Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 17, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 880 Post Road East, Westport, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a Connecticut State Police tower and associated equipment on the ground near the base of the structure. The tower and Cellco's use of the tower were approved by the Siting Council ("Council") in March of 1990 (Docket No 123). A copy of the Council's Docket No. 123 Decision and Order is included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing five (5) existing antennas and installing three (3) new Samsung MT6407-77A antennas and four (4) new MX06FRO640 antennas on its existing antenna mounts. Cellco also intends to install six (6) remote radio heads ("RRHs') behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Westport's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. May 17, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas will be installed on Cellco's existing antenna mounts.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. May 17, 2022 Page 3

Sincerely,

Kunig mm

Kenneth C. Baldwin

Enclosures

Copy to:

Jennifer Tooker, Westport First Selectwoman Mary Young, Planning and Zoning Director Connecticut State Police, Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

An application of the Department	:	Docket 123
of Public Safety, Division of	:	
State Police, for a Certificate of	:	Connecticut
Environmental Compatibility and Public	:	Siting
Need for the construction, operation,	:	Council
and maintenance of a telecommunications	:	
tower and associated equipment in the	:	
Town of Westport, Connecticut.	:	March 29, 1990

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of a telecommunications tower, building, and associated equipment at the proposed Westport, Connecticut, site including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the General Statutes of Connecticut (CGS), be issued to Department of Public Safety, Division of State Police, for the construction, operation, and maintenance of a telecommunications tower, associated equipment, and building at the proposed Troop "G" site in Westport, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this proceeding, and subject to the following conditions:

- 1. The self-supporting lattice tower shall be no taller than necessary to provide the proposed communications and in no event shall the Westport, Troop "G", tower exceed 180 feet above ground level, with antennas and all appurtenances.
- 2. The facility shall be constructed in accordance with the State of Connecticut Basic Building Code.
- 3. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. The D&M plan shall include detailed plans for the site's preparation including the tower and building foundation, site access, and erosion and sedimentation controls.
- 4. The Certificate Holder shall comply with any future radio frequency (RF) standards, promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facilities granted in this Decision and Order shall be brought into compliance with such standards.

Docket 123 Decision & Order Page 2

- 5. The Certificate Holder shall provide the Council a recalculated report of power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
- 6. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 7. If the facility does not initially provide, or permanently ceases to provide telecommunications service following completion of construction, this Decision and Order shall be void, and the tower and all associated equipment shall be dismantled and removed or reapplication for any new use shall be made to the Council before any such new use is made.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order.

Pursuant to Section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below. A notice of issuance shall be published in the Bridgeport Post, The Hour, and the Advocate.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with section 16-50j-17 of the Regulations of State Agencies.

The parties or intervenors to this proceeding are:

<u>Party</u>

Its Representatives

Department of Public Safety Division of State Police Division of State Police Division of State Police Police Support Services 294 Colony Street Building No. 5 Meriden, Connecticut 06450 L.D. McCallum and Robert F. Vachelli Assistant Attorneys General MacKenzie Hall 110 Sherman Street Hartford, Connecticut 06105 Docket 123 Decision & Order Page 3

<u>Party</u>

Metro Mobile CTS, of Fairfield County, Inc. 50 Rockland Road South Norwalk, Connecticut 06854

<u>Party</u>

Metro Mobile CTS, of 110 East 59th Street New York, New York 10022

<u>Party</u>

Town of Westport 110 Myrtle Avenue Westport, Connecticut 06880

4052E

Its Representative

Henry H. Sprague, Esq. Robinson & Cole One Commercial Plaza Hartford, Connecticut 06105

Its Representative

Henry H. Sprague, Esq. Robinson & Cole One Commercial Plaza Hartford, Connecticut 06105

Its Representative

Paul L. Brozdowski Office of Town Attorney 110 Myrtle Avenue Westport, Connecticut 06880

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in Docket No. 123 - An application of the Department of Public Safety, Division of State Police for a Certificate of Environmental Compatibility and Public Need for the construction, operation, and maintenance of a telecommunications tower and associated equipment in the Town of Westport, Connecticut or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the 26th day of March, 1990.

<u>Vote Cast</u>

Abstain

Yes

Yes

Yes

Yes

Gloria Dibble Pond Chairperson

Council Members

Commissioner Peter Boucher Designee: Mark Marcus

Commissioner Leslie Carothers Designee: Brian Emerick

Ε Harry Covev

Mortimer A. Gelston

Sheets

Daniel P. Lyngh, Jr.

н.

Yes

Abstain

Yes

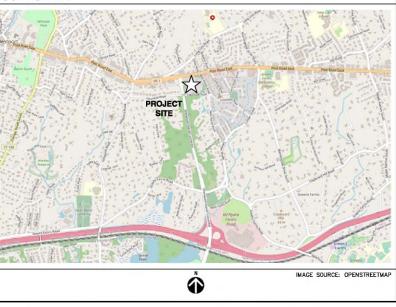
Colin C. Tait

Absent

4235E-2

Paulann

William H.


ATTACHMENT 2

verizon WESTPORT CT

880 POST ROAD FAST UNIT 1 WESTPORT, CT 06880 CT STATE POLICE SELF-SUPPORT TOWER

> LOCATION CODE (PSLC): 469153 FUZE ID: 16242132 EQUIPMENT UPGRADE PROJECT RFDS DATE: 12/03/21

- VERIFY COAX CONFIGURATION, ANTENNA CONFIGURATION, AND ANTENNA HEIGHT WITH LATEST RF DATA SHEET PRIOR TO INSTALLATION.
- THE CONTRACTOR SHALL SCHEDULE AND SEQUENCE ALL REQUIRED WORK WITH THE OWNER'S REPRESENTATIVE AND CONSTRUCTION MANAGER. 2

ت گ

Ē

σ

DESIG

fe Bay

n

ING ING

BY TBD TBD

WESTPORT CT 0 POST ROAD EAST UNIT WESTPORT, CT 08880

FUZE PROJECT ID: 162421

I – 1

REVISIONS DATED 1 198

Ph: (413)320 ouP,

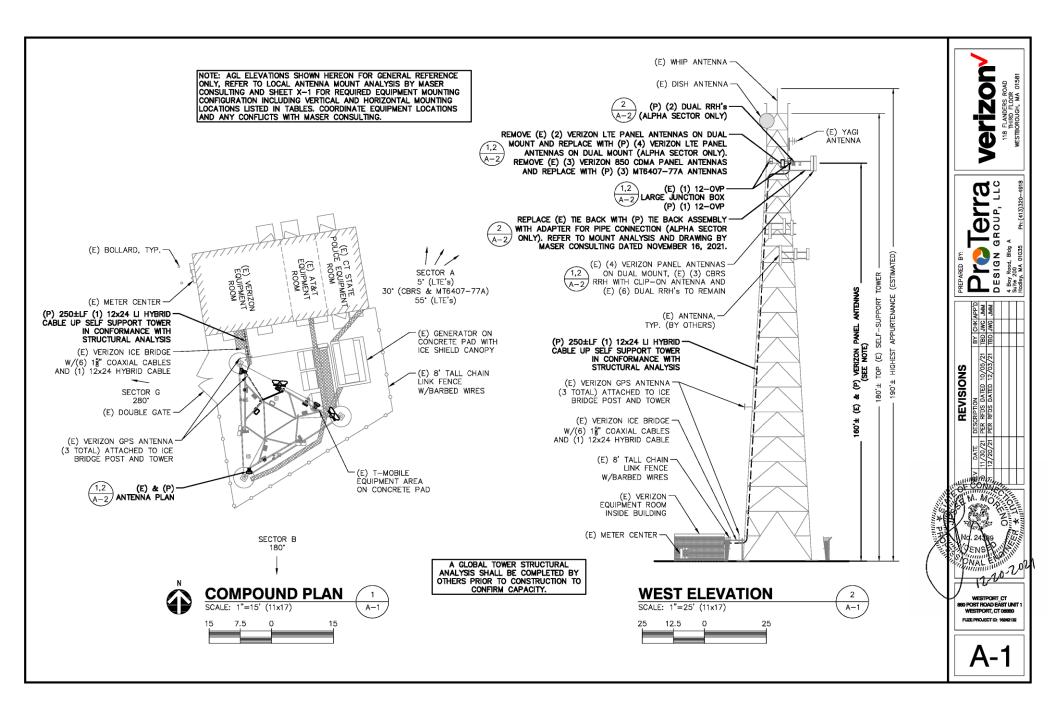
- AND CONSTRUCTION MANAGER. REPARE ANY DAMAGE DURING CONSTRUCTION TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE CONSTRUCTION MANAGER THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION MEANS, CONSTRUCTION
- METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES FOR THE WORK.
- ANTENNAS TO BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS, GLOBAL STRUCTURAL ANALYSIS, AND LOCAL ANTENNA MOUNT ANALYSIS INCLUDING ANTENNA MOUNT MODIFICATIONS AND STRUCTURAL AUGMENTS AS APPLICABLE.
- APPLICABLE. REPLACE AND/OR REUSE (E) MOUNTING HARDWARE, INSPECT FOR DAMAGE, AND REPLACE AS NECESSARY TO THE SATISFACTION OF THE ENGINEER. EQUIPMENT LOCATIONS AND CONDITIONS TO BE FIELD
- VERIFIED PRIOR TO COMMENCEMENT OF CONSTRUCTION. ENGINEER SHALL BE NOTIFIED OF ANY DISCREPANCIES OR BE RESPONSIBLE FOR THE SAME.
- NORTH SHOWN IS APPROXIMATE. NOT ALL (E) OR (P) IMPROVEMENTS REQUIRED MAY BE SHOWN FOR CLARITY. ANTENNA ELEVATIONS SHALL BE PER ZONING OR AS APPROVALS DICTATE 9.
- AN IENNA LEEVATIONS SHALL BE PER ZUNING OK AS APPROVALS DICTATE. THESE CONSTRUCTION DRAWINGS ARE CONTINGENT UPON A PASSING GLOBAL STRUCTURAL ANALYSIS INCLUDING THE INSTALLATION OF ANY REQUIRED MODIFICATIONS AND INSPECTION REPORTS AS A RESULT THEREIN. 10.

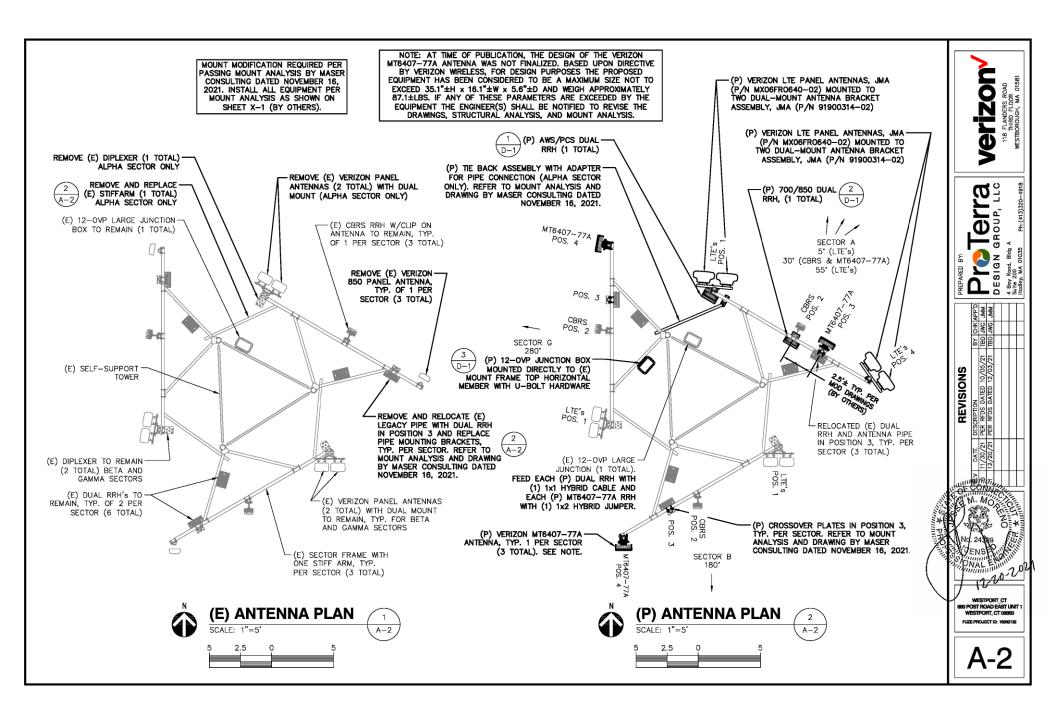
STRUCTURAL NOTES

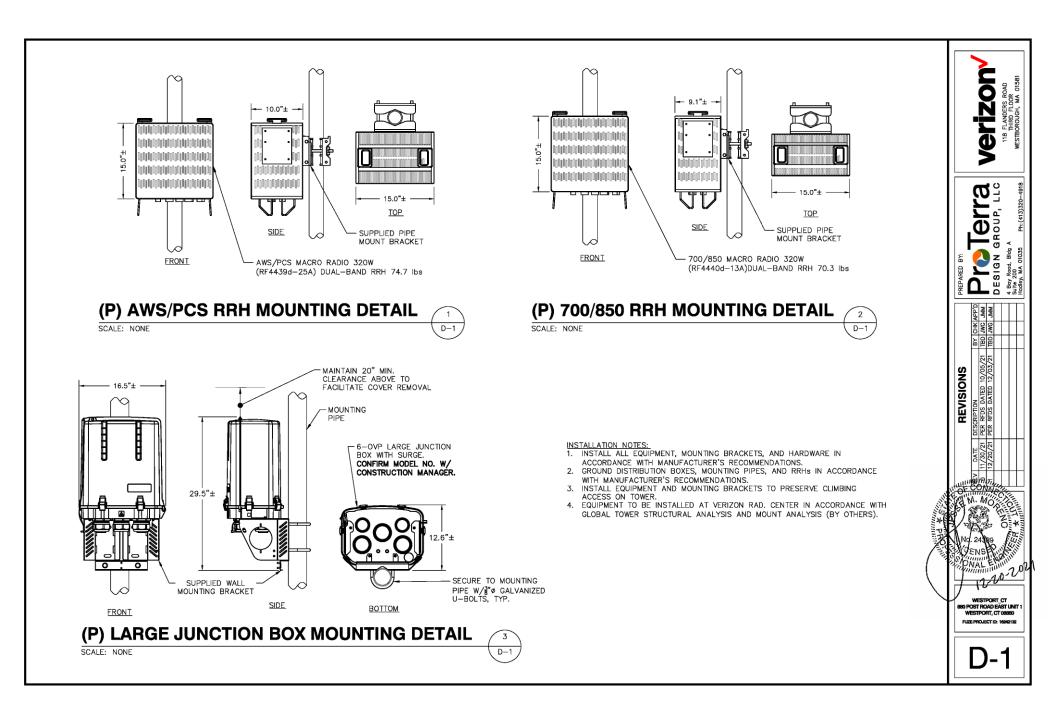
GLOBAL TOWER STRUCTURAL ANALYSIS REPORT:

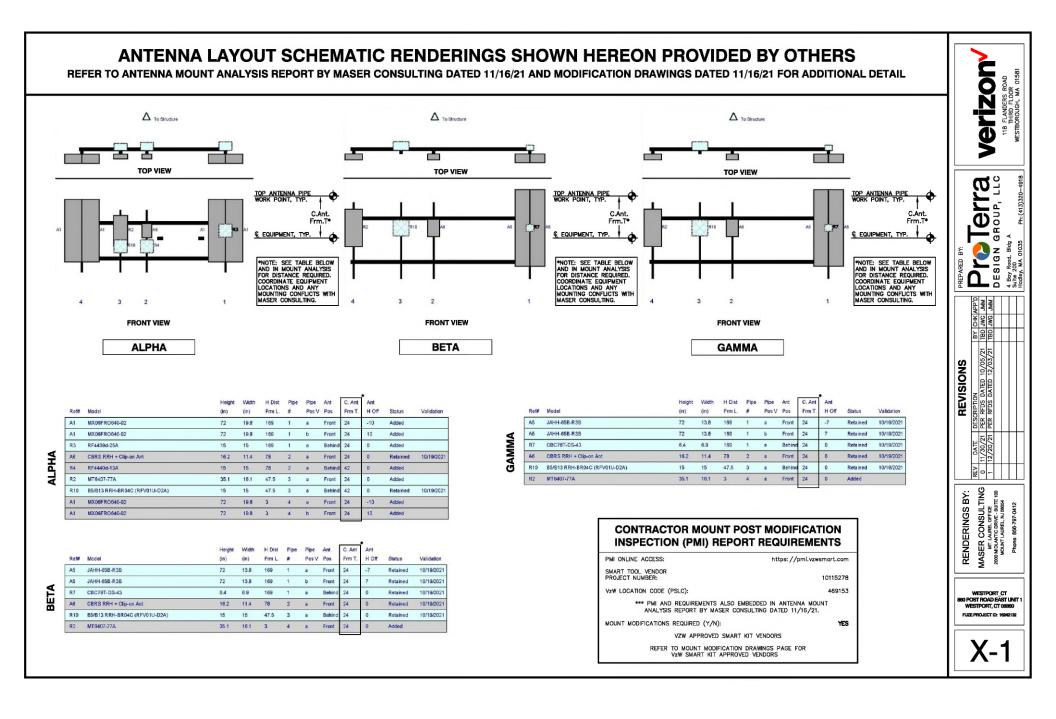
NDING: A GLOBAL TOWER STRUCTURAL ANALYSIS SHALL BE COMPLETE BY OTHERS PRIOR TO CONSTRUCTION TO CONFIRM CAPACITY.

LOCAL ANTENNA MOUNT ANALYSIS REPORT:


- MOUNT MODIFICATIONS REQUIRED PER PASSING REPORT & MODIFICATION DRAWINGS BY MASER CONSULTING DATED 11/16/21.
- REMOVE AND REPLACE THE BACK WITH ADAPTER FOR
- PIPE CONNECTION (ALPHA SECTOR ONLY) RELOCATE ANTENNA PIPE AND REMOVE AND REPLACE ANTENNA PIPE MOUNTING BRACKETS IN POSITION 3,
- TYP. PER SECTOR (3 TOTAL)


CONTRACTOR MOUNT POST MODIFICATION INSPECTION (PMI) REPORT REQUIREMENTS


PMI ONLINE ACCESS: https://pmi.vzwsmart.com SMART TOOL VENDOR 10115278 VW LOCATION CODE (PSLC): 469153 *** PMI AND REQUIREMENTS ALSO EMBEDDED IN ANTENNA MOUNT ANALYSIS REPORT BY MASER CONSULTING DATED 11/16/21. MOUNT MODIFICATIONS REQUIRED (Y/N): YES VZW APPROVED SMART KIT VENDORS REFER TO MOUNT MODIFICATION DRAWINGS PAGE FOR VZW SMART KIT APPROVED VENDORS Jesse Digitally signature Moreno, PE Data 2021


SCOP	E OF WORK:	EXISTING TELECOMMUNICATIONS FACILITY EQUIPMENT ALTERATIO	
SITE	NAME:	WESTPORT_CT	
LOCA	TION CODE (PSLC):	469153	
FUZE	PROJECT ID:	16242132	
SITE	ADDRESS:	880 POST ROAD EAST UNIT 1 WESTPORT, CT 06880	
LATIT	UDE:	41.137475 N (RFDS)	
LONG	ITUDE:	-73.334364 W (RFDS)	
FACIL		CT STATE POLICE SELF-SUPPORT TOWER	
APPL LESSI PROJ	ICANT, EE/LICENSEE, ECT OWNER:	CELLCO PARTNERSHIP dbo VERIZON WIRELESS 118 FLANDERS ROAD THIRD FLOOR WESTBOROUGH, MA 01581	
SITE	ENGINEER:	PROTERRA DESIGN GROUP, LLC 4 BAY ROAD BUILDING A, SUITE 200 HADLEY, MA 01035	
SH	IEET INDEX		
SHT. NO.	DESCRIPTION		RE'
T-1	TITLE SHEET		1
A-1	COMPOUND PLAN	& ELEVATION	1
A-2	EXISTING AND PRO	OPOSED ANTENNA PLAN	1
D-1	DETAIL		1
X-1	ANTENNA LAYOUT	RENDERINGS (BY OTHERS)	1

PROJECT SUMMARY

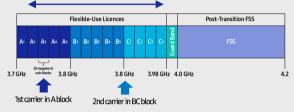
SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

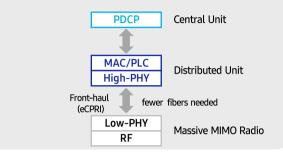
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

700/850MHZ MACRO RADIO

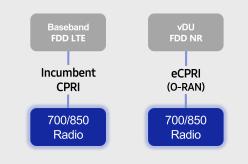
DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A

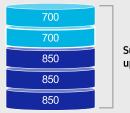
Homepage samsungnetworks.com



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

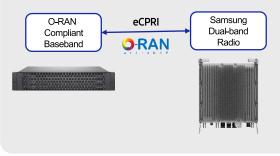

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

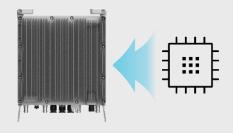
Supports up to 5 carriers


Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

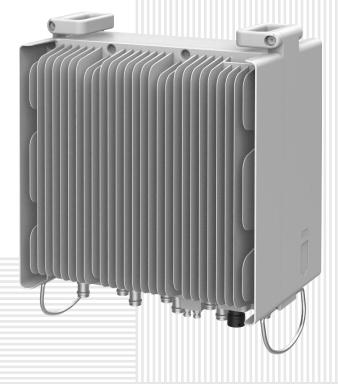

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

SAMSUNG

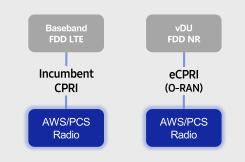

AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER

FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

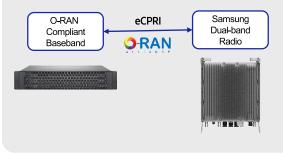
RF4439d-25A



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

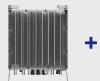
O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.


The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an incumbent radio volume

 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

Product Specifications

MX06FRO640-02 NWAV™ X-Pol Antenna | Hex-Port | 6 ft | 40°

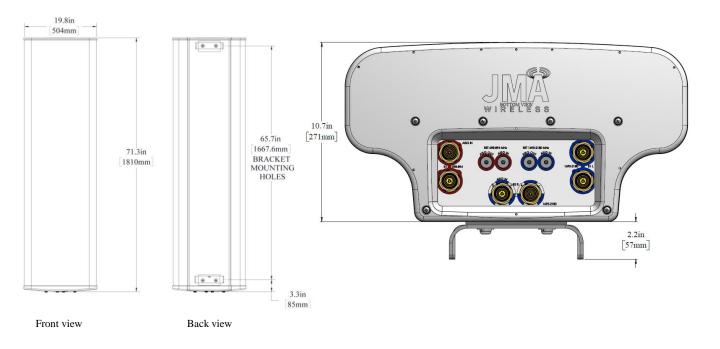
X-Pol, Hex-Port 6 ft 40° Fast Roll-Off with Smart Bias-T (2) 698–894 MHz & (4) 1695–2180 MHz

- Fast Roll-Off (FROTM) Azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent Passive Intermodulation (PIM) performance reduces harmful interference
- Fully integrated (iRETs) with *independent* RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart BIAS-Ts reduces leasing costs

		11
1 1		
		11 - I
		II P
		И. –
		Ш.
		11
		llk –
		IIP -
		4
	÷	€
		~
	assister	

Electrical specification (minimum/ maximum)	Ports 1,2 Ports 3,4,5,6				
Frequency bands, MHz	698–798	824–894	1695–1880 1850–1990 192		1920–2180
Polarization	± 4	45°		± 45°	-
Average gain over all tilts, dBi	16.3	17.2	19.3	20.1	20.4
Horizontal beamwidth (HBW), degrees ¹	42°	37°	40°	39°	37°
Front-to-back ratio, co-polar power @180° ± 30°, dB	>25.0	>25.0	>28.0	>28.0	>28.0
X-Pol discrimination (CPR) at boresight, dB	>18.0	>15.0	>18	>18	>15
Sector power ratio, percent	<4.5	<3.5	<3.7	<3.8	<3.6
Vertical beamwidth, (VBW), degrees ¹	13.1°	11.8°	6.0°	5.7°	5.3°
Electrical downtilt (EDT) range, degrees	2-14	2-14	0-9		
First upper side lobe (USLS) suppression, dB ¹	≤ -15.0	≤ -15.0	≤ -16.0	≤ -16.0	≤ -16.0
Minimum cross polar isolation, port-to-port, dB	25	25	25	25	25
Maximum VSWR/ return loss, dB	1.5/ -14.0	1.5/ -14.0	1.5/ -14.0	1.5/ -14.0	1.5/ -14.0
Maximum passive Intermodulation (PIM), 2x 20W carrier, dBc	-153	-153	-153		
Maximum input power per any port, watts	3	00	250		
Total composite power all ports, watts			1500		

¹ Typical value over frequency and tilt


©2017 JMA Wireless. All rights reserved. This document contains proprietary and confidential information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. Revised: May 18, 2018 **Product Specifications**

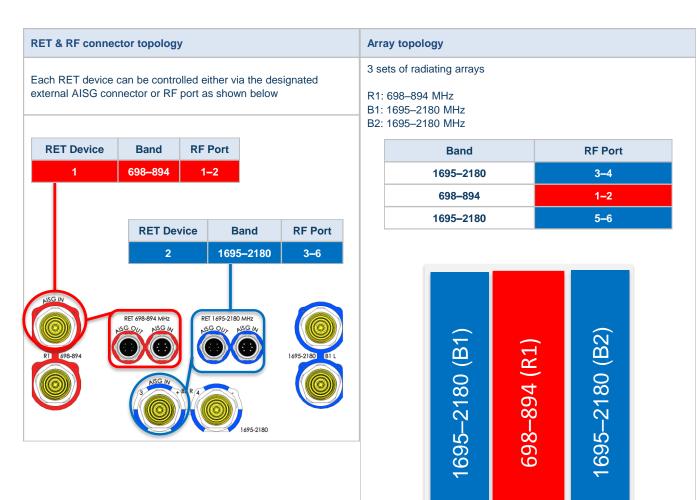
MX06FR0640-02 NWAV™ X-Pol Antenna | Hex-Port | 6 ft | 40°

Mechanical specifications

Dimensions height/ width/ depth, inches (mm)	72/ 19.8/ 10.7 (1829/504/271)
Shipping dimensions length/ width/ height, inches (mm)	84/26/15 (2134/660/381)
No. of RF input ports, connector type & location	6 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	70 (31.8)
Shipping weight, lb (kg)	100 (45.4)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.2)
Range of mechanical up/ down tilt	-2° to 14°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral & rear wind loading @ 150 km/h, lbf (N)	263 (1170), 112 (498), 263 (1170)
Equivalent flat plate @100 mph and Cd=2, sq ft	6.03

Ordering information				
Antenna model	Description			
MX06FRO640-02	6F X- Pol HEX FRO 40° 2-14°/ 0-9° RET, 4.3-10 & SBT			
Optional accessories				
992100-CA030-SC	Optional AISG jumper cable, M/F, 3.0 meters			
PCU-1000	Primary control unit, USB			

©2017 JMA Wireless. All rights reserved. This document contains proprietary and confidential information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. Revised: May 18, 2018


Product Specifications

MX06FRO640-02 NWAV™ X-Pol Antenna | Hex-Port | 6 ft | 40°

Remote Electrical Tilt (RET 1000) information

Integrated into antenna
8-pin AISG connector per IEC 60130-9
2 pairs of AISG male/ female connectors
Bottom of the antenna
1
1
10–30
≤ 2.0
≤ 13.0
AISG 2.0/ 3GPP

©2017 JMA Wireless. All rights reserved. This document contains proprietary and confidential information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. Revised: May 18, 2018

ATTACHMENT 3

	General	Power	Density					
Site Name: Westport								
Tower Height: Verizon @ 160ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*AT&T	1	368	133	850	0.0082	0.5667	0.14%	
*AT&T	1	1476	133	737	0.0329	0.4913	0.67%	
*AT&T	1	4842	133	1900	0.1080	1.0000	1.08%	
*AT&T	1	3837	133	2100	0.0856	1.0000	0.86%	
*AT&T	1	1285	133	2300	0.0287	1.0000	0.29%	
*T-Mobile	4	1167	125	1900	0.1185	1.0000	1.19%	
*T-Mobile	1	865	125	700	0.0220	0.4667	0.47%	
*T-Mobile	2	2334	125	2100	0.1185	1.0000	1.19%	
*State Police	1	330	180	42.04	0.0039	0.2000	0.20%	
*State Police	1	50.7	169	954.4	0.0007	0.6363	0.01%	
VZW 700	4	1122	160	751	0.0063	0.5007	1.26%	
VZW CDMA	2	499	160	876.03	0.0014	0.5840	0.24%	
VZW Cellular	4	871	160	874	0.0049	0.5827	0.84%	
VZW PCS	4	1778	160	1980	0.0100	1.0000	1.00%	
VZW AWS	4	2344	160	2120	0.0132	1.0000	1.32%	
VZW CBRS	4	11	160	3625	0.0001	1.0000	0.01%	
VZW CBAND	2	13335	160	3730.08	0.0375	1.0000	3.75%	
								14.50%
* Source: Siting Council								

ATTACHMENT 4

Centered on Solutions[™]

Structural Analysis Report

180' Existing Lattice Tower

Verizon Antenna Upgrade

CSP Tower Ref: #32

880 Post Road East Westport, CT

CENTEK Project No. 22027.01

Date: April 5, 2022

Max Stress Ratio = 82%

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- FOUNDATION AND ANCHORS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower FEED LINE PLAN
- tnxTower FEED LINE DISTRIBUTION
- tnxTower DETAILED OUTPUT
- tnxTower INPUT/OUTPUT SUMMARY (REV.F FOR TWIST AND SWAY)
- tnxTower DETAILED OUTPUT (REV.F FOR TWIST AND SWAY)
- ANCHOR BOLT ANALYSIS
- FOUNDATION ANALYSIS

<u>Introduction</u>

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the antenna upgrade by Verizon on the existing lattice tower located in Westport, Connecticut.

The host tower is a 180-ft, three legged, lattice tower originally designed and manufactured by Rohn Industries. File no. 26263DL dated February 1, 1991. The tower geometry, structure member sizes and foundation information were taken from a previous structural analysis report prepared by AECOM job no. VZ5-224 60620140 dated July 10, 2020. The tower has been previously reinforced. All previous reinforcements are assumed to be installed. See Primary Assumptions Section below for detailed reinforcement reference reports.

Antenna and appurtenance inventory was taken from the aforementioned structural analysis and information provided by Verizon.

The tower consists of nine (9) vertical sections consisting of steel pipe legs conforming to ASTM A572-50 and steel pipe lateral bracing. The vertical tower sections are connected by bolted flange plates with the diagonal and horizontal bracing to pipe legs consisting of bolted connections. The width of the tower face is 8.5-ft at the top and 27.7-ft at the bottom.

<u>Antenna and Appurtenance Summary</u>

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Telewave ANT490Y10- WR Yagi	D&K-51 CSP-1 (existing)	Leg Mounted	187'	(1) LDF5-50A
(1) Telewave ANT490Y10- WR Yagi	CSP-22 (existing)	Leg Mounted	181'	(1) LDF5-50A
(1) Celwave PA6-65 Dish	D&K-52 CSP-42 (existing)	Pipe Mounted to to tower Leg	177'	(1) EW-63
(3) RFI BPA7496-180-14 Panel Antennas (1) Bird TTA unit	CSP-47,80- 82 (existing)	(1) USF12-396 Sector Frame	170'	(3) AVA7-50A (1) LDF4-50A
(1) 3-ft Yagi	CSP (existing)	Pipe Mounted to tower Leg	169'	(1) LDF5-50A
(2) BXA-70063-4CF (1) BXA-70080-4CF (2) JAHH-65B-R3B (1) CBC78T-DS-43	VZW (existing to remove)	See Below Mount	160'	NA

The existing and proposed loads considered in the analysis consist of the following:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(4) MX06FRO640-02 (3) MT6407-77A (1) 4439d-25A RRH (1) 4440d-13A RRH (1) OVP Unit	VZW (Proposed)	See Below Mount	160'	(1) 12x24 Hybrid Cable
(4) JAHH-65B-R3B (3) XXDWMM-12.5-65-8T (3) B2/B66A RRHs (3) B5/B13 RRHs (3) RT4401-48A RRHs (2) CBC78T-DS-43 (1) OVP Units	VZW (existing to remain)	$1 \text{ to} \begin{bmatrix} (3) & 15 - \text{ft Gate} \\ \text{Booms} \end{bmatrix} = 160^{\circ} \begin{bmatrix} (6) & 1 & 5/8^{\circ} & 0 \\ (1) & 12 \times 24 & 160^{\circ} \end{bmatrix}$		(6) 1 5/8" Coax Cables (1) 12x24 Hybrid Cable
(3) 800-10798 (3) P65-16-XLH-RR (3) HPA-65R-BUU-H6 (3) RRUS-11 RRH Units (9) RRUS-32 RRH Units (3) DBS0061F1V51-2 (3) DC6-48-60-18-8F	AT&T (existing)	(3) 15-ft T-Frames	133'	(12) 1 1/4" Coax Cables (2) Fiber Cables (4) DC Cables
(3) Ericsson AIR32 (3) Ericsson AIR21 (3) RFS APXVAARR24_43 (3) 4449 RRHS (3) TMAs	T-Mobile (existing)	(3) 12-ft T-Frames	125'	(6) 1 5/8" Coax Cables (3) 6x12 Hybrid Cables
(1) Telewave ANT150D Dipole	CSP (existing)	Pipe Mounted to tower Leg	113'	(1) LDF4-50A
(1) GPS Antenna	D&K-1 CSP-43 (existing)	Leg Mounted	61'	(1) LDF4-50A

<u>Primary Assumptions Used in the Analysis</u>

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables should be routed as specified in section 3 of this report.
- All previous reinforcements per the below listed structural analysis and modification reports are assumed to be installed.
 - Structural report prepared by AECOM Corp for AT&T project no. SMK-004 / 60581632 dated 7/13/18.
 - Structural report prepared by AECOM Corp for Verizon project no. VZ5-224 / 60620140 dated 7/10/20.

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-H entitled "Structural Standard for Antenna Support Structures, Antennas and Small Wind Turbine Support Structures", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix N of the CSBC¹ and the wind speed data available in the TIA-222-H Standard.

<u>Tower Loading</u>

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-H, gravity loads of the tower structure and its components, and the application of 1.0" radial ice on the tower structure and its components.

Load Cases:	Load Case 1; 130 mph (Risk Cat III) wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.	[Appendix N of the 2018 CT Building Code]
	Load Case 2; 50 mph wind speed w/ 1.00" radial ice plus gravity load – used in calculation of tower stresses.	[Annex B of TIA-222-H]
	Load Case 3; 90 mph wind speed w/ 0.5" radial ice plus gravity load – used in calculation of tower twist and sway.	[TIA-222-F used for calculation of tower twist and sway per the requirements of the CSP]

¹ The 2015 International Building Code as amended by the 2018 Connecticut State Building Code (CSBC).

Tower Capacity

Tower Section	Elevation	Stress Ratio (percentage of capacity)	Result
Leg (T12)	20.0' - 30.0'	61.5%	PASS
Diagonal (T12)	20.0' - 30.0'	81.6%	PASS
Horizontal (T11)	30.0' - 40.0'	74.8%	PASS

Calculated stresses <u>were found to be within allowable limits</u>.

• The tower combined deflection was found to be within allowable limits.

Deflection Criteria	Proposed (degrees)	Allowable (degrees)	Result
Sway (Tilt)	0.3783	n/a	n/a
Twist	0.3184	n/a	n/a
Combined	0.6967	0.75	PASS

TIA-222-F standard used for calculation of tower twist and sway per the requirements of the CSP.

Foundation and Anchors

The existing foundation consists of three (3) 4.5-ft diameter x 27-ft long reinforced concrete caissons. The base of the tower is connected to the foundation by means of (10) 1.00° anchor bolts per leg embedded into the concrete foundation structure.

 The tower reactions developed from the governing Load Case were used in the verification of the foundation and anchor bolts:

Load Effect	Proposed Tower Reactions
Leg Shear	50 kips
Leg Compression	348 kips
Leg Tension	306 kips
Base Moment	7,843 ft-kips
Base Shear	86 kips

The anchor bolts were found to be within allowable limits.

Tower Section	Component	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Combined Compression and Shear	47.2%	PASS

• The foundation was found to be within allowable limits.

Foundation	Design Limit	(percentage of capacity)	Result
(3) Reinforced	Uplift	34%	PASS
Concrete Caisson	Bearing	46%	PASS

<u>Conclusion</u>

This analysis shows that the subject tower **is adequate** to support the proposed antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon and the CSP. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

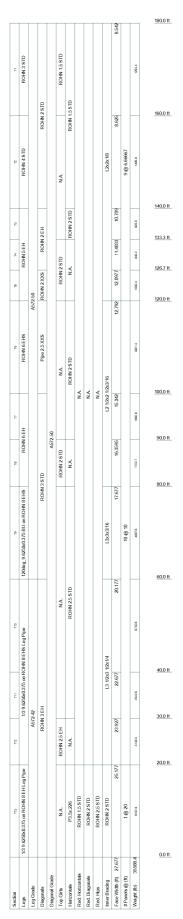
Respectfully Submitted by:

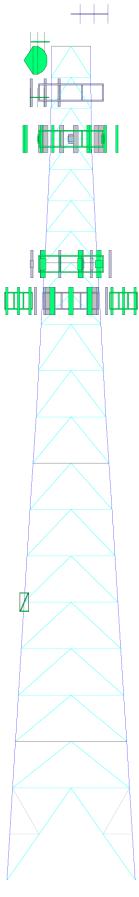
Timothy J. Lynn, PE Structural Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

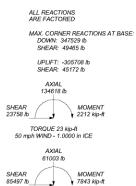

CENTEK Engineering, Inc. Structural Analysis - 180-ft Lattice Tower #32 Westport Antenna Upgrade – Verizon Westport, CT April 5, 2022


<u>GENERAL DESCRIPTION OF STRUCTURAL</u> <u>ANALYSIS PROGRAM</u>

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly RISA Tower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

tnxTower Features:

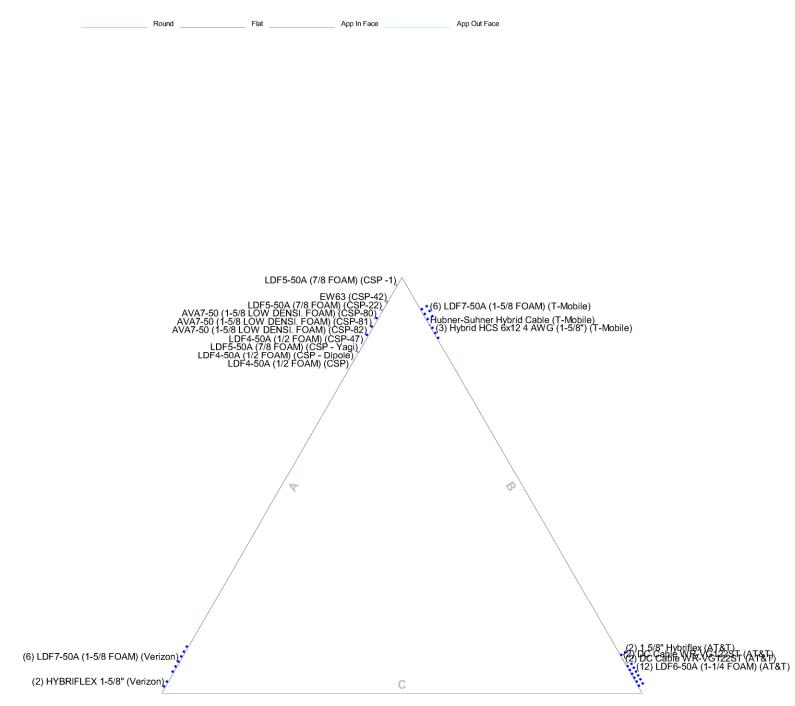
- tnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- tnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.



TYPE	ELEVATION	TYPE	ELEVATION
ANT940Y10-WR (CSP)	187	DBC0061F1V51-2 Combiner Units (ATT)	133
ANT940Y10-WR (CSP - Yagi Antenna)	181	800-10798 Kathrein Panel (ATT)	133
PA6-65AC (DNK-52 / CSP-42)	177	RRUS-32 B66 (ATI)	133
RFI BPS7496-180-14 Panel Antenna (CSP-80)	170	RRUS-32(ATI)	133
RFI BPS7496-180-14 Panel Antenna (CSP-81)	170	DBC0061F1V51-2 Combiner Units (ATT)	133
RFI BPS7496-180-14 Panel Antenna (CSP-82)	170	DC6-48-60-18-8F (Squid) Suppressor (ATI)	133
SitePro1 USF 12-396-U Mount Assembly w/ (3) 96"	170	Pirod 15' T-Frame Sector Mount (1) (ATT)	133
Mount Pipes (CSP 47, 80, 81, 82)		Pirod 15' T-Frame Sector Mount (1) (ATL)	133
432E-83I-01T TTA Unit (Re-Located TMA (CSP))	170	Pirod 15' T-Frame Sector Mount (1) (ATE)	133
3' Yagi (CSP)	169	P65-16-XLH-RR (ATT)	133
B2B66A RRH (Verizon)	160	RRUS-11 (ATI)	133
B5/B13 RRH (Verizon)	160	HPA-65R-BUU-H6 Panel (ATT)	133
CBRS RRH-RT4401-48A (Verizon)	160	RRUS-32 (ATI)	133
RF4439d-25A (B2/B66A RRH) (Verizon -	160	DC6-48-60-18-8F (Squid) Suppressor (ATI)	133
Proposed)		DC6-48-60-18-8F (Squid) Suppressor (ATL)	133
RF4440d-13A (B5/B13 RRH) (Verizon - Proposed)	160	P65-16-XLH-RR (ATI)	133
JAHH-65B-R3B Panel Antenna (Verizon)	160	RRUS-11 (ATT)	133
JAHH-65B-R3B Panel Antenna (Verizon)	160	HPA-65R-BUU-H6 Panel (ATT)	133
XXDWMM-12.5-65-8T-CBRS Panel (Verizon)	160	RRUS-32 (ATL)	133
MT6407-77A (Verizon - Proposed)	160	P65-16-XLH-RR (ATT)	133
CBC78T-DS-43-2X Diplexer (Verizon)	160	RRUS-11 (ATT)	133
B2B66A RRH (Verizon)	160	HPA-65R-BUU-H6 Panel (ATT)	133
B5/B13 RRH (Verizon)	160	RRUS-32 (ATT)	133
CBRS RRH-RT4401-48A (Verizon)	160	APXVARR24_43-C-NA20 Panel Antenna w/ 96*	125
JAHH-65B-R3B Panel Antenna (Verizon)	160	Pipe (T-Mobile)	120
JAHH-65B-R3B Panel Antenna (Verizon)	160	APXVARR24_43-C-NA20 Panel Antenna w/ 96*	125
XXDWMM-12.5-65-8T-CBRS Panel (Verizon)	160	Pipe (T-Mobile)	
MT6407-77A (Verizon - Proposed)	160	APXVARR24_43-C-NA20 Panel Antenna w/ 96*	125
CBC78T-DS-43-2X Diplexer (Verizon)	160	Pipe (T-Mobile)	
B2B66A RRH (Verizon)	160	Ericsson 4449 B71 + B12 Radio Unit (T-Mobile)	125
B5/B13 RRH (Verizon)	160	Ericsson 4449 B71 + B12 Radio Unit (T-Mobile)	125
CBRS RRH-RT4401-48A (Verizon)	160	Ericsson 4449 B71 + B12 Radio Unit (T-Mobile)	125
DB-T1-6Z-8AB-0Z Distribution Box (Verizon)	160	Ericsson AIR21 B2AJB4P Panel (T-Mobile)	125
DB-T1-6Z-8AB-0Z Distribution Box (Verizon -	160	Ericsson AIR21 B2A/B4P Panel (T-Mobile)	125
Proposed)		Ericsson AIR21 B2AJB4P Panel (T-Mobile)	125
ROHN 6'x15' Boom Gate (1) (Verizon)	160	LTF12=372 Sector Mount (1) (T-Mobile)	125
ROHN 6'x15' Boom Gate (1) (Verizon)	160	LTF12=372 Sector Mount (1) (T-Mobile)	125
MX06FRO640-02 (Verizon - Proposed)	160	LTF12=372 Sector Mount (1) (T-Mobile)	125
MX06FRO640-02 (Verizon - Proposed)	160	Ericsson AIR32 B66A/B2A Panel Antenna	125
XXDWMM-12.5-65-8T-CBRS Panel (Verizon)	160	(T-Mobile)	
MT6407-77A (Verizon - Proposed)	160	Ericsson AIR32 B66A/B2A Panel Antenna (T. Makila)	125
MX06FRO640-02 (Verizon - Proposed)	160	(T-Mobile)	
MX06FRO640-02 (Verizon - Proposed)	160	Ericsson AIR32 B66A/B2A Panel Antenna (T-Mobile)	125
ROHN 6'x15' Boom Gate (1) (Verizon)	160	· · · · · · · · · · · · · · · · · · ·	125
800-10798 Kathrein Panel (ATI)	133	Generic Twin TMA unit (T-Mobile)	125
RRUS-32 B66 (ATI)	133	Generic Twin TMA unit (T-Mobile) Generic Twin TMA unit (T-Mobile)	125
RRUS-32(ATT)	133		1.000
DBC0061F1V51-2 Combiner Units (ATT)	133	ANT 150D (CSP - 1-Bay Dipole)	113
800-10798 Kathrein Panel (ATT)	133	4 Standoff (DNK-1/GPS)	60
BRUS-32 B66 (ATT)	133	GPS (DNK-1/GPS)	60

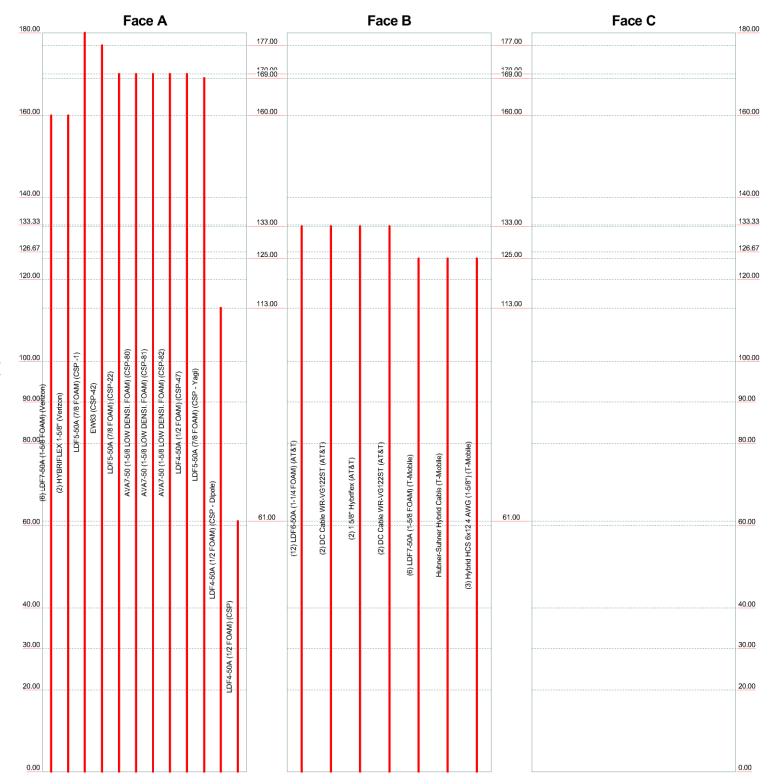
MATERIAL STRENGTH Fu GRADE A572-42 GRADE Fy Fy Fu 50 ksi 60 ksi 65 ksi 42 ksi

TOWER DESIGN NOTES


Tower designed for Exposure C to the TIA-222-H Standard. Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height. Deflections are based upon a 60 mph wind. Tower Risk Category M. Topographic Category 1 with Crest Height of 0.00 ft P-Deflar for analysis does not apply for this case - TIA-222-H Section 3.5 TOWER RATING: 81.6% 2.3.4.5.6.7.8.

TORQUE 64 kip-ft REACTIONS - 130 mph WIND

Centek Engineering Inc.	^{lob:} 22027.01 - Westpo	rt	
63-2 North Branford Rd.	Project: 180-ft Lattice Tower (CSP #32)	
Branford, CT 06405	Client: Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA-222-H	Date: 04/05/22	Scale: NTS
	Path: Autor/2010/061 Webox 27/5 Recentlenies Dear	erastical Tax over 512007108 VZW MODElastical H 192 SST H Lei	Dwg No. E-1


Feed Line Plan

Centek Engineering Inc.	^{Job:} 22027.01 - Westpo	ort	
	Project: 180-ft Lattice Tower	CSP #32)	
Branford, CT 06405	^{Client:} Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA-222-H	Date: 04/05/22	Scale: NTS
	Path: JUdoba2202700 WED1 Westport CTUG_Structure/Backup Doau	antatoniTratowar/20200708_VZW_MCDification_H_180*88T (1) e	Dwg No. E-7

Feed Line Distribution Chart 0' - 180'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Centek Engineering Inc.	^{Job:} 22027.01 - Westpo	ort	
	Project: 180-ft Lattice Tower	(CSP #32)	
Branford, CT 06405	^{Client:} Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	^{Code:} TIA-222-H	Date: 04/05/22	Scale: NTS
	Path: JUdoba2202700 WED1 Westport CTUG_Structure/Backup Doau	nantationiTradowar(20200708_VZW_MCIDification_H_180*88T (1) e	Dwg No. E-7

Elevation (ft)

Round

Job	Page
22027.01 - Westport	1 of 71
Project	Date
180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client Verizon	Designed by TJL

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 8.54 ft at the top and 27.68 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 0.00 ft.

Basic wind speed of 130 mph.

Risk Category IV.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Deflections calculated using a wind speed of 60 mph.

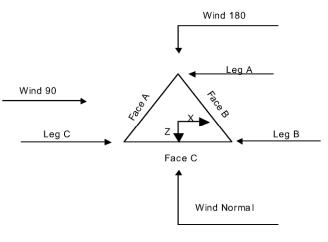
P-Delta for analysis does not apply for this case - TIA-222-H Section 3.5.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options


- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile
- Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section
- λ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate

- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocale Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- Calculate Redundant Bracing Forces
- Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
- All Leg Panels Have Same Allowable $\sqrt{}$ Offset Girt At Foundation
- Consider Feed Line Torque
- Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- Include Shear-Torsion Interaction $\sqrt{}$ Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower	Job	22027.01 - Westport	Page 2 of 71
Centek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	180.00-160.00			8.54	1	20.00
T2	160.00-140.00			8.63	1	20.00
Т3	140.00-133.33			10.71	1	6.67
T4	133.33-126.67			11.40	1	6.67
T5	126.67-120.00			12.10	1	6.67
T6	120.00-100.00			12.79	1	20.00
T 7	100.00-90.00			15.04	1	10.00
T8	90.00-80.00			16.36	1	10.00
Т9	80.00-60.00			17.68	1	20.00
T10	60.00-40.00			20.18	1	20.00
T11	40.00-30.00			22.68	1	10.00
T12	30.00-20.00			23.93	1	10.00
T13	20.00-0.00			25.18	1	20.00

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T1	180.00-160.00	6.67	K Brace Down	No	Yes	0.0000	0.0000
T2	160.00-140.00	6.67	K Brace Down	No	Yes	0.0000	0.0000

T a a a a a a a a a a	Job		Page
tnxTower		22027.01 - Westport	3 of 71
Centek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Gir
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
Т3	140.00-133.33	6.67	K Brace Down	No	Yes	0.0000	0.0000
T4	133.33-126.67	6.67	K Brace Down	No	Yes	0.0000	0.0000
T5	126.67-120.00	6.67	K Brace Down	No	Yes	0.0000	0.0000
T6	120.00-100.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T7	100.00-90.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T8	90.00-80.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
Т9	80.00-60.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T10	60.00-40.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T11	40.00-30.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T12	30.00-20.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T13	20.00-0.00	20.00	K1 Down	No	Yes	0.0000	0.0000

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Туре	Size	Grade
ft						
Т1 180.00-160.00	Pipe	ROHN 3 STD	A572-50	Pipe	ROHN 2 STD	A572-50
			(50 ksi)			(50 ksi)
T2 160.00-140.00	Pipe	ROHN 4 STD	A572-50	Pipe	ROHN 2 STD	A572-50
			(50 ksi)			(50 ksi)
T3 140.00-133.33	Pipe	ROHN 5 EH	A572-50	Pipe	ROHN 2 EH	A572-50
			(50 ksi)			(50 ksi)
T4 133.33-126.67	Pipe	ROHN 5 EH	A572-50	Pipe	ROHN 2 EH	A572-50
			(50 ksi)			(50 ksi)
T5 126.67-120.00	Pipe	ROHN 5 EH	A572-50	Pipe	ROHN 2 XXS	A572-50
			(50 ksi)			(50 ksi)
T6 120.00-100.00	Pipe	ROHN 6 EHS	A572-50	Pipe	Pipe 2.5 XXS	A572-50
			(50 ksi)			(50 ksi)
T7 100.00-90.00	Pipe	ROHN 6 EH	A572-50	Pipe	ROHN 3 STD	A572-50
			(50 ksi)			(50 ksi)
T8 90.00-80.00	Pipe	ROHN 6 EH	A572-50	Pipe	ROHN 3 STD	A572-50
			(50 ksi)			(50 ksi)
T9 80.00-60.00	Arbitrary Shape	120deg_9.6250x0.375 BU on	A572-50	Pipe	ROHN 3 STD	A572-50
		ROHN 8 EHS	(50 ksi)			(50 ksi)
T10 60.00-40.00	Arbitrary Shape	1/3 9.6250x0.375 on ROHN 8	A572-42	Pipe	ROHN 3 EH	A572-50
		EHS Leg Pipe	(42 ksi)			(50 ksi)
T11 40.00-30.00	Arbitrary Shape	1/3 9.6250x0.375 on ROHN 8	A572-42	Pipe	ROHN 3 EH	A572-50
		EHS Leg Pipe	(42 ksi)			(50 ksi)
T12 30.00-20.00	Arbitrary Shape	1/3 9.6250x0.375 on ROHN 8	A572-42	Pipe	ROHN 3 EH	A572-50
		EHS Leg Pipe	(42 ksi)			(50 ksi)
T13 20.00-0.00	Arbitrary Shape	1/3 9.6250x0.375 on ROHN 8	A572-42	Pipe	ROHN 3 EH	A572-50
		EH Leg Pipe	(42 ksi)	•		(50 ksi)

	Tower Section Geometry (cont'd)							
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade		
T4 133.33-126.67 T5 126.67-120.00	Pipe Pipe	ROHN 2 STD ROHN 2 STD	A572-50 (50 ksi) A572-50	Solid Round Solid Round		A36 (36 ksi) A36		

4 T	Job		Page
tnxTower		22027.01 - Westport	4 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580	Client	Verizon	Designed by
FAX: (203) 488-8587		Venzon	TJL

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T8 90.00-80.00	Pipe	ROHN 2 STD	(50 ksi) A572-50	Single Angle		(36 ksi) A36
	•		(50 ksi)	0 0		(36 ksi)
T12 30.00-20.00	Pipe	ROHN 2.5 EH	A572-50 (50 ksi)	Single Angle		A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
	Mid						
ft	Girts						
Г1 180.00-160.00	None	Flat Bar		A36	Pipe	ROHN 1.5 STD	A572-50
				(36 ksi)			(50 ksi)
Г2 160.00-140.00	None	Flat Bar		A36	Pipe	ROHN 1.5 STD	A572-50
				(36 ksi)			(50 ksi)
ГЗ 140.00-133.33	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
Г4 133.33-126.67	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
Г5 126.67-120.00	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
Гб 120.00-100.00	None	Single Angle		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
T7 100.00-90.00	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
T8 90.00-80.00	None	Flat Bar		Δ36	Pipe	ROHN 2 STD	Λ572-50
				(36 ksi)			(50 ksi)
T9 80.00-60.00	None	Flat Bar		A36	Pipe	ROHN 2.5 STD	A572-50
				(36 ksi)			(50 ksi)
T10 60.00-40.00	None	Single Angle		A36	Pipe	ROHN 2.5 STD	A572-50
				(36 ksi)			(50 ksi)
T11 40.00-30.00	None	Flat Bar		A36	Pipe	ROHN 2.5 STD	A572-50
				(36 ksi)			(50 ksi)
T12 30.00-20.00	None	Flat Bar		A36	Pipe	ROHN 2.5 STD	A572-50
				(36 ksi)	·		(50 ksi)
T13 20.00-0.00	None	Flat Bar		A36	Pipe	P3.5x.226	A572-50
				(36 ksi)	-		(50 ksi)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft						
T1 180.00-160.00) Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T2 160.00-140.00) Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T3 140.00-133.33	3 Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)

Job *tnxTower*

Project

Client

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

180-ft Lattice Tower	(CSP #32)

22027.01 - Westport

5 of 71 Date 08:43:42 04/05/22

Page

Verizon

Designed by TJL

Tower	Secondary	Secondary Horizontal	Secondary	Inner Bracing	Inner Bracing Size	Inner Bracing
Elevation	Horizontal Type	Size	Horizontal	Type		Grade
			Grade			
ft						
T4 133.33-126.67	Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T5 126.67-120.00	Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T6 120.00-100.00	Single Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T7 100.00-90.00	Solid Round		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T8 90.00-80.00	Solid Round		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T9 80.00-60.00	Solid Round		A36	Single Angle	L3x3x3/16	A36
			(36 ksi)			(36 ksi)
T10 60.00-40.00	Single Angle		A36	Single Angle	L3 1/2x3 1/2x1/4	A572-50
			(36 ksi)			(50 ksi)
T11 40.00-30.00	Single Angle		A572-50	Single Angle	L3 1/2x3 1/2x1/4	A572-50
			(50 ksi)			(50 ksi)
T12 30.00-20.00	Single Angle		A572-50	Single Angle	L3 1/2x3 1/2x1/4	A572-50
			(50 ksi)			(50 ksi)
T13 20.00-0.00	Solid Round		A36	Pipe	ROHN 2 STD	A572-50
			(36 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
ft					
T13	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	1
20.00-0.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip (1)	Pipe	ROHN 2.5 STD	1

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-160.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
Т3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-133.33			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
133.33-126.67			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
126.67-120.00			(36 ksi)						
T6	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T 7	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-90.00			(36 ksi)						

trees Tool of	Job		Page
tnxTower		22027.01 - Westport	6 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T8 90.00-80.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T9 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T10	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
60.00-40.00			(36 ksi)						
T11	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
40.00-30.00			(36 ksi)						
T12	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
30.00-20.00			(36 ksi)						
T13 20.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft	0			Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
180.00-160.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	1	1	1	1	1	1
140.00-133.33				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
133.33-126.67				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
126.67-120.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T 7	Yes	Yes	1	1	1	1	1	1	1	1
100.00-90.00				1	1	1	1	1	1	1
T8	Yes	Yes	1	1	1	1	1	1	1	1
90.00-80.00				1	1	1	1	1	1	1
Т9	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T10	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T11	Yes	Yes	1	1	1	1	1	1	1	1
40.00-30.00				1	1	1	1	1	1	1
T12	Yes	Yes	1	1	1	1	1	1	1	1
30.00-20.00				1	1	1	1	1	1	1
T13	Yes	Yes	1	1	0.5	1	1	1	1	1
20.00-0.00				1	0.5	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

tnxTower

ver	Job	22027.01 - Westport	Page 7 of 71
ering Inc. 1ford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
06405 88-0580 8-8587	Client	Verizon	Designed by TJL

Tower Elevation ft	Leg		Diagonal		Top Girt		Botton	ı Girt	Mid Girt		Long Ho	rizontal	Short Ho	rizontal
Jt	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00-160.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00 T3 140.00-133.33	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 T4 133.33-126.67	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 126.67-120.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 120.00-100.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 100.00-90.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 90.00-80.00 T9 80.00-60.00		$0.75 \\ 0.75$	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	$0.0000 \\ 0.0000$	0.75 0.75	$0.0000 \\ 0.0000$	0.75 0.75
T10 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 40.00-30.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T12 30.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation	Reduna Horizo		Reduna Diago		Reduna Sub-Dias		Redur Sub-Hor		Redundan	t Vertical	Redunda	ant Hip	Redunda Diag	
ft														
u u	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-160.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
Т3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-133.33														
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
133.33-126.67														
T5	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
126.67-120.00														
T6	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T 7	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-90.00														
T8 90.00-80.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 80.00-60.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
60.00-40.00														
T11	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
40.00-30.00														
T12	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
30.00-20.00														
T13 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower

Job	22027.01 Westsort	Page 8 of 71
Destant	22027.01 - Westport	
Project 180-	ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Client	Verizon	Designed by TJL

Tower Section Geometry (cont'd)

Tower				Connecti	on Offsets			
Elevation		Diag	onal			K-Br	acing	
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.
	Тор	Тор	Bot.	Bot.	Тор	Тор	Bot.	Bot.
ft	in	in	in	in	in	in	in	in
T1	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
180.00-160.00								
T2	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
160.00-140.00								
T3	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
140.00-133.33								
T4	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
133.33-126.67								
T5	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
126.67-120.00								
T6	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
120.00-100.00								
T7	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
100.00-90.00								
T8 90.00-80.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T9 80.00-60.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T10	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
60.00-40.00								
T11	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
40.00-30.00								
T12	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
30.00-20.00								
T13 20.00-0.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000

Tower	Leg	Leg		Diagon	al 🗌	Top G	irt	Bottom (Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Flange	0.8750	0	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
180.00-160.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.8750	4	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
160.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	4	0.6250	3	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
140.00-133.33		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	0.7500	0	0.6250	3	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
133.33-126.67		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	0.7500	0	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
126.67-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6	Flange	1.0000	6	0.6250	3	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T 7	Flange	1.0000	6	0.6250	3	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
100.00-90.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Centek Eng 63-2 North Branford Phone: (2 FAX: (20

Tower	Job	22027.01 - Westport	Page 9 of 71
ngineering Inc. rth Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
ord, CT 06405 (203) 488-0580 203) 488-8587	Client	Verizon	Designed by TJL

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T8 90.00-80.00	Flange	1.0000	0	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 80.00-60.00	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
60.00-40.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T11	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
40.00-30.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T12	Flange	1.0000	0	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
30.00-20.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T13 20.00-0.00	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.7500	2	0.6250	0
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	or	Allow Shield	Exclude From	Component Type		Face Offset	Lateral Offset	#			Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
* LDF6-50A (1-1/4 FOAM)	В	No	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.46	12	6	1.5500	1.5500		0.66
(AT&T) DC Cable WR-VG122S	В	No	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.43	2	2	0.4000	0.4000		0.25
T (AT&T) 1 5/8'' Hybriflex	в	No	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.41	2	1	1.6250	1.6250		1.13
(AT&T) DC Cable WR-VG122S T	В	No	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.42	2	2	0.4000	0.4000		0.25
(AT&T) *													
LDF7-50A (1-5/8 FOAM) (T-Mobile)	В	No	No	Ar (CaAa)	125.00 - 0.00	0.0000	-0.41	6	3	1.9800	1.9800		0.82
Hubner-Suhne r Hybrid Cable (T-Mobile)		No	No	Ar (CaAa)	125.00 - 0.00	0.0000	-0.385	1	1	0.7087	0.7087		0.48
(1-Mobile) Hybrid HCS 6x12 4 AWG (1-5/8") (T-Mobile)	В	No	No	Ar (CaAa)	125.00 - 0.00	0.0000	-0.365	3	3	1.9900	1.9900		1.90
LDF7-50A (1-5/8 FOAM)	А	No	No	Ar (CaAa)	160.00 - 0.00	0.0000	-0.42	6	6	1.9800	1.9800		0.82
(Verizon) HYBRIFLEX 1-5/8" (Verizon)	Α	No	No	Ar (CaAa)	160.00 - 0.00	0.0000	-0.48	2	2	1.9800	1.9800		1.90
LDF5-50A	А	No	No	Ar (CaAa)	180.00 -	0.0000	0.48	1	1	1.0900	1.0900		0.33

to a T a sus an	Job		Page
tnxTower		22027.01 - Westport	10 of 71
Centek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Par	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg	Smeiu	Torque	Type	ft	in	(Frac FW)		Row	in	in	in	n16
	Leg		Calculation		ji	m	(1740 1777)		ROW	111	111	m	plf
(7/8 FOAM)			curculturion		0.00								
(CSP -1)													
EW63	Α	No	No	Af (CaAa)	177.00 -	0.0000	0.44	1	1	1.5742	1.5742		0.51
(CSP-42)					0.00								
LDF5-50A	А	No	No	Ar (CaAa)	170.00 -	0.0000	0.42	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(CSP-22)													
AVA7-50	Α	No	No	Ar (CaAa)	170.00 -	0.0000	0.4	1	1	1.9800	1.9800		0.72
(1-5/8 LOW					0.00								
DENSI.													
FOAM)													
(CSP-80)													
AVA7-50	Α	No	No	Ar (CaAa)	170.00 -	0.0000	0.38	1	1	1.9800	1.9800		0.72
(1-5/8 LOW					0.00								
DENSI.													
FOAM)													
(CSP-81)													
AVA7-50	Α	No	No	Ar (CaAa)	170.00 -	0.0000	0.36	1	1	1.9800	1.9800		0.72
(1-5/8 LOW					0.00								
DENSI.													
FOAM)													
(CSP-82)													
LDF4-50A	Α	No	No	Ar (CaAa)	170.00 -	0.0000	0.34	1	1	0.6300	0.6300		0.15
(1/2 FOAM)					0.00								
(CSP-47)				. (1.60.00	0.0000	0.00			1 0000	1 0000		0.00
LDF5-50A	Α	No	No	Ar (CaAa)	169.00 -	0.0000	0.32	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(CSP - Yagi)		N.	N.	A = (C = A =)	113.00 -	0.0000	0.2	1	1	0.6300	0.6300		0.15
LDF4-50A	Α	No	No	Ar (CaAa)	0.00	0.0000	0.3	1	1	0.6300	0.6300		0.15
(1/2 FOAM) (CSP - Dipole)					0.00								
LDF4-50A	А	No	No	Ar (CaAa)	61.00 - 0.00	0.0000	0.28	1	1	0.6300	0.6300		0.15
(1/2 FOAM)	A	INU	INU	AI (CaAa)	01.00 - 0.00	0.0000	0.20	Т	1	0.0500	0.0500		0.15
(CSP)													
(0.51)													

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
T1	180.00-160.00	А	0.000	0.000	15.281	0.000	44.64
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
T2	160.00-140.00	Α	0.000	0.000	56.607	0.000	250.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
T3	140.00-133.33	Α	0.000	0.000	18.869	0.000	83.53
		в	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
T4	133.33-126.67	Α	0.000	0.000	18.869	0.000	83.53
		В	0.000	0.000	14.852	0.000	70.81
		С	0.000	0.000	0.000	0.000	0.00
T5	126.67-120.00	Α	0.000	0.000	18.869	0.000	83.53
		В	0.000	0.000	24.913	0.000	130.04
		С	0.000	0.000	0.000	0.000	0.00
T6	120.00-100.00	Α	0.000	0.000	57.426	0.000	252.55

to a start of the second	Job		Page
tnxTower		22027.01 - Westport	11 of 71
Centek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 F4X: (203) 488-8587	Client	Verizon	Designed by TJL

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	_
	ft		ft^2	ft^2	ft^2	ft^2	lb
		В	0.000	0.000	84.017	0.000	445.62
		С	0.000	0.000	0.000	0.000	0.00
T7	100.00-90.00	Α	0.000	0.000	28.934	0.000	126.80
		В	0.000	0.000	42.009	0.000	222.81
		С	0.000	0.000	0.000	0.000	0.00
T8	90.00-80.00	Α	0.000	0.000	28.934	0.000	126.80
		в	0.000	0.000	42.009	0.000	222.81
		С	0.000	0.000	0.000	0.000	0.00
Т9	80.00-60.00	Α	0.000	0.000	57.930	0.000	253.75
		в	0.000	0.000	84.017	0.000	445.62
		С	0.000	0.000	0.000	0.000	0.00
T10	60.00-40.00	Α	0.000	0.000	59.127	0.000	256.60
		в	0.000	0.000	84.017	0.000	445.62
		С	0.000	0.000	0.000	0.000	0.00
T11	40.00-30.00	Α	0.000	0.000	29.564	0.000	128.30
		в	0.000	0.000	42.009	0.000	222.81
		С	0.000	0.000	0.000	0.000	0.00
T12	30.00-20.00	Α	0.000	0.000	29.564	0.000	128.30
		в	0.000	0.000	42.009	0.000	222.81
		С	0.000	0.000	0.000	0.000	0.00
T13	20.00-0.00	А	0.000	0.000	59.127	0.000	256.60
		В	0.000	0.000	84.017	0.000	445.62
		С	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ſì	Leg	in	ſt²	ſt²	ſt ²	ſt²	lb
T1	180.00-160.00	А	1.473	0.000	0.000	43.556	0.000	552.25
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
T2	160.00-140.00	А	1.454	0.000	0.000	159.660	0.000	2085.47
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
Т3	140.00-133.33	Α	1.441	0.000	0.000	53.019	0.000	688.56
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
T4	133.33-126.67	Α	1.434	0.000	0.000	52.912	0.000	685.06
		В		0.000	0.000	32.201	0.000	494.30
		С		0.000	0.000	0.000	0.000	0.00
T5	126.67-120.00	А	1.426	0.000	0.000	52.800	0.000	681.39
		В		0.000	0.000	53.843	0.000	857.37
		С		0.000	0.000	0.000	0.000	0.00
T6	120.00-100.00	Α	1.410	0.000	0.000	162.161	0.000	2068.23
		В		0.000	0.000	180.819	0.000	2888.00
		С		0.000	0.000	0.000	0.000	0.00
T7	100.00-90.00	А	1.389	0.000	0.000	81.789	0.000	1031.26
		В		0.000	0.000	89.951	0.000	1429.42
		С		0.000	0.000	0.000	0.000	0.00
T8	90.00-80.00	А	1.374	0.000	0.000	81.415	0.000	1019.60
		В		0.000	0.000	89.607	0.000	1418.55
		С		0.000	0.000	0.000	0.000	0.00
Т9	80.00-60.00	А	1.348	0.000	0.000	161.878	0.000	2002.79
		В		0.000	0.000	178.034	0.000	2799.96
		С		0.000	0.000	0.000	0.000	0.00
T10	60.00-40.00	А	1.303	0.000	0.000	165.850	0.000	1997.61
		В		0.000	0.000	176.043	0.000	2737.88

The second second	Job		Page
tnxTower		22027.01 - Westport	12 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
		С		0.000	0.000	0.000	0.000	0.00
T11	40.00-30.00	А	1.257	0.000	0.000	81.724	0.000	963.64
		В		0.000	0.000	87.003	0.000	1337.56
		С		0.000	0.000	0.000	0.000	0.00
T12	30.00-20.00	А	1.216	0.000	0.000	80.630	0.000	932.13
		В		0.000	0.000	86.075	0.000	1309.33
		С		0.000	0.000	0.000	0.000	0.00
T13	20.00-0.00	А	1.109	0.000	0.000	155.667	0.000	1707.74
		В		0.000	0.000	167.410	0.000	2477.23
		С		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	180.00-160.00	-1.5005	-14.6984	-2.0239	-19.4249
T2	160.00-140.00	-19.2261	-5.8802	-22.3942	-7.1105
T3	140.00-133.33	-20.7297	-6.3241	-24.4956	-7.6882
T4	133.33-126.67	5.0615	5.2607	0.3084	3.2469
T5	126.67-120.00	6.8351	-6.2402	2.5624	-7.2776
T6	120.00-100.00	7.5790	-10.6727	2.9485	-11.8964
T 7	100.00-90.00	8.1699	-11.7515	3.0676	-13.3490
T8	90.00-80.00	8.7168	-12.5594	3.2373	-14.2388
Т9	80.00-60.00	7.3076	-11.1201	3.1106	-14.4471
T10	60.00-40.00	7.8832	-12.6641	2.9414	-16.8345
T11	40.00-30.00	8.4101	-13.5269	3.0367	-17.7861
T12	30.00-20.00	8.7569	-14.0941	3.0649	-18.3173
T13	20.00-0.00	9.4368	-15.2108	3.0171	-19.0153

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	17	LDF5-50A (7/8 FOAM)	160.00 -	1.0000	1.0000
			180.00		
T1	19	EW63	160.00 -	1.0000	1.0000
			177.00		
T1	20	LDF5-50A (7/8 FOAM)	160.00 -	1.0000	1.0000
			170.00		
T1	21	AVA7-50 (1-5/8 LOW	160.00 -	1.0000	1.0000
		DENSI. FOAM)	170.00		
T1	22	AVA7-50 (1-5/8 LOW	160.00 -	1.0000	1.0000
		DENSI. FOAM)	170.00		
T1	23	AVA7-50 (1-5/8 LOW	160.00 -	1.0000	1.0000
		DENSI. FOAM)	170.00		
T1	24	LDF4-50A (1/2 FOAM)	160.00 -	1.0000	1.0000
			170.00		
T1	25	LDF5-50A (7/8 FOAM)	160.00 -	1.0000	1.0000
			169.00		
T2	14	LDF7-50A (1-5/8 FOAM)	140.00 -	1.0000	1.0000

tnxTower

Job		Page
	22027.01 - Westport	13 of 71
Project		Date
	180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client	Verizon	Designed by TJL

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
Section	Record Ivo.		160.00	NO ICE	ice
T2	15	HYBRIFLEX 1-5/8"	140.00 - 160.00	1.0000	1.0000
T2	17	LDF5-50A (7/8 FOAM)	140.00 - 160.00	1.0000	1.0000
Т2	19	EW63	140.00 -	1.0000	1.0000
T2	20	LDF5-50A (7/8 FOAM)	160.00 140.00 -	1.0000	1.0000
T2	21	AVA7-50 (1-5/8 LOW	160.00 140.00 -	1.0000	1.0000
T2	22	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	1.0000	1.0000
Т2	23	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	1.0000	1.0000
Т2	24	DENSI. FOAM) LDF4-50A (1/2 FOAM)	160.00 140.00 -	1.0000	1.0000
T2	25	LDF5-50A (7/8 FOAM)	160.00 140.00 -	1.0000	1.0000
Т3	14	LDF7-50A (1-5/8 FOAM)	160.00 133.33 -	1.0000	1.0000
Т3	15	HYBRIFLEX 1-5/8"	140.00 133.33 -	1.0000	1.0000
Т3	17	LDF5-50A (7/8 FOAM)	140.00 133.33 -	1.0000	1.0000
Т3	19	EW63	140.00 133.33 -	1.0000	1.0000
Т3	20	LDF5-50A (7/8 FOAM)	140.00 133.33 -	1.0000	1.0000
Т3	21	AVA7-50 (1-5/8 LOW	140.00 133.33 -	1.0000	1.0000
Т3	22	DENSI. FOAM) AVA7-50 (1-5/8 LOW	140.00 133.33 -	1.0000	1.0000
Т3	23	DENSI. FOAM) AVA7-50 (1-5/8 LOW	140.00 133.33 -	1.0000	1.0000
Т3	24	DENSI. FOAM) LDF4-50A (1/2 FOAM)	140.00 133.33 -	1.0000	1.0000
Т3	25	LDF5-50A (7/8 FOAM)	140.00 133.33 -	1.0000	1.0000
Т4	2	LDF6-50A (1-1/4 FOAM)	140.00 126.67 -	1.0000	1.0000
Т4	3	DC Cable WR-VG122ST	133.00 126.67 -	1.0000	1.0000
T4	4	1 5/8" Hybriflex	133.00 126.67 -	1.0000	1.0000
T4	6	DC Cable WR-VG122ST	133.00 126.67 -	1.0000	1.0000
T4		LDF7-50A (1-5/8 FOAM)	133.00 126.67 -	1.0000	1.0000
T4	15	HYBRIFLEX 1-5/8"	133.33 126.67 -	1.0000	1.0000
T4	17	LDF5-50A (7/8 FOAM)	133.33 126.67 -	1.0000	1.0000
T4	19	EW63	133.33 126.67 -	1.0000	1.0000
Т4	20	LDF5-50A (7/8 FOAM)	133.33 126.67 -	1.0000	1.0000
T4	21	AVA7-50 (1-5/8 LOW	133.33 126.67 -	1.0000	1.0000
T4		DENSI. FOAM) AVA7-50 (1-5/8 LOW	133.33 126.67 -	1.0000	1.0000
T4		DENSI. FOAM)	133.33	1.0000	1.0000
1 17	25	11111, 50 (1 5/0 EOW	120.07 -	1.0000	1.0000

tnxTower

	Job		Page
		22027.01 - Westport	14 of 71
nc.	Project		Date
п.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
	Client		Designed by
		Verizon	TJL

Tower	Feed Line	Description	Feed Line	K _a	Ka
Section	Record No.	DENOL POARD	Segment Elev.	No Ice	Ice
T4	24	DENSI. FOAM) LDF4-50A (1/2 FOAM)	133.33 126.67 -	1.0000	1.0000
T4	25	LDF5-50A (7/8 FOAM)	133.33 126.67 -	1.0000	1.0000
Т5	2	LDF6-50A (1-1/4 FOAM)	133.33 120.00 - 126.67	1.0000	1.0000
Т5	3	DC Cable WR-VG122ST	120.07 120.00 - 126.67	1.0000	1.0000
Т5	4	1 5/8" Hybriflex	120.07 120.00 - 126.67	1.0000	1.0000
Т5	6	DC Cable WR-VG122ST	120.00 - 126.67	1.0000	1.0000
Т5	10	LDF7-50A (1-5/8 FOAM)	120.00 - 125.00	1.0000	1.0000
Т5	11	Hubner-Suhner Hybrid Cable	120.00 - 125.00	1.0000	1.0000
T5	12	Hybrid HCS 6x12 4 AWG (1-5/8")	120.00 - 125.00	1.0000	1.0000
T5	14	LDF7-50A (1-5/8 FOAM)	120.00 - 126.67	1.0000	1.0000
T5	15	HYBRIFLEX 1-5/8"	120.00 - 126.67	1.0000	1.0000
T5	17	LDF5-50A (7/8 FOAM)	120.00 - 126.67	1.0000	1.0000
T5	19	EW63	120.00 - 126.67	1.0000	1.0000
T5		LDF5-50A (7/8 FOAM)	120.00 - 126.67	1.0000	1.0000
T5 T5	21 22	AVA7-50 (1-5/8 LOW DENSI. FOAM) AVA7-50 (1-5/8 LOW	120.00 - 126.67 120.00 -	1.0000	1.0000 1.0000
15 T5	22	AVA7-50 (1-5/8 LOW DENSI. FOAM) AVA7-50 (1-5/8 LOW	120.00 - 126.67 120.00 -	1.0000	1.0000
T5	23	DENSI. FOAM) LDF4-50A (1/2 FOAM)	120.00 - 126.67 120.00 -	1.0000	1.0000
T5	25	LDF5-50A (7/8 FOAM)	126.67 120.00 -	1.0000	1.0000
T6	23	LDF6-50A (1-1/4 FOAM)	126.67 100.00 -	1.0000	1.0000
Т6	3	DC Cable WR-VG122ST	120.00 100.00 -	1.0000	1.0000
Т6	4	1 5/8" Hybriflex	120.00 100.00 -	1.0000	1.0000
Т6	6	DC Cable WR-VG122ST	120.00 100.00 -	1.0000	1.0000
Т6	10	LDF7-50A (1-5/8 FOAM)	120.00 100.00 -	1.0000	1.0000
Т6	11	Hubner-Suhner Hybrid Cable	120.00 100.00 -	1.0000	1.0000
Т6	12	Hybrid HCS 6x12 4 AWG	120.00 100.00 -	1.0000	1.0000
Т6	14	(1-5/8") LDF7-50A (1-5/8 FOAM)	120.00 100.00 - 120.00	1.0000	1.0000
Т6	15	HYBRIFLEX 1-5/8"	120.00 100.00 - 120.00	1.0000	1.0000
Т6	17	LDF5-50A (7/8 FOAM)	120.00 100.00 - 120.00	1.0000	1.0000
Т6	19	EW63	120.00 100.00 - 120.00	1.0000	1.0000
T6	20	LDF5-50A (7/8 FOAM)		1.0000	1.0000

tnxTower

Job		Page
	22027.01 - Westport	15 of 71
Project		Date
	180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client	Mada	Designed by
	Verizon	TJL

