

10 INDUSTRIAL AVE, SUITE 3 MAHWAH NJ 07430

PHONE: 201.684.0055 FAX: 201.684.0066

June 26, 2019

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

75 Wells Road, Wethersfield, CT 06109

Latitude: 41.7058800000 Longitude: -72.66333000000 T-Mobile Site#: CTHA506A – L600

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 95-foot level of the existing 101-foot monopole at 75 Wells Road, Wethersfield, CT. The 101-foot monopole is owned and operated by Everest Infrastructure Partners. The property is owned by Frontier Communications. T-Mobile now intends to remove three (3) of its existing antennas and add six (6) new 600/700/1900/2100 MHz antennas. The new antennas will be installed at the same 95-foot level of the tower.

Planned Modifications:

Tower:

Remove

N/A

Remove and Replace:

- (3) AIR 21 B4A/B12P (Remove) (3) AIR 32 KRD901146-1 B66A B2A Antenna (Replace) 1900/2100 MHz
- (3) RRUS11B12 (Remove) Radio 4449 B71+B12 (Replace)

Install New:

- (3) APXVAARR24 43-U-NA20 Antenna 600/700 MHz
- (3) 1-3/8" Hybrid Cables

Handrail Kit on Antenna Mounts

Existing to Remain:

- (3) AIR 21 KRC1180121 B2P/B4A Antenna 2100 MHz
- (2) 1-3/8" Hybrid Cable

Ground:

Install New: Equipment inside existing 6131 cabinet

This facility has been approved by the Council in Petition No. 1012 dated 12/1/2011. This modification complies with this approval. Please see the enclosed.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Mayor-Amy Bello, Elected Official, and Peter Gillespie, Director of Planning & Economic Development for the Town of Wethersfield, as well as the tower owner and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kyle Richers

Transcend Wireless Cell: 908-447-4716

Email: krichers@transcendwireless.com

Attachments

cc: Amy Bello – Town of Wethersfield Mayor Peter Gillespie– Town of Wethersfield Director of Planning & Economic Development Everest Infrastructure Partners – Tower Owner Frontier Communications- Property Owner

From: UPS Quantum View <pkginfo@ups.com>
Sent: Wednesday, June 26, 2019 9:05 AM
To: krichers@transcendwireless.com

Subject: UPS Ship Notification, Reference Number 1: CTHA506A CSC ZO

You have a package coming.

Scheduled Delivery Date: Thursday, 06/27/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From: TRANSCEND WIRELESS

Tracking Number: <u>1ZV257424292677964</u>

Peter Gillespie

Town of Wethersfield

Ship To: 505 Silas Deane Highway

WETHERSFIELD, CT 061092216

US

UPS Service: UPS GROUND

Number of Packages: 1

Scheduled Delivery: 06/27/2019

Signature Required: A signature is required for package delivery

Weight: 1.0 LBS

Reference Number 1: CTHA506A CSC ZO

From: UPS Quantum View <pkginfo@ups.com>
Sent: Wednesday, June 26, 2019 9:08 AM
To: krichers@transcendwireless.com

Subject: UPS Ship Notification, Reference Number 1: CTHA506A CSC EO

You have a package coming.

Scheduled Delivery Date: Thursday, 06/27/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From: TRANSCEND WIRELESS

Tracking Number: <u>1ZV257424293867971</u>

Amy Bello

Town of Wethersfield Mayor's Office

505 Silas Deane Highway WETHERSFIELD, CT 061092216

US

UPS Service: UPS GROUND

Number of Packages: 1

Scheduled Delivery: 06/27/2019

Signature Required: A signature is required for package delivery

Weight: 1.0 LBS

Reference Number 1: CTHA506A CSC EO

×

Ship To:

From: UPS Quantum View <pkginfo@ups.com>
Sent: Wednesday, June 26, 2019 9:11 AM
To: krichers@transcendwireless.com

Subject: UPS Ship Notification, Reference Number 1: CTHA506A CSC PO

You have a package coming.

Scheduled Delivery Date: Thursday, 06/27/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From: TRANSCEND WIRELESS

Tracking Number: <u>1ZV257424291061988</u>

Frontier Communications

Ship To: 401 Merritt 7

NORWALK, CT 068511000

US

UPS Service: UPS GROUND

Number of Packages: 1

Scheduled Delivery: 06/27/2019

Signature Required: A signature is required for package delivery

Weight: 1.0 LBS

Reference Number 1: CTHA506A CSC PO

×

From: UPS Quantum View <pkginfo@ups.com>
Sent: Wednesday, June 26, 2019 9:15 AM
To: krichers@transcendwireless.com

Subject: UPS Ship Notification, Reference Number 1: CTHA506A CSC TO

You have a package coming.

Scheduled Delivery Date: Friday, 06/28/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From: TRANSCEND WIRELESS

Tracking Number: <u>1ZV257424290859995</u>

Everest Infrastructure Partners

1435 Bedford Avenue

Ship To: Suite 108

PITTSBURGH, PA 152193675

US

UPS Service: UPS GROUND

Number of Packages: 1

Scheduled Delivery: 06/28/2019

Signature Required: A signature is required for package delivery

Weight: 1.0 LBS

Reference Number 1: CTHA506A CSC TO

×

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2018.

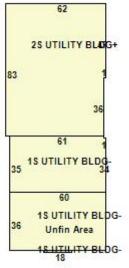
Information on the Property Records for the Municipality of Wethersfield was last updated on 5/22/2019.

Parcel Information

Location:	75 WELLS RD	Property Use:	Industrial	Primary Use:	Utility Building
Unique ID:	205069	Map Block Lot:	205 069	Acres:	0.90
490 Acres:	0.00	Zone:	SRD/A	Volume / Page:	0121/0472
Developers Map / Lot:	3A	Census:	4922		

Value Information

	Appraised Value	Assessed Value
Land	371,250	259,870
Buildings	435,101	304,570
Detached Outbuildings	686,169	480,320
Total	1,492,520	1,044,760


Owner's Information

Owner's Data

SOUTHERN N E TELEPHONE CO C/O FRONTIER COMMUNICATIONS 401 MERRITT 7 TAX DEPT

Building 1

Category:	Industrial	Use:	Utility Building	GLA:	14,497
Stories:	2.00	Construction:	Masonry	Year Built:	1939

Heating:	Hot Water	Fuel:	Oil	Cooling Percent:	100
Siding:	Brick/Pre-Finish Metal	Roof Material:	Tar and Gravel	Beds/Units:	0

Special Features

Attached Components

Type:	Year Built:	Area:
Unfinished Area	1939	2,160

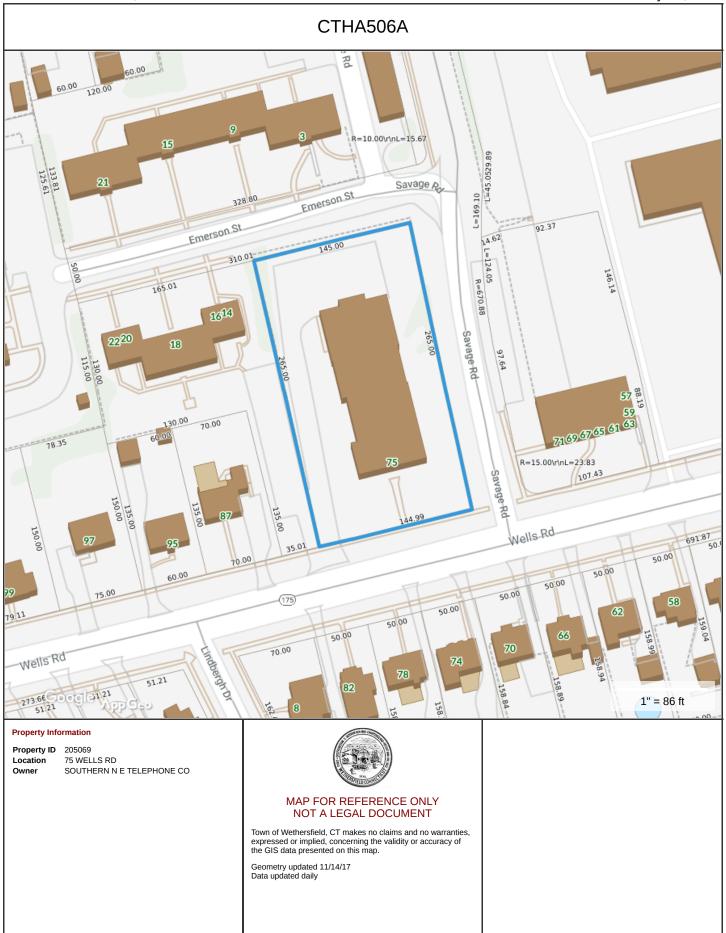
Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
PreCastConCel	2003	200.00	0.00	200
Paving	1999	0.00	0.00	2,400
Cell Tower	2000	0.00	0.00	1

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Valid Sale	Sale Price
SOUTHERN N E TELEPHONE CO	0121	0472	11/30/1946		No	\$0

Building Permits


Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
B-17-502	Miscellaneous	10/11/2018		Closed	CELL TOWER WORK (AT&T)

Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
B-16-545	Comm Renovations	11/08/2016		Permit Issued	REMOVE 3 ANTENNA AND REPL WITH 3 NEWER MODELS. ADD 2 NEW RRUS PER SECTOR FOR 6 TOTAL. ADD 1 DC6 S
B-16-552	Comm Renovations	11/04/2016		Permit Issued	REPL EXISTING 6201 CABINET W/ NEW 6131 CABINET. ADD 6 NEW COAX LINES & 1 NEW HYBRID. REPL 3 EXIST
E-15-251	Electrical	07/20/2015		Permit Issued	INSTALL NEW 200 AMP METER & NEW ELECTRICAL FOR T-MOBILE CABINET W/ PIPING & FIBER
E-15-284	Electrical	07/20/2015		Permit Issued	INSTALL SURFACE MOUNT FEED IN RIGID PIPE FROM METER TO NEW PPC CABINET
B-15-26	Comm Renovations	03/05/2015		Permit Issued	16x10 CONCRETE PAD, ANTENNA T ANN MOUNTING TO EXISTING TOWER. 16 NEW ANTENNAS, 8' HIGH ICE BRIDGE,
E-13-8	Electrical	01/14/2013		Permit Issued	INSTALL NEW 200 AMP PANEL ON EXISTING METER CAN
M-10-24	HVAC	07/28/2010		Permit Issued	Replace existing a/c split sys. & ductwork
B-10-119	Other	07/08/2010		Permit Issued	Instsall reinforcement to existing 101.5' monopole tower.
MP-0199	HVAC	12/23/2009		Permit Issued	Install 3 split a/c systems & ducts on roof
EP-0227	Electrical	09/10/2009		Permit Issued	Wiring for new ac and controls
MP-0075	HVAC	06/03/2009		Permit Issued	Replace air cond. unit
BP06840	Comm Renovations	12/28/2006		Permit Issued	Change Cellular antennas
BP03629	Comm Renovations	10/10/2003		Permit Issued	Foundation for generator
EP03344	Electrical	10/03/2003		Permit Issued	Install generator
MP03041	HVAC	04/29/2003		Permit Issued	Install 2 A/C units
EP03086	Electrical	04/11/2003		Permit Issued	Wire A/C-2nd fl

Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
EP03066	Electrical	03/17/2003		Permit Issued	Wire A/C per plan
BP0356	Comm Renovations	02/12/2003		Permit Issued	Revamp 1st fl
MP02202	HVAC	12/31/2002		Permit Issued	A/C-computer rm
BP02824	Comm Renovations	12/05/2002		Permit Issued	Partial demolition-CMU unit
BP02626	Comm Renovations	09/23/2002		Permit Issued	6X10.4 concrete pad & antennas
MP01030	HVAC	02/12/2001		Permit Issued	Trane A/C
EP000415	Electrical	11/15/2000		Permit Issued	1200 amp service
EP000416	Electrical	11/15/2000		Permit Issued	Repl tank level system
EP000246	Electrical	06/29/2000		Permit Issued	Telecom Install
MP990137	HVAC	09/09/1999		Permit Issued	INSTALL AIR HANDLER & COOLING UNIT
EP990184	Electrical	06/25/1999		Permit Issued	
BP990306	Comm Renovations	06/21/1999		Permit Issued	
8737	Comm Renovations	10/26/1998		Permit Issued	

Information Published With Permission From The Assessor

Town of Wethersfield, CT May 23, 2019

Petition No. 1012 MetroPCS 75 Wells Road, Wethersfield, Connecticut Staff Report December 1, 2011

On October 26, 2011, the Connecticut Siting Council (Council) received a petition (Petition) from MetroPCS for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed modifications to an existing telecommunications facility at 75 Wells Road in Wethersfield. Specifically, MetroPCS seeks to co-locate on an existing 104-foot tall monopole owned by New Cingular Wireless PCS LLC (AT&T). The existing tower, located adjacent to the east side of an existing building, currently supports AT&T. T-Mobile and Verizon have existing leases for tower space but have not located on the tower to date.

MetroPCS seeks to install six panel antennas on t-arms at the 75-foot level of the tower. The tower and foundation would require modifications to support the new equipment.

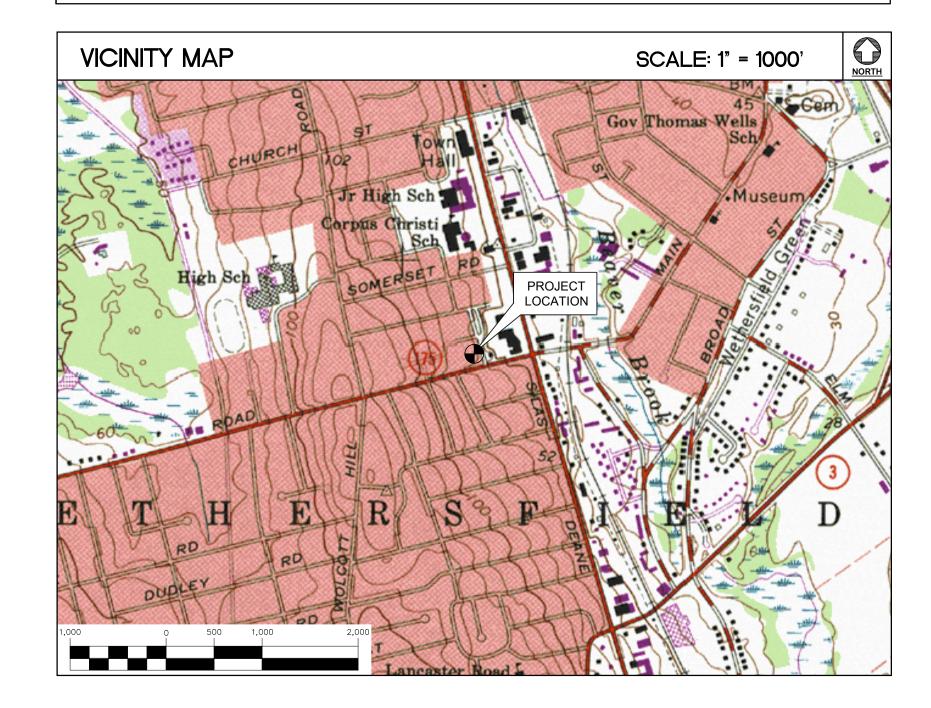
MetroPCS would install three equipment cabinets adjacent to the existing fenced compound area. The ground equipment would require MetroPCS to expand the existing compound and lease area to the south. The new fenced area would extend 17 feet to the south, then angle 12 feet to the west, terminating at the existing building. The new fence would match the existing. Three new plantings would be installed along the east side of the new fenced area to screen views from Wells Road and Savage Road. Staff recommends one additional evergreen planting along the south side of the compound extension to provide further screening.

There are no wetlands at the site. One evergreen shrub would be removed. The addition of new plantings along the fence line of the compound expansion area would mitigate views of the compound from the south and east. Evergreens along the east side and north side of the existing compound would remain. The maximum worst-case power density including AT&T's existing and T-Mobile's and Verizon's proposed equipment, would be 53 percent of the applicable limit.

- T- - Mobile -

WIRELESS COMMUNICATIONS FACILITY

VETHERSFIELD MONOPOLE CTHA506A 75 WELLS ROAD WETHERSFIELD, CT 06109


GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, 2017 NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.

- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

SITE DIRECTIONS FROM: 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 TO: 75 WELLS ROAD WETHERSFIELD, CT 06109 HEAD NORTH ON GRIFFIN ROAD S. TOWARD HARTMAN RD. 0.30 MI. . TAKE THE 2ND RIGHT ONTO DAY HILL RD. 0.14 MI. 3. TAKE THE 1ST RIGHT ONTO BLUE HILLS AVENUE EXT/CT-187 1.89 MI. 4. TURN LEFT ONTO CT-305/OLD WINDSOR RD. 2.33 MI. . MERGE ONTO I-91 S TOWARD HARTFORD 8.33 MI. 6. MERGE ONT US-5 S/CT-15 S via EXIT 28 TOWARD WETHERSFIELD/NEWINGTON/BERLIN TPKE 0.97 MI. . MERGE ON SILAS DEANE HWY/CT-99 S via EXIT 85 TOWARD ROCKY HILL/WETHERSFIELD 1.71 MI. 8. TURN RIGHT ONTO WELLS RD/CT-175 0.11 MI.

9. 75 WELLS RD, WETHERSFIELD, CT 06109-3050, 75 WELLS RD IS ON THE RIGHT

T-MOBILE RF CONFIGURATION

67D92DB_2xAIR+10P

PROJECT SUMMARY

THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION
 TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY

INCLUDING THE FOLLOWING:

ON THE FOLLOWING:

A. REMOVE (3) EXISTING ANTENNAS, TYP. (1) PER SECTOR
B. INSTALL (3) LB/MB OCTO 8' ANTENNAS, TYP. (1) PER SECTOR
C. INSTALL (3) AIR32 B66A/B2A ANTENNAS, TYP. (1) PER SECTOR

D. REMOVE (3) RRUS11 B12, TYP. (1) PER SECTOR
E. INSTALL (3) RADIO 4449, TYP. (1) PER SECTOR

F. REMOVE (1) DUS41 AND (1) XMU G. INSTALL (2) BB6630 H. INSTALL (3) NEW 6X12 HYBRIDS

H. INSTALL (3) NEW 6X12 HYBRIDS

I. INSTALL (1) 125 AMP CABINET BREAKER

J. INSTALL HANDRAIL KIT ON MOUNT.

PROJECT INFORMATION

SITE ID:

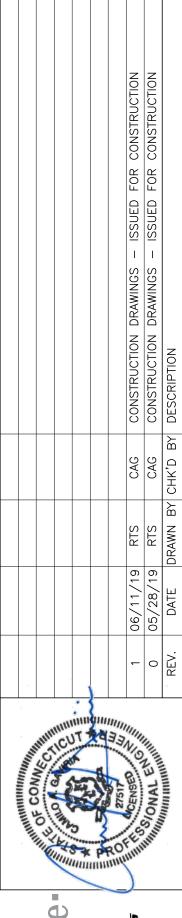
SITE NAME: WETHERSFIELD MONOPOLE

CTHA506A

SITE ADDRESS: 75 WELLS ROAD
WETHERSFIELD, CT 06109

APPLICANT: T-MOBILE NORTHEAST, LLC
35 GRIFFIN ROAD SOUTH

BLOOMFIELD, CT 06002


CONTACT PERSON: DAN REID (PROJECT MANAGER)
TRANSCEND WIRELESS, LLC
(203) 592-8291

ENGINEER: CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405

PROJECT COORDINATES: LATITUDE: 41°-42'-21.07" N
LONGITUDE: 72°-39'-48.26" W
GROUND ELEVATION: ±74' AMSL

SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

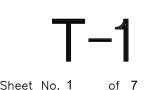
SHEET INDEX							
SHT. NO.	DESCRIPTION	REV					
T-1	TITLE SHEET	1					
N-1	DESIGN BASIS AND SITE NOTES	1					
C-1	SITE LOCATION PLAN	1					
C-2	COMPOUND PLAN AND ELEVATION	1					
C-3	ANTENNA MOUNTING CONFIGURATION	1					
E-1	TYPICAL ELECTRICAL DETAILS	1					
E-2	TYPICAL ELECTRICAL DETAILS	1					

(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405

SE COMMUNICATIONS FACILITY

FIELD MONOPOL

D: CTHA506A


WETHERSFI SITE ID

DATE: 04/24/19

SCALE: AS NOTED

JOB NO. 19027.22

TITLE SHEET

DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CT STATE BUILDING CODE AND AMENDMENTS.

