

JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157 E-Mail Address: jkohler@cohenandwolf.com

May 2, 2014

Attorney Melanie Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification Crown Castle/T-Mobile co-location Site ID CT11117 922 Danbury Road, Wilton

Dear Attorney Bachman:

This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, the Crown Castle ("Crown") owns the flagpole tower and related facility at 922 Danbury Road, Wilton, Connecticut (latitude 41.2563556 / longitude -73.433872). T-Mobile intends to replace three antennas and related equipment at this existing telecommunications facility in Wilton ("Wilton Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectman William F. Brennan, and the property owner Remo – Wilton Associates.

The existing Wilton Facility consists of a 90 foot tall flagpole facility.¹ The facility currently supports the equipment of T-Mobile at a centerline of 85 feet.

T-Mobile plans to replace three antennas and replace them with three antennas at an elevation of 85 feet. (See the plans revised to April 17, 2014 attached hereto as Exhibit A). T-Mobile will also replace an equipment cabinet, replace three existing GMA with six proposed GMAs, and reuse existing coax cable. The existing Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated April 24, 2014

1115 BROAD STREET PO. BOX 1821 BRIDGEPORT, CT 06601-1821 TEL: (203) 368-0211 FAX: (203) 394-9901 158 DEER HILL AVENUE DANBURY, CT 06810 TEL: (203) 792-2771 FAX: (203) 791-8149 320 POST ROAD WEST WESTPORT, CT 06880 TEL: (203) 222-1034 FAX: (203) 227-1373 657 ORANGE CENTER ROAD ORANGE, CT 06477 TEL: (203) 298-4066 FAX: (203) 298-4068

¹ The online Connecticut Siting Council database does not include an approval by docket or petition for this facility so there are no specific limitation on the antenna configuration, however there has been at least one notice of intent filed, specifically EM-CING-161-11114.

May 2, 2014 Site ID CT11117 Page 2

and attached hereto as Exhibit B.

The planned modifications to the Wilton Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's replacement antennas will be installed at the 85 foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.

2. The installation of the T-Mobile replacement equipment in the existing compound, as reflected on the attached site plan, will not require an extension of the site boundaries. T-Mobile's proposed equipment will be located entirely within the existing compound and concrete pad as shown on Sheet L-1 of Exhibit A.

3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.

4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated April 16, 2014 T-Mobile's operations would add 1.365% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 6.695% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the Wilton Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely

Julie D. Kohler, Esq

cc: Town of Wilton, First Selectman William F. Brennan Crown Castle Corporation Remo-Wilton Associates LLC Halene Fujimoto, HPC

EXHIBIT A

CONFIGURATION AB CONFIGURATION CO	Z +	PROPOSED (6) T-MOBILE GMA TO REPLACE EXIST (3) EXIST (12) 7/8" COAX CABLES ROUTED ALONG EXIST CABLE BRIDGE	D BY A STATE LICENSED
SITE & EQUIPMENT PLANS SHEET NUMBER	SITE INFORMATION CT11117C WILTON/GEORGETOWN/RT7 922 DANBURY ROAD WILTON, CT 06897		TECTONIC Engineering & SURVEYING Consultants P.C. TECTONIC Engineering & Surveying 1279 Route 300 Newburgh, NY 1250 Phone: (645) 567–6703

WILTON/GEORGETOWN/1 922 DANBURY ROAD WILTON, CT 06897	CONFIGURATION CONFIG	I CONFIGURATION 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B
SITE INFORMATION CT11117C WILTON/GEORGETOWN/1 922 DANBURY ROAD WILTON, CT 06897	CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION SHEET TIME CONFIGURATION CONFIGURATION CONFIGURATION SHEET TIME CONFIGURATION SHEET TIME CONFIGURATION SHEET NUMBER SHEET NUMBER	CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION SHEET T-MOBILE RF DATA CONFIGURATION CONFIGURATION CONFIGURATION SHEET T-MOBILE RF DATA CONFIGURATION CONFIGURATION CONFIGURATION SHEET T-MOBILE RF DATA CONFIGURATION CONFIGURATION CONFIGURATION SHEET T-MOBILE RF DATA CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION SHEET T-MOBILE RF DATA CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION SHEET T-MOBILE RF DATA CONFIGURATION CONFIGURATIO
	CONFIGURATION SHEET THE CONFIGURATION CONFIGURATI	T FOR FINAL RF DATA 2 2 2 2 2 2 2 2 2 2 2 2 2

EXHIBIT B

PAUL J. FORD AND COMPANY S T R U C T U R A L E N G I N E E R S 250 East Broad Street • Suite 600 • Columbus, Ohio 43215-3708

Date: April 24, 2014

Andrew Bazinet Crown Castle 46 Broadway Albany, NY 12204 Paul J. Ford and Company 250 East Broad St, Suite 600 Columbus, OH 43215 614.221.6679

Subject: Structural Analysis Report

Carrier Designation;

T-Mobile Co-Locate Carrier Site Number: Carrier Site Name:

Crown Castle BU Number:

Crown Castle JDE Job Number:

Crown Castle Work Order Number:

Crown Castle Application Number:

Crown Castle Site Name:

Crown Castle Designation:

mber: ne:

CT11117C Wilton/Georgetown/Rt7

829115 Wilton/Georgetown/Rt7 259553 751467 216340 Rev. 3

Engineering Firm Designation:

Site Data:

922 Danbury Road, Wilton, Fairfield County, CT Latitude 41° 15' 22.964", Longitude -73° 26' 2.209" 89.0625 Foot - Monopole Tower

Paul J. Ford and Company Project Number: 37514-0960

Dear Andrew Bazinet,

Paul J. Ford and Company is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 639862, in accordance with application 216340, revision 3.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing loading, respectively.

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at *Paul J. Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitter by thomas J. Dehnie, E.I. Structural Designer

Date: April 24, 2014

Andrew Bazinet	Paul J. Ford and Company
Crown Castle	250 East Broad St, Suite 600
46 Broadway	Columbus, OH 43215
Albany, NY 12204	614.221.6679

Subject: Structural Analysis Report

Carrier Designation:	T-Mobile Co-Locate			
	Carrier Site Number:	CT11117C		
	Carrier Site Name:	Wilton/Georgetown/Rt7		
Crown Castle Designation:	Crown Castle BU Number:	829115		
-	Crown Castle Site Name:	Wilton/Georgetown/Rt7		
	Crown Castle JDE Job Number:	259553		
	Crown Castle Work Order Number:	751467		
	Crown Castle Application Number:	216340 Rev. 3		
Engineering Firm Designation:	Paul J. Ford and Company Project Number:	37514-0960		
Site Data:	922 Danbury Road, Wilton, Fairfield County,	СТ		
	Latitude 41° 75° 22.964°, Longitude -73° 26° 2.209°			
	89.0625 FOOT - MONODOLE LOWER			

