December 19, 2020
Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Regarding: Notice of Exempt Modification - AT\&T Site CT5063 Address: 922 Danbury Road (aka 920 Danbury Road), Wilton, CT 06516

Dear Ms. Bachman:
New Cingular Wireless, PCS, LLC ("AT\&T") currently maintains a wireless telecommunications facility on an existing 89.1-foot concealment tower at the above-referenced address, latitude 41.2568919 , longitude -73.4338989 . Said concealment tower is operated by Crown Castle.

AT\&T desires to modify its existing telecommunications facility by swapping three (3) antennas, adding six (6) coax, swapping three (3) TMA and adding three (3) TMA within a new expanded 36 " concealment canister. The centerline height of the existing antennas is and will remain at 76 feet. Please note, approval for this project was received on July 29, 2019 (EM-CING-161-190709) per the letter enclosed herewith. Due to delays with the start of the project, the original CSC letter expired prior to commencement of construction. Accordingly, we are resubmitting this request. No changes have been made to the previously approved scope of work.

Please accept this letter as notification pursuant to R.C.S.A §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Lynne Vanderslice, First Selectwoman of the Town of Wilton, Michael Wrinn, Director, Planning \& Land Use Management for the Town of Wilton, Remo-Wilton Associates LLC as ground owner and Crown Castle as tower operator/owner. Please note, the original tower approval was requested from the Town and I've included the documentation they have on file with this submittal.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Specifically:

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require an extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. Please see the RF emissions calculation for AT\&T's modified facility enclosed herewith.
5. The proposed modifications will not cause an ineligible change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading. Please see the structural analysis dated June 18, 2019 by Centek Engineering enclosed herewith.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Jennifer Iliades
Site Acquisition Consultant
Centerline Communications, LLC
750 West Center Street, Suite 301
West Bridgewater, MA 02379
jiliades@clinellc.com
Enclosures: Exhibit 1 - Letter from Connecticut Siting Council dated July 29, 2019
Exhibit 2 - Field Card and GIS Map
Exhibit 3 - Construction Drawings
Exhibit 4 - Structural Analysis
Exhibit 5 - RF Emissions Analysis Report Evaluation
Exhibit 6 - Original Tower Approval Documentation
cc: Lynne Vanderslice, First Selectwoman of the Town of Wilton
Michael Wrinn, Director, Planning \& Land Use Management for the Town of Wilton
Remo-Wilton Associates LLC, Ground Owner
Crown Castle, Tower Operator/Owner

EXHIBIT 1

STATEOF CONNECTICUT

CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

July 29, 2019
Jennifer Iliades
Site Acquisition Consultant
Centerline Communications, LLC
750 West Center Street \#301
West Bridgewater, MA 02379
RE: EM-CING-161-190709 - New Cingular Wireless PCS, LLC (AT\&T) notice of intent to modify an existing telecommunications facility located at 922 (a/k/a 920) Danbury Road, Wilton, Connecticut

Dear Ms. Iliades:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

1. Any deviation from the proposed modification as specified in this notice and supporting materials with the Council shall render this acknowledgement invalid;
2. Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
3. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
4. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by AT\&T shall be removed within 60 days of the date the antenna ceased to function;
5. The validity of this action shall expire one year from the date of this letter; and
6. The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated June 21, 2019. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site by any dimension, increase noise levels at the tower site boundary by six decibels or more, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standards adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996 and by the state Department of Energy and Environmental Protection pursuant to Connecticut General Statutes $\S 22 \mathrm{a}-162$. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below state and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require
explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman
Executive Director
$\mathrm{MAB} / \mathrm{IN} / \mathrm{emr}$
c: The Honorable Lynne Vanderslice, First Selectwoman, Town of Wilton Robert Nerney, AICP, Director of Planning and Land Use Management, Town of Wilton Timothy Bunting, CAZEO, Zoning Enforcement Officer, Town of Wilton Crown Castle, Tower Operator Remo-Wilton Associates, LLC, Property Owner

EXHIBIT 2

920 DANBURY RD

```
Location 920 DANBURY RD
Acct# 005980
Owner REMO-WILTON ASSOCIATES LLC
```

| Assessment $\$ 5,139,610$ | Appraisal | $\$ 7,342,300$ |
| :---: | :---: | :---: | :---: |
| PID 539 | Building Count | 1 |

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$3,681,300	\$3,661,000	\$7,342,300
Assessment			
Valuation Year	Improvements	Land	Total
2018	\$2,576,910	\$2,562,700	\$5,139,610

Owner of Record

Owner	REMO-WILTON ASSOCIATES LLC	Sale Price	$\$ 0$
Co-Owner	C/O REMO TARTAGLIA	Certificate	
Address	477 MAIN ST	Book \& Page	$2222 / 0165$
	MONROE, CT 06468	Sale Date	$12 / 19 / 2011$
		Instrument	QC

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
REMO-WILTON ASSOCIATES LLC	\$0		2222/0165	QC	12/19/2011
TARTAGLIA SEBASTIANA, LORRAINE,	\$0		2221/0331	QC	12/16/2011
TARTAGLIA REMO	\$0		1020/0140	00	12/13/1996
REMO WILTON ASSOCIATES INC, \% REMO TARTA	\$1,360,000		0703/0176	00	11/29/1989

Building Information

Building 1 : Section 1

Year Built:	1972
Living Area:	36,260
Replacement Cost:	$\$ 4,456,775$
Building Percent	78
Good:	

Replacement Cost Less Depreciation:	6,300
Building Attributes	
Field	Description
STYLE	Shop Center LO
MODEL	Commercial
Grade	Average +20
Occupancy	3
Exterior Wall 1	Concr/Cinder
Exterior Wall 2	Brick
Roof Structure	Flat
Roof Cover	Rolled Compos
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Vinyl
Interior Floor 2	Carpet
Heating Fuel	Oil
Heating Type	Forced Air
AC Type	Central
Bldg Use	Commercial
Fireplace	
Elevator	
Cath Ceil	
Sauna	
1st Floor Use:	2-1
Heat/AC	Heat A/C Pkg
Frame Type	Masonary
Baths/Plumbing	Average
Ceiling/Wall	Sus Ceil and W
Rooms/Prtns	Average
Wall Height	16
\% Comn Wall	0

Building Photo

(http://images.vgsi.com/photos/WiltonCTPhotos//\00\00\40/57.j
Building Layout

(http://images.vgsi.com/photos/WiltonCTPhotos//Sketches/539_!