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
~~~~			120.00		
Т6	21	AVA7-50 (1-5/8 LOW	100.00 -	1.0000	1.0000
		DENSI. FOAM)	120.00		
Т6	22	AVA7-50 (1-5/8 LOW	100.00 -	1.0000	1.0000
		DENSI. FOAM)	120.00		
Т6	23	AVA7-50 (1-5/8 LOW	100.00 -	1.0000	1.0000
		DENSI. FOAM)	120.00		
T6	24	LDF4-50A (1/2 FOAM)	100.00 -	1.0000	1.0000
			120.00		
Т6	25	LDF5-50A (7/8 FOAM)	100.00 -	1.0000	1.0000
			120.00		
Т6	26	LDF4-50A (1/2 FOAM)	100.00 -	1.0000	1.0000
			113.00	1 0000	1 0000
T7	2	LDF6-50A (1-1/4 FOAM)		1.0000	1.0000
T7	3	DC Cable WR-VG122ST		1.0000	1.0000
T7	4	1 5/8" Hybriflex		1.0000	1.0000
T7 T7	6	DC Cable WR-VG122ST	90.00 - 100.00	1.0000	1.0000
T7	10	LDF7-50A (1-5/8 FOAM)		1.0000	1.0000
T7 T7	11	Hubner-Suhner Hybrid Cable		1.0000	1.0000
1/	12	Hybrid HCS 6x12 4 AWG	90.00 - 100.00	1.0000	1.0000
T7	14	(1-5/8") LDF7-50A (1-5/8 FOAM)	90.00 - 100.00	1.0000	1.0000
17 T7	14	HYBRIFLEX 1-5/8"	90.00 - 100.00	1.0000	1.0000
17 T7	17	LDF5-50A (7/8 FOAM)		1.0000	1.0000
T7	19		90.00 - 100.00	1.0000	1.0000
T7	20	LDF5-50A (7/8 FOAM)		1.0000	1.0000
17 T7	20	AVA7-50 (1-5/8 LOW		1.0000	1.0000
17	21	DENSI. FOAM)	90.00 - 100.00	1.0000	1.0000
Т7	22	AVA7-50 (1-5/8 LOW	90.00 - 100.00	1.0000	1.0000
1,	22	DENSI. FOAM)	50.00 100.00	1.0000	1.0000
Т7	23	AVA7-50 (1-5/8 LOW	90.00 - 100.00	1.0000	1.0000
- /		DENSI. FOAM)	,		
T7	24	LDF4-50A (1/2 FOAM)	90.00 - 100.00	1.0000	1.0000
T7	25	LDF5-50A (7/8 FOAM)		1.0000	1.0000
T7	26	LDF4-50A (1/2 FOAM)		1.0000	1.0000
Т8	2	LDF6-50A (1-1/4 FOAM)	80.00 - 90.00	1.0000	1.0000
Т8	3	DC Cable WR-VG122ST	80.00 - 90.00	1.0000	1.0000
Т8	4	1 5/8" Hybriflex	80.00 - 90.00	1.0000	1.0000
Т8	6	DC Cable WR-VG122ST	80.00 - 90.00	1.0000	1.0000
Т8	10	LDF7-50A (1-5/8 FOAM)	80.00 - 90.00	1.0000	1.0000
Т8	11	Hubner-Suhner Hybrid Cable	80.00 - 90.00	1.0000	1.0000
Т8	12	Hybrid HCS 6x12 4 AWG	80.00 - 90.00	1.0000	1.0000
		(1-5/8")			
Т8	14	LDF7-50A (1-5/8 FOAM)	80.00 - 90.00	1.0000	1.0000
Т8	15	HYBRIFLEX 1-5/8"	80.00 - 90.00	1.0000	1.0000
T8	17	LDF5-50A (7/8 FOAM)	80.00 - 90.00	1.0000	1.0000
T8	19	EW63	80.00 - 90.00	1.0000	1.0000
Τ8	20	LDF5-50A (7/8 FOAM)	80.00 - 90.00	1.0000	1.0000
Т8	21	AVA7-50 (1-5/8 LOW	80.00 - 90.00	1.0000	1.0000
		DENSI. FOAM)		1 0000	1 0000
Т8	22	AVA7-50 (1-5/8 LOW	80.00 - 90.00	1.0000	1.0000
7.0		DENSI. FOAM)	80.00 00.00	1 0000	1 0000
Т8	23	AVA7-50 (1-5/8 LOW DENSI. FOAM)	80.00 - 90.00	1.0000	1.0000
T0	24	LDF4-50A (1/2 FOAM)	80.00 - 90.00	1.0000	1.0000
T8 T8	24 25	LDF4-50A (1/2 FOAM) LDF5-50A (7/8 FOAM)	80.00 - 90.00 80.00 - 90.00	1.0000	1.0000
18 T8	25 26	LDF3-50A (7/8 FOAM) LDF4-50A (1/2 FOAM)	80.00 - 90.00 80.00 - 90.00	1.0000	1.0000
18 T9	26	LDF4-50A (1/2 FOAM) LDF6-50A (1-1/4 FOAM)	80.00 - 90.00 60.00 - 80.00	1.0000	1.0000
19 T9	23	DC Cable WR-VG122ST	60.00 - 80.00	1.0000	1.0000
T9 T9	4	1 5/8" Hybriflex	60.00 - 80.00	1.0000	1.0000
19 T9	4	DC Cable WR-VG122ST	60.00 - 80.00	1.0000	1.0000
19 T9	10				
	10			1.5000	1,0000

tnxTower

Job		Page
	22027.01 - Westport	16 of 71
Project		Date
	180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client		Designed by
	Verizon	TJL

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
Section T9	Recora No. 11	Hubner-Suhner Hybrid Cable	60.00 - 80.00	1.0000	1.0000
T9 T9	11	Hybrid HCS 6x12 4 AWG	60.00 - 80.00	1.0000	1.0000
19	12	(1-5/8")	00.00 - 80.00	1.0000	1.0000
Т9	14	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	1.0000	1.0000
T9	15	HYBRIFLEX 1-5/8"	60.00 - 80.00	1.0000	1.0000
T9	17	LDF5-50A (7/8 FOAM)	60.00 - 80.00	1.0000	1.0000
Т9	19	EW63	60.00 - 80.00	1.0000	1.0000
Т9	20	LDF5-50A (7/8 FOAM)	60.00 - 80.00	1.0000	1.0000
Т9	21	AVA7-50 (1-5/8 LOW	60.00 - 80.00	1.0000	1.0000
		DENSI. FOAM)			
Т9	22	AVA7-50 (1-5/8 LOW	60.00 - 80.00	1.0000	1.0000
		DENSI. FOAM)			
Т9	23	AVA7-50 (1-5/8 LOW	60.00 - 80.00	1.0000	1.0000
<b>T</b> 0		DENSI. FOAM)	<pre>&lt;0.00</pre>	1 0000	1 0000
T9 T9	24	LDF4-50A (1/2 FOAM)	60.00 - 80.00	1.0000	1.0000
19 T9	25	LDF5-50A (7/8 FOAM)	60.00 - 80.00	1.0000	1.0000
19 T9	26 27	LDF4-50A (1/2 FOAM) LDF4-50A (1/2 FOAM)	60.00 - 80.00 60.00 - 61.00	1.0000 1.0000	$1.0000 \\ 1.0000$
T10	27	LDF4-50A (1/2 FOAM) LDF6-50A (1-1/4 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	3	DC Cable WR-VG122ST	40.00 - 60.00	1.0000	1.0000
T10	4	1 5/8" Hybriflex	40.00 - 60.00	1.0000	1.0000
T10	6	DC Cable WR-VG122ST	40.00 - 60.00	1.0000	1.0000
T10	10	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	11	Hubner-Suhner Hybrid Cable	40.00 - 60.00	1.0000	1.0000
T10	12	Hybrid HCS 6x12 4 AWG	40.00 - 60.00	1.0000	1.0000
		(1-5/8")			
T10	14	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	15	HYBRIFLEX 1-5/8"	40.00 - 60.00	1.0000	1.0000
T10	17	LDF5-50A (7/8 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	19	EW63	40.00 - 60.00	1.0000	1.0000
T10	20	LDF5-50A (7/8 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	21	AVA7-50 (1-5/8 LOW	40.00 - 60.00	1.0000	1.0000
T10	22	DENSI. FOAM) AVA7-50 (1-5/8 LOW	40.00 - 60.00	1.0000	1.0000
110	22	DENSI. FOAM)	40.00 - 00.00	1.0000	1.0000
T10	23	AVA7-50 (1-5/8 LOW	40.00 - 60.00	1.0000	1.0000
110	25	DENSI. FOAM)	+0.00 - 00.00	1.0000	1.0000
Т10	24	LDF4-50A (1/2 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	25	LDF5-50A (7/8 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	26	LDF4-50A (1/2 FOAM)	40.00 - 60.00	1.0000	1.0000
T10	27	LDF4-50A (1/2 FOAM)	40.00 - 60.00	1.0000	1.0000
T11	2	LDF6-50A (1-1/4 FOAM)	30.00 - 40.00	1.0000	1.0000
T11	3	DC Cable WR-VG122ST	30.00 - 40.00	1.0000	1.0000
T11	4	1 5/8" Hybriflex	30.00 - 40.00	1.0000	1.0000
T11	6	DC Cable WR-VG122ST	30.00 - 40.00	1.0000	1.0000
T11	10	LDF7-50A (1-5/8 FOAM)	30.00 - 40.00	1.0000	1.0000
T11 T11	11	Hubner-Suhner Hybrid Cable	30.00 - 40.00	1.0000	1.0000
T11	12	Hybrid HCS 6x12 4 AWG	30.00 - 40.00	1.0000	1.0000
Т11	14	(1-5/8") LDF7-50A (1-5/8 FOAM)	30.00 - 40.00	1.0000	1.0000
T11	14	HYBRIFLEX 1-5/8"	30.00 - 40.00	1.0000	1.0000
T11	17	LDF5-50A (7/8 FOAM)	30.00 - 40.00	1.0000	1.0000
T11	19	EDF5-50A (7/8 FOAM) EW63	30.00 - 40.00	1.0000	1.0000
T11	20	LDF5-50A (7/8 FOAM)	30.00 - 40.00	1.0000	1.0000
T11	21	AVA7-50 (1-5/8 LOW	30.00 - 40.00	1.0000	1.0000
		DENSI. FOAM)			
T11	22	AVA7-50 (1-5/8 LOW	30.00 - 40.00	1.0000	1.0000
		DENSI. FOAM)			
T11	23	AVA7-50 (1-5/8 LOW	30.00 - 40.00	1.0000	1.0000
		DENSI. FOAM)			
T11	24	LDF4-50A (1/2 FOAM)	30.00 - 40.00	1.0000	1.0000
T11	25	LDF5-50A (7/8 FOAM)	30.00 - 40.00	1.0000	1.0000

tnxTo

Centek Engin 63-2 North Br Branford, C Phone: (203) FAX: (203)

aman	Job		Page
ower		22027.01 - Westport	17 of 71
ineering Inc.	Project		Date
Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
. CT 06405 3) 488-0580 8) 488-8587	Client	Verizon	Designed by TJL

Tower	Feed Line	Description	Feed Line	Ka	$K_a$
Section	Record No.		Segment Elev.	No Ice	Ice
T11	26	LDF4-50A (1/2 FOAM)	30.00 - 40.00	1.0000	1.0000
T11	27	LDF4-50A (1/2 FOAM)	30.00 - 40.00	1.0000	1.0000
T12	2	LDF6-50A (1-1/4 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	3	DC Cable WR-VG122ST	20.00 - 30.00	1.0000	1.0000
T12	4	1 5/8" Hybriflex	20.00 - 30.00	1.0000	1.0000
T12	6	DC Cable WR-VG122ST	20.00 - 30.00	1.0000	1.0000
T12	10	LDF7-50A (1-5/8 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	11	Hubner-Suhner Hybrid Cable	20.00 - 30.00	1.0000	1.0000
T12	12	Hybrid HCS 6x12 4 AWG	20.00 - 30.00	1.0000	1.0000
		(1-5/8")			
T12	14	LDF7-50A (1-5/8 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	15	HYBRIFLEX 1-5/8"	20.00 - 30.00	1.0000	1.0000
T12	17	LDF5-50A (7/8 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	19	EW63	20.00 - 30.00	1.0000	1.0000
T12	20	LDF5-50A (7/8 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	21	AVA7-50 (1-5/8 LOW	20.00 - 30.00	1.0000	1.0000
		DENSI. FOAM)			
T12	22	AVA7-50 (1-5/8 LOW	20.00 - 30.00	1.0000	1.0000
		DENSI. FOAM)			
T12	23	AVA7-50 (1-5/8 LOW	20.00 - 30.00	1.0000	1.0000
		DENSI. FOAM)			
T12	24	LDF4-50A (1/2 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	25	LDF5-50A (7/8 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	26	LDF4-50A (1/2 FOAM)	20.00 - 30.00	1.0000	1.0000
T12	27	LDF4-50A (1/2 FOAM)	20.00 - 30.00	1.0000	1.0000
T13	2	LDF6-50A (1-1/4 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	3	DC Cable WR-VG122ST	0.00 - 20.00	1.0000	1.0000
T13 T13	4	1 5/8" Hybriflex	0.00 - 20.00 0.00 - 20.00	1.0000 1.0000	1.0000 1.0000
T13	6 10	DC Cable WR-VG122ST LDF7-50A (1-5/8 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	10	Hubner-Suhner Hybrid Cable	0.00 - 20.00	1.0000	1.0000
T13	11	Hybrid HCS 6x12 4 AWG	0.00 - 20.00	1.0000	1.0000
115	12	(1-5/8")	0.00 - 20.00	1.0000	1.0000
T13	14	LDF7-50A (1-5/8 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	14	HYBRIFLEX 1-5/8"	0.00 - 20.00	1.0000	1.0000
T13	13	LDF5-50A (7/8 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	19	EDF5-50A (7/8 FOAM) EW63	0.00 - 20.00	1.0000	1.0000
T13	20	LDF5-50A (7/8 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	20	AVA7-50 (1-5/8 LOW	0.00 - 20.00	1.0000	1.0000
115	21	DENSI. FOAM)	0.00 - 20.00	1.0000	1.0000
T13	22	AVA7-50 (1-5/8 LOW	0.00 - 20.00	1.0000	1.0000
115	22	DENSI. FOAM)	5.00 20.00	1.0000	1.0000
Т13	23	AVA7-50 (1-5/8 LOW	0.00 - 20.00	1.0000	1.0000
	25	DENSI. FOAM)		10000	1.0000
T13	24	LDF4-50A (1/2 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	25	LDF5-50A (7/8 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	26	LDF4-50A (1/2 FOAM)	0.00 - 20.00	1.0000	1.0000
T13	27	LDF4-50A (1/2 FOAM)	0.00 - 20.00	1.0000	1.0000
115	27		0.00 20.00	1.0000	

### **Discrete Tower Loads**

	lob	Page
tnxTower	22027.01 - Westport	18 of 71
Centek Engineering Inc.	Project	Date
63-2 North Branford Rd.	180-ft Lattice Tower (CSP	#32) 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580	Client Verizon	Designed by TJL
FAX: (203) 488-8587		IJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		$ft^2$	$ft^2$	lb
*		N		0.0000	1 (0.00	т	10.00	12.22	(00.00
ROHN 6'x15' Boom Gate (1) (Verizon)	А	None		0.0000	160.00	No Ice 1/2" Ice 1" Ice	17.75 21.10 24.50	17.75 21.10 24.50	600.00 75.00 890.00
ROHN 6'x15' Boom Gate (1) (Verizon)	В	None		0.0000	160.00	No Ice 1/2'' Ice	17.75 21.10	$17.75 \\ 21.10$	600.00 75.00
ROHN 6'x15' Boom Gate (1) (Verizon)	С	None		0.0000	160.00	1" Ice No Ice 1/2" Ice	24.50 17.75 21.10	24.50 17.75 21.10	890.00 600.00 75.00
MX06FRO640-02	А	From Leg	3.00 6.50	0.0000	160.00	1" Ice No Ice 1/2" Ice	24.50 12.38 12.88	24.50 7.43 7.88	890.00 70.00 151.39
(Verizon - Proposed) MX06FRO640-02	А	From Leg	0.00 3.00	0.0000	160.00	172 Ice 1" Ice No Ice	12.88 13.38 12.38	7.88 8.33 7.43	239.61 70.00
(Verizon - Proposed)			5.50 0.00			1/2" Ice 1" Ice	12.88 13.38	7.88 8.33	151.39 239.61
XXDWMM-12.5-65-8T-CBR S Panel (Verizon)	А	From Leg	3.00 1.00 0.00	0.0000	160.00	No Ice 1/2" Ice 1" Ice	4.80 5.07 5.35	2.40 2.60 2.81	20.00 59.31 102.70
MT6407-77A (Verizon - Proposed)	А	From Leg	3.00 -2.00	0.0000	160.00	No Ice 1/2'' Ice	4.71 5.00	1.84 2.06	0.09 29.40
MX06FRO640-02	А	From Leg	0.00 3.00	0.0000	160.00	1" Ice No Ice 1/2" Ice	5.29 12.38	2.29 7.43	62.58 70.00
(Verizon - Proposed) MX06FRO640-02	А	From Leg	-6.50 0.00 3.00	0.0000	160.00	172" Ice 1" Ice No Ice	12.88 13.38 12.38	7.88 8.33 7.43	151.39 239.61 70.00
(Verizon - Proposed)		-	-5.50 0.00			1/2" Ice 1" Ice	12.88 13.38	7.88 8.33	151.39 239.61
B2/B66A RRH (Verizon)	Α	From Leg	3.00 0.00 0.00	0.0000	160.00	No Ice 1/2" Ice 1" Ice	2.54 2.75 2.97	1.61 1.79 1.98	60.00 80.12 103.35
B5/B13 RRH (Verizon)	А	From Leg	3.00 0.00	0.0000	160.00	No Ice 1/2" Ice	1.87 2.03	1.02 1.15	70.00 86.42
CBRS RRH-RT4401-48A (Verizon)	А	From Leg	0.00 3.00 0.00	0.0000	160.00	1" Ice No Ice 1/2" Ice	2.21 0.86 0.98	1.29 0.42 0.51	105.50 20.00 26.90
(Verizon) RF4439d-25A (B2/B66A	А	From Leg	0.00 0.00 3.00	0.0000	160.00	1" Ice No Ice	1.10 1.88	0.61 1.25	20.90 35.60 75.00
RRH) (Verizon - Proposed)			0.00	0.0000	1 (0.00	1/2" Ice 1" Ice	2.05 2.22	1.39 1.54	93.34 114.47
RF4440d-13A (B5/B13 RRH) (Verizon - Proposed)	А	From Leg	3.00 0.00 0.00	0.0000	160.00	No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22	1.13 1.26 1.41	75.00 92.34 112.40
JAHH-65B-R3B Panel Antenna (Verizon)	В	From Leg	3.00 6.50 0.00	0.0000	160.00	No Ice 1/2" Ice 1" Ice	9.66 10.22 10.79	7.71 8.53 9.37	130.00 204.15 289.72
JAHH-65B-R3B Panel Antenna (Verizon)	В	From Leg	3.00 5.50 0.00	0.0000	160.00	No Ice 1/2" Ice 1" Ice	9.66 10.22 10.79	7.71 8.53 9.37	130.00 204.15 289.72
XXDWMM-12.5-65-8T-CBR S Panel	В	From Leg	3.00 -1.00	0.0000	160.00	No Ice 1/2'' Ice	4.80 5.07	2.40 2.60	20.00 59.31
(Verizon) MT6407-77A (Verizon - Proposed)	В	From Leg	0.00 3.00 -6.00	0.0000	160.00	1" Ice No Ice 1/2" Ice	5.35 4.71 5.00	2.81 1.84 2.06	102.70 0.09 29.40
CBC78T-DS-43-2X Diplexer (Verizon)	В	From Leg	0.00 3.00 0.00	0.0000	160.00	1" Ice No Ice 1/2" Ice	5.29 0.37 0.45	2.29 0.51 0.60	62.58 22.00 28.34

*tnx* 

Centek Er 63-2 Nor Branfo Phone: ( FAX: (2

cTower	Job	22027.01 - Westport	Page 19 of 71
E <b>ngineering Inc.</b> orth Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
ford, CT 06405 : (203) 488-0580 (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	-71-	Lateral Vert						
			ft	0	ft		$ft^2$	$ft^2$	lb
			ft ft		5-		5	5-	
			0.00			1" Ice	0.53	0.70	36.37
B2/B66A RRH	в	From Leg	3.00	0.0000	160.00	No Ice	2.54	1.61	60.00
(Verizon)			0.00			1/2" Ice	2.75	1.79	80.12
	_		0.00			1" Ice	2.97	1.98	103.35
B5/B13 RRH	в	From Leg	3.00	0.0000	160.00	No Ice	1.87	1.02	70.00
(Verizon)			0.00			1/2" Ice	2.03	1.15	86.42
CBRS RRH-RT4401-48A	в	From Leg	0.00 3.00	0.0000	160.00	1" Ice No Ice	2.21 0.86	1.29 0.42	$105.50 \\ 20.00$
(Verizon)	в	From Leg	0.00	0.0000	160.00	1/2" Ice	0.86	0.42	26.90
(verizon)			0.00			172 Ice	1.10	0.61	35.60
JAHH-65B-R3B Panel	С	From Leg	3.00	0.0000	160.00	No Ice	9.66	7.71	130.00
Antenna	C	110m Leg	6.50	0.0000	100.00	1/2" Ice	10.22	8.53	204.15
(Verizon)			0.00			1" Ice	10.79	9.37	289.72
JAHH-65B-R3B Panel	С	From Leg	3.00	0.0000	160.00	No Ice	9.66	7.71	130.00
Antenna	e	Thom Deg	5.50	010000	100100	1/2" Ice	10.22	8.53	204.15
(Verizon)			0.00			1" Ice	10.79	9.37	289.72
XXDWMM-12.5-65-8T-CBR	С	From Leg	3.00	0.0000	160.00	No Ice	4.80	2.40	20.00
S Panel		C	-1.00			1/2" Ice	5.07	2.60	59.31
(Verizon)			0.00			1" Ice	5.35	2.81	102.70
MT6407-77A	С	From Leg	3.00	0.0000	160.00	No Ice	4.71	1.84	0.09
(Verizon - Proposed)			-6.00			1/2" Ice	5.00	2.06	29.40
			0.00			1" Ice	5.29	2.29	62.58
CBC78T-DS-43-2X Diplexer	С	From Leg	3.00	0.0000	160.00	No Ice	0.37	0.51	22.00
(Verizon)			0.00			1/2" Ice	0.45	0.60	28.34
			0.00			1" Ice	0.53	0.70	36.37
B2/B66A RRH	С	From Leg	3.00	0.0000	160.00	No Ice	2.54	1.61	60.00
(Verizon)			0.00			1/2" Ice	2.75	1.79	80.12
	~		0.00			1" Ice	2.97	1.98	103.35
B5/B13 RRH	С	From Leg	3.00	0.0000	160.00	No Ice	1.87	1.02	70.00
(Verizon)			0.00			1/2" Ice	2.03	1.15	86.42
CDDC DDU D74401 404	G		0.00	0.0000	1.60.00	1" Ice	2.21	1.29	105.50
CBRS RRH-RT4401-48A	С	From Leg	3.00	0.0000	160.00	No Ice	0.86	0.42	20.00
(Verizon)			0.00			1/2" Ice	0.98	0.51	26.90
		Frank Law	0.00	0.0000	1.00.00	1" Ice	1.10	0.61	35.60
DB-T1-6Z-8AB-0Z	Α	From Leg	3.00	0.0000	160.00	No Ice	5.60	2.33	50.00
Distribution Box			$0.00 \\ 0.00$			1/2" Ice 1" Ice	5.92 6.24	2.56 2.79	81.13 121.22
(Verizon) DB-T1-6Z-8AB-0Z	в	From Leg	3.00	0.0000	160.00	No Ice	6.24 5.60	2.79	50.00
Distribution Box	Б	110m Leg	0.00	0.0000	100.00	1/2" Ice	5.92	2.56	81.13
(Verizon - Proposed)			0.00			172 Ice	6.24	2.79	121.22
*** T-Mobile TWM-020			0.00			1 100	0.21	2.19	121.22
Updates 05/29/2019 LTF12=372 Sector Mount (1)	А	None		0.0000	125.00	No Ice	13.60	13.60	465.00
(T-Mobile)	A	INORE		0.0000	125.00	1/2" Ice	18.40	18.40	600.00
(1-Mobile)						1/2 Tee	23.20	23.20	735.00
LTF12=372 Sector Mount (1)	в	None		0.0000	125.00	No Ice	13.60	13.60	465.00
(T-Mobile)	Б	None		0.0000	125.00	1/2" Ice	18.40	18.40	600.00
(1-Moone)						1" Ice	23.20	23.20	735.00
TF12=372 Sector Mount (1)	С	None		0.0000	125.00	No Ice	13.60	13.60	465.00
(T-Mobile)	40					1/2" Ice	18.40	18.40	600.00
,						1" Ice	23.20	23.20	735.00
Ericsson AIR32 B66A/B2A	Α	From Face	3.00	0.0000	125.00	No Ice	6.51	4.71	132.20
Panel Antenna	-		-4.00			1/2" Ice	6.89	5.07	178.02
(T-Mobile)			0.00			1" Ice	7.27	5.43	229.11
Ericsson AIR32 B66A/B2A	В	From Face	3.00	0.0000	125.00	No Ice	6.51	4.71	132.20
Panel Antenna			-4.00			1/2" Ice	6.89	5.07	178.02
(T-Mobile)									

tnx

Centek E 63-2 Not Branfo Phone: FAX: (

xTower	Job	22027.01 - Westport	Page 20 of 71
Engineering Inc. Forth Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
1ford, CT 06405 2: (203) 488-0580 • (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vart						
			Vert ft	0	ft		$ft^2$	$ft^2$	lb
			ft		<i>J</i> -		<u>J</u> -	<u> </u>	
Ericsson AIR32 B66A/B2A	С	From Face		0.0000	125.00	No Ice	6.51	4.71	132.20
Panel Antenna	-		-4.00			1/2" Ice	6.89	5.07	178.02
(T-Mobile)			0.00			1" Ice	7.27	5.43	229.11
Generic Twin TMA unit	Α	From Face	3.00	0.0000	125.00	No Ice	0.37	0.96	25.00
(T-Mobile)			0.00			1/2" Ice	0.46	1.09	32.19
~	-		0.00			1" Ice	0.55	1.22	41.21
Generic Twin TMA unit	в	From Face	3.00	0.0000	125.00	No Ice 1/2'' Ice	0.37	0.96	25.00
(T-Mobile)			$0.00 \\ 0.00$			1/2" Ice	0.46 0.55	1.09 1.22	32.19 41.21
Generic Twin TMA unit	С	From Face	3.00	0.0000	125.00	No Ice	0.33	0.96	25.00
(T-Mobile)	C	FIOITFace	0.00	0.0000	125.00	1/2" Ice	0.37	1.09	32.19
(1 1100110)			0.00			1" Ice	0.55	1.22	41.21
Ericsson AIR21 B2A B4P	Α	From Face	3.00	0.0000	125.00	No Ice	6.51	4.71	105.80
Panel	-		0.00			1/2" Ice	6.89	5.07	151.62
(T-Mobile)			0.00			1" Ice	7.27	5.43	202.71
Ericsson AIR21 B2A B4P	в	From Face	3.00	0.0000	125.00	No Ice	6.51	4.71	105.80
Panel			0.00			1/2" Ice	6.89	5.07	151.62
(T-Mobile)			0.00			1" Ice	7.27	5.43	202.71
Ericsson AIR21 B2A B4P	С	From Face	3.00	0.0000	125.00	No Ice	6.51	4.71	105.80
Panel			0.00			1/2" Ice	6.89	5.07	151.62
(T-Mobile)		<b>E</b>	0.00	0.0000	125.00	1" Ice	7.27	5.43	202.71
APXVARR24_43-C-NA20 Panel Antenna w/ 96" Pipe	А	From Face	3.00 4.00	0.0000	125.00	No Ice 1/2'' Ice	17.15 17.77	11.04 12.47	179.72 301.81
(T-Mobile)			4.00 0.00			1/2" Ice	17.77	12.47	435.25
APXVARR24 43-C-NA20	в	From Face	3.00	0.0000	125.00	No Ice	17.15	11.04	179.72
Panel Antenna w/ 96" Pipe	Б	1 Iom I dee	4.00	0.0000	125.00	1/2" Ice	17.77	12.47	301.81
(T-Mobile)			0.00			1" Ice	18.40	13.57	435.25
APXVARR24 43-C-NA20	С	From Face	3.00	0.0000	125.00	No Ice	17.15	11.04	179.72
Panel Antenna w/ 96" Pipe			4.00			1/2" Ice	17.77	12.47	301.81
(T-Mobile)			0.00			1" Ice	18.40	13.57	435.25
Ericsson 4449 B71 + B12	Α	From Face	3.00	0.0000	125.00	No Ice	1.66	1.16	80.00
Radio Unit			0.00			1/2" Ice	1.82	1.29	96.16
(T-Mobile)			0.00			1" Ice	1.98	1.44	114.94
Ericsson 4449 B71 + B12	в	From Face	3.00	0.0000	125.00	No Ice	1.66	1.16	80.00
Radio Unit			0.00			1/2" Ice	1.82	1.29	96.16
(T-Mobile)	C	From Face	0.00	0.0000	125.00	1" Ice	1.98	1.44	114.94
Ericsson 4449 B71 + B12 Radio Unit	С	FIOII Face	3.00 0.00	0.0000	125.00	No Ice 1/2'' Ice	1.66 1.82	1.16 1.29	80.00 96.16
(T-Mobile)			0.00			1" Ice	1.98	1.44	114.94
*** T-Mobile TWM-020			0.00			1 100	1.90		111.21
Updates 05/29/2019									
*** AT&T Antennas from									
SMK-004 MODification									
Analysis									
800-10798 Kathrein Panel	Α	From Face	3.00	0.0000	133.00	No Ice	11.31	7.25	110.00
(AT&T)			6.00			1/2" Ice	11.92	8.37	188.92
DDIG 22 D//	,	<b>F F</b>	0.00	0.0000	122.00	1" Ice	12.54	9.27	275.98
RRUS-32 B66	А	From Face	3.00	0.0000	133.00	No Ice	3.20	1.85	60.00
(AT&T)			6.00			1/2" Ice 1" Ice	3.46	2.08	81.11
RRUS-32	А	From Face	0.00 3.00	0.0000	133.00	No Ice	3.73 3.31	2.31 2.42	105.42 77.00
(AT&T)	А	From Face	-2.00	0.0000	133.00	1/2" Ice	3.56	2.42	104.93
(AIQI)			0.00			172 Ice	3.81	2.84	136.47
BC0061F1V51-2 Combiner	А	From Face	3.00	0.0000	133.00	No Ice	0.48	0.51	30.00
Units		1101111000	6.00	010000	100100	1/2" Ice	0.58	0.60	30.80
(AT&T)			0.00			1" Ice	0.68	0.71	37.64
<u></u> ,	в	From Face	3.00	0.0000	133.00	No Ice	11.31	7.25	110.00

tnxTower	Job	22027.01 - Westport	Page
Centek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	<b>Date</b> 08:4
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Desig

3:43:42 04/05/22 signed by TJL

21 of 71

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	• •	Lateral	U U					
			Vert				- 2	- 2	
			ft	0	ft		$ft^2$	$ft^2$	lb
			ft ft						
(AT&T)			6.00			1/2" Ice	11.92	8.37	188.92
(((((((((((((((((((((((((((((((((((((((			0.00			1" Ice	12.54	9.27	275.98
RRUS-32 B66	в	From Face	3.00	0.0000	133.00	No Ice	3.20	1.85	60.00
(AT&T)			6.00			1/2" Ice	3.46	2.08	81.11
			0.00			1" Ice	3.73	2.31	105.42
RRUS-32	в	From Face	3.00	0.0000	133.00	No Ice	3.31	2.42	77.00
(AT&T)			-2.00			1/2" Ice	3.56	2.64	104.93
			0.00	0.0000	122.00	1" Ice	3.81	2.86	136.47
BC0061F1V51-2 Combiner	в	From Face	3.00	0.0000	133.00	No Ice	0.48	0.51	30.00
Units			6.00			1/2" Ice	0.58	0.60	30.80
(AT&T) 200, 10708 Kathrain Panal	C	Erom Eaco	0.00 3.00	0.0000	122.00	1" Ice No Ice	0.68	0.71	37.64
800-10798 Kathrein Panel (AT&T)	С	From Face	5.00 6.00	0.0000	133.00	No Ice 1/2'' Ice	11.31 11.92	7.25 8.37	110.00 188.92
(AIQI)			0.00			1/2" Ice	11.92	8.37 9.27	275.98
RRUS-32 B66	С	From Face	3.00	0.0000	133.00	No Ice	3.20	1.85	60.00
(AT&T)	~	1 10111 1 400	-2.00	0.0000	100.00	1/2" Ice	3.46	2.08	81.11
()			0.00			1" Ice	3.73	2.31	105.42
RRUS-32	С	From Face	3.00	0.0000	133.00	No Ice	3.31	2.42	77.00
(AT&T)			6.00			1/2" Ice	3.56	2.64	104.93
			0.00			1" Ice	3.81	2.86	136.47
BC0061F1V51-2 Combiner	С	From Face	3.00	0.0000	133.00	No Ice	0.48	0.51	30.00
Units			6.00			1/2" Ice	0.58	0.60	30.80
(AT&T)			0.00			1" Ice	0.68	0.71	37.64
DC6-48-60-18-8F (Squid)	С	From Face	3.00	0.0000	133.00	No Ice	1.27	1.27	20.00
Suppressor			0.00			1/2" Ice	1.46	1.46	35.12
(AT&T)			0.00			1" Ice	1.66	1.66	52.57
Pirod 15' T-Frame Sector	Α	None		0.0000	133.00	No Ice	15.00	15.00	500.00
Mount (1)						1/2" Ice	20.60	20.60	650.00
(AT&T) Direct 151 T. France Scretce	р	Nama		0.0000	122.00	1" Ice	26.20	26.20	800.00
Pirod 15' T-Frame Sector	В	None		0.0000	133.00	No Ice 1/2'' Ice	$15.00 \\ 20.60$	$15.00 \\ 20.60$	$500.00 \\ 650.00$
Mount (1) (AT&T)						1/2 Ice	26.20	26.20	800.00
Pirod 15' T-Frame Sector	С	None		0.0000	133.00	No Ice	15.00	15.00	500.00
Mount (1)	C	Trone		0.0000	155.00	1/2" Ice	20.60	20.60	650.00
(AT&T)						1" Ice	26.20	26.20	800.00
P65-16-XLH-RR	А	From Face	3.00	0.0000	133.00	No Ice	8.13	4.70	60.00
(AT&T)			-6.00			1/2" Ice	8.59	5.15	107.28
· · · · ·			0.00			1" Ice	9.05	5.60	160.59
RRUS-11	Α	From Face	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)			-6.00			1/2" Ice	2.76	1.21	69.57
			0.00			1" Ice	2.97	1.36	92.08
HPA-65R-BUU-H6 Panel	Α	From Face	3.00	0.0000	133.00	No Ice	10.12	5.49	50.00
(AT&T)			-2.00			1/2" Ice	10.69	5.94	105.33
			0.00	0.0000	100.00	1" Ice	11.26	6.41	168.95
RRUS-32	Α	From Face	3.00	0.0000	133.00	No Ice	3.31	2.42	77.00
(AT&T)			-2.00			1/2" Ice	3.56	2.64	104.93
DC6 48 60 18 9E (Constation	٨	From Food	0.00	0.0000	133.00	1" Ice	3.81	2.86	136.47
DC6-48-60-18-8F (Squid)	А	From Face	3.00 0.00	0.0000	155.00	No Ice 1/2'' Ice	1.27 1.46	1.27	20.00 35.12
Suppressor (AT&T)			0.00			1/2" Ice	1.46	1.46 1.66	52.57
DC6-48-60-18-8F (Squid)	в	From Leg	3.00	0.0000	133.00	No Ice	1.00	1.00	20.00
Suppressor	D	110m Log	-2.00	0.0000	155.00	1/2" Ice	1.46	1.46	35.12
(AT&T)			0.00			172 Ice	1.66	1.66	52.57
P65-16-XLH-RR	В	From Face	3.00	0.0000	133.00	No Ice	8.13	4.70	60.00
(AT&T)	-		-6.00			1/2" Ice	8.59	5.15	107.28
、/			0.00			1" Ice	9.05	5.60	160.59
RRUS-11	в	From Face	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00

	Job		Page
tnxTower		22027.01 - Westport	22 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	* *	Lateral	Ū					
			Vert ft	0	ft		$ft^2$	$ft^2$	lb
			ft ft		Ji		Ji	Ji	ib
( <b>A T <i>P</i>-<b>T</b> )</b>						1/2" Ice	2.76	1.21	69.57
(AT&T)			-6.00 0.00			1/2 Ice	2.76	1.21 1.36	92.08
HPA-65R-BUU-H6 Panel	в	From Face	3.00	0.0000	133.00	No Ice	10.12	5.49	50.00
(AT&T)			-2.00			1/2" Ice	10.69	5.94	105.33
( )			0.00			1" Ice	11.26	6.41	168.95
RRUS-32	в	From Face	3.00	0.0000	133.00	No Ice	3.31	2.42	77.00
(AT&T)			-2.00			1/2" Ice	3.56	2.64	104.93
			0.00			1" Ice	3.81	2.86	136.47
P65-16-XLH-RR	С	From Face	3.00	0.0000	133.00	No Ice	8.13	4.70	60.00
(AT&T)			-6.00			1/2" Ice	8.59	5.15	107.28
	a		0.00	0.0000	122.00	1" Ice	9.05	5.60	160.59
RRUS-11	С	From Face	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)			-6.00			1/2" Ice	2.76	1.21	69.57
HPA-65R-BUU-H6 Panel	С	From Face	0.00 3.00	0.0000	122.00	1" Ice No Ice	2.97 10.12	1.36 5.49	92.08 50.00
	C	FIOIII Face	-2.00	0.0000	133.00	1/2" Ice	10.12	5.94	
(AT&T)			0.00			1/2 Ice	11.26	5.94 6.41	105.33 168.95
RRUS-32	С	From Face	3.00	0.0000	133.00	No Ice	3.31	2.42	77.00
(AT&T)	C	1101111400	-2.00	0.0000	155.00	1/2" Ice	3.56	2.64	104.93
(mar)			0.00			1" Ice	3.81	2.86	136.47
*** AT&T Antennas from SMK-004 MODification Analysis * CSP									
ANT940Y10-WR	А	From Leg	0.00	0.0000	187.00	No Ice	0.19	0.19	2.50
(CSP)			0.00			1/2" Ice	0.34	0.34	3.25
	G	F. I.	0.00	0.0000	101.00	1" Ice	0.49	0.49	4.00
ANT940Y10-WR	С	From Leg	0.50 0.00	0.0000	181.00	No Ice 1/2'' Ice	0.19 0.34	0.19 0.34	2.50 3.25
(CSP - Yagi Antenna)			0.00			1/2 Ice	0.34	0.34	3.23 4.00
RFI BPS7496-180-14 Panel	А	From Face	4.00	0.0000	170.00	No Ice	5.83	3.75	20.00
Antenna	Л	FIOIRFace	-6.00	0.0000	170.00	1/2" Ice	6.21	4.13	56.42
(CSP-80)			0.00			1" Ice	6.60	4.51	97.99
RFI BPS7496-180-14 Panel	А	From Face	4.00	0.0000	170.00	No Ice	5.83	3.75	20.00
Antenna			0.00	010000	1,000	1/2" Ice	6.21	4.13	56.42
(CSP-81)			0.00			1" Ice	6.60	4.51	97.99
RFI BPS7496-180-14 Panel	Α	From Face	4.00	0.0000	170.00	No Ice	5.83	3.75	20.00
Antenna			6.00			1/2" Ice	6.21	4.13	56.42
(CSP-82)			0.00			1" Ice	6.60	4.51	97.99
SitePro1 USF12-396-U	Α	From Leg	0.00	0.0000	170.00	No Ice	16.23	9.80	491.09
Mount Assembly w/ (3) 96"			0.00			1/2" Ice	22.18	13.27	630.09
Mount Pipes			0.00			1" Ice	28.15	16.68	815.09
(CSP 47, 80, 81, 82)									
432E-83I-01T TTA Unit	Α	From Leg	4.00	0.0000	170.00	No Ice	2.85	0.97	25.00
(Re-Located TMA (CSP))			0.00			1/2" Ice	3.06	1.11	44.70
	~		0.00			1" Ice	3.28	1.26	67.39
3' Yagi	С	From Leg	0.50	0.0000	169.00	No Ice	2.08	2.08	30.95
(CSP)			0.00			1/2" Ice	3.79	3.79	52.87
ANT150D	А	From Leg	$0.00 \\ 0.00$	0.0000	113.00	1" Ice No Ice	5.52 0.80	5.52 0.80	85.27 5.50
(CSP - 1-Bay Dipole)	А	From Leg	0.00	0.0000	115.00	1/2" Ice	1.44	1.44	5.50 7.15
(cor - r-bay bipole)			0.00			172 Ice	2.08	2.08	8.80
GPS	С	From Leg	4.00	0.0000	60.00	No Ice	1.00	1.00	10.00
(DNK-1 / GPS)	C	110m Leg	0.00	0.0000	00.00	1/2" Ice	1.50	1.50	15.00
(21111 1 / 010)			2.00			172 Tee	2.00	2.00	20.00
4' Standoff	С	From Leg	0.00	0.0000	60.00	No Ice	3.42	3.42	110.00
(DNK-1 / GPS)	-		0.00			1/2" Ice	3.67	3.67	147.19

<b>AT</b>	Job		Page
tnxTower		22027.01 - Westport	23 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	lb
			0.00			1" Ice	3.92	3.92	187.07

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	o	ft	ft		$ft^2$	lb
PA6-65AC	С	Paraboloid	From	1.00	-55.0000		177.00	6.00	No Ice	28.27	90.00
DNK-52 / CSP-42)		w/Radome	Leg	0.00					1/2" Ice	29.05	240.00
			_	0.00					I'' Ice	29.83	390.00

## **222-H Verification Constants**

Constant	Value
K _d	0.85
Ice Thickness Importance Factor	1.25
Zg	900
a	9.5
K _{zmin}	0.85
K _c	n/a
Kt	1
f	1
Ke	1

## 222-H Section Verification ArRr By Element

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
					С						
ft					е			$ft^2$	$ft^2$	$ft^2$	$ft^2$
T1	1	ROHN 3 STD	45.107	31.948	С	0.139	0.285	5.833	10.742	3.165	6.384
180.00-160.00											
	1	ROHN 3 STD	45.107	31.948	Α	0.139	0.285	5.833	10.742	3.165	6.384
	2	ROHN 3 STD	45.107	31.948	С	0.139	0.285	5.833	10.742	3.165	6.384
	2	ROHN 3 STD	45.107	31.948	В	0.139	0.285	5.833	10.742	3.165	6.384
	3	ROHN 3 STD	45.107	31.948	В	0.139	0.285	5.833	10.742	3.165	6.384
	3	ROHN 3 STD	45.107	31.948	Α	0.139	0.285	5.833	10.742	3.165	6.384
	4	ROHN 1.5 STD	24.486	24.017	С	0.139	0.285	1.306	3.331	0.740	1.980
	5	ROHN 1.5 STD	24.486	24.017	В	0.139	0.285	1.306	3.331	0.740	1.980
	6	ROHN 1.5 STD	24.486	24.017	Α	0.139	0.285	1.306	3.331	0.740	1.980
	7	ROHN 1.5 STD	24.486	24.017	С	0.139	0.285	1.315	3.354	0.745	1.993
	8	ROHN 2 STD	30.608	26.372	С	0.139	0.285	1.518	3.401	0.860	2.021
	9	ROHN 2 STD	30.608	26.372	С	0.139	0.285	1.518	3.401	0.860	2.021

**Cen** 6.

Anna Tanu an	Job	Job						
tnxTower		22027.01 - Westport	24 of 71					
e <b>ntek Engineering Inc.</b> 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22					
Branford, CT 06405 Client hone: (203) 488-0580 FAX: (203) 488-8587		Verizon	Designed by TJL					

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice	,	w/Ice		w/Ice
ft					с е			$ft^2$	ft ²	ft ²	$ft^2$
<u> </u>	10	ROHN 1.5 STD	24.486	24.017	B	0.139	0.285	1.315	3.354	0.745	1.993
	11	ROHN 2 STD	30.608	26.372	В	0.139	0.285	1.518	3.401	0.860	2.021
	12	ROHN 2 STD	30.608	26.372	В	0.139	0.285	1.518	3.401	0.860	2.021
	13	ROHN 1.5 STD	24.486	24.017	Α	0.139	0.285	1.315	3.354	0.745	1.993
	14	ROHN 2 STD	30.608	26.372	A	0.139	0.285	1.518	3.401	0.860	2.021
	15 19	ROHN 2 STD	30.608	26.372	A	0.139	0.285 0.285	1.518 1.311	3.401	0.860 0.743	2.021
	20	ROHN 1.5 STD ROHN 2 STD	24.486 30.608	24.017 26.372	C C	0.139 0.139	0.285	1.511	3.342 3.398	0.743	1.986 2.019
	20	ROHN 2 STD	30.608	26.372	c	0.139	0.285	1.517	3.398	0.859	2.019
	22	ROHN 1.5 STD	24.486	24.017	В	0.139	0.285	1.311	3.342	0.743	1.986
	23	ROHN 2 STD	30.608	26.372	В	0.139	0.285	1.517	3.398	0.859	2.019
	24	ROHN 2 STD	30.608	26.372	В	0.139	0.285	1.517	3.398	0.859	2.019
	25	ROHN 1.5 STD	24.486	24.017	Α	0.139	0.285	1.311	3.342	0.743	1.986
	26	ROHN 2 STD	30.608	26.372	A	0.139	0.285	1.517	3.398	0.859	2.019
	27 31	ROHN 2 STD	30.608	26.372 26.372	A	0.139	$0.285 \\ 0.285$	1.517	3.398 3.394	0.859 0.858	2.019
	31	ROHN 2 STD ROHN 2 STD	30.608 30.608	26.372	C C	0.139 0.139	0.285	1.515 1.515	3.394	0.858	2.017 2.017
	33	ROHN 2 STD	30.608	26.372	В	0.139	0.285	1.515	3.394	0.858	2.017
	34	ROHN 2 STD	30.608	26.372	В	0.139	0.285	1.515	3.394	0.858	2.017
	35	ROHN 2 STD	30.608	26.372	Α	0.139	0.285	1.515	3.394	0.858	2.017
	36	ROHN 2 STD	30.608	26.372	Α	0.139	0.285	1.515	3.394	0.858	2.017
					Α		Sum:	24.699	51.898	13.713	30.840
					B			24.699	51.898	13.713	30.840
Т2	40	ROHN 4 STD	57.235	36.242	C C	0.143	0.276	24.699 7.514	51.898 12.370	13.713 3.727	30.840 7.320
160.00-140.00	40	KOHN 4 STD	57.255	50.242	C	0.145	0.270	7.514	12.570	5.727	7.520
100.00-140.00	40	ROHN 4 STD	57.235	36.242	Α	0.143	0.276	7.514	12.370	3.727	7.320
	41	ROHN 4 STD	57.235	36.242	C	0.143	0.276	7.514	12.370	3.727	7.320
	41	ROHN 4 STD	57.235	36.242	В	0.143	0.276	7.514	12.370	3.727	7.320
	42	ROHN 4 STD	57.235	36.242	В	0.143	0.276	7.514	12.370	3.727	7.320
	42	ROHN 4 STD	57.235	36.242	A	0.143	0.276	7.514	12.370	3.727	7.320
	43	ROHN 1.5 STD	24.166	23.524	C	0.143	0.276	1.526	3.863	0.865 0.926	2.286
	44 45	ROHN 2 STD ROHN 2 STD	30.207 30.207	25.847 25.847	C C	0.143 0.143	$0.276 \\ 0.276$	1.634 1.634	3.634 3.634	0.926	2.150 2.150
	46	ROHN 1.5 STD	24.166	23.524	В	0.143	0.276	1.526	3.863	0.920	2.130
	47	ROHN 2 STD	30.207	25.847	B	0.143	0.276	1.634	3.634	0.926	2.150
	48	ROHN 2 STD	30.207	25.847	В	0.143	0.276	1.634	3.634	0.926	2.150
	49	ROHN 1.5 STD	24.166	23.524	А	0.143	0.276	1.526	3.863	0.865	2.286
	50	ROHN 2 STD	30.207	25.847	Α	0.143	0.276	1.634	3.634	0.926	2.150
	51	ROHN 2 STD	30.207	25.847	A	0.143	0.276	1.634	3.634	0.926	2.150
	55 56	ROHN 1.5 STD ROHN 2 STD	24.166 30.207	23.524 25.847	C C	0.143 0.143	$0.276 \\ 0.276$	1.416 1.589	3.584 3.535	0.803 0.901	2.121 2.092
	57	ROHN 2 STD		25.847	č	0.143	0.276	1.589	3.535	0.901	2.092
	58	ROHN 1.5 STD		23.524	B	0.143	0.276	1.416	3.584	0.803	2.121
	59	ROHN 2 STD		25.847	В	0.143	0.276	1.589	3.535	0.901	2.092
	60	ROHN 2 STD	30.207	25.847	в	0.143	0.276	1.589	3.535	0.901	2.092
	61	ROHN 1.5 STD	24.166	23.524	Α	0.143	0.276	1.416	3.584	0.803	2.121
	62	ROHN 2 STD	30.207	25.847	A	0.143	0.276	1.589	3.535	0.901	2.092
	63 67	ROHN 2 STD	30.207	25.847	A	0.143	0.276	1.589	3.535	0.901	2.092
	67 68	ROHN 1.5 STD ROHN 2 STD	24.166 30.207	23.524 25.847	C C	0.143 0.143	$0.276 \\ 0.276$	1.306 1.546	3.306 3.438	0.741 0.876	1.956 2.035
	69	ROHN 2 STD	30.207	25.847	c	0.143	0.276	1.546	3.438	0.876	2.035
	70	ROHN 1.5 STD	24.166	23.524	B	0.143	0.276	1.306	3.306	0.741	1.956
	71	ROHN 2 STD	30.207	25.847	B	0.143	0.276	1.546	3.438	0.876	2.035
	72	ROHN 2 STD	30.207	25.847	В	0.143	0.276	1.546	3.438	0.876	2.035
	73	ROHN 1.5 STD	24.166	23.524	Α	0.143	0.276	1.306	3.306	0.741	1.956
	74	ROHN 2 STD	30.207	25.847	A	0.143	0.276	1.546	3.438	0.876	2.035
1	75	ROHN 2 STD	30.207	25.847	A	0.143	0.276 Sum:	1.546	3.438	0.876	2.035
1					A B		Sum:	28.812 28.812	56.708 56.708	15.269 15.269	33.556 33.556
	I I		1	I			1	20.012	50.700	13.209	55.550

*tnx* 

Centek E 63-2 No Branj Phone: FAX:

To the or	Job	Page		
xTower		25 of 71		
Engineering Inc. North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22	
nnford, CT 06405 ne: (203) 488-0580 X: (203) 488-8587	Client	Verizon	Designed by TJL	

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.	5120		w/Ice	a	e	e w/Ice	Δγ	w/Ice	$\Lambda_r \Lambda_r$	w/Ice
	- ,				с						
ft					е			$ft^2$	$ft^2$	$ft^2$	$ft^2$
					С			28.812	56.708	15.269	33.556
T3	79	ROHN 5 EH	70.065	40.908	С	0.151	0.271	3.096	4.700	1.391	2.775
140.00-133.33	70	DOIDI C FU	70.065	10.000		0.1.51	0.071	2.000	1 700	1 201	0.775
	79 80	ROHN 5 EH ROHN 5 EH	70.065	40.908 40.908	A C	0.151 0.151	0.271 0.271	3.096 3.096	4.700 4.700	1.391 1.391	2.775 2.775
	80	ROHN 5 EH	70.065	40.908	B	0.151	0.271	3.096	4.700	1.391	2.775
	81	ROHN 5 EH	70.065	40.908	B	0.151	0.271	3.096	4.700	1.391	2.775
	81	ROHN 5 EH	70.065	40.908	A	0.151	0.271	3.096	4.700	1.391	2.775
	82	ROHN 2 STD	29.913	25.465	С	0.151	0.271	2.028	4.488	1.151	2.650
	83	ROHN 2 EH	29.976	25.489	С	0.151	0.271	1.670	3.691	0.948	2.180
	84	ROHN 2 EH	29.976	25.489	С	0.151	0.271	1.670	3.691	0.948	2.180
	85	ROHN 2 STD	29.913	25.465	В	0.151	0.271	2.028	4.488	1.151	2.650
	86	ROHN 2 EH	29.976	25.489	В	0.151	0.271	1.670	3.691	0.948	2.180
	87 88	ROHN 2 EH	29.976 29.913	25.489	B	0.151	0.271 0.271	1.670	3.691	0.948	2.180
	89	ROHN 2 STD ROHN 2 EH	29.913	25.465 25.489	A A	0.151 0.151	0.271	2.028 1.670	4.488 3.691	1.151 0.948	2.650 2.180
	89 90	ROHN 2 EH	29.976	25.489	A	0.151	0.271	1.670	3.691	0.948	2.180
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KOIII 2 EII	29.970	23.407	A	0.151	Sum:	11.559	21.270	5.828	12.561
					B			11.559	21.270	5.828	12.561
					С			11.559	21.270	5.828	12.561
T4	94	ROHN 5 EH	69.697	40.624	С	0.145	0.262	3.096	4.692	1.388	2.759
133.33-126.67											
	94	ROHN 5 EH	69.697	40.624	Α	0.145	0.262	3.096	4.692	1.388	2.759
	95	ROHN 5 EH	69.697	40.624	C	0.145	0.262	3.096	4.692	1.388	2.759
	95	ROHN 5 EH	69.697	40.624	B	0.145	0.262	3.096	4.692	1.388	2.759
	96 96	ROHN 5 EH	69.697	40.624	B	0.145	0.262	3.096	4.692	1.388	2.759
	96 97	ROHN 5 EH ROHN 2 STD	69.697 29.756	40.624 25.262	A C	0.145 0.145	0.262 0.262	3.096 2.165	4.692 4.779	1.388 1.228	2.759 2.810
	97	ROHN 2 STD	29.756	25.262	B	0.145	0.262	2.165	4.779	1.228	2.810
	99	ROHN 2 STD	29.756	25.262	A	0.145	0.262	2.165	4.779	1.228	2.810
	100	ROHN 2 EH	29.818	25.286	ĉ	0.145	0.262	1.717	3.787	0.974	2.226
	101	ROHN 2 EH	29.818	25.286	С	0.145	0.262	1.717	3.787	0.974	2.226
	102	ROHN 2 EH	29.818	25.286	В	0.145	0.262	1.717	3.787	0.974	2.226
	103	ROHN 2 EH	29.818	25.286	В	0.145	0.262	1.717	3.787	0.974	2.226
	104	ROHN 2 EH	29.818	25.286	Α	0.145	0.262	1.717	3.787	0.974	2.226
	105	ROHN 2 EH	29.818	25.286	A	0.145	0.262	1.717	3.787	0.974	2.226
					A		Sum:	11.792	21.736	5.951	12.781
					B			11.792	21.736	5.951	12.781
Т5	109	ROHN 5 EH	69.312	40.327	C C	0.14	0.253	11.792 3.096	21.736 4.684	5.951 1.386	12.781 2.744
126.67-120.00	103	KOIIN J EII	09.512	40.527	C	0.14	0.235	5.090	4.004	1.580	2.744
120107 120100	109	ROHN 5 EH	69.312	40.327	А	0.14	0.253	3.096	4.684	1.386	2.744
	110	ROHN 5 EH		40.327	С	0.14		3.096	4.684	1.386	2.744
	110	ROHN 5 EH	69.312	40.327	В	0.14	0.253	3.096	4.684	1.386	2.744
	111	ROHN 5 EH	69.312		В	0.14	0.253	3.096	4.684	1.386	2.744
	111	ROHN 5 EH	69.312	40.327	Α	0.14	0.253	3.096	4.684	1.386	2.744
	112	ROHN 2 STD	29.591	25.05	C	0.14	0.253	2.303	5.068	1.305	2.969
	113	ROHN 2 STD	29.591	25.05	В	0.14	0.253	2.303	5.068	1.305	2.969
	114	ROHN 2 STD	29.591	25.05	A	0.14	0.253	2.303	5.068	1.305 0.999	2.969
	115 116	ROHN 2 XXS ROHN 2 XXS	29.591 29.591	25.05 25.05	C C	0.14 0.14	0.253 0.253	1.763 1.763	3.880 3.880	0.999	2.273 2.273
	110	ROHN 2 XXS	29.591	25.05	В	0.14	0.255	1.763	3.880	0.999	2.273
	117	ROHN 2 XXS	29.591	25.05	B	0.14	0.253	1.763	3.880	0.999	2.273
	119	ROHN 2 XXS	29.591	25.05	A	0.14	0.253	1.763	3.880	0.999	2.273
	120	ROHN 2 XXS	29.591	25.05	A	0.14	0.253		3.880	0.999	2.273
					Α		Sum:	12.020	22.194	6.074	13.001
					В			12.020	22.194	6.074	13.001
					С			12.020	22.194	6.074	13.001
T6	124	ROHN 6 EHS	81.556	44.719	С	0.133	0.222	11.065	15.775	4.541	9.127
120.00-100.00			I	I			I		I	I	

t

*Cente* 63-) Pl 1

Anna Tonu an	Job		Page
tnxTower		22027.01 - Westport	26 of 71
ntek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
ft					с е			$ft^2$	$ft^2$	$ft^2$	$ft^2$
Ji	124	ROHN 6 EHS	81.556	44.719	A	0.133	0.222	11.065	15.775	<u>1</u> 4.541	<i>Ji</i> 9.127
	125	ROHN 6 EHS	81.556		C	0.133	0.222	11.065	15.775	4.541	9.127
	125	ROHN 6 EHS	81.556		В	0.133	0.222	11.065	15.775	4.541	9.127
	126	ROHN 6 EHS	81.556		B	0.133	0.222	11.065	15.775	4.541	9.127
	126	ROHN 6 EHS	81.556		A	0.133	0.222	11.065	15.775	4.541	9.127
	127 128	ROHN 2 STD Pipe 2.5 XXS	29.237 35.392	24.596 26.964	C C	0.133 0.133	0.222 0.222	2.645 2.889	5.786 5.722	1.497 1.635	3.348 3.311
	128	Pipe 2.5 XXS	35.392	26.964	c	0.133	0.222	2.889	5.722	1.635	3.311
	130	ROHN 2 STD	29.237	24.596	B	0.133	0.222	2.645	5.786	1.497	3.348
	131	Pipe 2.5 XXS	35.392	26.964	В	0.133	0.222	2.889	5.722	1.635	3.311
	132	Pipe 2.5 XXS	35.392	26.964	В	0.133	0.222	2.889	5.722	1.635	3.311
	133	ROHN 2 STD	29.237	24.596	A	0.133	0.222	2.645	5.786	1.497	3.348
	134 135	Pipe 2.5 XXS	35.392 35.392	26.964 26.964	A	0.133	0.222 0.222	2.889	5.722	1.635	3.311
	135	Pipe 2.5 XXS ROHN 2 STD	29.237	26.964	A C	0.133 0.133	0.222	2.889 2.422	5.722 5.299	1.635 1.371	3.311 3.066
	140	Pipe 2.5 XXS	35.392	26.964	č	0.133	0.222	2.804	5.554	1.587	3.214
	141	Pipe 2.5 XXS	35.392	26.964	C	0.133	0.222	2.804	5.554	1.587	3.214
	142	ROHN 2 STD	29.237	24.596	В	0.133	0.222	2.422	5.299	1.371	3.066
	143	Pipe 2.5 XXS	35.392	26.964	В	0.133	0.222	2.804	5.554	1.587	3.214
	144	Pipe 2.5 XXS	35.392	26.964	B	0.133	0.222	2.804	5.554	1.587	3.214
	145 146	ROHN 2 STD Pipe 2.5 XXS	29.237 35.392	24.596 26.964	A A	0.133 0.133	0.222 0.222	2.422 2.804	5.299 5.554	1.371 1.587	3.066 3.214
	140	Pipe 2.5 XXS	35.392	26.964	A	0.133	0.222	2.804	5.554	1.587	3.214
		· · · · · · · · · · · · · · · · · · ·		2010 0 1	A	01100	Sum:	38.583	65.187	18.396	37.718
					В			38.583	65.187	18.396	37.718
					С			38.583	65.187	18.396	37.718
T7 100.00-90.00	151	ROHN 6 EH	80.307		C	0.131	0.212	5.537	7.859	2.265	4.533
	151 152	ROHN 6 EH ROHN 6 EH	80.307 80.307	43.843 43.843	A C	0.131 0.131	0.212 0.212	5.537 5.537	7.859 7.859	2.265 2.265	4.533 4.533
	152	ROHN 6 EH	80.307		B	0.131	0.212	5.537	7.859	2.265	4.533
	152	ROHN 6 EH	80.307	43.843	B	0.131	0.212	5.537	7.859	2.265	4.533
	153	ROHN 6 EH	80.307		A	0.131	0.212	5.537	7.859	2.265	4.533
	154	ROHN 2 STD	28.789	24.028	C	0.131	0.212	2.868	6.223	1.623	3.589
	155	ROHN 3 STD	42.426		C	0.131	0.212	3.643	6.535	2.011	3.769
	156	ROHN 3 STD	42.426 28.789	29.273	C	0.131	0.212	3.643	6.535	2.011	3.769
	157 158	ROHN 2 STD ROHN 3 STD	42.426	24.028 29.273	B B	0.131 0.131	0.212 0.212	2.868 3.643	6.223 6.535	1.623 2.011	3.589 3.769
	158	ROHN 3 STD	42.426		B	0.131	0.212	3.643	6.535	2.011	3.769
	160	ROHN 2 STD	28.789	24.028	A	0.131	0.212	2.868	6.223	1.623	3.589
	161	ROHN 3 STD	42.426	29.273	Α	0.131	0.212	3.643	6.535	2.011	3.769
	162	ROHN 3 STD	42.426	29.273	Α	0.131	0.212	3.643	6.535	2.011	3.769
					A		Sum:	21.227	35.011	10.175	20.193
					B C			21.227 21.227	35.011 35.011	10.175 10.175	20.193 20.193
T8 90.00-80.00	166	ROHN 6 EH	79.372	43.191	c	0.124	0.202	5.537	7.833	2.247	4.502
10,000,000	166	ROHN 6 EH	79.372	43.191	Ă	0.124	0.202	5.537	7.833	2.247	4.502
	167	ROHN 6 EH	79.372		С	0.124	0.202	5.537	7.833	2.247	4.502
	167	ROHN 6 EH	79.372	43.191	В	0.124	0.202	5.537	7.833	2.247	4.502
	168	ROHN 6 EH	79.372		В	0.124	0.202	5.537	7.833	2.247	4.502
	168 169	ROHN 6 EH ROHN 2 STD	79.372 28.454	43.191 23.607	A C	0.124 0.124	0.202 0.202	5.537 3.129	7.833 6.749	2.247 1.769	4.502 3.879
	170	ROHN 2 STD	28.454		B	0.124	0.202	3.129	6.749	1.769	3.879
	170	ROHN 2 STD	28.454		A	0.124	0.202	3.129	6.749	1.769	3.879
	172	ROHN 3 STD	41.933		Ĉ	0.124	0.202	3.773	6.735	2.088	3.871
	173	ROHN 3 STD	41.933		С	0.124	0.202	3.773	6.735	2.088	3.871
	174	ROHN 3 STD	41.933		B	0.124	0.202	3.773	6.735	2.088	3.871
	175	ROHN 3 STD	41.933		B	0.124	0.202	3.773	6.735	2.088	3.871
	176 177	ROHN 3 STD ROHN 3 STD	41.933 41.933		A A	0.124 0.124		3.773 3.773	6.735 6.735		3.871 3.871
	177	AOIM JOID	11.755	20.171	A	0.124	Sum:				
• •	I								22.000		10.020

l

**Cent** 63

tnxTower	Job 22027.01 - Westport	Page 27 of 71
entek Engineering Inc. 63-2 North Branford Rd.	Project 180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client Verizon	Designed by TJL

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice	,	w/Ice	, ,	w/Ice
C.					с			$ft^2$	$ft^2$	$ft^2$	$ft^2$
ft					e B			<i>Jt</i> 21.747	JI 35.885	<i>بر</i> 10.439	л 20.625
					č			21.747	35.885	10.439	20.625
T9 80.00-60.00	184	ROHN 2.5 STD	33.748	25.148	C	0.14	0.204	4.360	8.447	2.470	4.859
	185	ROHN 3 STD	41.084	27.97	С	0.14	0.204	3.995	7.071	2.231	4.067
	186	ROHN 3 STD	41.084	27.97	C	0.14	0.204	3.995	7.071	2.231	4.067
	187	ROHN 2.5 STD	33.748	25.148	B	0.14	0.204	4.360	8.447	2.470	4.859
	188 189	ROHN 3 STD ROHN 3 STD	41.084	27.97 27.97	B B	0.14 0.14	0.204 0.204	3.995 3.995	7.071 7.071	2.231 2.231	4.067 4.067
	189	ROHN 2.5 STD	33.748	27.97	Б А	0.14	0.204	5.995 4.360	8.447	2.231	4.067
	190	ROHN 3 STD	41.084	27.97	A	0.14	0.204	3.995	7.071	2.231	4.067
	192	ROHN 3 STD	41.084	27.97	A	0.14	0.204	3.995	7.071	2.231	4.067
	196	ROHN 2.5 STD	33.748	25.148	С	0.14	0.204	4.060	7.867	2.301	4.525
	197	ROHN 3 STD	41.084	27.97	С	0.14	0.204	3.862	6.837	2.157	3.932
	198	ROHN 3 STD	41.084	27.97	С	0.14	0.204	3.862	6.837	2.157	3.932
	199	ROHN 2.5 STD	33.748	25.148	B	0.14	0.204	4.060	7.867	2.301	4.525
	200 201	ROHN 3 STD ROHN 3 STD	41.084	27.97 27.97	B B	0.14	0.204 0.204	3.862 3.862	6.837	2.157 2.157	3.932 3.932
	201	ROHN 2.5 STD	33.748	27.97	A	0.14 0.14	0.204	5.862 4.060	6.837 7.867	2.137	4.525
	202	ROHN 3 STD	41.084	27.97	A	0.14	0.204	3.862	6.837	2.157	3.932
	204	ROHN 3 STD	41.084	27.97	A	0.14	0.204	3.862	6.837	2.157	3.932
					Α		Sum:	24.135	44.130	13.546	25.382
					В			24.135	44.130	13.546	25.382
					С			24.135	44.130	13.546	25.382
T10 60.00-40.00	211	ROHN 2.5 STD	32.573		C	0.129	0.189	4.959	9.454	2.805	5.413
	212	ROHN 3 EH	39.655	26.608	C C	0.129	0.189	4.269 4.269	7.448	2.404 2.404	4.264 4.264
	213 214	ROHN 3 EH ROHN 2.5 STD	39.655 32.573	26.608 23.885	B	0.129 0.129	0.189 0.189	4.269	7.448 9.454	2.404	4.204
	215	ROHN 3 EH	39.655	26.608	B	0.129	0.189	4.269	7.448	2.404	4.264
	216	ROHN 3 EH	39.655	26.608	B	0.129	0.189	4.269	7.448	2.404	4.264
	217	ROHN 2.5 STD	32.573	23.885	Α	0.129	0.189	4.959	9.454	2.805	5.413
	218	ROHN 3 EH	39.655	26.608	Α	0.129	0.189	4.269	7.448	2.404	4.264
	219	ROHN 3 EH	39.655	26.608	Α	0.129	0.189	4.269	7.448	2.404	4.264
	223	ROHN 2.5 STD	32.573	23.885	C	0.129	0.189	4.659	8.883	2.636	5.086
	224 225	ROHN 3 EH	39.655	26.608	C	0.129	0.189	4.130	7.206	2.326 2.326	4.126
	225	ROHN 3 EH ROHN 2.5 STD	39.655 32.573	26.608 23.885	C B	0.129 0.129	0.189 0.189	4.130 4.659	7.206 8.883	2.526	4.126 5.086
	220	ROHN 3 EH	39.655	26.608	B	0.129	0.189	4.130	7.206	2.326	4.126
	228	ROHN 3 EH	39.655	26.608	B	0.129	0.189	4.130	7.206	2.326	4.126
	229	ROHN 2.5 STD	32.573	23.885	Α	0.129	0.189	4.659	8.883	2.636	5.086
	230	ROHN 3 EH	39.655	26.608	Α	0.129	0.189	4.130	7.206	2.326	4.126
	231	ROHN 3 EH	39.655	26.608	A	0.129	0.189	4.130	7.206	2.326	4.126
					A		Sum:	26.417	47.644	14.901	27.279
					B C			26.417 26.417	47.644 47.644	14.901 14.901	27.279 27.279
T11 40.00-30.00	238	ROHN 2.5 STD	31 373	22.621	c	0.123	0.178		9.858	2.973	5.629
111 10:00 20:00	239	ROHN 3 EH	38.193		Č	0.123	0.178	4.410	7.579	2.493	4.328
	240	ROHN 3 EH	38.193	25.244	С	0.123	0.178	4.410	7.579	2.493	4.328
	241	ROHN 2.5 STD	31.373		В	0.123	0.178	5.258	9.858	2.973	5.629
	242	ROHN 3 EH	38.193		В	0.123	0.178	4.410	7.579	2.493	4.328
	243	ROHN 3 EH	38.193		В	0.123	0.178	4.410	7.579	2.493	4.328
	244	ROHN 2.5 STD	31.373		A	0.123	0.178	5.258	9.858	2.973	5.629
	245 246	ROHN 3 EH ROHN 3 EH	38.193 38.193		A A	0.123 0.123	$0.178 \\ 0.178$	4.410 4.410	7.579 7.579	2.493 2.493	4.328 4.328
	240	KOIII4 J EII	56.195	25.244	A	0.123	Sum:	14.079	25.017	7.959	4.528
					B			14.079	25.017	7.959	14.285
					Ĉ			14.079	25.017	7.959	14.285
T12 30.00-20.00	253	ROHN 2.5 EH	30.281		С	0.119	0.172	5.558	10.258	3.141	5.849
	254	ROHN 2.5 EH		21.497	В	0.119	0.172	5.558	10.258	3.141	5.849
	255	ROHN 2.5 EH		21.497	A	0.119	0.172		10.258	3.141	5.849
I	256	ROHN 3 EH	36.864	24.029	C	0.119	0.172	4.555	7.719	2.574	4.401

tnx

**Centek E** 63-2 No Branj Phone: FAX:

xTower	<b>Јо</b> в 22027.01 - Westport	Page 28 of 71
<b>Engineering Inc.</b> North Branford Rd.	Project 180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
anford, CT 06405 ne: (203) 488-0580 X: (203) 488-8587	Client Verizon	Designed by TJL

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
1         257         ROHN 3 EH         36.864         24.029         C         0.119         0.172         4.555         7.719         2.574           258         ROHN 3 EH         36.864         24.029         B         0.119         0.172         4.555         7.719         2.574           259         ROHN 3 EH         36.864         24.029         B         0.119         0.172         4.555         7.719         2.574           260         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.957         23.889         C         0.108         0.152         6.913         11.295         3.903           271						с			- 1		-1	. 2
258         ROHN 3 EH         36.864         24.029         B         0.119         0.172         4.555         7.719         2.574           259         ROHN 3 EH         36.864         24.029         B         0.119         0.172         4.555         7.719         2.574           260         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 15 STD         18.977         15.82         C         0.108         0.152         8.153         12.675         4.570           270         ROHN 1 S STD         18.977         15.822         C         0.108         0.152         2.132         4.124         1.204           272         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531           274         ROHN	ft					-			J-	J-	<i>J</i> :	$ft^2$
259         ROHN 3 EH         36.864         24.029         B         0.119         0.172         4.555         7.719         2.574           260         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           260         ROHN 3 EH         34.957         21.3889         C         0.108         0.152         6.913         11.295         3.903           270         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         6.913         11.295         3.903           273         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         6.913         11.295         3.903         2.574         3.675						-						4.401
260         ROHN 3 EH 261         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           A         Sum:         14.667         25.696         8.288         8         8         8         14.667         25.696         8.288           T13 20.00-0.00         268         P3.5x.226         39.951         23.889         C         0.108         0.152         8.153         12.675         4.570           269         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         0.940         2.037         0.531           271         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531           273         ROHN 3 EH         34.957         21.968         C         0.108         0.152         0.940         2.037         0.531           273         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531						_						4.401
261         ROHN 3 EH         36.864         24.029         A         0.119         0.172         4.555         7.719         2.574           T13 20.00-0.00         268         P3.5x.226         39.951         23.889         C         0.108         0.152         8.153         12.675         4.570           269         ROHN 3 EH         34.957         21.968         C         0.108         0.152         6.913         11.295         3.903           270         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         6.913         11.295         3.903           271         ROHN 2 STD         23.721         17.646         C         0.108         0.152         6.913         11.295         3.903           273         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         0.940         2.037         0.531           274         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531           275         P3.5x.226         39.951         23.898         B         0.108         0.152         0.940         2.037         0.531						В						4.401
T13 20.00-0.00         268         P3.5x.226         39.951         23.889         C         14.667         25.696         8.288           C13 20.00-0.00         268         P3.5x.226         39.951         23.889         C         0.108         0.152         8.153         12.675         4.570           269         ROHN 3 EH         34.957         21.968         C         0.108         0.152         6.913         11.295         3.903           270         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         6.913         11.295         3.903           271         ROHN 2 STD         23.721         17.646         C         0.108         0.152         6.913         11.295         3.903           273         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         0.940         2.037         0.531           274         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531           274         ROHN 3 EH         34.957         21.968         B         0.108         0.152         0.940         2.037         0.531 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>Α</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						Α						
T13 20.00-0.00         268         P3.5x.226         39.951         23.889         C         0.108         0.152         8.153         12.675         4.570           269         ROHN 3 EH         34.957         21.968         C         0.108         0.152         8.153         12.675         4.570           270         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         0.940         2.037         0.531           271         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531           272         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         0.940         2.037         0.531           274         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531           275         P3.5x.226         39.951         23.889         B         0.108         0.152         0.940         2.037         0.531           276         ROHN 2 STD         23.721         17.646         B         0.108         0.152         0.940         2.037         0.531		261	ROHN 3 EH	36.864	24.029		0.119					
T13 20.00-0.00         268         P3.5x.226         39.951         23.889         C         0.108         0.152         8.153         12.675         4.570           269         ROHN 3 EH         34.957         21.968         C         0.108         0.152         6.913         11.295         3.903           270         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         0.940         2.037         0.531           271         ROHN 3 EH         34.957         21.968         C         0.108         0.152         2.132         4.124         1.204           272         ROHN 1.5 STD         18.977         15.822         C         0.108         0.152         0.940         2.037         0.531           274         ROHN 2 STD         23.721         17.646         C         0.108         0.152         0.940         2.037         0.531           276         ROHN 3 EH         34.957         21.968         B         0.108         0.152         6.913         11.295         3.903           277         ROHN 1.5 STD         18.977         15.822         B         0.108         0.152         6.913         11.295         3.903 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Sum:</td><td></td><td></td><td></td><td>14.650</td></t<>								Sum:				14.650
T13 20.00-0.00       268       P3.5x.226       39.951       23.889       C       0.108       0.152       8.153       12.675       4.570         269       ROHN 3 EH       34.957       21.968       C       0.108       0.152       6.913       11.295       3.903         270       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         271       ROHN 2 STD       23.721       17.646       C       0.108       0.152       6.913       11.295       3.903         273       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         274       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         275       P3.5x.226       39.951       23.889       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152 <td></td> <td>14.650</td>												14.650
269       ROHN 3 EH       34.957       21.968       C       0.108       0.152       6.913       11.295       3.903         270       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         271       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         272       ROHN 3 EH       34.957       21.968       C       0.108       0.152       6.913       11.295       3.903         273       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         274       ROHN 2 STD       23.721       17.646       C       0.108       0.152       8.153       12.675       4.570         276       ROHN 3 EH       34.957       21.968       B       0.108       0.152       0.940       2.037       0.531         277       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.131       1.									14.667	25.696	8.288	14.650
270       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         271       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         272       ROHN 3 EH       34.957       21.968       C       0.108       0.152       6.913       11.295       3.903         273       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         274       ROHN 2 STD       23.721       17.646       C       0.108       0.152       0.940       2.037       0.531         275       P3.5x.226       39.951       23.889       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 3 EH       34.957       21.968       B       0.108       0.152       0.940       2	T13 20.00-0.00	268	P3.5x.226	39.951	23.889	С	0.108	0.152	8.153	12.675	4.570	7.195
271       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         272       ROHN 3 EH       34.957       21.968       C       0.108       0.152       6.913       11.295       3.903         273       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         274       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         275       P3.5x.226       39.951       23.889       B       0.108       0.152       8.153       12.675       4.570         276       ROHN 3 EH       34.957       21.968       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.132       4.124       1.204         279       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.131       1.2		269	ROHN 3 EH	34.957	21.968	С	0.108	0.152	6.913	11.295	3.903	6.412
272       ROHN 3 EH       34.957       21.968       C       0.108       0.152       6.913       11.295       3.903         273       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         274       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         275       P3.5x.226       39.951       23.889       B       0.108       0.152       6.913       11.295       3.903         276       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.940       2.037       0.531         279       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.940       2.				18.977	15.822	С	0.108	0.152	0.940	2.037	0.531	1.156
273       ROHN 1.5 STD       18.977       15.822       C       0.108       0.152       0.940       2.037       0.531         274       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         275       P3.5x.226       39.951       23.889       B       0.108       0.152       8.153       12.675       4.570         276       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       6.913       11.295       3.903         281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       6.133 <t< td=""><td></td><td>271</td><td>ROHN 2 STD</td><td>23.721</td><td>17.646</td><td>С</td><td>0.108</td><td>0.152</td><td>2.132</td><td>4.124</td><td>1.204</td><td>2.341</td></t<>		271	ROHN 2 STD	23.721	17.646	С	0.108	0.152	2.132	4.124	1.204	2.341
274       ROHN 2 STD       23.721       17.646       C       0.108       0.152       2.132       4.124       1.204         275       P3.5x.226       39.951       23.889       B       0.108       0.152       8.153       12.675       4.570         276       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         279       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       6.913       11.295       3.903         281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         283       P3.5x.226       39.951       23.889       A       0.108       0.152       6.913       11		272		34.957	21.968	С	0.108	0.152	6.913	11.295	3.903	6.412
275       P3.5x.226       39.951       23.889       B       0.108       0.152       8.153       12.675       4.570         276       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.940       2.037       0.531         283       P3.5x.226       39.951       23.889       A       0.108       0.152       6.913       11.295       3.903         284       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940 <td< td=""><td></td><td>273</td><td>ROHN 1.5 STD</td><td>18.977</td><td>15.822</td><td>С</td><td>0.108</td><td>0.152</td><td>0.940</td><td>2.037</td><td>0.531</td><td>1.156</td></td<>		273	ROHN 1.5 STD	18.977	15.822	С	0.108	0.152	0.940	2.037	0.531	1.156
276       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         279       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       0.940       2.037       0.531         283       P3.5x.226       39.951       23.889       A       0.108       0.152       8.153       12.675       4.570         284       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         285       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940		274	ROHN 2 STD	23.721	17.646	С	0.108	0.152	2.132	4.124	1.204	2.341
277       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         279       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         283       P3.5x.226       39.951       23.889       A       0.108       0.152       8.153       12.675       4.570         284       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         285       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940       2.037       0.531         286       ROHN 3 EH       34.957       21.968       A       0.108       0.152       2.132       4		275	P3.5x.226	39.951	23.889	В	0.108	0.152	8.153	12.675	4.570	7.195
278       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         279       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         283       P3.5x.226       39.951       23.889       A       0.108       0.152       8.153       12.675       4.570         284       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         285       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940       2.037       0.531         286       ROHN 2 STD       23.721       17.646       A       0.108       0.152       2.132       4.124       1.204         287       ROHN 3 EH       34.957       21.968       A       0.108       0.152       2.132       4.1		276	ROHN 3 EH	34.957	21.968	В	0.108	0.152	6.913	11.295	3.903	6.412
279       ROHN 3 EH       34.957       21.968       B       0.108       0.152       6.913       11.295       3.903         280       ROHN 1.5 STD       18.977       15.822       B       0.108       0.152       0.940       2.037       0.531         281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         283       P3.5x.226       39.951       23.889       A       0.108       0.152       8.153       12.675       4.570         284       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         285       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       6.913       11.295       3.903         286       ROHN 2 STD       23.721       17.646       A       0.108       0.152       0.940       2.037       0.531         286       ROHN 3 EH       34.957       21.968       A       0.108       0.152       2.132       4.124       1.204         287       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.		277	ROHN 1.5 STD	18.977	15.822	В	0.108	0.152	0.940	2.037	0.531	1.156
280         ROHN 1.5 STD         18.977         15.822         B         0.108         0.152         0.940         2.037         0.531           281         ROHN 2 STD         23.721         17.646         B         0.108         0.152         2.132         4.124         1.204           283         P3.5x.226         39.951         23.889         A         0.108         0.152         8.153         12.675         4.570           284         ROHN 3 EH         34.957         21.968         A         0.108         0.152         6.913         11.295         3.903           285         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           286         ROHN 2 STD         23.721         17.646         A         0.108         0.152         0.940         2.037         0.531           286         ROHN 3 EH         34.957         21.968         A         0.108         0.152         2.132         4.124         1.204           287         ROHN 3 EH         34.957         21.968         A         0.108         0.152         6.913         11.295         3.903           288 <td< td=""><td></td><td>278</td><td>ROHN 2 STD</td><td>23.721</td><td>17.646</td><td>В</td><td>0.108</td><td>0.152</td><td>2.132</td><td>4.124</td><td>1.204</td><td>2.341</td></td<>		278	ROHN 2 STD	23.721	17.646	В	0.108	0.152	2.132	4.124	1.204	2.341
281       ROHN 2 STD       23.721       17.646       B       0.108       0.152       2.132       4.124       1.204         283       P3.5x.226       39.951       23.889       A       0.108       0.152       8.153       12.675       4.570         284       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         285       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940       2.037       0.531         286       ROHN 2 STD       23.721       17.646       A       0.108       0.152       2.132       4.124       1.204         287       ROHN 3 EH       34.957       21.968       A       0.108       0.152       2.132       4.124       1.204         287       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         288       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940       2.037       0.531         289       ROHN 2 STD       23.721       17.646       A       0.108       0.152       2.132       4.1		279	ROHN 3 EH	34.957	21.968	В	0.108	0.152	6.913	11.295	3.903	6.412
283       P3.5x.226       39.951       23.889       A       0.108       0.152       8.153       12.675       4.570         284       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         285       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940       2.037       0.531         286       ROHN 2 STD       23.721       17.646       A       0.108       0.152       2.132       4.124       1.204         287       ROHN 3 EH       34.957       21.968       A       0.108       0.152       6.913       11.295       3.903         288       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       6.913       11.295       3.903         288       ROHN 1.5 STD       18.977       15.822       A       0.108       0.152       0.940       2.037       0.531         289       ROHN 2 STD       23.721       17.646       A       0.108       0.152       2.132       4.124       1.204		280	ROHN 1.5 STD	18.977	15.822	В	0.108	0.152	0.940	2.037	0.531	1.156
284         ROHN 3 EH         34.957         21.968         A         0.108         0.152         6.913         11.295         3.903           285         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           286         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204           287         ROHN 3 EH         34.957         21.968         A         0.108         0.152         6.913         11.295         3.903           288         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         6.913         11.295         3.903           288         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           289         ROHN 2 STD         23.721         17.646         A         0.108         0.152         0.940         2.037         0.531           289         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204 <td></td> <td>281</td> <td>ROHN 2 STD</td> <td>23.721</td> <td>17.646</td> <td>В</td> <td>0.108</td> <td>0.152</td> <td>2.132</td> <td>4.124</td> <td>1.204</td> <td>2.341</td>		281	ROHN 2 STD	23.721	17.646	В	0.108	0.152	2.132	4.124	1.204	2.341
285         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           286         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204           287         ROHN 3 EH         34.957         21.968         A         0.108         0.152         6.913         11.295         3.903           288         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           289         ROHN 2 STD         23.721         17.646         A         0.108         0.152         0.940         2.037         0.531           289         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204		283	P3.5x.226	39.951	23.889	Α	0.108	0.152	8.153	12.675	4.570	7.195
286         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204           287         ROHN 3 EH         34.957         21.968         A         0.108         0.152         6.913         11.295         3.903           288         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           289         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204		284	ROHN 3 EH	34.957	21.968	Α	0.108	0.152	6.913	11.295	3.903	6.412
287         ROHN 3 EH         34.957         21.968         A         0.108         0.152         6.913         11.295         3.903           288         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           289         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204		285	ROHN 1.5 STD	18.977	15.822	Α	0.108	0.152	0.940	2.037	0.531	1.156
288         ROHN 1.5 STD         18.977         15.822         A         0.108         0.152         0.940         2.037         0.531           289         ROHN 2 STD         23.721         17.646         A         0.108         0.152         2.132         4.124         1.204		286	ROHN 2 STD	23.721	17.646	Α	0.108	0.152	2.132	4.124	1.204	2.341
289 ROHN 2 STD 23.721 17.646 A 0.108 0.152 2.132 4.124 1.204		287	ROHN 3 EH	34.957	21.968	Α	0.108	0.152	6.913	11.295	3.903	6.412
		288	ROHN 1.5 STD	18.977	15.822	Α	0.108	0.152	0.940	2.037	0.531	1.156
		289			17.646	А						2.341
A Sum: 28.122 47.586 15.844						Α		Sum:	28.122	47.586		27.015
B 28.122 47.586 15.844												27.015
C 28.122 47.586 15.844						С			28.122	47.586	15.844	27.015

#### 222-H Section Verification Tables - No Ice

Section	$Z_{wind}$	$Z_{ice}$	Kz	$K_h$	$K_{zt}$	$t_z$	$q_z$	F	е	$A_r R_r$
Elevation	- 1111	-100		n		-*	7=	a	_	//
								с		
ft	ft	ft				in	psf	е		$ft^2$
T1 180.00-160.00	170.00		1.415	1	1		52	А	0.139	13.713
								В	0.139	13.713
								С	0.139	13.713
T2 160.00-140.00	150.00		1.378	1	1		51	Α	0.143	15.269
								В	0.143	15.269
								С	0.143	15.269
T3 140.00-133.33	136.67		1.352	1	1		50	Α	0.151	5.828
								В	0.151	5.828
								С	0.151	5.828
T4 133.33-126.67	130.00		1.337	1	1		49	А	0.145	5.951
								В	0.145	5.951
								С	0.145	5.951
T5 126.67-120.00	123.33		1.323	1	1		49	Α	0.14	6.074
1								В	0.14	6.074

tnxTo

ower	Job	22027.01 - Westport	Page 29 of 71
neering Inc. ranford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
CT 06405 ) 488-0580 488-8587	Client	Verizon	Designed by TJL

Section	$Z_{wind}$	Z _{ice}	Kz	$K_h$	K _{zt}	$t_z$	$q_z$	F	е	$A_r R_r$
Elevation								а		
								С		22
ft	ft	ft				in	psf	е		$ft^2$
								С	0.14	6.074
T6 120.00-100.00	110.00		1.291	1	1		47	А	0.133	18.396
								В	0.133	18.396
								C	0.133	18.396
T7 100.00-90.00	95.00		1.252	1	1		46	A	0.131	10.175
								В	0.131	10.175
								C	0.131	10.175
T8 90.00-80.00	85.00		1.223	1	1		45	A	0.124	10.439
								В	0.124	10.439
<b>T</b> TO 00 00 (0 00								С	0.124	10.439
T9 80.00-60.00	70.00		1.174	1	1		43	A	0.14	13.546
								В	0.14	13.546
<b>T</b> (0, (0, 00, (0, 00)			1					С	0.14	13.546
T10 60.00-40.00	50.00		1.094	1	1		40	A	0.129	14.901
								В	0.129	14.901
								C	0.129	14.901
T11 40.00-30.00	35.00		1.015	1	1		37	A	0.123	7.959
								В	0.123	7.959
								C	0.123	7.959
T12 30.00-20.00	25.00		0.945	1	1		35	А	0.119	8.288
								В	0.119	8.288
								C	0.119	8.288
T13 20.00-0.00	10.00		0.85	1	1		31	A	0.108	15.844
								В	0.108	15.844
								С	0.108	15.844

		222-H	Sec	tion V	erific	ation	Table	s - I	се	
Section Elevation	$Z_{wind}$	Z _{ice}	Kz	$K_h$	Kzt	tz	$q_z$	F a	е	$A_r R_r$
ft	ft	ft				in	psf	с е		$ft^2$
T1 180.00-160.00	170.00	170.00	1.415	1	1	1.4727	8	А	0.285	30.840
								В	0.285	30.840
								С	0.285	30.840
T2 160.00-140.00	150.00	150.00	1.378	1	1	1.4543	7	Α	0.276	33.556
								В	0.276	33.556
								С	0.276	33.556
T3 140.00-133.33	136.67	136.67	1.352	1	1	1.4409	7	А	0.271	12.561
								в	0.271	12.561
								С	0.271	12.561
T4 133.33-126.67	130.00	130.00	1.337	1	1	1.4337	7	Α	0.262	12.781
								в	0.262	12.78
								С	0.262	12.78
T5 126.67-120.00	123.33	123.33	1.323	1	1	1.4262	7	А	0.253	13.00
								В	0.253	13.001
								С	0.253	13.001
T6 120.00-100.00	110.00	110.00	1.291	1	1	1.4099	7	А	0.222	37.718
								в	0.222	37.718
								С	0.222	37.718
T7 100.00-90.00	95.00	95.00	1.252	1	1	1.3894	7	Α	0.212	20.193
								в	0.212	20.193
								С	0.212	20.193
T8 90.00-80.00	85.00	85.00	1.223	1	1	1.3740	7	А	0.202	20.625
								в	0.202	20.625
								С	0.202	20.625
T9 80.00-60.00	70.00	70.00	1.174	1	1	1.3476	6	Α	0.204	25.382

<i>tnxTower</i>
-----------------

ver	Job	22027.01 - Westport	Page 30 of 71
<b>ring Inc.</b> ford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
06405 8-0580 2-8587	Client	Verizon	Designed by TJL

Section Elevation	$Z_{wind}$	Z _{ice}	Kz	$K_h$	K _{zt}	tz	$q_z$	F a	е	$A_r R_r$
ft	ft	ft				in	psf	с e		ft ²
								В	0.204	25.382
								С	0.204	25.382
T10 60.00-40.00	50.00	50.00	1.094	1	1	1.3030	6	Α	0.189	27.279
								В	0.189	27.279
								С	0.189	27.279
T11 40.00-30.00	35.00	35.00	1.015	1	1	1.2574	6	A	0.178	14.285
								В	0.178	14.285
								С	0.178	14.285
T12 30.00-20.00	25.00	25.00	0.945	1	1	1.2158	5	Α	0.172	14.650
								В	0.172	14.650
								С	0.172	14.650
T13 20.00-0.00	10.00	10.00	0.85	1	1	1.1093	5	Α	0.152	27.015
								В	0.152	27.015
								С	0.152	27.015

#### 222-H Section Verification Tables - Service

Section	$Z_{wind}$	$Z_{ice}$	Kz	$K_h$	$K_{zt}$	$t_z$	$q_z$	F	е	$A_r R_r$
Elevation			1 1					а		
			1 1					С		- 2
ft	ft	ft				in	psf	е		$ft^2$
T1 180.00-160.00	170.00		1.415	1	1		11	Α	0.139	13.993
			1 1					в	0.139	13.993
			1 1					С	0.139	13.993
T2 160.00-140.00	150.00		1.378	1	1		11	Α	0.143	16.334
			1 1					В	0.143	16.334
			1 1					С	0.143	16.334
T3 140.00-133.33	136.67		1.352	1	1		11	А	0.151	6.561
			1 1					В	0.151	6.561
								С	0.151	6.561
T4 133.33-126.67	130.00		1.337	1	1		10	A	0.145	6.687
			1 1					в	0.145	6.687
								C	0.145	6.687
T5 126.67-120.00	123.33		1.323	1	1		10	A	0.14	6.810
			1 1					В	0.14	6.810
76120 00 100 00	110.00							С	0.14	6.810
T6 120.00-100.00	110.00		1.291	1	1		10	A	0.133	21.840
			1 1					B	0.133	21.840
TT 100 00 00 00	05.00		1.050	1			10	Ç	0.133	21.840
T7 100.00-90.00	95.00		1.252	1	1		10	A	0.131	12.011
			1 1					B C	0.131	12.011
T8 90.00-80.00	85.00		1 222	1	1		10		0.131 0.124	12.011 12.296
18 90.00-80.00	85.00		1.223	1	1		10	A B	0.124	
			1 1					В С	0.124	12.296 12.296
T9 80.00-60.00	70.00		1.174	1	1		9	A	0.124	13.674
19 80.00-00.00	/0.00		1.1/4	1	1		9	B	0.14	13.674
			1 1					C	0.14	13.674
T10 60.00-40.00	50.00		1.094	1	1		9	Ă	0.129	14.945
110 00.00-40.00	50.00		1.074	1	1			B	0.129	14.945
								C	0.129	14.945
T11 40.00-30.00	35.00		1.015	1	1		8	Ă	0.123	7.959
111 10.00 50.00	55.00		1.015	1	1			B	0.123	7.959
								č	0.123	7.959
T12 30.00-20.00	25.00		0.945	1	1		7	Ă	0.119	8.288
112 20100 20100	22100		0.0 10				í í	В	0.119	8.288
								č	0.119	8.288

Job		Page
	22027.01 - Westport	31 of 71
Project		Date
	180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client	Verizon	Designed by TJL

ſ	Section	$Z_{wind}$	Z _{ice}	Kz	$K_h$	Kzt	tz	$q_z$	F	е	$A_r R_r$
	Elevation								а		
									С		.2
L	ft	ft	ft				in	psf	е		ft²
	T13 20.00-0.00	10.00		0.85	1	1		7	Α	0.108	15.877
									В	0.108	15.877
									С	0.108	15.877

#### **Tower Pressures - No Ice**

#### $G_H = 0.850$

Section	Ζ	Kz	$q_z$	$A_{G}$	F	$A_F$	$A_R$	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation	-	2	42	**0	a	***	***	1 leg	%	In	Out
					с					Face	Face
ft	ft		psf	$ft^2$	e	$ft^2$	$ft^2$	ft ²		$ft^2$	$ft^2$
T1	170.00	1.415	52	177.503	Α	0.000	24.699	11.667	47.24	15.281	0.000
180.00-160.00					В	0.000	24.699		47.24	0.000	0.000
					С	0.000	24.699		47.24	0.000	0.000
T2	150.00	1.378	51	200.850	Α	0.000	28.812	15.027	52.16	56.607	0.000
160.00-140.00					в	0.000	28.812		52.16	0.000	0.000
					С	0.000	28.812		52.16	0.000	0.000
Т3	136.67	1.352	50	76.803	Α	0.000	11.559	6.192	53.57	18.869	0.000
140.00-133.33					в	0.000	11.559		53.57	0.000	0.000
					С	0.000	11.559		53.57	0.000	0.000
T4	130.00	1.337	49	81.431	Α	0.000	11.792	6.192	52.51	18.869	0.000
133.33-126.67					в	0.000	11.792		52.51	14.852	0.000
					С	0.000	11.792		52.51	0.000	0.000
T5	123.33	1.323	49	86.060	Α	0.000	12.020	6.192	51.52	18.869	0.000
126.67-120.00					В	0.000	12.020		51.52	24.913	0.000
					С	0.000	12.020		51.52	0.000	0.000
Т6	110.00	1.291	47	289.399	Α	0.000	38.583	22.130	57.36	57.426	0.000
120.00-100.00					в	0.000	38.583		57.36	84.017	0.000
					С	0.000	38.583		57.36	0.000	0.000
T7	95.00	1.252	46	162.540	Α	0.000	21.227	11.074	52.17	28.934	0.000
100.00-90.00					в	0.000	21.227		52.17	42.009	0.000
					С	0.000	21.227		52.17	0.000	0.000
T8 90.00-80.00	85.00	1.223	45	175.715	Α	0.000	21.747	11.074	50.92	28.934	0.000
					В	0.000	21.747		50.92	42.009	0.000
					С	0.000	21.747		50.92	0.000	0.000
T9 80.00-60.00	70.00	1.174	43	390.971	Α	30.496	24.135	30.496	55.82	57.930	0.000
					в	30.496	24.135		55.82	84.017	0.000
					С	30.496	24.135		55.82	0.000	0.000
T10	50.00	1.094	40	440.971	Α	30.496	26.417	30.496	53.58	59.127	0.000
60.00-40.00					в	30.496	26.417		53.58	84.017	0.000
					С	30.496	26.417		53.58	0.000	0.000
T11	35.00	1.015	37	239.236	Α	15.248	14.079	15.248	51.99	29.564	0.000
40.00-30.00					В	15.248	14.079		51.99	42.009	0.000
					C	15.248	14.079		51.99	0.000	0.000
T12	25.00	0.945	35	251.736	Ā	15.248	14.667	15.248	50.97	29.564	0.000
30.00-20.00					в	15.248	14.667		50.97	42.009	0.000
					С	15.248	14.667		50.97	0.000	0.000
T13 20.00-0.00	10.00	0.85	31	541.368	A	30.078	28.122	30.078	51.68	59.127	0.000
					В	30.078	28.122		51.68	84.017	0.000
					С	30.078	28.122		51.68	0.000	0.000

#### **Tower Pressure - With Ice**

tnxTowe

	Job		Page		
er		22027.01 - Westport	32 of 71		
ing Inc.	Project		Date		
ord Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22		
6405 3-0580 -8587	Client	Verizon	Designed by TJL		

 $G_H = 0.850$ 