Dear Andrew Bazinet,

Paul J. Ford and Company is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 639862, in accordance with application 216340, revision 3.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment Note: See Table I and Table II for the proposed and existing loading, respectively. **Sufficient Capacity**

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at *Paul J. Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Thomas J. Dehnke, E.I.T. Structural Designer

April 24, 2014 CCI BU No 829115 Page 2

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 Proposed Antenna and Cable Information
- Table 2 Existing Antenna and Cable Information
- Table 3 Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)Table 6 - Tower Components vs. Capacity

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 89.0625 ft Monopole tower designed by Stealth in July of 2009. The tower was originally designed for a wind speed of 105 mph per TIA-222-G.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
85.0	85.0	3	rfs celwave	APX16DWV-16DWVS-C	-		

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
95.0	0E 0	6	andrew	ETW190VS12UB	12 (l)	7/8	1
05.0	05.0	3	andrew	TMBXX-6516-R2M			2
		3	andrew	ETW190VS12UB			
76.0	76.0	6	kaelus	DBC2046F1V2-1	6 (1)	7/8	1
, 0.0	, 5.0	3	powerwave technologies	P65-16-XLH-RR		170	

Notes: 1) Existing

Existing Equipment
 Equipment To Be Removed

(I) Coax mounted internally and shielded from the wind. See coax layout in Appendix B.

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source	
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, 10/13/2000	3594542	CCISITES	
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	PJF, 31908-0121, 07/22/2009	3886758	CCISITES	
4-TOWER MANUFACTURER DRAWINGS	PJF, 31908-0121, 07/22/2009	3777970	CCISITES	

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	90 - 70	Pole	MT 4" X 0.5	1	-1.32	329.78	76.0	Pass
L2	70 - 35.9375	Pole	P24x0.375	2	-5.00	779.12	21.9	Pass
L3	35.9375 - 1.9375	Pole	P24x0.375	3	-8.45	779.12	50.1	Pass
L4	1.9375 - 0.9375	Pole	P20x0.5	4	-8.56	857.44	56.5	Pass
							Summary	
						Pole (L1)	76.0	Pass
			***************************************			Rating =	76.0	Pass

Table 6 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	46.0	Pass
1	Base Plate	0	48.7	Pass
1	Base Foundation Soil Interaction	0	99.4	Pass
1	Base Foundation Structural Steel	0	19.7	Pass
1	Flange Connection	1	33.8	Pass
1	Flange Connection	35.9	25.2	Pass

Structure Rating (max from all components) =	99.4%

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

s.,

April 24, 2014 CCI BU No 829115 Page 5

APPENDIX A

TNXTOWER OUTPUT

tnxTower Report - version 6.1.4.1

April 24, 2014 CCI BU No 829115 Page 6

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 38 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios Use Code Safety Factors - Guys
- ✓ Escalate Ice

Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination Distribute Leg Loads As Uniform Assume Legs Pinned

- ✓ Assume Rigid Index Plate
 ✓ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
- Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption
- Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feedline Torque Include Angle Block Shear Check Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Pole Section Geometry

Section	Elevation	Section Length	Pole Size	Pole Grade	Socket Length ft
	ft	ft			
L1	90.00-70.00	20.00	MT 4" X 0.5	ASTM A513	*****
				D.O.M.	
				(75 ksi)	
L2	70.00-35.94	34.06	P24x0.375	A53-B-35	
				(35 ksi)	
L3	35.94-1.94	34.00	P24x0.375	A53-B-35	
				(35 ksi)	
L4	1.94-0.94	1.00	P20x0.5	A53-B-35	
				(35 ksi)	

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		51	ft			ft²/ft	plf
LDF5-50A(7/8")	С	No	Inside Pole	85.94 - 0.94	12	No ice	0.00	0.33
						1/2" Ice	0.00	0.33
						1" Ice	0.00	0.33
						2" Ice	0.00	0.33
						4" Ice	0.00	0.33

89.0625 Ft Monopole Tower Structural Analysis Project Number 37514-0960, Application 216340, Revision 3

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		,,	ft			ft²/ft	plf
LDF5-50A(7/8")	С	No	Inside Pole	76.94 - 0.94	6	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
						1" Ice	0.00	0.33
						2" Ice	0.00	0.33
						4" Ice	0.00	0.33

User Defined Loads

Description	Elevation	Offset From Centroid	Azimuth Angle		Weight	F _x	Fz	Wind Force	C _A A _C
	ft	ft	0		K	ĸ	K	K	ft^2
Flag	90.94	0.00	0.0000	No Ice	0.26	0.00	0.00	0.29	6.9
				Ice	0.41	0.00	0.00	0.07	8.9
				Service	0.26	0.00	0.00	0.12	7.98

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	K
Canister Load1	С	None		0.0000	90.00	No Ice	5.68	5.68	0.06
						1/2"	5.93	5.93	0.13
						Ice	6.18	6.18	0.21
						1" Ice	6.67	6.67	0.37
						2" Ice	7.65	7.65	0.72
						4" Ice			
Canister Load2	С	None		0.0000	80.00	No Ice	11.58	11.58	0.12
						1/2"	12.08	12.08	0.27
						lce	12.57	12.57	0.42
						1" Ice	13.55	13.55	0.75
						2" Ice	15.52	15.52	1.47
						4" Ice			
Canister Load3	С	None		0.0000	70.00	No Ice	5.90	5.90	0.26
						1/2"	6.15	6.15	0.33
						Ice	6.39	6.39	0.41
						1" Ice	6.88	6.88	0.57
						2" Ice	7.87	7.87	0.94
***						4" lce			
Truck Ball	C	None		0.000	90.75	No Ice	1 41	1 41	0.05
Huck Dall	0	None		0.0000	50.75	1/2"	1.58	1.58	0.00
						100	1.30	1.50	0.07
						1" Ice	2 11	2 11	0.03
						2" 100	2.11	2.11	0.15
						2 ICC	2.55	2.90	0.25
**						4 108			
(2) ETW190VS12UB	А	From Leg	4.00	0.0000	85.94	No Ice	0.00	0.00	0.01
			0.00			1/2"	0.00	0.00	0.02
			0.00			Ice	0.00	0.00	0.03
						1" Ice	0.00	0.00	0.04
						2" lce	0.00	0.00	0.11
						4" lce			
(2) ETW190VS12UB	В	From Leg	4.00	0.0000	85.94	No Ice	0.00	0.00	0.01
			0.00			1/2"	0.00	0.00	0.02
			0.00			ice	0.00	0.00	0.03
						1" Ice	0.00	0.00	0.04
						2" Ice	0.00	0.00	0.11
						4" lce			
(2) ETW190VS12UB	С	From Leg	4.00	0.0000	85.94	No Ice	0.00	0.00	0.01
		0	0.00			1/2"	0.00	0.00	0.02
			0.00			Ice	0.00	0.00	0.03

