CC CROWN CASTLE

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

January 6, 2021

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile: 841301 - T-Mobile Site ID: CT11261C 426 River Road, Willington, CT 06279 Latitude: 41° 53' 26.72" / Longitude: -72° 17' 21.77"

Dear Ms. Bachman:

T-Mobile currently maintains two (2) antennas at the 100-foot mount on the existing 110-foot Monopole Tower, located at 426 River Road, Willington, CT. The tower is owned by Crown Castle and the property is owned by the Willington Fire Department. T-Mobile now intends to add two (2) new antennas 1900/2100/600/700 MHz antennas. The new antennas will be installed at the 100-ft level of the tower and will be capable of providing 5G services.

Planned Modifications: Tower:

> Install New: (2) RFS-APXVAARR24_43-U-NA20 Antenna 1900/2100/600/700 MHz (2) Radio 4449 B71/B12 (2) TMAs (4) 1 ¼" Coax (1) Hybrid

Existing to Remain: (2) EMS RR90-17-XXDP Antenna (Dormant) (2) TMAs to be relocated

Ground:

Upgrade to existing ground cabinet. (Internally) Upgrade existing breakers.

The facility was approved by the Town of Willington Planning and Zoning Commission on August 15, 2000 by way of a Special Permit. The Special Permit was granted with conditions which this exempt modification complies with.

The Foundation for a Wireless World. CrownCastle.com

Page 2

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Honorable Erika Wiecenski, First Selectwoman for the Town of Willington, Michael D'Amato, Zoning Agent, Crown Castle as the tower owner, and the Willington Fire Department as the property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba Site Acquisition Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments

cc:

Erika Wiecenski, First Selectwoman (via email only to ewiecenski@willingtonct.org) Town of Willington 40 Old Farms Road Willington, CT 06279 860-487-3100

Michael D'Amato, Zoning Agent (via email only to zoningagent@willingtonct.org)

The Foundation for a Wireless World. CrownCastle.com Melanie A. Bachman

Page 3

Town of Willington 40 Old Farms Road Willington, CT 06279 860-487-3123

Willington Fire Department, Property Owner (via email only to president@willingtonfire.org) PO Box 161 Willington, CT 06279

Crown Castle, Tower Owner

From:	Zsamba, Anne Marie
То:	president@willingtonfire.org
Subject:	Notice of Exempt Modification - T-Mobile - 426 River Road, Willington - 841301
Date:	Wednesday, January 6, 2021 11:51:00 AM
Attachments:	EM-T-MOBILE-426 RIVER ROAD WILLINGTON-841301-CT11261C-NOTICE.pdf

Dear Willington Fire Department:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 6, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 <u>CrownCastle.com</u>

From:	Zsamba, Anne Marie
То:	<u>"ewiecenski@willingtonct.org"</u>
Subject:	Notice of Exempt Modification - T-Mobile - 426 River Road, Willington - 841301
Date:	Wednesday, January 6, 2021 11:51:00 AM
Attachments:	EM-T-MOBILE-426 RIVER ROAD WILLINGTON-841301-CT11261C-NOTICE.pdf

Dear First Selectwoman Wiecenski:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 6, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com Dear Zoning Agent D'Amato:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 6, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

Exhibit A

Original Facility Approval

TOWN OF WILLINGTON PLANNING AND ZONING COMMISSION

SPECIAL PERMIT

Date: 9/26/2000

This is to certify that the use: Monopole Antenna Tower and Support Building for Wireless

Communications Facility located on 426 River Road Assessors Map 34, lot 10, Zone R80 has

been approved with conditions by the Willington Planning and Zoning Commission on

8/15/2000 pursuant to Section 13 of the Town of Willington Zoning Regulations, which findings

are on file with the Commission.

Owner of Record: Willington Fire Department #1

<u>S. Uprgenser</u> Agent

Conditions:

1) Prior to the start of construction, any FCC and FAA approvals shall be provided to the zoning agent.

2) As stated at the public hearing, the applicant shall agree to comply with any technical revisions suggested by the town engineer and/or the zoning agent, and updated drawings to reflect those revisions shall be provided.

3) The driveway shall meet zoning regulations, as they may be waived by the zoning agent.

4) The elevation of the top of any antenna shall not exceed 642 feet above sea level.

5) The exterior lighting switch shall be arranged so any exterior lighting is not on all the time, but rather only when required by workers.

6) All easements shall be depicted on the final site plan

7) A gate shall be provided on the northeast access road at the location of the barbed wire fence.

Al Inicolon Sama Strate

Applicant should obtain a copy of the Zoning Regulations which detail specific requirements.

TOWN OF WILLINGTON Planning and Zoning Commission 40 Old Farms Road, Willington, CT 06279

Application for: Special Permit_X_Amendment____Site Plan Approval____Modification____ Location of property: <u>426 River Road</u>, Willington, Connecticut 06279

Assessors Map #: 34 Assessors Lot #: 10 Existing Zone: R-80 Area of property: 12.6 acres

Historical District Certificate of Appropriateness is attached to this application (if applicable): N/A

Special Permit Requested: Construction of monopole and support building

Names, addresses and telephone numbers of owner/owners:

Willington Fire Department, Inc. #1 c/o Chief Tyler Millix, P.O. Box 161

426 River Road, Willington, Connecticut 06279 (860-429-0288)

Name, address and telephone number of petitioner if other than owner:

N/A

Description of existing and proposed use of land and buildings:

Existing use: Willington Fire Department, Inc. facility

Proposed use: Construction of a monopole and support building for a wireless communications facility and improvements to existing access driveway pursuant to Sections 7.06.04 and 7.06.04.06 of the zoning regulations.

Please submit with this application form all data and maps required in Section 13 of the Zoning Regulations. The undersigned owner(s) of the property hereby authorizes the Planning and Zoning Commission or their agent to enter and inspect premises at any reasonable hour.

Signature of owner(s):	Date: May 12, 2000
Tyler Millix, Chief Willington Fire Dept., Inc. #1	Date:

I(we) the undersigned petitioner(s) understand that the submission of inaccurate or incomplete information shall be grounds for denial of this application by the P.Z.C.

Signature(s):	Date:_	May 12,	2000
Tyler Millix, Chief Willington Fire Dept., Inc. #1	Date:		

*List of property owners within five hundred (500) feet of subject property A:SPECIAL attached hereto as Exhibit A.

Exhibit B

Property Card

426 RIVER RD

Location	426 RIVER RD	Mblu	34/ / 010-00/ /
Acct#	00242700	Owner	WILLINGTON FIRE DEPT INC
Assessment	\$383,350	Appraisal	\$547,630
PID	4891	Building Count	1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2018	\$453,400	\$94,230	\$547,630		
Assessment					
Valuation Year	Improvements	Land	Total		
2018	\$317,390	\$65,960	\$383,350		

Owner of Record

Owner	WILLINGTON FIRE DEPT INC	Sale Price	\$0
Co-Owner		Certificate	1
Address	P O BOX 161	Book & Page	80/355
	WILLINGTON, CT 06279	Sale Date	06/25/1980

Building Information

Building 1 : Section 1

Year Built:	1985		
Living Area:	4,266		
Replacement Cost:	\$661	759	
Building Percent Good:	65		
Replacement Cost			
Less Depreciation:	\$430	140	
Building Attributes			
Field		Description	
11010		Description	
STYLE		Fire Station	
STYLE MODEL		Fire Station	
STYLE MODEL Grade		Fire Station Industrial A	
STYLE MODEL Grade Stories:		Fire Station Industrial A 1	

Exterior Wall 1	Typical
Exterior Wall 2	
Roof Structure	Typical
Roof Cover	Typical
Interior Wall 1	Typical
Interior Wall 2	
Interior Floor 1	Typical
Interior Floor 2	
Heating Fuel	Typical
Heating Type	Floor Furnace
АС Туре	Unit/AC
Bldg Use	MUN FIRE
Total Rooms	
Total Bedrms	
Total Baths	
1st Floor Use:	
Heat/AC	None
Frame Type	Fireprf Steel
Baths/Plumbing	Average
Ceiling/Wall	-DESCRIPTION-
Rooms/Prtns	Average
Wall Height	14.00
% Comn Wall	

Building Photo

(http://images.vgsi.com/photos/WillingtonCTPhotos//00\00\18\23.jpg)

Building Layout

(ParcelSketch.ashx?pid=4891&bid=4891)

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	4,266	4,266
		4,266	4,266

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valua	tion
Use Code	9032	Size (Acres)	13.16
Description	MUN FIRE	Frontage	
Zone	R80	Depth	
Neighborhood	301	Assessed Value	\$65,960

Outbuildings

	Outbuildings								
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #			
LT1	LIGHTS-IN W/PL			1.00 UNITS	\$480	1			
LT5	MERC VAP/FLU			1.00 UNITS	\$770	1			
PAV1	PAVING-ASPHALT			15000.00 S.F.	\$21,000	1			
SHD1	SHED FRAME			168.00 S.F.	\$1,010	1			

Valuation History

Appraisal							
Valuation Year	Improvements	Land	Total				
2019	\$453,400	\$94,230	\$547,630				

Assessment							
	Valuation Year	Improvements	Land	Total			
	2019	\$317,390	\$65,960	\$383,350			

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

SCOPE OF WORK		NOTE:	T. Mobile
ITEMS TO BE INSTALLED ON & REMOVED FROM EXISTING TOWER :		DIRECTLY THROUGH CROWN. CONTRACTOR MUST HAVE CONSTRUCTION PO AND INTP FROM CROWN DIRECT IN ORDER TO BEGIN, PRE-APPROVAL TO ENTER THE	T-MOBILE NORTHEAST LLC
INSTALL T-MOBILE ANTENNA (APX/MARR24, 43-U-M20) (TYP, 0F 1 PER SECTOR, TOTAL OF 2). INSTALL T-MOBILE ANDIO (4449 8174182) (TYP, 0F 1 PER SECTOR, TOTAL OF 2). INSTALL T-MOBILE TMAS (AWS) (TYP, 0F 1 PER SECTOR, TOTAL OF 2). INSTALL T-MOBILE TMAS (AWS) (TYP, 0F 1 PER SECTOR, TOTAL OF 2). INSTALL T-MOBILE TMAS (AWS) (TYP, 0F 1 PER SECTOR, TOTAL OF 2).		PROPERTY MUST BE OBTAINED. FOR ACCESS AUTHORIZATION, PLEASE CONTACT CROWN.	103 MONARCH DRIVE LIVERPOOL, NY 13088
 INSTALL T-MOBILE COAX JUMPER CABLES (TYP. OF 4 PER SECTOR, TOTAL OF 8). INSTALL T-MOBILE FIERJ NUMPER CABLES (TYP. OF 1 PER SECTOR, TOTAL OF 2). INSTALL T-MOBILE SX12 HCS HYBRID CABLE (TOTAL OF 1). 			
ITEMS TO BE INSTALLED ON EXISTING EQUIPMENT PAD: • REMOVE (1) DUS41			3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065
INSTALL (2) ERICSSON BASEBAND 6630 UNITS INSTALL (6) RUSOI 14 RELOCATE T-MOBILE TMAS (PCS) (TYP. OF 1 PER SECTOR, TOTAL OF 2).			JACOBS
ITEMS TO REMAIN: • (2) ANTENNAS, (2) TMAS, (4) COAX CABLES, (6) RUS01 B2			120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116
	L600 PRC	JECT	
SITE ADDRESS: 426 RIVER ROAD WILLINGTON, CT 06279		CT11261C	
LATITUDE (NAD 83): N 41° 53' 26.72' LONGITUDE (NAD 83): W 72° 17' 21.77"			
COUNTY: TOLLAND JURISDICTION: -	SITE NAME: TOLLAN	ND/I-84/FILL-IN	STATE & A THOUSE
LANDLORD: CROWN CASTLE INTERNATIONAL 500 W. CLIMMINGS PARK, STE 3600 WOBURN, MA 01801	CROWN SITE NAME: WIL	LINGTON-RIVER RD	
STRUCTURE HEIGHT: 110'	BI1#: 8/1	201	B No 0029052
RAD CENTER: 100' CURRENT USE- TELECOMMUNICATIONS FACILITY	DU#.041	301	Craig Thomas of 10
PROPOSED USE: TELECOMMUNICATIONS FACILITY	T-MOBILE RAN TEMP	PLATE: CUSTOM	16:44:31+04:00
DRAWING INDEX	VICINITY MAP	GENERAL NOTES	PROJECT NO: ERCC0004
SHEET NO: SHEET TITLE	Fark 8 Ride C		CHECKED BY: CAT
T-1 TITLE SHEET GN-1 GENERAL NOTES	Model P	ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.	SUBMITTALS
C-1 STE PLAN S-1 PROPOSED TOWER ELEVATION & ANTENNA LAYOUT PLAN S-2 EQUIPMENT DETAILS		 CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE T-MOBILE REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME. 	
RF-1 ANTENNA INFORMATION CHART E-1 ONE LINE DIAGRAM G-1 GROUNDING RISER DIAGRAM	Rest.Avas Vereinary Center O	3. HANDICAP REQUIREMENTS ARE NOT REQUIRED.	0 07/17/19 ISSUED FOR PERMITTING
	Willingto Res Area P 194 Earboant PiveStation 13 P	 THIS FACILIT SPALL MEET OR EACED ALL PAR AND FOC REGISTATION RELINITIES. ALL NEW MATERIAL SHALL BE FURNISHED AND INSTALLED BY CONTRACTOR UNLESS NOTED OTHERWISE. EQUIPMENT, ANTENNAS/RADIOS AND CABLES FURNISHED BY OWNER AND 	THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF THIOBILE, ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED,
	the second se	INSTALLED BY CONTRACTOR. 6. NO COMMERCIAL SIGNAGE IS PROPOSED.	DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THER LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALL OWER.
	DeerParkApartner		TOLLAND/I-84/FILL-IN CT11261C
	in the second se		WILLINGTON-RIVER RD 841301
CROWN CASTLE SITE ID #: 841301 CROWN CASTLE SITE NAME: WILLINGTON RIVER PD	Adaptingto		426 RIVER ROAD WILLINGTON, CT 06279
	vound	CALL CONNECTICUT ONE CALL	TITLE SHEET
2018 CONNECTICUT STATE BUILDING CODE	WILLINGTON RT 84 EAST TAKE EXIT 70 TURN RIGHT GO 5 MILE TO FIRE STATION ON LEFT TURN INTO THE RIGHT SIDE OF THE PARKING LOT TRASK RD AND FOLLOW, ACCESS RD ON LEFT 41.53'19.2480'', -072.17'14.0820''	CALL 3 WORKING DAYS BEFORE YOU DIG!	
2018 AMENDMENT WITH 2015 INTERNATIONAL BUILDING CODE 2009 ICC/ANSI A117.1 ACCESSIBLE AND USABLE BUILDINGS AND FACILITIES 2015 INTERNATIONAL INECHANICAL CODE 2015 INTERNATIONAL ENERGY CONSERVATION CODE 2017 NATIONAL ELECTRICAL CODE (NFPA 70 2017) ANSI/TIA-222-G			T-1

CROWN CASTLE USA INC. SITE ACTIVITY REQUIREMENTS:

NOTICE TO PROCEED. NO WORK SHALL COMMENCE PRIOR TO CROWN CASTLE USA NC. WRITTEN NOTICE TO PROCEED (NTE AND THE ISSUMCE OF A REPCHASE ORDER. PRIOR TO ACCESSIVATEMENT THE STIF YOU MAST CONTACT THE CROWN TO CASTLE USAN CONTACT THE SAME CONTACT THE CROWN CASTLE USA NC. WRITTEN NOTICE TO PROCEED (NTE TO KUP. CROWN CASTLE USAN CASTLE VIA MARK CONTENTS OF THE CLIMENT AFAILE E CONSIDERED DURING LI STAGES OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMENT AFAILURE CONSIDERED DURING LI STAGES OF DESIGN, NISTALLITON, AND INSPECTION TO WRIT MONETATION, MOUNT ENFORCEMENTS, AND/OR EOUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR AND COMPONENTS OF THE CLIMBING FACILITY ON THE STRETURE. INSTALL ISLUDUE, BUT NOTING ELIMITE OT FOR THE CLIMENT AFAILURY OF THE MARKED POINTS IN ARY WAY, OR TO MREEDED CONTIN INTENDED USE, ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR CROWN CASTLE USA INC. POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- PRIOR TO THE START OF CONSTRUCTION ALL REQUIRED JUREDICTIONAL PERMITS SHALL BE OBTAINED THIS INCL. BUTTS NOT LIMPE TO BUILDING ELECTRICAL LIVER CHANICAL, FIRE LIVED ZONE EXPONENTIAL AND ZONNES AL CONSTE ACTIVITES AND CONSTRUCTION ARE COMPLETED. ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSE ACCORDING TO LOCAL JUREDICTIONAL REQUIREMENTS.
- ALCORDING 10 LODAL JARGUE IDMA, REJURGERINS ALCORDING 10 LODAL SARGUE IDMA, REJURGERINS IT 11 TOT LINEED TO, ERECTOR IR ANS, RICGING PLANS, CLIMBING PLANS, MON RESIDE PLANS SHALL LET HE RESPONSELT OF THE GENERAL CONTRACTOR RESPONSEL FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSIASSE AND AS LATEST EDITION, FEDERAL STATE, AND LOCAL REGULATIONS, AND ANY APPLICALE INDUSTRY CONSERVIS STATEMADS RELATEST EDITION, FEDERAL STATE, AND LOCAL REGULATIONS, AND ANY APPLICALE INDUSTRY CONSERVIS STATEMADS RELATEST EDITION, FEDERAL STATE, AND CASTEL USAN INC. STANDARD CEDISTO 1025, INCLUMING THE REQUIRED INVOLVEMENT OF A CAMPIEDE REGIREER FOR CASSE (LOSING CONTON). TO ENTITY THE SUPPORTING STRUCTURES IN ACCORDANCE WITH ANSITA-322 (LATEST
- EDITION). ALL SITE WORK TO COMPLY WITH QAS-STD-10088 "INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON GROWN CASTE USA INC. TOWER SITE: AND LATEST VERSION OF ANXIETALIATION STANDARD FOR CONSTRUCTION ACTIVITIES ON GROWN ADD MANTENENDE OF MITEINAS OUPORTING STRUCTURES AND ALTENATION ADD MANTENENDE OF MITEINAS OUPORTING STRUCTURES AND ALTENATION ADD MANTENENDE OF MITEINAS OUPORTING STRUCTURES AND ALTENATION CANDE OF MITEINAS OUPORTING STRUCTURES AND ALTENATION AND ALTENATIVE INSTALLATION FOR APPROVAL BY CROWN CASTLE USA INC. PRIOR TO PROCEEDING WITH ANY SUCH CANAGE OF INSTALLATION.
- CHANGE OF INSTALLATION. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LANS, ORDINANCES, RULES, REGULATIONS AND LAYFUL ODRES OF AN PUBLIC AUTHORITY RECARIDING THE PERFORMANCE OF THE VORK ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MINIPAL AND UTLITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL DODES, ORDINANCES AND APPLICABLE REGULATIONS.
- JURISIDICTIONAL CODES, ODDINANCES AND APPLICABLE REGULATIONS. THE CONTRACTOR SHALL INSTALL ALE DOUMPENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMERCIATIONS UNLESS SPECIFICALLY STATED OTHERWISE. RECOMPENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. RECOMPENDATIONS UNLESS SPECIFICALIES AND A DESCRIPTION OTHER STATE OF CONSTRUCTION ALL DISITING ACTIVE SEVER, WARTER GAS ELECTOR AND OTHER UTILES WHERE ENCLORED THE WORK, SHALL BE RECOTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DERECTED BY CONTRACTOR EXTREME CAUTION SHOLD BE USED BY THE CONTRACTOR WHERE MECANING ON CONSULTS INCLUDE BUT NOT BE LIMITED TO A 1FALL PROTECTION B) CONTINUES SPACE OF LECTORAL SAFETY OT THENCHAN AND EXCAVATION B, CONSTRUCTION SAFETY PROCEDURES.
- ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND PROJECT SPECIFICATIONS LATEST APPROVED REVISION
- 12
- LATEST APPROVED REVISION CONTRACTOR STALL KEEP IT IN UTILE THERE FROM ACCUMULATING WASTE MATERIAL LEBRIS, AND TRASH AT THE CONTRACTOR STALL KEEP IT IN UTILE THE FROM ACCUMULATING WASTE MATERIAL LEBRIS, AND THER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY ALL EXISTING MOTIVE SEVER, WARTER, GAS, ELECTRIC AND OTHER WITH THE EXECUTION OF ALL EXISTING MOTIVE SEVER, WARTER, GAS, ELECTRIC AND OTHER WITH THE EXECUTION OF INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, TOWER OWNER, GROWN GASTE LUS AIN., MADOR LOCAL UTILITES. 13.
- CASILE USA INC., ANDIOR LOCAL UTILITES. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTER: THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW WAVY FROM THE CARRIERS EQUIPMENT AND TOWER 14 15.
- AREAS 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE.
- 17.
- I PERIGATION THE REAS OF THE OWNERS REPORT DISTUREED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNFORM SLOPE, AND STABLED TO PREVENT EROSION AS SPECIFIED ON THE CONTRUCTOR DRAWINGS AND/OR PROLECT SPECIFICATIONS. CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL LESURES IN CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL LESURES IN CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL LESURES IN CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DESURES CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DESURES CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DESURES CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DESURES CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DESURES CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DISTURDIONE CONSTRUCTION EROSION CONTROL DISTURDIONES CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DISTURDIONES CONTRUCTOR SHALL IMMINEZ DISTURBANCE TO EXISTING SITE UNING CONSTRUCTION. EROSION CONTROL DISTURDIONES CONTRUCTOR SHALL IMMINES DISTURBANCE DISTURDANCE DISTURDANCE INTO THE DISTURDANCE 18
- 19 THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED 20
- . TOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A CONTRACTO DAILY BASIS
- UNIE Y DANSIS. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT. 22.

GENERAL NOTES:

14.

- FOR THE PLRPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR: DEFINITION OF AN INFORMATION RESPONSEDE FOR CONSTRUCTION TOWER OWNER: CROWIN CASTEL USA INC. TOWER OWNER: CROWIN CASTEL USA INC. THESE DRAWINGS HAVE BEEN PREPARED USING STADARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SINIAR OF CIRCUMSTACES BY REPUTATEL EXONERES IN THIS OR SIMILAR LOCALITIES. IT IS ASSUME THAT THE WORK DEPICTED OF THE APPLICABLE COST EXPERIENCES NOT AND/OR WORKPECTURE WIN ONKOR. WORKING KONDUCED OF THE APPLICABLE COST ENDANCES AND REQUESINTS AND OF MORREFORE WIN ONKO. TANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE RAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK
- REQUIRED CONTACT THE BRINNEER OF RECORD. SUBSTATUL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FARICATION ANDOR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSED. TO YOUR DRAWINGS PROFIDE TO FARICATION OF CUTTING OF ANY NEW OF EXSTINCTION CONSTRUCTOR LEMENTS. IF IT IS DETERMIN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENSINEER OF RECORD IN THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE DRAWINGS THE DRAWINGS THE DRAWINGS THE DRAWINGS THE
- TO BE NOTIFIED AS SOON AS POSSIBLE. PHORTO TO: HE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRIVINGS, AVY DISCREPARCY FOUND SHALL BE REVOLUTIT TO THE ATTENTION OF CROWN CASH. BE CONSTRUCTION AND ORDINANCES, CONTRACTOR SHALL SIZE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LANS, ORDINANCES, ALLO CREATE CONTRACTOR SHALL SIZE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LANS, ORDINANCES, ALLO CREATE DUT SHALL COMPLY WITH ALL APPLICABLE MINIFORM, AND UTILITY COMPANY SPECIFICATIONS AND LOCAL MORE CARRIED DUT SHALL COMPLY WITH ALL APPLICABLE MINIFORM, AND UTILITY COMPANY SPECIFICATIONS AND LOCAL MIREDICTIONAL CODES, ORDINANCES AND APPLICABLE MINIFORM AND UTILITY COMPANY SPECIFICATIONS AND LOCAL MIREDICTIONAL CODES, ORDINANCES AND APPLICABLE MINIFORMA COMPANY SPECIFICATIONS AND LOCAL MIREDICTIONAL CODES, ORDINANCES AND APPLICABLE MINIFORMA AND UTILITY COMPANY SPECIFICATIONS AND LOCAL MIREDICTIONAL CODES, ORDINANCES AND APPLICABLE MINIFORMA AND UTILITY COMPANY SPECIFICATIONS AND LOCAL MIREDICTIONAL CODES, ORDINANCES AND APPLICABLE MINIFORMA AND UTILITY COMPANY SPECIFICATIONS AND LOCAL
- SE. THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABO UNLESS NOTED OTHER

- UNLESS NOTED OTHERWISE. THE WORK SHALL INCLUDE FURNISHING MATERIALS EQUIPMENT, APPLIRTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS NUCLETE ON THE PRAVINGS. THE COMPLETACTORS SHALL BYSTLL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURERS RECOMMENDATIONS UNLESS SPECIFICALLY STATE DOTHERWISE. IF THE SPECIFIED EQUIPMENT CAN NOTE IN STALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL BYSTL SUCH COMPLETALLINGS AND AND THE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL BYSTL SUCH COMPLETAL AND AND THE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL BYSTL SUCH COMPLETAL INSTALLED AND AND IS TO DEFENSIVE. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION AND IS TO DEFENSIVE. TECO, AND GONOLONDOR PLAN DRAWINGS. THE CONTRACTOR SHALL INGTECT EXSTING IMPROVEMENTS, PARAMENTS, CURES, LABDSCAMPIG AND STRUCTURES. ANY THE CONTRACTOR SHALL HEALY AND THE INSTALLED AS SHOWN IN THE OWNER TECO, AND GONOLONDOR PLAN DRAWINGS. THE CONTRACTOR SHALL HEALY AND THE DRAWING COMES AS AND THE THE DEST ROUTING OF ALL CONDULTS FOR POWER, AND TELE CONDER ON THE DRAWING COMES AS AND IN THE OWNER TECO, AND GONOLONDOR PLAN DRAWINGS. THE CONTRACTOR SHALL HEALY AND THE DRAWING THE DRAWING AND THE AS AND THE REAL AND THE REAL SHALL BEALY AND OTHER TEMPS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE TURNED TO THE OWNERS DESIGNATED LOCATION. LOCATION. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A
- DAILY BASIS

ELECTRICAL INSTALLATION NOTES:

- 42
- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEO AND ALL APPLICABLE FEDERAL STATE, AND LOCAL CODESIORDINANCES. CONDUIT FOUTINES ARE SCHEMIC. CONTRACTOR SHALL INSTAL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. WIRKIS, RACEWAR AND SUPPORT INFLOS AND AND TRIALS SHALL COMPY WITH THE REQUIREMENTS OF THE NEC. ALL LOUIRMENT SHALL BEAR THE LINGS MAKE MALE THAT SHALL BOURTY WITH THE REQUIREMENTS OF THE NEC. ALL COURMENT SHALL BEAR THE LINGS MAKE MALE SHALL COMPY WITH THE REQUIREMENTS OF THE NEC. ALL COURMENT SHALL BEAR THE LINGS MAKE MAKE AND ADDRESS AND AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL BLECTRICAL CODE. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT TATING THAT SHALL BE GREATER THAN THE SHORT GROUT CURRENT TO WHICH THEY ARE SUBJECTED 2.000 AC MIMMUM, VERTIFY AVAILABLE SHART CIRCUIT CURRENT DESIS NOT EXCEED THE RATING OF BLECTRICAL BUSICTED 2.000 AC MIMMUM, VERTIFY AVAILABLE SHART CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF BLECTRICAL BUSICTED 2.000 CARDINALS WITH ARTICLE 110.24 NEC OF EXCH BOD DE YEARY FOUNDET HAVE CONDUCTOR. RO TELOCOMELOR AND THE CONDUCTOR RO TELOCADING CONDUCTOR RO TELOCOMELOR FOR THE EXCH BOD DE YEARY TO CONDUCTOR. TO REAL SHALL HAVE CONDUCTOR RO TELOCOMELOR AND THE CONDUCTOR RO TELOCOMELOR AND THE SHART BLOCKED THAN THE EXCH BOD DE YEARY FOUNDET HAVE CONDUCTOR. THE ACTION CONTRACT THAT THE REAL BUSICTED 2.000 CONDUCTOR RO TELOCOMELOR AND THE ACTION CONDUCTOR RO TELOCOMELOR AND THE CONDUCTOR RO TELOCOMELOR AND THE ACTION CONTROL CONDUCTOR RO TELOCOMELOR AND THE ACTION CONDUCTOR RO TELOCOMELOR AND THE ACTION CONDUCTOR RO TELOCOMELOR AND

- ED. AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR. TYPE SOOW CORD (#14 OR LARGER) 12
- PUMEN AND CONTINUE SPECIFIED UNLESS OTHERWISE SPECIFIED POWER AND CONTROL WIRKING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THINK, THWN, THWN, THWN, THWN, THWN, THWN, THW, THW-Z, RHW, OR RHM-Z INSULATION UNLESS OTHERWISE 13
- PECIFIED. LI POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY HOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF). AND CARLE TRAY SHALL BE LISTED OR LARELED FOR ELECTRICAL LISE IN ACCORDANCE WITH NEMA. LI
- SI/IEEE AND
- ANSWEER AND NEC. LECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (INC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED IMDOOR LOCATIONS. LECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS50% AND ALL APPROVED ABOVE GRADE PVC CONDUIT. 18.
- ABOVE GRADE PVC CONDUIT. LIQUID-TIGHT FYSIGLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED NDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXBILLTY IS NEEDED. CONDUIT NOT UNING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LIMEADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. 20
- AND THE NEC. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS WIREMOUT SPECMATE WIREWAY

- 24.
 - PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- PROTECT TED (WY OR BET LEN) FOR EXTENDED LOCATIONS. NONMERTALL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND B RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR OCCUTIONS. 26. LOCATIONS. THE CONTRACTOR SHALL NOTIEV AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR CROWN CASTLE
- 27 THE CONTRACTOR SHALL NO TH' AND OB TAIN RECESSANT AU FINIZATION HOW THE CAMMER AND/OUR CROWN CAS USA INC: BEFORE COMMENCING VOICE NO THE AC POWER DISTRIBUTION HOW THE CAMMER AND/OUR CAS THE CONTRACTOR SHALL PROVIDE NECESSANT TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS. IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. INSTALL LAMICOD LABEL ON THE METER CENTER TO SHOW COTTASTC. 28.

- SUBMITTALS 0 07/17/19 ISSUED FOR PERMITTIN HIS DOCUMENT IS TH COPYRIGHTED WORK OF T MOE PERTY AND COPYRIGHTED WORK OF THOBIL DUPLICATION OR USE WITHOUT EXPRESS TTEN CONSENT IS STRICTLY PROHIBITED, LICATION AND USE BY GOVERNMENT INCIES FOR THE PURPOSES OF CONDUCTING INSTRATIVE EUNCTIONS IS SPECIFICALLY TOLLAND/I-84/FILL-IN SYSTEM CONDUCTOR COLOR A PHASE BLACK CT11261C RED WHITE WILLINGTON-RIVER RD NEUTRAL 841301 GROUND GREEN 426 RIVER ROAD BLACK RED BLUE C PHASE NEUTRAL WHITE GREEN GROUND A PHASE BROWN GENERAL NOTES RANGE OF PURPLE B PHASE C PHASE YELLOW NEUTRAL GREY GROUND GREEN RED* BLACK** GN-1 SEE NEC 210.5(C)(1) AND (2)

- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH INF. NEC...
 THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHEVE A TEST RESULT OF S OHMS OR LESS. THE CONTRACTOR R RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING NETAL COMDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH USTED BONDING FITTINGS OF 19 KONDING ACROSS THE DISCONTINUITY WITH BE COPPER WIRE LL APPROVED GROUNDING TYPE CONDUIT CLAMPS. METAL RACEWAY SHALL NOT BE USED AS THE NECE REQUIRED BOLINMENT GROUND CONTINUES THAN DE ORDER TO STATUTION STED IN ACCORDANCE WITH THE NECE SHALL BE VITH THE POWER NETAL ROJEWY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUP CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE NEC.

GROUNDING NOTES:

- EACH CABINET FRAME SHALL BE DRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN NEULATED SUPPLICATEL COUPRING, NO SUPPLICATEL, COURSELD LOW RESCARDED LOW
- GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTING PROTECTION SYSTEMS SHALL NOT BE ROUTED HIGHLIGHT HAROUGH METALLIC OBJECTS THAT FORM A RINK AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUTTS, METAL SUPPORT CILLES ORS LEVES THROUGH YALLS OR FLOORS SHELLS THE SEQUENCE OF HOUSE NO. CONDUTT TO MET CONDUCT TO METAL CONDUCTORS, SUCH AS METALLIC CONDUCTORS, METAL SUPPORT ALL GROUNDS THAT THANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE USANE THROUGH WILL THAT HAROUGH METALLIC OBJECTS THAT FORMETCH. CONDUCTORS, SUCH AS METALLIC CONDUCTORS, METAL SUCH AS METALLIC CONDUCTORS, METALL CONTROL SUCH AS METALLIC CONDUCTORS, SUCH A 20.

AL BUILDE THE A THOLE SUGA THOUGH M. 0029052 Craid Thomas 07/17/2019 16/14/42-04:00

T Mobile

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

CROWN

3 CORPORATE PARK DRIVE SUITE 101 CLIETON PARK NY 12065

JACOBS

120 ST. JAMES AVENUE, 5TH FLOOR

BOSTON, MA 02116

CASTLE

- CONDUCTOR COLOR CODE
 - 120/240V, 1@ 120/208V. 3R 277/480V. 3Ø DC VOLTAGE NEG (-)

ANTENNA NUMBER	ANTENNA	ANTENNA	MECH.	ELEC.	ANTENNA CENTERI INE	TMA/RRUS	TMA/RRUS	CO	COAX/HYBRID CABLE		JUMPERS		3
(FROM L TO R)	MODEL	AZIMUTH	TILT	TILT	FROM GROUND	MODEL	QUANTITY	SIZE/TYPE	QUANTITY	LENGTH	TYPE	QTY	LENGTH
A1	EMS - RR90-17-XXDP	30°	0°	2°	100'	-	-	-	-	-	-		-
A2	APXVAARR24_43-U-NA20	30°	0°	2°	100'	TWIN STYLE 1A-PCS TMA RADIO 4449 B71+B12 TWIN STYLE 1B-AWS TMA	1 1 1	1-1/4" COAX 6/12 HCS 1-1/4" COAX	2 1 2	160' 160' 160'	COAX	4	10' 10'
C1	EMS - RR90-17-XXDP	270°	0°	2°	100'	-	-	-	-	-	-	-	-
C2	APXVAARR24_43-U-NA20	270°	0°	2°	100'	TWIN STYLE 1A-PCS TMA RADIO 4449 B71+B12 TWIN STYLE 1B-AWS TMA	1	1-1/4" COAX	2	160'	COAX	4	10'

3

SCALE: NONE

NOTES:

1. EQUIPMENT LISTED IN BOLD, DELINEATES THAT THE EQUIPMENT IS PROPOSED.

1 EQUIPMENT INFORMATION CHART

1. THE HYBRID CABLE LENGTH SHOW IS ONLY AN ESTIMATE AND SHOULD NOT BE USED FOR ORDERING MATERIALS. CONFIRM THE REQUIRED HYBRID CABLE LENGTH WITH T-MOBILE PRIOR TO ORDERING OR

4. ALL EXISTING AND PROPOSED ANTENNA CABLES SHALL BE COLOR CODED PER T-MOBILE STANDARDS.

6. REFER TO EQUIPMENT MANUFACTURER'S SPECIFICATION SHEETS FOR ADDITIONAL INFORMATION NOT

THE CONTRACTOR SHALL TEST THE OPTICAL FIBER AFTER INSTALLATION IN ACCORDANCE WITH
 T-MOBILE STANDARDS AND SUPPLY THE RESULTS TO T-MOBILE.
 THE CONTRACTOR SHALL CONFIRM THE TOWER TOP EQUIPMENT LIST ABOVE WITH THE FINAL T-MOBILE
 RFDS PRIOR TO INSTALLATION.