Section	Ζ	Kz	$q_z$	$t_Z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
	2		a		.2	С	.2	a2	a?		Face	Face
ft	ft		psf	in	$ft^2$	е	$ft^2$	ft ²	$ft^2$		$ft^2$	$ft^2$
T1	170.00	1.415	8	1.4727	182.412	А	0.000	51.898	21.484	41.40	43.556	0.000
180.00-160.00						в	0.000	51.898		41.40	0.000	0.000
						С	0.000	51.898		41.40	0.000	0.000
T2	150.00	1.378	7	1.4543	205.705	Α	0.000	56.708		43.63	159.660	0.000
160.00-140.00						В	0.000	56.708		43.63	0.000	0.000
						С	0.000	56.708		43.63	0.000	0.000
T3	136.67	1.352	7	1.4409	78.406		0.000	21.270		44.19	53.019	0.000
140.00-133.33						в	0.000	21.270		44.19	0.000	0.000
						С	0.000	21.270		44.19	0.000	0.000
T4	130.00	1.337	7	1.4337	83.027	А	0.000	21.736		43.17	52.912	0.000
133.33-126.67						в	0.000	21.736		43.17	32.201	0.000
						С	0.000	21.736		43.17	0.000	0.000
T5	123.33	1.323	7	1.4262	87.647	Α	0.000	22.194		42.21	52.800	0.000
126.67-120.00						в	0.000	22.194		42.21	53.843	0.000
						С	0.000	22.194		42.21	0.000	0.000
T6	110.00	1.291	7	1.4099	294.106	А	0.000	65.187	31.549	48.40	162.161	0.000
120.00-100.00						в	0.000	65.187		48.40	180.819	0.000
						$\mathbf{C}$	0.000	65.187		48.40	0.000	0.000
T7 100.00-90.00	95.00	1.252	7	1.3894	164.861	А	0.000	35.011	15.718	44.90	81.789	0.000
						в	0.000	35.011		44.90	89.951	0.000
						С	0.000	35.011		44.90	0.000	0.000
T8 90.00-80.00	85.00	1.223	7	1.3740	178.010	Α	0.000	35.885	15.667	43.66	81.415	0.000
						В	0.000	35.885		43.66	89.607	0.000
						С	0.000	35.885		43.66	0.000	0.000
T9 80.00-60.00	70.00	1.174	6	1.3476	395.472	Α	36.501	44.130		45.27	161.878	0.000
						В	36.501	44.130		45.27	178.034	0.000
						С	36.501	44.130		45.27	0.000	0.000
T10 60.00-40.00	50.00	1.094	6	1.3030	445.323	Α	36.302	47.644	36.302	43.24	165.850	0.000
						в	36.302	47.644		43.24	176.043	0.000
						С	36.302	47.644		43.24	0.000	0.000
T11 40.00-30.00	35.00	1.015	6	1.2574	241.335	Α	18.049	25.017	18.049	41.91	81.724	0.000
						в	18.049	25.017		41.91	87.003	0.000
						С	18.049	25.017		41.91	0.000	0.000
T12 30.00-20.00	25.00	0.945	5	1.2158	253.766	Α	17.957	25.696	17.957	41.14	80.630	0.000
						В	17.957	25.696		41.14	86.075	0.000
						С	17.957	25.696		41.14	0.000	0.000
T13 20.00-0.00	10.00	0.85	5	1.1093	545.073	А	35.021	47.586	35.021	42.39	155.667	0.000
						в	35.021	47.586		42.39	167.410	0.000
						С	35.021	47.586		42.39	0.000	0.000

## **Tower Pressure - Service**

 $G_H = \theta.85\theta$ 

Section	Ζ	$K_Z$	$q_z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					с					Face	Face
ft	ft		psf	$ft^2$	е	$ft^2$	$ft^2$	$ft^2$		$ft^2$	$ft^2$
T1	170.00	1.415	11	177.503	Α	0.000	24.699	11.667	47.24	15.281	0.000
180.00-160.00					В	0.000	24.699		47.24	0.000	0.000
					С	0.000	24.699		47.24	0.000	0.000
T2	150.00	1.378	11	200.850	Α	0.000	28.812	15.027	52.16	56.607	0.000
160.00-140.00					В	0.000	28.812		52.16	0.000	0.000

tnxTowe

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job		Page
er		22027.01 - Westport	33 of 71
ing Inc.	Project		Date
rd Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
405 -0580 8587	Client	Verizon	Designed by TJL

Section	Ζ	Kz	$q_z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	$ft^2$	е	$ft^2$	$ft^2$	ft ²		$ft^2$	ft ²
					С	0.000	28.812		52.16	0.000	0.000
Т3	136.67	1.352	11	76.803	Α	0.000	11.559	6.192	53.57	18.869	0.000
140.00-133.33					в	0.000	11.559		53.57	0.000	0.000
					С	0.000	11.559		53.57	0.000	0.000
T4	130.00	1.337	10	81.431	Α	0.000	11.792	6.192	52.51	18.869	0.000
133.33-126.67					в	0.000	11.792		52.51	14.852	0.000
					С	0.000	11.792		52.51	0.000	0.000
T5	123.33	1.323	10	86.060	Α	0.000	12.020	6.192	51.52	18.869	0.000
126.67-120.00					в	0.000	12.020		51.52	24.913	0.000
					С	0.000	12.020		51.52	0.000	0.000
T6	110.00	1.291	10	289.399	Α	0.000	38.583	22.130	57.36	57.426	0.000
120.00-100.00					В	0.000	38.583		57.36	84.017	0.000
					С	0.000	38.583		57.36	0.000	0.000
Τ7	95.00	1.252	10	162.540	Α	0.000	21.227	11.074	52.17	28.934	0.000
100.00-90.00					В	0.000	21.227		52.17	42.009	0.000
					С	0.000	21.227		52.17	0.000	0.000
T8 90.00-80.00	85.00	1.223	10	175.715	Α	0.000	21.747	11.074	50.92	28.934	0.000
					В	0.000	21.747		50.92	42.009	0.000
					С	0.000	21.747		50.92	0.000	0.000
T9 80.00-60.00	70.00	1.174	9	390.971	Α	30.496	24.135	30.496	55.82	57.930	0.000
					В	30.496	24.135		55.82	84.017	0.000
					C	30.496	24.135		55.82	0.000	0.000
T10	50.00	1.094	9	440.971	Α	30.496	26.417	30.496	53.58	59.127	0.000
60.00-40.00					В	30.496	26.417		53.58	84.017	0.000
					С	30.496	26.417		53.58	0.000	0.000
T11	35.00	1.015	8	239.236	Α	15.248	14.079	15.248	51.99	29.564	0.000
40.00-30.00					В	15.248	14.079		51.99	42.009	0.000
					С	15.248	14.079		51.99	0.000	0.000
T12	25.00	0.945	7	251.736	Α	15.248	14.667	15.248	50.97	29.564	0.000
30.00-20.00					В	15.248	14.667		50.97	42.009	0.000
					C	15.248	14.667		50.97	0.000	0.000
T13 20.00-0.00	10.00	0.85	7	541.368	Α	30.078	28.122	30.078	51.68	59.127	0.000
					В	30.078	28.122		51.68	84.017	0.000
					С	30.078	28.122		51.68	0.000	0.000

#### Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	a	, i i i i i i i i i i i i i i i i i i i	<i>U</i> 1	72	~1	K		î		Face
	5	5	с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	52	1	1	13.713	2381.65	119.08	С
180.00-160.00			В	0.139	2.812		1	1	13.713			
			C	0.139	2.812		1	1	13.713			
T2	250.60	1495.62	Α	0.143	2.796	51	1	1	15.269	4278.29	213.91	С
160.00-140.00			В	0.143	2.796		1	1	15.269			
			C	0.143	2.796		1	1	15.269			
T3	83.53	825.91	Α	0.151	2.77	50	1	1	5.828	1479.17	221.88	С
140.00-133.33			В	0.151	2.77		1	1	5.828			
			C	0.151	2.77		1	1	5.828			
T4	154.34	842.18	Α	0.145	2.791	49	1	1	5.951	2104.08	315.61	С
133.33-126.67			В	0.145	2.791		1	1	5.951			
			C	0.145	2.791		1	1	5.951			
T5	213.57	1080.40	Α	0.14	2.81	49	1	1	6.074	2515.87	377.38	С
126.67-120.00			В	0.14	2.81		1	1	6.074			
			C	0.14	2.81		1	1	6.074			
T6	698.17	3821.31	Α	0.133	2.834	47	1	1	18.396	7813.22	390.66	С

Centek Eng 63-2 North Branford, Phone: (20 FAX: (203

Tanan	Job		Page
Tower		22027.01 - Westport	34 of 71
gineering Inc.	Project		Date
th Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
rd, CT 06405 203) 488-0580 03) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
120.00-100.00			В	0.133	2.834		1	1	18.396			
			С	0.133	2.834		1	1	18.396			
T7	349.61	1682.80	Α	0.131	2.844	46	1	1	10.175	3908.99	390.90	С
100.00-90.00			В	0.131	2.844		1	1	10.175			
			С	0.131	2.844		1	1	10.175			
T8	349.61	1722.73	Α	0.124	2.87	45	1	1	10.439	3857.63	385.76	С
90.00-80.00			В	0.124	2.87		1	1	10.439			
			С	0.124	2.87		1	1	10.439			
Т9	699.37	4897.54	Α	0.14	2.81	43	1	1	44.041	9750.55	487.53	С
80.00-60.00			В	0.14	2.81		1	1	44.041			
			С	0.14	2.81		1	1	44.041			
T10	702.22	5700.46	Α	0.129	2.85	40	1	1	45.397	9317.55	465.88	С
60.00-40.00			В	0.129	2.85		1	1	45.397			
			С	0.129	2.85		1	1	45.397			
T11	351.11	2942.46	Α	0.123	2.875	37	1	1	23.207	4386.09	438.61	С
40.00-30.00			В	0.123	2.875		1	1	23.207			
			С	0.123	2.875		1	1	23.207			
T12	351.11	3139.03	Α	0.119	2.889	35	1	1	23.536	4124.22	412.42	С
30.00-20.00			В	0.119	2.889		1	1	23.536			
			С	0.119	2.889		1	1	23.536			
T13	702.22	6187.56	Α	0.108	2.934	31	1	1	45.922	7383.18	369.16	С
20.00-0.00			В	0.108	2.934		1	1	45.922			
			С	0.108	2.934		1	1	45.922			
Sum Weight:	4950.11	35588.43						OTM	4870.17	63300.51		
									kip-ft			

#### Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	52	0.825	1	13.713	2381.65	119.08	C
180.00-160.00			В	0.139	2.812		0.825	1	13.713			
			С	0.139	2.812		0.825	1	13.713			
T2	250.60	1495.62	Α	0.143	2.796	51	0.825	1	15.269	4278.29	213.91	С
160.00-140.00			В	0.143	2.796		0.825	1	15.269			
			С	0.143	2.796		0.825	1	15.269			
Т3	83.53	825.91	Α	0.151	2.77	50	0.825	1	5.828	1479.17	221.88	С
140.00-133.33			В	0.151	2.77		0.825	1	5.828			
			С	0.151	2.77		0.825	1	5.828			
T4	154.34	842.18	Α	0.145	2.791	49	0.825	1	5.951	2104.08	315.61	С
133.33-126.67			В	0.145	2.791		0.825	1	5.951			
			С	0.145	2.791		0.825	1	5.951			
T5	213.57	1080.40	Α	0.14	2.81	49	0.825	1	6.074	2515.87	377.38	С
126.67-120.00			В	0.14	2.81		0.825	1	6.074			
			С	0.14	2.81		0.825	1	6.074			
Т6	698.17	3821.31	Α	0.133	2.834	47	0.825	1	18.396	7813.22	390.66	С
120.00-100.00			В	0.133	2.834		0.825	1	18.396			
			С	0.133	2.834		0.825	1	18.396			
<b>T</b> 7	349.61	1682.80	Α	0.131	2.844	46	0.825	1	10.175	3908.99	390.90	С
100.00-90.00			в	0.131	2.844		0.825	1	10.175			
			С	0.131	2.844		0.825	1	10.175			
Т8	349.61	1722.73	Α	0.124	2.87	45	0.825	1	10.439	3857.63	385.76	С

**Centek 1** 63-2 No Bran Phone FAX:

xTower	Job	22027.01 - Westport	Page 35 of 71
x <b>Engineering Inc.</b> North Branford Rd. anford, CT 06405 ne: (203) 488-0580 X: (203) 488-8587	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
90.00-80.00			В	0.124	2.87		0.825	1	10.439			
			С	0.124	2.87		0.825	1	10.439			
Т9	699.37	4897.54	Α	0.14	2.81	43	0.825	1	38.705	9200.27	460.01	С
80.00-60.00			В	0.14	2.81		0.825	1	38.705			
			С	0.14	2.81		0.825	1	38.705			
T10	702.22	5700.46	Α	0.129	2.85	40	0.825	1	40.060	8797.53	439.88	С
60.00-40.00			В	0.129	2.85		0.825	1	40.060			
			С	0.129	2.85		0.825	1	40.060			
T11	351.11	2942.46	Α	0.123	2.875	37	0.825	1	20.539	4142.78	414.28	С
40.00-30.00			В	0.123	2.875		0.825	1	20.539			
			С	0.123	2.875		0.825	1	20.539			
T12	351.11	3139.03	Α	0.119	2.889	35	0.825	1	20.868	3896.40	389.64	С
30.00-20.00			В	0.119	2.889		0.825	1	20.868			
			С	0.119	2.889		0.825	1	20.868			
T13	702.22	6187.56	Α	0.108	2.934	31	0.825	1	40.659	6972.85	348.64	С
20.00-0.00			в	0.108	2.934		0.825	1	40.659			
			С	0.108	2.934		0.825	1	40.659			
Sum Weight:	4950.11	35588.43						OTM	4787.34	61348.75		
									kip-ft			

			Γο	ver Fo	orce	5 - N	o Ice	e - W	ind 60	To Face		
<b>G</b> ()	4.1.1	G 16	Г		C		D	D		F		Ci I
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
ft	lb	lb	с е			psf			$ft^2$	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	52	0.8	1	13.713	2381.65	119.08	С
180.00-160.00			в	0.139	2.812		0.8	1	13.713			
			С	0.139	2.812		0.8	1	13.713			
T2	250.60	1495.62	Α	0.143	2.796	51	0.8	1	15.269	4278.29	213.91	С
160.00-140.00			В	0.143	2.796		0.8	1	15.269			
			C	0.143	2.796		0.8	1	15.269			
Т3	83.53	825.91	Α	0.151	2.77	50	0.8	1	5.828	1479.17	221.88	С
140.00-133.33			В	0.151	2.77		0.8	1	5.828			
			C	0.151	2.77		0.8	1	5.828			
T4	154.34	842.18	Α	0.145	2.791	49	0.8	1	5.951	2104.08	315.61	С
133.33-126.67			В	0.145	2.791		0.8	1	5.951			
			C	0.145	2.791		0.8	1	5.951			
Т5	213.57	1080.40	Α	0.14	2.81	49	0.8	1	6.074	2515.87	377.38	С
126.67-120.00			В	0.14	2.81		0.8	1	6.074			
			C	0.14	2.81		0.8	1	6.074			
Т6	698.17	3821.31	Α	0.133	2.834	47	0.8	1	18.396	7813.22	390.66	С
120.00-100.00			В	0.133	2.834		0.8	1	18.396			
			C	0.133	2.834		0.8	1	18.396			
T7	349.61	1682.80	Α	0.131	2.844	46	0.8	1	10.175	3908.99	390.90	С
100.00-90.00			В	0.131	2.844		0.8	1	10.175			
			C	0.131	2.844		0.8	1	10.175			
Т8	349.61	1722.73	Α	0.124	2.87	45	0.8	1	10.439	3857.63	385.76	С
90.00-80.00			В	0.124	2.87		0.8	1	10.439			
			С	0.124	2.87		0.8	1	10.439			
Т9	699.37	4897.54	Α	0.14	2.81	43	0.8	1	37.942	9121.66	456.08	С
80.00-60.00			в	0.14	2.81		0.8	1	37.942			
			С	0.14	2.81		0.8	1	37.942			
T10	702.22	5700.46	Α	0.129	2.85	40	0.8	1	39.297	8723.24	436.16	С

#### No. los Wind CO. To E. --

Centek En 63-2 Nort Branfor Phone: (2 FAX: (2)

:Tower	Job	22027.01 - Westport	Page 36 of 71
E <b>ngineering Inc.</b> orth Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
ford, CT 06405 (203) 488-0580 (203) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
60.00-40.00			В	0.129	2.85		0.8	1	39.297			
			C	0.129	2.85		0.8	1	39.297			
T11	351.11	2942.46	Α	0.123	2.875	37	0.8	1	20.158	4108.02	410.80	С
40.00-30.00			В	0.123	2.875		0.8	1	20.158			
			C	0.123	2.875		0.8	1	20.158			
T12	351.11	3139.03	Α	0.119	2.889	35	0.8	1	20.487	3863.85	386.39	С
30.00-20.00			В	0.119	2.889		0.8	1	20.487			
			C	0.119	2.889		0.8	1	20.487			
T13	702.22	6187.56	Α	0.108	2.934	31	0.8	1	39.907	6914.23	345.71	С
20.00-0.00			В	0.108	2.934		0.8	1	39.907			
			C	0.108	2.934		0.8	1	39.907			
Sum Weight:	4950.11	35588.43						OTM	4775.51	61069.93		
									kip-ft			

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			С			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	52	0.85	1	13.713	2381.65	119.08	С
180.00-160.00			В	0.139	2.812		0.85	1	13.713			
			С	0.139	2.812		0.85	1	13.713			
T2	250.60	1495.62	Α	0.143	2.796	51	0.85	1	15.269	4278.29	213.91	С
160.00-140.00			В	0.143	2.796		0.85	1	15.269			
			С	0.143	2.796		0.85	1	15.269			
Т3	83.53	825.91	Α	0.151	2.77	50	0.85	1	5.828	1479.17	221.88	С
140.00-133.33			В	0.151	2.77		0.85	1	5.828			
			С	0.151	2.77		0.85	1	5.828			
T4	154.34	842.18	Α	0.145	2.791	49	0.85	1	5.951	2104.08	315.61	С
133.33-126.67			В	0.145	2.791		0.85	1	5.951			
			С	0.145	2.791		0.85	1	5.951			
T5	213.57	1080.40	Α	0.14	2.81	49	0.85	1	6.074	2515.87	377.38	С
126.67-120.00			В	0.14	2.81		0.85	1	6.074			
			С	0.14	2.81		0.85	1	6.074			
T6	698.17	3821.31	Α	0.133	2.834	47	0.85	1	18.396	7813.22	390.66	С
120.00-100.00			В	0.133	2.834		0.85	1	18.396			
			С	0.133	2.834		0.85	1	18.396			
T7	349.61	1682.80	Α	0.131	2.844	46	0.85	1	10.175	3908.99	390.90	С
100.00-90.00			В	0.131	2.844		0.85	1	10.175			
			С	0.131	2.844		0.85	1	10.175			
Т8	349.61	1722.73	Ă	0.124	2.87	45	0.85	1	10.439	3857.63	385.76	С
90.00-80.00			B	0.124	2.87		0.85	1	10.439		0	-
			Ē	0.124	2.87		0.85	1	10.439			
Т9	699.37	4897.54	Ă	0.14	2.81	43	0.85	ī	39.467	9278.88	463.94	С
80.00-60.00			В	0.14	2.81		0.85	il	39.467	, 2, 2, 50		-
			Ċ	0.14	2.81		0.85	1	39.467			
T10	702.22	5700.46	Ă	0.129	2.85	40	0.85	ī	40.822	8871.82	443.59	С
60.00-40.00			В	0.129	2.85		0.85	1	40.822			
			Ĉ	0.129	2.85		0.85	ī	40.822			
T11	351.11	2942.46	Ă	0.123	2.875	37	0.85	1	20.920	4177.54	417.75	С
40.00-30.00			B	0.123	2.875	- /	0.85	1	20.920			-
			č	0.123	2.875		0.85	1	20.920			
T12	351.11	3139.03		0.119	2.889	35	0.85	1	21.249	3928.94	392.89	С

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Client Designed by	Job		Page
180-ft Lattice Tower (CSP #32)         08:43:42 04/05           Client         Designed by		22027.01 - Westport	37 of 71
Client Designed by	Project		
Designed by		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Verizon TJL	Client	Verizon	

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
30.00-20.00			В	0.119	2.889		0.85	1	21.249			
			C	0.119	2.889		0.85	1	21.249			
T13	702.22	6187.56	Α	0.108	2.934	31	0.85	1	41.411	7031.47	351.57	С
20.00-0.00			В	0.108	2.934		0.85	1	41.411			
			C	0.108	2.934		0.85	1	41.411			
Sum Weight:	4950.11	35588.43						OTM	4799.17	61627.57		
									kip-ft			

		Том	/er	Force	es - N	Nith	lce -	Win	d Norn	nal To F	ace	
Section Elevation	Add Weight	Self Weight	F a	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl. Face
ft	lb	lb	с е			psf			ft ²	lb	plf	
	552.25	3542.13	A	0.285	2.338	8	1	1	30.840	756.88	37.84	С
180.00-160.00			В	0.285	2.338		1	1	30.840			
			С	0.285	2.338		1	1	30.840			
T2	2085.47	3972.41	Α	0.276	2.363	7	1	1	33.556	1522.96	76.15	С
160.00-140.00			В	0.276	2.363		1	1	33.556			
			C	0.276	2.363		1	1	33.556			
T3	688.56	1763.59	Α	0.271	2.375	7	1	1	12.561	517.83	77.68	С
140.00-133.33			В	0.271	2.375		1	1	12.561			
			C	0.271	2.375		1	1	12.561			
T4	1179.35	1804.53	A	0.262	2.403	7	1	1	12.781	716.29	107.44	С
133.33-126.67			B	0.262	2.403		1		12.781			
<b>T</b> .5	1.500.50	2066 21	C	0.262	2.403	-			12.781	045.04	10 ( 00	a
T5	1538.76	2066.51	A	0.253	2.428	7			13.001	845.34	126.80	С
126.67-120.00			B	0.253	2.428				13.001			
T6	4956.23	6611.25	C	0.253 0.222	2.428 2.525	7			13.001 37.718	2616.59	130.83	С
120.00-100.00	4936.23	0011.23	A B	0.222	2.525	/			37.718	2010.39	150.85	C
120.00-100.00			C	0.222	2.525				37.718			
T7	2460.68	3212.73	A	0.222	2.525	7	1		20.193	1292.98	129.30	С
100.00-90.00	2400.00	5212.75	B	0.212	2.555	1	1		20.193	1292.90	129.50	C
100.00-90.00			C	0.212	2.555		1		20.193			
Т8	2438.15	3293.32	Ă	0.202	2.591	7	1	Î	20.625	1269.39	126.94	С
90.00-80.00			В	0.202	2.591		1	1	20.625			
			С	0.202	2.591		1	1	20.625			
Т9	4802.75	9216.41	Α	0.204	2.583	6	1	1	61.883	2713.14	135.66	С
80.00-60.00			В	0.204	2.583		1	1	61.883			
			С	0.204	2.583		1	1	61.883			
T10	4735.49	10171.64	Α	0.189	2.635	6	1	1	63.581	2576.44	128.82	С
60.00-40.00			В	0.189	2.635		1	1	63.581			
			C	0.189	2.635		1	1	63.581			
T11	2301.20	5180.35	Α	0.178	2.67	6	1	1	32.335	1196.61	119.66	С
40.00-30.00			В	0.178	2.67		1		32.335			
			C	0.178	2.67	_			32.335			6
T12	2241.46	5351.10	A	0.172	2.692	5			32.607	1112.34	111.23	С
30.00-20.00			B	0.172	2.692				32.607			
T12	4104.00	0751.04	C	0.172	2.692	_			32.607	1044.10	07.01	C
T13 20.00-0.00	4184.98	9751.96	A	0.152	2.766	5			62.036 62.036	1944.19	97.21	С
20.00-0.00			B C	0.152 0.152	2.766 2.766				62.036			
Sum Weight:	34165.35	65937.92		0.132	2.700			отм	1551.69	19080.98		
Sum weight.	54105.55	05757.92							1551.09	19000.90		

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

22027.01 - Westport Project	38 of 71
Project	
	Date
180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
									kip-ft			

#### Tower Forces - With Ice - Wind 45 To Face

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
a	lb	lb	С			psf			$ft^2$	lb	n.16	
ft T1	552.25	3542.13	e A	0.285	2.338	8	0.825	1	30.840	756.88	<i>plf</i> 37.84	С
11 180.00-160.00	552.25	3542.15	A B	0.285	2.338	٥	0.825	1	30.840	/30.88	37.84	
180.00-160.00			ь С	0.285	2.338		0.825	1	30.840			
T2	2085.47	3972.41	A	0.283	2.358	7	0.825	1	33.556	1522.96	76.15	С
160.00-140.00	2005.47	5972.41	B	0.276	2.363	/	0.825	1	33.556	1522.90	70.15	C
100.00-140.00			C	0.276	2.363		0.825	1	33.556			
Т3	688.56	1763.59	Ă	0.270	2.305	7	0.825	1	12.561	517.83	77.68	С
140.00-133.33	000.50	1105.57	В	0.271	2.375	,	0.825	1	12.561	517.05	77.00	C.
110.00 155.55			Č	0.271	2.375		0.825	1	12.561			
T4	1179.35	1804.53	Ā	0.262	2.403	7	0.825	1	12.781	716.29	107.44	С
133.33-126.67			В	0.262	2.403		0.825	1	12.781			-
			C	0.262	2.403		0.825	1	12.781			
Т5	1538.76	2066.51	A	0.253	2.428	7	0.825	1	13.001	845.34	126.80	С
126.67-120.00			В	0.253	2.428		0.825	1	13.001			
			С	0.253	2.428		0.825	1	13.001			
Т6	4956.23	6611.25	Α	0.222	2.525	7	0.825	1	37.718	2616.59	130.83	С
120.00-100.00			В	0.222	2.525		0.825	1	37.718			
			С	0.222	2.525		0.825	1	37.718			
T7	2460.68	3212.73	Α	0.212	2.555	7	0.825	1	20.193	1292.98	129.30	С
100.00-90.00			В	0.212	2.555		0.825	1	20.193			
			С	0.212	2.555		0.825	1	20.193			
Т8	2438.15	3293.32	Α	0.202	2.591	7	0.825	1	20.625	1269.39	126.94	С
90.00-80.00			В	0.202	2.591		0.825	1	20.625			
			С	0.202	2.591		0.825	1	20.625			
Т9	4802.75	9216.41	Α	0.204	2.583	6	0.825	1	55.495	2623.56	131.18	С
80.00-60.00			В	0.204	2.583		0.825	1	55.495			
710	1705 10	10171 (4	С	0.204	2.583		0.825	1	55.495	2 401 50	124.50	G
T10	4735.49	10171.64	A	0.189	2.635	6	0.825	1	57.228	2491.78	124.59	С
60.00-40.00			B	0.189	2.635		0.825	1	57.228			
T11	2301.20	5180.35	C	0.189 0.178	2.635 2.67	6	0.825 0.825	1	57.228 29.176	1157.05	115.71	с
40.00-30.00	2501.20	5180.55	A B	0.178	2.67	0	0.825	1	29.176	1157.05	115./1	C
40.00-30.00			Б С	0.178	2.67		0.825		29.176			
T12	2241.46	5351.10	A	0.178	2.67	5	0.825	1	29.176	1075.36	107.54	с
30.00-20.00	2241.40	5551.10	B	0.172	2.692	5	0.825		29.464	1075.50	107.54	
50.00-20.00			Б С	0.172	2.692		0.825		29.464			
т13	4184.98	9751.96	A	0.172	2.092	5	0.825	1	55.907	1877.57	93.88	с
20.00-0.00	7107.20	9751.90	B	0.152	2.766	5	0.825	1	55.907	10//.5/	25.00	
20.00 0.00			C	0.152	2.766		0.825		55.907			
Sum Weight:	34165.35	65937.92	Ň	0.102	2.,00		0.020	ОТМ	1538.21	18763.59		
- unit it englitte	5.100.00	5050102						01.01	kip-ft	10,00009		

### tnxTowe

**Centek Engineerin** 63-2 North Branford Branford, CT 064 Phone: (203) 488-0 FAX: (203) 488-85

	Job		Page
er		22027.01 - Westport	39 of 71
ing Inc.	Project		Date
rd Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
405	Client	Mada	Designed by
-0580 8587		Verizon	TJL

12         208.47         3972.41         A         0.285         2.338         7         0.8         1         30.840         1.522.96         7.6.5         C           160.00-14.000         -         -         C         0.276         2.363         -         0.8         1         33.556         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -			Т	ow	ver Fo	rces	- Wi	th Ic	e - N	/ind 60	To Fac	e	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				а	е	$C_F$	-	$D_F$	$D_R$	$A_E$	F	W	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ft	lb	lb				psf			$ft^2$	lb	plf	
180.00-160.00         PC         B         0.285         2.338         0.8         1         30.840         PC         PC<	2			A	0.285	2.338	8	0.8	1				С
1         2         2         2         3         3         0         2         1         30         30         1         30.840         1         30.840         1         50.840         1         33.556         7         0.8         1         33.556         7         0.8         1         33.556         7         0.8         1         133.556         7         0.8         1         12.561         517.83         77.68         C           140.00-133.33         0         0.271         2.375         0.8         1         12.561         7         7         0.8         1         12.561         7         7         0.8         1         12.561         7         0.8         1         12.561         7         0.8         1         12.561         7         0.8         1         12.561         7         0.8         1         12.561         7         0.8         1         12.561         7         0.8         1         12.561         7         0.8         1         12.571         7         0.8         1         12.571         7         0.8         1         12.571         7         0.8         1         12.571         7         0.8	180.00-160.00			В	0.285			0.8	1	30.840			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C				0.8	1	30.840			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T2	2085.47	3972.41	Α	0.276	2.363	7	0.8	1	33.556	1522.96	76.15	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160.00-140.00			В	0.276	2.363		0.8	1	33.556			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				С	0.276	2.363		0.8	1	33.556			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Т3	688.56	1763.59	Α	0.271		7	0.8	1	12.561	517.83	77.68	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	140.00-133.33			В	0.271	2.375		0.8	1	12.561			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C	0.271	2.375		0.8	1	12.561			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T4	1179.35	1804.53	Α	0.262	2.403	7	0.8	1	12.781	716.29	107.44	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	133.33-126.67			В	0.262	2.403		0.8	1	12.781			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C	0.262	2.403		0.8	1	12.781			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T5	1538.76	2066.51	Α	0.253	2.428	7	0.8	1	13.001	845.34	126.80	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	126.67-120.00			В	0.253	2.428		0.8	1	13.001			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				С	0.253	2.428		0.8	1	13.001			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Т6	4956.23	6611.25	A			7		1		2616.59	130.83	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120.00-100.00						_						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T7	2460.68	3212.73	A	0.212	2.555	7	0.8	1	20.193	1292.98	129.30	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.00-90.00			в	0.212			0.8	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т8	2438.15	3293.32				7				1269.39	126.94	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-		1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50100 00100			_									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т9	4802.75	9216.41				6				2610.76	130.54	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-						-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00100 00100								-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т10	4735.49	10171.64				6		Î		2479.69	123.98	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				В			_		1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T11	2301.20	5180.35				6				1151.40	115.14	С
T12       2241.46       5351.10       A       0.172       2.692       5       0.8       1       28.725       1070.08       107.01       C         30.00-20.00       B       0.172       2.692       5       0.8       1       29.016       1070.08       107.01       C         30.00-20.00       C       0.172       2.692       0.8       1       29.016       1070.08       107.01       C         T13       4184.98       9751.96       A       0.152       2.766       5       0.8       1       29.016       4       4.868.05       93.40       C         20.00-0.00       E       B       0.152       2.766       5       0.8       1       55.032       1868.05       93.40       C         Sum Weight:       34165.35       65937.92       E       E       E       0TM       1536.29       18718.24       E       E							Ň		1				-
T12       2241.46       5351.10       A       0.172       2.692       5       0.8       1       29.016       1070.08       107.01       C         30.00-20.00       B       0.172       2.692       0.8       1       29.016       1070.08       107.01       C         T13       4184.98       9751.96       A       0.152       2.766       5       0.8       1       29.016       166.05       93.40       C         20.00-0.00       B       0.152       2.766       5       0.8       1       55.032       1868.05       93.40       C         Sum Weight:       34165.35       65937.92       C       0.152       2.766       0.8       1       55.032       18718.24       C				_					-				
30.00-20.00         B         0.172         2.692         0.8         1         29.016         A         97.196         A         0.152         2.692         0.8         1         29.016         97.196         A         0.152         2.692         0.8         1         29.016         97.196         A         0.152         2.692         0.8         1         29.016         97.196         A         0.152         2.766         5         0.8         1         55.032         1868.05         93.40         C           20.00-0.00         B         0.152         2.766         5         0.8         1         55.032         1868.05         93.40         C           Sum Weight:         34165.35         65937.92         C         0.152         2.766         0.8         1         55.032         18718.24         C	T12	2241.46	5351.10				5		-		1070.08	107.01	С
T13         4184.98         9751.96         A         0.152         2.692         0.8         1         29.016         1868.05         93.40         C           20.00-0.00         B         0.152         2.766         5         0.8         1         55.032         1868.05         93.40         C           34165.35         65937.92         C         0.152         2.766         0.8         1         55.032         18718.24         C		22.11.40	2221.10				, j				1070.00	107.01	ž
T13       4184.98       9751.96       A       0.152       2.766       5       0.8       1       55.032       1868.05       93.40       C         20.00-0.00       B       0.152       2.766       0.8       1       55.032       1868.05       93.40       C         20.00-0.00       C       0.152       2.766       0.8       1       55.032       1868.05       93.40       C         Sum Weight:       34165.35       65937.92       C       0.152       2.766       0.8       1       55.032       18718.24       C	50.00-20.00												
20.00-0.00         B         0.152         2.766         0.8         1         55.032           Sum Weight:         34165.35         65937.92         0.152         2.766         0.8         1         55.032           Umber Weight:         34165.35         65937.92         0.152         2.766         0.8         1         55.032	T13	4184 98	9751.96				5				1868.05	93 40	С
Sum Weight:         34165.35         65937.92         C         0.152         2.766         0.8         1         55.032           OTM         1536.29         18718.24           18718.24		1101.90	7,51.90				5				1000.05	22.10	^v
Sum Weight: 34165.35 65937.92 OTM 1536.29 18718.24	20.00 0.00								1				
	Sum Weight	34165.35	65937.92	Ĩ	0.152	2.700		0.0	отм		18718.24		
	Sum or orgin.	51105.55	35751.92						01101	kip-ft	10/10.24		

		Т	ow	ver Fo	rces	- Wi	th Ic	e - V	Vind 90	To Fac	е	
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	552.25	3542.13	Α	0.285	2.338	8	0.85	1	30.840	756.88	37.84	С
180.00-160.00			В	0.285	2.338		0.85	1	30.840			
			С	0.285	2.338		0.85	1	30.840			

*tnxT* 

**Centek Engi** 63-2 North E Branford, Phone: (202 FAX: (203)

Conv.org	Job		Page
Tower		22027.01 - Westport	40 of 71
gineering Inc.	Project		Date
h Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
d, CT 06405 103) 488-0580 13) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T2	2085.47	3972.41	Α	0.276	2.363	7	0.85	1	33.556	1522.96	76.15	С
160.00-140.00			В	0.276	2.363		0.85	1	33.556			
			С	0.276	2.363		0.85	1	33.556			
Т3	688.56	1763.59	Α	0.271	2.375	7	0.85	1	12.561	517.83	77.68	C
140.00-133.33			В	0.271	2.375		0.85	1	12.561			
			С	0.271	2.375		0.85	1	12.561			
T4	1179.35	1804.53	Α	0.262	2.403	7	0.85	1	12.781	716.29	107.44	С
133.33-126.67			В	0.262	2.403		0.85	1	12.781			
			С	0.262	2.403		0.85	1	12.781			
T5	1538.76	2066.51	Α	0.253	2.428	7	0.85	1	13.001	845.34	126.80	С
126.67-120.00			В	0.253	2.428		0.85	1	13.001			
			С	0.253	2.428		0.85	1	13.001			
Т6	4956.23	6611.25	Α	0.222	2.525	7	0.85	1	37.718	2616.59	130.83	С
120.00-100.00			В	0.222	2.525		0.85	1	37.718			
			С	0.222	2.525		0.85	1	37.718			
T7	2460.68	3212.73	Α	0.212	2.555	7	0.85	1	20.193	1292.98	129.30	С
100.00-90.00			В	0.212	2.555		0.85	1	20.193			
			С	0.212	2.555		0.85	1	20.193			
Т8	2438.15	3293.32	Α	0.202	2.591	7	0.85	1	20.625	1269.39	126.94	C
90.00-80.00			В	0.202	2.591		0.85	1	20.625			
			С	0.202	2.591		0.85	1	20.625			
Т9	4802.75	9216.41	Α	0.204	2.583	6	0.85	1	56.408	2636.36	131.82	С
80.00-60.00			В	0.204	2.583		0.85	1	56.408			
			С	0.204	2.583		0.85	1	56.408			
T10	4735.49	10171.64	Α	0.189	2.635	6	0.85	1	58.136	2503.88	125.19	С
60.00-40.00			В	0.189	2.635		0.85	1	58.136			
			С	0.189	2.635		0.85	1	58.136			
T11	2301.20	5180.35	Α	0.178	2.67	6	0.85	1	29.627	1162.70	116.27	C
40.00-30.00			В	0.178	2.67		0.85	1	29.627			
			С	0.178	2.67		0.85	1	29.627			
T12	2241.46	5351.10	Α	0.172	2.692	5	0.85	1	29.913	1080.64	108.06	С
30.00-20.00			В	0.172	2.692		0.85	1	29.913			
			С	0.172	2.692		0.85	1	29.913			
T13	4184.98	9751.96	Α	0.152	2.766	5	0.85	1	56.783	1887.09	94.35	С
20.00-0.00			В	0.152	2.766		0.85	1	56.783			
			С	0.152	2.766		0.85	1	56.783			
Sum Weight:	34165.35	65937.92						OTM	1540.14	18808.93		
									kip-ft			

<b>Tower Forces - Se</b>	ervice - Wind	Normal To Face
--------------------------	---------------	----------------

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	11	1	1	13.993	514.75	25.74	С
180.00-160.00			В	0.139	2.812		1	1	13.993			
			C	0.139	2.812		1	1	13.993			
T2	250.60	1495.62	Α	0.143	2.796	11	1	1	16.334	938.67	46.93	С
160.00-140.00			В	0.143	2.796		1	1	16.334			
			C	0.143	2.796		1	1	16.334			
Т3	83.53	825.91	Α	0.151	2.77	11	1	1	6.561	333.37	50.00	С
140.00-133.33			В	0.151	2.77		1	1	6.561			
			C	0.151	2.77		1	1	6.561			

tnx7

Centek Eng 63-2 North Branford Phone: (20 FAX: (20.

Tower	Job	22027.01 - Westport	Page 41 of 71
ngineering Inc. th Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
rd, CT 06405 (203) 488-0580 203) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а			-						Face
	_	_	c			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T4	154.34	842.18	Α	0.145	2.791	10	1	1	6.687	466.49	69.97	C
133.33-126.67			В	0.145	2.791		1	1	6.687			
			С	0.145	2.791		1	1	6.687			
T5	213.57	1080.40	Α	0.14	2.81	10	1	1	6.810	554.16	83.12	С
126.67-120.00			В	0.14	2.81		1	1	6.810			
			С	0.14	2.81		1	1	6.810			
T6	698.17	3821.31	Α	0.133	2.834	10	1	1	21.840	1748.28	87.41	С
120.00-100.00			В	0.133	2.834		1	1	21.840			
			С	0.133	2.834		1	1	21.840			
T7	349.61	1682.80	Α	0.131	2.844	10	1	1	12.011	876.22	87.62	С
100.00-90.00			В	0.131	2.844		1	1	12.011			
			С	0.131	2.844		1	1	12.011			
Т8	349.61	1722.73	Α	0.124	2.87	10	1	1	12.296	865.16	86.52	С
90.00-80.00			В	0.124	2.87		1	1	12.296			
			С	0.124	2.87		1	1	12.296			
Т9	699.37	4897.54	Α	0.14	2.81	9	1	1	44.170	2079.86	103.99	С
80.00-60.00			В	0.14	2.81		1	1	44.170			
			С	0.14	2.81		1	1	44.170			
T10	702.22	5700.46	Α	0.129	2.85	9	1	1	45.441	1985.72	99.29	С
60.00-40.00			В	0.129	2.85		1	1	45.441			
			С	0.129	2.85		1		45.441			
T11	351.11	2942.46	Α	0.123	2.875	8	1	1	23.207	934.31	93.43	С
40.00-30.00			В	0.123	2.875		1		23.207			
			С	0.123	2.875		1		23.207			
T12	351.11	3139.03	А	0.119	2.889	7	1	1	23.536	878.53	87.85	С
30.00-20.00			В	0.119	2.889		1		23.536			
			С	0.119	2.889		1	1	23.536			
T13	702.22	6187.56	Α	0.108	2.934	7	1		45.955	1573.30	78.66	С
20.00-0.00			В	0.108	2.934		1		45.955			
			С	0.108	2.934		1	$ _{}^{1}$	45.955			
Sum Weight:	4950.11	35588.43						OTM	1067.22	13748.82		
									kip-ft			

#### Tower Forces - Service - Wind 45 To Face

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	11	0.825	1	13.993	514.75	25.74	С
180.00-160.00			В	0.139	2.812		0.825	1	13.993			
			C	0.139	2.812		0.825	1	13.993			
T2	250.60	1495.62	Α	0.143	2.796	11	0.825	1	16.334	938.67	46.93	С
160.00-140.00			В	0.143	2.796		0.825	1	16.334			
			C	0.143	2.796		0.825	1	16.334			
Т3	83.53	825.91	Α	0.151	2.77	11	0.825	1	6.561	333.37	50.00	С
140.00-133.33			В	0.151	2.77		0.825	1	6.561			
			C	0.151	2.77		0.825	1	6.561			
T4	154.34	842.18	Α	0.145	2.791	10	0.825	1	6.687	466.49	69.97	С
133.33-126.67			В	0.145	2.791		0.825	1	6.687			
			C	0.145	2.791		0.825	1	6.687			
Т5	213.57	1080.40	Α	0.14	2.81	10	0.825	1	6.810	554.16	83.12	С
126.67-120.00			В	0.14	2.81		0.825	1	6.810			
			C	0.14	2.81		0.825	1	6.810			

**Centek E** 63-2 No Branj Phone: FAX:

xTower	Job	22027.01 - Westport	Page 42 of 71
Engineering Inc. North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
nnford, CT 06405 ne: (203) 488-0580 K: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T6	698.17	3821.31	Α	0.133	2.834	10	0.825	1	21.840	1748.28	87.41	С
120.00-100.00			В	0.133	2.834		0.825	1	21.840			
			С	0.133	2.834		0.825	1	21.840			
T7	349.61	1682.80	Α	0.131	2.844	10	0.825	1	12.011	876.22	87.62	С
100.00-90.00			В	0.131	2.844		0.825	1	12.011			
			С	0.131	2.844		0.825	1	12.011			
T8	349.61	1722.73	Α	0.124	2.87	10	0.825	1	12.296	865.16	86.52	С
90.00-80.00			В	0.124	2.87		0.825	1	12.296			
			С	0.124	2.87		0.825	1	12.296			
Т9	699.37	4897.54	Α	0.14	2.81	9	0.825	1	38.833	1962.64	98.13	С
80.00-60.00			В	0.14	2.81		0.825	1	38.833			
			С	0.14	2.81		0.825	1	38.833			
T10	702.22	5700.46	Α	0.129	2.85	9	0.825	1	40.104	1874.95	93.75	С
60.00-40.00			В	0.129	2.85		0.825	1	40.104			
			С	0.129	2.85		0.825	1	40.104			
T11	351.11	2942.46	Α	0.123	2.875	8	0.825	1	20.539	882.49	88.25	С
40.00-30.00			В	0.123	2.875		0.825	1	20.539			
			С	0.123	2.875		0.825	1	20.539			
T12	351.11	3139.03	Α	0.119	2.889	7	0.825	1	20.868	830.00	83.00	С
30.00-20.00			В	0.119	2.889		0.825	1	20.868			
			С	0.119	2.889		0.825	1	20.868			
T13	702.22	6187.56	Α	0.108	2.934	7	0.825	1	40.692	1485.89	74.29	С
20.00-0.00			В	0.108	2.934		0.825	1	40.692			
			С	0.108	2.934		0.825	1	40.692			
Sum Weight:	4950.11	35588.43						OTM	1049.58	13333.06		
Ŭ									kip-ft			

		Т	้อง	ver Fo	rces	- Se	rvic	e - W	ind 60	To Face	e	
Section	Add	Self	F	e	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а		·	1-	`	~	2			Face
	0	5	с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	11	0.8	1	13.993	514.75	25.74	С
180.00-160.00			в	0.139	2.812		0.8	1	13.993			
			С	0.139	2.812		0.8	1	13.993			
T2	250.60	1495.62	Α	0.143	2.796	11	0.8	1	16.334	938.67	46.93	С
160.00-140.00			В	0.143	2.796		0.8	1	16.334			
			С	0.143	2.796		0.8	1	16.334			
T3	83.53	825.91	Α	0.151	2.77	11	0.8	1	6.561	333.37	50.00	С
140.00-133.33			В	0.151	2.77		0.8	1	6.561			
			С	0.151	2.77		0.8	1	6.561			
T4	154.34	842.18	Α	0.145	2.791	10	0.8	1	6.687	466.49	69.97	С
133.33-126.67			В	0.145	2.791		0.8	1	6.687			
			С	0.145	2.791		0.8	1	6.687			
T5	213.57	1080.40	Α	0.14	2.81	10	0.8	1	6.810	554.16	83.12	С
126.67-120.00			В	0.14	2.81		0.8	1	6.810			
			С	0.14	2.81		0.8	1	6.810			
Т6	698.17	3821.31	Α	0.133	2.834	10	0.8	1	21.840	1748.28	87.41	С
120.00-100.00			В	0.133	2.834		0.8	1	21.840			
			С	0.133	2.834		0.8	1	21.840			
T7	349.61	1682.80	Α	0.131	2.844	10	0.8	1	12.011	876.22	87.62	С
100.00-90.00			В	0.131	2.844		0.8	1	12.011			
			C	0.131	2.844		0.8	1	12.011			

**Centek** 2 63-2 N Bran Phone FAX

xTower	Job	22027.01 - Westport	Page 43 of 71
<b>k Engineering Inc.</b> North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
anford, CT 06405 ne: (203) 488-0580 X: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
Т8	349.61	1722.73	Α	0.124	2.87	10	0.8	1	12.296	865.16	86.52	С
90.00-80.00			В	0.124	2.87		0.8	1	12.296			
			С	0.124	2.87		0.8	1	12.296			
Т9	699.37	4897.54	Α	0.14	2.81	9	0.8	1	38.071	1945.90	97.29	С
80.00-60.00			В	0.14	2.81		0.8	1	38.071			
			С	0.14	2.81		0.8	1	38.071			
T10	702.22	5700.46	Α	0.129	2.85	9	0.8	1	39.342	1859.13	92.96	С
60.00-40.00			В	0.129	2.85		0.8	1	39.342			
			С	0.129	2.85		0.8	1	39.342			
T11	351.11	2942.46	Α	0.123	2.875	8	0.8	1	20.158	875.08	87.51	С
40.00-30.00			В	0.123	2.875		0.8	1	20.158			
			С	0.123	2.875		0.8	1	20.158			
T12	351.11	3139.03	Α	0.119	2.889	7	0.8	1	20.487	823.07	82.31	С
30.00-20.00			В	0.119	2.889		0.8	1	20.487			
			С	0.119	2.889		0.8	1	20.487			
T13	702.22	6187.56	Α	0.108	2.934	7	0.8	1	39.940	1473.40	73.67	С
20.00-0.00			В	0.108	2.934		0.8	1	39.940			
			С	0.108	2.934		0.8	1	39.940			
Sum Weight:	4950.11	35588.43						OTM	1047.06	13273.67		
									kip-ft			

		Т	ow	ver Fo	rces	- Se	rvic	e - W	/ind 90	To Face	•	
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			С			psf						
ft	lb	lb	е						ft ²	lb	plf	
T1	44.64	1250.43	Α	0.139	2.812	11	0.85	1	13.993	514.75	25.74	С
80.00-160.00			В	0.139	2.812		0.85	1	13.993			
			С	0.139	2.812		0.85	1	13.993			
T2	250.60	1495.62	Α	0.143	2.796	11	0.85	1	16.334	938.67	46.93	С
60.00-140.00			В	0.143	2.796		0.85	1	16.334			
			С	0.143	2.796		0.85	1	16.334			
T3	83.53	825.91	Α	0.151	2.77	11	0.85	1	6.561	333.37	50.00	С
40.00-133.33			В	0.151	2.77		0.85	1	6.561			
			С	0.151	2.77		0.85	1	6.561			
T4	154.34	842.18	Α	0.145	2.791	10	0.85	1	6.687	466.49	69.97	С
33.33-126.67			В	0.145	2.791		0.85	1	6.687			
			С	0.145	2.791		0.85	1	6.687			
T5	213.57	1080.40	Α	0.14	2.81	10	0.85	1	6.810	554.16	83.12	С
26.67-120.00			В	0.14	2.81		0.85	1	6.810			
			С	0.14	2.81		0.85	1	6.810			
T6	698.17	3821.31	Α	0.133	2.834	10	0.85	1	21.840	1748.28	87.41	С
20.00-100.00			В	0.133	2.834		0.85	1	21.840			
			С	0.133	2.834		0.85	1	21.840			
T7	349.61	1682.80	Α	0.131	2.844	10	0.85	1	12.011	876.22	87.62	С
100.00-90.00			В	0.131	2.844		0.85	1	12.011			
			С	0.131	2.844		0.85	1	12.011			
Т8	349.61	1722.73	Α	0.124	2.87	10	0.85	1	12.296	865.16	86.52	С
90.00-80.00			В	0.124	2.87		0.85	1	12.296			
			С	0.124	2.87		0.85	1	12.296			
Т9	699.37	4897.54	Α	0.14	2.81	9	0.85	1	39.595	1979.39	98.97	С
80.00-60.00			В	0.14	2.81		0.85	1	39.595			
			C	0.14	2.81		0.85	1	39.595			

**Centek E** 63-2 No Branj Phone: FAX:

xTower	Job	22027.01 - Westport	Page 44 of 71
Engineering Inc. North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
nnford, CT 06405 ne: (203) 488-0580 X: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T10	702.22	5700.46	Α	0.129	2.85	9	0.85	1	40.867	1890.78	94.54	С
60.00-40.00			В	0.129	2.85		0.85	1	40.867			
			C	0.129	2.85		0.85	1	40.867			
T11	351.11	2942.46	Α	0.123	2.875	8	0.85	1	20.920	889.89	88.99	С
40.00-30.00			В	0.123	2.875		0.85	1	20.920			
			C	0.123	2.875		0.85	1	20.920			
T12	351.11	3139.03	Α	0.119	2.889	7	0.85	1	21.249	836.93	83.69	С
30.00-20.00			В	0.119	2.889		0.85	1	21.249			
			C	0.119	2.889		0.85	1	21.249			
T13	702.22	6187.56	Α	0.108	2.934	7	0.85	1	41.444	1498.38	74.92	С
20.00-0.00			В	0.108	2.934		0.85	1	41.444			
			C	0.108	2.934		0.85	1	41.444			
Sum Weight:	4950.11	35588.43						OTM	1052.10	13392.46		
									kip-ft			

			Force To	tals		
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	5 1
		X	Z	Moments, $M_x$	Moments. M.	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Leg Weight	17198.81					
Bracing Weight	18389.62					
Total Member Self-Weight	35588.43			-9.27	0.35	
Total Weight	50835.50			-9.27	0.35	
Wind 0 deg - No Ice		-179.86	-85496.50	-8097.75	30.30	13.73
Wind 30 deg - No Ice		41209.63	-72513.41	-6939.41	-3893.63	-20.72
Wind 45 deg - No Ice		58111.27	-58956.54	-5650.47	-5502.39	-35.85
Wind 60 deg - No Ice		70856.48	-41480.23	-3980.78	-6715.15	-48.62
Wind 90 deg - No Ice		82220.83	1.89	-10.82	-7749.21	-64.39
Wind 120 deg - No Ice		72707.49	42544.35	3997.25	-6780.96	-63.27
Wind 135 deg - No Ice		58840.04	59624.17	5641.32	-5522.60	-55.95
Wind 150 deg - No Ice		41304.60	72355.51	6891.04	-3907.17	-44.89
Wind 180 deg - No Ice		200.47	83030.33	7942.85	-33.25	-14.55
Wind 210 deg - No Ice		-41054.24	72235.22	6871.63	3866.82	18.63
Wind 225 deg - No Ice		-57852.69	58657.70	5579.04	5457.32	33.79
Wind 240 deg - No Ice		-72532.09	42296.47	3956.64	6752.50	46.5
Wind 270 deg - No Ice		-82162.61	-328.15	-65.46	7739.60	62.64
Wind 300 deg - No Ice		-70900.41	-41756.48	-4026.41	6721.74	62.25
Wind 315 deg - No Ice		-58288.53	-59177.75	-5686.96	5531.79	54.88
Wind 330 deg - No Ice		-41478.56	-72684.78	-6967.85	3938.66	43.93
Member Ice	30349.49					
Total Weight Ice	124451.08			-68.34	-8.05	
Wind 0 deg - Ice		-27.43	-23757.52	-2294.64	-3.49	-2.59
Wind 30 deg - Ice		11604.90	-20326.87	-1984.37	-1092.76	-13.71
Wind 45 deg - Ice		16383.88	-16556.64	-1630.06	-1541.28	-17.96
Wind 60 deg - Ice		20014.88	-11674.11	-1169.92	-1881.98	-21.01
Wind 90 deg - Ice		23176.95	-0.61	-68.74	-2171.15	-22.81
Wind 120 deg - Ice		20315.39	11845.84	1038.74	-1892.62	-18.56
Wind 135 deg - Ice		16501.41	16664.53	1494.81	-1544.42	-14.41
Wind 150 deg - Ice		11618.29	20301.08	1842.83	-1094.62	-9.29
Wind 180 deg - Ice		30.68	23357.66	2135.99	-13.19	2.40
Wind 210 deg - Ice		-11580.41	20283.03	1839.93	1072.33	13.38
Wind 225 deg - Ice		-16343.13	16509.55	1485.05	1517.97	

**tr** 

**Center** 63-2 Br Pho FA

nxTower	Job 22027.01 - Westport	Page 45 of 71
t <b>ek Engineering Inc.</b> I-2 North Branford Rd.	Project 180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 hone: (203) 488-0580 FAX: (203) 488-8587	Client Verizon	Designed by TJL

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, $M_x$	Moments, $M_z$	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Wind 240 deg - Ice		-20288.66	11808.36	1032.61	1872.08	20.68
Wind 270 deg - Ice		-23167.78	-50.80	-77.04	2153.43	22.54
Wind 300 deg - Ice		-20020.90	-11716.07	-1176.84	1866.65	18.40
Wind 315 deg - Ice		-16410.52	-16590.21	-1635.59	1529.48	14.24
Wind 330 deg - Ice		-11645.70	-20352.97	-1988.69	1083.38	9.14
Total Weight	50835.50			-9.27	0.35	
Wind 0 deg - Service		-38.31	-18476.96	-1755.86	9.82	2.92
Wind 30 deg - Service		8910.73	-15675.87	-1505.13	-840.94	-4.41
Wind 45 deg - Service		12565.90	-12745.95	-1225.83	-1189.81	-7.64
Wind 60 deg - Service		15322.92	-8968.37	-863.98	-1452.88	-10.36
Wind 90 deg - Service		17779.19	0.40	-3.42	-1677.15	-13.72
Wind 120 deg - Service		15717.21	9195.05	865.27	-1466.90	-13.48
Wind 135 deg - Service		12721.14	12888.17	1221.65	-1194.11	-11.92
Wind 150 deg - Service		8930.96	15642.24	1492.60	-843.83	-9.56
Wind 180 deg - Service		42.70	17951.62	1720.64	-3.72	-3.10
Wind 210 deg - Service		-8877.63	15616.61	1488.47	841.96	3.97
Wind 225 deg - Service		-12510.81	12682.30	1208.39	1186.93	7.20
Wind 240 deg - Service		-15679.85	9142.24	856.62	1467.56	9.92
Wind 270 deg - Service		-17766.78	-69.90	-15.06	1681.82	13.34
Wind 300 deg - Service		-15332.27	-9027.22	-873.70	1461.01	13.26
Wind 315 deg - Service		-12603.66	-12793.07	-1233.60	1202.80	11.69
Wind 330 deg - Service		-8968.01	-15712.38	-1511.19	857.26	9.36

## Load Combinations

Comb.		Description
No.		-
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 45 deg - No Ice	
7	0.9 Dead+1.0 Wind 45 deg - No Ice	
8	1.2 Dead+1.0 Wind 60 deg - No Ice	
9	0.9 Dead+1.0 Wind 60 deg - No Ice	
10	1.2 Dead+1.0 Wind 90 deg - No Ice	
11	0.9 Dead+1.0 Wind 90 deg - No Ice	
12	1.2 Dead+1.0 Wind 120 deg - No Ice	
13	0.9 Dead+1.0 Wind 120 deg - No Ice	
14	1.2 Dead+1.0 Wind 135 deg - No Ice	
15	0.9 Dead+1.0 Wind 135 deg - No Ice	
16	1.2 Dead+1.0 Wind 150 deg - No Ice	
17	0.9 Dead+1.0 Wind 150 deg - No Ice	
18	1.2 Dead+1.0 Wind 180 deg - No Ice	
19	0.9 Dead+1.0 Wind 180 deg - No Ice	
20	1.2 Dead+1.0 Wind 210 deg - No Ice	
21	0.9 Dead+1.0 Wind 210 deg - No Ice	
22	1.2 Dead+1.0 Wind 225 deg - No Ice	
23	0.9 Dead+1.0 Wind 225 deg - No Ice	
24	1.2 Dead+1.0 Wind 240 deg - No Ice	
25	0.9 Dead+1.0 Wind 240 deg - No Ice	
26	1.2 Dead+1.0 Wind 270 deg - No Ice	
27	0.9 Dead+1.0 Wind 270 deg - No Ice	
28	1.2 Dead+1.0 Wind 300 deg - No Ice	
29	0.9 Dead+1.0 Wind 300 deg - No Ice	

*tnxTower* 

#### Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

22027.01 - Westport	46 of 71
Project	Date
180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client	Designed by
Verizon	TJL

Comb.	Description
No.	
30	1.2 Dead+1.0 Wind 315 deg - No Ice
31	0.9 Dead+1.0 Wind 315 deg - No Ice
32	1.2 Dead+1.0 Wind 330 deg - No Ice
33	0.9 Dead+1.0 Wind 330 deg - No Ice
34	1.2 Dead+1.0 Ice
35	1.2 Dead+1.0 Wind 0 deg+1.0 Ice
36	1.2 Dead+1.0 Wind 30 deg+1.0 Ice
37	1.2 Dead+1.0 Wind 45 deg+1.0 Ice
38	1.2 Dead+1.0 Wind 60 deg+1.0 Ice
39	1.2 Dead+1.0 Wind 90 deg+1.0 Ice
40	1.2 Dead+1.0 Wind 120 deg+1.0 Ice
41	1.2 Dead+1.0 Wind 135 deg+1.0 Ice
42	1.2 Dead+1.0 Wind 150 deg+1.0 Ice
43	1.2 Dead+1.0 Wind 180 deg+1.0 Ice
44	1.2 Dead+1.0 Wind 210 deg+1.0 Ice
45	1.2 Dead+1.0 Wind 225 deg+1.0 Ice
46	1.2 Dead+1.0 Wind 240 deg+1.0 Ice
47	1.2 Dead+1.0 Wind 270 deg+1.0 Ice
48	1.2 Dead+1.0 Wind 300 deg+1.0 Ice
49	1.2 Dead+1.0 Wind 315 deg+1.0 Ice
50	1.2 Dead+1.0 Wind 330 deg+1.0 Ice
51	Dead+Wind 0 deg - Service
52	Dead+Wind 30 deg - Service
53	Dead+Wind 45 deg - Service
54	Dead+Wind 60 deg - Service
55	Dead+Wind 90 deg - Service
56	Dead+Wind 120 deg - Service
57	Dead+Wind 135 deg - Service
58	Dead+Wind 150 deg - Service
59	Dead+Wind 180 deg - Service
60	Dead+Wind 210 deg - Service
61	Dead+Wind 225 deg - Service
62	Dead+Wind 240 deg - Service
63	Dead+Wind 270 deg - Service
64	Dead+Wind 300 deg - Service
65	Dead+Wind 315 deg - Service
66	Dead+Wind 330 deg - Service

#### **Maximum Member Forces**

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi
No.	ft	Type		Load		Moment	Moment
				Comb.	lb	kip-ft	kip-ft
T1	180 - 160	Leg	Max Tension	31	2501.39	-0.27	-0.20
			Max. Compression	2	-4179.54	-0.09	0.02
			Max. Mx	12	-396.14	-0.52	-0.04
			Max. My	33	-144.55	-0.02	-0.92
			Max. Vy	3	326.70	0.52	0.30
			Max. Vx	32	-472.32	-0.02	0.75
		Diagonal	Max Tension	5	3956.69	0.00	0.00
			Max. Compression	4	-4024.05	0.00	0.00
			Max. Mx	34	-75.35	0.05	0.00
			Max. Vy	34	-24.39	0.00	0.00
		Horizontal	Max Tension	4	2156.77	-0.01	-0.00
			Max. Compression	5	-2162.24	-0.01	-0.00
			Max. Mx	49	-149.03	-0.02	-0.00
			Max. My	3	979.60	-0.00	0.00
			Max. Vy	49	25.79	-0.02	-0.00
			Max. Vx	3	-0.81	0.00	0.00

tnxTa

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job		Page
ower		22027.01 - Westport	47 of 71
gineering Inc.	Project		Date
Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
l, CT 06405	Client		Designed by
03) 488-0580 3) 488-8587		Verizon	TJL

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis Moment	Minor Ax
No.	ft	Туре		Load		Moment	Moment
				Comb.	lb	kip-ft	kip-ft
		Top Girt	Max Tension	33	324.64	-0.01	0.00
			Max. Compression	2	-355.00	-0.01	-0.00
			Max. Mx	49	13.70	-0.02	-0.00
			Max. My	3	252.14	-0.00	0.00
			Max. Vy	49	-24.91	-0.02	-0.00
			Max. Vx	3	-0.13	0.00	0.00
		Inner Bracing	Max Tension	3	1.86	0.00	0.00
			Max. Compression	18	-1.85	0.00	0.00
			Max. Mx	34	-0.11	-0.02	0.00
			Max. Vy	34	20.88	0.00	0.00
Т2	160 - 140	Leg	Max Tension	19	24080.83	-0.10	-0.06
12	100 110	248	Max. Compression	2	-30594.09	0.19	0.11
			Max. Mx	18	23203.08	-0.20	-0.11
T2 160 - 140 T3 140 - 133.333			Max. My	2	10494.25	-0.10	0.33
			2	18		0.10	-0.01
			Max. Vy		-2761.01		
		D' 1	Max. Vx	10	2800.87	0.02	-0.14
		Diagonal	Max Tension	5	9020.57	0.00	0.00
			Max. Compression	4	-9091.89	0.00	0.00
			Max. Mx	34	-210.69	0.06	0.00
			Max. Vy	34	-29.98	0.00	0.00
		Horizontal	Max Tension	4	5634.75	-0.01	-0.00
			Max. Compression	5	-5605.24	-0.01	-0.00
			Max. Mx	48	-78.21	-0.03	-0.00
			Max. My	2	785.22	-0.01	0.01
			Max. Vy	48	-29.97	-0.03	-0.00
			Max. Vx	2	-2.66	0.00	0.00
		Inner Bracing	Max Tension	3	5.24	0.00	0.00
		miler bruenig	Max. Compression	18	-7.11	0.00	0.00
			Max. Mx	34	-3.45	-0.03	0.00
			Max. Vy	34	24.00	0.00	0.00
тэ	140 122 222	Lag	Max Tension	19		-0.20	-0.11
15	140 - 155.555	Leg			33484.45		
			Max. Compression	2	-40555.03	0.10	-0.00
			Max. Mx	18	32633.29	-0.20	-0.11
			Max. My	2	15086.18	-0.10	0.33
			Max. Vy	8	-80.63	-0.19	0.11
			Max. Vx	18	-163.19	0.09	-0.33
		Diagonal	Max Tension	5	9125.41	0.00	0.00
			Max. Compression	4	-9235.50	0.00	0.00
			Max. Mx	34	-233.07	0.08	0.00
			Max. Vy	34	-36.43	0.00	0.00
		Horizontal	Max Tension	4	5963.43	-0.02	-0.00
			Max. Compression	5	-5934.58	-0.01	-0.00
			Max. Mx	48	-36.78	-0.05	-0.00
			Max. My	18	820.34	-0.03	-0.01
			Max. Vy	48	-38.43	-0.05	-0.00
			Max. Vx	18	-2.27	0.00	0.00
		Inner Bracing	Max Tension	3	3.88	0.00	0.00
		miler Dracing			-6.69	0.00	0.00
			Max. Compression	18			
			Max. Mx	34	-4.04	-0.03	0.00
<b>T</b> 4	100.000		Max. Vy	34	25.42	0.00	0.00
T4	133.333 - 126.667	Leg	Max Tension	19	42586.91	-0.11	-0.00
			Max. Compression	2	-51672.28	1.25	0.03
			Max. Mx	18	40421.46	-1.33	-0.02
			Max. My	32	-3515.93	-0.05	1.28
			Max. Vy	8	-1960.72	-0.10	-0.00
			Max. Vx	4	-1939.01	-0.01	-0.05
		Diagonal	Max Tension	5	11701.09	0.00	0.00
			Max. Compression	4	-11819.63	0.00	0.00
T3 I T4			Max. Max	34	-229.95	0.00	0.00
			Max. Vy	34	-38.51	0.00	0.00

tnx7

Centek Eng 63-2 North Branford Phone: (20 FAX: (20

Tower	<b>Јо</b> в 22027.01 - Westport	Page 48 of 71
ngineering Inc. th Branford Rd.	Project 180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
rd, CT 06405 (203) 488-0580 203) 488-8587	Client Verizon	Designed by TJL

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi
No.	ft	Туре		Load			Moment
				Comb.	lb	kip-ft	kip-ft
		Top Girt	Max Tension	7	7897.09	-0.01	0.00
			Max. Compression	4	-7888.88	-0.02	-0.00
			Max. Mx	48	-334.80	-0.05	-0.00
			Max. My	3	220.08	-0.00	0.02
			Max. Vy	48	-40.83	-0.05	-0.00
			Max. Vx	3	3.26		0.00
		Inner Bracing	Max Tension	3	6.09		0.00
		inite Drating	Max. Compression	18	-9.04		0.00
			Max. Mx	34	-4.25		0.00
			Max. Vy	34	26.92		0.00
т5	126 667 - 120	Leg	Max Tension	19	54208.05		-0.02
15	120.007 - 120	Leg	Max. Compression	2	-66113.55	Moment           kip-ft           09         -0.01           88         -0.02           80         -0.05           8         -0.00           3         -0.05           4         0.00           4         0.00           5         0.00           4         0.00           5         0.93           04         -1.33           01         -0.05           17         -1.32           08         -0.04           11         0.00           .55         0.93           04         -1.33           01         -0.05           17         -1.32           08         -0.04           11         0.00           .59         0.00           2         -0.02           73         -0.06           2         -0.00           1         -0.06           3         0.00           3         0.00           3         0.00           3         0.00           54         -0.52           288         0.30 <td>-0.02</td>	-0.02
			*	18			
ection No.       Elevation ft         T5       126.667 - 120         T6       120 - 100         T7       100 - 90		Max. Mx		52879.04		-0.02	
		Max. My	32	-3552.01		1.28	
	T5 126.667 - 120 T6 120 - 100		Max. Vy	28	-1444.17		-0.02
			Max. Vx	10	1398.98		1.26
		Diagonal	Max Tension	5	13975.11		0.00
	. ft 5 126.667 - 120 5 120 - 100		Max. Compression	4	-14159.59		0.00
			Max. Mx	34	-248.22	0.13	0.00
			Max. Vy	34	55.89	$\begin{array}{c} -1.32\\ 0.93\\ -1.33\\ -0.05\\ -1.32\\ -0.04\\ 0.00\\ 0.00\\ 0.13\\ 0.00\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.06\\ -0.00\\ -0.06\\ -0.00\\ 0.00\\ -0.06\\ -0.00\\ 0.00\\ -0.04\\ 0.00\\ -0.52\\ 0.30\\ -0.98\\ -0.02\\ -0.98\\ -0.02\\ -0.98\\ -0.02\\ 0.00\\ 0.00\\ 0.00\\ 0.28\\ 0.00\\ -0.03\end{array}$	0.00
		Top Girt	Max Tension	5	9698.85	-0.02	-0.00
			Max. Compression	4	-9707.53	-0.02	-0.00
			Max. Mx	48	-338.73	-0.06	-0.01
			Max. My	3	341.22		0.02
			Max. Vy	48	43.11		-0.01
			Max. Vx	3	-3.58		0.02
		Inner Bracing	Max Tension	3	6.21		0.02
		miler Dracing		18	-10.63		0.00
			Max. Compression				
			Max. Mx	34	-5.20		0.00
			Max. Vy	34	-28.40		0.00
T6	120 - 100	Leg	Max Tension	19	91026.54		0.08
			Max. Compression	2	-106512.88		-0.10
			Max. Mx	18	66842.15		0.05
			Max. My	26	-8529.04		-1.04
			Max. Vy	18	-159.80	-0.98	0.05
			Max. Vx	26	-220.32	-0.02	-1.04
		Diagonal	Max Tension	5	17952.87	0.00	0.00
		0	Max. Compression	4	-18248.16	0.00	0.00
			Max. Mx	34	-300.43	0.28	0.00
			Max. Vy	34	-89.70		0.00
		Horizontal	Max Tension	4	10785.12		-0.00
		nonzonan	Max. Compression	5	-10681.88		-0.00
			Max. Mx	48	-289.08		-0.01
				18	-1649.18		-0.01
			Max. My May Vy				
			Max. Vy	48	-49.33		-0.01
			Max. Vx	18	-3.24		-0.02
		Inner Bracing	Max Tension	3	3.60		0.00
			Max. Compression	18	-12.12		0.00
			Max. Mx	34	-8.94		0.00
			Max. Vy	34	-42.45		0.00
T7	100 - 90	Leg	Max Tension	19	113052.63		0.10
		-	Max. Compression	2	-130316.95	0.64	-0.07
			Max. Mx	18	110478.39	-0.68	0.07
			Max. My	11	-7050.15		0.70
			Max. Vy	18	147.96		0.07
			Max. Vx	10	-206.31		0.70
		Diagonal	Max Tension	5	16507.23		0.00
		Diagonai	Max. Compression	4	-16726.55		0.00
			Max. Mx	34	-315.71		0.00
		<b>TT 1 1</b>	Max. Vy	34	71.24	0.00	0.00
		Horizontal	Max Tension	6	10502.00	-0.03	0.00

*tnxTower* 

Job

Project

Client

22027.01 - Westport

Page 49 of 71 Date 08:43:42 04/05/22 Designed by

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Verizon

180-ft Lattice Tower (CSP #32)

ned by TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	5	21		Comb.	lb	kip-ft	kip-ft
			Max. Compression	5	-10479.08	-0.03	-0.00
			Max. Mx	48	-550.56	-0.09	-0.01
			Max. My	18	-1563.12	-0.05	-0.02
			Max. Vy	48	-52.00	-0.09	-0.01
			Max. Vx	18	2.49	-0.05	-0.02
		Inner Bracing	Max Tension	3	2.46	0.00	0.00
		c	Max. Compression	43	-10.80	0.00	0.00
			Max. Mx	34	-9.15	-0.09	0.00
			Max. Vy	34	-45.29	0.00	0.00
T8	90 - 80	Leg	Max Tension	19	132927.94	-0.67	0.07
			Max. Compression	2	-151678.03	0.59	-0.06
			Max. Mx	18	130512.67	-0.68	0.07
			Max. My	11	-7651.26	-0.02	0.80
			Max. Vy	18	-115.85	-0.68	0.07
			Max. Vx	10	-177.00	-0.34	0.73
		Diagonal	Max Tension	5	16493.82	0.00	0.00
		Diagonar	Max. Compression	4	-16731.46	0.00	0.00
			Max. Mx	34	-332.21	0.26	0.00
			Max. Vy	34	-76.44	0.00	0.00
		Top Girt	Max Tension	4	10998.86	-0.04	-0.00
		Top Ont	Max. Compression	5	-10927.81	-0.04	-0.00
			Max. Compression Max. Mx	48	-399.99	-0.03	-0.00
				18	-1071.21	-0.16	-0.01
			Max. My	48		-0.08	
			Max. Vy Max. Vx	48	-55.76 -2.15	-0.10	-0.01 -0.02
		In a Dan sin a					
		Inner Bracing	Max Tension	3	1.51	0.00	0.00
			Max. Compression	43	-11.04	0.00	0.00
			Max. Mx	34	-9.59	-0.10	0.00
	0.0 (0		Max. Vy	34	48.77	0.00	0.00
Т9	80 - 60	Leg	Max Tension	19	171813.55	-1.16	0.05
			Max. Compression	2	-194378.21	1.74	-0.07
			Max. Mx	18	168341.14	-1.76	0.07
			Max. My	11	-9270.65	-0.02	1.64
			Max. Vy	18	261.40	-1.76	0.07
			Max. Vx	13	-320.55	-0.90	1.48
		Diagonal	Max Tension	5	17525.59	0.00	0.00
			Max. Compression	4	-17849.15	0.00	0.00
			Max. Mx	34	-408.47	0.31	0.00
			Max. Vy	34	-86.22	0.00	0.00
		Horizontal	Max Tension	4	12579.06	-0.08	-0.00
			Max. Compression	5	-12460.22	-0.06	-0.00
			Max. Mx	48	-409.59	-0.17	-0.01
			Max. My	3	819.52	-0.03	0.03
			Max. Vy	48	-83.56	-0.17	-0.01
			Max. Vx	18	-2.83	-0.10	-0.03
		Inner Bracing	Max Tension	3	2.53	0.00	0.00
		č	Max. Compression	43	-12.95	0.00	0.00
			Max. Mx	34	-11.15	-0.15	0.00
			Max. Vy	34	64.61	0.00	0.00
T10	60 - 40	Leg	Max Tension	19	211153.03	-1.18	0.05
			Max. Compression	2	-238636.17	1.05	-0.05
			Max. Mx	18	188169.76	-1.76	0.07
			Max. My	11	-9678.01	-0.02	1.64
			Max. Wy Max. Vy	8	-307.64	-1.72	0.13
			Max. Vy Max. Vx	11	322.07	-0.02	1.64
		Diagonal	Max Tension	17	18690.11	-0.02	0.00
		Diagonai	Max Tension Max. Compression		-19178.65	0.00	0.00
				16 34	-191/8.65 -513.43		0.00
			Max. Mx			0.43	
		Horizontal	Max. Mx Max. Vy Max Tension	34 34 16	-113.22 14262.91	0.43 0.00 -0.10	0.00

tnx7

**Centek Eng** 63-2 North Branford Phone: (2 FAX: (20

Tower	Job	22027.01 - Westport	Page 50 of 71
ngineering Inc. rth Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
<i>ower</i> gineering Inc.	Verizon	Designed by TJL	

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load Comb	lb	Moment kin ft	Moment kip ft
			Mar Mr	Comb.	-359.20	kip-ft	kip-ft
			Max. Mx Max. My	48 3	-359.20 1164.86	-0.21 -0.04	-0.01 0.03
			Max. My Max. Vy	48	-92.20	-0.04	-0.01
			Max. Vy Max. Vx	40	-92.20	0.00	0.01
		Inner Bracing	Max. vx Max Tension	3	0.54	0.00	0.00
		miller bracing	Max Tension Max. Compression	43	-15.38	0.00	0.00
			Max. Compression Max. Mx	34	-13.82	-0.24	0.00
			Max. Vy	34	-90.29	0.00	0.00
T11	40 - 30	Leg	Max Tension	19	230783.53	-1.11	0.05
111	40 - 30	Leg	Max. Compression	2	-261072.47	2.44	-0.04
			Max. Mx	$\frac{2}{2}$	-261072.47	2.44	-0.04
			Max. My	11	-11614.54	-0.04	1.15
			Max. Vy	3	-302.18	2.42	-0.04
			Max. Vy	13	247.05	-0.59	1.04
		Diagonal	Max Tension	17	19250.69	0.00	0.00
		Diagonai	Max. Compression	16	-19775.01	0.00	0.00
			Max. Max	34	-544.00	0.46	0.00
			Max. Vy	34	-117.43	0.00	0.00
		Horizontal	Max Tension	16	15039.23	-0.11	-0.00
		Homzontar	Max. Compression	15	-14904.94	-0.09	-0.01
			Max. Compression Max. Mx	48	-406.70	-0.22	-0.01
			Max. My	3	980.10	-0.22	0.03
			Max. Vy	48	-95.24	-0.22	-0.01
			Max. Vy Max. Vx	3	-2.26	-0.22	0.03
		Inner Bracing	Max Tension	1	0.00	0.00	0.00
		miler Dracing	Max. Compression	43	-15.63	0.00	0.00
			Max. Mx	34	-14.16	-0.26	0.00
			Max. Vy	34	-93.18	0.00	0.00
T12	30 - 20	Leg	Max Tension	19	250199.52	-2.26	0.04
112	50-20	LUg	Max. Compression	2	-283448.84	-2.08	-0.11
			Max. Mx	$\frac{2}{2}$	-282833.66	2.44	-0.04
			Max. My	ñ	-13066.30	-0.37	4.13
			Max. Vy	2	599.38	2.44	-0.04
			Max. Vx	10	-526.47	-0.50	4.13
		Diagonal	Max Tension	17	19845.87	0.00	0.00
		Diagonar	Max. Compression	16	-20454.95	0.00	0.00
			Max. Mx	34	-597.67	0.49	0.00
			Max. Vy	34	-121.65	0.00	0.00
		Top Girt	Max Tension	16	15903.26	-0.17	-0.00
		F	Max. Compression	17	-15542.99	-0.13	-0.00
			Max. Mx	38	777.27	-0.29	-0.01
			Max. My	3	688.94	-0.10	0.02
			Max. Vy	38	-115.41	-0.29	-0.01
			Max. Vx	3	1.94	0.00	0.00
		Inner Bracing	Max Tension	1	0.00	0.00	0.00
		Ũ	Max. Compression	43	-16.45	0.00	0.00
			Max. Mx	34	-15.21	-0.29	0.00
			Max. Vy	34	96.06	0.00	0.00
T13	20 - 0	Leg	Max Tension	19	267893.42	1.25	0.12
		c	Max. Compression	2	-305388.09	0.00	0.00
			Max. Mx	2	-304652.89	7.05	0.08
			Max. My	11	-13855.50	-0.37	4.13
			Max. Vy	2	-1038.36	7.05	0.08
			Max. Vx	10	918.62	-0.50	4.13
		Diagonal	Max Tension	17	29394.83	-0.14	-0.03
		5	Max. Compression	14	-30142.64	0.00	0.00
			Max. Mx	32	12914.98	-0.23	-0.03
			Max. My	2	-25189.50	-0.03	0.04
			Max. Vy	36	-80.75	-0.20	-0.00
			Max. Vx	2	3.63	-0.03	0.04
			IVIAA. VA	2	5.05	-0.05	0.04

to a state of the	Job		Page
tnxTower		22027.01 - Westport	51 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi
No.	ft	Туре		Load		Moment	Moment
				Comb.	lb	kip-ft	kip-ft
			Max. Compression	15	-16764.09	-0.20	-0.01
			Max. Mx	38	-822.84	-0.41	-0.01
			Max. My	3	1708.91	-0.07	0.05
			Max. Vy	38	145.05	-0.41	-0.01
			Max. Vx	3	4.15	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	4	1303.63	0.00	0.00
		C C	Max. Compression	5	-1167.97	0.00	0.00
			Max. Mx	34	195.62	0.04	0.00
			Max. Vy	34	23.11	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	4	1250.87	0.00	0.00
		e	Max. Compression	5	-1095.38	0.00	0.00
			Max. Mx	34	118.86	0.07	0.00
			Max. Vy	34	-25.88	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	3	1.69	0.00	0.00
			Max. Compression	18	-17.64	0.00	0.00
			Max. Mx	34	-14.27	0.06	0.00
			Max. Vy	34	-38.89	0.00	0.00
		Inner Bracing	Max Tension	1	0.00	0.00	0.00
		C	Max. Compression	43	-14.50	0.00	0.00
			Max. Mx	34	-12.95	0.18	0.00
			Max. Vy	34	-57.34	0.00	0.00

## **Maximum Reactions**

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	lb	lb	lb
		Comb.			
Leg C	Max. Vert	24	336084.60	41493.76	-25103.83
	Max. H _x	24	336084.60	41493.76	-25103.83
	Max. Hz	7	-291273.07	-35977.50	24318.66
	Min. Vert	9	-299936.43	-38110.37	23190.13
	Min. H _x	9	-299936.43	-38110.37	23190.13
	Min. $H_z$	22	323721.20	38383.64	-25668.49
Leg B	Max. Vert	12	337955.11	-41465.99	-25495.76
	Max. H _x	29	-301123.66	38059.81	23498.94
	Max. H _z	31	-293093.92	35920.83	24749.54
	Min. Vert	29	-301123.66	38059.81	23498.94
	Min. H _x	12	337955.11	-41465.99	-25495.76
	Min. H _z	14	327246.27	-38740.13	-26464.01
Leg A	Max. Vert	2	347529.29	292.49	49464.33
	Max. H _x	27	17943.17	10231.57	1500.24
	Max. H _z	2	347529.29	292.49	49464.33
	Min. Vert	19	-305707.66	-311.38	-45170.95
	Min. H _x	10	20862.92	-10271.05	1723.93
	Min. Hz	19	-305707.66	-311.38	-45170.95

### Tower Mast Reaction Summary

### tnxTower

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job		Page
er		22027.01 - Westport	52 of 71
ing Inc.	Project		Date
ord Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
5405 2-0580 -8587	Client	Verizon	Designed by TJL

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, $M_x$	Overturning Moment, Mz	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg - No Ice	50835.50 61002.60	-0.00 -179.86	0.00 -85496.50	-9.27 -7842.53	0.35 30.36	0.00 13.73
0.9 Dead+1.0 Wind 0 deg - No Ice	45751.95	-179.86	-85496.50	-7839.75	30.26	13.73
1.2 Dead+1.0 Wind 30 deg - No Ice	61002.60	41209.63	-72513.41	-6722.75	-3767.40	-20.72
0.9 Dead+1.0 Wind 30 deg - No Ice	45751.95	41209.63	-72513.41	-6719.97	-3767.51	-20.72
1.2 Dead+1.0 Wind 45 deg - No Ice	61002.60	58111.27	-58956.54	-5474.47	-5324.47	-35.84
0.9 Dead+1.0 Wind 45 deg - No Ice	45751.95	58111.27	-58956.54	-5471.69	-5324.57	-35.84
1.2 Dead+1.0 Wind 60 deg - No Ice	61002.60	70856.48	-41480.23	-3857.26	-6497.94	-48.62
0.9 Dead+1.0 Wind 60 deg - No Ice	45751.95	70856.48	-41480.23	-3854.48	-6498.05	-48.62
1.2 Dead+1.0 Wind 90 deg - No Ice	61002.60	82220.83	1.89	-12.67	-7496.83	-64.39
0.9 Dead+1.0 Wind 90 deg - No Ice	45751.95	82220.83	1.89	-9.89	-7496.93	-64.39
1.2 Dead+1.0 Wind 120 deg - No Ice	61002.60	72707.49	42544.35	3866.86	-6558.26	-63.27
0.9 Dead+1.0 Wind 120 deg - No Ice 1.2 Dead+1.0 Wind 135 deg -	45751.95 61002.60	72707.49 58840.04	42544.35 59624.17	3869.64 5459.37	-6558.36 -5342.43	-63.27 -55.95
No Ice 0.9 Dead+1.0 Wind 135 deg -	45751.95	58840.04	59624.17	5462.16	-5342.54	-55.95
No Ice 1.2 Dead+1.0 Wind 150 deg -	61002.60	41304.60	72355.51	6670.67	-3780.94	-44.89
No Ice 0.9 Dead+1.0 Wind 150 deg -	45751.95	41304.60	72355.51	6673.45	-3781.05	-44.89
No Ice 1.2 Dead+1.0 Wind 180 deg -	61002.60	200.47	83030.33	7690.26	-33.18	-14.55
No Ice 0.9 Dead+1.0 Wind 180 deg -	45751.95	200.47	83030.33	7693.04	-33.28	-14.55
No Ice 1.2 Dead+1.0 Wind 210 deg -	61002.60	-41054.24	72235.22	6651.27	3740.73	18.63
No Ice 0.9 Dead+1.0 Wind 210 deg -	45751.95	-41054.24	72235.22	6654.05	3740.63	18.63
No Ice 1.2 Dead+1.0 Wind 225 deg - No Ice	61002.60	-57852.69	58657.70	5399.34	5279.53	33.78
0.9 Dead+1.0 Wind 225 deg - No Ice	45751.95	-57852.69	58657.70	5402.12	5279.43	33.78
1.2 Dead+1.0 Wind 240 deg - No Ice	61002.60	-72532.09	42296.47	3826.25	6529.93	46.55
0.9 Dead+1.0 Wind 240 deg - No Ice	45751.95	-72532.09	42296.47	3829.03	6529.83	46.55
1.2 Dead+1.0 Wind 270 deg - No Ice	61002.60	-82162.61	-328.15	-67.32	7487.36	62.64
0.9 Dead+1.0 Wind 270 deg - No Ice	45751.95	-82162.61	-328.15	-64.54	7487.25	62.64
1.2 Dead+1.0 Wind 300 deg - No Ice	61002.60	-70900.41	-41756.48	-3902.89	6504.66	62.25
0.9 Dead+1.0 Wind 300 deg - No Ice	45751.95	-70900.41	-41756.48	-3900.11	6504.56	62.25
1.2 Dead+1.0 Wind 315 deg - No Ice	61002.60	-58288.53	-59177.75	-5510.96	5354.01	54.88
0.9 Dead+1.0 Wind 315 deg - No Ice	45751.95	-58288.53	-59177.75	-5508.18	5353.90	54.88

### *tnxT*

Centek Engi 63-2 North I Branford, Phone: (20. FAX: (203

Forman	Job		Page
Tower		22027.01 - Westport	53 of 71
gineering Inc.	Project		Date
h Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
d, CT 06405 203) 488-0580 03) 488-8587	Client	Verizon	Designed by TJL

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 330 deg -	61002.60	-41478.56	-72684.78	-6751.19	3812.57	43.93
No Ice						
0.9 Dead+1.0 Wind 330 deg -	45751.95	-41478.56	-72684.78	-6748.41	3812.46	43.93
No Ice						
1.2 Dead+1.0 Ice	134618.18	-0.00	-0.00	-70.19	-7.98	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0	134618.18	-27.43	-23757.52	-2211.84	-3.42	-2.59
Ice	124610.10	11/01/00	20226.07	1010 70	1050.00	10.71
1.2 Dead+1.0 Wind 30 deg+1.0	134618.18	11604.90	-20326.87	-1913.72	-1050.83	-13.71
Ice 1.2 Dead+1.0 Wind 45 deg+1.0	134618.18	16383.88	-16556.64	-1572.82	-1482.13	-17.96
I.2 Dead+1.0 wind 45 deg+1.0 Ice	154016.16	10365.66	-10330.04	-13/2.82	-1482.15	-17.90
1.2 Dead+1.0 Wind 60 deg+1.0	134618.18	20014.88	-11674.11	-1130.07	-1809.68	-21.01
Ice	154018.18	20014.00	-110/4.11	-1150.07	-1809.08	-21.01
1.2 Dead+1.0 Wind 90 deg+1.0	134618.18	23176.95	-0.61	-70.59	-2087.37	-22.81
Ice	15 1010.10	25170.55	0.01	10.00	2007.27	22.01
1.2 Dead+1.0 Wind 120	134618.18	20315.39	11845.84	994.56	-1819.24	-18.56
deg+1.0 Ice						
1.2 Dead+1.0 Wind 135	134618.18	16501.41	16664.53	1433.43	-1484.82	-14.41
deg+1.0 Ice						
1.2 Dead+1.0 Wind 150	134618.18	11618.29	20301.08	1768.48	-1052.70	-9.29
deg+1.0 Ice						
1.2 Dead+1.0 Wind 180	134618.18	30.68	23357.66	2050.74	-13.12	2.46
deg+1.0 Ice						
1.2 Dead+1.0 Wind 210	134618.18	-11580.41	20283.03	1765.58	1030.53	13.38
deg+1.0 Ice						
1.2 Dead+1.0 Wind 225	134618.18	-16343.13	16509.55	1424.11	1458.95	17.64
deg+1.0 Ice						
1.2 Dead+1.0 Wind 240	134618.18	-20288.66	11808.36	988.43	1798.83	20.68
deg+1.0 Ice	124610.10	221 (7.7.7.	<b>50.00</b>	50.00	0000 50	22.54
1.2 Dead+1.0 Wind 270	134618.18	-23167.78	-50.80	-78.89	2069.78	22.54
deg+1.0 Ice	124619 19	20020.00	11716.07	1126.00	1704.40	19.40
1.2 Dead+1.0 Wind 300 deg+1.0 Ice	134618.18	-20020.90	-11716.07	-1136.99	1794.49	18.40
1.2 Dead+1.0 Wind 315	134618.18	-16410.52	-16590.21	-1578.35	1470.46	14.24
deg+1.0 Ice	134010.10	-10410.32	-10390.21	-15/8.55	14/0.40	14.24
1.2 Dead+1.0 Wind 330	134618.18	-11645.70	-20352.97	-1918.04	1041.58	9.14
deg+1.0 Ice	134010.10	-11045.70	-20332.97	-1910.04	1041.50	2.14
Dead+Wind 0 deg - Service	50835.50	-38.31	-18476.96	-1706.74	6.73	2.93
Dead+Wind 30 deg - Service	50835.50	8910.73	-15675.87	-1464.29	-816.89	-4.41
Dead+Wind 45 deg - Service	50835.50	12565.90	-12745.95	-1193.74	-1154.63	-7.64
Dead+Wind 60 deg - Service	50835.50	15322.92	-8968.37	-843.19	-1409.24	-10.36
Dead+Wind 90 deg - Service	50835.50	17779.19	0.40	-9.60	-1625.94	-13.72
Dead+Wind 120 deg - Service	50835.50	15717.21	9195.05	831.43	-1422.09	-13.48
Dead+Wind 135 deg - Service	50835.50	12721.14	12888.17	1176.72	-1158.45	-11.92
Dead+Wind 150 deg - Service	50835.50	8930.96	15642.24	1439.40	-819.77	-9.56
Dead+Wind 180 deg - Service	50835.50	42.70	17951.62	1660.51	-6.81	-3.10
Dead+Wind 210 deg - Service	50835.50	-8877.63	15616.61	1435.27	811.72	3.97
Dead+Wind 225 deg - Service	50835.50	-12510.81	12682.30	1163.93	1145.57	7.20
Dead+Wind 240 deg - Service	50835.50	-15679.85	9142.24	822.78	1416.58	9.92
Dead+Wind 270 deg - Service	50835.50	-17766.78	-69.90	-21.24	1624.44	13.34
Dead+Wind 300 deg - Service	50835.50	-15332.27	-9027.22	-852.91	1411.19	13.26
Dead+Wind 315 deg - Service	50835.50	-12603.66	-12793.07	-1201.51	1161.44	11.69
Dead+Wind 330 deg - Service	50835.50	-8968.01	-15712.38	-1470.35	827.03	9.36

#### **Solution Summary**

tnx'

Centek En 63-2 North

Branfor Phone: (2 FAX: (20

:Tower	Job	22027.01 - Westport	Page 54 of 71
		54 017 1	
E <b>ngineering Inc.</b> orth Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
ford, CT 06405 (203) 488-0580 (203) 488-8587	Client	Verizon	Designed by TJL

	Sum of Applied Forces				Sum of Reactions			
Load	PX Su	m oj Appliea Forces PY	PZ	PX	PY	PZ	% Error	
Comb.	lb	lb	lb	lb	lb	lb	70 EITOF	
1	0.00	-50835.50	0.00	0.00	50835.50	0.00	0.000%	
2	-179.86	-61002.60	-85496.50	179.86	61002.60	85496.50	0.000%	
3	-179.86	-45751.95	-85496.50	179.86	45751.95	85496.50	0.000%	
4	41209.63	-61002.60	-72513.41	-41209.63	61002.60	72513.41	0.000%	
5	41209.63	-45751.95	-72513.41	-41209.63	45751.95	72513.41	0.000%	
6	58111.27	-61002.60	-58956.54	-58111.27	61002.60	58956.54	0.000%	
7	58111.27	-45751.95	-58956.54	-58111.27	45751.95	58956.54	0.000%	
8	70856.48	-61002.60	-41480.23	-70856.48	61002.60	41480.23	0.000%	
9	70856.48	-45751.95	-41480.23	-70856.48	45751.95	41480.23	0.000%	
10	82220.83	-61002.60	1.89	-82220.83	61002.60	-1.89	0.000%	
11	82220.83	-45751.95	1.89	-82220.83	45751.95	-1.89	0.000%	
12	72707.49	-61002.60	42544.35	-72707.49	61002.60	-42544.35	0.000%	
13	72707.49	-45751.95	42544.35	-72707.49	45751.95	-42544.35	0.000%	
14	58840.04	-61002.60	59624.17	-58840.04	61002.60	-59624.17	0.000%	
15	58840.04	-45751.95	59624.17	-58840.04	45751.95	-59624.17	0.000%	
16	41304.60	-61002.60	72355.51	-41304.60	61002.60	-72355.51	0.000%	
17	41304.60	-45751.95	72355.51	-41304.60	45751.95	-72355.51	0.000%	
18	200.47	-61002.60	83030.33	-200.47	61002.60	-83030.33	0.000%	
19	200.47	-45751.95	83030.33	-200.47	45751.95	-83030.33	0.000%	
20	-41054.24	-61002.60	72235.22	41054.24	61002.60	-72235.22	0.000%	
21	-41054.24	-45751.95	72235.22	41054.24	45751.95	-72235.22	0.000%	
22	-57852.69	-61002.60	58657.70	57852.69	61002.60	-58657.70	0.000%	
23	-57852.69	-45751.95	58657.70	57852.69	45751.95	-58657.70	0.000%	
24	-72532.09	-61002.60	42296.47	72532.09	61002.60	-42296.47	0.000%	
25	-72532.09	-45751.95	42296.47	72532.09	45751.95	-42296.47	0.000%	
26	-82162.61	-61002.60	-328.15	82162.61	61002.60	328.15	0.000%	
27	-82162.61	-45751.95	-328.15	82162.61	45751.95	328.15	0.000%	
28	-70900.41	-61002.60	-41756.48	70900.41	61002.60	41756.48	0.000%	
29	-70900.41	-45751.95	-41756.48	70900.41	45751.95	41756.48	0.000%	
30	-58288.53	-61002.60	-59177.75	58288.53	61002.60	59177.75	0.000%	
31	-58288.53	-45751.95	-59177.75	58288.53	45751.95	59177.75	0.000%	
32	-41478.56	-61002.60	-72684.78	41478.56	61002.60	72684.78	0.000%	
33	-41478.56	-45751.95	-72684.78	41478.56	45751.95	72684.78	0.000%	
34	0.00	-134618.18	0.00	0.00	134618.18	0.00	0.000%	
35	-27.43	-134618.18	-23757.52	27.43	134618.18	23757.52	0.000%	
36 37	11604.90	-134618.18	-20326.87	-11604.90	134618.18	20326.87	0.000%	
37	16383.88	-134618.18 -134618.18	-16556.64	-16383.88	134618.18	16556.64	0.000%	
38 39	20014.88 23176.95	-134618.18	-11674.11 -0.61	-20014.88 -23176.95	134618.18 134618.18	11674.11 0.61	0.000% 0.000%	
40	20315.39	-134618.18	11845.84	-20315.39	134618.18	-11845.84	0.000%	
40	16501.41	-134618.18	16664.53	-16501.41	134618.18	-16664.53	0.000%	
42	11618.29	-134618.18	20301.08	-11618.29	134618.18	-20301.08	0.000%	
43	30.68	-134618.18	23357.66	-30.68	134618.18	-23357.66	0.000%	
44	-11580.41	-134618.18	20283.03	11580.41	134618.18	-20283.03	0.000%	
45	-16343.13	-134618.18	16509.55	16343.13	134618.18	-16509.55	0.000%	
46	-20288.66	-134618.18	11808.36	20288.66	134618.18	-11808.36	0.000%	
47	-23167.78	-134618.18	-50.80	23167.78	134618.18	50.80	0.000%	
48	-20020.90	-134618.18	-11716.07	20020.90	134618.18	11716.07	0.000%	
49	-16410.52	-134618.18	-16590.21	16410.52	134618.18	16590.21	0.000%	
50	-11645.70	-134618.18	-20352.97	11645.70	134618.18	20352.97	0.000%	
51	-38.31	-50835.50	-18476.96	38.31	50835.50	18476.96	0.000%	
52	8910.73	-50835.50	-15675.87	-8910.73	50835.50	15675.87	0.000%	
53	12565.90	-50835.50	-12745.95	-12565.90	50835.50	12745.95	0.000%	
54	15322.92	-50835.50	-8968.37	-15322.92	50835.50	8968.37	0.000%	
55	17779.19	-50835.50	0.40	-17779.19	50835.50	-0.40	0.000%	
56	15717.21	-50835.50	9195.05	-15717.21	50835.50	-9195.05	0.000%	
57	12721.14	-50835.50	12888.17	-12721.14	50835.50	-12888.17	0.000%	
58	8930.96	-50835.50	15642.24	-8930.96	50835.50	-15642.24	0.000%	
59	42.70	-50835.50	17951.62	-42.70	50835.50	-17951.62	0.000%	
60	-8877.63	-50835.50	15616.61	8877.63	50835.50	-15616.61	0.000%	
61	-12510.81	-50835.50	12682.30	12510.81	50835.50	-12682.30	0.000%	

	Job		Page
tnxTower		22027.01 - Westport	55 of 71
Centek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

	Sur	n of Applied Forces	5		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
62	-15679.85	-50835.50	9142.24	15679.85	50835.50	-9142.24	0.000%
63	-17766.78	-50835.50	-69.90	17766.78	50835.50	69.90	0.000%
64	-15332.27	-50835.50	-9027.22	15332.27	50835.50	9027.22	0.000%
65	-12603.66	-50835.50	-12793.07	12603.66	50835.50	12793.07	0.000%
66	-8968.01	-50835.50	-15712.38	8968.01	50835.50	15712.38	0.000%

#### Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T1	180 - 160	1.973	51	0.0852	0.0441
T2	160 - 140	1.612	51	0.0837	0.0379
T3	140 - 133.333	1.248	51	0.0758	0.0232
T4	133.333 - 126.667	1.138	51	0.0733	0.0202
T5	126.667 - 120	1.028	51	0.0703	0.0176
T6	120 - 100	0.925	51	0.0667	0.0163
<b>T</b> 7	100 - 90	0.661	51	0.0532	0.0138
T8	90 - 80	0.544	51	0.0468	0.0120
T9	80 - 60	0.441	51	0.0398	0.0102
T10	60 - 40	0.265	51	0.0306	0.0071
T11	40 - 30	0.133	51	0.0204	0.0047
T12	30 - 20	0.081	51	0.0149	0.0034
T13	20 - 0	0.043	51	0.0093	0.0024

#### **Critical Deflections and Radius of Curvature - Service Wind**

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
187.00	ANT940Y10-WR	51	1.973	0.0852	0.0441	419255
181.00	ANT940Y10-WR	51	1.973	0.0852	0.0441	419255
177.00	PA6-65AC	51	1.919	0.0853	0.0436	419255
170.00	RFI BPS7496-180-14 Panel	51	1.794	0.0852	0.0422	209628
	Antenna					
169.00	3' Yagi	51	1.776	0.0851	0.0419	190571
160.00	ROHN 6'x15' Boom Gate (1)	51	1.612	0.0837	0.0379	124888
133.00	800-10798 Kathrein Panel	51	1.132	0.0731	0.0200	395312
125.00	LTF12=372 Sector Mount (1)	51	1.002	0.0695	0.0171	67146
113.00	ANT150D	51	0.826	0.0621	0.0155	76647
60.00	GPS	51	0.265	0.0306	0.0071	100711

### Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	9.029	2	0.3845	0.2068

tnxTower	Job		Page
inx i ower		22027.01 - Westport	56 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	D
T2	160 - 140	7.395	2	0.3796	0.1779
Т3	140 - 133.333	5.729	2	0.3469	0.1091
T4	133.333 - 126.667	5.225	2	0.3356	0.0948
T5	126.667 - 120	4.723	2	0.3224	0.0825
T6	120 - 100	4.249	2	0.3057	0.0767
T7	100 - 90	3.037	2	0.2440	0.0649
T8	90 - 80	2.502	2	0.2145	0.0562
T9	80 - 60	2.029	2	0.1824	0.0477
T10	60 - 40	1.222	2	0.1405	0.0334
T11	40 - 30	0.613	2	0.0933	0.0219
T12	30 - 20	0.376	3	0.0684	0.0162
T13	20 - 0	0.200	3	0.0424	0.0111

#### Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb	i	0	0	Curvature
J-		Comb.	in			ft
187.00	ANT940Y10-WR	2	9.029	0.3845	0.2068	104944
181.00	ANT940Y10-WR	2	9.029	0.3845	0.2068	104944
177.00	PA6-65AC	2	8.787	0.3849	0.2046	104944
170.00	RFI BPS7496-180-14 Panel	2	8.222	0.3849	0.1979	52472
	Antenna					
169.00	3' Yagi	2	8.140	0.3847	0.1966	47702
160.00	ROHN 6'x15' Boom Gate (1)	2	7.395	0.3796	0.1779	31801
133.00	800-10798 Kathrein Panel	2	5.200	0.3350	0.0941	93910
125.00	LTF12=372 Sector Mount (1)	2	4.601	0.3186	0.0802	14612
113.00	ANT150D	2	3.796	0.2849	0.0729	16662
60.00	GPS	2	1.222	0.1405	0.0334	22090

#### **Bolt Design Data**

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt lb	per Bolt lb	Allowable		
T1	180	Diagonal	A325N	0.6250	3	1341.35	13805.80	0.097 🖌	1	Bolt Shear
		Horizontal	A325N	0.6250	2	1081.12	13805.80	0.078 🖌	1	Bolt Shear
		Top Girt	A325N	0.6250	2	177.50	13805.80	0.013 🖌	1	Bolt Shear
T2	160	Leg	A325N	0.8750	4	1321.99	41556.00	0.032	1	Bolt Tension
		Diagonal	A325N	0.6250	3	3030.63	13805.80	0.220	1	Bolt Shear
		Horizontal	A325N	0.6250	2	2817.38	13805.80	0.204	1	Bolt Shear
Т3	140	Leg	A325N	1.0000	4	8371.11	54517.00	0.154	1	Bolt Tension
		Diagonal	A325N	0.6250	3	3078.50	13805.80	0.223	1	Bolt Shear
		Horizontal	A325N	0.6250	2	2981.72	13805.80	0.225	1	Bolt Shear