89.0625 Ft Monopole Tower Structural Analysis Project Number 37514-0960, Application 216340, Revision 3

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	•	ft		ft ²	ft ²	К
						1" Ice 2" Ice 4" Ice	0.00 0.00	0.00 0.00	0.04 0.11
APX16DWV-16DWVS-C	A	From Leg	4.00	0.0000	85.94	No Ice	0.00	0.00	0.04
			0.00			1/2"	0.00	0.00	0.07
			0.00			Ice	0.00	0.00	0.11
						1" lce 2" lce	0.00	0.00 0.00	0.20 0.46
APX16DWV-16DWVS-C	в	From Lea	4 00	0.0000	85 94	No Ice	0.00	0.00	0.04
		Lion Log	0.00	0.0000	00.01	1/2"	0.00	0.00	0.07
			0.00			Ice	0.00	0.00	0.11
						1" Ice	0.00	0.00	0.20
						2" Ice	0.00	0.00	0.46
			116767			4" Ice			
APX16DWV-16DWVS-C	С	From Leg	4.00	0.0000	85.94	No Ice	0.00	0.00	0.04
			0.00			1/2"	0.00	0.00	0.07
			0.00			lce	0.00	0.00	0.11
						1" ICe	0.00	0.00	0.20
***						4" Ice	0.00	0.00	0.40
P65-16-XI H-RR	А	From Lea	4 00	0.000	76 94	No Ice	0.00	0.00	0.05
			0.00		10101	1/2"	0.00	0.00	0.10
			0.00			Ice	0.00	0.00	0.15
						1" Ice	0.00	0.00	0.28
						2" lce	0.00	0.00	0.61
						4" Ice			
P65-16-XLH-RR	В	From Leg	4.00	0.0000	76.94	No Ice	0.00	0.00	0.05
			0.00			1/2"	0.00	0.00	0.10
			0.00			ICe	0.00	0.00	0.15
						2" Ice	0.00	0.00	0.20
						2 ICe	0.00	0.00	0.01
P65-16-XLH-RR	С	From Lea	4.00	0.0000	76.94	No Ice	0.00	0.00	0.05
			0.00			1/2"	0.00	0.00	0.10
			0.00			Ice	0.00	0.00	0.15
						1" Ice	0.00	0.00	0.28
						2" Ice	0.00	0.00	0.61
		_				4" Ice			
ETW190VS120B	A	From Leg	4.00	0.0000	76.94	No Ice	0.00	0.00	0.01
			0.00			1/2	0.00	0.00	0.02
			0.00			1" Ice	0.00	0.00	0.03
						2" Ice	0.00	0.00	0.11
						4" Ice		0.00	
ETW190VS12UB	В	From Leg	4.00	0.0000	76.94	No Ice	0.00	0.00	0.01
		10.00	0.00			1/2"	0.00	0.00	0.02
			0.00			Ice	0.00	0.00	0.03
						1" Ice	0.00	0.00	0.04
						2" Ice	0.00	0.00	0.11
ETM/100/(\$1211P	C	From Log	4.00	0.0000	76.04	4" ICE	0.00	0.00	0.01
E10019003120B	C	FIOIDLeg	4.00	0.0000	70.94	1/2"	0.00	0.00	0.01
			0.00			Ice	0.00	0.00	0.02
			0.00			1" Ice	0.00	0.00	0.04
						2" Ice	0.00	0.00	0.11
						4" Ice			
(2) DBC2046F1V2-1	A	From Leg	4.00	0.0000	76.94	No Ice	0.00	0.00	0.01
			0.00			1/2"	0.00	0.00	0.01
			0.00			Ice	0.00	0.00	0.02
						1" Ice	0.00	0.00	0.03
						2" Ice	0.00	0.00	0.09
(2) DBC2046E11/2 1	P	From Log	4 00	0.0000	76.04	4 ICe	0.00	0.00	0.01
(2) DDC2040F1V2-1	0	TomLey	4.00	0.0000	70.94	No ICe	0.00	0.00	0.01

89.0625 Ft Monopole Tower Structural Analysis Project Number 37514-0960, Application 216340, Revision 3

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	K
			0.00			1/2"	0.00	0.00	0.01
			0.00			Ice	0.00	0.00	0.02
						1" Ice	0.00	0.00	0.03
						2" Ice	0.00	0.00	0.09
						4" Ice			
(2) DBC2046F1V2-1	С	From Leg	4.00	0.0000	76.94	No Ice	0.00	0.00	0.01
			0.00			1/2"	0.00	0.00	0.01
			0.00			Ice	0.00	0.00	0.02
						1" Ice	0.00	0.00	0.03
						2" Ice	0.00	0.00	0.09
						4" Ice			

Tower Pressures - No Ice

$G_{H} = 1.690$

Section	Z	Kz	qz	A _G	F	AF	A _R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation		11111			а				%	In	Out
		[С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 90.00-	80.00	1.288	24	6.667	А	0.000	0.000	0.000	0.00	0.000	0.000
70.00	-242			000007	В	0.000	0.000		0.00	0.000	0.000
					С	0.000	0.000		0.00	0.000	0.000
L2 70.00-	53.36	1.147	21	68.125	А	0.000	68.125	68.125	100.00	0.000	0.000
35.94					В	0.000	68.125		100.00	0.000	0.000
					С	0.000	68.125		100.00	0.000	0.000
L3 35.94-1.94	18.94	1	18	68.000	А	0.000	68.000	68.000	100.00	0.000	0.000
					В	0.000	68.000		100.00	0.000	0.000
					С	0.000	68.000		100.00	0.000	0.000
L4 1.94-0.94	1.44	1	18	1.667	Α	0.000	1.667	1.667	100.00	0.000	0.000
					В	0.000	1.667		100.00	0.000	0.000
					С	0.000	1.667		100.00	0.000	0.000

Tower Pressure - With Ice

$G_H=1.690$

Section	Ζ	Kz	q_z	tz	A _G	F	AF	A _R	A _{leg}	Leg	C _A A _A	C _A A _A
Elevation		_				а				%	In	Out
						С		1			Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 90.00-70.00	80.00	1.288	5	0.8341	9.447	Α	0.000	0.000	0.000	0.00	0.000	0.000
		1000				В	0.000	0.000		0.00	0.000	0.000
						С	0.000	0.000		0.00	0.000	0.000
L2 70.00-35.94	53.36	1.147	4	0.7945	72.636	А	0.000	72.636	72.636	100.00	0.000	0.000
						В	0.000	72.636		100.00	0.000	0.000
						С	0.000	72.636		100.00	0.000	0.000
L3 35.94-1.94	18.94	1	4	0.7500	72.250	А	0.000	72.250	72.250	100.00	0.000	0.000
						В	0.000	72.250		100.00	0.000	0.000
						С	0.000	72.250		100.00	0.000	0.000
L4 1.94-0.94	1.44	1	4	0.7500	1.792	Α	0.000	1.792	1.792	100.00	0.000	0.000
						В	0.000	1.792		100.00	0.000	0.000
		l				С	0.000	1.792		100.00	0.000	0.000