5. REFER TO EQUIPMENT INSTALLATION STANDARDS FOR ADDITIONAL INFORMATION.

EQUIPMENT NOTES: 1. THE HYBRID CAB MATERIALS. CON INSTALLATION.

LISTED ABOVE.

EQUIPMENT TYPE EXISTING QUANTITY QUANTITY REMOVED TOTAL QUANTITY QUANTITY ADDED PANEL ANTENNA 2 0 2 4 COAX CABLE 4 0 4 8 HYBRID CABLE 0 0 1 1 FIBER JUMPER 0 0 2 2 COAX JUMPER 0 0 8 8 T٨ RA

CUSTOM - TOWER LOADING SUMMARY

T Mobi T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088 CROWN CASTLE 3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065 JACOBS 120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116 1181110. OF CONNED A THO SUBMITTALS 0 07/17/19 ISSUED FOR PERMITTIN REATION, DESIGN CUMENT IS THE S UCLUMENT IS THE CREATION, DESIGN, OPERTY AND COPYRIGHTED WORK OF TANOBIL OUPLICATION OR USE WITHOUT EXPRESS IFTEN CONSINT IS STROTTLY PROHIBITED, ALCATION AND USE BY GOVERNMENT WICES FOR THE PURPOSES OF CONDUCTING IR LAWFULLY AUTHORIZED REGULATORY AND INISTRATIVE FUNCTIONS IS SPECIFICALLY TOLLAND/I-84/FILL-IN CT11261C WILLINGTON-RIVER RD 841301 426 RIVER ROAD WILLINGTON, CT 06279

> ANTENNA INFORMATION CHART

RF-

MA	2	0	2	4	
DIO	0	0	2	2	

ANTENNA & CABLE SCHEDULE

SCALE: NONE

2 ANTENNA KEY

ONE LINE DIAGRAM NOTES:

1. ELECTRICAL SERVICE SHALL BE 200A, 240/120V, 1Ø, 3W

2. FOR COMPLETE INTERNAL WIRING AND ARRANGEMENT, REFER TO VENDOR PRINTS PROVIDED BY EQUIPMENT MANUFACTURER.

NOTES:

1. CONTRACTOR SHALL VERIFY AVAILABLE FAULT CURRENT WITH POWER COMPANY AND ENSURE ALL ELECTRICAL EQUIPMENT IS SUITABLE FOR AVAILABLE FAULT CURRENT.

2. CONTRACTOR SHALL COORDINATE UTILITY SERVICES WITH LOCAL UTILITY COMPANIES. VERIFY ALL REQUIREMENTS WITH UTILITY COMPANY STANDARDS.

3. ONE-LINE DIAGRAM IS SCHEMATIC ONLY AND NOT INDICATIVE OF ACTUAL EQUIPMENT LAYOUT.

4. CONTRACTOR SHALL LABEL METER SOCKET WITH SERVICE OWNER NAMEPLATE W/ 1/2" MINIMUM LETTERS.

T • Mobile T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088 CROWN CASTLE 3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065 JACOBS 120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116 ALBURIN EOF CONNEC G A THOU 1+04:00 CHECKED BY SUBMITTALS 0 07/17/19 ISSUED FOR PERMITTIN THIS DOCUMENT IS THE CREATION, DESIGN, REOPERTY AND COPYRIGHTED WORK OF TAINOILE ANY DUPLICATION OR USE WITHOUT SYRRESS WRITTEN CONSINT IS STRUCT. Y PROVINET DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PLEPOSES OF CONNUCTING HERL LAWRELL AUTHOREDE DEGUALTORY AND ADMINISTRATIVE PLACTIONS IS SPECIFICALLY ALL OWER. NED TOLLAND/I-84/FILL-IN CT11261C WILLINGTON-RIVER RD 841301 426 RIVER ROAD WILLINGTON, CT 06279 ONE LINE DIAGRAM E-1

SCALE: NONE

1 ONE LINE DIAGRAM

Exhibit D

Structural Analysis Report

Date: June 19, 2019

Denice Nicholson Black & Veatch Corp. Crown Castle 6800 W. 115th St., Suite 2292 3 Corporate Dr Overland Park, KS 66211 Clifton Park, NY 12065 (913) 458-6909 Subject: **Structural Analysis Report** Carrier Designation: *T-Mobile* Co-Locate Carrier Site Number: CT11261C Carrier Site Name: Tolland/I-84/Fill-In Crown Castle Designation: Crown Castle BU Number: 841301 Crown Castle Site Name: WILLINGTON-RIVER RD Crown Castle JDE Job Number: 559267 **Crown Castle Work Order Number:** 1749500 Crown Castle Order Number: 479824 Rev. 0 **Engineering Firm Designation:** Black & Veatch Corp. Project Number: 400087 426 River Road, Willington, Tolland County, CT Site Data: Latitude 41° 53' 26.72", Longitude -72° 17' 21.77" **110 Foot - Monopole Tower**

Dear Denice Nicholson,

Black & Veatch Corp. is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 80%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Purich Sangpairoj / Akarapan Tongjunta

Respectfully submitted by:

Joshua J. Riley, P.E. Professional Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

- Table 5 Tower Component Stresses vs. Capacity LC7
- 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 110 ft Monopole tower mapped by ADP Structural & Welding.

The tower has been modified multiple times in the past to accommodate additional loading.

The tower has been modified per reinforcement drawings prepared by GPD Group, Inc., in June of 2012. Reinforcement consists of Reinforcement consists of addition of reinforcement plates at elevation 45.5' to 65.5' and addition of base plate stiffeners at elevation 0'. Refer to Legacy Modification Inspection Report by FDH Velocitel, Inc., in August of 2015. This modification has been considered effective in this analysis.

The tower has been modified per reinforcement drawings prepared by Aero Solutions, LLC. in January of 2015. Reinforcement consists of addition of reinforcement plates at elevation 1.5' to 86.5', addition of transition stiffeners at elevation 0' and (4) additional anchor rods with brackets. Refer to Modification Inspection Report by FDH Velocitel, Inc., in August of 2015. This modification has been considered effective in this analysis.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	2 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)											
		1	cci tower mounts	Platform Mount [10.75' LP 712-1]													
	100.0	2	ems wireless	RR90-17-00DP w/ Mount Pipe													
		100.0	2	ericsson	KRY 112 144/1												
100.0			100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	2	ericsson	KRY 112 489/2	9
I.		2		ericsson	son RADIO 4449 B12/B71												
		2	rfs celwave	APXVAARR24_43-U-NA20_TIA w/ Mount Pipe													

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)						
		3	ericsson	RRUS 11								
	113.0	113.0						3	ericsson	RRUS 32]	
			3	ericsson	RRUS 32 B2	່ ງ	2/0					
110.0			3	kmw communications	AM-X-CD-16-65-00T-RET_TIA w/ Mount Pipe	4	3/4 7/8					
		6	powerwave technologies	7020.00	1	conduit						
		3	powerwave technologies	P65-15-XLH-RR w/ Mount Pipe								

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)					
	112.0	6	powerwave technologies	TT19-08BP111-001							
110.0	113.0	3	quintel technology	QS66512-2 w/ Mount Pipe							
		2	raycap	DC6-48-60-18-8F							
	110.0	1	cci tower mounts	Platform Mount [10.75' LP 712-1]							
	110.0	2	cci tower mounts	T-Arm Mount [TA 702-3]							
	83.0	2	alcatel lucent	B13 RRH4X30-4R							
		83.0	83.0	2	alcatel lucent	B66A RRH4X45					
				83.0	83.0	2	alcatel lucent	RRH2X60-PCS			
83.0						83.0	83.0	83.0	83.0	83.0	83.0
		2	cci tower mounts	Side Arm Mount [SO 101-1]							
		2	cci tower mounts	Side Arm Mount [SO 104-1]							
		2	rfs celwave	DB-T1-6Z-8AB-0Z							
	74.0	1	decibel	DB810M-XC							
69.0	72.0	1	dapa	48212S w/ Mount Pipe							
	71.0	1	decibel	DB201-F	3	1/2					
	60.0	1	-	12' HSS 3x3x1/4							
	69.0	1	cci tower mounts	Side Arm Mount [SO 201-1]							

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Wilkinson Engineering	4710168	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Wilkinson Engineering (Mapped)	4710170	CCISITES
4-TOWER MANUFACTURER DRAWINGS	ADP Structural & Welding (Mapped)	5113552	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	GPD Group, Inc.	4945191	CCISITES
4-POST-MODIFICATION INSPECTION	FDH Velocitel, Inc.	5864402	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Aero Solutions, LLC.	5537030	CCISITES
4-POST-MODIFICATION INSPECTION	FDH Velocitel, Inc.	5822398	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) The wind loading Exposure Category and Topographic Category for this site have been analyzed and determined by the tower owner. Black & Veatch does not assume any responsibility for its accuracy.
- 4) This analysis was performed under the assumption that all information provided to Black & Veatch is current and correct. This is to include site data, appurtenance loading, tower/foundation details, and geotechnical data. The loading on the structure is based on CAD level drawings and carrier orders provided by the owner. If any of this information is not current and correct, this report should be considered obsolete and further analysis will be required.

This analysis may be affected if any assumptions are not valid or have been made in error. Black & Veatch Corp. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) (Monopole Tower)

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
110 - 105	Pole	TP13.901x13.051x0.1875	Pole	22.6%	Pass
105 - 100	Pole	TP14.751x13.901x0.1875	Pole	35.0%	Pass
100 - 95	Pole	TP15.941x14.751x0.1875	Pole	52.0%	Pass
95 - 90	Pole	TP16.114x15.226x0.25	Pole	51.7%	Pass
90 - 85	Pole	TP17.002x16.114x0.25	Pole	59.9%	Pass
85 - 80	Pole	TP17.89x17.002x0.25	Pole	67.9%	Pass
80 - 79.75	Pole + Reinf.	TP17.934x17.89x0.5625	Reinf. 6 Tension Rupture	57.5%	Pass
79.75 - 74.75	Pole + Reinf.	TP18.822x17.934x0.5375	Reinf. 6 Tension Rupture	65.3%	Pass
74.75 - 69.75	Pole + Reinf.	TP19.71x18.822x0.525	Reinf. 6 Tension Rupture	72.3%	Pass
69.75 - 64.75	Pole + Reinf.	TP20.598x19.71x0.5	Reinf. 6 Tension Rupture	79.3%	Pass
64.75 - 64.25	Pole + Reinf.	TP20.686x20.598x0.5	Reinf. 6 Tension Rupture	80.0%	Pass
64.25 - 64	Pole + Reinf.	TP20.731x20.686x0.775	Reinf. 1 Tension Rupture	61.6%	Pass
64 - 59	Pole + Reinf.	TP21.619x20.731x0.75	Reinf. 1 Tension Rupture	66.8%	Pass
59 - 56.5	Pole + Reinf.	TP22.063x21.619x0.725	Reinf. 1 Tension Rupture	69.2%	Pass
56.5 - 56.25	Pole + Reinf.	TP22.107x22.063x0.975	Reinf. 1 Tension Rupture	54.3%	Pass
56.25 - 51.25	Pole + Reinf.	TP22.995x22.107x0.925	Reinf. 1 Tension Rupture	58.2%	Pass
51.25 - 49.5	Pole + Reinf.	TP24.016x22.995x0.9125	Reinf. 1 Tension Rupture	59.4%	Pass
49.5 - 44.5	Pole + Reinf.	TP23.709x22.806x0.725	Reinf. 4 Tension Rupture	61.9%	Pass
44.5 - 39.5	Pole + Reinf.	TP24.613x23.709x0.7125	Reinf. 4 Tension Rupture	64.6%	Pass
39.5 - 37.25	Pole + Reinf.	TP25.019x24.613x0.7	Reinf. 4 Tension Rupture	65.8%	Pass

37.25 - 37	Pole + Reinf.	TP25.065x25.019x0.7	Reinf. 5 Tension Rupture	64.4%	Pass
37 - 36.5	Pole + Reinf.	TP25.155x25.065x0.7	Reinf. 5 Tension Rupture	64.7%	Pass
36.5 - 36.25	Pole + Reinf.	TP25.2x25.155x0.9125	Reinf. 2 Tension Rupture	56.6%	Pass
36.25 - 34.25	Pole + Reinf.	TP25.562x25.2x0.8875	Reinf. 2 Tension Rupture	57.5%	Pass
34.25 - 34	Pole + Reinf.	TP25.607x25.562x0.725	Reinf. 3 Tension Rupture	61.0%	Pass
34 - 29	Pole + Reinf.	TP26.51x25.607x0.7	Reinf. 3 Tension Rupture	63.2%	Pass
29 - 24	Pole + Reinf.	TP27.414x26.51x0.6875	Reinf. 3 Tension Rupture	65.3%	Pass
24 - 19	Pole + Reinf.	TP28.317x27.414x0.675	Reinf. 3 Tension Rupture	67.3%	Pass
19 - 14	Pole + Reinf.	TP29.221x28.317x0.6625	Reinf. 3 Tension Rupture	69.1%	Pass
14 - 9	Pole + Reinf.	TP30.125x29.221x0.6375	Reinf. 3 Tension Rupture	70.7%	Pass
9 - 4	Pole + Reinf.	TP31.028x30.125x0.6375	Reinf. 3 Tension Rupture	72.3%	Pass
4 - 1.17	Pole + Reinf.	TP31.54x31.028x0.625	Reinf. 3 Tension Rupture	73.1%	Pass
1.17 - 0.92	Pole + Reinf.	TP31.585x31.54x0.9375	Reinf. 7 Tension Yield	54.8%	Pass
0.92 - 0	Pole + Reinf.	TP31.751x31.585x0.9375	Reinf. 7 Tension Yield	55.1%	Pass
				Summary	
			Pole	67.9%	Pass
			Reinforcement	80.0%	Pass
			Overall	80.0%	Pass

Table 5 - Tower Component Stresses vs. Capacity (Monopole Tower) - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail	
1	Anchor Rods (Original)	0	49.5	Pass	
Ι	Anchor Rods (Existing MODs)	0	45.3	Pass	
	Base Plate		54.9	Pass	
1	Stiffeners	0	43.4	Pass	
	Pole Punching Shear		6.0	Pass	
	Base Foundation		44.3	Pass	
1	Base Foundation Soil Interaction	0	44.5	Pass	

Structure Rating (max from all components) =	80%
--	-----

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity. Rating per TIA-222-H Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH								
GRADE	Fy	Fu	GRADE	Fy	Fu			
A572-65	65 ksi	80 ksi						

TOWER DESIGN NOTES

- 1. Tower is located in Tolland County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. 4 Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to

increase in thickness with height. 5.

Deflections are based upon a 60 mph wind.

6. Tower Risk Category II. Topographic Category 1 with Crest Height of 0.00 ft TIA-222-H Annex S

7 8.

	Black & Veatch Corp.	$^{Job:}$ $oldsymbol{W}$	/ILLINGTO	N-RIVER RD (E	BU #8413
BLACK & VEAICH	6800 W. 115th St., Suite 2292	Project	400087 (8413	301.1749500)	
Building a world of difference.	Overland Park, KS 66211	Client:	Crown Castle	Drawn by: Josh Riley	App'd:
	Phone: (913) 458-2984	Code:	TIA-222-H	Date: 06/19/19	Scale: NTS
	FAX: (913) 458-8136	Path:	\Users\ril68982\OneDrive - E	Black & Veatch\Desktop\841301\MOD.€	Dwg No. E-1

#841301

AXIAL

53 K

AXIAL

29 K

MOMENT

MOMENT

1488 kip-ft

401 kip-ft

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Tolland County, Connecticut. 1)
- 2) Tower base elevation above sea level: 42.00 ft.
- 3) Basic wind speed of 125 mph.
- 4) **Risk Category II.**
- 5) Exposure Category B.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.00 ft.
- 9) Nominal ice thickness of 2.0000 in.
- Ice thickness is considered to increase with height. 10)
- 11) Ice density of 56 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) TIA-222-H Annex S.
- 16) A non-linear (P-delta) analysis was used.
- 17) Pressures are calculated at each section.
- 18) Stress ratio used in pole design is 1.05.
- Tower analysis based on target reliabilities in accordance with Annex S. 19)
- 20) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are 21) not considered.

Options

Consider Moments - Legs		Distribute Leg Loads As Uniform		Use ASCE 10 X-Brace Ly Rules
Consider Moments - Horizontais		Assume Legs Pinned		Calculate Redundant Bracing Forces
Consider Moments - Diagonais	N	Assume Rigid Index Plate		Splan Palta Dariat Commencian
	N	Use Clear Spans For Wind Area		SR Leg Boils Resist Compression
Use Code Stress Ratios		Use Clear Spans For KL/r		All Leg Panels Have Same Allowable
Use Code Safety Factors - Guys	,	Retension Guys To Initial Tension	,	Offset Girt At Foundation
Escalate Ice	V	Bypass Mast Stability Checks		Consider Feed Line Torque
Always Use Max Kz		Use Azimuth Dish Coefficients		Include Angle Block Shear Check
Use Special Wind Profile		Project Wind Area of Appurt.		Use TIA-222-H Bracing Resist.
				Exemption
Include Bolts In Member Capacity		Autocalc Torque Arm Areas		Use TIA-222-H Tension Splice
		·		Exemption
Leg Bolts Are At Top Of Section		Add IBC .6D+W Combination		Poles
Secondary Horizontal Braces Leg		Sort Capacity Reports By Component		Include Shear-Torsion Interaction
Use Diamond Inner Bracing (4 Sided)		Triangulate Diamond Inner Bracing		Always Use Sub-Critical Flow
SR Members Have Cut Ends		Treat Feed Line Bundles As Cylinder		Use Top Mounted Sockets
SR Members Are Concentric		lanore KI /rv For 60 Deg Angle Leas		Pole Without Linear Attachments
		.g		Pole With Shroud Or No

Appurtenances

Known

Outside and Inside Corner Radii Are

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

 $\sqrt{}$

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
	ft	Length ft	Length ft	of Sides	Diameter in	Diameter in	Thickness	Radius in	
L1	110.00-105.00	5.00	0.00	18	13.0510	13.9010	0.1875	0.7500	A572-65
L2	105.00-100.00	5.00	0.00	18	13.9010	14.7510	0.1875	0.7500	(65 ksi) A572-65
L3	100.00-93.00	7.00	2.00	18	14.7510	15.9410	0.1875	0.7500	(65 KSI) A572-65
L4	93.00-90.00	5.00	0.00	18	15.2260	16.1139	0.2500	1.0000	(65 KSI) A572-65
L5	90.00-85.00	5.00	0.00	18	16.1139	17.0018	0.2500	1.0000	(65 KSI) A572-65 (65 koj)
L6	85.00-80.00	5.00	0.00	18	17.0018	17.8896	0.2500	1.0000	(05 ksi) A572-65 (65 ksi)
L7	80.00-79.75	0.25	0.00	18	17.8896	17.9340	0.5625	2.2500	A572-65 (65 ksi)
L8	79.75-74.75	5.00	0.00	18	17.9340	18.8219	0.5375	2.1500	A572-65 (65 ksi)
L9	74.75-69.75	5.00	0.00	18	18.8219	19.7098	0.5250	2.1000	A572-65 (65 ksi)
L10	69.75-64.75	5.00	0.00	18	19.7098	20.5977	0.5000	2.0000	A572-65 (65 ksi)
L11	64.75-64.25	0.50	0.00	18	20.5977	20.6865	0.5000	2.0000	À572-65 (65 ksi)
L12	64.25-64.00	0.25	0.00	18	20.6865	20.7308	0.7750	3.1000	À572-65 (65 ksi)
L13	64.00-59.00	5.00	0.00	18	20.7308	21.6187	0.7500	3.0000	À572-65 (65 ksi)
L14	59.00-56.50	2.50	0.00	18	21.6187	22.0627	0.7250	2.9000	À572-65 (65 ksi)
L15	56.50-56.25	0.25	0.00	18	22.0627	22.1071	0.9750	3.9000	A572-65 (65 ksi)
L16	56.25-51.25	5.00	0.00	18	22.1071	22.9949	0.9250	3.7000	A572-65 (65 ksi)
L17	51.25-45.50	5.75	4.00	18	22.9949	24.0160	0.9125	3.6500	A572-65 (65 ksi)
L18	45.50-44.50	5.00	0.00	18	22.8057	23.7093	0.7250	2.9000	A572-65 (65 ksi)
L19	44.50-39.50	5.00	0.00	18	23.7093	24.6128	0.7125	2.8500	A572-65 (65 ksi)
L20	39.50-37.25	2.25	0.00	18	24.6128	25.0194	0.7000	2.8000	A572-65 (65 ksi)
L21	37.25-37.00	0.25	0.00	18	25.0194	25.0646	0.7000	2.8000	A572-65 (65 ksi)
L22	37.00-36.50	0.50	0.00	18	25.0646	25.1550	0.7000	2.8000	A572-65 (65 ksi)
L23	36.50-36.25	0.25	0.00	18	25.1550	25.2001	0.9125	3.6500	A572-65 (65 ksi)
L24	36.25-34.25	2.00	0.00	18	25.2001	25.5616	0.8875	3.5500	A572-65 (65 ksi)
L25	34.25-34.00	0.25	0.00	18	25.5616	25.6068	0.7250	2.9000	A572-65 (65 ksi)
L26	34.00-29.00	5.00	0.00	18	25.6068	26.5103	0.7000	2.8000	A572-65 (65 ksi)
L27	29.00-24.00	5.00	0.00	18	26.5103	27.4139	0.6875	2.7500	A572-65 (65 ksi)
L28	24.00-19.00	5.00	0.00	18	27.4139	28.3174	0.6750	2.7000	A572-65 (65 ksi)
L29	19.00-14.00	5.00	0.00	18	28.3174	29.2210	0.6625	2.6500	A572-65 (65 ksi)
L30	14.00-9.00	5.00	0.00	18	29.2210	30.1246	0.0375	2.5500	A572-65 (65 ksi)
L31	9.00-4.00	5.00	0.00	18	30.1246	31.0281	0.63/5	2.5500	A572-65 (65 ksi)
L32	4.00-1.17	∠.ठ <u></u> 3	0.00	10	31.0287	31.5390	0.0250	2.0000	A572-65 (65 ksi)
L33	1.17-0.92	0.25	0.00	18	31.5396	31.5847	0.9375	3.7500	A572-65 (65 ksi)
L34	0.92-0.00	0.92		18	31.5847	31.7510	0.9375	3.7500	A572-65 (65 ksi)

	Tapered	Pole	Pro	perties
--	---------	------	-----	---------

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	, in	in ²	in ⁴	in	in	in ³	in4	in ²	in	
11	13 2224	7 6554	160.0380	4 5665	6 6200	2/ 1288	320 2866	3 8 2 8 /	1 0670	10 /01
LI	13.2234	7.0004	100.0300	4.0000	0.0299	24.1300	320.2000	3.0204	1.9070	10.491
	14.0865	8.1612	193.9057	4.8683	7.0617	27.4588	388.0665	4.0814	2.1166	11.288
L2	14.0865	8.1612	193.9057	4.8683	7.0617	27.4588	388.0665	4.0814	2.1166	11.288
	14.9496	8.6671	232.2432	5.1700	7.4935	30.9926	464.7919	4.3344	2.2662	12.086
13	14 9496	8 6671	232 2432	5 1700	7 4935	30 9926	464 7919	4 3344	2 2662	12 086
20	16 1580	0 3753	203 0523	5 5025	8 0080	36 2002	588 2013	1.6885	2 4756	13 203
1.4	10.1300	9.0700	293.9323	5.5925	7 7240	10.2992	000.2913	4.0000	2.47.50	13.203
L4	15.7829	11.8835	330.7223	5.3105	1.1348	43.5334	6/3.88//	5.9429	2.2398	8.959
	16.3239	12.5880	400.2327	5.6317	8.1859	48.8932	800.9920	6.2952	2.3960	9.584
L5	16.3239	12.5880	400.2327	5.6317	8.1859	48.8932	800.9920	6.2952	2.3960	9.584
	17 2255	13 2925	471 2654	5 9469	8 6369	54 5642	943 1509	6 6475	2 5523	10 209
16	17 2255	13 2025	471 2654	5 0460	8 6360	54 5642	043 1500	6 6475	2.5523	10.200
LU	10 4070	10.2020	550 2444	0.0403	0.0000	04.0042	4404 0000	0.0475	2.0020	10.203
	18.1270	13.9971	550.2414	0.2021	9.0879	60.5464	1101.2068	6.9999	2.7086	10.834
L7	18.0788	30.9354	1173.4032	6.1511	9.0879	129.1166	2348.3503	15.4707	2.1586	3.837
	18.1239	31.0147	1182.4454	6.1669	9.1105	129.7895	2366.4468	15.5103	2.1664	3.851
18	18 1278	29 6789	1134 7775	6 1758	9 1105	124 5573	2271 0483	14 8423	2 2104	4 112
_0	10 0203	31 1037	1317 5/55	6 /010	0 5615	137 7065	2636 8247	15 5008	2 3667	4 403
1.0	19.0293	00.4004	1017.0400	0.4910	9.0010	101.1900	2030.0247	15.5990	2.3007	4.403
L9	19.0313	30.4891	1289.5461	6.4954	9.5615	134.8682	2580.7889	15.2474	2.3887	4.55
	19.9329	31.9686	1486.5335	6.8106	10.0126	148.4667	2975.0229	15.9873	2.5449	4.847
L10	19.9367	30.4859	1421.2880	6.8195	10.0126	141.9503	2844.4462	15.2459	2.5889	5.178
	20 8383	31 8950	1627 6136	7 1347	10 4636	155 5498	3257 3680	15 9505	2 7452	5 4 9
111	20.8383	31 8050	1627 6126	7 12/7	10 /626	155 5/00	3257 2620	15 0505	2 7/52	5 40
	20.0303	01.0900	1021.0130	7 4000	10.4030	100.0490	3231.3009	10.9000	2.1402	J.49 F F 00
	20.9284	32.0359	1649.2806	7.1662	10.5087	156.9440	3300.7314	16.0210	2.7608	5.522
L12	20.8860	48.9792	2453.3249	7.0686	10.5087	233.4561	4909.8779	24.4943	2.2768	2.938
	20.9311	49.0884	2469.7707	7.0843	10.5313	234.5178	4942.7912	24.5489	2.2846	2.948
1.13	20 9350	47 5644	2399 0947	7 0932	10 5313	227 8068	4801 3461	23 7867	2 3286	3 105
LIU	20.0000	40.6790	2000.0047	7.0002	10.0010	221.0000	F470 0747	20.7007	2.0200	2 2 4 2
	21.8305	49.6780	2733.3391	7.4084	10.9823	248.8855	5470.2747	24.8437	2.4849	3.313
L14	21.8404	48.0796	2651.7350	7.4173	10.9823	241.4551	5306.9593	24.0444	2.5289	3.488
	22.2912	49.1012	2824.3803	7.5749	11.2078	252.0005	5652.4771	24.5553	2.6070	3.596
L15	22.2526	65.2589	3666.3557	7.4861	11.2078	327.1243	7337.5356	32.6357	2,1670	2.223
	22 2077	65 3063	3680 5508	7 5010	11 2304	328 5336	7383 07//	32 7044	2 17/8	2 231
1.40	22.2911	03.3903	3009.3390	7.5019	11.2304	320.3330	7000.9744	32.7044	2.1740	2.231
L16	22.3054	62.1895	3525.2567	7.5196	11.2304	313.9034	7055.1521	31.1006	2.2628	2.446
	23.2070	64.7962	3987.3972	7.8348	11.6814	341.3450	7980.0412	32.4043	2.4191	2.615
L17	23.2089	63.9568	3940.2009	7.8393	11.6814	337.3047	7885.5864	31.9845	2.4411	2.675
	24 2457	66 9141	4512 4310	8 2017	12 2001	369 8675	9030 7996	33 4634	2 6208	2 872
1 10	29.2707	50 9110	2120 0207	7 0 2 0 6	11 5052	270 1554	6262 7770	25 4102	2.0200	2.072
LIO	23.1191	50.0110	3129.0297	7.0300	11.0000	270.1554	0203.7776	25.4103	2.1310	3.770
	23.9632	52.8902	3529.9953	8.1594	12.0443	293.0842	7064.6355	26.4501	2.8968	3.996
L19	23.9651	52.0066	3474.7965	8.1639	12.0443	288.5012	6954.1651	26.0082	2.9188	4.097
	24.8826	54.0500	3900.6850	8.4846	12.5033	311.9720	7806.5026	27.0301	3.0779	4.32
120	24 8845	53 1295	3838 2679	8 4891	12 5033	306 9800	7681 5864	26 5698	3 0999	4 4 2 8
220	27.0070	E4 0200	1027 100F	0 6001	12.0000	217 6502	0000 4040	20.0000	2 1711	4.720
	25.2974	54.0329	4037.4095	0.0334	12.7099	517.0593	0000.1310	21.0210	3.1/14	4.531
L21	25.2974	54.0329	4037.4095	8.6334	12.7099	317.6593	8080.1316	27.0216	3.1714	4.531
	25.3433	54.1333	4059.9521	8.6494	12.7328	318.8572	8125.2464	27.0718	3.1794	4.542
L22	25,3433	54,1333	4059,9521	8.6494	12,7328	318,8572	8125 2464	27.0718	3,1794	4,542
	25 4350	54 3340	4105 2888	8 6815	12 7797	321 2507	8215 0702	27 1722	3 1053	4 565
1.00	20.4000	70 0400	-100.2000	0.0010	12.1101	407 0005	10422 240	21.1122	0.1900	4.000
L23	25.4023	70.2129	5213.2402	8.6061	12.7787	407.9625	10433.340	35.1131	2.8213	3.092
							2			
	25.4481	70.3437	5242.4413	8.6221	12.8017	409.5121	10491.780	35,1785	2.8292	3,101
							6			
1.04	DE 4500	60 4060	E111 E710	0 6210	10 0017	200 5220	10005 077	24 2500	0 0700	2 2 2 7
∟∠4	25.4520	00.4009	0114.5/40	0.0310	12.8017	J99.5238	10235.8//	34.2500	2.0132	3.231
							9			
	25.8190	69.5050	5346.0777	8.7593	12.9853	411.7030	10699.190	34.7591	2.9368	3.309
							0			
1.05	25 0444	67 4607	1151 0720	0 0470	10 0050	242 0005	0011 0000	20 E040	2 2220	1 115
L20	20.0441	57.1527	4404.0730	0.01/U	12.9003	343.0095	0914.0080	20.0010	3.2220	4.440
	25.8899	57.2566	4478.4239	8.8330	13.0082	344.2762	8962.7406	28.6338	3.2308	4.456
L26	25.8938	55.3378	4337.0422	8.8419	13.0082	333.4076	8679.7912	27.6742	3.2748	4.678
	26 8113	57 3454	4826 3902	9 1627	13 4672	358 3800	9659 1310	28 6781	3 4338	4 905
1.27	26.0110	56 2406	1717 0051	0.1671	12 /670	352 4020	0500.1010	20.0707	2 1660	5 0 2 7
LZ1	20.0132	50.3400	4/4/.0901	9.10/1	13.4072	352.4920	9000.4305	20.1/9/	3.4000	5.027
	27.7307	58.3203	5263.0517	9.4879	13.9263	377.9230	10533.028	29.1657	3.6148	5.258
							7			
L28	27 7327	57 2867	5174 6136	9,4923	13 9263	371 5726	10356 036	28 6488	3,6368	5,388
	21.1.021	01.2007	511 1.0100	0.1020	10.0200	01 1.07 20	20000.000	20.0400	0.0000	0.000
	00.0500	50 0000		0.0404	44.0050	007 4000		00.0400	0 7050	F 004
	28.6502	59.2226	5/17.1251	9.8131	14.3853	397.4293	11441.773	29.6169	3.7959	5.624
							0			

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	in	in ²	in⁴	in	in	in³	in⁴	in ²	in	
L29	28.6521	58.1521	5618.8681	9.8175	14.3853	390.5989	11245.129	29.0816	3.8179	5.763
							7			
	29.5696	60.0521	6187.8121	10.1383	14.8443	416.8484	12383.766	30.0318	3.9769	6.003
1.00	00 5705	F7 0000	5000 0000	40 4474	44 0440	400 4700	3	20,0000	4 0000	0.007
L30	29.5735	57.8300	5969.9606	10.1471	14.8443	402.1726	11947.776	28.9238	4.0209	6.307
	30 4910	59 6649	6554 2033	10 4679	15 3033	428 2873	13117 030	20 8381	<i>A</i> 1700	6 557
	50.4510	00.0040	0004.2000	10.4075	10.0000	420.2070	8	20.0001	4.1755	0.007
L31	30.4910	59.6649	6554.2033	10.4679	15.3033	428.2873	13117.030	29.8381	4.1799	6.557
							8			
	31.4085	61.4932	7175.3716	10.7887	15.7623	455.2237	14360.184	30.7524	4.3390	6.806
							8			
L32	31.4104	60.3122	7043.3620	10.7931	15.7623	446.8487	14095.991	30.1619	4.3610	6.978
	21 0207	61 2269	7404 0000	10 0747	16 0001	460 4600	8 14910 261	20 6602	4 4510	7 100
	51.9297	01.3200	7404.0000	10.9747	10.0221	402.1022	14019.301	30.0092	4.4510	1.122
1.33	31 8815	91 0603	10773 774	10 8637	16 0221	672 4321	21561 725	45 5388	3 9010	4 161
200	01.0010	01.0000	8	10.0001	10.0221	012.1021	9	10.0000	0.0010	
	31.9274	91.1947	10821.561	10.8798	16.0450	674.4486	21657.362	45.6060	3.9089	4.17
			4				0			
L34	31.9274	91.1947	10821.561	10.8798	16.0450	674.4486	21657.362	45.6060	3.9089	4.17
			4				0			
	32.0962	91.6894	10998.633	10.9388	16.1295	681.8952	22011.739	45.8534	3.9382	4.201
			8				9			