T4	133.333	Diagonal	A325N	0.6250	3	3939.88	13805.80	0.285	1	Bolt Shear
		Top Girt	A325N	0.6250	2	3948.54	13805.80	0.286	1	Bolt Shear

*tnxT* 

Centek Engi 63-2 North B Branford, Phone: (203 FAX: (203)

2000.000	Job	Job					
ower		22027.01 - Westport	57 of 71				
ineering Inc.	Project		Date				
Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22				
l, CT 06405 93) 488-0580 3) 488-8587	Client	Verizon	Designed by TJL				

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
110.	ft	Туре	Grade	in	Bolts	per Bolt lb	per Bolt lb	Allowable	Kallo	
T5	126.667	Diagonal	A325N	0.6250	3	4719.86	13805.80	0.342 🖌	1	Bolt Shear
		Top Girt	A325N	0.6250	2	4853.76	13805.80	0.352 🖌	1	Bolt Shear
T6	120	Leg	A325N	1.0000	6	11432.40	54517.00	0.210	1	Bolt Tension
		Diagonal	A325N	0.6250	3	6082.72	13805.80	0.441	1	Bolt Shear
		Horizontal	A325N	0.6250	2	5392.56	13805.80	0.391	1	Bolt Shear
<b>T</b> 7	100	Leg	A325N	1.0000	6	18842.10	54517.00	0.346	1	Bolt Tension
		Diagonal	A325N	0.6250	3	5575.52	13805.80	0.404 🖌	1	Bolt Shear
		Horizontal	A325N	0.6250	2	5251.00	13805.80	0.380	1	Bolt Shear
Т8	90	Diagonal	A325N	0.6250	3	5577.15	13805.80	0.404	1	Bolt Shear
		Top Girt	A325N	0.6250	2	5499.43	13805.80	0.398	1	Bolt Shear
Т9	80	Leg	A325N	1.0000	8	19038.00	54517.00	0.349	1	Bolt Tension
		Diagonal	A325N	0.6250	3	5949.72	13805.80	0.431	1	Bolt Shear
		Horizontal	A325N	0.6250	2	6289.53	13805.80	0.456	1	Bolt Shear
T10	60	Leg	A325N	1.0000	8	23920.50	54517.00	0.439	1	Bolt Tension
		Diagonal	A325N	0.6250	3	6392.88	13805.80	0.463 🗸	1	Bolt Shear
		Horizontal	A325N	0.6250	2	7131.46	13805.80	0.517	1	Bolt Shear
T11	40	Leg	A325N	1.0000	8	28847.90	54517.00	0.529	1	Bolt Tension
		Diagonal	A325N	0.6250	3	6591.67	13805.80	0.329	1	Bolt Shear
		Horizontal	A325N	0.6250	2	7519.62	13805.80	0.545	1	Bolt Shear
T12	30	Diagonal	A325N	0.6250	3	6818.32	13805.80	0.343	1	Bolt Shear
		Top Girt	A325N	0.6250	2	7951.63	13805.80	0.494	1	Bolt Shear
T13	20	Leg	A325N	1.0000	8	33486.70	54517.00	0.614	1	Bolt Tensior
		Diagonal	A325X	0.6250	3	10047.50	17257.30	0.582	1	Bolt Shear
		Horizontal	A325N	0.7500	2	8382.04	19880.40	0.382	1	Bolt Shear

#### **Compression Checks**

#### Section Elevation Size L $L_u$ Kl/rA $P_u$ $\phi P_n$ Ratio No. $P_u$ $in^2$ ft ft ft lb lb $\phi P_n$ T1 180 - 160 ROHN 3 STD 20.00 2.2285 70976.40 6.67 68.8 -4179.54 0.059 K=1.00 1 0.263 1 T2 160 - 140 ROHN 4 STD 20.04 6.68 53.1 3.1741 -30594.10 116229.00 K=1.00 1 0.169¹ Т3 140 - 133.333 ROHN 5 EH 6.68 6.68 43.6 6.1120 -40555.00 239378.00 K=1.00 1 0.216 1 T4 133.333 -ROHN 5 EH 6.68 43.6 6.1120 -51672.30 239378.00 6.68

#### Leg Design Data (Compression)

tnxTower	Job	22027.01 - Westport	Page 58 of 71
<b>Centek Engineering Inc.</b> 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
	126.667				K=1.00				~
Т5	126.667 - 120	ROHN 5 EH	6.68	6.68	43.6 K=1.00	6.1120	-66113.50	239378.00	0.276 1
T6	120 - 100	ROHN 6 EHS	20.04	10.02	54.0 K=1.00	6.7133	-106513.00	244017.00	0.436 1
<b>T</b> 7	100 - 90	ROHN 6 EH	10.03	10.03	54.8 K=1.00	8.4049	-130317.00	303585.00	0.429 1
Т8	90 - 80	ROHN 6 EH	10.03	10.03	54.8 K=1.00	8.4049	-151678.00	303585.00	$0.500^{-1}$
Т9	80 - 60	120deg_9.6250x0.375 BU on ROHN 8 EHS	20.05	10.03	42.2 K=1.00	13.6005	-194378.00	537270.00	0.362 1
T10	60 - 40	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	20.05	10.03	42.2 K=1.00	13.6005	-238636.00	460811.00	0.518 1
T11	40 - 30	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	10.03	10.03	42.2 K=1.00	13.6005	-261072.00	460811.00	0.567 1
T12	30 - 20	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	10.03	10.03	42.2 K=1.00	13.6005	-283449.00	460811.00	0.615 1
T13	20 - 0	1/3 9.6250x0.375 on ROHN 8 EH Leg Pipe	20.05	10.03	42.9 K=1.00	16.6002	-305388.00	560408.00	0.545 1

ection No.	Elevation	Size	L	Lu	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	180 - 160	ROHN 2 STD	7.94	7.67	117.0 K=1.00	1.0745	-4024.05	17747.50	0.227 1
T2	160 - 140	ROHN 2 STD	8.55	8.25	125.8 K=1.00	1.0745	-9033.05	15331.30	0.589 1
T3	140 - 133.333	ROHN 2 EH	8.77	8.42	131.5 K=1.00	1.4807	-9235.50	19347.50	0.477 1
T4	133.333 - 126.667	ROHN 2 EH	9.00	8.66	135.3 K=1.00	1.4807	-11819.60	18285.10	0.646 1
T5	126.667 - 120	ROHN 2 XXS	9.24	8.91	152.1 K=1.00	2.6559	-14159.60	25935.80	0.546 1
T6	120 - 100	Pipe 2.5 XXS	12.52	12.06	171.4 K=1.00	4.0285	-18105.30	30977.00	0.584 ¹
T7	100 - 90	ROHN 3 STD	12.92	12.49	128.8 K=1.00	2.2285	-16726.50	30346.40	0.551 ¹
Т8	90 - 80	ROHN 3 STD	13.35	12.93	133.4 K=1.00	2.2285	-16731.50	28290.90	0.591 1
Т9	80 - 60	ROHN 3 STD	14.21	13.70	141.3 K=1.00	2.2285	-17849.10	25233.20	$0.707^{-1}$
T10	60 - 40	ROHN 3 EH	15.12	14.64	154.6 K=1.00	3.0159	-19178.70	28518.80	$0.672^{-1}$
T11	40 - 30	ROHN 3 EH	15.60	15.12	159.7 K=1.00	3.0159	-19775.00	26718.70	$0.740^{-1}$

tores Tores or	Job		Page
tnxTower		22027.01 - Westport	59 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
140.	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\phi P_n}$
T12	30 - 20	ROHN 3 EH	16.08	15.62	164.9 K=1.00	3.0159	-20455.00	25055.10	0.816 1
T13	20 - 0	ROHN 3 EH	24.33	23.70	125.1 K=0.50	3.0159	-30142.60	43506.30	0.693 1

# Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	180 - 160	ROHN 1.5 STD	8.60	4.15	80.0 K=1.00	0.7995	-2162.24	22519.90	0.096 1
T2	160 - 140	ROHN 1.5 STD	10.01	4.82	92.9 K=1.00	0.7995	-5605.24	19142.00	0.293 1
Т3	140 - 133.333	ROHN 2 STD	10.71	5.12	78.1 K=1.00	1.0745	-5934.58	30956.80	0.192 ¹
Т6	120 - 100	ROHN 2 STD	13.92	6.68	101.9 K=1.00	1.0745	-10681.90	22639.20	0.472 1
<b>T</b> 7	100 - 90	ROHN 2 STD	15.04	7.24	110.5 K=1.00	1.0745	-10479.10	19817.20	0.529 1
Т9	80 - 60	ROHN 2.5 STD	18.93	9.10	115.2 K=1.00	1.7040	-12460.20	28984.30	0.430 ¹
T10	60 - 40	ROHN 2.5 STD	21.43	10.35	131.1 K=1.00	1.7040	-14115.10	22405.40	0.630 ¹
T11	40 - 30	ROHN 2.5 STD	22.68	10.97	139.0 K=1.00	1.7040	-14904.90	19925.90	0.748 1
T13	20 - 0	P3.5x.226	25.18	12.23	109.8 K=1.00	2.6795	-16764.10	49951.20	0.336 1

¹  $P_u \neq \phi P_n$  controls

# Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
110.	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\phi P_n}$
T1	180 - 160	ROHN 1.5 STD	8.54	4.13	79.5 K=1.00	0.7995	-355.00	22660.50	0.016 1
T4	133.333 - 126.667	ROHN 2 STD	11.40	5.47	83.4 K=1.00	1.0745	-7888.88	29081.40	0.271 1
T5	126.667 - 120	ROHN 2 STD	12.10	5.82	88.7 K=1.00	1.0745	-9707.53	27207.90	0.357 1
Т8	90 - 80	ROHN 2 STD	16.36	7.90	120.5 K=1.00	1.0745	-10927.80	16719.60	0.654 ¹
T12	30 - 20	ROHN 2.5 EH	23.93	11.60	150.6	2.2535	-15543.00	22438.80	$0.693^{-1}$

tress Toste on	Job		Page
tnxTower		22027.01 - Westport	60 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	А	$P_u$	$\phi P_n$	Ratio P
140.	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
					K=1.00				~

## Redundant Horizontal (1) Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	20 - 0	ROHN 1.5 STD	6.29	5.93	114.4 K=1.00	0.7995	-5299.78	13802.80	0.384 1

¹  $P_u \neq \phi P_n$  controls

	Redundant Diagonal (1) Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	Kl/r	Α	$P_u$	<b>φ</b> <i>P</i> _{<i>n</i>}	Ratio Pu	
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$	
T13	20 - 0	ROHN 2 STD	11.50	10.77	164.2 K=1.00	1.0745	-4841.90	8998.85	0.538 1	

¹  $P_u \neq \phi P_n$  controls

Redundant Hip (1) Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	$P_u$	$\phi P_n$	Ratio P
100.	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
T13	20 - 0	ROHN 2.5 STD	6.29	6.29	79.7 K=1.00	1.7040	-17.64	48180.50	0.000 1

¹  $P_u \neq \phi P_n$  controls

	Inner Bracing Design Data (Compression)									
Section	Elevation	Size	L	Lu	Kl/r	A	Pu	$\phi P_n$	Ratio	
No.	ft		ft	ft		in ²	lb	lb	$P_u$ $\phi P_n$	
T1	180 - 160	L2x2x1/8	4.30	4.30	129.8 K=1.00	0.4844	-1.85	8234.10	$0.000^{-1}$	

tran Tan an	Job		Page
tnxTower		22027.01 - Westport	61 of 71
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580	Client	Verizon	Designed by
FAX: (203) 488-8587		Venzon	TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
110.	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\phi P_n}$
T2	160 - 140	L2x2x1/8	4.31	4.31	130.2 K=1.00	0.4844	-7.11	8181.36	0.001
Т3	140 - 133.333	L2x2x1/8	5.35	5.35	161.6 K=1.00	0.4844	-6.69	5306.96	0.001
T4	133.333 - 126.667	L2x2x1/8	5.70	5.70	172.1 K=1.00	0.4844	-9.04	4680.37	0.002
Т5	126.667 - 120	L2x2x1/8	6.05	6.05	182.6 K=1.00	0.4844	-10.63	4158.54	0.003
T6	120 - 100	L2 1/2x2 1/2x3/16	6.96	6.96	168.7 K=1.00	0.9020	-11.39	9072.37	0.001
T7	100 - 90	L2 1/2x2 1/2x3/16	7.52	7.52	182.3 K=1.00	0.9020	-10.80	7766.06	0.001
Т8	90 - 80	L2 1/2x2 1/2x3/16	8.18	8.18	198.3 K=1.00	0.9020	-11.04	6565.57	0.002
Т9	80 - 60	L3x3x3/16	9.46	9.46	190.5 K=1.00	1.0900	-12.95	8593.12	0.002
T10	60 - 40	L3 1/2x3 1/2x1/4	10.71	10.71	185.2 K=1.00	1.6900	-15.38	14095.40	0.001
T11	40 - 30	L3 1/2x3 1/2x1/4	11.34	11.34	196.1 K=1.00	1.6900	-15.63	12584.30	0.001
T12	30 - 20	L3 1/2x3 1/2x1/4	11.96	11.96	206.9 K=1.00	1.6900	-16.45	11303.80	0.001
T13	20 - 0	ROHN 2 STD	12.59	12.59	191.9 K=1.00	1.0745	-14.50	6590.81	0.002

## **Tension Checks**

# Leg Design Data (Tension)

Section	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio
No.									$P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	180 - 160	ROHN 3 STD	20.00	6.67	68.8	2.2285	2501.39	100281.00	0.025 1
T2	160 - 140	ROHN 4 STD	20.04	6.68	53.1	3.1741	24080.80	142832.00	0.169 ¹
Т3	140 - 133.333	ROHN 5 EH	6.68	6.68	43.6	6.1120	33484.40	275039.00	0.122 1
T4	133.333 - 126.667	ROHN 5 EH	6.68	6.68	43.6	6.1120	42586.90	275039.00	0.155 ¹
Т5	126.667 - 120	ROHN 5 EH	6.68	6.68	43.6	6.1120	54208.10	275039.00	0.197 ¹
Т6	120 - 100	ROHN 6 EHS	20.04	10.02	54.0	6.7133	91026.50	302097.00	0.301 1
T7	100 - 90	ROHN 6 EH	10.03	10.03	54.8	8.4049	113053.00	378222.00	0.299

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	22027.01 - Westport	62 of 71
Project		Date
	180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
									~
T8	90 - 80	ROHN 6 EH	10.03	10.03	54.8	8.4049	132928.00	378222.00	0.351
									× .
Т9	80 - 60	120deg_9.6250x0.375 BU on ROHN 8 EHS	20.05	10.03	42.2	13.6005	171814.00	612023.00	0.281 1
T10	60 - 40	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	20.05	10.03	42.2	13.6005	211153.00	514099.00	0.411
T11	40 - 30	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	10.03	10.03	42.2	13.6005	230784.00	514099.00	0.449 1
T12	30 - 20	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	10.03	10.03	42.2	13.6005	250200.00	514099.00	0.487 1
T13	20 - 0	1/3 9.6250x0.375 on ROHN 8 EH Leg Pipe	20.05	10.03	42.9	16.6002	267893.00	627488.00	0.427 1

¹  $P_u \neq \phi P_n$  controls

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	180 - 160	ROHN 2 STD	7.94	7.67	117.0	1.0745	3956.69	48353.90	0.082 1
T2	160 - 140	ROHN 2 STD	8.34	8.04	122.6	1.0745	9020.57	48353.90	$0.187^{-1}$
Т3	140 - 133.333	ROHN 2 EH	8.77	8.42	131.5	1.4807	9125.41	66630.70	0.137 ¹
T4	133.333 - 126.667	ROHN 2 EH	9.00	8.66	135.3	1.4807	11701.10	66630.70	$0.176^{-1}$
Т5	126.667 - 120	ROHN 2 XXS	9.24	8.91	152.1	2.6559	13975.10	119516.00	0.117 ⁻¹
T6	120 - 100	Pipe 2.5 XXS	12.19	11.73	166.7	4.0285	17952.90	181280.00	0.099 ¹
T7	100 - 90	ROHN 3 STD	12.92	12.49	128.8	2.2285	16507.20	100281.00	0.165 1
T8	90 - 80	ROHN 3 STD	13.35	12.93	133.4	2.2285	16493.80	100281.00	0.164 ¹
Т9	80 - 60	ROHN 3 STD	14.21	13.70	141.3	2.2285	17525.60	100281.00	$0.175^{-1}$
T10	60 - 40	ROHN 3 EH	15.12	14.64	154.6	3.0159	18690.10	135717.00	0.138 ¹
T11	40 - 30	ROHN 3 EH	15.60	15.12	159.7	3.0159	19250.70	135717.00	$0.142^{-1}$
T12	30 - 20	ROHN 3 EH	16.08	15.62	164.9	3.0159	19845.90	135717.00	0.146 ¹
T13	20 - 0	ROHN 3 EH	24.33	23.70	250.3	3.0159	29394.80	135717.00	0.217 1

*tnxTower* 

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

22027.01 - Westport	63 of 71
Project 180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Client Verizon	Designed by TJL

#### ¹ $P_u \neq \phi P_n$ controls

		Hori	zontal	Desig	in Dat	ta (Ter	nsion)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
110.	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\phi P_n}$
T1	180 - 160	ROHN 1.5 STD	8.60	4.15	80.0	0.7995	2156.77	35975.60	0.060 1
T2	160 - 140	ROHN 1.5 STD	10.01	4.82	92.9	0.7995	5634.75	35975.60	0.157 ¹
Т3	140 - 133.333	ROHN 2 STD	10.71	5.12	78.1	1.0745	5963.43	48353.90	0.123 ¹
T6	120 - 100	ROHN 2 STD	13.92	6.68	101.9	1.0745	10785.10	48353.90	0.223 1
T7	100 - 90	ROHN 2 STD	15.04	7.24	110.5	1.0745	10502.00	48353.90	0.217 1
Т9	80 - 60	ROHN 2.5 STD	18.93	9.10	115.2	1.7040	12579.10	76682.30	0.164 ¹
T10	60 - 40	ROHN 2.5 STD	21.43	10.35	131.1	1.7040	14262.90	76682.30	0.186 ¹
T11	40 - 30	ROHN 2.5 STD	22.68	10.97	139.0	1.7040	15039.20	76682.30	0.196 ¹
T13	20 - 0	P3.5x.226	25.18	12.23	109.8	2.6795	16623.90	120579.00	0.138 1

¹  $P_u \neq \phi P_n$  controls

		То	o Girt D	)esigr	n Data	a (Ten	sion)		
Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	180 - 160	ROHN 1.5 STD	8.54	4.13	79.5	0.7995	324.64	35975.60	0.009 1
T4	133.333 - 126.667	ROHN 2 STD	11.40	5.47	83.4	1.0745	7897.09	48353.90	0.163 1
T5	126.667 - 120	ROHN 2 STD	12.10	5.82	88.7	1.0745	9698.85	48353.90	0.201 1
T8	90 - 80	ROHN 2 STD	16.36	7.90	120.5	1.0745	10998.90	48353.90	0.227 1
T12	30 - 20	ROHN 2.5 EH	23.93	11.60	150.6	2.2535	15903.30	101409.00	0.157 1

¹  $P_u \neq \phi P_n$  controls

#### Redundant Horizontal (1) Design Data (Tension)

tnxTower	Job 22027.01 - Westport	Page 64 of 71
<b>Centek Engineering Inc.</b> 63-2 North Branford Rd.	Project 180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	20 - 0	ROHN 1.5 STD	6.29	5.93	114.4	0.7995	5299.78	35975.60	0.147 1

		Redundant	: Diago	nal (1	) Des	ign Da	ata (Ter	ision)	
Section No.	Elevation	Size	L	L _u	Kl/r	A	$P_u$	$\phi P_n$	Ratio P.
1101	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\phi P_n}$
T13	20 - 0	ROHN 2 STD	11.50	10.77	164.2	1.0745	4841.90	48353.90	0.100 1

¹  $P_u \neq \phi P_n$  controls

	Redundant Hip (1) Design Data (Tension)								
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	$\phi P_n$	Ratio
140.	ft		ft	ft		in ²	lb	lb	$\frac{1}{\psi}$
T13	20 - 0	ROHN 2.5 STD	6.29	6.29	79.7	1.7040	1.69	76682.30	0.000 1

¹  $P_u \neq \phi P_n$  controls

# Inner Bracing Design Data (Tension)

Section	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio
No.	ft		ft	ft		$in^2$	lb	lb	$\frac{P_u}{\phi P_n}$
T1	180 - 160	L2x2x1/8	4.30	4.30	82.4	0.4844	1.86	15693.80	0.000 1
T2	160 - 140	L2x2x1/8	4.31	4.31	82.6	0.4844	5.24	15693.80	0.000 1
T3	140 - 133.333	L2x2x1/8	5.35	5.35	102.6	0.4844	3.88	15693.80	$0.000^{-1}$
T4	133.333 - 126.667	L2x2x1/8	5.70	5.70	109.3	0.4844	6.09	15693.80	0.000 1
Т5	126.667 - 120	L2x2x1/8	6.05	6.05	115.9	0.4844	6.21	15693.80	$0.000^{-1}$
T6	120 - 100	L2 1/2x2 1/2x3/16	6.40	6.40	98.7	0.9020	3.60	29224.80	$0.000^{-1}$
<b>T</b> 7	100 - 90	L2 1/2x2 1/2x3/16	7.52	7.52	116.0	0.9020	2.46	29224.80	0.000 ¹

4 <b>T</b>	Job		Page
tnxTower		22027.01 - Westport	65 of 71
Centek Engineering Inc. 63-2 North Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
Т8	90 - 80	L2 1/2x2 1/2x3/16	8.18	8.18	126.2	0.9020	1.51	29224.80	0.000 1
Т9	80 - 60	L3x3x3/16	8.84	8.84	113.0	1.0900	2.53	35316.00	$0.000^{-1}$
T10	60 - 40	L3 1/2x3 1/2x1/4	10.09	10.09	111.1	1.6900	0.54	76050.00	0.000 1

			Section Capa	acity ⁻	Table			
	D1 .:	0	C:	<i>C</i> ::: 1	D	D	0/	D
Section	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{  heta P_{allow}}_{lb}$	% Capacity	Pass Fail
No.	ţ.							
T1	180 - 160	Leg	ROHN 3 STD	1	-2843.03	70976.40	4.0	Pass
		Leg	ROHN 3 STD	2	-2530.83	70976.40	3.6	Pass
-		Leg	ROHN 3 STD	3	-4179.54	70976.40	5.9	Pass
T2	160 - 140	Leg	ROHN 4 STD	40	-26299.20	116229.00	22.6	Pass
		Leg	ROHN 4 STD	41	-26169.40	116229.00	22.5	Pass
		Leg	ROHN 4 STD	42	-30594.10	116229.00	26.3	Pass
T3	140 - 133.333	Leg	ROHN 5 EH	79	-35475.40	239378.00	14.8	Pass
		Leg	ROHN 5 EH	80	-35478.40	239378.00	14.8	Pass
							14.9 (b)	
		Leg	ROHN 5 EH	81	-40555.00	239378.00	16.9	Pass
T4	133.333 - 126.667	Leg	ROHN 5 EH	94	-45927.90	239378.00	19.2	Pass
		Leg	ROHN 5 EH	95	-46116.20	239378.00	19.3	Pass
		Leg	ROHN 5 EH	96	-51672.30	239378.00	21.6	Pass
T5	126.667 - 120	Leg	ROHN 5 EH	109	-59694.70	239378.00	24.9	Pass
		Leg	ROHN 5 EH	110	-60073.10	239378.00	25.1	Pass
		Leg	ROHN 5 EH	111	-66113.50	239378.00	27.6	Pass
Т6	120 - 100	Leg	ROHN 6 EHS	124	-98655.30	244017.00	40.4	Pass
		Leg	ROHN 6 EHS	125	-99450.20	244017.00	40.8	Pass
		Leg	ROHN 6 EHS	126	-106513.00	244017.00	43.6	Pass
<b>T</b> 7	100 - 90	Leg	ROHN 6 EH	151	-121781.00	303585.00	40.1	Pass
		Leg	ROHN 6 EH	152	-122773.00	303585.00	40.4	Pass
		Leg	ROHN 6 EH	153	-130317.00	303585.00	42.9	Pass
T8	90 - 80	Leg	ROHN 6 EH	166	-142670.00	303585.00	47.0	Pass
		Leg	ROHN 6 EH	167	-143820.00	303585.00	47.4	Pass
		Leg	ROHN 6 EH	168	-151678.00	303585.00	50.0	Pass
Т9	80 - 60	Leg	120deg_9.6250x0.375 BU on ROHN 8 EHS	181	-184577.00	537270.00	34.4	Pass
		Leg	120deg_9.6250x0.375 BU on ROHN 8 EHS	182	-185989.00	537270.00	34.6	Pass
		Leg	120deg_9.6250x0.375 BU on ROHN 8 EHS	183	-194378.00	537270.00	36.2	Pass
T10	60 - 40	Leg	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	208	-228312.00	460811.00	49.5	Pass
		Leg	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	209	-229799.00	460811.00	49.9	Pass
		Leg	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	210	-238636.00	460811.00	51.8	Pass
T11	40 - 30	Leg	1/3 9.6250x0.375 on ROHN 8 EHS Leg Pipe	235	-250457.00	460811.00	54.4	Pass
		Leg	1/3 9.6250x0.375 on ROHN 8	236	-252045.00	460811.00	54.7	Pass

*tnxTower* 

Job

Project

Client

22027.01 - Westport

Page 66 of 71

Date 08:43:42 04/05/22

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Verizon

180-ft Lattice Tower (CSP #32)

Designed by TJL

Section	Elevation	Component	Size	Critical	P		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
			EHS Leg Pipe					
		Leg	1/3 9.6250x0.375 on ROHN 8	237	-261072.00	460811.00	56.7	Pass
			EHS Leg Pipe					
T12	30 - 20	Leg	1/3 9.6250x0.375 on ROHN 8	250	-272576.00	460811.00	59.2	Pass
			EHS Leg Pipe					
		Leg	1/3 9.6250x0.375 on ROHN 8	251	-274254.00	460811.00	59.5	Pass
			EHS Leg Pipe					
		Leg	1/3 9.6250x0.375 on ROHN 8	252	-283449.00	460811.00	61.5	Pass
	• • •		EHS Leg Pipe					
T13	20 - 0	Leg	1/3 9.6250x0.375 on ROHN 8	265	-294266.00	560408.00	52.5	Pass
			EH Leg Pipe	244	20/0/1 00		60.1 (b)	
		Leg	1/3 9.6250x0.375 on ROHN 8	266	-296061.00	560408.00	52.8	Pass
		T	EH Leg Pipe	2(7	205288.00	5 ( 0 40 9 0 0	60.4 (b)	D
		Leg	1/3 9.6250x0.375 on ROHN 8	267	-305388.00	560408.00	54.5	Pass
<b>T</b> 1	190 160	Disconst	EH Leg Pipe	ø	2225 17	17747 50	61.4 (b)	Dasa
T1	180 - 160	Diagonal	ROHN 2 STD ROHN 2 STD	8 9	-2225.17 -1974.74	17747.50 17747.50	12.5 11.1	Pass Pass
		Diagonal Diagonal	ROHN 2 STD	11	-1974.74	17747.50	12.4	Pass
		Diagonal	ROHN 2 STD ROHN 2 STD	12	-2303.91	17747.50	12.4	Pass
		Diagonal	ROHN 2 STD ROHN 2 STD	12	-4024.05	17747.50	22.7	Pass
		Diagonal	ROHN 2 STD	14	-3589.12	17747.50	20.2	Pass
		Diagonal	ROHN 2 STD	20	-1748.17	17782.20	20.2 9.8	Pass
		Diagonal	ROHN 2 STD	20	-1437.28	17782.20	8.1	Pass
		Diagonal	ROHN 2 STD	23	-983.64	17782.20	5.5	Pass
		Diagonal	ROHN 2 STD	23	-1113.54	17782.20	6.3	Pass
		Diagonal	ROHN 2 STD	26	-2748.87	17782.20	15.5	Pass
		Diagonal	ROHN 2 STD	27	-2253.06	17782.20	12.7	Pass
		Diagonal	ROHN 2 STD	31	-513.70	17817.00	2.9	Pass
		Diagonal	ROHN 2 STD	32	-387.66	17817.00	2.2	Pass
		Diagonal	ROHN 2 STD	33	-162.04	17817.00	0.9	Pass
		Diagonal	ROHN 2 STD	34	-155.04	17817.00	0.9	Pass
		Diagonal	ROHN 2 STD	35	-616.99	17817.00	3.5	Pass
		Diagonal	ROHN 2 STD	36	-509.71	17817.00	2.9	Pass
T2	160 - 140	Diagonal	ROHN 2 STD	44	-5543.10	15331.30	36.2	Pass
		Diagonal	ROHN 2 STD	45	-5443.33	15331.30	35.5	Pass
		Diagonal	ROHN 2 STD	47	-6482.65	15331.30	42.3	Pass
		Diagonal	ROHN 2 STD	48	-6470.71	15331.30	42.2	Pass
		Diagonal	ROHN 2 STD	50	-9033.05	15331.30	58.9	Pass
		Diagonal	ROHN 2 STD	51	-8752.93	15331.30	57.1	Pass
		Diagonal	ROHN 2 STD	56	-5449.80	16154.50	33.7	Pass
		Diagonal	ROHN 2 STD	57	-5333.44	16154.50	33.0	Pass
		Diagonal	ROHN 2 STD	59	-6598.69	16154.50	40.8	Pass
		Diagonal	ROHN 2 STD	60	-6585.24	16154.50	40.8	Pass
		Diagonal	ROHN 2 STD	62	-9091.89	16154.50	56.3	Pass
		Diagonal	ROHN 2 STD	63	-8780.41	16154.50	54.4	Pass
		Diagonal	ROHN 2 STD	68	-5256.52	17005.60	30.9	Pass
		Diagonal	ROHN 2 STD	69	-5115.97	17005.60	30.1	Pass
		Diagonal	ROHN 2 STD	71	-6634.36	17005.60	39.0	Pass
		Diagonal	ROHN 2 STD	72	-6622.94	17005.60	38.9	Pass
		Diagonal	ROHN 2 STD	74	-9001.97	17005.60	52.9	Pass
<b>T</b>		Diagonal	ROHN 2 STD	75	-8645.86	17005.60	50.8	Pass
Т3	140 - 133.333	Diagonal	ROHN 2 EH	83	-5766.15	19347.50	29.8	Pass
		Diagonal	ROHN 2 EH	84	-5681.60	19347.50	29.4	Pass
		Diagonal	ROHN 2 EH	86	-6541.83	19347.50	33.8	Pass
		Diagonal	ROHN 2 EH	87	-6524.50	19347.50	33.7	Pass
		Diagonal	ROHN 2 EH	89	-9235.50	19347.50	47.7	Pass
<b>T</b> 4	122 222	Diagonal	ROHN 2 EH	90	-8979.62	19347.50	46.4	Pass
T4	133.333 -	Diagonal	ROHN 2 EH	100	-8652.11	18285.10	47.3	Pass
	126.667	Diagonal	DOID 2 FU	101	0575 22	10305 10	16.0	D
		Diagonal	ROHN 2 EH	101	-8575.33	18285.10	46.9	Pass
		Diagonal	ROHN 2 EH	102	-9205.04	18285.10	50.3	Pass

tnx]

Centek En 63-2 North Branfor Phone: (2 FAX: (20

	Job		Page
Tower		22027.01 - Westport	67 of 71
Ingineering Inc.	Project		Date
rth Branford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
ord, CT 06405 (203) 488-0580	Client	Verizon	Designed by TJL
(203) 488-8587			13

Section	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{  heta P_{allow}}_{lb}$	% Capacity	Pass Fair
No.	ji	••	ROHN 2 EH	103	-9194.21	18285.10	50.3	Pass
		Diagonal Diagonal	ROHN 2 EH	105	-9194.21 -11819.60	18285.10	50.5 64.6	Pass
		Diagonal	ROHN 2 EH	104	-11586.20	18285.10	63.4	Pass
Т5	126.667 - 120	Diagonal	ROHN 2 XXS	115	-11308.00	25935.80	43.6	Pass
15	120.007 - 120	Diagonal	ROHN 2 XXS	115	-11235.30	25935.80	43.3	Pass
		Diagonal	ROHN 2 XXS	117	-11834.20	25935.80	45.6	Pass
		Diagonal	ROHN 2 XXS	117	-11820.10	25935.80	45.6	Pass
		Diagonal	ROHN 2 XXS	118	-14159.60	25935.80	54.6	Pass
		Diagonal	ROHN 2 XXS	120	-13943.50	25935.80	53.8	Pass
T6	120 - 100	Diagonal	Pipe 2.5 XXS	120	-14883.30	30977.00	48.0	Pass
10	120 - 100	Diagonal	Pipe 2.5 XXS	128	-14807.20	30977.00	47.8	Pass
		Diagonal	Pipe 2.5 XXS	131	-16330.00	30977.00	52.7	Pass
		Diagonal	Pipe 2.5 XXS	132	-16303.10	30977.00	52.6	Pass
		Diagonal	Pipe 2.5 XXS	132	-18105.30	30977.00	58.4	Pass
		Diagonal	Pipe 2.5 XXS	135	-17903.80	30977.00	57.8	Pass
		Diagonal	Pipe 2.5 XXS	140	-14848.10	32743.10	45.3	Pass
		Diagonal	Pipe 2.5 XXS	140	-14764.80	32743.10	45.1	Pass
		Diagonal	Pipe 2.5 XXS	141	-15868.90	32743.10	48.5	Pas
		Diagonal	Pipe 2.5 XXS	145	-15840.90	32743.10	48.4	Pas
		Diagonal	Pipe 2.5 XXS	146	-18248.20	32743.10	55.7	Pas
		Diagonal	Pipe 2.5 XXS	140	-18013.20	32743.10	55.0	Pas
T7	100 - 90	Diagonal	ROHN 3 STD	155	-13789.20	30346.40	45.4	Pas
17	100 - 90	Diagonal	ROHN 3 STD	156	-13722.20	30346.40	45.2	Pas
		Diagonal	ROHN 3 STD	158	-15473.50	30346.40	51.0	Pas
		Diagonal	ROHN 3 STD	150	-15419.80	30346.40	50.8	Pas
		Diagonal	ROHN 3 STD	161	-16726.50	30346.40	55.1	Pas
		Diagonal	ROHN 3 STD	162	-16577.40	30346.40	54.6	Pas
T8	90 - 80	Diagonal	ROHN 3 STD	172	-13956.20	28290.90	49.3	Pas
10	<i>J</i> 0 00	Diagonal	ROHN 3 STD	172	-13894.20	28290.90	49.1	Pas
		Diagonal	ROHN 3 STD	174	-15878.50	28290.90	56.1	Pas
		Diagonal	ROHN 3 STD	175	-15830.20	28290.90	56.0	Pas
		Diagonal	ROHN 3 STD	175	-16731.50	28290.90	59.1	Pas
		Diagonal	ROHN 3 STD	177	-16603.80	28290.90	58.7	Pas
Т9	80 - 60	Diagonal	ROHN 3 STD	185	-15295.10	25233.20	60.6	Pas
17	00 00	Diagonal	ROHN 3 STD	185	-15241.30	25233.20	60.4	Pas
		Diagonal	ROHN 3 STD	188	-17589.40	25233.20	69.7	Pas
		Diagonal	ROHN 3 STD	189	-17555.40	25233.20	69.6	Pas
		Diagonal	ROHN 3 STD	191	-17849.10	25233.20	70.7	Pas
		Diagonal	ROHN 3 STD	192	-17748.30	25233.20	70.3	Pas
		Diagonal	ROHN 3 STD	192	-14675.20	26922.60	54.5	Pas
		Diagonal	ROHN 3 STD	198	-14616.70	26922.60	54.3	Pas
		Diagonal	ROHN 3 STD	200	-16831.60	26922.60	62.5	Pas
		Diagonal	ROHN 3 STD	200	-16792.50	26922.60	62.4	Pas
		Diagonal	ROHN 3 STD	203	-17358.00	26922.60	64.5	Pas
		Diagonal	ROHN 3 STD	205	-17243.00	26922.60	64.0	Pas
Г10	60 - 40	Diagonal	ROHN 3 EH	212	-16658.80	28518.80	58.4	Pas
110	00 10	Diagonal	ROHN 3 EH	212	-16616.60	28518.80	58.3	Pas
		Diagonal	ROHN 3 EH	215	-19178.70	28518.80	67.2	Pas
		Diagonal	ROHN 3 EH	216	-19146.30	28518.80	67.1	Pas
		Diagonal	ROHN 3 EH	218	-19118.50	28518.80	67.0	Pas
		Diagonal	ROHN 3 EH	210	-19034.20	28518.80	66.7	Pas
		Diagonal	ROHN 3 EH	224	-16188.10	30411.50	53.2	Pas
		Diagonal	ROHN 3 EH	225	-16143.50	30411.50	53.1	Pas
		Diagonal	ROHN 3 EH	227	-18587.40	30411.50	61.1	Pas
		Diagonal	ROHN 3 EH	228	-18553.20	30411.50	61.0	Pas
		Diagonal	ROHN 3 EH	230	-18727.50	30411.50	61.6	Pas
		Diagonal	ROHN 3 EH	231	-18630.70	30411.50	61.3	Pas
T11	40 - 30	Diagonal	ROHN 3 EH	239	-17114.10	26718.70	64.1	Pass
		Diagonal	ROHN 3 EH	240	-17072.60	26718.70	63.9	Pass
		Diagonal	ROHN 3 EH	242	-19775.00	26718.70	74.0	Pass

tnxTa

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job		Page
ower		22027.01 - Westport	68 of 71
<b>gineering Inc.</b> Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
l, CT 06405 03) 488-0580 3) 488-8587	ng Inc. d Rd. 180-ft Lattice Tower (CSP #32) Client 0580 Verizon Date 08:4 Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Design Des	Designed by TJL	

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
		Diagonal	ROHN 3 EH	245	-19533.20	26718.70	73.1	Pass
		Diagonal	ROHN 3 EH	246	-19460.30	26718.70	72.8	Pass
T12	30 - 20	Diagonal	ROHN 3 EH	256	-17741.30	25055.10	70.8	Pass
		Diagonal	ROHN 3 EH	257	-17701.90	25055.10	70.7	Pass
		Diagonal	ROHN 3 EH	258	-20455.00	25055.10	81.6	Pass
		Diagonal	ROHN 3 EH	259	-20427.50	25055.10	81.5	Pass
		Diagonal	ROHN 3 EH	260	-20085.20	25055.10	80.2	Pass
		Diagonal	ROHN 3 EH	261	-20018.40	25055.10	79.9	Pass
T13	20 - 0	Diagonal	ROHN 3 EH	269	-25855.30	43506.30	59.4	Pass
		Diagonal	ROHN 3 EH	272	-25806.90	43506.30	59.3	Pass
		Diagonal	ROHN 3 EH	276	-30142.60	43506.30	69.3	Pass
		Diagonal	ROHN 3 EH	279	-30074.60	43506.30	69.1	Pass
		Diagonal	ROHN 3 EH	284	-29226.30	43506.30	67.2	Pass
		Diagonal	ROHN 3 EH	287	-29120.20	43506.30	66.9	Pass
T1	180 - 160	Horizontal	ROHN 1.5 STD	7	-1270.33	22519.90	5.6	Pass
		Horizontal	ROHN 1.5 STD	10	-1297.56	22519.90	5.8	Pass
		Horizontal	ROHN 1.5 STD	13	-2162.24	22519.90	9.6	Pass
		Horizontal	ROHN 1.5 STD	19	-1061.34	22590.20	4.7	Pass
		Horizontal	ROHN 1.5 STD	22	-723.76	22590.20	3.2	Pass
		Horizontal	ROHN 1.5 STD	25	-1554.62	22590.20	6.9	Pass
T2	160 - 140	Horizontal	ROHN 1.5 STD	43	-3474.30	19142.00	18.2	Pass
		Horizontal	ROHN 1.5 STD	46	-4065.95	19142.00	21.2	Pass
		Horizontal	ROHN 1.5 STD	49	-5605.24	19142.00	29.3	Pass
		Horizontal	ROHN 1.5 STD	55	-3312.34	20895.80	15.9	Pass
		Horizontal	ROHN 1.5 STD	58	-3991.22	20895.80	19.1	Pass
		Horizontal	ROHN 1.5 STD	61	-5418.75	20895.80	25.9	Pass
		Horizontal	ROHN 1.5 STD	67	-3891.60	22661.30	17.2	Pass
		Horizontal	ROHN 1.5 STD	70	-4405.81	22661.30	19.4	Pass
		Horizontal	ROHN 1.5 STD	73	-5324.02	22661.30	23.5	Pass
Т3	140 - 133.333	Horizontal	ROHN 2 STD	82	-3777.24	30956.80	12.2	Pass
							14.0 (b)	
		Horizontal	ROHN 2 STD	85	-4257.68	30956.80	13.8	Pass
							15.5 (b)	
		Horizontal	ROHN 2 STD	88	-5934.58	30956.80	19.2	Pass
							21.6 (b)	2 1100
T6	120 - 100	Horizontal	ROHN 2 STD	127	-8745.39	22639.20	38.6	Pass
	100 100	Horizontal	ROHN 2 STD	130	-9695.50	22639.20	42.8	Pass
		Horizontal	ROHN 2 STD	133	-10681.90	22639.20	47.2	Pass
		Horizontal	ROHN 2 STD	139	-8320.12	25586.40	32.5	Pass
		Horizontal	ROHN 2 STD	142	-9031.20	25586.40	35.3	Pass
		Horizontal	ROHN 2 STD	145	-10266.80	25586.40	40.1	Pass
<b>T</b> 7	100 - 90	Horizontal	ROHN 2 STD	154	-8604.08	19817.20	43.4	Pass
1 /	100 - 90	Horizontal	ROHN 2 STD	157	-9844.54	19817.20	49.7	Pass
		Horizontal	ROHN 2 STD	160	-10479.10	19817.20	52.9	Pass
Т9	80 - 60	Horizontal	ROHN 2.5 STD	184	-10644.10	28984.30	36.7	Pass
17	00 00	Homonun	1011112.5 512	101	10011.10	20001.00	39.0 (b)	1 455
		Horizontal	ROHN 2.5 STD	187	-12356.50	28984.30	42.6	Pass
		Homzontar	KOIII 2.5 51D	107	-12550.50	20704.50	44.9 (b)	1 455
		Horizontal	ROHN 2.5 STD	190	-12460.20	28984.30	43.0	Pass
		Homzonitat	ROHIN 2.5 STD	190	-12400.20	20704.30	45.6 (b)	1 455
		Horizontal	ROHN 2.5 STD	196	-9885.94	33028.40	29.9	Pass
		Homzontal	KOIIN 2.5 STD	190	-7003.74	55028.40	36.2 (b)	1 455
		Horizontal	POUN 2.5 STD	199	11277 20	22028 40	. ,	Doce
		Horizontal	ROHN 2.5 STD	199	-11377.30	33028.40	34.4 41.6 (b)	Pass
		Horizontal	POUN 25 STD	202	11722 50	22029 40	41.6 (b)	Page
		Horizontal	ROHN 2.5 STD	202	-11723.50	33028.40	35.5 42.0 (b)	Pass
T10	(0 40	II	DOIN 25 CTD	211	10140.50	22405 40	42.9 (b)	D
T10	60 - 40	Horizontal	ROHN 2.5 STD	211	-12142.50	22405.40	54.2	Pass
		Horizontal	ROHN 2.5 STD	214	-14115.10	22405.40	63.0	Pass
		Horizontal	ROHN 2.5 STD	217	-13987.90	22405.40	62.4	Pass
		Horizontal Horizontal	ROHN 2.5 STD ROHN 2.5 STD	223 226	-11541.90	25378.10 25378.10	45.5 52.8	Pass
					-13408.50	1511010	50 V	Pass

*tnxTow* 

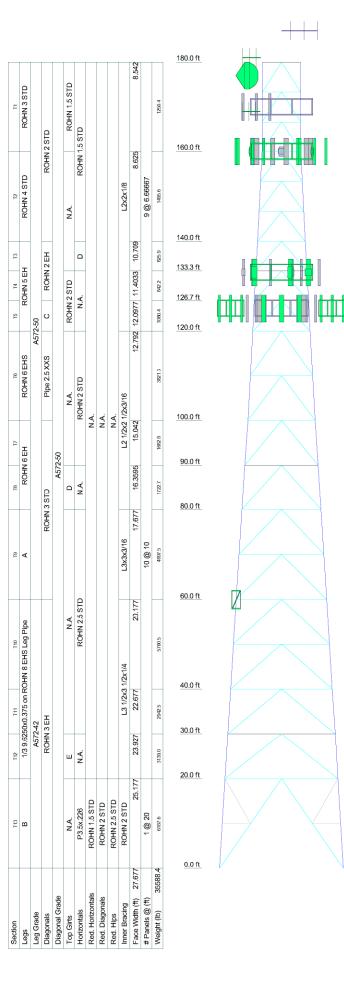
**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job		Page
ver		69 of 71	
ring Inc.	Project		Date
ford Rd.		180-ft Lattice Tower (CSP #32)	08:43:42 04/05/22
6405 8-0580	Client	Verizon	Designed by
-8587		Venzon	TJL

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{  heta P_{allow}}_{lb}$	% Capacity	Pass Fail
110.		Horizontal	ROHN 2.5 STD	229	-13399.20	25378.10	52.8	Pass
T11	40 - 30	Horizontal	ROHN 2.5 STD	238	-12751.10	19925.90	64.0	Pass
	40-50	Horizontal	ROHN 2.5 STD	241	-14904.90	19925.90	74.8	Pass
		Horizontal	ROHN 2.5 STD	241	-14610.70	19925.90	73.3	Pass
<b>T12</b>	20 0							
T13	20 - 0	Horizontal	P3.5x.226	268	-14116.60	49951.20	28.3 35.8 (b)	Pass
		Horizontal	D2 5 226	275	-16764.10	49951.20	33.6	Daga
		Horizontai	P3.5x.226	275	-10/04.10	49931.20	42.2 (b)	Pass
		IItt.l	D2 5- 22(	283	10059 (0	40051-20	42.2 (0)	D
		Horizontal	P3.5x.226	285	-16058.60	49951.20		Pass
<b>T</b> 1	100 100	The Cliff	DOUBL 1 5 CTD		220.02	22660.50	40.7 (b)	р
T1	180 - 160	Top Girt	ROHN 1.5 STD	4	-239.92	22660.50	1.1	Pass
		T C'A	DOIDL1 COTD	-	10 < 00	22662.50	1.2 (b)	D
		Top Girt	ROHN 1.5 STD	5	-126.98	22660.50	0.6	Pass
		Top Girt	ROHN 1.5 STD	6	-355.00	22660.50	1.6	Pass
T4	133.333 -	Top Girt	ROHN 2 STD	97	-6108.54	29081.40	21.0	Pass
	126.667						22.3 (b)	
		Top Girt	ROHN 2 STD	98	-6471.03	29081.40	22.3	Pass
							23.4 (b)	
		Top Girt	ROHN 2 STD	99	-7888.88	29081.40	27.1	Pass
							28.6 (b)	
T5	126.667 - 120	Top Girt	ROHN 2 STD	112	-7776.50	27207.90	28.6	Pass
		Top Girt	ROHN 2 STD	113	-8380.54	27207.90	30.8	Pass
		Top Girt	ROHN 2 STD	114	-9707.53	27207.90	35.7	Pass
T8	90 - 80	Top Girt	ROHN 2 STD	169	-9088.58	16719.60	54.4	Pass
10	50 00	Top Girt	ROHN 2 STD	170	-10428.40	16719.60	62.4	Pass
		Top Girt	ROHN 2 STD	170	-10927.80	16719.60	65.4	Pass
T12	20. 20			253				
112	30 - 20	Top Girt	ROHN 2.5 EH		-13422.10	22438.80	59.8	Pass
		Top Girt	ROHN 2.5 EH	254	-15543.00	22438.80	69.3	Pass
		Top Girt	ROHN 2.5 EH	255	-15250.60	22438.80	68.0	Pass
T13	20 - 0	Redund Horz 1	ROHN 1.5 STD	270	-5106.78	13802.80	37.0	Pass
		Bracing						
		Redund Horz 1	ROHN 1.5 STD	273	-5137.92	13802.80	37.2	Pass
		Bracing						
		Redund Horz 1	ROHN 1.5 STD	277	-5137.92	13802.80	37.2	Pass
		Bracing						
		Redund Horz 1	ROHN 1.5 STD	280	-5299.78	13802.80	38.4	Pass
		Bracing						
		Redund Horz 1	ROHN 1.5 STD	285	-5299.78	13802.80	38.4	Pass
		Bracing	KOIII I.5 SID	205	-5299.10	15002.00	50.4	1 455
		Redund Horz 1	ROHN 1.5 STD	288	-5106.78	13802.80	37.0	Pass
		Bracing	KOIII I.5 SID	200	-5100.78	15002.00	57.0	1 455
T13	20 - 0	Redund Diag 1	ROHN 2 STD	271	-4665.57	8998.85	51.8	Pass
115	20 - 0	Bracing	KOHN 2 STD	271	-4003.37	0990.03	51.8	rass
			ROHN 2 STD	274	-4694.02	8998.85	52.2	Daga
		Redund Diag 1	ROHN 2 STD	274	-4694.02	8998.85	52.2	Pass
		Bracing	BOIDLO CED	270	4604.00	0000.05	<i>c</i> 2 2	D
		Redund Diag 1	ROHN 2 STD	278	-4694.02	8998.85	52.2	Pass
		Bracing						_
		Redund Diag 1	ROHN 2 STD	281	-4841.90	8998.85	53.8	Pass
		Bracing						
		Redund Diag 1	ROHN 2 STD	286	-4841.90	8998.85	53.8	Pass
		Bracing						
		Redund Diag 1	ROHN 2 STD	289	-4665.57	8998.85	51.8	Pass
		Bracing						
T13	20 - 0	Redund Hip 1	ROHN 2.5 STD	282	-17.45	48180.50	0.2	Pass
		Bracing						
		Redund Hip 1	ROHN 2.5 STD	290	-17.64	48180.50	0.2	Pass
		Bracing	Rom, 2.5 51D	290	17.07	10100.00	0.2	1 435
		Redund Hip 1	ROHN 2.5 STD	291	-17.39	48180.50	0.2	Pass
		-	KURIN 2.3 STD	291	-17.39	40100.30	0.2	rass
<b>T</b> 1	100 100	Bracing	10-0 1/0		1.00	000110	0.4	P
	180 - 160	Inner Bracing	L2x2x1/8	16	-1.80	8234.10	0.4	Pass
T1	100 - 100	Inner Bracing	L2x2x1/8	17	-1.85	8234.10	0.4	Pass

*tnxTo* 

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587


	Job		Page
ower		70 of 71	
<b>ineering Inc.</b> Branford Rd.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
, CT 06405 3) 488-0580 3) 488-8587	Client	Verizon	Designed by TJL

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
		Inner Bracing	L2x2x1/8	18	-1.72	8234.10	0.4	Pass
		Inner Bracing	L2x2x1/8	28	-1.39	8287.35	0.4	Pass
		Inner Bracing	L2x2x1/8	29	-1.41	8287.35	0.4	Pass
		Inner Bracing	L2x2x1/8	30	-1.37	8287.35	0.4	Pass
		Inner Bracing	L2x2x1/8	37	-0.29	8341.12	0.4	Pass
		Inner Bracing	L2x2x1/8	38	-0.28	8341.12	0.4	Pass
T2	160 - 140	Inner Bracing	L2x2x1/8	39 52	-0.32 -4.41	8341.12	0.4	Pass
12	160 - 140	Inner Bracing Inner Bracing	L2x2x1/8 L2x2x1/8	52	-4.41	6068.75 6068.75	0.5 0.5	Pass Pass
		Inner Bracing	L2x2x1/8 L2x2x1/8	54	-4.39	6068.75	0.5	Pass
		Inner Bracing	L2x2x1/8 L2x2x1/8	64	-4.82	7007.17	0.5	Pass
		Inner Bracing	L2x2x1/8	65	-5.05	7007.17	0.5	Pass
		Inner Bracing	L2x2x1/8	66	-4.79	7007.17	0.5	Pass
		Inner Bracing	L2x2x1/8	76	-6.73	8181.36	0.4	Pass
		Inner Bracing	L2x2x1/8	77	-7.11	8181.36	0.4	Pass
		Inner Bracing	L2x2x1/8	78	-6.66	8181.36	0.4	Pass
Т3	140 - 133.333	Inner Bracing	L2x2x1/8	91	-6.46	5306.96	0.5	Pass
		Inner Bracing	L2x2x1/8	92	-6.69	5306.96	0.5	Pass
		Inner Bracing	L2x2x1/8	93	-6.43	5306.96	0.5	Pass
T4	133.333 - 126.667	Inner Bracing	L2x2x1/8	106	-8.85	4680.37	0.6	Pass
		Inner Bracing	L2x2x1/8	107	-9.04	4680.37	0.6	Pass
		Inner Bracing	L2x2x1/8	108	-8.83	4680.37	0.6	Pass
Т5	126.667 - 120	Inner Bracing	L2x2x1/8	121	-10.47	4158.54	0.6	Pass
		Inner Bracing	L2x2x1/8	122	-10.63	4158.54	0.6	Pass
		Inner Bracing	L2x2x1/8	123	-10.46	4158.54	0.6	Pass
T6	120 - 100	Inner Bracing	L2 1/2x2 1/2x3/16	136	-11.29	9072.37	0.5	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	137	-11.39	9072.37	0.5	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	138	-11.28	9072.37	0.5	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	148	-11.99	10738.30	0.4	Pass
		Inner Bracing Inner Bracing	L2 1/2x2 1/2x3/16	149 150	-12.12 -11.97	10738.30 10738.30	0.4 0.4	Pass
T7	100 - 90	Inner Bracing	L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16	163	-10.72	7766.06	0.4	Pass Pass
1 /	100 - 90	Inner Bracing	L2 1/2x2 1/2x3/16	164	-10.80	7766.06	0.5	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	165	-10.75	7766.06	0.5	Pass
Т8	90 - 80	Inner Bracing	L2 1/2x2 1/2x3/16	178	-10.97	6565.57	0.5	Pass
10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inner Bracing	L2 $1/2x^2 1/2x^3/16$	179	-11.04	6565.57	0.5	Pass
		Inner Bracing	L2 $1/2x2 1/2x3/16$	180	-10.99	6565.57	0.5	Pass
Т9	80 - 60	Inner Bracing	L3x3x3/16	193	-12.87	8593.12	0.6	Pass
		Inner Bracing	L3x3x3/16	194	-12.95	8593.12	0.6	Pass
		Inner Bracing	L3x3x3/16	195	-12.89	8593.12	0.6	Pass
		Inner Bracing	L3x3x3/16	205	-12.42	9851.38	0.6	Pass
		Inner Bracing	L3x3x3/16	206	-12.51	9851.38	0.6	Pass
		Inner Bracing	L3x3x3/16	207	-12.44	9851.38	0.6	Pass
T10	60 - 40	Inner Bracing	L3 1/2x3 1/2x1/4	220	-15.32	14095.40	0.4	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	221	-15.38	14095.40	0.4	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	222	-15.33	14095.40	0.4	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	232	-14.83	15896.00	0.4	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	233	-14.90	15896.00	0.4	Pass
<b>T</b> 11	10 20	Inner Bracing	L3 1/2x3 1/2x1/4	234	-14.84	15896.00	0.4	Pass
T11	40 - 30	Inner Bracing	L3 1/2x3 1/2x1/4	247	-15.58	12584.30	0.4	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	248	-15.63	12584.30	0.4	Pass
T12	30 - 20	Inner Bracing Inner Bracing	L3 1/2x3 1/2x1/4 L3 1/2x3 1/2x1/4	249 262	-15.58 -16.41	$12584.30 \\ 11303.80$	0.4 0.4	Pass Pass
112	50 - 20	Inner Bracing	L3 $1/2x3 1/2x1/4$ L3 $1/2x3 1/2x1/4$	262	-16.41 -16.45	11303.80	0.4	Pass Pass
		Inner Bracing	L3 $1/2x3 1/2x1/4$ L3 $1/2x3 1/2x1/4$	263	-16.43 -16.41	11303.80	0.4	Pass
T13	20 - 0	Inner Bracing	ROHN 2 STD	292	-14.27	6590.81	0.4	Pass
115	20-0	Inner Bracing	ROHN 2 STD	292	-14.50	6590.81	0.4	Pass
		Inner Bracing	ROHN 2 STD	293	-14.25	6590.81	0.4	Pass
		inner Draeing	101112010	277	11.23	0570.01	Summary	1 455
							Summary	

tnxTower	Job	22027.01 - Westport	Page 71 of 71
		710171	
Centek Engineering Inc.	Project	180-ft Lattice Tower (CSP #32)	Date 08:43:42 04/05/22
63-2 North Branford Rd.		100-IT Lattice Tower (CSP #32)	00.43.42 04/05/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
						Diagonal	81.6	Pass
						(T12)		
						Horizontal	74.8	Pass
						(T11)		
						Top Girt	69.3	Pass
						(T12)		
						Redund	38.4	Pass
						Horz 1		
						Bracing		
						(T13)		
						Redund	53.8	Pass
						Diag 1		
						Bracing		
						(T13)		
						Redund Hip	0.2	Pass
						1 Bracing		
						(T13)		
						Inner	0.6	Pass
						Bracing (T9)		
						Bolt Checks	61.4	Pass
						RATING =	81.6	Pass

Program Version 8.1.1.0 - 6/3/2021 File:J:/Jobs/2202700.WI/01_Westport CT/05_Structural/Backup Documentation/Tnxtower/20200708_VZW_MODification_H_180' SST (1).eri



#### DESIGNED APPURTENANCE LOADING

IY	PE	ELEVATION		TYPE	ELEVATIO
ANT940Y10-WR (C	SP)	187	RRUS-32 (A	JI)	133
ANT940Y10-WR (C	SP - Yagi Antenna)	181		V51-2 Combiner Units	133
PA6-65AC (DNK-52		177	(AT <u>T</u> )		
RFI BPS7496-180-1	4 Panel Antenna	170		(athrein Panel (ATT)	133
(CSP-80)	3 and the second sec	1 2	RRUS-32 B		133
RFI BPS7496-180-7 (CSP-81)	4 Panel Antenna	170	RRUS-32 (A	_,	133
RFI BPS7496-180-1	4 Panel Antenna	170	DBC0061F1 (ATI)	V51-2 Combiner Units	133
(CSP-82) SitePro1 USF12-39		170	DC6-48-60- (AT <u>T</u> )	18-8F (Squid) Suppresso	or 133
Assembly w/ (3) 96" 47, 80, 81, 82)	Mount Pipes (CSP		Pirod 15' T-F (AT <u>T</u> )	rame Sector Mount (1)	133
432E-83I-01T TTA ( TMA (CSP))	Jnit (Re-Located	170	Pirod 15' T-F (ATI)	rame Sector Mount (1)	133
3' Yagi (CSP)		169	Pirod 15' T-F	rame Sector Mount (1)	133
B2/B66A RRH (Veri	zon)	160	(ATI)		
B5/B13 RRH (Veriz	on)	160	P65-16-XLH	-RR (ATI)	133
CBRS RRH-RT440	1-48A (Verizon)	160	RRUS-11 (A	TI)	133
RF4439d-25A (B2/E	66A RRH) (Verizon	160	HPA-65R-B	JU-H6 Panel (AT <u>T</u> )	133
- Proposed)			RRUS-32 (A	JI)	133
RF4440d-13A (B5/E Proposed)	13 RRH) (Verizon -	160	-	18-8F (Squid) Suppresso	or 133
JAHH-65B-R3B Par (Verizon)	nel Antenna	160	· · ·	18-8F (Squid) Suppresso	or 133
JAHH-65B-R3B Par	nel Antenna	160	P65-16-XLH	-RR (ATT)	133
(Verizon)			RRUS-11 (A	1	133
XXDWMM-12.5-65-	8T-CBRS Panel	160		JU-H6 Panel (ATI)	133
(Verizon)			RRUS-32 (A	( _/	133
MT6407-77A (Veriz	on - Proposed)	160	· ·	_,	
CBC78T-DS-43-2X	Diplexer (Verizon)	160	P65-16-XLH	( -)	133
B2/B66A RRH (Veri	zon)	160	RRUS-11 (A	,	133
B5/B13 RRH (Veriz	on)	160		JU-H6 Panel (AT <u>T</u> )	133
CBRS RRH-RT440	1-48A (Verizon)	160	RRUS-32 (A	,	133
JAHH-65B-R3B Par (Verizon)	, ,	160		4_43-C-NA20 Panel 6" Pipe (T-Mobile)	125
JAHH-65B-R3B Par (Verizon)	nel Antenna	160		4_43-C-NA20 Panel 6" Pipe (T-Mobile)	125
XXDWMM-12.5-65- (Verizon)	8T-CBRS Panel	160		4_43-C-NA20 Panel )6" Pipe (T-Mobile)	125
MT6407-77A (Verize	. ,	160	Ericsson 44 (1-Mobile)	19 B71 + B12 Radio Uni	it 125
CBC78T-DS-43-2X	,	160	Ericsson 44	19 B71 + B12 Radio Uni	t 125
B2/B66A RRH (Veri		160	(T-Mobile)		
B5/B13 RRH (Veriz	on)	160		19 B71 + B12 Radio Uni	it 125
CBRS RRH-RT440	1-48A (Verizon)	160	(T-Mobile)		
DB-T1-6Z-8AB-0Z [ (Verizon)	Distribution Box	160	Ericsson AlF (T-Mobile)	R21 B2A B4P Panel	125
DB-T1-6Z-8AB-0Z D (Verizon - Proposed		160	Ericsson AlF (T-Mobile)	R21 B2A B4P Panel	125
ROHN 6'x15' Boom		160	. ,	R21 B2A B4P Panel	125
ROHN 6'x15' Boom		160	(T-Mobile)	,	
MX06FR0640-02 (\		160	LTF12=372	Sector Mount (1) (T-Mot	oile) 125
MX06FR0640-02 (		160		Sector Mount (1) (T-Mot	,
XXDWMM-12.5-65-	, ,	160		Sector Mount (1) (T-Mot	
(Verizon)		100	Ericsson AlF	R32 B66A/B2A Panel	125
MT6407-77A (Verizo	,	160	Antenna (T-M	Mobile) R32 B66A/B2A Panel	125
MX06FR0640-02 (V	. ,	160	- Antenna (T-I		120
MX06FRO640-02 (N ROHN 6'x15' Boom		160 160	Ericsson AlF	R32 B66A/B2A Panel	125
800-10798 Kathrein	.,, ,	133	Antenna (T-I	,	105
RRUS-32 B66 (AT1		133		n TMA unit (T-Mobile)	125
RRUS-32 (ATI)	,	133		n TMA unit (T-Mobile)	125
	Combiner Unite	133		n TMA unit (T-Mobile)	125
DBC0061E1V51.2.0	Johnoliner Offics	100		SP - 1-Bay Dipole)	113
DBC0061F1V51-2 ( (ATI)		100	4' Standoff (	DNK-1 / GPS)	60
(ATI)	Panel (ATT)	133		1.000	
(ATI)		133 133	GPS (DNK-	/ GPS)	60
(ATI) 800-10798 Kathrein		133		( GPS)	60
(ATI) 800-10798 Kathrein RRUS-32 B66 (ATI	)	133 SYMB	OL LIST		
(ATI) 800-10798 Kathrein RRUS-32 B66 (ATI K MARK		133 SYMB E			SIZE

SHEAR	A	120deg_9.6250x0.375 BU	on ROHN 8 EHS	D	ROHN 2 STD						
	В	1/3 9.6250x0.375 on ROH	N 8 EH Leg Pipe	E	ROHN 2.5 EH						
	С	ROHN 2 XXS	OHN 2 XXS								
55148 lb		MATERIAL STRENGTH									
-	GRADE	Fy	Fu	GRADE	Fy	Fu					
	A572-50	50 ksi	65 ksi	A572-42	42 ksi	60 ksi					
REAC											

#### TOWER DESIGN NOTES

1. Tower designed for a 90 mph basic wind in accordance with the TIA/EIA-222-F Standard.

Tower is also designed for a 90 mph basic wind with 0.50 in ice.
 Deflections are based upon a 90 mph wind.

Centek Engineering Inc.	^{Job:} 2	2027.01 - Westp	oort	
		t: 180-ft Lattice Towe	r (CSP #32)	
Branford, CT 06405	Client:	Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code:	TIA/EIA-222-F	Date: 04/05/22	Scale: NTS
	Path:	Nuclea2202700.W101_Weeport CTI05_Bitucture/Beckup D	Jocumentation/Tratower/Twist and Sway/180/ BST.er	Dwg No. E-

*tnxTower* 

#### **Centek Engineering Inc.** 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
22027.01 - Westport	1 of 3
	Date
180-ft Lattice Tower (CSP #32)	07:56:56 04/05/22
Client Verizon	Designed by TJL

# Load Combinations

Comb.	Description
No.	Description
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 45 deg - No Ice
5	Dead+Wind 60 deg - No Ice
6	Dead+Wind 90 deg - No Ice
7	Dead+Wind 120 deg - No Ice
8	Dead+Wind 135 deg - No Ice
9	Dead+Wind 150 deg - No Ice
10	Dead+Wind 180 deg - No Ice
11	Dead+Wind 210 deg - No Ice
12	Dead+Wind 225 deg - No Ice
13	Dead+Wind 240 deg - No Ice
14	Dead+Wind 270 deg - No Ice
15	Dead+Wind 300 deg - No Ice
16	Dead+Wind 315 deg - No Ice
17	Dead+Wind 330 deg - No Ice
18	Dead+Ice
19	Dead+Wind 0 deg+Ice
20	Dead+Wind 30 deg+Ice
21	Dead+Wind 45 deg+Ice
22	Dead+Wind 60 deg+Ice
23	Dead+Wind 90 deg+Ice
24	Dead+Wind 120 deg+Ice
25	Dead+Wind 135 deg+Ice
26	Dead+Wind 150 deg+Ice
27	Dead+Wind 180 deg+Ice
28	Dead+Wind 210 deg+Ice
29	Dead+Wind 225 deg+Ice
30	Dead+Wind 240 deg+Ice
31	Dead+Wind 270 deg+Ice
32	Dead+Wind 300 deg+Ice
33	Dead+Wind 315 deg+Ice
34	Dead+Wind 330 deg+Ice
35	Dead+Wind 0 deg - Service
36	Dead+Wind 30 deg - Service
37	Dead+Wind 45 deg - Service
38	Dead+Wind 60 deg - Service
39	Dead+Wind 90 deg - Service
40	Dead+Wind 120 deg - Service
41	Dead+Wind 135 deg - Service
42	Dead+Wind 150 deg - Service
43	Dead+Wind 180 deg - Service
44	Dead+Wind 210 deg - Service
45	Dead+Wind 225 deg - Service
46	Dead+Wind 240 deg - Service
47	Dead+Wind 270 deg - Service
48	Dead+Wind 300 deg - Service
49	Dead+Wind 315 deg - Service

trees Tools on	Job		Page
tnxTower		22027.01 - Westport	2 of 3
Centek Engineering Inc.	Project	180-ft Lattice Tower (CSP #32)	Date 07:56:56 04/05/22
63-2 North Branford Rd. Branford, CT 06405	Client		
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	Designed by TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	7.031	35	0.3119	0.2302
T2	160 - 140	5.705	35	0.3078	0.2024
Т3	140 - 133.333	4.349	35	0.2797	0.1362
T4	133.333 - 126.667	3.942	35	0.2699	0.1208
T5	126.667 - 120	3.536	35	0.2585	0.1070
T6	120 - 100	3.157	35	0.2440	0.0981
<b>T</b> 7	100 - 90	2.202	35	0.1914	0.0784
T8	90 - 80	1.791	35	0.1666	0.0657
Т9	80 - 60	1.435	35	0.1401	0.0540
T10	60 - 40	0.838	35	0.1063	0.0360
T11	40 - 30	0.402	35	0.0697	0.0230
T12	30 - 20	0.239	35	0.0507	0.0168
T13	20 - 0	0.120	35	0.0313	0.0115

# Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
187.00	ANT940Y10-WR	35	7.031	0.3119	0.2302	120499
181.00	ANT940Y10-WR	35	7.031	0.3119	0.2302	120499
177.00	PA6-65AC	35	6.836	0.3123	0.2279	120499
170.00	RFI BPS7496-180-14 Panel	35	6.377	0.3123	0.2211	60249
	Antenna					
169.00	3' Yagi	35	6.311	0.3122	0.2198	54772
160.00	ROHN 6'x15' Boom Gate (1)	35	5.705	0.3078	0.2024	36528
133.00	800-10798 Kathrein Panel	35	3.922	0.2693	0.1201	105867
125.00	LTF12=372 Sector Mount (1)	35	3.438	0.2551	0.1043	16225
113.00	ANT150D	35	2.796	0.2262	0.0913	18804
60.00	GPS	35	0.838	0.1063	0.0360	27831

# **Maximum Tower Deflections - Design Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	8.566	19	0.3783	0.3184
T2	160 - 140	6.957	19	0.3735	0.2895
T3	140 - 133.333	5.317	19	0.3395	0.2065
T4	133.333 - 126.667	4.821	19	0.3279	0.1853
T5	126.667 - 120	4.329	19	0.3142	0.1658
T6	120 - 100	3.867	19	0.2969	0.1532
<b>T</b> 7	100 - 90	2.703	19	0.2335	0.1247
T8	90 - 80	2.200	19	0.2035	0.1062
Т9	80 - 60	1.763	19	0.1714	0.0888
T10	60 - 40	1.030	19	0.1302	0.0609
T11	40 - 30	0.494	19	0.0854	0.0393
T12	30 - 20	0.293	19	0.0622	0.0288
T13	20 - 0	0.148	19	0.0385	0.0197

Job

Project

Client

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Page
22027.01 - Westport	3 of 3
180-ft Lattice Tower (CSP #32)	Date 07:56:56 04/05/22
Verizon	Designed by T II

igned by TJL

# **Critical Deflections and Radius of Curvature - Design Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
187.00	ANT940Y10-WR	19	8.566	0.3783	0.3184	102188
181.00	ANT940Y10-WR	19	8.566	0.3783	0.3184	102188
177.00	PA6-65AC	19	8.328	0.3788	0.3166	102188
170.00	RFI BPS7496-180-14 Panel	19	7.771	0.3789	0.3104	51094
	Antenna					
169.00	3' Yagi	19	7.691	0.3788	0.3091	46449
160.00	ROHN 6'x15' Boom Gate (1)	19	6.957	0.3735	0.2895	30882
133.00	800-10798 Kathrein Panel	19	4.797	0.3272	0.1842	88650
125.00	LTF12=372 Sector Mount (1)	19	4.209	0.3103	0.1620	13478
113.00	ANT150D	19	3.428	0.2754	0.1434	15681
60.00	GPS	19	1.030	0.1302	0.0609	22641

Program Version 8.1.1.0 - 6/3/2021 File:J:/Jobs/2202700.WI/01_Westport CT/05_Structural/Backup Documentation/Tnxtower/Twist and Sway/180' SST.eri



Location:

Rev. 0: 4/5/22

#### Anchor Bolt Analysis

180-ft Lattice Tower Westport, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 22027.01

#### Anchor Bolt Analysis:

#### Input Data:

Tower Reactions:

Tension Force =	Tension := 306 kips	(Input From tnxTower)
Compression Force =	Compression := 348 kips	(Input From tnxTower)
Shear Force =	Shear := 50 kips	(Input From tnxTower)

#### Anchor Bolt Data:

ASTMA354 Grade BC		
Number of Anc hor Bolts =	N := 10	(User Input)
Bolt Ultimate Strength =	F _u ≔ 125 ksi	(User Input)
Bolt Yield Strength =	F _y ≔ 109 ksi	(User Input)
Bolt Modulus =	E := 29000 ksi	(User Input)
Diameter of Anchor Bolts =	D := 1.00 in	(User Input)
Threads per Inch =	n:= 8	(User Input)
Length from Top of Pier to Bottom of Leveling Nut =	L _{ar} := 0 in	(User Input)



Rev. 0: 4/5/22

Location:

Anchor Bolt Analysis

180-ft Lattice Tower Westport, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 22027.01

# Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

GrossArea of Bolt=

 $A_{g} \coloneqq \frac{\pi}{4} \cdot D^{2} = 0.785 \cdot in^{2}$  $A_{n} \coloneqq \frac{\pi}{4} \cdot \left( D - \frac{0.9743 \cdot in}{n} \right)^{2} = 0.606 \cdot in^{2}$  $D_{n} \coloneqq \frac{2 \cdot \sqrt{A_{n}}}{\sqrt{\pi}} = 0.878 \cdot in$ 

Net Diameter =

NetArea of Bdt =

Radius of Gyration of Bolt =

Elastic Section Modulus of Bolt =

$$r := \frac{D_n}{4} = 0.22 \cdot in$$
$$S_x := \frac{\pi \cdot D_n^3}{32} = 0.066 \cdot in^3$$

 $Z_{x} := \frac{D_{n}^{3}}{6} = 0.113 \cdot in^{3}$ 

Plastic Section Modulus of Bolt =

#### Anchor Bolt Design Strength:

Resistance Factor for Flexure =	$\phi_{f} \coloneqq 0.9$
Resistance Factor for Compression =	$\phi_{C} := 0.9$
Resistance Factor for Tension =	$\phi_t \coloneqq 0.75$
Resistance Factor for Shear =	$\phi_V \coloneqq 0.75$
Design Tensile Strength =	$\Phi R_{nt} := \varphi_t \cdot F_u \cdot A_n = 56.8 \cdot k$
Design Tensile Strength = Design Compression Strength =	$\Phi R_{nt} \coloneqq \varphi_{t} \cdot F_{u} \cdot A_{n} = 56.8 \cdot k$ $\Phi R_{nc} \coloneqq \varphi_{c} \cdot F_{y} \cdot A_{g} = 77 \cdot k$
	in tu in



Branford, CT 06405 F: (203) 488-8587

Location:

Rev. 0: 4/5/22

Anchor Bolt Analysis

180-ft Lattice Tower Westport, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 22027.01

Check Anc hor Bolt Tension Force:

Maximum Tensile Force =

$$P_{ut} := \frac{Tension}{N} = 30.6 \cdot kips$$

Maximum Compressive Force =

$$P_{uc} := \frac{Compression}{N} = 34.8 \cdot kips$$

Maximum Shear Force =

Condition1 =

$$Condition 1 := i \left[ \left[ \left( \frac{P_{ut}}{\Phi R_{nt}} \right)^2 + \left( \frac{V_u}{\Phi R_{nv}} \right)^2 \right] \le 1.00, "OK", "Overstressed" \right]$$

Condition1 = "OK"

 $V_u := \frac{\text{Shear}}{N} = 5 \text{kips}$ 

Condition2 =

Condition2 := if  $\left[ \left( \frac{P_{uc}}{\Phi R_{nc}} \right) + \left( \frac{V_u}{\Phi R_{nvc}} \right)^2 \right] \le 1.00, "OK", "Overstressed"$ 

Condition2 = "OK"

 $max\!\!\left[\!\left(\frac{\mathsf{P}_{ut}}{\Phi\mathsf{R}_{nt}}\!\right)^{2} + \left(\frac{\mathsf{V}_{u}}{\Phi\mathsf{R}_{nv}}\!\right)^{2}, \left(\frac{\mathsf{P}_{uc}}{\Phi\mathsf{R}_{nc}}\right) + \left(\frac{\mathsf{V}_{u}}{\Phi\mathsf{R}_{nvc}}\!\right)^{2}\!\right] = 47.2\cdot\%$ 

Bolt % of Capacity =



#### Location:

Rev. 0: 4/5/22

#### FOUNDATION ANALYSIS

180-ft Lattice Tower Westport, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 22027.01

Caisson Foundation:		
Input Data:		
Tower Data		
Uplift=	Uplift := 306 kips	(User Input)
Compression =	Comp := 348 kips	(User Input)
Shear Force =	Shear := 50 kips	(User Input)
Tower Height =	H _t := 180·ft	(User Input)
Footing Data:		
Length of Caisson =	$L_{c} := 27 \cdot ft$	(User Input)
Extension of Caisson Above Grade =	L _{cag} := 1.ft	(User Input)
Diameter of Caisson =	$d_{c} := 4.5 \cdot ft$	(User Input)
Length of Caisson Above Wate Table =	$L_{c.AWT} \coloneqq 27 \cdot ft$	(User Input)
Length of Caisson Below Wate Table =	L _{c.BWT} := 0·ft	(User Input)
Material Properties:		
Concrete Compressive Strength =	f _c ≔ 4000 psi	(User Input)
Steel Reinforcment Yield Strength =	f _y := 60000 psi	(User Input)
Ultimate Skin Friction (Above WaterTable) =	μ ₁ := 3.73⋅ksf	(User Input)
Ultimate Skin Friction (Below WaterTable) =	$\mu_2 := 3.73 \cdot ksf$	(User Input)
Ultimate Soil Bearing Capacity =	q _U ≔ 6000 · psf	(Assumed Conservative User Input)
Unit Weight of Soil =	$\gamma_{soil} := 120 \cdot pcf$	(User Input)
Unit Weight of Concrete =	$\gamma_{conc} \coloneqq 150 \cdot pcf$	(User Input)
Depth to Neglect =	n := 5-ft	(User Input)
Resistance Factor for Bearing =	$\Phi_{sBearing} \coloneqq 0.75$	(TIA-222-H 9.7)
Resistance Factor for Friction =	$\Phi_{sFriction} \coloneqq 0.75$	(TIA-222-H 9.7)



Location:

Rev. 0: 4/5/22

#### FOUNDATION ANALYSIS

180-ft Lattice Tower Westport, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 22027.01

#### **Calculated Properties:**

Adjusted Concrete Unit Weight =

Weight of Concrete Caisson (no water) =

Weight of Concrete Caisson (water) =

$$WT_{c.comp} \coloneqq \frac{\pi}{4} \cdot \left( d_c^2 L_c \right) \cdot \gamma_{conc} = 64.412 \cdot kip$$
$$WT_{c.uplift} \coloneqq \frac{\pi}{4} \cdot \left[ \left( d_c^2 L_{c.AWT} \right) \cdot \gamma_{conc} + \left( d_c^2 L_{c.BWT} \right) \cdot \gamma_c \right] = 64.412 \cdot kip$$

 $\text{Uplift}_{SF} \coloneqq \Phi_{sFriction} \cdot \pi \cdot d_{c} \cdot \left[ \left( L_{c.AWT} - L_{cag} - n \right) \cdot \mu_{1} + L_{c.BWT} \cdot \mu_{2} \right] = 831 \cdot \text{kips}$ 

#### Check Uplift:

Uplift Check =

Uplift Resistance from Concrete Weight =

Uplift Resistance from Skin Friction =

Total Uplift Resistance =

 $\frac{\text{Uplift}}{\text{Uplift}_{R}} = 34.44.\%$ 

 $\gamma_{c} \coloneqq \gamma_{conc} - 62.4 pcf = 87.6 \cdot pcf$ 

$$\label{eq:uplift_check} \begin{split} \text{Uplift}_\text{Check} \coloneqq \text{if} & \left( \frac{\text{Uplift}_R}{\text{Uplift}} \geq 1.0\,, \text{"Okay"}\,, \text{"No Good"} \right) \end{split}$$

 $\text{Uplift}_{\text{conc}} := (WT_{c.uplift}) \cdot 0.9 - 57.971 \cdot \text{kips}$ 

 $\text{Uplift}_{R} := \text{Uplift}_{conc} + \text{Uplift}_{SF} = 888.494 \cdot \text{kips}$ 

Uplift_Check = "Okay"

#### Check Compression:

Total Compression Force =

Compression Resistance from Bearing =

Compression Resistance from Skin Friction =

Total Compression Resistance =

Compression Check =

 $Comp_{tot} := WT_{c.comp} + Comp = 412 \cdot kips$ 

$$Comp_{bearing} \coloneqq \Phi_{sBearing} \cdot \left(\frac{\pi}{4} \cdot d_{c}^{2} \cdot q_{u}\right) = 72 \cdot kips$$
$$Comp_{SF} \coloneqq \Phi_{sFriction} \cdot \pi \cdot d_{c} \cdot \left[\left(L_{c.AWT} - L_{cag} - n\right) \cdot \mu_{1} + L_{c.BWT} \cdot \mu_{2}\right] = 831 \cdot kips$$

 $Comp_R := Comp_{bearing} + Comp_{SF} = 902 \cdot kips$ 

$$\frac{\text{Comp}_{\text{tot}}}{\text{Comp}_{\text{R}}} = 45.72 \cdot \%$$

 $Compression_Check := if \left( \frac{Comp_{R}}{Comp_{tot}} \ge 1.0, "Okay", "No Good" \right)$  $Compression_Check = "Okay"$ 





Maser Consulting Connecticut 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@colliersengineering.com

# **Post-Modification Antenna Mount Analysis Report and PMI Requirements**

Mount Fix

SMART Tool Project #: 10115278 Maser Consulting Connecticut Project #: 21777772A

November 16, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 469153-VZW / WESTPORT CT WESTPORT CT Verizon Wireless 880 Post Rd. East Unit 1 Westport, Connecticut 06880 Fairfield County 41.137475° -73.334364°

Latitude: Longitude:

Structure Information

*Tower Type: Mount Type:*  180-Ft Self Support 15.00-Ft Sector Frame

#### FUZE ID # 16242132

# Analysis Results

Sector Frame: 76.3% Pass

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements also Noted on Mount Modification Drawings Requirements may also be Noted on A & E drawings For additional questions and support, please reach out to: pmisupport@colliersengineering.com



Report Prepared By: Selene Chen

# Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

# Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 325126, dated October 5, 2021
Mount Mapping Report	Structural Components, Site ID: 16242132, dated October 19, 2021
Mount Analysis Report	Maser Consulting Connecticut, Project #: 21777772A, dated November 2, 2021
Mount Modification Drawings	Maser Consulting Connecticut, Project #: 21777772A, dated November 16, 2021

# Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	118 mph 50 mph 1.00 in II B 1 N/A N/A 0.998
Seismic Parameters:	Ss: S1:	0.228 g 0.056 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

# Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		4	JMA Wireless	MX06FRO640-02	
		3	Samsung	MT6407-77A	Added
		1	Samsung	RF4439d-25A	Added
		1	Samsung	RF4440d-13A	
159.00	160.00	4	Commscope	JAHH-65B-R3B	
159.00	160.00	3	Samsung	XXDWMM-12.5-65-8T-CBRS	
		2	Commscope	CBC78T-DS-43-2X	Detained
		3	Samsung	B2/B66A RRH-BR049	Retained
		3	Samsung	B5/B13 RRH-BR04C	
		1	Raycap	RHSDC-6627-PF-48*	

The following equipment has been considered for the analysis of the mounts:

* Equipment to be flush mounted directly to the Self Support. It is not mounted on Sector Frame mounts and is not included in this mount analysis.

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

#### **Standard Conditions:**

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

76.3%

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
0	HSS (Rectangular)	ASTM 500 (Gr. B-46)
0	Pipe	ASTM A53 (Gr. B-35)
0	Threaded Rod	F1554 (Gr. 36)
0	Bolts	ASTM A325

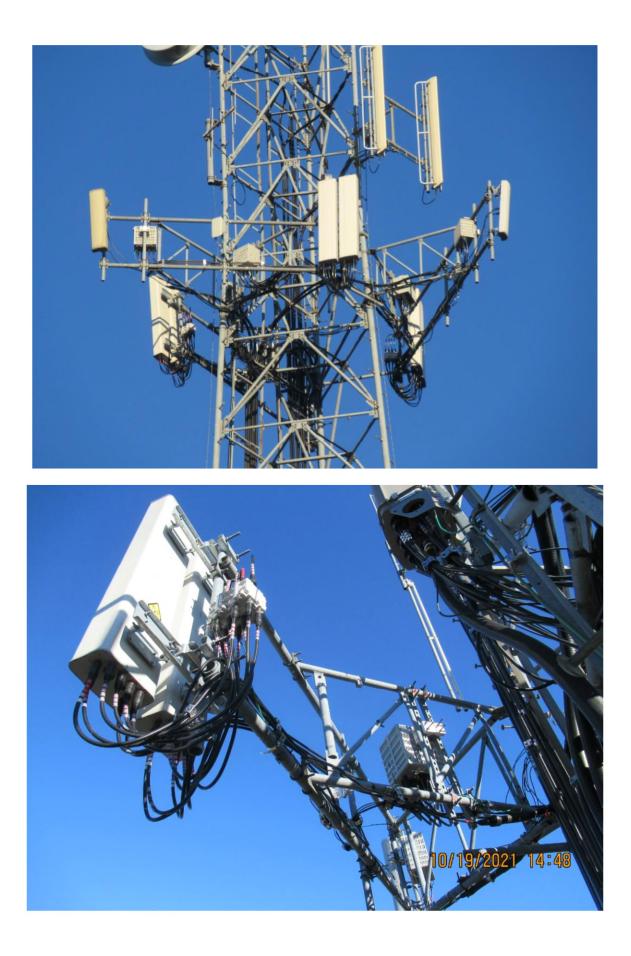
8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

# Analysis Results:

Component	Utilization %	Pass/Fail
Standoff Bar	76.3 %	Pass
Face Horizontal	47.5 %	Pass
Standoff Horizontal	42.9 %	Pass
Standoff Diagonal	32.8 %	Pass
Standoff Vertical	30.0 %	Pass
Antenna Pipe	45.3 %	Pass
Unistrut	22.8 %	Pass
Tie Back	6.3 %	Pass
Connection Check	31.4 %	Pass

Structure Rating – (Controlling Utilization of all Components)

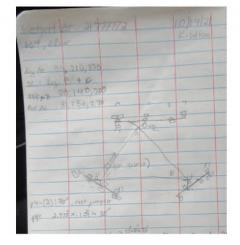

# Recommendation:

The existing mounts will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

# Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter




Antenna Mount Mapping Form (PATENT PENDING) MASER Mapping Date: Tower Type: Tower Owner: CS Site Name: WESTPORT_CT Site Number or ID: 16242132 Tower Height (Ft.): Mapping Contractor: Structural Components Mount Elevation (Ft.): This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication

1

1

rodification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

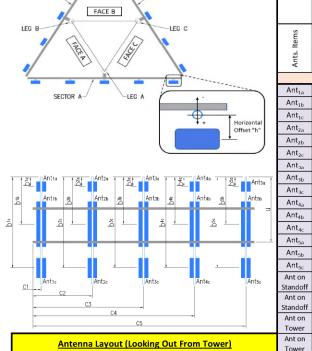


SECTOR C

SECTOR B

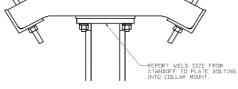
		_	Vertical	e configurat	ion and G	eometries	[Unit = Inches]			
Sector / Position	r / Mount Pipe Size & Length Offset Dimension "u" Horizontal C2, C3, etc." Position Difference C2, C3, etc."						Vertical Offset Dimension "u"	Horizonta Offset "C1 C2, C3, etc		
A1	2.375 x .154 x 72		56.00	3.00	C1	2.375 x .1	54 x 72		56.00	3.00
A2	2.375 x .154 x 72		56.00	94.00	C2	2.375 x .1			56.00	94.00
A3	2.375 x .154 x 72		56.00	148.50	C3	2.375 x .1			56.00	148.50
A4	2.375 x .154 x 72		56.00	169.00	C4	2.375 x .1	54 x 72		56.00	169.00
A5					C5					
A6					C6					
B1	2.375 x .154 x 72		56.00	3.00	D1					
B2	2.375 x .154 x 72		56.00	94.00	D2					
B3	2.375 x .154 x 72		56.00	148.50	D3					
B4	2.375 x .154 x 72		56.00	169.00	D4					
B5					D5					
B6					D6					
	Distance between bol									
	Distance	from to	o of botton	n support ra	ail to lowe	st tip of a	nt./eqpt. of Carrier a	bove. (N/A	( if > 10 ft.) :	0.5
	Distance	from top	of bottom	support ra	il to highe	st tip of a	nt./eqpt. of Carrier b	elow. (N/A	if > 10 ft.) :	0
			Please ente	er additiona	l infomat	ion or com	nments below.			
afety clin	nb on all 3 legs, all obstru	icted								
ower Fac	e Width at Mount Elev. (	<i>r</i> . )								
		ft_):	105	Tower Leg	Size or Pole	Shaft Dia	meter at Mount Elev.	(in.):		4.5
	s/Platforms on monopol						meter at Mount Elev.		t.	4.5
									t.	4.5
									t.	4.5
	s/Platforms on monopol	es, report	the weld si	ze from the	main stan	doff to the	plate bolting into the			
		es, report	the weld si	ze from the	main stan	doff to the	plate bolting into the	collar moun	s	Photos o
	s/Platforms on monopol	es, report	the weld si	ze from the	main stan	doff to the	plate bolting into the Mountin	collar moun	s	Photos o
or T-Arm	s/Platforms on monopol	es, report	the weld si	ze from the	main stan	doff to the	plate bolting into the Mountin [Units are incl	collar moun	s	Photos o
or T-Arm	s/Platforms on monopol	es, report a model.	the weld si If not label	ze from the	main stan	doff to the	plate bolting into the Mountin [Units are incl Vertical	collar moun	s	Photos o antenna:
or T-Arm	s/Platforms on monopol Enter antenna Antenna Models if	es, report a model. Width	the weld si If not label Depth	ze from the ed, enter " Height	main stand Unknown	doff to the	plate bolting into the Mountin [Units are incl	g Location: hes and dep Horiz.	s grees]	Photos o antennas Photo
or T-Arm	s/Platforms on monopol	es, report a model.	the weld si If not label	ze from the	main stand Unknown Coax Size and	Antenna Center-	plate bolting into the Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} ,	g Location: hes and dep Horiz. Offset "h"	s grees] Antenna Azimuth	Photos o antennas
	s/Platforms on monopol Enter antenna Antenna Models if	es, report a model. Width	the weld si If not label Depth	ze from the ed, enter " Height	main stand Unknown Coax	Antenna Center-	plate bolting into the Mountin [Units are incl Vertical	dollar moun g Location: hes and dep Horiz. Offset "h" (Use "-" if	s grees] Antenna	Photos o antenna: Photo
or T-Arm	s/Platforms on monopol Enter antenna Antenna Models if	es, report a model. Width	the weld si If not label Depth	ze from the ed, enter " Height	main stand Unknown Coax Size and	Antenna Center- line (Ft.)	plate bolting into the Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} ,	diar moun g Location: hes and dep Horiz. Offset "h" (Use "-" if Ant. is	s grees] Antenna Azimuth	Photos o antennas Photo
or T-Arm	s/Platforms on monopol Enter antenna Antenna Models if	es, report a model. Width	the weld si If not label Depth	ze from the ed, enter " Height	main stand Unknown Coax Size and Qty	Antenna Center- line (Ft.)	plate bolting into the Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} ,	diar moun g Location: hes and dep Horiz. Offset "h" (Use "-" if Ant. is	s grees] Antenna Azimuth	Photos o antennas Photo
Ant _{1.a}	s/Platforms on monopol Enter antenna Antenna Models if Known	es, report a model. Width	the weld si If not label Depth	ze from the ed, enter " Height	main stand Unknown Coax Size and Qty	Antenna Center- line (Ft.)	plate bolting into the Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} ,	diar moun g Location: hes and dep Horiz. Offset "h" (Use "-" if Ant. is	s grees] Antenna Azimuth	Photos o antennas Photo
Ant _{1a}	s/Platforms on monopol Enter antenna Antenna Models if Known (2) JAHH-65B-R3B	width (in.)	the weld si If not label Depth (in.) 8.00	ed, enter " Height (in.) 72.00	main stand Unknown Coax Size and Qty Sector A jumpers	Antenna Center- line (Ft.)	plate bolting into the Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 20.00	collar moun g Location: hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind) 14.00	s grees] Antenna Azimuth (Degrees)	Photos o antenna: Photo Number:
Ant _{1a} Ant _{1b}	s/Platforms on monopol Enter antenna Antenna Models if Known	width	the weld si If not label Depth (in.)	ed, enter " Height (in.)	unknown Coax Size and Qty Sector #	Antenna Center- line (Ft.)	plate bolting into the Mountin [Units are incl Vertical Distances ^w b _{1av} b _{2av} b _{3av} b _{1b} " (Inches)	collar moun g Location: hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind)	s grees] Antenna Azimuth (Degrees)	Photos o antenna: Photo Number: 63
or T-Arm study study Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a}	S/Platforms on monopol Enter antenna Antenna Models if Known (2) JAHH-65B-R3B (2) CBC78TDS432X	es, report a model. Width (in.) 13.00 6.50	the weld si If not label Depth (in.) 8.00 9.75	ze from the ed, enter " Height (in.) 72.00 8.00	Main stand Unknown Coax Size and Qty Sector A jumpers jumpers	Antenna Center- line (Ft.) 161 160.417	plate bolting into the Mountin [Units are incl Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 20.00 27.00	g Locations nes and dep Horiz. Offset "h" (Use "-" iff Ant. is behind) 14.00 -7.00	s grees] Antenna Azimuth (Degrees) 30.00	Photos o antenna: Photo Numbers 63
or T-Arm Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Suppo	s/Platforms on monopol Enter antenna Antenna Models if Known (2) JAHH-65B-R3B	width (in.)	the weld si If not label Depth (in.) 8.00	ed, enter " Height (in.) 72.00	main stand Unknown Coax Size and Qty Sector A jumpers	Antenna Center- line (Ft.)	plate bolting into the Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 20.00	collar moun g Location: hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind) 14.00	s grees] Antenna Azimuth (Degrees)	Photos o antenna: Photo Number: 63
or T-Arm study study Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a}	S/Platforms on monopol Enter antenna Antenna Models if Known (2) JAHH-65B-R3B (2) CBC78TDS432X	es, report a model. Width (in.) 13.00 6.50	the weld si If not label Depth (in.) 8.00 9.75	ze from the ed, enter " Height (in.) 72.00 8.00	Main stand Unknown Coax Size and Qty Sector A jumpers jumpers	Antenna Center- line (Ft.) 161 160.417	plate bolting into the Mountin [Units are incl Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 20.00 27.00	g Locations nes and dep Horiz. Offset "h" (Use "-" iff Ant. is behind) 14.00 -7.00	s grees] Antenna Azimuth (Degrees) 30.00	Photos c antenna Photo Number 63

V4.0 Updated on 3-31


FCC #

10/19/2021

Self Support


180

158



wer Fac	e Width at Mount Elev. (	ft.):	105	Towerleg	Size or Pole	Shaft Dia	meter at Mount Elev.	(in.):		4.5
	s/Platforms on monopole								t.	110
										-
	Enter antenna	a model.	lf not label	ed, enter "	Unknown'		Mountin [Units are incl	g Location: nes and dep		Photos of antennas
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers
					Sector A					
Ant _{1a}										
Ant _{1b}	(2) JAHH-65B-R3B	13.00	8.00	72.00	jumpers	161	20.00	14.00	30.00	63
Ant _{1c}	(2) CBC78TDS432X	6.50	9.75	8.00	jumpers	160.417	27.00	-7.00		63
Ant _{za}										
Ant _{2b}	RT4408-48	8.50	5.50	16.00	jumpers	160.25	29.00	10.00	30.00	
Ant _{2c}										
Ant _{3a}					1					
Ant _{3b}	RFV01U-D2A	16.00	10.00	15.00	jumpers	160.25	29.00	8.50	30.00	64
Ant _{3c}										
$Ant_{4a}$										
Ant _{4b}	BXA-70063/4CFEDIN	11.00	5.00	47.00	(2) 1 5/8"	160.25	29.00	11.50	30.00	64
Ant _{4c}										
Ant _{5a}										
Ant _{5b}										
Ant _{5c}										
Ant on tandoff	RFV01U-D1A	16.00	12.00	16.00	jumpers	160				64
Ant on tandoff										
Ant on Tower										
Ant on										

Mour	nt Azi	muth (Degr	ee)	Tower Leg Azi	imuth (Degre	e)						Sector B	<u>.</u>				
!		ch Sector		-	ch Sector		Ant _{1a}										
Sector A:		).00 Deg	Leg A			Deg	Ant _{1b}	(2) JAHH-65B-R3B	13.00	8.00	72.00	jumpers		20.00	14.00	150.00	71
Sector B:		0.00 Deg	Leg B			Deg	Ant _{1c}	(2) CBC78TDS432X	6.50	9.75	8.00	jumpers	160.417	27.00	-7.00		71
Sector C:	26	0.00 Deg	Leg C:	330.00	0	Deg	Ant _{2a}										
Sector D:		Deg	Leg D		0	Deg	Ant _{2b}	RT4408-48	8.50	5.50	16.00	jumpers	160.25	29.00	10.00	150.00	72
		Clim	bing Fa	cility Information			$Ant_{2c}$										
Location:	33	0.00 Deg		On Leg C			Ant _{3a}										
	(	Corrosion Ty	pe:	Good condition.			Ant _{3b}	RFV01U-D2A	16.00	10.00	15.00	jumpers	160.25	29.00	8.50	150.00	73
Climbing		Access:		Climbing path was o	obstructed.		Ant _{3c}										
Facility		Condition		Loose hardware.			Ant _{4a}										
							Ant _{4b}	BXA-70063/4CFEDIN	11.00	5.00	47.00	(2) 1 5/8"	160.25	29.00	11.50	150.00	73
							Ant _{4c}										
TTE	Ko		Ear	esti y Pro	-		Antsa										
	AU	111	ore	Saymo			Ant _{5b}										
			_	The second			Ant _{5c}										
							Ant on		10.00	12.00	10.00		100		1		74 70
				9.0			Standoff	RFV01U-D1A	16.00	12.00	16.00	jumpers	160				71, 72
		150	0	- HELA			Ant on										
		190.		TIA			Standoff Ant on				-						
		83. 2	1	59.6			Tower										
		w,	TERF	PROOF 6×216.0	Ale a		Ant on										
and the second		-					Tower										
1000												Sector C	1				
and the second							Ant _{1a}						$\vdash$				
all the second				and the second se	and the		Ant _{1b}	(2) JAHH-65B-R3B	13.00	8.00	72.00	jumpers		20.00	14.00	150.00	66
							Ant _{1c}	(2) CBC78TDS432X	6.50	9.75	8.00	jumpers	160.417	27.00	-7.00		66
							Ant _{za}										
							Ant _{2b}	RT4408-48	8.50	5.50	16.00	jumpers	160.25	29.00	10.00	150.00	67
							Ant _{2c}										
		. 11	$\mathbb{T}$				Ant _{3a}										
Ľ	5	- HU-	111	1 💾			Ant _{3b}	RFV01U-D2A	16.00	10.00	15.00	jumpers	160.25	29.00	8.50	150.00	68
							$Ant_{3c}$										
d			2	p			Ant _{4a}										
L.	r l		7115	THP OF EQUIPMENT	<u>er</u>		Ant _{4b}	BXA-70063/4CFEDIN	11.00	5.00	47.00	(2) 1 5/8"	160.25	29.00	11.50	150.00	68
							$Ant_{4c}$										
Γ			Шг		DISTANCE FROM TOP ( PLATFORM MEMBER TO OF ANT./EQPT. OF GA (N/A IF > 10 FT.)	LOWEST TIP RRIER ABOVE	Ant _{5a}										
-			ΤΠ.		(N/A IF > 10 FT.)		Ant _{5b}										
E					+		Ant _{5c}										
ISTING PLATFORM	ſ/	<u>ل</u> ا ب	111 4	r ty	DISTANCE FROM TOP O PLATEORM MEMBER TO OF ANL/EXPT. OF CA (N/A IF > 10 FT.)	F MAIN HIGHEST TIP RRIER BELOW.	Ant on	RFV01U-D1A	16.00	12.00	16.00	jumpers	160				65
			111.	TIP OF EQUIPMENT			Standoff Ant on					,					
Ľ	5	μIJ		h th			Standoff										
							Ant on		14.00	9.00	10.00	1)2" hubri	tel.				65
c	-		2	P			Tower	RHSDC-6627-PF-48	14.00	9.00	19.00	1)2" hybri	a				65
Ļ	1			, L			Ant on										
		$\bigcirc$					Tower					Sector D	Ļ		1		
رشا				ليعا			Ant _{1a}					Sector D	<b>—</b>		T		
		n		-1			Ant _{1a}					<b> </b>			<u> </u>		
1							Ant _{1b}										
c r		╺───┤		<u></u>			Ant _{2a}										
. <del>П</del> .		τ	Ť		INT THE							<b> </b>	┢───┦		+		
							Ant _{2b} Ant _{2c}						┟───┦				
	7		ĹΠ		DISTANCE FROM TOP SUPPORT RAL TO E ANT./EQPT. OF CARI (N/A IF > 10 FT.)	OF BOTTOM OWEST TIP OF RER ABOVE.								1			
4				<b>⋕</b> ]  >	(N/A IF > 10 FT.)		Ant _{3a}										
			1				Ant _{3b}						<u> </u>				
ď,	5	ᡔ᠆ᢩ᠘᠆᠆᠆╣			NOTANCE PROV.	OF DOTTON	Ant _{3c}				<u> </u>		<b> </b>				
STING SECTOR FRAM	ис/ чт		/		DISTANCE FROM TOP SUPPORT RAL TO H ANT./EQPT. OF CARL (N/A IF > 10 FT.)	IGHEST TIP OF RER BELOW.	Ant _{4a}						<b>  </b>				
				TIP OF EQUIPMEN			Ant _{4b}				<u> </u>		<b> </b>				
Ē.		- Å l	М				Ant _{4c}						<b> </b>				
c :		-					Ant _{5a}						<b> </b>				
							Ant _{5b}										
Ļ			7.	T L			Ant _{5c}										
_		U		-0			Ant on Standoff										
or T-Arms/	Platfo	rms on mone	poles n	ecord the weld size from	m the main sta	andoff	Ant on								-		
				ollar. See below for refe			Standoff										
					11		Ant on										
//		/	-		11		Tower										
$\mathbb{N}$	/		_		$\searrow //$												
	/		_		-L		Ant on Tower										



	Observed Safety and Structural Issues During the Mount Mapping         #       Description of Issue       Photo #         0       0       0       0         0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </th						
Issue #	Description of Issue	Photo #					
1							
2							
3							
4							
5							
6							
7							
8							

	Observed Obstructions to Tower Lighting System										
the tower lighting system is being obstructed by the carrier's equipment (for example: a light nested by the antennas), please provide photos and fill in the information below. Photo #											
Description of Obstruction:	Description of Obstruction:										
Type of Light:	Pho	noto #	Additional Comments:								
Lighting Technology:	Pho	noto #									
Elevation (AGL) at base of light (Ft.):	Pho	noto #									
Is a service loop available?	Pho	noto #									
Is beacon installed on an extension?	Pho	noto #									

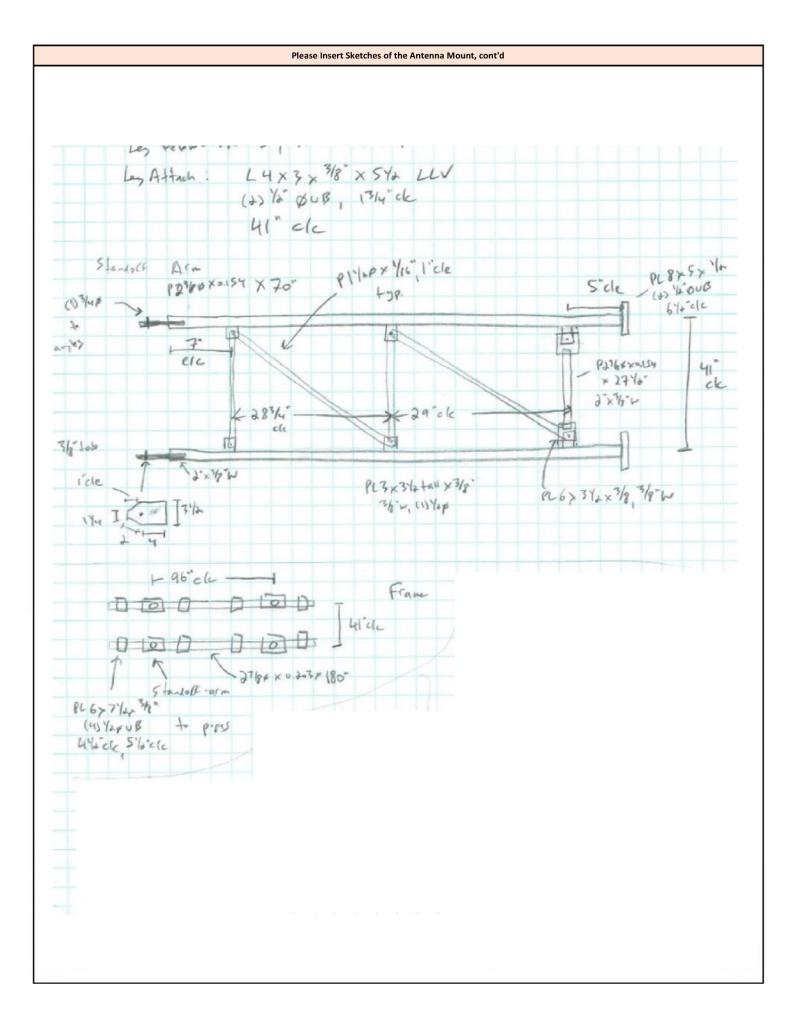
#### Mapping Notes

1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Calipor, please use an ultrasonic measurement tool (thickness gauge) to measure the thickness. 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

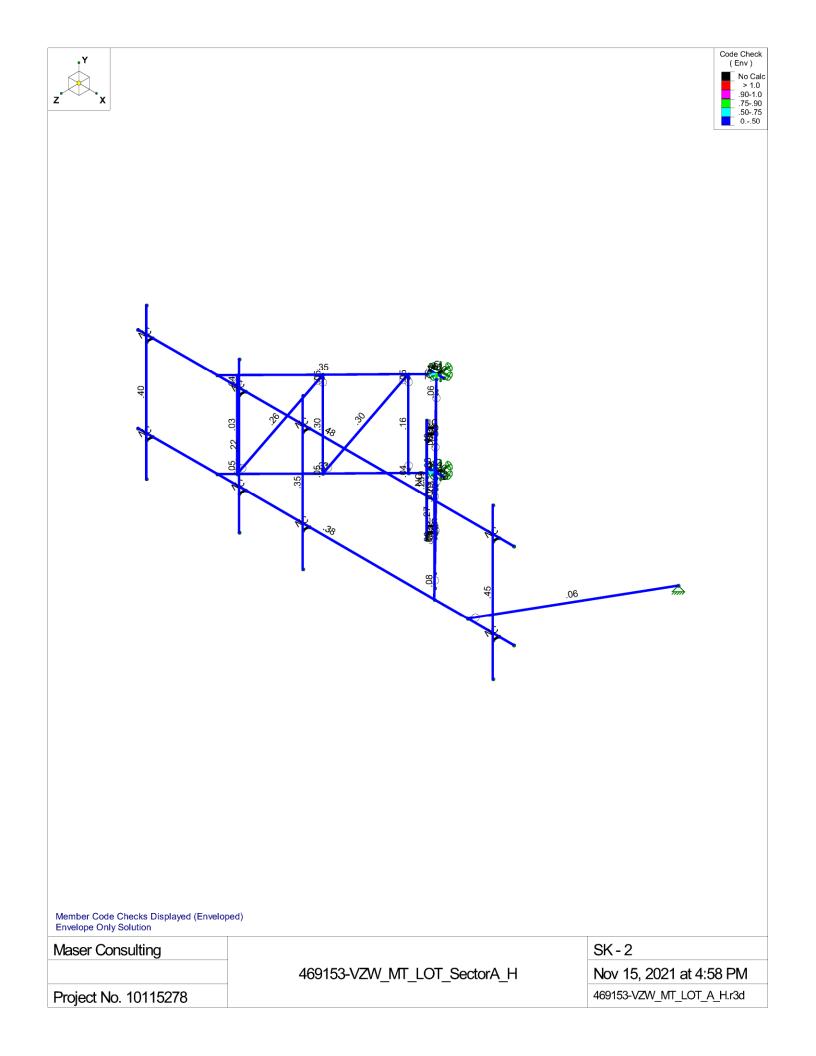
4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

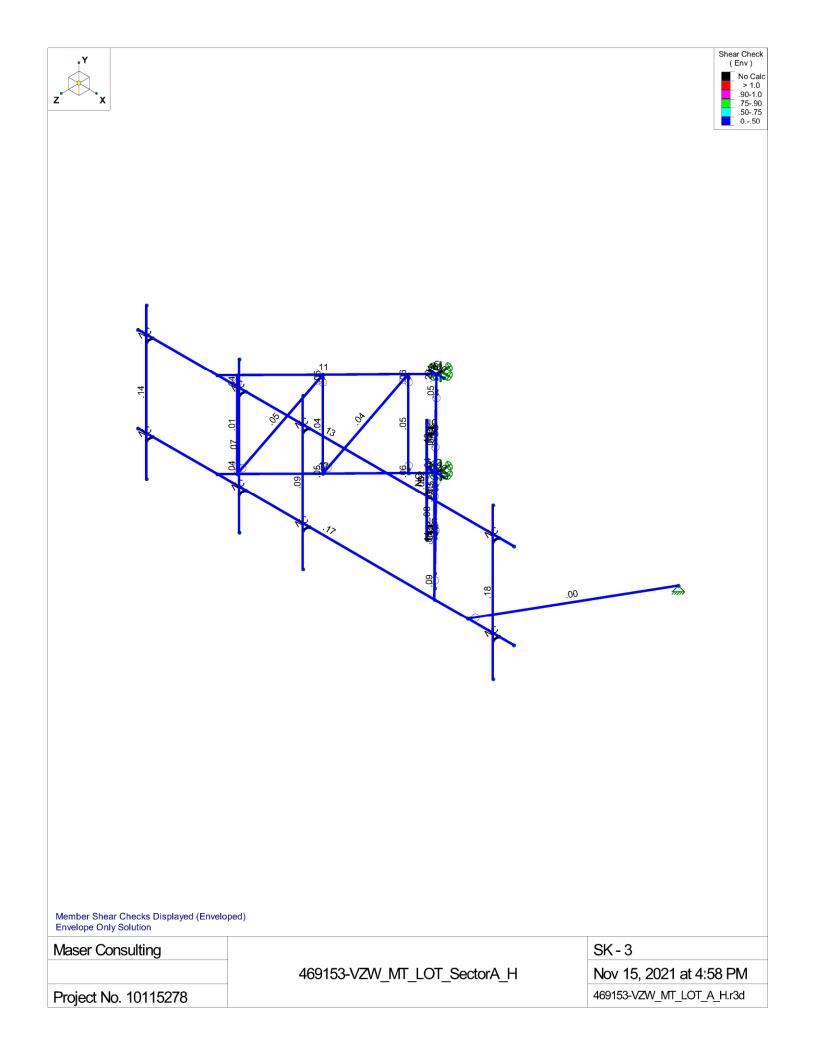
5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

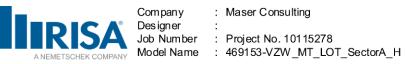

Please measure and report the size and length of all existing antenna mounting pipes.
 Please measure and report the antenna information for all sectors.

8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions


1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

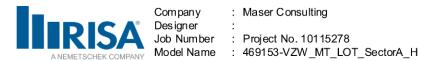

FCC # Antenna Mount Mapping Form (PATENT PENDING) MASER Tower Owner: Mapping Date: 10/19/2021 Site Name: WESTPORT_CT Tower Type: Self Support Site Number or ID: 16242132 Tower Height (Ft.): 180 Mapping Contractor Structural Components Mount Elevation (Ft.): 158 This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication odification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety equirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements Please Insert Sketches of the Antenna Mount Maser Todd ( Kevin wather 55 ( song ( 15mph su) 10(17) 15:5( mounts not of point out & love ver 5,80 K A B Hentle 270 150 Ant 30 260 140 20 Mount 330 210 90 les SC 2 d 7 Cl 158 Towar FR NA 8 180 elevatin 10g 4/2 105 FW 5/8 TY cables (6) 2º Hyb




	Please Insert Sketches of the Antenna Mount, cont'd	3
0(17(2)		
	TEBRECES Sector From L to tower A NA B 20 - Leg A C 12 - Leg B	freme to be VI B NA NA
		10/19/2021 15:57

z x		
Envelope Only Solution		
Maser Consulting		SK - 1
Project No. 10115278	469153-VZW_MT_LOT_SectorA_H	Nov 15, 2021 at 4:58 PM 469153-VZW_MT_LOT_A_H.r3d



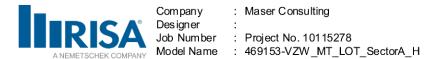





# **Basic Load Cases**

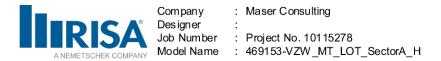
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					48			
2	Antenna Di	None					48			
3	Antenna W o (0 Deg)	None					48			
4	Antenna W o (30 Deg)	None					48			
5	Antenna W o (60 Deg)	None					48			
6	Antenna W o (90 Deg)	None					48			
7	Antenna W o (120 Deg)	None					48			
8	Antenna W o (150 Deg)	None					48			
9	Antenna Wo (180 Deg)	None					48			
10	Antenna Wo (210 Deg)	None					48			
11	Antenna W o (240 Deg)	None					48			
12	Antenna Wo (270 Deg)	None					48			
13	Antenna W o (300 Deg)	None					48			
14	Antenna Wo (330 Deg)	None					48			
15	Antenna Wi (0 Deg)	None					48			
16	Antenna Wi (30 Deg)	None					48			
17	Antenna Wi (60 Deg)	None					48			
18	Antenna Wi (90 Deg)	None					48			
19	Antenna Wi (120 Deg)	None					48			
20	Antenna Wi (150 Deg)	None					48			
20	Antenna Wi (180 Deg)	None					48			
22	Antenna Wi (210 Deg)									
	Antenna Wi (240 Deg)	None					48			
23		None					48			
24	Antenna Wi (270 Deg)	None					48			
25	Antenna Wi (300 Deg)	None					48			
26	Antenna Wi (330 Deg)	None					48			
27	Antenna W m (0 Deg)	None					48			
28	Antenna Wm (30 Deg)	None					48			
29	Antenna Wm (60 Deg)	None					48			
30	Antenna Wm (90 Deg)	None					48			
31	Antenna Wm (120 De	None					48			
32	Antenna Wm (150 De	None					48			
33	Antenna Wm (180 De	None					48			
	Antenna Wm (210 De	None					48			
35	Antenna Wm (240 De	None					48			
	Antenna Wm (270 De	None					48			
37	Antenna Wm (300 De	None					48			
	Antenna Wm (330 De	None					48			
39	Structure D	None		-1						
40	Structure Di	None						41		
41	Structure Wo (0 Deg)	None						82		
42	Structure Wo (30 Deg)	None						82		
43	Structure Wo (60 Deg)	None						82		
44	Structure Wo (90 Deg)	None						82		
45	Structure Wo (120 D	None						82		
46	Structure Wo (150 D	None						82		
47	Structure Wo (180 D	None						82		
48	Structure Wo (210 D	None						82		
49	Structure Wo (240 D	None						82		
50	Structure Wo (270 D	None						82		
51	Structure Wo (300 D	None						82		
	A_3D Version 17.0.4									

RISA-3D Version 17.0.4




# Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me	Surface(P
52	Structure Wo (330 D	None						82	
53	Structure Wi (0 Deg)	None						82	
54	Structure Wi (30 Deg)	None						82	
55	Structure Wi (60 Deg)	None						82	
56	Structure Wi (90 Deg)	None						82	
57	Structure Wi (120 De	None						82	
58	Structure Wi (150 De	None						82	
59	Structure Wi (180 De	None						82	
60	Structure Wi (210 De	None						82	
61	Structure Wi (240 De	None						82	
62	Structure Wi (270 De	None						82	
63	Structure Wi (300 De	None						82	
64	Structure Wi (330 De	None						82	
65	Structure Wm (0 Deg)	None						82	
66	Structure Wm (30 D	None						82	
67	Structure Wm (60 D	None						82	
68	Structure Wm (90 D	None						82	
69	Structure Wm (120	None						82	
70	Structure Wm (150	None						82	
71	Structure Wm (180	None						82	
72	Structure Wm (210	None						82	
73	Structure Wm (240	None						82	
74	Structure Wm (270	None						82	
75	Structure Wm (300	None						82	
76	Structure Wm (330	None						82	
77	Lm1	None					1		
78	Lm2	None					1		
79	Lv1	None					1		
80	Lv2	None					1		
81	Antenna Ev	None					48		
82	Antenna Eh (0 Deg)	None					32		
83	Antenna Eh (90 Deg)	None					32		
84	Structure Ev	ELY		049					
85	Structure Eh (0 Deg)	ELZ	122						
86	Structure Eh (90 Deg)	ELX			.122				

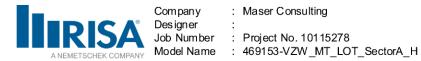

#### Load Combinations

	<b>Des cription</b>	Solve	PDelta	S E	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLCF	ac	BLC	Fac								
1	1.2D+1.0Wo (0	Yes	Y		1	1.2	39	1.2	3	1	41	1												
