

Northeast Site Solutions Denise Sabo
4 Angela's Way, Burlington CT 06013
denise@northeastsitesolutions.com
October 27, 2021

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Tower Share Application
109 Schofield Road, Willington CT 06279
Latitude: 41.9222611 N
Longitude: -72.293650 W
Site\# BOBDL00147A_Dish_Willington_TS_Zoning

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 109 Schofield Road, Willington, Connecticut 06279

Dish Wireless LLC proposes to install three (3) $600 / 19005 \mathrm{GMHz}$ antenna and six (6) RRUs, at the 145 -foot level of the existing 149 foot guyed tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7×5 lease area. Included are plans by Infinigy, stamped October 22, 2021, Exhibit C. Also included is a structural analysis prepared by Aerosmith Engineering, dated April 21, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by the Connecticut Siting Council, Docket No. 429, on February 7, 2013. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to First Selectman Erika Wiecenski for the Town of Willington, Michael D'Amato, Zoning Agent, Planning \& Zoning Commission for the Town of Willington, as well as the property owner Joseph J. Mottes Co. and Tarpon Towers II, LLC tower owner.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modifications will not result in an increase in the height of the existing structure. The top of the tower is 149 -feet; Dish Wireless LLC proposed antennas will be located at a center line height of 145 -feet.
2.The proposed modification will not result in the increase of the site boundary as depicted on the attached site plan.
3.The proposed modification will not increase the noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4.The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total density of 1.42% as evidenced by Exhibit F.

Connecticut General Statutes 16-50-aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included in Exhibit D.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Willington. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 145 -foot level of the existing 149 -foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F , the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower share application.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Willington.

Sincerely,

Denise sabo

Denise Sabo

Mobile: 203-435-3640
Fax: 413-521-0558
Office: Angela's Way, Burlington CT 06013
Email: denise@northeastsitesolutions.com

Attachments
Cc: First Selectman Erika Wiecenski
Town of Willington
40 Old Farms Road
Willington, CT 06279

Michael D’Amato, Zoning Agent
Town of Willington
40 Old Farms Road
Willington, CT 06279

Joseph J. Mottes Co
P.O. Box 535

Willington, CT 06270

Tarpon Tower II, LLC, Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 429 - New Cingular Wireless PCS, LLC \} (AT\&T) application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a telecommunications facility located at one of two sites: Willington Tax Assessor Parcel ID \#M23-P62 Tolland Turnpike, Willington, Connecticut; or Willington Tax Assessor Parcel ID \#M18-19 Old South Willington Road, Willington, Connecticut.

Connecticut
Siting
Council
February 7, 2013

Findings of Fact

Introduction

1. New Cingular Wireless PCS, LLC (AT\&T), in accordance with provisions of Connecticut General Statutes (CGS) § 16-50g et. seq., applied to the Connecticut Siting Council (Council) on July 24, 2012 for the construction, maintenance, and operation of a telecommunications facility at one of two proposed locations in the Town of Willington (Town), Connecticut. (AT\&T 1, pp. 1)
2. AT\&T's Candidate A site would be located off of Tolland Turnpike and would include a 160 -foot monopole tower. AT\&T's Candidate B site would be located off of Old South Willington Road and would include a 190 -foot monopole tower. (AT\&T 1, p. 2)
3. AT\&T is a Delaware limited liability company with an office at 500 Enterprise Drive, Rocky Hill, Connecticut. AT\&T is licensed by the Federal Communications Commission (FCC) to construct and operate a personal wireless services system. (AT\&T 1, p. 3)
4. The party in this proceeding is the applicant. Robert and Marissa Golden are intervenors. (Transcript, October 11, 2012, 3:00 p.m. [Tr. 1], pp. 4, 9)
5. The purpose of the proposed facility would be to provide service along Tolland Turnpike (State Route 74), Willington Hill Road (Route 320), Ruby Road, and surrounding areas in the Town of Willington. (AT\&T 1, p. 1)
6. AT\&T originally submitted a Certificate application for these two locations on May 19, 2011. AT\&T subsequently withdrew the application without prejudice. (AT\&T 1, p. 23)
7. Pursuant to CGS § $16-50 l(\mathrm{~b})$, AT\&T published public notice of its intent to submit this application on July 17 and July 18, 2012 in the Willimantic Chronicle. (AT\&T 1, p. 4, Attachment 7; AT\&T 2 - Affidavit of Publication, dated September 5, 2012)
8. Pursuant to CGS § $16-50 l(b)$, AT\&T sent, via certified mail, notices of its intent to file an application with the Council to each person appearing of record as owner of property abutting the properties on which the two candidate sites are located. (AT\&T 1, p. 4; Attachment 7)
9. Of 33 notice letters sent to abutting property owners, AT\&T received 19 return receipts and confirmed the delivery of another nine letters through the U.S. Postal Service website's Track and Confirm tool. Five notice letters were re-sent via first class mail to the abutting property owners from whom receipts were not received. (AT\&T 3, A1)
10. Pursuant to CGS § $16-50 l$ (b), AT\&T provided copies of its application to all federal, state and local officials and agencies listed therein. (AT\&T 1, p. 4; Attachment 6)
11. AT\&T posted signs at each of the two candidate sites on September 28, 2012. The signs gave the date of the public hearing and contact information for the Council. (AT\&T 6 - Affidavit of Sign Posting)
12. The Council and its staff conducted an inspection of the proposed sites on October 11, 2012, beginning at 1:30 p.m. The applicant attempted to fly a balloon at each of the two sites to simulate the heights of the proposed towers but gusty wind conditions resulted in several lost balloons and made it difficult for the balloons to fly at the intended heights. (Tr. 1, pp. 32-33)
13. Pursuant to CGS $\S 16-50 \mathrm{~m}$, the Council, after giving due notice thereof, held a public hearing on October 11, 2012, beginning at 3:00 p.m. and continuing at 7:00 p.m. in the Old Senior Center Room in the Willington Town Office Building at 40 Old Farms Road in Willington, Connecticut. (Tr. 1, p. 3 ff.)
14. On November 29, 2012, the Council ruled that cross examination of late filed exhibits was not necessary and closed the evidentiary record. (Council Memorandum from Linda Roberts to Parties and Intervenors, dated November 30, 2012)

State Agency Comment

15. Pursuant to CGS § $16-50 j(h)$, on August 13, 2012, the Council solicited comments on this application from the following state agencies: Department of Agriculture, Department of Energy \& Environmental Protection (DEEP), Department of Public Health, Council on Environmental Quality, Public Utilities Regulatory Authority, Office of Policy and Management, Department of Economic and Community Development, the Department of Transportation (ConnDOT), and the Department of Emergency Management and Homeland Security. (CSC Hearing Package dated August 13, 2012)
16. ConnDOT submitted comments in which it stated that AT\&T would need a Highway Encroachment Permit should it need to do any work within the right-of-way of Route 74 (Tolland Turnpike) for the Candidate A site. ConnDOT had no comment on the Candidate B site. (ConnDOT Comment Letter, August 24, 2012)
17. The Council did not receive comments from any of the other state agencies. (Record)

Municipal Consultation

18. AT\&T first contacted the Town about its interest in the two candidate sites on October 4, 2010 when it submitted to the Town a Technical Report that provided details about the two sites. (AT\&T 1, p. 22)
19. After some discussions with AT\&T, the First Selectman and Town staff indicated a preference for the proposed Candidate A Site (off of Tolland Turnpike) because the 160 -foot tower at this location appeared to minimally impact the Willington Green and this location was in an existing gravel mining operation near other commercial ventures. (AT\&T 1, p. 23; Docket 418 Application, p. 8)
20. The Candidate B Site was less preferred by Town officials due to its proximity to residential homes and Old Willington Road, a local dirt road of rural nature. Town officials also noted that should Candidate B become the preferred site they would want AT\&T to consider utilizing an alternate route across an existing driveway for access rather than building an entirely new gravel access drive. (AT\&T 1, p. 23)
21. AT\&T contacted the Town again on May 31, 2012 to indicate that it was going to re-apply for a facility at one of the two potential sites. (AT\&T 1, p. 23; Attachment 6)
22. In response to AT\&T's notice of the re-submittal of its application, the Town stated that no further consultation was necessary and added that it requested that the Council add an "ultimate height" stipulation that would limit the height of the tower at its preferred Candidate A site to the proposed 160 feet. (AT\&T 1, Attachment 6 - Letter of Willington First Selectman dated July 10, 2012)
23. AT\&T would offer space on its proposed tower for public safety users at no cost. (Transcript, October 11, 2012, 7:00 p.m. [Tr. 2], p. 27)

Public Need for Service

24. In 1996, the United States Congress recognized a nationwide need for high quality wireless telecommunications services, including cellular telephone service. Through the Federal Telecommunications Act of 1996, Congress seeks to promote competition, encourage technical innovations, and foster lower prices for telecommunications services. (Council Administrative Notice Item No. 4 - Telecommunications Act of 1996; AT\&T 1, p. 5)
25. In issuing cellular licenses, the Federal government has preempted the determination of public need for cellular service by the states, and has established design standards to ensure technical integrity and nationwide compatibility among all systems. (Council Administrative Notice Item No. 4 Telecommunications Act of 1996)
26. The Telecommunications Act of 1996 prohibits local and state bodies from discriminating among providers of functionally equivalent services. (Council Administrative Notice Item No. 4 Telecommunications Act of 1996)
27. The Telecommunications Act of 1996 prohibits any state or local entity from regulating telecommunications towers on the basis of the environmental effects, which include human health effects, of radio frequency emissions to the extent that such towers and equipment comply with FCC's regulations concerning such emissions. This Act also blocks the Council from prohibiting or acting with the effect of prohibiting the provision of personal wireless service. (Council Administrative Notice Item No. 4 - Telecommunications Act of 1996)
28. The Wireless Communications and Public Safety Act of 1999 (911 Act) was enacted by Congress to promote and enhance public safety by making 9-1-1 the universal emergency assistance number, by furthering deployment of wireless 9-1-1 capabilities, and by encouraging construction and operation of seamless ubiquitous and reliable networks for wireless services. (Council Administrative Notice Item No. 6 - Wireless Communications and Public Safety Act of 1999, as amended)
29. AT\&T would provide "Enhanced 911 " services from the proposed facility as required by the 911 Act. (AT\&T 1, p. 9)
30. The Tolland County Mutual Aid Fire Service, one of the largest regional 911 centers in the State of Connecticut, would be interested in locating antennas on the proposed tower, preferably at the Candidate A site. (Tr. 2, pp. 14-15)
31. Approximately 70 percent of the 40,000911 calls received annually by the Tolland County Mutual Aid Fire Service are made from wireless devices. (Tr. 2, p. 15)
32. In December 2009, President Barack Obama recognized cell phone towers as critical infrastructure vital to the United States. The Department of Homeland Security, in collaboration with other Federal stakeholders, State, local, and tribal governments, and private sector partners, has developed the National Infrastructure Protection Plan (NIPP) to establish a framework for securing our resources and maintaining their resilience from all hazards during an event or emergency. (Council Administrative Notice Item No. 10 -Barack Obama Presidential Proclamation 8460, Critical Infrastructure Protection)
33. In 2009, the U.S. Congress directed the FCC to develop a national broadband plan to ensure that every American would have access to broadband capability whether by wire or wireless. As a result of this directive, the FCC produced a plan entitled, "Connecting America: The National Broadband Plan." The goal of this plan was to: Advance consumer welfare, civic participation, public safety and homeland security, community development, healthcare delivery, energy independence and efficiency, education, employee training, private sector investment, entrepreneurial activity, job creation and economic growth, and other national purposes. (AT\&T 1, p. 6)
34. Pursuant to the tower sharing policy of the State of Connecticut under C.G.S. §16-50aa, if the Council finds that a request for shared use of a facility by a municipality or other person, firm, corporation or public agency is technically, legally, environmentally and economically feasible, and the Council finds that the request for shared use of a facility meets public safety concerns, the Council shall issue an order approving such shared use to avoid the unnecessary proliferation of towers in the state. (Conn. Gen. Stat. §16-50aa)

Existing and Proposed Wireless Coverage

35. Within the area to be covered from the proposed facility, AT\&T is licensed to operate within the Cellular B-Band; the D-Block, E-Block, A3 Block and C1 Block at the 1900 MHz PCS frequencies; and the Lower C Block, the Lower E Block, and the Lower B Block within the 700 MHz frequency range. (AT\&T 3, A9)
36. AT\&T's design criteria for satisfactory coverage are -74 dBm for in-building coverage and -82 dBm for in-vehicle coverage. These criteria are the same for each of the different frequencies utilized by AT\&T. (AT\&T 3, A11)
37. AT\&T's existing signal strengths in the area that would be covered from the proposed site(s) range from -82 dBm to less than -100 dBm . (AT\&T 3, A12)
38. AT\&T experiences a coverage gap of 2.17 miles on Route 74 (Tolland Turnpike) and a gap of 2.6 miles on Route 320 (Willington Hill Road). (AT\&T 1, Attachment 2 - Radio Frequency Analysis Report, p. 2)
39. The distances that the proposed sites would allow AT\&T to cover on its target roads are indicated in the following table.

Road	Distance Covered from Candidate A	Distance Covered from Candidate B
Route 74, Tolland Turnpike	1.46 miles	0.86 miles
Route 320, Willington Hill Road	1.93 miles	1.93 miles

(AT\&T 3, A14)
40. The Candidate A site would provide unique incremental coverage on Tolland Turnpike of approximately 0.25 miles west of State Route 320 and 0.35 miles east of State Route 320. This incremental coverage would enable AT\&T to provide continuous coverage on close to 2.5 miles along Tolland Turnpike. (AT\&T 1, Attachment 1, p. 4)
41. AT\&T could achieve a majority of its coverage objectives from Candidate B, but each of the remaining coverage gaps on Route 74 west of Route 320 and on Route 74 east of Route 320 would likely require another site to provide adequate coverage. (AT\&T 1, Attachment 2 - Radio Frequency Analysis Report, p. 5)
42. The incremental coverage that would result from each site is listed in the table below.

Signal Level	Sq. Mi. covered from Candidate A	Sq. Mi. covered from Candidate B
In-building $(-74 \mathrm{dBm})$	7.49	6.22
In-vehicle $(-82 \mathrm{dBm})$	6.11	4.88

(AT\&T 3, A15; Tr. 1, p. 30-31)
43. From either proposed facility, AT\&T's antennas would hand off signals to the adjacent sites identified in the table below.

Site Location	Distance and Direction from Candidate A	Distance and Direction From Candidate B
5 Barbara Road, Tolland	3.6 miles, W	3.4 miles, W
1298 Storrs Road, Mansfield	4.3 miles, S	3.5 miles, S
426 River Road, Willington	1.5 miles, NW	2.0 miles, NW
1725 Stafford Road, Mansfield	3.4 miles, SW	2.6 miles, SW
99 Knowlton Hill Road, Ashford	4.0 miles, SE	3.8 miles, SE
20 Seles Road, Ashford	4.5 miles, E	4.7 miles, E
497 Middle Turnpike, Mansfield	3.5 miles, S	2.6 miles, S

(AT\&T 7, Attachments 3 and 4)
44. The lowest feasible height at which AT\&T could fulfill its coverage objectives from the Candidate A site is 157 feet above ground level. From the Candidate B site, it is 187 feet above ground level. (AT\&T 3, A16)
45. The Candidate A site would provide better coverage and is AT\&T's preferred site. (AT\&T 1, p. 13)
46. The Candidate B site would allow AT\&T to achieve a majority of its coverage objectives, but a remaining coverage gap on Tolland Turnpike east of Route 320 would likely require an additional site. (AT\&T 1, Attachment 1, p. 5)

Site Selection

47. AT\&T established a search ring for a site in this vicinity on December 17, 2008. The search ring was centered at $41^{\circ} 51^{\prime} 59.1^{\prime \prime}$ north latitude and $72^{\circ} 16^{\prime} 26.4^{\prime \prime}$ west longitude and was approximately one mile in diameter. (AT\&T 3, A2)
48. There are 16 existing telecommunications towers and a church steeple located within approximately four miles of AT\&T's search area. AT\&T has antennas on eight of these facilities, but none of these facilities would be able to provide the service needed in the area that AT\&T is seeking to cover. The existing facilities are listed in the following table.