- 1. DESIGN CRITERIA:
- RISK CATEGORY: II (BASED ON IBC TABLE 1604.5)
- NOMINAL DESIGN SPEED (OTHER STRUCTURE): 97 MPH (Vasd) (EXPOSURE B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7—10) PER 2015 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES.

GENERAL NOTES:

- 1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.
- 2. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- 5. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- 6. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- 7. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- 8. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
- 10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
- 11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
- 13. NO DRILLING WELDING OR TAPING ON EVERSOURCE OWNED EQUIPMENT.
- 14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.

STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
 - A. STRUCTURAL STEEL (W SHAPES) --- ASTM A992 (FY = 50 KSI)
 - B. STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY = 36 KSI)
 C. STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B,
 - (FY = 46 KSI)
 D. STRUCTURAL HSS (ROUND SHAPES)———ASTM A500 GRADE B,
- (FY = 42 KSI)
- F. CONNECTION BOLTS———ASTM A325—N

PIPE---ASTM A53 (FY = 35 KSI)

- G. U-BOLTS---ASTM A36 H. ANCHOR RODS---ASTM F 1554
- I. WELDING ELECTRODE——ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

0		0	1					0
				0 111	lter.			
	HIII	'C/	T A STATE OF THE S	49	33,	1111	WILL EN IN	
11111	ųς	8	K		****	(O		
		3	H	1	517	NSE	AL	
	5	3	N	*	23	Ę,	o,	
	, W	b.	Ö			45	HILL	·
	10	IIIII	5 ★	P	111/1	iiiii		
						<u>) </u>		
		1)						
						55		

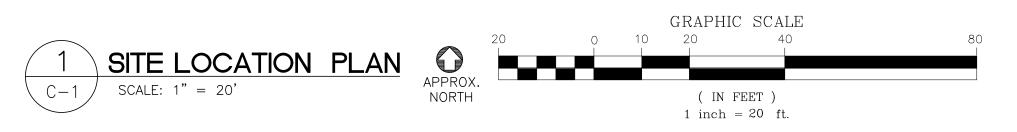
-- T -- Mobile

'203) 488-0580 '203) 488-8587 Fax 53-2 North Branford Road Sranford, CT 06405

MONOPOLE (20)
HA506A (20)
Brown

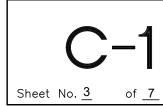
WETHERSFIELD MON SITE ID: CTHA50

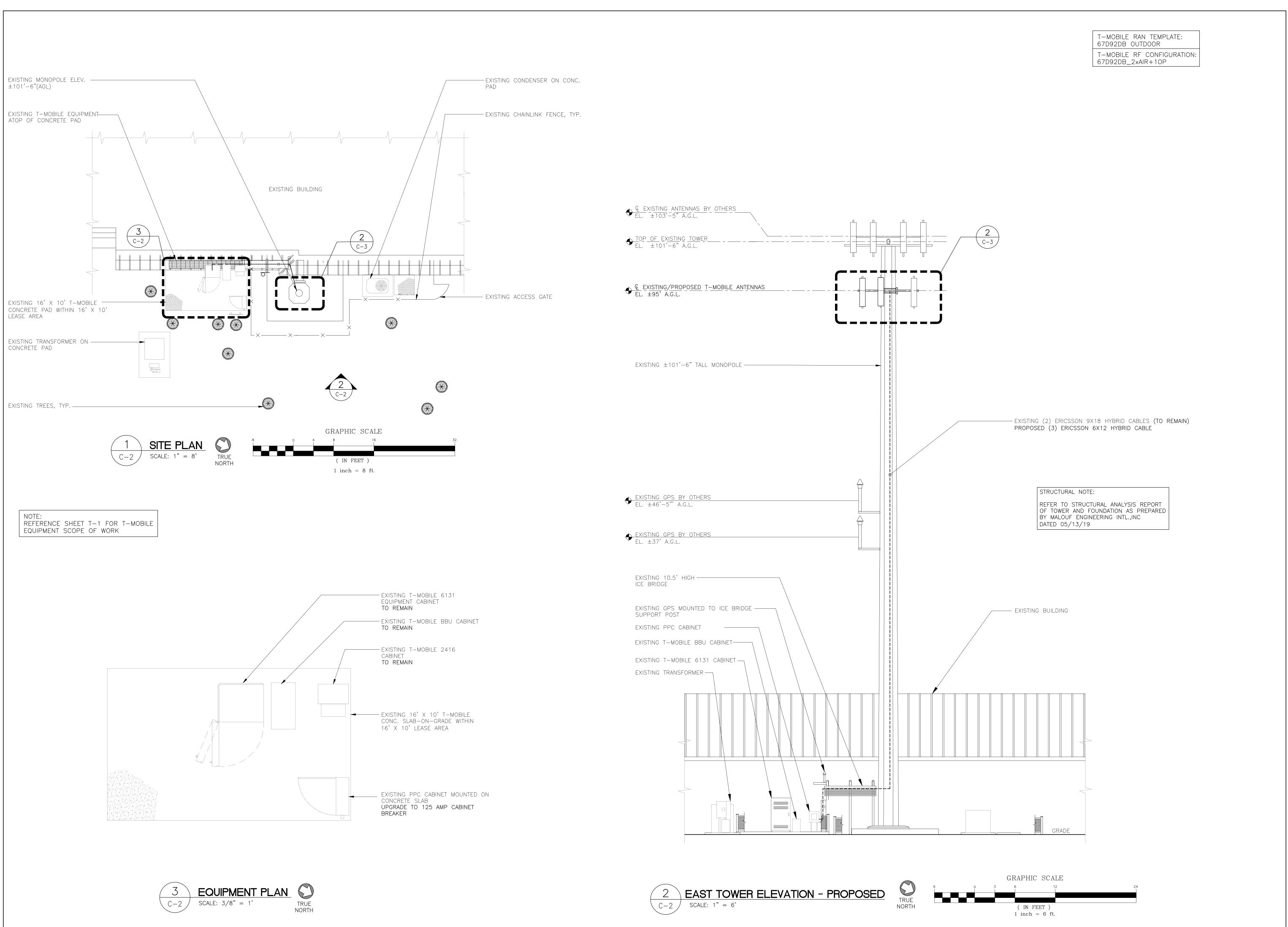
DATE: 04/24/19


SCALE: AS NOTED

JOB NO. 19027.22

DESIGN BASIS AND SITE NOTES



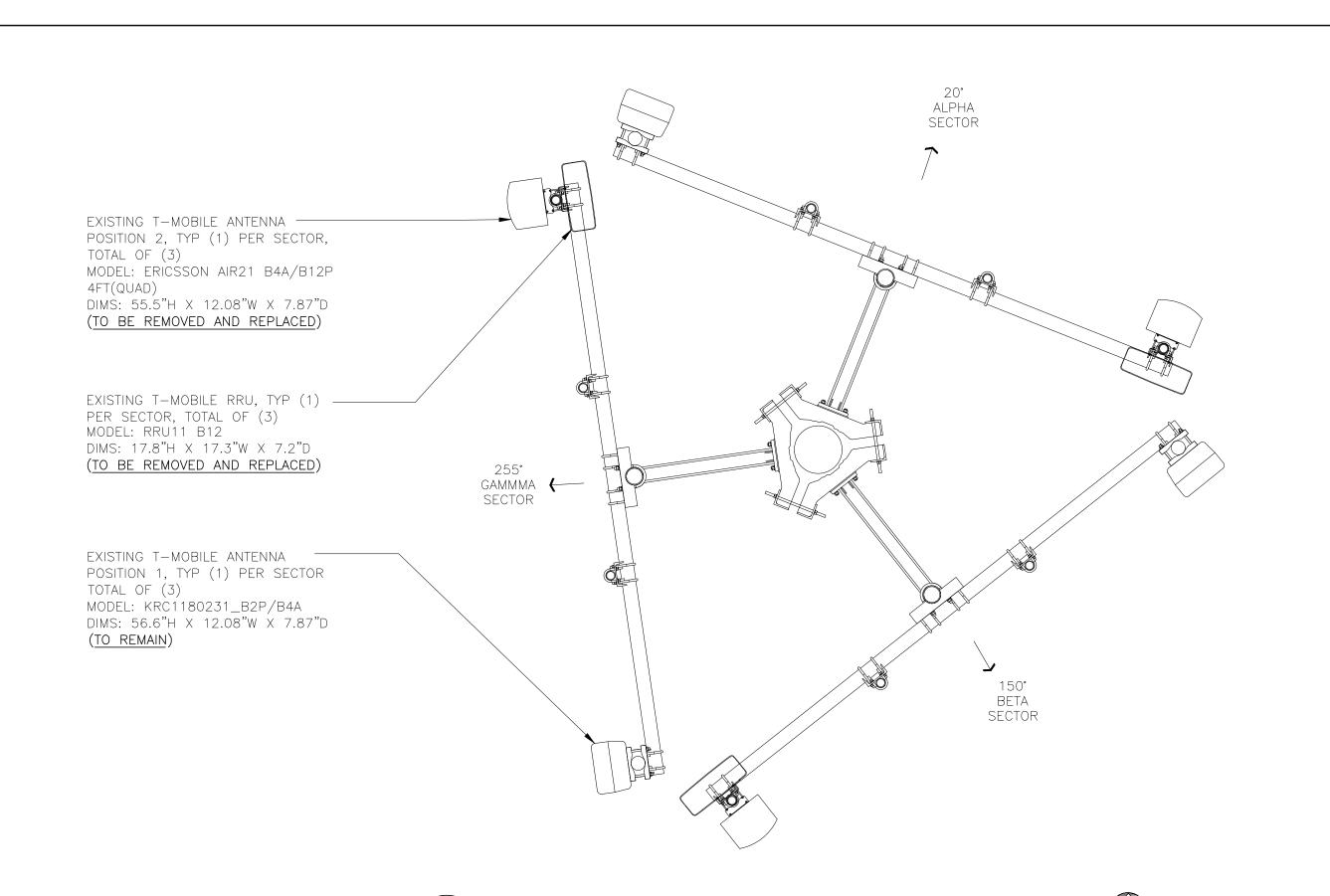

WETHERSFIELD MONOPOLE
SITE ID: CTHA506A
75 WELLS ROAD
WETHERSFIELD, CT 06109

DATE: 04/24/19

SCALE: AS NOTED JOB NO. 19027.22

SITE LOCATION PLAN


-Mobile


(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Branford, CT 06405

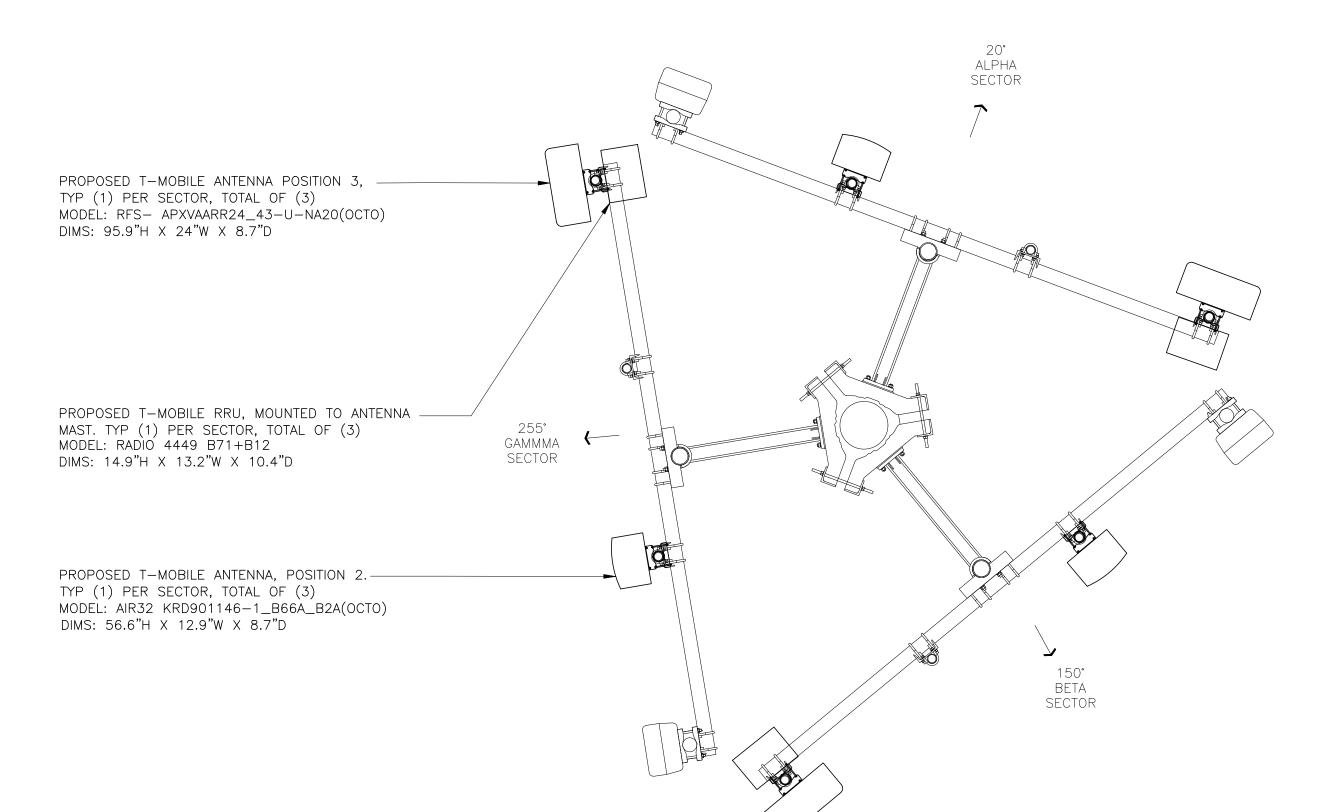
WETHERSFIELD MONOPOL SITE ID: CTHA506A

04/24/19 SCALE: AS NOTED JOB NO. 19027.22

COMPOUND PLAN, AND ELEVATION

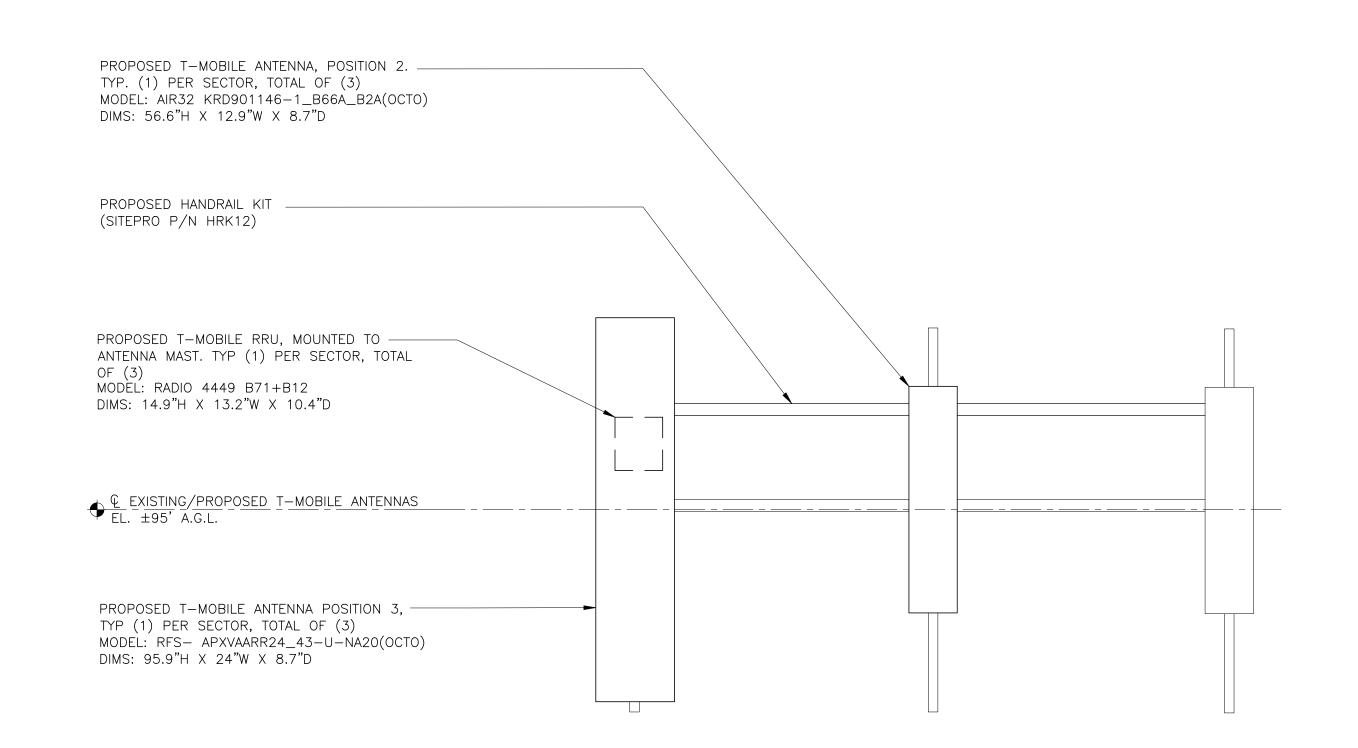
EXISTING ANTENNA MOUNTING CONFIGURATION

PROPOSED ANTENNA MOUNTING CONFIGURATION


TRUE NORTH

> TRUE NORTH

EXISTING T-MOBILE ANTENNA, POSITION 1. ——— TYP (1) PER SECTOR, TOTAL OF (3) MODEL: KRC1180231_B2P/B4A DIMS: 56.6"H X 12.08"W X 7.87"D (TO REMAIN) EXISTING T-MOBILE RRU, POSITION 2. TYP ---(1) PER SECTOR, TOTAL OF (3) MODEL: RRU11 B12 DIMS:17.8"H X 17.3"W X 7.2"D (TO BE REMOVED AND REPLACED) EXISTING T-MOBILE ANTENNA, POSITION 2. — TYP (1) PER SECTOR, TOTAL OF (3) MODEL: ERICSSON AIR21 B4A/B12P 4FT(QUAD) DIMS: 55.5"H X 12.08"W X 7.87"D (TO BE REMOVED AND REPLACED)


1A EXISTING ANTENNA ELEVATION

C-3 SCALE: 3/4" = 1'

SCALE: 1/2" = 1'

C-3 SCALE: 1/2" = 1'

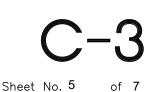
							CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION
							CAG	CAG
							RTS	28/19 RTS
							06/11/90	05/28/19
	٥		0	1			1	0
	WILL	T.C.	ICI	11111 T	9111	IIIIII BB/	WINING STATE	THE PARTY OF THE P