Tower Elevation	Gusset Area	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
	(per face)			A _r		Spacing Diagonals	Spacing Horizontals	Spacing Redundants
ft	ft²	in				in	in	in
L1 110.00-			1	1	1			
105.00								
L2 105.00-			1	1	1			
100.00								
L3 100.00-			1	1	1			
93.00								
L4 93.00-			1	1	1			
90.00			4	4	4			
L5 90.00-			1	1	1			
			1	1	1			
80.00			I		I			
178000-			1	1	0 887733			
79.75			•		0.001100			
L8 79.75-			1	1	0.905226			
74.75								
L9 74.75-			1	1	0.905321			
69.75								
L10 69.75-			1	1	0.929499			
64.75								
L11 64.75-			1	1	0.92761			
64.25			4		0 070 170			
L12 64.25-			1	1	0.873476			
04.00			1	1	0 877201			
50.00			I		0.077291			
1 14 59 00-			1	1	0 894771			
56 50			· ·		0.004771			
L15 56.50-			1	1	0.838655			
56.25								
L16 56.25-			1	1	0.857295			
51.25								
L17 51.25-			1	1	0.860295			
45.50								
L18 45.50-			1	1	0.899647			
44.50			4		0 00000-			
L19 44.50-			1	1	0.896925			
39.50			4	1	0.004670			
LZU 39.50-			1	Т	0.904672			

tnxTower Report - version 8.0.5.0

Tower	Gusset	Gusset	Gusset GradeAdjust. Factor	Adjust.	Weight Mult.	Double Angle Double Angle Double Angl			
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt	
	(per face)			Ar		Spacing	Spacing	Spacing	
ft	ft ²	in				Diagonais in	in	in	
37.25									
L21 37.25-			1	1	1.05392				
37.00									
L22 37.00-			1	1	1.05168				
36.50									
L23 36.50-			1	1	0.928468				
36.25									
L24 36.25-			1	1	0.94483				
34.25					4 00 - 00				
L25 34.25-			1	1	1.00582				
34.00			4	4	4 04000				
L20 34.00-			1	1	1.01989				
29.00			1	1	1 01821				
24.00			I	1	1.01021				
1 28 24 00-			1	1	1 01783				
19.00				•	1.01700				
L29 19.00-			1	1	1.01869				
14.00									
L30 14.00-			1	1	1.04033				
9.00									
L31 9.00-4.00			1	1	1.02397				
L32 4.00-1.17			1	1	1.03502				
L33 1.17-0.92			1	1	0.737647				
L34 0.92-0.00			1	1	0.735465				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Toraue	Tvpe	ft			Position	r		fla
		Calculation	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					in	in	1-
Safety Line 3/8	Α	No	Surface Ar	110.00 -	1	1	0.400	0.3750		0.22
,			(CaAa)	0.00			0.410			
***			(<i>'</i>							
PL1.25x3.5-12	А	No	Surface Af	65.50 -	1	1	0.000	3.5000	9.5000	0.00
			(CaAa)	45.50			0.000			
PL1.25x3.5-12	В	No	Surface Af	65.50 -	1	1	0.000	3.5000	9.5000	0.00
			(CaAa)	45.50			0.000			
PL1.25x3.5-12	С	No	Surface Af	65.50 -	1	1	0.000	3.5000	9.5000	0.00
			(CaAa)	45.50			0.000			

CCI-SFP-06512535	Α	No	Surface Af	36.50 -	1	1	0.000	6.5000	15.5000	0.00
			(CaAa)	1.50			0.000			
CCI-SFP-06512535	В	No	Surface Af	36.50 -	1	1	0.000	6.5000	15.5000	0.00
			(CaAa)	1.50			0.000			
CCI-SFP-06512535	В	No	Surface Af	36.50 -	1	1	0.000	6.5000	15.5000	0.00
			(CaAa)	1.50			0.000			
CCI-SFP-06512535	С	No	Surface Af	36.50 -	1	1	0.000	6.5000	15.5000	0.00
			(CaAa)	1.50			0.000			
CCI-SFP-06512525	Α	No	Surface Af	56.50 -	1	1	0.000	6.5000	15.5000	0.00
			(CaAa)	31.50			0.000			
CCI-SFP-06512520	В	No	Surface Af	56.50 -	1	1	0.000	6.5000	15.5000	0.00
			(CaAa)	36.50			0.000			
CCI-SFP-06512520	С	No	Surface Af	56.50 -	1	1	0.000	6.5000	15.5000	0.00
			(CaAa)	36.50			0.000			
CCI-SFP-04510025	Α	No	Surface Af	81.50 -	1	1	0.000	4.5000	11.0000	0.00
			(CaAa)	56.50			0.000			
CCI-SFP-04510025	В	No	Surface Af	81.50 -	1	1	0.000	4.5000	11.0000	0.00
			(CaAa)	56.50			0.000			
CCI-SFP-04510025	С	No	Surface Af	81.50 -	1	1	0.000	4.5000	11.0000	0.00
			(CaAa)	56.50			0.000			

Г

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg	5	Torque Calculation	Туре	ft			ft²/ft	plf