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	36,260	36,260
CAN	Canopy	1,881	0
CLP	Loading Platform	350	0
		38,491	36,260

Extra Features

Extra Features Legend				
Code	Description	Size	Value	Bldg \#
DUW4	Drve Up w Scre	1 UNITS	\$32,800	1
MEZ2	Mezzanine Fin	448 S.F.	\$4,500	1
MEZ1	Mezzanine Unf	560 S.F.	\$3,900	1
NDP	Night Deposit	1 UNITS	\$7,800	1

MEZ2	Mezzanine Fin	480 S.F.	$\$ 4,900$	1
SPR1	Sprinklers Wet	34673 S.F.	$\$ 40,600$	
SPR3	Sprinklers Dry	3075 S.F.	$\$ 3,600$	1
VLT2	Vault Good	128 S.F.	$\$ 2,000$	1
ATM1	Auto Teller	1 UNITS	$\$ 27,300$	1

Land

Land Use

Use Code	$2-1$
Description	Commercial
Zone	GB
Neighborhood	4500
Alt Land Appr	No
Category	

Land Line Valuation

Size (Acres) $\quad 3.77$
Frontage
Depth
Assessed Value $\$ 2,562,700$
Appraised Value \$3,661,000

Outbuildings

| Outbuildings | | | Legend | | | |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| Code | Description | Sub Code | Sub Description | Size | Value | Bldg \# |
| PAV1 | Paving Asphaul | | | 75500 S.F. | $\$ 75,500$ | |
| LT4 | Lights (4) | | | 2 UNITS | 1 | |
| LT2 | Lights (2) | | | 1 UNITS | $\$ 500$ | |

Valuation History

Appraisal				
	Valuation Year			
Improvements	Land	Total		
2018		$\$ 3,681,300$	$\$ 3,661,000$	$\$ 7,342,300$
2017	$\$ 2,462,200$	$\$ 2,913,600$	$\$ 5,375,800$	
2016	$\$ 2,462,200$	$\$ 2,913,600$	$\$ 5,375,800$	

Assessment				
	Valuation Year	Improvements	Land	
2018		$\$ 2,576,910$	$\$ 2,562,700$	
2017	$\$ 1,723,540$	$\$ 2,039,520$	Total	
2016	$\$ 1,723,540$	$\$ 2,039,520$	$\$ 3,139,610$	

(c) 2019 Vision Government Solutions, Inc. All rights reserved.

Approximate Scale:
Disclaimer:

Map Grand List Date: Oct 2017
$0 \quad 50 \quad 100 \quad 150$

EXHIBIT 3

at\&t

WIRELESS COMMUNICATIONS FACILITY
 CT5063 LTE 2C 1900 / LTE 3C 850 NORTH WILTON GEORGETOWN 922 DANBURY ROAD WILTON, CT 06897

 - Molicanons fo ik Exsing pie Are reured to

OWNER AND IS Nor PART Of THIS STIE

c. work at exsting egurment pad at grade: - ado new rru support freme; - ADO (6) NEW COAX ANENT - ADO (3) 4478 日S RRUS; - AOD (24) TSXOC-4330FM AREETORS AT PROPossD RRUS; - ADO (12) KAELUS OECOOOTFVV51-1 QuaORVPLEXERS; - A00 (1) 850 RXAT;

- swap ous wrth (1) 5216

- adodxu :

PROJECT INFORMATION	
AText Ste number:	cr5063
ateit ste name:	North wlton georg
Ste Aoderss:	
LESSEL/PPLLCANT:	
ateat Pace job	
atat Fat locaton coom	10071179
ENanere:	GB-2 Morit brantor
Prouect cooromates:	GROUND ELEATION: $\pm 38^{\circ}$ AMS

SHEET INDEX		
str. .o.	descripion	Rev
${ }^{\text {T-1 }}$	TTIE SHEET	
N-1	Notes, spegrications ano detals	0
c-2	ANTENA configration detals	0
c-3	Equipmen dealis	0
E-1	Schematic dagram and notes	0
E-2	mRNE dacram	0
E-3	mprical electrical dealls	0

1. Desin critera:

GENERAL NOTES:

1. Alloe. constructon stall ee in complance wit the governic guloonc

2. Dimensions and detals Shall be checked aganst exsting fill conotions

Noortisis ullutes

intals beroie benc sumite for reven
3. ReEER To DRAMMG TI Foo ADotional notes ano reoureunis.

ANTENNA SCHEDULE										
sector	Exstice	\&ano	antenna	SIEE (NCHESE)	Anteva	AzIMUTH	(E/P) TMA/PPLEEER/TRPLLEER (am) (Locatoon)	(E/P) Rru (am) (Locatoon)	(E/P) FeEDER TPE / Lencit (am)	(E/P) Ratcap (emr) (locatoon)
${ }^{\text {A1 }}$	PRoposeo		Katrien (80010798)	$78.5 \times 14.8 \times 6.7$	${ }^{76}$	${ }^{30}$				
${ }^{81}$	Proposeo	B6/PCCS/850//ume	KATHREN (80010798)	78.5 14.8×6.7	${ }^{76}$	${ }^{150}$				
${ }^{\circ} 1$	Proposeo		Katrreen (80010798)	$78.5 \times 14.8 \times 6.7$	${ }^{76}$	${ }^{270}$				

RRU	STE
4478 日5	16.5
4415825	$16.5 \times 13.4 \times 5.9$

(2) RRU SUPPORT FRAME CONSTRUCTION DETAIL (TYP)

$\left(\begin{array}{cc}3 & \text { ERICSSON } 4478 \text { B5 DETAIL } \\ c-3 & \text { Not To SCALE } \\ \hline\end{array}\right.$

$\begin{array}{cl}5 & \text { COMMSCOPE TMA DETALL } \\ \text { C-3 } & \text { SCALE: NOT TO SCALE }\end{array}$

(6 (POLYPHASER TSX-4310FM-P DETALL

ELECTRICAL NOTES

3. Connect all new eourment to extinne telco as reuired ey manfacturer.
4. Manntan all clearances regured ey nec ano equiment manuracturer.

 IESTS QY NoDPENNEAN ELECTRCAL IESTNG EBM

TEST 1: RESITTACE To ©rouno test on the celular grounong sytee. TESTIN Procecure ncluong THE MAKE AND MOOEL of test

D. Conrractor To provid e Mimwu of on (1) week notice To owner And

EXHIBIT 4

Date: June 7, 2019
Rebecca Klein
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 (919) 661-6351

Subject: Structural Analysis Report

Carrier Designation:	AT\&T Mobility Co-Locate Carrier Site Number: Carrier Site Name:	CT5063 North Wilton Georgetown
Crown Castle Designation:	Crown Castle BU Number:	829115
	Crown Castle Site Name:	Wilton/Georgetown/Rt7
	Crown Castle JDE Job Number:	564764
	Crown Castle Work Order Number:	1743971
	Crown Castle Order Number:	485500 Rev. 1
Engineering Firm Designation:	TEP Project Number:	154669.259200
Site Data:	922 Danbury Road, Wilton, Fairfield County, CT 06897 Latitude $41^{\circ} 15^{\prime} 22.96$ ", Longitude $-73^{\circ} 26^{\prime} 2.21^{\prime \prime}$ 89.1 Foot - Concealment Tower	

Dear Rebecca Klein,
Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration
Sufficient Capacity - 66.1\%
This analysis utilizes an ultimate 3 -second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Travis L. Infante, E.I. / JCR
Respectfully submitted by:

Aaron T. Rucker, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 69.1 - ft concealment tower designed by Paul J. Ford and Company. The base of the tower is 69.1 ft and the concealment spine extends from $69.1-\mathrm{ft}$ to $89.1-\mathrm{ft}$. The canister sections were designed by Stealth Concealment Solutions, Inc. The tower and the concealment sections were designed for a wind speed of 105 mph per TIA-222-G. A proposed canister expansion was considered in this analysis, enlarging the canister sections to 36 -in diameter. All information provided to TEP was assumed to be accurate and complete.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

TIA-222-H
II
120 mph
C
1.0
1.50 in

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Sine (in)
84.1	84.1	1	Generic	36 " OD $\times 10^{\prime}$ ' Tall Concealment Canister	-	-
76.0	76.0	3	Kathrein	80010798	12	$7 / 8$
	71.0	6	Commscope	TMAT192123B68-31		
74.1	74.1	1	Generic	36" OD $\times 10^{\prime}$ Tall Concealment Canister	-	-

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
85.0	85.0	3	RFS Celwave	APX16DWV-16DWVS-C	12	$7 / 8$
	82.0	3	Andrew	ETW190VS12UB		
	81.0	3	Andrew	ETW190VS12UB		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Geotechnical Report	Dr. Clarence Welti, P.E., P.C.	3594542	CCISites
Tower Foundation Drawings	Paul J. Ford and Company	3886758	CCISites
Tower Manufacturer Drawings	Paul J. Ford and Company / Stealth Concealment Solutions, Inc.	3777970	CCISites

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

SolidWorks, a commercially available analysis software package, was used to create a finite element model of the canister spine flange connection at the $69.1-\mathrm{ft}$ level. Selected output from the analysis is included in Appendix C - Additional Calculations.