	1.2D+1.0Wo (3				1	1.2	39	1.2	4	1	42	1												
	1.2D+1.0Wo (6				1	1.2	39	1.2	5	1	43	1												
	1.2D+1.0Wo (9				1	1.2	39	1.2	6	1	44	1												
	1.2D+1.0Wo (1				1	1.2	39	1.2	7	1	45	1												
	1.2D+1.0Wo (1				1	1.2	39	1.2	8	1	46	1												
	1.2D+1.0Wo (1				1	1.2	39	1.2	9	1	47	1												
	1.2D+1.0Wo (2				1	1.2	39	1.2	10	1	48	1												
-	1.2D+1.0Wo (2				1	1.2	39	1.2	11	1	49	1												
	1.2D+1.0Wo (2				1	1.2	39	1.2	12	1	50	1												
	1.2D+1.0Wo (3				1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (3	Yes	Y		1	1.2	39	1.2	14	1	52	1												



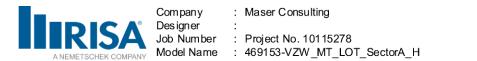
#### Load Combinations (Continued)

		_		_					<b>BLC</b>					_	<b>D</b> 1 O	_		_	<b>B</b> 1.0	_		_		_
10	Description		PDelta	S		1		1							I		BLC	⊦ac	BLC	⊦ac	BLC	⊦ac	BLC	⊦ac.
	1.2D + 1.0Di +		Y		1			1.2		1	40	1	15	1	53	1								
	1.2D + 1.0Di +		Y		1			1.2		1	40	1	16	1	54	1								
	1.2D + 1.0Di +		Y		1			1.2		1	40	1	17	1	55	1								
	1.2D + 1.0Di +		Y		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
	1.2D + 1.0Di +		Y		1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di +	Yes	Y		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di +	Yes	Y		1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di +	Yes	Y		1			1.2		1	40	1	22	1	60	1								
21	1.2D + 1.0Di +	Yes	Y		1			1.2		1	40	1	23	1	61	1								
	1.2D + 1.0Di +		Ŷ		1			1.2		1	40	1	24	1	62	1								
	1.2D + 1.0Di +		Ŷ	-	1			1.2		1	40	1	25	1	63	1								
	1.2D + 1.0Di +		Ý		1			1.2	2			1	26	1										
	1.2D + 1.5Lm1 .		-	+							40				64									
			Y		1			1.2				1	65	1										
	1.2D + 1.5Lm1 .		Y		1					1.5		1	66	1										
	1.2D + 1.5Lm1 .		Y		1			1.2				1	67	1										
	1.2D + 1.5Lm1 .		Y		1					1.5		1	68	1										
	1.2D + 1.5Lm1 .		Y		1					1.5		1	69	1										_
	1.2D + 1.5Lm1 .		Y		1	1.2	39	1.2	77	1.5	32	1	70	1										
31	1.2D + 1.5Lm1 .	Yes	Y		1	1.2	39	1.2	77	1.5	33	1	71	1										
32	1.2D + 1.5Lm1 .	Yes	Y		1	1.2	39	1.2	77	1.5	34	1	72	1										
33	1.2D + 1.5Lm1 .	Yes	Y		1							1	73	1										
34	1.2D + 1.5Lm1 .	Yes	Y		1			1.2				1	74	1										
	1.2D + 1.5Lm1 .		Y		1			1.2				1	75	1										
	1.2D + 1.5Lm1 .		Ý		1			1.2				1	76	1										
	1.2D + 1.5Lm2 .		Ý	-	1					1.5		1	65	1										
	1.2D + 1.5Lm2 .		Y							1.5		1		1										
	1.2D + 1.5Lm2 .				1																			
			Y		1					1.5		1	67	1										
	1.2D + 1.5Lm2 .		Y	-	1					1.5		1	68	1										
	1.2D + 1.5Lm2 .		Y		1			1.2				1	69	1										
	1.2D + 1.5Lm2 .		Y		1					1.5		1	70	1										
	1.2D + 1.5Lm2 .		Y		1	1.2	39	1.2	78	1.5	33	1	71	1										
44	1.2D + 1.5Lm2 .	Yes	Y		1	1.2	39	1.2	78	1.5	34	1	72	1										
45	1.2D + 1.5Lm2 .	Yes	Y		1	1.2	39	1.2	78	1.5	35	1	73	1										
46	1.2D + 1.5Lm2 .	Yes	Y		1	1.2	39	1.2	78	1.5	36	1	74	1										
47	1.2D + 1.5Lm2 .	Yes	Y		1					1.5		1	75	1										
	1.2D + 1.5Lm2 .		Y		1					1.5		1	76	1										
49	1.2D + 1.5Lv1		Ý		1			1.2																
50	1.2D + 1.5Lv2		Ý		1			1.2																
51	1.4D	Yes	Y		1			1.4	00	1.0														
	1.2D + 1.0Ev + .		Y						01	1	ELY	1	00	1	02		FI 7	1	FLY					
		-			1			1.2							83									
	1.2D + 1.0Ev + .		Y		1			1.2			ELY					.5								
÷.	1.2D + 1.0Ev + .		Y		1			1.2			ELY			.5		.866								
	1.2D + 1.0Ev + .		Y		1			1.2			ELY		82		83				ELX					
	1.2D + 1.0Ev + .		Y		1			1.2			ELY					.866								
57	1.2D + 1.0Ev + .	•	Y		1	1.2	39	1.2	81		ELY				83	.5								
58	1.2D + 1.0Ev + .	-	Y		1	1.2	39	1.2	81	1	ELY	1			83			-1						
59	1.2D + 1.0Ev + .	-	Y		1			1.2			ELY	1	82	866	83	5	ELZ	866	ELX	5				
60	1.2D + 1.0Ev + .		Y		1			1.2		-	ELY					866								
	1.2D + 1.0Ev + .		Ý		1			1.2			ELY		82			-1			ELX					
	1.2D + 1.0Ev + .		Ý		1			1.2			ELY			5	-	866								
	1.2D + 1.0Ev + .		Ý		1			1.2			ELY					5								
				+							ELY				83			.000						
~ ~	0.9D - 1.0Ev +		Y		1	.9	1.70	.9	01	-1		1	82	1	0.7			1						




#### Load Combinations (Continued)

	<b>Des cription</b>	Solve	PDelta	S	BLC	Fac	BLC	Fac	BLC	Fac.	.BLC	Fac.	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLCF	ac	BLCF	Fac
65	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	.5	ELZ	.866	ELX	.5				
66	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	.866	ELZ	.5	ELX	.866				
67	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82		83	1	ELZ		ELX	1				
68	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82	5	83	.866	ELZ	5	ELX	.866				
69	0.9D - 1.0Ev +	•	Y		1	.9	39	.9	81	-1	ELY	-1	82-	.866	83	.5	ELZ	866	ELX	.5				
70	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82	-1	83		ELZ	-1	ELX					
71	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82-	.866	83	5	ELZ	866	ELX	5				
72	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82	5	83	866	ELZ	5	ELX	866				
73	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82		83	-1	ELZ		ELX	-1				
74	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	866	ELZ	.5	ELX	866				
75	0.9D - 1.0Ev +		Y		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				


# Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp[F]	Detach From Diap
1	N1	-2.	0	2.	0	
2	N2	-5.375	0	2.	0	
3	N3	1.375	0	2.	0	
4	N4	-2.	0	0	0	
5	N5	-2.517638	-41.	1.931852	0	
6	N6	-5.375	-41.	2.	0	
7	N7	1.375	-41.	2.	0	
8	N10	-54	0	55.	0	
9	N11	50.	0	55.	0	
10	N11A	-92.	0	55.	0	
11	N12	88.	0	55.	0	
12	N14	-54	-41.	55.	0	
13	N15	50.	-41.	55.	0	
14	N16	-92.	-41.	55.	0	
15	N17	88.	-41.	55.	0	
16	N17A	-4.101022	0	4.141426	0	
17	N18	0.101022	0	4.141426	0	
18	N19	-4.101022	-41.	4.141426	0	
19	N20	0.101022	-41.	4.141426	0	
20	N21	4.653236	0	8.781183	0	
21	N22	4.653236	-41.	8.781183	0	
22	N23	24.963116	0	29.481637	0	
23	N24	24.963116	-41.	29.481637	0	
24	N25	45.272995	0	50.182091	0	
25	N26	45.272995	-41.	50.182091	0	
26	N27	4.653236	-39.5	8.781183	0	
27	N28	24.963116	-39.5	29.481637	0	
28	N29	4.653236	-1.5	8.781183	0	
29	N30	24.963116	-1.5	29.481637	0	
30	N31	45.272995	-35.	50.182091	0	
31	N32	45.272995	-6	50.182091	0	
32	N33	-8.653236	0	8.781183	0	
33	N34	-8.653236	-41.	8.781183	0	
34	N35	-28.963116	0	29.481637	0	
35	N36	-28.963116	-41.	29.481637	0	
36	N37	-49.272995	0	50.182091	0	

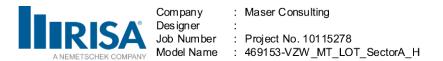


#### Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp[F]	Detach From Diap
37	N38	-49.272995	-41.	50.182091	0	Detach i rom Diap
38	N39	-8.653236	-39.5	8.781183	0	
39	N40	-28.963116	-39.5	29.481637	0	
40	N41	-8.653236	-1.5	8.781183	0	
41	N42	-28.963116	-1.5	29.481637	0	
42	N43	-49.272995	-35.	50.182091	0	
43	N44	-49.272995	-6	50.182091	0	
44	N45	-85.	0	55.	0	
45	N46	-85.	-41.	55.	0	
46	N47	-85.	0	58.	0	
47	N48	-85.	-41.	58.	0	
48	N49	-85.	15	58.	0	
49	N50	-85.	-57	58.	0	
50	N51	-40.5	0	55.	0	
51	N52	-40.5	-41.	55.	0	
52	N53	-40.5	0	58.	0	
53	N54	-40.5	-41.	58.	0	
54	N55	-40.5	15	58.	0	
55	N56	-40.5	-57	58.	0	
56	N57	-10.	0	55.	0	
57	N58	-10.	-41.	55.	0	
58	N59	-10.	0	58.	0	
59	N60	-10.	-41.	58.	0	
60	N61	-10.	15	58.	0	
61	N62	-10.	-57	58.	0	
62	N65	-2.	-41.	0	0	
63	N65A	81	0	55.	0	
64	N66	81	-41.	55.	0	
65	N67	81	0	58.	0	
66	N68	81	-41.	58.	0	
67	N69	81	15	58.	0	
68	N70	81	-57	58.	0	
69	N71	102.600443	-41.	-9.151353	0	
70	N80	20.060613	0	24.484856	0	
71	N81	22.555562	0	27.027784	0	
72	N98	20.060613	-41.	24.484856	0	
73	N99	22.555562	-41.	27.027784	0	
74	N77	17.939293	0	26.606176	0	
75	N78	20.434242	0	29.149105	0	
76	N79	17.939293	-41.	26.606176	0	
77	N80A	20.434242	-41.	29.149105	0	
78	N81A	17.939293	-44.	26.606176	0	
79	N82	20.434242	-44.	29.149105	0	
80	N83	17.939293	3	26.606176	0	
81	N84	20.434242	3	29.149105	0	
82	N85	17.939293	-20.5	26.606176	0	
83	N86	20.434242	-20.5	29.149105	0	
84	N85A	66.	-41.	55.	0	



#### Hot Rolled Steel Section Sets

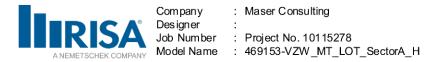

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Antenna Pipe	PIPE_2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Standoff Horizontal	PIPE_2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
3	Standoff Vertical	PIPE_2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
4	Standoff Diagonal	1.5 w 0.06 th	Beam	Pipe	A53 Gr. B	Typical	.271	.07	.07	.141
5	TES Standoff Diag	· PIPE_1.5	Beam	Pipe	A53 Gr. B	Typical	.749	.293	.293	.586
6	Face Horizontal	PIPE_2.5	Beam	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
7	Tie Back	PIPE_2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
8	Standoff Bar	PL3/8X3_HRA	Beam	RECT	A36 Gr.36	Typical	1.125	.013	.844	.049
9	Mount Angle	L4X3X6	Beam	Single Angle	A36 Gr.36	Typical	2.49	1.89	3.94	.123
10	TES Unistrut	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	.901	.535	.535	.011

#### Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	Density[k/ft	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

#### Member Primary Data

	Label	I J oint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	<b>M</b> 1	N2	N3		90	Mount Angle	Beam	Single Angle	A36 Gr.36	Typical
2	M2	N1	N4			RIGID	None	None	RIGID	Typical
3	M3	N6	N7		90	Mount Angle	Beam	Single Angle	A36 Gr.36	Typical
4	M5	N1	N17A		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
5	M6	N1	N18		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
6	M7	N11A	N12			Face Horizontal	Beam	Pipe	A53 Gr. B	Typical
7	M8	N5	N19		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
8	M9	N5	N20		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
9	M10	N16	N17			Face Horizontal	Beam	Pipe	A53 Gr. B	Typical
10	M11	N17A	N10			Standoff Horiz	Beam	Pipe	A53 Gr. B	Typical
11	M12	N18	N11			Standoff Horiz	Beam	Pipe	A53 Gr. B	Typical
12	M13	N19	N14			Standoff Horiz	Beam	Pipe	A53 Gr. B	Typical
13	M14	N20	N15			Standoff Horiz	Beam	Pipe	A53 Gr. B	Typical
14	M15	N21	N29	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
15	M16	N21	N24		90	Standoff Diago	Beam	Pipe	A53 Gr. B	Typical
16	M17	N23	N30	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
17	M18	N23	N26		90	Standoff Diago	Beam	Pipe	A53 Gr. B	Typical
18	M19	N26	N31	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
19	M20	N27	N22	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
20	M21	N28	N24	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
21	M22	N29	N27	N1		Standoff Diago		Pipe	A53 Gr. B	Typical
22	M23	N30	N28	N1		Standoff Diago	Beam	Pipe	A53 Gr. B	Typical
23	M24	N31	N32	N1		Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
24	M25	N32	N25	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
25	M26	N33	N41	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
26	M27	N33	N36		90	Standoff Diago	Beam	Pipe	A53 Gr. B	Typical

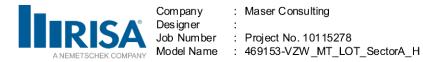



### Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
27	M28	N35	N42	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
28	M29	N35	N38		90	Standoff Diago	Beam	Pipe	A53 Gr. B	Typical
29	M30	N38	N43	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
30	M31	N39	N34	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
31	M32	N40	N36	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
32	M33	N41	N39	N1		Standoff Diago	Beam	Pipe	A53 Gr. B	Typical
33	M34	N42	N40	N1		Standoff Diago		Pipe	A53 Gr. B	Typical
34	M35	N43	N44	N1		Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
35	M36	N44	N37	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
36	M37	N45	N47			RIGID	None	None	RIGID	Typical
37	M38	N46	N48			RIGID	None	None	RIGID	Typical
38	MP4A	N49	N50			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
39	M40	N51	N53			RIGID	None	None	RIGID	Typical
40	M41	N52	N54			RIGID	None	None	RIGID	Typical
41	MP3A	N55	N56			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
42	M43	N57	N59			RIGID	None	None	RIGID	Typical
43	M44	N58	N60			RIGID	None	None	RIGID	Typical
44	MP2A	N61	N62			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
45	M46A	N5	N65			RIGID	None	None	RIGID	Typical
46	M47	N65A	N67			RIGID	None	None	RIGID	Typical
47	M48	N66	N68			RIGID	None	None	RIGID	Typical
48	MP1A	N69	N70			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
49	EQUIP	N83	N81A		50	Unistrut	Beam	None	A570 Gr.33	Typical
50	M51	N84	N82		50	Unistrut	Beam	None	A570 Gr.33	Typical
51	M52	N98	N79			RIGID	None	None	RIGID	Typical
52	M53	N99	N80A			RIGID	None	None	RIGID	Typical
53	M54	N81	N78			RIGID	None	None	RIGID	Typical
54	M55	N80	N77			RIGID	None	None	RIGID	Typical
55	M55A	N85A	N71			Tie Back	Beam	Pipe	A53 Gr. B	Typical
56	OVP	N85	N86			RIGID	None	None	RIGID	Typical

# Member Advanced Data

	Label	IRelease	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	.Analysis	Inactive	Seismic
1	M1						Yes				None
2	M2						Yes	** NA **			None
3	M3						Yes				None
4	M5						Yes	Default			None
5	M6						Yes	Default			None
6	M7						Yes				None
7	M8						Yes	Default			None
8	M9						Yes	Default			None
9	M10						Yes				None
10	M11						Yes				None
11	M12						Yes				None
12	M13						Yes				None
13	M14						Yes				None
14	M15	00000X					Yes				None
15	M16	BenPIN	BenPIN				Yes	Default			None
16	M17	00000X					Yes				None
17	M18	BenPIN	BenPIN				Yes	Default			None

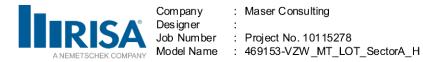



### Member Advanced Data (Continued)

	Label	IRelease	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	.Analysis	Inactive	Seismic
18	M19	00000X					Yes				None
19	M20		000000				Yes				None
20	M21		000000				Yes				None
21	M22						Yes				None
22	M23						Yes				None
23	M24						Yes				None
24	M25		000000				Yes	Default			None
25	M26	00000X					Yes				None
26	M27	BenPIN	BenPIN				Yes				None
27	M28	00000X					Yes				None
28	M29	BenPIN	BenPIN				Yes				None
29	M30	00000X					Yes				None
30	M31		000000				Yes				None
31	M32		000000				Yes				None
32	M33						Yes				None
33	M34						Yes				None
34	M35						Yes				None
35	M36		000000				Yes				None
36	M37						Yes	** NA **	r		None
37	M38						Yes	** NA **	r		None
38	MP4A						Yes	** NA **	F		None
39	M40						Yes	** NA **	F		None
40	M41						Yes	** NA **	r		None
41	MP3A						Yes	** NA **	r		None
42	M43						Yes	** NA **	r		None
43	M44						Yes	** NA **	F		None
44	MP2A						Yes	** NA **	r		None
45	M46A						Yes	** NA **	r		None
46	M47						Yes	** NA **	r		None
47	M48						Yes	** NA **	;		None
48	MP1A						Yes	** NA **	r		None
49	EQUIP						Yes	Default			None
50	M51						Yes				None
51	M52		000000				Yes	** NA **	r		None
52	M53		000X00				Yes	** NA **			None
53	M54		000000				Yes	** NA **			None
54	M55		000X00				Yes	** NA **			None
55	M55A	BenPIN					Yes	Default			None
56	OVP						Yes	** NA **			None

# Member Point Loads (BLC 1 : Antenna D)

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	Y	-43.5	6
MP1A	My	035	6
MP1A	Mz	024	6
MP1A	Y	-43.5	42
MP1A	My	035	42
MP1A	Mz	024	42
MP1A	Y	-43.5	6
MP1A	My	004	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AYMP1AMyMP1AMzMP1AYMP1AMyMP1AMzMP1AY	MP1A         Y         -43.5           MP1A         My        035           MP1A         Mz        024           MP1A         Y         -43.5           MP1A         Mz        024           MP1A         Y         -43.5           MP1A         My        025           MP1A         My        035           MP1A         Mz        024           MP1A         Mz        024           MP1A         Y         -43.5

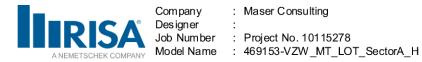



# Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mz	.042	6
10	MP1A	Y	-43.5	42
11	MP1A	My	004	42
12	MP1A	Mz	.042	42
13	MP4A	Y	-43.5	6
14	MP4A	My	004	6
15	MP4A	Mz	042	6
16	MP4A	Y	-43.5	42
17	MP4A	My	004	42
18	MP4A	Mz	042	42
19	MP4A	Y	-43.5	6
20	MP4A	My	035	6
21	MP4A	Mz	.024	6
22	MP4A	Y	-43.5	42
23	MP4A	My	035	42
24	MP4A	Mz	.024	42
25	MP3A	Y	-43.55	12
26	MP3A	My	022	12
27	MP3A	Mz	0	12
28	MP3A	Y	-43.55	36
29	MP3A	My	022	36
30	MP3A	Mz	0	36
31	MP1A	Y	-74.7	24
32	MP1A	My	.034	24
33	MP1A	Mz	016	24
34	MP2A	Y	-70.3	42
35	MP2A	My	.035	42
36	MP2A	Mz	0	42
37	MP2A	Y	-11.6	6
38	MP2A	My	006	6
39	MP2A	Mz	0	6
40	MP2A	Y	-11.6	42
41	MP2A	My	006	42
42	MP2A	Mz	0	42
43	OVP	Y	-84.4	1.8
44	OVP	My	0	1.8
45	OVP	Mz	0	1.8
46	MP3A	Y	-70.3	24
47	MP3A	My	.035	24
48	MP3A	Mz	0	24

# Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	Y	-98.574	6
2	MP1A	My	079	6
3	MP1A	Mz	054	6
4	MP1A	Y	-98.574	42
5	MP1A	My	079	42
6	MP1A	Mz	054	42
7	MP1A	Y	-98.574	6
8	MP1A	My	01	6

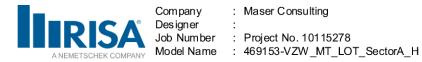



# Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mz	.095	6
10	MP1A	Y	-98.574	42
11	MP1A	My	01	42
12	MP1A	Mz	.095	42
13	MP4A	Y	-98.574	6
14	MP4A	My	01	6
15	MP4A	Mz	095	6
16	MP4A	Y	-98.574	42
17	MP4A	My	01	42
18	MP4A	Mz	095	42
19	MP4A	Y	-98.574	6
20	MP4A	My	079	6
21	MP4A	Mz	.054	6
22	MP4A	Y	-98.574	42
23	MP4A	My	079	42
24	MP4A	Mz	.054	42
25	MP3A	Y	-36.174	12
26	MP3A	My	018	12
27	MP3A	Mz	0	12
28	MP3A	Y	-36.174	36
29	MP3A	My	018	36
30	MP3A	Mz	0	36
31	MP1A	Y	-45.617	24
32	MP1A	My	.021	24
33	MP1A	Mz	01	24
34	MP2A	Y	-43.443	42
35	MP2A	My	.022	42
36	MP2A	Mz	0	42
37	MP2A	Y	-15.178	6
38	MP2A	My	008	6
39	MP2A	Mz	0	6
40	MP2A	Y	-15.178	42
41	MP2A	My	008	42
42	MP2A	Mz	0	42
43	OVP	Y	-45.617	1.8
44	OVP	My	0	1.8
45	OVP	Mz	0	1.8
46	MP3A	Y	-41.028	24
47	MP3A	My	.021	24
48	MP3A	Mz	0	24

# Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	0	6
2	MP1A	Z	-197.178	6
3	MP1A	Mx	.107	6
4	MP1A	Х	0	42
5	MP1A	Z	-197.178	42
6	MP1A	Mx	.107	42
7	MP1A	Х	0	6
8	MP1A	Z	-197.178	6

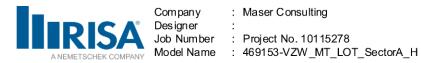



#### Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	191	6
10	MP1A	Х	0	42
11	MP1A	Z	-197.178	42
12	MP1A	Mx	191	42
13	MP4A	Х	0	6
14	MP4A	Z	-197.178	6
15	MP4A	Mx	.191	6
16	MP4A	Х	0	42
17	MP4A	Z	-197.178	42
18	MP4A	Mx	.191	42
19	MP4A	Х	0	6
20	MP4A	Z	-197.178	6
21	MP4A	Mx	107	6
22	MP4A	Х	0	42
23	MP4A	Z	-197.178	42
24	MP4A	Mx	107	42
25	MP3A	Х	0	12
26	MP3A	Z	-80.62	12
27	MP3A	Mx	0	12
28	MP3A	Х	0	36
29	MP3A	Z	-80.62	36
30	MP3A	Mx	0	36
31	MP1A	Х	0	24
32	MP1A	Z	-60.354	24
33	MP1A	Mx	.013	24
34	MP2A	Х	0	42
35	MP2A	Z	-64.153	42
36	MP2A	Mx	0	42
37	MP2A	Х	0	6
38	MP2A	Z	-26.244	6
39	MP2A	Mx	0	6
40	MP2A	Х	0	42
41	MP2A	Z	-26.244	42
42	MP2A	Mx	0	42
43	OVP	Х	0	1.8
44	OVP	Z	-58.836	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	0	24
47	MP3A	Z	-64.153	24
48	MP3A	Mx	0	24

# Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	77.666	6
2	MP1A	Z	-134.521	6
3	MP1A	Mx	.011	6
4	MP1A	X	77.666	42
5	MP1A	Z	-134.521	42
6	MP1A	Mx	.011	42
7	MP1A	X	77.666	6
8	MP1A	Z	-134.521	6

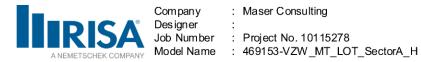



#### Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	138	6
10	MP1A	Х	77.666	42
11	MP1A	Z	-134.521	42
12	MP1A	Mx	138	42
13	MP4A	Х	105.856	6
14	MP4A	Z	-183.348	6
15	MP4A	Mx	.167	6
16	MP4A	Х	105.856	42
17	MP4A	Z	-183.348	42
18	MP4A	Mx	.167	42
19	MP4A	Х	105.856	6
20	MP4A	Z	-183.348	6
21	MP4A	Mx	185	6
22	MP4A	Х	105.856	42
23	MP4A	Z	-183.348	42
24	MP4A	Mx	185	42
25	MP3A	Х	34.178	12
26	MP3A	Z	-59.198	12
27	MP3A	Mx	017	12
28	MP3A	Х	34.178	36
29	MP3A	Z	-59.198	36
30	MP3A	Mx	017	36
31	MP1A	Х	24.94	24
32	MP1A	Z	-43.198	24
33	MP1A	Mx	.02	24
34	MP2A	Х	28.935	42
35	MP2A	Z	-50.118	42
36	MP2A	Mx	.014	42
37	MP2A	Х	11.46	6
38	MP2A	Z	-19.849	6
39	MP2A	Mx	006	6
40	MP2A	X	11.46	42
41	MP2A	Z	-19.849	42
42	MP2A	Mx	006	42
43	OVP	Х	24.1	1.8
44	OVP	Z	-41.743	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	28.399	24
47	MP3A	Z	-49.189	24
48	MP3A	Mx	.014	24

#### Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	110.867	6
2	MP1A	Z	-64.009	6
3	MP1A	Mx	054	6
4	MP1A	X	110.867	42
5	MP1A	Z	-64.009	42
6	MP1A	Mx	054	42
7	MP1A	X	110.867	6
8	MP1A	Z	-64.009	6

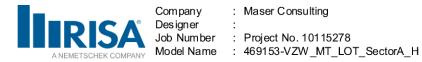



#### Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	073	6
10	MP1A	Х	110.867	42
11	MP1A	Z	-64.009	42
12	MP1A	Mx	073	42
13	MP4A	Х	159.693	6
14	MP4A	Z	-92.199	6
15	MP4A	Mx	.073	6
16	MP4A	Х	159.693	42
17	MP4A	Z	-92.199	42
18	MP4A	Mx	.073	42
19	MP4A	Х	159.693	6
20	MP4A	Z	-92.199	6
21	MP4A	Mx	179	6
22	MP4A	Х	159.693	42
23	MP4A	Z	-92.199	42
24	MP4A	Mx	179	42
25	MP3A	Х	37.955	12
26	MP3A	Z	-21.914	12
27	MP3A	Mx	019	12
28	MP3A	Х	37.955	36
29	MP3A	Z	-21.914	36
30	MP3A	Mx	019	36
31	MP1A	Х	37.278	24
32	MP1A	Z	-21.522	24
33	MP1A	Mx	.021	24
34	MP2A	Х	39.236	42
35	MP2A	Z	-22.653	42
36	MP2A	Mx	.02	42
37	MP2A	X	14.091	6
38	MP2A	Z	-8.135	6
39	MP2A	Mx	007	6
40	MP2A	Х	14.091	42
41	MP2A	Z	-8.135	42
42	MP2A	Mx	007	42
43	OVP	X	37.138	1.8
44	OVP	Z	-21.442	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	36.451	24
47	MP3A	Z	-21.045	24
48	MP3A	Mx	.018	24

#### Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	142.551	6
2	MP1A	Z	0	6
3	MP1A	Mx	115	6
4	MP1A	X	142.551	42
5	MP1A	Z	0	42
6	MP1A	Mx	115	42
7	MP1A	Х	142.551	6
8	MP1A	Z	0	6

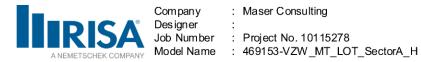



#### Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	014	6
10	MP1A	Х	142.551	42
11	MP1A	Z	0	42
12	MP1A	Mx	014	42
13	MP4A	Х	142.551	6
14	MP4A	Z	0	6
15	MP4A	Mx	014	6
16	MP4A	X	142.551	42
17	MP4A	Z	0	42
18	MP4A	Mx	014	42
19	MP4A	Х	142.551	6
20	MP4A	Z	0	6
21	MP4A	Mx	115	6
22	MP4A	X	142.551	42
23	MP4A	Z	0	42
24	MP4A	Mx	115	42
25	MP3A	Х	31.563	12
26	MP3A	Z	0	12
27	MP3A	Mx	016	12
28	MP3A	X	31.563	36
29	MP3A	Z	0	36
30	MP3A	Mx	016	36
31	MP1A	X	46.682	24
32	MP1A	Z	0	24
33	MP1A	Mx	.021	24
34	MP2A	X	39.024	42
35	MP2A	Z	0	42
36	MP2A	Mx	.02	42
37	MP2A	X	12.946	6
38	MP2A	Z	0	6
39	MP2A	Mx	006	6
40	MP2A	X	12.946	42
41	MP2A	Z	0	42
42	MP2A	Mx	006	42
43	OVP	Х	48.201	1.8
44	OVP	Z	0	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	34.735	24
47	MP3A	Z	0	24
48	MP3A	Mx	.017	24

# Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	159.693	6
2	MP1A	Z	92.199	6
3	MP1A	Mx	179	6
4	MP1A	X	159.693	42
5	MP1A	Z	92.199	42
6	MP1A	Mx	179	42
7	MP1A	X	159.693	6
8	MP1A	Z	92.199	6

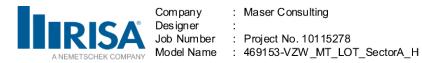



#### Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.073	6
10	MP1A	Х	159.693	42
11	MP1A	Z	92.199	42
12	MP1A	Mx	.073	42
13	MP4A	Х	110.867	6
14	MP4A	Z	64.009	6
15	MP4A	Mx	073	6
16	MP4A	Х	110.867	42
17	MP4A	Z	64.009	42
18	MP4A	Mx	073	42
19	MP4A	Х	110.867	6
20	MP4A	Z	64.009	6
21	MP4A	Mx	054	6
22	MP4A	Х	110.867	42
23	MP4A	Z	64.009	42
24	MP4A	Mx	054	42
25	MP3A	Х	37.955	12
26	MP3A	Z	21.914	12
27	MP3A	Mx	019	12
28	MP3A	Х	37.955	36
29	MP3A	Z	21.914	36
30	MP3A	Mx	019	36
31	MP1A	Х	49.498	24
32	MP1A	Z	28.578	24
33	MP1A	Mx	.016	24
34	MP2A	Х	39.236	42
35	MP2A	Z	22.653	42
36	MP2A	Mx	.02	42
37	MP2A	Х	14.091	6
38	MP2A	Z	8.135	6
39	MP2A	Mx	007	6
40	MP2A	Х	14.091	42
41	MP2A	Z	8.135	42
42	MP2A	Mx	007	42
43	OVP	Х	50.953	1.8
44	OVP	Z	29.418	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	36.451	24
47	MP3A	Z	21.045	24
48	MP3A	Mx	.018	24

# Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	105.856	6
2	MP1A	Z	183.348	6
3	MP1A	Mx	185	6
4	MP1A	X	105.856	42
5	MP1A	Z	183.348	42
6	MP1A	Mx	185	42
7	MP1A	X	105.856	6
8	MP1A	Z	183.348	6

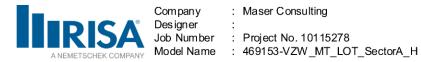



#### Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.167	6
10	MP1A	Х	105.856	42
11	MP1A	Z	183.348	42
12	MP1A	Mx	.167	42
13	MP4A	Х	77.666	6
14	MP4A	Z	134.521	6
15	MP4A	Mx	138	6
16	MP4A	Х	77.666	42
17	MP4A	Z	134.521	42
18	MP4A	Mx	138	42
19	MP4A	Х	77.666	6
20	MP4A	Z	134.521	6
21	MP4A	Mx	.011	6
22	MP4A	Х	77.666	42
23	MP4A	Z	134.521	42
24	MP4A	Mx	.011	42
25	MP3A	Х	34.178	12
26	MP3A	Z	59.198	12
27	MP3A	Mx	017	12
28	MP3A	Х	34.178	36
29	MP3A	Z	59.198	36
30	MP3A	Mx	017	36
31	MP1A	Х	31.996	24
32	MP1A	Z	55.418	24
33	MP1A	Mx	.003	24
34	MP2A	Х	28.935	42
35	MP2A	Z	50.118	42
36	MP2A	Mx	.014	42
37	MP2A	Х	11.46	6
38	MP2A	Z	19.849	6
39	MP2A	Mx	006	6
40	MP2A	Х	11.46	42
41	MP2A	Z	19.849	42
42	MP2A	Mx	006	42
43	OVP	Х	32.077	1.8
44	OVP	Z	55.558	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	28.399	24
47	MP3A	Z	49.189	24
48	MP3A	Mx	.014	24

# Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	0	6
2	MP1A	Z	197.178	6
3	MP1A	Mx	107	6
4	MP1A	Х	0	42
5	MP1A	Z	197.178	42
6	MP1A	Mx	107	42
7	MP1A	Х	0	6
8	MP1A	Z	197.178	6

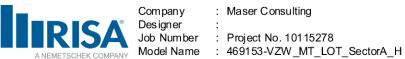



# Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.191	6
10	MP1A	Х	0	42
11	MP1A	Z	197.178	42
12	MP1A	Mx	.191	42
13	MP4A	Х	0	6
14	MP4A	Z	197.178	6
15	MP4A	Mx	191	6
16	MP4A	Х	0	42
17	MP4A	Z	197.178	42
18	MP4A	Mx	191	42
19	MP4A	Х	0	6
20	MP4A	Z	197.178	6
21	MP4A	Mx	.107	6
22	MP4A	Х	0	42
23	MP4A	Z	197.178	42
24	MP4A	Mx	.107	42
25	MP3A	Х	0	12
26	MP3A	Z	80.62	12
27	MP3A	Mx	0	12
28	MP3A	Х	0	36
29	MP3A	Z	80.62	36
30	MP3A	Mx	0	36
31	MP1A	Х	0	24
32	MP1A	Z	60.354	24
33	MP1A	Mx	013	24
34	MP2A	Х	0	42
35	MP2A	Z	64.153	42
36	MP2A	Mx	0	42
37	MP2A	Х	0	6
38	MP2A	Z	26.244	6
39	MP2A	Mx	0	6
40	MP2A	Х	0	42
41	MP2A	Z	26.244	42
42	MP2A	Mx	0	42
43	OVP	Х	0	1.8
44	OVP	Z	58.836	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	0	24
47	MP3A	Z	64.153	24
48	MP3A	Mx	0	24

# Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	X	-77.666	6
MP1A	Z	134.521	6
MP1A	Mx	011	6
MP1A	Х	-77.666	42
MP1A	Z	134.521	42
MP1A	Mx	011	42
MP1A	Х	-77.666	6
MP1A	Z	134.521	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AZMP1AXMP1AX	MP1A         X         -77.666           MP1A         Z         134.521           MP1A         Mx        011           MP1A         X         -77.666           MP1A         X        011           MP1A         X        011           MP1A         X        011           MP1A         Z         134.521           MP1A         X        011           MP1A         Mx        011           MP1A         X        77.666

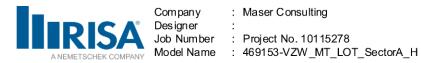



# Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.138	6
10	MP1A	X	-77.666	42
11	MP1A	Z	134.521	42
12	MP1A	Mx	.138	42
13	MP4A	Х	-105.856	6
14	MP4A	Z	183.348	6
15	MP4A	Mx	167	6
16	MP4A	Х	-105.856	42
17	MP4A	Z	183.348	42
18	MP4A	Mx	167	42
19	MP4A	Х	-105.856	6
20	MP4A	Z	183.348	6
21	MP4A	Mx	.185	6
22	MP4A	Х	-105.856	42
23	MP4A	Z	183.348	42
24	MP4A	Mx	.185	42
25	MP3A	Х	-34.178	12
26	MP3A	Z	59.198	12
27	MP3A	Mx	.017	12
28	MP3A	Х	-34.178	36
29	MP3A	Z	59.198	36
30	MP3A	Mx	.017	36
31	MP1A	Х	-24.94	24
32	MP1A	Z	43.198	24
33	MP1A	Mx	02	24
34	MP2A	Х	-28.935	42
35	MP2A	Z	50.118	42
36	MP2A	Mx	014	42
37	MP2A	Х	-11.46	6
38	MP2A	Z	19.849	6
39	MP2A	Mx	.006	6
40	MP2A	Х	-11.46	42
41	MP2A	Z	19.849	42
42	MP2A	Mx	.006	42
43	OVP	Х	-24.1	1.8
44	OVP	Z	41.743	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-28.399	24
47	MP3A	Z	49.189	24
48	MP3A	Mx	014	24

# Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	-110.867	6
2	MP1A	Z	64.009	6
3	MP1A	Mx	.054	6
4	MP1A	X	-110.867	42
5	MP1A	Z	64.009	42
6	MP1A	Mx	.054	42
7	MP1A	X	-110.867	6
8	MP1A	Z	64.009	6

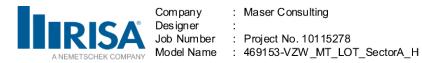



#### Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.073	6
10	MP1A	Х	-110.867	42
11	MP1A	Z	64.009	42
12	MP1A	Mx	.073	42
13	MP4A	Х	-159.693	6
14	MP4A	Z	92.199	6
15	MP4A	Mx	073	6
16	MP4A	Х	-159.693	42
17	MP4A	Z	92.199	42
18	MP4A	Mx	073	42
19	MP4A	Х	-159.693	6
20	MP4A	Z	92.199	6
21	MP4A	Mx	.179	6
22	MP4A	Х	-159.693	42
23	MP4A	Z	92.199	42
24	MP4A	Mx	.179	42
25	MP3A	Х	-37.955	12
26	MP3A	Z	21.914	12
27	MP3A	Mx	.019	12
28	MP3A	Х	-37.955	36
29	MP3A	Z	21.914	36
30	MP3A	Mx	.019	36
31	MP1A	Х	-37.278	24
32	MP1A	Z	21.522	24
33	MP1A	Mx	021	24
34	MP2A	Х	-39.236	42
35	MP2A	Z	22.653	42
36	MP2A	Mx	02	42
37	MP2A	Х	-14.091	6
38	MP2A	Z	8.135	6
39	MP2A	Mx	.007	6
40	MP2A	Х	-14.091	42
41	MP2A	Z	8.135	42
42	MP2A	Mx	.007	42
43	OVP	Х	-37.138	1.8
44	OVP	Z	21.442	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-36.451	24
47	MP3A	Z	21.045	24
48	MP3A	Mx	018	24

# Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	Х	-142.551	6
MP1A	Z	0	6
MP1A	Mx	.115	6
MP1A	Х	-142.551	42
MP1A	Z	0	42
MP1A	Mx	.115	42
MP1A	Х	-142.551	6
MP1A	Z	0	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AAMP1AXMP1AX	MP1A         X         -142.551           MP1A         Z         0           MP1A         Mx         .115           MP1A         X         -142.551           MP1A         Mx         .115           MP1A         X         0           MP1A         X         .142.551           MP1A         X         .115           MP1A         X         .115           MP1A         Mx         .115           MP1A         Mx         .115           MP1A         X         -142.551

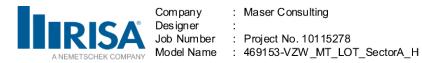



# Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.014	6
10	MP1A	Х	-142.551	42
11	MP1A	Z	0	42
12	MP1A	Mx	.014	42
13	MP4A	Х	-142.551	6
14	MP4A	Z	0	6
15	MP4A	Mx	.014	6
16	MP4A	Х	-142.551	42
17	MP4A	Z	0	42
18	MP4A	Mx	.014	42
19	MP4A	Х	-142.551	6
20	MP4A	Z	0	6
21	MP4A	Mx	.115	6
22	MP4A	Х	-142.551	42
23	MP4A	Z	0	42
24	MP4A	Mx	.115	42
25	MP3A	Х	-31.563	12
26	MP3A	Z	0	12
27	MP3A	Mx	.016	12
28	MP3A	Х	-31.563	36
29	MP3A	Z	0	36
30	MP3A	Mx	.016	36
31	MP1A	Х	-46.682	24
32	MP1A	Z	0	24
33	MP1A	Mx	021	24
34	MP2A	Х	-39.024	42
35	MP2A	Z	0	42
36	MP2A	Mx	02	42
37	MP2A	Х	-12.946	6
38	MP2A	Z	0	6
39	MP2A	Mx	.006	6
40	MP2A	Х	-12.946	42
41	MP2A	Z	0	42
42	MP2A	Mx	.006	42
43	OVP	Х	-48.201	1.8
44	OVP	Z	0	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-34.735	24
47	MP3A	Z	0	24
48	MP3A	Mx	017	24

# Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	Х	-159.693	6
MP1A	Z	-92.199	6
MP1A	Mx	.179	6
MP1A	Х	-159.693	42
MP1A	Z	-92.199	42
MP1A	Mx	.179	42
MP1A	Х	-159.693	6
MP1A	Z	-92.199	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AXMP1AZMP1AXMP1AX	MP1A         X         -159.693           MP1A         Z         -92.199           MP1A         Mx         .179           MP1A         X         -159.693           MP1A         X         -179           MP1A         Mx         .179           MP1A         X         -159.693

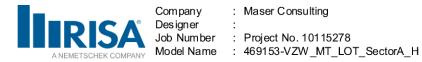



#### Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	073	6
10	MP1A	X	-159.693	42
11	MP1A	Z	-92.199	42
12	MP1A	Mx	073	42
13	MP4A	X	-110.867	6
14	MP4A	Z	-64.009	6
15	MP4A	Mx	.073	6
16	MP4A	Х	-110.867	42
17	MP4A	Z	-64.009	42
18	MP4A	Mx	.073	42
19	MP4A	X	-110.867	6
20	MP4A	Z	-64.009	6
21	MP4A	Mx	.054	6
22	MP4A	Х	-110.867	42
23	MP4A	Z	-64.009	42
24	MP4A	Mx	.054	42
25	MP3A	X	-37.955	12
26	MP3A	Z	-21.914	12
27	MP3A	Mx	.019	12
28	MP3A	X	-37.955	36
29	MP3A	Z	-21.914	36
30	MP3A	Mx	.019	36
31	MP1A	Х	-49.498	24
32	MP1A	Z	-28.578	24
33	MP1A	Mx	016	24
34	MP2A	Х	-39.236	42
35	MP2A	Z	-22.653	42
36	MP2A	Mx	02	42
37	MP2A	X	-14.091	6
38	MP2A	Z	-8.135	6
39	MP2A	Mx	.007	6
40	MP2A	Х	-14.091	42
41	MP2A	Z	-8.135	42
42	MP2A	Mx	.007	42
43	OVP	Х	-50.953	1.8
44	OVP	Z	-29.418	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-36.451	24
47	MP3A	Z	-21.045	24
48	MP3A	Mx	018	24

# Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	-105.856	6
2	MP1A	Z	-183.348	6
3	MP1A	Mx	.185	6
4	MP1A	X	-105.856	42
5	MP1A	Z	-183.348	42
6	MP1A	Mx	.185	42
7	MP1A	X	-105.856	6
8	MP1A	Z	-183.348	6

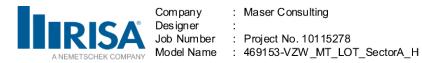



#### Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	167	6
10	MP1A	X	-105.856	42
11	MP1A	Z	-183.348	42
12	MP1A	Mx	167	42
13	MP4A	X	-77.666	6
14	MP4A	Z	-134.521	6
15	MP4A	Mx	.138	6
16	MP4A	X	-77.666	42
17	MP4A	Z	-134.521	42
18	MP4A	Mx	.138	42
19	MP4A	Х	-77.666	6
20	MP4A	Z	-134.521	6
21	MP4A	Mx	011	6
22	MP4A	X	-77.666	42
23	MP4A	Z	-134.521	42
24	MP4A	Mx	011	42
25	MP3A	Х	-34.178	12
26	MP3A	Z	-59.198	12
27	MP3A	Mx	.017	12
28	MP3A	X	-34.178	36
29	MP3A	Z	-59.198	36
30	MP3A	Mx	.017	36
31	MP1A	Х	-31.996	24
32	MP1A	Z	-55.418	24
33	MP1A	Mx	003	24
34	MP2A	X	-28.935	42
35	MP2A	Z	-50.118	42
36	MP2A	Mx	014	42
37	MP2A	X	-11.46	6
38	MP2A	Z	-19.849	6
39	MP2A	Mx	.006	6
40	MP2A	Х	-11.46	42
41	MP2A	Z	-19.849	42
42	MP2A	Mx	.006	42
43	OVP	X	-32.077	1.8
44	OVP	Z	-55.558	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	-28.399	24
47	MP3A	Z	-49.189	24
48	MP3A	Mx	014	24

# Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	0	6
2	MP1A	Z	-38.328	6
3	MP1A	Mx	.021	6
4	MP1A	X	0	42
5	MP1A	Z	-38.328	42
6	MP1A	Mx	.021	42
7	MP1A	Х	0	6
8	MP1A	Z	-38.328	6

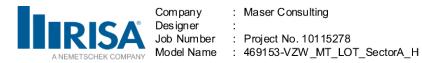



#### Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	037	6
10	MP1A	Х	0	42
11	MP1A	Z	-38.328	42
12	MP1A	Mx	037	42
13	MP4A	Х	0	6
14	MP4A	Z	-38.328	6
15	MP4A	Mx	.037	6
16	MP4A	Х	0	42
17	MP4A	Z	-38.328	42
18	MP4A	Mx	.037	42
19	MP4A	Х	0	6
20	MP4A	Z	-38.328	6
21	MP4A	Mx	021	6
22	MP4A	Х	0	42
23	MP4A	Z	-38.328	42
24	MP4A	Mx	021	42
25	MP3A	Х	0	12
26	MP3A	Z	-16.38	12
27	MP3A	Mx	0	12
28	MP3A	Х	0	36
29	MP3A	Z	-16.38	36
30	MP3A	Mx	0	36
31	MP1A	Х	0	24
32	MP1A	Z	-13.066	24
33	MP1A	Mx	.003	24
34	MP2A	Х	0	42
35	MP2A	Z	-13.816	42
36	MP2A	Mx	0	42
37	MP2A	Х	0	6
38	MP2A	Z	-5.789	6
39	MP2A	Mx	0	6
40	MP2A	Х	0	42
41	MP2A	Z	-5.789	42
42	MP2A	Mx	0	42
43	OVP	Х	0	1.8
44	OVP	Z	-12.766	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	0	24
47	MP3A	Z	-13.816	24
48	MP3A	Mx	0	24

# Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	Х	15.289	6
MP1A	Z	-26.481	6
MP1A	Mx	.002	6
MP1A	Х	15.289	42
MP1A	Z	-26.481	42
MP1A	Mx	.002	42
MP1A	Х	15.289	6
MP1A	Z	-26.481	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AXMP1AZMP1AXMP1AXMP1AX	MP1A         X         15.289           MP1A         Z         -26.481           MP1A         Mx         .002           MP1A         X         15.289           MP1A         X         .002           MP1A         X         .002           MP1A         X         .002           MP1A         X         .002           MP1A         Z        26.481           MP1A         X         .002           MP1A         Mx         .002           MP1A         X         15.289

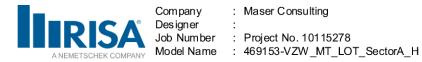



#### Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	027	6
10	MP1A	X	15.289	42
11	MP1A	Z	-26.481	42
12	MP1A	Mx	027	42
13	MP4A	Х	20.51	6
14	MP4A	Z	-35.524	6
15	MP4A	Mx	.032	6
16	MP4A	X	20.51	42
17	MP4A	Z	-35.524	42
18	MP4A	Mx	.032	42
19	MP4A	Х	20.51	6
20	MP4A	Z	-35.524	6
21	MP4A	Mx	036	6
22	MP4A	Х	20.51	42
23	MP4A	Z	-35.524	42
24	MP4A	Mx	036	42
25	MP3A	Х	7.016	12
26	MP3A	Z	-12.151	12
27	MP3A	Mx	004	12
28	MP3A	X	7.016	36
29	MP3A	Z	-12.151	36
30	MP3A	Mx	004	36
31	MP1A	X	5.499	24
32	MP1A	Z	-9.524	24
33	MP1A	Mx	.005	24
34	MP2A	Х	6.288	42
35	MP2A	Z	-10.892	42
36	MP2A	Mx	.003	42
37	MP2A	X	2.562	6
38	MP2A	Z	-4.438	6
39	MP2A	Mx	001	6
40	MP2A	X	2.562	42
41	MP2A	Z	-4.438	42
42	MP2A	Mx	001	42
43	OVP	X	5.333	1.8
44	OVP	Z	-9.237	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	6.183	24
47	MP3A	Z	-10.71	24
48	MP3A	Mx	.003	24

#### Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	Х	22.1	6
MP1A	Z	-12.759	6
MP1A	Mx	011	6
MP1A	Х	22.1	42
MP1A	Z	-12.759	42
MP1A	Mx	011	42
MP1A	Х	22.1	6
MP1A	Z	-12.759	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AZMP1AMxMP1AX	MP1A         X         22.1           MP1A         Z         -12.759           MP1A         Mx        011           MP1A         X         22.1           MP1A         Mx        011           MP1A         Z         -12.759           MP1A         X         22.1           MP1A         X        011           MP1A         Mx        011           MP1A         X         22.1

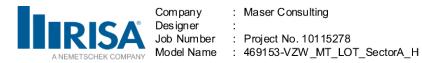



#### Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	015	6
10	MP1A	Х	22.1	42
11	MP1A	Z	-12.759	42
12	MP1A	Mx	015	42
13	MP4A	X	31.143	6
14	MP4A	Z	-17.98	6
15	MP4A	Mx	.014	6
16	MP4A	X	31.143	42
17	MP4A	Z	-17.98	42
18	MP4A	Mx	.014	42
19	MP4A	X	31.143	6
20	MP4A	Z	-17.98	6
21	MP4A	Mx	035	6
22	MP4A	X	31.143	42
23	MP4A	Z	-17.98	42
24	MP4A	Mx	035	42
25	MP3A	Х	8.084	12
26	MP3A	Z	-4.667	12
27	MP3A	Mx	004	12
28	MP3A	X	8.084	36
29	MP3A	Z	-4.667	36
30	MP3A	Mx	004	36
31	MP1A	Х	8.355	24
32	MP1A	Z	-4.824	24
33	MP1A	Mx	.005	24
34	MP2A	Х	8.746	42
35	MP2A	Z	-5.049	42
36	MP2A	Mx	.004	42
37	MP2A	X	3.286	6
38	MP2A	Z	-1.897	6
39	MP2A	Mx	002	6
40	MP2A	Х	3.286	42
41	MP2A	Z	-1.897	42
42	MP2A	Mx	002	42
43	OVP	X	8.327	1.8
44	OVP	Z	-4.808	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	8.2	24
47	MP3A	Z	-4.734	24
48	MP3A	Mx	.004	24

#### Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	X	28.21	6
MP1A	Z	0	6
MP1A	Mx	023	6
MP1A	X	28.21	42
MP1A	Z	0	42
MP1A	Mx	023	42
MP1A	X	28.21	6
MP1A	Z	0	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AXMP1AZMP1AXMP1AX	MP1A         X         28.21           MP1A         Z         0           MP1A         Mx        023           MP1A         X         28.21           MP1A         Mx        023           MP1A         X         28.21           MP1A         Mx        023           MP1A         X         28.21

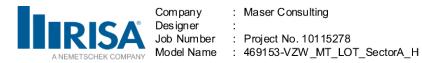



#### Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	003	6
10	MP1A	Х	28.21	42
11	MP1A	Z	0	42
12	MP1A	Mx	003	42
13	MP4A	Х	28.21	6
14	MP4A	Z	0	6
15	MP4A	Mx	003	6
16	MP4A	Х	28.21	42
17	MP4A	Z	0	42
18	MP4A	Mx	003	42
19	MP4A	Х	28.21	6
20	MP4A	Z	0	6
21	MP4A	Mx	023	6
22	MP4A	Х	28.21	42
23	MP4A	Z	0	42
24	MP4A	Mx	023	42
25	MP3A	Х	6.986	12
26	MP3A	Z	0	12
27	MP3A	Mx	003	12
28	MP3A	Х	6.986	36
29	MP3A	Z	0	36
30	MP3A	Mx	003	36
31	MP1A	Х	10.366	24
32	MP1A	Z	0	24
33	MP1A	Mx	.005	24
34	MP2A	Х	8.86	42
35	MP2A	Z	0	42
36	MP2A	Mx	.004	42
37	MP2A	Х	3.129	6
38	MP2A	Z	0	6
39	MP2A	Mx	002	6
40	MP2A	Х	3.129	42
41	MP2A	Z	0	42
42	MP2A	Mx	002	42
43	OVP	Х	10.666	1.8
44	OVP	Z	0	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	8.02	24
47	MP3A	Z	0	24
48	MP3A	Mx	.004	24

#### Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	31.143	6
2	MP1A	Z	17.98	6
3	MP1A	Mx	035	6
4	MP1A	X	31.143	42
5	MP1A	Z	17.98	42
6	MP1A	Mx	035	42
7	MP1A	Х	31.143	6
8	MP1A	Z	17.98	6

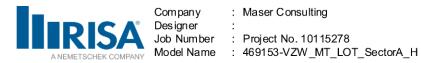



#### Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.014	6
10	MP1A	Х	31.143	42
11	MP1A	Z	17.98	42
12	MP1A	Mx	.014	42
13	MP4A	Х	22.1	6
14	MP4A	Z	12.759	6
15	MP4A	Mx	015	6
16	MP4A	Х	22.1	42
17	MP4A	Z	12.759	42
18	MP4A	Mx	015	42
19	MP4A	Х	22.1	6
20	MP4A	Z	12.759	6
21	MP4A	Mx	011	6
22	MP4A	Х	22.1	42
23	MP4A	Z	12.759	42
24	MP4A	Mx	011	42
25	MP3A	Х	8.084	12
26	MP3A	Z	4.667	12
27	MP3A	Mx	004	12
28	MP3A	Х	8.084	36
29	MP3A	Z	4.667	36
30	MP3A	Mx	004	36
31	MP1A	Х	10.768	24
32	MP1A	Z	6.217	24
33	MP1A	Mx	.004	24
34	MP2A	Х	8.746	42
35	MP2A	Z	5.049	42
36	MP2A	Mx	.004	42
37	MP2A	Х	3.286	6
38	MP2A	Z	1.897	6
39	MP2A	Mx	002	6
40	MP2A	Х	3.286	42
41	MP2A	Z	1.897	42
42	MP2A	Mx	002	42
43	OVP	Х	11.055	1.8
44	OVP	Z	6.383	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	8.2	24
47	MP3A	Z	4.734	24
48	MP3A	Mx	.004	24

# Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	Х	20.51	6
2	MP1A	Z	35.524	6
3	MP1A	Mx	036	6
4	MP1A	Х	20.51	42
5	MP1A	Z	35.524	42
6	MP1A	Mx	036	42
7	MP1A	Х	20.51	6
8	MP1A	Z	35.524	6

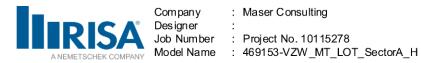



#### Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.032	6
10	MP1A	Х	20.51	42
11	MP1A	Z	35.524	42
12	MP1A	Mx	.032	42
13	MP4A	Х	15.289	6
14	MP4A	Z	26.481	6
15	MP4A	Mx	027	6
16	MP4A	Х	15.289	42
17	MP4A	Z	26.481	42
18	MP4A	Mx	027	42
19	MP4A	Х	15.289	6
20	MP4A	Z	26.481	6
21	MP4A	Mx	.002	6
22	MP4A	Х	15.289	42
23	MP4A	Z	26.481	42
24	MP4A	Mx	.002	42
25	MP3A	Х	7.016	12
26	MP3A	Z	12.151	12
27	MP3A	Mx	004	12
28	MP3A	Х	7.016	36
29	MP3A	Z	12.151	36
30	MP3A	Mx	004	36
31	MP1A	Х	6.892	24
32	MP1A	Z	11.937	24
33	MP1A	Mx	.000601	24
34	MP2A	Х	6.288	42
35	MP2A	Z	10.892	42
36	MP2A	Mx	.003	42
37	MP2A	Х	2.562	6
38	MP2A	Z	4.438	6
39	MP2A	Mx	001	6
40	MP2A	X	2.562	42
41	MP2A	Z	4.438	42
42	MP2A	Mx	001	42
43	OVP	Х	6.908	1.8
44	OVP	Z	11.965	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	6.183	24
47	MP3A	Z	10.71	24
48	MP3A	Mx	.003	24

# Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	X	0	6
MP1A	Z	38.328	6
MP1A	Mx	021	6
MP1A	X	0	42
MP1A	Z	38.328	42
MP1A	Mx	021	42
MP1A	Х	0	6
MP1A	Z	38.328	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AZMP1AMxMP1AX	MP1A         X         0           MP1A         Z         38.328           MP1A         Mx        021           MP1A         X         0           MP1A         Z         38.328           MP1A         X         0           MP1A         Z         38.328           MP1A         X         0           MP1A         X         0           MP1A         Mx        021           MP1A         X         0

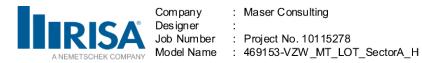



#### Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.037	6
10	MP1A	Х	0	42
11	MP1A	Z	38.328	42
12	MP1A	Mx	.037	42
13	MP4A	Х	0	6
14	MP4A	Z	38.328	6
15	MP4A	Mx	037	6
16	MP4A	Х	0	42
17	MP4A	Z	38.328	42
18	MP4A	Mx	037	42
19	MP4A	Х	0	6
20	MP4A	Z	38.328	6
21	MP4A	Mx	.021	6
22	MP4A	Х	0	42
23	MP4A	Z	38.328	42
24	MP4A	Mx	.021	42
25	MP3A	Х	0	12
26	MP3A	Z	16.38	12
27	MP3A	Mx	0	12
28	MP3A	Х	0	36
29	MP3A	Z	16.38	36
30	MP3A	Mx	0	36
31	MP1A	Х	0	24
32	MP1A	Z	13.066	24
33	MP1A	Mx	003	24
34	MP2A	Х	0	42
35	MP2A	Z	13.816	42
36	MP2A	Mx	0	42
37	MP2A	Х	0	6
38	MP2A	Z	5.789	6
39	MP2A	Mx	0	6
40	MP2A	Х	0	42
41	MP2A	Z	5.789	42
42	MP2A	Mx	0	42
43	OVP	Х	0	1.8
44	OVP	Z	12.766	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	0	24
47	MP3A	Z	13.816	24
48	MP3A	Mx	0	24

# Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	Х	-15.289	6
MP1A	Z	26.481	6
MP1A	Mx	002	6
MP1A	Х	-15.289	42
MP1A	Z	26.481	42
MP1A	Mx	002	42
MP1A	Х	-15.289	6
MP1A	Z	26.481	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AXMP1AZMP1AXMP1AX	MP1A         X         -15.289           MP1A         Z         26.481           MP1A         Mx        002           MP1A         X         -15.289           MP1A         Mx        002           MP1A         X         -15.289           MP1A         X        002           MP1A         X        002           MP1A         Z         26.481           MP1A         Mx        002           MP1A         X         -15.289

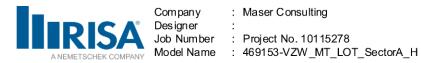



#### Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.027	6
10	MP1A	Х	-15.289	42
11	MP1A	Z	26.481	42
12	MP1A	Mx	.027	42
13	MP4A	Х	-20.51	6
14	MP4A	Z	35.524	6
15	MP4A	Mx	032	6
16	MP4A	Х	-20.51	42
17	MP4A	Z	35.524	42
18	MP4A	Mx	032	42
19	MP4A	Х	-20.51	6
20	MP4A	Z	35.524	6
21	MP4A	Mx	.036	6
22	MP4A	Х	-20.51	42
23	MP4A	Z	35.524	42
24	MP4A	Mx	.036	42
25	MP3A	Х	-7.016	12
26	MP3A	Z	12.151	12
27	MP3A	Mx	.004	12
28	MP3A	Х	-7.016	36
29	MP3A	Z	12.151	36
30	MP3A	Mx	.004	36
31	MP1A	Х	-5.499	24
32	MP1A	Z	9.524	24
33	MP1A	Mx	005	24
34	MP2A	Х	-6.288	42
35	MP2A	Z	10.892	42
36	MP2A	Mx	003	42
37	MP2A	Х	-2.562	6
38	MP2A	Z	4.438	6
39	MP2A	Mx	.001	6
40	MP2A	Х	-2.562	42
41	MP2A	Z	4.438	42
42	MP2A	Mx	.001	42
43	OVP	Х	-5.333	1.8
44	OVP	Z	9.237	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-6.183	24
47	MP3A	Z	10.71	24
48	MP3A	Mx	003	24

# Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	Х	-22.1	6
MP1A	Z	12.759	6
MP1A	Mx	.011	6
MP1A	Х	-22.1	42
MP1A	Z	12.759	42
MP1A	Mx	.011	42
MP1A	Х	-22.1	6
MP1A	Z	12.759	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AXMP1AZMP1AMxMP1AX	MP1A         X         -22.1           MP1A         Z         12.759           MP1A         Mx         .011           MP1A         X         -22.1           MP1A         Mx         .011           MP1A         X         -22.1           MP1A         X         .011           MP1A         Z         12.759           MP1A         X         .011           MP1A         Mx         .011           MP1A         X         -22.1

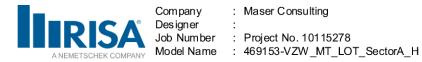



#### Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.015	6
10	MP1A	Х	-22.1	42
11	MP1A	Z	12.759	42
12	MP1A	Mx	.015	42
13	MP4A	Х	-31.143	6
14	MP4A	Z	17.98	6
15	MP4A	Mx	014	6
16	MP4A	Х	-31.143	42
17	MP4A	Z	17.98	42
18	MP4A	Mx	014	42
19	MP4A	Х	-31.143	6
20	MP4A	Z	17.98	6
21	MP4A	Mx	.035	6
22	MP4A	Х	-31.143	42
23	MP4A	Z	17.98	42
24	MP4A	Mx	.035	42
25	MP3A	Х	-8.084	12
26	MP3A	Z	4.667	12
27	MP3A	Mx	.004	12
28	MP3A	Х	-8.084	36
29	MP3A	Z	4.667	36
30	MP3A	Mx	.004	36
31	MP1A	Х	-8.355	24
32	MP1A	Z	4.824	24
33	MP1A	Mx	005	24
34	MP2A	X	-8.746	42
35	MP2A	Z	5.049	42
36	MP2A	Mx	004	42
37	MP2A	Х	-3.286	6
38	MP2A	Z	1.897	6
39	MP2A	Mx	.002	6
40	MP2A	Х	-3.286	42
41	MP2A	Z	1.897	42
42	MP2A	Mx	.002	42
43	OVP	Х	-8.327	1.8
44	OVP	Z	4.808	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-8.2	24
47	MP3A	Z	4.734	24
48	MP3A	Mx	004	24

# Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	-28.21	6
2	MP1A	Z	0	6
3	MP1A	Mx	.023	6
4	MP1A	X	-28.21	42
5	MP1A	Z	0	42
6	MP1A	Mx	.023	42
7	MP1A	Х	-28.21	6
8	MP1A	Z	0	6

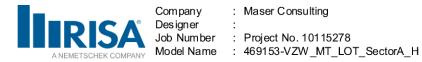



# Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.003	6
10	MP1A	Х	-28.21	42
11	MP1A	Z	0	42
12	MP1A	Mx	.003	42
13	MP4A	Х	-28.21	6
14	MP4A	Z	0	6
15	MP4A	Mx	.003	6
16	MP4A	Х	-28.21	42
17	MP4A	Z	0	42
18	MP4A	Mx	.003	42
19	MP4A	Х	-28.21	6
20	MP4A	Z	0	6
21	MP4A	Mx	.023	6
22	MP4A	Х	-28.21	42
23	MP4A	Z	0	42
24	MP4A	Mx	.023	42
25	MP3A	Х	-6.986	12
26	MP3A	Z	0	12
27	MP3A	Mx	.003	12
28	MP3A	Х	-6.986	36
29	MP3A	Z	0	36
30	MP3A	Mx	.003	36
31	MP1A	Х	-10.366	24
32	MP1A	Z	0	24
33	MP1A	Mx	005	24
34	MP2A	Х	-8.86	42
35	MP2A	Z	0	42
36	MP2A	Mx	004	42
37	MP2A	Х	-3.129	6
38	MP2A	Z	0	6
39	MP2A	Mx	.002	6
40	MP2A	Х	-3.129	42
41	MP2A	Z	0	42
42	MP2A	Mx	.002	42
43	OVP	Х	-10.666	1.8
44	OVP	Z	0	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-8.02	24
47	MP3A	Z	0	24
48	MP3A	Mx	004	24

# Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	-31.143	6
2	MP1A	Z	-17.98	6
3	MP1A	Mx	.035	6
4	MP1A	Х	-31.143	42
5	MP1A	Z	-17.98	42
6	MP1A	Mx	.035	42
7	MP1A	Х	-31.143	6
8	MP1A	Z	-17.98	6

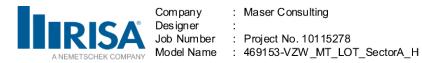



#### Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	014	6
10	MP1A	Х	-31.143	42
11	MP1A	Z	-17.98	42
12	MP1A	Mx	014	42
13	MP4A	Х	-22.1	6
14	MP4A	Z	-12.759	6
15	MP4A	Mx	.015	6
16	MP4A	Х	-22.1	42
17	MP4A	Z	-12.759	42
18	MP4A	Mx	.015	42
19	MP4A	Х	-22.1	6
20	MP4A	Z	-12.759	6
21	MP4A	Mx	.011	6
22	MP4A	Х	-22.1	42
23	MP4A	Z	-12.759	42
24	MP4A	Mx	.011	42
25	MP3A	Х	-8.084	12
26	MP3A	Z	-4.667	12
27	MP3A	Mx	.004	12
28	MP3A	Х	-8.084	36
29	MP3A	Z	-4.667	36
30	MP3A	Mx	.004	36
31	MP1A	Х	-10.768	24
32	MP1A	Z	-6.217	24
33	MP1A	Mx	004	24
34	MP2A	Х	-8.746	42
35	MP2A	Z	-5.049	42
36	MP2A	Mx	004	42
37	MP2A	Х	-3.286	6
38	MP2A	Z	-1.897	6
39	MP2A	Mx	.002	6
40	MP2A	Х	-3.286	42
41	MP2A	Z	-1.897	42
42	MP2A	Mx	.002	42
43	OVP	Х	-11.055	1.8
44	OVP	Z	-6.383	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-8.2	24
47	MP3A	Z	-4.734	24
48	MP3A	Mx	004	24

#### Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	-20.51	6
2	MP1A	Z	-35.524	6
3	MP1A	Mx	.036	6
4	MP1A	X	-20.51	42
5	MP1A	Z	-35.524	42
6	MP1A	Mx	.036	42
7	MP1A	X	-20.51	6
8	MP1A	Z	-35.524	6

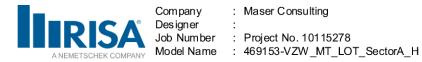



#### Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	032	6
10	MP1A	X	-20.51	42
11	MP1A	Z	-35.524	42
12	MP1A	Mx	032	42
13	MP4A	X	-15.289	6
14	MP4A	Z	-26.481	6
15	MP4A	Mx	.027	6
16	MP4A	Х	-15.289	42
17	MP4A	Z	-26.481	42
18	MP4A	Mx	.027	42
19	MP4A	Х	-15.289	6
20	MP4A	Z	-26.481	6
21	MP4A	Mx	002	6
22	MP4A	Х	-15.289	42
23	MP4A	Z	-26.481	42
24	MP4A	Mx	002	42
25	MP3A	X	-7.016	12
26	MP3A	Z	-12.151	12
27	MP3A	Mx	.004	12
28	MP3A	Х	-7.016	36
29	MP3A	Z	-12.151	36
30	MP3A	Mx	.004	36
31	MP1A	Х	-6.892	24
32	MP1A	Z	-11.937	24
33	MP1A	Mx	000601	24
34	MP2A	Х	-6.288	42
35	MP2A	Z	-10.892	42
36	MP2A	Mx	003	42
37	MP2A	X	-2.562	6
38	MP2A	Z	-4.438	6
39	MP2A	Mx	.001	6
40	MP2A	Х	-2.562	42
41	MP2A	Z	-4.438	42
42	MP2A	Mx	.001	42
43	OVP	X	-6.908	1.8
44	OVP	Z	-11.965	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-6.183	24
47	MP3A	Z	-10.71	24
48	MP3A	Mx	003	24

# Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	0	6
2	MP1A	Z	-12.745	6
3	MP1A	Mx	.007	6
4	MP1A	X	0	42
5	MP1A	Z	-12.745	42
6	MP1A	Mx	.007	42
7	MP1A	X	0	6
8	MP1A	Z	-12.745	6

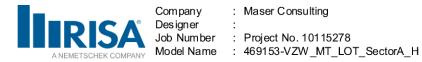



#### Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	012	6
10	MP1A	Х	0	42
11	MP1A	Z	-12.745	42
12	MP1A	Mx	012	42
13	MP4A	Х	0	6
14	MP4A	Z	-12.745	6
15	MP4A	Mx	.012	6
16	MP4A	Х	0	42
17	MP4A	Z	-12.745	42
18	MP4A	Mx	.012	42
19	MP4A	Х	0	6
20	MP4A	Z	-12.745	6
21	MP4A	Mx	007	6
22	MP4A	Х	0	42
23	MP4A	Z	-12.745	42
24	MP4A	Mx	007	42
25	MP3A	Х	0	12
26	MP3A	Z	-5.211	12
27	MP3A	Mx	0	12
28	MP3A	Х	0	36
29	MP3A	Z	-5.211	36
30	MP3A	Mx	0	36
31	MP1A	Х	0	24
32	MP1A	Z	-3.901	24
33	MP1A	Mx	.000824	24
34	MP2A	Х	0	42
35	MP2A	Z	-4.147	42
36	MP2A	Mx	0	42
37	MP2A	Х	0	6
38	MP2A	Z	-1.696	6
39	MP2A	Mx	0	6
40	MP2A	Х	0	42
41	MP2A	Z	-1.696	42
42	MP2A	Mx	0	42
43	OVP	Х	0	1.8
44	OVP	Z	-3.803	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	0	24
47	MP3A	Z	-4.147	24
48	MP3A	Mx	0	24

# Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	5.02	6
2	MP1A	Z	-8.695	6
3	MP1A	Mx	.000687	6
4	MP1A	X	5.02	42
5	MP1A	Z	-8.695	42
6	MP1A	Mx	.000687	42
7	MP1A	X	5.02	6
8	MP1A	Z	-8.695	6

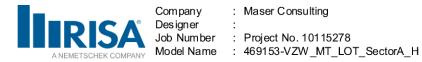



# Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	009	6
10	MP1A	Х	5.02	42
11	MP1A	Z	-8.695	42
12	MP1A	Mx	009	42
13	MP4A	Х	6.842	6
14	MP4A	Z	-11.851	6
15	MP4A	Mx	.011	6
16	MP4A	Х	6.842	42
17	MP4A	Z	-11.851	42
18	MP4A	Mx	.011	42
19	MP4A	Х	6.842	6
20	MP4A	Z	-11.851	6
21	MP4A	Mx	012	6
22	MP4A	Х	6.842	42
23	MP4A	Z	-11.851	42
24	MP4A	Mx	012	42
25	MP3A	Х	2.209	12
26	MP3A	Z	-3.826	12
27	MP3A	Mx	001	12
28	MP3A	Х	2.209	36
29	MP3A	Z	-3.826	36
30	MP3A	Mx	001	36
31	MP1A	Х	1.612	24
32	MP1A	Z	-2.792	24
33	MP1A	Mx	.001	24
34	MP2A	Х	1.87	42
35	MP2A	Z	-3.239	42
36	MP2A	Mx	.000935	42
37	MP2A	Х	.741	6
38	MP2A	Z	-1.283	6
39	MP2A	Mx	00037	6
40	MP2A	Х	.741	42
41	MP2A	Z	-1.283	42
42	MP2A	Mx	00037	42
43	OVP	Х	1.558	1.8
44	OVP	Z	-2.698	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	1.836	24
47	MP3A	Z	-3.179	24
48	MP3A	Mx	.000918	24

# Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	7.166	6
2	MP1A	Z	-4.137	6
3	MP1A	Mx	004	6
4	MP1A	X	7.166	42
5	MP1A	Z	-4.137	42
6	MP1A	Mx	004	42
7	MP1A	Х	7.166	6
8	MP1A	Z	-4.137	6

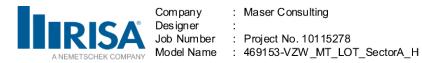



# Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	005	6
10	MP1A	Х	7.166	42
11	MP1A	Z	-4.137	42
12	MP1A	Mx	005	42
13	MP4A	Х	10.322	6
14	MP4A	Z	-5.959	6
15	MP4A	Mx	.005	6
16	MP4A	Х	10.322	42
17	MP4A	Z	-5.959	42
18	MP4A	Mx	.005	42
19	MP4A	Х	10.322	6
20	MP4A	Z	-5.959	6
21	MP4A	Mx	012	6
22	MP4A	Х	10.322	42
23	MP4A	Z	-5.959	42
24	MP4A	Mx	012	42
25	MP3A	Х	2.453	12
26	MP3A	Z	-1.416	12
27	MP3A	Mx	001	12
28	MP3A	Х	2.453	36
29	MP3A	Z	-1.416	36
30	MP3A	Mx	001	36
31	MP1A	Х	2.41	24
32	MP1A	Z	-1.391	24
33	MP1A	Mx	.001	24
34	MP2A	Х	2.536	42
35	MP2A	Z	-1.464	42
36	MP2A	Mx	.001	42
37	MP2A	Х	.911	6
38	MP2A	Z	526	6
39	MP2A	Mx	000456	6
40	MP2A	Х	.911	42
41	MP2A	Z	526	42
42	MP2A	Mx	000456	42
43	OVP	Х	2.4	1.8
44	OVP	Z	-1.386	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	2.356	24
47	MP3A	Z	-1.36	24
48	MP3A	Mx	.001	24

# Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	Х	9.214	6
2	MP1A	Z	0	6
3	MP1A	Mx	007	6
4	MP1A	Х	9.214	42
5	MP1A	Z	0	42
6	MP1A	Mx	007	42
7	MP1A	Х	9.214	6
8	MP1A	Z	0	6

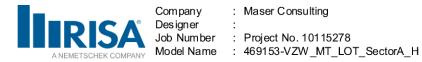



#### Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	00093	6
10	MP1A	Х	9.214	42
11	MP1A	Z	0	42
12	MP1A	Mx	00093	42
13	MP4A	Х	9.214	6
14	MP4A	Z	0	6
15	MP4A	Mx	00093	6
16	MP4A	Х	9.214	42
17	MP4A	Z	0	42
18	MP4A	Mx	00093	42
19	MP4A	Х	9.214	6
20	MP4A	Z	0	6
21	MP4A	Mx	007	6
22	MP4A	Х	9.214	42
23	MP4A	Z	0	42
24	MP4A	Mx	007	42
25	MP3A	Х	2.04	12
26	MP3A	Z	0	12
27	MP3A	Mx	001	12
28	MP3A	Х	2.04	36
29	MP3A	Z	0	36
30	MP3A	Mx	001	36
31	MP1A	Х	3.017	24
32	MP1A	Z	0	24
33	MP1A	Mx	.001	24
34	MP2A	Х	2.522	42
35	MP2A	Z	0	42
36	MP2A	Mx	.001	42
37	MP2A	Х	.837	6
38	MP2A	Z	0	6
39	MP2A	Mx	000419	6
40	MP2A	Х	.837	42
41	MP2A	Z	0	42
42	MP2A	Mx	000419	42
43	OVP	Х	3.116	1.8
44	OVP	Z	0	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	2.245	24
47	MP3A	Z	0	24
48	MP3A	Mx	.001	24

# Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	X	10.322	6
MP1A	Z	5.959	6
MP1A	Mx	012	6
MP1A	X	10.322	42
MP1A	Z	5.959	42
MP1A	Mx	012	42
MP1A	X	10.322	6
MP1A	Z	5.959	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AXMP1AXMP1AX	MP1A         X         10.322           MP1A         Z         5.959           MP1A         Mx        012           MP1A         X         10.322           MP1A         X         5.959           MP1A         X         10.322           MP1A         X         10.322           MP1A         X         10.322           MP1A         X         10.322           MP1A         Mx        012           MP1A         X         10.322

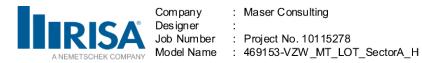



# Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.005	6
10	MP1A	X	10.322	42
11	MP1A	Z	5.959	42
12	MP1A	Mx	.005	42
13	MP4A	Х	7.166	6
14	MP4A	Z	4.137	6
15	MP4A	Mx	005	6
16	MP4A	Х	7.166	42
17	MP4A	Z	4.137	42
18	MP4A	Mx	005	42
19	MP4A	Х	7.166	6
20	MP4A	Z	4.137	6
21	MP4A	Mx	004	6
22	MP4A	Х	7.166	42
23	MP4A	Z	4.137	42
24	MP4A	Mx	004	42
25	MP3A	Х	2.453	12
26	MP3A	Z	1.416	12
27	MP3A	Mx	001	12
28	MP3A	Х	2.453	36
29	MP3A	Z	1.416	36
30	MP3A	Mx	001	36
31	MP1A	Х	3.199	24
32	MP1A	Z	1.847	24
33	MP1A	Mx	.001	24
34	MP2A	Х	2.536	42
35	MP2A	Z	1.464	42
36	MP2A	Mx	.001	42
37	MP2A	Х	.911	6
38	MP2A	Z	.526	6
39	MP2A	Mx	000456	6
40	MP2A	Х	.911	42
41	MP2A	Z	.526	42
42	MP2A	Mx	000456	42
43	OVP	Х	3.293	1.8
44	OVP	Z	1.901	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	2.356	24
47	MP3A	Z	1.36	24
48	MP3A	Mx	.001	24

# Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	X	6.842	6
MP1A	Z	11.851	6
MP1A	Mx	012	6
MP1A	X	6.842	42
MP1A	Z	11.851	42
MP1A	Mx	012	42
MP1A	X	6.842	6
MP1A	Z	11.851	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AZMP1AMxMP1AX	MP1A         X         6.842           MP1A         Z         11.851           MP1A         Mx        012           MP1A         X         6.842           MP1A         Mx        012           MP1A         X         6.842

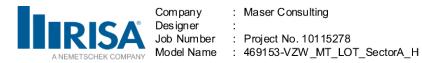



# Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.011	6
10	MP1A	X	6.842	42
11	MP1A	Z	11.851	42
12	MP1A	Mx	.011	42
13	MP4A	Х	5.02	6
14	MP4A	Z	8.695	6
15	MP4A	Mx	009	6
16	MP4A	X	5.02	42
17	MP4A	Z	8.695	42
18	MP4A	Mx	009	42
19	MP4A	Х	5.02	6
20	MP4A	Z	8.695	6
21	MP4A	Mx	.000687	6
22	MP4A	Х	5.02	42
23	MP4A	Z	8.695	42
24	MP4A	Mx	.000687	42
25	MP3A	Х	2.209	12
26	MP3A	Z	3.826	12
27	MP3A	Mx	001	12
28	MP3A	X	2.209	36
29	MP3A	Z	3.826	36
30	MP3A	Mx	001	36
31	MP1A	Х	2.068	24
32	MP1A	Z	3.582	24
33	MP1A	Mx	.00018	24
34	MP2A	X	1.87	42
35	MP2A	Z	3.239	42
36	MP2A	Mx	.000935	42
37	MP2A	Х	.741	6
38	MP2A	Z	1.283	6
39	MP2A	Mx	00037	6
40	MP2A	Х	.741	42
41	MP2A	Z	1.283	42
42	MP2A	Mx	00037	42
43	OVP	Х	2.073	1.8
44	OVP	Z	3.591	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	1.836	24
47	MP3A	Z	3.179	24
48	MP3A	Mx	.000918	24

# Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	0	6
2	MP1A	Z	12.745	6
3	MP1A	Mx	007	6
4	MP1A	X	0	42
5	MP1A	Z	12.745	42
6	MP1A	Mx	007	42
7	MP1A	Х	0	6
8	MP1A	Z	12.745	6

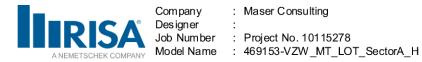



# Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.012	6
10	MP1A	Х	0	42
11	MP1A	Z	12.745	42
12	MP1A	Mx	.012	42
13	MP4A	Х	0	6
14	MP4A	Z	12.745	6
15	MP4A	Mx	012	6
16	MP4A	Х	0	42
17	MP4A	Z	12.745	42
18	MP4A	Mx	012	42
19	MP4A	Х	0	6
20	MP4A	Z	12.745	6
21	MP4A	Mx	.007	6
22	MP4A	Х	0	42
23	MP4A	Z	12.745	42
24	MP4A	Mx	.007	42
25	MP3A	Х	0	12
26	MP3A	Z	5.211	12
27	MP3A	Mx	0	12
28	MP3A	Х	0	36
29	MP3A	Z	5.211	36
30	MP3A	Mx	0	36
31	MP1A	Х	0	24
32	MP1A	Z	3.901	24
33	MP1A	Mx	000824	24
34	MP2A	Х	0	42
35	MP2A	Z	4.147	42
36	MP2A	Mx	0	42
37	MP2A	Х	0	6
38	MP2A	Z	1.696	6
39	MP2A	Mx	0	6
40	MP2A	Х	0	42
41	MP2A	Z	1.696	42
42	MP2A	Mx	0	42
43	OVP	Х	0	1.8
44	OVP	Z	3.803	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	0	24
47	MP3A	Z	4.147	24
48	MP3A	Mx	0	24

# Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

<u>    6    </u> 6
6
6
42
42
42
6
6

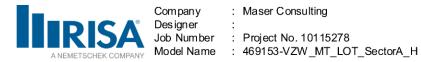



# Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.009	6
10	MP1A	Х	-5.02	42
11	MP1A	Z	8.695	42
12	MP1A	Mx	.009	42
13	MP4A	Х	-6.842	6
14	MP4A	Z	11.851	6
15	MP4A	Mx	011	6
16	MP4A	Х	-6.842	42
17	MP4A	Z	11.851	42
18	MP4A	Mx	011	42
19	MP4A	Х	-6.842	6
20	MP4A	Z	11.851	6
21	MP4A	Mx	.012	6
22	MP4A	Х	-6.842	42
23	MP4A	Z	11.851	42
24	MP4A	Mx	.012	42
25	MP3A	Х	-2.209	12
26	MP3A	Z	3.826	12
27	MP3A	Mx	.001	12
28	MP3A	Х	-2.209	36
29	MP3A	Z	3.826	36
30	MP3A	Mx	.001	36
31	MP1A	Х	-1.612	24
32	MP1A	Z	2.792	24
33	MP1A	Mx	001	24
34	MP2A	Х	-1.87	42
35	MP2A	Z	3.239	42
36	MP2A	Mx	000935	42
37	MP2A	Х	741	6
38	MP2A	Z	1.283	6
39	MP2A	Mx	.00037	6
40	MP2A	Х	741	42
41	MP2A	Z	1.283	42
42	MP2A	Mx	.00037	42
43	OVP	Х	-1.558	1.8
44	OVP	Z	2.698	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-1.836	24
47	MP3A	Z	3.179	24
48	MP3A	Mx	000918	24

# Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	-7.166	6
2	MP1A	Z	4.137	6
3	MP1A	Mx	.004	6
4	MP1A	X	-7.166	42
5	MP1A	Z	4.137	42
6	MP1A	Mx	.004	42
7	MP1A	X	-7.166	6
8	MP1A	Z	4.137	6

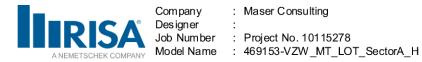



#### Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.005	6
10	MP1A	X	-7.166	42
11	MP1A	Z	4.137	42
12	MP1A	Mx	.005	42
13	MP4A	X	-10.322	6
14	MP4A	Z	5.959	6
15	MP4A	Mx	005	6
16	MP4A	Х	-10.322	42
17	MP4A	Z	5.959	42
18	MP4A	Mx	005	42
19	MP4A	X	-10.322	6
20	MP4A	Z	5.959	6
21	MP4A	Mx	.012	6
22	MP4A	X	-10.322	42
23	MP4A	Z	5.959	42
24	MP4A	Mx	.012	42
25	MP3A	Х	-2.453	12
26	MP3A	Z	1.416	12
27	MP3A	Mx	.001	12
28	MP3A	Х	-2.453	36
29	MP3A	Z	1.416	36
30	MP3A	Mx	.001	36
31	MP1A	Х	-2.41	24
32	MP1A	Z	1.391	24
33	MP1A	Mx	001	24
34	MP2A	Х	-2.536	42
35	MP2A	Z	1.464	42
36	MP2A	Mx	001	42
37	MP2A	X	911	6
38	MP2A	Z	.526	6
39	MP2A	Mx	.000456	6
40	MP2A	Х	911	42
41	MP2A	Z	.526	42
42	MP2A	Mx	.000456	42
43	OVP	X	-2.4	1.8
44	OVP	Z	1.386	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	-2.356	24
47	MP3A	Z	1.36	24
48	MP3A	Mx	001	24

# Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	X	-9.214	6
MP1A	Z	0	6
MP1A	Mx	.007	6
MP1A	X	-9.214	42
MP1A	Z	0	42
MP1A	Mx	.007	42
MP1A	X	-9.214	6
MP1A	Z	0	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AZMP1AXMP1AXMP1AX	MP1A         X         -9.214           MP1A         Z         0           MP1A         Mx         .007           MP1A         X         -9.214           MP1A         Mx         .007           MP1A         X         0           MP1A         X         0           MP1A         Z         0           MP1A         X         .007           MP1A         Mx         .007           MP1A         X         -9.214

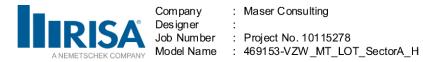



# Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	.00093	6
10	MP1A	Х	-9.214	42
11	MP1A	Z	0	42
12	MP1A	Mx	.00093	42
13	MP4A	Х	-9.214	6
14	MP4A	Z	0	6
15	MP4A	Mx	.00093	6
16	MP4A	Х	-9.214	42
17	MP4A	Z	0	42
18	MP4A	Mx	.00093	42
19	MP4A	Х	-9.214	6
20	MP4A	Z	0	6
21	MP4A	Mx	.007	6
22	MP4A	Х	-9.214	42
23	MP4A	Z	0	42
24	MP4A	Mx	.007	42
25	MP3A	Х	-2.04	12
26	MP3A	Z	0	12
27	MP3A	Mx	.001	12
28	MP3A	Х	-2.04	36
29	MP3A	Z	0	36
30	MP3A	Mx	.001	36
31	MP1A	Х	-3.017	24
32	MP1A	Z	0	24
33	MP1A	Mx	001	24
34	MP2A	X	-2.522	42
35	MP2A	Z	0	42
36	MP2A	Mx	001	42
37	MP2A	X	837	6
38	MP2A	Z	0	6
39	MP2A	Mx	.000419	6
40	MP2A	X	837	42
41	MP2A	Z	0	42
42	MP2A	Mx	.000419	42
43	OVP	Х	-3.116	1.8
44	OVP	Z	0	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-2.245	24
47	MP3A	Z	0	24
48	MP3A	Mx	001	24

# Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	X	-10.322	6
2	MP1A	Z	-5.959	6
3	MP1A	Mx	.012	6
4	MP1A	Х	-10.322	42
5	MP1A	Z	-5.959	42
6	MP1A	Mx	.012	42
7	MP1A	Х	-10.322	6
8	MP1A	Z	-5.959	6
0		L 2	0.000	0




#### Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	005	6
10	MP1A	X	-10.322	42
11	MP1A	Z	-5.959	42
12	MP1A	Mx	005	42
13	MP4A	X	-7.166	6
14	MP4A	Z	-4.137	6
15	MP4A	Mx	.005	6
16	MP4A	X	-7.166	42
17	MP4A	Z	-4.137	42
18	MP4A	Mx	.005	42
19	MP4A	X	-7.166	6
20	MP4A	Z	-4.137	6
21	MP4A	Mx	.004	6
22	MP4A	X	-7.166	42
23	MP4A	Z	-4.137	42
24	MP4A	Mx	.004	42
25	MP3A	X	-2.453	12
26	MP3A	Z	-1.416	12
27	MP3A	Mx	.001	12
28	MP3A	X	-2.453	36
29	MP3A	Z	-1.416	36
30	MP3A	Mx	.001	36
31	MP1A	X	-3.199	24
32	MP1A	Z	-1.847	24
33	MP1A	Mx	001	24
34	MP2A	X	-2.536	42
35	MP2A	Z	-1.464	42
36	MP2A	Mx	001	42
37	MP2A	X	911	6
38	MP2A	Z	526	6
39	MP2A	Mx	.000456	6
40	MP2A	Х	911	42
41	MP2A	Z	526	42
42	MP2A	Mx	.000456	42
43	OVP	X	-3.293	1.8
44	OVP	Z	-1.901	1.8
45	OVP	Mx	0	1.8
46	MP3A	X	-2.356	24
47	MP3A	Z	-1.36	24
48	MP3A	Mx	001	24

# Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

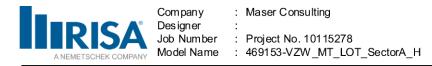
Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
MP1A	X	-6.842	6
MP1A	Z	-11.851	6
MP1A	Mx	.012	6
MP1A	X	-6.842	42
MP1A	Z	-11.851	42
MP1A	Mx	.012	42
MP1A	X	-6.842	6
MP1A	Z	-11.851	6
	MP1A MP1A MP1A MP1A MP1A MP1A MP1A	MP1AXMP1AZMP1AMxMP1AZMP1AXMP1AXMP1AX	MP1A         X         -6.842           MP1A         Z         -11.851           MP1A         Mx         .012           MP1A         X         -6.842           MP1A         X         .012           MP1A         X         .012           MP1A         X         .012           MP1A         Z         .012           MP1A         X         .012           MP1A         Mx         .012           MP1A         X         .6.842



#### Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP1A	Mx	011	6
10	MP1A	Х	-6.842	42
11	MP1A	Z	-11.851	42
12	MP1A	Mx	011	42
13	MP4A	Х	-5.02	6
14	MP4A	Z	-8.695	6
15	MP4A	Mx	.009	6
16	MP4A	Х	-5.02	42
17	MP4A	Z	-8.695	42
18	MP4A	Mx	.009	42
19	MP4A	Х	-5.02	6
20	MP4A	Z	-8.695	6
21	MP4A	Mx	000687	6
22	MP4A	Х	-5.02	42
23	MP4A	Z	-8.695	42
24	MP4A	Mx	000687	42
25	MP3A	Х	-2.209	12
26	MP3A	Z	-3.826	12
27	MP3A	Mx	.001	12
28	MP3A	Х	-2.209	36
29	MP3A	Z	-3.826	36
30	MP3A	Mx	.001	36
31	MP1A	Х	-2.068	24
32	MP1A	Z	-3.582	24
33	MP1A	Mx	00018	24
34	MP2A	Х	-1.87	42
35	MP2A	Z	-3.239	42
36	MP2A	Mx	000935	42
37	MP2A	Х	741	6
38	MP2A	Z	-1.283	6
39	MP2A	Mx	.00037	6
40	MP2A	Х	741	42
41	MP2A	Z	-1.283	42
42	MP2A	Mx	.00037	42
43	OVP	Х	-2.073	1.8
44	OVP	Z	-3.591	1.8
45	OVP	Mx	0	1.8
46	MP3A	Х	-1.836	24
47	MP3A	Z	-3.179	24
48	MP3A	Mx	000918	24

#### Member Point Loads (BLC 77 : Lm1)


	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Y	-500	%98

#### Member Point Loads (BLC 78 : Lm2)

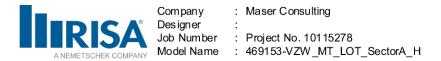
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Y	-500	%2

#### Member Point Loads (BLC 79 : Lv1)

MemberLabel	Direction	Magnitude[lb,k_ft]	Locati	on[in_%]
RISA-3D Version 17.0.4	[\\\\\	.\\RISA\469153-VZW_	_MT_LOT_A_H.r3d]	Page 46



## Member Point Loads (BLC 79 : Lv1) (Continued)


	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Υ	-250	%50

#### Member Point Loads (BLC 80 : Lv2)

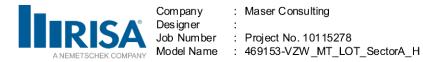
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Y	-250	0

#### Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	Y	-2.116	6
2	MP1A	My	002	6
3	MP1A	Mz	001	6
4	MP1A	Y	-2.116	42
5	MP1A	My	002	42
6	MP1A	Mz	001	42
7	MP1A	Y	-2.116	6
8	MP1A	My	000214	6
9	MP1A	Mz	.002	6
10	MP1A	Y	-2.116	42
11	MP1A	My	000214	42
12	MP1A	Mz	.002	42
13	MP4A	Y	-2.116	6
14	MP4A	My	000214	6
15	MP4A	Mz	002	6
16	MP4A	Y	-2.116	42
17	MP4A	My	000214	42
18	MP4A	Mz	002	42
19	MP4A	Y	-2.116	6
20	MP4A	My	002	6
21	MP4A	Mz	.001	6
22	MP4A	Y	-2.116	42
23	MP4A	My	002	42
24	MP4A	Mz	.001	42
25	MP3A	Y	-2.118	12
26	MP3A	My	001	12
27	MP3A	Mz	0	12
28	MP3A	Y	-2.118	36
29	MP3A	My	001	36
30	MP3A	Mz	0	36
31	MP1A	Y	-3.633	24
32	MP1A	My	.002	24
33	MP1A	Mz	000768	24
34	MP2A	Y	-3.419	42
35	MP2A	My	.002	42
36	MP2A	Mz	0	42
37	MP2A	Y	564	6
38	MP2A	My	000282	6
39	MP2A	Mz	0	6
40	MP2A	Y	564	42
41	MP2A	My	000282	42
42	MP2A	Mz	0	42
43	OVP	Y	-4.105	1.8



# Member Point Loads (BLC 81 : Antenna Ev) (Continued)

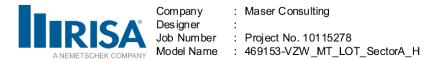

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
44	OVP	My	0	1.8
45	OVP	Mz	0	1.8
46	MP3A	Y	-3.419	24
47	MP3A	My	.002	24
48	MP3A	Mz	0	24

#### Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	Z	-5.29	6
2	MP1A	Mx	.003	6
3	MP1A	Z	-5.29	42
4	MP1A	Mx	.003	42
5	MP1A	Z	-5.29	6
6	MP1A	Mx	005	6
7	MP1A	Z	-5.29	42
8	MP1A	Mx	005	42
9	MP4A	Z	-5.29	6
10	MP4A	Mx	.005	6
11	MP4A	Z	-5.29	42
12	MP4A	Mx	.005	42
13	MP4A	Z	-5.29	6
14	MP4A	Mx	003	6
15	MP4A	Z	-5.29	42
16	MP4A	Mx	003	42
17	MP3A	Z	-5.296	12
18	MP3A	Mx	0	12
19	MP3A	Z	-5.296	36
20	MP3A	Mx	0	36
21	MP1A	Z	-9.084	24
22	MP1A	Mx	.002	24
23	MP2A	Z	-8.548	42
24	MP2A	Mx	0	42
25	MP2A	Z	-1.411	6
26	MP2A	Mx	0	6
27	MP2A	Z	-1.411	42
28	MP2A	Mx	0	42
29	OVP	Z	-10.263	1.8
30	OVP	Mx	0	1.8
31	MP3A	Z	-8.548	24
32	MP3A	Mx	0	24

## Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP1A	Х	5.29	6
2	MP1A	Mx	004	6
3	MP1A	Х	5.29	42
4	MP1A	Mx	004	42
5	MP1A	Х	5.29	6
6	MP1A	Mx	000534	6
7	MP1A	Х	5.29	42
8	MP1A	Mx	000534	42

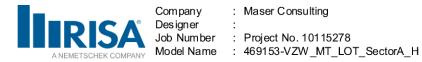



#### Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP4A	Х	5.29	6
10	MP4A	Mx	000534	6
11	MP4A	Х	5.29	42
12	MP4A	Mx	000534	42
13	MP4A	Х	5.29	6
14	MP4A	Mx	004	6
15	MP4A	Х	5.29	42
16	MP4A	Mx	004	42
17	MP3A	Х	5.296	12
18	MP3A	Mx	003	12
19	MP3A	Х	5.296	36
20	MP3A	Mx	003	36
21	MP1A	Х	9.084	24
22	MP1A	Mx	.004	24
23	MP2A	Х	8.548	42
24	MP2A	Mx	.004	42
25	MP2A	Х	1.411	6
26	MP2A	Mx	000705	6
27	MP2A	Х	1.411	42
28	MP2A	Mx	000705	42
29	OVP	Х	10.263	1.8
30	OVP	Mx	0	1.8
31	MP3A	Х	8.548	24
32	MP3A	Mx	.004	24

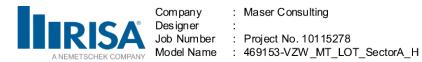
# Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Y	-8.822	-8.822	0	%100
2	M3	Y	-8.822	-8.822	0	%100
3	M5	Y	-5.996	-5.996	0	%100
4	M6	Y	-5.996	-5.996	0	%100
5	M7	Y	-5.784	-5.784	0	%100
6	M8	Y	-5.996	-5.996	0	%100
7	M9	Y	-5.996	-5.996	0	%100
8	M10	Y	-5.784	-5.784	0	%100
9	M11	Y	-5.069	-5.069	0	%100
10	M12	Y	-5.069	-5.069	0	%100
11	M13	Y	-5.069	-5.069	0	%100
12	M14	Y	-5.069	-5.069	0	%100
13	M15	Y	-5.996	-5.996	0	%100
14	M16	Y	-4.39	-4.39	0	%100
15	M17	Y	-5.996	-5.996	0	%100
16	M18	Y	-4.39	-4.39	0	%100
17	M19	Y	-5.996	-5.996	0	%100
18	M20	Y	-5.996	-5.996	0	%100
19	M21	Y	-5.996	-5.996	0	%100
20	M22	Y	-4.39	-4.39	0	%100
21	M23	Y	-4.39	-4.39	0	%100
22	M24	Y	-5.069	-5.069	0	%100
23	M25	Y	-5.996	-5.996	0	%100



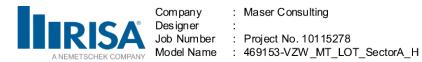

#### Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
24	M26	Y	-5.996	-5.996	0	%100
25	M27	Y	-4.39	-4.39	0	%100
26	M28	Y	-5.996	-5.996	0	%100
27	M29	Y	-4.39	-4.39	0	%100
28	M30	Y	-5.996	-5.996	0	%100
29	M31	Y	-5.996	-5.996	0	%100
30	M32	Y	-5.996	-5.996	0	%100
31	M33	Y	-4.39	-4.39	0	%100
32	M34	Y	-4.39	-4.39	0	%100
33	M35	Y	-5.069	-5.069	0	%100
34	M36	Y	-5.996	-5.996	0	%100
35	MP4A	Y	-5.069	-5.069	0	%100
36	MP3A	Y	-5.069	-5.069	0	%100
37	MP2A	Y	-5.069	-5.069	0	%100
38	MP1A	Y	-5.069	-5.069	0	%100
39	EQUIP	Y	-6.728	-6.728	0	%100
40	M51	Y	-6.728	-6.728	0	%100
41	M55A	Y	-5.069	-5.069	0	%100


# Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	-10.292	-10.292	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	-10.292	-10.292	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	631	631	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	631	631	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	-9.863	-9.863	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	436	436	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	751	751	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	-9.863	-9.863	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	-3.996	-3.996	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	-3.996	-3.996	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	-3.996	-3.996	0	%100
23	M14	Х	0	0	0	%100
24	M14	Z	-3.996	-3.996	0	%100
25	M15	Х	0	0	0	%100
26	M15	Z	-1.358	-1.358	0	%100
27	M16	Х	0	0	0	%100
28	M16	Z	-5.411	-5.411	0	%100
29	M17	Х	0	0	0	%100
30	M17	Z	-1.358	-1.358	0	%100



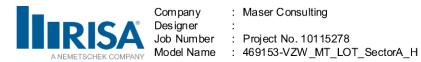

## Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
31	M18	X				%100
32	M18	Z	-5.411	-5.411	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	-1.823	-1.823	0	%100
35	M13 M20	×	0	0	0	%100
36	M20	Z	-1.358	-1.358	0	%100
37	M20	X	0	0	0	%100
38	M21	Z	-1.358	-1.358	0	%100
39	M21	X	0	0	0	%100
40	M22	Z	-5.915	-5.915	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	-5.915	-5.915	0	%100
43	M23	×	0	0	0	%100
44	M24	Z	-6.218	-6.218	0	%100
45	M24	X	0	0	0	%100
46	M25	Z	-1.823	-1.823	0	%100
40	M25	X	0	0	0	%100
47	M26	Z	-1.358	-1.358	0	%100
40	M20 M27	X	0	0	0	%100
50	M27	Z	-5.411	-5.411	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	-1.358	-1.358	0	%100
53	M20	X	0	0	0	%100
54	M29	Z	-5.411	-5.411	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	-1.823	-1.823	0	%100
57	M30	X	0	0	0	%100
58	M31	Z	-1.358	-1.358	0	%100
59	M32	X	0	0	0	%100
60	M32	Z	-1.358	-1.358	0	%100
61	M33	×	0	0	0	%100
62	M33	Z	-5.915	-5.915	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	-5.915	-5.915	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	-6.218	-6.218	0	%100
67	M36	X	0.210	0	0	%100
68	M36	Z	-1.823	-1.823	0	%100
69	MP4A	X	0	0	0	%100
70	MP4A	Z	-8.148	-8.148	0	%100
71	MP3A	X	0	0	0	%100
72	MP3A	Z	-8.148	-8.148	0	%100
73	MP2A	×	0	0	0	%100
74	MP2A	Z	-8.148	-8.148	0	%100
75	MP1A	X	0.140	0	0	%100
76	MP1A	Z	-8.148	-8.148	0	%100
77	EQUIP	×	0	0	0	%100
78	EQUIP	Z	-12.817	-12.817	0	%100
79	M51	X	0	0	0	%100
80	M51	Z	-12.817	-12.817	0	%100
81	M55A	X	0	0	0	%100
82	M55A	Z	-2.01	-2.01	0	%100
	3D Version 17.0.4			\RISA\/69153_\/7\/		



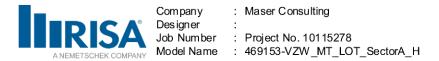
#### Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

Member Label         Direction         Start Magnitude(br.f., End Magnitude(br.f., Start Locator(in, %)         End Locator(in, %)         % 100           1         M1         Z         -6.685         -6.685         0         % 100           3         M3         X         3.859         0.859         0         % 100           4         M3         Z         -6.685         -6.685         0         % 100           5         M5         X         .04         .04         0         % 100           6         M5         Z        069        0597         0         % 100           7         M6         X         .597         0         % 100         % 100           8         M6         Z         -1.034         -1.034         0         % 100           10         M7         X         3.699         3.699         0         % 100           11         M6         X         .006         .006         0         % 100           13         M9         X         .623         .623         0         % 100           14         M9         Z         -1.079         10         % 100         % 100		Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft E	Start Location[in %]	End Location[in,%]
	1						
$  \begin{array}{c cccccccccccccccccccccccccccccccccc$			7				
6         M5         Z        069         .069         0         %100           7         M6         X         597         597         0         %100           9         M7         X         3.699         3.699         0         %100           10         M7         Z         -6.406         -6.406         0         %100           11         M8         X         006         .006         0         %100           12         M8         Z        011         .011         0         %100           13         M9         X         .623         .623         0         %100           14         M9         Z         -1.079         -1.079         0         %100           15         M10         X         3.699         3.699         0         %100           15         M10         Z         -6.406         -6.406         0         %100           16         M10         Z         -6.549         -6.549         0         %100           20         M12         Z         -6.549         -6.549         0         %100           21         M13         <							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7				
8         M6         Z $1.034$ $-1.034$ $0$ $\%100$ 9         M7         X $3.699$ $3.699$ $0$ $\%100$ 11         M8         X $.006$ $.006$ $0$ $\%100$ 12         M8         Z $011$ $011$ $0$ $\%100$ 13         M9         X $.623$ $.623$ $023$ $0$ $\%100$ 14         M9         Z $-1.079$ $-1.079$ $0$ $\%100$ 15         M10         X $3.699$ $3.699$ $0$ $\%100$ 16         M10         Z $-6.406$ $-6.406$ $0$ $\%100$ 17         M11         X $.254$ $.254$ $0$ $\%100$ 20         M12         Z $-6.549$ $-6.549$ $0$ $\%100$ 21         M13         X $.254$ $.254$ $0$ $\%100$ 22         M13         Z $-44$ $-44$							
9         M7         X $3.699$ $3.699$ 0 $\%100$ 10         M7         Z $6.406$ $-6.406$ 0 $\%100$ 11         M8         X         .006         .006         0 $\%100$ 12         M8         Z $-011$ $-011$ 0 $\%100$ 13         M9         X $.623$ $.623$ 0 $\%100$ 14         M9         Z $-1.079$ $-1.079$ 0 $\%100$ 15         M10         X $3.699$ $3.699$ 0 $\%100$ 16         M10         Z $-6.406$ $-6.4406$ 0 $\%100$ 18         M11         Z $-4.44$ $-4.44$ 0 $\%100$ 20         M12         Z $-6.549$ $-6.549$ $0$ $\%100$ 21         M13         Z $-3.11$ $3.781$ $0$ $\%100$ 23         M14         X $3.781$ $3.781$ $0$ $\%10$							
11         M8         X         006         .006         0         %100           12         M8         Z         -011         -011         0         %100           13         M9         X         .623         .623         0         %100           14         M9         Z         -1.079         -1.079         0         %100           15         M10         X         3.699         3.699         0         %100           16         M10         Z         -6.406         -6.406         0         %100           17         M11         X         .254         .254         0         %100           18         M11         Z        44        44         0         %100           20         M12         Z         -6.549         -6.549         0         %100           21         M13         X         .254         .254         0         %100           23         M14         X         3.781         3.781         0         %100           24         M14         Z         -6.549         -6.549         0         %100          25         M15         Z							
12         M8         Z $\cdot$ .011 $\cdot$ .011         0         %100           13         M9         X         .623         .623         0         %100           14         M9         Z $\cdot$ 1.079         1.079         0         %100           15         M10         X         3.699         3.699         0         %100           16         M10         Z         -6.406         -6.406         0         %100           17         M11         X         .254         .254         0         %100           19         M12         X         3.781         3.781         0         %100           21         M13         X         .254         .254         0         %100           22         M13         Z        44         .44         0         %100           23         M14         X         3.781         3.781         0         %100           24         M14         Z         -6.549         0         %100         2           25         M15         X         1.796         1.796         0         %100           26         M15							
13         M9         X         623         623         0         %100           14         M9         Z         -1.079         -1.079         0         %100           15         M10         X         3.699         3.699         0         %100           16         M10         Z         -6.406         -6.406         0         %100           17         M11         X         .254         .254         0         %100           18         M11         Z        44        44         0         %100           20         M12         X         3.781         3.781         0         %100           21         M13         X         .254         .254         0         %100           23         M14         X         3.781         0         %100         24           24         M14         Z         -6.549         -6.549         0         %100           26         M15         X         1.786         1.796         0         %100           26         M16         Z         -5.51         -5.51         0         %100           29         M17 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
15         M10         X $3.699$ $3.699$ 0 $\%100$ 16         M10         Z $-6.406$ $-6.406$ 0 $\%100$ 17         M11         X $2.244$ $2.254$ 0 $\%100$ 18         M11         Z $44$ $44$ 0 $\%100$ 20         M12         Z $-6.549$ 0 $\%100$ 21         M13         X $.254$ $.254$ 0 $\%100$ 22         M13         Z $44$ $.44$ 0 $\%100$ 23         M14         X $3.781$ 0 $\%100$ 24         M14         Z $-6.549$ $-6.549$ 0 $\%100$ 26         M15         Z $-3.11$ $-3.11$ 0 $\%100$ 27         M16         X $3.181$ $3.181$ 0 $\%100$ 29         M17         X $1.796$ $1.796$ 0 $\%100$ 31			~ 7				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
18         M11         Z        44        44         0         %100           19         M12         X         3.781         3.781         0         %100           20         M12         Z         -6.549         -6.549         0         %100           21         M13         X         .254         .254         0         %100           22         M13         Z        44         .44         0         %100           23         M14         X         3.781         0         %100           24         M14         Z         -6.549         -6.549         0         %100           25         M15         X         1.796         1.796         0         %100           26         M15         Z         -3.11         -3.11         0         %100           28         M16         Z         -5.51         -5.51         0         %100           30         M17         Z         -3.11         -3.11         0         %100           31         M18         Z         -5.51         -5.51         0         %100           32         M18         Z							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			~ 7				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			7				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