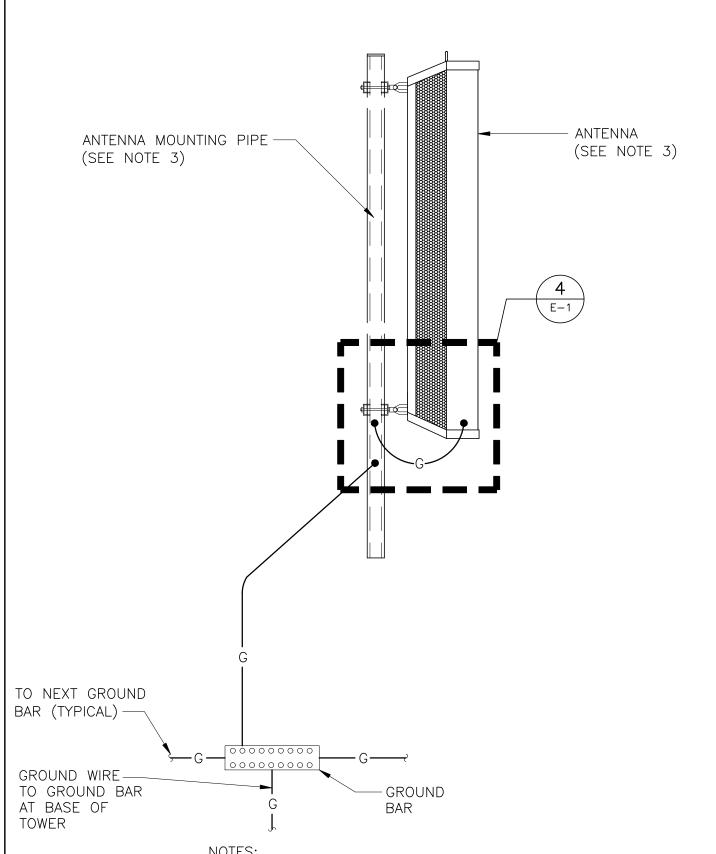
bile - Convergence Convergence

-- T -- Mobile

03) 488-0580 03) 488-8587 Fax 3-2 North Branford Road anford, CT 06405

MONOPOLE (203) 488 (203) 4

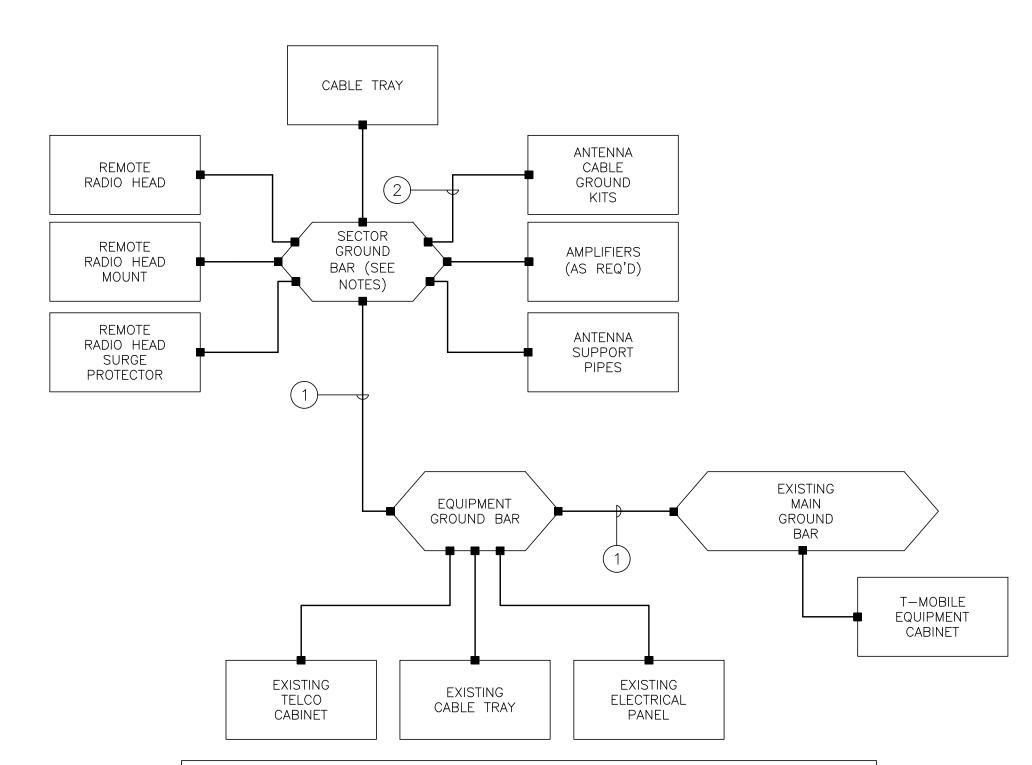

WETHERSFIELD MONOF
SITE ID: CTHA506A


DATE: 04/24/19

SCALE: AS NOTED

JOB NO. 19027.22

ANTENNA MOUNTING CONFIGURATION



- 1. BOND COAXIAL CABLE GROUND KITS TO EACH OWNER'S GROUND BAR ALONG ENTIRE COAX RUN FROM ANTENNA TO SHELTER.
- 2. BOND ALL EQUIPMENT TO GROUND PER NEC AND MANUFACTURERS SPECIFICATIONS.
- 3. DETAIL IS TYPICAL FOR ALL ANTENNA SECTORS, INCLUDING GPS ANTENNA.

TYPICAL ANTENNA GROUNDING DETAIL SCALE: NOT TO SCALE

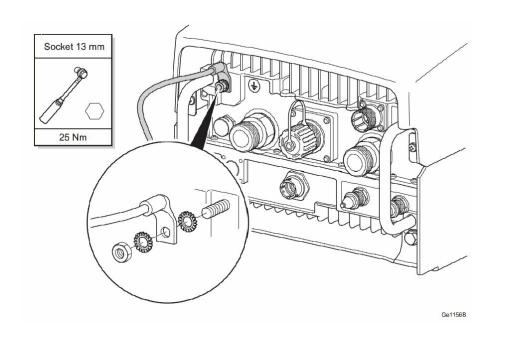
GROUNDING SCHEMATIC NOTES

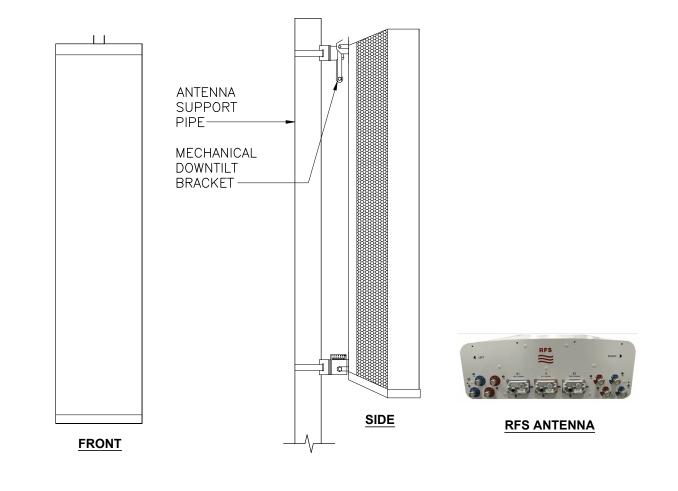
#2 AWG

#6 AWG

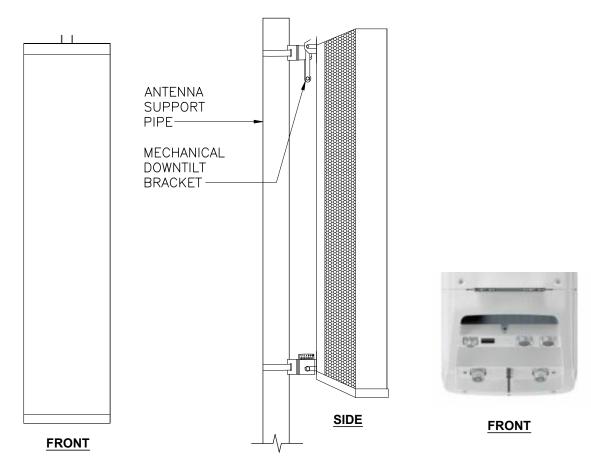
GENERAL NOTES:

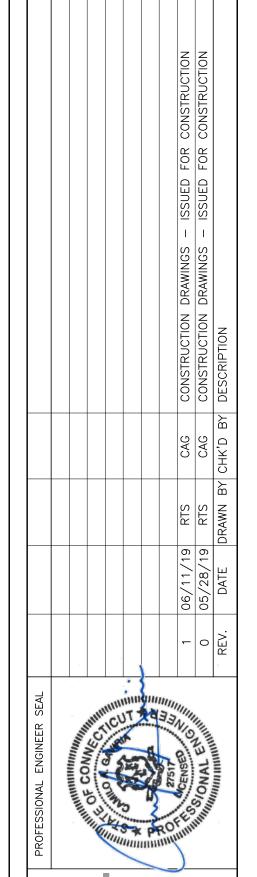
- 1. ALL SURGE SUPPRESSION EQUIPMENT SHALL BE BONDED TO GROUND PER MANUFACTURER'S SPECIFICATIONS
- 2. UNLESS OTHERWISE NOTED OR REQUIRED BY CODE, GROUND CONDUCTORS SHOWN SHALL BE #2 AWG (SOLID TINNED BCW - EXTERIOR; STRANDED GREEN INSULATED — INTERIOR).
- 3. ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG SOLID TINNED BCW.
- 4. BOND ALL EQUIPMENT CABINETS AND BATTERY CABINETS TO GROUND PER MANUFACTURER'S SPECIFICATIONS.
- 5. COORDINATE ALL ROOF MOUNTED EQUIPMENT WITH OWNER.
- 6. ALL ROOF MOUNTED AMPLIFIERS AND ASSOCIATED EQUIPMENT SHALL BE BONDED TO THE SECTOR GROUND BAR PER MANUFACTURER'S SPECIFICATIONS.
- 7. ALL GROUNDING SHALL BE IN ACCORDANCE WITH NEC AND OWNER'S REQUIREMENTS.


TYPICAL GROUNDING SCHEMATIC DETAIL SCALE: NOT TO SCALE


ISOMETRIC VIEW

RRU (REMOTE RADIO UNIT)								
EQUIPME	NT	DIMENSIONS	WEIGHT	CLEARANCES				
MAKE: MODEL:	ERICSSON RADIO 4449 B71B12	14.9"L x 13.2"W x 10.4"D	74 LBS.	ABOVE: 16" MIN. BELOW: 12" MIN. FRONT: 36" MIN.				
		COORDINATE FINAL EQUIPMENT NAGER PRIOR TO ORDERING.	MODEL SELECTION WI	TH T-MOBILE				



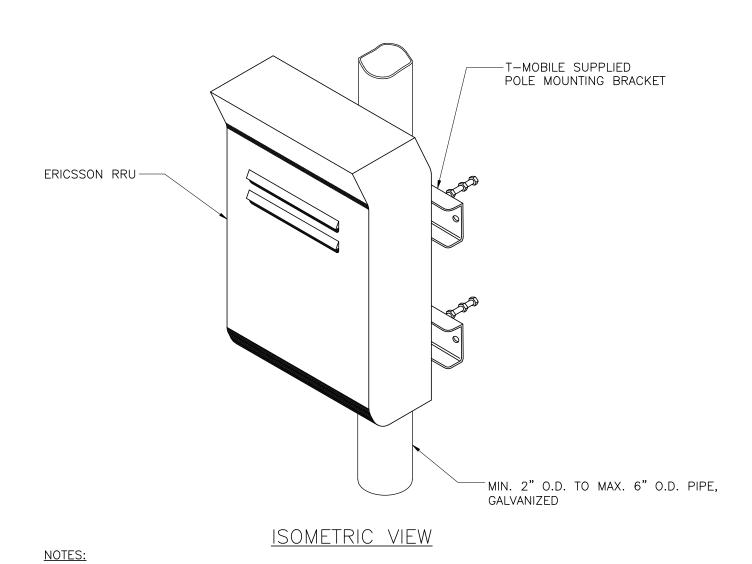

ALPHA/BETA/GAMMA ANTENNA							
	EQUIPMENT	DIMENSIONS	WEIGHT				
MAKE: MODEL:	RFS APXVAARR24_43-U-NA20	95.9"H x 24"W x 8.7"D	153 LBS.				

PROPOSED ANTENNA DETAIL SCALE: NOT TO SCALE

ALPHA/BETA/GAMMA ANTENNA						
EQUIPMENT	DIMENSIONS	WEIGHT				
MAKE: ERICSSON MODEL: AIR32 KRD901146-1_B66A_B2A	56.6"H × 12.9"W × 8.7"D	132.2 LBS.				

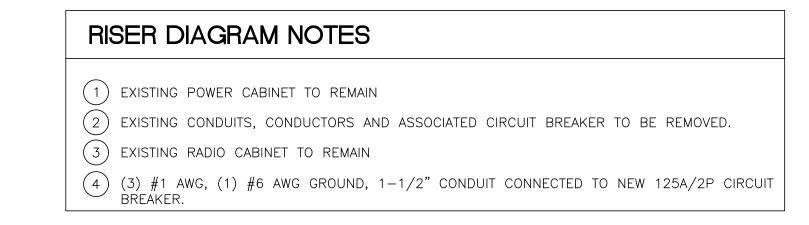
-Mobile

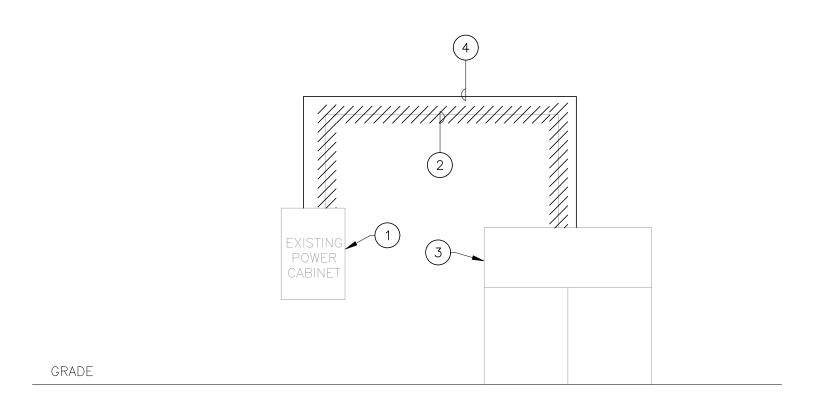
MONOPOLI HA506A WETHERSFIELD | SITE ID: CTF

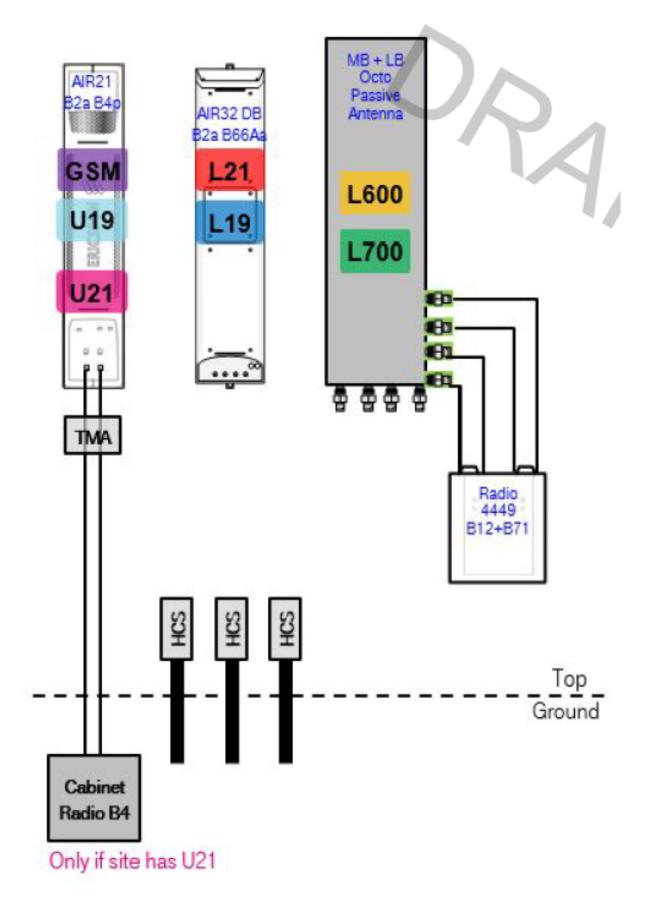

04/24/19 SCALE: AS NOTED JOB NO. 19027.22 **TYPICAL** ELECTRICAL

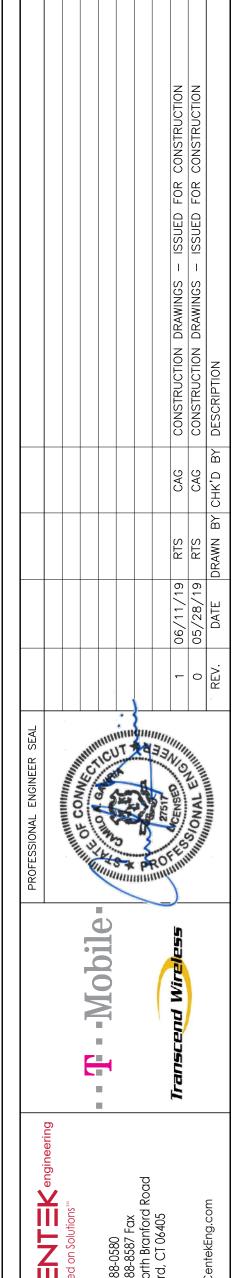
Sheet No. <u>6</u> of <u>7</u>

DETAILS




TO MOUNTING PIPE


- T-MOBILE SHALL SUPPLY RRU, AND RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL SUPPLY POLE/PIPE AND INSTALL ALL MOUNTING HARDWARE INCLUDING ERICSSON RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL INSTALLS RRU AND MAKES CABLE TERMINATIONS.
- 2. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.



WETHERSFIELD MONOPOLE
SITE ID: CTHA506A
75 WELLS ROAD
WETHERSFIELD, CT 06109

DATE: 04/24/19

SCALE: AS NOTED

JOB NO. 19027.22

TYPICAL ELECTRICAL DETAILS

Sheet No. <u>7</u> of <u>7</u>

Rigorous Structural Analysis Report

T-Mobile - Wethersfield Site #CTHA506A Owner: Everest Infrastructure - Wethersfield CO Site Wethersfield, Connecticut

May 13, 2019

MEI PROJECT ID: CT04861M-19V1

17950 Preston Road, Suite 720 ■ Dallas, Texas 75252 ■ Tel. 972 -783-2578 Fax 972-783-2583 **www.maloufengineering.com**

May 13, 2019

Mr. Kyle Richers Transcend Wireless Mahwah, NJ 04730

RIGOROUS STRUCTURAL ANALYSIS

Structure/Make/Model:	101 ft M c	onopole	Not Kno	wn / 18-Sided		
Client/Site Name/#: Transcend Wireless T-Mobile			Wethers	Wethersfield #CTHA506A		
Owner/Site Name/#:	Everest Infrastructure			Wethersfield CO		
MEI Project ID:	ID: CT04861M-19V1					
Location:	Location: 75 Wells Rd		Hartford County			
	Wethersfi	eld, Connecticut 06109	FCC #1200438			
	LAT	41-42-21.2 N	LON	72-39-48.0 W		

EXECUTIVE SUMMARY:

Malouf Engineering Int'l (MEI), as requested, has performed a rigorous structural analysis of the above-mentioned structure to assess the impact of the changed condition as noted in Table 1.

Based on the stress analysis performed, the existing structure **is in conformance** with the Int'l Building Code (IBC) / ANSI/TIA-**222-G** Standard for the loading considered under the criteria listed and referenced in the report sections – tower rated at 99.5% - Base Plate.

The installation of the proposed changed condition as noted in Table 1 is structurally acceptable. Please refer to Appendix 1 for Schematic Lines Layout.

MEI appreciates the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or other projects, please contact us.

Respectfully submitted,

MALOUF ENGINEERING INT'L, INC.

Analysis performed by:

Luan Nguyen, PE Sr. Project Engineer Reviewed & Approved by:

E. Mark Malouf, PE

Connecticut #17715

972-783-2578 ext. 106

mmalouf@maloufengineering.com

5/13/2019

TABLE OF CONTENTS

1.	INTRODUCTION & SCOPE	4
2.	SOURCE OF DATA	4
	Background Information:	2
3.	ANALYSIS CRITERIA	5
	Appurtenances Configuration	
4.	ANALYSIS PROCEDURE	6
	Analysis Program	
	Assumptions	
5 .	ANALYSIS RESULTS	7
6.	FINDINGS & RECOMMENDATIONS	8
7.	REPORT DISCLAIMER	
APP	PENDIX 1 - ANALYSIS PRINTOUT & GRAPHICS	10
ΔPP	PENDIX 2 – SOURCE / CHANGED CONDITION	11

1. INTRODUCTION & SCOPE

A rigorous structural analysis was performed by Malouf Engineering Int'l (MEI), as requested and authorized by Mr. Kyle Richers, Transcend Wireless, on behalf of T-Mobile, to determine the acceptance of the proposed changed conditions in conformance with the IBC / ANSI/TIA-222-G Standard, "Structural Standard for Antenna Supporting Structures and Antennas".

The scope of this independent analysis is to determine the overall stability and the adequacy of structural members, foundations, and member connections, as available and stated. This analysis considers the structure to have been properly installed and maintained with no structural defects. Installation procedures and related loading are not within the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

The different report sections detail the applicable information used in this evaluation, relating to the tower data, the appurtenances configuration and the wind and ice loading considered.