FB-L98-002-	С	No	No	Inside Pole	110.00 - 0.00	1	No Ice	0.00	0.06
XXX(3/8)							1/2" Ice	0.00	0.06
()							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
NR-VG86ST-	С	No	No	Inside Pole	110.00 - 0.00	2	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
2112(0,1)							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
DE5-50A(7/8)	C	No	No	Inside Pole	110 00 - 0 00	12	No Ice	0.00	0.33
0 000 (170)	0						1/2" Ice	0.00	0.33
							1" Ice	0.00	0.00
							2" ce	0.00	0.00
FB-1 98-002-	C	No	No	Inside Pole	110 00 - 0 00	1		0.00	0.00
YYY(3/8)	0	NU	NO		110.00 - 0.00	I	1/2" Ico	0.00	0.00
~~~(3/0)							1/2 100	0.00	0.00
								0.00	0.00
	0	No	No	Incida Dala	110.00 0.00	2		0.00	0.00
VR-VG0031-	C	INO	INO	Inside Pole	110.00 - 0.00	2		0.00	0.50
BRD(3/4)							1/2 ICe	0.00	0.58
							1" Ice	0.00	0.58
on :	~				440.00 0.00		2" Ice	0.00	0.58
2" innerduct	C	NO	NO	Inside Pole	110.00 - 0.00	1	No Ice	0.00	0.20
conduit							1/2" Ice	0.00	0.20
							1" Ice	0.00	0.20
							2" Ice	0.00	0.20
***	_								
B114-U6S12-	С	No	No	Inside Pole	100.00 - 0.00	1	No Ice	0.00	1.70
(XX-LI(1-1/4)							1/2" Ice	0.00	1.70
							1" Ice	0.00	1.70
	-	• •				r.	2" Ice	0.00	1.70
)F6-50A(1-1/4)	С	No	No	Inside Pole	100.00 - 0.00	8	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							1" Ice	0.00	0.60
							2" Ice	0.00	0.60
***									
3158-1-08U8-	В	No	No	Inside Pole	83.00 - 0.00	2	No Ice	0.00	1.30
S8J18(1-5/8)							1/2" Ice	0.00	1.30
							1" Ice	0.00	1.30
							2" Ice	0.00	1.30
***									
DF4-50A(1/2)	А	No	No	Inside Pole	69.00 - 0.00	3	No Ice	0.00	0.15
× /							1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15

#### Food Line/Linear Appurtanences Entered Ac Area

## Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft ²	ft ²	ĸ
L1	110.00-105.00	А	0.000	0.000	0.188	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.03
L2	105.00-100.00	Α	0.000	0.000	0.188	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.03

110 Ft Monopole Tower Structural Analysis Project Number 400087, Order 479824, Revision 0

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		- 2	- 2	In Face	Out Face	
<u>n</u>	ft		ft ²	ft²	ft ²	ft²	<u> </u>
L3	100.00-93.00	A	0.000	0.000	0.263	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
1.4	02 00 00 00		0.000	0.000	0.000	0.000	0.09
L4	93.00-90.00	A	0.000	0.000	0.112	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
15	90 00-85 00	Δ	0.000	0.000	0.000	0.000	0.04
20	00.00 00.00	B	0.000	0.000	0.000	0.000	0.00
		Č	0.000	0.000	0.000	0.000	0.07
L6	85.00-80.00	Ă	0.000	0.000	1.313	0.000	0.00
		В	0.000	0.000	1.125	0.000	0.01
		С	0.000	0.000	1.125	0.000	0.07
L7	80.00-79.75	А	0.000	0.000	0.197	0.000	0.00
		В	0.000	0.000	0.188	0.000	0.00
		С	0.000	0.000	0.188	0.000	0.00
L8	79.75-74.75	A	0.000	0.000	3.938	0.000	0.00
		В	0.000	0.000	3.750	0.000	0.01
1.0	74 75 00 75	C	0.000	0.000	3.750	0.000	0.07
L9	74.75-69.75	A	0.000	0.000	3.938	0.000	0.00
		В	0.000	0.000	3.750	0.000	0.01
1.10	60 75 64 75		0.000	0.000	3.750	0.000	0.07
LIU	09.75-04.75	R	0.000	0.000	4.373	0.000	0.00
		C	0.000	0.000	4.100	0.000	0.01
111	64 75-64 25	Ă	0.000	0.000	0.685	0.000	0.00
<b>_</b>	01110 01120	В	0.000	0.000	0.667	0.000	0.00
		Ċ	0.000	0.000	0.667	0.000	0.01
L12	64.25-64.00	A	0.000	0.000	0.343	0.000	0.00
		В	0.000	0.000	0.333	0.000	0.00
		С	0.000	0.000	0.333	0.000	0.00
L13	64.00-59.00	А	0.000	0.000	6.854	0.000	0.00
		В	0.000	0.000	6.667	0.000	0.01
		C	0.000	0.000	6.667	0.000	0.07
L14	59.00-56.50	A	0.000	0.000	3.427	0.000	0.00
		В	0.000	0.000	3.333	0.000	0.01
1 1 5			0.000	0.000	3.333	0.000	0.03
LID	50.50-50.25	R	0.000	0.000	0.420	0.000	0.00
		C	0.000	0.000	0.417	0.000	0.00
I 16	56 25-51 25	Ă	0.000	0.000	8.521	0.000	0.00
	00120 01120	В	0.000	0.000	8.333	0.000	0.01
		Ċ	0.000	0.000	8.333	0.000	0.07
L17	51.25-45.50	А	0.000	0.000	9.799	0.000	0.00
		В	0.000	0.000	9.583	0.000	0.01
		С	0.000	0.000	9.583	0.000	0.08
L18	45.50-44.50	А	0.000	0.000	1.121	0.000	0.00
		В	0.000	0.000	1.083	0.000	0.00
		C	0.000	0.000	1.083	0.000	0.01
L19	44.50-39.50	A	0.000	0.000	5.604	0.000	0.00
		В	0.000	0.000	5.417	0.000	0.01
1.00	20 50 27 05	C	0.000	0.000	5.41/	0.000	0.07
LZU	39.30-37.23	A P	0.000	0.000	2.522	0.000	0.00
		C	0.000	0.000	2.430	0.000	0.01
1 21	37 25-37 00	Δ	0.000	0.000	0.280	0.000	0.00
	01.20-01.00	B	0.000	0.000	0.200	0.000	0.00
		Č	0.000	0.000	0.271	0.000	0.00
L22	37.00-36.50	Ă	0.000	0.000	0.560	0.000	0.00
		В	0.000	0.000	0.542	0.000	0.00
		С	0.000	0.000	0.542	0.000	0.01
L23	36.50-36.25	А	0.000	0.000	0.551	0.000	0.00
		В	0.000	0.000	0.542	0.000	0.00
		С	0.000	0.000	0.271	0.000	0.00
L24	36.25-34.25	Α	0.000	0.000	4.408	0.000	0.00
		В	0.000	0.000	4.333	0.000	0.01
1.05	04.05.04.00	C	0.000	0.000	2.167	0.000	0.03
L25	34.25-34.00	A	0.000	0.000	0.551	0.000	0.00
		В	0.000	0.000	0.542	0.000	0.00
		U	0.000	0.000	0.271	0.000	0.00

110 Ft Monopole Tower Structural Analysis Project Number 400087, Order 479824, Revision 0

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_{A}A_{A}$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft ²	ft ²	ft ²	K
L26	34.00-29.00	А	0.000	0.000	8.313	0.000	0.00
		В	0.000	0.000	10.833	0.000	0.01
		С	0.000	0.000	5.417	0.000	0.07
L27	29.00-24.00	А	0.000	0.000	5.604	0.000	0.00
		В	0.000	0.000	10.833	0.000	0.01
		С	0.000	0.000	5.417	0.000	0.07
L28	24.00-19.00	А	0.000	0.000	5.604	0.000	0.00
		В	0.000	0.000	10.833	0.000	0.01
		С	0.000	0.000	5.417	0.000	0.07
L29	19.00-14.00	А	0.000	0.000	5.604	0.000	0.00
		В	0.000	0.000	10.833	0.000	0.01
		С	0.000	0.000	5.417	0.000	0.07
L30	14.00-9.00	А	0.000	0.000	5.604	0.000	0.00
		В	0.000	0.000	10.833	0.000	0.01
		С	0.000	0.000	5.417	0.000	0.07
L31	9.00-4.00	А	0.000	0.000	5.604	0.000	0.00
		В	0.000	0.000	10.833	0.000	0.01
		С	0.000	0.000	5.417	0.000	0.07
L32	4.00-1.17	А	0.000	0.000	2.814	0.000	0.00
		В	0.000	0.000	5.417	0.000	0.01
		С	0.000	0.000	2.708	0.000	0.04
L33	1.17-0.92	А	0.000	0.000	0.009	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
L34	0.92-0.00	Α	0.000	0.000	0.035	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.01

## Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	A _F	$C_A A_A$	C _A A _A	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	-
n	ft	Leg	in	ft²	ft²	ft²	ft²	ĸ
L1	110.00-105.00	А	1.913	0.000	0.000	2.101	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.03
L2	105.00-100.00	Α	1.904	0.000	0.000	2.091	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.03
L3	100.00-93.00	Α	1.892	0.000	0.000	2.912	0.000	0.04
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.09
L4	93.00-90.00	А	1.883	0.000	0.000	1.248	0.000	0.02
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.04
L5	90.00-85.00	Α	1.874	0.000	0.000	2.062	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.07
L6	85.00-80.00	Α	1.863	0.000	0.000	3.735	0.000	0.05
		В		0.000	0.000	1.684	0.000	0.03
		С		0.000	0.000	1.684	0.000	0.09
L7	80.00-79.75	Α	1.857	0.000	0.000	0.383	0.000	0.00
		В		0.000	0.000	0.280	0.000	0.00
		С		0.000	0.000	0.280	0.000	0.01
L8	79.75-74.75	Α	1.851	0.000	0.000	7.639	0.000	0.09
		В		0.000	0.000	5.601	0.000	0.08
		С		0.000	0.000	5.601	0.000	0.13
L9	74.75-69.75	Α	1.839	0.000	0.000	7.615	0.000	0.09
		В		0.000	0.000	5.589	0.000	0.08
		С		0.000	0.000	5.589	0.000	0.13
L10	69.75-64.75	Α	1.825	0.000	0.000	8.300	0.000	0.10
		В		0.000	0.000	6.287	0.000	0.09
		С		0.000	0.000	6.287	0.000	0.14
L11	64.75-64.25	Α	1.818	0.000	0.000	1.231	0.000	0.01
		В		0.000	0.000	1.030	0.000	0.01
		С		0.000	0.000	1.030	0.000	0.02

110 Ft Monopole Tower Structural Analysis Project Number 400087, Order 479824, Revision 0

Tower	Tower	Face	lce Thicknoon	$A_R$	A _F	$C_A A_A$	$C_A A_A$	Weight
n	ft	Lea	in	ft ²	ft ²	ft ²	ft ²	к
 L12	64.25-64.00	 	1.817	0.000	0.000	0.615	0.000	0.01
		В		0.000	0.000	0.515	0.000	0.01
		С		0.000	0.000	0.515	0.000	0.01
L13	64.00-59.00	A	1.809	0.000	0.000	12.282	0.000	0.15
		B		0.000	0.000	10.285	0.000	0.13
1.1.4		C	1 709	0.000	0.000	10.285	0.000	0.19
L14	59.00-56.50	A	1.798	0.000	0.000	0.124 5.131	0.000	0.07
		C		0.000	0.000	5.131	0.000	0.07
L 15	56 50-56 25	Ă	1 794	0.000	0.000	0.695	0.000	0.00
2.0	00100 00120	В		0.000	0.000	0.594	0.000	0.01
		С		0.000	0.000	0.594	0.000	0.01
L16	56.25-51.25	А	1.785	0.000	0.000	13.876	0.000	0.16
		В		0.000	0.000	11.867	0.000	0.15
	54.05.45.50	C	4 700	0.000	0.000	11.867	0.000	0.20
L17	51.25-45.50	A	1.766	0.000	0.000	15.892	0.000	0.18
		ь С		0.000	0.000	13.000	0.000	0.17
1 18	45 50-44 50	Δ	1 754	0.000	0.000	1 827	0.000	0.23
210	10.00 11.00	В	1.101	0.000	0.000	1.430	0.000	0.02
		Ċ		0.000	0.000	1.430	0.000	0.03
L19	44.50-39.50	A	1.741	0.000	0.000	9.087	0.000	0.10
		В		0.000	0.000	7.129	0.000	0.09
		С		0.000	0.000	7.129	0.000	0.14
L20	39.50-37.25	A	1.726	0.000	0.000	4.075	0.000	0.04
		В		0.000	0.000	3.202	0.000	0.04
1.21	37 25 37 00		1 720	0.000	0.000	3.202	0.000	0.06
LZI	57.25-57.00	R	1.720	0.000	0.000	0.452	0.000	0.00
		Č		0.000	0.000	0.356	0.000	0.00
L22	37.00-36.50	Ă	1.718	0.000	0.000	0.904	0.000	0.01
		В		0.000	0.000	0.711	0.000	0.01
		С		0.000	0.000	0.711	0.000	0.01
L23	36.50-36.25	A	1.717	0.000	0.000	0.809	0.000	0.01
		В		0.000	0.000	0.713	0.000	0.01
1.24	26 25 24 25	C	1 711	0.000	0.000	0.357	0.000	0.01
LZ4	30.23-34.23	R	1.711	0.000	0.000	0.40Z	0.000	0.07
		C		0.000	0.000	2 851	0.000	0.00
L25	34.25-34.00	Ă	1.706	0.000	0.000	0.807	0.000	0.01
		В		0.000	0.000	0.712	0.000	0.01
		С		0.000	0.000	0.356	0.000	0.01
L26	34.00-29.00	A	1.692	0.000	0.000	12.543	0.000	0.13
		В		0.000	0.000	14.217	0.000	0.16
1.07	20.00.24.00	C A	1 662	0.000	0.000	7.109	0.000	0.14
LZI	29.00-24.00	R	1.005	0.000	0.000	0.930 14 150	0.000	0.09
		C		0.000	0.000	7 080	0.000	0.13
L28	24.00-19.00	Ă	1.629	0.000	0.000	8.861	0.000	0.09
		В		0.000	0.000	14.091	0.000	0.15
		С		0.000	0.000	7.045	0.000	0.13
L29	19.00-14.00	A	1.586	0.000	0.000	8.776	0.000	0.09
		В		0.000	0.000	14.005	0.000	0.15
1.20	14 00 0 00		1 520	0.000	0.000	7.003	0.000	0.13
L30	14.00-9.00	B	1.550	0.000	0.000	13 893	0.000	0.08
		C		0.000	0.000	6 946	0.000	0.13
L31	9.00-4.00	Ă	1.445	0.000	0.000	8.494	0.000	0.08
		В		0.000	0.000	13.723	0.000	0.13
		С		0.000	0.000	6.861	0.000	0.12
L32	4.00-1.17	Α	1.318	0.000	0.000	4.219	0.000	0.04
		B		0.000	0.000	6.734	0.000	0.06
1.22	1 17 0 00	C	1 204	0.000	0.000	3.367	0.000	0.06
L33	1.17-0.92	R	1.204	0.000	0.000	0.070	0.000	0.00
		C.		0.000	0.000	0.000	0.000	0.00
L34	0.92-0.00	Ă	1.109	0.000	0.000	0.239	0.000	0.00
-		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.01

	Feed Line Center of Pressure								
Section	Elevation	$CP_X$	CPz	CP _X	CPz				
				Ice	Ice				
	ft	in	in	in	in				
L1	110.00-105.00	-0.0591	-0.2932	-0.2652	-1.3154				
L2	105.00-100.00	-0.0592	-0.2935	-0.2700	-1.3390				
L3	100.00-93.00	-0.0592	-0.2937	-0.2750	-1.3641				
L4	93.00-90.00	-0.0593	-0.2940	-0.2779	-1.3783				
L5	90.00-85.00	-0.0593	-0.2942	-0.2800	-1.3884				
L6	85.00-80.00	-0.0369	-0.1832	-0.2029	-1.0060				
L7	80.00-79.75	-0.0164	-0.0815	-0.1234	-0.6121				
L8	79.75-74.75	-0.0167	-0.0827	-0.1254	-0.6219				
L9	74.75-69.75	-0.0171	-0.0849	-0.1290	-0.6398				
L10	69.75-64.75	-0.0165	-0.0817	-0.1235	-0.6125				
L11	64.75-64.25	-0.0125	-0.0619	-0.0908	-0.4503				
L12	64.25-64.00	-0.0125	-0.0620	-0.0910	-0.4515				
L13	64.00-59.00	-0.0127	-0.0629	-0.0924	-0.4581				
L14	59.00-56.50	-0.0130	-0.0642	-0.0942	-0.4674				
L15	56.50-56.25	-0.0112	-0.0555	-0.0926	-0.4269				
L16	56.25-51.25	-0.0114	-0.0563	-0.0936	-0.4324				
L17	51.25-45.50	-0.0117	-0.0579	-0.0954	-0.4432				
L18	45.50-44.50	-0.0155	-0.0770	-0.1327	-0.6187				
L19	44.50-39.50	-0.0157	-0.0780	-0.1329	-0.6221				
L20	39.50-37.25	-0.0160	-0.0792	-0.1338	-0.6291				
L21	37.25-37.00	-0.0161	-0.0797	-0.1341	-0.6314				
L22	37.00-36.50	-0.0161	-0.0798	-0.1342	-0.6321				
L23	36.50-36.25	-0.0118	-1.8387	-0.0920	-2.2604				
L24	36.25-34.25	-0.0118	-1.8483	-0.0924	-2.2726				
L25	34.25-34.00	-0.0119	-1.8574	-0.0927	-2.2843				
L26	34.00-29.00	0.8384	-1.5224	0.7654	-1.9804				
L27	29.00-24.00	1.8417	-1.1420	1.7850	-1.6369				
L28	24.00-19.00	1.8780	-1.1646	1.8258	-1.6659				
L29	19.00-14.00	1.9134	-1.1866	1.8660	-1.6916				
L30	14.00-9.00	1.9480	-1.2081	1.9056	-1.7122				
L31	9.00-4.00	1.9818	-1.2292	1.9449	-1.7232				
L32	4.00-1.17	2.3052	-1.4431	1.8613	-1.6888				
L33	1.17-0.92	-0.0598	-0.2967	-0.2367	-1.1741				
L34	0.92-0.00	-0.0598	-0.2967	-0.2230	-1.1058				

#### Feed Line Conter of Dr

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

### **Shielding Factor Ka**

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	1	Safety Line 3/8	105.00 -	1.0000	1.0000
		-	110.00		
L2	1	Safety Line 3/8	100.00 -	1.0000	1.0000
			105.00		
L3	1	Safety Line 3/8	93.00 -	1.0000	1.0000
			100.00		
L5	1	Safety Line 3/8	85.00 -	1.0000	1.0000
			90.00		
L6	1	Safety Line 3/8	80.00 -	1.0000	1.0000
			85.00		
L6	29	CCI-SFP-04510025	80.00 -	1.0000	1.0000
			81.50		
L6	30	CCI-SFP-04510025	80.00 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Elev.		
L6	31	CCI-SFP-04510025	81.50 80.00 - 81.50	1.0000	1.0000
L7	1	Safety Line 3/8	79.75 -	1.0000	1.0000
L7	29	CCI-SFP-04510025	79.75 -	1.0000	1.0000
L7	30	CCI-SFP-04510025	79.75 -	1.0000	1.0000
L7	31	CCI-SFP-04510025	79.75 -	1.0000	1.0000
L8	1	Safety Line 3/8	74.75 - 79.75	1.0000	1.0000
L8	29	CCI-SFP-04510025	74.75 - 79.75	1.0000	1.0000
L8	30	CCI-SFP-04510025	74.75 - 79.75	1.0000	1.0000
L8	31	CCI-SFP-04510025	74.75 - 79.75	1.0000	1.0000
L9	1	Safety Line 3/8	69.75 - 74.75	1.0000	1.0000
L9	29	CCI-SFP-04510025	69.75 - 74.75	1.0000	1.0000
L9	30	CCI-SFP-04510025	69.75 - 74.75	1.0000	1.0000
L9	31	CCI-SFP-04510025	69.75 - 74.75	1.0000	1.0000
L10	1	Safety Line 3/8	64.75 - 69.75	1.0000	1.0000
L10	18	PL1.25x3.5-12	64.75 - 65.50	1.0000	1.0000
L10	19	PL1.25x3.5-12	64.75 - 65.50	1.0000	1.0000
L10	20	PL1.25x3.5-12	64.75 - 65.50	1.0000	1.0000
L10	29	CCI-SFP-04510025	64.75 - 69.75	1.0000	1.0000
L10	30	CCI-SFP-04510025	64.75 - 69.75	1.0000	1.0000
L10	31	CCI-SFP-04510025	64.75 - 69.75	1.0000	1.0000
L11	1	Safety Line 3/8	64.25 - 64.75	1.0000	1.0000
L11	18	PL1.25x3.5-12	64.25 - 64.75	1.0000	1.0000
L11	19	PL1.25x3.5-12	64.25 - 64.75	1.0000	1.0000
L11	20	PL1.25x3.5-12	64.25 - 64.75	1.0000	1.0000
L11	29	CCI-SFP-04510025	64.25 - 64.75	1.0000	1.0000
L11	30	CCI-SFP-04510025	64.25 - 64.75	1.0000	1.0000
L11	31	CCI-SFP-04510025	64.25 - 64.75	1.0000	1.0000
L12	1	Safety Line 3/8	64.00 - 64.25	1.0000	1.0000
L12	18	PL1.25x3.5-12	64.00 - 64.25	1.0000	1.0000
L12	19	PL1.25x3.5-12	64.00 - 64.25	1.0000	1.0000
L12	20	PL1.25x3.5-12	64.00 - 64.25	1.0000	1.0000
L12	29	CCI-SFP-04510025	64.00 - 64.25	1.0000	1.0000
L12	30	CCI-SFP-04510025	64.00 - 64.25	1.0000	1.0000
L12	31	CCI-SFP-04510025	64.00 - 64.25	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K₂ No Ice	K _a Ice
1 1 2	1	Safaty Line 2/9	Ēlev.	1 0000	1 0000
L13  13	1 18	BI 1 25v3 5-12	59.00 - 64.00 59.00 -	1 0000	1 0000
L13	19	PL1.25x3 5-12	64.00 59.00 -	1.0000	1.0000
1 1 2	20	DI 1 25v2 5 12	64.00	1 0000	1 0000
L 13	20	CCI-SEP-04510025	64.00 - 59.00 -	1 0000	1 0000
L 13	30	CCI-SFP-04510025	64.00 59.00 -	1 0000	1 0000
L13	31	CCI-SFP-04510025	64.00 59.00 -	1.0000	1.0000
s L14	1	Safety Line 3/8	64.00 56.50 -	1.0000	1.0000
L14	18	PL1.25x3.5-12	59.00 56.50 -	1.0000	1.0000
L14	19	PL1.25x3.5-12	59.00 56.50 -	1.0000	1.0000
L14	20	PL1.25x3.5-12	59.00 56.50 -	1.0000	1.0000
L14	29	CCI-SFP-04510025	59.00 56.50 -	1.0000	1.0000
L14	30	CCI-SFP-04510025	59.00 56.50 -	1.0000	1.0000
L14	31	CCI-SFP-04510025	59.00 56.50 -	1.0000	1.0000
L15	1	Safety Line 3/8	59.00 56.25 -	1.0000	1.0000
L15	18	PL1.25x3.5-12	56.25 -	1.0000	1.0000
L15	19	PL1.25x3.5-12	56.25 - 56 50	1.0000	1.0000
L15	20	PL1.25x3.5-12	56.25 - 56 50	1.0000	1.0000
L15	26	CCI-SFP-06512525	56.25 - 56.50	1.0000	1.0000
L15	27	CCI-SFP-06512520	56.25 - 56.50	1.0000	1.0000
L15	28	CCI-SFP-06512520	56.25 - 56.50	1.0000	1.0000
L16	1	Safety Line 3/8	51.25 - 56.25	1.0000	1.0000
L16	18	PL1.25x3.5-12	51.25 - 56.25	1.0000	1.0000
L16	19	PL1.25x3.5-12	51.25 - 56.25	1.0000	1.0000
L16	20	PL1.25x3.5-12	51.25 - 56.25	1.0000	1.0000
L16	26	CCI-SFP-06512525	51.25 - 56.25	1.0000	1.0000
L16	27	CCI-SFP-06512520	51.25 - 56.25	1.0000	1.0000
L16	28	CCI-SFP-06512520	51.25 - 56.25	1.0000	1.0000
L17	1	Safety Line 3/8	45.50 - 51.25	1.0000	1.0000
L17	18	PL1.25x3.5-12	45.50 - 51.25	1.0000	1.0000
L17	19	PL1.25x3.5-12	45.50 - 51.25	1.0000	1.0000
L17	20	PL1.25X3.5-12	45.50 - 51.25	1.0000	1.0000
	26	CCI SED 06540500	45.50 - 51.25	1.0000	1.0000
	27		40.00 - 51.25	1.0000	1.0000
L17	28	UCI-SFP-00512520	45.50 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Elev.		
L19	1	Safety Line 3/8	51.25 39.50 -	1.0000	1.0000
L19	26	CCI-SFP-06512525	44.50 39.50 - 44.50	1.0000	1.0000
L19	27	CCI-SFP-06512520	39.50 - 44.50	1.0000	1.0000
L19	28	CCI-SFP-06512520	39.50 - 44.50	1.0000	1.0000
L20	1	Safety Line 3/8	37.25 - 39.50	1.0000	1.0000
L20	26	CCI-SFP-06512525	37.25 - 39.50	1.0000	1.0000
L20	27	CCI-SFP-06512520	37.25 - 39.50	1.0000	1.0000
L20	28	CCI-SFP-06512520	37.25 - 39.50	1.0000	1.0000
L21	1	Safety Line 3/8	- 37.00 37.25	1.0000	1.0000
L21	26	CCI-SFP-06512525	37.00 - 37.25	1.0000	1.0000
L21	27	CCI-SFP-06512520	37.00 - 37.25	1.0000	1.0000
L21	28	CCI-SFP-06512520	37.00 - 37.25	1.0000	1.0000
L22	1	Safety Line 3/8	36.50 - 37.00	1.0000	1.0000
L22	26	CCI-SFP-06512525	36.50 - 37.00	1.0000	1.0000
L22	27	CCI-SFP-06512520	36.50 - 37.00	1.0000	1.0000
L22	28	CCI-SFP-06512520	36.50 - 37.00	1.0000	1.0000
L23	1	Safety Line 3/8	36.25 - 36.50	1.0000	1.0000
L23	22	CCI-SFP-06512535	36.25 - 36.50	1.0000	1.0000
L23	23	CCI-SFP-06512535	36.25 - 36.50	1.0000	1.0000
L23	24	CCI-SFP-06512535	36.25 - 36.50	1.0000	1.0000
L23	25	CCI-SFP-06512535	36.25 - 36.50	1.0000	1.0000
L23	26	CCI-SFP-06512525	36.25 - 36.50	1.0000	1.0000
L24	1		34.25 - 36.25	1.0000	1.0000
L24	22	CCI-SFF-00312535	36.25 34.25	1.0000	1.0000
1.24	23	CCI-SEP-06512535	36.25 34.25	1.0000	1.0000
1 24	24	CCI-SEP-06512535	36.25 34 25 -	1 0000	1.0000
1 24	20	CCI-SEP-06512525	36.25 34 25 -	1 0000	1 0000
1 25	1	Safety Line 3/8	36.25 34 00 -	1,0000	1.0000
L25	22	CCI-SFP-06512535	34.25 34.00 -	1,0000	1.0000
0 L25	23	CCI-SFP-06512535	34.25 34.00 -	1.0000	1.0000
L25	24	CCI-SFP-06512535	34.25 34.00 -	1.0000	1.0000
L25	25	CCI-SFP-06512535	34.25 34.00 -	1.0000	1.0000
L25	26	CCI-SFP-06512525	34.25 34.00 -	1.0000	1.0000
			34.25		

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
L26	1	Safetv Line 3/8	29.00 -	1.0000	1.0000
		,	34.00		
L26	22	CCI-SFP-06512535	29.00 -	1.0000	1.0000
126	23	CCI-SEP-06512535	29.00 -	1 0000	1 0000
		00.01.000.2000	34.00		
L26	24	CCI-SFP-06512535	29.00 -	1.0000	1.0000
126	25	CCI-SEP-06512535	34.00 29.00 -	1 0000	1 0000
220	20	001011 00012000	34.00	1.0000	1.0000
L26	26	CCI-SFP-06512525	31.50 -	1.0000	1.0000
1 27	1	Safety Line 3/8	34.00 24.00 -	1 0000	1 0000
		Galety Elle 5/6	29.00	1.0000	1.0000
L27	22	CCI-SFP-06512535	24.00 -	1.0000	1.0000
1.27	23	CCI SED 06512535	29.00	1 0000	1 0000
LZI	20	001-011-00012000	29.00	1.0000	1.0000
L27	24	CCI-SFP-06512535	24.00 -	1.0000	1.0000
1.07	25		29.00	1 0000	1 0000
LZ1	25	CCI-SFP-00512555	24.00 - 29.00	1.0000	1.0000
L28	1	Safety Line 3/8	19.00 -	1.0000	1.0000
1.00	00		24.00	4 0000	4 0000
L28	22	CCI-SFP-06512535	19.00 - 24.00	1.0000	1.0000
L28	23	CCI-SFP-06512535	19.00 -	1.0000	1.0000
1.00			24.00	4 0000	4 0000
L28	24	CCI-SFP-06512535	19.00 - 24.00	1.0000	1.0000
L28	25	CCI-SFP-06512535	19.00 -	1.0000	1.0000
			24.00		
L29	1	Safety Line 3/8	14.00 -	1.0000	1.0000
L29	22	CCI-SFP-06512535	14.00 -	1.0000	1.0000
			19.00		
L29	23	CCI-SFP-06512535	14.00 -	1.0000	1.0000
L29	24	CCI-SFP-06512535	14.00 -	1.0000	1.0000
			19.00		
L29	25	CCI-SFP-06512535	14.00 -	1.0000	1.0000
L30	1	Safety Line 3/8	9.00 - 14.00	1.0000	1.0000
L30	22	CCI-SFP-06512535	9.00 - 14.00	1.0000	1.0000
L30	23	CCI-SFP-06512535	9.00 - 14.00	1.0000	1.0000
L30	24	CCI-SFP-06512535	9.00 - 14.00	1.0000	1.0000
L30	25	Safety Line 3/8	9.00 - 14.00	1.0000	1.0000
L31	22	CCI-SFP-06512535	4.00 - 9.00	1.0000	1.0000
L31	23	CCI-SFP-06512535	4.00 - 9.00	1.0000	1.0000
L31	24	CCI-SFP-06512535	4.00 - 9.00	1.0000	1.0000
L31	25	CCI-SFP-06512535	4.00 - 9.00	1.0000	1.0000
L32	1	Safety Line 3/8	1.17 - 4.00	1.0000	1.0000
L32	22	CCI-SED 06512535	1.50 - 4.00	1.0000	1.0000
1.32	23	CCI-SEP-06512535	1.50 - 4.00	1 0000	1 0000
L32	25	CCI-SFP-06512535	1.50 - 4.00	1.0000	1.0000
L33	1	Safety Line 3/8	0.92 - 1.17	1.0000	1.0000
L34	1	Safety Line 3/8	0.00 - 0.92	1.0000	1.0000

#### **Discrete Tower Loads**

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
Lightning Rod 5/8"x4'	С	From Leg	0.00 0.00 2.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.25 0.66 0.97 1.49	0.25 0.66 0.97 1.49	0.00 0.01 0.01 0.03
Platform Mount [10.75' LP 712-1]	С	None		0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	21.97 26.82 31.67 41.36	21.97 26.82 31.67 41.36	1.20 1.47 1.75 2.31
(2) T-Arm Mount [TA 702- 3]	С	None		0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	5.64 6.55 7.46 9.28	5.64 6.55 7.46 9.28	0.34 0.43 0.52 0.70
Transition Ladder	С	From Leg	2.00 0.00 -3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	6.00 8.00 10.00 14.00	6.00 8.00 10.00 14.00	0.16 0.24 0.32 0.48
8'x2'' Mount Pipe	A	From Leg	3.00 -2.00 0.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
8'x2" Mount Pipe	В	From Leg	3.00 -2.00 0.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
8'x2" Mount Pipe	С	From Leg	3.00 -2.00 0.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
QS66512-2 w/ Mount Pipe	A	From Leg	4.00 7.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.64 9.29 9.91 11.18	6.66 9.66 10.62 12.61	0.14 0.21 0.30 0.49
QS66512-2 w/ Mount Pipe	В	From Leg	4.00 7.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.64 9.29 9.91 11.18	6.66 9.66 10.62 12.61	0.14 0.21 0.30 0.49
QS66512-2 w/ Mount Pipe	С	From Leg	4.00 7.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.64 9.29 9.91 11.18	6.66 9.66 10.62 12.61	0.14 0.21 0.30 0.49
AM-X-CD-16-65-00T- RET_TIA w/ Mount Pipe	A	From Leg	3.00 2.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.26 8.82 9.35 10.42	6.36 7.54 8.43 10.24	0.07 0.14 0.21 0.39
AM-X-CD-16-65-00T- RET_TIA w/ Mount Pipe	В	From Leg	3.00 2.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.26 8.82 9.35 10.42	6.36 7.54 8.43 10.24	0.07 0.14 0.21 0.39
AM-X-CD-16-65-00T- RET_TIA w/ Mount Pipe	С	From Leg	3.00 2.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	8.26 8.82 9.35 10.42	6.36 7.54 8.43 10.24	0.07 0.14 0.21 0.39

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
P65-15-XLH-RR w/ Mount Pipe	A	From Leg	4.00 -7.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice	5.67 6.08 6.49	4.33 5.01 5.67	0.06 0.11 0.16
		En en la en	4.00	0.0000	110.00	1" Ice 2" Ice	7.34	7.01	0.29
P65-15-XLH-RK W/ Mount Pipe	В	From Leg	4.00 -7.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	5.67 6.08 6.49 7.34	4.33 5.01 5.67 7.01	0.06 0.11 0.16 0.29
P65-15-XLH-RR w/ Mount Pipe	С	From Leg	4.00 -7.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	5.67 6.08 6.49 7.34	4.33 5.01 5.67 7.01	0.06 0.11 0.16 0.29
(2) 7020.00	A	From Leg	4.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice	0.10 0.15 0.20	0.17 0.24 0.31	0.00 0.01 0.01
(2) 7020.00	В	From Leg	4.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice	0.33 0.10 0.15 0.20	0.43 0.17 0.24 0.31	0.02 0.00 0.01 0.01
(2) 7020.00	С	From Leg	4.00 0.00 3.00	0.0000	110.00	1" Ice 2" Ice No Ice 1/2"	0.33 0.10 0.15 0.20	0.48 0.17 0.24 0.31	0.02 0.00 0.01 0.01
RRUS 32	A	From Leg	4.00	0.0000	110.00	1" Ice 2" Ice No Ice	0.33	0.48	0.02
		Ū	0.00 3.00			1/2" Ice 1" Ice 2" Ice	3.08 3.32 3.81	1.97 2.17 2.58	0.08 0.10 0.16
RRUS 32	В	From Leg	4.00 0.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.86 3.08 3.32 3.81	1.78 1.97 2.17 2.58	0.06 0.08 0.10 0.16
RRUS 32	С	From Leg	4.00 0.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	2.86 3.08 3.32 3.81	1.78 1.97 2.17 2.58	0.06 0.08 0.10 0.16
RRUS 32 B2	A	From Leg	4.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice 1" Ice	2.73 2.95 3.18 3.66	1.67 1.86 2.05 2.46	0.05 0.07 0.10 0.16
RRUS 32 B2	В	From Leg	4.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice 1" Ice	2.73 2.95 3.18 3.66	1.67 1.86 2.05 2.46	0.05 0.07 0.10 0.16
RRUS 32 B2	С	From Leg	4.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice 1" Ice	2.73 2.95 3.18 3.66	1.67 1.86 2.05 2.46	0.05 0.07 0.10 0.16
DC6-48-60-18-8F	A	From Leg	1.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice 1" Ice	0.92 1.46 1.64 2.04	0.92 1.46 1.64 2.04	0.02 0.04 0.06 0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
DC6-48-60-18-8F	A	From Leg	1.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice 1" Ice	0.92 1.46 1.64 2.04	0.92 1.46 1.64 2.04	0.02 0.04 0.06 0.11
(2) TT19-08BP111-001	A	From Leg	4.00 0.00 3.00	0.0000	110.00	2" Ice No Ice 1/2" Ice 1" Ice	0.55 0.65 0.75 0.98	0.45 0.53 0.63 0.84	0.02 0.02 0.03 0.05
(2) TT19-08BP111-001	В	From Leg	4.00 0.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	0.55 0.65 0.75 0.98	0.45 0.53 0.63 0.84	0.02 0.02 0.03 0.05
(2) TT19-08BP111-001	С	From Leg	4.00 0.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	0.55 0.65 0.75 0.98	0.45 0.53 0.63 0.84	0.02 0.02 0.03 0.05
RRUS 11	A	From Leg	3.00 0.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	2.78 2.99 3.21 3.66	1.19 1.33 1.49 1.83	0.05 0.07 0.10 0.15
RRUS 11	В	From Leg	3.00 0.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	2.78 2.99 3.21 3.66	1.19 1.33 1.49 1.83	0.05 0.07 0.10 0.15
RRUS 11	С	From Leg	3.00 0.00 3.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.78 2.99 3.21 3.66	1.19 1.33 1.49 1.83	0.05 0.07 0.10 0.15
*** Platform Mount [10.75' LP 712-1]	С	None		0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ico	21.97 26.82 31.67 41.36	21.97 26.82 31.67 41.36	1.20 1.47 1.75 2.31
Transition Ladder	С	From Leg	2.00 0.00 -3.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	6.00 8.00 10.00 14.00	6.00 8.00 10.00 14.00	0.16 0.24 0.32 0.48
(2) 8'x2" Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
APXVAARR24_43-U- NA20_TIA w/ Mount Pipe	A	From Leg	4.00 5.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	20.48 21.23 21.99 23.44	11.02 12.55 14.10 16.45	0.19 0.32 0.47 0.80
APXVAARR24_43-U- NA20_TIA w/ Mount Pipe	С	From Leg	4.00 5.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	20.48 21.23 21.99 23.44	11.02 12.55 14.10 16.45	0.19 0.32 0.47 0.80
RR90-17-00DP w/ Mount Pipe	A	From Leg	4.00 -5.00 0.00	0.0000	100.00	No Ice 1/2" Ice	4.59 5.02 5.44	3.32 4.09 4.78	0.03 0.07 0.12

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
						1" Ice	6.30	6.23	0.22
RR90-17-00DP w/ Mount	C	From Lea	4 00	0 0000	100.00		4 59	3 32	0.03
Pipe	0	I Iom Log	-5.00	0.0000	100.00	1/2"	5.02	4 09	0.00
			0.00			lce	5.44	4.78	0.12
						1" lce 2" lce	6.30	6.23	0.22
KRY 112 489/2	Α	From Leg	4.00	0.0000	100.00	No Ice	0.56	0.37	0.02
			0.00			1/2"	0.66	0.45	0.02
			0.00				0.76	0.54	0.03
						1 ICe 2" Ico	1.00	0.75	0.05
KRY 112 489/2	C	From Lea	4 00	0 0000	100.00	No Ice	0.56	0.37	0.02
	0	Tiom Log	0.00	0.0000	100.00	1/2"	0.66	0.45	0.02
			0.00			lce	0.76	0.54	0.03
						1" Ice	1.00	0.75	0.05
						2" Ice			
RADIO 4449 B12/B71	A	From Leg	4.00	0.0000	100.00	No Ice	1.65	1.30	0.08
			0.00			1/2"	1.81	1.44	0.09
			0.00			1" loo	1.98	1.00	0.11
						2" Ice	2.04	1.52	0.10
RADIO 4449 B12/B71	С	From Leg	4.00	0.0000	100.00	No Ice	1.65	1.30	0.08
		0	0.00			1/2"	1.81	1.44	0.09
			0.00			Ice	1.98	1.60	0.11
						1" Ice	2.34	1.92	0.16
KDV 110 111/1	۸	From Log	4 00	0 0000	100.00	2" Ice	0.25	0.17	0.01
KRT 112 144/1	A	From Leg	4.00	0.0000	100.00	1/2"	0.35	0.17	0.01
			0.00			lce	0.51	0.30	0.02
						1" lce 2" lce	0.70	0.46	0.03
KRY 112 144/1	А	From Leg	4.00	0.0000	100.00	No Ice	0.35	0.17	0.01
		Ū	0.00			1/2"	0.43	0.23	0.01
			0.00			Ice	0.51	0.30	0.02
						1" Ice 2" Ice	0.70	0.46	0.03
***									
Side Arm Mount [SO 101-	A	From Leg	0.00	0.0000	83.00	No Ice	3.75	1.28	0.08
1]			0.00			1/2"	4.45	1.39	0.11
			0.00			1" loo	5.15 6.55	1.50	0.14
						2" Ice	0.00	1.72	0.13
Side Arm Mount [SO 101-	С	From Leg	0.00	0.0000	83.00	No Ice	3.75	1.28	0.08
1]		-	0.00			1/2"	4.45	1.39	0.11
			0.00			Ice	5.15	1.50	0.14
						1" Ice	6.55	1.72	0.19
Side Arm Mount ISO 104-	Δ	From Face	0.00	0 0000	83.00		1 51	0.67	0.10
11	~	1 IOIII I ace	0.00	0.0000	05.00	1/2"	1.82	0.07	0.10
.1			0.00			lce	2.13	1.19	0.18
						1" Ice	2.75	1.71	0.26
0.1 1 1	-		c c -	0.000-	<u> </u>	2" Ice	4		<b>0</b> 10
Side Arm Mount [SO 104-	В	From Face	0.00	0.0000	83.00	No Ice	1.51	0.67	0.10
1]			0.00			1/2	1.82	0.93	0.14
			0.00			1" Ice	2.75	1.71	0.26
						2" Ice		'	0.20
6'x2" Mount Pipe	А	From Face	1.00	0.0000	83.00	No Ice	1.43	1.43	0.02
			0.00			1/2"	1.92	1.92	0.03
			0.00			ICe	2.29	2.29	0.05
						1 ICE 2" Ice	3.00	3.06	0.09
6'x2" Mount Pipe	В	From Face	1.00	0.0000	83.00	No Ice	1.43	1.43	0.02
	-		0.00			1/2"	1.92	1.92	0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
			0.00			Ice 1" Ice 2" Ice	2.29 3.06	2.29 3.06	0.05 0.09
SBNHH-1D65A TIA w/	А	From Leg	1.00	0.0000	83.00	No Ice	6.19	5.25	0.05
Mount Pipe		5	1.00			1/2"	6.64	6.04	0.11
			0.00			Ice	7.07	6.74	0.17
						1" Ice	7.97	8.18	0.31
	•		1 00	0.0000	00.00	2" Ice	0.40	F 0F	0.05
Mount Pine	A	FIOIII Leg	-1.00	0.0000	63.00	1/2"	6.64	5.25	0.05
Would Tipe			0.00			lce	7.07	6 74	0.11
			0.00			1" Ice	7.97	8 18	0.31
						2" Ice	1.01	0.10	0.01