36         M20         Z         -3.11         -3.11         0         %100           37         M21         X         1.796         1.796         0         %100           38         M21         Z         -3.11         -3.11         0         %100           39         M22         X         2.957         2.957         0         %100           40         M22         Z         -5.122         -5.122         0         %100           41         M23         X         2.957         2.957         0         %100           42         M23         Z         -5.122         -5.122         0         %100           43         M24         X         3.109         3.109         0         %100           44         M24         Z         -5.385         -5.385         0         %100           45         M25         X         1.97         1.97         0         %100           46         M25         Z         -3.412         -3.412         0         %100           47         M26         X         1.796         1.796         0         %100           48         M26 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
37         M21         X         1.796         1.796         0         %100           38         M21         Z         -3.11         -3.11         0         %100           39         M22         X         2.957         2.957         0         %100           40         M22         Z         -5.122         -5.122         0         %100           41         M23         X         2.957         2.957         0         %100           42         M23         Z         -5.122         -5.122         0         %100           43         M24         X         3.109         3.109         0         %100           44         M24         Z         -5.385         -5.385         0         %100           45         M25         X         1.97         1.97         0         %100           46         M25         Z         -3.412         -3.412         0         %100           47         M26         X         1.796         1.796         0         %100           48         M26         Z         -3.11         -3.11         0         %100           49         M27 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
38         M21         Z         -3.11         -3.11         0         %100           39         M22         X         2.957         2.957         0         %100           40         M22         Z         -5.122         -5.122         0         %100           41         M23         X         2.957         2.957         0         %100           42         M23         Z         -5.122         -5.122         0         %100           43         M24         X         3.109         3.109         0         %100           44         M24         Z         -5.385         -5.385         0         %100           45         M25         X         1.97         1.97         0         %100           46         M25         Z         -3.412         -3.412         0         %100           47         M26         X         1.796         1.796         0         %100           48         M26         Z         -3.11         -3.11         0         %100           49         M27         X         2.24         2.24         0         %100           50         M27 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
39M22X2.9572.9570%10040M22Z-5.122-5.1220%10041M23X2.9572.9570%10042M23Z-5.122-5.1220%10043M24X3.1093.1090%10044M24Z-5.385-5.3850%10045M25X1.971.970%10046M25Z-3.412-3.4120%10047M26X1.7961.7960%10048M26Z-3.11-3.110%10049M27X2.242.240%10050M27Z-3.88-3.880%10051M28X1.7961.7960%100							
40M22Z-5.122-5.1220%10041M23X2.9572.9570%10042M23Z-5.122-5.1220%10043M24X3.1093.1090%10044M24Z-5.385-5.3850%10045M25X1.971.970%10046M25Z-3.412-3.4120%10047M26X1.7961.7960%10049M27X2.242.240%10050M27Z-3.88-3.880%10051M28X1.7961.7960%100							
41M23X2.9572.9570%10042M23Z-5.122-5.1220%10043M24X3.1093.1090%10044M24Z-5.385-5.3850%10045M25X1.971.970%10046M25Z-3.412-3.4120%10047M26X1.7961.7960%10048M26Z-3.11-3.110%10049M27X2.242.240%10050M27Z-3.88-3.880%10051M28X1.7961.7960%100							
42         M23         Z         -5.122         -5.122         0         %100           43         M24         X         3.109         3.109         0         %100           44         M24         Z         -5.385         -5.385         0         %100           45         M25         X         1.97         1.97         0         %100           46         M25         Z         -3.412         -3.412         0         %100           47         M26         X         1.796         1.796         0         %100           48         M26         Z         -3.11         -3.11         0         %100           50         M27         X         2.24         2.24         0         %100           51         M28         X         1.796         1.796         0         %100							
43         M24         X         3.109         3.109         0         %100           44         M24         Z         -5.385         -5.385         0         %100           45         M25         X         1.97         1.97         0         %100           46         M25         Z         -3.412         -3.412         0         %100           47         M26         X         1.796         1.796         0         %100           48         M26         Z         -3.11         -3.11         0         %100           49         M27         X         2.24         2.24         0         %100           50         M27         Z         -3.88         -3.88         0         %100           51         M28         X         1.796         1.796         0         %100							
44M24Z-5.385-5.3850%10045M25X1.971.970%10046M25Z-3.412-3.4120%10047M26X1.7961.7960%10048M26Z-3.11-3.110%10049M27X2.242.240%10050M27Z-3.88-3.880%10051M28X1.7961.7960%100							
45M25X1.971.970%10046M25Z-3.412-3.4120%10047M26X1.7961.7960%10048M26Z-3.11-3.110%10049M27X2.242.240%10050M27Z-3.88-3.880%10051M28X1.7961.7960%100							
46         M25         Z         -3.412         -3.412         0         %100           47         M26         X         1.796         1.796         0         %100           48         M26         Z         -3.11         -3.11         0         %100           49         M27         X         2.24         2.24         0         %100           50         M27         Z         -3.88         -3.88         0         %100           51         M28         X         1.796         1.796         0         %100							
47         M26         X         1.796         1.796         0         %100           48         M26         Z         -3.11         -3.11         0         %100           49         M27         X         2.24         2.24         0         %100           50         M27         Z         -3.88         -3.88         0         %100           51         M28         X         1.796         1.796         0         %100							
48         M26         Z         -3.11         -3.11         0         %100           49         M27         X         2.24         2.24         0         %100           50         M27         Z         -3.88         -3.88         0         %100           51         M28         X         1.796         1.796         0         %100							
49M27X2.242.240%10050M27Z-3.88-3.880%10051M28X1.7961.7960%100			7				
50         M27         Z         -3.88         -3.88         0         %100           51         M28         X         1.796         1.796         0         %100							
51 M28 X 1.796 1.796 0 %100			7				




# Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
53	M29	Х	2.24	2.24	0	%100
54	M29	Z	-3.88	-3.88	0	%100
55	M30	Х	1.97	1.97	0	%100
56	M30	Z	-3.412	-3.412	0	%100
57	M31	Х	1.796	1.796	0	%100
58	M31	Z	-3.11	-3.11	0	%100
59	M32	Х	1.796	1.796	0	%100
60	M32	Z	-3.11	-3.11	0	%100
61	M33	Х	2.957	2.957	0	%100
62	M33	Z	-5.122	-5.122	0	%100
63	M34	Х	2.957	2.957	0	%100
64	M34	Z	-5.122	-5.122	0	%100
65	M35	Х	3.109	3.109	0	%100
66	M35	Z	-5.385	-5.385	0	%100
67	M36	Х	1.97	1.97	0	%100
68	M36	Z	-3.412	-3.412	0	%100
69	MP4A	Х	4.074	4.074	0	%100
70	MP4A	Z	-7.056	-7.056	0	%100
71	MP3A	Х	4.074	4.074	0	%100
72	MP3A	Z	-7.056	-7.056	0	%100
73	MP2A	Х	4.074	4.074	0	%100
74	MP2A	Z	-7.056	-7.056	0	%100
75	MP1A	Х	4.074	4.074	0	%100
76	MP1A	Z	-7.056	-7.056	0	%100
77	EQUIP	Х	6.409	6.409	0	%100
78	EQUIP	Z	-11.1	-11.1	0	%100
79	M51	Х	6.409	6.409	0	%100
80	M51	Z	-11.1	-11.1	0	%100
81	M55A	Х	5.8e-5	5.8e-5	0	%100
82	M55A	Z	0001	0001	0	%100

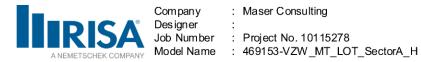

#### Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	2.228	2.228	0	%100
2	M1	Z	-1.286	-1.286	0	%100
3	M3	Х	2.228	2.228	0	%100
4	M3	Z	-1.286	-1.286	0	%100
5	M5	Х	.08	.08	0	%100
6	M5	Z	046	046	0	%100
7	M6	Х	1.045	1.045	0	%100
8	M6	Z	603	603	0	%100
9	M7	Х	2.135	2.135	0	%100
10	M7	Z	-1.233	-1.233	0	%100
11	M8	Х	.19	.19	0	%100
12	M8	Z	11	11	0	%100
13	M9	Х	.986	.986	0	%100
14	M9	Z	569	569	0	%100
15	M10	Х	2.135	2.135	0	%100
16	M10	Z	-1.233	-1.233	0	%100
17	M11	Х	.507	.507	0	%100
18	M11	Z	293	293	0	%100



## Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[in.%]	End Location[in,%]
19	M12	X	6.617	6.617	0	%100
20	M12	Z	-3.82	-3.82	0	%100
21	M13	×	.507	.507	0	%100
22	M13	Z	293	293	0	%100
23	M14	×	6.617	6.617	0	%100
24	M14	Z	-3.82	-3.82	0	%100
25	M15	×	6.979	6.979	0	%100
26	M15	Z	-4.029	-4.029	0	%100
27	M16	X	5.528	5.528	0	%100
28	M16	Z	-3.191	-3.191	0	%100
29	M18	X	6.979	6.979	0	%100
30	M17	Z	-4.029	-4.029	0	%100
31	M18	X	5.528	5.528	0	%100
32	M18	Z	-3.191	-3.191	0	%100
33	M19	X	7.079	7.079	0	%100
34	M19	Z	-4.087	-4.087	0	%100
35	M20	X	6.979	6.979	0	%100
36	M20	Z	-4.029	-4.029	0	%100
37	M21	X	6.979	6.979	0	%100
38	M21	Z	-4.029	-4.029	0	%100
39	M22	X	5.122	5.122	0	%100
40	M22	Z	-2.957	-2.957	0	%100
40	M23	X	5.122	5.122	0	%100
41	M23	Z	-2.957	-2.957	0	%100
43	M24	X	5.385	5.385	0	%100
43	M24	Z	-3.109	-3.109	0	%100
44	M25	X	7.079	7.079	0	%100
46	M25	Z	-4.087	-4.087	0	%100
40	M26	X	6.979	6.979	0	%100
48	M26	Z	-4.029	-4.029	0	%100
40	M27	X	3.898	3.898	0	%100
50	M27	Z	-2.25	-2.25	0	%100
51	M28	X	6.979	6.979	0	%100
52	M28	Z	-4.029	-4.029	0	%100
53	M29	X	3.898	3.898	0	%100
54	M29	Z	-2.25	-2.25	0	%100
55	M30	X	7.079	7.079	0	%100
56	M30	Z	-4.087	-4.087	0	%100
57	M30	X	6.979	6.979	0	%100
58	M31	Z	-4.029	-4.029	0	%100
59	M32	X	6.979	6.979	0	%100
60	M32	Z	-4.029	-4.029	0	%100
61	M33	X	5.122	5.122	0	%100
62	M33	Z	-2.957	-2.957	0	%100
63	M34	X	5.122	5.122	0	<u>%100</u> %100
64	M34	Z	-2.957	-2.957	0	<u>%100</u> %100
65	M34 M35	X	5.385	5.385	0	%100
66	M35	Z	-3.109	-3.109	0	%100
67	M35	X	7.079	7.079	0	<u>%100</u> %100
68	M36	Z	-4.087	-4.087	0	<u>%100</u> %100
69	MP4A		7.056			<u>%100</u> %100
		X Z		7.056	0	
70	MP4A	Ζ	-4.074	-4.074	0	%100
	-3D Version 17 0 4			VDICAV400450V/70	V MT LOT A Hr3	dl Page 54

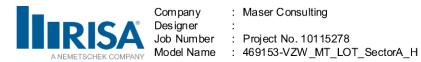



## Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
71	MP3A	Х	7.056	7.056	0	%100
72	MP3A	Z	-4.074	-4.074	0	%100
73	MP2A	Х	7.056	7.056	0	%100
74	MP2A	Z	-4.074	-4.074	0	%100
75	MP1A	Х	7.056	7.056	0	%100
76	MP1A	Z	-4.074	-4.074	0	%100
77	EQUIP	Х	11.1	11.1	0	%100
78	EQUIP	Z	-6.409	-6.409	0	%100
79	M51	Х	11.1	11.1	0	%100
80	M51	Z	-6.409	-6.409	0	%100
81	M55A	Х	1.787	1.787	0	%100
82	M55A	Z	-1.032	-1.032	0	%100

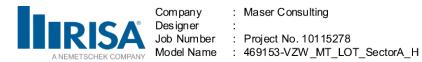
#### Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	.655	.655	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	.655	.655	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	Х	.85	.85	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	.535	.535	0	%100
14	M9	Z	0	0	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	Х	4.151	4.151	0	%100
18	M11	Z	0	0	0	%100
19	M12	Х	4.151	4.151	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	4.151	4.151	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	4.151	4.151	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	10.292	10.292	0	%100
26	M15	Z	0	0	0	%100
27	M16	Х	5.452	5.452	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	10.292	10.292	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	5.452	5.452	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	10.292	10.292	0	%100
34	M19	Z	0	0	0	%100
35	M20	Х	10.292	10.292	0	%100
36	M20	Z	0	0	0	%100




## Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
37	M21	Х	10.292	10.292	0	%100
38	M21	Z	0	0	0	%100
39	M22	Х	5.915	5.915	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	5.915	5.915	0	%100
42	M23	Z	0	0	0	%100
43	M24	Х	6.218	6.218	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	10.292	10.292	0	%100
46	M25	Z	0	0	0	%100
47	M26	Х	10.292	10.292	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	5.452	5.452	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	10.292	10.292	0	%100
52	M28	Z	0	0	0	%100
53	M29	Х	5.452	5.452	0	%100
54	M29	Z	0	0	0	%100
55	M30	Х	10.292	10.292	0	%100
56	M30	Z	0	0	0	%100
57	M31	Х	10.292	10.292	0	%100
58	M31	Z	0	0	0	%100
59	M32	Х	10.292	10.292	0	%100
60	M32	Z	0	0	0	%100
61	M33	Х	5.915	5.915	0	%100
62	M33	Z	0	0	0	%100
63	M34	Х	5.915	5.915	0	%100
64	M34	Z	0	0	0	%100
65	M35	Х	6.218	6.218	0	%100
66	M35	Z	0	0	0	%100
67	M36	Х	10.292	10.292	0	%100
68	M36	Z	0	0	0	%100
69	MP4A	Х	8.148	8.148	0	%100
70	MP4A	Z	0	0	0	%100
71	MP3A	X	8.148	8.148	0	%100
72	MP3A	Z	0	0	0	%100
73	MP2A	Х	8.148	8.148	0	%100
74	MP2A	Z	0	0	0	%100
75	MP1A	X	8.148	8.148	0	%100
76	MP1A	Z	0	0	0	%100
77	EQUIP	Х	12.817	12.817	0	%100
78	EQUIP	Z	0	0	0	%100
79	M51	X	12.817	12.817	0	%100
80	M51	Z	0	0	0	%100
81	M55A	X	6.137	6.137	0	%100
82	M55A	Z	0	0	0	%100

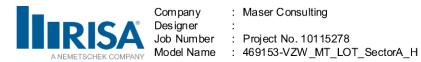

## Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

1 M1 X 2.228 2.228 0	
	%100
2 M1 Z 1.286 1.286 0	%100



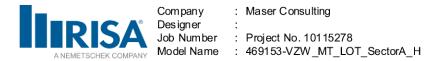
# Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[in.%]	End Location[in,%]
3	M3	X	2.228	2.228	0	%100
4	M3	Z	1.286	1.286	0	%100
5	M5	X	1.045	1.045	0	%100
6	M5	Z	.603	.603	0	%100
7	M6	×	.08	.08	0	%100
8	M6	Z	.046	.046	0	%100
9	M7	x	2.135	2.135	0	%100
10	M7	Z	1.233	1.233	0	%100
11	M8	X	1.103	1.103	0	%100
12	M8	Z	.637	.637	0	%100
13	M9	×	.035	.035	0	%100
14	M9	Z	.02	.02	0	%100
15	M10	×	2.135	2.135	0	%100
16	M10	Z	1.233	1.233	0	%100
17	M11	×	6.617	6.617	0	%100
18	M11	Z	3.82	3.82	0	%100
19	M12	X	.507	.507	0	%100
20	M12	Z	.293	.293	0	%100
21	M12	X	6.617	6.617	0	%100
22	M13	Z	3.82	3.82	0	%100
23	M10	X	.507	.507	0	%100
24	M14	Z	.293	.293	0	%100
25	M15	×	6.979	6.979	0	%100
26	M15	Z	4.029	4.029	0	%100
27	M16	X	3.898	3.898	0	%100
28	M16	Z	2.25	2.25	0	%100
29	M10	X	6.979	6.979	0	%100
30	M17	Z	4.029	4.029	0	%100
31	M18	X	3.898	3.898	0	%100
32	M18	Z	2.25	2.25	0	%100
33	M19	×	7.079	7.079	0	%100
34	M19	Z	4.087	4.087	0	%100
35	M20	×	6.979	6.979	0	%100
36	M20	Z	4.029	4.029	0	%100
37	M21	x	6.979	6.979	0	%100
38	M21	Z	4.029	4.029	0	%100
39	M22	X	5.122	5.122	0	%100
40	M22	Z	2.957	2.957	0	%100
41	M23	×	5.122	5.122	0	%100
42	M23	Z	2.957	2.957	0	%100
43	M24	×	5.385	5.385	0	%100
44	M24	Z	3.109	3.109	0	%100
45	M25	×	7.079	7.079	0	%100
46	M25	Z	4.087	4.087	0	%100
47	M26	×	6.979	6.979	0	%100
48	M26	Z	4.029	4.029	0	%100
49	M27	×	5.528	5.528	0	%100
50	M27	Z	3.191	3.191	0	%100
51	M28	x	6.979	6.979	0	%100
52	M28	Z	4.029	4.029	0	%100
53	M29	×	5.528	5.528	0	%100
54	M29	Z	3.191	3.191	0	%100
	-3D Version 17.0.4					




# Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
55	M30	Х	7.079	7.079	0	%100
56	M30	Z	4.087	4.087	0	%100
57	M31	Х	6.979	6.979	0	%100
58	M31	Z	4.029	4.029	0	%100
59	M32	Х	6.979	6.979	0	%100
60	M32	Z	4.029	4.029	0	%100
61	M33	Х	5.122	5.122	0	%100
62	M33	Z	2.957	2.957	0	%100
63	M34	Х	5.122	5.122	0	%100
64	M34	Z	2.957	2.957	0	%100
65	M35	Х	5.385	5.385	0	%100
66	M35	Z	3.109	3.109	0	%100
67	M36	Х	7.079	7.079	0	%100
68	M36	Z	4.087	4.087	0	%100
69	MP4A	Х	7.056	7.056	0	%100
70	MP4A	Z	4.074	4.074	0	%100
71	MP3A	Х	7.056	7.056	0	%100
72	MP3A	Z	4.074	4.074	0	%100
73	MP2A	Х	7.056	7.056	0	%100
74	MP2A	Z	4.074	4.074	0	%100
75	MP1A	Х	7.056	7.056	0	%100
76	MP1A	Z	4.074	4.074	0	%100
77	EQUIP	Х	11.1	11.1	0	%100
78	EQUIP	Z	6.409	6.409	0	%100
79	M51	Х	11.1	11.1	0	%100
80	M51	Z	6.409	6.409	0	%100
81	M55A	Х	7.056	7.056	0	%100
82	M55A	Z	4.074	4.074	0	%100

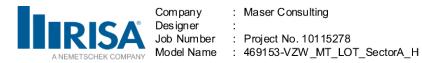

# Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	3.859	3.859	0	%100
2	M1	Z	6.685	6.685	0	%100
3	M3	Х	3.859	3.859	0	%100
4	M3	Z	6.685	6.685	0	%100
5	M5	Х	.597	.597	0	%100
6	M5	Z	1.034	1.034	0	%100
7	M6	Х	.04	.04	0	%100
8	M6	Z	.069	.069	0	%100
9	M7	Х	3.699	3.699	0	%100
10	M7	Z	6.406	6.406	0	%100
11	M8	Х	.534	.534	0	%100
12	M8	Z	.924	.924	0	%100
13	M9	Х	.074	.074	0	%100
14	M9	Z	.128	.128	0	%100
15	M10	Х	3.699	3.699	0	%100
16	M10	Z	6.406	6.406	0	%100
17	M11	Х	3.781	3.781	0	%100
18	M11	Z	6.549	6.549	0	%100
19	M12	Х	.254	.254	0	%100
20	M12	Z	.44	.44	0	%100



## Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

-	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
21	M13	X	3.781	3.781	0	%100
22	M13	Z	6.549	6.549	0	%100
23	M14	X	.254	.254	0	%100
24	M14	Z	.44	.44	0	%100
25	M15	×	1.796	1.796	0	%100
26	M15	Z	3.11	3.11	0	%100
27	M16	×	2.24	2.24	0	%100
28	M16	Z	3.88	3.88	0	%100
29	M17	X	1.796	1.796	0	%100
30	M17	Z	3.11	3.11	0	%100
31	M18	X	2.24	2.24	0	%100
32	M18	Z	3.88	3.88	0	%100
33	M19	X	1.97	1.97	0	%100
34	M19	Z	3.412	3.412	0	%100
35	M13	X	1.796	1.796	0	%100
36	M20	Z	3.11	3.11	0	%100
37	M20	X	1.796	1.796	0	%100
38	M21	Z	3.11	3.11	0	%100
39	M22	X	2.957	2.957	0	%100
40	M22	Z	5.122	5.122	0	%100
40	M23	X	2.957	2.957	0	%100
42	M23	Z	5.122	5.122	0	%100
42	M23	X	3.109	3.109	0	%100
43	M24	Z	5.385	5.385	0	%100
44	M24	X	1.97	1.97	0	%100
45	M25	Z	3.412	3.412	0	%100
40	M25	X	1.796	1.796	0	%100
47	M26	Z	3.11	3.11	0	%100
40	M20	X	3.181	3.181	0	%100
50	M27	Z	5.51	5.51	0	%100
50	M28	X	1.796	1.796	0	%100
52	M28	Z	3.11	3.11	0	%100
52	M29	X	3.181	3.181	0	%100
53	M29	Z	5.51	5.51	0	
55	M30			1.97		%100 %100
		X Z	1.97		0	
56 57	M30 M31	X	3.412 1.796	3.412 1.796	0	%100 %100
58	M31	Z	3.11	3.11		%100
59					0	
	M32	X Z	1.796	1.796	0	%100 %100
60	M32		3.11	3.11		
61	M33	X Z	2.957	2.957	0	%100 %100
62	M33		5.122	5.122	0	
63	M34	X	2.957	2.957	0	%100 %100
64	M34	Z	5.122	5.122	0	%100 %100
65	M35	X Z	3.109	3.109	0	%100
66	M35		5.385	5.385	0	%100 %100
67	M36	X	1.97	1.97	0	%100 %100
68	M36	Z	3.412	3.412	0	%100 %100
69	MP4A	X	4.074	4.074	0	%100 %100
70	MP4A	Z	7.056	7.056	0	%100 %100
71	MP3A	X	4.074	4.074	0	%100
72	MP3A	Z	7.056	7.056	0	%100
	-3D Version 17.0.4					

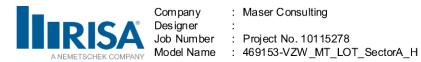



## Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
73	MP2A	Х	4.074	4.074	0	%100
74	MP2A	Z	7.056	7.056	0	%100
75	MP1A	Х	4.074	4.074	0	%100
76	MP1A	Z	7.056	7.056	0	%100
77	EQUIP	Х	6.409	6.409	0	%100
78	EQUIP	Z	11.1	11.1	0	%100
79	M51	Х	6.409	6.409	0	%100
80	M51	Z	11.1	11.1	0	%100
81	M55A	Х	3.042	3.042	0	%100
82	M55A	Z	5.269	5.269	0	%100

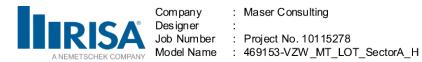
# Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	10.292	10.292	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	10.292	10.292	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	.631	.631	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	.631	.631	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	9.863	9.863	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	.436	.436	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	.751	.751	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	9.863	9.863	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	3.996	3.996	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	3.996	3.996	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	3.996	3.996	0	%100
23	M14	X	0	0	0	%100
24	M14	Z	3.996	3.996	0	%100
25	M15	Х	0	0	0	%100
26	M15	Z	1.358	1.358	0	%100
27	M16	Х	0	0	0	%100
28	M16	Z	5.411	5.411	0	%100
29	M17	Х	0	0	0	%100
30	M17	Z	1.358	1.358	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	5.411	5.411	0	%100
33	M19	Х	0	0	0	%100
34	M19	Z	1.823	1.823	0	%100
35	M20	Х	0	0	0	%100
36	M20	Z	1.358	1.358	0	%100
37	M21	Х	0	0	0	%100
38	M21	Z	1.358	1.358	0	%100




# Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
39	M22	Х	0	0	0	%100
40	M22	Z	5.915	5.915	0	%100
41	M23	Х	0	0	0	%100
42	M23	Z	5.915	5.915	0	%100
43	M24	Х	0	0	0	%100
44	M24	Z	6.218	6.218	0	%100
45	M25	Х	0	0	0	%100
46	M25	Z	1.823	1.823	0	%100
47	M26	Х	0	0	0	%100
48	M26	Z	1.358	1.358	0	%100
49	M27	Х	0	0	0	%100
50	M27	Z	5.411	5.411	0	%100
51	M28	Х	0	0	0	%100
52	M28	Z	1.358	1.358	0	%100
53	M29	Х	0	0	0	%100
54	M29	Z	5.411	5.411	0	%100
55	M30	Х	0	0	0	%100
56	M30	Z	1.823	1.823	0	%100
57	M31	Х	0	0	0	%100
58	M31	Z	1.358	1.358	0	%100
59	M32	Х	0	0	0	%100
60	M32	Z	1.358	1.358	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	5.915	5.915	0	%100
63	M34	Х	0	0	0	%100
64	M34	Z	5.915	5.915	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	6.218	6.218	0	%100
67	M36	Х	0	0	0	%100
68	M36	Z	1.823	1.823	0	%100
69	MP4A	Х	0	0	0	%100
70	MP4A	Z	8.148	8.148	0	%100
71	MP3A	Х	0	0	0	%100
72	MP3A	Z	8.148	8.148	0	%100
73	MP2A	Х	0	0	0	%100
74	MP2A	Z	8.148	8.148	0	%100
75	MP1A	Х	0	0	0	%100
76	MP1A	Z	8.148	8.148	0	%100
77	EQUIP	Х	0	0	0	%100
78	EQUIP	Z	12.817	12.817	0	%100
79	M51	Х	0	0	0	%100
80	M51	Z	12.817	12.817	0	%100
81	M55A	Х	0	0	0	%100
82	M55A	Z	2.01	2.01	0	%100

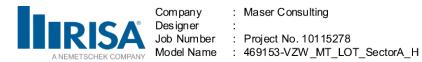

## Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	-3.859	-3.859	0	%100
2	M1	Z	6.685	6.685	0	%100
3	M3	Х	-3.859	-3.859	0	%100
4	M3	Z	6.685	6.685	0	%100



# Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

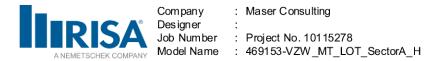
	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
5	M5	X	04	04	0	%100
6	M5	Z	.069	.069	0	%100
7	M6	X	597	597	0	%100
8	M6	Z	1.034	1.034	0	%100
9	M7	×	-3.699	-3.699	0	%100
10	M7	Z	6.406	6.406	0	%100
11	M8	X	006	006	0	%100
12	M8	Z	.011	.011	0	%100
13	M9	X	623	623	0	%100
14	M9	Z	1.079	1.079	0	%100
15	M10	X	-3.699	-3.699	0	%100
16	M10	Z	6.406	6.406	0	%100
17	M10	X	254	254	0	%100
18	M11	Z	.44	.44	0	%100
19	M12	X	-3.781	-3.781	0	%100
20	M12	Z	6.549	6.549	0	%100
20	M12	X	254	254	0	%100
21	M13	Z	.44	.44	0	%100
22	M13	X	-3.781	-3.781	0	%100
23	M14	Z			0	%100
24	M14 M15	X	6.549 -1.796	6.549		
25		Z	3.11	-1.796 3.11	0	%100 %100
	M15					%100 %100
27	M16	X Z	-3.181	-3.181	0	%100 %100
28	M16		5.51	5.51	0	%100 %100
29	M17	X	-1.796	-1.796	0	%100
30	M17	Z	3.11	3.11	0	%100 %100
31	M18	X	-3.181	-3.181	0	%100
32	M18	Z	5.51	5.51	0	%100
33	M19	X	-1.97	-1.97	0	%100
34	M19	Z	3.412	3.412	0	%100
35	M20	X	-1.796	-1.796	0	%100
36	M20	Z	3.11	3.11	0	%100
37	M21	X	-1.796	-1.796	0	%100
38	M21	Z	3.11	3.11	0	%100
39	M22	X	-2.957	-2.957	0	%100
40	M22	Z	5.122	5.122	0	%100
41	M23	X	-2.957	-2.957	0	%100
42	M23	Z	5.122	5.122	0	%100
43	M24	X	-3.109	-3.109	0	%100
44	M24	Z	5.385	5.385	0	%100
45	M25	X	-1.97	-1.97	0	%100
46	M25	Z	3.412	3.412	0	%100
47	M26	X	-1.796	-1.796	0	%100
48	M26	Z	3.11	3.11	0	%100
49	M27	X	-2.24	-2.24	0	%100
50	M27	Z	3.88	3.88	0	%100
51	M28	X	-1.796	-1.796	0	%100
52	M28	Z	3.11	3.11	0	%100
53	M29	X	-2.24	-2.24	0	%100
54	M29	Z	3.88	3.88	0	%100
55	M30	X	-1.97	-1.97	0	%100
56	M30	Z	3.412	3.412	0	%100
	3D Version 17.0.4			NDIO 41 400 450 1 (7)		3dl Page 62




## Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
57	M31	Х	-1.796	-1.796	0	%100
58	M31	Z	3.11	3.11	0	%100
59	M32	Х	-1.796	-1.796	0	%100
60	M32	Z	3.11	3.11	0	%100
61	M33	Х	-2.957	-2.957	0	%100
62	M33	Z	5.122	5.122	0	%100
63	M34	Х	-2.957	-2.957	0	%100
64	M34	Z	5.122	5.122	0	%100
65	M35	Х	-3.109	-3.109	0	%100
66	M35	Z	5.385	5.385	0	%100
67	M36	Х	-1.97	-1.97	0	%100
68	M36	Z	3.412	3.412	0	%100
69	MP4A	Х	-4.074	-4.074	0	%100
70	MP4A	Z	7.056	7.056	0	%100
71	MP3A	Х	-4.074	-4.074	0	%100
72	MP3A	Z	7.056	7.056	0	%100
73	MP2A	Х	-4.074	-4.074	0	%100
74	MP2A	Z	7.056	7.056	0	%100
75	MP1A	Х	-4.074	-4.074	0	%100
76	MP1A	Z	7.056	7.056	0	%100
77	EQUIP	Х	-6.409	-6.409	0	%100
78	EQUIP	Z	11.1	11.1	0	%100
79	M51	Х	-6.409	-6.409	0	%100
80	M51	Z	11.1	11.1	0	%100
81	M55A	Х	-5.8e-5	-5.8e-5	0	%100
82	M55A	Z	.0001	.0001	0	%100

## Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

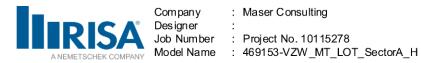

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	-2.228	-2.228	0	%100
2	M1	Z	1.286	1.286	0	%100
3	M3	Х	-2.228	-2.228	0	%100
4	M3	Z	1.286	1.286	0	%100
5	M5	Х	08	08	0	%100
6	M5	Z	.046	.046	0	%100
7	M6	Х	-1.045	-1.045	0	%100
8	M6	Z	.603	.603	0	%100
9	M7	Х	-2.135	-2.135	0	%100
10	M7	Z	1.233	1.233	0	%100
11	M8	Х	19	19	0	%100
12	M8	Z	.11	.11	0	%100
13	M9	Х	986	986	0	%100
14	M9	Z	.569	.569	0	%100
15	M10	Х	-2.135	-2.135	0	%100
16	M10	Z	1.233	1.233	0	%100
17	M11	Х	507	507	0	%100
18	M11	Z	.293	.293	0	%100
19	M12	Х	-6.617	-6.617	0	%100
20	M12	Z	3.82	3.82	0	%100
21	M13	Х	507	507	0	%100
22	M13	Z	.293	.293	0	%100



## Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

23         M14 $\chi$ -6.617         -6.617         0         %100           25         M15 $\chi$ -6.979         0         %100           26         M15 $\chi$ -6.979         0         %100           28         M16         Z         4.029         4.029         0         %100           28         M16         Z         3.191         3.191         0         %100           29         M17         Z         4.029         4.029         0         %100           30         M17         Z         4.029         4.029         0         %100           31         M18         Z         3.191         3.191         0         %100           33         M19         Z         4.027         4.087         0         %100           35         M20         Z         4.029         0         %100         36           36         M20         Z         4.029         0         %100         36           37         M21         X         4.029         0         %100         36           38         M21         Z         9.977		Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
24         M14         Z         3.82         3.82         0         %100           25         M15         Z         4.029         4.029         0         %100           26         M16         Z         5.528         -5.528         0         %100           27         M16         Z         3.191         3.191         0         %100           28         M17         X         -6.979         0         %100           30         M17         X         -6.979         0         %100           31         M18         X         -5.528         0         %100           33         M19         X         -7.079         0         %100           34         M19         X         -6.979         0         %100           35         M20         X         -6.979         0         %100           36         M20         Z         4.029         4.029         0         %100           38         M21         Z         4.029         4.029         0         %100           41         M23         Z         2.957         2.957         0         %100           <	23						
25         M15         X         -6.979         -6.979         0         %100           26         M16         X         -5.528         -5.528         0         %100           28         M16         Z         3.191         3.191         0         %100           29         M17         X         -6.979         -6.979         0         %100           30         M17         Z         4.029         4.029         0         %100           31         M18         Z         3.191         3.191         0         %100           33         M19         X         -7.079         -7.079         0         %100           34         M19         Z         4.087         4.087         0         %100           35         M20         Z         4.029         4.029         0         %100           36         M20         Z         4.029         4.029         0         %100           36         M21         X         -6.979         -6.979         0         %100           37         M21         X         -6.979         0         %100         4           4023         X							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
28         M16         Z         3.191         3.191         0         %100           29         M17         X         -6.979         -6.979         0         %100           30         M17         Z         4.029         4.029         0         %100           31         M18         X         -5.528         -5.528         0         %100           33         M19         X         -7.079         -7.079         0         %100           34         M19         X         -7.079         0         %100           35         M20         X         -6.979         -6.979         0         %100           36         M21         Z         4.029         4.029         0         %100           38         M21         Z         4.029         4.029         0         %100           38         M22         Z         2.957         2.957         0         %100           40         M22         Z         2.957         2.957         0         %100           41         M23         X         -5.122         0         %100         4           402         M23         Y2.957							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
32         M18         Z         3.191         3.191         0 $\%100$ 33         M19         X         -7.079         -7.079         0 $\%100$ 34         M19         Z         4.087         4.087         0 $\%100$ 35         M20         X         -6.979         -6.979         0 $\%100$ 36         M20         Z         4.029         4.029         0 $\%100$ 38         M21         Z         4.029         4.029         0 $\%100$ 38         M22         X         -5.122         -5.122         0 $\%100$ 40         M22         Z         2.957         2.957         0 $\%100$ 41         M23         Z         2.957         2.957         0 $\%100$ 43         M24         X         -5.385         5.385         0 $\%100$ 44         M24         Z         3.109         3.109         0 $\%100$ 45         M25         X         -7.079         -7.079         0 $\%100$ <							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
34         M19         Z         4.087         4.087         0         %100           35         M20         X         -6.979         -6.979         0         %100           36         M20         Z         4.029         4.029         0         %100           37         M21         X         -6.979         -6.979         0         %100           38         M21         Z         4.029         4.029         0         %100           39         M22         X         -5.122         -5.122         0         %100           40         M22         Z         2.957         2.957         0         %100           41         M23         X         -5.122         0         %100           43         M24         X         -5.385         -5.385         0         %100           44         M24         Z         3.109         3.109         0         %100           46         M25         Z         4.067         4.087         0         %100           47         M26         X         -6.979         -6.979         0         %100           48         M27         X							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
36M20Z $4.029$ $4.029$ $0$ $%100$ $37$ M21X $-6.979$ $-6.979$ $0$ $%100$ $38$ M21Z $4.029$ $4.029$ $0$ $%100$ $39$ M22X $-5.122$ $-5.122$ $0$ $%100$ $40$ M22Z $2.957$ $2.957$ $0$ $%100$ $41$ M23X $-5.122$ $-5.122$ $0$ $%100$ $42$ M23Z $2.957$ $2.957$ $0$ $%100$ $43$ M24X $-5.385$ $-5.385$ $0$ $%100$ $44$ M24Z $3.109$ $0$ $%100$ $45$ M25X $-7.079$ $-7.079$ $0$ $%100$ $46$ M25Z $4.087$ $4.087$ $0$ $%100$ $47$ M26X $-6.979$ $-6.979$ $0$ $%100$ $48$ M26Z $4.029$ $0$ $%100$ $51$ M28X $-6.979$ $0$ $%100$ $52$ M28Z $4.029$ $0$ $%100$ $54$ M29Z $2.25$ $2.25$ $0$ $%100$ $55$ M30X $-7.079$ $-7.079$ $0$ $%100$ $56$ M30Z $4.087$ $0$ $%100$ $57$ M31X $-6.979$ $0$ $%100$ $58$ M31Z $4.029$ $4.029$ $0$ $%100$ $57$ M30X $-7.079$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
38         M21         Z         4.029         4.029         0         %100           39         M22         X         -5.122         -5.122         0         %100           40         M22         Z         2.957         2.957         0         %100           41         M23         X         -5.122         -5.122         0         %100           42         M23         Z         2.957         0         %100           43         M24         X         -5.385         0         %100           44         M24         Z         3.109         0         %100           45         M25         X         -7.079         -7.079         0         %100           46         M25         Z         4.087         4.087         0         %100           47         M26         X         -6.979         -6.979         0         %100           50         M27         Z         2.25         2.25         0         %100           51         M28         X         -6.979         0         %100         53         M29         X         -3.898         -3.898         0         %100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
41M23X $-5.122$ $-5.122$ 0 $\%100$ 42M23Z2.9572.9570 $\%100$ 43M24X $5.385$ -5.3850 $\%100$ 44M24Z3.1093.1090 $\%100$ 45M25X $-7.079$ $-7.079$ 0 $\%100$ 46M25Z4.0874.0870 $\%100$ 47M26X $-6.979$ $-6.979$ 0 $\%100$ 48M26Z4.0294.0290 $\%100$ 49M27X $-3.898$ $-3.898$ 0 $\%100$ 50M27Z2.252.250 $\%100$ 51M28Z4.0294.0290 $\%100$ 53M29X $-3.988$ $-3.898$ 0 $\%100$ 54M29Z2.252.250 $\%100$ 55M30X $-7.079$ $-7.079$ 0 $\%100$ 56M30Z4.0874.0870 $\%100$ 57M31X $-6.979$ $-6.979$ 0 $\%100$ 58M31Z4.029 $4.029$ 0 $\%100$ 59M32X $-5.122$ 0 $\%100$ 60M32Z $2.957$ $2.957$ 0 $\%100$ 61M33X $-5.122$ $-5.122$ 0 $\%100$ 63M34X $-5.122$ $-5.122$ 0 $\%100$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
42M23Z2.9572.9570%10043M24X-5.385-5.3850%10044M24Z3.1093.10909%10045M25X-7.079-7.0790%10046M25Z4.0874.0870%10047M26X-6.979-6.9790%10048M26Z4.0294.0290%10050M27Z2.252.250%10051M28X-6.979-6.9790%10052M28Z4.0294.0290%10053M29X-3.898-3.8980%10054M29Z2.252.250%10055M30X-7.079-7.0790%10056M30Z4.0870%10057M31X-6.979-6.9790%10058M31Z4.0294.0290%10060M32Z4.0294.0290%10061M33X-5.122-5.1220%10063M34X-5.122-5.1220%10064M34Z2.9572.9570%10065M35X-5.385-5.3850%10066M35Z3.1093.1090%1							
43M24X-5.385-5.3850 $\%100$ 44M24Z3.1093.1090 $\%100$ 45M25X-7.079-7.0790 $\%100$ 46M25Z4.0874.0870 $\%100$ 47M26X-6.979-6.9790 $\%100$ 48M26Z4.0294.0290 $\%100$ 49M27X-3.898-3.8980 $\%100$ 50M27Z2.252.250 $\%100$ 51M28X-6.979-6.9790 $\%100$ 52M28Z4.0294.0290 $\%100$ 53M29X-3.898-3.8980 $\%100$ 54M29Z2.252.250 $\%100$ 55M30X-7.079-7.0790 $\%100$ 56M30Z4.0874.0870 $\%100$ 57M31X-6.979-6.9790 $\%100$ 58M31Z4.0294.0290 $\%100$ 60M32Z4.0294.0290 $\%100$ 61M33X-5.122-5.1220 $\%100$ 63M34X-5.122-5.1220 $\%100$ 64M34Z2.9572.9570 $\%100$ 65M35X-5.385-5.3850 $\%100$ 66M35 </td <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
44M24Z $3.109$ $3.109$ $0$ $\%100$ 45M25X $-7.079$ $-7.079$ $0$ $\%100$ 46M25Z $4.087$ $4.087$ $0$ $\%100$ 47M26X $-6.979$ $-6.979$ $0$ $\%100$ 48M26Z $4.029$ $4.029$ $0$ $\%100$ 49M27X $-3.898$ $-3.898$ $0$ $\%100$ 50M27Z $2.25$ $2.25$ $0$ $\%100$ 51M28X $-6.979$ $-6.979$ $0$ $\%100$ 52M28Z $4.029$ $4.029$ $0$ $\%100$ 53M29X $-3.898$ $-3.898$ $0$ $\%100$ 54M29Z $2.255$ $2.25$ $0$ $\%100$ 55M30X $-7.079$ $-7.079$ $0$ $\%100$ 56M30Z $4.087$ $4.087$ $0$ $\%100$ 57M31X $-6.979$ $-6.979$ $0$ $\%100$ 58M31Z $4.029$ $4.029$ $0$ $\%100$ 59M32X $-5.977$ $0$ $\%100$ 61M33X $-5.122$ $0$ $\%100$ 62M33Z $2.957$ $2.957$ $0$ $\%100$ 63M34X $-5.122$ $0$ $\%100$ 64M34Z $2.957$ $2.957$ $0$ $\%100$ 65M35X $-5.385$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
45M25X-7.079-7.0790 $\%100$ 46M25Z4.0874.0870 $\%100$ 47M26X-6.979-6.9790 $\%100$ 48M26Z4.0294.0290 $\%100$ 49M27X-3.898-3.8980 $\%100$ 50M27Z2.252.250 $\%100$ 51M28X-6.979-6.9790 $\%100$ 52M28Z4.0294.0290 $\%100$ 53M29X-3.898-3.8980 $\%100$ 54M29Z2.252.250 $\%100$ 55M30X-7.079-7.0790 $\%100$ 56M30Z4.0874.0870 $\%100$ 57M31X-6.979-6.9790 $\%100$ 58M31Z4.0294.0290 $\%100$ 59M32X-6.979-6.9790 $\%100$ 60M32Z2.9572.9570 $\%100$ 61M33X-5.122-5.1220 $\%100$ 63M34X-5.122-5.1220 $\%100$ 64M34Z2.9572.9570 $\%100$ 65M35X-5.385-5.3850 $\%100$ 66M35Z3.1093.1090 $\%100$ 67M36 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
46M25Z4.0874.0870%10047M26X-6.979-6.9790%10048M26Z4.0290%10049M27X-3.898-3.8980%10050M27Z2.252.250%10051M28X-6.979-6.9790%10052M28Z4.0294.0290%10053M29X-3.898-3.8980%10054M29Z2.250%10055M30X-7.079-7.0790%10056M30Z4.0874.0870%10057M31X-6.979-6.9790%10058M31Z4.0294.0290%10059M32X-5.9790%10060M32Z4.0294.0290%10061M33Z2.9572.9570%10063M34X-5.1220%10064M34Z2.9572.9570%10065M35X-5.385-5.3850%10066M35Z3.1093.1090%10067M36X-7.056-7.0560%10068M36Z4.0744.0740%10070MP4A							
47M26X-6.979-6.9790 $\%100$ 48M26Z4.0294.0290 $\%100$ 49M27X-3.898-3.8980 $\%100$ 50M27Z2.252.250 $\%100$ 51M28X-6.979-6.9790 $\%100$ 52M28Z4.0294.0290 $\%100$ 53M29X-3.898-3.8980 $\%100$ 54M29Z2.252.250 $\%100$ 55M30X-7.079-7.0790 $\%100$ 56M30Z4.0874.0870 $\%100$ 58M31X-6.979-6.9790 $\%100$ 58M31Z4.0294.0290 $\%100$ 59M32X-6.979-6.9790 $\%100$ 60M32Z4.0294.0290 $\%100$ 61M33X-5.1220 $\%100$ 62M33Z2.9572.9570 $\%100$ 63M34X-5.1220 $\%100$ 64M34Z2.9572.9570 $\%100$ 65M35X-5.3850 $\%100$ 66M35Z3.1093.1090 $\%100$ 67M36Z4.0870 $\%100$ 68M36Z4.0870 $\%100$ <tr<< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td></tr<<>			7				
48         M26         Z         4.029         4.029         0         %100           49         M27         X         -3.898         -3.898         0         %100           50         M27         Z         2.25         2.25         0         %100           51         M28         X         -6.979         0         %100           52         M28         Z         4.029         4.029         0         %100           53         M29         X         -3.898         -3.898         0         %100           54         M29         Z         2.25         2.25         0         %100           55         M30         X         -7.079         -7.079         0         %100           56         M30         Z         4.087         4.087         0         %100           58         M31         Z         4.029         4.029         0         %100           59         M32         X         -6.979         -6.979         0         %100           60         M32         Z         4.029         4.029         0         %100           61         M33         X							
49         M27         X         -3.898         -3.898         0         %100           50         M27         Z         2.25         2.25         0         %100           51         M28         X         -6.979         -6.979         0         %100           52         M28         Z         4.029         4.029         0         %100           53         M29         X         -3.898         -3.898         0         %100           54         M29         Z         2.25         2.25         0         %100           56         M30         X         -7.079         -7.079         0         %100           56         M30         Z         4.087         4.087         0         %100           57         M31         X         -6.979         -6.979         0         %100           58         M31         Z         4.029         4.029         0         %100           60         M32         Z         4.029         0         %100         6           61         M33         X         -5.122         -5.122         0         %100           62         M33 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
50M27Z2.252.250%10051M28X-6.979-6.9790%10052M28Z4.0294.0290%10053M29X-3.898-3.8980%10054M29Z2.252.250%10055M30X-7.079-7.0790%10056M30Z4.0874.0870%10057M31X-6.979-6.9790%10058M31Z4.0294.0290%10059M32X-6.979-6.9790%10060M32Z4.0294.0290%10061M33X-5.122-5.1220%10063M34X-5.122-5.1220%10064M34Z2.9572.9570%10065M35Z3.1093.1090%10066M35Z3.1093.1090%10067M36Z4.0870%10068M36Z4.0870%10071MP3AX-7.056-7.0560%10072MP3AZ4.0744.0740%10073MP2AX-7.056-7.0560%10074MP2AZ4.0744.0740%100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
51         M28         X         -6.979         -6.979         0         %100           52         M28         Z         4.029         4.029         0         %100           53         M29         X         -3.898         -3.898         0         %100           54         M29         Z         2.25         2.25         0         %100           55         M30         X         -7.079         -7.079         0         %100           56         M30         Z         4.087         4.087         0         %100           56         M31         Z         4.029         4.029         0         %100           58         M31         Z         4.029         4.029         0         %100           59         M32         X         -6.979         0         %100         6           60         M32         Z         4.029         4.029         0         %100           61         M33         Z         2.957         2.957         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34							
52M28Z $4.029$ $4.029$ 0 $%100$ $53$ M29X $-3.898$ $-3.898$ 0 $%100$ $54$ M29Z $2.25$ $2.25$ 0 $%100$ $55$ M30X $-7.079$ $-7.079$ 0 $%100$ $56$ M30Z $4.087$ $4.087$ 0 $%100$ $57$ M31X $-6.979$ $-6.979$ 0 $%100$ $58$ M31Z $4.029$ $4.029$ 0 $%100$ $59$ M32X $-6.979$ $-6.979$ 0 $%100$ $60$ M32Z $4.029$ $4.029$ 0 $%100$ $61$ M33X $-5.122$ $-5.122$ 0 $%100$ $62$ M33Z $2.957$ $2.957$ 0 $%100$ $63$ M34X $-5.122$ $-5.122$ 0 $%100$ $64$ M34Z $2.957$ $2.957$ 0 $%100$ $65$ M35X $-5.385$ $-5.385$ 0 $%100$ $66$ M35Z $3.109$ 0 $%100$ $67$ M36X $-7.079$ $-7.079$ 0 $%100$ $68$ M36Z $4.087$ $4.087$ 0 $%100$ $71$ MP3AX $-7.056$ $-7.056$ 0 $%100$ $72$ MP3AZ $4.074$ $4.074$ 0 $%100$ $74$ MP2AZ $4.074$ $4.074$ 0 $%100$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
53M29X $-3.898$ $-3.898$ 0 $%100$ $54$ M29Z $2.25$ $2.25$ 0 $%100$ $55$ M30X $-7.079$ $-7.079$ 0 $%100$ $56$ M30Z $4.087$ $4.087$ 0 $%100$ $57$ M31X $-6.979$ $-6.979$ 0 $%100$ $58$ M31Z $4.029$ $4.029$ 0 $%100$ $59$ M32X $-6.979$ $-6.979$ 0 $%100$ $60$ M32Z $4.029$ $4.029$ 0 $%100$ $61$ M33X $-5.122$ $-5.122$ 0 $%100$ $62$ M33Z $2.957$ $2.957$ 0 $%100$ $63$ M34X $-5.122$ $-5.122$ 0 $%100$ $64$ M34Z $2.957$ $2.957$ 0 $%100$ $65$ M35X $-5.385$ $-5.385$ 0 $%100$ $66$ M35Z $3.109$ $3.109$ 0 $%100$ $67$ M36X $-7.079$ $-7.079$ 0 $%100$ $68$ M36Z $4.087$ $4.087$ 0 $%100$ $69$ MP4AX $-7.056$ $-7.056$ 0 $%100$ $71$ MP3AZ $4.074$ $4.074$ 0 $%100$ $72$ MP3AZ $4.074$ $4.074$ 0 $%100$ $74$ MP2AZ $4.074$ $4.074$ 0 $%100$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
54         M29         Z         2.25         2.25         0         %100           55         M30         X         -7.079         -7.079         0         %100           56         M30         Z         4.087         4.087         0         %100           57         M31         X         -6.979         -6.979         0         %100           58         M31         Z         4.029         4.029         0         %100           59         M32         X         -6.979         -6.979         0         %100           60         M32         Z         4.029         4.029         0         %100           61         M33         X         -5.122         -5.122         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M							
55         M30         X         -7.079         -7.079         0         %100           56         M30         Z         4.087         4.087         0         %100           57         M31         X         -6.979         -6.979         0         %100           58         M31         Z         4.029         4.029         0         %100           59         M32         X         -6.979         0         %100           60         M32         Z         4.029         4.029         0         %100           61         M33         X         -5.122         -5.122         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         Z         4.087 </td <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
56         M30         Z         4.087         4.087         0         %100           57         M31         X         -6.979         -6.979         0         %100           58         M31         Z         4.029         4.029         0         %100           59         M32         X         -6.979         -6.979         0         %100           60         M32         Z         4.029         4.029         0         %100           61         M33         X         -5.122         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z<							
57         M31         X         -6.979         -6.979         0         %100           58         M31         Z         4.029         4.029         0         %100           59         M32         X         -6.979         -6.979         0         %100           60         M32         Z         4.029         4.029         0         %100           61         M33         X         -5.122         -5.122         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         0         %100           70         MP4A         X         -7.05							
58         M31         Z         4.029         4.029         0         %100           59         M32         X         -6.979         -6.979         0         %100           60         M32         Z         4.029         4.029         0         %100           61         M33         X         -5.122         -5.122         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         0         %100           70         MP4A         Z         4.074         4.074         0         %100           71         MP3A         Z							
59         M32         X         -6.979         -6.979         0         %100           60         M32         Z         4.029         4.029         0         %100           61         M33         X         -5.122         -5.122         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         0         %100           70         MP4A         Z         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.							
60M32Z4.0294.0290%10061M33X-5.122-5.1220%10062M33Z2.9572.9570%10063M34X-5.122-5.1220%10064M34Z2.9572.9570%10065M35X-5.385-5.3850%10066M35Z3.1093.1090%10067M36X-7.079-7.0790%10068M36Z4.0874.0870%10069MP4AX-7.056-7.0560%10070MP4AZ4.0744.0740%10071MP3AX-7.056-7.0560%10073MP2AX-7.056-7.0560%10074MP2AZ4.0744.0740%100							
61         M33         X         -5.122         -5.122         0         %100           62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           73         MP2A         Z         4.074         4.074         0         %100           74							
62         M33         Z         2.957         2.957         0         %100           63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         4.074         0         %100           73         MP2A         Z         4.074         4.074         0         %100           74         MP2A         <							
63         M34         X         -5.122         -5.122         0         %100           64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         4.074         0         %100           73         MP2A         X         -7.056         -7.056         0         %100           74         MP2A         Z         4.074         4.074         0         %100							
64         M34         Z         2.957         2.957         0         %100           65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         0         %100           71         MP3A         Z         4.074         0         %100           72         MP3A         Z         4.074         0         %100           73         MP2A         Z         4.074         0         %100           74         MP2A         Z         4.074         0         %100							
65         M35         X         -5.385         -5.385         0         %100           66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         0         %100           73         MP2A         Z         4.074         0         %100           74         MP2A         Z         4.074         0         %100							
66         M35         Z         3.109         3.109         0         %100           67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         0         %100           73         MP2A         Z         4.074         0         %100           74         MP2A         Z         4.074         0         %100							
67         M36         X         -7.079         -7.079         0         %100           68         M36         Z         4.087         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         4.074         0         %100           73         MP2A         X         -7.056         -7.056         0         %100           74         MP2A         Z         4.074         0         %100							
68         M36         Z         4.087         4.087         0         %100           69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         4.074         0         %100           73         MP2A         X         -7.056         -7.056         0         %100           74         MP2A         Z         4.074         0         %100							
69         MP4A         X         -7.056         -7.056         0         %100           70         MP4A         Z         4.074         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         4.074         0         %100           73         MP2A         X         -7.056         -7.056         0         %100           74         MP2A         Z         4.074         4.074         0         %100			7				
70         MP4A         Z         4.074         4.074         0         %100           71         MP3A         X         -7.056         -7.056         0         %100           72         MP3A         Z         4.074         4.074         0         %100           73         MP2A         X         -7.056         -7.056         0         %100           74         MP2A         Z         4.074         4.074         0         %100							
71MP3AX-7.056-7.0560%10072MP3AZ4.0744.0740%10073MP2AX-7.056-7.0560%10074MP2AZ4.0744.0740%100			7				
72         MP3A         Z         4.074         4.074         0         %100           73         MP2A         X         -7.056         -7.056         0         %100           74         MP2A         Z         4.074         4.074         0         %100							
73         MP2A         X         -7.056         -7.056         0         %100           74         MP2A         Z         4.074         4.074         0         %100			7				
74         MP2A         Z         4.074         4.074         0         %100							
					1	· ·	

 RISA-3D Version 17.0.4
 [\...\...\...\...\...\...\...\...\...\RISA\469153-VZW_MT_LOT_A_H.r3d]
 Page 64

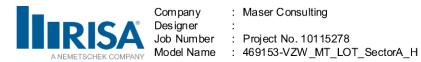



# Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
75	MP1A	Х	-7.056	-7.056	0	%100
76	MP1A	Z	4.074	4.074	0	%100
77	EQUIP	Х	-11.1	-11.1	0	%100
78	EQUIP	Z	6.409	6.409	0	%100
79	M51	Х	-11.1	-11.1	0	%100
80	M51	Z	6.409	6.409	0	%100
81	M55A	Х	-1.787	-1.787	0	%100
82	M55A	Z	1.032	1.032	0	%100

# Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

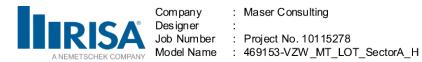
	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	655	655	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	655	655	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	Х	85	85	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	535	535	0	%100
14	M9	Z	0	0	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	-4.151	-4.151	0	%100
18	M11	Z	0	0	0	%100
19	M12	X	-4.151	-4.151	0	%100
20	M12	Z	0	0	0	%100
21	M13	Х	-4.151	-4.151	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	-4.151	-4.151	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	-10.292	-10.292	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	-5.452	-5.452	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	-10.292	-10.292	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	-5.452	-5.452	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	-10.292	-10.292	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	-10.292	-10.292	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	-10.292	-10.292	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	-5.915	-5.915	0	%100
40	M22	Z	0	0	0	%100




## Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
41	M23	Х	-5.915	-5.915	0	%100
42	M23	Z	0	0	0	%100
43	M24	Х	-6.218	-6.218	0	%100
44	M24	Z	0	0	0	%100
45	M25	Х	-10.292	-10.292	0	%100
46	M25	Z	0	0	0	%100
47	M26	Х	-10.292	-10.292	0	%100
48	M26	Z	0	0	0	%100
49	M27	Х	-5.452	-5.452	0	%100
50	M27	Z	0	0	0	%100
51	M28	Х	-10.292	-10.292	0	%100
52	M28	Z	0	0	0	%100
53	M29	Х	-5.452	-5.452	0	%100
54	M29	Z	0	0	0	%100
55	M30	Х	-10.292	-10.292	0	%100
56	M30	Z	0	0	0	%100
57	M31	Х	-10.292	-10.292	0	%100
58	M31	Z	0	0	0	%100
59	M32	Х	-10.292	-10.292	0	%100
60	M32	Z	0	0	0	%100
61	M33	Х	-5.915	-5.915	0	%100
62	M33	Z	0	0	0	%100
63	M34	Х	-5.915	-5.915	0	%100
64	M34	Z	0	0	0	%100
65	M35	Х	-6.218	-6.218	0	%100
66	M35	Z	0	0	0	%100
67	M36	Х	-10.292	-10.292	0	%100
68	M36	Z	0	0	0	%100
69	MP4A	Х	-8.148	-8.148	0	%100
70	MP4A	Z	0	0	0	%100
71	MP3A	Х	-8.148	-8.148	0	%100
72	MP3A	Z	0	0	0	%100
73	MP2A	Х	-8.148	-8.148	0	%100
74	MP2A	Z	0	0	0	%100
75	MP1A	Х	-8.148	-8.148	0	%100
76	MP1A	Z	0	0	0	%100
77	EQUIP	Х	-12.817	-12.817	0	%100
78	EQUIP	Z	0	0	0	%100
79	M51	Х	-12.817	-12.817	0	%100
80	M51	Z	0	0	0	%100
81	M55A	Х	-6.137	-6.137	0	%100
82	M55A	Z	0	0	0	%100

# Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

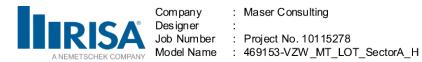

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	X	-2.228	-2.228	0	%100
2	M1	Z	-1.286	-1.286	0	%100
3	M3	Х	-2.228	-2.228	0	%100
4	M3	Z	-1.286	-1.286	0	%100
5	M5	X	-1.045	-1.045	0	%100
6	M5	Z	603	603	0	%100



# Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

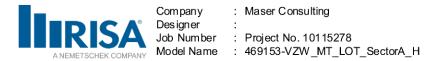
	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
7	M6	Х	08	08	0	%100
8	M6	Z	046	046	0	%100
9	M7	Х	-2.135	-2.135	0	%100
10	M7	Z	-1.233	-1.233	0	%100
11	M8	Х	-1.103	-1.103	0	%100
12	M8	Z	637	637	0	%100
13	M9	Х	035	035	0	%100
14	M9	Z	02	02	0	%100
15	M10	X	-2.135	-2.135	0	%100
16	M10	Z	-1.233	-1.233	0	%100
17	M11	×	-6.617	-6.617	0	%100
18	M11	Z	-3.82	-3.82	0	%100
19	M12	×	507	507	0	%100
20	M12	Z	293	293	0	%100
21	M12	X	-6.617	-6.617	0	%100
22	M13	Z	-3.82	-3.82	0	%100
23	M13	X	507	507	0	%100
24	M14	Z	293	293	0	%100
24	M14	X	-6.979	-6.979	0	%100
26	M15	Z	-4.029	-4.029	0	%100
27	M15	X	-3.898	-3.898	0	%100
28	M16	Z	-2.25	-2.25	0	%100
29	M10	X	-6.979	-6.979	0	%100
30	M17	Z	-4.029	-4.029	0	%100
31	M17	X	-3.898	-3.898	0	%100
32		Z		-2.25	0	
	M18	X	-2.25			%100
33 34	M19	Z	-7.079	-7.079	0	%100
	M19		-4.087	-4.087		%100 %100
35 36	M20	X Z	-6.979	-6.979	0	%100
	M20		-4.029	-4.029		%100
37	M21	X Z	-6.979	-6.979	0	%100
38	M21		-4.029	-4.029	0	%100
39	M22	X	-5.122	-5.122	0	%100
40	M22	Z	-2.957	-2.957	0	%100
41	M23	X	-5.122	-5.122	0	%100
42	M23	Z	-2.957	-2.957	0	%100
43	M24	X	-5.385	-5.385	0	%100
44	M24	Z	-3.109	-3.109	0	%100
45	M25	X	-7.079	-7.079	0	%100
46	M25	Z	-4.087	-4.087	0	%100
47	M26	X	-6.979	-6.979	0	%100
48	M26	Z	-4.029	-4.029	0	%100
49	M27	X	-5.528	-5.528	0	%100
50	M27	Z	-3.191	-3.191	0	%100
51	M28	X	-6.979	-6.979	0	%100
52	M28	Z	-4.029	-4.029	0	%100
53	M29	X	-5.528	-5.528	0	%100
54	M29	Z	-3.191	-3.191	0	%100
55	M30	X	-7.079	-7.079	0	%100
56	M30	Z	-4.087	-4.087	0	%100
57	M31	X	-6.979	-6.979	0	%100
58	M31	Z	-4.029	-4.029	0	%100
	-3D Version 17 0 4					dl Page 67

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\RISA\469153-VZW_MT_LOT_A_H.r3d] Page 67




## Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
59	M32	Х	-6.979	-6.979	0	%100
60	M32	Z	-4.029	-4.029	0	%100
61	M33	Х	-5.122	-5.122	0	%100
62	M33	Z	-2.957	-2.957	0	%100
63	M34	Х	-5.122	-5.122	0	%100
64	M34	Z	-2.957	-2.957	0	%100
65	M35	Х	-5.385	-5.385	0	%100
66	M35	Z	-3.109	-3.109	0	%100
67	M36	Х	-7.079	-7.079	0	%100
68	M36	Z	-4.087	-4.087	0	%100
69	MP4A	Х	-7.056	-7.056	0	%100
70	MP4A	Z	-4.074	-4.074	0	%100
71	MP3A	Х	-7.056	-7.056	0	%100
72	MP3A	Z	-4.074	-4.074	0	%100
73	MP2A	Х	-7.056	-7.056	0	%100
74	MP2A	Z	-4.074	-4.074	0	%100
75	MP1A	Х	-7.056	-7.056	0	%100
76	MP1A	Z	-4.074	-4.074	0	%100
77	EQUIP	Х	-11.1	-11.1	0	%100
78	EQUIP	Z	-6.409	-6.409	0	%100
79	M51	Х	-11.1	-11.1	0	%100
80	M51	Z	-6.409	-6.409	0	%100
81	M55A	Х	-7.056	-7.056	0	%100
82	M55A	Z	-4.074	-4.074	0	%100

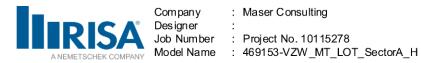

# Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location [in %]	End Location[in,%]
1	Mit Mit Labor	X	-3.859	-3.859	0	%100
2	M1	Z	-6.685	-6.685	0	%100
3	M3	X	-3.859	-3.859	0	%100
4	M3	Z	-6.685	-6.685	0	%100
5	M5	Х	597	597	0	%100
6	M5	Z	-1.034	-1.034	0	%100
7	M6	Х	04	04	0	%100
8	M6	Z	069	069	0	%100
9	M7	Х	-3.699	-3.699	0	%100
10	M7	Z	-6.406	-6.406	0	%100
11	M8	X	534	534	0	%100
12	M8	Z	924	924	0	%100
13	M9	Х	074	074	0	%100
14	M9	Z	128	128	0	%100
15	M10	Х	-3.699	-3.699	0	%100
16	M10	Z	-6.406	-6.406	0	%100
17	M11	X	-3.781	-3.781	0	%100
18	M11	Z	-6.549	-6.549	0	%100
19	M12	X	254	254	0	%100
20	M12	Z	44	44	0	%100
21	M13	X	-3.781	-3.781	0	%100
22	M13	Z	-6.549	-6.549	0	%100
23	M14	Х	254	254	0	%100
24	M14	Z	44	44	0	%100



## Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
25	M15	X	-1.796	-1.796	0	%100
26	M15	Z	-3.11	-3.11	0	%100
27	M16	×	-2.24	-2.24	0	%100
28	M16	Z	-3.88	-3.88	0	%100
29	M17	×	-1.796	-1.796	0	%100
30	M17	Z	-3.11	-3.11	0	%100
31	M18	X	-2.24	-2.24	0	%100
32	M18	Z	-3.88	-3.88	0	%100
33	M19	×	-1.97	-1.97	0	%100
34	M19	Z	-3.412	-3.412	0	%100
35	M20	X	-1.796	-1.796	0	%100
36	M20	Z	-3.11	-3.11	0	%100
37	M21	×	-1.796	-1.796	0	%100
38	M21	Z	-3.11	-3.11	0	%100
39	M22	X	-2.957	-2.957	0	%100
40	M22	Z	-5.122	-5.122	0	%100
41	M23	X	-2.957	-2.957	0	%100
42	M23	Z	-5.122	-5.122	0	%100
43	M24	×	-3.109	-3.109	0	%100
44	M24	Z	-5.385	-5.385	0	%100
45	M25	×	-1.97	-1.97	0	%100
46	M25	Z	-3.412	-3.412	0	%100
47	M26	Х	-1.796	-1.796	0	%100
48	M26	Z	-3.11	-3.11	0	%100
49	M27	Х	-3.181	-3.181	0	%100
50	M27	Z	-5.51	-5.51	0	%100
51	M28	Х	-1.796	-1.796	0	%100
52	M28	Z	-3.11	-3.11	0	%100
53	M29	Х	-3.181	-3.181	0	%100
54	M29	Z	-5.51	-5.51	0	%100
55	M30	Х	-1.97	-1.97	0	%100
56	M30	Z	-3.412	-3.412	0	%100
57	M31	Х	-1.796	-1.796	0	%100
58	M31	Z	-3.11	-3.11	0	%100
59	M32	Х	-1.796	-1.796	0	%100
60	M32	Z	-3.11	-3.11	0	%100
61	M33	Х	-2.957	-2.957	0	%100
62	M33	Z	-5.122	-5.122	0	%100
63	M34	Х	-2.957	-2.957	0	%100
64	M34	Z	-5.122	-5.122	0	%100
65	M35	Х	-3.109	-3.109	0	%100
66	M35	Z	-5.385	-5.385	0	%100
67	M36	Х	-1.97	-1.97	0	%100
68	M36	Z	-3.412	-3.412	0	%100
69	MP4A	X	-4.074	-4.074	0	%100
70	MP4A	Z	-7.056	-7.056	0	%100
71	MP3A	X	-4.074	-4.074	0	%100
72	MP3A	Z	-7.056	-7.056	0	%100
73	MP2A	Х	-4.074	-4.074	0	%100
74	MP2A	Z	-7.056	-7.056	0	%100
75	MP1A	Х	-4.074	-4.074	0	%100
76	MP1A	Z	-7.056	-7.056	0	%100
	A-3D Version 17 0 4					dl Page 69

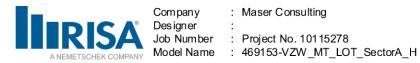



## Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
77	EQUIP	Х	-6.409	-6.409	0	%100
78	EQUIP	Z	-11.1	-11.1	0	%100
79	M51	Х	-6.409	-6.409	0	%100
80	M51	Z	-11.1	-11.1	0	%100
81	M55A	Х	-3.042	-3.042	0	%100
82	M55A	Z	-5.269	-5.269	0	%100

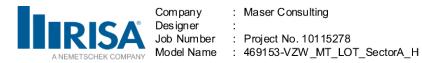
# Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

Member Label         Direction         Start Magnitudel[btf.,End Magnitudel[btf.,Start Location[n,%]         End Locatin[n,%]         End Location[n,%]		Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[]b/ft E	Start Location[in %]	End Location[in,%]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			•	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
12         M8         Z $364$ $364$ 0 $\%100$ 13         M9         X         0         0         0         %100           14         M9         Z $626$ $626$ 0 $\%100$ 15         M10         X         0         0         0 $\%100$ 16         M10         Z $-3.213$ $-3.213$ 0 $\%100$ 17         M11         X         0         0         0 $\%100$ 18         M11         Z $-1.425$ $-1.425$ $0$ $\%100$ 20         M12         X         0         0         0 $\%100$ 21         M13         Z $-1.425$ $-1.425$ $0$ $\%100$ 23         M14         X         0         0         0 $\%100$ 24         M14         Z $-1.425$ $-1.425$ $0$ $\%100$ 25         M15         Z $-1.085$ $-1.085$ $0$ $\%100$ 27 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
14M9Z6266260%10015M10X000%10016M10Z-3.213-3.2130%10017M11X000%10018M11Z-1.425-1.4250%10019M12X000%10020M12Z-1.425-1.4250%10021M13X000%10022M13Z-1.425-1.4250%10023M14X000%10024M14Z-1.425-1.4250%10025M15X000%10026M15Z-1.085-1.0850%10027M16X000%10028M16Z-2.09-2.090%10030M17Z-1.085-1.0850%10031M18X000%10032M18Z-2.09-2.090%10034M19X000%10035M20X000%10036M20Z-1.085-1.0850%10037M21X000%10038M21Z-1.085-1.085 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
15M10X000 $\%100$ 16M10Z-3.213-3.2130 $\%100$ 17M11X000 $\%100$ 18M11Z-1.425-1.4250 $\%100$ 19M12X000 $\%100$ 20M12Z-1.425-1.4250 $\%100$ 21M13X000 $\%100$ 22M13Z-1.425-1.4250 $\%100$ 23M14X000 $\%100$ 24M14Z-1.425-1.4250 $\%100$ 25M15X000 $\%100$ 26M15Z-1.085-1.0850 $\%100$ 27M16X000 $\%100$ 28M16Z-2.09-2.090 $\%100$ 30M17Z-1.085-1.0850 $\%100$ 31M18X000 $\%100$ 33M19X000 $\%100$ 34M19Z-1.17-1.170 $\%100$ 35M20X000 $\%100$ 36M20Z-1.085-1.0850 $\%100$ 38M21Z-2.27-2.270 $\%100$ 39M22X000 $\%100$ 41	13	M9	Х	0	0	0	%100
16M10Z-3.213-3.2130 $\%100$ 17M11X000 $\%100$ 18M11Z-1.425-1.4250 $\%100$ 19M12X000 $\%100$ 20M12Z-1.425-1.4250 $\%100$ 21M13X000 $\%100$ 22M13Z-1.425-1.4250 $\%100$ 23M14X000 $\%100$ 24M14Z-1.425-1.4250 $\%100$ 25M15X000 $\%100$ 26M15Z-1.085-1.0850 $\%100$ 27M16X000 $\%100$ 28M16Z-2.09-2.090 $\%100$ 30M17Z-1.085-1.0850 $\%100$ 31M18X000 $\%100$ 32M18Z-2.09-2.090 $\%100$ 33M19X000 $\%100$ 34M19Z-1.17-1.170 $\%100$ 35M20X000 $\%100$ 36M20Z-1.085-1.0850 $\%100$ 37M21X000 $\%100$ 38M21Z-2.27-2.270 $\%100$ 39<	14	M9	Z	626	626	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	M10	Х	0	0	0	%100
18M11Z-1.425-1.4250 $\%100$ 19M12X000 $\%100$ 20M12Z-1.425-1.4250 $\%100$ 21M13X000 $\%100$ 22M13Z-1.425-1.4250 $\%100$ 23M14X000 $\%100$ 24M14Z-1.425-1.4250 $\%100$ 25M15X000 $\%100$ 26M15Z-1.085-1.0850 $\%100$ 27M16X000 $\%100$ 28M16Z-2.09-2.090 $\%100$ 29M17X000 $\%100$ 30M17Z-1.085-1.0850 $\%100$ 31M18X000 $\%100$ 33M19X000 $\%100$ 34M19Z-1.17-1.170 $\%100$ 35M20X000 $\%100$ 36M20Z-1.085-1.0850 $\%100$ 37M21X000 $\%100$ 38M21Z-2.27-2.270 $\%100$ 40M22Z-2.27-2.270 $\%100$ 41M23X000 $\%100$	16	M10	Z	-3.213	-3.213	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	M11	Х	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	M11	Z	-1.425	-1.425	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	M12	Х	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-1.425		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	M13	Z	-1.425	-1.425	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	M14	Х				
26M15Z-1.085-1.0850%10027M16X000%10028M16Z-2.09-2.090%10029M17X000%10030M17Z-1.085-1.0850%10031M18X000%10032M18Z-2.09-2.090%10033M19X000%10034M19Z-1.17-1.170%10035M20X000%10036M20Z-1.085-1.0850%10038M21Z-1.085-1.0850%10039M22X000%10040M22Z-2.27-2.270%10041M23X000%100			Z	-1.425	-1.425	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
28         M16         Z         -2.09         -2.09         0         %100           29         M17         X         0         0         0         %100           30         M17         Z         -1.085         -1.085         0         %100           31         M18         X         0         0         0         %100           32         M18         Z         -2.09         -2.09         0         %100           33         M19         X         0         0         0         %100           34         M19         Z         -1.17         -1.17         0         %100           36         M20         Z         -1.085         -1.085         0         %100           37         M21         X         0         0         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0 <td></td> <td></td> <td></td> <td>-1.085</td> <td>-1.085</td> <td></td> <td></td>				-1.085	-1.085		
29M17X000%10030M17Z-1.085-1.0850%10031M18X000%10032M18Z-2.09-2.090%10033M19X000%10034M19Z-1.17-1.170%10035M20X000%10036M20Z-1.085-1.0850%10037M21X000%10039M22X000%10040M22Z-2.27-2.270%10041M23X000%100			X				
30         M17         Z         -1.085         -1.085         0         %100           31         M18         X         0         0         0         %100           32         M18         Z         -2.09         -2.09         0         %100           33         M19         X         0         0         0         %100           34         M19         Z         -1.17         -1.17         0         %100           35         M20         X         0         0         0         %100           36         M20         Z         -1.085         -1.085         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
31         M18         X         0         0         0         %100           32         M18         Z         -2.09         -2.09         0         %100           33         M19         X         0         0         0         %100           34         M19         Z         -1.17         -1.17         0         %100           35         M20         X         0         0         0         %100           36         M20         Z         -1.085         -1.085         0         %100           37         M21         X         0         0         0         %100           39         M22         X         0         0         %100         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100				-			
32         M18         Z         -2.09         -2.09         0         %100           33         M19         X         0         0         0         %100           34         M19         Z         -1.17         -1.17         0         %100           35         M20         X         0         0         0         %100           36         M20         Z         -1.085         -1.085         0         %100           37         M21         X         0         0         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
33         M19         X         0         0         0         %100           34         M19         Z         -1.17         -1.17         0         %100           35         M20         X         0         0         0         %100           36         M20         Z         -1.085         -1.085         0         %100           37         M21         X         0         0         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
34         M19         Z         -1.17         -1.17         0         %100           35         M20         X         0         0         0         %100           36         M20         Z         -1.085         -1.085         0         %100           37         M21         X         0         0         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
35         M20         X         0         0         0         %100           36         M20         Z         -1.085         -1.085         0         %100           37         M21         X         0         0         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
36         M20         Z         -1.085         -1.085         0         %100           37         M21         X         0         0         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
37         M21         X         0         0         0         %100           38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100				-	-		
38         M21         Z         -1.085         -1.085         0         %100           39         M22         X         0         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
39         M22         X         0         0         %100           40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         %100							
40         M22         Z         -2.27         -2.27         0         %100           41         M23         X         0         0         0         %100							
41 M23 X 0 0 0 %100							
42 M23 Z -2.27 -2.27 0 %100					-		
	42	M23	Z	-2.27	-2.27	0	%100




## Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
43	M24	X	0	0	0	%100
44	M24	Z	-2.221	-2.221	0	%100
45	M25	Х	0	0	0	%100
46	M25	Z	-1.17	-1.17	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	-1.085	-1.085	0	%100
49	M27	Х	0	0	0	%100
50	M27	Z	-2.09	-2.09	0	%100
51	M28	Х	0	0	0	%100
52	M28	Z	-1.085	-1.085	0	%100
53	M29	Х	0	0	0	%100
54	M29	Z	-2.09	-2.09	0	%100
55	M30	Х	0	0	0	%100
56	M30	Z	-1.17	-1.17	0	%100
57	M31	Х	0	0	0	%100
58	M31	Z	-1.085	-1.085	0	%100
59	M32	Х	0	0	0	%100
60	M32	Z	-1.085	-1.085	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	-2.27	-2.27	0	%100
63	M34	Х	0	0	0	%100
64	M34	Z	-2.27	-2.27	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	-2.221	-2.221	0	%100
67	M36	Х	0	0	0	%100
68	M36	Z	-1.17	-1.17	0	%100
69	MP4A	Х	0	0	0	%100
70	MP4A	Z	-2.905	-2.905	0	%100
71	MP3A	Х	0	0	0	%100
72	MP3A	Z	-2.905	-2.905	0	%100
73	MP2A	Х	0	0	0	%100
74	MP2A	Z	-2.905	-2.905	0	%100
75	MP1A	Х	0	0	0	%100
76	MP1A	Z	-2.905	-2.905	0	%100
77	EQUIP	Х	0	0	0	%100
78	EQUIP	Z	-3.612	-3.612	0	%100
79	M51	Х	0	0	0	%100
80	M51	Z	-3.612	-3.612	0	%100
81	M55A	Х	0	0	0	%100
82	M55A	Z	717	717	0	%100

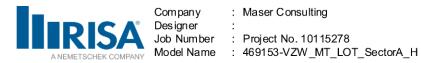

# Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	X	1.012	1.012	0	%100
2	M1	Z	-1.753	-1.753	0	%100
3	M3	X	1.012	1.012	0	%100
4	M3	Z	-1.753	-1.753	0	%100
5	M5	X	.033	.033	0	%100
6	M5	Z	058	058	0	%100
7	M6	X	.497	.497	0	%100
8	M6	Z	862	862	0	%100



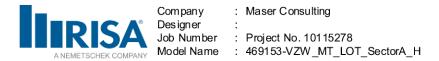
## Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
9	Moniber Laber	X	1.205	1.205	0	%100
10	M7	Z	-2.087	-2.087	0	%100
11	M8	X	.005	.005	0	%100
12	M8	Z	009	009	0	%100
13	M9	X	.519	.519	0	%100
14	M9	Z	899	899	0	%100
15	M10	X	1.205	1.205	0	%100
16	M10	Z	-2.087	-2.087	0	%100
17	M10	X	.09	.09	0	%100
18	M11	Z	157	157	0	%100
19	M11 M12	X	1.348	1.348	0	%100
20		Z	-2.335	-2.335	0	%100
20	M12	X				
21	M13	Z	.09 157	.09	0	%100 %100
	M13			157		
23	M14	X Z	1.348	1.348	0	%100
24	M14		-2.335	-2.335	0	%100
25	M15	X	.743	.743	0	%100
26	M15	Z	-1.287	-1.287	0	%100
27	M16	X	1.229	1.229	0	%100
28	M16	Z	-2.128	-2.128	0	%100
29	M17	X	.743	.743	0	%100
30	M17	Z	-1.287	-1.287	0	%100
31	M18	X	1.229	1.229	0	%100
32	M18	Z	-2.128	-2.128	0	%100
33	M19	X	.775	.775	0	%100
34	M19	Z	-1.342	-1.342	0	%100
35	M20	X	.743	.743	0	%100
36	M20	Z	-1.287	-1.287	0	%100
37	M21	X	.743	.743	0	%100
38	M21	Z	-1.287	-1.287	0	%100
39	M22	X	1.135	1.135	0	%100
40	M22	Z	-1.966	-1.966	0	%100
41	M23	X	1.135	1.135	0	%100
42	M23	Z	-1.966	-1.966	0	%100
43	M24	X	1.111	1.111	0	%100
44	M24	Z	-1.924	-1.924	0	%100
45	M25	X	.775	.775	0	%100
46	M25	Z	-1.342	-1.342	0	%100
47	M26	X	.743	.743	0	%100
48	M26	Z	-1.287	-1.287	0	%100
49	M27	Х	.865	.865	0	%100
50	M27	Z	-1.498	-1.498	0	%100
51	M28	Х	.743	.743	0	%100
52	M28	Z	-1.287	-1.287	0	%100
53	M29	Х	.865	.865	0	%100
54	M29	Z	-1.498	-1.498	0	%100
55	M30	Х	.775	.775	0	%100
56	M30	Z	-1.342	-1.342	0	%100
57	M31	Х	.743	.743	0	%100
58	M31	Z	-1.287	-1.287	0	%100
59	M32	X	.743	.743	0	%100
60	M32	Z	-1.287	-1.287	0	%100
	-3D Version 17 0 4					dl Page 72




## Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
61	M33	Х	1.135	1.135	0	%100
62	M33	Z	-1.966	-1.966	0	%100
63	M34	Х	1.135	1.135	0	%100
64	M34	Z	-1.966	-1.966	0	%100
65	M35	Х	1.111	1.111	0	%100
66	M35	Z	-1.924	-1.924	0	%100
67	M36	Х	.775	.775	0	%100
68	M36	Z	-1.342	-1.342	0	%100
69	MP4A	Х	1.452	1.452	0	%100
70	MP4A	Z	-2.515	-2.515	0	%100
71	MP3A	Х	1.452	1.452	0	%100
72	MP3A	Z	-2.515	-2.515	0	%100
73	MP2A	Х	1.452	1.452	0	%100
74	MP2A	Z	-2.515	-2.515	0	%100
75	MP1A	Х	1.452	1.452	0	%100
76	MP1A	Z	-2.515	-2.515	0	%100
77	EQUIP	Х	1.806	1.806	0	%100
78	EQUIP	Z	-3.128	-3.128	0	%100
79	M51	Х	1.806	1.806	0	%100
80	M51	Z	-3.128	-3.128	0	%100
81	M55A	Х	2.1e-5	2.1e-5	0	%100
82	M55A	Z	-3.6e-5	-3.6e-5	0	%100

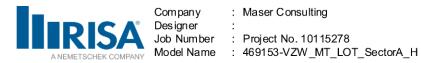

# Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	.584	.584	0	%100
2	M1	Z	337	337	0	%100
3	M3	Х	.584	.584	0	%100
4	M3	Z	337	337	0	%100
5	M5	Х	.067	.067	0	%100
6	M5	Z	038	038	0	%100
7	M6	Х	.871	.871	0	%100
8	M6	Z	503	503	0	%100
9	M7	Х	.696	.696	0	%100
10	M7	Z	402	402	0	%100
11	M8	Х	.158	.158	0	%100
12	M8	Z	091	091	0	%100
13	M9	Х	.821	.821	0	%100
14	M9	Z	474	474	0	%100
15	M10	Х	.696	.696	0	%100
16	M10	Z	402	402	0	%100
17	M11	Х	.181	.181	0	%100
18	M11	Z	104	104	0	%100
19	M12	Х	2.359	2.359	0	%100
20	M12	Z	-1.362	-1.362	0	%100
21	M13	Х	.181	.181	0	%100
22	M13	Z	104	104	0	%100
23	M14	Х	2.359	2.359	0	%100
24	M14	Z	-1.362	-1.362	0	%100
25	M15	Х	1.981	1.981	0	%100
26	M15	Z	-1.144	-1.144	0	%100



## Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

		Discution				
07	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%]
27	M16	X Z	2.135	2.135	0	%100
28	M16		-1.233	-1.233	0	%100
29	M17	X	1.981	1.981	0	%100
30	M17	Z	-1.144	-1.144	0	%100
31	M18	X	2.135	2.135	0	%100
32	M18	Z	-1.233	-1.233	0	%100
33	M19	X	2.001	2.001	0	%100
34	M19	Z	-1.155	-1.155	0	%100
35	M20	X	1.981	1.981	0	%100
36	M20	Z	-1.144	-1.144	0	%100
37	M21	X	1.981	1.981	0	%100
38	M21	Z	-1.144	-1.144	0	%100
39	M22	X	1.966	1.966	0	%100
40	M22	Z	-1.135	-1.135	0	%100
41	M23	X	1.966	1.966	0	%100
42	M23	Z	-1.135	-1.135	0	%100
43	M24	X	1.924	1.924	0	%100
44	M24	Z	-1.111	-1.111	0	%100
45	M25	Х	2.001	2.001	0	%100
46	M25	Z	-1.155	-1.155	0	%100
47	M26	Х	1.981	1.981	0	%100
48	M26	Z	-1.144	-1.144	0	%100
49	M27	Х	1.505	1.505	0	%100
50	M27	Z	869	869	0	%100
51	M28	×	1.981	1.981	0	%100
52	M28	Z	-1.144	-1.144	0	%100
53	M29	×	1.505	1.505	0	%100
54	M29	Z	869	869	0	%100
55	M30	X	2.001	2.001	0	%100
56	M30	Z	-1.155	-1.155	0	%100
57	M31	×	1.981	1.981	0	%100
58	M31	Z	-1.144	-1.144	0	%100
59	M32	X	1.981	1.981	0	%100
60	M32	Z	-1.144	-1.144	0	%100
61	M33	X	1.966	1.966	0	%100
62	M33	Z	-1.135	-1.135	0	%100
63	M33	X	1.966	1.966	0	%100
64	M34	Z	-1.135	-1.135	0	%100
65	M35	X	1.924	1.924		<u>%100</u> %100
66	M35	Z	-1.111	-1.111	0	<u>%100</u> %100
67	M36	X	2.001	2.001	0	%100
68	M36	Z	-1.155	-1.155	0	%100
69	MP4A	X	2.515	2.515	0	%100
70	MP4A	Z	-1.452	-1.452	0	%100
71	MP3A	X	2.515	2.515	0	%100
72	MP3A	Z	-1.452	-1.452	0	%100
73	MP2A	X	2.515	2.515	0	%100
74	MP2A	Z	-1.452	-1.452	0	%100
75	MP1A	X	2.515	2.515	0	%100
76	MP1A	Z	-1.452	-1.452	0	%100
77	EQUIP	X	3.128	3.128	0	%100
78	EQUIP	Z	-1.806	-1.806	0	%100

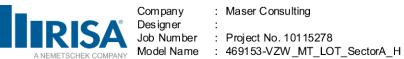



#### Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
79	M51	Х	3.128	3.128	0	%100
80	M51	Z	-1.806	-1.806	0	%100
81	M55A	Х	.637	.637	0	%100
82	M55A	Z	368	368	0	%100

#### Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

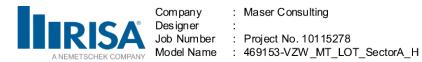
	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	.546	.546	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	.546	.546	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	X	.708	.708	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	.446	.446	0	%100
14	M9	Z	0	0	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	Х	1.48	1.48	0	%100
18	M11	Z	0	0	0	%100
19	M12	Х	1.48	1.48	0	%100
20	M12	Z	0	0	0	%100
21	M13	Х	1.48	1.48	0	%100
22	M13	Z	0	0	0	%100
23	M14	Х	1.48	1.48	0	%100
24	M14	Z	0	0	0	%100
25	M15	Х	2.689	2.689	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	2.106	2.106	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	2.689	2.689	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	2.106	2.106	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	2.691	2.691	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	2.689	2.689	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	2.689	2.689	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	2.27	2.27	0	%100
40	M22	Z	0	0	0	%100
41	M23	×	2.27	2.27	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	2.221	2.221	0	%100
44	M24	Z	0	0	0	%100




# Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
45	M25	Х	2.691	2.691	0	%100
46	M25	Z	0	0	0	%100
47	M26	Х	2.689	2.689	0	%100
48	M26	Z	0	0	0	%100
49	M27	Х	2.106	2.106	0	%100
50	M27	Z	0	0	0	%100
51	M28	Х	2.689	2.689	0	%100
52	M28	Z	0	0	0	%100
53	M29	Х	2.106	2.106	0	%100
54	M29	Z	0	0	0	%100
55	M30	Х	2.691	2.691	0	%100
56	M30	Z	0	0	0	%100
57	M31	Х	2.689	2.689	0	%100