2. SOURCE OF DATA

The following information has been used in this evaluation as source data that accurately represent the existing structure and the related appurtenances:

	Source	Information	Reference		
STRUCTURE					
Tower	MEI Records	Previous Structural Analysis	ID CT04861M-19V0 Dated 03/26/2019		
Foundation	MEI Records	Previous Structural Analysis	ID CT04861M-19V0 Dated 03/26/2019		
Material Grade	Not available from supplied documents-Assumed based on typical towers of this type-refer to Appendix				
CURRENT APPURTENANCES					
	MEI Records	Previous Structural Analysis	ID CT04861M-19V0 Dated 03/26/2019		
CHANGED CONDITION					
	Transcend Wireless Mr. Kyle Richers	T-Mobile Collocation Application	Dated 04/30/2019		

Background Information:

Based on available information, the following is known regarding this structure:

DESIGNER / FABRICATOR	Not Known / 18-Sided
ORIGINAL DESIGN CRITERIA	TIA/EIA 222-Unknown
PRIOR STRUCTURAL MODIFICATIONS	As per GPD Group base plate and anchor rod modifications Job #2009264.50 dated 06/12/2009; pole shaft modifications by others as per B+T mapping report dated 07/17/2014 – considered properly installed.

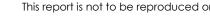
3. **ANALYSIS CRITERIA**

The structural analysis performed used the following criteria:

CODE / STANDARD	2018 CT Buildi	2018 CT Building Code / 2015 Int'l Building Code / ANSI/TIA-222-G-4 Standard				
LOADING CASES	Full Wind:	129 Mph ultimate gust [equiv. 100 Mph (3-sec gust)] w/No Radial Ice**				
	Iced Case:	40 Mph + 1.25" Radial Ice				
	Service:	60 Mph				
	Seismic:	$S_s = 0.181 / S_1 = 0.064 / Site Class: D - Stiff Soil$				
STRUCTURE CRITERIA	Risk Category	Risk Category (Structural Class): 2				
	Exposure Cate	xposure Category: 'B' - Topographic Category: 1				

Appurtenances Configuration

The following appurtenances configuration is denoted by the summation of Tables 1 & 2:


Table 1: **Tenant with Changed Condition Appurtenances Configuration**

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description Mount Description		Lines Qty	Line size & Location		
95	T-Mobile	3	AIR32 KRD901146-1 B66A B2A Panel Antennas	[Existing Mount] w/ New Handrail Kit	4	1-5/8 Hybrid- Fiber cables –		
		3	APXVAARR24_43-U-NA20 Panel Antennas			(1)		
		3	Radio 4449 B71/B12 Boxes					
			Appurtenances t	o Remain				
95	T-Mobile	3	AIR21 KRC118023 B2P B4A Panel Antennas	(3) 12.5 ft. L.P. T-Arm Mounts (SitePro1 RMV12-3XX)	6	7/8" 1-5/8 Hybrid- Cable – (I)		
	Appurtenances to be Removed							
95	T-Mobile	3	AIR21 B4A B12P Panel Antennas					
		3	RRUS-11 B12 Boxes					

Table 2: Remaining Tenants Current and Reserved/Future Appurtenances

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Qty	Line size & Location
101		1	5' Lightning Rod		1	1/2" - (I)
		1	Beacon/Strobe			
103.5	AT&T	3	HPA-65R-BUU-H6 Panel Antennas	(3) SitePro1 RRU Dual Swivel		[Existing Lines]
	[New]	3	RRUS-32 B66 Boxes	Mounts #RRUDSM (2/sector)		
	AT&T	3	QS66512-3 Panel Antennas	Top Platform w/ Rails (& Ladder)	12	1-5/8"
		3	7770.00 Panels Panel Antennas		2	5/8" Fiber
103.5		3	RRUS-11 Boxes		4	3/4" DC Powe
		3	RRUS-32 Boxes		Caple-	ATCB-B01-xxx
		3	RRUS-32 B2 Boxes			
		2	Raycap DC6 (Squid) Suppressors			Cable-(i/L)
		6	LGP21401 TMA'S			
		6	TPX-070821 Triplexers			
46.5		1	GPS Antenna	18" ±. Standoff Arm Mount	1	3/8"-(E)
37		1	GPS Antenna	18" ± Standoff Arm Mount	1	3/8"-(E)

- 1. **As per 2015 IBC for ultimate 3-sec gust wind speed converted to nominal 3-sec gust wind speed as per Sect. 1609.3.1 as required to be used in ANSI/TIA-222-G Standard per exception 5 of Sect. 1609.1.1.
- 2. All elevations are measured from tower base.
- 3. Please note appurtenances not listed above are to be removed/not present as per data supplied.
- (I) = Internal; (E) = External; (FZ) = Within Face Zone; (OFZ) = Outside Face Zone as per TIA-222-G.
- The above appurtenances represent MEI's understanding of the appurtenances configuration. If different than above, the analysis is invalid. Please contact MEI if any discrepancies are found.

MALOUF ENGINEERING INT'L, INC.

4. ANALYSIS PROCEDURE

The subject structure is analyzed for feasibility of the installation of the proposed changed condition previously noted. The data records furnished were reviewed and a computer stress analysis was performed in accordance with the TIA-222 Standard provisions and with the agreed scope of work terms and the results of this analysis are reported.

Analysis Program

The computer program used to model the structure is a rigorous Finite Element Analysis program, tnxTower (ver. 8.05), a commercially available program by Tower Numerics Inc. The latticed structures members are modeled using beam/truss and cable members and the pole members using tubular beam elements. The structural parameters and geometry of the members are included in the model. The dead and temperature loads and the wind loads are internally calculated by the program for the different wind directions and then applied as external loads on the structure. Any applicable exemptions, as per Section 15.6 of the TIA-222-G Standard for existing structures originally designed in accordance with a previous revision of the TIA-222 Standard, have been taken.

<u>Assumptions</u>

This engineering study is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. MEI has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

- This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities ('asnew' condition).
- The tower member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
- The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type & industry practice.
- Mounts/Platforms are considered adequate to support the loading. No actual analysis of the platform/mount itself is performed, with the analysis being limited to analyzing the structure.
- The soil parameters are as per data supplied or as assumed and stated in the calculations. Refer to the Appendix. If no data is available, the foundation system is assumed to support the structure with its new reactions.
- All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report.
- All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.

If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, MEI should be contacted to review any contradictory information to determine its effect.

5. ANALYSIS RESULTS

The results of the structural stress analysis based on data available and with the previous listed criteria, indicated the following:

Note: The Wind loading controls over the Seismic loading as per TIA Section 2.7.

Table 3: Stress Analysis Results

Component Type	Maximum Stress Ratio	Controlling Elev. (ft) / Component	Pass/Fail	Comment
POLE	95.0%	88 - 61.25	Pass	
BASE PLATE	99.5%	Bending	Pass	
ANCHOR RODS	60.7%	Tension	Pass	
FOUNDATION	95.0%	Moment	Pass	

Table 4: Serviceability Requirements

	Maximum Value	TIA Requirement (10dB)	Pass/Fail	Comment
TWIST/SWAY	2.0805 Deg.	4 Deg. from Vert. or Horiz. Axis	Pass	
HORIZONTAL DISPLACEMENT	22.233 In./ 1.79% of Ht.	3.0% of Height	Pass	

Notes:

- 1. The Maximum Stress Ratio is the percentage that the maximum load in the member is relative to the allowable load as determined by Code requirements.
- 2. Refer to the Appendix 1 for more details on the member loads.
- 3. A maximum stress ratio between 100% and 105% may be considered as Acceptable according to industry standard practice.

6. FINDINGS & RECOMMENDATIONS

- Based on the rigorous stress analysis results, the subject structure is **rated at 99.5%** of its support capacity (controlling component: Base Plate) with the proposed changed condition considered. Please refer to Table 3 and to Appendix 1 for more details of the analysis results.
- Based on the stress analysis performed, the existing structure is in conformance with the IBC / ANSI/TIA 222-G Standard for the loading considered under the criteria listed and referenced in the report sections.
- The installation of the proposed changed condition as noted in Table 1 is structurally acceptable. Please refer to Appendix 1 for Schematic Lines Layout.
- This structure is at its support capacity for the appurtenances and loading criteria considered. Therefore, no changes to the configuration considered should be made without performing a new proper evaluation.

Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

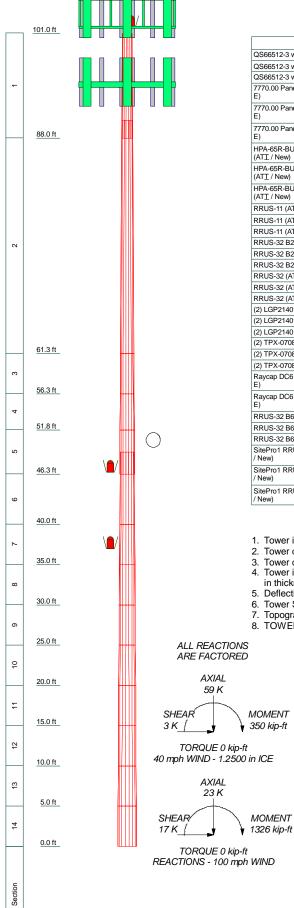
7. REPORT DISCLAIMER

The engineering services rendered by **M**alouf **E**ngineering International, Inc. ('MEI') in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. MEI does not analyze the fabrication, including welding and connection capacities, except as included in this Report.

The analysis performed, and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:

- 1. Proper alignment and plumbness.
- 2. Correct guy tensions, as applicable.
- 3. Correct bolt tightness or slip jacking of sleeved connections.
- 4. No significant deterioration or damage to any structural component.

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae. MALOUF ENGINEERING INTERNATIONAL, INC. assumes no obligation to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will MALOUF ENGINEERING INTERNATIONAL, INC. have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of MALOUF ENGINEERING INTERNATIONAL, INC., if any, pursuant to this Report shall be limited to the total funds actually received by MALOUF ENGINEERING INTERNATIONAL, INC. for preparation of this Report.


Customer has requested MALOUF ENGINEERING INTERNATIONAL, INC. to prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested MALOUF ENGINEERING INTERNATIONAL, INC. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of MALOUF ENGINEERING INTERNATIONAL, INC., Customer has informed MALOUF ENGINEERING INTERNATIONAL, INC. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by MALOUF ENGINEERING INTERNATIONAL, INC. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice. MALOUF ENGINEERING INTERNATIONAL, INC. shall have the right to rely upon the accuracy of the information supplied by the customer and shall not be held responsible for the Customer's misrepresentation or omission of relevant fact whether intentional or otherwise.

Customer hereby agrees and acknowledges that MALOUF ENGINEERING INTERNATIONAL, INC. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than MALOUF ENGINEERING INTERNATIONAL, INC. in connection with the implementation of services including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that MALOUF ENGINEERING INTERNATIONAL, INC. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor and that Customer and rigger, erector, or subcontractor will provide MALOUF ENGINEERING INTERNATIONAL, INC. with a Certificate of Insurance naming MALOUF ENGINEERING INTERNATIONAL, INC. as additional insured.

APPENDIX 1 - ANALYSIS PRINTOUT & GRAPHICS

DESIGNED APPURTENANCE LOADING

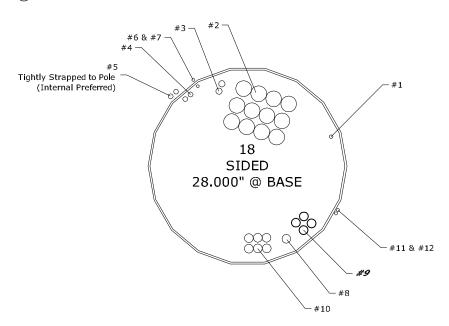
TYPE	ELEVATION	TYPE	ELEVATION	
QS66512-3 w/ Pipe Mount (ATI / E)	103.5	Top Platform w/ Rails (Ladder) (ATI /	103.5	
QS66512-3 w/ Pipe Mount (ATI / E)	103.5	E) .		
QS66512-3 w/ Pipe Mount (ATI / E)	103.5	Beacon/Strobe (E)	101	
7770.00 Panels w/ Pipe Mount (ATI /	103.5	5' Lightning Rod (E)	101	
E)		AIR21 KRC118023 B2P B4A w/ Pipe	95	
7770.00 Panels w/ Pipe Mount (ATI /	103.5	Mount (T-Mobile / E)		
E)		AIR21 KRC118023 B2P B4A w/ Pipe Mount (T-Mobile / E)	95	
7770.00 Panels w/ Pipe Mount (AT <u></u> / E)	103.5	AIR21 KRC118023 B2P B4A w/ Pipe	95	
HPA-65R-BUU-H6 w/ Pipe Mounts	103.5	Mount (T-Mobile / E)	95	
(ATI / New)	105.5	AIR32 KRD901146-1 B66A B2A Panel	95	
HPA-65R-BUU-H6 w/ Pipe Mounts	103.5	Antenna w/ Pipe Mount (T-Mobile / P)		
(ATI / New)		AIR32 KRD901146-1 B66A B2A Panel	95	
HPA-65R-BUU-H6 w/ Pipe Mounts	103.5	Antenna w/ Pipe Mount (T-Mobile / P)		
(ATI / New)		AIR32 KRD901146-1 B66A B2A Panel	95	
RRUS-11 (ATT) (AT <u>T</u> / E)	103.5	Antenna w/ Pipe Mount (T-Mobile / P)	05	
RRUS-11 (ATT) (ATT / E)	103.5	APXVAARR24_43-U-NA20 w/ Pipe Mount (T-Mobile / P)	95	
RRUS-11 (ATT) (ATT / E)	103.5	APXVAARR24 43-U-NA20 w/ Pipe	95	
RRUS-32 B2 (ATI / E)	103.5	Mount (T-Mobile / P)	30	
RRUS-32 B2 (ATI / E)	103.5	APXVAARR24 43-U-NA20 w/ Pipe	95	
RRUS-32 B2 (ATI / E)	103.5	Mount (T-Mobile / P)		
RRUS-32 (ATI / E)	103.5	RADIO 4449 - B71 + B12 (T-Mobile /	95	
RRUS-32 (AT <u>T</u> / E)	103.5	P)		
RRUS-32 (ATI / E)	103.5	RADIO 4449 - B71 + B12 (T-Mobile /	95	
(2) LGP21401 TMA'S (ATI/E)	103.5	P)		
(2) LGP21401 TMA'S (ATI / E)	103.5	RADIO 4449 - B71 + B12 (T-Mobile / P)	95	
(2) LGP21401 TMA'S (ATI / E)	103.5		95	
(2) TPX-070821 Triplexer (AT <u>T</u> / E)	103.5	12.5 ft. L.P. T-Arm Mount (SitePro1 RMV12-3XX) w/ New Handrail Kit	90	
(2) TPX-070821 Triplexer (ATI / E)	103.5	(T-Mobile / E)		
(2) TPX-070821 Triplexer (ATI / E)	103.5	12.5 ft. L.P. T-Arm Mount (SitePro1	95	
Raycap DC6 (Squid) Suppressor (ATI / E)	103.5	RMV12-3XX) w/ New Handrail Kit (T-Mobile / E)		
Raycap DC6 (Squid) Suppressor (ATI / E)	103.5	12.5 ft. L.P. T-Arm Mount (SitePro1 RMV12-3XX) w/ New Handrail Kit	95	
RRUS-32 B66 (ATI / New)	103.5	(T-Mobile / E)		
RRUS-32 B66 (ATI / New)	103.5	GPS (E)	46.5	
RRUS-32 B66 (ATI / New)	103.5	18" Approx. Standoff Arm (E)	46.5	
SitePro1 RRU Dual Swivel Mount (ATI	103.5	GPS (E)	37	
/ New)		18" Approx. Standoff Arm (E)	37	
SitePro1 RRU Dual Swivel Mount (AT_ / New)	103.5			
SitePro1 RRU Dual Swivel Mount (ATI	103.5			

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-G Standard.
- Tower designed for a 100 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 40 mph basic wind with 1.25 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- 6. Tower Structure Class II.
- 7. Topographic Category 1 with Crest Height of 0.00 ft 8. TOWER RATING: 99.5%

Malouf Engineering Int'l, Inc. 17950 Preston Road, Suite #720

Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583


ob: 101 ft MP Wethersfield	Site #CTHA5	06A
Project: CT04861M-19V1		
Client: Transcend Wireless / T-Mobile		App'd:
		Scale: NTS
Path: D:\MEIProjects\19 DATA\MNP\CT04861M-19V1\CT0	04861M-19V1.eri	Dwg No. E-

No.	QTY.	DESCRIPTION	ELEV.	TENANT
1	1	1/2	101'	E (Lighting)
2	12	1 5/8	101'	AT&T / E
3	2	5/8" Fiber Cable	101'	AT&T / E
4	2	3/4" DC Power Cable	101'	AT&T / E
5	2	3/4" DC Power Cable	101'	AT&T / E
6	1	ATCB-B01-xxx Homerun Cable (Ext.)	62'-101'	AT&T / E
7	1	ATCB-B01-xxx Homerun Cable (Int.)	62'	AT&T / E
8	1	1 5/8 (Hybrid-Fiber)	95'	T-Mobile / E
9	4	1 5/8 (Hybrid-Fiber)	95'	T-Mobile / P
10	6	7/8	95'	T-Mobile / E
11	1	3/8	46'	E
12	1	3/8	37'	E

LEGEND:

E = EXISTING P = PROPOSEDF = FUTURER = REMOVETO RELOCATE

CONTACT MEI IF LINE LAYOUT IS DIFFERENT FROM WHAT IS SHOWN BELOW.

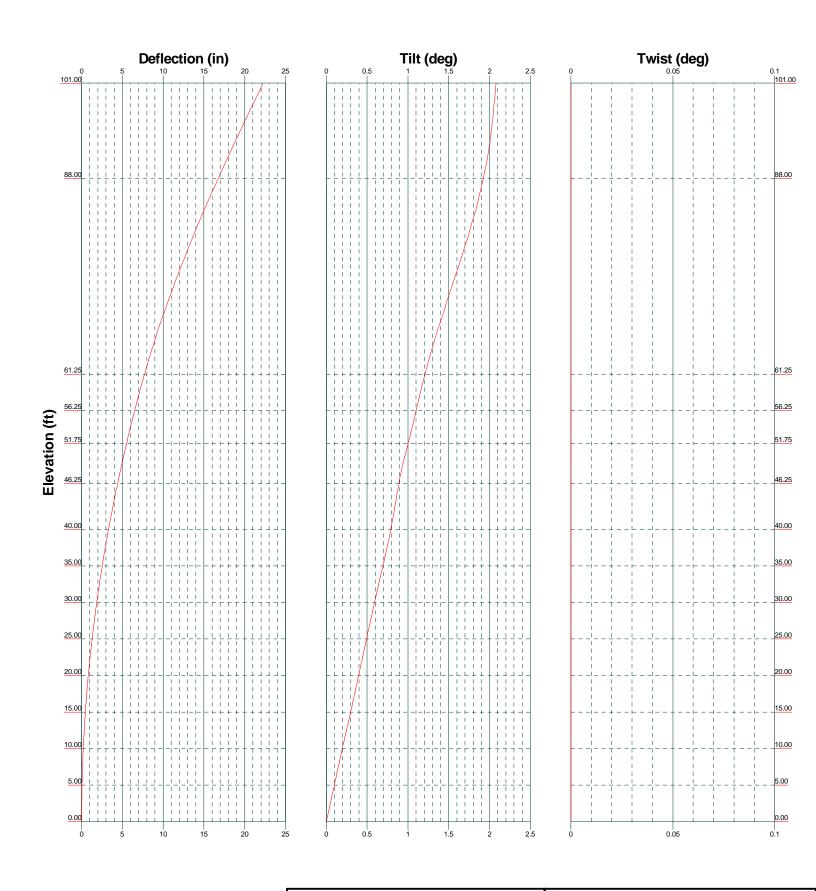
PLAN: SCHEMATIC Tx-LINE LAYOUT 101 SCALE: NOT TO SCALE

NOTES:

- Tx LINE LAYOUT IS SCHEMATIC ONLY, BASED UPON MEI RECORDS. NO RECENT SITE PHOTOS PROVIDED.

 NEW BRACKET SUPPORT SPECIFICATION BY OTHERS.