SBNHH-1D65A TIA w/	С	From Face	1.00	0.0000	83.00	No Ice	6.19	5.25	0.05
Mount Pipe			1.00			1/2"	6.64	6.04	0.11
			0.00			Ice	7.07	6.74	0.17
	_	_				1" lce 2" lce	7.97	8.18	0.31
SBNHH-1D65A_TIA w/	С	From Face	1.00	0.0000	83.00	No Ice	6.19	5.25	0.05
Mount Pipe			-1.00			1/2"	6.64	6.04	0.11
			0.00			ICe	7.07	6.74 9.19	0.17
						2" Ice	1.91	0.10	0.51
B13 RRH4X30-4R	С	From Lea	1 00	0 0000	83 00	No Ice	2 16	1 62	0.06
	Ũ	Troin Log	0.00	0.0000	00.00	1/2"	2.35	1.79	0.08
			0.00			lce	2.55	1.97	0.10
						1" lce 2" lce	2.97	2.36	0.15
B13 RRH4X30-4R	А	From Face	1.00	0.0000	83.00	No Ice	2.16	1.62	0.06
			0.00			1/2"	2.35	1.79	0.08
			0.00			Ice	2.55	1.97	0.10
						1" Ice	2.97	2.36	0.15
	<b>D</b>		1 00	0.0000	00.00	2" Ice	4.00	2.00	0.04
DB-11-62-8AB-02	В	From Leg	0.00	0.0000	83.00	1/2"	4.80	2.00	0.04
			0.00				5.07	2.19	0.00
			0.00			1" Ice 2" Ice	5.93	2.81	0.12
DB-T1-6Z-8AB-0Z	А	From Lea	1.00	0.0000	83.00	No Ice	4.80	2.00	0.04
		5	0.00			1/2"	5.07	2.19	0.08
			0.00			Ice	5.35	2.39	0.12
						1" Ice	5.93	2.81	0.21
						2" Ice			
B66A RRH4X45	Α	From Face	1.00	0.0000	83.00	No Ice	2.58	1.63	0.06
			0.00			1/2"	2.79	1.81	0.08
			0.00			ICe	3.01	2.00	0.10
						1 ICe 2" Ice	3.48	2.40	0.16
B66A RRH4X45	С	From Lea	1.00	0.0000	83 00	No Ice	2,58	1.63	0.06
200.11.11.010	0		0.00	0.0000	22.00	1/2"	2.79	1.81	0.08
			0.00			Ice	3.01	2.00	0.10
						1" Ice	3.48	2.40	0.16
	C	From Log	1.00	0 0000	83.00		2 20	1 70	0.06
	C	FIOIDLeg	0.00	0.0000	03.00	1/2"	2.20 2.30	1.72	0.00 0.00
			0.00			lce	2.59	2 09	0.00
			5.00			1" Ice 2" Ice	3.01	2.48	0.16
RRH2X60-PCS	Δ	From Face	1 00	0 0000	83.00	No loe	2 20	1 72	0.06
			0.00	2.0000	50.00	1/2"	2.39	1.90	0.08
			0.00			lce	2.59	2.09	0.10
						1" Ice	3.01	2.48	0.16
						2" Ice			
***	۸	Engine L	1.00	0.0000	60.00	Na I.	2.00	0.44	0.40
Side Arm Mount [SO 201-	A	rom Leg	1.00	0.0000	69.00	INO ICE	2.96	2.11	0.10

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
1]			0.00			1/2"	4.10	2.93	0.12
-			0.00			Ice	5.24	3.75	0.14
						1" lce 2" lce	7.52	5.39	0.18
12' HSS 3x3x1/4	А	From Leg	2.00	0.0000	69.00	No Ice	3.96	0.15	0.12
			0.00			1/2"	4.88	0.22	0.15
			0.00			Ice	5.80	0.30	0.18
						1" lce 2" lce	7.64	0.45	0.24
7'x2" Mount Pipe	А	From Leg	2.00	0.0000	69.00	No Ice	1.66	1.66	0.03
			-6.00			1/2"	2.39	2.39	0.04
			-2.00			Ice	2.83	2.83	0.06
						1" lce 2" lce	3.71	3.71	0.10
7'x2" Mount Pipe	А	From Leg	2.00	0.0000	69.00	No Ice	1.66	1.66	0.03
			-2.00			1/2"	2.39	2.39	0.04
			-2.00			Ice	2.83	2.83	0.06
						1" lce 2" lce	3.71	3.71	0.10
7'x2" Mount Pipe	A	From Leg	2.00	0.0000	69.00	No Ice	1.66	1.66	0.03
			2.00			1/2"	2.39	2.39	0.04
			-2.00			Ice	2.83	2.83	0.06
						1" lce 2" lce	3.71	3.71	0.10
DB201-F	A	From Leg	2.00	0.0000	69.00	No Ice	0.40	0.40	0.01
			-6.00			1/2"	0.72	0.72	0.01
			2.00			Ice	1.04	1.04	0.02
						1" lce 2" lce	1.68	1.68	0.02
DB810M-XC	А	From Leg	2.00	0.0000	69.00	No Ice	2.12	2.12	0.03
			2.00			1/2"	3.14	3.14	0.05
			5.00			Ice	4.18	4.18	0.07
						1" lce 2" lce	5.77	5.77	0.13
48212S w/ Mount Pipe	А	From Leg	2.00	0.0000	69.00	No Ice	4.62	3.12	0.04
		Ū.	6.00			1/2"	5.03	3.83	0.08
			3.00			Ice	5.44	4.49	0.12
						1" Ice	6.28	5.88	0.23
***						2" Ice			

## Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	

Comb.	Description
No.	
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 lce+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 lce+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

#### Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Comb.	к	kip-ft	kip-ft
L1	110 - 105	Pole	Max Tension	26	0.00	-0.00	-0.00
			Max. Compression	26	-10.99	1.26	-0.19
			Max. Mx	20	-3.80	39.25	-0.11
			Max. My	14	-3.79	0.43	-39.03
			Max. Vy	20	-5.92	39.25	-0.11
			Max. Vx	2	-5.93	0.37	38.70
			Max. Torque	24			0.62
L2	105 - 100	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-11.42	1.41	-0.05
			Max. Mx	20	-4.03	69.30	-0.09
			Max. My	14	-4.02	0.49	-69.12
			Max. Vy	20	-6.10	69.30	-0.09
			Max. Vx	2	-6.11	0.38	68.80
			Max. Torque	24			0.62
L3	100 - 93	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-17.69	5.28	4.65
			Max. Mx	20	-6.53	114.65	0.25
			Max. My	2	-6.48	0.73	115.37
			Max. Vy	20	-9.05	114.65	0.25
			Max. Vx	2	-9.25	0.73	115.37
			Max. Torque	18			-3.01
L4	93 - 90	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-18.41	5.44	4.82
			Max. Mx	20	-6.98	160.35	-0.50
			Max. My	2	-6.94	-0.05	162.08

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
100.			Max \/y	20	<u> </u>	<u>κιρ-π</u>	
			Max. Vy Max. Vy	20	-9.23	-0.05	-0.50
			Max Torque	18	-0.40	-0.00	-3.01
15	90 - 85	Pole	Max Tension	10	0.00	0.00	0.00
20	00 00	1 010	Max. Compression	26	-18.99	5.58	4.96
			Max. Mx	20	-7.40	206.82	-1.27
			Max. My	2	-7.36	-0.82	209.58
			Max. Vy	20	-9.38	206.82	-1.27
			Max. Vx	2	-9.58	-0.82	209.58
			Max. Torque	18			-3.00
L6	85 - 80	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-23.37	6.96	5.70
			Max. Mx	20	-8.97	260.04	-1.85
			Max. My	2	-8.92	-1.01	263.75
			Max. Vy	20	-11.31	260.04	-1.85
			Max. VX	2	-11.64	-1.01	263.75
17	90 70 75	Dela	Max. Torque	10	0.00	0.00	-3.40
L/	00 - 79.75	FUIE	Max Compression	26	-23.43	6.00	5 70
			Max Mx	20	-20.40	262.86	-1 89
			Max My	2	-8.96	-1.05	266.66
			Max. Vv	20	-11.32	262.86	-1.89
			Max. Vx	14	11.65	5.62	-263.70
			Max. Torque	18			-3.40
L8	79.75 - 74.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-24.54	7.08	5.83
			Max. Mx	20	-9.71	320.28	-2.66
			Max. My	2	-9.66	-1.83	325.71
			Max. Vy	20	-11.66	320.28	-2.66
			Max. Vx	14	12.01	6.45	-322.83
			Max. Torque	18			-3.40
L9	74.75 - 69.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-25.67	7.18	5.95
			Max. Mx	20	-10.43	379.36	-3.43
			Max. My	2	-10.38	-2.62	386.44
			Max. Vy	20	-11.99	379.36	-3.43
			Max. Vx	14	12.37	7.27	-383.75
			Max. Torque	18			-3.40
L10	69.75 - 64.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-27.97	6.47	9.05
			Max. Mx	20	-11.61	442.28	-3.08
			Max. My	2	-11.55	-3.44	453.32
			Max. Vy	20	-12.77	442.28	-3.08
			Max. Vx	14	13.39	8.06	-448.59
1.4.4	C 4 7 F	Dala	Max. Torque	18	0.00	0.00	-4.03
LII	64.75 - 64.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-28.11	6.48	9.06
			Max. Mx	20	-11.69	448.67	-3.16
			Max. My	2	-11.04	-3.52	409.98
			wax. vy	20 1 /	-12.8U	440.0/ 0 1 F	-3.10
			Wax. VX	14 19	13.43	0.15	-400.29
1 10	64 25 64	Polo	Max Tonsion	10	0.00	0.00	-4.02
	04.20 - 04	FUIE	Max Compression	26	-28 10	6.00	9.00
			Max My	20	-20.19	451 87	-3.20
			Max Mv	20	-11 69	-3.55	463.32
			Max Vv	20	-12 82	451 87	-3 20
			Max Vx	14	13 45	8 19	-458 65
			Max. Torque	18	.0.70	0.10	-4.02
L13	64 - 59	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-29.80	6.56	9.17
			Max. Mx	20	-12.75	516.89	-3.97
			Max. My	2	-12.70	-4.34	531.04
			Max. Vy	20	-13.20	516.89	-3.97
			Max. Vx	14	13.87	9.01	-526.92

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		51		Comb.	K	kip-ft	kip-ft
			Max. Torque	18			-4.02
L14	59 - 56.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-30.61	6.60	9.22
			Max. Mx	20	-13.26	550.11	-4.36
			Max. My	2	-13.21	-4.74	565.62
			Max. Vy	20	-13.39	550.11	-4.36
			Max. Vx	14	14.09	9.41	-561.85
1.45		Dele	Max. Torque	18	0.00	0.00	-4.02
LID	<u> 30.3 - 30.23</u>	Pole	Max Compression	26	0.00	0.00	0.00
			Max. Compression	20	-30.71	553.46	9.22
			Max My	20	-13.28	-4 78	569 10
			Max Vy	20	-13 40	553 46	-4 40
			Max. Vy	14	14.10	9.46	-565.37
			Max. Torque	18			-4.02
L16	56.25 -	Pole	Max Tension	1	0.00	0.00	0.00
	51.25		Max Compression	26	-32 61	6 68	9.31
			Max. Mx	20	-14.57	621.49	-5.18
			Max. My	2	-14.52	-5.57	639.84
			Max. Vv	20	-13.81	621.49	-5.18
			Max. Vx	14	14.56	10.27	-637.01
			Max. Torque	18			-4.02
L17	51.25 - 45.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-33.28	6.71	9.35
			Max. Mx	20	-15.00	645.77	-5.46
			Max. My	2	-14.96	-5.84	665.08
			Max. Vy	20	-13.96	645.77	-5.46
			Max. Vx	14	14.72	10.56	-662.63
			Max. Torque	18			-4.02
L18	45.5 - 44.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-36.14	6.78	9.43
			Max. Mx	20	-17.00	716.67	-6.24
			Max. My	2	-16.96	-6.63	738.69
			Max. Vy	20	-14.40	/16.6/	-6.24
			Max. Vx	14	15.22	11.38	-/3/.49
1.10	44 E 20 E	Dele	Max. Torque	18	0.00	0.00	-4.02
LIS	44.5 - 59.5	FOIE	Max Compression	26	-37.73	6.85	0.00
			Max My	20	-18 13	789.46	-7.02
			Max My	14	-18.07	12 19	-814 43
			Max Vy	20	-14 73	789 46	-7 02
			Max. Vx	14	15.58	12.19	-814.43
			Max. Torque	18			-4.02
L20	39.5 - 37.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-38.46	6.88	9.55
			Max. Mx	20	-18.65	822.76	-7.38
			Max. My	14	-18.59	12.56	-849.65
			Max. Vy	20	-14.88	822.76	-7.38
			Max. Vx	14	15.74	12.56	-849.65
1.04	07.05 07	<b>D</b> /	Max. Torque	18	0.00	0.00	-4.02
L21	37.25 - 37	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-38.55	0.89	9.55
				20	-10.72	020.40	-1.42
				14	-10.07	12.00	-000.00
			Max. Vy Max. Vy	20	-14.09	020.40	-1.42
			Max Torque	14	15.75	12.00	-4.02
1 22	37 - 36 5	Pole	Max Tension	1	0.00	0.00	0.00
	01 - 00.0		Max Compression	26	-38 73	6 89	9.56
			Max Mx	20	-18 85	833 94	-7 50
			Max. Mv	14	-18.80	12.68	-861.47
			Max. Vv	20	-14.93	833.94	-7.50
			Max. Vx	14	15.79	12.68	-861.47
			Max. Torque	18			-4.02
L23	36.5 - 36.25	Pole	Max Tension	1	0.00	0.00	0.00
-			Max. Compression	26	-38.83	6.90	9.57
			Max. Mx	20	-18.92	837.67	-7.53
			Max. My	14	-18.87	12.72	-865.42

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
			Max. Vy	20	-14.94	837.67	-7.53
			Max. Vx	14	15.81	12.72	-865.42
			Max. Torque	18			-4.02
L24	36.25 - 34 25	Pole	Max Tension	1	0.00	0.00	0.00
	04.20		Max. Compression	26	-39.68	6.92	9.63
			Max. Mx	20	-19.51	867.70	-7.85
			Max. My	14	-19.46	13.04	-897.21
			Max. Vy	20	-15.10	867.70	-7.85
			Max. Vx	14	15.99	13.04	-897.21
			Max. Torque	18			-4.02
L25	34.25 - 34	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-39.77	6.92	9.64
			Max. Mx	20	-19.58	871.48	-7.89
			Max. My	14	-19.53	13.08	-901.20
			Max. Vy	20	-15.11	871.48	-7.89
			Max. Vx	14	16.00	13.08	-901.20
1.00	04 00	<b>D</b> 1	Max. I orque	18		0.00	-4.02
L26	34 - 29	Pole	Max Tension	1	0.00	0.00	0.00
			wax. Compression	26	-41.68	0.95	9.70
			Max. Mx	20	-20.91	947.89	-8.67
			wax. wy	14	-20.80	13.09	-902.17
			Max. Vy	20	-15.40	947.89	-0.07
			Max Torquo	14	10.40	13.09	-302.17
1 27	20 - 21	Pole	Max. Torque Max Tension	10	0.00	0.00	-4.02
LZI	29 - 24	FUIC	Max Compression	26	-43.57	6.03	0.00
			Max. Compression	20	-43.37	1026.00	-9.00
			Max. Mx Max. Mv	14	-22.27	14 69	-1065.02
			Max Vy	20	-15.80	1026.00	-9.46
			Max Vy	14	16.76	14 69	-1065.02
			Max. Torque	18	10.10	11.00	-4.01
L28	24 - 19	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-45.47	6.90	9.96
			Max. Mx	20	-23.64	1105.81	-10.24
			Max. My	14	-23.61	15.49	-1149.67
			Max. Vy	20	-16.14	1105.81	-10.24
			Max. Vx	14	17.13	15.49	-1149.67
			Max. Torque	18			-4.01
L29	19 - 14	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-47.38	6.87	10.04
			Max. Mx	20	-25.04	1187.30	-11.02
			Max. My	14	-25.02	16.27	-1236.14
			Max. Vy	20	-16.48	1187.30	-11.02
			Max. Vx	14	17.49	16.27	-1236.14
1.00	44 0	Data	Max. Torque	18	0.00	0.00	-4.01
L3U	14 - 9	Pole		1	0.00	0.00	0.00
			wax. Compression	20	-49.29	0.83	10.10
			Max My	20 17	-20.40	1210.40	-11.19
			Max V/v	20	-20.43	1270 / 8	-11 70
			Max Vy	14	17 85	17 05	-1324 42
			Max Torque	18	17.00	17.00	-4 01
L31	9 - 4	Pole	Max Tension	1	0.00	0.00	0.00
	<i>.</i> .		Max. Compression	26	-51.19	6.78	10.15
			Max. Mx	20	-27.91	1355.34	-12.56
			Max. My	14	-27.90	17.83	-1414.50
			Max. Vý	20	-17.15	1355.34	-12.56
			Max. Vx	14	18.21	17.83	-1414.50
			Max. Torque	18			-4.01
L32	4 - 1.17	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.24	6.76	10.17
			Max. Mx	20	-28.73	1404.12	-13.00
			Max. My	14	-28.73	18.26	-1466.27
			Max. Vy	20	-17.35	1404.12	-13.00
			Max. Vx	14	18.41	18.26	-1466.27
1.00	4 4 7 0 00	<b>D</b> .	Max. Torque	18	0.00	0.00	-4.01
L33	1.17 - 0.92	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.32	6.76	10.17

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. Mx	20	-28.82	1408.45	-13.04
			Max. My	14	-28.82	18.30	-1470.87
			Max. Vy	20	-17.34	1408.45	-13.04
			Max. Vx	14	18.41	18.30	-1470.87
			Max. Torque	18			-4.01
L34	0.92 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.64	6.76	10.17
			Max. Mx	20	-29.10	1424.42	-13.18
			Max. My	14	-29.10	18.44	-1487.82
			Max. Vy	20	-17.38	1424.42	-13.18
			Max. Vx	14	18.44	18.44	-1487.82
			Max. Torque	18			-4.01

#### **Maximum Reactions**

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	52.64	0.00	0.00
	Max. H _x	21	21.83	17.37	-0.15
	Max. H _z	2	29.10	-0.15	17.60
	Max. M _x	2	1466.23	-0.15	17.60
	Max. M _z	8	1416.47	-17.10	0.15
	Max. Torsion	6	3.98	-15.42	9.25
	Min. Vert	11	21.83	-14.74	-8.68
	Min. H _x	8	29.10	-17.10	0.15
	Min. H _z	15	21.83	0.15	-18.43
	Min. M _x	14	-1487.82	0.15	-18.43
	Min. Mz	20	-1424.42	17.37	-0.15
	Min. Torsion	18	-4.01	15.12	-9.08

## Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shear₂	Overturning	Overturning	Torque
Combination	к	K	к	Moment, M _x	Moment, M _z	kin_ft
Dead Only	24.25				1 00	
1.2 Dead+1.0 Wind 0 deg - No Ice	29.10	0.15	-17.60	-1466.23	-13.58	-1.25
0.9 Dead+1.0 Wind 0 deg - No Ice	21.83	0.15	-17.60	-1447.52	-14.02	-1.19
1.2 Dead+1.0 Wind 30 deg - No Ice	29.10	8.67	-15.32	-1278.16	-720.33	-3.01
0.9 Dead+1.0 Wind 30 deg - No Ice	21.83	8.67	-15.32	-1261.75	-712.08	-2.94
1.2 Dead+1.0 Wind 60 deg - No Ice	29.10	15.42	-9.25	-760.17	-1253.83	-3.98
0.9 Dead+1.0 Wind 60 deg - No Ice	21.83	15.42	-9.25	-750.18	-1239.13	-3.91
1.2 Dead+1.0 Wind 90 deg - No Ice	29.10	17.10	-0.15	-18.84	-1416.47	-3.89
0.9 Dead+1.0 Wind 90 deg - No Ice	21.83	17.10	-0.15	-17.88	-1399.67	-3.85
1.2 Dead+1.0 Wind 120 deg - No Ice	29.10	14.74	8.68	715.55	-1218.37	-2.76
0.9 Dead+1.0 Wind 120 deg - No Ice	21.83	14.74	8.68	707.50	-1204.02	-2.76
1.2 Dead+1.0 Wind 150 deg - No Ice	29.10	8.42	15.19	1257.38	-693.12	-0.89
0.9 Dead+1.0 Wind 150 deg - No Ice	21.83	8.42	15.19	1242.70	-685.23	-0.93

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	К	К	К	Moment, M _x kip-ft	Moment, Mz kip-ft	kip-ft
1.2 Dead+1.0 Wind 180 deg	29.10	-0.15	18.43	1487.82	. 18.44	1.23
0.9 Dead+1.0 Wind 180 deg	21.83	-0.15	18.43	1470.46	17.57	1.16
1.2 Dead+1.0 Wind 210 deg	29.10	-8.82	15.57	1275.98	727.20	3.02
0.9 Dead+1.0 Wind 210 deg	21.83	-8.82	15.57	1261.08	717.64	2.95
1.2 Dead+1.0 Wind 240 deg - No Ice	29.10	-15.12	9.08	744.77	1241.83	4.01
0.9 Dead+1.0 Wind 240 deg - No Ice	21.83	-15.12	9.08	736.36	1225.96	3.95
1.2 Dead+1.0 Wind 270 deg - No Ice	29.10	-17.37	0.15	13.18	1424.42	3.91
0.9 Dead+1.0 Wind 270 deg - No Ice	21.83	-17.37	0.15	13.72	1406.31	3.87
1.2 Dead+1.0 Wind 300 deg - No Ice	29.10	-15.41	-9.07	-733.92	1245.23	2.75
0.9 Dead+1.0 Wind 300 deg - No Ice	21.83	-15.41	-9.07	-724.28	1229.42	2.75
1.2 Dead+1.0 Wind 330 deg - No Ice	29.10	-8.41	-15.16	-1262.24	697.51	0.86
0.9 Dead+1.0 Wind 330 deg - No Ice	21.83	-8.41	-15.16	-1246.04	688.31	0.90
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	52.64 52.64	-0.00 0.02	-0.00 -4.17	-10.17 -401.36	6.76 4.40	-0.00 -0.66
1.2 Dead+1.0 Wind 30	52.64	2.07	-3.62	-350.14	-187.59	-1.05
1.2 Dead+1.0 Wind 60	52.64	3.64	-2.15	-210.06	-331.37	-1.17
1.2 Dead+1.0 Wind 90	52.64	4.10	-0.02	-12.56	-378.02	-0.97
1.2 Dead+1.0 Wind 120	52.64	3.54	2.07	183.43	-325.28	-0.51
1.2 Dead+1.0 Wind 150 deg+1.0 lce+1.0 Temp	52.64	2.03	3.61	327.55	-183.57	0.09
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	52.64	-0.02	4.31	386.14	9.14	0.66
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	52.64	-2.08	3.65	330.36	201.47	1.05
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	52.64	-3.59	2.12	187.80	341.64	1.16
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	52.64	-4.13	0.02	-7.82	392.08	0.96
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	52.64	-3.65	-2.13	-206.22	342.99	0.50
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	52.64	-2.03	-3.60	-347.77	197.02	-0.09
Dead+Wind 0 deg - Service	24.25	0.03	-3.82	-318.50	-1.44	-0.27
Dead+Wind 30 deg - Service	24.25	1.88	-3.33	-277.87	-154.13	-0.65
Dead+Wind 60 deg - Service	24.25	3.35	-2.01	-165.97	-269.39	-0.87
Dead+Wind 90 deg - Service	24.25	3.72	-0.03	-5.82	-304.51	-0.85
Service	24.25	5.20	1.09	152.02	-201.72	-0.01
Dead+Wind 150 deg - Service	24.25	1.83	3.30	269.87	-148.26	-0.20
Dead+Wind 180 deg - Service	24.25	-0.03	4.01	319.67	5.46	0.26
Dead+Wind 210 deg - Service	24.25	-1.92	3.38	273.90	158.59	0.65
Dead+Wind 240 deg - Service	24.25	-3.29	1.97	159.13	269.76	0.87
Dead+Wind 270 deg - Service	24.25	-3.78	0.03	1.08	309.19	0.85
Dead+Wind 300 deg - Service	24.25	-3.35	-1.97	-160.30	270.49	0.60
Dead+Wind 330 deg - Service	24.25	-1.83	-3.30	-274.43	152.17	0.20

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Solution Summary								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	oad PX								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	omb. K								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0.15								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 0.15								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 8.67								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 8.67								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 15.42								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 15.42								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 17.10								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 17.10								
11 $14.74$ $-21.83$ $8.68$ $-14.74$ $21.83$ $-8.68$ $0.000$ 12 $8.42$ $-29.10$ $15.19$ $-8.42$ $29.10$ $-15.19$ $0.000$ 13 $8.42$ $-21.83$ $15.19$ $-8.42$ $21.83$ $-15.19$ $0.000$ 14 $-0.15$ $-29.10$ $18.43$ $0.15$ $29.10$ $-18.43$ $0.000$ 15 $-0.15$ $-21.83$ $18.43$ $0.15$ $29.10$ $-18.43$ $0.000$ 16 $-8.82$ $-29.10$ $15.57$ $8.82$ $29.10$ $-15.57$ $0.000$ 17 $-8.82$ $-21.83$ $15.57$ $8.82$ $21.83$ $-15.57$ $0.000$ 18 $-15.12$ $-29.10$ $9.08$ $15.12$ $29.10$ $-9.08$ $0.000$ 19 $-15.12$ $-21.83$ $9.08$ $15.12$ $21.83$ $-9.08$ $0.000$ 20 $-17.37$ $-29.10$ $0.15$ $17.37$ $29.10$ $-0.15$ $0.000$ 21 $-17.37$ $-21.83$ $0.15$ $17.37$ $21.83$ $-0.15$ $0.000$ 22 $-15.41$ $-29.10$ $-9.07$ $15.41$ $29.10$ $9.07$ $0.000$ 23 $-15.41$ $-21.83$ $-9.07$ $15.41$ $21.83$ $9.07$ $0.000$ 24 $-8.41$ $-21.83$ $-9.07$ $15.41$ $21.83$ $15.16$ $0.000$ 25 $-8.41$ $-21.83$ $-15.16$ $8.41$ $21.83$ $15.16$ $0.000$ 26 $0.00$ $-52.64$	10 14.74								
12 $8.42$ $-29.10$ $15.19$ $-8.42$ $29.10$ $-15.19$ $0.000$ $13$ $8.42$ $-21.83$ $15.19$ $-8.42$ $21.83$ $-15.19$ $0.000$ $14$ $-0.15$ $-29.10$ $18.43$ $0.15$ $29.10$ $-18.43$ $0.000$ $15$ $-0.15$ $-21.83$ $18.43$ $0.15$ $29.10$ $-18.43$ $0.000$ $15$ $-0.15$ $-21.83$ $18.43$ $0.15$ $21.83$ $-18.43$ $0.000$ $16$ $-8.82$ $-29.10$ $15.57$ $8.82$ $29.10$ $-15.57$ $0.000$ $17$ $-8.82$ $-21.83$ $15.57$ $8.82$ $21.83$ $-15.57$ $0.000$ $18$ $-15.12$ $-29.10$ $9.08$ $15.12$ $29.10$ $-9.08$ $0.000$ $19$ $-15.12$ $-21.83$ $9.08$ $15.12$ $21.83$ $-9.08$ $0.000$ $20$ $-17.37$ $-29.10$ $0.15$ $17.37$ $29.10$ $-0.15$ $0.000$ $21$ $-17.37$ $-21.83$ $0.15$ $17.37$ $21.83$ $-0.15$ $0.000$ $22$ $-15.41$ $-29.10$ $-9.07$ $15.41$ $29.10$ $9.07$ $0.000$ $23$ $-15.41$ $-29.10$ $-15.16$ $8.41$ $29.10$ $15.16$ $0.000$ $24$ $-8.41$ $-29.10$ $-15.16$ $8.41$ $29.10$ $15.16$ $0.000$ $25$ $-8.41$ $-21.83$ $-15.16$ $8.41$ $29.10$ $15.16$ $0.000$ $26$	11 14.74								
13 $8.42$ $-21.83$ $15.19$ $-8.42$ $21.83$ $-15.19$ $0.000$ 14 $-0.15$ $-29.10$ $18.43$ $0.15$ $29.10$ $-18.43$ $0.000$ 15 $-0.15$ $-21.83$ $18.43$ $0.15$ $21.83$ $-18.43$ $0.000$ 16 $-8.82$ $-29.10$ $15.57$ $8.82$ $29.10$ $-15.57$ $0.000$ 17 $-8.82$ $-21.83$ $15.57$ $8.82$ $29.10$ $-15.57$ $0.000$ 18 $-15.12$ $-29.10$ $9.08$ $15.12$ $29.10$ $-9.08$ $0.000$ 19 $-15.12$ $-21.83$ $9.08$ $15.12$ $29.10$ $-9.08$ $0.000$ 20 $-17.37$ $-29.10$ $0.15$ $17.37$ $29.10$ $-0.15$ $0.000$ 21 $-17.37$ $-21.83$ $0.15$ $17.37$ $29.10$ $-0.15$ $0.000$ 22 $-15.41$ $-29.10$ $-9.07$ $15.41$ $29.10$ $9.07$ $0.000$ 23 $-15.41$ $-29.10$ $-9.07$ $15.41$ $29.10$ $9.07$ $0.000$ 24 $-8.41$ $-29.10$ $-15.16$ $8.41$ $29.10$ $15.16$ $0.000$ 25 $-8.41$ $-21.83$ $-15.16$ $8.41$ $29.10$ $15.16$ $0.000$ 26 $0.00$ $-52.64$ $0.00$ $0.000$ $52.64$ $0.000$ $0.000$ 27 $0.02$ $-52.64$ $-4.17$ $-0.02$ $52.64$ $4.17$ $0.000$ 28 $2.07$ $-52.64$ <td>12 8.42</td>	12 8.42								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 8.42								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 -0.15								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 -0.15								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 -8.82								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 -8.82								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 -15.1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 -15.1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 -17.3								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 -17.3								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 -15.4								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 -15.4								
25 -8.41 -21.83 -15.16 8.41 21.83 15.16 0.000   26 0.00 -52.64 0.00 0.00 52.64 0.00 0.000   27 0.02 -52.64 -4.17 -0.02 52.64 4.17 0.000   28 2.07 -52.64 -3.62 -2.07 52.64 3.62 0.000   29 3.64 -52.64 -2.15 -3.64 52.64 2.15 0.000	24 -8.41								
26   0.00   -52.64   0.00   0.00   52.64   0.00   0.00     27   0.02   -52.64   -4.17   -0.02   52.64   4.17   0.000     28   2.07   -52.64   -3.62   -2.07   52.64   3.62   0.000     29   3.64   -52.64   -2.15   -3.64   52.64   2.15   0.000	25 -8.41								
27   0.02   -52.64   -4.17   -0.02   52.64   4.17   0.000     28   2.07   -52.64   -3.62   -2.07   52.64   3.62   0.000     29   3.64   -52.64   -2.15   -3.64   52.64   2.15   0.000	26 0.00								
28 2.07 -52.64 -3.62 -2.07 52.64 3.62 0.000 29 3.64 -52.64 -2.15 -3.64 52.64 2.15 0.000	27 0.02								
29 3.64 -52.64 -2.15 -3.64 52.64 2.15 0.000	28 2.07								
	29 3.64								
30 4.10 -52.64 -0.02 -4.10 52.64 0.02 0.000	30 4.10								
31 3.54 -52.64 2.07 -3.54 52.64 -2.07 0.000	31 3.54								
32 2.03 -52.64 3.61 -2.03 52.64 -3.61 0.000	32 2.03								
33 -UUZ -52.64 4.31 UUZ 52.64 -4.31 UUU	53 -0.02								
34 -2.08 -52.64 3.65 2.08 52.64 -3.65 0.000	34 -2.08								
35 -3.59 -52.64 2.12 3.59 52.64 -2.12 0.000	50 -3.58								
30 -4.13 -52.64 0.02 4.13 52.64 -0.02 0.000	30 -4.13 27 2.60								
57 -5.05 -52.04 -2.15 5.05 52.04 2.15 0.000	3/ -3.00 20 -0.00								
30 -2.03 -32.04 -3.00 2.03 32.04 3.00 0.000	30 -2.U3								
$-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$ $-50^{-5}$	JJ U.UJ 40 1 oc								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	יט I.00 11 גע גע								
+1 0.00 $-24.20$ $-2.01$ $-0.03$ $24.25$ 2.01 0.000	+i 3.30 /0 2.70								
-72 0.72 $-24.20$ $-0.00$ $-3.72$ $24.20$ 0.00 0.000	זב J./∠ עיז גע								
-70 0.20 $-27.20$ 1.00 $-0.20$ 24.20 $-1.09$ 0.000	דט ט.20 1/1 גע גע								
-77 1.00 $-27.20$ 0.00 $-1.00$ 24.20 $-0.50$ 0.000	45 <u>-</u> 0.0΄								
-10 0.00 $-21.20$ 1.01 0.000 21.20 $-1.01$ 0.000 46 $-1.02$ $-2.22$ 0.000 0.000	46 _1 Q'								
-10 1.02 $-21.25$ 0.00 1.02 $21.25$ 0.00 0.000	47 _2.00								
48 - 3.78 - 24.25 0.03 3.78 24.25 - 0.03 0.000	48 _3.75								
49 - 3 35 - 24 25 - 1 97 - 3 35 - 24 25 - 1 97 - 0 000	40 <u>-</u> 3.70								
50 -183 -2425 -330 183 2425 330 0000	50 -1 82								

### **Non-Linear Convergence Results**

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00001013
2	Yes	5	0.00000001	0.00088295
3	Yes	5	0.00000001	0.00038381
4	Yes	6	0.00000001	0.00068034

5	Yes	6	0.0000001	0.00021377
6	Yes	6	0.00000001	0.00089156
7	Yes	6	0.0000001	0.00028823
8	Yes	6	0.00000001	0.00021979
9	Yes	6	0.0000001	0.00007463
10	Yes	6	0.0000001	0.00064786
11	Yes	6	0.00000001	0.00020693
12	Yes	6	0.0000001	0.00073410
13	Yes	6	0.0000001	0.00023760
14	Yes	6	0.0000001	0.00009504
15	Yes	5	0.0000001	0.00071564
16	Yes	6	0.0000001	0.00085626
17	Yes	6	0.0000001	0.00027555
18	Yes	6	0.0000001	0.00067320
19	Yes	6	0.0000001	0.00021196
20	Yes	6	0.0000001	0.00017851
21	Yes	6	0.0000001	0.00006069
22	Yes	6	0.0000001	0.00082098
23	Yes	6	0.0000001	0.00026568
24	Yes	6	0.0000001	0.00070611
25	Yes	6	0.0000001	0.00022427
26	Yes	5	0.0000001	0.00057919
27	Yes	7	0.0000001	0.00020502
28	Yes	7	0.0000001	0.00023518
29	Yes	7	0.00000001	0.00024568
30	Yes	7	0.0000001	0.00018670
31	Yes	7	0.0000001	0.00020892
32	Yes	7	0.0000001	0.00021086
33	Yes	7	0.0000001	0.00018694
34	Yes	7	0.0000001	0.00024109
35	Yes	7	0.0000001	0.00023198
36	Yes	7	0.00000001	0.00020418
37	Yes	7	0.0000001	0.00025658
38	Yes	7	0.0000001	0.00025300
39	Yes	5	0.0000001	0.00006107
40	Yes	5	0.0000001	0.00015343
41	Yes	5	0.0000001	0.00028293
42	Yes	5	0.0000001	0.00016584
43	Yes	5	0.0000001	0.00013781
44	Yes	5	0.0000001	0.00016567
45	Yes	5	0.0000001	0.00006705
46	Yes	5	0.0000001	0.00025329
47	Yes	5	0.0000001	0.00017480
48	Yes	5	0.0000001	0.00016398
49	Yes	5	0.0000001	0.00024078
50	Yes	5	0.0000001	0.00015294

### **Maximum Tower Deflections - Service Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	110 - 105	16.650	39	1.6107	0.0204
L2	105 - 100	14.981	39	1.5703	0.0201
L3	100 - 93	13.374	39	1.4939	0.0199
L4	95 - 90	11.868	39	1.3781	0.0154
L5	90 - 85	10.468	39	1.2799	0.0128
L6	85 - 80	9.197	39	1.1465	0.0102
L7	80 - 79.75	8.070	39	1.0026	0.0077
L8	79.75 - 74.75	8.018	39	0.9991	0.0076
L9	74.75 - 69.75	7.011	39	0.9239	0.0065
L10	69.75 - 64.75	6.085	39	0.8442	0.0056
L11	64.75 - 64.25	5.246	39	0.7581	0.0046
L12	64.25 - 64	5.167	39	0.7495	0.0045
L13	64 - 59	5.128	39	0.7466	0.0045
L14	59 - 56.5	4.377	39	0.6862	0.0038
L15	56.5 - 56.25	4.026	39	0.6550	0.0036
L16	56.25 - 51.25	3.992	39	0.6526	0.0035

Section	Elevation	Horz.	Gov.	Tilt	Twist
NO.	<i>a</i>	Denection	Load	0	
	<i>tt</i>	in	Comb.		
L17	51.25 - 45.5	3.335	39	0.6026	0.0031
L18	49.5 - 44.5	3.117	39	0.5850	0.0030
L19	44.5 - 39.5	2.520	39	0.5493	0.0027
L20	39.5 - 37.25	1.979	39	0.4840	0.0023
L21	37.25 - 37	1.758	39	0.4545	0.0021
L22	37 - 36.5	1.734	39	0.4513	0.0021
L23	36.5 - 36.25	1.687	39	0.4448	0.0020
L24	36.25 - 34.25	1.664	39	0.4423	0.0020
L25	34.25 - 34	1.483	39	0.4214	0.0019
L26	34 - 29	1.461	39	0.4183	0.0019
L27	29 - 24	1.057	39	0.3549	0.0015
L28	24 - 19	0.718	39	0.2919	0.0012
L29	19 - 14	0.445	45	0.2294	0.0009
L30	14 - 9	0.238	45	0.1675	0.0006
L31	9 - 4	0.095	45	0.1051	0.0004
L32	4 - 1.17	0.017	45	0.0441	0.0002
L33	1.17 - 0.92	0.001	45	0.0096	0.0000
L34	0.92 - 0	0.001	45	0.0076	0.0000

#### Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	٥	ft
110.00	Lightning Rod 5/8"x4'	39	16.650	1.6107	0.0205	4538
100.00	Platform Mount [10.75' LP 712-1]	39	13.374	1.4939	0.0200	2918
83.00	Side Arm Mount [SO 101-1]	39	8.728	1.0794	0.0090	2097
69.00	Side Arm Mount [SO 201-1]	39	5.953	0.8320	0.0054	3428

## Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	٥
L1	110 - 105	76.283	14	7.3680	0.0920
L2	105 - 100	68.706	14	7.1778	0.0910
L3	100 - 93	61.420	14	6.8221	0.0904
L4	95 - 90	54.580	14	6.3101	0.0700
L5	90 - 85	48.207	14	5.8674	0.0585
L6	85 - 80	42.403	14	5.2605	0.0463
L7	80 - 79.75	37.250	14	4.6036	0.0352
L8	79.75 - 74.75	37.010	14	4.5877	0.0349
L9	74.75 - 69.75	32.393	14	4.2435	0.0300
L10	69.75 - 64.75	28.142	14	3.8799	0.0256
L11	64.75 - 64.25	24.284	14	3.4918	0.0211
L12	64.25 - 64	23.921	14	3.4528	0.0206
L13	64 - 59	23.741	14	3.4396	0.0205
L14	59 - 56.5	20.283	14	3.1663	0.0177
L15	56.5 - 56.25	18.663	14	3.0249	0.0163
L16	56.25 - 51.25	18.505	14	3.0140	0.0162
L17	51.25 - 45.5	15.470	14	2.7862	0.0143
L18	49.5 - 44.5	14.463	14	2.7058	0.0137
L19	44.5 - 39.5	11.702	14	2.5425	0.0125
L20	39.5 - 37.25	9.197	14	2.2430	0.0105
L21	37.25 - 37	8.172	14	2.1077	0.0097
L22	37 - 36.5	8.062	14	2.0928	0.0096
L23	36.5 - 36.25	7.845	14	2.0631	0.0094
L24	36.25 - 34.25	7.737	14	2.0513	0.0093
L25	34.25 - 34	6.898	14	1.9555	0.0088
L26	34 - 29	6.796	14	1.9412	0.0087
L27	29 - 24	4.917	14	1.6486	0.0071

Elevation	Horz.	Gov.	Tilt	Twist
	Deflection	Load		
ft	in	Comb.	٥	0
24 - 19	3.344	14	1.3575	0.0056
19 - 14	2.074	14	1.0680	0.0042
14 - 9	1.107	14	0.7804	0.0030
9 - 4	0.443	14	0.4894	0.0018
4 - 1.17	0.080	14	0.2054	0.0007
1.17 - 0.92	0.005	14	0.0449	0.0002
0.92 - 0	0.003	14	0.0352	0.0001
	<i>Elevation</i> <i>ft</i> 24 - 19 19 - 14 14 - 9 9 - 4 4 - 1.17 1.17 - 0.92 0.92 - 0	Elevation   Horz. Deflection     ft   in     24 - 19   3.344     19 - 14   2.074     14 - 9   1.107     9 - 4   0.443     4 - 1.17   0.080     1.17 - 0.92   0.005     0.92 - 0   0.003	ElevationHorz. DeflectionGov. LoadftinComb.24 - 193.3441419 - 142.0741414 - 91.107149 - 40.443144 - 1.170.080141.17 - 0.920.005140.92 - 00.00314	Elevation   Horz. Deflection   Gov. Load   Tilt     ft   in   Comb.   °     24 - 19   3.344   14   1.3575     19 - 14   2.074   14   1.0680     14 - 9   1.107   14   0.7804     9 - 4   0.443   14   0.2054     1.17 - 0.92   0.005   14   0.0449     0.92 - 0   0.003   14   0.0352

### Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in			Ħ
110.00	Lightning Rod 5/8"x4'	14	76.283	7.3680	0.0958	1043
100.00	Platform Mount [10.75' LP 712-1]	14	61.420	6.8221	0.0930	676
83.00	Side Arm Mount [SO 101-1]	14	40.262	4.9546	0.0414	467
69.00	Side Arm Mount SO 201-1	14	27.538	3.8249	0.0250	756

### **Compression Checks**

			Pole	Desig	n Da	ta			