58	M31	Z	0	0	0	%100
59	M32	Х	2.689	2.689	0	%100
60	M32	Z	0	0	0	%100
61	M33	Х	2.27	2.27	0	%100
62	M33	Z	0	0	0	%100
63	M34	Х	2.27	2.27	0	%100
64	M34	Z	0	0	0	%100
65	M35	Х	2.221	2.221	0	%100
66	M35	Z	0	0	0	%100
67	M36	Х	2.691	2.691	0	%100
68	M36	Z	0	0	0	%100
69	MP4A	Х	2.905	2.905	0	%100
70	MP4A	Z	0	0	0	%100
71	MP3A	Х	2.905	2.905	0	%100
72	MP3A	Z	0	0	0	%100
73	MP2A	Х	2.905	2.905	0	%100
74	MP2A	Z	0	0	0	%100
75	MP1A	Х	2.905	2.905	0	%100
76	MP1A	Z	0	0	0	%100
77	EQUIP	Х	3.612	3.612	0	%100
78	EQUIP	Z	0	0	0	%100
79	M51	X	3.612	3.612	0	%100
80	M51	Z	0	0	0	%100
81	M55A	X	2.188	2.188	0	%100
82	M55A	Z	0	0	0	%100

## Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

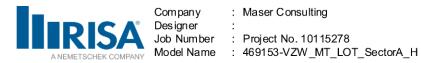

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	.584	.584	0	%100
2	M1	Z	.337	.337	0	%100
3	M3	Х	.584	.584	0	%100
4	M3	Z	.337	.337	0	%100
5	M5	Х	.871	.871	0	%100
6	M5	Z	.503	.503	0	%100
7	M6	Х	.067	.067	0	%100
8	M6	Z	.038	.038	0	%100
9	M7	X	.696	.696	0	%100
10	M7	Z	.402	.402	0	%100



# Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

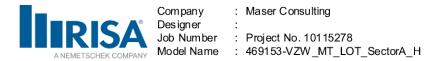
	Manshan Label	Disastian	Otart Maaritida []]b/ft		Otart La action fin 0/1	Final Location [in 0/1
11	Member Label M8	Direction	.919	.End Magnitude[lb/ft,F .919		End Location[in,%] %100
12	M8	X Z	.531	.531	0	%100
12	M9	X	.029	.029	0	
14	M9	Z	.029	.029	0	%100
14						%100
	M10	X Z	.696	.696	0	%100
16	M10		.402	.402	0	%100
17	<u>M11</u>	X	2.359	2.359	0	%100
18	M11	Z	1.362	1.362	0	%100
19	M12	X	.181	.181	0	%100
20	M12	Z	.104	.104	0	%100
21	M13	X	2.359	2.359	0	%100
22	M13	Z	1.362	1.362	0	%100
23	M14	X	.181	.181	0	%100
24	M14	Z	.104	.104	0	%100
25	M15	X	1.981	1.981	0	%100
26	M15	Z	1.144	1.144	0	%100
27	M16	X	1.505	1.505	0	%100
28	M16	Z	.869	.869	0	%100
29	M17	X	1.981	1.981	0	%100
30	M17	Z	1.144	1.144	0	%100
31	M18	X	1.505	1.505	0	%100
32	M18	Z	.869	.869	0	%100
33	M19	X	2.001	2.001	0	%100
34	M19	Z	1.155	1.155	0	%100
35	M20	X	1.981	1.981	0	%100
36	M20	Z	1.144	1.144	0	%100
37	M21	Х	1.981	1.981	0	%100
38	M21	Z	1.144	1.144	0	%100
39	M22	X	1.966	1.966	0	%100
40	M22	Z	1.135	1.135	0	%100
41	M23	Х	1.966	1.966	0	%100
42	M23	Z	1.135	1.135	0	%100
43	M24	Х	1.924	1.924	0	%100
44	M24	Z	1.111	1.111	0	%100
45	M25	Х	2.001	2.001	0	%100
46	M25	Z	1.155	1.155	0	%100
47	M26	X	1.981	1.981	0	%100
48	M26	Z	1.144	1.144	0	%100
49	M27	×	2.135	2.135	0	%100
50	M27	Z	1.233	1.233	0	%100
51	M28	×	1.981	1.981	0	%100
52	M28	Z	1.144	1.144	0	%100
53	M29	×	2.135	2.135	0	%100
54	M29	Z	1.233	1.233	0	%100
55	M30	X	2.001	2.001	0	<u>%100</u> %100
56	M30	Z	1.155	1.155	0	%100
57	M30 M31	X	1.981	1.981	0	%100
58	M31	Z	1.144	1.144	0	%100
59	M32	X	1.981	1.981	0	%100
60	M32	Z	1.144	1.144	0	<u>%100</u> %100
61	M33	X	1.144		0	<u>%100</u> %100
62		Z	1.135	1.966		
02	M33	۷.	1.130	1.135	0	%100
	00 \/					dl Page 77

RISA-3D Version 17.0.4 Page 77




# Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
63	M34	Х	1.966	1.966	0	%100
64	M34	Z	1.135	1.135	0	%100
65	M35	Х	1.924	1.924	0	%100
66	M35	Z	1.111	1.111	0	%100
67	M36	Х	2.001	2.001	0	%100
68	M36	Z	1.155	1.155	0	%100
69	MP4A	Х	2.515	2.515	0	%100
70	MP4A	Z	1.452	1.452	0	%100
71	MP3A	Х	2.515	2.515	0	%100
72	MP3A	Z	1.452	1.452	0	%100
73	MP2A	Х	2.515	2.515	0	%100
74	MP2A	Z	1.452	1.452	0	%100
75	MP1A	X	2.515	2.515	0	%100
76	MP1A	Z	1.452	1.452	0	%100
77	EQUIP	Х	3.128	3.128	0	%100
78	EQUIP	Z	1.806	1.806	0	%100
79	M51	Х	3.128	3.128	0	%100
80	M51	Z	1.806	1.806	0	%100
81	M55A	Х	2.515	2.515	0	%100
82	M55A	Z	1.452	1.452	0	%100

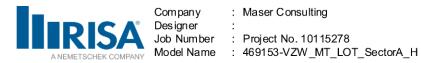

#### Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	1.012	1.012	0	%100
2	M1	Z	1.753	1.753	0	%100
3	M3	Х	1.012	1.012	0	%100
4	M3	Z	1.753	1.753	0	%100
5	M5	X	.497	.497	0	%100
6	M5	Z	.862	.862	0	%100
7	M6	Х	.033	.033	0	%100
8	M6	Z	.058	.058	0	%100
9	M7	Х	1.205	1.205	0	%100
10	M7	Z	2.087	2.087	0	%100
11	M8	Х	.445	.445	0	%100
12	M8	Z	.77	.77	0	%100
13	M9	Х	.062	.062	0	%100
14	M9	Z	.107	.107	0	%100
15	M10	Х	1.205	1.205	0	%100
16	M10	Z	2.087	2.087	0	%100
17	M11	Х	1.348	1.348	0	%100
18	M11	Z	2.335	2.335	0	%100
19	M12	Х	.09	.09	0	%100
20	M12	Z	.157	.157	0	%100
21	M13	X	1.348	1.348	0	%100
22	M13	Z	2.335	2.335	0	%100
23	M14	X	.09	.09	0	%100
24	M14	Z	.157	.157	0	%100
25	M15	Х	.743	.743	0	%100
26	M15	Z	1.287	1.287	0	%100
27	M16	Х	.865	.865	0	%100
28	M16	Z	1.498	1.498	0	%100



# Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location [in.%]	End Location[in,%]
29	M17	X	.743	.743	0	%100
30	M17	Z	1.287	1.287	0	%100
31	M18	x	.865	.865	0	%100
32	M18	Z	1.498	1.498	0	%100
33	M19	×	.775	.775	0	%100
34	M19	Z	1.342	1.342	0	%100
35	M20	×	.743	.743	0	%100
36	M20	Z	1.287	1.287	0	%100
37	M20	X	.743	.743	0	%100
38	M21	Z	1.287	1.287	0	%100
39	M22	X	1.135	1.135	0	%100
40	M22	Z	1.966	1.966	0	%100
40	M23	X	1.135	1.135	0	%100
42	M23	Z	1.966	1.966	0	%100
43	M23	X	1.111	1.111	0	%100
43	M24	Z	1.924	1.924	0	%100
44	M24 M25	X	.775	.775	0	%100 %100
45	M25	Z	1.342	1.342	0	<u>%100</u> %100
40	M25	X	.743	.743	0	<u>%100</u> %100
47	M26	Z	1.287	1.287	0	%100 %100
40				1.229		%100 %100
50	M27	X Z	1.229		0	
	M27		2.128	2.128		<u>%100</u>
51	M28	X	.743	.743	0	%100
52	M28	Z	1.287	1.287	0	%100
53	M29	X	1.229	1.229	0	%100
54	M29	Z	2.128	2.128	0	%100
55	M30	X	.775	.775	0	%100
56	M30	Z	1.342	1.342	0	%100
57	M31	X	.743	.743	0	%100
58	M31	Z	1.287	1.287	0	%100
59	M32	X	.743	.743	0	%100
60	M32	Z	1.287	1.287	0	%100
61	M33	X	1.135	1.135	0	%100
62	M33	Z	1.966	1.966	0	%100
63	M34	X	1.135	1.135	0	%100
64	M34	Z	1.966	1.966	0	%100
65	M35	X	1.111	1.111	0	%100
66	M35	Z	1.924	1.924	0	%100
67	M36	X	.775	.775	0	%100
68	M36	Z	1.342	1.342	0	%100
69	MP4A	X	1.452	1.452	0	%100
70	MP4A	Z	2.515	2.515	0	%100
71	MP3A	X	1.452	1.452	0	%100
72	MP3A	Z	2.515	2.515	0	%100
73	MP2A	X	1.452	1.452	0	%100
74	MP2A	Z	2.515	2.515	0	%100
75	MP1A	X	1.452	1.452	0	%100
76	MP1A	Z	2.515	2.515	0	%100
77	EQUIP	Х	1.806	1.806	0	%100
78	EQUIP	Z	3.128	3.128	0	%100
79	M51	X	1.806	1.806	0	%100
80	M51	Z	3.128	3.128	0	%100
	-3D Version 17.0.4					dl Page 79

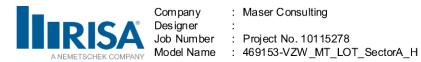



#### Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
81	M55A	Х	1.084	1.084	0	%100
82	M55A	Z	1.878	1.878	0	%100

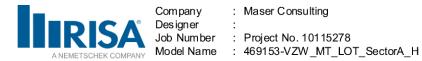
#### Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	2.699	2.699	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	2.699	2.699	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	.526	.526	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	.526	.526	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	3.213	3.213	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	.364	.364	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	.626	.626	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	3.213	3.213	0	%100
17	M11	X	0	0	0	%100
18	M11	Z	1.425	1.425	0	%100
19	M12	X	0	0	0	%100
20	M12	Z	1.425	1.425	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	1.425	1.425	0	%100
23	M14	X	0	0	0	%100
24	M14	Z	1.425	1.425	0	%100
25	M15	X	0	0	0	%100
26	M15	Z	1.085	1.085	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	2.09	2.09	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	1.085	1.085	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	2.09	2.09	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	1.17	1.17	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	1.085	1.085	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	1.085	1.085	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	2.27	2.27	0	%100
41	M23	Х	0	0	0	%100
42	M23	Z	2.27	2.27	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	2.221	2.221	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	1.17	1.17	0	%100




# Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
47	M26	Х	0	0	0	%100
48	M26	Z	1.085	1.085	0	%100
49	M27	Х	0	0	0	%100
50	M27	Z	2.09	2.09	0	%100
51	M28	Х	0	0	0	%100
52	M28	Z	1.085	1.085	0	%100
53	M29	Х	0	0	0	%100
54	M29	Z	2.09	2.09	0	%100
55	M30	Х	0	0	0	%100
56	M30	Z	1.17	1.17	0	%100
57	M31	Х	0	0	0	%100
58	M31	Z	1.085	1.085	0	%100
59	M32	Х	0	0	0	%100
60	M32	Z	1.085	1.085	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	2.27	2.27	0	%100
63	M34	Х	0	0	0	%100
64	M34	Z	2.27	2.27	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	2.221	2.221	0	%100
67	M36	Х	0	0	0	%100
68	M36	Z	1.17	1.17	0	%100
69	MP4A	Х	0	0	0	%100
70	MP4A	Z	2.905	2.905	0	%100
71	MP3A	Х	0	0	0	%100
72	MP3A	Z	2.905	2.905	0	%100
73	MP2A	Х	0	0	0	%100
74	MP2A	Z	2.905	2.905	0	%100
75	MP1A	Х	0	0	0	%100
76	MP1A	Z	2.905	2.905	0	%100
77	EQUIP	Х	0	0	0	%100
78	EQUIP	Z	3.612	3.612	0	%100
79	M51	Х	0	0	0	%100
80	M51	Z	3.612	3.612	0	%100
81	M55A	Х	0	0	0	%100
82	M55A	Z	.717	.717	0	%100

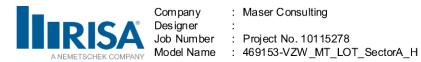

# Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	-1.012	-1.012	0	%100
2	M1	Z	1.753	1.753	0	%100
3	M3	Х	-1.012	-1.012	0	%100
4	M3	Z	1.753	1.753	0	%100
5	M5	Х	033	033	0	%100
6	M5	Z	.058	.058	0	%100
7	M6	Х	497	497	0	%100
8	M6	Z	.862	.862	0	%100
9	M7	Х	-1.205	-1.205	0	%100
10	M7	Z	2.087	2.087	0	%100
11	M8	Х	005	005	0	%100
12	M8	Z	.009	.009	0	%100



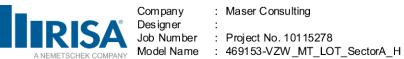
# Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
13	M9	X	519	519		%100
14	M9	Z	.899	.899	0	%100
15	M10	X	-1.205	-1.205	0	%100
16	M10	Z	2.087	2.087	0	%100
17	M10	X	09	09	0	%100
18	M11	Z	.157	.157	0	%100
19	M12	X	-1.348	-1.348	0	%100
20	M12	Z	2.335	2.335	0	%100
21	M13	X	09	09	0	%100
22	M13	Z	.157	.157	0	%100
23	M14	X	-1.348	-1.348	0	%100
24	M14	Z	2.335	2.335	0	%100
25	M15	X	743	743	0	%100
26	M15	Z	1.287	1.287	0	%100
27	M16	X	-1.229	-1.229	0	%100
28	M16	Z	2.128	2.128	0	%100
29	M17	X	743	743	0	%100
30	M17	Z	1.287	1.287	0	%100
31	M18	X	-1.229	-1.229	0	%100
32	M18	Z	2.128	2.128	0	%100
33	M19	X	775	775	0	%100
34	M19	Z	1.342	1.342	0	%100
35	M20	Х	743	743	0	%100
36	M20	Z	1.287	1.287	0	%100
37	M21	Х	743	743	0	%100
38	M21	Z	1.287	1.287	0	%100
39	M22	X	-1.135	-1.135	0	%100
40	M22	Z	1.966	1.966	0	%100
41	M23	×	-1.135	-1.135	0	%100
42	M23	Z	1.966	1.966	0	%100
43	M24	×	-1.111	-1.111	0	%100
44	M24	Z	1.924	1.924	0	%100
45	M25	X	775	775	0	%100
46	M25	Z	1.342	1.342	0	%100
40	M25	X	743	743	0	%100
48	M26	Z	1.287	1.287	0	%100
40		X			0	%100
50	M27		865 1.498	865		
	M27	Z		1.498	0	<u>%100</u>
51	M28	X	743	743	0	%100
52	M28	Z	1.287	1.287	0	%100
53	M29	X	865	865	0	%100
54	M29	Z	1.498	1.498	0	%100
55	M30	X	775	775	0	%100
56	M30	Z	1.342	1.342	0	%100
57	M31	X	743	743	0	%100
58	M31	Z	1.287	1.287	0	%100
59	M32	X	743	743	0	%100
60	M32	Z	1.287	1.287	0	%100
61	M33	X	-1.135	-1.135	0	%100
62	M33	Z	1.966	1.966	0	%100
63	M34	X	-1.135	-1.135	0	%100
64	M34	Z	1.966	1.966	0	%100
	3D Version 17 0 4	P1 1 1 1 1				dl Page 82




#### Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

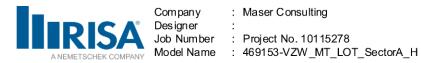
	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
65	M35	Х	-1.111	-1.111	0	%100
66	M35	Z	1.924	1.924	0	%100
67	M36	Х	775	775	0	%100
68	M36	Z	1.342	1.342	0	%100
69	MP4A	Х	-1.452	-1.452	0	%100
70	MP4A	Z	2.515	2.515	0	%100
71	MP3A	Х	-1.452	-1.452	0	%100
72	MP3A	Z	2.515	2.515	0	%100
73	MP2A	Х	-1.452	-1.452	0	%100
74	MP2A	Z	2.515	2.515	0	%100
75	MP1A	Х	-1.452	-1.452	0	%100
76	MP1A	Z	2.515	2.515	0	%100
77	EQUIP	Х	-1.806	-1.806	0	%100
78	EQUIP	Z	3.128	3.128	0	%100
79	M51	Х	-1.806	-1.806	0	%100
80	M51	Z	3.128	3.128	0	%100
81	M55A	Х	-2.1e-5	-2.1e-5	0	%100
82	M55A	Z	3.6e-5	3.6e-5	0	%100


# Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	M1		584	584	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	M1	Z	.337	.337	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	M3		584	584	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	M3	Z	.337	.337	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	M5		067	067	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	M5	Z	.038	.038	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	M6		871	871	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	M6	Z	.503	.503	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	M7		696	696	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	M7	Z	.402	.402	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	M8		158	158		%100
14M9Z.474.4740%10015M10X696.6960%10016M10Z.402.4020%10017M11X1811810%10018M11Z.104.1040%10019M12X-2.359-2.3590%10020M12Z1.3621.3620%10021M13X1811810%10023M14X-2.359-2.3590%10024M14Z1.3621.3620%10025M15X-1.981-1.9810%10026M15Z1.1441.1440%10027M16X-2.135-2.1350%10028M16Z1.2331.2330%10029M17X-1.981-1.9810%100	12	M8		.091	.091	0	%100
15         M10         X        696        696         0         %100           16         M10         Z         .402         .402         0         %100           17         M11         X        181        181         0         %100           18         M11         Z         .104         .104         0         %100           19         M12         X         -2.359         -2.359         0         %100           20         M12         Z         1.362         1.362         0         %100           21         M13         X        181        181         0         %100           23         M14         X         -2.359         -2.359         0         %100           23         M14         X         -2.359         -2.359         0         %100           24         M14         Z         1.362         1.362         0         %100           25         M15         X         -1.981         -1.981         0         %100           26         M15         Z         1.144         1.144         0         %100           28         M16 <td>13</td> <td>M9</td> <td>X</td> <td>821</td> <td>821</td> <td>0</td> <td>%100</td>	13	M9	X	821	821	0	%100
16         M10         Z         .402         .402         0         %100           17         M11         X        181        181         0         %100           18         M11         Z         .104         .104         0         %100           19         M12         X         -2.359         -2.359         0         %100           20         M12         Z         1.362         1.362         0         %100           21         M13         X        181        181         0         %100           22         M13         Z         .104         .104         0         %100           23         M14         X         -2.359         -2.359         0         %100           24         M14         Z         1.362         0         %100           25         M15         X         -1.981         -1.981         0         %100           26         M15         Z         1.144         1.144         0         %100           27         M16         X         -2.135         -2.135         0         %100           28         M16         Z	14	M9	Z	.474	.474	0	%100
17M11X1811810%10018M11Z.104.1040%10019M12X-2.359-2.3590%10020M12Z1.3621.3620%10021M13X1811810%10022M13Z.104.1040%10023M14X-2.359-2.3590%10024M14Z1.3621.3620%10025M15X-1.981-1.9810%10026M15Z1.1441.1440%10027M16X-2.135-2.1350%10028M16Z1.2331.2330%10029M17X-1.981-1.9810%100	15	M10		696	696	0	%100
18M11Z.104.1040%10019M12X-2.359-2.3590%10020M12Z1.3621.3620%10021M13X1811810%10022M13Z.104.1040%10023M14X-2.359-2.3590%10024M14Z1.3621.3620%10025M15X-1.981-1.9810%10026M15Z1.1441.1440%10027M16X-2.135-2.1350%10028M16Z1.2331.2330%10029M17X-1.981-1.9810%100	16	M10		.402	.402	0	%100
19M12X-2.359-2.3590%10020M12Z1.3621.3620%10021M13X1811810%10022M13Z.104.1040%10023M14X-2.359-2.3590%10024M14Z1.3621.3620%10025M15X-1.981-1.9810%10026M15Z1.1441.1440%10027M16X-2.135-2.1350%10028M16Z1.2331.2330%10029M17X-1.981-1.9810%100	17	M11		181	181	0	%100
20M12Z1.3621.3620%10021M13X1811810%10022M13Z.104.1040%10023M14X-2.359-2.3590%10024M14Z1.3621.3620%10025M15X-1.981-1.9810%10026M15Z1.1441.1440%10027M16X-2.135-2.1350%10028M16Z1.2331.2330%10029M17X-1.981-1.9810%100	18	M11		.104	.104	0	%100
21         M13         X        181        181         0         %100           22         M13         Z         .104         .104         0         %100           23         M14         X         -2.359         -2.359         0         %100           24         M14         Z         1.362         1.362         0         %100           25         M15         X         -1.981         -1.981         0         %100           26         M15         Z         1.144         1.144         0         %100           27         M16         X         -2.135         -2.135         0         %100           28         M16         Z         1.233         1.233         0         %100           29         M17         X         -1.981         -1.981         0         %100				-2.359			%100
22         M13         Z         .104         .104         0         %100           23         M14         X         -2.359         -2.359         0         %100           24         M14         Z         1.362         1.362         0         %100           25         M15         X         -1.981         -1.981         0         %100           26         M15         Z         1.144         1.144         0         %100           27         M16         X         -2.135         -2.135         0         %100           28         M16         Z         1.233         1.233         0         %100           29         M17         X         -1.981         -1.981         0         %100	20	M12		1.362	1.362	0	%100
23         M14         X         -2.359         -2.359         0         %100           24         M14         Z         1.362         1.362         0         %100           25         M15         X         -1.981         -1.981         0         %100           26         M15         Z         1.144         1.144         0         %100           27         M16         X         -2.135         -2.135         0         %100           28         M16         Z         1.233         1.233         0         %100           29         M17         X         -1.981         -1.981         0         %100	21	M13		181	181	0	%100
24         M14         Z         1.362         1.362         0         %100           25         M15         X         -1.981         -1.981         0         %100           26         M15         Z         1.144         1.144         0         %100           27         M16         X         -2.135         -2.135         0         %100           28         M16         Z         1.233         1.233         0         %100           29         M17         X         -1.981         -1.981         0         %100	22	M13	Z	.104	.104	0	%100
25M15X-1.981-1.9810%10026M15Z1.1441.1440%10027M16X-2.135-2.1350%10028M16Z1.2331.2330%10029M17X-1.981-1.9810%100	23	M14		-2.359	-2.359	0	%100
26M15Z1.1441.1440%10027M16X-2.135-2.1350%10028M16Z1.2331.2330%10029M17X-1.981-1.9810%100	24	M14	Z	1.362	1.362	0	%100
27         M16         X         -2.135         -2.135         0         %100           28         M16         Z         1.233         1.233         0         %100           29         M17         X         -1.981         -1.981         0         %100		M15		-1.981		0	%100
28         M16         Z         1.233         1.233         0         %100           29         M17         X         -1.981         -1.981         0         %100		M15		1.144	1.144		%100
29 M17 X -1.981 -1.981 0 %100	27	M16		-2.135	-2.135	0	%100
	28	M16	Z	1.233	1.233	0	%100
20 M17 7 1 1 4 4 1 1 4 4 0 9/ 400		M17		-1.981	-1.981		%100
30 $1017$ Z $1.144$ $1.144$ 0 %100	30	M17	Z	1.144	1.144	0	%100



# Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

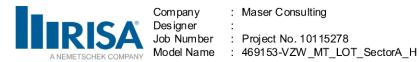

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location [in.%]	End Location[in,%]
31	M18	X	-2.135	-2.135	0	%100
32	M18	Z	1.233	1.233	0	%100
33	M19	Х	-2.001	-2.001	0	%100
34	M19	Z	1.155	1.155	0	%100
35	M20	×	-1.981	-1.981	0	%100
36	M20	Z	1.144	1.144	0	%100
37	M21	Х	-1.981	-1.981	0	%100
38	M21	Z	1.144	1.144	0	%100
39	M22	Х	-1.966	-1.966	0	%100
40	M22	Z	1.135	1.135	0	%100
41	M23	Х	-1.966	-1.966	0	%100
42	M23	Z	1.135	1.135	0	%100
43	M24	X	-1.924	-1.924	0	%100
44	M24	Z	1.111	1.111	0	%100
45	M25	Х	-2.001	-2.001	0	%100
46	M25	Z	1.155	1.155	0	%100
47	M26	X	-1.981	-1.981	0	%100
48	M26	Z	1.144	1.144	0	%100
49	M27	Х	-1.505	-1.505	0	%100
50	M27	Z	.869	.869	0	%100
51	M28	Х	-1.981	-1.981	0	%100
52	M28	Z	1.144	1.144	0	%100
53	M29	Х	-1.505	-1.505	0	%100
54	M29	Z	.869	.869	0	%100
55	M30	Х	-2.001	-2.001	0	%100
56	M30	Z	1.155	1.155	0	%100
57	M31	Х	-1.981	-1.981	0	%100
58	M31	Z	1.144	1.144	0	%100
59	M32	X	-1.981	-1.981	0	%100
60	M32	Z	1.144	1.144	0	%100
61	M33	X	-1.966	-1.966	0	%100
62	M33	Z	1.135	1.135	0	%100
63	M34	X	-1.966	-1.966	0	%100
64	M34	Z	1.135	1.135	0	%100
65	M35	X	-1.924	-1.924	0	%100
66	M35	Z	1.111	1.111	0	%100
67	M36	Х	-2.001	-2.001	0	%100
68	M36	Z	1.155	1.155	0	%100
69	MP4A	Х	-2.515	-2.515	0	%100
70	MP4A	Z	1.452	1.452	0	%100
71	MP3A	X	-2.515	-2.515	0	%100
72	MP3A	Z	1.452	1.452	0	%100
73	MP2A	X	-2.515	-2.515	0	%100
74	MP2A	Z	1.452	1.452	0	%100
75	MP1A	X	-2.515	-2.515	0	%100
76	MP1A	Z	1.452	1.452	0	%100
77	EQUIP	X	-3.128	-3.128	0	%100
78	EQUIP	Z	1.806	1.806	0	%100
79	M51	X	-3.128	-3.128	0	%100
80	M51	Z	1.806	1.806	0	%100
81	M55A	X	637	637	0	%100
82	M55A	Z	.368	.368	0	%100
	3D Version 17.0.4			\RISA\/69153_\/7\/		Al Page 84



#### Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

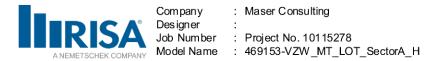
1	Member Label M1	Direction X	Start Magnitude[lb/ft, 0	End Magnitude[lb/ft,F 0	. Start Location[in,%] 0	End Location[in,% %100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	546	546	0	%100
6	M5	Z	0	0	0	%100
7	M6	X			0	%100
8		Z	546	546	0	
	M6		0	0	-	%100
9	M7	X Z	0	0	0	%100
10	M7		0	0	0	%100
11	<u>M8</u>	X	708	708	0	%100
12	<u>M8</u>	Z	0	0	0	%100
13	M9	X	446	446	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	-1.48	-1.48	0	%100
18	M11	Z	0	0	0	%100
19	M12	X	-1.48	-1.48	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	-1.48	-1.48	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	-1.48	-1.48	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	-2.689	-2.689	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	-2.106	-2.106	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	-2.689	-2.689	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	-2.106	-2.106	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	-2.691	-2.691	0	%100
34	M19	Z	0	0	0	%100
35	M20	Х	-2.689	-2.689	0	%100
36	M20	Z	0	0	0	%100
37	M21	Х	-2.689	-2.689	0	%100
38	M21	Z	0	0	0	%100
39	M22	Х	-2.27	-2.27	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	-2.27	-2.27	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	-2.221	-2.221	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	-2.691	-2.691	0	%100
46	M25	Z	0	0	0	%100
47	M26	×	-2.689	-2.689	0	%100
48	M26	Z	0	0	0	%100
49	M20	X	-2.106	-2.106	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	-2.689	-2.689	0	%100
52	M28	Z	0	-2.009	0	%100
52	IVIZO	2	0	U	U	70100

RISA-3D Version 17.0.4 Page 85




# Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
53	M29	Х	-2.106	-2.106	0	%100
54	M29	Z	0	0	0	%100
55	M30	Х	-2.691	-2.691	0	%100
56	M30	Z	0	0	0	%100
57	M31	Х	-2.689	-2.689	0	%100
58	M31	Z	0	0	0	%100
59	M32	Х	-2.689	-2.689	0	%100
60	M32	Z	0	0	0	%100
61	M33	Х	-2.27	-2.27	0	%100
62	M33	Z	0	0	0	%100
63	M34	Х	-2.27	-2.27	0	%100
64	M34	Z	0	0	0	%100
65	M35	Х	-2.221	-2.221	0	%100
66	M35	Z	0	0	0	%100
67	M36	Х	-2.691	-2.691	0	%100
68	M36	Z	0	0	0	%100
69	MP4A	Х	-2.905	-2.905	0	%100
70	MP4A	Z	0	0	0	%100
71	MP3A	Х	-2.905	-2.905	0	%100
72	MP3A	Z	0	0	0	%100
73	MP2A	Х	-2.905	-2.905	0	%100
74	MP2A	Z	0	0	0	%100
75	MP1A	Х	-2.905	-2.905	0	%100
76	MP1A	Z	0	0	0	%100
77	EQUIP	Х	-3.612	-3.612	0	%100
78	EQUIP	Z	0	0	0	%100
79	M51	Х	-3.612	-3.612	0	%100
80	M51	Z	0	0	0	%100
81	M55A	Х	-2.188	-2.188	0	%100
82	M55A	Z	0	0	0	%100

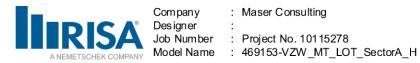

#### Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	584	584	0	%100
2	M1	Z	337	337	0	%100
3	M3	Х	584	584	0	%100
4	M3	Z	337	337	0	%100
5	M5	X	871	871	0	%100
6	M5	Z	503	503	0	%100
7	M6	Х	067	067	0	%100
8	M6	Z	038	038	0	%100
9	M7	Х	696	696	0	%100
10	M7	Z	402	402	0	%100
11	M8	Х	919	919	0	%100
12	M8	Z	531	531	0	%100
13	M9	Х	029	029	0	%100
14	M9	Z	017	017	0	%100
15	M10	Х	696	696	0	%100
16	M10	Z	402	402	0	%100
17	M11	Х	-2.359	-2.359	0	%100
18	M11	Z	-1.362	-1.362	0	%100



# Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
19	Member Laber	X	181	181		%100
20	M12	Z	104	104	0	%100
20	M12	X	-2.359	-2.359	0	%100
22	M13	Z	-1.362	-1.362	0	%100
22	M13	X	-1.302		0	%100
				181		
24	M14	Z	104	104	0	%100
25	M15	X	-1.981	-1.981	0	%100
26	M15	Z	-1.144	-1.144	0	%100
27	M16	X	-1.505	-1.505	0	%100
28	M16	Z	869	869	0	%100
29	M17	X	-1.981	-1.981	0	%100
30	M17	Z	-1.144	-1.144	0	%100
31	M18	X	-1.505	-1.505	0	%100
32	M18	Z	869	869	0	%100
33	M19	Х	-2.001	-2.001	0	%100
34	M19	Z	-1.155	-1.155	0	%100
35	M20	X	-1.981	-1.981	0	%100
36	M20	Z	-1.144	-1.144	0	%100
37	M21	X	-1.981	-1.981	0	%100
38	M21	Z	-1.144	-1.144	0	%100
39	M22	X	-1.966	-1.966	0	%100
40	M22	Z	-1.135	-1.135	0	%100
41	M23	Х	-1.966	-1.966	0	%100
42	M23	Z	-1.135	-1.135	0	%100
43	M24	X	-1.924	-1.924	0	%100
44	M24	Z	-1.111	-1.111	0	%100
45	M25	x	-2.001	-2.001	0	%100
46	M25	Z	-1.155	-1.155	0	%100
47	M26	×	-1.981	-1.981	0	%100
48	M26	Z	-1.144	-1.144	0	%100
49	M27	×	-2.135	-2.135	0	%100
50	M27	Z	-1.233	-1.233	0	%100
51	M28	X	-1.981	-1.981	0	%100
52	M28	Z	-1.144	-1.144	0	%100
53	M20	X	-2.135	-2.135	0	%100
54	M29	Z	-1.233	-1.233	0	%100
55		X		-1.233	0	%100
	M30		-2.001			%100
56	M30	Z	-1.155	-1.155	0	
57	M31	X	-1.981	-1.981	0	%100
58	M31	Z	-1.144	-1.144	0	%100
59	M32	X	-1.981	-1.981	0	%100
60	M32	Z	-1.144	-1.144	0	%100
61	M33	X	-1.966	-1.966	0	%100
62	M33	Z	-1.135	-1.135	0	%100
63	M34	X	-1.966	-1.966	0	%100
64	M34	Z	-1.135	-1.135	0	%100
65	M35	X	-1.924	-1.924	0	%100
66	M35	Z	-1.111	-1.111	0	%100
67	M36	X	-2.001	-2.001	0	%100
68	M36	Z	-1.155	-1.155	0	%100
69	MP4A	X	-2.515	-2.515	0	%100
70	MP4A	Z	-1.452	-1.452	0	%100
	A-3D Version 17.0 /	<b>r</b> ) ) ) ) )				3dl Page 87

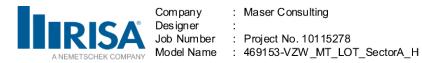



# Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
71	MP3A	Х	-2.515	-2.515	0	%100
72	MP3A	Z	-1.452	-1.452	0	%100
73	MP2A	Х	-2.515	-2.515	0	%100
74	MP2A	Z	-1.452	-1.452	0	%100
75	MP1A	Х	-2.515	-2.515	0	%100
76	MP1A	Z	-1.452	-1.452	0	%100
77	EQUIP	Х	-3.128	-3.128	0	%100
78	EQUIP	Z	-1.806	-1.806	0	%100
79	M51	Х	-3.128	-3.128	0	%100
80	M51	Z	-1.806	-1.806	0	%100
81	M55A	Х	-2.515	-2.515	0	%100
82	M55A	Z	-1.452	-1.452	0	%100

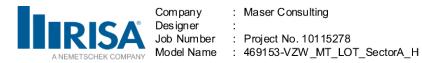
#### Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft E	Start Location[in %]	End Location[in,%]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Х			0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	M6	Z	058	058	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	M7	Х	-1.205	-1.205	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	M7	Z	-2.087	-2.087	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	M8	Х	445	445	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	M8	Z	77	77	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	M9	Х	062	062	0	%100
16         M10         Z         -2.087         -2.087         0         %100           17         M11         X         -1.348         -1.348         0         %100           18         M11         Z         -2.335         -2.335         0         %100           19         M12         X        09        09         0         %100           20         M12         Z        157        157         0         %100           21         M13         X         -1.348         -1.348         0         %100           21         M13         Z         -2.335         0         %100           22         M13         Z         -2.335         0         %100           23         M14         X        09        09         0         %100           24         M14         Z        157        157         0         %100           25         M15         X        743        743         0         %100           26         M15         Z         -1.287         -1.287         0         %100           28         M16         Z         -1.498 <td>14</td> <td>M9</td> <td>Z</td> <td>107</td> <td>107</td> <td>0</td> <td>%100</td>	14	M9	Z	107	107	0	%100
17         M11         X         -1.348         -1.348         0         %100           18         M11         Z         -2.335         -2.335         0         %100           19         M12         X        09        09         0         %100           20         M12         Z        157        157         0         %100           21         M13         X         -1.348         -1.348         0         %100           22         M13         Z         -2.335         -2.335         0         %100           23         M14         X        09         0         %100           24         M14         Z        157        157         0         %100           24         M14         Z        157        157         0         %100           25         M15         X        743        743         0         %100           26         M15         Z         -1.287         0         %100           27         M16         X        865        865         0         %100           28         M16         Z         -1.498		M10		-1.205	-1.205	0	%100
18         M11         Z         -2.335         -2.335         0         %100           19         M12         X        09        09         0         %100           20         M12         Z        157        157         0         %100           21         M13         X         -1.348         -1.348         0         %100           22         M13         Z         -2.335         -2.335         0         %100           23         M14         X        09        09         0         %100           24         M14         Z        157         0         %100           25         M15         X        743        743         0         %100           26         M15         Z         -1.287         -1.287         0         %100           27         M16         X        865        865         0         %100           28         M16         Z         -1.498         -1.498         0         %100           29         M17         X        743        743         0         %100           31         M18         Z	16	M10	Z	-2.087	-2.087	0	%100
19         M12         X        09        09         0         %100           20         M12         Z        157        157         0         %100           21         M13         X         -1.348         -1.348         0         %100           22         M13         Z         -2.335         -2.335         0         %100           23         M14         X        09        09         0         %100           24         M14         Z        157        157         0         %100           25         M15         X        743        743         0         %100           26         M15         Z         -1.287         0         %100           27         M16         X        865        865         0         %100           28         M16         Z         -1.498         -1.498         0         %100           29         M17         X        743        743         0         %100           31         M18         X        865        865         0         %100           32         M18         Z		M11		-1.348	-1.348	0	%100
20         M12         Z        157        157         0         %100           21         M13         X         -1.348         -1.348         0         %100           22         M13         Z         -2.335         -2.335         0         %100           23         M14         X        09        09         0         %100           24         M14         Z        157        157         0         %100           25         M15         X        743        743         0         %100           26         M15         Z         -1.287         0         %100           27         M16         X        865        865         0         %100           28         M16         Z         -1.498         -1.498         0         %100           29         M17         X        743        743         0         %100           30         M17         Z         -1.287         0         %100           31         M18         X        865        865         0         %100           32         M18         Z         -1.498						0	
21         M13         X         -1.348         -1.348         0         %100           22         M13         Z         -2.335         -2.335         0         %100           23         M14         X        09        09         0         %100           24         M14         Z        157        157         0         %100           25         M15         X        743        743         0         %100           26         M15         Z         -1.287         -1.287         0         %100           27         M16         X        865        865         0         %100           28         M16         Z         -1.498         -1.498         0         %100           29         M17         X        743        743         0         %100           30         M17         Z         -1.287         0         %100           31         M18         X        865        865         0         %100           32         M18         Z         -1.498         -1.498         0         %100           33         M19         X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
22M13Z-2.335-2.3350%10023M14X09090%10024M14Z1571570%10025M15X7437430%10026M15Z-1.2870%10027M16X8658650%10028M16Z-1.498-1.4980%10029M17X7437430%10030M17Z-1.2870%10031M18X8658650%10032M18Z-1.498-1.4980%10033M19X7757750%10034M19Z-1.342-1.3420%10035M20X7437430%100						0	
23         M14         X        09        09         0         %100           24         M14         Z        157        157         0         %100           25         M15         X        743        743         0         %100           26         M15         Z         -1.287         -1.287         0         %100           27         M16         X        865        865         0         %100           28         M16         Z         -1.498         -1.498         0         %100           29         M17         X        743        743         0         %100           30         M17         Z         -1.287         0         %100           31         M18         X        743        743         0         %100           32         M18         Z         -1.287         0         %100         %100           33         M19         X        775        775         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X							
24M14Z1571570%10025M15X7437430%10026M15Z-1.287-1.2870%10027M16X8658650%10028M16Z-1.498-1.4980%10029M17X7437430%10030M17Z-1.287-1.2870%10031M18X8658650%10032M18Z-1.498-1.4980%10033M19X7757750%10034M19Z-1.342-1.3420%10035M20X7437430%100						-	
25M15X7437430%10026M15Z-1.287-1.2870%10027M16X8658650%10028M16Z-1.498-1.4980%10029M17X7437430%10030M17Z-1.287-1.2870%10031M18X8658650%10032M18Z-1.498-1.4980%10033M19X7757750%10034M19Z-1.342-1.3420%10035M20X7437430%100							
26M15Z-1.287-1.2870%10027M16X8658650%10028M16Z-1.498-1.4980%10029M17X7437430%10030M17Z-1.2871.2870%10031M18X8658650%10032M18Z-1.498-1.4980%10033M19X7757750%10034M19Z-1.342-1.3420%10035M20X7437430%100							
27         M16         X        865        865         0         %100           28         M16         Z         -1.498         -1.498         0         %100           29         M17         X        743        743         0         %100           30         M17         Z         -1.287         -1.287         0         %100           31         M18         X        865        865         0         %100           32         M18         Z         -1.498         -1.498         0         %100           33         M19         X        865        865         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
28         M16         Z         -1.498         -1.498         0         %100           29         M17         X        743        743         0         %100           30         M17         Z         -1.287         -1.287         0         %100           31         M18         X        865        865         0         %100           32         M18         Z         -1.498         -1.498         0         %100           33         M19         X        775        775         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
29         M17         X        743        743         0         %100           30         M17         Z         -1.287         -1.287         0         %100           31         M18         X        865        865         0         %100           32         M18         Z         -1.498         -1.498         0         %100           33         M19         X        775        775         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
30         M17         Z         -1.287         -1.287         0         %100           31         M18         X        865        865         0         %100           32         M18         Z         -1.498         -1.498         0         %100           33         M19         X        775        775         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
31         M18         X        865        865         0         %100           32         M18         Z         -1.498         -1.498         0         %100           33         M19         X        775        775         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
32         M18         Z         -1.498         -1.498         0         %100           33         M19         X        775        775         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
33         M19         X        775        775         0         %100           34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
34         M19         Z         -1.342         -1.342         0         %100           35         M20         X        743        743         0         %100							
35 M20 X743743 0 %100							
36 M20 Z -1.287 -1.287 0 %100							
	36	M20	Z	-1.287	-1.287	0	%100




# Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
37	M21	Х	743	743	0	%100
38	M21	Z	-1.287	-1.287	0	%100
39	M22	Х	-1.135	-1.135	0	%100
40	M22	Z	-1.966	-1.966	0	%100
41	M23	X	-1.135	-1.135	0	%100
42	M23	Z	-1.966	-1.966	0	%100
43	M24	Х	-1.111	-1.111	0	%100
44	M24	Z	-1.924	-1.924	0	%100
45	M25	Х	775	775	0	%100
46	M25	Z	-1.342	-1.342	0	%100
47	M26	Х	743	743	0	%100
48	M26	Z	-1.287	-1.287	0	%100
49	M27	X	-1.229	-1.229	0	%100
50	M27	Z	-2.128	-2.128	0	%100
51	M28	Х	743	743	0	%100
52	M28	Z	-1.287	-1.287	0	%100
53	M29	Х	-1.229	-1.229	0	%100
54	M29	Z	-2.128	-2.128	0	%100
55	M30	Х	775	775	0	%100
56	M30	Z	-1.342	-1.342	0	%100
57	M31	X	743	743	0	%100
58	M31	Z	-1.287	-1.287	0	%100
59	M32	X	743	743	0	%100
60	M32	Z	-1.287	-1.287	0	%100
61	M33	X	-1.135	-1.135	0	%100
62	M33	Z	-1.966	-1.966	0	%100
63	M34	X	-1.135	-1.135	0	%100
64	M34	Z	-1.966	-1.966	0	%100
65	M35	X	-1.111	-1.111	0	%100
66	M35	Z	-1.924	-1.924	0	%100
67	M36	Х	775	775	0	%100
68	M36	Z	-1.342	-1.342	0	%100
69	MP4A	Х	-1.452	-1.452	0	%100
70	MP4A	Z	-2.515	-2.515	0	%100
71	MP3A	X	-1.452	-1.452	0	%100
72	MP3A	Z	-2.515	-2.515	0	%100
73	MP2A	×	-1.452	-1.452	0	%100
74	MP2A	Z	-2.515	-2.515	0	%100
75	MP1A	×	-1.452	-1.452	0	%100
76	MP1A	Z	-2.515	-2.515	0	%100
77	EQUIP	×	-1.806	-1.806	0	%100
78	EQUIP	Z	-3.128	-3.128	0	%100
79	M51	×	-1.806	-1.806	0	%100
80	M51	Z	-3.128	-3.128	0	%100
81	M55A	X	-1.084	-1.084	0	%100
82	M55A	Z	-1.878	-1.878	0	%100

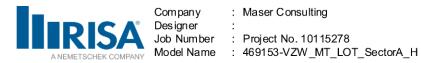

# Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

1         M1         X         0         0         %100           2         M1         7         -665         -665         0         %100		Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
2 M1 Z - 665 - 665 0 %100	1	M1	X	0	0	0	%100
2 .000 .000 0 70100	2	M1	Z	665	665	0	%100



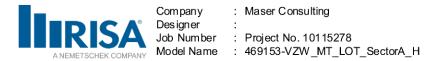
#### Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Mambarlabol	Direction	Stort Magnitude[lb/ft	End Magnituda[]b./ft E	Stort Logation [in 9/]	End Logation[in 9/1
3	Member Label M3	Direction X		.End Magnitude[lb/ft,F 0		End Location[in,%] %100
4	M3	Z	665	665	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	041	041	0	%100
7	M6	×	0	0	0	%100
8	M6	Z	041	041	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	638	638	0	%100
11	M8	X	0	050	0	<u>%100</u> %100
12	M8	Z	028	028	0	%100
13	M9	X	028	028	0	%100
14	M9	Z	049	049	0	%100
15	M10	X	049	049	0	<u>%100</u> %100
16	M10	Z	638	638	0	%100
17	M10 M11	X	030	030	0	%100
18	M11	Z	258	258	0	%100
19	M12	X			0	%100
20	M12	Z	0	0	0	
20	M12	X	258 0	258 0	0	<u>%100</u> %100
21	M13	Z			0	
22	M13		258 0	258 0		%100 %100
23		X Z	258	258	0	%100
	M14		258	258		
25	M15	X Z			0	%100
26	M15		088	088	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	35	35	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	088	088	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	35	35	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	118	118	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	088	088	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	088	088	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	382	382	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	382	382	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	402	402	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	118	118	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	088	088	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	35	35	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	088	088	0	%100
53	M29 M29	X Z	35	0 35	0	%100 %100
54						




#### Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
55	M30	Х	0	0	0	%100
56	M30	Z	118	118	0	%100
57	M31	Х	0	0	0	%100
58	M31	Z	088	088	0	%100
59	M32	Х	0	0	0	%100
60	M32	Z	088	088	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	382	382	0	%100
63	M34	Х	0	0	0	%100
64	M34	Z	382	382	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	402	402	0	%100
67	M36	Х	0	0	0	%100
68	M36	Z	118	118	0	%100
69	MP4A	Х	0	0	0	%100
70	MP4A	Z	527	527	0	%100
71	MP3A	Х	0	0	0	%100
72	MP3A	Z	527	527	0	%100
73	MP2A	Х	0	0	0	%100
74	MP2A	Z	527	527	0	%100
75	MP1A	Х	0	0	0	%100
76	MP1A	Z	527	527	0	%100
77	EQUIP	Х	0	0	0	%100
78	EQUIP	Z	828	828	0	%100
79	M51	Х	0	0	0	%100
80	M51	Z	828	828	0	%100
81	M55A	Х	0	0	0	%100
82	M55A	Z	13	13	0	%100

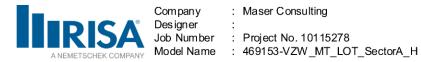

# Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	.249	.249	0	%100
2	M1	Z	432	432	0	%100
3	M3	Х	.249	.249	0	%100
4	M3	Z	432	432	0	%100
5	M5	Х	.003	.003	0	%100
6	M5	Z	004	004	0	%100
7	M6	Х	.039	.039	0	%100
8	M6	Z	067	067	0	%100
9	M7	Х	.239	.239	0	%100
10	M7	Z	414	414	0	%100
11	M8	Х	.0004	.0004	0	%100
12	M8	Z	000692	000692	0	%100
13	M9	Х	.04	.04	0	%100
14	M9	Z	07	07	0	%100
15	M10	Х	.239	.239	0	%100
16	M10	Z	414	414	0	%100
17	M11	Х	.016	.016	0	%100
18	M11	Z	028	028	0	%100
19	M12	Х	.244	.244	0	%100
20	M12	Z	423	423	0	%100



#### Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
21	M13	X	.016	.016	0	%100
22	M13	Z	028	028	0	%100
23	M14	×	.244	.244	0	%100
24	M14	Z	423	423	0	%100
25	M15	×	.116	.116	0	%100
26	M15	Z	201	201	0	%100
27	M16	×	.206	.206	0	%100
28	M16	Z	356	356	0	%100
29	M17	×	.116	.116	0	%100
30	M17	Z	201	201	0	%100
31	M18	X	.206	.206	0	%100
32	M18	Z	356	356	0	%100
33	M19	X	.127	.127	0	%100
34	M19	Z	221	221	0	%100
35	M20	X	.116	.116	0	%100
36	M20	Z	201	201	0	%100
37	M21	X	.116	.116	0	%100
38	M21	Z	201	201	0	%100
39	M22	X	.191	.191	0	%100
40	M22	Z	331	331	0	%100
41	M23	X	.191	.191	0	%100
42	M23	Z	331	331	0	%100
43	M24	X	.201	.201	0	%100
43	M24	Z	348	348	0	%100
44	M25	X	.127	.127	0	%100
45	M25	Z	221	221	0	%100
40	M25	X	.116	.116	0	%100
48	M26	Z	201	201	0	%100
40	M20	X	.145	.145	0	%100
50	M27	Z	251	251	0	%100
51	M28	X	.116	.116	0	%100
52	M28	Z	201	201	0	%100
53	M29	X	.145	.145	0	%100
54	M29	Z	251	251	0	%100
55	M30	X	.127	.127	0	%100
56	M30	Z	221	221	0	%100
57	M31	X	.116	.116	0	%100
58	M31	Z	201	201	0	%100
59	M31 M32	X	.116	.116	0	%100
60	M32	Z	201	201	0	%100
61	M33	X	.191	.191	0	%100
62	M33	Z	331	331	0	%100
63				.191		%100
	M34	X Z	.191 331	331	0	%100
64 65	M34 M35		.201	.201	0	%100
66	M35	X Z	348	348	0	%100
67	M35 M36					%100
68	M36	X Z	.127 221	.127 221	0	%100
69 70	MP4A	X Z	.263	.263 456	0	%100 %100
	MP4A		456			%100
71	MP3A	X Z	.263	.263	0	%100 %100
72	MP3A	Ζ	456	456	0	%100
	-3D Version 17 0 4			100414004501/70		dl Page 92

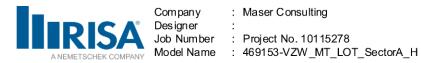



# Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
73	MP2A	Х	.263	.263	0	%100
74	MP2A	Z	456	456	0	%100
75	MP1A	Х	.263	.263	0	%100
76	MP1A	Z	456	456	0	%100
77	EQUIP	Х	.414	.414	0	%100
78	EQUIP	Z	717	717	0	%100
79	M51	Х	.414	.414	0	%100
80	M51	Z	717	717	0	%100
81	M55A	Х	4e-6	4e-6	0	%100
82	M55A	Z	-6e-6	-6e-6	0	%100

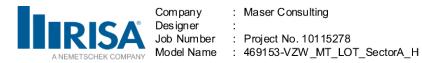
# Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	.144	.144	0	%100
2	M1	Z	083	083	0	%100
3	M3	Х	.144	.144	0	%100
4	M3	Z	083	083	0	%100
5	M5	Х	.005	.005	0	%100
6	M5	Z	003	003	0	%100
7	M6	Х	.068	.068	0	%100
8	M6	Z	039	039	0	%100
9	M7	Х	.138	.138	0	%100
10	M7	Z	08	08	0	%100
11	M8	Х	.012	.012	0	%100
12	M8	Z	007	007	0	%100
13	M9	Х	.064	.064	0	%100
14	M9	Z	037	037	0	%100
15	M10	Х	.138	.138	0	%100
16	M10	Z	08	08	0	%100
17	M11	Х	.033	.033	0	%100
18	M11	Z	019	019	0	%100
19	M12	Х	.428	.428	0	%100
20	M12	Z	247	247	0	%100
21	M13	Х	.033	.033	0	%100
22	M13	Z	019	019	0	%100
23	M14	Х	.428	.428	0	%100
24	M14	Z	247	247	0	%100
25	M15	Х	.451	.451	0	%100
26	M15	Z	26	26	0	%100
27	M16	X	.357	.357	0	%100
28	M16	Z	206	206	0	%100
29	M17	Х	.451	.451	0	%100
30	M17	Z	26	26	0	%100
31	M18	X	.357	.357	0	%100
32	M18	Z	206	206	0	%100
33	M19	X	.458	.458	0	%100
34	M19	Z	264	264	0	%100
35	M20	X	.451	.451	0	%100
36	M20	Z	26	26	0	%100
37	M21	Х	.451	.451	0	%100
38	M21	Z	26	26	0	%100




#### Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
39	M22	Х	.331	.331	0	%100
40	M22	Z	191	191	0	%100
41	M23	X	.331	.331	0	%100
42	M23	Z	191	191	0	%100
43	M24	Х	.348	.348	0	%100
44	M24	Z	201	201	0	%100
45	M25	Х	.458	.458	0	%100
46	M25	Z	264	264	0	%100
47	M26	Х	.451	.451	0	%100
48	M26	Z	26	26	0	%100
49	M27	Х	.252	.252	0	%100
50	M27	Z	145	145	0	%100
51	M28	Х	.451	.451	0	%100
52	M28	Z	26	26	0	%100
53	M29	Х	.252	.252	0	%100
54	M29	Z	145	145	0	%100
55	M30	Х	.458	.458	0	%100
56	M30	Z	264	264	0	%100
57	M31	Х	.451	.451	0	%100
58	M31	Z	26	26	0	%100
59	M32	Х	.451	.451	0	%100
60	M32	Z	26	26	0	%100
61	M33	X	.331	.331	0	%100
62	M33	Z	191	191	0	%100
63	M34	X	.331	.331	0	%100
64	M34	Z	191	191	0	%100
65	M35	Х	.348	.348	0	%100
66	M35	Z	201	201	0	%100
67	M36	Х	.458	.458	0	%100
68	M36	Z	264	264	0	%100
69	MP4A	X	.456	.456	0	%100
70	MP4A	Z	263	263	0	%100
71	MP3A	X	.456	.456	0	%100
72	MP3A	Z	263	263	0	%100
73	MP2A	X	.456	.456	0	%100
74	MP2A	Z	263	263	0	%100
75	MP1A	Х	.456	.456	0	%100
76	MP1A	Z	263	263	0	%100
77	EQUIP	Х	.717	.717	0	%100
78	EQUIP	Z	414	414	0	%100
79	M51	Х	.717	.717	0	%100
80	M51	Z	414	414	0	%100
81	M55A	Х	.116	.116	0	%100
82	M55A	Z	067	067	0	%100

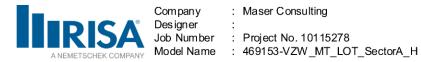

#### Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100



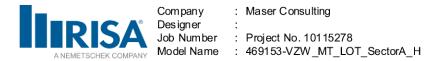
#### Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

Member Latel         Direction         Start Magnitude[bit, E., Start Lecation[1, %]         End Location[1, %]         End Location[1, %]         End Location[1, %]         No 100         % 100           6         M5         Z         0         0         0         % 100           7         M6         X         0.42         0.42         0.42         0.43           9         M7         X         0         0         0         % 100           10         M7         Z         0         0         0         % 100           11         M8         X         0.055         0.0         % 100           12         M8         Z         0         0         0         % 100           13         M9         X         .035         .0.35         0         % 100           14         M9         Z         0         0         0         % 100           15         M10         X         .268         .268         0         % 100           16         M11         Z         0         0         0         % 100           20         M12         Z         0         0         0         % 100		Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft E	Start Location[in %]	End Location[in,%]
6         M5         Z         0         0         0         0 $\%$ 100           8         M6         Z         0         0         0         0 $\%$ 100           9         M7         X         0         0         0 $\%$ 100           10         M7         Z         0         0         0 $\%$ 100           11         M8         X         .055         .055         0 $\%$ 100           12         M8         Z         0         0         0 $\%$ 100           13         M9         X         .035         .035         0 $\%$ 100           14         M9         Z         0         0         0 $\%$ 100           16         M10         Z         0         0         0 $\%$ 100           18         M11         Z         0         0         0 $\%$ 100           22         M13         Z         0         0         0 $\%$ 100           24         M14         X         .268         .268         0 $\%$ 100           23         M14         X         <	5						
7         M6         X $0.42$ $0.42$ $0$ $9$ $9$ 8         M6         Z         0         0         0         9 $9$ 10         M7         Z         0         0         0         9 $9$ 11         M8         X         0.055         0.055         0 $9$ $100$ 12         M8         Z         0         0         0 $9$ $100$ 13         M9         X         0.035         0.055         0 $9$ $100$ 14         M9         Z         0         0         0 $9$ $100$ 15         M10         X         0         0         0 $9$ $100$ 16         M10         Z         0         0         0 $9$ $100$ 16         M12         Z         0         0         0 $9$ $100$ 17         M11         X         268         268         0 $9$ $100$ 18         M14			7				
8         M6         Z         0         0         0         9         %100           10         M7         Z         0         0         0         %100           11         M8         X         .055         .055         0         %100           12         M8         Z         0         0         0         %100           13         M9         X         .035         .035         0         %100           14         M9         Z         0         0         0         %100           16         M10         X         0         0         0         %100           16         M11         Z         .268         .268         0         %100           18         M11         Z         .0         0         0         %100           20         M12         Z         0         0         0         %100           21         M13         X         .268         .268         0         %100           23         M14         X         .352         .352         0         %100           25         M15         Z         0         0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
9         M7         X         0         0         0         %100           10         M7         Z         0         0         0         %100           11         M8         Z         0         0         0         %100           12         M8         Z         0         0         0         %100           13         M9         X         0.035         0.35         0         %100           14         M9         Z         0         0         0         %100           15         M10         X         0         0         0         %100           16         M10         Z         0         0         0         %100           17         M11         X         .268         .268         0         %100           18         M11         Z         0         0         0         %100           24         M13         X         .268         .268         0         %100           25         M13         X         .665         .665         0         %100           26         M15         Z         0         0         0			7				
10         M7         Z         0         0         0         %100           11         M8         X         .055         .055         0         %100           13         M9         X         .035         .035         0         %100           14         M9         Z         0         0         0         %100           15         M10         X         0         0         0         %100           16         M10         Z         0         0         0         %100           16         M11         X         .268         .268         0         %100           18         M11         Z         0         0         0         %100           21         M13         X         .268         .268         0         %100           23         M14         X         .268         .268         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           26         M15         Z         0         0         <							
11         M8         X         055         055         0         %100           12         M8         Z         0         0         0         %100           13         M9         X         .035         .0355         0         %100           14         M9         Z         0         0         0         %100           15         M10         X         0         0         0         %100           16         M10         Z         0         0         0         %100           18         M11         Z         0         0         0         %100           20         M12         X         .268         .268         0         %100           21         M13         X         .268         .268         0         %100           23         M14         X         .268         .268         0         %100           24         M14         Z         0         0         0         %100           26         M15         Z         .665         .665         0         %100           27         M16         Z         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
12         M8         Z         0         0         0         %100           13         M9         X         .035         .035         0         %100           14         M9         Z         0         0         0         %100           15         M10         X         0         0         0         %100           16         M10         Z         0         0         0         %100           17         M11         X         .268         .268         0         %100           18         M112         Z         0         0         0         %100           20         M12         Z         0         0         0         %100           21         M13         Z         .268         .268         0         %100           23         M14         X         .268         .268         0         %100           24         M14         Z         0         0         %100         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
13         M9         X         035         035         00         %100           14         M9         Z         0         0         0         %100           15         M10         X         0         0         0         %100           16         M10         Z         0         0         0         %100           17         M11         X         268         2286         0         %100           18         M11         Z         0         0         0         %100           20         M12         Z         0         0         %100         %100           21         M13         X         268         268         0         %100           23         M14         X         268         268         0         %100           24         M14         Z         0         0         0         %100           26         M15         Z         0         0         %100         %100           27         M16         X         .352         .352         0         %100           30         M17         Z         0         0         %							
14         M9         Z         0         0         0         0         %100           15         M10         X         0         0         0         %100           16         M10         Z         0         0         0         %100           17         M11         X         .268         .268         0         %100           19         M12         X         .268         .268         0         %100           20         M12         Z         0         0         0         %100           21         M13         X         .268         .268         0         %100           23         M14         X         .268         .268         0         %100           24         M14         Z         0         0         0         %100           25         M15         Z         0         0         0         %100           26         M15         Z         0         0         0         %100           28         M16         Z         .352         .352         0         %100           31         M18         X         .3552				-			
15         M10         X         0         0         0         %100           16         M10         Z         0         0         0         %100           17         M11         X         268         268         0         %100           18         M11         Z         0         0         0         %100           20         M12         Z         0         0         0         %100           20         M12         Z         0         0         0         %100           21         M13         X         .268         .268         0         %100           23         M14         X         .268         .268         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           26         M16         Z         0         0         %100         %100           30         M17         Z         0         0         %100							
16         M10         Z         0         0         0         0         %100           17         M11         X         268         266         0         %100           19         M12         X         268         268         0         %100           20         M12         Z         0         0         0         %100           21         M13         X         268         268         0         %100           22         M13         Z         0         0         0         %100           23         M14         X         268         268         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         665         665         0         %100           26         M16         Z         0         0         0         %100           26         M17         X         665         665         0         %100           27         M16         X         352         352         0         %100           30         M17         X         665 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
17       M11       X       268       268       0       %100         18       M11       Z       0       0       0       %100         19       M12       X       268       268       0       %100         20       M13       X       268       268       0       %100         21       M13       Z       0       0       0       %100         23       M14       X       268       268       0       %100         24       M14       Z       0       0       0       %100         25       M15       X       .665       .665       0       %100         26       M15       Z       0       0       0       %100         28       M16       Z       0       0       0       %100         29       M17       X       .665       .665       0       %100         31       M18       X       .352       .352       0       %100         32       M19       X       .665       .665       0       %100         33       M19       Z       0       0       0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
18         M11         Z         0         0         0         %100           19         M12         X         268         268         0         %100           20         M12         Z         0         0         0         %100           21         M13         X         268         268         0         %100           23         M14         X         268         268         0         %100           24         M14         Z         0         0         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         665         665         0         %100           26         M15         Z         0         0         0         %100           28         M16         Z         0         0         %100         %100           30         M17         X         665         665         0         %100           31         M18         Z         0         0         0         %100           33         M19         X         665         665         0<							
19         M12         X         268         268         0         %100           20         M12         Z         0         0         0         %100           21         M13         X         268         268         0         %100           22         M13         Z         0         0         0         %100           23         M14         X         268         268         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           28         M16         Z         0         0         0         %100           30         M17         Z         0         0         %100         %100           31         M18         X         .352         .352         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0							
20         M12         Z         0         0         0         %100           21         M13         X         .268         .268         0         %100           23         M14         X         .268         .268         0         %100           24         M14         X         .268         .268         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           26         M16         Z         0         0         0         %100           27         M16         X         .352         .352         0         %100           30         M17         Z         0         0         0         %100           31         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           35         M20         X         .665         .665				-			
21         M13         X         268         .268         0         %100           22         M13         Z         0         0         0         %100           23         M14         X         .268         .268         0         %100           24         M14         Z         0         0         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           27         M16         X         .352         .352         0         %100           28         M17         X         .665         .665         0         %100           30         M17         Z         0         0         0         %100           31         M18         X         .352         .352         0         %100           33         M19         X         .665         .665         .0         %100           35         M20         X         .665         .66			X				
22         M13         Z         0         0         0         %100           23         M14         X         .268         .268         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           26         M16         Z         0         0         0         %100           28         M16         Z         0         0         0         %100           29         M17         X         .665         .665         0         %100           30         M17         Z         0         0         0         %100           31         M18         Z         0         0         0         %100           33         M19         Z         .665         .665         0         %100           34         M19         Z         0         0         0         %100           36         M20         Z         0         0         %100<							
23         M14         X         .268         .268         0         %100           24         M14         Z         0         0         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           26         M16         X         .352         .352         0         %100           28         M16         Z         0         0         0         %100           29         M17         X         .665         .665         0         %100           30         M17         Z         0         0         0         %100           31         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           36         M20         Z         0         0         %100         %100           37         M21         X         .665         .665							
24         M14         Z         0         0         0         %100           25         M15         X         .665         .665         0         %100           26         M15         Z         0         0         0         %100           27         M16         X         .352         .352         0         %100           28         M16         Z         0         0         0         %100           30         M17         Z         0         0         0         %100           31         M18         X         .352         .352         0         %100           32         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           35         M20         X         .665         .665         0         %100           36         M21         Z         0         0         %100         %100           38         M21         Z         0         0				-	-		
25         M15         X			X				
26         M15         Z         0         0         %100           27         M16         X         .352         .352         0         %100           28         M16         Z         0         0         0         %100           29         M17         X         .665         .665         0         %100           30         M17         Z         0         0         0         %100           31         M18         X         .352         .352         0         %100           32         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           35         M20         X         .665         .665         0         %100           36         M20         Z         0         0         0         %100           38         M21         Z         0         0         %100         %100           41         M23         X         .382         .382         0				-			
27         M16         X         .352         .352         0         %100           28         M16         Z         0         0         0         %100           29         M17         X         .665         .665         0         %100           30         M17         Z         0         0         0         %100           31         M18         X         .352         .352         0         %100           32         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           36         M20         Z         0         0         0         %100           37         M21         X         .665         .665         0         %100           38         M21         Z         0         0         0         %100           40         M22         Z         0         0         %100         %100           41         M23         X         .382         .382			X				
28         M16         Z         0         0         %100           29         M17         X         .665         .665         0         %100           30         M17         Z         0         0         0         %100           30         M18         X         .352         .352         .0         %100           31         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           35         M20         X         .665         .665         0         %100           36         M20         Z         0         0         0         %100           38         M21         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           41         M23         Z         0         0         0         %100           42         M23         Z         0         0         %100				-	-		
29         M17         X         .665         .665         0         %100           30         M17         Z         0         0         0         %100           31         M18         X         .352         .352         0         %100           32         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           35         M20         X         .665         .665         0         %100           36         M20         Z         0         0         0         %100           38         M21         Z         0         0         %100         %100           40         M22         Z         0         0         %100         %100           41         M23         X         .382         .382         0         %100           42         M23         Z         0         0         %100         %100           43         M24         X         .402         .402 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
30         M17         Z         0         0         0         %100           31         M18         X         .352         .352         0         %100           32         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           36         M20         X         .665         .665         0         %100           36         M20         Z         0         0         0         %100           37         M21         X         .665         .665         0         %100           38         M21         Z         0         0         0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           43         M24         X         .402         .402         0         %100           44         M25         Z         0         0				-			
31         M18         X         .352         .352         0         %100           32         M18         Z         0         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           35         M20         X         .665         .6655         0         %100           36         M20         Z         0         0         0         %100           37         M21         X         .665         .6655         0         %100           38         M21         Z         0         0         0         %100           40         M22         Z         0         0         0         %100           41         M23         Z         0         0         %100         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           44         M26         Z         0							
32         M18         Z         0         0         0         %100           33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           34         M19         Z         0         0         0         %100           35         M20         X         .6655         .665         0         %100           36         M20         Z         0         0         0         %100           38         M21         Z         0         0         0         %100           39         M22         X         .382         .382         0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         %100         %100           45         M25         Z         0         0							
33         M19         X         .665         .665         0         %100           34         M19         Z         0         0         0         %100           35         M20         X         .665         .665         0         %100           36         M20         Z         0         0         0         %100           36         M20         Z         0         0         0         %100           37         M21         X         .665         .665         0         %100           38         M21         Z         0         0         0         %100           39         M22         X         .382         .382         0         %100           40         M22         Z         0         0         0         %100           41         M23         Z         0         0         %100           42         M23         Z         0         0         %100           43         M24         X         .402         .402         0         %100           44         M26         Z         0         0         %100         %100				.352			
34         M19         Z         0         0         0         %100           35         M20         X         .665         .665         0         %100           36         M20         Z         0         0         0         %100           37         M21         X         .665         .665         0         %100           38         M21         Z         0         0         0         %100           39         M22         X         .382         .382         0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           46         M25         Z         0         0         %100         %100           48         M26         Z         0         0				-			
35         M20         X         .665         .665         0         %100           36         M20         Z         0         0         0         %100           37         M21         X         .665         .665         0         %100           38         M21         Z         0         0         0         %100           39         M22         X         .382         .382         0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         %100         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         %100         %100           48         M26         Z         0         0				.665			
36         M20         Z         0         0         0         %100           37         M21         X         .665         .665         0         %100           38         M21         Z         0         0         0         %100           39         M22         X         .382         .382         .0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         .0         %100           42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           48         M26         Z         0         0         0         %100           51         M28         X         .6655         .6655							
37         M21         X         .665         .665         0         %100           38         M21         Z         0         0         0         %100           39         M22         X         .382         .382         0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           48         M26         Z         0         0         %100         %100           50         M27         Z         0         0			X	.665			
38         M21         Z         0         0         0         %100           39         M22         X         .382         .382         0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           47         M26         X         .665         .665         0         %100           48         M26         Z         0         0         %100         %100           50         M27         Z         0         0         %100         %100           51         M28         X         .665         .665		M20		0	0	0	%100
39         M22         X         .382         .382         0         %100           40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           47         M26         X         .665         .665         0         %100           48         M26         Z         0         0         %100         %100           49         M27         X         .352         .352         0         %100           50         M27         Z         0         0         %100         %100           51         M28         Z         0         0			X	.665			
40         M22         Z         0         0         0         %100           41         M23         X         .382         .382         0         %100           42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           47         M26         X         .665         .665         0         %100           48         M26         Z         0         0         0         %100           49         M27         X         .352         .352         0         %100           50         M27         Z         0         0         %100         %100           51         M28         X         .665         .665         0         %100           52         M28         Z         0         0	38	M21		0		0	%100