Tower Pressure - Service

 $G_{H} = 1.690$

April 24, 2014 CCI BU No 829115 Page 10

Section Elevation	Z	Kz	q _z	A _G	F a	A _F	A _R	A _{leg}	Leg %	C _A A _A In	C _A A _A Out
ft	ft		psf	ft^2	c e	ft ²	ft ²	ft^2	-	Face ft ²	Face ft ²
L1 90.00-	80.00	1.288	8	6.667	Α	0.000	0.000	0.000	0.00	0.000	0.000
70.00				international second	В	0.000	0.000		0.00	0.000	0.000
					С	0.000	0.000		0.00	0.000	0.000
L2 70.00-	53.36	1.147	7	68.125	A	0.000	68.125	68.125	100.00	0.000	0.000
35.94					В	0.000	68.125		100.00	0.000	0.000
					С	0.000	68.125		100.00	0.000	0.000
L3 35.94-1.94	18.94	1	6	68.000	Α	0.000	68.000	68.000	100.00	0.000	0.000
					В	0.000	68.000		100.00	0.000	0.000
					С	0.000	68.000		100.00	0.000	0.000
L4 1.94-0.94	1.44	1	6	1.667	А	0.000	1.667	1.667	100.00	0.000	0.000
		_			В	0.000	1.667		100.00	0.000	0.000
					С	0.000	1.667		100.00	0.000	0.000

Load Combinations

Comb.		Description	
No.			
1	Dead Only		
2	Dead+Wind 0 deg - No Ice		
3	Dead+Wind 30 deg - No Ice		
4	Dead+Wind 60 deg - No Ice		
5	Dead+Wind 90 deg - No Ice		
6	Dead+Wind 120 deg - No Ice		
7	Dead+Wind 150 deg - No Ice		
8	Dead+Wind 180 deg - No Ice		
9	Dead+Wind 210 deg - No Ice		
10	Dead+Wind 240 deg - No Ice		
11	Dead+Wind 270 deg - No Ice		
12	Dead+Wind 300 deg - No Ice		
13	Dead+Wind 330 deg - No Ice		
14	Dead+lce+Temp		
15	Dead+Wind 0 deg+Ice+Temp		
16	Dead+Wind 30 deg+Ice+Temp		
17	Dead+Wind 60 deg+Ice+Temp		
18	Dead+Wind 90 deg+lce+Temp		
19	Dead+Wind 120 deg+Ice+Temp		
20	Dead+Wind 150 deg+Ice+Temp		
21	Dead+Wind 180 deg+Ice+Temp		
22	Dead+Wind 210 deg+lce+Temp		
23	Dead+Wind 240 deg+Ice+Temp		
24	Dead+Wind 270 deg+lce+Temp		
25	Dead+Wind 300 deg+lce+Temp		
26	Dead+Wind 330 deg+Ice+Temp		
27	Dead+Wind 0 deg - Service		
28	Dead+Wind 30 deg - Service		
29	Dead+Wind 60 deg - Service		
30	Dead+Wind 90 deg - Service		
31	Dead+Wind 120 deg - Service		
32	Dead+Wind 150 deg - Service		
33	Dead+Wind 180 deg - Service		
34	Dead+Wind 210 deg - Service		
35	Dead+Wind 240 deg - Service		
36	Dead+Wind 270 deg - Service		
37	Dead+Wind 300 deg - Service		
38	Dead+Wind 330 deg - Service		

	Maximum Member Forces												
Sectio n No	Elevation ft	Component Type	Condition	Gov. Load Comb	Force K	Major Axis Moment kip-ft	Minor Axis Moment kin-ft						
L1	90 - 70	Pole	Max Tension	15	0.00	0.00	-0.00						
			Max. Compression	14	-2.61	0.00	0.00						
			Max. Mx	5	-1.32	-17.86	0.00						
			Max. My	2	-1.32	0.00	17.86						

89.0625 Ft Monopole Tower Structural Analysis Project Number 37514-0960, Application 216340, Revision 3

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
			Max. Vv	5	1.13	-11.22	0.00
			Max. Vx	2	-1.13	0.00	11.22
			Max. Torque	4			0.00
L2	70 - 35.9375	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-7.24	0.00	0.00
			Max. Mx	5	-5.00	-88.15	0.00
			Max. My	2	-5.00	0.00	88.15
			Max. Vy	5	2.78	-88.15	0.00
			Max. Vx	2	-2.78	0.00	88.15
			Max. Torque	3			-0.00
L3	35.9375 - 1.9375	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-11.43	0.00	0.00
			Max. Mx	5	-8.45	-203.38	0.00
			Max. My	2	-8.45	0.00	203.38
			Max. Vy	5	3.98	-203.38	0.00
			Max. Vx	2	-3.98	0.00	203.38
			Max. Torque	3			-0.00
L4	1.9375 - 0.9375	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-11.56	0.00	0.00
			Max. Mx	5	-8.56	-207.36	0.00
			Max. My	2	-8.56	0.00	207.36
			Max. Vy	5	4.00	-207.36	0.00
			Max. Vx	2	-4.00	0.00	207.36
			Max. Torque	3			-0.00

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	0
L1	90 - 70	10.422	27	2.2903	0.0000
L2	70 - 35.9375	3.394	30	0.3527	0.0000
L3	35.9375 - 1.9375	1.116	30	0.2653	0.0000
L4	1.9375 - 0.9375	0.001	29	0.0142	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	2		ft
90.94	Flag	27	10.422	2.2903	0.0000	2826
90.75	Truck Ball	27	10.422	2.2903	0.0000	2826
90.00	Canister Load1	27	10.422	2.2903	0.0000	2826
85.94	(2) ETW190VS12UB	30	8.774	1.8218	0.0000	2826
80.00	Canister Load2	30	6.483	1.1771	0.0000	1412
76.94	P65-16-XLH-RR	30	5.407	0.8806	0.0000	1081
70.00	Canister Load3	30	3.394	0.3527	0.0000	760