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ <b>Ρ</b> _n	Ratio Pu
	ft		ft	ft		in²	K	К	$\phi P_n$
L1	110 - 105 (1)	TP13.901x13.051x0.1875	5.00	0.00	0.0	8.1613	-3.79	477.43	0.008
L2	105 - 100 (2)	TP14.751x13.901x0.1875	5.00	0.00	0.0	8.6671	-4.02	507.03	0.008
L3	100 - 93 (3)	TP15.941x14.751x0.1875	7.00	0.00	0.0	9.1730	-6.48	536.62	0.012
L4	93 - 90 (4)	TP16.1139x15.226x0.25	5.00	0.00	0.0	12.588 0	-6.93	736.40	0.009
L5	90 - 85 (5)	TP17.0018x16.1139x0.25	5.00	0.00	0.0	13.292 5	-7.35	777.61	0.009
L6	85 - 80 (6)	TP17.8896x17.0018x0.25	5.00	0.00	0.0	13.997 1	-8.91	818.83	0.011
L7	80 - 79.75 (7)	TP17.934x17.8896x0.562	0.25	0.00	0.0	31.014 7	-8.96	1814.36	0.005
L8	79.75 - 74.75	TP18.8219x17.934x0.537	5.00	0.00	0.0	31.193 7	-9.65	1824.83	0.005
L9	74.75 - 69.75	TP19.7098x18.8219x0.52	5.00	0.00	0.0	31.968	-10.38	1870.16	0.006
L10	(9) 69.75 - 64.75 (10)	TP20.5977x19.7098x0.5	5.00	0.00	0.0	31.895 0	-11.55	1865.86	0.006
L11	64.75 - 64.25	TP20.6865x20.5977x0.5	0.50	0.00	0.0	32.035	-11.64	1874.10	0.006
L12	64.25 - 64 (12)	TP20.7308x20.6865x0.77	0.25	0.00	0.0	49.088 4	-11.69	2871.67	0.004
L13	64 - 59 (13)	TP21.6187x20.7308x0.75	5.00	0.00	0.0	49.678	-12.69	2906.16	0.004
L14	59 - 56.5 (14)	TP22.0627x21.6187x0.72	2.50	0.00	0.0	49.101	-13.21	2872.42	0.005
L15	56.5 - 56.25 (15)	TP22.1071x22.0627x0.97	0.25	0.00	0.0	65.396 3	-13.28	3825.69	0.003
L16	56.25 - 51.25 (16)	TP22.9949x22.1071x0.92	5.00	0.00	0.0	64.796 2	-14.52	3790.58	0.004
L17	51.25 - 45.5 (17)	TP24.016x22.9949x0.912	5.75	0.00	0.0	64.856 9	-14.96	3794.13	0.004
L18	45.5 - 44.5 (18)	TP23.7093x22.8057x0.72 5	5.00	0.00	0.0	52.890 2	-16.96	3094.08	0.005

Section No.	Elevation	Size	L	L _u	Kl/r	A	$P_u$	φ <b>P</b> _n	Ratio Pu
	ft		ft	ft		in²	К	ĸ	$\phi P_n$
L19	44.5 - 39.5 (19)	TP24.6128x23.7093x0.71 25	5.00	0.00	0.0	54.050 0	-18.09	3161.92	0.006
L20	39.5 [°] - 37.25 (20)	TP25.0194x24.6128x0.7	2.25	0.00	0.0	54.032 9	-18.59	3160.93	0.006
L21	37.25 - 37 (21)	TP25.0646x25.0194x0.7	0.25	0.00	0.0	54.133 3	-18.67	3166.80	0.006
L22	37 - 36.5 (22)	TP25.155x25.0646x0.7	0.50	0.00	0.0	54.334 0	-18.80	3178.54	0.006
L23	36.5 - 36.25 (23)	TP25.2001x25.155x0.912 5	0.25	0.00	0.0	70.343 7	-18.87	4115.11	0.005
L24	36.25 - 34.25 (24)	TP25.5616x25.2001x0.88 75	2.00	0.00	0.0	69.505 0	-19.46	4066.04	0.005
L25	34.25 - 34 (25)	TP25.6068x25.5616x0.72 5	0.25	0.00	0.0	57.256 6	-19.53	3349.51	0.006
L26	34 - 29 (26)	TP26.5103x25.6068x0.7	5.00	0.00	0.0	57.345 4	-20.86	3354.70	0.006
L27	29 - 24 (27)	TP27.4139x26.5103x0.68 75	5.00	0.00	0.0	58.320 3	-22.23	3411.74	0.007
L28	24 - 19 (28)	TP28.3174x27.4139x0.67 5	5.00	0.00	0.0	59.222 6	-23.61	3464.52	0.007
L29	19 - 14 (29)	TP29.221x28.3174x0.662 5	5.00	0.00	0.0	60.052 1	-25.02	3513.05	0.007
L30	14 - 9 (30)	TP30.1246x29.221x0.637 5	5.00	0.00	0.0	59.664 9	-26.45	3490.40	0.008
L31	9 - 4 (31)	TP31.0281x30.1246x0.63 75	5.00	0.00	0.0	61.493 2	-27.90	3597.35	0.008
L32	4 - 1.17 (32)	TP31.5396x31.0281x0.62 5	2.83	0.00	0.0	61.326 8	-28.73	3587.62	0.008
L33	1.17 - 0.92 (33)	TP31.5847x31.5396x0.93 75	0.25	0.00	0.0	91.194 7	-28.82	5334.89	0.005
L34	0.92 - 0 (34)	TP31.751x31.5847x0.937 5	0.92	0.00	0.0	91.689 4	-29.10	5363.83	0.005

## Pole Bending Design Data

Section	Elevation	Size	M _{ux}	φ <b>M</b> _{nx}	Ratio M	M _{uy}	φ <b>M</b> _{ny}	Ratio M
100.	ft		kip-ft	kip-ft	$\phi M_{nx}$	kip-ft	kip-ft	φ <i>M_{ny}</i>
L1	110 - 105 (1)	TP13.901x13.051x0.1875	39.31	170.00	0.231	0.00	170.00	0.000
L2	105 - 100 (2)	TP14.751x13.901x0.1875	69.38	191.88	0.362	0.00	191.88	0.000
L3	100 - 93 (3)	TP15.941x14.751x0.1875	115.37	215.09	0.536	0.00	215.09	0.000
L4	93 - 90 (4)	TP16.1139x15.226x0.25	161.97	302.71	0.535	0.00	302.71	0.000
L5	90 - 85 (5)	TP17.0018x16.1139x0.25	209.90	337.82	0.621	0.00	337.82	0.000
L6	85 - 80 (6)	TP17.8896x17.0018x0.25	264.06	374.86	0.704	0.00	374.86	0.000
L7	80 - 79.75 (7)	TP17.934x17.8896x0.562 5	266.99	803.56	0.332	0.00	803.56	0.000
L8	79.75 - 74.75 (8)	TP18.8219x17.934x0.537 5	326.31	853.13	0.382	0.00	853.13	0.000
L9	74.75 - 69.75 (9)	TP19.7098x18.8219x0.52 5	387.32	919.19	0.421	0.00	919.19	0.000
L10	69.75 - 64.75 (10)	TP20.5977x19.7098x0.5	454.10	963.05	0.472	0.00	963.05	0.000
L11	64.75 - 64.25 (11)	TP20.6865x20.5977x0.5	460.76	971.68	0.474	0.00	971.68	0.000
L12	64.25 - 64 (12)	TP20.7308x20.6865x0.77 5	464.10	1451.96	0.320	0.00	1451.96	0.000
L13	64 - 59 (13)	TP21.6187x20.7308x0.75	531.84	1540.92	0.345	0.00	1540.92	0.000
L14	59 - 56.5 (14)	TP22.0627x21.6187x0.72 5	566.42	1560.20	0.363	0.00	1560.20	0.000
L15	56.5 - 56.25 (15)	TP22.1071x22.0627x0.97 5	569.90	2034.03	0.280	0.00	2034.03	0.000
L16	56.25 - 51.25 (16)	TP22.9949x22.1071x0.92 5	640.66	2113.35	0.303	0.00	2113.35	0.000
L17	51.25 - 45.5 (17)	TP24.016x22.9949x0.912 5	665.90	2148.71	0.310	0.00	2148.71	0.000

Section	Elevation	Size	M _{ux}	φ <b>M</b> _{nx}	Ratio M	M _{uy}	φ <b>M</b> _{ny}	Ratio M
740.	ft		kip-ft	kip-ft	$\phi M_{nx}$	kip-ft	kip-ft	$\phi M_{ny}$
L18	45.5 - 44.5 (18)	TP23.7093x22.8057x0.72 5	739.53	1814.56	0.408	0.00	1814.56	0.000
L19	44.5 - 39.5	TP24.6128x23.7093x0.71 25	815.05	1931.50	0.422	0.00	1931.50	0.000
L20	39.5 - 37.25 (20)	TP25.0194x24.6128x0.7	849.74	1966.71	0.432	0.00	1966.71	0.000
L21	37.25 - 37 (21)	TP25.0646x25.0194x0.7	853.67	1974.13	0.432	0.00	1974.13	0.000
L22	37 - 36.5 (22)	TP25.155x25.0646x0.7	861.56	1989.00	0.433	0.00	1989.00	0.000
L23	36.5 - 36.25	TP25.2001x25.155x0.912	865.51	2535.39	0.341	0.00	2535.39	0.000
	(23)	5						
L24	36.25 - 34.25 (24)	TP25.5616x25.2001x0.88 75	897.30	2548.96	0.352	0.00	2548.96	0.000
L25	34.25 - 34 (25)	TP25.6068x25.5616x0.72 5	901.30	2131.50	0.423	0.00	2131.50	0.000
L26	34 - 29 (26)	TP26.5103x25.6068x0.7	982.27	2218.82	0.443	0.00	2218.82	0.000
L27	29 - 24 (27)	TP27.4139x26.5103x0.68 75	1065.12	2339.82	0.455	0.00	2339.82	0.000
L28	24 - 19 (28)	TP28.3174x27.4139x0.67 5	1149.78	2460.58	0.467	0.00	2460.58	0.000
L29	19 - 14 (29)	TP29.221x28.3174x0.662 5	1236.25	2580.82	0.479	0.00	2580.82	0.000
L30	14 - 9 (30)	TP30.1246x29.221x0.637 5	1324.53	2651.63	0.500	0.00	2651.63	0.000
L31	9 - 4 (31)	TP31.0281x30.1246x0.63 75	1414.61	2818.40	0.502	0.00	2818.40	0.000
L32	4 - 1.17 (32)	TP31.5396x31.0281x0.62	1466.39	2861.36	0.512	0.00	2861.36	0.000
L33	1.17 - 0.92 (33)	TP31.5847x31.5396x0.93 75	1470.99	4175.68	0.352	0.00	4175.68	0.000
L34	0.92 - 0 (34)	TP31.751x31.5847x0.937 5	1487.93	4221.78	0.352	0.00	4221.78	0.000

## Pole Shear Design Data

Section	Elevation	Size	Actual	φV _n	Ratio	Actual	φ <i>T</i> _n	Ratio
No.			$V_u$		$V_u$	T _u		Tu
	ft		K	K	$\phi V_n$	kip-ft	kip-ft	$\phi T_n$
L1	110 - 105 (1)	TP13.901x13.051x0.1875	5.93	143.23	0.041	0.12	172.01	0.001
L2	105 - 100 (2)	TP14.751x13.901x0.1875	6.11	152.11	0.040	0.12	194.00	0.001
L3	100 - 93 (3)	TP15.941x14.751x0.1875	9.26	160.99	0.057	1.42	217.30	0.007
L4	93 - 90 (4)	TP16.1139x15.226x0.25	9.52	220.92	0.043	2.53	306.92	0.008
L5	90 - 85 (5)	TP17.0018x16.1139x0.25	9.67	233.28	0.041	2.53	342.24	0.007
L6	85 - 80 (6)	TP17.8896x17.0018x0.25	11.69	245.65	0.048	3.04	379.48	0.008
L7	80 - 79.75 (7)	TP17.934x17.8896x0.562	11.70	544.31	0.022	3.04	828.06	0.004
		5						
L8	79.75 - 74.75	TP18.8219x17.934x0.537	12.04	547.45	0.022	3.03	876.61	0.003
	(8)	5						
L9	74.75 - 69.75	TP19.7098x18.8219x0.52	12.38	561.05	0.022	3.03	942.63	0.003
	(9)	5	10.01				~~~ ~~	
L10	69.75 - 64.75	TP20.5977x19.7098x0.5	13.31	559.76	0.024	3.03	985.20	0.003
	(10)	TD00 0005 00 5077 0 5	40.04	500.00	0.004	0.00	000.00	0.000
L11	64.75 - 64.25	TP20.6865x20.5977x0.5	13.34	562.23	0.024	3.03	993.92	0.003
140	(11)	TD00 7000-00 0005-0 77	40.00	004 50	0.040	0.00		0.000
L12	64.25 - 64	1P20.7308X20.6865X0.77	13.36	861.50	0.016	3.03	1505.59	0.002
140	(12)	5	40.75	074.05	0.040	0.00	4500.00	0.000
L13	64 - 59 (13)	TP21.6187x20.7308x0.75	13.75	8/1.85	0.016	3.02	1593.38	0.002
L14	59 - 56.5 (14)	TP22.0627x21.6187x0.72	13.94	861.73	0.016	3.02	1610.26	0.002
145		5	40.05	4447 74	0.040	0.00	0400.00	0.004
L15	56.5 - 56.25	TP22.10/1X22.062/X0.9/	13.95	1147.71	0.012	3.02	2123.99	0.001
140		5	14.00	4407 47	0.010	2.02	0407.00	0.004
L10	50.25 - 51.25	1P22.9949x22.1071x0.92	14.36	1137.17	0.013	3.02	2197.90	0.001
147	(16)	5	44.50	4400.04	0.042	2.02	0000 40	0.001
L17	51.25 - 45.5 (17)	1P24.016X22.9949X0.912	14.50	1138.24	0.013	3.02	2232.18	0.001
	(17)	5						

Section	Elevation	Size	Actual	φVn	Ratio V.	Actual	$\phi T_n$	Ratio
110.	ft		ĸ	К	$\frac{\nabla u}{\Phi V_n}$	kip-ft	kip-ft	$\frac{T_{u}}{\Phi T_{n}}$
L18	45.5 - 44.5	TP23.7093x22.8057x0.72	14.95	928.22	0.016	3.02	1868.38	0.002
L19	(10) 44.5 - 39.5	TP24.6128x23.7093x0.71	15.28	948.58	0.016	3.02	1985.44	0.002
L20	39.5 - 37.25 (20)	TP25.0194x24.6128x0.7	15.74	948.28	0.017	1.23	2019.62	0.001
L21	37.25 - 37	TP25.0646x25.0194x0.7	15.75	950.04	0.017	1.23	2027.13	0.001
L22	37 - 36.5 (22)	TP25.155x25.0646x0.7 TP25.2001x25.155x0.912	15.79 15.81	953.56 1234 53	0.017 0.013	1.23 1.23	2042.19 2625.83	0.001
124	(23) 36 25 - 34 25	5 TP25 5616x25 2001x0 88	15 99	1219 81	0.013	1 23	2635 81	0.000
	(24)	75						
L25	34.25 - 34 (25)	1P25.6068x25.5616x0.72 5	16.01	1004.85	0.016	1.23	2189.60	0.001
L26	34 - 29 (26)	TP26.5103x25.6068x0.7	16.40	1006.41	0.016	1.23	2274.83	0.001
L27	29 - 24 (27)	TP27.4139x26.5103x0.68 75	16.76	1023.52	0.016	1.23	2395.62	0.001
L28	24 - 19 (28)	TP28.3174x27.4139x0.67 5	17.13	1039.36	0.016	1.23	2516.06	0.000
L29	19 - 14 (29)	TP29.221x28.3174x0.662 5	17.49	1053.91	0.017	1.23	2635.85	0.000
L30	14 - 9 (30)	TP30.1246x29.221x0.637 5	17.85	1047.12	0.017	1.23	2704.01	0.000
L31	9 - 4 (31)	TP31.0281x30.1246x0.63 75	18.21	1079.21	0.017	1.23	2872.27	0.000
L32	4 - 1.17 (32)	TP31.5396x31.0281x0.62 5	18.41	1076.28	0.017	1.23	2913.88	0.000
L33	1.17 - 0.92 (33)	TP31.5847x31.5396x0.93 75	18.41	1600.47	0.012	1.23	4295.54	0.000
L34	0.92 - 0 (34)	TP31.751x31.5847x0.937 5	18.44	1609.15	0.011	1.23	4342.27	0.000

### Pole Interaction Design Data

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
700.	ft	1 0	IVIUX	- IVI _{UY}	Vu	<u> </u>	Patio	Patio	
	п	$\phi P_n$	φ <b>M</b> _{nx}	φ <b>M</b> _{ny}	φVn	φ1 _n	Nalio	Nalio	
L1	110 - 105 (1)	0.008	0.231	0.000	0.041	0.001	0.241	1.050	4.8.2
L2	105 - 100 (2)	0.008	0.362	0.000	0.040	0.001	0.371	1.050	4.8.2
L3	100 - 93 (3)	0.012	0.536	0.000	0.057	0.007	0.553	1.050	4.8.2
L4	93 - 90 (4)	0.009	0.535	0.000	0.043	0.008	0.547	1.050	4.8.2
L5	90 - 85 (5)	0.009	0.621	0.000	0.041	0.007	0.633	1.050	4.8.2
L6	85 - 80 (6)	0.011	0.704	0.000	0.048	0.008	0.718	1.050	4.8.2
L7	80 - 79.75 (7)	0.005	0.332	0.000	0.022	0.004	0.338	1.050	4.8.2
L8	79.75 - 74.75	0.005	0.382	0.000	0.022	0.003	0.388	1.050	4.8.2
	(8)								
L9	74.75 - 69.75	0.006	0.421	0.000	0.022	0.003	0.428	1.050	4.8.2
	(9)								
L10	69.75 - 64.75	0.006	0.472	0.000	0.024	0.003	0.478	1.050	4.8.2
	(10)								
L11	64.75 - 64.25	0.006	0.474	0.000	0.024	0.003	0.481	1.050	4.8.2
	(11)								
L12	64.25 - 64	0.004	0.320	0.000	0.016	0.002	0.324	1.050	4.8.2
	(12)								
L13	64 - 59 (13)	0.004	0.345	0.000	0.016	0.002	0.350	1.050	4.8.2
L14	59 - 56.5 (1 <del>4</del> )	0.005	0.363	0.000	0.016	0.002	0.368	1.050	4.8.2
L15	56.5 - 56.25	0.003	0.280	0.000	0.012	0.001	0.284	1.050	4.8.2
	(15)								
I 16	56 25 - 51 25	0.004	0 303	0 000	0.013	0.001	0 307	1.050	482
	(16)		2.500	2.500	2				
l 17	51 25 - 45 5	0.004	0 310	0 000	0.013	0.001	0 314	1 050	482
	(17)		2.5.0	2.500	2				

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		$P_u$	Mux	Muy	Vu	Tu	Stress	Stress	
	ft	$\phi P_n$	φ <b>M</b> _{nx}	$\phi M_{ny}$	φV _n	φ <i>T</i> _n	Ratio	Ratio	
L18	45.5 - 44.5	0.005	0.408	0.000	0.016	0.002	0.413	1.050	4.8.2
	(18)								
L19	44.5 - 39.5	0.006	0.422	0.000	0.016	0.002	0.428	1.050	4.8.2
	(19)								
L20	39.5 - 37.25	0.006	0.432	0.000	0.017	0.001	0.438	1.050	4.8.2
	(20)								
L21	37.25 - 37	0.006	0.432	0.000	0.017	0.001	0.439	1.050	4.8.2
	(21)				o o / <del>-</del>				
L22	37 - 36.5 (22)	0.006	0.433	0.000	0.017	0.001	0.439	1.050	4.8.2
L23	36.5 - 36.25	0.005	0.341	0.000	0.013	0.000	0.346	1.050	4.8.2
	(23)								
L24	36.25 - 34.25	0.005	0.352	0.000	0.013	0.000	0.357	1.050	4.8.2
	(24)								
L25	34.25 - 34	0.006	0.423	0.000	0.016	0.001	0.429	1.050	4.8.2
	(25)								
L26	34 - 29 (26)	0.006	0.443	0.000	0.016	0.001	0.449	1.050	4.8.2
L27	29 - 24 (27)	0.007	0.455	0.000	0.016	0.001	0.462	1.050	4.8.2
L28	24 - 19 (28)	0.007	0.467	0.000	0.016	0.000	0.474	1.050	4.8.2
L29	19 - 14 (29)	0.007	0.479	0.000	0.017	0.000	0.486	1.050	4.8.2
L30	14 - 9 (30)	0.008	0.500	0.000	0.017	0.000	0.507	1.050	4.8.2
L31	9 - 4 (31)	0.008	0.502	0.000	0.017	0.000	0.510	1.050	4.8.2
L32	4 - 1.17 (32)	0.008	0.512	0.000	0.017	0.000	0.521	1.050	4.8.2
L33	1.17 - 0.92	0.005	0.352	0.000	0.012	0.000	0.358	1.050	4.8.2
	(33)								
L34	0.92 - 0 (34)	0.005	0.352	0.000	0.011	0.000	0.358	1.050	4.8.2

## Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	110 - 105	Pole	TP13.901x13.051x0.1875	1	-3.79	501.30	22.9	Pass
L2	105 - 100	Pole	TP14.751x13.901x0.1875	2	-4.02	532.38	35.4	Pass
L3	100 - 93	Pole	TP15.941x14.751x0.1875	3	-6.48	563.45	52.6	Pass
L4	93 - 90	Pole	TP16.1139x15.226x0.25	4	-6.93	773.22	52.1	Pass
L5	90 - 85	Pole	TP17.0018x16.1139x0.25	5	-7.35	816.49	60.3	Pass
L6	85 - 80	Pole	TP17.8896x17.0018x0.25	6	-8.91	859.77	68.4	Pass
L7	80 - 79.75	Pole	TP17.934x17.8896x0.5625	7	-8.96	1905.08	32.2	Pass
L8	79.75 - 74.75	Pole	TP18.8219x17.934x0.5375	8	-9.65	1916.07	37.0	Pass
L9	74.75 - 69.75	Pole	TP19.7098x18.8219x0.525	9	-10.38	1963.67	40.7	Pass
L10	69.75 - 64.75	Pole	TP20.5977x19.7098x0.5	10	-11.55	1959.15	45.6	Pass
L11	64.75 - 64.25	Pole	TP20.6865x20.5977x0.5	11	-11.64	1967.80	45.8	Pass
L12	64.25 - 64	Pole	TP20.7308x20.6865x0.775	12	-11.69	3015.25	30.9	Pass
L13	64 - 59	Pole	TP21.6187x20.7308x0.75	13	-12.69	3051.47	33.3	Pass
L14	59 - 56.5	Pole	TP22.0627x21.6187x0.725	14	-13.21	3016.04	35.0	Pass
L15	56.5 - 56.25	Pole	TP22.1071x22.0627x0.975	15	-13.28	4016.97	27.0	Pass
L16	56.25 - 51.25	Pole	TP22.9949x22.1071x0.925	16	-14.52	3980.11	29.3	Pass
L17	51.25 - 45.5	Pole	TP24.016x22.9949x0.9125	17	-14.96	3983.84	29.9	Pass
L18	45.5 - 44.5	Pole	TP23.7093x22.8057x0.725	18	-16.96	3248.78	39.4	Pass
L19	44.5 - 39.5	Pole	TP24.6128x23.7093x0.7125	19	-18.09	3320.02	40.8	Pass
L20	39.5 - 37.25	Pole	TP25.0194x24.6128x0.7	20	-18.59	3318.98	41.7	Pass
L21	37.25 - 37	Pole	TP25.0646x25.0194x0.7	21	-18.67	3325.14	41.8	Pass
L22	37 - 36.5	Pole	TP25.155x25.0646x0.7	22	-18.80	3337.47	41.8	Pass
L23	36.5 - 36.25	Pole	TP25.2001x25.155x0.9125	23	-18.87	4320.87	33.0	Pass
L24	36.25 - 34.25	Pole	TP25.5616x25.2001x0.8875	24	-19.46	4269.34	34.0	Pass
L25	34.25 - 34	Pole	TP25.6068x25.5616x0.725	25	-19.53	3516.99	40.9	Pass
L26	34 - 29	Pole	TP26.5103x25.6068x0.7	26	-20.86	3522.43	42.8	Pass
L27	29 - 24	Pole	TP27.4139x26.5103x0.6875	27	-22.23	3582.33	44.0	Pass
L28	24 - 19	Pole	TP28.3174x27.4139x0.675	28	-23.61	3637.75	45.2	Pass
L29	19 - 14	Pole	TP29.221x28.3174x0.6625	29	-25.02	3688.70	46.3	Pass
L30	14 - 9	Pole	TP30.1246x29.221x0.6375	30	-26.45	3664.92	48.3	Pass
L31	9 - 4	Pole	TP31.0281x30.1246x0.6375	31	-27.90	3777.22	48.6	Pass
L32	4 - 1.17	Pole	TP31.5396x31.0281x0.625	32	-28.73	3767.00	49.6	Pass

tnxTower Report - version 8.0.5.0

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L33	1.17 - 0.92	Pole	TP31.5847x31.5396x0.9375	33	-28.82	5601.63	34.1	Pass
L34	0.92 - 0	Pole	TP31.751x31.5847x0.9375	34	-29.10	5632.02	34.1	Pass
							Summary	
						Pole (L6)	68.4	Pass
						RATING =	68.4	Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C

#### APPENDIX B

#### **BASE LEVEL DRAWING**

#### BUSINESS UNIT: 841301 TOWER ID: C_BASELEVEL



or**Ö**e

#### APPENDIX C

#### ADDITIONAL CALCULATIONS



Site BU: 841301

Work Order: 1749500



Copyright © 2019 Crown Castle

#### **Pole Geometry**

1.0										
		Pole Height Above		Lap Splice Length			Bottom Diameter			
		Base (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
	1	110	17	2	18	13.051	15.941	0.1875	Auto	A572-65
	2	95	49.5	4	18	15.23	24.016	0.25	Auto	A572-65
	3	49.5	49.5	0	18	22.81	31.751	0.3125	Auto	A572-65

#### **Reinforcement Configuration**

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	46.75	64.25	plate	PL 3.5" x 1.25"	3		E1						E1						E1				
2	1.17	36.5	plate	CCI-SFP-065125	3						E2									E2			E2
3	1.17	37.25	plate	CCI-SFP-065125	1										E2								
4	34.25	56.5	plate	CCI-SFP-065125	1												E2						
5	36.5	56.5	plate	CCI-SFP-065125	2						E2												E2
6	56.5	80	plate	CCI-SFP-045100	3						E2						E2						E2
7	0	1.17	plate	ARB2 (7.25" x 1.25")	3			E2				E2									E2		
8	0	1.17	plate	ARB1 (7.25" x 1.25")	1											E2							
9																							
10																							

#### **Reinforcement Details**

					Bottom	Тор				
				Pole Face to	Termination	Termination				Reinforcement
	B (in)	H (in)	Gross Area (in ² )	Centroid (in)	Length (in)	Length (in)	L _u (in)	Net Area (in ² )	Bolt Hole Size (in)	Material
1	3.5	1.25	4.375	0.625	15.000	15.000	12.000	2.813	1.1875	A572-65
2	6.5	1.25	8.125	0.625	33.000	33.000	19.000	6.563	1.1875	A572-65
3	6.5	1.25	8.125	0.625	33.000	33.000	19.000	6.563	1.1875	A572-65
4	6.5	1.25	8.125	0.625	33.000	33.000	19.000	6.563	1.1875	A572-65
5	6.5	1.25	8.125	0.625	33.000	33.000	19.000	6.563	1.1875	A572-65
6	4.5	1	4.5	0.5	18.000	18.000	20.000	3.250	1.1875	A572-65
7	1.25	7.25	9.0625	3.625	n/a	n/a	0.000	9.063	0.0000	A572-65
8	1.25	7.25	9.0625	3.625	n/a	n/a	0.000	9.063	0.0000	A572-65

# TNX Geometry Input

Increment (ft): 5											
			Lap Splice Length			<b>Bottom Diameter</b>		Tapered Pole	Weight		
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier		
1	110 - 105	5		18	13.051	13.901	0.1875	A572-65	1.000		
2	105 - 100	5		18	13.901	14.751	0.1875	A572-65	1.000		
3	100 - 95	7	2	18	14.751	15.941	0.1875	A572-65	1.000		
4	95 - 90	5		18	15.226	16.114	0.25	A572-65	1.000		
5	90 - 85	5		18	16.114	17.002	0.25	A572-65	1.000		
6	85 - 80	5		18	17.002	17.890	0.25	A572-65	1.000		
7	80 - 79.75	0.25		18	17.890	17.934	0.5625	A572-65	0.888		
8	79.75 - 74.75	5		18	17.934	18.822	0.5375	A572-65	0.905		
9	74.75 - 69.75	5		18	18.822	19.710	0.525	A572-65	0.905		
10	69.75 - 64.75	5		18	19.710	20.598	0.5	A572-65	0.929		
11	64.75 - 64.25	0.5		18	20.598	20.686	0.5	A572-65	0.928		
12	64.25 - 64	0.25		18	20.686	20.731	0.775	A572-65	0.873		
13	64 - 59	5		18	20.731	21.619	0.75	A572-65	0.877		
14	59 - 56.5	2.5		18	21.619	22.063	0.725	A572-65	0.895		
15	56.5 - 56.25	0.25		18	22.063	22.107	0.975	A572-65	0.839		
16	56.25 - 51.25	5		18	22.107	22.995	0.925	A572-65	0.857		
17	51.25 - 49.5	5.75	4	18	22.995	24.016	0.9125	A572-65	0.860		
18	49.5 - 44.5	5		18	22.806	23.709	0.725	A572-65	0.900		
19	44.5 - 39.5	5		18	23.709	24.613	0.7125	A572-65	0.897		
20	39.5 - 37.25	2.25		18	24.613	25.019	0.7	A572-65	0.905		
21	37.25 - 37	0.25		18	25.019	25.065	0.7	A572-65	1.054		
22	37 - 36.5	0.5		18	25.065	25.155	0.7	A572-65	1.052		
23	36.5 - 36.25	0.25		18	25.155	25.200	0.9125	A572-65	0.928		
24	36.25 - 34.25	2		18	25.200	25.562	0.8875	A572-65	0.945		
25	34.25 - 34	0.25		18	25.562	25.607	0.725	A572-65	1.006		
26	34 - 29	5		18	25.607	26.510	0.7	A572-65	1.020		
27	29 - 24	5		18	26.510	27.414	0.6875	A572-65	1.018		
28	24 - 19	5		18	27.414	28.317	0.675	A572-65	1.018		
29	19 - 14	5		18	28.317	29.221	0.6625	A572-65	1.019		
30	14 - 9	5		18	29.221	30.125	0.6375	A572-65	1.040		
31	9 - 4	5		18	30.125	31.028	0.6375	A572-65	1.024		
32	4 - 1.17	2.83		18	31.028	31.540	0.625	A572-65	1.035		
33	1.17 - 0.92	0.25		18	31.540	31.585	0.9375	A572-65	0.738		
34	0.92 - 0	0.92		18	31.585	31.751	0.9375	A572-65	0.735		

## **TNX Section Forces**

Inc	crement (ft)	:	5	TNX Output							
	Section H	lei	ght (ft)	Pu	(К)	ft)	$V_{u}$	(К)			
1	110	-	105		3.79	39.31		5.93			
2	105	-	100		4.02	69.38		6.11			
3	100	-	95		6.48	115.37		9.26			
4	95	-	90		6.94	162.08		9.43			
5	90	-	85		7.35	209.89		9.67			
6	85	-	80		8.91	264.06		11.69			
7	80	-	79.75		8.96	266.99		11.70			
8	79.75	-	74.75		9.65	326.31		12.04			
9	74.75	-	69.75		10.38	387.32		12.38			
10	69.75	-	64.75		11.55	454.10		13.31			
11	64.75	-	64.25		11.64	460.76		13.34			
12	64.25	-	64		11.69	464.10		13.36			
13	64	-	59		12.69	531.84		13.75			
14	59	-	56.5		13.21	566.42		13.94			
15	56.5	-	56.25		13.28	569.91		13.95			
16	56.25	-	51.25		14.52	640.66		14.36			
17	51.25	-	49.5		14.96	665.90		14.50			
18	49.5	-	44.5		16.96	739.53		14.95			
19	44.5	-	39.5		18.09	815.05		15.28			
20	39.5	-	37.25		18.59	849.74		15.74			
21	37.25	-	37		18.67	853.68		15.75			
22	37	-	36.5		18.80	861.56		15.79			
23	36.5	-	36.25		18.87	865.51		15.81			
24	36.25	-	34.25		19.46	897.30		15.99			
25	34.25	-	34		19.53	901.30		16.01			
26	34	-	29		20.86	982.27		16.40			
27	29	-	24		22.23	1065.12		16.76			
28	24	-	19		23.61	1149.78		17.13			
29	19	-	14		25.02	1236.25		17.49			
30	14	-	9		26.45	1324.53		17.85			
31	9	-	4		27.90	1414.61		18.21			
32	4	-	1.17		28.73	1466.39		18.41			
33	1.17	-	0.92		28.82	1470.99		18.41			
34	0.92	-	0		29.10	1487.93		18.44			
# **Analysis Results**

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
110 - 105	Pole	TP13.901x13.051x0.1875	Pole	22.6%	Pass
105 - 100	Pole	TP14.751x13.901x0.1875	Pole	35.0%	Pass
100 - 95	Pole	TP15.941x14.751x0.1875	Pole	52.0%	Pass
95 - 90	Pole	TP16.114x15.226x0.25	Pole	51.7%	Pass
90 - 85	Pole	TP17.002x16.114x0.25	Pole	59.9%	Pass
85 - 80	Pole	TP17.89x17.002x0.25	Pole	67.9%	Pass
80 - 79.75	Pole + Reinf.	TP17.934x17.89x0.5625	Reinf. 6 Tension Rupture	57.5%	Pass
79.75 - 74.75	Pole + Reinf.	TP18.822x17.934x0.5375	Reinf. 6 Tension Rupture	65.3%	Pass
74.75 - 69.75	Pole + Reinf.	TP19.71x18.822x0.525	Reinf. 6 Tension Rupture	72.3%	Pass
69.75 - 64.75	Pole + Reinf.	TP20.598x19.71x0.5	Reinf. 6 Tension Rupture	79.3%	Pass
64.75 - 64.25	Pole + Reinf.	TP20.686x20.598x0.5	Reinf. 6 Tension Rupture	80.0%	Pass
64.25 - 64	Pole + Reinf.	TP20.731x20.686x0.775	Reinf. 1 Tension Rupture	61.6%	Pass
64 - 59	Pole + Reinf.	TP21.619x20.731x0.75	Reinf. 1 Tension Rupture	66.8%	Pass
59 - 56.5	Pole + Reinf.	TP22.063x21.619x0.725	Reinf. 1 Tension Rupture	69.2%	Pass
56.5 - 56.25	Pole + Reinf.	TP22.107x22.063x0.975	Reinf. 1 Tension Rupture	54.3%	Pass
56.25 - 51.25	Pole + Reinf.	TP22.995x22.107x0.925	Reinf. 1 Tension Rupture	58.2%	Pass
51.25 - 49.5	Pole + Reinf.	TP24.016x22.995x0.9125	Reinf. 1 Tension Rupture	59.4%	Pass
49.5 - 44.5	Pole + Reinf.	TP23.709x22.806x0.725	Reinf. 4 Tension Rupture	61.9%	Pass
44.5 - 39.5	Pole + Reinf.	TP24.613x23.709x0.7125	Reinf. 4 Tension Rupture	64.6%	Pass
39.5 - 37.25	Pole + Reinf.	TP25.019x24.613x0.7	Reinf. 4 Tension Rupture	65.8%	Pass
37.25 - 37	Pole + Reinf.	TP25.065x25.019x0.7	Reinf. 5 Tension Rupture	64.4%	Pass
37 - 36.5	Pole + Reinf.	TP25.155x25.065x0.7	Reinf. 5 Tension Rupture	64.7%	Pass
36.5 - 36.25	Pole + Reinf.	TP25.2x25.155x0.9125	Reinf. 2 Tension Rupture	56.6%	Pass
36.25 - 34.25	Pole + Reinf.	TP25.562x25.2x0.8875	Reinf. 2 Tension Rupture	57.5%	Pass
34.25 - 34	Pole + Reinf.	TP25.607x25.562x0.725	Reinf. 3 Tension Rupture	61.0%	Pass
34 - 29	Pole + Reinf.	TP26.51x25.607x0.7	Reinf. 3 Tension Rupture	63.2%	Pass
29 - 24	Pole + Reinf.	TP27.414x26.51x0.6875	Reinf. 3 Tension Rupture	65.3%	Pass
24 - 19	Pole + Reinf.	TP28.317x27.414x0.675	Reinf. 3 Tension Rupture	67.3%	Pass
19 - 14	Pole + Reinf.	TP29.221x28.317x0.6625	Reinf. 3 Tension Rupture	69.1%	Pass
14 - 9	Pole + Reinf.	TP30.125x29.221x0.6375	Reinf. 3 Tension Rupture	70.7%	Pass
9 - 4	Pole + Reinf.	TP31.028x30.125x0.6375	Reinf. 3 Tension Rupture	72.3%	Pass
4 - 1.17	Pole + Reinf.	TP31.54x31.028x0.625	Reinf. 3 Tension Rupture	73.1%	Pass
1.17 - 0.92	Pole + Reinf.	TP31.585x31.54x0.9375	Reinf. 7 Tension Yield	54.8%	Pass
0.92 - 0	Pole + Reinf.	TP31.751x31.585x0.9375	Reinf. 7 Tension Yield	55.1%	Pass
				Summary	
	ļ		Pole	67.9%	Pass
			Reinforcement	80.0%	Pass
			Overall	00.0%	Pass

# **Additional Calculations**

Section	Mom	ent of Inertia	a (in ⁴ )		Area (in ² )					% Ca	pacity*				
Elevation (ft)															
. ,	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8
110 - 105	194	n/a	194	8.16	n/a	8.16	22.6%								
105 - 100	232	n/a	232	8.67	n/a	8.67	35.0%								
100 - 95	275	n/a	275	9.17	n/a	9.17	52.0%								
95 - 90	400	n/a	400	12.59	n/a	12.59	51.7%								
90 - 85	471	n/a	471	13.29	n/a	13.29	59.9%								
85 - 80	550	n/a	550	14.00	n/a	14.00	67.9%								
80 - 79.75	554	617	1171	14.03	13.50	27.53	32.0%						57.5%		
79.75 - 74.75	642	675	1317	14.74	13.50	28.24	36.4%						65.3%		
74.75 - 69.75	739	736	1474	15.44	13.50	28.94	40.4%						72.3%		
69.75 - 64.75	844	799	1643	16.15	13.50	29.65	44.4%						79.3%		
64.75 - 64.25	855	806	1661	16.22	13.50	29.72	44.8%						80.0%		
64.25 - 64	861	1609	2470	16.25	26.63	42.88	30.4%	61.6%					54.3%		
64 - 59	978	1741	2719	16.96	26.63	43.58	33.0%	66.8%					58.8%		
59 - 56.5	1040	1809	2849	17.31	26.63	43.93	34.2%	69.2%					61.0%		
56.5 - 56.25	1046	2609	3656	17.34	37.50	54.84	26.9%	54.3%			43.3%	43.3%			
56.25 - 51.25	1179	2807	3987	18.05	37.50	55.55	28.9%	58.2%			46.4%	46.4%			
51.25 - 49.5	1228	2879	4107	18.29	37.50	55.79	29.5%	59.4%			47.4%	47.4%			
49.5 - 44.5	1604	1943	3547	23.21	24.38	47.58	38.6%				61.9%	61.9%			
44.5 - 39.5	1798	2083	3880	24.10	24.38	48.48	40.3%				64.6%	64.6%			
39.5 - 37.25	1889	2147	4036	24.51	24.38	48.88	41.1%				65.8%	65.8%			
37.25 - 37	1900	2183	4083	24.55	32.50	57.05	41.4%			43.7%	53.1%	64.4%			
37 - 36.5	1921	2197	4118	24.64	32.50	57.14	41.6%			43.9%	53.3%	64.7%			
36.5 - 36.25	2005	3274	5279	24.68	40.63	65.31	37.0%		56.6%	44.7%	45.5%				
36.25 - 34.25	2093	3363	5456	25.04	40.63	65.67	37.6%		57.5%	45.5%	46.3%				
34.25 - 34	2029	2436	4465	25.09	32.50	57.59	41.6%		60.0%	61.0%					
34 - 29	2254	2598	4852	25.98	32.50	58.48	43.2%		62.3%	63.2%					
29 - 24	2496	2765	5261	26.88	32.50	59.38	44.7%		64.3%	65.3%					
24 - 19	2754	2938	5691	27.78	32.50	60.28	46.0%		66.2%	67.3%					
19 - 14	3029	3116	6145	28.67	32.50	61.17	47.3%		68.0%	69.1%					
14 - 9	3322	3299	6621	29.57	32.50	62.07	48.5%		69.6%	70.7%					
9 - 4	3633	3488	7121	30.46	32.50	62.96	50.0%		71.1%	72.3%					
4 - 1.17	3817	3597	7415	30.97	32.50	63.47	50.8%		71.9%	73.1%					
1.17 - 0.92	3857	7043	10899	31.02	36.25	67.27	36.3%							54.8%	53.7%
0.92 - 0	3918	7103	11021	31.18	36.25	67.43	36.6%							55.1%	54.0%

Note: Section capacity checked in 5 degree increments. Rating per TIA-222-H Section 15.5.

# **Monopole Base Plate Connection**



Site Info		
	BU #	841301
	Site Name	WILLINGTON-RIVER RD
	Order #	479824 Rev.0

Analysis Considerations		
TIA-222 Revision	Н	
Grout Considered:	No	
l _{ar} (in)	0.9375	

Applied Loads	
Moment (kip-ft)	1487.93
Axial Force (kips)	29.10
Shear Force (kips)	18.44
*****	

*TIA-222-H Section 15.5 Applied



#### **Connection Properties**

#### Anchor Rod Data

GROUP 1: (8) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38.75" BC GROUP 2: (4) 2-1/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 51.25" BC

#### Base Plate Data

46.75" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

#### Stiffener Data

(16) 18"H x 7"W x 0.5"T, Notch: 0.5" plate: Fy= 70 ksi ; weld: Fy= 70 ksi horiz. weld: 0.5" groove, 45° dbl bevel, 0.375" fillet vert. weld: 0.375" fillet

#### Pole Data

31.751" x 0.3125" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

## Analysis Results

Anchor Rod Summary		(units of kips, kip-in)		
GROUP 1:				
Pu_c = 126.4	φPn_c = 243.75	Stress Rating		
Vu = 2.31	φVn = 73.13	49.5%		
Mu = n/a	φMn = n/a	Pass		
GROUP 2:				
Pu_c = 162.36	φPn_c = 341.25	Stress Rating		
Vu = 0	φVn = 102.38	45.3%		
Mu = n/a	φMn = n/a	Pass		
Base Plate Summary				
Max Stress (ksi):	31.11	(Roark's Flexural)		
Allowable Stress (ksi):	54			
Stress Rating:	54.9%	Pass		
Stiffener Summary				
Horizontal Weld:	43.4%	Pass		
Vertical Weld:	17.0%	Pass		
Plate Flexure+Shear:	6.1%	Pass		
Plate Tension+Shear:	21.7%	Pass		
Plate Compression:	27.0%	Pass		
Pole Summary				
Punching Shear:	6.0%	Pass		







Anchor Rod Bracket Calculations				
Analyze the anchor rod bracket and all components to resist the	e full demand loading of the additional anchors.			
Bracket Demand Load: [] From CCI Plate	Pu := 163.1·kip			
<u>Tube Design (Square HSS)</u> Member Size: <u>HSS 5" x 5" x 1/2"</u>				
Member Properties         (AISC 15th Ed., Table 1-12):       Outside Diameter:	$OD_{HSS} := 5 \cdot in$			
Area: Thickness: Yield Strength: Length: Moment of Inertia: Radius of Gyration: Inside Dimension:	$A_{HSS} := 7.88 \cdot in^{2}$ $A_{e_{HSS}} := 0.75 \cdot A_{HSS} = 5.91 \cdot in^{2}$ $F_{y_{HSS}} := 46 \cdot ksi$ $F_{u_{HSS}} := 14 \cdot in$ $H_{HSS} := 26.0 \cdot in^{4}$ $T_{HSS} := 1.82 \cdot in$ $ID_{HSS} := OD_{HSS} - 2 \cdot t_{HSS} = 4.07 \cdot in$			
Bearing Check (AISC 15th Ed., Equation J7-1): $Pu_c = \phi_b \cdot R_m$ $A_{pb} := \frac{1}{\phi_b \cdot 1.8}$ $Check_{bear} :=$	$n = \phi_{b} \cdot 1.8 \cdot F_{y} \text{HSS} \cdot A_{pb}$ $\frac{Pu}{8 \cdot F_{y} \text{HSS}} = 2.63 \cdot \text{in}^{2}$ $ \text{"OK" if } A_{\text{HSS}} \ge A_{pb}$ $ \text{"N/G" otherwise}$ $\text{"OK"}$			

BU: 841301 WO: 1749500 Existing AR Brackets



Compression Check	-1 to E3-4):	$\phi_{c} \coloneqq 0.9$
יאוי בע., בעא. בא ו	- 1 (U LU <b>-4</b> ).	<u>K</u> := 1
		$\Phi P_{u_comp} = \Phi_c \cdot F_{cr} \cdot A_g$
		$L_c := K \cdot L_{HSS} = 14 \cdot in$
		$F_{e} := \frac{\pi^{2} \cdot 29000 \text{ksi}}{\left(\frac{L_{c}}{r_{\text{HSS}}}\right)^{2}} = 4837.09 \cdot \text{ksi}$