MAY 13, 2019



17950 PRESTON ROAD SUITE 720 DALLAS, TEXAS 75252-5635 972-783-2578 (fax: 2583) www.maloufengineering.com

© MEI, INC. 2019

101 ft MP | Wethersfield Site #CTHA506A MONOPOLE TXLINE LAYOUT

MEI PROJECT ID SHEET NUMBER REV. CT04861M-19V1 0 L01

Malouf Engineering Int'l, Inc. 17950 Preston Road, Suite #720 Dallas, TX 75252 Phone: (972) 783-2578

FAX: (972) 783-2583

^{Job:} 101 ft MP Wethersfield	Site #CTHA5	06A	
Project: CT04861M-19V1			
Client: Transcend Wireless / T-Mobile	Drawn by: LNguyen	App'd:	
Code: TIA-222-G	Date: 05/13/19	Scale:	NT
Path:		Dwg No). _

tnxTower

Malouf Engineering Int'l, Inc. 17950 Preston Road, Suite #720

Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	101 ft MP Wethersfield Site #CTHA506A	1 of 5
Project		Date
	CT04861M-19V1	12:41:16 05/13/19
Client	Transcend Wireless / T-Mobile	Designed by LNguyen

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

Basic wind speed of 100 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.2500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 40 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Placement	Total Number
	ft	Number
3/4" DC Power Cable	101.00 -	2
(AT&T / E)	0.00	
ATCB-B01-xxx	101.00 -	1
Homerun Cable	62.00	
(AT&T / E)		

Description	Placement	Total Number
3/8 (Shielded)	ft 46.50 - 0.00	1
(E) 3/8 (Shielded) (E)	37.00 - 0.00	1

Feed Line/Linear Appurtenances - Entered As Area

Description	Placement	Total	Description	Placement	Total
		Number			Number
	ft			ft	
Safety Line 3/8	101.00 - 0.00	1	(T-Mobile / E)		
(E)			1 5/8 (Hybrid-Fiber)	95.00 - 0.00	4
Step Bolts	101.00 - 0.00	1	(T-Mobile / P)		
(E)			7/8	95.00 - 0.00	6
1/2	101.00 - 0.00	1	(T-Mobile / E)		
(E (Lighting))			MP303	62.00 - 47.00	1
1 5/8	101.00 - 0.00	12	(Mods)		
(AT&T/E)			MP303	62.00 - 47.00	1
5/8" Fiber Cable	101.00 - 0.00	2	(Mods)		
(AT&T/E)			MP304	45.50 - 0.00	1
3/4" DC Power	101.00 - 0.00	2	(Mods)		
Cable			MP304	45.50 - 0.00	1
(AT&T/E)			(Mods)		
ATCB-B01-xxx	62.00 - 0.00	1			
Homerun Cable					
(AT&T/E)					
1 5/8 (Hybrid-Fiber)	95.00 - 0.00	1			
Homerun Cable (AT&T / E)		1			

tnxTower

Malouf Engineering Int'l, Inc. 17950 Preston Road, Suite #720

950 Preston Road, Suite #720 Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	101 ft MP Wethersfield Site #CTHA506A	2 of 5
Project		Date
	CT04861M-19V1	12:41:16 05/13/19
Client	Transcend Wireless / T-Mobile	Designed by LNguyen

Discrete Tower Loads

Description	Placement	Weight	Description	Placement	Weig
	ft	K		ft	K
5' Lightning Rod	101.00	0.00	RRUS-32 B2	103.50	0.0
(E)		0.01	(AT&T/E)		0.0
		0.01			0.1
		0.03			0.1
Beacon/Strobe	101.00	0.06	RRUS-32 B2	103.50	0.0
(E)		0.09	(AT&T / E)		0.0
		0.12			0.1
OS66512 2 w/ Pine Mount	103.50	0.20 0.16	RRUS-32 B2	103.50	0.1 0.0
QS66512-3 w/ Pipe Mount (AT&T / E)	103.30	0.10	(AT&T / E)	103.30	0.0
(AI&I / E)		0.23	(AI&I/E)		0.0
		0.52			0.1
QS66512-3 w/ Pipe Mount	103.50	0.16	RRUS-32	103.50	0.0
(AT&T / E)	100.00	0.23	(AT&T / E)	100.00	0.1
(0.32	(0.1
		0.52			0.2
QS66512-3 w/ Pipe Mount	103.50	0.16	RRUS-32	103.50	0.0
(AT&T / E)		0.23	(AT&T / E)		0.1
		0.32			0.1
		0.52			0.2
7770.00 Panels w/ Pipe	103.50	0.04	RRUS-32	103.50	0.0
Mount		0.09	(AT&T/E)		0.1
(AT&T/E)		0.15			0.1
		0.29			0.2
7770.00 Panels w/ Pipe	103.50	0.04	(2) LGP21401 TMA'S	103.50	0.0
Mount		0.09	(AT&T / E)		0.0
(AT&T/E)		0.15			0.0
7770.00 Panels w/ Pipe	103.50	0.29 0.04	(2) LGP21401 TMA'S	103.50	0.0
Mount	103.30	0.04	(2) LGF21401 TMA'S (AT&T / E)	103.30	0.0
(AT&T / E)		0.09	(AI&I/E)		0.0
(AI&I / L)		0.19			0.0
HPA-65R-BUU-H6 w/ Pipe	103.50	0.09	(2) LGP21401 TMA'S	103.50	0.0
Mounts	100.00	0.17	(AT&T / E)	100.00	0.0
(AT&T / New)		0.26	(0.0
,		0.48			0.0
HPA-65R-BUU-H6 w/ Pipe	103.50	0.09	(2) TPX-070821 Triplexer	103.50	0.0
Mounts		0.17	(AT&T/E)		0.0
(AT&T / New)		0.26			0.0
		0.48			0.0
HPA-65R-BUU-H6 w/ Pipe	103.50	0.09	(2) TPX-070821 Triplexer	103.50	0.0
Mounts		0.17	(AT&T / E)		0.0
(AT&T / New)		0.26			0.0
DDIIG 11 (ATOT)	102.50	0.48	(A) TDV 070001 T ' 1	102.50	0.0
RRUS-11 (AT&T)	103.50	0.06	(2) TPX-070821 Triplexer	103.50	0.0
(AT&T/E)		0.08	(AT&T / E)		0.0
		0.11 0.18			0.0
RRUS-11 (AT&T)	103.50	0.18	Raycap DC6 (Squid)	103.50	0.0
(AT&T / E)	105.50	0.08	Suppressor	105.50	0.0
(/11&1 / L)		0.08	(AT&T / E)		0.0
		0.11	(MICH / L)		0.0
RRUS-11 (AT&T)	103.50	0.06	Raycap DC6 (Squid)	103.50	0.0
(AT&T / E)		0.08	Suppressor		0.0
, ,		0.11	(AT&T / E)		0.0
		0.18	,		0.1

tnxTower

Malouf Engineering Int'l, Inc. 17950 Preston Road, Suite #720

Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Mount (T-Mobile / P)

APXVAARR24_43-Ú-NA20

w/ Pipe Mount (T-Mobile / P)

Job		Page
	101 ft MP Wethersfield Site #CTHA506A	3 of 5
Project		Date
	CT04861M-19V1	12:41:16 05/13/19
Client	Transcend Wireless / T-Mobile	Designed by LNguyen

Description	Placement	Weight	Description	Placement	Weigh
	ft	K		ft	K
RRUS-32 B66	103.50	0.06	APXVAARR24_43-U-NA20	95.00	0.18
(AT&T / New)		0.08	w/ Pipe Mount		0.32
, , , , , , , , , , , , , , , , , , , ,		0.11	(T-Mobile / P)		0.46
		0.16	,		0.78
RRUS-32 B66	103.50	0.06	APXVAARR24_43-U-NA20	95.00	0.18
(AT&T / New)		0.08	w/ Pipe Mount		0.32
,		0.11	(T-Mobile / P)		0.46
		0.16			0.78
RRUS-32 B66	103.50	0.06	RADIO 4449 - B71 + B12	95.00	0.07
(AT&T / New)		0.08	(T-Mobile / P)		0.09
		0.11			0.11
		0.16			0.15
SitePro1 RRU Dual Swivel	103.50	0.04	RADIO 4449 - B71 + B12	95.00	0.07
Mount		0.07	(T-Mobile / P)		0.09
(AT&T / New)		0.10			0.11
		0.16			0.15
SitePro1 RRU Dual Swivel	103.50	0.04	RADIO 4449 - B71 + B12	95.00	0.07
Mount		0.07	(T-Mobile / P)		0.09
(AT&T / New)		0.10			0.11
		0.16			0.15
SitePro1 RRU Dual Swivel	103.50	0.04	12.5 ft. L.P. T-Arm Mount	95.00	0.40
Mount		0.07	(SitePro1 RMV12-3XX) w/		0.60
(AT&T / New)		0.10	New Handrail Kit		0.80
	100.70	0.16	(T-Mobile / E)	0.7.00	1.20
Top Platform w/ Rails (&	103.50	2.00	12.5 ft. L.P. T-Arm Mount	95.00	0.40
Ladder)		3.15	(SitePro1 RMV12-3XX) w/		0.60
(AT&T/E)		4.30	New Handrail Kit		0.80
ID21 VDC110022 D2D D44	05.00	6.60	(T-Mobile / E)	05.00	1.20
IR21 KRC118023 B2P B4A	95.00	0.13	12.5 ft. L.P. T-Arm Mount	95.00	0.40
w/ Pipe Mount		0.18 0.25	(SitePro1 RMV12-3XX) w/		0.60
(T-Mobile / E)		0.23	New Handrail Kit (T-Mobile / E)		0.80 1.20
IR21 KRC118023 B2P B4A	95.00	0.40	GPS	46.50	0.00
w/ Pipe Mount	93.00	0.13	(E)	40.30	0.00
(T-Mobile / E)		0.18	(E)		0.01
(1-Woone / L)		0.40			0.01
IR21 KRC118023 B2P B4A	95.00	0.13	18" Approx. Standoff Arm	46.50	0.01
w/ Pipe Mount	75.00	0.13	(E)	40.50	0.03
(T-Mobile / E)		0.25	(E)		0.04
(1 Moone / L)		0.40			0.00
AIR32 KRD901146-1 B66A	95.00	0.17	GPS	37.00	0.00
B2A Panel Antenna w/ Pipe		0.23	(E)	200	0.00
Mount		0.30	(2)		0.00
(T-Mobile / P)		0.46			0.01
AIR32 KRD901146-1 B66A	95.00	0.17	18" Approx. Standoff Arm	37.00	0.03
B2A Panel Antenna w/ Pipe		0.23	(E)	200	0.05
Mount		0.30	\ - /		0.07
(T-Mobile / P)		0.46			0.11
AIR32 KRD901146-1 B66A	95.00	0.17			
32A Panel Antenna w/ Pipe		0.23			
Mount		0.30			
(T Mobile / D)		0.46			

0.46

0.18

0.32 0.46 0.78

95.00

tnxTower

Malouf Engineering Int'l, Inc. 17950 Preston Road, Suite #720

Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	101 ft MP Wethersfield Site #CTHA506A	4 of 5
Project		Date
	CT04861M-19V1	12:41:16 05/13/19
Client	Transcend Wireless / T-Mobile	Designed by LNguyen

N / !	D 1!
waximum	Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	59.03	-0.00	-0.00
	Max. H _x	21	16.94	16.58	-0.02
	Max. H _z	3	16.94	-0.02	16.73
	Max. M _x	2	1313.41	-0.02	16.73
	Max. M _z	8	1308.13	-16.58	0.02
	Max. Torsion	6	0.25	-14.48	8.38
	Min. Vert	3	16.94	-0.02	16.73
	Min. H _x	9	16.94	-16.58	0.02
	Min. H _z	15	16.94	0.02	-16.73
	Min. M _x	14	-1313.06	0.02	-16.73
	Min. M _z	20	-1308.28	16.58	-0.02
	Min. Torsion	18	-0.25	14.48	-8.38

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	101 - 88	22.233	40	2.0805	0.0011
L2	90.25 - 61.25	17.648	40	1.9659	0.0007
L3	61.25 - 56.25	7.712	40	1.2108	0.0004
L4	56.25 - 51.75	6.501	40	1.1027	0.0003
L5	51.75 - 46.25	5.509	40	1.0025	0.0003
L6	49 - 40	4.949	40	0.9399	0.0003
L7	40 - 35	3.304	40	0.7885	0.0003
L8	35 - 30	2.530	40	0.6909	0.0002
L9	30 - 25	1.858	40	0.5925	0.0002
L10	25 - 20	1.289	40	0.4937	0.0001
L11	20 - 15	0.824	40	0.3946	0.0001
L12	15 - 10	0.463	40	0.2955	0.0001
L13	10 - 5	0.205	40	0.1966	0.0001
L14	5 - 0	0.051	40	0.0981	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb.	in	0	0	Curvature ft
103.50	QS66512-3 w/ Pipe Mount	40	22.233	2.0805	0.0011	6815
101.00	5' Lightning Rod	40	22.233	2.0805	0.0011	6815
95.00	AIR21 KRC118023 B2P B4A w/	40	19.646	2.0281	0.0009	5680
	Pipe Mount					
46.50	GPS	40	4.463	0.8926	0.0003	3460
37.00	GPS	40	2.827	0.7313	0.0002	2899

tnxTower

Malouf Engineering Int'l, Inc.

17950 Preston Road, Suite #720 Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	101 ft MP Wethersfield Site #CTHA506A	5 of 5
Project		Date
	CT04861M-19V1	12:41:16 05/13/19
Client	Transcend Wireless / T-Mobile	Designed by LNguyen

Base Plate Design Data

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Critical
Thickness	of Anchor Bolts	Size	Allowable Ratio	Allowable Ratio	Allowable Ratio	Allowable Ratio	Condition	Ratio
			Bolt	Concrete	Plate	Stiffener		
			Tension	Stress	Stress	Stress		
			K	ksi	ksi	ksi		
in		in						
3.7000	8	1.7500	131.36	3.064	44.763		Plate	0.99
			216.48	4.080	45.000			/
			0.61	0.75	0.99			•

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
			TD16 2614 640 1975	1				
L1	101 - 88	Pole	TP16.36x14.64x0.1875	1	-7.15	701.90	45.3	Pass
L2	88 - 61.25	Pole	TP19.7689x15.6873x0.25	2	-10.32	1150.70	95.0	Pass
L3	61.25 - 56.25	Pole	TP20.4726x19.7689x0.250*	3	-11.07	1717.72	71.0	Pass
L4	56.25 - 51.75	Pole	TP21.1059x20.4726x0.250*	4	-11.75	1754.20	75.0	Pass
L5	51.75 - 46.25	Pole	TP21.88x21.1059x0.250*	5	-12.17	1764.42	77.9	Pass
L6	46.25 - 40	Pole	TP22.28x20.725x0.3125*	6	-14.13	2370.46	68.2	Pass
L7	40 - 35	Pole	TP22.995x22.28x0.3125*	7	-15.14	2419.54	71.0	Pass
L8	35 - 30	Pole	TP23.71x22.995x0.3125*	8	-16.13	2466.74	73.8	Pass
L9	30 - 25	Pole	TP24.425x23.71x0.3125*	9	-17.15	2517.17	76.2	Pass
L10	25 - 20	Pole	TP25.14x24.425x0.3125*	10	-18.19	2566.02	78.6	Pass
L11	20 - 15	Pole	TP25.855x25.14x0.3125*	11	-19.25	2613.31	80.8	Pass
L12	15 - 10	Pole	TP26.57x25.855x0.3125*	12	-20.33	2664.61	82.7	Pass
L13	10 - 5	Pole	TP27.285x26.57x0.3125*	13	-21.44	2714.66	84.5	Pass
L14	5 - 0	Pole	TP28x27.285x0.3125*	14	-22.57	2763.46	86.3	Pass
							Summary	
						Pole (L2)	95.0	Pass
						Base Plate	99.5	Pass
						RATING =	99.5	Pass

^{*}Modified w/ MP304 & MP303 Channels

Program Version 8.0.5.0 - 11/28/2018 File:D:/MEIProjects/19 DATA/MNP/CT04861M-19V1/CT04861M-19V1.eri

APPENDIX 2 - SOURCE / CHANGED CONDITION

Everest Infrastructure Colocation Application

Tower Equipment

List ALL equipment components installed on the tower or ground space area, including mounting apparatus, ice bridges, etc.

Tower Equipment				Equipment Status (mark with "x")			Equipment Dimensions			Azimuths	Equip. (Centerline	Lines			
Component Type (Ant. type, RRU, mount, etc.)	Manufacturer	Model	# Units	Exist	New	To be Remo ved	Height (inches)	Width (inches)	Depth (inches)	Weight (lbs)	Degrees (a/b/c)	AGL (ft)	Leg (e.g. NE)	Туре	# Units	Size
Antenna	Ericsson	AIR 21 KRC118023 B2P_B4A	3	Х			56.0	12.0	8.0	91.0	20/150/255	95'		Coax	6	7/8"
Antenna	Ericsson	AIR 21 B4A/B12P	3			Χ	57.0	14.8	9.5	124.0	20/150/255	95'				
Antenna	Ericsson	AIR 32 KRD901146-1_B66A_B2A	3		Χ		56.5	12.9	8.7	132.2	20/150/255	95'		Hybrid	5	1-5/8"
Antenna	RFS	APXVAARR24_43-U-NA20	3		Χ		95.9	24.0	8.7	128.0	20/150/255	95'				
RRU	Ericsson	Radio 4449 B71B12	3		Х		14.9	13.2	9.3	74.0	20/150/255	95'				
RRU	Ericsson	RRUS11B12	3			X	19.7	17.0	7.2	50.7	20/150/255	195				

Ground Equipment Equipment

list all equipment components installed in the compound or interior space not owned by the Tenant. Include battery information even if in owned shelter

	Ground Equipment			Equipment Status (mark with "x")			Equipment Dimensions				Equipment Details
Component	Manufacturer	Model	Quantity	Existing	New	To be Remov ed	Height	Height Width Depth Weight (inches) (inches) (inches) (lbs)		_	(e.g. generator KWs, battery type, operating requirements, etc.)

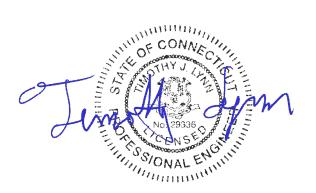
Centered on Solutions[™]

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site #: CTHA506A

75 Wells Road Wethersfield, CT


Centek Project No. 19027.22

Date: May 03, 2019

Max Stress Ratio = 90.8%

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA506A Wethersfield, CT May 03, 2019

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

<u>SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)</u>

RF DATA SHEET, DATED 04/13/2019

TABLE OF CONTENTS TOC-1

Centered on Solutions[™]

May 03, 2019

Mr. Dan Reid Transcend Wireless 10 Industrial Ave Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount T-Mobile – Site Ref: CTHA506A 75 Wells Road Wethersfield, CT 06109

Centek Project No. 19027.22

Dear Mr. Reid,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing three (3) 12-ft T-frames with proposed handrails (SitePro P/N: HRK12-U). The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

T-Mobile:

<u>T-Arms:</u> Three (3) Ericsson AIR21 KRC118023-1_B2P_B4A panel antennas, three (3) Ericsson AIR32KRD901146-1_B66A_B2A panel antennas ,three (3) RFS APXVAARR24_43-U-NA20 panel antennas and (3) Ericsson 4449 B71_B12 remote radio units mounted on three (3) T-Arms with a RAD center elevation of 95 ft +/- AGL. (Proposed handrail SitePro P/N: HRK12-U to be installed)

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 97 mph for Wethersfield as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Himothy J. Lynn, PE Structural Engineer

Prepared by:

Fernando J. Palacios

Engineer

CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA506A Wethersfield, CT May 03, 2019

Section 2 - Calculations

Subject:

Location:

Rev. 0: 05/03/19

Loads on Equipment

(User Input)

Wethersfield, CT

Prepared by: F.J.P Checked by: C.A.G.