Owner	Approx. Height	Location	AT\&T at site	Distance from Candidate A	Direction from Candidate A
Willington Hill FD	75^{\prime}	24 Old Farms Rd, Willington	No	.5 mi.	SE
Federated Churches of Willington	50	236 Tolland Tpk, Willington	No	.2 mi.	E
State of CT	75,	Jared Sparks Road, Willington	No	.4 mi.	NE

(table continued on next page)

Owner	Approx. Height	Location	AT\&T at site	Distance from Candidate A	Direction from Candidate A
Verizon	140^{\prime}	Cosgrove Road, Willington	No	1.3 mi.	N
Willington FD	110^{\prime}	126 River Road, Willington	Yes	1.5 mi.	NW
Cordless Data	170^{\prime}	Turnpike Road, Willington	Yes	3.6 mi.	N
DPS	120^{\prime}	Tolland Stage Rd, Tolland	No	2.9 mi.	W
American Tower	150^{\prime}	5 Barbara Road, Tolland	Yes	3.6 mi.	W
Town of Mansfield	170^{\prime}	1725 Stafford Rd, Mansfield	Yes	3.4 mi.	SW
AT\&T	120^{\prime}	497 Middle Tpk, Mansfield	Yes	3.5 mi.	S
UConn tower farm	$80^{\prime}-320^{\prime}$	North Eagleville Road, Mansfield	Yes	4.3 mi.	S
SBA	150^{\prime}	Knowlton Hill Rd, Ashford	Yes	4.0 mi.	SE
Ray Baker	190^{\prime}	20 Seles Road, Ashford	Yes	4.5 mi.	E
North Atlantic Towers	149^{\prime}	155 Schofield Rd, Willington	No	3.5 mi.	NW

(AT\&T 1, Attachment 2 - Existing Tower/Cell Site Listing)
49. AT\&T investigated a total of nine properties as possible locations. These properties and the determinations of their suitability are listed below.
a. Tolland Turnpike - This is the Candidate A property. It is approximately 47.7 acres.
b. 180 Tolland Turnpike - This is a 128.5 -acre parcel. A facility on this property would interfere with an ongoing gravel operation.
c. Old South Willington Road - This is a 170 -acre parcel, which is the site of the proposed Candidate B facility.
d. 236 Tolland Turnpike - This is the Federated Churches of Willington property. The church steeple at this location was rejected by AT\&T's radio frequency engineers.
e. 24 Old Farms Road - This is a .84 -acre parcel owned by the Willington Hill Fire Department. There is an existing 75 -foot tower, but it is too short for AT\&T's needs. There is limited ground space for a tower replacement, and there is less natural screening on this property. With a tower on this property, AT\&T would require a second tower to achieve coverage comparable to the proposed facility sites.
f. 74 Willington Hill Road - This is a 25.3 -acre parcel that was rejected by AT\&T's radio frequency engineers.
g. 49 Hancock Road - This is a 49.85 -acre parcel that was rejected by AT\&T's radio frequency engineers.
h. Luchon Road - This is a 3.26 -acre parcel owned by the Town of Willington. It was rejected by AT\&T's radio frequency engineers. Furthermore, a facility on this property would likely impact on-site wetlands.
i. Jared Sparks Road - This is a 20 -acre parcel owned by the Town of Willington. It was rejected by AT\&T's radio frequency engineers.
(AT\&T 1, Attachment 2)
50. In addition to the nine sites identified in the preceding finding of fact, AT\&T also reviewed a site at 343 Daleville Road in Willington, which was the subject of the Council's Docket No. 400. AT\&T's radio frequency engineers determined that the Daleville Road site would not satisfy the coverage needs it is seeking to satisfy from the proposed sites. (AT\&T 4, A1)
51. Repeaters, microcell transmitters, distributed antenna systems (DAS) and other types of transmitting technologies would not be practicable or feasible means for AT\&T's provision of service in the area surrounding the proposed facility. These technologies are better suited for specifically defined areas where new coverage is necessary, such as commercial buildings, shopping malls, and tunnels. (AT\&T 1, p. 11)

Facility Description

Candidate A

52. The Candidate A site is located on a 47.7 -acre parcel on Tolland Turnpike. It is owned by Lawrence Becker. There is an active gravel pit on the property. (AT\&T 1, p. 13; Tr. 1, p. 17)
53. Mr. Becker also owns the Candidate Site B. He prefers that the facility be located at the Candidate A site. (Tr. 2, pp. 8-9)
54. The Candidate A property is zoned R-80, a single-family residential zoning district requiring a minimum lot size of 80,000 square feet. Wireless telecommunications facilities are permitted in R80 zones with a Special Permit. (AT\&T 1, p. 14; AT\&T Bulk Filing - Zoning Regulations for the Town of Willington)
55. The Candidate A site would be located in the northerly portion of the Becker property. AT\&T would lease a 100 -foot by 100 -foot parcel, within which it would erect a 160 -foot monopole tower inside a 40 -foot by 80 -foot equipment compound enclosed by an eight-foot high chain link fence. AT\&T's ground equipment would be installed inside a 12 -foot by 20 -foot equipment shelter (AT\&T 1, p. 13; Attachment 3A - Drawings C01 and Compound Plan)
56. For backup power, AT\&T would utilize a 50 kW diesel generator. AT\&T would also have a battery backup in order avoid a "re-boot" condition during the generator start-up delay period. The typical run time of the generator before it requires refueling is 48 hours. (AT\&T 3, A17; Tr. 1, p. 73)
57. The generator would be designed with secondary containment capable of retaining 110 percent of the oil fill. (Tr. 1, p. 32)
58. The proposed tower would be located at $41^{\circ} 52$ ' $32.4^{\prime \prime}$ North latitude and $72^{\circ} 16^{\prime} 9.7$ " West longitude. Its elevation at ground level would be approximately 768 feet above mean sea level. (AT\&T 1, Attachment 3 - Site A: Site Evaluation Report)
59. AT\&T's proposed tower would be designed in accordance with American National Standards Institute EIA/TIA-222-G "Structural Standards for Steel Antenna Towers and Antenna Support Structures" and the 2003 International Building Code with 2005 Connecticut Amendment. The foundation design would be based on existing soil conditions. The diameter of the tower would be approximately four and one-half feet at its base and two feet at its top. (AT\&T 1, Attachment 3 Candidate A Tolland Turnpike: Facilities and Equipment Specification)
60. AT\&T would initially install nine multi-band antennas on a low profile platform at a centerline height of 157 feet above ground level (agl). (AT\&T 1, Attachment 3 - Candidate A Tolland Turnpike: Facilities and Equipment Specification; Tr. 1, p. 14)
61. The tower would be designed to accommodate three other carriers, in addition to AT\&T. (AT\&T 1, Attachment 3 - Candidate A Tolland Turnpike: Facilities and Equipment Specification; Tr. 1, p. 28)
62. Development of the Candidate A site would require 111 cubic yards of cut and 151 cubic yards of fill. (AT\&T 3, A5)
63. Vehicular access to the facility would be provided over an existing drive for a distance of 331 feet and then over a new gravel access drive that would be 581 feet long and 12 feet wide. (AT\&T 1, Attachment 3 - Candidate A: General Facility Description)
64. Underground electric and telephone utilities would be extended to the site from an existing offsite utility pole along the edge of the access drive. (AT\&T 1, Attachment 3 - Candidate A: General Facility Description; Attachment 3A - Drawing Sheet C02)
65. AT\&T does not anticipate the need for blasting. If ledge is encountered, mechanical means would be the preferred method of removal. (AT\&T 3, A6)
66. The setback radius of the proposed tower would be contained within the host property. (AT\&T 1, Attachment 3A - Drawing Sheet C02)
67. There are six residences within 1,000 feet of the Candidate A site. (AT\&T 1, Attachment 3A)
68. The nearest residence to the Candidate A site is located 445 feet to the northwest at 202 Tolland Turnpike. It is owned by Jean Paul Landry. (AT\&T 1, Attachment 3A)
69. Land uses within one-quarter mile of the proposed facility include a sand and gravel mining operation, a cemetery, and commercial and residential properties. (AT\&T 1, Attachment 3 - Site A: Site Evaluation Report)
70. The estimated cost of the proposed facility is:

Tower and foundation	$\$ 90,000$
Site development costs	45,000
Utility installation	27,360
Facility installation	93,000
Antennas and equipment	$\underline{250,000}$
Total cost	$\$ 505,360$

(AT\&T 1, p. 23)

Candidate B

71. The Candidate B site is located on a 170 -acre parcel on Old South Willington Road. It is owned by Lawrence Becker. A portion of the gravel pit on the Candidate A property spills onto this property. (AT\&T 1, p. 14; Tr. 1, p. 17)
72. The Candidate B property is zoned $\mathrm{R}-80$, a single-family residential zoning district requiring a minimum lot size of 80,000 square feet. Wireless telecommunications facilities are permitted in R80 zones with a Special Permit. (AT\&T 1, p. 15; AT\&T Bulk Filing - Zoning Regulations for the Town of Willington)
73. The Candidate B site would be located in the southerly portion of this property. AT\&T would lease a 100 -foot by 100 -foot parcel, within which it would erect a 190 -foot monopole tower inside a 75 foot by 75 -foot equipment compound enclosed by an eight-foot high chain link fence. AT\&T's ground equipment would be installed inside a 12 -foot by 20 -foot equipment shelter. (AT\&T 1 , p. 14; Attachment 4A - Drawings C01 and Compound Plan)
74. For backup power, AT\&T would utilize a 50 kW diesel generator. AT\&T would also have a battery backup in order avoid a "re-boot" condition during the generator start-up delay period. The typical run time of the generator before it requires refueling is 48 hours. (AT\&T 3, A17; Tr. 1, p. 73)
75. The generator would be designed with secondary containment capable of retaining 110 percent of the oil fill. (Tr. 1, p. 32)
76. The proposed tower would be located at $41^{\circ} 51^{\prime} 48.3^{\prime \prime}$ North latitude and $72^{\circ} 16^{\prime} 28.3^{\prime \prime}$ West longitude. Its elevation at ground level would be approximately 682 feet above mean sea level. (AT\&T 1, Attachment 4 - Site B: Site Evaluation Report)
77. AT\&T's proposed tower would be designed in accordance with American National Standards Institute EIA/TIA-222-G "Structural Standards for Steel Antenna Towers and Antenna Support Structures" and the 2003 International Building Code with 2005 Connecticut Amendment. The foundation design would be based on existing soil conditions. The diameter of the tower would be approximately four and one-half feet at its base and two feet at its top. (AT\&T 1, Attachment 4 Candidate B: Facilities and Equipment Specification)
78. AT\&T would initially install nine multi-band antennas on a low profile platform at a centerline height of 187 feet agl. (AT\&T 1, Attachment 4 - Candidate B: Facilities and Equipment Specification; Attachment 4A - Drawing Sheet Tower Elevation; Tr. 1, p. 14)
79. The tower would be designed to accommodate three other carriers, in addition to AT\&T. (AT\&T 1, Attachment 4 - Candidate B: Facilities and Equipment Specification; Tr. 1, p. 28)
80. Development of the Candidate B site would require 590 cubic yards of cut and 286 cubic yards of fill. (AT\&T 3, A5)
81. Vehicular access to the Candidate B site would be over a new gravel access drive from Old South Willington Road that would be 958 feet long and 12 feet wide. (AT\&T 1, Attachment 4 - Candidate B: General Facility Description)
82. Underground electric and telephone utilities would be extended from a proposed riser utility pole to the Candidate B site within the easement for the access drive. (AT\&T 1, Attachment 4 - Candidate B: General Facility Description; Attachment 4A - Drawing Sheets C01 and Compound Plan)
83. AT\&T does not anticipate the need for blasting. If ledge is encountered, mechanical means would be the preferred method of removal. (AT\&T 3, A6)
84. The setback radius of the proposed tower would be contained within the host property. (AT\&T 1, Attachment 4A - Drawing Sheet C02B)
85. There are eight residences within 1,000 feet of the Candidate B site. (AT\&T 1, Attachment 4A)
86. The nearest residence to the Candidate B site is located 550 feet to the southwest at 52 Old South Willington Road. It is owned by Robert and Marissa Golden. (AT\&T 1, Attachment 4A)
87. Land uses within one-quarter mile of the proposed facility include a sand and gravel mining operation, and commercial and residential properties. (AT\&T 1, Attachment $4-$ Site B: Site Evaluation Report)
88. The estimated cost of the proposed facility is:

Tower and foundation	$\$ 90,000$
Site development costs	47,900
Utility installation	28,740
Facility installation	93,000
Antennas and equipment	$\underline{250,000}$
Total cost	$\$ 509,640$

(AT\&T 1, p. 23)

Environmental Considerations

Candidate A

89. The State Historic Preservation Office (SHPO) initially expressed concerns about potentially adverse effects on visual resources of a 160 -foot tower at the Candidate A site. However, this conclusion was based on an understanding that a nearby historic cemetery was located on the south side of Tolland Turnpike instead of on the north side, where it is actually located. AT\&T requested SHPO to reconsider its proposal given the proximity and visibility of other existing utility infrastructure in the vicinity of the cemetery. (AT\&T 1, p. 17; Attachment 3 - Candidate A Tolland Turnpike: Environmental Assessment Statement, II. Scenic, Natural, Historic \& Recreational Values)
90. SHPO issued a later opinion based on revisions AT\&T made to its originally proposed Candidate A Site. This SHPO opinion concluded that AT\&T's revised proposal would have no adverse effect if the project were designed to be as unobtrusive as possible and, if not in use for six months, the tower and all related equipment would be removed. (Council Administrative Notice \#51: SHPO letter dated November 28, 2012)
91. After reviewing the viewshed analysis, the Willington Planning and Zoning Commission concluded that the tower at the Candidate A site would have a miniscule impact on the town's historic district. (AT\&T 1, Attachment 6 - Memorandum from Willington Planning and Zoning Commission, dated November 10, 2010)
92. A facility at the Candidate A site would not impact any extant populations of Federal or State Endangered, Threatened or Special Concern Species. (AT\&T 1, Attachment 3D - Letter from DEEP, dated July 11, 2012)
93. Both proposed sites are located within the Willimantic Reservoir Public Water Supply Watershed of the Mansfield Hollow Reservoir. AT\&T would adopt measures recommended by the Drinking Water Section of the Connecticut Department of Public Health to protect this water supply area. (AT\&T 1, Attachment 5, Public Water Supply Assessment)
94. A facility at the Candidate A site would comply with the recommended guidelines of the US Fish and Wildlife Service for minimizing the potential for telecommunications towers to impact bird species. (AT\&T 3, A7)
95. The Candidate A site is not located within an Important Bird Area (IBA) as designated by the National Audubon Society. The nearest IBA is located approximately 5.2 miles to the east. (AT\&T 3, A8)
96. There is an isolated forested wetland system on the property, the nearest point of which is located approximately 47 feet from the proposed access drive to the Candidate A site. (AT\&T 1, p. 22; Attachment 5 - Wetland Investigation)
97. A drainage swale on the property is 33 feet at its nearest point from the proposed access road for Candidate A. (Tr. 1, p. 29)
98. AT\&T would establish and maintain appropriate soil erosion and sedimentation control measures, in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control established by the Connecticut Council for Soil and Water Conservation, in cooperation with the Connecticut Department of Energy and Environmental Protection, throughout the construction period of the proposed facility. (AT\&T 1, p. 22)
99. With erosion controls in place, the proposed facility at the Candidate A site should have no impact on any wetlands or watercourses. (NAT 1, p. 22; Attachment 5 - Wetland Investigation)
100. The development of the Candidate A site would require the clearing of 55 trees with a diameter at breast height of six inches or greater. (AT\&T 3, A18)
101. The proposed facility would not constitute an obstruction or hazard to air navigation and, therefore, would not require any obstruction marking or lighting. (AT\&T 1, pp. 18-19; Attachment 3C)
102. The cumulative worst-case maximum power density from the radio frequency emissions from the operation of AT\&T's proposed antennas at the Candidate A site would be 5.2% of the standard for Maximum Permissible Exposure, as adopted by the FCC, at the base of the proposed tower. This calculation was based on methodology prescribed by the FCC Office of Engineering and Technology Bulletin No. 65E, Edition 97-01 (August 1997) that assumes all antennas would be pointed at the base of the tower and all channels would be operating simultaneously, which creates the highest possible power density levels. Under normal operation, the antennas would be oriented outward, directing radio frequency emissions away from the tower, thus resulting in significantly lower power density levels in areas around the tower. (AT\&T 1, Attachment 3C - C Squared Systems RF Power Density Calculation)