3.2) Assumptions

1) The tower and foundation were built and maintained in accordance with the manufacturer's specification.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.
3) All tower components are in sufficient condition to carry their full design capacity.
4) Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
5) All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not perform a site visit to verify the size, condition or capacity of the antenna mounts and did not analyze antennas supporting mounts as part of this structural analysis report.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (lb)	ϕ Pallow (lb)	$\%$ Capacity	Pass / Fail
L1	$89.06-72.06$	Pole	P4x0.5	1	-1485.16	389656.03	53.5	Pass
L2	$72.06-69.06$	Pole	P4x0.5	2	-1637.43	389656.03	66.1	Pass
L3	$69.06-35$	Pole	P24x0.375	3	-6118.86	920561.21	20.2	Pass
L4	$35-1$	Pole	P24x0.375	4	-10369.70	920561.21	43.6	Pass
L5	$1-0$	Pole	P20x0.5	5	-10508.80	1013105.05	47.7	Pass
							Summary	
						Pole (L2)	66.1	Pass
						RATING $=$	$\mathbf{6 6 . 1}$	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Flange Connection (Stiffeners)	69.1	Sufficient	Pass
1,2	Flange Bolts	69.1	34.7	Pass
1,2	Flange Connection	35.0	28.8	Pass
1,2	Anchor Rods	-	43.4	Pass
1,2	Base Plate	-	40.4	Pass
1,2	Base Foundation Soil Interaction	-	55.3	Pass
1,2	Base Foundation Structural	-	24.6	Pass

Structure Rating (max from all components) $=$	66.1%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity listed.
2) Rating per TIA-222-H Section 15.5

4.1) Recommendations

1) If the load differs from that described in Tables 1 and 2 of this report, the referenced drawings, or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
2) The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

 TNXTOWER OUTPUT

tnxTTOWer	Job	Page	
		1 of 9	
	Project	Client	TEP No. 154669.259200

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Fairfield County, Connecticut.
Tower base elevation above sea level: 355.00 ft .
Basic wind speed of 120 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.500 in .
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.05 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95$, $\mathrm{K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
$\sqrt{ }$ Pole Without Linear Attachments
$\sqrt{ }$ Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are Known

Section	Elevation ft	Section Length ft	Pole Size	Pole Grade	Socket Length $f t$
L1	89.06-72.06	17.00	$\mathrm{P} 4 \times 0.5$	$\begin{aligned} & \text { ASTM A513 } \\ & \text { D.O.M. } \\ & (75 \mathrm{ksi}) \end{aligned}$	
L2	72.06-69.06	3.00	$\mathrm{P} 4 \times 0.5$	$\begin{aligned} & \text { ASTM A513 } \\ & \text { D.O.M. } \\ & \text { (75 ksi) } \end{aligned}$	
L3	69.06-35.00	34.06	P24x0.375	$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$	
L4	35.00-1.00	34.00	P24x0.375	$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$	
L5	1.00-0.00	1.00	P20x0.5	$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$	

Tower Elevation ft	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1 89.06-72.06				1	0	1			
L2 72.06-69.06				1	0	1			
L3 69.06-35.00				1	1	1			
L4 35.00-1.00				1	1	1			
L5 1.00-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
LDF5-50A(7/8")	C	No	No	Inside Pole	85.00-0.00	12	No Ice	0.00	0.330
							1/2" Ice	0.00	0.330
							1 " Ice	0.00	0.330
							$2^{\prime \prime}$ Ice	0.00	0.330
LDF5-50A(7/8")	C	No	No	Inside Pole	76.00-0.00	12	No Ice	0.00	0.330
							1/2" Ice	0.00	0.330
							$1{ }^{\prime \prime}$ Ice	0.00	0.330
							2" Ice	0.00	0.330
Halyard Line 3/8"	C	No	No	CaAa (Out Of Face)	89.06-0.00	2	No Ice	0.04	0.220
							1/2" Ice	0.14	0.750
							1" Ice	0.24	1.278
							2" Ice	0.44	2.340

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_{R}	A_{F}	$C_{A} A_{A}$	$C_{A} A_{A}$	Weight
Section	Elevation $f t$		$f t^{2}$	$f t^{2}$	In Face	Out Face	
	$f t$			t^{2}	$f t^{2}$	$l b$	

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$89.06-72.06$	A	0.000	0.000	0.000	0.000	0.00
L1		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	1.275	74.32
L2	$72.06-69.06$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.225	25.08
L3	$69.06-35.00$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	2.555	284.74
L4	$35.00-1.00$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	2.550	284.24
	$1.00-0.00$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.075	8.36

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice
Thickness
in \& A_{R}
$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$
Out Face

ft 2 \& | Weight |
| :---: |
| $l b$ |

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{89.06-72.06} \& A \& \multirow[t]{3}{*}{1.394} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 10.754 \& 124.52

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{72.06-69.06} \& A \& \multirow[t]{3}{*}{1.376} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 1.876 \& 33.82

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{69.06-35.00} \& A \& \multirow[t]{3}{*}{1.335} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 20.745 \& 381.06

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{35.00-1.00} \& A \& \multirow[t]{3}{*}{1.203} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 18.915 \& 370.87

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{1.00-0.00} \& A \& \multirow[t]{3}{*}{0.839} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.410 \& 10.14

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	$f t$	in	in	in	in
L1	$89.06-72.06$	-1.732	1.000	-1.732	1.000
L2	$72.06-69.06$	-1.732	1.000	-1.732	1.000
L3	$69.06-35.00$	-0.799	0.462	-2.073	1.197
L4	$35.00-1.00$	-0.799	0.462	-1.942	1.121
L5	$1.00-0.00$	-0.787	0.455	-1.483	0.856

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice

User Defined Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Elevation

ft \& \begin{tabular}{l}
Offset

From Centroid ft

 \&

Azimuth Angle

-
\end{tabular} \& \& Weight

$l b$ \& F_{x}

$l b$ \& \& F
$l b$ \& \& Wind Force

$l b$ \& $C_{A} A_{C}$

$f t^{2}$

\hline \multirow[t]{3}{*}{Flag} \& \multirow[t]{3}{*}{89.06} \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000} \& No Ice \& 22.68 \& \& 0.00 \& \& 0.00 \& 417.19 \& 8.88