Job No. 19027.22

<u>Development of Design Heights, Exposure Coefficients,</u> <u>and Velocity Pressures Per TIA-222-G</u>

Wind Speeds

Basic Wind Speed V := 97 mph (User Input - 2018 CSBC Appendix N) Basic Wind Speed with Ice $V_i := 50$ mph (User Input per Annex B of TIA-222-G)

Input

Structure Type = Structure_Type := Pole (User Input)

Structure Category = SC := II (User Input)

Exposure Category = Exp := C (User Input)

Structure Height = b := 102.5 ft (User Input)

Structure Height = h := 103.5 ft (User Input) Height to Center of Antennas = z := 95 ft (User Input)

 $G_{H} = 1.1$

Radial Ice Thickness = $t_i := 1$ in (User Input per Annex B of TIA-222-G)

 $\label{eq:Radial Ice Density = Id := 56.00 pcf (User Input)} \begin{tabular}{ll} Topograpic Factor = & $K_{zt} \coloneqq 1.0$ (User Input) \\ & $K_a \coloneqq 1.0$ (User Input) \\ \end{tabular}$

Output

Gust Response Factor =

Wind Direction Probability Factor =

$$K_d := \left| \begin{array}{c} \text{if Structure_Type = Pole} \\ \left\| \begin{array}{c} 0.95 \end{array} \right| = 0.95 \end{array} \right| = 0.95 \qquad \begin{array}{c} \text{(Per Table 2-2 of } \\ \text{TIA-222-G)} \end{array}$$
 if Structure_Type = Lattice
$$\left| \begin{array}{c} 0.85 \end{array} \right| = 0.95 \qquad \begin{array}{c} \text{(Per Table 2-3 of } \\ \text{TIA-222-G)} \end{array}$$

Importance Factors =

$$I_{Wind} := \left\| \begin{array}{c} \text{if } SC = 1 \\ \left\| 0.87 \\ \end{array} \right\| = 1$$

$$\left\| 1.00 \\ \text{if } SC = 2 \\ \left\| 1.00 \\ \end{array} \right\|$$

$$\left\| 1.15 \right\|$$

$$I_{Wind_w_lce} := \begin{vmatrix} & \text{if SC = 1} \\ & & 0 \\ & & \text{if SC = 2} \\ & & 1.00 \\ & & \text{if SC = 3} \end{vmatrix}$$

$$I_{ice} := \left| \begin{array}{c} \text{if } SC = 1 \\ \left\| \begin{array}{c} 0 \\ \text{if } SC = 2 \\ \left\| \begin{array}{c} 1.00 \\ \text{if } SC = 3 \\ \left\| \begin{array}{c} 1.25 \end{array} \right| \end{array} \right|$$

 $K_{iz} := \left(\frac{z}{33}\right)^{0.1} = 1.112$

Velocity Pressure Coefficient Antennas =

$$\begin{aligned} t_{iz} &:= 2.0 \cdot t_i \cdot I_{ice} \cdot K_{\underline{iz}} \cdot K_{zt}^{0.35} = 2.223 \\ Kz &:= 2.01 \cdot \left(\left(\frac{z}{zg} \right) \right)^{\frac{\alpha}{\alpha}} = 1.252 \end{aligned}$$

Velocity Pressure w/o Ice Antennas =

 $qz := 0.00256 \cdot K_d \cdot Kz \cdot V^2 \cdot I_{Wind} = 28.65$ psf

Velocity Pressure with Ice Antennas =

 $qz_{ice} := 0.00256 \cdot K_d \cdot Kz \cdot V_i^2 \cdot I_{Wind} = 7.612 \text{ psf}$

Subject:

Loads on Equipment

Location:

Wethersfield, CT

(User Input)

Rev. 0: 05/03/19

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.22

Development of Wind & Ice Load on Antennas

Antenna Data:

Antenna Model = RFS APXVAARR24_43-U-NA20 Flat Antenna Shape = (User Input) Antenna Height = $L_{ant} := 95.9$ in (User Input) Antenna Width = $W_{ant} := 19.7$ in (User Input) Antenna Thickness = $T_{ant} := 8.7$ (User Input) Antenna Weight = $WT_{ant} := 133.4$ (User Input)

 $N_{ant} := 1$

Antenna Aspect Ratio = $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.9$

Antenna Force Coefficient = Ca_{ant} = 1.31

Wind Load (without ice)

Number of Antennas =

Surface Area for One Antenna = $SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 13.1$ sf

Total Antenna Wind Force Front = $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 540$ lbs

Surface Area for One Antenna = $SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 5.8$ sf

Total Antenna Wind Force Side = $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 238$ lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice = $SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 16.8$ sf

Total Antenna Wind Force w/ Ice Front = $Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 184$ lbs

Surface Area for One Antenna w/ Ice = $SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 9.2$ sf

Total Antenna Wind Force w/ Ice Side = $Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 100$ lbs

Gravity Load (without ice)

Weight of All Antennas = WT_{ant} · N_{ant} = 133

Gravity Loads (ice only)

Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \cdot 10^4$ cu in

 $\text{Volume of Ice on Each Antenna} = \qquad \quad V_{\text{ice}} \coloneqq \left(L_{\text{ant}} + 2 \cdot t_{\text{iz}} \right) \cdot \left(W_{\text{ant}} + 2 \cdot t_{\text{iz}} \right) \cdot \left(T_{\text{ant}} + 2 \cdot t_{\text{iz}} \right) - V_{\text{ant}} = 2 \cdot 10^{4}$

cu in

Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{Ice}}{1728} \cdot Id = 500$ lbs

Weight of Ice on All Antennas = W_{ICEant} • N_{ant} = 500

Subject: Loads on Equipment

Location: Wethersfield, CT

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.22

Development of Wind & Ice Load on Antennas

Antenna Data:

Rev. 0: 05/03/19

Antenna Model = Ericsson AIR 32 KRD901146-1_B66A_B2A

Antenna Shape = Flat (User Input)

Antenna Height = $L_{ant} = 56.6$ in (User Input)

Antenna Width = W_{ant} := 12.9 in (User Input)

Antenna Thickness = $T_{ant} = 8.7$ in (User Input)

Antenna Weight = WT_{ant} := 133 lbs (User Input)

Number of Antennas = $N_{ant} = 1$ (User Input)

Antenna Aspect Ratio = $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.4$

Antenna Force Coefficient = Ca_{ant} = 1.28

Wind Load (without ice)

Surface Area for One Antenna =
$$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 5.1$$
 sf

Total Antenna Wind Force Front =
$$F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 205$$

Surface Area for One Antenna =
$$SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 3.4$$
 sf

Total Antenna Wind Force Side =
$$F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 138$$
 lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =
$$SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 7.4$$
 sf

Total Antenna Wind Force w/ Ice Front =
$$Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 79$$
 lbs

Surface Area for One Antenna w/ Ice =
$$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 5.6$$
 sf

Total Antenna Wind Force w/ Ice Side =
$$Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 60$$
 lbs

Gravity Load (without ice)

Gravity Loads (ice only)

Volume of Each Antenna =
$$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 6352$$
 cu in

Volume of Ice on Each Antenna =
$$V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 7568$$

Weight of Ice on Each Antenna =
$$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 245$$
 lbs

Weight of Ice on All Antennas =
$$W_{ICEant} \cdot N_{ant} = 245$$

Subject:

Location: Wethersfield, CT

Rev. 0: 05/03/19 Prepared by: F.J.P Checked by: C.A.G.

Job No. 19027.22

Loads on Equipment

Development of Wind & Ice Load on Antennas

Antenna Data:

Antenna Model = Ericsson - AIR21 KRC118023-1_B2P_B4A

Antenna Shape = Flat (User Input)

Antenna Height = $L_{ant} := 55.9$ (User Input) in

Antenna Width = $W_{ant} := 12.1$ (User Input) in

 $T_{ant} := 7.9$ Antenna Thickness = (User Input)

Antenna Weight = $WT_{ant} := 91.5$ (User Input)

Number of Antennas = $N_{ant} := 1$ (User Input)

 $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.6$ Antenna Aspect Ratio =

 $Ca_{ant} = 1.29$ Antenna Force Coefficient =

Wind Load (without ice)

 $SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.7$ Surface Area for One Antenna = sf

 $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 192$ Total Antenna Wind Force Front = lbs

 $SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 3.1$ Surface Area for One Antenna = sf

Total Antenna Wind Force Side = $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 125$ lbs

Wind Load (with ice)

 $SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 6.9$ Surface Area for One Antenna w/ Ice =

Total Antenna Wind Force w/ Ice Front = $Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 75$ lbs

 $SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 5.2$ Surface Area for One Antenna w/ Ice = sf

Total Antenna Wind Force w/ Ice Side = $Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 56$ lbs

Gravity Load (without ice)

Weight of All Antennas = $WT_{ant} \cdot N_{ant} = 92$ lbs

Gravity Loads (ice only)

Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5343$ cu in

Volume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 6984$

cu in

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 226$ Weight of Ice on Each Antenna = lbs

Weight of Ice on All Antennas = W_{ICEant} • N_{ant} = 226 lbs

Subject:

Loads on Equipment

Location:

Rev. 0: 05/03/19

Wethersfield, CT

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.22

Development of Wind & Ice Load on RRUS's

RRUS Data:

RRUS Model = Ericsson 4449 B71B12

RRUS Shape = Flat (User Input)

RRUS Height = $L_{RRUS} := 14.9$ in (User Input)

RRUS Width = $W_{RRUS} := 13.2$ in (User Input)

RRUS Thickness = $T_{RRUS} = 10.4$ in (User Input)

RRUS Weight = WT_{RRUS} := 74 lbs (User Input)

Number of RRUS's = $N_{RRUS} := 1$

RRUS Aspect Ratio = $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.1$

RRUS Force Coefficient = $Ca_{RRUS} = 1.2$

Wind Load (without ice)

Surface Area for One RRUS =
$$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.4$$
 sf

Total RRUS Wind Force =
$$F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 52$$
 lbs

Surface Area for One RRUS =
$$SA_{RRUS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.1$$
 sf

Total RRUS Wind Force =
$$F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 41$$
 lbs

Wind Load (with ice)

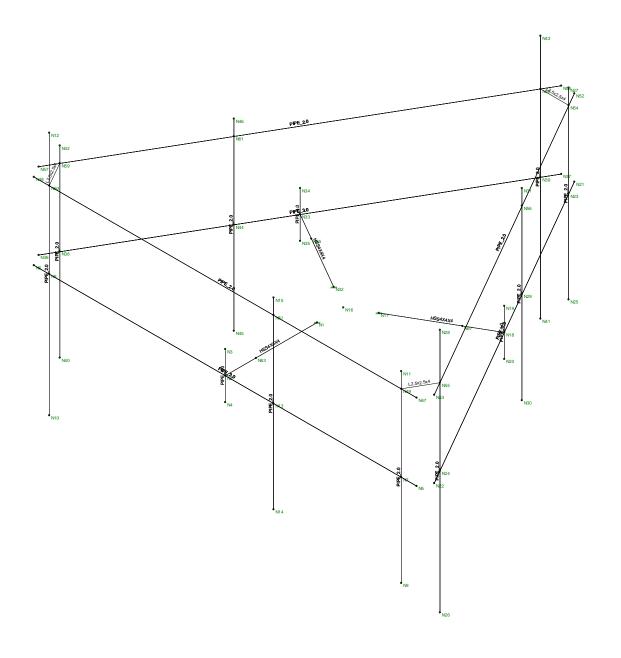
Surface Area for One RRUS w/ Ice =
$$SA_{ICERRUSF} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.4 \quad \text{sf}$$

Total RRUS Wind Force w/ Ice =
$$Fi_{RRUS} := qz_{Ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSF} = 24$$
 lbs

Surface Area for One RRUS w/ Ice =
$$SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2$$
 sf

Total RRUS Wind Force w/ Ice =
$$Fi_{RRUS} := qZ_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSS} = 20$$
 lbs

Gravity Load (without ice)


Gravity Loads (ice only)

Volume of Each RRUS =
$$V_{RRUS} := L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 2045$$
 cu in

$$\text{Volume of Ice on Each RRUS = } \\ V_{\text{ice}} \coloneqq \left(L_{\text{RRUS}} + 2 \cdot t_{\text{iz}} \right) \cdot \left(W_{\text{RRUS}} + 2 \cdot t_{\text{iz}} \right) \cdot \left(T_{\text{RRUS}} + 2 \cdot t_{\text{iz}} \right) - V_{\text{RRUS}} = 3023$$

Weight of Ice on Each RRUS =
$$W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 98$$
 lbs

Envelope Only Solution

Centek		
FJP	CTHA506A - Mount	May 3, 2019 at 12:28 PM
19027.22	Member Framing	CTHA506A_AMA.r3d

Company : Centek
Designer : FJP
Job Number : 19027.22
Model Name : CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company Designer Job Number : Centek : FJP : 19027.22 Model Name

: CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1	. Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Company : Centek Designer : FJP Job Number : 19027.22

Model Name : CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	(E)Outrigger	HSS4X4X4	Beam	Tube	A500 Gr.46	Typical	3.37	7.8	7.8	12.8
2	(E) Horz	PIPE_3.0	Beam	Pipe	A53 Grade B	Typical	2.07	2.85	2.85	5.69
3	(E) Antenna Mast	PIPE_2.0	Column	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
4	(E) Vert	PIPE_4.0	Column	Pipe	A53 Grade B	Typical	2.96	6.82	6.82	13.6
5	(P) Antenna Mast	PIPE_2.0	Column	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
6	(P) Handrails	PIPE_2.0	Column	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
7	(P) Handrail Co	L2.5x2.5x4	Column	Pipe	A36 Gr.36	Typical	1.19	.692	.692	.026

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	. Куу	Kzz	Cb	Function
1	M1	(E)Outrigger	3			Lbyy						Lateral
2	M2	(E) Vert	1.5			Lbyy						Lateral
3	M3	(E) Horz	12.5	Segment	6	Lbyy	6	6				Lateral
4	M4	(E) Antenna	8			Lbyy						Lateral
5	M5	(E) Antenna	6			Lbyy						Lateral
6	M6	(E) Antenna	6			Lbyy						Lateral
7	M7	(E)Outrigger	3			Lbyy						Lateral
8	M8	(E) Vert	1.5			Lbyy						Lateral
9	M9	(E) Horz	12.5	Segment	6	Lbyy	6	6				Lateral
10	M10	(E) Antenna	8			Lbyy						Lateral
11	M11	(E) Antenna	6			Lbyy						Lateral
12	M12	(E) Antenna	6			Lbyy						Lateral
13	M13	(E)Outrigger	3			Lbyy						Lateral
14	M14	(E) Vert	1.5			Lbyy						Lateral
15	M15	(E) Horz	12.5	Segment	6	Lbyy	6	6				Lateral
16	M16	(E) Antenna	8			Lbyy						Lateral
17	M17	(E) Antenna	6			Lbyy						Lateral
18	M18	(E) Antenna	6			Lbyy						Lateral
19	M19	(P) Handrails	12.5	Segment		Lbyy						Lateral
20	M20	(P) Handrails	12.5	Segment		Lbyy						Lateral
21	M21	(P) Handrails	12.5	Segment		Lbyy						Lateral
22	M22	(P) Handrail	.926	Segment		Lbyy						Lateral
23	M23	(P) Handrail	.926	Segment		Lbyy						Lateral
24	M24	(P) Handrail	.926	Segment		Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Type	Design List	Material	Design Rul
1	M1	N1	N2			(E)Outrigger	Beam	Tube	A500 Gr	. Typical
2	M2	N3	N4			(E) Vert	Column	Pipe	A53 Gra	Typical
3	M3	N6	N5			(E) Horz	Beam	Pipe	A53 Gra	Typical
4	M4	N12	N10			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
5	M5	N11	N9			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
6	M6	N15	N14			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
7	M7	N17	N18			(E)Outrigger	Beam	Tube	A500 Gr	Typical
8	M8	N19	N20			(E) Vert	Column	Pipe	A53 Gra	Typical
9	M9	N22	N21			(E) Horz	Beam	Pipe	A53 Gra	Typical
10	M10	N28	N26			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
11	M11	N27	N25			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical

Company Designer Job Number : Centek

: FJP : 19027.22

Model Name : CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Type	Design List	Material	Design Rul
12	M12	N31	N30			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
13	M13	N32	N33			(E)Outrigger	Beam	Tube	A500 Gr	- Typical
14	M14	N34	N35			(E) Vert	Column	Pipe	A53 Gra	Typical
15	M15	N37	N36			(E) Horz	Beam	Pipe	A53 Gra	Typical
16	M16	N43	N41			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
17	M17	N42	N40			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
18	M18	N46	N45			(E) Antenna Mast	Column	Pipe	A53 Gra	Typical
19	M19	N48	N47			(P) Handrails	Column	Pipe	A53 Gra	Typical
20	M20	N57	N58			(P) Handrails	Column	Pipe	A53 Gra	Typical
21	M21	N53	N52			(P) Handrails	Column	Pipe	A53 Gra	Typical
22	M22	N50	N59		180	(P) Handrail Connector	Column	Pipe	A36 Gr.36	Typical
23	M23	N49	N55		90	(P) Handrail Connector	Column	Pipe	A36 Gr.36	Typical
24	M24	N60	N54		180	(P) Handrail Connector	Column	Pipe	A36 Gr.36	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
1	N1	0	0	0.854167	0	
2	N2	0	0	3.854167	0	
3	N3	0	.75	3.854167	0	
4	N4	0	75	3.854167	0	
5	N5	6.25	0	3.854167	0	
6	N6	-6.25	0	3.854167	0	
7	N7	5.75	0	3.854167	0	
8	N8	-5.75	0	3.854167	0	
9	N9	5.75	-3	3.854167	0	
10	N10	-5.75	-4	3.854167	0	
11	N11	5.75	3	3.854167	0	
12	N12	-5.75	4	3.854167	0	
13	N13	1.583333	0	3.854167	0	
14	N14	1.583333	-3	3.854167	0	
15	N15	1.583333	3	3.854167	0	
16	N16	0	0	0	0	
17	N17	0.73973	0	-0.427083	0	
18	N18	3.337806	0	-1.927083	0	
19	N19	3.337806	.75	-1.927083	0	
20	N20	3.337806	75	-1.927083	0	
21	N21	0.212806	0	-7.339742	0	
22	N22	6.462806	0	3.485575	0	
23	N23	0.462806	0	-6.906729	0	
24	N24	6.212806	0	3.052563	0	
25	N25	0.462806	-3	-6.906729	0	
26	N26	6.212806	-4	3.052563	0	
27	N27	0.462806	3	-6.906729	0	
28	N28	6.212806	4	3.052563	0	
29	N29	2.54614	0	-3.29829	0	
30	N30	2.54614	-3	-3.29829	0	
31	N31	2.54614	3	-3.29829	0	
32	N32	-0.73973	0	-0.427083	0	
33	N33	-3.337806	0	-1.927083	0	
34	N34	-3.337806	.75	-1.927083	0	

Company Designer Job Number : Centek : FJP : 19027.22 Model Name

: CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
35	N35	-3.337806	75	-1.927083	0	
36	N36	-6.462806	0	3.485575	0	
37	N37	-0.212806	0	-7.339742	0	
38	N38	-6.212806	0	3.052563	0	
39	N39	-0.462806	0	-6.906729	0	
40	N40	-6.212806	-3	3.052563	0	
41	N41	-0.462806	-4	-6.906729	0	
42	N42	-6.212806	3	3.052563	0	
43	N43	-0.462806	4	-6.906729	0	
44	N44	-4.129473	0	-0.555876	0	
45	N45	-4.129473	-3	-0.555876	0	
46	N46	-4.129473	3	-0.555876	0	
47	N47	6.25	2.5	3.854167	0	
48	N48	-6.25	2.5	3.854167	0	
49	N49	5.75	2.5	3.854167	0	
50	N50	-5.75	2.5	3.854167	0	
51	N51	1.583333	2.5	3.854167	0	
52	N52	0.212806	2.5	-7.339742	0	
53	N53	6.462806	2.5	3.485575	0	
54	N54	0.462806	2.5	-6.906729	0	
55	N55	6.212806	2.5	3.052563	0	
56	N56	2.54614	2.5	-3.29829	0	
57	N57	-6.462806	2.5	3.485575	0	
58	N58	-0.212806	2.5	-7.339742	0	
59	N59	-6.212806	2.5	3.052563	0	
60	N60	-0.462806	2.5	-6.906729	0	
61	N61	-4.129473	2.5	-0.555876	0	
62	N63	0	0	2.854167	0	
63	N65	-2.471781	0	-1.427083	0	
64	N67	2.471781	0	-1.427083	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N17	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N32	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N63						
5	N65						
6	N67						

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Υ	067	.5
2	M10	Υ	067	.5
3	M16	Υ	067	.5
4	M4	Υ	067	7.5
5	M10	Υ	067	7.5
6	M16	Y	067	7.5
7	M6	Υ	067	.5

Company : Centek Designer : FJP Job Number : 19027.22

Model Name : CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Member Point Loads (BLC 2 : Dead Load) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
8	M12	Υ	067	.5
9	M18	Υ	067	.5
10	M6	Υ	067	5.5
11	M12	Υ	067	5.5
12	M18	Υ	067	5.5
13	M5	Υ	046	.5
14	M11	Υ	046	.5
15	M17	Υ	046	.5
16	M5	Υ	046	5.5
17	M11	Υ	046	5.5
18	M17	Υ	046	5.5
19	M4	Υ	074	3
20	M10	Υ	074	3
21	M16	Υ	074	3