Candidate B

103. According to the SHPO, the proposed facility at the Candidate B site would have no adverse effect. (AT\&T 1, p. 17; Attachment 4D - Letter stamped by State Historic Preservation Office)
104. A facility at the Candidate B site would not impact any extant populations of Federal or State Endangered, Threatened or Special Concern Species. (AT\&T 1, Attachment 4D - Letter from DEEP, dated July 11, 2012)
105. A facility at the Candidate B site would comply with the recommended guidelines of the US Fish and Wildlife Service for minimizing the potential for telecommunications towers to impact bird species. (AT\&T 3, A7)
106. The Candidate B site is not located within an Important Bird Area (IBA) as designated by the National Audubon Society. The nearest IBA is located approximately 5.2 miles to the east. (AT\&T 3, A8)
107. The access drive AT\&T has proposed for the Candidate B site would pass approximately 100 feet from a wetland system. There is also a drainage culvert that is 79 feet at its nearest point to the access drive proposed for Candidate B. (AT\&T 1, p. 22; Tr. 1, pp. 29-30)
108. AT\&T would establish and maintain appropriate soil erosion and sedimentation control measures, in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control established by the Connecticut Council for Soil and Water Conservation, in cooperation with the Connecticut Department of Energy and Environmental Protection, throughout the construction period of the proposed facility. (AT\&T 1, p. 22)
109. With erosion controls in place, the proposed facility at the Candidate B site should have no impact on any wetlands or watercourses. (NAT 1, p. 22; Attachment 5 - Wetland Investigation)
110. The development of the Candidate B site would require the clearing of 115 trees with a diameter at breast height of six inches or greater. (AT\&T 1, Attachment 4A, Tree Inventory)
111. The proposed facility would not constitute an obstruction or hazard to air navigation and, therefore, would not require any obstruction marking or lighting. (AT\&T 1, pp. 18-19; Attachment 4C)
112. The cumulative worst-case maximum power density from the radio frequency emissions from the operation of AT\&T's proposed antennas at the Candidate B site would be 3.62% of the standard for Maximum Permissible Exposure, as adopted by the FCC, at the base of the proposed tower. This calculation was based on methodology prescribed by the FCC Office of Engineering and Technology Bulletin No. 65E, Edition 97-01 (August 1997) that assumes all antennas would be pointed at the base of the tower and all channels would be operating simultaneously, which creates the highest possible power density levels. Under normal operation, the antennas would be oriented outward, directing radio frequency emissions away from the tower, thus resulting in significantly lower power density levels in areas around the tower. (AT\&T 1, Attachment 4C - C Squared Systems RF Power Density Calculation)

Visibility

Candidate A

113. The proposed 160 -foot tower at the Candidate A site would be visible on a year-round basis from approximately 71.7 acres within a two-mile radius of the site. (AT\&T 1, Attachment 3B - Visual Analysis Report)
114. From the Willington Historic District, the proposed 160 -foot tower at the Candidate A site would appear to clip the treetops from the highest point on the town green and a larger portion of the tower would be visible through the trees on a seasonal basis. (Tr. 1, p. 16)
115. The proposed tower would be visible year round from Willington Hill Cemetery and Old West Cemetery. (AT\&T 1, Attachment 3B - Visual Analysis Report)
116. The proposed tower would be visible on a seasonal basis from approximately 16.3 acres within a two-mile radius of the Candidate A site. (AT\&T 1, Attachment 3B - Visual Analysis Report)
117. The table below lists the distances along which the proposed tower would be visible year-round from nearby streets and the number of residences within these stretches of roadway which would have year-round views of the tower.

Name of Street	Distance Visible	Number of residential properties with potential year round views
Glass Factory Road	$1,150^{\prime}$	1
Willington Hill Road (State Route 320)	285^{\prime}	0
Tolland Turnpike (State Route 74)	$370^{\prime}, 670^{\prime}, 1,635$	10

(AT\&T 1, Attachment 3B - Visual Analysis Report)
118. The table below lists the distances along which the proposed tower would be seasonally visible from nearby streets and the number of residences within these stretches of roadway that would have seasonal views of the tower.

Name of Street	Distance Visible	Number of residential properties with potential year-round views
Old Farms Road	$1,500^{\prime}$	6
Jared Sparks Road	465^{\prime}	0
Common Road	575^{\prime}	0
Tolland Turnpike (State Route 74)	705^{\prime}	0

(AT\&T 1, Attachment 3B - Visual Analysis Report)
119. The proposed tower would be seasonally visible from the Willington Common Historic District, St. Jude Church and Rectory, and two town-designated historic properties on Old Farms Road. (AT\&T 1, Attachment 3B - Visual Analysis Report)
120. The visibility of the proposed tower at Candidate A site from different vantage points in the surrounding vicinity is summarized in the following table. The vantage points listed are identified by their corresponding number in the Visual Analysis Report contained in Attachment 3B of AT\&T's application.

Location	Visibility	$\frac{\text { Approx. Portion }}{\mathbf{\frac { \text { of (160') Tower } } { }}}$	$\frac{\text { Approx. Distance and }}{\text { Direction to Tower }}$
1 - Willington Hill Cemetery	Year-round	35^{\prime}	1,410 feet, SE
2 - Old West Cemetery	Year-round	20^{\prime}	1,600 feet, SE
3 - Tolland Turnpike	Year-round	75^{\prime}	1,525 feet, SE
4 - Tolland Turnpike	Year-round	105^{\prime}	7,090 feet, E

(Table continued on next page)

Location	Visibility	$\begin{gathered} \frac{\text { Approx. Portion }}{\text { of (160') Tower }} \\ \text { Visible } \\ \hline \end{gathered}$	Approx. Distance and Direction to Tower
5 - Tolland Turnpike	Year-round	80'	5,700 feet, E
6 - Koller Road	None	n / a	4,060 feet, E
7 - Glass Factory Road	Year-round	10'	6,990 feet, E
8- Old Farms Road	Seasonal	30^{\prime}	4,550 feet, NW
9 - Green of Willington Common Historic District	Seasonal	75	1,510 feet, W
10 - Hiram Rider House (Willington Common Historic District)	Seasonal	10^{\prime}	1,430 feet, W
11 - Daniel Glazier Tavern (Willington Common Historic District)	Seasonal	10^{\prime}	1,030 feet, W
12 - Old Baptist Parsonage (Willington Common Historic District)	Seasonal	30'	1,365 feet, SW
13 - Old Congregational Church (Willington Common Historic District)	Seasonal	60'	1,550 feet, W
14 - Crossgrove Road	None	n/a	5,480 feet, SW

(AT\&T 1, Attachment 3B - Visual Analysis Report)

Candidate B

121. The proposed 190 -foot tower at the Candidate B site would be visible on a year-round basis from approximately 20 acres within a two-mile radius of the site. Most of this acreage occurs over open water on undeveloped land, part of a large wetland area south of the site, and open land located to the northeast. (AT\&T 1, Attachment 4B - Visual Analysis Report)
122. Approximately six residential properties, within a two-mile radius of the site, would have at least partial year-round views of the tower at this location. Two of these properties are located along Route 320. One property is along Mirtl Road. One property is located along Luchon Road. One property is located along Glass Factory Road. One property is located along Lindsey Lane. (AT\&T 1, Attachment 4B - Visual Analysis Report)
123. The proposed Candidate B tower would be visible on a seasonal basis from approximately 18 acres within a two-mile radius of its proposed location. (AT\&T 1, Attachment 4B - Visual Analysis Report)
124. Approximately three residential properties within a two-mile radius would have seasonal views of the tower at the Candidate B site. One of these properties is located along Route 320; one property is located along Luchon Road; and one property is located off of Old South Willington Road. (AT\&T 1, Attachment 4B - Visual Analysis Report)

Docket 429: Willington
Findings of Fact
Page 17
125. The visibility of the proposed tower at Candidate B site from different vantage points in the surrounding vicinity is summarized in the following table. The vantage points listed are identified by their corresponding number in the Visual Analysis Report contained in Attachment 4B of AT\&T's application.

Location	Visibility	$\begin{gathered} \frac{\text { Approx. Portion }}{\text { of (190') Tower }} \\ \underline{\text { Visible }} \end{gathered}$	Approx. Distance and Direction to Tower
1 - Intersection of Y Road and Route 320	Year-round	10'	2,640 feet, SW
2 - Tolland Turnpike	None	n/a	5,170 feet, S
3 - Willington Town Green	None	n/a	5,330 feet, S
4 - Willington Town Hall parking lot	None	n/a	4,750 feet, SW
5 - Willington Center School parking lot	None	n/a	4,700 feet, SW
6 - Lindsey Lane cul-de-sac	None	n/a	4,700 feet, NE
7 - \#4 Lindsey Lane	Year-round	50'	1,850 feet, E
8-87 Luchon Road	None	n/a	1,530 feet, E
9 - Willington Woods Senior Housing - Old Farms Road	None	n/a	4,700 feet, SW
10 - Willington Hill Cemetery	None	n/a	5,540 feet, S

(AT\&T 1, Attachment 4B - Visual Analysis Report)

Page 18

Figure 1: Location Map Showing Candidate Sites A and B

(AT\&T 1, Attachment 2 - Site Search Summary)

Docket 429: Willington
Findings of Fact
Page 19
Figure 2: Aerial Photograph of Candidate A Site

(AT\&T 1, Attachment 3 - Candidate A: General Facility Description)

Figure 3: Aerial Photograph of Candidate B Site

(AT\&T 1, Attachment 4 - Candidate B: General Facility Description)

Figure 4: Candidate A Site Plan

(AT\&T 1, Attachment 3A, Sheet C02, Site Access Map)

Page 22

(AT\&T 1, Attachment 4A - Sheets C02A and C02B)

Docket 429: Willington

Findings of Fact
Page 23
Figure 6: AT\&T Existing Coverage

(AT\&T 7, Updated RF Information - Radio Frequency Analysis Report, p. 10)

Docket 429: Willington

Findings of Fact
Page 24
Figure 7: AT\&T Coverage with Candidate A

(AT\&T 7, Updated RF Information - Radio Frequency Analysis Report, p. 11)

Docket 429: Willington

Findings of Fact
Page 25
Figure 8: AT\&T Coverage with Candidate B

(AT\&T 7, Updated RF Information - Radio Frequency Analysis Report, p. 12)

Page 26
Figure 9: Candidate A 2-Mile Viewshed Analysis Map

(AT\&T 1, Attachment 3B - Visual Analysis Report)

Figure 10: Candidate B 2-Mile Viewshed Analysis

(AT\&T 1, Attachment 4B, Visual Resource Evaluation Report)

Exhibit B

Property Card

Please see attached Statutory Form Warranty Deed transferring ownership from Diane Becker to Tarpon Towers I, LLC dated September 13, 2021 and recorded on September 28, 2021, Book 228, Page 396-397

109 SCHOFIELD RD

Location	109 SCHOFIELD RD	Mblu $47 / 009-0 \mathrm{~A} / /$	
Acct\#	00192000	Owner	SCHOFIELD, CAROL E
Assessment	$\$ 214,260$	Appraisal	$\$ 312,170$
PID 4301	Building Count	1	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$255,280	\$56,890	\$312,170
Assessment			
Valuation Year	Improvements	Land	Total
2018	\$178,700	\$35,560	\$214,260

Owner of Record

Owner	SCHOFIELD, CAROL E
Co-Owner	
Address	109 SCHOFIELD RD
	WILLINGTON, CT 06279

Sale Price \$0

Certificate
Book \& Page 86/399
Sale Date 08/15/2014

Building Information

Building 1 : Section 1

Year Built:	1987
Living Area:	2,499
Replacement Cost:	\$290,092
Building Percent Good:	88
Replacement Cost	
Less Depreciation:	\$255,280
	uilding Attributes
Field	Description
Style	Modern/Contemp
Model	Residential
Grade:	Good
Stories:	1.5
Occupancy	1

Exterior Wall 1	Clapboard
Exterior Wall 2	
Roof Structure:	Gable or Hip
Roof Cover	Asphalt
Interior Wall 1	Drywall/Sheet
Interior Wall 2	Average
Interior Flr 1	Oil
Interior Flr 2	Hot Water
Heat Fuel	None
Heat Type:	4 Bedrooms
AC Type:	2
Total Bedrooms:	0
Total Bthrms:	2
Total Half Baths:	6
Total Xtra Fixtrs:	
Total Rooms:	1
Bath Style:	None
Kitchen Style:	Fireplaces
Bsmt Garage	

Building Photo

(http://images.vgsi.com/photos/WillingtonCTPhotos//00\00\01\24.jpg)
Building Layout

(ParcelSketch.ashx?pid=4301\&bid=4301)

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	1,428	1,428
FHS	Half Story, Finished	1,428	1,071
FGR	Garage	1,099	0
FOP	Open Porch	144	0
UAT	Unfinished Attic	912	0
UBM	Unfinished Basement	1,428	0
WDK	Wood Deck	624	0
		7,063	2,499

Land

Land Use		Land Line Valuation	
Use Code	1010	Size (Acres)	7.4
Description	Single Fam MDL-01	Frontage	
Zone	R80	Depth	
Neighborhood	110	Assessed Value	$\$ 35,560$
Alt Land Appr No Appraised Value	$\$ 56,890$		
Category			

Outbuildings

	Outbuildings	Legend
	No Data for Outbuildings	

Valuation History

Appraisal					
	Valuation Year	Improvements	Land		
2019			$\$ 255,280$	Total	

Assessment					
	Valuation Year	Improvements	Land		
2019			$\$ 178,700$	$\$ 35,560$	Total

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Town of Willington, Connecticut

Printed on 10/12/2021
This map is for informational purposes only. It is not for appraisal of, description of, or conveyance of land. The Town of Willington, Connecticut and MainStreetGIS, LLC assume no legal responsibility for the information contained herein.

After Recording, return to:
AFTER RECORDING, PLEASE RETURN TO:
Fidelity National Title Group
7130 Glen Forest Dr., Ste. 300
Richmond, VA 23226
Attn:

STATUTORY FORM WARRANTY DEED

DIANE BECKER, of the Town of Willington, County of Tolland and State of Connecticut, for the consideration of Two Hundred Fifty Thousand and no /100 Dollars ($\mathbf{\$ 2 5 0 , 0 0 0 . 0 0}$), grants to TARPON TOWERS II, LLC, a Florida limited liability company, with WARRANTY COVENANTS, a certain piece or parcel of land situated in the Town of Willington, County of Tolland and State of Connecticut, known as 109 Schofield Road, and being more particularly described in Schedule A attached hereto and made a part hereof.

Said premises are conveyed subject to the following:

1. Real estate taxes on the List of October 1, 2018 and thereafter, which the Grantee herein assumes and agrees to pay as part consideration for this transfer.
2. Any and all provisions of any ordinance, municipal regulation, or public or private law.
3. Any declarations, restrictions, covenants, and easements of record.
4. Any state of facts an accurate survey or personal inspection of the property might reveal.

Being the same premises acquired by the grantor herein by virtue of a Warranty Deed from The Joseph J. Mottes Company, dated December 7, 2017 and recorded December 8, 2017 in Volume 216 at Page 1087 of the Willington Land Records.

Signed this \qquad da by of September, 2021.

Witnessed by:

September /5, 2021
COUNTY OF HARTFORD)
ss. Glastonbury
The foregoing instrument was acknowledged before me this \qquad π Diane Becker, as her free act and deed.

SCHEDULE A
 Property Description

A certain piece or parcel of land situated in the Town of Willington, County of Tolland and State of Connecticut, bounded and described as follows, to wit:

BEGINNING at an iron pin at the Northeast corner of the premises herein described, said point being the Northwest corner of premises now or formerly, of Edward R. and Marian N. Dell, and situated in the Southerly line of a 50 foot right of way; thence N. $70^{\circ} 09^{\prime} 10^{\prime \prime}$ W. One Hundred Eighty-nine and 20/100 (189.20) feet in the Southerly line of an extension of said right of way, to an iron pin; thence S. 19 ${ }^{\circ} 50^{\prime} 50^{\prime \prime}$ W. Two Hundred Thirty-one and 11/100 (231.11) feet along other land of George L. Schofield, Jr. and Rose Schofield to an iron pin at land now or formerly of Stuart S. Schofield; thence S. $70^{\circ} 42^{\prime}$ E. One Hundred Eighty-nine and 21/100 (189.21) feet along land now or formerly of said Stuart S. Schofield to an iron pin; thence N. $19^{\circ} 50^{\prime} 50^{\prime \prime}$ E. Two Hundred Twenty-nine and 30/100 (229.30) feet along land of said Dells to an iron pin which is point and place of beginning.

TOGETHER WITH the use of a right of way fifty (50) feet wide extending from the Westerly side of Schofield Road to the Westerly boundary of the herein conveyed land.

AND BEING the same property conveyed to The Joseph J. Mottes Company from George L. Schofield, Jr. and Rose Schofield by Warranty Deed dated September 16, 1968 and recorded October 05, 1968 in Deed Book 49, Page 192; AND FURTHER CONVEYED to Diane Becker from The Joseph J. Mottes Company by Quit Claim Deed dated December 07, 2017 and recorded December 08, 2017 in Deed Book 216, Page 1087.