\hline \& \& \& \& Ice \& 690.61 \& \& 0.00 \& \& 0.00 \& 75.20 \& 9.22

\hline \& \& \& \& Service \& 22.68 \& \& 0.00 \& \& 0.00 \& 104.30 \& 9.93

\hline
\end{tabular}

Discrete Tower Loads

tnxTower Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350	Job	Wilton/Georgetown/Rt7 (BU 829115)	$\begin{array}{\|l\|} \hline \text { Page } \\ \\ \\ 5 \text { of } 9 \end{array}$
	Project	TEP No. 154669.259200	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 09:32:15 06/07/19 } \end{array}$
	Client	Crown Castle	Designed by TLI

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{4}{*}{ETW190VS12UB} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 0.50 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{85.00} \& No Ice \& 0.00 \& 0.00 \& 10.00

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 19.54

\hline \& \& \& -4.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 26.01

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.00 \& 44.32

\hline \multirow[t]{4}{*}{ETW190VS12UB} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 0.50 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{85.00} \& No Ice \& 0.00 \& 0.00 \& 10.00

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 19.54

\hline \& \& \& -4.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 26.01

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.00 \& 44.32

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{4}{*}{80010798} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 0.50 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{76.00} \& No Ice \& 0.00 \& 0.00 \& 80.00

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 142.58

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 210.44

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.00 \& 366.96

\hline \multirow[t]{4}{*}{80010798} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 0.50 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{76.00} \& No Ice \& 0.00 \& 0.00 \& 80.00

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 142.58

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 210.44

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.00 \& 366.96

\hline \multirow[t]{4}{*}{80010798} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 0.50 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{76.00} \& No Ice \& 0.00 \& 0.00 \& 80.00

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 142.58

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.00 \& 0.00 \& 210.44

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.00 \& 366.96

\hline \multirow[t]{4}{*}{(2) TMAT192123B68-31} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 0.50 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{76.00} \& No Ice \& 0.00 \& 0.00 \& 20.00

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 27.43

\hline \& \& \& -5.000 \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 35.92

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.00 \& 59.00

\hline \multirow[t]{4}{*}{(2) TMAT192123B68-31} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{76.00} \& No Ice \& 0.00 \& 0.00 \& 20.00

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 27.43

\hline \& \& \& -5.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 35.92

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.00 \& 59.00

\hline \multirow[t]{4}{*}{(2) TMAT192123B68-31} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{76.00} \& No Ice \& 0.00 \& 0.00 \& 20.00

\hline \& \& \& $$
0.000
$$ \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 27.43

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 35.92

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.00 \& 59.00

\hline * \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{$36^{\prime \prime}$ OD x 10' Tall Concealment Canister} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{84.10} \& No Ice \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.00 \& 0.00

\hline \multirow[t]{4}{*}{| $36^{\prime \prime} \text { OD x } 10^{\prime} \text { Tall }$ |
| :--- |
| Concealment Canister |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{74.10} \& No Ice \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.00 \& 0.00

\hline \multirow[t]{4}{*}{Canister Load1} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{89.06} \& No Ice \& 6.75 \& 6.75 \& 94.25

\hline \& \& \& \& \& \& 1/2" Ice \& 16.96 \& 16.96 \& 205.73

\hline \& \& \& \& \& \& 1" Ice \& 17.42 \& 17.42 \& 320.27

\hline \& \& \& \& \& \& 2 " Ice \& 18.33 \& 18.33 \& 558.51

\hline \multirow[t]{4}{*}{Canister Load2} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{79.06} \& No Ice \& 13.50 \& 13.50 \& 218.82

\hline \& \& \& \& \& \& 1/2" Ice \& 33.92 \& 33.92 \& 441.78

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 34.83 \& 34.83 \& 670.86

\hline \& \& \& \& \& \& 2" Ice \& 36.67 \& 36.67 \& 1147.33

\hline \multirow[t]{4}{*}{Canister Load3} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{69.06} \& No Ice \& 6.75 \& 6.75 \& 232.08

\hline \& \& \& \& \& \& 1/2" Ice \& 16.96 \& 16.96 \& 343.57

\hline \& \& \& \& \& \& 1" Ice \& 17.42 \& 17.42 \& 458.10

\hline \& \& \& \& \& \& 2" Ice \& 18.33 \& 18.33 \& 696.34

\hline \multirow[t]{3}{*}{Truck Ball} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{89.81} \& No Ice \& 0.88 \& 0.88 \& 50.00

\hline \& \& \& \& \& \& 1/2" Ice \& 1.38 \& 1.38 \& 67.43

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 1.53 \& 1.53 \& 86.79

\hline
\end{tabular}

tnxTOWer	Job	Page	(BU 829115)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
\(\circ\)
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

$l b$

\hline \& \& \& \& \& \& 2" Ice \& 1.85 \& 1.85 \& 131.72

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+$ 1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+$ 1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service

	tnxTower Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603-5263 Phone: (919) 661-6351 FAX: (919) 661-6350	Job	Wilton/Georgetown/Rt7 (BU 829115)	Page 7 of 9
		Project	TEP No. 154669.259200	$\begin{aligned} & \text { Date } \\ & \text { 09:32:15 06/07/19 } \end{aligned}$
		Client	Crown Castle	Designed by TLI
Comb. No.			Description	
46	Dead+Wind 210 deg - Service			
47	Dead+Wind 240 deg - Service			
48	Dead+Wind 270 deg - Service			
49	Dead+Wind 300 deg - Service			
50	Dead+Wind 330 deg - Service			

Maximum Tower Deflections - Service Wind

| Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | \circ |
| :---: | :---: | :---: | :---: | :---: | :---: | | Twist |
| :---: |
| |
| Lt |

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
89.81	Truck Ball	48	8.406	1.858	0.001	1330
89.06	Canister Load1	48	8.406	1.858	0.001	1330
85.00	APX16DWV-16DWVS-C	47	6.778	1.780	0.001	1330
84.10	36 " OD x 10' Tall Concealment Canister	47	6.429	1.756	0.001	1330
79.06	Canister Load2	47	4.647	1.530	0.001	665
76.00	80010798	47	3.774	1.279	0.001	511
74.10	36 " OD x 10' Tall Concealment Canister	47	3.340	1.066	0.001	477
69.06	Canister Load3	47	2.646	0.278	0.000	1137

	Maximum Tower Deflections $=$ Design				
Mection					Elevation
No.	Horz.	Gov.	Tilt	Twist	
	$f t$	Deflection	Load	\circ	\circ
L1	$89.06-72.06$	36.389	20	7.974	0.009
L2	$72.06-69.06$	13.094	20	3.370	0.004
L3	$69.06-35$	11.629	20	1.221	0.002
L4	$35-1$	3.783	18	0.906	0.002
L5	$1-0$	0.005	18	0.047	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft 8 fl	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature $f t$
89.81	Truck Ball	20	36.389	7.974	0.009	320
89.06	Canister Load1	20	36.389	7.974	0.009	320
85.00	APX16DWV-16DWVS-C	20	29.404	7.656	0.008	320
84.10	36 " OD x 10' Tall Concealment Canister	20	27.908	7.557	0.008	320
79.06	Canister Load2	20	20.258	6.600	0.007	159
76.00	80010798	20	16.506	5.529	0.006	121
74.10	36 " OD x 10' Tall Concealment Canister	20	14.636	4.611	0.005	113
69.06	Canister Load3	20	11.629	1.221	0.002	266

