathrm{a}} A_{A} \\ 1 / 2^{\prime \prime} \operatorname{lce}\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{\mathrm{A}} \\ 1^{\prime \prime} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{a} A_{A} \\ 2^{\text {" }} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{2} A_{A} \\ 4^{\prime \prime} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	Weight No Ice (Kip)	Weight 1/2" Ice (Kip)
	89.8125	1.414	1.575	1.745	2.112	2.950	0.05	0.067

Discrete Loads : $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ for Canister Assembly								
Canister Loading	Apply $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ at Elevation(z) (ft)	$\begin{gathered} C_{\mathrm{F}} A_{\mathrm{F}} \\ \text { No Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ 1 / 2^{\text {I }} \text { cee }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{F} A_{F} \\ 1^{1} \operatorname{lce}\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{F} A_{F} \\ 2^{\text {1 }} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{\mathrm{F}} A_{\mathrm{F}} \\ 4^{\prime \prime} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	Canister Assembly Weight No Ice (Kip)	Canister Assembly Weight $1 / 2^{\prime \prime}$ Ice (Kip)
Canister Load 1	89.0625	5.685	5.931	6.177	6.668	7.652	0.061	0.133
Canister Load 2	79.0625	11.585	12.077	12.568	13.552	15.518	0.123	0.270
Canister Load 3	69.0625	5.900	6.146	6.392	6.883	7.867	0.255	0.330

User Forces: Flag Force Calculation Per ANSI/NAAMM FP 1001-07	
Wind $_{\text {FORCE }}=$	0.289 Kip
Weight=	0.262 Kip
Wind $_{\text {FORCE, }}$ ICE $=$	0.073 Kip
Weight ${ }_{16 E}=$	0.413 Kip
$\mathrm{W}_{\text {FORCE, SERVICE WIIND }}=$	0.115 Kip
Weight=	0.262 Kip

\leftarrow Flag force should be included
at the top of the flag
attachment elevation. If the attachment of the flag to the halyard distributes forces equally to the pole, apply flag
forces accordingly in tnx file.

Deflection Check Required:	Yes	Import Deflection Results	
3\% Spine Deflection Check			
Allowable (3\%) Horizontal Spine Deflection (inches)	Actual Deflection $* * *$ (inches)	Sufficient/ Insufficient	
7.200	7.069	Sufficient	

[^2]

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spcolumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

General Information:

File Name: C:\Users \taehnke\Desktop \37514-0960.col	
Project:	
Column:	Engineer:
Code: ACI 318-08	Units: English
Run Option: Investigation	Slenderness: Not considered
Run Axis: X-axis	Column Type: Structural
Material Properties:	
$\mathrm{f}^{\prime \prime} \mathrm{c}=3 \mathrm{ksi}$	fy $=60 \mathrm{ksi}$
Ec $\quad=3122.02 \mathrm{ksi}$	Es $\quad=29000 \mathrm{ksi}$
Ultimate strain $=0.003 \mathrm{in} / \mathrm{in}$	
Betal $=0.85$	
Section:	
Rectangular: Width $=48 \mathrm{in}$	Depth $=48 \mathrm{in}$
Gross section area, Ag $=2304$ in^2	
$\mathrm{Ix}=442368 \mathrm{in}^{\wedge} 4$	$I y=442368 i n^{\wedge} 4$
$\mathrm{rx}=13.8564 \mathrm{in}$	$r y=13.8564 \mathrm{in}$
$\mathrm{Xo}=0 \mathrm{in}$	Yo $=0 \mathrm{in}$

Reinforcement:

Factored Loads and Moments with Corresponding Capacities:

	Pu	Mux	PhiMnx	Phimn/Mu	NA depth	Dt depth	eps_t	Phi
No.	kip	k-ft	k-ft		in	in		
1	9.00	225.00	1166.97	5.187	4.43	43.94	0.02674	900

*** End of output ***

\circ	\circ	\circ

spColumn v4.80. Licensed to: Paul J. Ford and Company. License ID: 60478-1036166-4-1E6CD-22701

File: C:IUsersItdehnkelDesktop\37514-0960.col
Project:

Column:
$\mathrm{f}^{\prime} \mathrm{c}=3 \mathrm{ksi}$
$\mathrm{fy}=60 \mathrm{ksi}$
$\mathrm{Es}=29000 \mathrm{ksi}$
$\mathrm{fc}=2.55 \mathrm{ksi}$
e_u $=0.003 \mathrm{in} / \mathrm{in}$
Beta1 $=0.85$
Confinement: Tied
$\operatorname{phi}(\mathrm{a})=0.8, \operatorname{phi}(\mathrm{~b})=0.9, \operatorname{phi}(\mathrm{c})=0.65$

Engineer:
$\mathrm{Ag}=2304 \mathrm{in}{ }^{\wedge} 2$
As $=12.00 \mathrm{in}^{\wedge} 2 \quad$ rho $=0.52 \%$
$X_{0}=0.00 \mathrm{in}$
$\mathrm{lx}=442368 \mathrm{in}^{\wedge} 4$
$\mathrm{ly}=442368 \mathrm{in}^{\wedge} 4$
Clear cover $=3.50$ in

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CT11117C
Wilton / Georgetown / Route 7
922 Danbury Road Wilton, CT 06897

April 16, 2014

EBI Project Number: 62142540
environmental | engineering | due diligence

April 16, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Re: Emissions Values for Site: CT11117C - Wilton / Georgetown / Route 7

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 922 Danbury Road, Wilton, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure ($\% \mathrm{MPE}$) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The general population exposure limit for the cellular band is $567 \mu \mathrm{~W} / \mathrm{cm} 2$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm} 2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 922 Danbury Road, Wilton, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, the actual antenna pattern gain value in the direction of the sample area was used. For this report the sample point is a 6 foot person standing at the base of the tower

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (1940.000 MHz - to 1950.000 MHz) were considered for each sector of the proposed installation.
2) 2 UMTS channels (2110.000 MHz to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
3) 2 LTE channels (2110.000 MHz to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
6) The antenna used in this modeling is the RFS APX16DWV-16DWVS-C-A20 for LTE, UMTS and GSM. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 16.3 dBd gain value at its main lobe. Actual antenna gain values were used for all calculations as per the manufacturers specifications.
7) The antenna mounting height centerline of the proposed antennas is $\mathbf{8 5}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the T-Mobile facility are $\mathbf{1 . 3 6 5 \%}$ ($\mathbf{0 . 4 5 5 \%}$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 . 6 9 5 \%}$ of the allowable FCC established general public limit. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ The online Connecticut Siting Council database does not include an approval by docket or petition for this facility so there are no specific limitation on the antenna configuration, however there has been at least one notice of intent filed, specifically EM-CING-161-111114.

[^1]: ${ }^{* *}$ Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

[^2]: *** Relative deflection under service level wind speed