Exhibit C

Construction Drawings

（（必））
NSS

Seni
学这盆
OU916
10／22／20 21 ，NAL

ORAWN BY：	CHECKED BY：	APPROVED BY：				
RCD	SS	CJw		RCD	SS	CJW
:---:	:---:	:---:				
RFDS REV \＃：	N／A					

CONSTRUCTION
DOCUMENTS

SUBMITALS		
REV	DATE	DESCRIPTION

	DATE	
	00／2／21	1 ISS

A\＆E PROJECT NUMBER
2039－Z5555C

O9 SCHOFIELD ROAD
109 SCHOFIELD ROAD
WILLINGTON，CT 06279
SHEET TTLLE
PLUMBING DIAGRA
LUMBING DIAGRA

SIIE ACTIVIT REOUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEMING A WRITTEN NOTTCE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE STEE YOU MUST CONTACT THE
WIRELESS, LC. AND TOWER OWNER NOC \& THE DISH WIRLESS, LLC. AND TOWER OWNER CONSTRUCTION MANAGER.
2. "LOOK UP" - DISH WIRELESS, LLC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILTY SHALL BE CONSIDRED DURING AL STAGES
OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFICATON, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHALL OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATINN, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL
NOT COMPROMISE THE INTEGRIT OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILTY ON

3. PRIOR TO THE START OF CONSTRUCTION, ALL REOURED JURISOICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT
IS NOT LIMTED TO, BULDING, ELECTRICAL, MECHANLCAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTVIIIES

 PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATTEST EDITON) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDAROS, INCLUDING
THE REQUIRED INVOLVEMENT OF A QUALIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPORTING STRUCTURE(S) IN THE REQULRED INVOLVEMENT O A A QUALIFED ENGINE
ACCORDANCE WTH ANSI/TA- 322 (LATEST EDITION).
5. ALL STE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION
ACTVTIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TAA-1019-A-2012 "STANDARD

7. AL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRCT ACCORDANCE WITH ALL APPLCABLE CODES, REGLATIONS
AND ORDINANEES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTTH ALL LAWS, ORDINANCES, RUUES
 REGULATONS AND LAWFUL ORDERS OF ANY
OUT SHALL COMPL WWTH ALL APLICABLL
ORDINANCES AND APPLCABLE REGLATINS.
8. THE CONTTACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATONS
9. THE CONTRActor shall contact utlitr locating services including prinate locates services prior to the start
 CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR
UTLTIES. CNTRACTOR SHALL PROVDE SAFETY TAANING FOR THE WORIG CREW. THI WIL INCLUDE BUT NOT BE LMTTED TO A) FALL PROTECTI
PROCEDURES.
11. ALL SITE WORK SHALL BE AS INOICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS,
LATEST APPROVED REVIIION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULTING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE
TISRK. IF NEESSARY, RUBBISH, STUMPS, DEBRIS, STCKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
13. ALL EXISTING INACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTLLTIES, WHICH INTERFERE WTH THE EXECUTION OF THE WORK, SHAL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINED AT POINTS WHICH WLLL NOT INTERFERE WTH
THE EXECUTON OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTLTIES. Th. THE CONTRACTOR SHALL PROVIDE STEE SIISNAEE IN ACCORDANCE WITH THE TTCHNIICAL SPECIFCATION FOR SITE SIGNAGE
REQUIRED BY LOCAL JURISOICION AND SIGNAGE REQURED ON INDIIDUAL PIECES OF ENUPMENT, ROOMS, AND SHELIERS.
15. the stie shall be graded to cause surface water to flow away from the carrier's equipment and tower areas. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
16.
APPICATIN. 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFED ON THE CONSTRUCTON DRAWINGS AND/OR PROUECT SPECIFICATIONS
18. CONTRACTOR SHALL MIMMIZE DISTURBANCE TT EXIITTING STE DURING CONSTTUCTION. EROSION CONTROL MEASURES, IF
REQUIRED DURING CONSTRUCTNON, SHALL BE IN CONFORMANCE WITH THE LOCAL GUDELINES FOR EROSION AND SEDMENS CONTRLL 19. THE CONTRACTOR SHALL PROTECC EXISTING IMPROVEMENTS, PAVEMENTS, CURES, LANDSCAPING AND STRUCTURES. ANY 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER TTEMS 20. CONTRACTOR SHALL LEGALY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHE
REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATON.
21. CONTRACTOR SHALL Leave premises in clean condition. trash and debris should be removed from site on a dally
basis.
22. NO FILL OR EMBANKMENT MATERRAL SHALL be placed on frozen ground. frozen materials, snow or ice shall not
BE place in ANr Fill Or Embenkment.

GENERAL NOTES

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLOWING DEFINTIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:DISH WIRELESS, Luc.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALY
EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINERS IN THIS OR SIMLAR LOCALIIES. IT IS ASSUMED THAT THE WORK DEPICTED WLL BE PERFORMED BY AN EXPERENEED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE
OF THE APPLCABLE CODE STANARD AND REOUREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTCE AS NOT EVERY OF THE
CONDIION OR ELEMENT IS (OR CAN BE) EXPLICTLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED CONDITION OR ELEMENT IS (OR CAN BE EXPLCICTY SHOON ON THESE DRAWING
STANDRD GOOD PRACTICE FOR MISELLAEOUS WORK NOT EXPLICTLY SHOWN.
3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INOICATE THE MEANS OR METHOOS OF
CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS METHODS TECHN SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND
 SITE VISTIS BY THE ENGINEER OR HIS REPRESENTAA
OBSERVATIO OF THE FINISHED STRUCTURE ONLY.

 GRECTER
SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILTT OF THE CONTRACTOR TO

 Possible.

 AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGULATONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGAROING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 UNLESS NOTED OTHERWISE, THE WORK SHALL INCLLDE FURNISHHG MAT
SECESSARY TO COMPLLET ALL INSTALATONS AS ANOCCATED ON THE DRAWINGS.
9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WTTH MANUFACTURER'S RECOMMENDATIONS
10. IF THE SPECIFIED EQUPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS. THE CONTRACTOR SHALL PROPOSE
AN ALTERNTVE
OF INSTALLATON 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEEORE SUBMTTING BIDS, TO DETERMINE THE BEST ROUTING of ALL
CONOUTS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNING PLAN DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURES, LANDSCAPING AND STRUCTURES. ANY 13. CONTRACTOR SHALL LEGALY AND PROPERLY DISPOSE OF ALL SCRAP MATERLLIS SUCH AS COAXILL CABLES AND OTHER ITEM 13. CONTRACTOR SHALL LEGALLY AND PROPERLY IISPOSE OF ALL SCRAP MATERILLS SUCH AS COAAIAL CABLLES AND OT
REMOVED FROM THE EXITTING FAILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. 14.
basis. CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a daly

(蚊))

NSS | NORTHE EST |
| :---: |
| site solition |

INFINIGY\&
FROM ZERO TO INFINIGY

maxivequix

| DRAWN By: | CHECKED By: |
| :--- | :--- | | RCD | SS | CJW |
| :---: | :---: | :---: |
| feds rev \#. | | |

CONSTRUCTION DOCUMENTS

A\&E PROJECT NUMBER

109 SCHOFIELD ROAD
WILIINGTON, CT 06279
SHEET TTLE
general notes

GROUNDING NOTES:

ALL GROUND ELECTRODE SYTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNNG PROTECTION AND AC POWER GES'S) SHALL
BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WTH THE NEC.
THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR
ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALYY CONTINUOUS WITH LSTED BONDING FITINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTTH \# COPPER WIRE UL APPROVED GROUNDING TTPE CONDUTT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONOUCTOR STRANDED COPPER CONDUCTORS
WTH GREN INSULATON, SIZED IN ACCORDANCE WTH THE NEC, SHALL BE FURNISHED AND INSTALLED WTH THE POWER CIRCUTS TO BTS
6. EACH CABINET FRAME SHALL BE DIRECTY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WIRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.
8. ALL EXTERIOR Ground conductors between equipment/ground bars and the ground ring shall be \#z solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS
10. USE of 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
11. EXOTHERMIC WELDS SHALL be used for all grounding connections below grade.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND
16. ALL EXTERIOR GROUND CONNECTONS SHALL BE COATED WTH A CORROSION RESISTANT MATERIAL.
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND $18 . \quad \begin{aligned} & \text { Bon } \\ & \text { CONDCTOR }\end{aligned}$
19. GROUND CONDUCTORS USED FOR THE FACLITTY GROUNOING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED
THROUGH METALLC OBUCCTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLC CONDUTS, METAL SUPPORT CLIPS OR
 SLEEVES THROUGH WALLS OR FLLORS. WHEN Π IS REQUIRED TO BE HOUSED IN CONDUUT TO MEET CODE REQUREMENTS OR LOCAL
CONOTTINS, NON-METALIC MATERAL SUCH AS PVC CONOUT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIABLE (ie., NONMETALLC CONDUIT PROHBITED EY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
20. ALL GROUNDS THAT TRANSITON FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLID TINNED COPPER IN $3 / 4^{\prime \prime}$ " NON-METALLIC, FLEXIBLE CONDUIT FROM 24 " BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMINATON POINT.
OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSTIONING GROUND STANDARD DETAIL AS WEL).
BULLDINS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTTACTOR SHALL ROUTE
TWO GROUNDING CONDUCTORS sROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO, THE EXISTING GROUNONG
SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED THE EXISTING GROUNDING SYSTEM, THE BULLING STEEL COLUMNS, LGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATACH GROUNDING TO FIRE SPRINLLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRVE
LTILETON, $C O 80120$

Exhibit D

Structural Analysis Report

Structural Analysis Report

April 21, 2021

Tarpon Site Name:	Willington
Tarpon Site ID:	CT1010
Dish Network Site ID:	BOHVN00147A
Airosmith Project ID:	Tarpon ENG 2020
Site Location	109 Schofield Road Willington, CT 06279 Tolland County
Applicable Code	2018 CT State Building Code / 2015 IBC
Applicable Design Standard	ANSI/TIA-222-H
Structure	149^{\prime} Guyed Tower
Demand-Capacity Ratio (CSR)	36.2%
Overall Result	Pass

PREPARED FOR:

TARPEN TOWERS

APPROVED BY: Joseph R. Johnston, P.E.
CT License \#: PEN. 0029460

Table of Contents

1.0 Scope 2
2.0 Supporting Documentation 2
3.0 Analysis Code Requirements 2
4.0 Existing \& Reserved Loading 3
5.0 To Be Removed Loading 3
6.0 Proposed Loading 3
7.0 Final Configuration 3
8.0 Results and Conclusions 3
9.0 Assumptions \& Limitations 5

1.0 Scope

Airosmith Engineering has been requested to perform a structural analysis on the existing 149 ft Guyed Tower for Dish Network's proposed install. The structure was analyzed using tnxTower Version 8.0.7 analysis software. Selected output from the analysis is included in this report.

The proposed Dish Network install consists of installing (1) new platform mount, (3) new panel antennas, (6) new radio units, (1) new surge suppressor, and (1) new hybrid line.

2.0 Supporting Documentation

Collocation Application	Dish Network App, dated 3/8/2021
Tower Design Drawings	Sabre Job \#35784, dated 10/19/2010
Foundation Design Drawings	Sabre Job \#35784, dated 10/28/2010
Geotechnical Report	Welti Geotechnical, dated 9/24/2018

3.0 Analysis Code Requirements

Wind Speed	125 mph (3-Second Gust)
Wind Speed with Ice	50 mph (3-Second Gust) w/ 1.5" ice
Design Standard	ANSI/TIA-222-H
Adopted IBC	2018 CT State Building Code / 2015 IBC
Risk Category	II
Exposure Category	B
Topographic Factor Procedure	Method 1, Category 1
Crest Height	$0 \mathrm{ft}$.
HSML (ft.)	785.0 ft.

4.0 Existing \& Reserved Loading

RAD Center (ft.)	Qty.	Appurtenance	Mount Type	Lines	Carrier
No loading considered to be removed					

5.0 To Be Removed Loading

RAD Center (ft.)	Qty.	Appurtenance	Mount Type	Lines	Carrier
No loading considered to be removed					

6.0 Proposed Loading

RAD Center (ft.)	Qty.	Appurtenance*	Mount Type	Lines	Carrier
145.0	3	JMA Wireless MX08FRO665-20_VOF			
	3	Fujitsu TA08025-B604	Platform w/	(1) $1.65^{\prime \prime}$	Dish Hybrid
	3	Fujitsu TA08025-B605	Network		

*The results of this analysis considers Dish Networks full 11,000 in² MLA loading

7.0 Final Configuration

RAD Center (ft.)	Qty.	Appurtenance*	Mount Type	Lines	Carrier
145.0	3	JMA Wireless MX08FRO665-20_V0F	Platform w/ Handrails	(1) $1.65^{\prime \prime}$ Hybrid	Dish Network
	3	Fujitsu TA08025-B604			
	3	Fujitsu TA08025-B605			
	1	Generic Junction Box			

*The results of this analysis considers Dish Networks full 11,000 in ${ }^{2}$ MLA loading

Coax lines can be installed on any tower face.

8.0 Results and Conclusions

Upon reviewing the results of this analysis, it is our opinion that the existing structure meets the specified code requirements. The 149' guyed tower structure and foundation are considered acceptable to support the final loading configuration as listed within in this report. The controlling structure and foundation usages are displayed in the tables below:

Structure Usages

Component	Controlling Usage*
Legs	29.7%
Diagonals	28.7%
Guy Wires	36.2%

*Listed usage is for the controlling component. Refer to the appendix for detailed results on each individual member

Foundation Usages

Component	Design Reaction	Analysis Reaction	Usage
Base Axial (kips)	182.5	54.2	29.7%
Anchor Uplift (kips)	36.4	12.5	34.3%
Anchor Shear (kips)	34.2	11.2	32.8%

The tower foundation is acceptable in comparison to original design reactions.

We appreciate the opportunity to be of service on this project. If you have any questions, require additional information, or actual conditions differ from those as detailed in this report, please contact me via the information below:

Brad Davenport, P.E.
engineering@airosmithdevelopment.com

9.0 Assumptions \& Limitations

The following assumptions have been made for this analysis:

- Structural calculations are completed assuming all information provided to Airosmith Development is accurate and applicable to this site.
- The existing structures were designed, manufactured, and constructed in accordance with the applicable codes and standards in effect at that time
- The existing structures have been properly maintained in accordance with industry standards.
- All structural and foundation elements, unless otherwise noted, are in good condition, and are capable of supporting their original design capacity.
- Steel grades have been assumed as follows, unless otherwise noted
- Channel, Solid Round, Angle \& Plate ASTM A36 Gr. 36
- HSS (Rectangular) ASTM A500 Gr. B
- HSS (Pipe) ASTM A53 Gr. B
- Threaded Rods ASTM A36 Gr. 36
- Calculation-specific assumptions are as noted in the attached appendix

49.0 ft
140.0 ft
136.7 ft
120.0 ft
100.0 ft
0.0 ft
66.7 ft
60.0 ft
40.0 ft
20.0 ft
6.7 ft
0.0 ft

SYMBRL LIST				
MAR	$2 @ 3.3335$	SIZE	MARK	SIZE

MATERIAL STRENGTH

GRADE	Fy		Fu		GRADE	Fy
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi	

TOWER DESIGN NOTES

1. Tower designed for Exposure B to the TIA-222-H Standard.
2. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
3. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. TOWER RATING: 36.2%

Airosmith Development
 318 West Avenue
 Saratoga Springs, NY 12866
 Phone: (518) 307-8700
 FAX:

${ }^{\text {ob: }}$ CT1008 Naugatuck
Project: Tarpon ENG 2020
Client: Tarpon Towers Drawn by: BDavenport ${ }^{\text {App'd }}$
Code: TIA-222-H \quad Date: 04/21/21 \quad Scale: NTS

| tnxTOWer | Job | Page |
| :---: | :--- | :--- | :--- |
| | CT1008 Naugatuck | |

Tower Input Data

The main tower is a 3 x guyed tower with an overall height of 149.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 3.00 ft at the top and tapered at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower base elevation above sea level: 785.00 ft .
Basic wind speed of 125 mph .
Risk Category II.
Exposure Category B.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.5000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Pressures are calculated at each section.
Safety factor used in guy design is 1 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\text {es }}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\text {es }}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform
Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r
$\sqrt{ }$ Retension Guys To Initial Tension Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
$\sqrt{ }$ Autocalc Torque Arm Areas Add IBC .6D+W Combination
\checkmark Sort Capacity Reports By Component
$\sqrt{ }$ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{aligned} & \text { Date } \\ & \text { 15:41:38 04/21/21 } \end{aligned}$
	Client	Tarpon Towers	Designed by BDavenport

Corner \& Starmount Guyed Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of
	ft		f	Sections	

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt	
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset	
				End			in	
	$f t$				Panels		in	
T1	$149.00-140.00$	3.00	K Brace Left	No	Yes	0.0000	0.0000	