Member Point Loads (BLC 3 : Ice Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Υ	25	.5
2	M10	Υ	25	.5
3	M16	Υ	25	.5
4	M4	Υ	25	7.5
5	M10	Υ	25	7.5
6	M16	Υ	25	7.5
7	M6	Υ	123	.5
8	M12	Υ	123	.5
9	M18	Υ	123	.5
10	M6	Υ	123	5.5
11	M12	Υ	123	5.5
12	M18	Υ	123	5.5
13	M5	Υ	113	.5
14	M11	Υ	113	.5
15	M17	Υ	113	.5
16	M5	Υ	113	5.5
17	M11	Υ	113	5.5
18	M17	Υ	113	5.5
19	M4	Υ	098	3
20	M10	Υ	098	3
21	M16	Υ	098	3

Member Point Loads (BLC 4: Wind with Ice X)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	X	.05	.5
2	M4	X	.05	7.5
3	M10	X	.092	.5
4	M16	X	.092	.5
5	M10	X	.092	7.5
6	M16	X	.092	7.5
7	M6	X	.03	.5
8	M6	X	.03	5.5
9	M12	X	.04	.5
10	M18	X	.04	.5

Company Designer Job Number Model Name

: Centek : FJP : 19027.22

: CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Member Point Loads (BLC 4: Wind with Ice X) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
11	M12	X	.04	5.5
12	M18	X	.04	5.5
13	M5	X	.028	.5
14	M5	X	.028	5.5
15	M11	X	.038	.5
16	M17	X	.038	.5
17	M11	X	.038	5.5
18	M17	X	.038	5.5
19	M4	X	.02	3

Member Point Loads (BLC 5 : Wind X)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	X	.119	.5
2	M4	X	.119	7.5
3	M10	X	.27	.5
4	M16	X	.27	.5
5	M10	X	.27	7.5
6	M16	X	.27	7.5
7	M6	X	.069	.5
8	M6	X	.069	5.5
9	M12	X	.103	.5
10	M18	X	.103	.5
11	M12	X	.103	5.5
12	M18	X	.103	5.5
13	M5	X	.063	.5
14	M5	X	.063	5.5
15	M11	X	.096	.5
16	M17	X	.096	.5
17	M11	X	.096	5.5
18	M17	X	.096	5.5
19	M4	X	.041	3

Member Point Loads (BLC 6: Wind with Ice Z)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Z	.092	.5
2	M4	Z	.092	7.5
3	M10	Z	.05	.5
4	M16	Z	.05	.5
5	M10	Z	.05	7.5
6	M16	Z	.05	7.5
7	M6	Z	.04	.5
8	M6	Z	.04	5.5
9	M12	Z	.03	.5
10	M18	Z	.03	.5
11	M12	Z	.03	5.5
12	M18	Z	.03	5.5
13	M5	Z	.038	.5
14	M5	Z	.038	5.5
15	M11	Z	.028	.5
16	M17	Z	.028	.5
17	M11	Z	.028	5.5

Company Designer Job Number

: Centek : FJP : 19027.22

Model Name : CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Member Point Loads (BLC 6: Wind with Ice Z) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
18	M17	Z	.028	5.5
19	M10	Z	.02	3
20	M16	Z	.02	3

Member Point Loads (BLC 7: Wind Z)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Z	.27	.5
2	M4	Z	.27	7.5
3	M10	Z	.119	.5
4	M16	Z	.119	.5
5	M10	Z	.119	7.5
6	M16	Z	.119	7.5
7	M6	Z	.103	.5
8	M6	Z	.103	5.5
9	M12	Z	.069	.5
10	M18	Z	.069	.5
11	M12	Z	.069	5.5
12	M18	Z	.069	5.5
13	M5	Z	.096	.5
14	M5	Z	.096	5.5
15	M11	Z	.063	.5
16	M17	Z	.063	.5
17	M11	Z	.063	5.5
18	M17	Z	.063	5.5
19	M10	Z	.041	3
20	M16	Z	.041	3

Member Distributed Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/	Start Location[ft,%]	End Location[ft,%]
1	M20	X	.002	.002	0	0
2	M21	X	.002	.002	0	0
3	M22	X	.002	.002	0	0
4	M23	X	.002	.002	0	0
5	M15	X	.002	.002	0	0
6	M9	X	.002	.002	0	0
7	M2	X	.003	.003	0	0
8	M8	X	.003	.003	0	0
9	M14	X	.003	.003	0	0
10	M1	X	.003	.003	0	0
11	M7	X	.003	.003	0	0
12	M13	X	.003	.003	0	0

Member Distributed Loads (BLC 5 : Wind X)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/	Start Location[ft,%]	End Location[ft,%]
1	M20	X	.006	.006	0	0
2	M21	X	.006	.006	0	0
3	M22	X	.006	.006	0	0
4	M23	X	.006	.006	0	0
5	M15	X	.008	.008	0	0

Company : Designer : Job Number :

: Centek : FJP : 19027.22

: CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Member Distributed Loads (BLC 5 : Wind X) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/	Start Location[ft,%]	End Location[ft,%]
6	M9	X	.008	.008	0	0
7	M2	X	.011	.011	0	0
8	M8	X	.011	.011	0	0
9	M14	X	.011	.011	0	0
10	M1	X	.01	.01	0	0
11	M7	X	.01	.01	0	0
12	M13	X	.01	.01	0	0

Member Distributed Loads (BLC 6: Wind with Ice Z)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/	Start Location[ft,%]	End Location[ft,%]
1	M19	Z	.002	.002	0	0
2	M20	Z	.002	.002	0	0
3	M21	Z	.002	.002	0	0
4	M22	Z	.002	.002	0	0
5	M23	Z	.002	.002	0	0
6	M24	Z	.002	.002	0	0
7	M15	Z	.002	.002	0	0
8	M9	Z	.002	.002	0	0
9	M3	Z	.002	.002	0	0
10	M2	Z	.003	.003	0	0
11	M8	Z	.003	.003	0	0
12	M14	Z	.003	.003	0	0
13	M7	Z	.003	.003	0	0
14	M13	Z	.003	.003	0	0

Member Distributed Loads (BLC 7 : Wind Z)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/	Start Location[ft,%]	End Location[ft,%]
1	M19	Z	.006	.006	0	0
2	M24	Z	.006	.006	0	0
3	M20	Z	.006	.006	0	0
4	M21	Z	.006	.006	0	0
5	M22	Z	.006	.006	0	0
6	M23	Z	.006	.006	0	0
7	M15	Z	.008	.008	0	0
8	M9	Z	.008	.008	0	0
9	M3	Z	.008	.008	0	0
10	M2	Z	.011	.011	0	0
11	M8	Z	.011	.011	0	0
12	M14	Z	.011	.011	0	0
13	M7	Z	.01	.01	0	0
14	M13	Z	.01	.01	0	0

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribu	.Area(M	.Surface
1	Self Weight	None		-1						
2	Dead Load	None					21			
3	Ice Load	None					21			
4	Wind with Ice X	None					19	12		
5	Wind X	None					19	12		

Company : Centek Designer : FJP Job Number : 19027.22

Model Name : CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribu	.Area(M	Surface
6	Wind with Ice Z	None					20	14		
7	Wind Z	None					20	14		

Load Combinations

	Description	Solve	PDel	.SE	3F	a	BLC	Fa	BLC	Fa	BLC	Fa	.BLC	Fa	.BF	aBLC	Fa.	B	.Fa	.B	.Fa	.B	.Fa
1	1.2D + 1.6W (X-dire	Yes	Υ		1 1	.2	2	1.2	5	1.6													
2	0.9D + 1.6W (X-dire	Yes	Υ		1 .	9	2	.9	5	1.6													
3	1.2D + 1.0Di + 1.0Wi	Yes	Υ		1 1	.2	2	1.2	3	1	4	1											
4	1.2D + 1.6W (Z-direc	Yes	Υ		1 1	.2	2	1.2	7	1.6													
5	0.9D + 1.6W (Z-direc	Yes	Υ		1 .	9	2	.9	7	1.6													
6	1.2D + 1.0Di + 1.0Wi	Yes	Υ		1 1	.2	2	1.2	3	1	6	1											

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	.043	6	1.961	6	.15	3	-1.415	5	121	6	.492	1
2		min	-1.481	2	.556	2	-1.188	5	-5.118	3	-3.403	1	129	5
3	N17	max	.031	6	1.958	3	225	3	2.639	6	3.071	5	4.423	6
4		min	-1.572	2	.508	5	-1.473	4	.43	2	.576	3	1.463	5
5	N32	max	.298	5	1.853	6	.463	2	2.504	3	3.163	2	-1.395	5
6		min	-1.642	1	.388	2	-1.653	4	.196	5	-3.902	4	-4.595	3
7	Totals:	max	0	6	5.687	6	0	3						
8		min	-4.679	1	1.858	2	-4.298	4	_					

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotatio	LC
1	N1	max	0	6	0	6	0	6	0	6	0	6	0	6
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N2	max	.086	1	023	5	0	5	5.53e-03	3	2.893e-03	1	3.908e-04	5
4		min	.007	6	143	3	0	3	9.834e-05	5	4.427e-04	6	-1.489e-03	1
5	N3	max	.1	1	023	5	.05	3	5.53e-03	3	2.893e-03	1	3.908e-04	5
6		min	.01	6	143	3	.001	5	9.944e-05	5	4.427e-04	6	-1.49e-03	1
7	N4	max	.073	1	023	5	0	5	5.53e-03	3	2.893e-03	1	3.908e-04	5
8		min	.004	6	143	3	05	3	9.724e-05	5	4.427e-04	6	-1.487e-03	1
9	N5	max	.087	1	181	5	.298	5	3.394e-03	1	2.045e-03	3	-2.104e-03	5
10		min	.006	6	602	3	133	3	-3.378e-03	5	-5.357e-03	5	-6.169e-03	3
11	N6	max	.087	1	057	2	.689	5	3.874e-03	3	1.169e-02	5	6.18e-03	6
12		min	.008	6	636	6	009	3	-1.46e-02	5	-5.886e-04	1	1.722e-04	2
13	N7	max	.087	1	169	5	.266	5	3.394e-03	1	2.045e-03	3	-2.104e-03	5
14		min	.006	6	565	3	12	3	-3.378e-03	5	-5.356e-03	5	-6.168e-03	3
15	N8	max	.087	1	056	2	.618	5	3.874e-03	3	1.169e-02	5	6.18e-03	6
16		min	.008	6	598	6	006	3	-1.46e-02	5	-5.886e-04	1	1.719e-04	2
17	N9	max	01	2	169	5	.512	5	3.389e-03	1	2.045e-03	3	-1.832e-03	2
18		min	192	6	566	3	227	3	-8.122e-03	5	-5.356e-03	5	-5.509e-03	6
19	N10	max	.514	1	056	2	2.21	5	3.821e-03	3	1.169e-02	5	1.222e-02	1
20		min	.199	5	599	6	19	3	-4.069e-02	5	-5.886e-04	1	3.673e-03	5
21	N11	max	.312	1	169	5	.182	5	4.586e-03	2	2.128e-03	3	-1.517e-03	5
22		min	.048	5	566	3	078	3	-1.765e-03	4	-1.539e-03	5	-6.15e-03	1

Company Designer Job Number

: Centek : FJP : 19027.22 Model Name

: CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Envelope Joint Displacements (Continued)

Jent		iope dell													
24		Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]					
26		N12			_								_		_
26							_		_						_
27		N13			_										
28					_				_				_		
29		<u>N14</u>											<u> </u>		
31			min		6				_		5				_
32		N15	max		_						4				_
32			min	.039		216		.019	_	1.633e-03	_	-6.203e-04	5	-4.498e-03	
34	31	N16	max	0	6	0	6	0	6	0	6	0	6	0	6
35	32		min	0	1	0	1	0	1	0	1	0	1	0	1
36	33	N17	max	0	6	0	6	0	6	0	6	0	6	0	6
36	34		min	0	1	0	1	0	1	0	1	0	1	0	1
36	35	N18	max	.038	5	029	2	.066	5	8.041e-04	2	-2.432e-04	3	-9.541e-04	2
38	36			.006	3	145	6	.01	3	-3.009e-03	6	-2.44e-03	5	-4.765e-03	6
Nat		N19	max	.06	4		2	.07			2	-2.432e-04	3	-9.552e-04	2
N20			min		2						6	-2.44e-03	5	-4.765e-03	
Month Mont		N20									2	-2.432e-04	3	-9.53e-04	
M21									_			-2.44e-03	5	-4.765e-03	
Mathematical Color		N21										4.026e-03	_		1
Mathematical Property		1421													5
Mathematical Process of the Computer of the		N22			_		_		_						
Mathematical Property		INZZ									_				
Min -104 6 501 3 132 2 -5.261e-03 6 -6.364e-03 2 -6.963e-04 5		N23			_				_		_		•		
47 N24 max .369 2 193 5 .186 4 8.425e-03 1 8.481e-03 2 7.967e-03 2 48 min 17 4 601 3 129 2 -1.553e-03 5 3.625e-03 4 7.932e-03 1 50 min 117 4 502 3 221 2 -6.104e-03 6 6.364e-03 2 6.955e-04 5 51 N26 max 1.643 2 193 5 .653 5 8.393e-03 1 8.481e-03 2 3.408e-02 2 52 min 512 4 602 3 532 1 -1.307e-02 5 3.625e-03 4 7.734e-03 6 53 N27 max 3.05 2 .029 5 2.95 5 4.317e-03 5 3.838e-04 3 2.67e-03 3 54 m		1425											<u> </u>		
Max		N24			_				_		_				
N25		INZ											_		_
50 min 117 4 502 3 221 2 -6.104e-03 6 -6.364e-03 2 -6.955e-04 5 51 N26 max 1.643 2 193 5 653 5 8.393e-03 1 8.481e-03 2 3.408e-02 2 52 min 512 4 602 3 532 1 -1.307e-03 5 3.625e-03 4 -7.734e-03 6 53 N27 max .305 2 0.029 5 2.4256e-03 5 3.188e-03 4 3.267e-03 3 54 min 136 6 501 3 015 3 -1.821e-03 3 -2.03e-03 2 9.985e-04 3 .262e-03 3 5 5 4.256e-03 2 9.985e-04 3 -2.62e-03 3 -5 5 4.256e-03 2 9.985e-04 3 -2.62e-03 3 -1.378e-03		N25			_				_						
51 N26 max 1.643 2 193 5 .653 5 8.393e-03 1 8.481e-03 2 3.408e-02 2 52 min 512 4 602 3 532 1 -1.307e-02 5 3.625e-03 4 -7.734e-03 6 53 N27 max .305 2 .029 5 .295 5 4.317e-03 5 3.625e-03 4 3.267e-03 3 54 min 136 6 501 3 -0.15 3 -1.821e-03 3 -2.033e-03 2 9.898e-04 5 55 N28 max .349 1 193 5 .237 5 4.256e-03 2 9.985e-04 3 -2.62e-03 3 56 min .115 6 -602 3 -1.37 3 -3.178e-03 6 -1.03e-03 6 -6.75e-04 2 1.386e-03 6		INZO											<u> </u>		
52 min 512 4 602 3 532 1 -1.307e-02 5 3.625e-03 4 -7.734e-03 6 53 N27 max .305 2 .029 5 .295 5 4.317e-03 5 3.188e-03 4 3.267e-03 3 54 min 136 6 501 3 015 3 -1.821e-03 3 2.033e-03 2 9.898e-04 5 55 N28 max .349 1 193 5 .237 5 4.256e-03 2 9.985e-04 3 -2.67e-03 3 56 min .115 6 602 3 137 3 -3.178e-03 6 -1.03e-03 5 -6.70e-03 3 57 N29 max .104 2 .022 2 .062 4 4.211e-04 5 1.386e-03 6 5.569e-03 2 -1.34e-03 4		Nac													
53 N27 max .305 2 .029 5 .295 5 4.317e-03 5 3.188e-03 4 3.267e-03 3 54 min 136 6 501 3 015 3 -1.821e-03 3 -2.03e-03 2 9.898e-04 5 55 N28 max .349 1 193 5 .237 5 4.256e-03 2 9.985e-04 3 -2.62e-03 3 56 min .115 6 602 3 137 3 -3.178e-03 6 -1.03e-03 5 -6.705e-03 4 57 N29 max .104 2 0222 2 .066 0.09 3 -5.976e-03 6 -5.161e-03 2 -1.34e-04 2 1.386e-03 6 5.569e-04 2 59 N30 max .255 2 .022 2 .258 6 3.731e-04 2 <		INZO											_		
54 min 136 6 501 3 015 3 -1.821e-03 3 -2.033e-03 2 9.898e-04 5 55 N28 max .349 1 193 5 .237 5 4.256e-03 2 9.985e-04 3 -2.62e-03 3 56 min .115 6 602 3 137 3 -3.178e-03 6 -1.03e-03 5 -6.705e-03 4 57 N29 max .104 2 022 2 .062 4 4.211e-04 5 1.386e-03 6 4.776e-04 2 58 min 002 6 202 6 .009 3 -5.976e-03 6 -5.161e-03 2 -1.34e-03 4 59 N30 max .255 2 022 2 .258 6 3.731e-04 2 1.386e-03 6 5.161e-03 2 -1.33re-03 6		NOT			_						_		_		
55 N28 max .349 1 193 5 .237 5 4.256e-03 2 9.985e-04 3 -2.62e-03 3 56 min .115 6 602 3 137 3 -3.178e-03 6 -1.03e-03 5 -6.705e-03 4 57 N29 max .104 2 022 2 .062 4 4.211e-04 5 1.386e-03 6 4.776e-04 2 58 min 002 6 202 6 .009 3 -5.976e-03 6 -5.161e-03 2 -1.34e-03 4 59 N30 max .255 2 022 2 .258 6 3.731e-04 2 1.386e-03 6 5.161e-03 2 -1.34e-03 4 60 min 049 6 203 6 .011 2 -6.872e-03 6 -5.161e-03 2 1.33r-03 4		INZ/											<u> </u>		
56 min .115 6 602 3 137 3 -3.178e-03 6 -1.03e-03 5 -6.705e-03 4 57 N29 max .104 2 022 2 .062 4 4.211e-04 5 1.386e-03 6 4.776e-04 2 58 min 002 6 202 6 .009 3 -5.976e-03 6 -5.161e-03 2 -1.34e-03 4 59 N30 max .255 2 022 2 .258 6 3.731e-04 2 1.386e-03 6 5.569e-03 2 60 min 049 6 203 6 .011 2 -6.872e-03 6 -5.161e-03 2 -1.337e-03 4 61 N31 max .239 1 022 2 .209 5 3.643e-03 5 2.222e-03 6 4.397e-04 5 62 <t< td=""><td></td><td>NOO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>		NOO											_		
57 N29 max .104 2 022 2 .062 4 4.211e-04 5 1.386e-03 6 4.776e-04 2 58 min 002 6 202 6 .009 3 -5.976e-03 6 -5.161e-03 2 -1.34e-03 4 59 N30 max .255 2 022 2 .258 6 3.731e-04 2 1.386e-03 6 5.569e-03 2 60 min 049 6 203 6 .011 2 -6.872e-03 6 -5.161e-03 2 -1.337e-03 4 61 N31 max .239 1 022 2 .209 5 3.643e-03 5 2.222e-03 6 4.397e-04 5 62 min .034 6 203 6 068 3 -1.409e-03 3 -2.035e-03 2 -3.525e-03 1 63 <		N28											_		
58 min 002 6 202 6 .009 3 -5.976e-03 6 -5.161e-03 2 -1.34e-03 4 59 N30 max .255 2 022 2 .258 6 3.731e-04 2 1.386e-03 6 5.569e-03 2 60 min 049 6 203 6 .011 2 -6.872e-03 6 -5.161e-03 2 -1.337e-03 4 61 N31 max .239 1 022 2 .209 5 3.643e-03 5 2.222e-03 6 4.397e-04 5 62 min .034 6 203 6 068 3 -1.409e-03 3 -2.035e-03 2 -3.525e-03 1 63 N32 max 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 0		NOO											_	1	_
59 N30 max .255 2 022 2 .258 6 3.731e-04 2 1.386e-03 6 5.569e-03 2 60 min 049 6 203 6 .011 2 -6.872e-03 6 -5.161e-03 2 -1.337e-03 4 61 N31 max .239 1 022 2 .209 5 3.643e-03 5 2.222e-03 6 4.397e-04 5 62 min .034 6 203 6 068 3 -1.409e-03 3 -2.035e-03 2 3.525e-03 1 63 N32 max 0 6 0 6 0 6 0 6 0 6 64 min 0 1 0 1 0 1 0 1 0 1 65 N33 max .044 2 039 5 .099 <t< td=""><td></td><td>N29</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>		N29											_		
60 min 049 6 203 6 .011 2 -6.872e-03 6 -5.161e-03 2 -1.337e-03 4 61 N31 max .239 1 022 2 .209 5 3.643e-03 5 2.222e-03 6 4.397e-04 5 62 min .034 6 203 6 068 3 -1.409e-03 3 -2.035e-03 2 -3.525e-03 1 63 N32 max 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <					_		_						_		-
61 N31 max .239 1022 2 .209 5 3.643e-03 5 2.222e-03 6 4.397e-04 5 62 min .034 6203 6068 3 -1.409e-03 3 -2.035e-03 2 -3.525e-03 1 63 N32 max 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0		N30							_				_		
62 min .034 6 203 6 068 3 -1.409e-03 3 -2.035e-03 2 -3.525e-03 1 63 N32 max 0 6 0 6 0 6 0 6 64 min 0 1 0 1 0 1 0 1 65 N33 max .044 2 039 5 .09 4 5.624e-04 5 3.726e-03 4 5.316e-03 3 66 min 052 4 149 3 075 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 67 N34 max .018 2 039 5 .095 5 5.635e-04 5 3.726e-03 4 5.316e-03 3 68 min 076 4 149 3 092 1 -2.619e-03 3 -3.223e-03 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>									_						-
63 N32 max 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0		N31											_		_
64 min 0 1 0 1 0 1 0 1 0 1 65 N33 max .044 2 039 5 .09 4 5.624e-04 5 3.726e-03 4 5.316e-03 3 66 min 052 4 149 3 075 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 67 N34 max .018 2 039 5 .095 5 5.635e-04 5 3.726e-03 4 5.316e-03 3 68 min 076 4 149 3 092 1 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 69 N35 max .074 1 039 5 .087 4 5.613e-04 5 3.726e-03 4 5.316e-03 3 70 min 031 5 149															
65 N33 max .044 2039 5 .09 4 5.624e-04 5 3.726e-03 4 5.316e-03 3 66 min052 4149 3075 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 67 N34 max .018 2039 5 .095 5 5.635e-04 5 3.726e-03 4 5.316e-03 3 68 min076 4149 3092 1 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 69 N35 max .074 1039 5 .087 4 5.613e-04 5 3.726e-03 4 5.316e-03 3 70 min031 5149 3059 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 71 N36 max .278 1048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72 min .148 6599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1		N32													
66 min 052 4 149 3 075 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 67 N34 max .018 2 039 5 .095 5 5.635e-04 5 3.726e-03 4 5.316e-03 3 68 min 076 4 149 3 092 1 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 69 N35 max .074 1 039 5 .087 4 5.613e-04 5 3.726e-03 4 5.316e-03 3 70 min 031 5 149 3 059 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 71 N36 max .278 1 048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72			min		_		_			-	_		•		
67 N34 max .018 2039 5 .095 5 5.635e-04 5 3.726e-03 4 5.316e-03 3 68 min076 4149 3092 1 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 69 N35 max .074 1039 5 .087 4 5.613e-04 5 3.726e-03 4 5.316e-03 3 70 min031 5149 3059 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 71 N36 max .278 1048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72 min .148 6599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1		N33													
68 min 076 4 149 3 092 1 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 69 N35 max .074 1 039 5 .087 4 5.613e-04 5 3.726e-03 4 5.316e-03 3 70 min 031 5 149 3 059 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 71 N36 max .278 1 048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72 min .148 6 599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1			min								3		2		
69 N35 max .074 1039 5 .087 4 5.613e-04 5 3.726e-03 4 5.316e-03 3 70 min031 5149 3059 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 71 N36 max .278 1048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72 min .148 6599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1	67	N34	max		2	039			5	5.635e-04	5				
70 min 031 5 149 3 059 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 71 N36 max .278 1 048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72 min .148 6 599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1	68		min	076	4	149	3	092	1	-2.619e-03	3		2		
70 min 031 5 149 3 059 2 -2.619e-03 3 -3.223e-03 2 2.218e-03 5 71 N36 max .278 1 048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72 min .148 6 599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1	69	N35	max	.074	1	039	5	.087	4	5.613e-04	5	3.726e-03	4	5.316e-03	3
71 N36 max .278 1 048 2 .264 4 3.739e-03 6 5.805e-03 1 5.884e-03 4 72 min .148 6 599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1					5		3		2	-2.619e-03	3	-3.223e-03	2	2.218e-03	5
72 min .148 6 599 6 .054 2 -2.218e-03 2 2.939e-03 6 2.469e-03 2 73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1		N36									6	5.805e-03	1	5.884e-03	4
73 N37 max .654 1 .017 5 .278 1 -2.518e-04 5 -1.169e-03 6 1.485e-02 1					6							2.939e-03	6	2.469e-03	2
		N37			-								6		
					-				_						6