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	90 - 70	28.768	2	6.2322	0.0000
L2	70 - 35.9375	9.578	2	0.9929	0.0000
L3	35.9375 - 1.9375	3.155	2	0.7492	0.0000
L4	1.9375 - 0.9375	0.004	4	0.0401	0.0000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Comb.	in	D	o	ft
90.94	Flag	2	28.768	6.2322	0.0000	1054
90.75	Truck Ball	2	28.768	6.2322	0.0000	1054
90.00	Canister Load1	2	28.768	6.2322	0.0000	1054
85.94	(2) ETW190VS12UB	2	24.272	4.9653	0.0000	1054
80.00	Canister Load2	2	18.021	3.2223	0.0000	526
76.94	P65-16-XLH-RR	2	15.084	2.4205	0.0000	402
70.00	Canister Load3	2	9.578	0.9929	0.0000	282

Compression Checks

Pole Design Data

Section	Elevation	Size	L	Lu	Kl/r	Fa	A	Actual P	Allow.	Ratio
100.	ft		ft	ft		ksi	in ²	ĸ	ĸ	Pa
L1	90 - 70 (1)	MT 4" X 0.5	20.00	0.00	0.0	45.000	5.4978	-1.32	247.40	0.005
L2	70 - 35.9375 (2)	P24x0.375	34.06	0.00	0.0	21.000	27.8325	-5.00	584.48	0.009
L3	35.9375 - 1.9375 (3)	P24x0.375	34.00	0.00	0.0	21.000	27.8325	-8.45	584.48	0.014
L4	1.9375 - 0.9375 (4)	P20x0.5	1.00	0.00	0.0	21.000	30.6305	-8.56	643.24	0.013

Pole Bending Design Data

Section No.	Elevation	Size	Actual M _x	Actual f _{bx}	Allow. F _{bx}	Ratio f _{bx}	Actual M _y	Actual f _{by}	Allow. F _{by}	Ratio f _{by}
	ft		kip-ft	ksi	ksi	F _{bx}	kip-ft	ksi	ksi	Fby
L1	90 - 70 (1)	MT 4" X 0.5	17.86	49.899	49.500	1.008	0.00	0.000	49.500	0.000
L2	70 - 35.9375 (2)	P24x0.375	88.15	6.536	23.100	0.283	0.00	0.000	23.100	0.000
L3	35.9375 - 1.9375 (3)	P24x0.375	203.38	15.078	23.100	0.653	0.00	0.000	23.100	0.000
L4	1.9375 - 0.9375 (4)	P20x0.5	207.36	17.080	23.100	0.739	0.00	0.000	23.100	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V	Actual f _v	Allow. Fv	Ratīo f _v	Actual T	Actual f _{vt}	Allow. F _{vt}	Ratio f√
	ft		K	ksi	ksi	Fv	kip-ft	ksi	ksi	F _{vt}
L1	90 - 70 (1)	MT 4" X 0.5	1.08	0.393	30.000	0.013	0.00	0.000	30.000	0.000
L2	70 - 35.9375 (2)	P24x0.375	2.78	0.200	14.000	0.014	0.00	0.000	14.000	0.000
L3	35.9375 - 1.9375 (3)	P24x0.375	3.98	0.286	14.000	0.020	0.00	0.000	14.000	0.000
L4	1.9375 - 0.9375 (4)	P20x0.5	4.00	0.261	14.000	0.019	0.00	0.000	14.000	0.000

	Pole Interaction Design Data										
Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria		
No.		Р	f _{bx}	f _{by}	f_v	f _{vt}	Stress	Stress			
	ft	P.	Fre	En	E.	Eut	Ratio	Ratio			

tnxTower Report - version 6.1.4.1

89.0625 Ft Monopole Tower Structural Analysis Project Number 37514-0960, Application 216340, Revision 3

Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f _{bv}	Ratio f _v	Ratio f _{vt}	Comb. Stress	Allow. Stress	Criteria
	ft	Pa	F _{bx}	Fby	Fv	F _{vt}	Ratio	Ratio	
L1	90 - 70 (1)	0.005	1.008	0.000	0.013	0.000	1.014	1.333	H1-3+VT 🖌
L2	70 - 35.9375 (2)	0.009	0.283	0.000	0.014	0.000	0.292	1.333	H1-3+VT 🖌
L3	35.9375 - 1.9375 (3)	0.014	0.653	0.000	0.020	0.000	0.668	1.333	H1-3+VT 🖌
L4	1.9375 - 0.9375 (4)	0.013	0.739	0.000	0.019	0.000	0.753	1.333	H1-3+VT 🖌

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	90 - 70	Pole	MT 4" X 0.5	1	-1.32	329.78	76.0	Pass
L2	70 - 35.9375	Pole	P24x0.375	2	-5.00	779.12	21.9	Pass
L3	35.9375 - 1.9375	Pole	P24x0.375	3	-8.45	779.12	50.1	Pass
L4	1.9375 - 0.9375	Pole	P20x0.5	4	-8.56	857.44	56.5	Pass
							Summary	
						Pole (L1)	76.0	Pass
						RATING =	76.0	Pass

April 24, 2014 CCI BU No 829115 Page 14

APPENDIX B

BASE LEVEL DRAWING

tnxTower Report - version 6.1.4.1

April 24, 2014 CCI BU No 829115 Page 15

April 24, 2014 CCI BU No 829115 Page 16

APPENDIX C

ADDITIONAL CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Flag	90.9375	P65-16-XLH-RR	76.9375
Truck Ball	90.75	P65-16-XLH-RR	76.9375
Canister Load1	90	P65-16-XLH-RR	76.9375
(2) ETW190VS12UB	85.9375	ETW190VS12UB	76.9375
(2) ETW190VS12UB	85.9375	ETW190VS12UB	76.9375
(2) ETW190VS12UB	85.9375	ETW190VS12UB	76.9375
APX16DWV-16DWVS-C	85.9375	(2) DBC2046F1V2-1	76.9375
APX16DWV-16DWVS-C	85.9375	(2) DBC2046F1V2-1	76.9375
APX16DWV-16DWVS-C	85.9375	(2) DBC2046F1V2-1	76.9375
Canister Load2	80	Canister Load3	70

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
ASTM A513	75 ksi	85 ksi	A53-B-35	35 ksi	58 ksi
D.O.M.					

TOWER DESIGN NOTES

Tower is located in Fairfield County, Connecticut.
 Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

Deflections are based upon a 50 mph wind.
 TOWER RATING: 76%

Paul J. Ford and Company	Job: 90-ft Flag Pole: 927	Danbury Rd.:	Wilton, Cl
250 East Broad St. Suite 600	Project: 31908-0121		
Columbus OH 43215	Client: ATTW-80583W-33R5	Drawn by: TDehnke	App'd:
Phone: 614.221.6679	Code: TIA/EIA-222-F	Date: 04/25/14	Scale: NTS
FAX:	Path: T:1375 Crewn Castiel2014137514-0060 BU 829115W0 751467 BI	U 829115 (7805)(37514-00950 With Concealment et	Dwg No. E-1

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G

Assumptions: 1) Rod groups at corners. Total # rods divisible by 4. Maximum total # of rods = 48 (12 per Corner). 2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner) 3) Clear space between bottom of leveling nut and ton of concrete mode exceeding (1)*(Rod Diameter).