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	Date $15: 41: 38 \text { 04/21/21 }$
	Client	Tarpon Towers	Designed by BDavenport

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft				Panels	
in		in					
T2	$140.00-120.00$	3.33	K Brace Left	No	Yes	0.0000	0.0000
T3	$120.00-100.00$	3.33	K Brace Left	No	Yes	0.0000	0.0000
T4	$100.00-80.00$	3.33	K Brace Left	No	Yes	0.0000	0.0000
T5	$80.00-60.00$	3.33	K Brace Left	No	Yes	0.0000	0.0000
T6	$60.00-40.00$	3.33	K Brace Left	No	Yes	0.0000	0.0000
T7	$40.00-20.00$	3.33	K Brace Left	No	Yes	0.0000	0.0000
T8	$20.00-6.67$	3.33	K Brace Left	No	Yes	0.0000	0.0000
T9	$6.67-0.00$	3.33	K Brace Left	No	Yes	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg Type	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 149.00-140.00	Solid Round	$13 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	1	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 140.00-120.00	Solid Round	$13 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	1	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T3 120.00-100.00	Solid Round	2	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	1	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 100.00-80.00	Solid Round	2	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	1	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 80.00-60.00	Solid Round	2	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	$11 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T6 60.00-40.00	Solid Round	2	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	1	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T7 40.00-20.00	Solid Round	$13 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	1	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T8 20.00-6.67	Solid Round	$21 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	$11 / 4$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T9 6.67-0.00	Solid Round	$21 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	$11 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 149.00-140.00	Solid Round	7/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 140.00-120.00	Solid Round	7/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T3 120.00-100.00	Solid Round	7/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 100.00-80.00	Solid Round	7/8	A36 (36 ksi)	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 80.00-60.00	Solid Round	7/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T6 60.00-40.00	Solid Round	7/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T7 40.00-20.00	Solid Round	7/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	Page 4 of 17
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:41:38 04/21/21 } \end{array}$
	Client	Tarpon Towers	Designed by BDavenport

Tower Elevation $f t$	Top Girt Type	Top Girt	Top Girt	Bottom Girt	Bottom Girt
Syade	Sype	Bottom Girt			
T8 20.00-6.67	Solid Round		$7 / 8$	A36	Flat Bar

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal Elevation of Mid	Type

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
149.00-140.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T5 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T6 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 5 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{aligned} & \text { Date } \\ & \text { 15:41:38 04/21/21 } \end{aligned}$
	Client	Tarpon Towers	Designed by BDavenport

Tower Elevation ft	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
T8 20.00-6.67	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
T9 6.67-0.00	0.00	0.0000	(36 ksi) A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{1}$							
			Legs	X	K	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Brace	Brace					
				Diags	Diags					
				X						
$f t$				Y	Y	Y	Y	Y	Y	Y
T1	No	Yes	1	1	1	1	1	1	1	1
149.00-140.00				1	1	1	1	1	1	1
T2	No	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T3	No	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T4	No	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T5	No	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T6	No	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T7	No	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T8 20.00-6.67	No	Yes	1	1	1	1	1	1	,	1
				1	1	1	1	1	,	1
T9 6.67-0.00	No	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

[^0]
Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} 149.00-140.00 \\ \text { T2 } \\ 140.00-120.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \mathrm{T} 3 \\ 120.00-100.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T4 } \\ 100.00-80.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 6 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	Date $15: 41: 38 \text { 04/21/21 }$
	Client	Tarpon Towers	Designed by BDavenport

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T5 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 20.00-6.67	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 6.67-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Guy Data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Guy Elevation \\
ft
\end{tabular} \& \begin{tabular}{l}
Guy \\
Grade
\end{tabular} \& \& Guy Size \& \begin{tabular}{l}
Initial Tension \\
\(l b\)
\end{tabular} \& \% \& Guy Modulus ksi \& \begin{tabular}{l}
Guy Weight \\
plf
\end{tabular} \& \(L_{u}\)

$f t$ \& | Anchor Radius |
| :--- |
| ft | \& Anchor Azimuth Adj. \& | Anchor Elevation |
| :--- |
| $f t$ | \& | End |
| :--- |
| Fitting Efficiency \% |

\hline \multirow[t]{3}{*}{136.667} \& \multirow[t]{3}{*}{EHS} \& A \& 5/8 \& 4240.00 \& 10\% \& 21000 \& 0.813 \& 173.66 \& 95.00 \& 0.0000 \& -10.00 \& 100\%

\hline \& \& B \& 5/8 \& 4240.00 \& 10\% \& 21000 \& 0.813 \& 173.66 \& 95.00 \& 0.0000 \& -10.00 \& 100\%

\hline \& \& C \& 5/8 \& 4240.00 \& 10\% \& 21000 \& 0.813 \& 173.66 \& 95.00 \& 0.0000 \& -10.00 \& 100\%

\hline \multirow[t]{3}{*}{66.6667} \& \multirow[t]{3}{*}{EHS} \& A \& 3/4 \& 5830.00 \& 10\% \& 19000 \& 1.155 \& 120.62 \& 95.00 \& 0.0000 \& -10.00 \& 100\%

\hline \& \& B \& 3/4 \& 5830.00 \& 10\% \& 19000 \& 1.155 \& 120.62 \& 95.00 \& 0.0000 \& -10.00 \& 100\%

\hline \& \& C \& 3/4 \& 5830.00 \& 10\% \& 19000 \& 1.155 \& 120.62 \& 95.00 \& 0.0000 \& -10.00 \& 100\%

\hline
\end{tabular}

Guy Data(cont'd)

Guy Elevation $f t$	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
136.667		Corner		0			
66.6667	Corner						

Guy Data (cont'd)								
$\begin{gathered} \text { Guy } \\ \text { Elevation } \\ f t \end{gathered}$	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	$\begin{gathered} I s \\ \text { Strap. } \end{gathered}$	$\begin{aligned} & \text { Pull-Off } \\ & \text { Grade } \end{aligned}$	Pull-Off Type	Pull-Off Size
136.67	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round				$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	
66.67	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round				$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	

Guy Data (cont'd)

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 7 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	Date $15: 41: 38 \text { 04/21/21 }$
	Client	Tarpon Towers	Designed by BDavenport

Guy	Cable	Cable	Cable	Cable	Tower	Tower	Tower	Tower
Elevation	Weight	Weight	Weight	Weight	Intercept	Intercept	Intercept	Intercept
	A	B	C	D	A	B	C	D
$f t$	$l b$	$l b$	$l b$	$l b$	$f t$	$f t$	$f t$	$f t$
136.667	141.19	141.19	141.19		2.85	2.85	2.85	
					$2.9 \mathrm{sec} /$ pulse	$2.9 \mathrm{sec} / \mathrm{pulse}$	$2.9 \mathrm{sec} / \mathrm{pulse}$	
66.6667	139.32	139.32	139.32		1.43	1.43	1.43	
					$2.1 \mathrm{sec} / \mathrm{pulse}$	2.1 sec/pulse	2.1 sec/pulse	

Guy Data (cont'd)

$\begin{gathered} \text { Guy } \\ \text { Elevation } \\ f t \end{gathered}$	Calc K Single Angles	Calc K Solid Rounds	Torque Arm		Pull Off		Diagonal	
			K_{x}	K_{y}	K_{x}	K_{y}	K_{x}	K_{y}
136.667	No	No			1	1	1	1
66.6667	No	No			1	1	1	1

Guy Data (cont'd)

$\begin{gathered} \text { Guy } \\ \text { Elevation } \\ \text { ft } \\ \hline \end{gathered}$	Torque-Arm				Pull Off				Diagonal			
	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U
136.667	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A 325 N				A325N				A325N			
66.6667	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			

Guy Pressures

Guy Elevation $f t$	Guy Location	z	q_{z}	q_{z}	Ice Thickness
136.667		$f t$		Ice	psf

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	Number Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
1.65" Hybird	C	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	145.00-0.00	1	1	1.6250	1.6500		1.00

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & 8 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{aligned} & \text { Date } \\ & \text { 15:41:38 04/21/21 } \end{aligned}$
	Client	Tarpon Towers	Designed by BDavenport

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& \begin{tabular}{l}
Tower \\
Elevation ft
\end{tabular} \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& | Weight |
| :--- |
| $l b$ |

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{149.00-140.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.825 \& 0.000 \& 5.00

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 3.300 \& 0.000 \& 20.00

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 3.300 \& 0.000 \& 20.00

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 3.300 \& 0.000 \& 20.00

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 3.300 \& 0.000 \& 20.00

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 3.300 \& 0.000 \& 20.00

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 3.300 \& 0.000 \& 20.00

\hline \multirow[t]{3}{*}{T8} \& \multirow[t]{3}{*}{20.00-6.67} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 2.200 \& 0.000 \& 13.33

\hline \multirow[t]{3}{*}{T9} \& \multirow[t]{3}{*}{6.67-0.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 1.100 \& 0.000 \& 6.67

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation $f t$ \& Face or Leg \& Ice
Thickness
in \& A_{R}
$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& \qquad \& Weight
$l b$

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{149.00-140.00} \& A \& \multirow[t]{3}{*}{1.478} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 2.303 \& 0.000 \& 33.24

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& \multirow[t]{3}{*}{1.462} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 9.149 \& 0.000 \& 131.21

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& \multirow[t]{3}{*}{1.438} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 9.053 \& 0.000 \& 128.52

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& \multirow[t]{3}{*}{1.410} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 8.938 \& 0.000 \& 125.38

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& \multirow[t]{3}{*}{1.375} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 8.798 \& 0.000 \& 121.59

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& \multirow[t]{3}{*}{1.329} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 8.616 \& 0.000 \& 116.75

\hline T7 \& 40.00-20.00 \& A \& 1.263 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

tnxTower Airosmith Development 318 West Avenue	Job CT1008 Naugatuck		Page 9 of 17
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:41:38 04/21/21 } \end{array}$
Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Client	Tarpon Towers	Designed by BDavenport

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice
Thickness
in \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$

\] \& | Weight |
| :---: |
| $l b$ |

\hline \multirow{4}{*}{T8} \& \multirow{4}{*}{20.00-6.67} \& B \& \multirow{4}{*}{1.165} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 8.352 \& 0.000 \& 109.89

\hline \& \& A \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow{4}{*}{T9} \& \multirow{4}{*}{6.67-0.00} \& C \& \multirow{4}{*}{1.014} \& 0.000 \& 0.000 \& 5.305 \& 0.000 \& 66.72

\hline \& \& A \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 2.452 \& 0.000 \& 28.66

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice in	$C P_{Z}$ Ice in
T1	ft	in	in	0.7382	
T2	$149.00-140.00$	0.0000	0.7722	0.0000	1.3374
T3	$140.00-120.00$	0.0000	1.3433	0.0000	1.3022
T4	$120.00-100.00$	0.0000	1.2620	0.0000	1.3125
T5	$100.00-80.00$	0.0000	1.2620	0.0000	1.2897
T6	$80.00-60.00$	0.0000	1.2155	0.0000	1.3409
T7	$60.00-40.00$	0.0000	1.2620	0.0000	1.4048
T8	$40.00-20.00$	0.0000	1.3433	0.0000	1.3129
T9	$20.00-6.67$	0.0000	1.1508	0.0000	0.8716

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & \hline K_{a} \\ & I c e \\ & \hline \end{aligned}$
T1	1	1.65" Hybird	$140.00-$ 145.00	0.6000	0.5485
T2	1	1.65" Hybird	$120.00-$ 140.00	0.6000	0.5666
T3	1	1.65" Hybird	$100.00-$ 120.00	0.6000	0.5629
T4	1	1.65" Hybird	80.00-100.00	0.6000	0.5681
T5	1	1.65" Hybird	60.00-80.00	0.6000	0.5666
T6	1	1.65" Hybird	40.00-60.00	0.6000	0.5827
T7	1	1.65" Hybird	20.00-40.00	0.6000	0.6000
T8	1	1.65" Hybird	6.67-20.00	0.6000	0.5964
T9	1	1.65" Hybird	0.00-6.67	0.6000	0.4433

Discrete Tower Loads

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & 10 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	Date $15: 41: 38 \text { 04/21/21 }$
	Client	Tarpon Towers	Designed by BDavenport

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{4}{*}{Reserved Loading (1/3*11,000 sq. in) (Dish Network)} \& A \& From Face \& 4.00 \& 0.0000 \& 145.00 \& No Ice \& 25.46 \& 25.46 \& 1200.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 26.83 \& 26.83 \& 1560.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 28.21 \& 28.21 \& 1920.00

\hline \& \& \& \& \& \& 2" Ice \& 31.24 \& 31.24 \& 2640.00

\hline \multirow[t]{4}{*}{Reserved Loading ($1 / 3 * 11,000$ sq. in) (Dish Network)} \& B \& From Face \& 4.00 \& 0.0000 \& 145.00 \& No Ice \& 25.46 \& 25.46 \& 1200.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 26.83 \& 26.83 \& 1560.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 28.21 \& 28.21 \& 1920.00

\hline \& \& \& \& \& \& 2 " Ice \& 31.24 \& 31.24 \& 2640.00

\hline \multirow[t]{4}{*}{Reserved Loading (1/3*11,000 sq. in) (Dish Network)} \& C \& From Face \& 4.00 \& 0.0000 \& 145.00 \& No Ice \& 25.46 \& 25.46 \& 1200.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 26.83 \& 26.83 \& 1560.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 28.21 \& 28.21 \& 1920.00

\hline \& \& \& \& \& \& 2" Ice \& 31.24 \& 31.24 \& 2640.00

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.0 Wind 30 deg - No Ice+1.0 Guy
4	1.2 Dead+1.0 Wind 60 deg - No Ice+1.0 Guy
5	1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy
6	1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy
7	1.2 Dead+1.0 Wind 150 deg - No Ice+1.0 Guy
8	1.2 Dead+1.0 Wind 180 deg - No Ice+1.0 Guy
9	1.2 Dead+1.0 Wind 210 deg - No Ice+1.0 Guy
10	1.2 Dead+1.0 Wind 240 deg - No Ice+1.0 Guy
11	1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy
12	1.2 Dead+1.0 Wind 300 deg - No Ice+1.0 Guy
13	1.2 Dead+1.0 Wind 330 deg - No Ice+1.0 Guy
14	1.2 Dead+1.0 Ice+1.0 Temp+Guy
15	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
20	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
21	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
22	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
23	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
24	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
25	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
26	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
27	Dead+Wind 0 deg - Service+Guy
28	Dead+Wind 30 deg - Service+Guy
29	Dead+Wind 60 deg - Service+Guy
30	Dead+Wind 90 deg - Service+Guy
31	Dead+Wind 120 deg - Service+Guy
32	Dead+Wind 150 deg - Service+Guy
33	Dead+Wind 180 deg - Service+Guy
34	Dead+Wind 210 deg - Service+Guy

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 11 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{aligned} & \text { Date } \\ & \text { 15:41:38 04/21/21 } \end{aligned}$
	Client	Tarpon Towers	Designed by BDavenport

Comb.		Description
No.	Dead+Wind 240 deg - Service+Guy	
35	Dead+Wind 270 deg - Service+Guy	
36	Dead+Wind 300 deg - Service + Guy	
38	Dead+Wind 330 deg - Service+Guy	

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt 。	Twist 。	Radius of Curvature $f t$
145.00	Reserved Loading (1/3*11,000 sq. in)	33	0.858	0.0575	0.0955	145726
136.67	Guy	33	0.758	0.0555	0.0943	92836
66.67	Guy	37	0.129	0.0240	0.1068	66385

Maximum Towe					
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	$f t$	in	Comb.	-	-
T1	149-140	4.825	6	0.3134	0.3975
T2	140-120	4.224	6	0.3078	0.3959
T3	120-100	3.020	6	0.2695	0.4090
T4	100-80	1.938	10	0.2426	0.4109
T5	80-60	1.004	10	0.1903	0.4100
T6	60-40	0.440	12	0.0986	0.4101
T7	40-20	0.195	12	0.0416	0.4160
T8	20-6.667	0.084	12	0.0210	0.4196
T9	6.667-0	0.028	12	0.0202	0.4099

Critical Deflections and Radius of Curvature - Design Wind

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & 12 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	Date $15: 41: 38 \text { 04/21/21 }$
	Client	Tarpon Towers	Designed by BDavenport

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt 。	Twist 。	Radius of Curvature $f t$
145.00	Reserved Loading (1/3*11,000 sq. in)	6	4.555	0.3117	0.3971	35707
136.67	Guy	6	4.010	0.3031	0.3943	22320
66.67	Guy	12	0.587	0.1286	0.4097	12297