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
L1	$89.06-72.06$ (1)	P 4 x 0.5	17.00	0.00	0.0	5.498	-1485.16	371101.00	0.004
L2	$72.06-69.06$ (2)	$\mathrm{P} 4 \times 0.5$	3.00	0.00	0.0	5.498	-1637.43	371101.00	0.004
L3	69.06-35 (3)	P24x0.375	34.06	0.00	0.0	27.833	-6118.86	876725.00	0.007
L4	35-1 (4)	P24x0.375	34.00	0.00	0.0	27.833	-10369.70	876725.00	0.012
L5	1-0 (5)	P20x0.5	1.00	0.00	0.0	30.631	-10508.80	964862.00	0.011

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
L1	$89.06-72.06$ (1)	P 4 x 0.5	19332.17	34687.50	0.557	0.00	34687.50	0.000
L2	$\begin{gathered} 72.06-69.06 \\ \text { (2) } \end{gathered}$	P 4 x 0.5	23900.75	34687.50	0.689	0.00	34687.50	0.000
L3	69.06-35 (3)	P24x0.375	110641.67	538741.67	0.205	0.00	538741.67	0.000
L4	35-1 (4)	P24x0.375	240231.67	538741.67	0.446	0.00	538741.67	0.000
L5	1-0 (5)	P20x0.5	244542.50	499187.50	0.490	0.00	499187.50	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	$\begin{aligned} & \text { Ratio } \\ & T_{u} \\ & \hline \end{aligned}$
$f t$			$l b$	$l b$	ϕV_{n}	$l b-f t$	$l b-f t$	ϕT_{n}
L1	89.06-72.06	P4x0.5	1551.48	111330.00	0.014	0.00	34257.92	0.000

tnxTOWer	Job	Page	
	Wilton/Georgetown/Rt7 (BU 829115)	Client	TEP No. 154669.259200

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{aligned} & \text { Ratio } \\ & V_{u} \end{aligned}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$
	$f t$		$l b$	$l b$	ϕV_{n}	$l b-f t$	$l b-f t$	ϕT_{n}
L2	$72.06-69.06$ (2)	P4x0.5	1509.53	111330.00	0.014	0.00	34257.92	0.000
L3	69.06-35 (3)	P24x0.375	3252.02	263018.00	0.012	0.00	546306.67	0.000
L4	35-1 (4)	P24x0.375	4306.33	263018.00	0.016	0.00	546306.67	0.000
L5	1-0 (5)	P20x0.5	4323.42	289459.00	0.015	0.00	496250.00	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	$\begin{aligned} & \text { Ratio } \\ & T_{u} \end{aligned}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	$89.06-72.06$ (1)	0.004	0.557	0.000	0.014	0.000	0.562	1.050	4.8.2
L2	$72.06-69.06$ (2)	0.004	0.689	0.000	0.014	0.000	0.694	1.050	4.8.2
L3	69.06-35 (3)	0.007	0.205	0.000	0.012	0.000	0.213	1.050	4.8.2
L4	35-1 (4)	0.012	0.446	0.000	0.016	0.000	0.458	1.050	4.8.2
L5	1-0 (5)	0.011	0.490	0.000	0.015	0.000	0.501	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \phi P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	89.06-72.06	Pole	$\mathrm{P} 4 \times 0.5$	1	-1485.16	389656.03	53.5	Pass
L2	72.06-69.06	Pole	$\mathrm{P} 4 \times 0.5$	2	-1637.43	389656.03	66.1	Pass
L3	69.06-35	Pole	P24x0.375	3	-6118.86	920561.21	20.2	Pass
L4	35-1	Pole	P24x0.375	4	-10369.70	920561.21	43.6	Pass
L5	1-0	Pole	P20x0.5	5	-10508.80	1013105.05	47.7	Pass
						$\begin{aligned} & \text { Pole (L2) } \\ & \text { RATING = } \end{aligned}$	$\begin{gathered} \text { Summary } \\ 66.1 \\ \mathbf{6 6 . 1} \\ \hline \end{gathered}$	Pass Pass

APPENDIX B

BASE LEVEL DRAWING

BUSINESS UNIT: 829115 TOWER ID:C_BASELEVEL

APPENDIX C

ADDITIONAL CALCULATIONS

Address:
No Address at This Location

ASCE 7 Hazards Report

Wind

Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI
Data Source:

Date Accessed:

118 Vmph
${ }^{*} 120$ Vmph required per jurisdiction
76 Vmph
85 Vmph
91 Vmph
97 Vmph
ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of March 12, 2014

Tue May 212019

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years .

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.227
$\mathrm{~S}_{1}:$	0.067
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{MS}}:$	0.363
$\mathrm{~S}_{\mathrm{M} 1}:$	0.162

$\mathrm{S}_{\mathrm{DS}}:$	0.242
$\mathrm{~S}_{\mathrm{D} 1}:$	0.108
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.127
$\mathrm{PGA}_{\mathrm{M}}:$	0.196
$\mathrm{~F}_{\text {PGA }}:$	1.546
$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category
 B

Data Accessed:
Date Source:

Tue May 212019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in .

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Tue May 212019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

CCI Flagpole Tool

Site Data	
BU\#:	829115
Site Name:	Wilton/Georgetown/Rt7
Order \#:	485500 Rev. 1

Code	
Code:	TIA-222-H
Ice Thickness:	1.5 in
Windspeed (V):	120 mph
Ice Wind Speed (V):	50 mph
Exposure Category:	C
Topographic Feature:	N / A
Risk Category:	II

Tower Information	
Total Tower Height:	89.06 ft
Base Tower Height:	69.06 ft
Total Canister Length:	20 ft
Number of Canister Assembly	
Sections:	

FLANGE PLATE (TYPE 4: SOLIDITY RATIO 0.55)

Canister Section Number *:	Canister Assembly Length (ft):	Canister Assembly Diameter (in):	Number of Sides Canister Section	Plate Type:	Mating Flange Plate Thickness (in)**:	Mating Flange Plate Diameter (in):	Solidity Ratio	Plate Weight (Kip):	Canister Weight (Kip)
1	Vent Length (ft):								
2	10	36	Round	4	0.25	22.25	0.55	0.030	0.188
$20-0$									

${ }^{*}$ Sections are numbered from the top of the tower down $\quad{ }^{* *}$ Mating Flange Plate Thickness at the bottom of canister section

Flag on Tower:	Yes
Flag Width:	18 ft
Flag Height:	12 ft
Flag Elevation(z):	89.06 ft

Truck Ball on Tower:		Yes							
Diameter of Ball:		18 in							
Geometry : Base Tower + Spine				829115_1743971_LC5 OG.eri (last saved 06/06 9:46 pm)					
Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)		Bend Radius (in)	Pole Material	Delete
89.06	17		0	4	4	0.5	n/a	A36	x]
72.06	3		0	4	4	0.5	n/a	A36	[
69.06	34.06		0	24	24	0.375	n/a	A53-B-35	[x
35	34		0	24	24	0.375	n/a	A53-B-35	[x]
1	1		0	20	20	0.5	n/a	A53-B-35	[x]