Clear space between bottom	of leveling nut and top of concrete not exceeding	g (1)*(Rod Diameter)

Site Data			Base Reactions		
BU#:			TIA Revision: F		
Site Name:			Unfactored Moment, M: 207	ft-kips	
App #:			Unfactored Axial, P: 9	kips	
And	chor Rod Da	ata	Unfactored Shear, V: 4	kips	
Qty:	4				
Diam:	2.25	in	Anchor Rod Results		
Rod Material:	A615-J		TIA F> Maximum Rod Tension	89.8	Kips
Yield, Fy:	75	ksi	Allowable Tension:	195.0	Kips
Strength, Fu:	100	ksi	Anchor Rod Stress Ratio:	46.0%	Pass
Bolt Circle:	27	in			
	Plate Data		Base Plate Results	Flexural Check	PL Ref. Data
W=Side:	25.5	in	Base Plate Stress:	24.3	ksi Yield Line (in):
Thick:	2.25	in	Allowable PL Bending Stress:	50.0	ksi 16.06
Grade:	50	ksi	Base Plate Stress Ratio:	48.7%	Pass Max PL Length:
Clip Distance:	1.75	in			16.06
			N/A - Unstiffened		
Stiffener Da	ta (Welding a	at both sides)	Stiffener Results		
Configuration:	Unstiffened		Horizontal Weld :	N/A	
Weld Type:		**	Vertical Weld:	N/A	
Groove Depth:		in **	Plate Flex+Shear, fb/Fb+(fv/Fv)^2:	N/A	
Groove Anale:		dearees	Plate Tension+Shear, ft/Ft+(fv/Fv)^2:	N/A	
Fillet H. Weld:	P ()	< Disregard	Plate Comp. (AISC Bracket):	N/A	
Fillet V. Weld:		in	Pole Results		
Width:		in	Pole Punching Shear Check:	N/A	
Height:		in	Max PL Length		
Thick:		in			
Notch:		in	# Anchora		
Grade		ksi	Gty/4 THICKNESS	5	
Weld str		ksi	E Anchor,	Тур.	
Clear Space				STIFFENED CONFIGURATION	
between			3/X/ / WX	B.C.	
Stiffeners at		in		SH-	
BC				VE	
5.0.		C.	CAN IN	ot B.C. fo	r Space or <u>Single</u>
			*	Anchor Co	ISE
Pole Data			Pole W	()	
Diam:	20	in	Anchor Spo	scino Some As	
Thick:	0.5	in	Stiffener Sp	pooing. Signie Carner	
Grade:	35	ksi	Anchor [Inp	out Clear Space)	
# of Sides:	0	"0" IF Round			

Stress Increase Factor
ASD ASIF: 1.333

-

** Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Site Data	Reactions		14
BU#:	Moment:	207	ft-kips
Site Name:	Axial:	9	kips
App #:	Shear:	4	kips
	Exterior Flange Run, T+Q:	0	kips
Manufacturer: Other	Elevation:	1	feet
LATE CHECK ONLY			

Stiffened or Unstiffened, Interior Flange Plate - Any Bolt Material TIA Rev F

Plate Data					
Plate Outer Diam:	23.25	lin			
Plate Inner Diam:	20	in (Hole @ Ctr)			
Thick:	2	in			
Grade:	50	ksi			
Effective Width:	3.04	in			

Stiffener Data (Welding at Both Sides)				
Config:	0	*		
Weld Type:				
Groove Depth:		in **		
Groove Angle:		degrees		
Fillet H. Weld:		< Disregard		
Fillet V. Weld:		in		
Width:		in		
Height:		in		
Thick:		in		
Notch:		in		
Grade:		ksi		
Weld str.:	h	ksi		

Pole Data					
Pole OuterDiam:	24	lin			
Thick:	0.375	in			
Pole Inner Diam:	23.25	in			
Grade:	35	ksi			
# of Sides:	0	"0" IF Round			
Fu	50	ksi			

Stress Increase Factor				
ASIF:	1.333			

* 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

** Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Interior Flange Plate Results	Flexural Check
Controlling Bolt Axial Force:	21.1 Kips, Ext. C= Interior C
Plate Stress:	16.9 ksi
Allowable Plate Stress:	50.0 ksi
Plate Stress Ratio:	33.8% Pass
<u>n/a</u>	
Stiffener Results	
Horizontal Weld :	n/a
Vertical Weld:	n/a
Plate Flex+Shear, fb/Fb+(fv/Fv)^2:	n/a
Plate Tension+Shear, ft/Ft+(fv/Fv)^2:	n/a
Plate Comp. (AISC Bracket):	n/a
Pole Results	
Pole Punching Shear Check:	n/a

88.31 8.54 2.75 0 35.9375	ft-kips kips kips kips feet 1 7 25.	8.1 Kips, Ext. T=Interior T
8.54 2.75 0 35.9375	kips kips feet 1 7 25.	8.1 Kips, Ext. T=Interior T
2.75 0 <u>35.9375</u> esults	kips kips feet 1 7 25.	8.1 Kips, Ext. T=Interior T
0 35.9375 esults	kips feet 1 7 25.	8.1 Kips, Ext. T=Interior T
<u>35.9375</u> sults	feet 1 7 25.	8.1 Kips, Ext. T=Interior T
sults	1 1 7 25.	8.1 Kips, Ext. T=Interior T
esults	1 7 25.	8.1 Kips, Ext. T=Interior T
esults	1 7 25.	8.1 Kips, Ext. T=Interior T
esults	1 7 25.	8.1 Kips, Ext. T=Interior T
	1 7 25.	8.1 Kips, Ext. T=Interior T
	7 25.	
	25.	Z.U KIDS
		2% Pass
		New all
esuits	Flexural C	neck
rce:	1	9.6 Kips, Ext. C= Interior C
		8.6 KSI
	5	50.0 ksi
	17.	.1% Pass
	n/a	
	n/a	
V/EV/A2.	n/a	
$+(f_1/E_1)^2$	n/a	
ket).	n/a	
net).	TI/C	
		2/2
JK.		n/a
		and a second second
		· · · · · · · · · · · · · · · · · · ·
		and the second
	iv/Fv)^2: +(fv/Fv)^2: ket): ck:	n/a n/a iv/Fv)^2: n/a +(fv/Fv)^2: n/a ket): n/a ck:

Stiffened or Unstiffened, Interior Flange Plate - Any Bolt Material TIA Rev F

PAUL J	. FORD & COMP	ANY	PAGE		1	OF		1
STRUC	STRUCTURAL ENGINEERS		BY		TJD	DATE	4/2	5/2014
250 E. I	250 E. BROAD ST. SUITE 500		PROJ	ECT		BU# 8	29115	
COLUN	IBUS, OH 43215		CLIEN	IT Cr	own Castle	COMM#	37	514-0960
BASE FLAN	GE DESIGN							
PLATE STEEL: Fu WELD:	ASTM A 572 70 KSI	GR 50	Fy = 50	KSI				
BASE LOADS:	MOMENT = SHEAR = AXIAL =	17.97 1.08 1.41	(ft-kips) (kips) (kips)					
SIZE FLANGE	BOLT CIRCLE #	BOLTS	I	E	BOLT FORCE (TENSION)	USE	BOLT	BOLT TENSILE CAPACITY
	(in) 19.000	6	(in^2) 270.75		(kips) 7.57	(ii 3	n) /4	(kips) 25.92
	SPINE C/C OD STI	OF F.	SHEAR IN	I R	STIFF. THK	STIFF. HT	ST CAPA	IFF. ACITY
STIFFENER	(in) (in 4 8.5	i) 00	(k) 26.96		(in) 0.50	(in) 6.50	(ki 86	ps) .67
	T/C LOAD AT C/C OF IN STIFFENER (k) 12.68	STIFF. THK (in) 0.50	STIFF. HT (in) <u>3.50</u>	0	TEN. CAPACITY DF STIFF. (kips) 70.00	COMP CAPACI OF STIF (kips) 68.44	TY F	
	b / t(STIFF) = 13.0	00	127 / SQI	RT(F)	r) = 17.96	OK		
WELD	SPINE w/ OD (g) STIFF (in) (in) 4 4.00	<u>h</u> (in)	 (in)	d (in)	Iweld of + Pli (in^ 534	STIFF PE 4) 63	Sweld (in^3)	Rw (k/in) 2 10
	w fw (in) (k/in) 1/4 4.95		10.00	0.10			102.00	2.10
PLATE BENDING	C/C MOM STIFF. AR (in) (in 8.500 5.2	ENT <u>M</u> 25	BENDING MOMENT (kip-in) 40.96	-	SPOKE WIDTH (in) 3.5	PLATE THK (in) 1.75	fb (ksi 22.9	Fb (ksi) 03 50.00
WELD OF PLATE TO BASE POLE	BOLT FORCE (COMPRESSION) (kips)	GROO WE	OVE LD(<u>fw</u> k/in)	WELD LENGT H (in)	N CAPA PLAT (I	/ELD CITY AT E EDGE (ips)	BOLT
	7.80	1/	4	8.50	13.38	4	6.84	< COMP.
TOP PLATE TO BASE	BASE POLE TOP MO	OMENT ARM		IG IT	fb	Fb		
POLE	(in) 25.56	(in) 3.28	(kip-in) 25.59		(ksi) 14.32	(ksi) 50		
*1/:	3 RD INCREASE	IN ALL	OWABLE	STE		SES IS I	JSED F	OR

CCI Flagpole Tool

M	CROWN
WV	CASTLE

	Site Data
BU#:	829115
Site Name:	
App #:	

Code												
Code:	TIA/EIA 222-F											
Ice Thickness:	0.75	in										
Windspeed (V):	85	mph										
Ice Wind Speed (V):	37.6	mph										

Tower Info	ormation	
Total Tower Height:	89.0625	ft
Base Tower Height:	69.0625	ft
Total Canister Length:	20	ft
Number of Canister Assembly		
Sections:	2	

Canister Section Number *:	Canister Assembly Length (ft):	Canister Assembly Diameter (in):	Number of Sides Canister Section	<u>Plate</u> <u>Type:</u>	Mating Flange Plate Thickness (in)**:	Mating Flange Plate Diameter (in):	Solidity Ratio	Plate Weight (Kip):	Canister Weight (Kip)
1	10	23.125	Round	3	0.00	23.125	0.5	0.000	0.121
2	10	24	Round	3	1.50	24	0.5	0.192	0.126

* Sections are numbered from the top of the tower down ** Mating Flange Plate Thickness at the bottom of canister section

Flag on Tower:	Yes
Flag Width:	18 ft
Flag Height:	12 ft
Flag Elevation(z):	90 ft

Truck Ball on Tower:	Yes	
Diameter of Ball:	18 in	

Г

			1	Top	Bottom	Wall	I	1	1
Pole Height Above	Section	Lap Splice		Diameter	Diameter	Thickness	Bend	Pole	
Base (ft)	Length (ft)	Length (ft)	Number of Sides	(in)	(in)	(in)	Radius (in)	Material	Delet
89.0625	20		0	4	4	0.5	n/a	A36	[x]
								verwrite=A	
								STM A513	
69.0625	34.0625		0	24	24	0.375	n/a	D.O.M.	[x]
35 34 0		0	24	24 0.	0.375	n/a	A53-B-35	[x]	
1	1		0	20	20	0.5	n/a	A53-B-35	[x]

CCIFlagpole Tool v1.0

Discrete Loads: Truck Ball	Apply C _a A _A at Elevation(z) (ft)	C _a A _A No Ice (ft ²)	C_aA_A 1/2" Ice (ft ²)	C _a A _A 1" Ice (ft ²)	C _a A _A 2" Ice (ft ²)	C _a A _A 4" Ice (ft ²)	Weight No Ice (Kip)	Weight 1/2" Ice (Kip)
	89.8125	1.414	1.575	1.745	2.112	2.950	0.05	0.067

	Discrete Loads : C _F A _F for Canister Assembly													
Canister Loading	Apply C _F A _F at Elevation(z) (ft)	C _F A _F No Ice (ft ²)	C _F A _F 1/2" Ice (ft ²)	C _F A _F 1" Ice (ft ²)	C _F A _F 2" Ice (ft ²)	C _F A _F 4" lce (ft ²)	Canister Assembly Weight No Ice (Kip)	Canister Assembly Weight 1/2" Ice (Kip)						
Canister Load 1	89.0625	5.685	5.931	6.177	6.668	7.652	0.061	0.133						
Canister Load 2 79.0625 11.585		11.585	12.077	12.568	13.552	15.518	0.123	0.270						
Canister Load 3	69.0625	5.900	6.146	6.392	6.883	7.867	0.255	0.330						

User Forces: Flag Force Cal	culation Per ANSI/NAAMM FP 1001-07
Wind _{FORCE} =	0.289 Kip
Weight=	0.262 Kip
Wind _{FORCE, ICE} =	0.073 Kip
Weight _{ICE} =	0.413 Kip
WFORCE, SERVICE WIND=	0.115 Kip
Weight=	0.262 Kip

←Flag force should be included at the top of the flag attachment elevation. If the attachment of the flag to the halyard distributes forces equally to the pole, apply flag forces accordingly in tnx file.