Guy Design Data

Section No.	Elevation $f t$	Size	Initial Tension lb	Breaking Load $l b$	Actual T_{u} $l b$	Allowable ϕT_{n} $l b$	Required S.F.	Actual S.F.
T2	$\begin{gathered} 136.67(\mathrm{~A}) \\ (297) \end{gathered}$	5/8 EHS	4240.00	42399.99	9192.33	25440.00	1.000	2.768
	$\begin{gathered} 136.67 \text { (B) } \\ (296) \end{gathered}$	5/8 EHS	4240.00	42399.99	9197.02	25440.00	1.000	2.766
	$\begin{gathered} 136.67 \text { (C) } \\ (295) \end{gathered}$	5/8 EHS	4240.00	42399.99	9196.95	25440.00	1.000	2.766
T5	$\begin{aligned} & 66.67 \text { (A) } \\ & (300) \end{aligned}$	3/4 EHS	5830.00	58299.91	8600.65	34980.00	1.000	4.067
	66.67 (B) (299)	3/4 EHS	5830.00	58299.91	8601.58	34980.00	1.000	4.067
	66.67 (C) (298)	3/4 EHS	5830.00	58299.91	8601.65	34980.00	1.000	4.067

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	Mast Stability	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	Index	$l b$	$l b$	ϕP_{n}
T1	149-140	13/4	9.00	3.00	$\begin{gathered} 82.3 \\ \mathrm{~K}=1.00 \end{gathered}$	2.4053	1.00	-4834.51	65973.80	0.073^{1}
T2	140-120	$13 / 4$	20.00	3.33	$\begin{gathered} 91.4 \\ \mathrm{~K}=1.00 \end{gathered}$	2.4053	1.00	-10275.80	58740.50	0.175^{1}
T3	120-100	2	20.00	3.33	$\begin{gathered} 80.0 \\ \mathrm{~K}=1.00 \end{gathered}$	3.1416	1.00	-11228.40	88538.90	0.127^{1}
T4	100-80	2	20.00	3.33	$\begin{gathered} 80.0 \\ \mathrm{~K}=1.00 \end{gathered}$	3.1416	1.00	-16570.80	88538.90	0.187^{1}
T5	80-60	2	20.00	3.33	$\begin{gathered} 80.0 \\ \mathrm{~K}=1.00 \end{gathered}$	3.1416	1.00	-24545.40	88538.90	0.277^{1}
T6	60-40	2	20.00	3.33	$\begin{gathered} 80.0 \\ \mathrm{~K}=1.00 \end{gathered}$	3.1416	1.00	-22053.30	88538.90	0.249^{1}
T7	40-20	$13 / 4$	20.00	3.33	$\begin{gathered} 91.4 \\ \mathrm{~K}=1.00 \end{gathered}$	2.4053	1.00	-17452.00	58740.50	0.297^{1}
T8	20-6.667	$21 / 4$	13.33	3.33	$\begin{gathered} 71.1 \\ \mathrm{~K}=1.00 \end{gathered}$	3.9761	1.00	-17914.20	123623.00	0.145^{1}
T9	6.667-0	$21 / 4$	6.89	3.44	73.5	3.9761	1.00	-18850.70	120569.00	0.156^{1}

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 13 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{aligned} & \text { Date } \\ & \text { 15:41:38 04/21/21 } \end{aligned}$
	Client	Tarpon Towers	Designed by BDavenport

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	Mast Stability	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		$i n^{2}$	Index	$l b$	$l b$	ϕP_{n}
$\mathrm{K}=1.00$										

${ }^{1} P_{u} / \phi P_{n}$ controls

	Diagonal Design Data (Compression)								
Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	149-140	1	4.24	4.04	$\begin{gathered} 135.6 \\ K=0.70 \end{gathered}$	0.7854	-2471.73	9646.34	0.256^{1}
T2	140-120	1	4.48	4.27	$\begin{gathered} 143.4 \\ \mathrm{~K}=0.70 \end{gathered}$	0.7854	-2475.60	8633.74	0.287^{1}
T3	120-100	1	4.48	4.24	$\begin{gathered} 142.3 \\ \mathrm{~K}=0.70 \end{gathered}$	0.7854	-468.08	8761.17	0.053^{1}
T4	100-80	1	4.48	4.24	$\begin{gathered} 142.3 \\ \mathrm{~K}=0.70 \end{gathered}$	0.7854	-932.43	8761.17	${ }^{0.106^{1}}$
T5	80-60	$11 / 4$	4.48	4.24	$\begin{gathered} 113.8 \\ \mathrm{~K}=0.70 \end{gathered}$	1.2272	-1189.42	20096.40	0.059^{1}
T6	60-40	1	4.48	4.24	$\begin{gathered} 142.3 \\ \mathrm{~K}=0.70 \end{gathered}$	0.7854	-1097.45	8761.17	0.125^{1}
T7	40-20	1	4.48	4.27	$\begin{gathered} 143.4 \\ \mathrm{~K}=0.70 \end{gathered}$	0.7854	-719.24	8633.74	0.083^{1}
T8	20-6.667	$11 / 4$	4.48	4.20	$\begin{gathered} 113.0 \\ \mathrm{~K}=0.70 \end{gathered}$	1.2272	-437.67	20298.70	0.022^{1}
T9	6.667-0	$11 / 4$	4.05	3.71	$\begin{gathered} 99.8 \\ \mathrm{~K}=0.70 \end{gathered}$	1.2272	-302.09	23528.10	0.013^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	$l b$	$l b$	ϕP_{n}
T1	149-140	7/8	3.00	2.85	$\begin{gathered} 109.6 \\ K=0.70 \end{gathered}$	0.6013	-682.32	10351.80	0.066^{1}
T2	140-120	7/8	3.00	2.85	$\begin{gathered} 109.6 \\ \mathrm{~K}=0.70 \end{gathered}$	0.6013	-177.98	10351.80	0.017^{1}
T3	120-100	7/8	3.00	2.83	$\begin{gathered} 108.8 \\ \mathrm{~K}=0.70 \end{gathered}$	0.6013	-194.48	10447.40	0.019^{1}
T4	100-80	7/8	3.00	2.83	$\begin{gathered} 108.8 \\ K=0.70 \end{gathered}$	0.6013	-287.01	10447.40	0.027^{1}
T5	80-60	7/8	3.00	2.83	$\begin{gathered} 108.8 \\ \mathrm{~K}=0.70 \end{gathered}$	0.6013	-425.14	10447.40	0.041^{1}
T6	60-40	7/8	3.00	2.83	$\begin{gathered} 108.8 \\ K=0.70 \end{gathered}$	0.6013	-381.97	10447.40	$0.037{ }^{1}$

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 14 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	Date $15: 41: 38 \text { 04/21/21 }$
	Client	Tarpon Towers	Designed by BDavenport

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}
T7	ft								

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in^{2}	$l b$	$l b$	ϕP_{n}
T1	149-140	7/8	3.00	2.85	$\begin{gathered} 109.6 \\ \mathrm{~K}=0.70 \end{gathered}$	0.6013	-52.35	10351.80	0.005^{1}
T2	140-120	7/8	3.00	2.85	$\begin{gathered} 109.6 \\ K=0.70 \end{gathered}$	0.6013	-44.34	10351.80	0.004^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)									
Section No.	$f t$		L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{\mu} \end{gathered}$
			$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	149-140	$13 / 4$	9.00	3.00	82.3	2.4053	1707.63	108238.00	0.016^{1}
T2	140-120	13/4	20.00	3.33	91.4	2.4053	4735.82	108238.00	
T4	100-80	2	20.00	3.33	80.0	3.1416	1228.54	141372.00	$0.009^{1}$$V$
T5	80-60	2	20.00	3.33	80.0	3.1416	5730.82	141372.00	-

[^1]| tnxTower
 Airosmith Development
 318 West Avenue
 Saratoga Springs, NY 12866
 Phone: (518) 307-8700 FAX: | Job | CT1008 Naugatuck | $\begin{aligned} & \text { Page } \\ & \\ & 15 \text { of } 17 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| | Project | Tarpon ENG 2020 | $\begin{aligned} & \text { Date } \\ & \text { 15:41:38 04/21/21 } \end{aligned}$ |
| | Client | Tarpon Towers | Designed by BDavenport |

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	$f t$

${ }^{1} P_{u} / \phi P_{n}$ controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	149-140	7/8	3.00	2.85	156.6	0.6013	688.95	19482.80	0.035^{1}
T2	140-120	7/8	3.00	2.85	156.6	0.6013	2764.66	19482.80	0.142^{1}
T3	120-100	7/8	3.00	2.83	155.4	0.6013	194.48	19482.80	0.010^{1}
T4	100-80	7/8	3.00	2.83	155.4	0.6013	287.01	19482.80	0.015^{1}
T5	80-60	7/8	3.00	2.83	155.4	0.6013	3803.71	19482.80	$0.195{ }^{1}$
T6	60-40	7/8	3.00	2.83	155.4	0.6013	381.97	19482.80	0.020^{1}
T7	40-20	7/8	3.00	2.85	156.6	0.6013	302.28	19482.80	0.016^{1}
T8	20-6.667	7/8	3.00	2.81	154.3	0.6013	310.28	19482.80	$0.016{ }^{1}$
T9	6.667-0	7/8	1.50	1.31	72.0	0.6013	334.53	19482.80	$0.017{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Tension)

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & 16 \text { of } 17 \end{aligned}$
	Project	Tarpon ENG 2020	Date 15:41:38 04/21/21
	Client	Tarpon Towers	Designed by BDavenport

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	149-140	7/8	3.00	2.85	156.6	0.6013	54.19	19482.80	$0.003{ }^{1}$
T2	140-120	7/8	3.00	2.85	156.6	0.6013	62.30	19482.80	$0.003{ }^{1}$
T3	120-100	7/8	3.00	2.83	155.4	0.6013	69.34	19482.80	$0.004{ }^{1}$
T4	100-80	7/8	3.00	2.83	155.4	0.6013	78.01	19482.80	$0.004{ }^{1}$
T5	80-60	7/8	3.00	2.83	155.4	0.6013	83.35	19482.80	$0.004{ }^{1}$
T6	60-40	7/8	3.00	2.83	155.4	0.6013	104.51	19482.80	0.005^{1}
T7	40-20	7/8	3.00	2.85	156.6	0.6013	104.48	19482.80	0.005^{1}
T8	20-6.667	7/8	3.00	2.81	154.3	0.6013	117.51	19482.80	$0.006{ }^{1}$
T9	6.667-0	7/8	3.00	2.81	154.3	0.6013	2808.57	19482.80	0.144^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T1	149-140	Leg	$13 / 4$	2	-4834.51	65973.80	7.3	Pass
T2	140-120	Leg	$13 / 4$	22	-10275.80	58740.50	17.5	Pass
T3	120-100	Leg	2	61	-11228.40	88538.90	12.7	Pass
T4	100-80	Leg	2	101	-16570.80	88538.90	18.7	Pass
T5	80-60	Leg	2	140	-24545.40	88538.90	27.7	Pass
T6	60-40	Leg	2	179	-22053.30	88538.90	24.9	Pass
T7	40-20	Leg	$13 / 4$	218	-17452.00	58740.50	29.7	Pass
T8	20-6.667	Leg	$21 / 4$	257	-17914.20	123623.00	14.5	Pass
T9	6.667-0	Leg	$21 / 4$	283	-18850.70	120569.00	15.6	Pass
T1	149-140	Diagonal	1	7	-2471.73	9646.34	25.6	Pass
T2	140-120	Diagonal	1	58	-2475.60	8633.74	28.7	Pass
T3	120-100	Diagonal	1	69	-468.08	8761.17	5.3	Pass
T4	100-80	Diagonal	1	106	-932.43	8761.17	10.6	Pass
T5	80-60	Diagonal	$11 / 4$	157	-1189.42	20096.40	5.9	Pass
T6	60-40	Diagonal	1	214	-1097.45	8761.17	12.5	Pass
T7	40-20	Diagonal	1	253	-719.24	8633.74	8.3	Pass
T8	20-6.667	Diagonal	$11 / 4$	280	-437.67	20298.70	2.2	Pass
T9	6.667-0	Diagonal	$11 / 4$	293	-302.09	23528.10	1.3	Pass
T1	149-140	Horizontal	7/8	16	-682.32	10351.80	6.6	Pass
T2	140-120	Horizontal	7/8	55	2764.66	19482.80	14.2	Pass
T3	120-100	Horizontal	7/8	72	-194.48	10447.40	1.9	Pass
T4	100-80	Horizontal	7/8	109	-287.01	10447.40	2.7	Pass
T5	80-60	Horizontal	7/8	154	3803.71	19482.80	19.5	Pass
T6	60-40	Horizontal	7/8	193	-381.97	10447.40	3.7	Pass
T7	40-20	Horizontal	7/8	227	-302.28	10351.80	2.9	Pass
T8	20-6.667	Horizontal	7/8	266	-310.28	10543.30	2.9	Pass
T9	6.667-0	Horizontal	7/8	289	-334.53	14003.60	2.4	Pass

tnxTower Airosmith Development 318 West Avenue	Job CT1008 Naugatuck		17 of 17
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:41:38 04/21/21 } \end{array}$
Saratoga Springs, NY 12866 Phone: (S18) 307-8700 FAX:	Client	Tarpon Towers	Designed by BDavenport

$\left.\begin{array}{ccccccccc}\hline \text { Section } & \begin{array}{c}\text { Elevation } \\ \text { ft }\end{array} & \begin{array}{c}\text { Component } \\ \text { Type }\end{array} & \text { Size } & \begin{array}{c}\text { Critical } \\ \text { Element }\end{array} & \begin{array}{c}P \\ l b\end{array} & \begin{array}{c}\text { oP allow } \\ \text { lb }\end{array} & \begin{array}{c}\text { Capacity }\end{array} \\ \text { No. } & \text { lt } & & 5 & -52.35 & 10351.80 & 0.5 & \text { Pass } \\ \text { Fail }\end{array}\right]$

Program Version 8.0.7.5-8/3/2020 File:C:/Users/bdavenport/Desktop/CT1010 Willington.eri

Exhibit E

Mount Analysis

FROM ZERO TO INFINIGY

Mount Analysis Report

October 25, 2021

Dish Wireless Site Number	BOBDL00147A
Infinigy Job Number	2039-Z5555C
Client	Northeast Site Solutions
Carrier	Dish Wireless
	109 Schofield Road,
Site Location	Willington, CT 06249
	41.9223 N NAD83
	72.2936 W NAD83
Mount Centerline EL.	145 ft
Mount Classification	Sector Frame
Structural Usage Ratio	$\mathbf{1 9 \%}$
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA and ASCE code requirements. The proposed antenna mounts for the proposed carrier are therefore deemed adequate to support the final loading configuration as listed in this report.

10-25-21

Dmitriy Albul, P.E.
Engineering Consultant to Infinigy
AZ CA CO FL GA MD NC NH NJ NY IX WA

INFINIGY8

Contents

Introduction 3
Supporting Documentation. 3
Analysis Code Requirements 3
Conclusion. 3
Final Configuration Loading 4
Structure Usages. 4
Assumptions and Limitations 4
Calculations Appended

Introduction

Infinigy Engineering has been requested to perform a mount analysis of proposed antenna mount from the Dish Wireless equipment. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using RISA3D Version 19.0. analysis software.

Supporting Documentation

Mount Details	Mount Specification Sabre Industries C10837002C-32788
Construction Drawings	Infinigy Engineering PLLC, Job No. 2039-Z5555C, dated April 29, 2021
RF Design Sheet	Dish Wireless, dated February 15, 2021

Analysis Code Requirements

Wind Speed	125 mph (3-second Gust, Vult.)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 1" ice
TIA Revision	ANSI/TIA-222-G
Adopted IBC	2018 Connecticut State Building Code (2015 IBC)
Structure Class	II
Exposure Category	B
Topographic Method	Method 2
Topographic Category	1
Spectral Response	Ss $=0.174, \mathrm{~S}_{1}=0.063$
Site Class	$\mathrm{D}-$ Stiff Soil
HMSL	808.17 ft.