Discrete Loads: Truck Ball	Apply $\mathrm{C}_{\mathrm{a}} \mathrm{A}_{\mathrm{A}}$ at Elevation(z) (ft)	$\begin{gathered} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{\mathrm{A}} \\ \text { No Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{\mathrm{A}} \\ 1 / 2^{\text {" Ice }}\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{\mathrm{A}} \\ 1^{1 "} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{\mathrm{A}} \\ 2^{2} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{a}} \mathrm{~A}_{\mathrm{A}} \\ 4 \text { " Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	Weight No Ice (Kip)	Weight 1/2" Ice (Kip)
	89.81	0.884	1.378	1.527	1.848	2.581	0.05	0.067

Discrete Loads : $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ for Canister Assembly								
Canister Loading	Apply $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ at Elevation(z) (ft)	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ \text { No Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ 1 / 2^{\text {" }} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ 1 \text { " Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ 2^{\text {" Ice }}\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ 4^{4} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	Canister Assembly Weight No Ice (Kip)	Canister Assembly Weight 1/2" Ice (Kip)
Canister Load 1	89.06	6.750	16.958	17.417	18.333	20.167	0.094	0.206
Canister Load 2	79.06	13.500	33.917	34.833	36.667	40.333	0.219	0.442
Canister Load 3	69.06	6.750	16.958	17.417	18.333	20.167	0.232	0.344

User Forces: Flag Force Calculation Per ANSI/NAAMM FP 1001-07	
Wind $_{\text {FORCE }}=$	0.417 Kip
Weight 2	0.023 Kip
Wind $_{\text {FORCE, ICE }}=$	0.075 Kip
Weight $_{\text {ICE }}=$	0.691 Kip
W $_{\text {FORCE, SERVICE WIND }}=$	0.104 Kip
Weight $=$	0.023 Kip

\leftarrow Flag force should be included
at the top of the flag
attachment elevation. If the
attachment of the flag to the
halyard distributes forces
equally to the pole, apply flag
forces accordingly in tnx file.

Deflection Check Required:	Yes	Import Deflection Results	
3\% Spine Deflection Check			
Allowable (3\%) Horizontal Spine Deflection (inches)	Actual Deflection $* * *$ (inches)	Sufficient/ Insufficient	
7.200	5.649	Sufficient	

*** Relative deflection under service level wind speed

Simulation of Concealment Flange - 69.1-ft Elevation

Model Loads

Axial	1,445	lb
Shear	1,283	lb
Moment	17,006	$\mathrm{lb}-\mathrm{ft}$
Self-Weight Factor	1.2	

Overall Results
Sufficient

Model Part Information	
Part	Part Grade
Spine Stub Section	A513 Gr. 75
Stiffeners	A572-50
Top Flange	A572-50
Bottom Flange	A572-50
Tower Stub Section	A53-B-35

Client Site Name:
Client Site Number:
Client Order Number: TEP Project Number:
\qquad / Tower Engineering Professionals

Engineer:

TLI
JCR
$6 / 7 / 2019$
2

Stiffeners

Client Site Name:	Wilton/Georgetown/Rt7	/	Engineer: Check: Date:	TLI
Client Site Number:	BU 829115			JCR
Client Order Number:	485500 Rev. 1			6/7/2019
TEP Project Number:	154669.2592	Tower Engineering Professionals	Page:	3

Study: 0 Degree
Top Flange

Assumptions
N/A

Results
Sufficient

Client Site Name:	Wilton/Georgetown/Rt7	/	Engineer:	TLI
Client Site Number:	BU 829115		Check: Date:	JCR
Client Order Number:	485500 Rev. 1			6/7/2019
TEP Project Number:	154669.2592	Tower Engineering Professionals	Page:	4

Study: 0 Degree

Bottom Flange

Results
Sufficient

Client Site Name:
Client Site Number:
Client Order Number: TEP Project Number:
\qquad * Tower Engineering Professionals

Engineer:

Stiffeners

Assumptions
N/A

Results
Sufficient

Client Site Name:	Wilton/Georgetown/Rt7	/	Engineer:	TLI
Client Site Number:	BU 829115		Check: Date:	JCR
Client Order Number:	485500 Rev. 1			6/7/2019
TEP Project Number:	154669.2592	Tower Engineering Professionals	Page:	6

Study: 30 Degree

Top Flange

Results
Sufficient

Client Site Name:	Wilton/Georgetown/Rt7	/	Engineer:	TLI
Client Site Number:	BU 829115		Check: Date:	JCR
Client Order Number:	485500 Rev. 1			6/7/2019
TEP Project Number:	154669.2592	Tower Engineering Professionals	Page:	7

Study: 30 Degree

Bottom Flange

Results
Sufficient

Client Site Name:
Client Site Number:
Client Order Number:
TEP Project Number:

Wilton/Georgetown/Rt7
BU 829115
485500 Rev. 1
154669.259200

Tower Engineering Professionals

Engineer:	TLI
Check:	JCR
Date:	$\frac{6 / 7 / 2019}{1}$
Page:	

Spine Fillet Weld Check - 69.1ft

Model Loads		
Axial	1,497	lb
Shear	1,203	lb
Moment	23,329	$\mathrm{lb}-\mathrm{ft}$

Pole Properties	
Spine Diameter	4 in
Spine grade	A513 Gr. 75
Weld Type	Butt
Upper Weld Size	$3 / 8$ in

Weld Properties	
Total Area	$11.8174 \mathrm{in}^{2}$
Total Inertia	$77.5076 \mathrm{in}^{4}$
Extreme Fiber	$6.0000 \mathrm{in}^{3}$
Elastic Section Modulus	$12.9179 \mathrm{in}^{3}$

Flange \& Stiffener Properties	
Flange Thickness	1.50 in
Flange Grade	A572-50
Weld Grade	E70XX
Sitffener Quanitity	6
Stiffener Width	4.00 in
Stiffener Notch Size	0.50 in
Horizontal Weld Size	$1 / 4$ in

Weld Check	
r_{mu}	21.671 ksi
r_{vu}	0.102 ksi
r_{pu}	0.127 ksi
Total Weld Stress	21.798 ksi
Weld Capacity	31.500 ksi
*RATING	65.9% Pass
Flange Shear Plane Check	
Base Metal Capacity	
Weld Capacity	$43.875 \mathrm{k} / \mathrm{in}$
Min Flange Thickness	$8.353 \mathrm{k} / \mathrm{in}$
Check Thickness	0.286 in
*RATING	$\mathbf{1 1 . 9 \%}$ Pass

Fusion Zone Check	
Shear Fusion Zone	$10.969 \mathrm{k} / \mathrm{in}$
Tensile Fusion Zone	$18.281 \mathrm{k} / \mathrm{in}$
Weld Capacity	$8.353 \mathrm{k} / \mathrm{in}$
Check Fusion Zone	OK

BU \#	829115
Site Name	Nilton/Georgetown/Rt
Order \#	485500 Rev. 1
TIA-222 Revision	H

Top Plate - External

Applied Loads	
Moment (kip-ft)	23.90
Axial Force (kips)	1.64
Shear Force (kips)	1.51

*TIA-222-H Section 15.5 Applied

Applied Loads	
Moment (kip-ft)	110.64
Axial Force (kips)	6.12
Shear Force (kips)	3.25

*TIA-222-H Section 15.5 Applied

BU \#	829115
Site Name	Nilton/Georgetown/Rt
Order \#	485500 Rev. 1
TIA-222 Revision	H