Deflection Check Required:	Yes	Import Deflection Results										
3% Spine Deflection Check												
Allowable (3%) Horizontal Spine Deflection (inches)	Actual Deflection ***(inches)	Sufficient/ Insufficient										
7.200	7.069	Sufficient										

*** Relative deflection under service level wind speed

v3.3, Effective 2/10/14

				000	000			0									
				00	00			00									
00000		0000	000	00		000	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		0.0	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	0.0		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	000	000	00	0	000	0 000	00	00	00	00	00	(TM)

spColumn v4.80 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2011, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

eral Information. Gr

General information:										
File Name: C:\Users\tdehnke\Desktop\375; Project:	14-0960.col									
Column: Code: ACI 318-08	Engineer: Units: English									
Run Option: Investigation Run Axis: X-axis	Slenderness: Not considered Column Type: Structural									
Material Properties:										
f'c = 3 ksi Ec = 3122.02 ksi Ultimate strain = 0.003 in/in Betal = 0.85	fy = 60 ksi Es = 29000 ksi									
Section:										
Rectangular: Width = 48 in	Depth = 48 in									
Gross section area, Ag = 2304 in^2 Ix = 442368 in^4 rx = 13.8564 in Xo = 0 in	Iy = 442368 in^4 ry = 13.8564 in Yo = 0 in									
Reinforcement:										
Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam	(in) Area (in^2) Size Diam (in) Area (in^2)									
# 3 0.38 0.11 # 4 0 # 6 0.75 0.44 # 7 0 # 9 1.13 1.00 # 10 10 # 14 1.69 2.25 # 18 2	0.50 0.20 # 5 0.63 0.31 0.88 0.60 # 8 1.00 0.79 1.27 1.27 # 11 1.41 1.56 2.26 4.00 0 1.41 1.56									
Confinement: Tied; #4 ties with #10 bars phi(a) = 0.8 , phi(b) = 0.9 , phi(c) = 0.9	s, #4 with larger bars. 0.65									
Layout: Rectangular Pattern: All Sides Equal (Cover to tran Total steel area: As = 12.00 in^2 at rho Minimum clear spacing = 12.16 in	nsverse reinforcement) o = 0.52% (Note: rho < 1.0%)									

Minimum clear spacing = 12.16 in

12 #9 Cover = 3 in

Factored Loads and Moments with Corresponding Capacities:

No.	Pu kip	Mux k-ft	PhiMnx k-ft	PhiMn/Mu	NA dep	th Dt in	depth in	eps_t	Phi
1	9.00	225.00	1166.97	5.187	4.	43	43.94	0.02674	0.900

*** End of output ***

EXHIBIT C

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11117C

Wilton / Georgetown / Route 7

922 Danbury Road Wilton, CT 06897

April 16, 2014

EBI Project Number: 62142540

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

April 16, 2014

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Re: Emissions Values for Site: CT11117C - Wilton / Georgetown / Route 7

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 922 Danbury Road, Wilton, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm2). The general population exposure limit for the cellular band is 567 μ W/cm2, and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm2. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 922 Danbury Road, Wilton, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, the actual antenna pattern gain value in the direction of the sample area was used. For this report the sample point is a 6 foot person standing at the base of the tower

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (1940.000 MHz—to 1950.000 MHz) were considered for each sector of the proposed installation.
- 2) 2 UMTS channels (2110.000 MHz to 2120.000 MHz / 2140.000 MHz to 2145.000 MHz) were considered for each sector of the proposed installation.
- 3) 2 LTE channels (2110.000 MHz to 2120.000 MHz / 2140.000 MHz to 2145.000 MHz) were considered for each sector of the proposed installation.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
- 6) The antenna used in this modeling is the RFS APX16DWV-16DWVS-C-A20 for LTE, UMTS and GSM. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 16.3 dBd gain value at its main lobe. Actual antenna gain values were used for all calculations as per the manufacturers specifications.

- 7) The antenna mounting height centerline of the proposed antennas is **85 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

	Site ID	CT11117C - Wilton	/ Georgetow	vn / Route 7]												
	Site Address	922 Danbury Roa	id, Wilton, C	T 06897]												
	Site Type	Mc	nopole		1												
							Sector :	L									
Antenna Number	Antenna Make	Antenna Model	Status	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss	ERP	Power Density Value	Power Density Percentage
1a	RFS	APX16DWV-16DWVS-E-A20	Passive	PCS - 1950 MHz	GSM / UMTS	30		60	-3.25	85	79	7/8"	1,2	0	21.535316	1.240518	0.12405%
18	RFS	APX16DWV-16DWVS-E-A20	Passive	AWS - 2100 MHz	UMTS/LTE	40	4	150	-3.25	85	79	7/8"	1.2	0	57,42751	3.308048	0,33080%
-	A.c						1.11					Sector tot	al Power De	insity Value:	0.455%		
					_	_	Sector :	2	1	1							
Antenna Number	Antenna Make	Anteona Model	Status	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional	ERP	Power Density Value	Power Density Percentage
1a	RFS	APX16DWV-16DWVS-E-A20	Passive	PCS - 1950 MHz	GSM / UMTS	30	2.	60	-3,25	85	79	7/8"	1.2	D	21.535316	1.240518	0,12405%
18	RFS	APX16DWV-16DWVS-E-A20	Passive	AWS - 2100 MHz	UMTS/LTE	40	4	160	-3,25	85	79	1-5/8"	1.2	D	57,42751	3,308048	0,33080%
												Sector tot	al Power De	nsity Value:	0.455%		
							Sector	3				_					
		3.21				Power Out Per Channel	Number of	Composite	Antenna Gain In direction of sample	Antenna	analysis		Cable Loss	Additional		Power Density	Power Density
Antenna Number	Antenna Make	Antenna Model	Status	Frequency Band	Technology	(Watts)	Channels	Power	point (dBd)	Height (ft)	height	Cable Size	(dB)	Loss	ERP	Value	Percentage
Antenna Number	Antenna Make RFS	Antenna Model APX16DWV-16DWVS-E-A20	Status Passive	Frequency Band PCS - 1950 MHz	Technology GSM / UMTS	(Watts) 30	Channels 2	Power 60	-3.25	Height (ft) 85	height 79	Cable Size 7/8"	(dB) 1.2	Loss	ERP 21.535316	Value 1.240518	0.12405%

Site Comp	osite MPE %
Carrier	MPE %
T-Mobile	1.365%
AT&T	5.330%
Total Site MPE %	6.695%

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the T-Mobile facility are **1.365%** (0.455% from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously.

The anticipated composite MPE value for this site assuming all carriers present is **6.695%** of the allowable FCC established general public limit. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were within the allowable 100% threshold standard per the federal government.

let - M

Scott Heffernan RF Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803