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The proposed antenna mounts are therefore deemed adequate to support the final loading configuration as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Dmitriy Albul, P.E.
Professional Engineer | Engineering Consultant to Infinigy
1033 Watervliet Shaker Road, Albany, NY 12205
(O) (518) 690-0790 | (M) (518) 669-4428
www.infinigy.com

Final Configuration Loading

Mount CL (ft)	Rad. HT (ft)	Vert. O/S (ft)	Horiz. O/S (ft)*	Qty	Appurtenance	Carrier
145.0	145.0	(5	3	JMA MX08FRO665-20_VOF	Dish Wireless
			5	3	Fujitsu TA08025-B605	
			5	3	Fujitsu TA08025-B604	
			-	1	Raycap RDIDC-9181-PF-48	

Structure Usages

Plates	13%	Pass
Arms	4%	Pass
Mount Pipes	19%	Pass
Stabilizer	4%	Pass
Bracing	7%	Pass
Connections	15%	Pass
Rating	$\mathbf{1 9 \%}$	Pass

Assumptions and Limitations

Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the proposed carriers mount structure only and does not reflect adequacy of the existing tower, other mounts, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

INFINIGY8

FROM ZERO TO INFINIGY

Factors		
Gh:	1.000	
$K_{\text {zmin }}$:	0.700	
K_{z} :	1.099	
K_{d} :	0.950	
$K_{z t}$:	1.000	
Ка:	0.900	
Ka.		
I wind:	1.000	
I ice:	1.000	
q_{z} :	24.66	psf
Surface Wind Pressure:	0.00	psf

Manufacturer	Model	Wind Load (F_{A}), lb		Wind Load Ice Case ($F_{\text {A }}$), Ib			Wind Load Service Case		Seismic
JMA WIRELESS	MX08FRO665-20	178	71	55	25	419	17	7	0.0
FUJITSU	TA08025-B605	41	24	19	13	74	4	2	0.0
FUJITSU	TA08025-B604	41	21	19	12	72	4	2	0.0
RAYCAP	RDIDC-9181-PF-48	39	23	18	13	71	4	2	0.0

Table 3. Member Capacities

Member Name	Member Shape	Wind load (plf)	Wind Load lce (plf)	Weight Ice (plf)	Bending Check	Shear Check	Total Capacity	Controlling Capacity
Mount Pipes	PIPE_2.0	5.86	1.59	1.69	19%	3%	19%	
Stabilizer	PIPE_2.0	5.86	1.59	1.69	4%	0%	4%	
Bracing	$0.75 "$ SR	1.85	0.50	1.30	7%	1%	7%	
Arms	PIPE_2.0X	5.86	1.59	1.69	4%	2%	4%	
Frame Rails	PIPE_2.0X	5.86	1.59	1.69	18%	4%	18%	
Plates	3"x.5"	12.33	3.34	1.84	13%	8%	13%	

Envelope Only Solution

Infinigy Engineering, PLLC	BOBDL00147A	SK-1
DVA		Oct 25, 2021
2039-Z5555C $n n$	Proposed Configuration Model	BOBDLO0147A.R3D

Loads: LC 37, 1.2D + 1.0Di +1.0Wi AZI 300
Envelope Only Solution

Infinigy Engineering, PLLC	BOBDL00147A	SK-2
DVA		Oct 25, 2021
2039-Z5555C	Controlling Load Case	BOBDL00147A.R3D

Member Shear Checks Displayed (Enveloped) Envelope Only Solution		
Infinigy Engineering, PLLC	BOBDL00147A	SK-4
DVA		Oct 25, 2021
2039-Z5555C	Member Shear Check	BOBDL00147A.R3D

\qquad

Model Settings

Solution
 Members

Number of Reported Sections	5
Number of Internal Sections	100
Member Area Load Mesh Size $\left(\mathrm{in}^{2}\right)$	144
Consider Shear Deformation	Yes
Consider Torsional Warping	Yes

Wall Panels		12
Approximate Mesh Size (in) Yes Transfer Forces Between Intersecting Wood Walls Yes Increase Wood Wall Nailing Capacity for Wind Loads Yes Include P-Delta for Walls Yes Optimize Masonry and Wood Walls 3 Maximum Number of Iterations Processor Core Utilization No Single Yes Multiple (Optimum) No Maximum		

Axis

Vertical Global Axis

Global Axis corresponding to vertical direction	Y
Convert Existing Data	Yes

Default Member Orientation

Default Global Plane for z-axis	XZ

Plate Axis

Plate Local Axis Orientation	Nodal

Codes

Hot Rolled Steel	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (lterative)
Notional Annex	None
Connections	AISC 14th (360-10): LRFD
Cold Formed Steel	AISI S100-12: LRFD
Stiffness Adjustment	Yes (Iterative)
Wood	AWC NDS-12: ASD
Temperature	< 100F
Concrete	ACI 318-11
Masonry	ACI 530-11: Strength
Aluminum	AAADM1-10: LRFD
Structure Type	Building
Stiffness Adjustment	Yes (Iterative)
Stainless	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (Iterative)

Concrete

Column Design

Analysis Methodology	Exact Integration Method
Parme Beta Factor	0.65

Compression Stress Block	Rectangular Stress Block
Analyze using Cracked Sections	Yes
Leave room for horizontal rebar splices (2*d bar spacing)	No

INFINIGYQ	Company Designer	Infinigy Engineering, PLLC DVA	$\begin{aligned} & \text { 10/25/2021 } \\ & \text { 7:56:25 PM } \end{aligned}$
FROM ZERO TO INFINIGY the solutions are endless	Job Numbe Model Nam	$\begin{aligned} & \text { 2039-Z5555C } \\ & \text { BOBDL00147A } \end{aligned}$	Checked By

Model Settings (Continued)

List forces which were ignored for design in the Detail Report	Yes

Rebar

Column Min Steel	1
Column Max Steel	8
Rebar Material Spec	ASTM A615
Warn if beam-column framing arrangement is not understood	No

Shear Reinforcement

Number of Shear Regions	4
Region 2 \& 3 Spacing Increase Increment (in)	4

Seismic
RISA-3D Seismic Load Options

Code	ASCE 7-10
Risk Category	I or II
Drift Cat	Other
Base Elevation (ft)	
Include the weight of the structure in base shear calcs	Yes

Site Parameters

$\mathrm{S}_{1}(\mathrm{~g})$	1
$\mathrm{SD}_{1}(\mathrm{~g})$	1
$\mathrm{SD}_{\mathrm{S}}(\mathrm{g})$	1
$\mathrm{~T}_{\mathrm{L}}(\mathrm{sec})$	5

Structure Characteristics

T Z (sec)	
TX (sec)	
C, X	0.02
C Exp. Z	0.75
C,Exp. X	0.75
R Z	3
R X	3
$\Omega_{0} \mathrm{Z}$	1
$\Omega_{0} \mathrm{X}$	1
$\mathrm{C}_{\mathrm{c}} \mathrm{Z}$	4
$\mathrm{C}_{\mathrm{d}} \mathrm{X}$	4
p Z	1
$\rho \mathrm{X}$	1

\qquad

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
1	M1	N1	N3		RIGID	None	None	RIGID	Typical
2	M2	N5	N8		Arms	Beam	Pipe	A500 Gr.C	Typical
3	M3	N2	N4		RIGID	None	None	RIGID	Typical
4	M4	N6	N7		Arms	Beam	Pipe	A500 Gr.C	Typical
5	M5	N8	N7		Bracing	VBrace	BAR	A572 Gr. 50	Typical
6	M6	N5	N6		Bracing	VBrace	BAR	A572 Gr. 50	Typical
7	M7	N6	N8		Bracing	VBrace	BAR	A572 Gr. 50	Typical
8	M8	N1	N9		RIGID	None	None	RIGID	Typical
9	M9	N2	N10		RIGID	None	None	RIGID	Typical
10	M10	N16	N12		Frame Rails	Beam	Pipe	A500 Gr.C	Typical
11	M11	N15	N11		Frame Rails	Beam	Pipe	A500 Gr.C	Typical
12	M12	N7	N19	90	Plates	Beam	BAR	A572 Gr. 50	Typical
13	M13	N8	N20	90	Plates	Beam	BAR	A572 Gr. 50	Typical
14	M14	N4	N6	90	Plates	Beam	BAR	A572 Gr. 50	Typical
15	M15	N3	N5	90	Plates	Beam	BAR	A572 Gr. 50	Typical
16	M16	N21	N24		Arms	Beam	Pipe	A500 Gr.C	Typical
17	M17	N22	N23		Arms	Beam	Pipe	A500 Gr.C	Typical
18	M18	N24	N23		Bracing	VBrace	BAR	A572 Gr. 50	Typical
19	M19	N21	N22		Bracing	VBrace	BAR	A572 Gr. 50	Typical
20	M20	N22	N24		Bracing	VBrace	BAR	A572 Gr. 50	Typical
21	M21	N23	N25	90	Plates	Beam	BAR	A572 Gr. 50	Typical
22	M22	N24	N26	90	Plates	Beam	BAR	A572 Gr. 50	Typical
23	M23	N10	N22	90	Plates	Beam	BAR	A572 Gr. 50	Typical
24	M24	N9	N21	90	Plates	Beam	BAR	A572 Gr. 50	Typical
25	M25	N28	N27		Stabilizer	HBrace	Pipe	A53 Gr.B	Typical
26	M26	N32	N30		RIGID	None	None	RIGID	Typical
27	M27	N29	N31		RIGID	None	None	RIGID	Typical
28	M28	N37	N38		Mount Pipes	Column	Pipe	A53 Gr.B	Typical
29	M29	N41	N42		Mount Pipes	Column	Pipe	A53 Gr.B	Typical
30	M30	N45	N46		Mount Pipes	Column	Pipe	A53 Gr.B	Typical
31	M31	N17	N39		RIGID	None	None	RIGID	Typical
32	M32	N18	N40		RIGID	None	None	RIGID	Typical
33	M33	N34	N44		RIGID	None	None	RIGID	Typical
34	M34	N33	N43		RIGID	None	None	RIGID	Typical
35	M35	N14	N36		RIGID	None	None	RIGID	Typical
36	M36	N13	N35		RIGID	None	None	RIGID	Typical
37	M37	N47	N48		Mount Pipes	Column	Pipe	A53 Gr.B	Typical

Material Take-Off

	Material	Size	Pieces	Length[in]	Weight[K]
1	General Members				
2	RIGID		12	37.3	0
3	Total General		12	37.3	0
4					
5	Hot Rolled Steel				
6	A500 Gr.C	PIPE_2.0X	6	421	0.18
7	A53 Gr.B	PIPE_2.0	5	413	0.119
8	A572 Gr. 50	$0.75{ }^{\prime \prime}$ SR	6	259.6	0.033
9	A572 Gr. 50	3"x.5"	8	23.2	0.01
10	Total HR Steel		25	1116.9	0.342

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Rule	Area [in ${ }^{2}$]	lyy [in^{4}]	Izz [in $\left.{ }^{4}\right]$	$J\left[\mathrm{in}^{4}\right]$
1	Mount Pipes	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
2	Stabilizer	PIPE_2.0	HBrace	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
3	Bracing	0.75" SR	VBrace	BAR	A572 Gr. 50	Typical	0.442	0.016	0.016	0.031
4	Arms	PIPE_2.0X	Beam	Pipe	A500 Gr.C	Typical	1.4	0.827	0.827	1.65

\qquad
\qquad

Hot Rolled Steel Section Sets (Continued)

Label		Shape	Type	Design List	Material	Design Rule	Area [in^{2}]	lyy [in ${ }^{4}$]	Izz [in $\left.{ }^{4}\right]$	$\mathrm{J}\left[\mathrm{in}^{4}\right]$
5	Frame Rails	PIPE_2.0X	Beam	Pipe	A500 Gr.C	Typical	1.4	0.827	0.827	1.65
6	Plates	3"x.5"	Beam	BAR	A572 Gr. 50	Typical	1.5	0.031	1.125	0.112

Basic Load Cases

	BLC Description	Category	Y Gravity	Point	Distributed
1	Self Weight	DL	-1	8	
2	Wind Load AZI 0	WLX		16	78
3	Wind Load AZI 30	None		16	78
4	Wind Load AZI 60	None		16	78
5	Wind Load AZI 90	WLZ		16	78
6	Wind Load AZI 120	None		16	78
7	Wind Load AZI 150	None		16	78
8	Wind Load AZI 180	None		16	78
9	Wind Load AZI 210	None		16	78
10	Wind Load AZI 240	None		16	78
11	Wind Load AZI 270	None		16	78
12	Wind Load AZI 300	None		16	78
13	Wind Load AZI 330	None		16	78
14	Ice Weight	OL1		8	37
15	Ice Wind Load AZI 0	OL2		16	78
16	Ice Wind Load AZI 30	None		16	78
17	Ice Wind Load AZI 60	None		16	78
18	Ice Wind Load AZI 90	OL3		16	78
19	Ice Wind Load AZI 120	None		16	78
20	Ice Wind Load AZI 150	None		16	78
21	Ice Wind Load AZI 180	None		16	78
22	Ice Wind Load AZI 210	None		16	78
23	Ice Wind Load AZI 240	None		16	78
24	Ice Wind Load AZI 270	None		16	78
25	Ice Wind Load AZI 300	None		16	78
26	Ice Wind Load AZI 330	None		16	78
29	Service Live Loads	LL			
30	Maintenance Load 1	LL		1	
31	Maintenance Load 2	LL		1	
32	Maintenance Load 3	LL		1	
33	Maintenance Load 4	LL		1	
34	Maintenance Load 5	LL		1	
35	Maintenance Load 6	LL		1	

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Y	1	1.4				
2	1.2DL + 1.6WL AZI 0	Yes	Y	1	1.2	2	1.6		
3	1.2DL + 1.6WL AZI 30	Yes	Y	1	1.2	3	1.6		
4	1.2DL + 1.6WL AZI 60	Yes	Y	1	1.2	4	1.6		
5	1.2DL + 1.6WL AZI 90	Yes	Y	1	1.2	5	1.6		
6	1.2DL + 1.6WL AZI 120	Yes	Y	1	1.2	6	1.6		
7	1.2DL + 1.6WL AZI 150	Yes	Y	1	1.2	7	1.6		
8	1.2DL + 1.6WL AZI 180	Yes	Y	1	1.2	8	1.6		
9	1.2DL + 1.6WL AZI 210	Yes	Y	1	1.2	9	1.6		
10	1.2DL + 1.6WL AZI 240	Yes	Y	1	1.2	10	1.6		
11	1.2DL + 1.6WLAZI 270	Yes	Y	1	1.2	11	1.6		
12	1.2DL + 1.6WL AZI 300	Yes	Y	1	1.2	12	1.6		
13	1.2DL + 1.6WL AZI 330	Yes	Y	1	1.2	13	1.6		
14	0.9DL + 1.6WL AZI 0	Yes	Y	1	0.9	2	1.6		
15	0.9DL + 1.6WL AZI 30	Yes	Y	1	0.9	3	1.6		
16	0.9DL + 1.6WL AZI 60	Yes	Y	1	0.9	4	1.6		

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
17	0.9DL + 1.6WL AZI 90	Yes	Y	1	0.9	5	1.6		
18	0.9DL + 1.6WL AZI 120	Yes	Y	1	0.9	6	1.6		
19	0.9DL + 1.6WL AZI 150	Yes	Y	1	0.9	7	1.6		
20	0.9DL + 1.6WL AZI 180	Yes	Y	1	0.9	8	1.6		
21	0.9DL + 1.6WLAZI 210	Yes	Y	1	0.9	9	1.6		
22	0.9DL + 1.6WLAZI 240	Yes	Y	1	0.9	10	1.6		
23	0.9DL + 1.6WL AZI 270	Yes	Y	1	0.9	11	1.6		
24	0.9DL + 1.6WLAZI 300	Yes	Y	1	0.9	12	1.6		
25	0.9DL + 1.6WLAZI 330	Yes	Y	1	0.9	13	1.6		
26	$1.2 \mathrm{D}+1.0 \mathrm{Di}$	Yes	Y	1	1.2	14	1		
27	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 0	Yes	Y	1	1.2	14	1	15	1
28	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 30	Yes	Y	1	1.2	14	1	16	1
29	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 60	Yes	Y	1	1.2	14	1	17	1
30	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 90	Yes	Y	1	1.2	14	1	18	1
31	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 120	Yes	Y	1	1.2	14	1	19	1
32	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 150	Yes	Y	1	1.2	14	1	20	1
33	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 180	Yes	Y	1	1.2	14	1	21	1
34	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 210	Yes	Y	1	1.2	14	1	22	1
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Y	1	1.2	14	1	23	1
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Y	1	1.2	14	1	24	1
37	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 300	Yes	Y	1	1.2	14	1	25	1
38	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 330	Yes	Y	1	1.2	14	1	26	1
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	1.2	27	1	28	
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	1.2	27	0.866	28	0.5
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	1.2	27	0.5	28	0.866
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	1.2	27		28	1
43	$(1.2+0.2$ Sds) DL + 1.0E AZI 120	Yes	Y	1	1.2	27	-0.5	28	0.866
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	1.2	27	-0.866	28	0.5
45	(1.2 + 0.2Sds) DL + 1.0E AZI 180	Yes	Y	1	1.2	27	-1	28	
46	$(1.2+0.2$ Sds) $\mathrm{DL}+1.0 \mathrm{E}$ AZI 210	Yes	Y	1	1.2	27	-0.866	28	-0.5
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.2	27	-0.5	28	-0.866
48	$(1.2+0.2$ Sds) DL + 1.0E AZI 270	Yes	Y	1	1.2	27		28	-1
49	(1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	1.2	27	0.5	28	-0.866
50	(1.2 + 0.2Sds) DL + 1.0E AZI 330	Yes	Y	1	1.2	27	0.866	28	-0.5
51	(0.9-0.2Sds) DL + 1.0E AZI 0	Yes	Y	1	0.9	27	1	28	
52	(0.9-0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	0.9	27	0.866	28	0.5
53	(0.9-0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	0.9	27	0.5	28	0.866
54	(0.9-0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	0.9	27		28	1
55	(0.9-0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	0.9	27	-0.5	28	0.866
56	(0.9-0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	0.9	27	-0.866	28	0.5
57	(0.9-0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	0.9	27	-1	28	
58	(0.9-0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.9	27	-0.866	28	-0.5
59	(0.9-0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	0.9	27	-0.5	28	-0.866
60	(0.9-0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	0.9	27		28	-1
61	(0.9-0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	0.9	27	0.5	28	-0.866
62	(0.9-0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	0.9	27	0.866	28	-0.5
63	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1	2	0.098	29	1.5
64	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 30	Yes	Y	1	1	3	0.098	29	1.5
65	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1	4	0.098	29	1.5
66	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1	5	0.098	29	1.5
67	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 120	Yes	Y	1	1	6	0.098	29	1.5
68	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1	7	0.098	29	1.5
69	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1	8	0.098	29	1.5
70	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1	9	0.098	29	1.5
71	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1	10	0.098	29	1.5
72	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 270	Yes	Y	1	1	11	0.098	29	1.5
73	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1	12	0.098	29	1.5
74	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1	13	0.098	29	1.5