		$\frac{L_c}{r_{HSS}} = 7.69 < 4.71 \cdot \sqrt{\frac{29000 \cdot ksi}{F_y_{HSS}}} = 118.26$
		$F_{cr} := 0.658 \xrightarrow{F_{y}_{HSS}} F_{e} \cdot F_{y}_{HSS} = 45.82 \cdot ksi$
(AISC 15th Ed., Equatio	n J4-6):	$\phi P_{u_comp} := \begin{cases} \phi_{c} \cdot F_{y_HSS} \cdot A_{HSS} & \text{if } \frac{L_{c}}{r_{HSS}} \le 25 \\ \phi_{c} \cdot F_{cr} \cdot A_{HSS} & \text{otherwise} \end{cases}$
		$\phi P_{u_comp} = 326.23 \cdot kip$
		Check _{comp} :=  "OK" if Rating _{comp} < 100%
		"N/G" otherwise
		Check _{comp} = 'OK'
<u>Gusset Plate Design</u>	Gusset Plate v	width: $w_{\text{plate}} := 7.25 \cdot \text{in}$
	Gusset Plate thick	kness: $\frac{t_{plate} := 1.25in}{L_{plate1} := 57in}$
	Gusset Plate St	Strength: $\frac{\text{Eplate2} - 1411}{\text{Fy}_{plate} := 65\text{ksi}}$
	Pole thic	ckness: tpole := 0.3125in

BU: 841301 WO: 1749500 Existing AR Brackets







Gusset Plate to HSS Weld Design (AISC 15th Ed., Table 8-4) Elect	trode Strength:

#### BU: 841301 WO: 1749500 Existing AR Brackets

Done By: PSJ Checked By: ATA Date: 6/19/2019



Weld Size (in sixteenths of an inch):

$$D_1 := 6$$
 weldsize  $1 := \frac{D_1}{16} = \frac{3}{8}$ 

Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS.

$$ecc_2 := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$$

Load not in plane with weld group: k := 0

$$a := \frac{\text{ecc}_2}{\text{L}_{\text{plate2}}} = 0.24$$

$$C_1 = 1$$
  
Coeff₁ := 3.35

 $\phi_{\rm W} := 0.75$ 

$$D_{min1} := ceil\left(\frac{Pu \cdot in}{\phi_w \cdot Coeff_1 C_1 \cdot L_{plate2} \cdot kip}\right) = 5$$

minweldsize := 
$$\frac{D_{min1}}{16} = \frac{5}{16}$$
  
Check_{weld} :=  $|"OK" \text{ if } D_1 \ge D_{min1} \land D_1 \ge Min_{weldsize}$   
 $|"N/G" \text{ otherwise}$ 

 $Check_{weld} = "OK"$ 

 $\phi Rn_{weld1} := \phi_w \cdot Coeff_1 ksi \cdot in \cdot C_1 \cdot D_1 \cdot L_{plate2} = 211.05 \cdot kip$ 

Check_{weld1} := |'OK" if Rating_{weld1} < 100% ''N/G" otherwise Check_{weld1} = "OK" BU: 841301 WO: 1749500 Existing AR Brackets



Gusset Plate to Pole Punching Shear Check (max per unit length):	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS.
(AISC 15th Ed., Section J4.2)	$\phi_{SY} \coloneqq 1.0$
	$\Phi_{\rm Sr} := 0.75$
	$ecc_1 := w_{plate} + OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 10.66 \cdot in$
	$M_1 := Pu \cdot ecc_1 = 1738.65 \cdot kip \cdot in$
	$S_1 := \frac{t_{plate} \cdot L_{plate1}^2}{6} = 676.87 \cdot in^3$
	$f_{WV} := \frac{W_1}{S_1} \cdot t_{\text{plate}} \cdot 1 \text{ in } = 3.21 \cdot \text{kip}$
AISC 15th Ed., Equation J4-3:	$\phi F_{sy} := \phi_{sy} \cdot 0.6 \cdot Fy_{pole} \cdot 2 \cdot t_{pole} \cdot 1 in = 24.37 \cdot kip$
AISC 15th Ed., Equation J4-4:	$\phi F_{sr} := \phi_{sr} \cdot 0.6 \cdot Fu_{pole} \cdot 2 \cdot t_{pole} \cdot 1in = 22.5 \cdot kip$
	$\phi F_{sy} = \min(\phi F_{sy}, \phi F_{sr}) = 22.5 \cdot \text{kip}$
	$Check_{PS1} :=  "OK" \text{ if } Rating_{PS1} < 100\%$
	"N/G" otherwise
	$Check_{PS1} = "OK"$
Gussot Plato to HSS Punching	
Shear Check	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS.
Shear Check (max per unit length): (AISC 15th Ed., Section J4.2)	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ecc_{2x} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$
Shear Check (max per unit length): (AISC 15th Ed., Section J4.2)	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ecc_{2a} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$ $M_2 := Pu \cdot ecc_2 = 556.17 \cdot kip \cdot in$
Shear Check (max per unit length): (AISC 15th Ed., Section J4.2)	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ecc_{2a} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$ $M_2 := Pu \cdot ecc_2 = 556.17 \cdot kip \cdot in$ $S_2 := \frac{t_{plate} \cdot L_{plate2}^2}{6} = 40.83 \cdot in^3$
Shear Check (max per unit length): (AISC 15th Ed., Section J4.2)	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ecc_{2a} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$ $M_2 := Pu \cdot ecc_2 = 556.17 \cdot kip \cdot in$ $S_2 := \frac{t_{plate} \cdot L_{plate2}^2}{6} = 40.83 \cdot in^3$ $f_{ww} := \frac{M_2}{S_2} \cdot t_{plate} \cdot 1in = 17.03 \cdot kip$
AISC 15th Ed., Equation J4-3:	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ecc_{2a} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$ $M_2 := Pu \cdot ecc_2 = 556.17 \cdot kip \cdot in$ $S_2 := \frac{t_{plate} \cdot L_{plate2}^2}{6} = 40.83 \cdot in^3$ $f_{ww} := \frac{M_2}{S_2} \cdot t_{plate} \cdot 1in = 17.03 \cdot kip$ $\oint F_{syv} := \phi_{sy} \cdot 0.6 \cdot F_{y_HSS} \cdot 2 \cdot t_{HSS} \cdot 1in = 25.67 \cdot kip$
AISC 15th Ed., Equation J4-3: AISC 15th Ed., Equation J4-3:	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ecc_{2x} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$ $M_2 := Pu \cdot ecc_2 = 556.17 \cdot kip \cdot in$ $S_2 := \frac{t_{plate} \cdot L_{plate2}^2}{6} = 40.83 \cdot in^3$ $f_{wv} := \frac{M_2}{S_2} \cdot t_{plate} \cdot 1in = 17.03 \cdot kip$ $\oint F_{wv} := \phi_{sy} \cdot 0.6 \cdot F_{y_HSS} \cdot 2 \cdot t_{HSS} \cdot 1in = 25.67 \cdot kip$ $\oint F_{wv} := \phi_{sr} \cdot 0.6 \cdot F_{u_HSS} \cdot 2 \cdot t_{HSS} \cdot 1in = 25.95 \cdot kip$
AISC 15th Ed., Equation J4-3: AISC 15th Ed., Equation J4-4:	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ecc_{2x} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$ $M_2 := Pu \cdot ecc_2 = 556.17 \cdot kip \cdot in$ $S_2 := \frac{t_{plate} \cdot L_{plate2}^2}{6} = 40.83 \cdot in^3$ $f_{wv} := \frac{M_2}{S_2} \cdot t_{plate} \cdot 1in = 17.03 \cdot kip$ $\oint F_{wv} := \phi_{sy} \cdot 0.6 \cdot F_{y_HSS} \cdot 2 \cdot t_{HSS} \cdot 1in = 25.67 \cdot kip$ $\oint F_{wv} := \phi_{sr} \cdot 0.6 \cdot F_{u_HSS} \cdot 2 \cdot t_{HSS} \cdot 1in = 25.95 \cdot kip$ $\oint F_{wv} := min(\phi F_{sy}, \phi F_{sr}) = 25.67 \cdot kip$
AISC 15th Ed., Equation J4-3: AISC 15th Ed., Equation J4-3:	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $eccc_{2*} := OD_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot in$ $M_2 := Pu \cdot ecc_2 = 556.17 \cdot kip \cdot in$ $S_2 := \frac{t_{plate} \cdot L_{plate2}^2}{6} = 40.83 \cdot in^3$ $f_{WV} := \frac{M_2}{S_2} \cdot t_{plate} \cdot 1in = 17.03 \cdot kip$ $\oint E_{SY} \cdot 0.6 \cdot F_{y_{-}HSS} \cdot 2 \cdot t_{HSS} \cdot 1in = 25.67 \cdot kip$ $\oint E_{SY} := \phi_{ST} \cdot 0.6 \cdot F_{u_{-}HSS} \cdot 2 \cdot t_{HSS} \cdot 1in = 25.95 \cdot kip$ $\oint E_{SY} := min(\phi F_{SY}, \phi F_{ST}) = 25.67 \cdot kip$ $Check_{PS2} :=  "OK" \text{ if } Rating_{PS2} < 100\%$
AISC 15th Ed., Equation J4-3: AISC 15th Ed., Equation J4-3:	Assume the worst-case installation scenario where the rod is positioned directly against the far side of the HSS. $ \underbrace{\text{eccc}_{2}:= \text{OD}_{HSS} - t_{HSS} - \frac{D_{new}}{2} = 3.41 \cdot \text{in}} $ $ M_{2} := \text{Pu} \cdot \text{ecc}_{2} = 556.17 \cdot \text{kip} \cdot \text{in} $ $ S_{2} := \frac{t_{\text{plate}} \cdot L_{\text{plate}2}^{2}}{6} = 40.83 \cdot \text{in}^{3} $ $ f_{\text{WV}} := \frac{M_{2}}{5} \cdot t_{\text{plate}} \cdot 1 \text{in} = 17.03 \cdot \text{kip} $ $ \oint F_{\text{WV}} := \phi_{\text{SV}} \cdot 0.6 \cdot F_{\text{y}_\text{HSS}} \cdot 2 \cdot t_{\text{HSS}} \cdot 1 \text{in} = 25.67 \cdot \text{kip} $ $ \oint F_{\text{WV}} := \min(\phi F_{\text{SV}}, \phi F_{\text{ST}}) = 25.67 \cdot \text{kip} $ $ Check_{PS2} := \begin{bmatrix} \text{"OK"} & \text{if Rating}_{PS2} < 100\% \\ \text{"N/G"} & \text{otherwise} \end{bmatrix} $





The embedment depth shall be analyzed based on the design tension capacity of the anchor rods.

Design Load:

$$\phi P_{nt} := 0.75 \cdot Fu_{rod} \cdot A_{new} = 304.69 \cdot kip$$

Development Length (ACI 318-14 Chapter 25):

$$BC_{rebar} := D_{pier} - 2 \cdot c_c - \frac{Tie \cdot in}{4} - d_b = 63.98 \cdot in$$

$$S_{rebar} := \frac{\pi \cdot BC_{rebar}}{n} = 6.281 \cdot in$$

$$c_b := \min\left(c_c + \frac{\text{Tie}}{8}\text{in} + \frac{a_b}{2}, S_{\text{rebar}} \cdot 0.5\right) = 3.14 \cdot \text{in}$$

ACI 318-14, Equation 25.4.2.3a: 
$$l_{d} \coloneqq \begin{bmatrix} \frac{3}{40} \cdot \frac{f_{y}}{\lambda \cdot \sqrt{f_{c}}} \cdot \frac{\psi_{t} \cdot \psi_{e} \cdot \psi_{s}}{\min\left[\left(\frac{c_{b} + k_{tr}}{d_{b}}\right), 2.5\right]} \end{bmatrix} \cdot d_{b} = 42.19 \cdot \ln \frac{1}{2}$$

Calculate Max Distance Between Rebar and New Anchor Rods:

BU: 841301 WO: 1749500 Existing AR Brackets Done By: PSJ Checked By: ATA Date: 6/19/2019



A :=  $\frac{1}{2} \cdot S_{rebar} = 3.141 \cdot in$  $B := \frac{BC_{rebar}}{2} - \frac{BC_{new}}{2} = 6.365 \cdot in$  $G := \sqrt{A^2 + B^2} = 7.098 \cdot in$  $l'_d := l_d + \frac{G}{1.5} + 3in = 4.16 \, \text{ft}$ **Epoxy Development Length:** Bond Strength: Epoxy := Hilti Hit Re 500 🗸  $\phi_{bond} \coloneqq 0.65$  $S_b := \begin{bmatrix} S_{bh} & \text{if Epoxy} = 0 \\ S_{bA} & \text{otherwise} \end{bmatrix}$  $S_{h} = 1073 \, psi$  $L_{be} := \frac{\Phi^{P}_{nt}}{\pi \cdot D_{new} \cdot S_{b} \cdot \Phi_{bond}} = 61.8 \cdot in$ **Required Embedment Length:** Length of Breaker Tape:  $L_{BT} := 6 \cdot in$  $L_{min} := max(L_{be} + L_{BT}, l'_d + 0.25 \cdot L_{be}) = 5.65 \text{ ft}$ <u>Check</u>:=  $|''OK'' \text{ if } L_{\min} \leq L_{em}$ "N/G" otherwise Check = "OK"**Anchor Rod Pullout Test:**  $\phi_{p} := 0.75$ ⊖Yes Is this a CA DSA site?

⊙No

BU: 841301 WO: 1749500 Existing AR Brackets



Pullout	$= \frac{\phi_{p} \cdot Fu_{rod} \cdot A_{new}}{1.6} \text{ if } CA = 0 = 190 \cdot kip$
	$(0.8 \cdot Fy_{rod} \cdot A_{new})$ otherwise

# **Pier and Pad Foundation**

BU # :	841301
Site Name:	WILLINGTON-RIVI
App. Number:	479824 Rev.0

TIA-222 Revision: H Tower Type: Monopole Top & Bot. Pad Rein. Different?:

Superstructure Analysis	Reaction	S
Compression, P _{comp} :	29.1	kips
Base Shear, Vu_comp:	18.44	kips
Moment, <b>M</b> _u :	1487.93	ft-kips
Tower Height, H:	110	ft
BP Dist. Above Fdn, <b>bp_{dist}:</b>	4.625	in

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier:	6	ft
Ext. Above Grade, E:	1	ft
Pier Rebar Size, <b>Sc</b> :	10	
Pier Rebar Quantity, <b>mc</b> :	32	
Pier Tie/Spiral Size, St:	3	
Pier Tie/Spiral Quantity, <b>mt</b> :	3	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, <b>cc</b> _{pier} :	3	in

Pad Properties			
Depth, <b>D</b> :	5	ft	
Pad Width, <b>W</b> :	22	ft	
Pad Thickness, <b>T</b> :	2.5	ft	
Pad Rebar Size (Bottom), Sp:	8		
Pad Rebar Quantity (Bottom), mp:	19		
Pad Clear Cover, <b>cc</b> _{pad} :	3	in	

Material Properties		
Rebar Grade, <b>Fy</b> :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ <b>c</b> :	150	pcf

Soil Properties				
Total Soil Unit Weight, $m{\gamma}$ :	125	pcf		
Ultimate Gross Bearing, Qult:	20.000	ksf		
Cohesion, <b>Cu</b> :	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$ :	36	degrees		
SPT Blow Count, N _{blows} :				
Base Friction, $\mu$ :	0.35			
Neglected Depth, N:	2.50	ft		
Foundation Bearing on Rock?	Yes			
Groundwater Depth, gw:	n/a	ft		

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	160.63	18.44	10.9%	Pass
Bearing Pressure (ksf)	15.00	2.16	13.7%	Pass
Overturning (kip*ft)	3608.91	1605.68	44.5%	Pass
Pier Flexure (Comp.) (kip*ft)	5182.08	1552.47	28.5%	Pass
Pier Compression (kip)	17184.96	51.78	0.3%	Pass
Pad Flexure (kip*ft)	1677.22	543.92	30.9%	Pass
Pad Shear - 1-way (kips)	553.09	96.75	16.7%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.027	15.7%	Pass
Flexural 2-way (Comp) (kip*ft)	2004.63	931.48	44.3%	Pass

*Rating per TIA-222-H Section 15.5

Soil Rating*:	44.5%
Structural Rating*:	44.3%

<--Toggle between Gross and Net





Location

# ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 515.88 ft (NAVD 88) Latitude: 41.890756 Longitude: -72.289381





Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.174	S _{DS} :	0.186	
<b>S</b> ₁ :	0.063	<b>S</b> _{D1} :	0.101	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.086	
S _{MS} :	0.279	PGA M :	0.138	
S _{M1} :	0.152	F _{PGA} :	1.6	
		l _e :	1	

#### Seismic Design Category B



Data Accessed: Date Source:

#### Mon Jun 17 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



# Ice

#### Results:

	Ice Thickness:	1.00 in.
	Concurrent Temperature:	5 F
	Gust Speed:	50 mph
Data	Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date	Accessed:	Mon Jun 17 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

# Exhibit E

**Mount Analysis** 

Date: June 5, 2019



Charles McGuirt Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6607		B+T Gro 1717 S. Tulsa, O (918) 58 btwo@b	up Boulder, Suite 300 K 74119 7-4630 tgrp.com
Subject:	Mount Analysis Report		
Carrier Designation:	T-Mobile Equipment Change-Out Carrier Site Number: Carrier Site Name:	-	CT11261C Tolland/I-84/Fill-In
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Order Number:		841301 Willington-River Rd 559267 479824, Rev.0
Engineering Firm Designation:	B+T Group Report Designation:		135909.001.01.R1
Site Data:	426 River Road, Willington, CT, Tollar Latitude 41° 53' 26.72" Longitude -72°	nd Count 17' 21.7	y, 06279 7"
Structure Information:	Tower Height & Type: Mount Elevation: Mount Type:	110 ft. N 100 ft. 10.75 ft.	Ionopole Platform Mount

Dear Mr. McGuirt,

*B*+*T Group* is pleased to submit this "**Mount Analysis Report**" to determine the structural integrity of T-Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the above mentioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level to be:

#### Platform Mount

#### Sufficient

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Phanindra Kosaraju, E.I.T.

Respectfully submitted by: B&T Engineering, Inc. COA: PEC.0001564 Expires: 02/10/2020

#### TABLE OF CONTENTS

#### 1) INTRODUCTION

#### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

#### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

# 4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

#### 5) APPENDIX A

Wire Frame and Rendered Models

#### 6) APPENDIX B

Software Input Calculations

#### 7) APPENDIX C

Software Analysis Output

#### 1) INTRODUCTION

This is a 10.75' Platform Mount, mapped by Paul J. Ford & Company & RKS.

#### 2) ANALYSIS CRITERIA

TIA-222 Revision:TIA-222-HRisk Category:IIUltimate Wind Speed:125 mphExposure Category:BTopographic Factor at Base:1Topographic Factor at Mount:1Ice Thickness:2 inWind Speed with Ice:50 mphSeismic Ss:0.174Seismic S1:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:500 lb.	Building Code:	2015 IBC
Risk Category:IIUltimate Wind Speed:125 mphExposure Category:BTopographic Factor at Base:1Topographic Factor at Mount:1Ice Thickness:2 inWind Speed with Ice:50 mphSeismic S _s :0.174Seismic S ₁ :0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	TIA-222 Revision:	TIA-222-H
Ultimate Wind Speed:125 mphExposure Category:BTopographic Factor at Base:1Topographic Factor at Mount:1Ice Thickness:2 inWind Speed with Ice:50 mphSeismic Ss:0.174Seismic S1:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Risk Category:	11
Exposure Category:BTopographic Factor at Base:1Topographic Factor at Mount:1Ice Thickness:2 inWind Speed with Ice:50 mphSeismic S₅:0.174Seismic S₁:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Ultimate Wind Speed:	125 mph
Topographic Factor at Base:1Topographic Factor at Mount:1Ice Thickness:2 inWind Speed with Ice:50 mphSeismic S₅:0.174Seismic S₁:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Exposure Category:	В
Topographic Factor at Mount:1Ice Thickness:2 inWind Speed with Ice:50 mphSeismic S₅:0.174Seismic S₁:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Topographic Factor at Base:	1
Ice Thickness:2 inWind Speed with Ice:50 mphSeismic Ss:0.174Seismic S1:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Topographic Factor at Mount:	1
Wind Speed with Ice:         50 mph           Seismic S _s :         0.174           Seismic S ₁ :         0.063           Live Loading Wind Speed:         30 mph           Man Live Load at Mid/End-Points:         250 lb.           Man Live Load at Mount Pipes:         500 lb.	Ice Thickness:	2 in
Seismic S₅:0.174Seismic S₁:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Wind Speed with Ice:	50 mph
Seismic S1:0.063Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Seismic S₅:	0.174
Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Seismic S₁:	0.063
Man Live Load at Mid/End-Points:250 lb.Man Live Load at Mount Pipes:500 lb.	Live Loading Wind Speed:	30 mph
Man Live Load at Mount Pipes: 500 lb.	Man Live Load at Mid/End-Points:	250 lb.
	Man Live Load at Mount Pipes:	500 lb.

#### Table 1 - Proposed Equipment Configuration

Mount Centerline	Antenna Centerline	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount Details	
		2	EMS Wireless	RR90-17-00DP		
		2	RFS	APXVAARR24_43-U-NA20	10.75'	
100 ft	100 ft	100 ft	2	Ericsson	KRY 112 144/1	Platform
			2	Ericsson	KRY 112 489/2	Mount
	-	2	Ericsson	RADIO 4449 B12/B71		

#### 3) ANALYSIS PROCEDURE

#### Table 2 - Documents Provided

Document	Remarks	Reference	Source
CCI Order	Existing Loading Proposed Loading	Date: 05/28/2019	Crown Castle
Mount Mapping	Paul J. Ford & Company & RKS	Date: 04/06/2019	On File

#### 3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed by B+T Group, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C).

### 3.2) Assumptions

- 1. The mount was properly fabricated and installed in accordance with its original design and manufacturer's specifications.
- 2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
- 3. The configuration of antennas, mounts, and other appurtenances are as specified in Table-1.
- 4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
- 5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
- 6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
- 7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
- 8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 9. The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 10. The following material grades were assumed (Unless Noted Otherwise):
  - (a) Connection Bolts : ASTM A325 : ASTM A53 (GR. 35) (b) Steel Pipe : ASTM 500 (GR. B-42) (c) HSS (Round) (d) HSS (Rectangular) : ASTM 500 (GR. B-46) (e) Channel : ASTM A36 (GR. 36) (f) Steel Solid Rod : ASTM A36 (GR. 36) (g) Steel Plate : ASTM A36 (GR. 36) (h) Steel Angle : ASTM A36 (GR. 36) (i) UNISTRUT : ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

#### 4) ANALYSIS RESULTS

#### Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

Notes	Component	Critical Member	Centerline (ft.)	% Capacity	Pass / Fail
	Main Horizontals	M1	100	48.9	Pass
1.2	Support Channels	M8	100	37.2	Pass
1,2	Support Angle	M109	100	16.5	Pass
	Mount Pipes	M90	100	68.3	Pass

Structure Rating (max from all components) =	68.3%
----------------------------------------------	-------

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) All sectors are typical

#### 4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

APPENDIX A

WIRE FRAME AND RENDERED MODELS









## APPENDIX B

# SOFTWARE INPUT CALCULATIONS

PROJECT	135909.001.01 - Willington-River Rd, ( PKK
SUBJECT	Platform Mount Mount Analysis

DATE	06/04/19	PAGE	1	OF	1

# <u>INPUT</u>

Tower Type Tower Height		:	MP 110	ft	
Mount Elevation		:	100	ft	
Antenna Elevation		:	100	ft	
Crest Height		:	0	ft	
Risk Category		:	II		[Table 2-1 ]
Exposure Category		:	В		[Sec. 2.6.5.1.2]
Topography Catego	ry	:	1		[Sec. 2.6.6.2]
Wind Velocity	۷	:	125	mph	[Annex B ]
Ice wind Velocity	Vi	:	50	mph	[Annex B ]
Service Velocity	$V_{\rm s}$	:	30	mph	[Annex B ]
Base Ice thickness	ti	:	2	in	[Annex B]
Ground Elevation	Ζs	:	515.88	ft	[Sec. 2.6.8]

# **ANTENNAS**

	Manufacturer	Model	Height (in)	Front Width (in)	Side Width (in)	Weight (lbs)	Shape	Quantity	Location (%)
Mount Pip	e <b>M87</b>			-	• • • •		-	-	•
	EMS Wireless	RR90-17-00DP	56.00	8.00	2.75	13.50	Flat	0.5	5
	EMS Wireless	RR90-17-00DP	56.00	8.00	2.75	13.50	Flat	0.5	45
	Ericsson	KRY 112 489/2	11.00	6.10	3.94	15.40	Flat	2	30
Mount Pip	e <b>M90</b>	•							
	RFS	APXVAARR24_43-U-NA20	95.90	24.00	8.70	128.00	Flat	0.5	10
	RFS	APXVAARR24_43-U-NA20	95.90	24.00	8.70	128.00	Flat	0.5	90
	Ericsson	RADIO 4449 B12/B71	14.95	13.19	9.25	75.00	Flat	1	30
Mount Pip	e M101	VDV 112 144/1	7.00	C 00	2.00	11.00	El-t		20
	Ericsson	KRY 112 144/1	7.00	6.00	3.00	11.00	Flat	2	30
Maurat Dia									
Mount Pip	e M104				I		_		
	Ericsson	RADIO 4449 B12/B71	14.95	13.19	9.25	75.00	Flat	1	30
Mount Pin	e M94								
	EMS Wireless	RR90-17-00DP	56.00	8.00	2.75	13.50	Flat	0.5	5
	EMS Wireless	RR90-17-00DP	56.00	8.00	2.75	13.50	Flat	0.5	45
								_	
Mount Pip	e <b>M97</b>							•	
F	RFS	APXVAARR24_43-U-NA20	95.90	24.00	8.70	128.00	Flat	0.5	10
	RFS	APXVAARR24_43-U-NA20	95.90	24.00	8.70	128.00	Flat	0.5	90

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 B+T GRP 
 PROJECT
 135909.001.01 - Willington-River Rd, (PKK

 SUBJECT
 Platform Mount Mount Analysis

 DATE
 06/05/19
 PAGE
 1
 0F
 1

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 B+T GRP

#### **INPUT**

[REF: ANSI/TIA-222-G2005]

	Member Number	Section Set	Wind Projection (in)	Length (in)	Perimeter (in)	Shape	D _c (in)
	M1	MF-H1	5.00	64.50	17.00	Flat	5.30
	M2	MF-H1	5.00	64.50	17.00	Flat	5.30
	M3	MF-H1	5.00	64.50	17.00	Flat	5.30
	M4	MF-H1	5.00	64.50	17.00	Flat	5.30
	M5	MF-H1	5.00	64.50	17.00	Flat	5.30
	M6	MF-H1	5.00	64.50	17.00	Flat	5.30
	M7	F1-SA1	5.00	59.47	17.00	Flat	5.30
	M8	F1-SA1	5.00	59.47	17.00	Flat	5.30
	M9	F1-SA1	5.00	59.47	17.00	Flat	5.30
	M10	F1-SA1	5.00	34.64	17.00	Flat	5.30
	M87	MF-P1	2.38	102.00	7.48	Round	2.38
	M90	MF-P1	2.38	102.00	7.48	Round	2.38
	M94	MF-P1	2.38	102.00	7.48	Round	2.38
	M97	MF-P1	2.38	102.00	7.48	Round	2.38
	M101	MF-P1	2.38	102.00	7.48	Round	2.38
	M104	MF-P1	2.38	102.00	7.48	Round	2.38
	M108	F1-SA1	5.00	21.50	17.00	Flat	5.30
	M109	F1-SA2	2.00	21.50	8.00	Flat	2.83
-							
-							

PROJECT	ROJECT 135909.001.01 - Willington-R					
SUBJECT	Platform Mount Mount Analysis					
DATE	06/04/19	PAGE	OF			



Manufacturer	Model	Qty	Aspect Ratio	C _a flat/round	EPA _N *K _a (ft ² )	$\textbf{EPA}_{T}^{*}\textbf{K}_{a}(\text{ft}^{2})$	EPA _{N-Ice} *K _a (ft ² )	EPA _{T-Ice} *K _a (ft ² )	FA No Ice (N)	F _{A No Ice (T)}	F _{A Ice (N)}	F _{A Ice (T)}
EMS Wireless	RR90-17-00DP	0.5	7.00	1.40	1.40	0.48	2.36	1.36	0.07	0.03	0.01	0.01
EMS Wireless	RR90-17-00DP	0.5	7.00	1.40	1.40	0.48	2.36	1.36	0.07	0.03	0.01	0.01
Ericsson	KRY 112 489/2	2	1.80	1.20	0.84	0.54	2.04	1.63	0.04	0.02	0.01	0.00
DEC	ADV/AADD24 42-11-NA20	0.5	4.00	1 27	7 10	2.61	8 03	4 12	0.34	0.15	0.05	0.02
RES		0.5	4.00	1.27	7.19	2.01	0.95	4.15	0.34	0.15	0.05	0.02
Friescon		0.5	4.00	1.2/	1.19	2.01	0.95	4.15	0.54	0.15	0.05	0.02
LIICSSOIT	KADIO 4449 BI2/B/1	I	1.15	1.20	1.25	0.00	2.14	1.07	0.05	0.04	0.01	0.01
Ericsson	KRY 112 144/1	2	1.17	1.20	0.53	0.26	1.50	1.07	0.02	0.01	0.00	0.00
Ericsson	RADIO 4449 B12/B71	1	1.13	1.20	1.23	0.86	2.14	1.67	0.05	0.04	0.01	0.01
EMC Mindage	DD00 17 00DD	0.5	7.00	1.40	1.40	0.40	2.26	1.20	0.07	0.02	0.01	0.01
EMS Wireless	RR90-17-00DP	0.5	7.00	1.40	1.40	0.48	2.36	1.36	0.07	0.03	0.01	0.01
EMS WIREESS	KK90-17-00DP	0.5	7.00	1.40	1.40	0.48	2.30	1.30	0.07	0.03	0.01	0.01
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.93	4.13	0.34	0.15	0.05	0.02
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.93	4.13	0.34	0.15	0.05	0.02



## Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	MF-H1	C5X1.75X0.32	Beam	Channel	A36 Gr.36	Typical	1.948	.578	7.455	.044
2	MF-P1	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
3	F1-SA1	C5X1.75X0.32	Beam	Channel	A36 Gr.36	Typical	1.948	.578	7.455	.044
4	F1-SA2	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	F1-CA1	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026

# Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	<u>Z [ft]</u>	Temp [F]	Detach From Diap
1	N1	Ō	0	Ō	Ó	•
2	N2	0.	0	3.103258	0	
3	N3	2.6875	0	-1.551629	0	
4	N4	-0.	0	-6.206515	0	
5	N5	-5.375	0	3.103258	0	
6	N6	-2.6875	0	-1.551629	0	
7	N7	-2.477795	0	-1.914849	0	
8	N8	2.477795	0	-1.914849	0	
9	N9	-0.41941	0	3.103258	0	
10	N10	-2.897205	0	-1.188409	0	
11	N11	2.897205	0	-1.188409	0	
12	N12	0.41941	0	3.103258	0	
13	N13	-3.931624	0	0.603258	0	
14	N14	-0.645833	0.224167	-5.087899	0	
15	N15	-0.1875	0.224167	-5.881756	0	
16	N16	0.1875	0.224167	-5.881756	0	
17	N17	0.645833	0.224167	-5.087899	0	
18	N18	0.645833	0	-5.087899	0	
19	N19	-0.416667	-1.8e-15	-5.484828	0	
20	N20	0.1875	-1.8e-15	-5.881756	0	
21	N21	-0.645833	0	-5.087899	0	
22	N22	0.416667	-1.8e-15	-5.484828	0	
23	N23	-0.1875	-1.8e-15	-5.881756	0	
24	N24	-0.645833	-0.224167	-5.087899	0	
25	N25	-0.1875	-0.224167	-5.881756	0	
26	N26	0.1875	-0.224167	-5.881756	0	
27	N27	0.645833	-0.224167	-5.087899	0	
28	N28	-0.416667	0.224167	-5.484828	0	
29	N29	0.416667	0.224167	-5.484828	0	
30	N30	-0.416667	-0.224167	-5.484828	0	
31	N31	0.416667	-0.224167	-5.484828	0	
32	N32	-4.083333	0.224167	3.103258	0	
33	N33	-5.	0.224167	3.103258	0	
34	N34	-5.1875	0.224167	2.778498	0	
35	N35	-4.729167	0.224167	1.984642	0	
36	N36	-4.729167	0	1.984642	0	
37	N37	-4.541667	-1.8e-15	3.103258	0	
38	N38	-5.1875	-1.8e-15	2.778498	0	
39	N39	-4.083333	0	3.103258	0	
40	N40	-4.958333	-1.8e-15	2.38157	0	
41	N41	-5.	-1.8e-15	3.103258	0	
42	N42	-4.083333	-0.224167	3.103258	0	
43	N43	-5.	-0.224167	3.103258	0	
44	N44	-5.1875	-0.224167	2.778498	0	
45	N45	-4.729167	-0.224167	1.984642	0	

RISA-3D Version 17.0.2 [\...\...\...\...\...\...\...\...\135909_001_01_R1-Willington-River Rd_CT (Without IPrageratil).R3D]



# Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
46	N46	-4.541667	0.224167	3.103258	0	
47	N47	-4.958333	0.224167	2.38157	0	
48	N48	-4.541667	-0.224167	3.103258	0	
49	N49	-4.958333	-0.224167	2.38157	0	
50	N50	4.729167	0.224167	1.984642	0	
51	N51	5.1875	0.224167	2.778498	0	
52	N52	5.	0.224167	3.103258	0	
53	N53	4.083333	0.224167	3.103258	0	
54	N54	4.083333	0	3.103258	0	
55	N55	4.958333	-1.8e-15	2.38157	0	
56	N56	5.	-1.8e-15	3.103258	0	
57	N57	4.729167	0	1.984642	0	
58	N58	4.541667	-1.8e-15	3.103258	0	
59	N59	5.1875	-1.8e-15	2.778498	0	
60	N60	4.729167	-0.224167	1.984642	0	
61	N61	5.1875	-0.224167	2,778498	0	
62	N62	5.	-0.224167	3,103258	0	
63	N63	4.083333	-0.224167	3.103258	0	
64	N64	4 958333	0 224167	2 38157	Ő	
65	N65	4 541667	0 224167	3 103258	0	
66	N66	4 958333	-0 224167	2 38157	0 0	
67	N67	4 541667	-0 224167	3 103258	0	
68	N68	- 5	0	2 963672	0	
69	N69	5	0	2 963672	0	
70	NZO	2 816615	0	-1 0/8823	0	
71	N71	2 316615	0	_1 01/18/10	0	
72	N72	_2 316615	0	-1 01/8/0	0	
72	N72	2,916615	0	1 0/1922	0	
73	N73	1.07725	0	1.040023	0	
74	N74	1.07725	0	1.903072	0	
75	N76	2 220265	0	0.049922	0	
70	N70	1 161015	0	1.0140023	0	
70		1.101915	0	-1.914049	0	
70		-1.101915	0	-1.914049	0	
79	N/9	-2.239205	0	-0.048823	0	
80	<u>N80</u>	5.375	0	3.103258	0	
81	<u>N83</u>	4.416667	0	3.103258	0	
82	<u>N84</u>	4.416667	0	3.301591	0	
83	<u>N87</u>	4.416667	4	3.301591	0	
84	<u>N88</u>	4.416667	-4.5	3.301591	0	
85	<u>N89</u>	-4.416667	0	3.103258	0	
86	<u>N90</u>	-4.416667	0	3.301591	0	
87	<u>N93</u>	-4.416667	4	3.301591	0	
88	N94	-4.416667	-4.5	3.301591	0	
89	N97	0.479167	0	-5.376574	0	
90	N98	0.650928	0	-5.475741	0	
91	N101	0.650928	4	-5.475741	0	
92	N102	0.650928	-4.5	-5.475741	0	
93	N103	4.895833	0	2.273317	0	
94	N104	5.067595	0	2.17415	0	
95	N107	5.067595	4	2.17415	0	
96	N108	5.067595	-4.5	2.17415	0	
97	N111	-4.895833	0	2.273317	0	
98	N112	-5.067595	0	2.17415	0	
99	N115	-5.067595	4	2.17415	0	
100	N116	-5.067595	-4.5	2.17415	0	
101	N117	-0.479167	0	-5.376574	0	
102	N118	-0.650928	0	-5.475741	0	
		0.000020	<b>.</b>	00111	, v	

RISA-3D Version 17.0.2 [\...\...\...\...\...\...\...\...\135909_001_01_R1-Willington-River Rd_CT (Without IPrager 2il).R3D]



# Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
103	N121	-0.650928	4	-5.475741	0	·
104	N122	-0.650928	-4.5	-5.475741	0	
105	N129	-2.488249	0	3.103258	0	
106	N130	-0.93662	0	2.207424	0	
107	N131	-2.988249	0	2.237232	0	
108	N132	-1.43662	0	1.341399	0	
109	N133	-1.658308	0	0.957424	0	
110	N134	1.658308	0	0.957424	0	
111	N135	0	0	-1.914849	0	

# Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N5	N2		180	MF-H1	Beam	Channel	A36 Gr.36	Typical
2	M2	N80	N2			MF-H1	Beam	Channel	A36 Gr.36	Typical
3	M3	N80	N3		180	MF-H1	Beam	Channel	A36 Gr.36	Typical
4	M4	N4	N3			MF-H1	Beam	Channel	A36 Gr.36	Typical
5	M5	N4	N6		180	MF-H1	Beam	Channel	A36 Gr.36	Typical
6	M6	N5	N6			MF-H1	Beam	Channel	A36 Gr.36	Typical
7	M7	N7	N8		180	F1-SA1	Beam	Channel	A36 Gr.36	Typical
8	M8	N9	N10		180	F1-SA1	Beam	Channel	A36 Gr.36	Typical
9	M9	N11	N12		180	F1-SA1	Beam	Channel	A36 Gr.36	Typical
10	M10	N129	N13			F1-SA1	Beam	Channel	A36 Gr.36	Typical
11	M13	N18	N17			RIGID	None	None	RIGID	Typical
12	M14	N19	N28			RIGID	None	None	RIGID	Typical
13	M15	N20	N16			RIGID	None	None	RIGID	Typical
14	M16	N21	N14			RIGID	None	None	RIGID	Typical
15	M17	N22	N29			RIGID	None	None	RIGID	Typical
16	M18	N23	N15			RIGID	None	None	RIGID	Typical
17	M21	N27	N18			RIGID	None	None	RIGID	Typical
18	M22	N30	N19			RIGID	None	None	RIGID	Typical
19	M23	N26	N20			RIGID	None	None	RIGID	Typical
20	M24	N24	N21			RIGID	None	None	RIGID	Typical