Company Designer Job Number : Centek : FJP

: 19027.22 : CTHA506A - Mount May 3, 2019 12:26 PM Checked By: CAG

Envelope Joint Displacements (Continued)

	iope con										
	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]		Y Rotatio LC Z Rotatio LC
75	N38	max	.248	1	052	2	.251	4	3.738e-03	6	5.804e-03 1 5.883e-03 4
76		min	.132	6	562	6	.037	2	-2.219e-03	2	2.939e-03 6 2.468e-03 2
77	N39	max	.596	1	.011	5	.244	1	-2.515e-04	5	-1.169e-03 6 1.485e-02 1
78		min	.008	5	549	3	.045	6	-8.287e-03	3	-1.118e-02 1 1.527e-03 6
79	N40	max	.478	1	052	2	.236	5	2.86e-03	6	5.804e-03 1 7.705e-03 1
80		min	.34	6	562	6	035	3	-2.216e-03	2	2.939e-03 6 5.382e-03 5
81	N41	max	2.199	1	.011	5	.629	1	-7.322e-03	2	-1.169e-03 6 4.091e-02 1
82		min	.094	6	55	3	.46	3	-1.245e-02	4	-1.118e-02 1 1.507e-03 6
83	N42	max	.266	1	052	2	.38	4	4.233e-03	6	2.996e-03 1 6.537e-03 4
84		min	017	5	562	6	045	2	-1.373e-03	2	1.541e-03 5 -1.622e-03 2
85	N43	max	.279	2	.011	5	.435	4	8.121e-03	4	8.834e-04 4 4.611e-03 6
86		min	202	6	55	3	119	2	-6.584e-03	2	-3.374e-03 2 1.869e-03 2
87	N44	max	.041	1	069	2	.131	4	2.64e-03	4	4.596e-03 4 6.542e-03 6
88		min	.015	6	215	6	077	2	-1.473e-03	2	1.712e-03 3 2.225e-03 2
89	N45	max	.278	3	069	2	.131	5	1.818e-03	3	4.596e-03 4 7.948e-03 1
90		min	.143	5	216	6	07	3	-1.471e-03	2	1.712e-03 3 3.464e-03 5
91	N46	max	.135	2	069	2	.323	4	4.28e-03	4	2.22e-03 4 2.153e-03 6
92		min	105	6	216	6	115	2	1.431e-04	2	1.284e-03 2 -2.951e-03 2
93	N47	max	.275	1	178	5	.201	5	4.586e-03	2	2.128e-03 3 -1.518e-03 5
94		min	.038	5	595	3	091	3	-1.765e-03	4	-1.541e-03 5 -6.151e-03 1
95	N48	max	.273	1	013	2	.37	4	2.675e-03	6	3.297e-03 4 -8.064e-04 5
96		min	.038	5	584	6	042	2	-3.248e-03	5	5.224e-04 2 -7.395e-03 1
97	N49	max	.275	1	169	5	.192	5	4.586e-03	2	2.128e-03 3 -1.517e-03 5
98		min	.038	5	566	3	078	3	-1.765e-03	4	-1.539e-03 5 -6.15e-03 1
99	N50	max	.273	1	056	2	.35	4	2.675e-03	6	3.295e-03 4 -8.07e-04 5
100	. 100	min	.038	5	599	6	045	2	-3.248e-03	5	5.224e-04 2 -7.396e-03 1
101	N51	max	.274	1	043	5	.118	4	3.449e-03	4	1.79e-03 3 -2.921e-05 5
102	1401	min	.039	5	216	3	.009	2	1.633e-03	3	-6.203e-04 5 -4.498e-03 1
103	N52	max	.331	2	.048	5	.278	5	4.316e-03	5	3.189e-03 4 3.267e-03 3
104	1402	min	134	6	521	3	.001	3	-1.822e-03	3	-2.035e-03 2 9.901e-04 5
105	N53	max	.285	1	22	5	.201	5	4.255e-03	2	9.988e-04 3 -1.996e-03 2
106	1400	min	.043	5	593	3	089	3	-3.418e-03	6	-1.031e-03 5 -6.702e-03 4
107	N54	max	.32	2	.029	5	.269	5	4.317e-03	5	3.188e-03 4 3.267e-03 3
108	110-	min	119	6	501	3	004	3	-1.821e-03	3	-2.033e-03 2 9.898e-04 5
109	N55		.28	1	193	5	.198	5	4.255e-03	2	9.985e-04 3 -1.995e-03 2
110	INOO	max min	.048	5	602	3	086	3	-3.419e-03	6	-1.03e-03 5 -6.702e-03 4
111	N56		.217	1	022	2	.187	5	3.643e-03	5	2.222e-03 6 4.397e-04 5
112	NOO	max min	.032	6	203	6	06	3	-1.409e-03	3	-2.035e-03 2 -3.525e-03 1
113	NEZ		.273		203 04	2				_	
114	N57	max	.029	5	592		.366 029	2	4.233e-03 -1.373e-03	2	2.998e-03
	NEO	min		_		6		_		_	
115	N58	max	.338	2	.055	5	.289	4	7.174e-03	4	
116	NEO	min	123	6	54	3	.006	3	-6.582e-03	2	
117	N59	max	.257	1	052	2	.361	4	4.233e-03	6	2.996e-03 1 6.537e-03 4
118	NOO	min	.021	5	562	6	037	2	-1.373e-03	2	1.541e-03 5 -1.622e-03 2
119	N60	max	.32	2	.011	5	.292	4	7.175e-03	4	8.834e-04 4 4.961e-03 3
120	Not	min	119	6	549	3	0	2	-6.582e-03	2	-3.374e-03 2 2.151e-03 5
121	N61	max	.118	2	069	2	.297	4	4.28e-03	4	2.22e-03 4 2.153e-03 6
122	NICO	min	093	6	216	6	<u>116</u>	2	1.431e-04	2	1.284e-03 2 -2.951e-03 2
123	N63	max	.048	1	017	5	0	5	5.166e-03	3	3.083e-03 1 2.605e-04 5
124		min	.003	6	076	3	0	3	7.89e-04	5	2.608e-04 6 -9.923e-04 1
125	N65	max	.024	2	02	5	.049	4	2.135e-04	5	3.72e-03 4 4.803e-03 3
126		min	028	4	079	3	04	2	-2.473e-03	3	-3.107e-03 2 1.759e-03 5

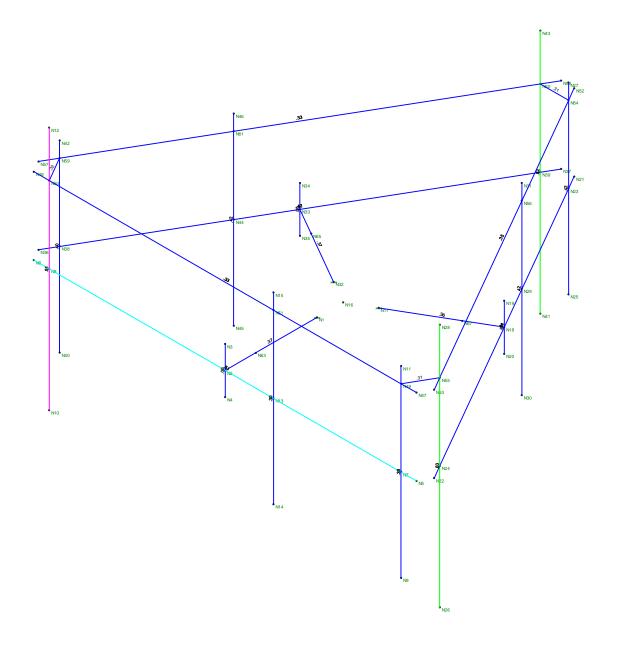
Company Designer Job Number : Centek Model Name

: FJP : 19027.22

: CTHA506A - Mount

May 3, 2019 12:26 PM Checked By: CAG

Envelope Joint Displacements (Continued)


	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotatio	LC
127	N67	max	.021	5	019	2	.037	5	1.797e-04	2	-4.13e-04	3	-1.253e-03	2
128		min	.004	3	077	6	.006	3	-2.743e-03	6	-2.707e-03	5	-4.453e-03	6

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	SheLo	phi*Pphi*Pphi* phi* Eqn_
1	M4	PIPE_2.0	.908	4	4	.242 1.5	5 14.916 32.13 1.872 1.872 H1
2	M10	PIPE_2.0	.831	4	1	.221 1.5	2 14.916 32.13 1.872 1.872 H1
3	M16	PIPE_2.0	.817	4	2	.228 1.5	1 14.916 32.13 1.872 1.872 H1
4	M3	PIPE_3.0	.513	6.25	4	.271 6.25	4 53.776 65.205 5.749 5.749 1 H3-6
5	M9	PIPE_3.0	.439	6.25	1	.217 6.25	1 53.776 65.205 5.749 5.749 1 H1
6	M15	PIPE_3.0	.424	6.25	6	.237 6.25	1 53.776 65.205 5.749 5.749 1 H1
7	M18	PIPE_2.0	.423	3	1	.099 .5	5 20.867 32.13 1.872 1.872 H1
8	M11	PIPE_2.0	.421	3	3	.150 .5	1 20.867 32.13 1.872 1.872 H1
9	M12	PIPE_2.0	.419	3	1	.124 .5	1 20.867 32.13 1.872 1.872 H1
10	M17	PIPE_2.0	.398	3	3	.092 .5	1 20.867 32.13 1.872 1.872 H1
11	M5	PIPE_2.0	.388	3	6	.118 .5	4 20.867 32.13 1.872 1.872 H1
12	M13	HSS4X4X4	.373	0	6		4 134 139 16.181 16.181 H1
13	M1	HSS4X4X4	.371	0	3	.075 0 z	1 134 139 16.181 16.181 H1
14	M7	HSS4X4X4	.364	0	6	.061 0 z	2 134 139 16.181 16.181 H1
15	M21	PIPE_2.0	.346	7.9	3	.117 7.9	1 6.295 32.13 1.872 1.872 H1
16	M19	PIPE_2.0	.335	7.9	6	.090 7.9	4 6.295 32.13 1.872 1.872 H1
17	M20	PIPE_2.0	.331	4.5	3	.083 4.6	1 6.295 32.13 1.872 1.872 H1
18	M22	L2.5x2.5x4	.321	0	5		4 37.493 38.556 1.114 2.537 H2-1
19	M23	L2.5x2.5x4	.310	.926	2	.089 .926 y	5 37.493 38.556 1.114 2.537 H2-1
20	M24	L2.5x2.5x4	.308	0	1	.161 0 z	2 37.493 38.556 1.114 2.537 H2-1
21	M6	PIPE_2.0	.295	3	5	.086 .5	4 20.867 32.13 1.872 1.872 H1
22	M2	PIPE_4.0	.001	.75	1	.000 .75	1 92.571 93.24 10.631 10.631 H1
23	M8	PIPE_4.0	.001	.75	1	.000 .75	1 92.571 93.24 10.631 10.631 H1
24	M14	PIPE_4.0	.001	.75	4	.000 .75	5 92.571 93.24 10.631 10.631 1 H1

Member Code Checks Displayed (Enveloped)

Centek		
FJP	CTHA506A - Mount	May 3, 2019 at 12:27 PM
19027.22	Unity Check	CTHA506A_AMA.r3d

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA506A

AT&T Wethersfield Monopole 75 Wells Road Wethersfield, Connecticut 06109

May 29, 2019

EBI Project Number: 6219001818

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	15.79%

May 29, 2019

T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTHA506A - AT&T Wethersfield Monopole

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **75 Wells Road** in **Wethersfield, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 75 Wells Road in Wethersfield, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the Ericsson AIR 21 for the 2100 MHz channel(s), the Ericsson AIR 32 for the 1900 MHz / 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 700 MHz channel(s) in Sector A, the Ericsson AIR 21 for the 2100 MHz channel(s), the Ericsson AIR 32 for the 1900 MHz / 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 700 MHz channel(s) in Sector B, the Ericsson AIR 21 for the 2100 MHz channel(s), the Ericsson AIR 32 for the 1900 MHz / 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 700 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerline of the proposed antennas is 95 feet above ground level (AGL).
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 11) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	<u></u>	Antenna #:	I	Antenna #:	ı
Make / Model:	Ericsson AIR 21	Make / Model:	Ericsson AIR 21	Make / Model:	Ericsson AIR 21
Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz
Gain:	15.35 dBd	Gain:	15.35 dBd	Gain:	15.35 dBd
Height (AGL):	95 feet	Height (AGL):	95 feet	Height (AGL):	95 feet
Channel Count:	75 leet	Channel Count:	75 leet	Channel Count:	75 Teet
			60 Watts		60 Watts
Total TX Power (W):	60 Watts	Total TX Power (W):		Total TX Power (W):	
ERP (W):	2,056.61	ERP (W):	2,056.61	ERP (W):	2,056.61
Antenna A1 MPE %:	0.82%	Antenna BI MPE %:	0.82%	Antenna CI MPE %:	0.82%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR 32	Make / Model:	Ericsson AIR 32	Make / Model:	Ericsson AIR 32
Frequency Bands:	1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 2100 MHz
Gain:	15.35 dBd / 15.85 dBd	Gain:	15.35 dBd / 15.85 dBd	Gain:	15.35 dBd / 15.85 dBd
Height (AGL):	95 feet	Height (AGL):	95 feet	Height (AGL):	95 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (W):	8,728.31	ERP (W):	8,728.31	ERP (W):	8,728.31
Antenna A2 MPE %:	3.48%	Antenna B2 MPE %:	3.48%	Antenna C2 MPE %:	3.48%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20
Frequency Bands:	600 MHz / 700 MHz	Frequency Bands:	600 MHz / 700 MHz	Frequency Bands:	600 MHz / 700 MHz
Gain:	12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 13.35 dBd
Height (AGL):	95 feet	Height (AGL):	95 feet	Height (AGL):	95 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts
ERP (W):	2,481.08	ERP (W):	2,481.08	ERP (W):	2,481.08
Antenna A3 MPE %:	2.29%	Antenna B3 MPE %:	2.29%	Antenna C3 MPE %:	2.29%

Site Composite MPE %				
Carrier	MPE %			
T-Mobile (Max at Sector A):	6.58%			
AT&T	9.21%			
Site Total MPE %:	15.79%			

T-Mobile Sector A Total:	6.58%		
T-Mobile Sector B Total:	6.58%		
T-Mobile Sector C Total:	6.58%		
Site Total:	15.79%		

T-Mobile Maximum MPE Power Values (Sector A)							
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
T-Mobile 2100 MHz UMTS	2	1028.30	95.0	8.19	2100 MHz UMTS	1000	0.82%
T-Mobile 1900 MHz LTE	2	2056.61	95.0	16.39	1900 MHz LTE	1000	1.64%
T-Mobile 2100 MHz LTE	2	2307.55	95.0	18.38	2100 MHz LTE	1000	1.84%
T-Mobile 600 MHz LTE	2	591.73	95.0	4.71	600 MHz LTE	400	1.18%
T-Mobile 700 MHz LTE	2	648.82	95.0	5.17	700 MHz LTE	467	1.11%
						Total:	6.58%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)		
Sector A:	6.58%		
Sector B:	6.58%		
Sector C:	6.58%		
T-Mobile Maximum	6.58%		
MPE % (Sector A):			
Site Total:	15.79%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **15.79**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.