Description		Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
75	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1$ + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	34	1.5	2	0.156
76	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	34	1.5	3	0.156
77	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	34	1.5	4	0.156
78	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	34	1.5	5	0.156
79	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	34	1.5	6	0.156
80	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1.2	34	1.5	7	0.156
81	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	34	1.5	8	0.156
82	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 210	Yes	Y	1	1.2	34	1.5	9	0.156
83	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1.2	34	1.5	10	0.156
84	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	34	1.5	11	0.156
85	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 300$	Yes	Y	1	1.2	34	1.5	12	0.156
86	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	34	1.5	13	0.156
87	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	35	1.5	2	0.156
88	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 30$	Yes	Y	1	1.2	35	1.5	3	0.156
89	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	35	1.5	4	0.156
90	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	35	1.5	5	0.156
91	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	35	1.5	6	0.156
92	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	35	1.5	7	0.156
93	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	35	1.5	8	0.156
94	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	35	1.5	9	0.156
95	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	35	1.5	10	0.156
96	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 270	Yes	Y	1	1.2	35	1.5	11	0.156
97	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	35	1.5	12	0.156
98	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 330$	Yes	Y	1	1.2	35	1.5	13	0.156
99	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	36	1.5	2	0.156
100	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	36	1.5	3	0.156
101	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	36	1.5	4	0.156
102	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	36	1.5	5	0.156
103	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	36	1.5	6	0.156
104	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	36	1.5	7	0.156
105	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	36	1.5	8	0.156
106	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1.2	36	1.5	9	0.156
107	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 240	Yes	Y	1	1.2	36	1.5	10	0.156
108	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 270	Yes	Y	1	1.2	36	1.5	11	0.156
109	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	36	1.5	12	0.156
110	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	36	1.5	13	0.156
111	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	37	1.5	2	0.156
112	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	37	1.5	3	0.156
113	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	37	1.5	4	0.156
114	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 90$	Yes	Y	1	1.2	37	1.5	5	0.156
115	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	37	1.5	6	0.156
116	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1.2	37	1.5	7	0.156
117	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 180	Yes	Y	1	1.2	37	1.5	8	0.156
118	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 210	Yes	Y	1	1.2	37	1.5	9	0.156
119	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 240$	Yes	Y	1	1.2	37	1.5	10	0.156
120	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 270$	Yes	Y	1	1.2	37	1.5	11	0.156
121	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	37	1.5	12	0.156
122	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	37	1.5	13	0.156
123	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	38	1.5	2	0.156
124	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	38	1.5	3	0.156
125	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	38	1.5	4	0.156
126	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	38	1.5	5	0.156
127	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	38	1.5	6	0.156
128	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1.2	38	1.5	7	0.156
129	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 180	Yes	Y	1	1.2	38	1.5	8	0.156
130	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 210$	Yes	Y	1	1.2	38	1.5	9	0.156
131	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1.2	38	1.5	10	0.156
132	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	38	1.5	11	0.156

Company Designer Job Number Model Name

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00147A

10/25/2021
7:56:25 PM
Checked By

Load Combinations (Continued)

Description		Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
133	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	38	1.5	12	0.156
134	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	38	1.5	13	0.156
135	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	39	1.5	2	0.156
136	$1.2 \mathrm{DL} \mathrm{+} \mathrm{1.5LM6} \mathrm{+} \mathrm{1.6SWL} \mathrm{(} 30 \mathrm{mph}$) AZI 30	Yes	Y	1	1.2	39	1.5	3	0.156
137	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	39	1.5	4	0.156
138	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	39	1.5	5	0.156
139	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	39	1.5	6	0.156
140	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	39	1.5	7	0.156
141	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	39	1.5	8	0.156
142	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 210	Yes	Y	1	1.2	39	1.5	9	0.156
143	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 240	Yes	Y	1	1.2	39	1.5	10	0.156
144	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	39	1.5	11	0.156
145	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	39	1.5	12	0.156
146	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	39	1.5	13	0.156

Envelope Node Reactions

Node Label			X [Ib]	LC	Y [lb]	LC	Z [Ib]	LC	MX [lb-in]	LC	MY [lb-in]	LC	MZ [lb-in]	LC
1	N2	max	345.594	15	874.41	31	575.416	91	1259.215	97	0	146	1120.071	38
2		min	-1056.274	9	296.526	24	-654.29	12	-856.58	6	0	1	277.953	19
3	N1	max	1010.376	27	554.981	37	370.964	6	806.156	95	0	146	811.734	35
4		min	-216.27	20	190.38	18	-553.536	97	-519.862	4	0	1	225.489	16
5	N28	max	482.897	24	18.468	31	149.231	24	0	146	0	146	0	146
6		min	-487.258	18	9.982	24	-150.729	18	0	1	0	1	0	1
7	Totals:	max	1103.253	14	1444.078	37	765.315	6						
8		min	-1103.253	8	510.183	18	-826.492	24						

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

Member Shape Code CheckLoc[in]LCShear CheckLoc[in]DirLCphi*Pnc [lb]phi*Pnt [lb]phi*Mn y-y [lb-in]phi*Mn z-z [lb-in] Cb Eqn

1	M28	PIPE_2.0	0.192	66 37	0.032	30	31	14916.096	32130	22459.5	22459.5	3	H1-1b
2	M29	PIPE_2.0	0.19	6631	0.034	30	37	14916.096	32130	22459.5	22459.5	2.126	H1-1b
3	M11	PIPE_2.0X	0.182	6034	0.04	10	12	12974.268	57960	39909.6	39909.6	1.908	H1-1b
4	M10	PIPE_2.0X	0.175	6038	0.024	12.5	29	12974.268	57960	39909.6	39909.6	1.893	H1-1b
5	M23	3"x.5"	0.129	0 32	0.051	0	y 12	24929.826	67500	8460	50625	1.179	H1-1b
6	M14	3"x.5"	0.116	088	0.039	0.38	y 6	64929.826	67500	8460	50625	1.036	H1-1b
7	M12	3"x.5"	0.101	098	0.053	2.5	y 32	66023.816	67500	8460	50625	1.672	H1-1b
8	M22	3"x.5"	0.093	0	0.083	2.5	y 38	66023.816	67500	8460	50625	1.149	H1-1b
9	M24	3"x.5"	0.092	038	0.032	0.38	y 10	64929.826	67500	8460	50625	1.186	H1-1b
10	M13	3"x.5"	0.089	034	0.056	2.5	y 29	66023.816	67500	8460	50625	1.62	H1-1b
11	M21	3"x.5"	0.082	$0 \quad 29$	0.074	2.5	y 34	466023.816	67500	8460	50625	1.667	H1-1b
12	M15	3"x.5"	0.081	095	0.037	3.313	y 31	164929.826	67500	8460	50625	1.033	H1-1b
13	M30	PIPE_2.0	0.07	6612	0.026	66	13	314916.096	32130	22459.5	22459.5	2.609	H1-1b
14	M5	$0.75{ }^{\text {" }}$ SR	0.068	098	0.005	36	6	5691.919	19890	3072	3072	2.077	H1-1b*
15	M18	0.75" SR	0.06	028	0.006	36	6	5691.919	19890	3072	3072	2.275	H1-1b*
16	M6	0.75" SR	0.049	$0 \quad 95$	0.006	0	12	2691.919	19890	3072	3072	2.348	H1-1b*
17	M7	0.75 " SR	0.049	57.82438	0.003	57.824	12	2206.248	19890	3072	3072	2.623	H1-1b
18	M20	0.75" SR	0.048	57.82429	0.003	57.824	4	2206.248	19890	3072	3072	2.184	H1-1b
19	M19	0.75" SR	0.046	$0 \quad 29$	0.006	0	12	25691.919	19890	3072	3072	2.254	H1-1b*
20	M25	PIPE_2.0	0.041	38.49812	0.003	76.996	6	19612.716	32130	22459.5	22459.5	1.136	H1-1b
21	M16	PIPE_2.0X	0.036	22.62528	0.017	45.25	37	45905.544	57960	39909.6	39909.6	1.465	H1-1b
22	M2	PIPE_2.0X	0.027	45.2598	0.009	45.25	31	145905.544	57960	39909.6	39909.6	2.533	H1-1b
23	M17	PIPE_2.0X	0.024	06	0.015	45.25		445905.544	57960	39909.6	39909.6	1.408	H1-1b
24	M37	PIPE_2.0	0.022	424	0.021	6		26521.424	32130	22459.5	22459.5	2.148	H1-1b
25	M4	PIPE_2.0X	0.021	45.2595	0.01	45.25		\|45905.544	57960	39909.6	39909.6	2.42	H1-1b

FROM ZERO TO INFINIGY
the solutions are endless
BOLT CONNECTION CALCULATION
BOLT PROPERTIES

Date:	$10 / 25 / 2021$
Site:	$B O B D L 00147 A$
Engineer:	DVA
Job No:	$2039-Z 5555 C$
Connection Location:	Mount to Tower

Bolt Capacity Equation
Connection Type
Bolt Size, d
Threads per Inch, n
Steel Grade
Bolt Ultimate Tensile Stress, $\mathrm{F}_{\mathbf{u}}$
Threads Exclusion
Shear Plane

TIA-222-G
Steel
$1 / 2$
13
A307
60
N
1

in
ksi

0.142
0.196
6385
3976

in^{2}
$i n^{2}$
lbs
lbs
from zero to infinigr BOLT CONNECTION CALCULATION BOLT GROUPCHECK

$\begin{array}{ll}\text { Date: } & \text { 10/25/2021 } \\ \text { Site: } & \text { BOBDL00147A }\end{array}$ | Engineer: | DVA |
| :--- | :--- |
| Job No: | $2039-Z 5555 C$ |
| Connection Location: | Mount to Tower | Connection Location: Mount to Tower

Total Capacity of Bolt Group:

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00I47A
BOBDL00I47A
109 Schofield Road
Willington, Connecticut 06279
October 6, 2021
EBI Project Number: 6221005579

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{I . 4 2 \%}$

environmental | engineering | due diligence

October 6, 202I
Dish Wireless

Emissions Analysis for Site: BOBDL00147A - BOBDL00I47A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 109 Schofield Road in Willington, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-O land ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS}), 2100 \mathrm{MHz}$ (AWS) and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.
environmental | engineering | due diligence

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless antenna facility located at 109 Schofield Road in Willington, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 4 n 7 I channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 4 n 70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) 4 n 66 channels (AWS Band -2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative
environmental | engineering | due diligence
estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the JMA MX08FRO665-2 1 for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector A, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector B, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline of the proposed antennas is 135 feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
9) Emissions from additional carriers were not included because there were no other carriers listed in the Connecticut Siting Council active database.
10) All calculations were done with respect to uncontrolled / general population threshold limits.
environmental | engineering | due diligence

Dish Wireless Site Inventory and Power Data

$\left.\begin{array}{|r|c|r|r|r|}\hline \text { Sector: } & \text { A } & \text { Sector: } & \text { B } & \text { Sector: }\end{array}\right]$ C
environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
Dish Wireless (Max at Sector A):	I.42\%
no additional carriers	N/A
Site Total MPE \%:	I.42\%

Dish Wireless MPE \% Per Sector	
Dish Wireless Sector A Total:	I.42\%
Dish Wireless Sector B Total:	I.42\%
Dish Wireless Sector C Total:	I.42\%
Site Total MPE \% :	
	I.42\%

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
Dish Wireless $600 \mathrm{MHz} \mathrm{n7I}$	4	223.68	135.0	1.93	$600 \mathrm{MHz} \mathrm{n7I}$	400	0.48\%
Dish Wireless $1900 \mathrm{MHz} \mathrm{n70}$	4	542.70	135.0	4.69	$1900 \mathrm{MHz} \mathrm{n70}$	1000	0.47\%
Dish Wireless $2190 \mathrm{MHz} \mathrm{n66}$	4	542.70	135.0	4.69	$2190 \mathrm{MHz} \mathrm{n66}$	1000	0.47\%
						Total:	I.42\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (\%)
Sector A:	1.42%
Sector B:	1.42%
Sector C:	1.42%
Dish Wireless Maximum MPE \% (Sector A):	1.42%
Site Total:	
Site Compliance Status:	

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{I} .42 \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

TARPON TOWERS

October 26, 2021

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: TARPON TOWERS II, LLC - LETTER OF AUTHORIZATION
 Tower Share Application, Tarpon Towers II, LLC Telecommunications Site at:
 109 SCHOFIELD ROAD, WILLINGTON, TOLLAND COUNTY, CONNECTICUT 06279

Tarpon Towers II, LLC ("Tarpon") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Tarpon ID/Name: CT1010 Willington
Customer Site ID: BOBDL00147A / TAR- Schofield Road
Site Address: 109 SCHOFIELD ROAD, WILLINGTON, ROLAND COUNTY, CONNECTICUT -06279

Tarpon Towers II, LLC

By:

Name: Brett Buggeln
Title: COO
Date: October 26, 2021

Exhibit H

Recipient Mailings

Instructions

1. Each Click-N-Ship(B) label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage ${ }^{\circledR}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {mM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

\qquad Cut on dotted line.

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage \circledR^{\circledR}, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {mM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# :

 9405503699300043921996

Cut on dotted line.

Instructions

1. Each Click-N-Ship ${ }^{(1)}$ label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edige of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage ${ }_{(}{ }_{1}$ you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# :

 9405503699300043922009| Trans. \#: | 546869888 | Priority Mail(3) Postage: | $\frac{\$ 8.70}{\$ 8.70}$ |
| :---: | :---: | :---: | :---: |
| Print Date: | 10/26/2021 | | \$8.70 |
| Ship Date: | 10/27/2021 | | |
| Expected Delivery Date: | 10/30/2021 | | |
| From: $\begin{array}{ll}\text { DE } \\ & \text { N } \\ & 42 \\ & S T \\ & S T\end{array}$ | DEBORAH CHASE | | |
| | NORTHEAST SITE SOLUTIONS | | |
| | 20 MAIN ST | | |
| | STE 1 | | |
| | STURBRIDGE MA 01566-1359 | | |
| To: JO | JOSEPH J. MOTTES CO. | | |
| | PO BOX 535 | | |
| | WILLINGTON CT 06279-0535 | | |
| * Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking(®) service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date. | | | |

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage \circledR^{\circledR}, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# :9405503699300043922030			
Trans. \#:Print Date:	546869888	Priority Mail@ Postage:	\$8.70
	: 10/26/2021		\$8.70
Ship Date:	: 10/27/2021		
Expected ${ }^{\text {Elivery }}$ Date:	Date: 11/01/2021		
From: DE	DEBORAH CHASE		
	NORTHEAST SITE SOLUTIONS		
	420 MAIN ST		
	STE 1		
	STURBRIDGE MA 01566-1359		
To: $\begin{aligned} & \text { TAR } \\ & \\ & \\ & \\ & \\ & \text { LA }\end{aligned}$	TARPOM TOWERS II, LLC		
	8916 77TH TERE		
	LAKEWOOD RCH FL 34202-6415		
*Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking ® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.			

[^0]: ${ }^{1}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

[^1]: ${ }^{1} P_{u} / \phi P_{n}$ controls