Top Plate - Internal

Bottom Plate - Internal

Connection Properties

Bolt Data

(12) 1-1/4" \varnothing bolts (A325 N; Fy=81 ksi, Fu=105 ksi) on 18.75 " BC

Top Plate Data
15" ID x 2.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Top Stiffener Data			Bottom Stiffener Data
N/A			N/A
Top Pole Data			Bottom Pole Data
24 " $\times 0.375$ " round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)			24 " $\times 0.375$ " round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)
		esults	
		acity	
	Max Load (kips)	23.05	
	Allowable (kips)	76.31	
	Stress Rating:	28.8\%	Pass

Top Plate Capacity		
Max Stress (ksi):	7.03	(Flexural)
Allowable Stress (ksi):	45.00	
Stress Rating:	$\mathbf{1 4 . 9 \%}$	Pass
Tension Side Stress Rating:	$\mathbf{4 . 4 \%}$	Pass

Bottom Plate Data
15" ID x 2.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Bottom Stiffener Data

Bottom Pole Data
24 " x 0.375" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Site Info	
BU \#	829115
Site Name	Vilton/Georgetown/Rt
Order \#	485500 Rev. 1

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\mathrm{ar}}(\mathrm{in})$	1.5

Applied Loads	
Moment (kip-ft)	244.54
Axial Force (kips)	10.51
Shear Force (kips)	4.32

Connection Properties	Analysis Results		
Anchor Rod Data	Anchor Rod Summary	(units of kips, kip-in)	
(4) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 27" BC	Pu_c = 111.01	¢Pn_c = 243.75	Stress Rating
	$\mathrm{Vu}=1.08$	$\phi V n=73.13$	43.4\%
Base Plate Data	$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi M n=n / a$	Pass
25.5" OD x 2.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	19.11	(Flexural)
N/A	Allowable Stress (ksi):	45	
	Stress Rating:	40.4\%	Pass
Pole Data			

Pier and Pad Foundation

$$
\text { BU \# : } 829115
$$

Site Name: Wilton/Georgetown
App. Number: 485500 Rev. 1

TIA-222 Revision:	H
Tower Type:	Monopole

Top \& Bot. Pad Rein. Different?:	Γ
Block Foundation?:	Γ

Superstructure Analysis Reactions			
Compression, $\mathbf{P}_{\text {comp }}:$	10.511	kips	
Base Shear, V_comp:	4.319	kips	
Moment, $\mathbf{M}_{\mathrm{u}}:$	244.542	ft -kips	
Tower Height, H:	89.06	ft	
BP Dist. Above Fdn, bp dist: 2	3.75	in	

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	85.00	4.32	$\mathbf{4 . 8 \%}$	Pass
Bearing Pressure (ksf)	6.00	2.94	$\mathbf{4 6 . 6 \%}$	Pass
Overturning (kip*tt)	503.45	278.28	$\mathbf{5 5 . 3} \%$	Pass
Pier Flexure (Comp.) (kip*ft)	1032.04	266.14	$\mathbf{2 4 . 6 \%}$	Pass
Pier Compression (kip)	7637.76	24.91	$\mathbf{0 . 3 \%}$	Pass
Pad Flexure (kip*tt)	1201.91	78.01	$\mathbf{6 . 2 \%}$	Pass
Pad Shear - 1-way (kips)	261.99	19.07	$\mathbf{6 . 9} \%$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.010	$\mathbf{5 . 7 \%}$	Pass
Flexural 2-way (Comp) (kip*ft)	2403.81	159.68	$\mathbf{6 . 3} \%$	Pass

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier:	4	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc:	9	
Pier Rebar Quantity, mc:	12	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, $\mathbf{m t}:$	14	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc $\mathbf{\text { pier: }}$	3	in

Pad Properties

Pad Properties		
Bottom of Pad Depth, D:	7	ft
Pad Width, W:	10.5	ft
Pad Thickness, T:	2.5	ft
Pad Rebar Size (Bottom), Sp:	9	
Pad Rebar Quantity (Bottom), mp:	11	
Pad Clear Cover, cc $\mathbf{c a d}_{\text {pa }}$	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties

Soil Properties		
Total Soil Unit Weight, $\gamma:$	125	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu:		ksf
Friction Angle, $\varphi:$	34	degrees
SPT Blow Count, N	bows:	25
Base Friction, $\mu:$		
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?	Yes	
Groundwater Depth, gw:	6	ft

EXHIBIT 5

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility
Site ID: CT5063

North Wilton Georgetown
922 Danbury Road

Wilton, CT 06897
June 28, 2019
Centerline Communications Project Number: 950012-228

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 2 . 3 7} \%$

June 28, 2019
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT5063 - North Wilton Georgetown

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at $\mathbf{9 2 2}$ Danbury Road in Wilton, Connecticut for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at 922 Danbury
Road in Wilton, Connecticut, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
5 G	850 MHz	2	25
LTE	850 MHz	2	40
LTE	700 MHz	2	40
LTE	$1900 \mathrm{MHz}(\mathrm{PCS})$	5	40

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ MHz , and 1900 MHz (PCS frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Kathrein 80010798	76
B	1	Kathrein 80010798	76
C	1	Kathrein 80010798	76

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX	ERP (W)	MPE \%
Antenna A1	$\begin{gathered} \text { Kathrein } \\ 80010798 \end{gathered}$	$\left\|\begin{array}{c} 850 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \\ \mathrm{MHz} / 1900 \mathrm{MHz} / 850 \mathrm{MHz} \\ / 850 \mathrm{MHz} \end{array}\right\|$	$\begin{array}{r} 13.65 \mathrm{dBd} / 12.05 \mathrm{dBd} \\ 13.65 \mathrm{dBd} / 13.65 \mathrm{dBd} \\ 13.65 \mathrm{dBd} / 13.65 \mathrm{dBd} \end{array}$	18	670	14,955.22	12.31
Sector A Composite MPE\%							12.31
Antenna B1	$\begin{aligned} & \text { Kathrein } \\ & 80010798 \end{aligned}$	$\left\|\begin{array}{c} 850 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \\ \mathrm{MHz} / 1900 \mathrm{MHz} / 850 \mathrm{MHz} \\ / 850 \mathrm{MHz} \end{array}\right\|$	$\begin{array}{\|} 13.65 \mathrm{dBd} / 12.05 \mathrm{dBd} \\ 13.65 \mathrm{dBd} / 13.65 \mathrm{dBd} \\ 13.65 \mathrm{dBd} / 13.65 \mathrm{dBd} \end{array}$	18	670	14,955.22	12.31
Sector B Composite MPE\%							12.31
Antenna C1	$\begin{gathered} \text { Kathrein } \\ 80010798 \end{gathered}$	$\left\|\begin{array}{c} 850 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \\ \mathrm{MHz} / 1900 \mathrm{MHz} / 850 \mathrm{MHz} \\ / 850 \mathrm{MHz} \end{array}\right\|$	$\left.\begin{array}{r} 13.65 \mathrm{dBd} / 12.05 \mathrm{dBd} \\ 13.65 \mathrm{dBd} / 13.65 \mathrm{dBd} \\ 13.65 \mathrm{dBd} / 13.65 \mathrm{dBd} \end{array} \right\rvert\,$	18	670	14,955.22	12.31
Sector C Composite MPE\%							12.31