21	M25	N31	N22			RIGID	None	None	RIGID	Typical
22	M26	N25	N23			RIGID	None	None	RIGID	Typical
23	M35	N36	N35			RIGID	None	None	RIGID	Typical
24	M36	N37	N46			RIGID	None	None	RIGID	Typical
25	M37	N38	N34			RIGID	None	None	RIGID	Typical
26	M38	N39	N32			RIGID	None	None	RIGID	Typical
27	M39	N40	N47			RIGID	None	None	RIGID	Typical
28	M40	N41	N33			RIGID	None	None	RIGID	Typical
29	M43	N45	N36			RIGID	None	None	RIGID	Typical
30	M44	N48	N37			RIGID	None	None	RIGID	Typical
31	M45	N44	N38			RIGID	None	None	RIGID	Typical
32	M46	N42	N39			RIGID	None	None	RIGID	Typical
33	M47	N49	N40			RIGID	None	None	RIGID	Typical
34	M48	N43	N41			RIGID	None	None	RIGID	Typical
35	M57	N54	N53			RIGID	None	None	RIGID	Typical
36	M58	N55	N64			RIGID	None	None	RIGID	Typical
37	M59	N56	N52			RIGID	None	None	RIGID	Typical
38	M60	N57	N50			RIGID	None	None	RIGID	Typical
39	M61	N58	N65			RIGID	None	None	RIGID	Typical
40	M62	N59	N51			RIGID	None	None	RIGID	Typical
41	M65	N63	N54			RIGID	None	None	RIGID	Typical
42	M66	N66	N55			RIGID	None	None	RIGID	Typical
43	M67	N62	N56			RIGID	None	None	RIGID	Typical



# Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
44	M68	N60	N57			RIGID	None	None	RIGID	Typical
45	M69	N67	N58			RIGID	None	None	RIGID	Typical
46	M70	N61	N59			RIGID	None	None	RIGID	Typical
47	M85	N83	N84			RIGID	None	None	RIGID	Typical
48	M87	N87	N88			MF-P1	Column	Pipe	A53 Gr.B	Typical
49	M88	N89	N90			RIGID	None	None	RIGID	Typical
50	M90	N93	N94			MF-P1	Column	Pipe	A53 Gr.B	Typical
51	M92	N97	N98			RIGID	None	None	RIGID	Typical
52	M94	N101	N102			MF-P1	Column	Pipe	A53 Gr.B	Typical
53	M95	N103	N104			RIGID	None	None	RIGID	Typical
54	M97	N107	N108			MF-P1	Column	Pipe	A53 Gr.B	Typical
55	M99	N111	N112			RIGID	None	None	RIGID	Typical
56	M101	N115	N116			MF-P1	Column	Pipe	A53 Gr.B	Typical
57	M102	N117	N118			RIGID	None	None	RIGID	Typical
58	M104	N121	N122			MF-P1	Column	Pipe	A53 Gr.B	Typical
59	M108	N129	N130			F1-SA1	Beam	Channel	A36 Gr.36	Typical
60	M109	N131	N132		270	F1-SA2	Beam	Single Angle	A36 Gr.36	Typical

#### **Basic Load Cases**

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(Plate/
1	Dead	DĽ		-1	-		30		8	
2	0 Wind - No Ice	WLZ					30	18		
3	90 Wind - No Ice	WLX					30	18		
4	0 Wind - Ice	WLZ					30	18		
5	90 Wind - Ice	WLX					30	18		
6	0 Wind - Service	WLZ					30	18		
7	90 Wind - Service	WLX					30	18		
8	lce	OL1					30	18	8	
9	Live Load a	LL				3				
10	Live Load b	LL				3				
11	Live Load c	LL								
12	Live Load d	LL								
13	Maint LL 1	LL								
14	Maint LL 2	LL					1			
15	Maint LL 3	LL								
16	Maint LL 4	LL					1			
17	Maint LL 5	LL								
18	Maint LL 6	LL					1			
19	Maint LL 7	LL								
20	Maint LL 8	LL					1			
21	Maint LL 9	LL								
22	Maint LL 10	LL					1			
23	Maint LL 11	LL								
24	Maint LL 12	LL					1			
25	Maint LL 13	LL					1			
26	Maint LL 14	LL					1			
27	Maint LL 15	LL					1			
28	BLC 1 Transient Are	None						33		
29	BLC 8 Transient Are	None						34		



June 5, 2019 11:20 AM Checked By:___

# Load Combinations

	Description	So	P	S E	BLC	CFa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	;Fa	BLCF	a BLC	CFa	BLC	Fa	BLC	Fa	BLC	Fa
1	1.4 Dead	Yes	Υ		1	1.4																	
2	1.2 D + 1.0 - 0 W	Yes	Υ		1	1.2	2	1															
3	12D + 10 - 30W	Yes	Ý		1	12	2	.866	3	5													
4	12D + 10 - 60W	Yes	Ý		1	12	3	.866	2	.5													
5	12D + 10 - 90W	Yes	Ý		1	1.2	3	1	~														
6	12D + 10 - 120W	Yes	V		1	1.2	3	.866	2	- 5													
7	12D + 10 - 150W	Yes	v		1	1.2	2	- 866	2	.0													
8	12D + 10 180W	Yes	V		1	1.2	2	1	5														
0	1.2 D + 1.0 - 100 W	Ves	V		1	1.2	2	- 866	2	5												_	
10	1.2D + 1.0 - 210W	Ves	V		1	1.2	2	- 866	3	5												_	
11	1.2 D + 1.0 - 240 W	Vec			1	1.2	2	000	2	5													
10	1.2 D + 1.0 - 270 W	Voc	V		1	1.2	2	- 1	0	F												_	
12	1.2 D + 1.0 - 300 W	Voc	Y V		4	1.2	<u>い</u>	000	2	.5													_
13	1.2 D + 1.0 - 330 VV	Vee	Y		4	1.2	2	.000	3	5	0	4										_	_
14	1.2 D + 1.0 - 0 W/Ice	Yes	Y		1	1.2	4	1	_	-	Ø												_
15	1.2 D + 1.0 - 30 W/Ice	Yes	Y		1	1.2	4	.800	5	.5	8	1											
16	1.2 D + 1.0 - 60 W/Ice	Yes	<u>Y</u>		1	1.2	5	.800	4	.5	8	1											
17	1.2 D + 1.0 - 90 W/Ice	Yes	Y		1	1.2	5	1		_	8	1										_	_
18	1.2 D + 1.0 - 120 W/Ice	Yes	Y		1	1.2	5	.866	4	5	8	1											
19	1.2 D + 1.0 - 150 W/Ice	Yes	Y		1	1.2	4	866	5	.5	8	1											
20	1.2 D + 1.0 - 180 W/Ice	Yes	Y		1	1.2	4	-1	_	_	8	1											_
21	1.2 D + 1.0 - 210 W/Ice	Yes	Y		1	1.2	4	866	5	5	8	1										_	
22	1.2 D + 1.0 - 240 W/Ice	Yes	Y		1	1.2	5	866	4	5	8	1											
23	1.2 D + 1.0 - 270 W/Ice	Yes	Y		1	1.2	5	-1			8	1											
_24	1.2 D + 1.0 - 300 W/Ice	Yes	Y		1	1.2	5	866	4	.5	8	1											
25	1.2 D + 1.0 - 330 W/Ice	Yes	Y		1	1.2	4	.866	5	5	8	1											
26	1.2 D + 1.5 LL a + Service.	.Yes	Y		1	1.2	6	1			9	1.5											
27	1.2 D + 1.5 LL a + Service.	.Yes	Y		1	1.2	6	.866	7	.5	9	1.5											
28	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	7	.866	6	.5	9	1.5											
29	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	7	1			9	1.5											
30	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	7	.866	6	5	9	1.5											
31	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	6	866	7	.5	9	1.5											
32	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	6	-1			9	1.5											
33	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	6	866	7	5	9	1.5											
34	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	7	866	6	5	9	1.5											
35	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	7	-1			9	1.5											
36	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	7	866	6	.5	9	1.5											
37	1.2 D + 1.5 LL a + Service.	.Yes	Υ		1	1.2	6	.866	7	5	9	1.5											
38	1.2 D + 1.5 LL b + Service.	.Yes	Υ		1	1.2	6	1			10	1.5											
39	1.2 D + 1.5 LL b + Service.	.Yes	Υ		1	1.2	6	.866	7	.5	10	1.5											
40	1.2 D + 1.5 LL b + Service.	.Yes	Y		1	1.2	7	.866	6	.5	10	1.5											
41	1.2 D + 1.5 LL b + Service.	.Yes	Ý		1	1.2	7	1			10	1.5											
42	1.2 D + 1.5 LL b + Service.	.Yes	Y		1	1.2	7	.866	6	5	10	1.5											
43	1.2 D + 1.5 LL b + Service.	.Yes	Ý		1	1.2	6	866	7	.5	10	1.5											
44	1.2 D + 1.5 LL b + Service.	.Yes	Ý		1	12	6	-1			10	1.5											
45	1.2 D + 1.5 LL b + Service.	.Yes	Ý		1	12	6	866	7	- 5	10	1.5											
46	1.2 D + 1.5 LL b + Service.	Yes	Ý		1	1.2	7	866	6	- 5	10	1.5											
40	12D + 15IIb + Service	Yes	v		1	1.2	7	_1	0	.0	10	1.5											
18	12D + 15Ub + Service	Yes	V		1	1.2	7	- 866	6	5	10	1.5											
40	12D + 15LL b + Service	Yes	÷		1	1.2	6	866	7	.5	10	1.5										_	
50	12D + 15LL + Service	Ves	V		1	1.2	6	1	-	5	11	1.5											
51	12D + 15II c + Service	Yee	V		1	1.2	6	866	7	5	11	1.5											
50	12D + 15UL + Service	Yee	۱ V		1	1.2	7	338	6	.0 5	11	1.5											
52	12D + 15U + 50000000000000000000000000000000000	Voc	T V		1	1.2	7	.000	0	.5	11	1.0										_	
53	12D + 15LL + Service.	Voc	Y		1	1.2	7	866	C	5	11	1.5										_	
55	1.2 D + 1.5 LL C + Service.	Voc	Y	+	1	1.2	1	.000	0	3	14	1.5											
55	1.2 D + 1.5 LL C + Service.	Vee	Y		1	1.2	0	000	1	.ɔ	11	1.5											
50	1.2 D + 1.5 LL C + Service.	Vac	Y		1	1.2	0	-	7	Г	14	1.5											
5/	1.2  D + 1.3  LL C + SerVICe.	., res	Y		1	11.2	Ь	000	1	5	11	1.5											

RISA-3D Version 17.0.2 [\...\...\...\...\...\...\...\...\135909_001_01_R1-Willington-River Rd_CT (Without IPraget 5il).R3D]
#### Load Combinations (Continued)

	Description	So	P	S	BLC	;Fa	BLC	Fa	BLC	Fa	BLC	;Fa	BLC	Fa	BLCI	- a I	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa
58	1.2 D + 1.5 LL c + Service	Yes	Υ		1	1.2	7	866	6	5	11	1.5												
59	1.2 D + 1.5 LL c + Service	Yes	Υ		1	1.2	7	-1			11	1.5												
60	1.2 D + 1.5 LL c + Service	Yes	Y		1	1.2	7	866	6	.5	11	1.5												
61	1.2 D + 1.5 LL c + Service	Yes	Υ		1	1.2	6	.866	7	5	11	1.5												
62	1.2 D + 1.5 LL d + Service	.Yes	Y		1	1.2	6	1			12	1.5												
63	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	6	.866	7	.5	12	1.5												
64	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	7	.866	6	.5	12	1.5												
65	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	7	1			12	1.5												
66	1.2 D + 1.5 LL d + Service	Yes	Y		1	1.2	7	.866	6	5	12	1.5												
67	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	6	866	7	.5	12	1.5												
68	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	6	-1			12	1.5												
69	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	6	866	7	5	12	1.5												
70	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	7	866	6	5	12	1.5												
71	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	7	-1			12	1.5												
72	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	7	866	6	.5	12	1.5												
73	1.2 D + 1.5 LL d + Service	Yes	Υ		1	1.2	6	.866	7	5	12	1.5												
74	1.2 D + 1.5 LL Maint (1)	Yes	Υ		1	1.2					13	1.5												
75	1.2 D + 1.5 LL Maint (2)	Yes	Υ		1	1.2					14	1.5												
76	1.2 D + 1.5 LL Maint (3)	Yes	Y		1	1.2					15	1.5												
77	1.2 D + 1.5 LL Maint (4)	Yes	Υ		1	1.2					16	1.5												
78	1.2 D + 1.5 LL Maint (5)	Yes	Υ		1	1.2					17	1.5												
79	1.2 D + 1.5 LL Maint (6)	Yes	Υ		1	1.2					18	1.5												
80	1.2 D + 1.5 LL Maint (7)	Yes	Υ		1	1.2					19	1.5												
81	1.2 D + 1.5 LL Maint (8)	Yes	Υ		1	1.2					20	1.5												
82	1.2 D + 1.5 LL Maint (9)	Yes	Y		1	1.2					21	1.5												
83	1.2 D + 1.5 LL Maint (10)	Yes	Υ		1	1.2					22	1.5												
84	1.2 D + 1.5 LL Maint (11)	Yes	Y		1	1.2					23	1.5												
85	1.2 D + 1.5 LL Maint (12)	Yes	Y		1	1.2					24	1.5												
86	1.2 D + 1.5 LL Maint (13)	Yes	Y		1	1.2					25	1.5												
87	1.2 D + 1.5 LL Maint (14)	Yes	Y		1	1.2					26	1.5												
88	1.2 D + 1.5 LL Maint (15)	Yes	Y		1	1.2					27	1.5												

#### Joint Loads and Enforced Displacements (BLC 9 : Live Load a)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	N89	L	Y	5
2	N103	L	Y	5
3	N117	L	Y	5

#### Joint Loads and Enforced Displacements (BLC 10 : Live Load b)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	N83	L	Y	5
2	N97	L	Y	5
3	N111	L	Y	5

#### Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	Y	007	%5
2	M87	Y	007	%45
3	M87	Y	031	%30
4	M87	Y	0	0
5	M87	Y	0	0
6	M90	Y	064	%10
7	M90	Y	064	%90



#### Member Point Loads (BLC 1 : Dead) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
8	M90	Y	075	%30
9	M90	Y	0	0
10	M90	Y	0	0
11	M101	Y	022	%30
12	M101	Y	0	0
13	M101	Y	0	0
14	M101	Y	0	0
15	M101	Y	0	0
16	M104	Y	075	%30
17	M104	Y	0	0
18	M104	Y	0	0
19	M104	Y	0	0
20	M104	Y	0	0
21	M94	Y	007	%5
22	M94	Y	007	%45
23	M94	Y	0	0
24	M94	Y	0	0
25	M94	Y	0	0
26	M97	Y	064	%10
27	M97	Y	064	%90
28	M97	Y	0	0
29	M97	Y	0	0
30	M97	Ý	0	0

#### Member Point Loads (BLC 2 : 0 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	Z	072	%5
2	M87	Z	072	%45
3	M87	Z	037	%30
4	M87	Z	0	0
5	M87	Z	0	0
6	M90	Z	336	%10
7	M90	Z	336	%90
8	M90	Z	054	%30
9	M90	Z	0	0
10	M90	Z	0	0
11	M101	Z	023	%30
12	M101	Z	0	0
13	M101	Z	0	0
14	M101	Z	0	0
15	M101	Z	0	0
16	M104	Z	054	%30
17	M104	Z	0	0
18	M104	Z	0	0
19	M104	Z	0	0
20	M104	Z	0	0
21	M94	Z	072	%5
22	M94	Z	072	%45
23	M94	Z	0	0
24	M94	Z	0	0
25	M94	Z	0	0
26	M97	Z	336	%10
27	M97	Z	336	%90
28	M97	Z	0	0
29	M97	Z	0	0
30	M97	Z	0	0



#### Member Point Loads (BLC 3 : 90 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	X	033	%5
2	M87	X	033	%45
3	M87	Х	024	%30
4	M87	X	0	0
5	M87	X	0	0
6	M90	Х	147	%10
7	M90	Х	147	%90
8	M90	Х	038	%30
9	M90	Х	0	0
10	M90	Х	0	0
11	M101	Х	012	%30
12	M101	Х	0	0
13	M101	Х	0	0
14	M101	Х	0	0
15	M101	Х	0	0
16	M104	Х	038	%30
17	M104	Х	0	0
18	M104	X	0	0
19	M104	Х	0	0
20	M104	Х	0	0
21	M94	X	033	%5
22	M94	X	033	%45
23	M94	Х	0	0
24	M94	Х	0	0
25	M94	X	0	0
26	M97	Х	- 147	%10
27	M97	Х	- 147	%90
28	M97	Х	0	0
29	M97	Х	0	0
30	M97	Х	0	0

#### Member Point Loads (BLC 4 : 0 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	Z	012	%5
2	M87	Z	012	%45
3	M87	Z	006	%30
4	M87	Z	0	0
5	M87	Z	0	0
6	M90	Z	054	%10
7	M90	Z	054	%90
8	M90	Z	009	%30
9	M90	Z	0	0
10	M90	Z	0	0
11	M101	Z	004	%30
12	M101	Z	0	0
13	M101	Z	0	0
14	M101	Z	0	0
15	M101	Z	0	0
16	M104	Z	009	%30
17	M104	Z	0	0
18	M104	Z	0	0
19	M104	Z	0	0
20	M104	Z	0	0
21	M94	Z	012	%5
22	M94	Z	012	%45
23	M94	Z	0	0



#### Member Point Loads (BLC 4 : 0 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
24	M94	Z	0	0
25	M94	Z	0	0
26	M97	Z	054	%10
27	M97	Z	054	%90
28	M97	Z	0	0
29	M97	Z	0	0
30	M97	Z	0	0

#### Member Point Loads (BLC 5 : 90 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	Х	005	%5
2	M87	Х	005	%45
3	M87	Х	004	%30
4	M87	Х	0	0
5	M87	Х	0	0
6	M90	Х	024	%10
7	M90	Х	024	%90
8	M90	Х	006	%30
9	M90	Х	0	0
10	M90	Х	0	0
11	M101	Х	002	%30
12	M101	Х	0	0
13	M101	Х	0	0
14	M101	Х	0	0
15	M101	Х	0	0
16	M104	Х	006	%30
17	M104	Х	0	0
18	M104	Х	0	0
19	M104	Х	0	0
20	M104	Х	0	0
21	M94	Х	005	%5
22	M94	Х	005	%45
23	M94	Х	0	0
24	M94	Х	0	0
25	M94	Х	0	0
26	M97	Х	024	%10
27	M97	Х	024	%90
28	M97	Х	0	0
29	M97	Х	0	0
30	M97	Х	0	0

#### Member Point Loads (BLC 6 : 0 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	Z	004	%5
2	M87	Z	004	%45
3	M87	Z	002	%30
4	M87	Z	0	0
5	M87	Z	0	0
6	M90	Z	019	%10
7	M90	Z	019	%90
8	M90	Z	003	%30
9	M90	Z	0	0
10	M90	Z	0	0
11	M101	Z	001	%30
12	M101	Z	0	0
13	M101	Z	0	0



#### Member Point Loads (BLC 6 : 0 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
14	M101	Z	0	0
15	M101	Z	0	0
16	M104	Z	003	%30
17	M104	Z	0	0
18	M104	Z	0	0
19	M104	Z	0	0
20	M104	Z	0	0
21	M94	Z	004	%5
22	M94	Z	004	%45
23	M94	Z	0	0
24	M94	Z	0	0
25	M94	Z	0	0
26	M97	Z	019	%10
27	M97	Z	019	%90
28	M97	Z	0	0
29	M97	Z	0	0
30	M97	Z	0	0

#### Member Point Loads (BLC 7 : 90 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	X	002	%5
2	M87	X	002	%45
3	M87	X	001	%30
4	M87	X	0	0
5	M87	X	0	0
6	M90	X	009	%10
7	M90	X	009	%90
8	M90	X	002	%30
9	M90	X	0	0
10	M90	X	0	0
11	M101	X	0007	%30
12	M101	X	0	0
13	M101	X	0	0
14	M101	X	0	0
15	M101	X	0	0
16	M104	X	002	%30
17	M104	X	0	0
18	M104	X	0	0
19	M104	X	0	0
20	M104	X	0	0
21	M94	X	002	%5
22	M94	X	002	%45
23	M94	X	0	0
24	M94	X	0	0
25	M94	X	0	0
26	M97	Х	009	%10
27	M97	X	009	%90
28	M97	Х	0	0
29	M97	Х	0	0
30	M97	X	0	0

#### Member Point Loads (BLC 8 : Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M87	Y	068	%5
2	M87	Y	068	%45
3	M87	Y	048	%30

RISA-3D Version 17.0.2 [\...\...\...\...\...\...\...\...\135909_001_01_R1-Willington-River Rd_CT (Without Plaged 19ii).R3D]



#### Member Point Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
4	M87	Y	0	0
5	M87	Y	0	0
6	M90	Y	303	%10
7	M90	Y	303	%90
8	M90	Y	062	%30
9	M90	Y	0	0
10	M90	Y	0	0
11	M101	Y	029	%30
12	M101	Y	0	0
13	M101	Y	0	0
14	M101	Y	0	0
15	M101	Y	0	0
16	M104	Y	062	%30
17	M104	Y	0	0
18	M104	Y	0	0
19	M104	Y	0	0
20	M104	Y	0	0
21	M94	Y	068	%5
22	M94	Y	068	%45
23	M94	Y	0	0
24	M94	Y	0	0
25	M94	Y	0	0
26	M97	Y	303	%10
27	M97	Y	303	%90
28	M97	Y	0	0
29	M97	Y	0	0
30	M97	Y	0	0

#### Member Point Loads (BLC 14 : Maint LL 2)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Y	25	%5
Member	Point Loads (BLC 16 :	Maint LL 4)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M3	Y	25	%5
<u>Member</u>	Point Loads (BLC 18 :	Maint LL 6)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M5	Y	25	%5
<u>Member</u>	Point Loads (BLC 20 :	Maint LL 8)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M2	Y	25	%5
Member	Point Loads (BLC 22 :	Maint LL 10)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Y	25	%5
<u>lember</u>	Point Loads (BLC 24 :	Maint LL 12)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M6	Y	25	%5
<u>//ember</u>	Point Loads (BLC 25 :	Maint LL 13)		
	Member Label	Direction	Magnitude[k.k-ft]	Location[ft.%]
RISA-3D	Version 17.0.2 [\\\		001_01_R1-Willington-River	Rd_CT (Without Plaged fail).F



#### Member Point Loads (BLC 25 : Maint LL 13) (Continued) Member Label Direction Magnitude[k,k-ft] Location[ft,%] 1 M8 Y -.25 %50 Member Point Loads (BLC 26 : Maint LL 14) Member Label Direction Magnitude[k,k-ft] Location[ft,%] 1 M9 Y -.25 %50

#### Member Point Loads (BLC 27 : Maint LL 15)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M7	Y	25	%50

#### Member Distributed Loads (BLC 2 : 0 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	022	022	0	0
2	M2	Z	022	022	0	0
3	M3	Z	022	022	0	0
4	M4	Z	022	022	0	0
5	M5	Z	022	022	0	0
6	M6	Z	022	022	0	0
7	M7	Z	021	021	0	0
8	M8	Z	021	021	0	0
9	M9	Z	021	021	0	0
10	M10	Z	019	019	0	0
11	M87	Z	008	008	0	0
12	M90	Z	008	008	0	0
13	M94	Z	008	008	0	0
14	M97	Z	008	008	0	0
15	M101	Z	008	008	0	0
16	M104	Z	008	008	0	0
17	M108	Z	018	018	0	0
18	M109	Z	008	008	0	0

#### Member Distributed Loads (BLC 3 : 90 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	022	022	0	0
2	M2	Х	022	022	0	0
3	M3	Х	022	022	0	0
4	M4	Х	022	022	0	0
5	M5	Х	022	022	0	0
6	M6	Х	022	022	0	0
7	M7	Х	021	021	0	0
8	M8	Х	021	021	0	0
9	M9	Х	021	021	0	0
10	M10	Х	019	019	0	0
11	M87	Х	008	008	0	0
12	M90	Х	008	008	0	0
13	M94	Х	008	008	0	0
14	M97	Х	008	008	0	0
15	M101	Х	008	008	0	0
16	M104	Х	008	008	0	0
17	M108	Х	018	018	0	0
18	M109	Х	008	008	0	0

#### Member Distributed Loads (BLC 4 : 0 Wind - Ice)

 Member Label
 Direction
 Start Magnitude[k/ft... End Magnitude[k/ft.E... Start Location[ft.%]
 End Location[ft.%]

 RISA-3D Version 17.0.2
 [\...\...\...\...\...\...\...\...\...\135909_001_01_R1-Willington-River Rd_CT (Without Plaged fail).R3D]



#### Member Distributed Loads (BLC 4 : 0 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	007	007	0	0
2	M2	Z	007	007	0	0
3	M3	Z	007	007	0	0
4	M4	Z	007	007	0	0
5	M5	Z	007	007	0	0
6	M6	Z	007	007	0	0
7	M7	Z	007	007	0	0
8	M8	Z	007	007	0	0
9	M9	Z	007	007	0	0
10	M10	Z	006	006	0	0
11	M87	Z	002	002	0	0
12	M90	Z	002	002	0	0
13	M94	Z	002	002	0	0
14	M97	Z	002	002	0	0
15	M101	Z	002	002	0	0
16	M104	Z	002	002	0	0
17	M108	Z	006	006	0	0
18	M109	Z	005	005	0	0

#### Member Distributed Loads (BLC 5 : 90 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	007	007	0	0
2	M2	Х	007	007	0	0
3	M3	Х	007	007	0	0
4	M4	Х	007	007	0	0
5	M5	Х	007	007	0	0
6	M6	Х	007	007	0	0
7	M7	Х	007	007	0	0
8	M8	Х	007	007	0	0
9	M9	Х	007	007	0	0
10	M10	Х	006	006	0	0
11	M87	Х	002	002	0	0
12	M90	Х	002	002	0	0
13	M94	Х	002	002	0	0
14	M97	Х	002	002	0	0
15	M101	Х	002	002	0	0
16	M104	Х	002	002	0	0
17	M108	Х	006	006	0	0
18	M109	Х	005	005	0	0

#### Member Distributed Loads (BLC 6 : 0 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	001	001	0	0
2	M2	Z	001	001	0	0
3	M3	Z	001	001	0	0
4	M4	Z	001	001	0	0
5	M5	Z	001	001	0	0
6	M6	Z	001	001	0	0
7	M7	Z	001	001	0	0
8	M8	Z	001	001	0	0
9	M9	Z	001	001	0	0
10	M10	Z	001	001	0	0
11	M87	Z	0002	0002	0	0
12	M90	Z	0002	0002	0	0
13	M94	Z	0002	0002	0	0
14	M97	Z	0002	0002	0	0



#### Member Distributed Loads (BLC 6 : 0 Wind - Service) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
15	M101	Z	0002	0002	0	0
16	M104	Z	0002	0002	0	0
17	M108	Z	001	001	0	0
18	M109	Z	0005	0005	0	0

#### Member Distributed Loads (BLC 7 : 90 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	001	001	0	0
2	M2	Х	001	001	0	0
3	M3	Х	001	001	0	0
4	M4	Х	001	001	0	0
5	M5	Х	001	001	0	0
6	M6	Х	001	001	0	0
7	M7	Х	001	001	0	0
8	M8	Х	001	001	0	0
9	M9	Х	001	001	0	0
10	M10	Х	001	001	0	0
11	M87	Х	0002	0002	0	0
12	M90	Х	0002	0002	0	0
13	M94	Х	0002	0002	0	0
14	M97	Х	0002	0002	0	0
15	M101	Х	0002	0002	0	0
16	M104	Х	0002	0002	0	0
17	M108	X	001	001	0	0
18	M109	X	0005	0005	0	0

#### Member Distributed Loads (BLC 8 : Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Y	021	021	0	0
2	M2	Y	021	021	0	0
3	M3	Y	021	021	0	0
4	M4	Y	021	021	0	0
5	M5	Y	021	021	0	0
6	M6	Y	021	021	0	0
7	M7	Y	021	021	0	0
8	M8	Y	021	021	0	0
9	M9	Y	021	021	0	0
10	M10	Y	021	021	0	0
11	M87	Y	013	013	0	0
12	M90	Y	013	013	0	0
13	M94	Y	013	013	0	0
14	M97	Y	013	013	0	0
15	M101	Y	013	013	0	0
16	M104	Y	013	013	0	0
17	M108	Y	021	021	0	0
18	M109	Y	014	014	0	0

#### Member Distributed Loads (BLC 28 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Y	0004154	002	2.688	4.031
2	M1	Y	002	003	4.031	5.375
3	M108	Y	003	002	.179	1.792
4	M6	Y	007	007	3.245	4.749
5	M8	Y	007	007	2.829	4.169
6	M10	Y	008	008	1.8	2.8



#### Member Distributed Loads (BLC 28 : BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
7	M109	Y	008	008	.005	1.792
8	M1	Y	0007496	008	.538	3.225
9	M6	Y	006	006	1.128	2.697
10	M10	Y	006	006	.735	1.95
11	M5	Y	005	005	4.768	5.375
12	M7	Y	003	005	0	1.487
13	M8	Y	006	005	3.469	4.956
14	M2	Y	004	004	4.742	5.375
15	M8	Y	007	004	0	1.487
16	M9	Y	003	004	3.469	4.956
17	M2	Y	003	008	.537	1.612
18	M2	Y	008	012	1.612	2.688
19	M2	Y	012	014	2.688	3.763
20	M3	Y	005	008	.537	2.15
21	M3	Y	008	01	2.15	3.762
22	M9	Y	012	009	0	2.478
23	M9	Y	009	006	2.478	4.956
24	M4	Y	005	005	4.768	5.375
25	M7	Y	003	005	3.469	4.956
26	M9	Y	006	005	0	1.487
27	M4	Y	005	008	.537	2.15
28	M4	Y	008	01	2.15	3.762
29	M5	Y	003	008	.537	1.612
30	M5	Y	008	012	1.612	2.687
31	M5	Y	012	014	2.687	3.762
32	M7	Y	006	009	0	2.478
33	M7	Y	- 009	- 012	2 478	4 956

#### Member Distributed Loads (BLC 29 : BLC 8 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Y	0004781	002	2.688	4.031
2	M1	Y	002	004	4.031	5.375
3	M8	Y	002	002	.311	1.311
4	M108	Y	003	003	.509	1.33
5	M6	Y	007	007	3.245	4.749
6	M8	Y	008	008	2.829	4.169
7	M10	Y	009	009	1.8	2.8
8	M109	Y	009	009	.005	1.792
9	M1	Y	0008245	009	.538	3.225
10	M6	Y	007	007	1.128	2.697
11	M10	Y	007	007	.735	1.95
12	M5	Y	005	005	4.768	5.375
13	M7	Y	003	005	0	1.487
14	M8	Y	006	005	3.469	4.956
15	M2	Y	005	005	4.742	5.375
16	M8	Y	008	005	0	1.487
17	M9	Y	003	005	3.469	4.956
18	M2	Y	003	009	.537	1.612
19	M2	Y	009	013	1.612	2.688
20	M2	Y	013	015	2.688	3.763
21	M3	Y	006	008	.537	2.15
22	M3	Y	008	011	2.15	3.762
23	M9	Y	013	01	0	2.478
24	M9	Y	01	007	2.478	4.956
25	M4	Y	005	005	4.768	5.375
26	M7	Y	003	005	3.469	4.956



#### Member Distributed Loads (BLC 29 : BLC 8 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
27	M9	Y	006	005	0	1.487
28	M4	Y	006	008	.537	2.15
29	M4	Y	008	011	2.15	3.762
30	M5	Y	003	009	.537	1.612
31	M5	Y	009	013	1.612	2.687
32	M5	Y	013	015	2.687	3.762
33	M7	Y	007	01	0	2.478
34	M7	Y	01	013	2.478	4.956

#### Member Area Loads (BLC 1 : Dead)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N129	N130	N9		Y	Two Way	01
2	N131	N13	N10	N132	Y	Two Way	01
3	N36	N39	N129	N13	Y	Two Way	01
4	N73	N79	N78	N72	Y	Two Way	01
5	N9	N74	N75	N69	Y	Two Way	01
6	N12	N11	N57	N54	Y	Two Way	01
7	N76	N77	N71	N70	Y	Two Way	01
8	N7	N8	N18	N21	Y	Two Way	01

#### Member Area Loads (BLC 8 : Ice)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N129	N130	N9		Y	Two Way	011
2	N131	N13	N10	N132	Y	Two Way	011
3	N36	N39	N129	N13	Y	Two Way	011
4	N73	N79	N78	N72	Y	Two Way	011
5	N9	N74	N75	N69	Y	Two Way	011
6	N12	N11	N57	N54	Y	Two Way	011
7	N76	N77	N71	N70	Y	Two Way	011
8	N7	N8	N18	N21	Y	Two Way	011

APPENDIX C

SOFTWARE ANALYSIS OUTPUT







#### Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N133	max	.872	5	2.407	21	1.612	3	.038	79	.16	5	.257	14
2		min	878	11	.53	77	-1.612	9	67	14	147	11	046	43
3	N134	max	.787	6	2.402	20	1.462	13	.077	83	.133	7	.04	83
4		min	786	12	.378	79	-1.46	7	272	19	132	13	135	75
5	N135	max	.889	4	1.133	83	.397	2	.014	83	.084	10	.17	24
6		min	886	10	.136	81	398	8	015	20	085	4	203	85
7	Totals:	max	2.351	5	5.499	19	3.319	2						
8		min	-2.351	11	1.68	13	-3.319	8						

#### Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pn	phi*Pnt	.phi*Mn	phi*Mn.	. Cb	Eqn
1	M1	C5X1.75X0.32	.489	4.983	22	.497	.952	z	14	30.173	63.128	2.07	9.514	1.965	H1-1b
2	M2	C5X1.75X0.32	.487	4.983	18	.734	.952	z	8	30.173	63.128	2.07	9.514	1.686	H1-1b
3	M3	C5X1.75X0.32	.269	4.983	2	.439	.952	v	19	30.173	63.128	2.07	9.514	2.144	H1-1b
4	M4	C5X1.75X0.32	.243	4.983	3	.367	.952	z	13	30.173	63.128	2.07	9.514	1.43	H1-1b
5	M5	C5X1.75X0.32	.241	4.983	49	.162	5.375	V	21	30.173	63.128	2.07	9.514	1.679	H1-1b
6	M6	C5X1.75X0.32	.255	4.983	14	.163	4.983	V	21	30.173	63.128	2.07	9.514	1.742	H1-1b
7	M7	C5X1.75X0.32	.176	2.478	2	.060	2.478	ý	83	33.705	63.128	2.07	9.514	1.347	H1-1b
8	M8	C5X1.75X0.32	.372	2.478	18	.455	2.478	V	25	33.705	63.128	2.07	9.514	1.371	H1-1b
9	M9	C5X1.75X0.32	.334	2.478	21	.125	2.478	ý	20	33.705	63.128	2.07	9.514	1.353	H1-1b
10	M10	C5X1.75X0.32	.114	0	13	.033	.992	z	25	51.021	63.128	2.07	9.514	1.32	H1-1b
11	M87	PIPE 2.0	.209	3.984	8	.022	3.984		8	13.511	32.13	1.872	1.872	2.205	H1-1b
12	M90	PIPE 2.0	.683	4.073	8	.044	3.984		8	13.511	32.13	1.872	1.872	1.753	H1-1b
13	M94	PIPE 2.0	.178	3.984	2	.018	3.984		2	13.511	32.13	1.872	1.872	1.683	H1-1b
14	M97	PIPE 2.0	.682	4.073	8	.038	4.073		8	13.511	32.13	1.872	1.872	1.359	H1-1b
15	M101	PIPE 2.0	.053	3.984	8	.006	3.984		8	13.511	32.13	1.872	1.872	1.88	H1-1b
16	M104	PIPE 2.0	.080	3.984	2	.009	3.984		2	13.511	32.13	1.872	1.872	2.438	H1-1b
17	M108	C5X1.75X0.32	.099	0	18	.051	.877	V	21	57.735	63.128	2.07	9.514	1.689	H1-1b
18	M109	L2x2x3	.165	1.792	19	.019	1.792	z	24	19.918	23.393	.558	1.239	1.996	H2-1

# Exhibit F

**Power Density/RF Emissions Report** 

Wireless Network Design and Deployment

### Radio Frequency Emissions Analysis Report

#### **T-MOBILE** Existing Facility

### Site ID: CT11261C

Tolland/I-84/ Fill-In 426 River Road Willington, CT 06279

July 22, 2019

**Transcom Engineering Project Number: 737001-0109** 

Site Compliance Summary						
Compliance Status:	COMPLIANT					
Site total MPE% of FCC general population allowable limit:	9.62 %					

Wireless Network Design and Deployment

July 22, 2019

T-MOBILE Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 6009

#### Emissions Analysis for Site: CT11261C - Tolland/I-84/ Fill-In

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **426 River Road**, **Willington**, **CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm2). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limits for the 600 & 700 MHz bands are approximately 400  $\mu$ W/cm² and 467  $\mu$ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Wireless Network Design and Deployment

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Wireless Network Design and Deployment

#### CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at **426 River Road, Willington, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
LTE	2100 MHz (AWS)	2	60
GSM	1900 MHz (PCS)	1	15
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Wireless Network Design and Deployment

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	RFS APXVAARR24_43-U-NA20	100
А	2	EMS RR90-17-XXDP (Dormant)	100
С	1	RFS APXVAARR24_43-U-NA20	100
С	2	EMS RR90-17-XXDP (Dormant)	100

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all **1900 MHz (PCS) & 2100 MHz** (**AWS**) radios are ground mounted the following cable loss values were used. For each ground mounted **1900 MHz (PCS)** radio there was **1.95 dB** of cable loss calculated into the system gains / losses for this site. For each ground mounted **2100 MHz (AWS)** radio there was **2.06 dB** of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for **160 feet** of **1-1/4**" coax.

Wireless Network Design and Deployment

#### RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna			Antenna Gain	Channel	Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
		1900 MHz (PCS) /					
Antenna	RFS	2100 MHz (AWS) /	15.65 / 16.35 /				
A1	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	11	415	9,767.84	5.34
Antenna	EMS						
A2	RR90-17-XXDP	Dormant	N/A	0	0	0.00	0.00
Sector A Composite MPE%					5.34		
		1900 MHz (PCS) /					
Antenna	RFS	2100 MHz (AWS) /	15.65 / 16.35 /				
C1	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	11	415	9,767.84	5.34
Antenna	EMS						
C2	RR90-17-XXDP	Dormant	N/A	0	0	0.00	0.00
Sector C Composite MPE%						5.34	

Table 3: T-MOBILE Emissions Levels

Wireless Network Design and Deployment

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, both sectors have the same configuration yielding the same results on both sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
T-MOBILE – Max Per Sector Value	5.34 %			
Willington FD	0.49 %			
AT&T	3.79 %			
Site Total MPE %:	9.62 %			

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	5.34 %
T-MOBILE Sector C Total:	5.34 %
Site Total:	9.62 %

Table 5: Site MPE Summary

Wireless Network Design and Deployment

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, both sectors have the same configuration yielding the same results on both sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ² )	Frequency (MHz)	Allowable MPE (µW/cm ² )	Calculated % MPE
T-Mobile 1900 MHz (PCS) LTE	4	937.69	100	15.26	1900 MHz (PCS)	1000	1.53%
T-Mobile 2100 MHz (AWS) LTE	2	1,611.21	100	13.11	2100 MHz (AWS)	1000	1.31%
T-Mobile 1900 MHz (PCS) GSM	1	351.63	100	1.43	1900 MHz (PCS)	1000	0.14%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	100	6.42	600 MHz	400	1.61%
T-Mobile 700 MHz LTE	2	432.54	100	3.52	700 MHz	467	0.75%
						Total:	5.34%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Wireless Network Design and Deployment

#### **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)			
Sector A:	5.34 %			
Sector C:	5.34 %			
T-MOBILE Maximum Total (per sector):	5.34 %			
Site Total:	9.62 %			
Site Compliance Status:	COMPLIANT			

The anticipated composite MPE value for this site assuming all carriers present is **9.62** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Transcom Engineering, Inc PO Box 1048 Sterling, MA 01564