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE \%	
Carrier	MPE \%
AT\&T - Max Per Sector Value	$\mathbf{1 2 . 3 1} \quad \%$
T-Mobile	0.06%
Site Total MPE \%:	$\mathbf{1 2 . 3 7} \quad \mathbf{\%}$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	12.31%	
AT\&T Sector B Total:	12.31%	
AT\&T Sector C Total:	12.31%	
Site Total:	12.37%	

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

$\begin{gathered} \hline \text { AT\&T_Frequency Band / Technology } \\ \text { Max Power Values } \\ \text { (Per Sector) } \\ \hline \end{gathered}$	\# Channels	Watts ERP (Per Channel)	Height (feet)	$\begin{gathered} \text { Total Power } \\ \text { Density } \\ \text { (i.tW/cm }{ }^{2} \text {) } \\ \hline \end{gathered}$	Frequency (MHz)	$\begin{gathered} \text { Allowable } \\ \text { MPE } \\ (\text { (i.tW/cm } \end{gathered}$	Calculated \% MPE
AT\&T 850 MHz UMTS	2	695.22	76.0	8.65	850 MHz UMTS	567	1.53\%
AT\&T 700 MHz LTE	2	641.30	76.0	7.98	700 MHz LTE	467	1.71\%
AT\&T 1900 MHz LTE	5	926.96	76.0	28.85	1900 MHz LTE	1000	2.88\%
AT\&T 1900 MHz LTE	5	926.96	76.0	28.85	1900 MHz LTE	1000	2.88\%
AT\&T 850 MHz LTE	2	926.96	76.0	11.54	850 MHz LTE	567	2.04\%
AT\&T 850 MHz 5 G	2	579.35	76.0	7.21	$850 \mathrm{MHz} \mathrm{5G}$	567	1.27\%
						Total:	$\mathbf{1 2 . 3 1 \%}$

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	12.31 \%
Sector B:	12.31 \%
Sector C:	12.31 \%
AT\&T Maximum Total (per sector):	12.31 \%
Site Total:	12.37 \%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 2 . 3 7}$ \% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

"pagaibMalaws

Ryan McManus

Senior RF EME Compliance Manager
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

EXHIBIT 6

TOWN OF WILTON
MUST BE POSTED IN PROMINENT PLACE ON PREWUSES

PERMISSION IS HEREBY GRANTED TO:

Remo Tartaglia
IN ACCORDANCE WITH THE COMPLETED APPLICATION FILED ON:
3/31/2010 Builder: Site Acquisitions inc.
FOR THE PURPOSE OF:

Remove existing telecommunications flagpole and replace with new
flagpole (same height) flagpole (same height).

TOWN HALL ANNEX
238 Danbury Road
Wilton, Connecticut 06897

ZONING PERMIT

Owners) Remo Tantaclia
Address of Property 920 Danbury Ropes
Owner's Mailing Address (if different) 5 THe OAKS ROND, WILTON, CT
Telephone Number (Res) \qquad
Agent/Contractor (if applicable) MARK APDLEBY-AT\&T ABENTT Telephone Number \qquad
Assessor's Map No. 12 Lot No. 98 Lot Size 3.77 +/Ac Zone CoB

Frontage of Lot \qquad Size of Building or Addition $24^{\prime \prime} \times 90^{\circ}$
(Taecomminuchtans)

Front Yard
Setback $\frac{\text { Pustule }}{\text { ConfORMAL }}$

Rear Yard u a Right Yard \qquad Left Yard \qquad
Conditions or Commission Or Board Approval (if applicable):

With the issuance of this document the undersigned certifies that to the best of his knowledge and belief, the use or structure described above conforms with the Town of Wilton Zoning Regulations or is a valid non-conforming use under such Regulations.

Applicant is hereby informed that said applicant may provide notice of the above certification by either: (1) publication in a newspaper having substantial circulation in the Town of Wilton stating that the certification has been issued; or (2) any other method provided for by local ordinance. Any such notice shall contain: (A) a description of the building, use or structure; (B) the location of the building, use or structure; (C) the identity of accordance with the provisions of sat an aggrieved person may appeal to the Zoning Board of Appeals in accordance with the provisions of Section 8-7 as amended by Public Act No. 03-144.

TOWN HALL ANNEX 238 Danbury Road Wilton, Connecticut 06897

ZONING COMPLIANCE CERTIFICATE

Zoning Permit Issued: MARCH 31, 2010

Having satisfied the requirements of the Zoning Regulations of the Town of Wilton, a Zoning Compliance Certificate for the same is hereby issued to:
Owner: Rama Thetnelia
Address of property: 920 Danbury Roan
Owner's mailing address (if different): 5 Thu oaks R one, Wow, CT 06897 Map\#: 12 Lot\#: $98 \quad$ Size of Lot: 3.77 +/-acres Zone: GB

Note: Issued for the construction of FLAgpole, (Teccommunications) TO Peace
 Acer.

With the issuance of this document the undersigned certifies that to the best of hisher knowledge and belief, the use or structure described above conforms with the Town of Wilton Zoning Regulations or is a valid non-conforming use under such Regulations.

Applicant is hereby informed that said applicant may provide notice of the above certification by either. (1) publication in a newspaper having substantial circulation in the Town of Wilton stating that the certification has been issued, or (2) any other method provided for by local ordinance. Any such notice shall contain (A) a description of the building, use or structure; (B) the location of the building, use or structure; (C) the identity of the applicant; and (D) a statement that an aggrieved person may appeal to the zoning board of appeals in accordance with the provisions of section 8-7. as unmended by Public Act No 03. 144

Building Official
Demolition Officer
Tel: 203-563-0177

Fax: 203-563-0284

CERTIFICATE OF OCCUPANCY

The building described in Building Permit No. 20376A Issued: 3/31/2010 having satisfied the requirements of the Building Code and the Zoning Regulations of the Town of Wilton, a Certificate of Occupancy for same is hereby issued to:

CERTIFICATE OF USE/OCUPANCY ISSUED:
 January 23, 2015

Remove existing telecommunications flagpole and replace with new flagpole (same height).

ROBERT E. ROOT

UPS CampusShip: View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup
Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.
Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages.
Hand the package to any UPS driver in your area.

UPS Access Point ${ }^{T M}$
CVS STORE \# 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access Point $^{\text {TM }}$
CVS STORE \# 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access Point ${ }^{\text {TM }}$
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

FOLD HERE

UPS CampusShip: View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup
Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.
Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages.
Hand the package to any UPS driver in your area.

UPS Access Point ${ }^{T M}$
CVS STORE \# 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access Point ${ }^{T M}$
CVS STORE \# 7232 689 DEPOT ST NORTH EASTON ,MA 02356

UPS Access Point ${ }^{\text {TM }}$
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

FOLD HERE

UPS CampusShip: View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup
Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.
Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages.
Hand the package to any UPS driver in your area.

UPS Access Point ${ }^{\text {TM }}$
CVS STORE \# 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access Point ${ }^{\text {TM }}$
CVS STORE \# 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access Point ${ }^{\text {TM }}$
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

FOLD HERE

UPS CampusShip: View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup
Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.
Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages.
Hand the package to any UPS driver in your area.

UPS Access Point ${ }^{T M}$
CVS STORE \# 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access Point ${ }^{\text {TM }}$
CVS STORE \# 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access Point ${ }^{\text {TM }}$
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

FOLD HERE