41       M23       X       .382       .382       0       %100         42       M23       Z       0       0       0       %100         43       M24       X       .402       .402       0       %100         44       M24       Z       0       0       0       %100         44       M24       Z       0       0       0       %100         45       M25       X       .665       .665       0       %100         46       M25       Z       0       0       0       %100         47       M26       X       .665       .665       0       %100         48       M26       Z       0       0       0       %100         49       M27       X       .352       .352       0       %100         50       M27       Z       0       0       0       %100         51       M28       X       .665       .665       0       %100         52       M28       Z       0       0       0       %100         53       M29       X       .352       .352       .0	39	M22		.382	.382	0	%100
42         M23         Z         0         0         0         %100           43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           47         M26         X         .6655         .665         0         %100           48         M26         Z         0         0         0         %100           49         M27         X         .352         .352         0         %100           50         M27         Z         0         0         0         %100           51         M28         X         .665         .665         0         %100           52         M28         Z         0         0         %100         %100           53         M29         X         .352         .352	40	M22	Z	0	0	0	%100
43         M24         X         .402         .402         0         %100           44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           47         M26         X         .665         .665         0         %100           48         M26         Z         0         0         0         %100           49         M27         X         .352         .352         0         %100           50         M27         Z         0         0         0         %100           51         M28         X         .665         .665         0         %100           52         M28         Z         0         0         %100         %100           53         M29         X         .352         .352         0         %100           54         M29         Z         0         0         0         %100           55         M30         X         .665         .665 </td <td>41</td> <td>M23</td> <td>Х</td> <td>.382</td> <td>.382</td> <td>0</td> <td>%100</td>	41	M23	Х	.382	.382	0	%100
44         M24         Z         0         0         0         %100           45         M25         X         .665         .665         0         %100           46         M25         Z         0         0         0         %100           47         M26         X         .665         .665         0         %100           48         M26         Z         0         0         0         %100           49         M27         X         .352         .352         0         %100           50         M27         Z         0         0         0         %100           51         M28         X         .6655         .665         0         %100           52         M28         Z         0         0         0         %100           52         M28         Z         0         0         %100         %100           53         M29         X         .352         .352         0         %100           54         M29         Z         0         0         0         %100           55         M30         X         .665         .665	42	M23		0	0	0	%100
45M25X.665.6650%10046M25Z000%10047M26X.665.6650%10048M26Z000%10049M27X.352.3520%10050M27Z000%10051M28X.665.6650%10052M28Z000%10053M29X.352.3520%10054M29Z000%10055M30X.665.6650%10056M30Z00%100%100	43	M24		.402	.402	0	%100
45M25X.665.6650%10046M25Z000%10047M26X.665.6650%10048M26Z000%10049M27X.352.3520%10050M27Z000%10051M28X.665.6650%10052M28Z000%10053M29X.352.3520%10054M29Z000%10055M30X.665.6650%10056M30Z00%100%100	44					0	
46M25Z00%10047M26X.665.6650%10048M26Z00%10049M27X.352.3520%10050M27Z000%10051M28X.665.6650%10052M28Z000%10053M29X.352.3520%10054M29Z000%10055M30X.665.6650%10056M30Z00%100%100				.665	.665	0	
47M26X.665.6650%10048M26Z000%10049M27X.352.3520%10050M27Z000%10051M28X.665.6650%10052M28Z000%10053M29X.352.3520%10054M29Z000%10055M30X.665.6650%10056M30Z00%100			Z				
48         M26         Z         0         0         0         %100           49         M27         X         .352         .352         0         %100           50         M27         Z         0         0         0         %100           51         M28         X         .665         .665         0         %100           52         M28         Z         0         0         0         %100           53         M29         X         .352         .352         0         %100           54         M29         Z         0         0         0         %100           55         M30         X         .665         .665         0         %100           55         M30         X         .665         .665         0         %100           56         M30         Z         0         0         0         %100				.665			
49         M27         X         .352         .352         0         %100           50         M27         Z         0         0         0         %100           51         M28         X         .665         .665         0         %100           52         M28         Z         0         0         0         %100           53         M29         X         .352         .352         0         %100           54         M29         Z         0         0         0         %100           55         M30         X         .665         .665         0         %100           56         M30         Z         0         0         0         %100							
50         M27         Z         0         0         %100           51         M28         X         .665         .665         0         %100           52         M28         Z         0         0         0         %100           53         M29         X         .352         .352         0         %100           54         M29         Z         0         0         0         %100           55         M30         X         .665         .665         0         %100           56         M30         Z         0         0         %100         %100							
51         M28         X         .665         .665         0         %100           52         M28         Z         0         0         0         %100           53         M29         X         .352         .352         0         %100           54         M29         Z         0         0         0         %100           55         M30         X         .665         .665         0         %100           56         M30         Z         0         0         %100         %100			Z				
52         M28         Z         0         0         %100           53         M29         X         .352         .352         0         %100           54         M29         Z         0         0         0         %100           55         M30         X         .665         .665         0         %100           56         M30         Z         0         0         %100         %100				-			
53M29X.352.3520%10054M29Z000%10055M30X.665.6650%10056M30Z000%100							
54         M29         Z         0         0         %100           55         M30         X         .665         .665         0         %100           56         M30         Z         0         0         %100							
55         M30         X         .665         .665         0         %100           56         M30         Z         0         0         %100			7				
56         M30         Z         0         0         %100							
				1			




#### Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
57	M31	Х	.665	.665	0	%100
58	M31	Z	0	0	0	%100
59	M32	Х	.665	.665	0	%100
60	M32	Z	0	0	0	%100
61	M33	Х	.382	.382	0	%100
62	M33	Z	0	0	0	%100
63	M34	Х	.382	.382	0	%100
64	M34	Z	0	0	0	%100
65	M35	Х	.402	.402	0	%100
66	M35	Z	0	0	0	%100
67	M36	Х	.665	.665	0	%100
68	M36	Z	0	0	0	%100
69	MP4A	Х	.527	.527	0	%100
70	MP4A	Z	0	0	0	%100
71	MP3A	Х	.527	.527	0	%100
72	MP3A	Z	0	0	0	%100
73	MP2A	Х	.527	.527	0	%100
74	MP2A	Z	0	0	0	%100
75	MP1A	Х	.527	.527	0	%100
76	MP1A	Z	0	0	0	%100
77	EQUIP	Х	.828	.828	0	%100
78	EQUIP	Z	0	0	0	%100
79	M51	Х	.828	.828	0	%100
80	M51	Z	0	0	0	%100
81	M55A	Х	.397	.397	0	%100
82	M55A	Z	0	0	0	%100

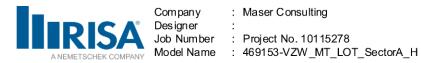

#### Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	.144	.144	0	%100
2	M1	Z	.083	.083	0	%100
3	M3	Х	.144	.144	0	%100
4	M3	Z	.083	.083	0	%100
5	M5	Х	.068	.068	0	%100
6	M5	Z	.039	.039	0	%100
7	M6	Х	.005	.005	0	%100
8	M6	Z	.003	.003	0	%100
9	M7	Х	.138	.138	0	%100
10	M7	Z	.08	.08	0	%100
11	M8	Х	.071	.071	0	%100
12	M8	Z	.041	.041	0	%100
13	M9	Х	.002	.002	0	%100
14	M9	Z	.001	.001	0	%100
15	M10	Х	.138	.138	0	%100
16	M10	Z	.08	.08	0	%100
17	M11	Х	.428	.428	0	%100
18	M11	Z	.247	.247	0	%100
19	M12	Х	.033	.033	0	%100
20	M12	Z	.019	.019	0	%100
21	M13	Х	.428	.428	0	%100
22	M13	Z	.247	.247	0	%100



#### Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
23	M14	X	.033	.033		%100
24	M14	Z	.019	.019	0	%100
25	M15	X	.451	.451	0	%100
26	M15	Z	.26	.26	0	%100
27	M16	X	.252	.252	0	%100
28	M16	Z	.145	.145	0	%100
29	M10	X	.451	.451	0	%100
30	M17	Z	.26	.26	0	%100
31	M17	X	.252	.252	0	%100
32	M18	Z	.145	.145	0	%100
33	M19	X	.458	.458	0	%100
34	M19	Z	.264	.264	0	%100
35	M20	X	.451	.451	0	%100
36	M20	Z	.26	.26	0	%100
37	M20	X	.451	.451	0	%100
38	M21	Z	.26	.26	0	%100
39	M21	X	.331	.331	0	%100
40	M22	Z	.191	.191	0	%100
	M22 M23			.331		
41 42		X Z	.331	.191	0	%100
	M23					%100
43 44	M24	X Z	.348	.348	0	%100
	M24		.201	.201		%100
45	M25	X 7	.458	.458	0	%100
46	M25	Z	.264	.264	0	%100
47	M26	X	.451	.451	0	%100
48	M26	Z	.26	.26	0	%100
49	M27	X	.357	.357	0	%100
50	M27	Z	.206	.206	0	%100
51	M28	X	.451	.451	0	%100
52	M28	Z	.26	.26	0	%100
53	M29	X	.357	.357	0	%100
54	M29	Z	.206	.206	0	%100
55	M30	X	.458	.458	0	%100
56	M30	Z	.264	.264	0	%100
57	M31	X	.451	.451	0	%100
58	M31	Z	.26	.26	0	%100
59	M32	X	.451	.451	0	%100
60	M32	Z	.26	.26	0	%100
61	M33	X	.331	.331	0	%100
62	M33	Z	.191	.191	0	%100
63	M34	X	.331	.331	0	%100
64	M34	Z	.191	.191	0	%100
65	M35	X	.348	.348	0	%100
66	M35	Z	.201	.201	0	%100
67	M36	X	.458	.458	0	%100
68	M36	Z	.264	.264	0	%100
69	MP4A	X	.456	.456	0	%100
70	MP4A	Z	.263	.263	0	%100
71	MP3A	X	.456	.456	0	%100
72	MP3A	Z	.263	.263	0	%100
73	MP2A	X	.456	.456	0	%100
74	MP2A	Z	.263	.263	0	%100
	3D Version 17 0 4			\RISA\469153-\/7\/		dl Page 97

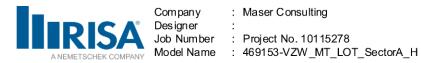



# Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
75	MP1A	Х	.456	.456	0	%100
76	MP1A	Z	.263	.263	0	%100
77	EQUIP	Х	.717	.717	0	%100
78	EQUIP	Z	.414	.414	0	%100
79	M51	Х	.717	.717	0	%100
80	M51	Z	.414	.414	0	%100
81	M55A	Х	.456	.456	0	%100
82	M55A	Z	.263	.263	0	%100

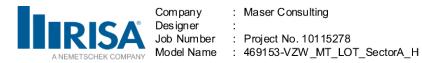
# Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	.249	.249	0	%100
2	M1	Z	.432	.432	0	%100
3	M3	Х	.249	.249	0	%100
4	M3	Z	.432	.432	0	%100
5	M5	Х	.039	.039	0	%100
6	M5	Z	.067	.067	0	%100
7	M6	Х	.003	.003	0	%100
8	M6	Z	.004	.004	0	%100
9	M7	Х	.239	.239	0	%100
10	M7	Z	.414	.414	0	%100
11	M8	Х	.034	.034	0	%100
12	M8	Z	.06	.06	0	%100
13	M9	Х	.005	.005	0	%100
14	M9	Z	.008	.008	0	%100
15	M10	Х	.239	.239	0	%100
16	M10	Z	.414	.414	0	%100
17	M11	X	.244	.244	0	%100
18	M11	Z	.423	.423	0	%100
19	M12	Х	.016	.016	0	%100
20	M12	Z	.028	.028	0	%100
21	M13	Х	.244	.244	0	%100
22	M13	Z	.423	.423	0	%100
23	M14	Х	.016	.016	0	%100
24	M14	Z	.028	.028	0	%100
25	M15	X	.116	.116	0	%100
26	M15	Z	.201	.201	0	%100
27	M16	X	.145	.145	0	%100
28	M16	Z	.251	.251	0	%100
29	M17	X	.116	.116	0	%100
30	M17	Z	.201	.201	0	%100
31	M18	X	.145	.145	0	%100
32	M18	Z	.251	.251	0	%100
33	M19	X	.127	.127	0	%100
34	M19	Z	.221	.221	0	%100
35	M20	X	.116	.116	0	%100
36	M20	Z	.201	.201	0	%100
37	M21	Х	.116	.116	0	%100
38	M21	Z	.201	.201	0	%100
39	M22	Х	.191	.191	0	%100
40	M22	Z	.331	.331	0	%100




# Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
41	M23	Х	.191	.191	0	%100
42	M23	Z	.331	.331	0	%100
43	M24	Х	.201	.201	0	%100
44	M24	Z	.348	.348	0	%100
45	M25	Х	.127	.127	0	%100
46	M25	Z	.221	.221	0	%100
47	M26	Х	.116	.116	0	%100
48	M26	Z	.201	.201	0	%100
49	M27	Х	.206	.206	0	%100
50	M27	Z	.356	.356	0	%100
51	M28	Х	.116	.116	0	%100
52	M28	Z	.201	.201	0	%100
53	M29	Х	.206	.206	0	%100
54	M29	Z	.356	.356	0	%100
55	M30	Х	.127	.127	0	%100
56	M30	Z	.221	.221	0	%100
57	M31	Х	.116	.116	0	%100
58	M31	Z	.201	.201	0	%100
59	M32	Х	.116	.116	0	%100
60	M32	Z	.201	.201	0	%100
61	M33	Х	.191	.191	0	%100
62	M33	Z	.331	.331	0	%100
63	M34	Х	.191	.191	0	%100
64	M34	Z	.331	.331	0	%100
65	M35	Х	.201	.201	0	%100
66	M35	Z	.348	.348	0	%100
67	M36	Х	.127	.127	0	%100
68	M36	Z	.221	.221	0	%100
69	MP4A	Х	.263	.263	0	%100
70	MP4A	Z	.456	.456	0	%100
71	MP3A	Х	.263	.263	0	%100
72	MP3A	Z	.456	.456	0	%100
73	MP2A	Х	.263	.263	0	%100
74	MP2A	Z	.456	.456	0	%100
75	MP1A	Х	.263	.263	0	%100
76	MP1A	Z	.456	.456	0	%100
77	EQUIP	Х	.414	.414	0	%100
78	EQUIP	Z	.717	.717	0	%100
79	M51	Х	.414	.414	0	%100
80	M51	Z	.717	.717	0	%100
81	M55A	Х	.197	.197	0	%100
82	M55A	Z	.341	.341	0	%100

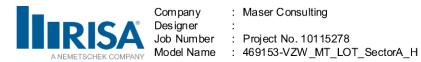

# Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	.665	.665	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	.665	.665	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	.041	.041	0	%100



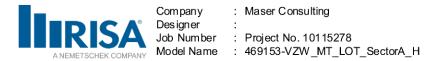
# Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
7	Member Laber	X				%100
8	M6	Z	.041	.041	0	%100
9	M7	×	0	0	0	%100
10	M7	Z	.638	.638	0	%100
11	M8	×	0	0	0	%100
12	M8	Z	.028	.028	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	.049	.049	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	.638	.638	0	%100
17	M10	X	0	0	0	%100
18	M11	Z	.258	.258	0	%100
19	M12	X	0	0	0	%100
20	M12	Z	.258	.258	0	%100
20	M12	X	0	0	0	%100
22	M13	Z	.258	.258	0	%100
22	M13	X	0	0	0	%100
23	M14	Z	.258	.258	0	%100
24	M14 M15		0	0		
25		X Z	-	.088	0	%100 %100
20	M15 M16	X	.088	0		
28	M16	Z	.35	.35	0	%100 %100
			.35	0		
29	M17	X		-	0	%100
30	M17	Z	.088	.088	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	.35	.35	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	.118	.118	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	.088	.088	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	.088	.088	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	.382	.382	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	.382	.382	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	.402	.402	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	.118	.118	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	.088	.088	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	.35	.35	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	.088	.088	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	.35	.35	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	.118	.118	0	%100
57	M31	X	0	0	0	%100
58	M31	Z	.088	.088	0	%100
	-3D Version 17.0.4	() ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )		\RISA\469153-VZV		3dl Page 100




# Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
59	M32	Х	0	0	0	%100
60	M32	Z	.088	.088	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	.382	.382	0	%100
63	M34	Х	0	0	0	%100
64	M34	Z	.382	.382	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	.402	.402	0	%100
67	M36	Х	0	0	0	%100
68	M36	Z	.118	.118	0	%100
69	MP4A	Х	0	0	0	%100
70	MP4A	Z	.527	.527	0	%100
71	MP3A	Х	0	0	0	%100
72	MP3A	Z	.527	.527	0	%100
73	MP2A	Х	0	0	0	%100
74	MP2A	Z	.527	.527	0	%100
75	MP1A	Х	0	0	0	%100
76	MP1A	Z	.527	.527	0	%100
77	EQUIP	Х	0	0	0	%100
78	EQUIP	Z	.828	.828	0	%100
79	M51	Х	0	0	0	%100
80	M51	Z	.828	.828	0	%100
81	M55A	Х	0	0	0	%100
82	M55A	Z	.13	.13	0	%100

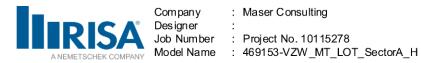

# Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location [in.%]	End Location[in,%]
1	M1	X	249	249	0	%100
2	M1	Z	.432	.432	0	%100
3	M3	Х	249	249	0	%100
4	M3	Z	.432	.432	0	%100
5	M5	Х	003	003	0	%100
6	M5	Z	.004	.004	0	%100
7	M6	Х	039	039	0	%100
8	M6	Z	.067	.067	0	%100
9	M7	Х	239	239	0	%100
10	M7	Z	.414	.414	0	%100
11	M8	Х	0004	0004	0	%100
12	M8	Z	.000692	.000692	0	%100
13	M9	Х	04	04	0	%100
14	M9	Z	.07	.07	0	%100
15	M10	Х	239	239	0	%100
16	M10	Z	.414	.414	0	%100
17	M11	Х	016	016	0	%100
18	M11	Z	.028	.028	0	%100
19	M12	Х	244	244	0	%100
20	M12	Z	.423	.423	0	%100
21	M13	Х	016	016	0	%100
22	M13	Z	.028	.028	0	%100
23	M14	Х	244	244	0	%100
24	M14	Z	.423	.423	0	%100



# Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
25	Member Laber	X	116	116		%100
26	M15	Z	.201	.201	0	%100
27	M16	X	206	206	0	%100
28	M16	Z	.356	.356	0	%100
29	M10	X	116	116	0	%100
30	M17	Z	.201	.201	0	%100
31	M18	X	206	206	0	%100
32	M18	Z	.356	.356	0	%100
33	M10	X	127	127	0	%100
34	M19	Z	.221	.221	0	%100
35	M20	X	116	116	0	%100
36	M20	Z	.201	.201	0	%100
37	M20	X	116	116		%100
38	M21	Z	.201	.201	0	%100
39	M21 M22	X	191	191	0	%100
40	M22	Z	.331	.331	0	%100
41	M23	X Z	191	191	0	%100
42	M23		.331	.331	0	%100
43 44	M24	X Z	201	201	0	%100
	M24		.348	.348	0	%100 %100
45	M25	X Z	127	127	0	%100
46	M25		.221	.221	0	%100
47	M26	X	116	116	0	%100
48	M26	Z	.201	.201	0	%100
49	M27	X	145	145	0	%100
50	M27	Z	.251	.251	0	%100
51	M28	X	116	116	0	%100
52	M28	Z	.201	.201	0	%100
53	M29	X	145	145	0	%100
54	M29	Z	.251	.251	0	%100
55	M30	X	127	127	0	%100
56	M30	Z	.221	.221	0	%100
57	M31	X	116	116	0	%100
58	M31	Z	.201	.201	0	%100
59	M32	X	116	116	0	%100
60	M32	Z	.201	.201	0	%100
61	M33	X	191	191	0	%100
62	M33	Z	.331	.331	0	%100
63	M34	X	191	191	0	%100
64	M34	Z	.331	.331	0	%100
65	M35	X	201	201	0	%100
66	M35	Z	.348	.348	0	%100
67	M36	X	127	127	0	%100
68	M36	Z	.221	.221	0	%100
69	MP4A	X	263	263	0	%100
70	MP4A	Z	.456	.456	0	%100
71	MP3A	X	263	263	0	%100
72	MP3A	Z	.456	.456	0	%100
73	MP2A	X	263	263	0	%100
74	MP2A	Z	.456	.456	0	%100
75	MP1A	X	263	263	0	%100
76	MP1A	Z	.456	.456	0	%100
	-3D Version 17 0 4	() ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )		\RISA\469153-\/7\/		3dl Page 102

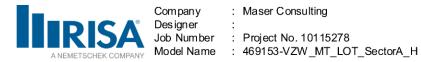



#### Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
77	EQUIP	Х	414	414	0	%100
78	EQUIP	Z	.717	.717	0	%100
79	M51	Х	414	414	0	%100
80	M51	Z	.717	.717	0	%100
81	M55A	Х	-4e-6	-4e-6	0	%100
82	M55A	Z	6e-6	6e-6	0	%100

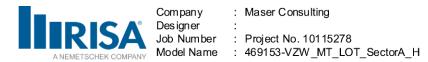
#### Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	144	144	0	%100
2	M1	Z	.083	.083	0	%100
3	M3	Х	144	144	0	%100
4	M3	Z	.083	.083	0	%100
5	M5	Х	005	005	0	%100
6	M5	Z	.003	.003	0	%100
7	M6	Х	068	068	0	%100
8	M6	Z	.039	.039	0	%100
9	M7	Х	138	138	0	%100
10	M7	Z	.08	.08	0	%100
11	M8	Х	012	012	0	%100
12	M8	Z	.007	.007	0	%100
13	M9	Х	064	064	0	%100
14	M9	Z	.037	.037	0	%100
15	M10	Х	138	138	0	%100
16	M10	Z	.08	.08	0	%100
17	M11	Х	033	033	0	%100
18	M11	Z	.019	.019	0	%100
19	M12	Х	428	428	0	%100
20	M12	Z	.247	.247	0	%100
21	M13	Х	033	033	0	%100
22	M13	Z	.019	.019	0	%100
23	M14	Х	428	428	0	%100
24	M14	Z	.247	.247	0	%100
25	M15	Х	451	451	0	%100
26	M15	Z	.26	.26	0	%100
27	M16	Х	357	357	0	%100
28	M16	Z	.206	.206	0	%100
29	M17	Х	451	451	0	%100
30	M17	Z	.26	.26	0	%100
31	M18	Х	357	357	0	%100
32	M18	Z	.206	.206	0	%100
33	M19	Х	458	458	0	%100
34	M19	Z	.264	.264	0	%100
35	M20	Х	451	451	0	%100
36	M20	Z	.26	.26	0	%100
37	M21	Х	451	451	0	%100
38	M21	Z	.26	.26	0	%100
39	M22	Х	331	331	0	%100
40	M22	Z	.191	.191	0	%100
41	M23	Х	331	331	0	%100
42	M23	Z	.191	.191	0	%100




# Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
43	M24	X	348	348	0	%100
44	M24	Z	.201	.201	0	%100
45	M25	Х	458	458	0	%100
46	M25	Z	.264	.264	0	%100
47	M26	X	451	451	0	%100
48	M26	Z	.26	.26	0	%100
49	M27	Х	252	252	0	%100
50	M27	Z	.145	.145	0	%100
51	M28	Х	451	451	0	%100
52	M28	Z	.26	.26	0	%100
53	M29	Х	252	252	0	%100
54	M29	Z	.145	.145	0	%100
55	M30	Х	458	458	0	%100
56	M30	Z	.264	.264	0	%100
57	M31	Х	451	451	0	%100
58	M31	Z	.26	.26	0	%100
59	M32	Х	451	451	0	%100
60	M32	Z	.26	.26	0	%100
61	M33	Х	331	331	0	%100
62	M33	Z	.191	.191	0	%100
63	M34	Х	331	331	0	%100
64	M34	Z	.191	.191	0	%100
65	M35	Х	348	348	0	%100
66	M35	Z	.201	.201	0	%100
67	M36	Х	458	458	0	%100
68	M36	Z	.264	.264	0	%100
69	MP4A	Х	456	456	0	%100
70	MP4A	Z	.263	.263	0	%100
71	MP3A	X	456	456	0	%100
72	MP3A	Z	.263	.263	0	%100
73	MP2A	X	456	456	0	%100
74	MP2A	Z	.263	.263	0	%100
75	MP1A	Х	456	456	0	%100
76	MP1A	Z	.263	.263	0	%100
77	EQUIP	Х	717	717	0	%100
78	EQUIP	Z	.414	.414	0	%100
79	M51	Х	717	717	0	%100
80	M51	Z	.414	.414	0	%100
81	M55A	Х	116	116	0	%100
82	M55A	Z	.067	.067	0	%100

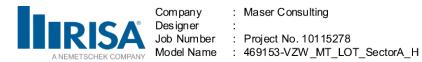

# Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	042	042	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	042	042	0	%100
8	M6	Z	0	0	0	%100



# Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

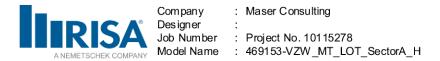
	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
9	M7	X	0	0		%100
10	M7	Z	0	0	0	%100
11	M8	×	055	055	0	%100
12	M8	Z	0	0	0	%100
13	M9	×	035	035	0	%100
14	M9	Z	0	0	0	%100
15	M10	×	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M10	X	268	268	0	%100
18	M11	Z	0	0	0	%100
19	M12	X	268	268	0	%100
20	M12	Z	0	0	0	%100
21	M12	X	268	268	0	%100
22	M13	Z	0	0	0	%100
23	M13	X	268	268	0	%100
24	M14	Z	0	0	0	%100
24	M14	X	665	665	0	%100
26	M15	Z	0	0	0	%100
20	M15	X	352	352	0	%100
28	M16	Z	0	0	0	%100
29	M10	X	665	665	0	%100
30	M17	Z	0	005	0	%100
31	M18	X	352	352	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	665	665	0	%100
34	M19	Z	005	005	0	%100
35	M20	X	665	665	0	%100
36	M20	Z	005	005	0	%100
30	M20 M21	X	665	665	0	<u>%100</u> %100
38	M21	Z	005	0	0	%100
39		X	382			
40	M22 M22	Z	382	382 0	0	<u>%100</u> %100
40		X	382	382	0	%100
41	M23	Z	302	362	0	
42	M23					<u>%100</u>
	M24	X Z	402	402	0	%100
44	M24		0	0	0	<u>%100</u>
45	M25	X 7	665	665 0	0	%100 %100
46 47	M25	Z X	0		0	<u>%100</u>
	M26		665	665 0	0	<u>%100</u>
48	M26	Z	0		0	<u>%100</u>
49	M27	X	352	352	0	%100
50	M27	Z	0	0	0	<u>%100</u>
51	M28	X	665	665	0	%100
52	M28	Z	0	0	0	<u>%100</u>
53	M29	X	352	352	0	%100
54	M29	Z	0	0	0	<u>%100</u>
55	M30	X	665	665	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	665	665	0	%100
58	M31	Z	0	0	0	%100
59	M32	X	665	665	0	%100
60	M32	Z	0	0	0	%100
	3D Version 17 0 4	( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )		\RISA\469153-\/7\	A NATIOTA IL	dl Page 105




# Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
61	M33	Х	382	382	0	%100
62	M33	Z	0	0	0	%100
63	M34	Х	382	382	0	%100
64	M34	Z	0	0	0	%100
65	M35	Х	402	402	0	%100
66	M35	Z	0	0	0	%100
67	M36	Х	665	665	0	%100
68	M36	Z	0	0	0	%100
69	MP4A	Х	527	527	0	%100
70	MP4A	Z	0	0	0	%100
71	MP3A	Х	527	527	0	%100
72	MP3A	Z	0	0	0	%100
73	MP2A	Х	527	527	0	%100
74	MP2A	Z	0	0	0	%100
75	MP1A	Х	527	527	0	%100
76	MP1A	Z	0	0	0	%100
77	EQUIP	Х	828	828	0	%100
78	EQUIP	Z	0	0	0	%100
79	M51	Х	828	828	0	%100
80	M51	Z	0	0	0	%100
81	M55A	Х	397	397	0	%100
82	M55A	Z	0	0	0	%100

#### Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

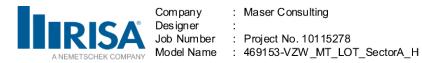

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	144	144	0	%100
2	M1	Z	083	083	0	%100
3	M3	Х	144	- 144	0	%100
4	M3	Z	083	083	0	%100
5	M5	Х	068	068	0	%100
6	M5	Z	039	039	0	%100
7	M6	Х	005	005	0	%100
8	M6	Z	003	003	0	%100
9	M7	Х	138	138	0	%100
10	M7	Z	08	08	0	%100
11	M8	Х	071	071	0	%100
12	M8	Z	041	041	0	%100
13	M9	Х	002	002	0	%100
14	M9	Z	001	001	0	%100
15	M10	Х	138	138	0	%100
16	M10	Z	08	08	0	%100
17	M11	Х	428	428	0	%100
18	M11	Z	247	247	0	%100
19	M12	Х	033	033	0	%100
20	M12	Z	019	019	0	%100
21	M13	Х	428	428	0	%100
22	M13	Z	247	247	0	%100
23	M14	Х	033	033	0	%100
24	M14	Z	019	019	0	%100
25	M15	Х	451	451	0	%100
26	M15	Z	26	26	0	%100



#### Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

Member Label         Direction         Start Magnitude[b/R., End Magnitude[b/R., Start Lecator(n, %)         End Lecator(n, %)         %100           28         M16         Z        145        145         0         %100           30         M17         X        461        461         0         %100           30         M17         Z        26        262         0         %100           31         M18         Z        145        145         0         %100           33         M19         X        458         0         %100           34         M19         Z        264         .264         0         %100           35         M20         Z        266         .26         0         %100           36         M21         Z        266         .26         0         %100           39         M22         X        331        331         0         %100           41         M23         X        331        331         0         %100           42         M23         Z        191         .191         0         %100           42		Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft E	Start Location[in %]	End Location[in,%]
28         M16         Z        145        145         0         %100           30         M17         Z        26        26         0         %100           31         M18         X        222        26         0         %100           32         M18         Z        145        145         0         %100           33         M19         X        463        463         0         %100           34         M19         Z        264        264         0         %100           36         M20         Z        26        26         0         %100           37         M21         X        451        451         0         %100           38         M21         Z        911        911         0         %100           40         M22         Z        911        911         0         %100           41         M23         X        331        331         0         %100           43         M24         Z        201         .201         0         %100           44         M24	27						
29         M17         X         -451         -451         0         %100           30         M17         Z         -26         -26         0         %100           31         M18         Z         -145         -145         0         %100           32         M18         Z         -145         -468         0         %100           34         M19         Z         -264         -264         0         %100           35         M20         Z         -26         -26         0         %100           36         M20         Z         -26         -26         0         %100           38         M21         Z         -26         -26         0         %100           39         M22         X         -331         -331         0         %100           41         M23         X         -331         -331         0         %100           42         M22         Z         -191         -191         0         %100           43         M24         X         -348         -348         0         %100           44         M24         Z         -2			7				
30         M17         Z $-26$ $-26$ 0 $\$100$ 31         M18         X $-252$ $-252$ 0 $\$100$ 32         M18         Z $-145$ $-145$ 0 $\$100$ 33         M19         X $-458$ $-458$ 0 $\$100$ 34         M19         Z $-264$ $-264$ $0$ $\$100$ 36         M20         X $-451$ 0 $\$100$ 37         M21         X $-451$ 0 $\$100$ 38         M21         Z $-331$ $-331$ 0 $\$100$ 40         M22         Z $-191$ $-191$ 0 $\$100$ 41         M23         Z $-191$ $-211$ 0 $\$100$ 43         M24         X $-348$ $-348$ 0 $\$100$ 44         M26         Z $-266$ $-266$ 0 $\$100$ 45         M25							
31         M18         X $-252$ $-252$ 0         %100           32         M18         Z $-145$ $-145$ 0         %100           33         M19         X $-458$ $-145$ 0         %100           34         M19         Z $-264$ $-264$ 0         %100           36         M20         Z $-26$ $-26$ 0         %100           37         M21         Z $-26$ $-26$ 0         %100           38         M21         Z $-26$ $-26$ 0         %100           40         M22         Z $-1911$ $-1911$ 0         %100           41         M23         Z $-1911$ $-1911$ 0         %100           43         M24         X $-348$ $-348$ 0         %100           44         M24         Z $-2011$ $-201$ 0         %100           46         M25         Z $-264$ $-26$ 0         %100           47							
32         M18         Z        145        145         0         %100           33         M19         X        458        458         0         %100           34         M19         Z        264        264         0         %100           35         M20         X        451        451         0         %100           36         M20         Z        26        26         0         %100           37         M21         X        451        451         0         %100           38         M21         Z        26        26         0         %100           39         M22         X        331        331         0         %100           41         M23         Z        191        191         0         %100           42         M23         Z        201        201         0         %100           44         M24         Z        201        201         0         %100           45         M25         Z        264         .264         0         %100           46         M27							
33         M19         X        458        458         0         %100           34         M19         Z        264        264         0         %100           35         M20         Z        26        26         0         %100           36         M20         Z        26        26         0         %100           38         M21         Z        26        26         0         %100           38         M21         Z        26        26         0         %100           40         M22         X        331        331         0         %100           41         M23         X        331        331         0         %100           42         M23         Z         -191        191         0         %100           43         M24         X        348        348         0         %100           44         M24         Z        201        201         0         %100           47         M26         Z        264        264         0         %100           47         M26 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
34         M19         Z        264        264         0         %100           35         M20         X        451        461         0         %100           36         M20         Z        26        26         0         %100           37         M21         X        451        451         0         %100           38         M21         Z        26        26         0         %100           39         M22         X        331        331         0         %100           41         M23         X        331        331         0         %100           41         M23         Z        191        191         0         %100           44         M24         X        348        348         0         %100           44         M26         Z        264        264         0         %100           45         M26         Z        266        266         0         %100           47         M26         X        451        461         0         %100           50         M27							
35         M20         X        451        451         0         %100           37         M21         X        26        26         0         %100           38         M21         Z        26        26         0         %100           38         M21         Z        26        26         0         %100           40         M22         X        331        331         0         %100           40         M22         Z        191        191         0         %100           41         M23         X        331        331         0         %100           43         M24         X        348        348         0         %100           44         M24         Z        201        201         0         %100           45         M25         Z        264        264         0         %100           46         M27         X        357        367         0         %100           50         M27         Z        266        266         0         %100           51         M28							
86         M20         Z        26        28         0         %100           37         M21         X        451        451         0         %100           38         M21         Z        26        26         0         %100           39         M22         X        331        331         0         %100           40         M22         Z        191        191         0         %100           41         M23         X        348        348         0         %100           44         M24         X        348        348         0         %100           44         M24         Z        261        264         0         %100           45         M25         Z        264        264         0         %100           46         M25         Z        266        266         0         %100           48         M26         Z        266        266         0         %100           50         M27         Z        206        266         0         %100           51         M28							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
38         M21         Z $-26$ $-28$ 0         %100           39         M22         X $-331$ $-331$ 0         %100           40         M22         Z $-191$ $-191$ 0         %100           41         M23         X $-331$ $-331$ 0         %100           42         M23         Z $-191$ $-191$ 0         %100           43         M24         X $-348$ $-348$ $0$ %100           44         M24         Z $-201$ $-201$ 0         %100           44         M24         Z $-261$ $-264$ $0$ %100           45         M25         Z $-264$ $-264$ $0$ %100           48         M26         Z $-266$ $-226$ $0$ %100           50         M27         Z $-266$ $-226$ $0$ %100           51         M28         X $-357$ $0$ %100           54							
99         M22         X $-331$ $-331$ 0         %100           40         M22         Z $-191$ $-191$ 0         %100           41         M23         X $-331$ $-331$ 0         %100           42         M23         Z $-191$ $-191$ $0$ %100           44         M24         X $-348$ $-348$ 0         %100           44         M24         Z $-201$ $-201$ 0         %100           45         M25         X $-458$ $-458$ 0         %100           46         M25         Z $-264$ $-264$ 0         %100           47         M26         X $-451$ $-451$ 0         %100           50         M27         Z $-206$ $-226$ 0         %100           51         M28         X $-451$ $-451$ 0         %100           52         M28         Z $-264$ $-264$ 0         %100           53 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
40         M22         Z $\cdot$ ,191 $\cdot$ ,191         0         %100           41         M23         X $\cdot$ ,331 $\cdot$ ,331         0         %100           42         M23         Z $\cdot$ ,191 $\cdot$ ,948 $\cdot$ ,348         0         %100           43         M24         X $\cdot$ ,348 $\cdot$ ,348         0         %100           45         M25         X $\cdot$ ,458 $\cdot$ ,458         0         %100           46         M25         Z $\cdot$ ,264 $\cdot$ ,264         0         %100           47         M26         X $\cdot$ ,451 $\cdot$ ,451 $0$ %100           48         M26         Z $\cdot$ ,266 $-$ ,26         0         %100           50         M27         Z $-$ ,206 $-$ ,266         0         %100           51         M28         X $-$ ,451 $-$ ,451         0         %100           53         M29         X $-$ ,357         0         %100           54         M29         Z $-$ ,266 $-$ ,266         0         %100							
41       M23       X $331$ $331$ 0       %100         42       M23       Z $191$ $191$ 0       %100         43       M24       X $348$ $348$ 0       %100         44       M24       Z $201$ $201$ 0       %100         44       M24       Z $201$ $201$ 0       %100         45       M25       X $458$ $458$ 0       %100         46       M25       Z $264$ $264$ 0       %100         47       M26       X $451$ $451$ 0       %100         48       M27       X $357$ $357$ 0       %100         50       M27       Z $266$ $266$ 0       %100         51       M28       Z $266$ $266$ 0       %100         53       M29       X $357$ 0       %100       56         56       M30       Z $264$ $264$ 0       %100							
42       M23       Z $\cdot,191$ $\cdot,191$ 0 $\%100$ 43       M24       X $\cdot,348$ $\cdot,348$ 0 $\%100$ 44       M24       Z $\cdot,201$ $\cdot,201$ 0 $\%100$ 45       M25       X $\cdot,458$ $\cdot,458$ 0 $\%100$ 46       M25       Z $\cdot,264$ $\cdot,264$ 0 $\%100$ 47       M26       X $-,451$ $-,451$ $0$ $\%100$ 48       M26       Z $-,26$ $26$ 0 $\%100$ 50       M27       Z $357$ $357$ 0 $\%100$ 51       M28       Z $26$ $26$ 0 $\%100$ 52       M28       Z $26$ $26$ 0 $\%100$ 53       M29       X $357$ $367$ 0 $\%100$ 54       M29       Z $206$ $266$ 0 $\%100$ 56       M30       Z $264$ $266$ 0 $\%100$							
43         M24         X $348$ $348$ $348$ $0$ $\%100$ 44         M24         Z $201$ $201$ $0$ $\%100$ 45         M25         X $458$ $458$ $0.488$ $0$ $\%100$ 46         M25         Z $264$ $264$ $0$ $\%100$ 47         M26         X $451$ $451$ $0$ $\%100$ 48         M27         X $357$ $357$ $0$ $\%100$ 50         M27         Z $206$ $266$ $0$ $\%100$ 51         M28         X $451$ $451$ $0$ $\%100$ 53         M29         X $357$ $0$ $\%100$ 54         M29         Z $266$ $264$ $0$ $\%100$ 56         M30         Z $264$ $264$ $0$ $\%100$ 57         M31         X $451$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
44M24Z2012010 $\%100$ 45M25X4584580 $\%100$ 46M25Z2642640 $\%100$ 47M26X4514510 $\%100$ 48M26Z26260 $\%100$ 49M27X3573570 $\%100$ 50M27Z2062060 $\%100$ 51M28Z26260 $\%100$ 52M28Z26260 $\%100$ 53M29X3573570 $\%100$ 54M29Z2062060 $\%100$ 55M30X4584580 $\%100$ 56M30Z2642640 $\%100$ 57M31X4514510 $\%100$ 58M31Z26260 $\%100$ 59M32X4514510 $\%100$ 61M33Z1911910 $\%100$ 63M34X3313310 $\%100$ 64M34Z1911910 $\%100$ 65M35X4584580 $\%100$ 66M35Z2642640 $\%100$ 67M36Z264 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
45M25X4584580 $\%100$ 46M25Z2642640 $\%100$ 47M26X4514510 $\%100$ 48M26Z26260 $\%100$ 49M27X3573570 $\%100$ 50M27Z2062060 $\%100$ 51M28X4514510 $\%100$ 52M28Z26260 $\%100$ 53M29X3573570 $\%100$ 54M29Z2062060 $\%100$ 55M30X4584580 $\%100$ 56M30Z2642640 $\%100$ 58M31Z26260 $\%100$ 59M32Z26260 $\%100$ 60M32Z26260 $\%100$ 61M33X3313310 $\%100$ 62M33Z1911910 $\%100$ 64M34Z266260 $\%100$ 65M36Z263260 $\%100$ 66M35Z266260 $\%100$ 66M35Z266260 $\%100$ 66M35Z263-							
46M25Z $264$ $264$ 0 $%100$ $47$ M26X $451$ $451$ 0 $%100$ $48$ M26Z $26$ $26$ 0 $%100$ $49$ M27X $357$ $367$ 0 $%100$ $50$ M27Z $206$ $206$ 0 $%100$ $51$ M28X $451$ 0 $%100$ $52$ M28Z $26$ $26$ 0 $%100$ $53$ M29X $357$ $357$ 0 $%100$ $54$ M29Z $206$ $206$ 0 $%100$ $55$ M30X $4458$ $458$ 0 $%100$ $56$ M30Z $264$ $264$ 0 $%100$ $57$ M31X $451$ $451$ 0 $%100$ $58$ M31Z $26$ $26$ 0 $%100$ $60$ M32Z $26$ $26$ 0 $%100$ $61$ M33X $331$ $331$ 0 $%100$ $64$ M34Z $191$ $191$ 0 $%100$ $65$ M35X $348$ $348$ 0 $%100$ $64$ M34Z $264$ $264$ 0 $%100$ $65$ M35X $348$ $348$ 0 $%100$ $66$ M36Z $264$ $264$ 0 $%100$ $66$ M36Z<							
47M26X $451$ $451$ 0 $\%100$ 48M26Z $26$ $26$ 0 $\%100$ 49M27X $357$ $357$ 0 $\%100$ 50M27Z $206$ $206$ 0 $\%100$ 51M28X $451$ $451$ 0 $\%100$ 52M28Z $266$ $266$ 0 $\%100$ 53M29X $357$ 0 $\%100$ 54M29Z $206$ $206$ 0 $\%100$ 56M30Z $264$ $264$ 0 $\%100$ 56M30Z $264$ $264$ 0 $\%100$ 58M31Z $26$ $26$ 0 $\%100$ 59M32X $451$ $451$ 0 $\%100$ 60M32Z $26$ $26$ 0 $\%100$ 61M33X $331$ $331$ 0 $\%100$ 63M34X $331$ $331$ 0 $\%100$ 64M34Z $191$ $191$ 0 $\%100$ 65M36X $458$ $458$ 0 $\%100$ 66M35Z $264$ $264$ 0 $\%100$ 66M36Z $263$ $263$ 0 $\%100$ 67M36X $458$ $458$ 0 $\%100$ 68M36Z $264$ $264$ 0							
48M26Z $26$ $26$ $0$ $\%100$ 49M27X $357$ $357$ $0$ $\%100$ 50M27Z $206$ $206$ $0$ $\%100$ 51M28X $451$ $451$ $0$ $\%100$ 52M28Z $266$ $266$ $0$ $\%100$ 53M29X $357$ $357$ $0$ $\%100$ 54M29Z $206$ $206$ $0$ $\%100$ 55M30X $458$ $458$ $0$ $\%100$ 56M30Z $264$ $264$ $0$ $\%100$ 57M31X $451$ $451$ $0$ $\%100$ 58M31Z $266$ $266$ $0$ $\%100$ 60M32Z $266$ $266$ $0$ $\%100$ 61M33X $331$ $331$ $0$ $\%100$ 62M33Z $191$ $191$ $0$ $\%100$ 63M34X $331$ $331$ $0$ $\%100$ 64M34Z $201$ $201$ $0$ $\%100$ 65M35X $348$ $348$ $0$ $\%100$ 66M35Z $201$ $201$ $0$ $\%100$ 67M36X $456$ $456$ $0$ $\%100$ 68M36Z $263$ $263$ $0$ $\%100$ 70							
49         M27         X        357        357         0         %100           50         M27         Z        206        206         0         %100           51         M28         X        451         .451         0         %100           52         M28         Z        26        26         0         %100           53         M29         X        357         .357         0         %100           54         M29         Z        206        206         0         %100           55         M30         X        458        458         0         %100           56         M30         Z        266         .26         0         %100           58         M31         Z        26         .26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26         .26         0         %100           61         M33         Z        191         .451         0         %100           62         M33         Z </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
50         M27         Z        206        206         0         %100           51         M28         X        451        451         0         %100           52         M28         Z        26         .26         0         %100           53         M29         X        357        357         0         %100           54         M29         Z        206        206         0         %100           56         M30         Z        264        264         0         %100           56         M31         X        451        451         0         %100           58         M31         Z        266        26         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34							
51         M28         X        451        451         0         %100           52         M28         Z        26        26         0         %100           53         M29         X        357        357         0         %100           54         M29         Z        206        206         0         %100           55         M30         X        458        458         0         %100           56         M30         Z        264        264         0         %100           58         M31         Z        26        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34							
52         M28         Z        26        26         0         %100           53         M29         X        357        357         0         %100           54         M29         Z        206        206         0         %100           55         M30         X        458        458         0         %100           56         M30         Z        264        264         0         %100           58         M31         Z        266        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191        191         0         %100           65         M35							
53         M29         X        357        357         0         %100           54         M29         Z        206        206         0         %100           55         M30         X        458        458         0         %100           56         M30         Z        264        264         0         %100           57         M31         X        451        451         0         %100           58         M31         Z        26        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191         .191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        201         0         %100         6           65         M35 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
54         M29         Z        206        206         0         %100           55         M30         X        458        458         0         %100           56         M30         Z        264        264         0         %100           57         M31         X        451        451         0         %100           58         M31         Z        26        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191        191         0         %100           66         M35         Z        201         .201         0         %100           67         M36							
55         M30         X        458        458         0         %100           56         M30         Z        264        264         0         %100           57         M31         X        451        451         0         %100           58         M31         Z        26        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191        191         0         %100           65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36							
56         M30         Z        264        264         0         %100           57         M31         X        451        451         0         %100           58         M31         Z        26        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z         .191         .191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z         .191         .191         0         %100           65         M35         X         .348         .348         0         %100           66         M35         Z         .201         .201         0         %100           68         M36         Z         .263         .458         0         %100           70         MP4A         Z </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
57         M31         X        451        451         0         %100           58         M31         Z        26        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191        191         0         %100           65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36         X        458        4458         0         %100           68         M36         Z        264        264         0         %100           70         MP4A							
58         M31         Z        26        26         0         %100           59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191         .191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191         .191         0         %100           65         M35         X        348         .348         0         %100           66         M35         Z        201         .201         0         %100           67         M36         X        458         .458         0         %100           68         M36         Z        264         .264         0         %100           70         MP4A         X        456        456         0         %100           72         MP3A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
59         M32         X        451        451         0         %100           60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191         0         %100         %100           65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           70         MP4A         X        456        456         0         %100           71         MP3A         Z        263        263         0         %100           72         MP3A			X				
60         M32         Z        26        26         0         %100           61         M33         X        331        331         0         %100           62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191        191         0         %100           65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           71         MP3A         Z        263        263         0         %100           71         MP3A         Z        263        263         0         %100           72         MP3A						0	
61       M33       X      331      331       0       %100         62       M33       Z      191      191       0       %100         63       M34       X      331      331       0       %100         64       M34       Z      191      191       0       %100         64       M34       Z      191      191       0       %100         65       M35       X      348      348       0       %100         66       M35       Z      201      201       0       %100         67       M36       X      458      458       0       %100         68       M36       Z      264      264       0       %100         69       MP4A       X      456      456       0       %100         71       MP3A       Z      263      263       0       %100         72       MP3A       Z      263      263       0       %100         73       MP2A       Z      263      263       0       %100         74       MP2A       <			X				
62         M33         Z        191        191         0         %100           63         M34         X        331        331         0         %100           64         M34         Z        191        191         0         %100           65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         Z        263        263         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         Z        263        263         0         %100           74         MP2A </td <td>60</td> <td>M32</td> <td></td> <td>26</td> <td>26</td> <td>0</td> <td>%100</td>	60	M32		26	26	0	%100
63         M34         X        331        331         0         %100           64         M34         Z        191        191         0         %100           65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         Z        263        263         0         %100           71         MP3A         Z        263        263         0         %100           73         MP2A         Z        263        263         0         %100           74         MP2A         Z        263        263         0         %100           76         MP1A<		M33		331	331	0	%100
64         M34         Z        191        191         0         %100           65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263         .263         0         %100           71         MP3A         Z        263         0         %100           72         MP3A         Z        263         0         %100           73         MP2A         Z        263         0         %100           74         MP2A         Z        263         0         %100           75         MP1A         X        456         0         %100           76         MP1A         Z        263        263         0         %100	62	M33	Z	191	191	0	%100
65         M35         X        348        348         0         %100           66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         Z        263        263         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           76         MP1A         Z        263        263         0         %100           77         EQU	63	M34	Х	331	331	0	%100
66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         X        456        456         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           75         MP1A         X        263        263         0         %100           76         MP1A         Z        263        263         0         %100           77         EQ	64	M34		191	191	0	%100
66         M35         Z        201        201         0         %100           67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         X        456        456         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           75         MP1A         X        263        263         0         %100           76         MP1A         Z        263        263         0         %100           77         EQ	65	M35		348	348	0	%100
67         M36         X        458        458         0         %100           68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         X        456        456         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         Z        263        263         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           75         MP1A         Z        263        263         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78						0	
68         M36         Z        264        264         0         %100           69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         X        456        456         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         Z        263        263         0         %100           74         MP2A         Z        263        263         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           75         MP1A         Z        263        263         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78 <td< td=""><td></td><td></td><td>Х</td><td></td><td></td><td>0</td><td></td></td<>			Х			0	
69         MP4A         X        456        456         0         %100           70         MP4A         Z        263        263         0         %100           71         MP3A         X        456        456         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           75         MP1A         X        456        456         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414        414         0         %100			Z				
70         MP4A         Z        263        263         0         %100           71         MP3A         X        456        456         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         Z        263        263         0         %100           76         MP1A         Z        263        263         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414        414         0         %100							
71         MP3A         X        456        456         0         %100           72         MP3A         Z        263        263         0         %100           73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           76         MP1A         Z        263        263         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        414        414         0         %100           78         EQUIP         Z        414        414         0         %100							
72         MP3A         Z        263        263         0         %100           73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           76         MP1A         Z        263        263         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414        414         0         %100							
73         MP2A         X        456        456         0         %100           74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414         0         %100			Z				
74         MP2A         Z        263        263         0         %100           75         MP1A         X        456        456         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414        414         0         %100							
75         MP1A         X        456        456         0         %100           76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414         0         %100			Z				
76         MP1A         Z        263        263         0         %100           77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414        414         0         %100							
77         EQUIP         X        717        717         0         %100           78         EQUIP         Z        414        414         0         %100			7				
78         EQUIP         Z        414         0         %100							
				, F			

 RISA-3D Version 17.0.4
 [\...\...\...\...\...\...\...\...\...\RISA\469153-VZW_MT_LOT_A_H.r3d]
 Page 107




#### Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

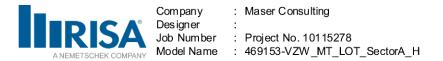
	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
79	M51	Х	717	717	0	%100
80	M51	Z	414	414	0	%100
81	M55A	Х	456	456	0	%100
82	M55A	Z	263	263	0	%100

#### Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	Х	249	249	0	%100
2	M1	Z	432	432	0	%100
3	M3	Х	249	249	0	%100
4	M3	Z	432	432	0	%100
5	M5	Х	039	039	0	%100
6	M5	Z	067	067	0	%100
7	M6	Х	003	003	0	%100
8	M6	Z	004	004	0	%100
9	M7	Х	239	239	0	%100
10	M7	Z	414	414	0	%100
11	M8	Х	034	034	0	%100
12	M8	Z	06	06	0	%100
13	M9	Х	005	005	0	%100
14	M9	Z	008	008	0	%100
15	M10	Х	239	239	0	%100
16	M10	Z	414	414	0	%100
17	M11	Х	244	244	0	%100
18	M11	Z	423	423	0	%100
19	M12	Х	016	016	0	%100
20	M12	Z	028	028	0	%100
21	M13	Х	244	244	0	%100
22	M13	Z	423	423	0	%100
23	M14	Х	016	016	0	%100
24	M14	Z	028	028	0	%100
25	M15	Х	116	116	0	%100
26	M15	Z	201	201	0	%100
27	M16	Х	145	145	0	%100
28	M16	Z	251	251	0	%100
29	M17	Х	116	116	0	%100
30	M17	Z	201	201	0	%100
31	M18	Х	145	145	0	%100
32	M18	Z	251	251	0	%100
33	M19	Х	127	127	0	%100
34	M19	Z	221	221	0	%100
35	M20	Х	116	116	0	%100
36	M20	Z	201	201	0	%100
37	M21	Х	116	116	0	%100
38	M21	Z	201	201	0	%100
39	M22	Х	191	191	0	%100
40	M22	Z	331	331	0	%100
41	M23	Х	191	191	0	%100
42	M23	Z	331	331	0	%100
43	M24	Х	201	201	0	%100
44	M24	Z	348	348	0	%100



#### Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
45	M25	Х	127	127	0	%100
46	M25	Z	221	221	0	%100
47	M26	Х	116	116	0	%100
48	M26	Z	201	201	0	%100
49	M27	Х	206	206	0	%100
50	M27	Z	356	356	0	%100
51	M28	Х	116	116	0	%100
52	M28	Z	201	201	0	%100
53	M29	Х	206	206	0	%100
54	M29	Z	356	356	0	%100
55	M30	Х	127	127	0	%100
56	M30	Z	221	221	0	%100
57	M31	Х	116	116	0	%100
58	M31	Z	201	201	0	%100
59	M32	Х	116	116	0	%100
60	M32	Z	201	201	0	%100
61	M33	Х	191	191	0	%100
62	M33	Z	331	331	0	%100
63	M34	Х	191	191	0	%100
64	M34	Z	331	331	0	%100
65	M35	Х	201	201	0	%100
66	M35	Z	348	348	0	%100
67	M36	Х	127	127	0	%100
68	M36	Z	221	221	0	%100
69	MP4A	Х	263	263	0	%100
70	MP4A	Z	456	456	0	%100
71	MP3A	Х	263	263	0	%100
72	MP3A	Z	456	456	0	%100
73	MP2A	Х	263	263	0	%100
74	MP2A	Z	456	456	0	%100
75	MP1A	Х	263	263	0	%100
76	MP1A	Z	456	456	0	%100
77	EQUIP	Х	414	414	0	%100
78	EQUIP	Z	717	717	0	%100
79	M51	Х	414	414	0	%100
80	M51	Z	717	717	0	%100
81	M55A	Х	197	197	0	%100
82	M55A	Z	341	341	0	%100

#### Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		N	o Data to Prin	t		

#### **Envelope Joint Reactions**

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N4	max	1568.348	46	1724.94	16	295.414	1	213	11	0	51	.148	28
2		min	-1634.451	28	729.688	10	-4248.7	19	504	16	0	1	103	46
3	N65	max	1556.315	32	1445.648	22	4162.553	24	193	1	0	51	.078	28
4		min	-1491.235	38	616.162	4	277.578	6	442	19	0	1	144	46

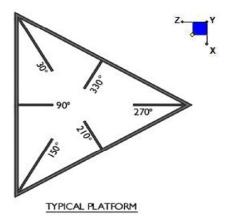


#### Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
5	N71	max	654.601	10	29.323	22	1113.054	4	0	51	0	51	0	51
6		min	-652.537	4	10.11	4	-1111.314	10	0	1	0	1	0	1
7	Totals:	max	2058.181	10	3183.434	17	2950.536	1						
8		min	-2058.181	4	1429.389	11	-2950.543	7						

#### Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	.Loc[in]	LC	Shear	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn v	.phi*Mn z	Cb Eqn
1	M1	L4X3X6	.000	3.375		.000	3.375			80199.017	80676	2.686	7.063	1 H2-1
2	M3	L4X3X6	.000	2.883	20	.000	2.883	z	24	80199.017	80676	2.686	7.063	1 H2-1
3	M5	PL3/8X3_HR	.657	0	47	.157	3	y	46	34985.705	36450	.284	2.279	1 H1-1b
4	M6	PL3/8X3_HR	.763	0	27	.202	3	У	28	34985.705	36450	.284	2.279	1 H1-1b
5	M7	PIPE_2.5	.475	142.5	6	.129	142.5		4	10110.272	50715	3.596	3.596	1 H1-1b
6	M8	PL3/8X3_HR	.609	0	23	.242	2.718	У	46	35243.369	36450	.284	2.279	1 H1-1b
7	M9	PL3/8X3_HR	.685	0	28	.122	3.426	y	10	34551.762	36450	.284	2.279	1 H1-1b
8	M10	PIPE_2.5	.375	142.5	12	.172	142.5		4	10110.272	50715	3.596	3.596	2 H1-1b
9	M11	PIPE_2.0	.353	71.25	7	.109	64.57		46	21054.34	32130	1.872	1.872	2 H1-1b
10	M12	PIPE_2.0	.429	71.25	7	.128	0		28	21054.34	32130	1.872	1.872	2 H1-1b
11	M13	PIPE_2.0	.327	6.68	46	.123	64.57		47	21054.34	32130	1.872	1.872	2 H1-1b
12	M14	PIPE_2.0	.361	71.25	12	.135	64.57		26		32130	1.872	1.872	1 H1-1b
13	M15	PL3/8X3_HR	.058	0	27	.055	0	У	28	36078.278	36450	.284	2.279	1 H1-1b
14	M16	1.5 w 0.06 th	.328	24.587	15	.045	0		3	5200.823	8550.171	.327	.327	1 H1-1a
15	M17	PL3/8X3_HR	.080.	0	48	.038	0	у	4	36078.278	36450	.284	2.279	1 H1-1b
16	M18	1.5 w 0.06 th	.268	24.587	27	.081	0		6	5200.823	8550.171	.327	.327	1 H1-1a
17	M19	PL3/8X3_HR	.081	0	5	.088	0	У	10	30936.41	36450	.284	2.279	1 H1-1b
18	M20	PL3/8X3_HR	.027	1.5	49	.055	1.5	у	28	36078.278	36450	.284	2.279	1 H1-1b
19	M21	PL3/8X3_HR	.094	1.5	6	.038	1.5	У	4	36078.278	36450	.284	2.279	1 H1-1b
20	M22	1.5 w 0.06 th	.143	38	28	.042	0		4	6432.166	8550.171	.327	.327	1H1-1b*
21	M23	1.5 w 0.06 th	.286	0	26	.032	38		4	6432.166	8550.171	.327	.327	1 H1-1a
22	M24	PIPE_2.0	.033	0	29	.013	0		10	29957.096	32130	1.872	1.872	1H1-1b*
23	M25	PL3/8X3_HR	.072	6	12	.088	6	у	10	30936.41	36450	.284	2.279	1 H1-1b
24	M26	PL3/8X3_HR	.054	0	5	.064	0	у	4	36078.278	36450	.284	2.279	1 H1-1b
25	M27	1.5 w 0.06 th	.296	24.587	47	.040	0		4	5200.823	8550.171	.327	.327	1 H1-1a
26	M28	PL3/8X3_HR	.052	1.5	46	.049	0	У	4	36078.278	36450	.284	2.279	1H1-1b*
27	M29	1.5 w 0.06 th	.259	24.587	47	.053	0		1	5200.823	8550.171	.327	.327	1 H1-1a
28	M30	PL3/8X3_HR	.048	0	10	.044	0	У	5	30936.41	36450	.284	2.279	1 H1-1b
29	M31	PL3/8X3_HR	.038	1.5	46	.064	1.5	У	4	36078.278	36450	.284	2.279	1 H1-1b
30	M32	PL3/8X3_HR	.052	1.5	46	.049	1.5	У	4	36078.278	36450	.284	2.279	1H1-1b*
31	M33	1.5 w 0.06 th	.159	38	46	.051	0		4	6432.166	8550.171	.327	.327	1H1-1b*
32	M34	1.5 w 0.06 th	.300	0	47	.039	38		4	6432.166	8550.171	.327	.327	1 H1-1a
33	M35	PIPE_2.0	.029	0	45	.007	0		5	29957.096	32130	1.872	1.872	1H1-1b*
34	M36	PL3/8X3_HR	.041	6	39	.044	6	у	5	30936.41	36450	.284	2.279	1 H1-1b
35	MP4A	PIPE_2.0	.404	15	45	.141	55.5		6	20866.733	32130	1.872	1.872	1 H1-1b
36	MP3A	PIPE_2.0	.224	55.5	4	.067	55.5		4	20866.733	32130	1.872	1.872	1 H1-1b
37	MP2A	PIPE_2.0	.354	55.5	4	.085	41.25		4	20866.733	32130	1.872	1.872	1 H1-1b
38	MP1A	PIPE_2.0	.453	15	29	.184	55.5		8	20866.733	32130	1.872	1.872	1 H1-1b
39	M55A	PIPE_2.0	.063	73.858	4	.003	73.858		23	20401.184	32130	1.872	1.872	1H1-1b*




Client:	Verizon Wireless	Date:	11/15/2021
Site Name:	WESTPORT CT		
Project No.	21777772A		
Title:	Mount Fix	Page:	1
			Version 3.1

#### I. Mount-to-Tower Connection Check

#### RISA Model Data

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N4	90
N65	90



#### Tower Connection Bolt Checks

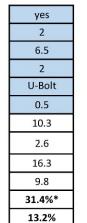
Any moment resistance?:

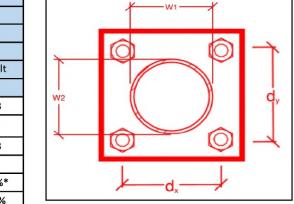
Bolt Quantity per Reaction:

 $\begin{array}{l} d_x \mbox{ (in) } (Delta \ X \ of \ typ. \ bolt \ config. \ sketch): \\ d_y \mbox{ (in) } (Delta \ Y \ of \ typ. \ bolt \ config. \ sketch): \\ Bolt \ Type: \end{array}$ 

Bolt Diameter (in):

Required Tensile Strength (kips):


Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:





*Note: Tension reduction not required if tension or shear capacity < 30%

# Mount Desktop – Post Modification Inspection (PMI) Report Requirements

# **Documents & Photos Required from Contractor – Mount Modification**

Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u> For additional questions and support, please reach out to pmisupport@colliersengineering.com

<u>**Purpose**</u> – to upload the proper documentation to the SMART Tool in order to allow the SMART Tool engineering vendor to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

#### **Base Requirements:**

- If installation of the modification will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the post-modification passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo shall be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: <u>https://pmi.vzwsmart.com</u>

#### Photo Requirements:

- Photos taken at ground level
  - Photo of Gate Signs showing the tower owner, site name, and number.
  - Overall tower structure after installation of the modifications.
  - Photos of the mount after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed
- Photos taken at Mount Elevation
  - Photos showing the safety climb wire rope above and below the mount prior to modification.
  - Photos showing the climbing facility and safety climb if present.
  - Photos showing each individual sector after installation of modifications. Each entire sector must be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed modification per the modification drawings; pictures shall also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the distances (relative distance between collars) of the installed modifications from the appropriate reference locations shown in the modification drawings.
- Photos showing the installed modifications onto the tower (i.e. ring/collar mounts, tiebacks, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, an elevation measurement shall be provided before the elevation change.

#### Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by the SMART Tool vendor.
  - $\circ$  ~ If the materials are as specified on the drawings
    - The contractor shall provide the packing list, or the materials certifications for the materials utilized to perform the mount modification
    - Commscope, Metrosite, Perfect Vision, Sabre, and Site Pro have all agreed to support Verizon vendors with the necessary material certifications
  - o If seeking permission to use an equivalent
    - It is required that the SMART Tool engineering vendor approval of such is included in the contractor submission package. There may be an additional charge for approval if the equivalent submission doesn't meet specifications as prescribed in the drawings.

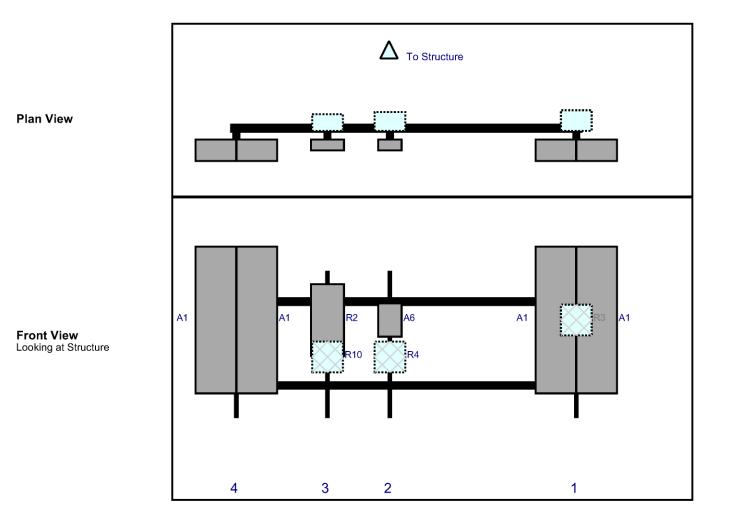
 $\Box$  All hardware has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified on the SMART Tool engineering vendor Mount Modification Drawings and included in the material certification folder is a packing list or invoice for these materials.

OR

□ The material utilized was approved by a SMART Tool as an "equivalent" and this approval is included as part of the contractor submission.


#### Antenna & equipment placement and Geometry Confirmation:


□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

 $\Box$  The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

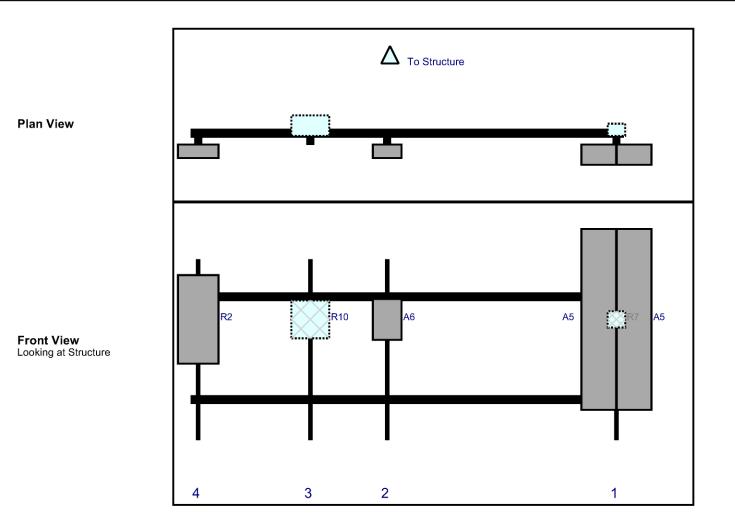
#### **Comments:**

Certifying Individual:	
Company:	
Employee Name:	
Contact Phone:	
Email:	
Date:	
Was the mount modifica	ation completed in conjunction with the equipment change / installation?
□ Yes □	No
Special Instructions / Va	lidation as required from the MA or Mod Drawings:
lssue:	
contractor shall inspec Contractor shall install s	It climbing facilities and ensure that the safety climb is in good condition. Safety climb wire rope guide in locations where the wire rope is rubbing against hments. Contractor shall provide photos of safety climb wire rope guide
Response:	
Contractor certifies that	the climbing facility / safety climb was not damaged or obstructed prior to
starting work:	
□ Yes □	No
Contractor certifies no n	new damage/obstructions created during the current installation:
□ Yes □	No
Contractor to certify the	condition of the safety climb and verify no obstructions when leaving the
site:	condition of the safety climb and verify no obstructions when leaving the
□ Safety climb in □ Safety Climb O	good condition with no obstructions
Comments:	





		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	MX06FRO640-02	72	19.8	169	1	а	Front	24	-10	Added	
A1	MX06FRO640-02	72	19.8	169	1	b	Front	24	10	Added	
R3	RF4439d-25A	15	15	169	1	а	Behind	24	0	Added	
A6	CBRS RRH + Clip-on Ant	16.2	11.4	78	2	а	Front	24	0	Retained	10/19/2021
R4	RF4440d-13A	15	15	78	2	а	Behind	42	0	Added	
R2	MT6407-77A	35.1	16.1	47.5	3	а	Front	24	0	Added	
R10	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	47.5	3	а	Behind	42	0	Retained	10/19/2021
A1	MX06FRO640-02	72	19.8	3	4	а	Front	24	-10	Added	
A1	MX06FRO640-02	72	19.8	3	4	b	Front	24	10	Added	


Copyright 2019 by Tower Engineering Solutions, LLC. All Rights Reserved





		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A5	JAHH-65B-R3B	72	13.8	169	1	а	Front	24	-7	Retained	10/19/2021
A5	JAHH-65B-R3B	72	13.8	169	1	b	Front	24	7	Retained	10/19/2021
R7	CBC78T-DS-43	6.4	6.9	169	1	а	Behind	24	0	Retained	10/19/2021
A6	CBRS RRH + Clip-on Ant	16.2	11.4	78	2	а	Front	24	0	Retained	10/19/2021
R10	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	47.5	3	а	Behind	24	0	Retained	10/19/2021
R2	MT6407-77A	35.1	16.1	3	4	а	Front	24	0	Added	





		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A5	JAHH-65B-R3B	72	13.8	169	1	а	Front	24	-7	Retained	10/19/2021
A5	JAHH-65B-R3B	72	13.8	169	1	b	Front	24	7	Retained	10/19/2021
R7	CBC78T-DS-43	6.4	6.9	169	1	а	Behind	24	0	Retained	10/19/2021
A6	CBRS RRH + Clip-on Ant	16.2	11.4	78	2	а	Front	24	0	Retained	10/19/2021
R10	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	47.5	3	а	Behind	24	0	Retained	10/19/2021
R2	MT6407-77A	35.1	16.1	3	4	а	Front	24	0	Added	



Subject

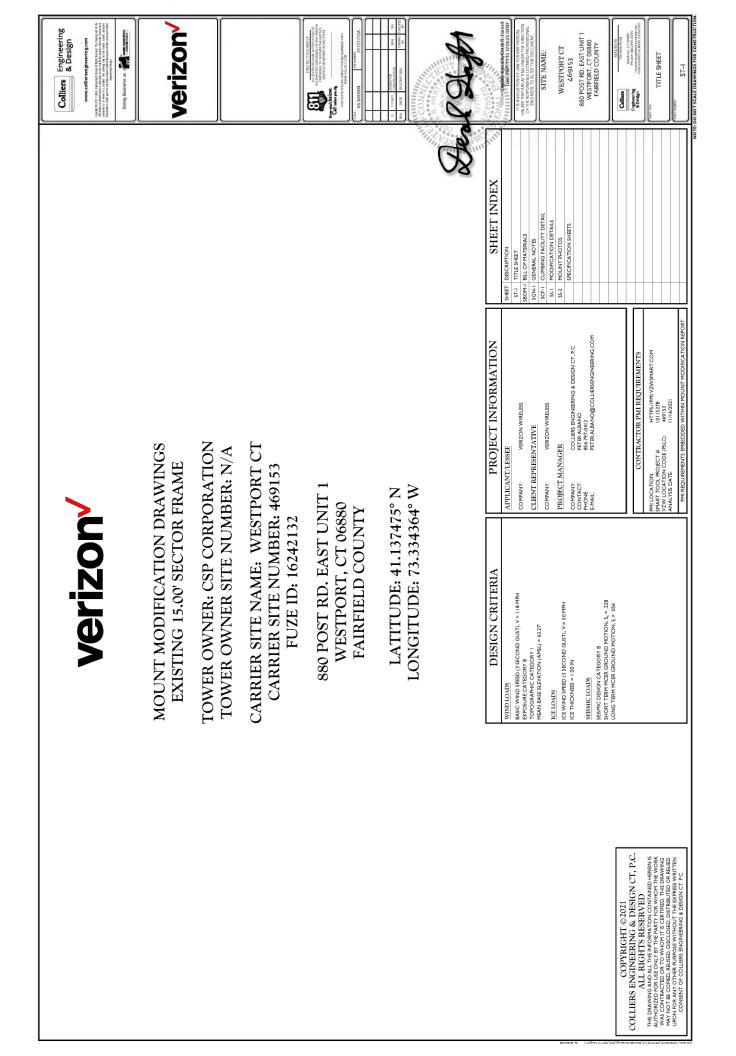
## **Maser Consulting Connecticut**

469153-VZW / WESTPORT CT Site Information Site ID: Site Name: WESTPORT CT Carrier Name: Verizon Wireless Address: 880 Post Rd. East Unit 1 Westport, Connecticut 06880 Fairfield County Latitude: 41.137475° -73.334364° Longitude: Structure Information Tower Type: 180-Ft Self Support Mount Type: 15.00-Ft Sector Frame FUZE ID # 16242132

TIA-222-H Usage

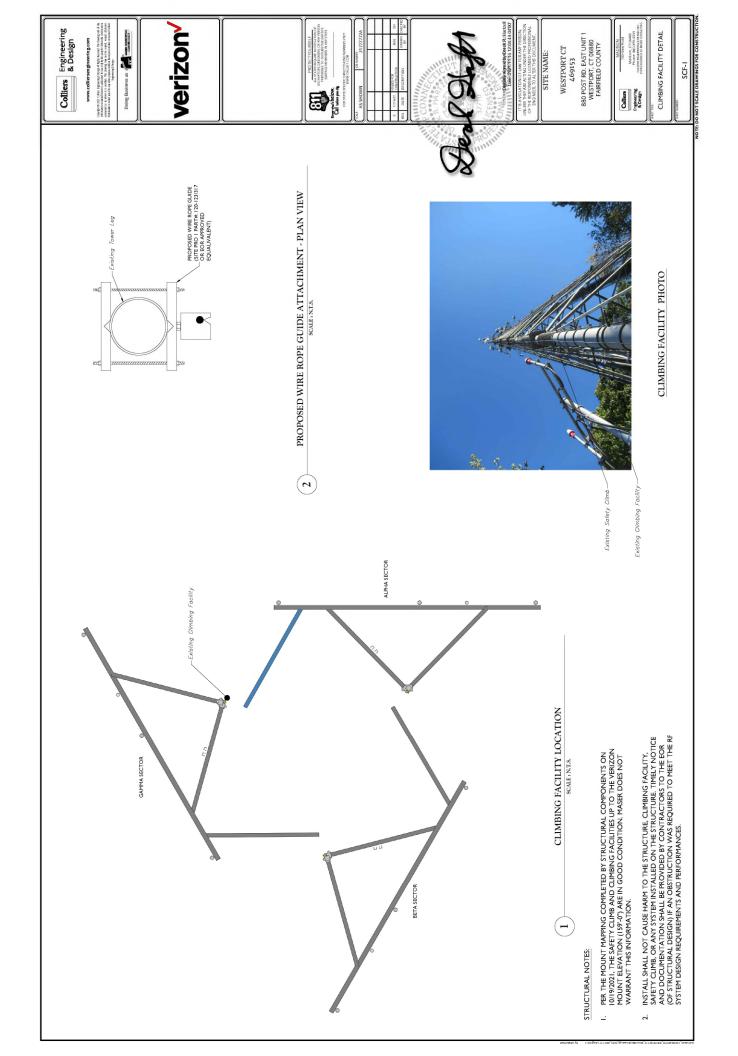
To Whom It May Concern,

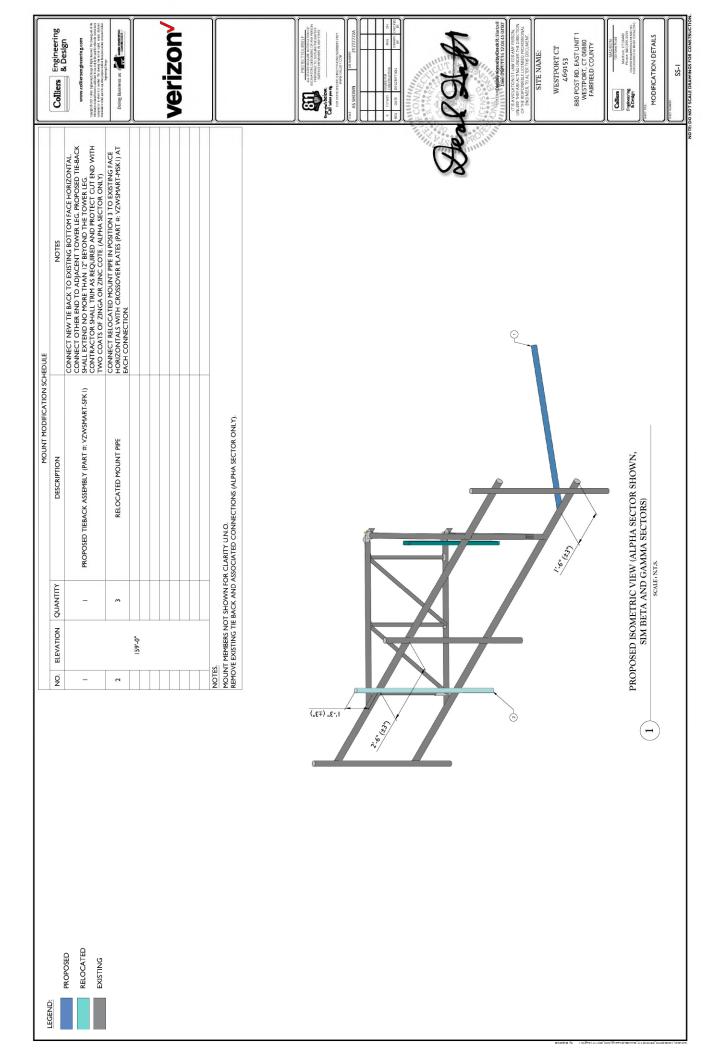
We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

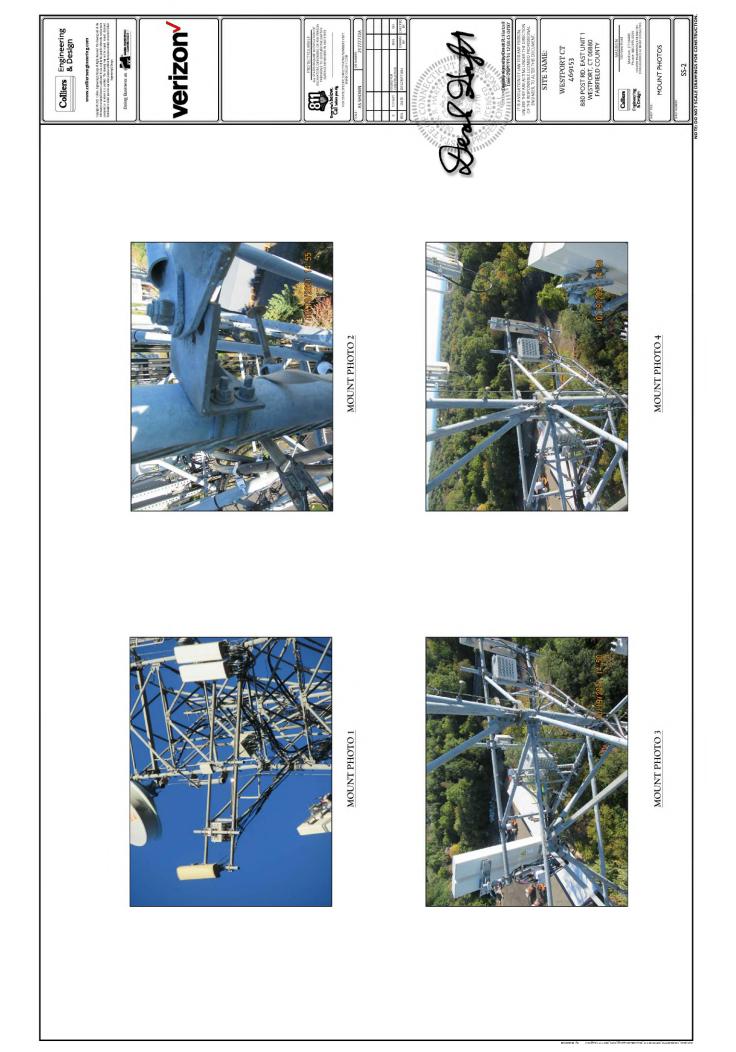

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

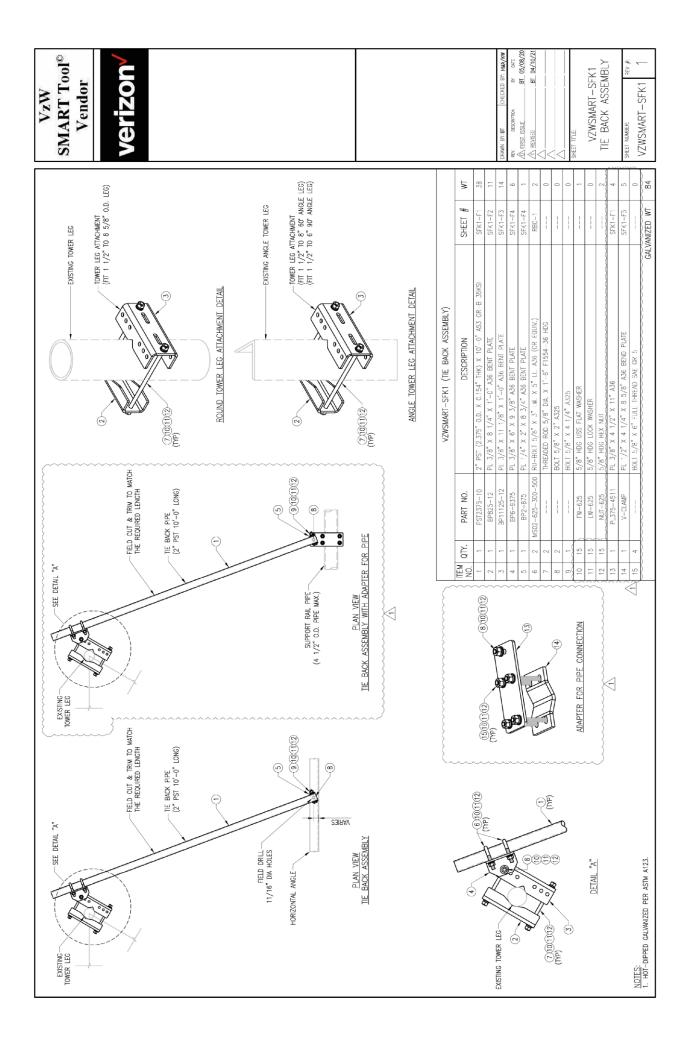
As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

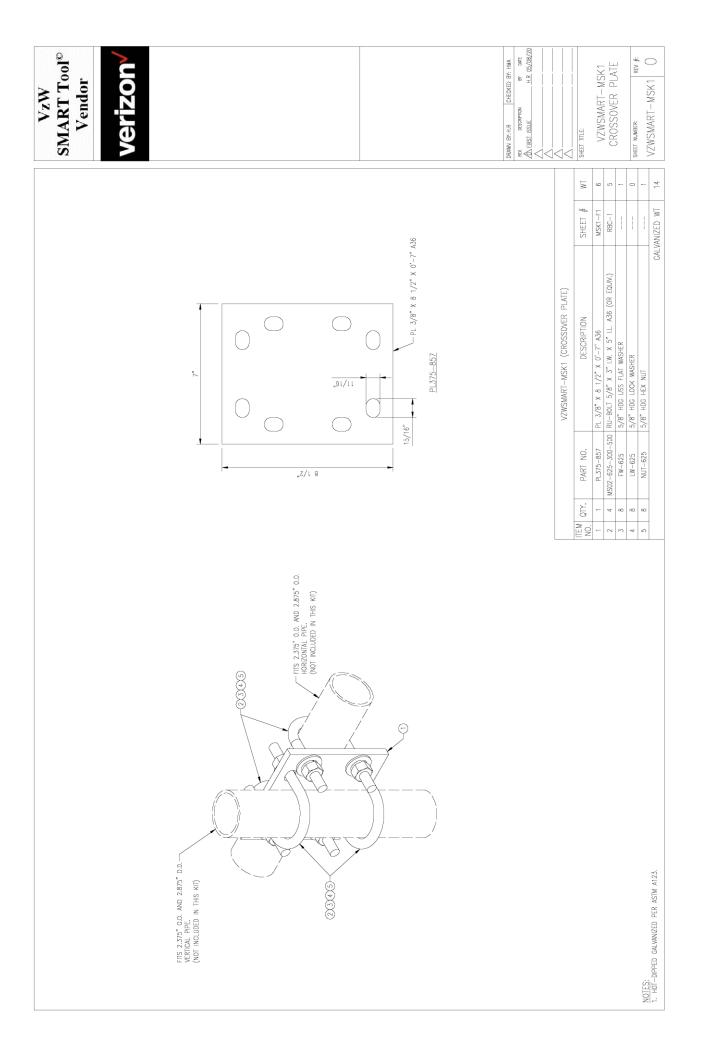
The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.


Sincerely,


Derek Hartzell, PE *U* Technical Specialist





Colliers Engineering & Design	www.coliiersengineering.com	reincreases and the second at the set of the party to work a second at the set of the party of the second at the set of the second at the set of the second at the set of the second at	Doing Business as		Verizon			INTELLECTOR	FOR STATE PECIFIC DIRECT PHONE NUMBERS VIET. SOLE: AS SHOWN 201001 COM	ил они 1000 000 или или или или или или или или	REV DATE DESCRIPTION DRIVIN DECIR.	E (	あたど	LICENSED CON	ONAL Extending and protect Richartzel	UNLESS THEY ARE ACTING UNDER THE DIRECTION	OF THE RESTONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT,	SITE NAME:	WESTPORT CT 469153	880 POST RD. EAST UNIT 1 WESTPORT. CT 06880	FAIRFIELD COUNTY	MADISON	Collices Modeon, Erronadores Antonio Errol Modeon (Errol Matterio Errol Matterio Antonio Anton		BILL OF MATERIALS	Seet works SBOM-1
		UNIT WEIGHT (LBS.) WEIGHT (LBS.)	1E 84 84					UNIT WEIGHT (LBS.) WEIGHT (LBS.)			TOTAL 84	C	S S	ROT	Line .											
BILL OF MATERIALS	SECTION I - VZWSMART KITS	DESCRIPTION NOTES	CONNECT OTHER RND TO ADJACENT TOWER LEG. RIPOPOSED TIE AACK SHALL EXTEND NO MORE THAN 1.2' BEYOND THE TIE BACK ASSEMBLY TOWER LEG. CONTRACTOR SHALL TRIM AS REQUIRED AND PROTECT CUT FND WITH TWO COATS OF ZINGA OR ZINC COTE.	CROSSOVER PLATE	 		SECTION 2 - OTHER REQUIRED PARTS	DESCRIPTION NOTES				VZWSMART KITS - APPROVED VENDORS	COMMSCOPE SUNACT SUNADOR MUGUANO	PROJE OLIVIOUTION OBCOMMSCOPECOM UNDERTE VALANZATORECOM	METRO	CONTACT KENT RAMEY PHONE (706) 335.7045 (02, (706) 982.9788 (M)	EMAIL KENT®METROSITELCCOM WEBSITE METROSITEABRICATORS.COM			EPAIL WWW.PERFECT-VISION.COM WEBSITE WIRELESSALES@FREFECT-VISION.COM		CONTACT ANGE & BLCH PHONE (866) 478-6937	(eks) 428-937 (eks) 428-937 activeE.ch@stabelinoustrees.com www.stabelinteourtions.com STLE PRO.		PLONE (97)2056941 PLONE (97)2365941 EMAIN PLII A 265941	ш
		PART NUMBER	VZWSMART-SFK I TIE B4	VZWSMART-MSKI CRO				PART NUMBER DE												VED VENDORS FOR THE VZW	AVANE OF VITICE NUS HAVE BEEN	ZED ON THE MOUNT - OF THE DESKTOP PMI COMPLETED	DUIRED THAT THE VZW KITS VS.	MODIFICATIONS BUT NOT LISTED	BY THE CONTRACTOR.	
		QUANTITY MANUFACTURER	_	ę	VZWSMART			QUANTITY MANUFACTURER											NOTES:	THE MANUFACTURERS LISTED ARE THE APPROMENT INTERVIEW		SELL. PLEASE NOTE THAT THE MATERIAL UTILI. MODIFICATIONS WILL BE REVIEWED AS A PART	BY THE SMART TOOL VENDOR. IT WILL BE REQUIRED THAT THE VZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.	ALL MATERIALS REQUIRED FOR THE DESIGNED	IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR.	


TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS RECIMIBED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTORS 13 GAIV	DSTANCE AND SPACING. INCOMESS DATIONS REPARED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE BILOD OF THE BOLT IS AT LEAST FLUEH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED POR THE BOLT END OB EBLOW THE FACE THE NUT. IT IS NOT PERMITTED POR THE BOLT END OB EBLOW THE FACE CALVANISTIC A STYM ASY ROTIT SHALL NOT BE BOLTS	BOLT SCH	BOLT SCHEDULE (IN.)	
<u>.</u> 4	EED DURING REHAB WIRE BRUSHED ZINC COTE), AND ABLE).	BOLT STANDARD SH DIAMETER HOLE S	SHORT MIN.EDGE SLOT DISTANCE	SPACING
- 12	ALL HOLES IN STEE, MENRENS SHALL BE SZED I'LE' LARGER THAN THE BOLT DUWFERS STANDARD HOLES SHALL BE USED UNES NOTED OTHERWIS. WELLDING NOTES	13/16 15/16		2 1/4 2 1/4 2 5/8
	THE APPLICATION THE SHALL INCLUDE A CERTIFIED WED INSECTION (CW) FOR EDITION, THIS SHALL INCLUDE A CERTIFIED WED INSECTION (CW) FOR AND POST INSTALLINCLUDE A CERTIFIED WED INSECTION (CW) FOR AND POST INSTALLINCLUDE A CERTIFIED WED INSECTION (CW) FOR CONTRACTOR IS RESPONSIBLE FOR COMMISSIONING A THIRD PARTY CONTRACTOR IS RESPONSIBLE FOR COMMISSIONING A THIRD PARTY FOR THE WED INSECTION (CW) THEOLUGICUT OF THE FOREICT, A PASSING CW REPORT SHALL BE ROWIDED TO THE BROWED	-	S (IN	E
м, то	UPON COMPETION OF THE ROJECT. THE CERTIERD WALD DRSECTOR SHALL INDICATE IN A WRITTEN CWI REPORT. THAT ALL MELDING OFBALTIONS REE DURING, AND POST REPORT. THAT ALL WELDING OFBALTIONS REE DURING, AND POST REPORTING AND POSTUPERIA THAT AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS REPORTING AND ADDRESS AND ADDRESS AND ADDRESS AND	LEG	<b>GAGE</b> 2 1/2	
AND ENGINEER IN WAITING. THE AND RELATE OF A THE OFF A IN CAT THE MOUNT UNDER NO CRICUMSTANCES SHOULD BE USED AS A THE OFF A IN CAT POINT. STRUCTURAL STEEL BRANCH STRUCTURAL STEEL BRANCH STEEL BRANCH STEEL	родолясти жило яно поло каки жило изделитер Duainic The PMI родолясти жило яно PMO Statul EE submitted Duainic The PMI саказ wheter Mue Dis Stectione Entrement von Benederin Winich Theter is A day in BETWEEN The WELD STO BE BULL "UP SUCH THAT THE DEC WELD ON THE MPMER IS GOUAL TO THAT SHOWN IN THE DRAWINGS.	3 1/2 3 2 1/2	2   3/ <del>4</del>   3/8	
ى قە ئىز	ZED	LOCK WASHER	NOTES	
b)	CONTRACTOR SILL HAVE A FIRE ROTECTION PLAN IN PLACE THAT CONFORTS WITH ALL DSHA, ANNASSF A10-8, ANSI Z491, AND LOCAL JURSDICTIONAL REQUIREMENTS		<ol> <li>ALL DIMENSIONS REPRESENTED IN THE ABOUT FABLES ARE EXCHIMINION REQUIREMENTS CONTINACTOR SHALL VIENT SYSTING CONTINONS IN FIELD AND NOTIFF ENGINEER IF DISTANCE ARE LES THAN THOSE PROVIDED.</li> </ol>	C MINIMUM C MINIMUM RACTOR SHALL DITTONS IN FIELD R IF DISTANCES PROVIDED.
CHANNELA ANGLES, PLATES, ETC. ASTM AJ8 (GR 36) STEE PIPE ASTM A33 (GR 35) ASTM A33 (GR 35) ASTM A343 ASTM A343 LOCK WASHERS LOCKING STRUCTURAL GRADE	Z	TYP. BOLT ASSEMBLY	<ol> <li>THE DIMENSIONS PROVIDED ARE MINUM REQUISENTS: ACTUAL DIMENSIONS OF PROPOSED AMENGES WITHIN THESE DAMINICS MAY VARY ROM THE AISC MINIMUM REQUIREMENTS.</li> </ol>	VIDED ARE LTS. ACTUAL SSED MEMBERS NGS MAY VARY UM
ALL SUBSTITUTIONS REPORDED BY THE CONTRACTOR SHALL BE APPROVED NUMMEN BY THE REINHERE CONTRACTOR SHALL BE APPROVED DOCUMENTATION TO BROILERE NOS WERVING THE SUBSTITUTE IS DOCUMENTATION TO BROILERE NOS WERVING THE SUBSTITUTE IS FROM THE ROULES NOW INCLUDING MANITERANCE REPAIR AND REPORT HE ROULES INFOLDING MANITERANCE REPAIR AND REPORT HE ROULES INTRACTOR SCIENCED TASKOCATED WITH THE BROILE REVICE TRIMINED OF COSTSTERIDIT ASSOCIATED WITH THE BROILE REVICE DROVIDED TO THE BROILERE SHALL ROULE ADDITIONAL DISCOUNDER REPORTS FOR TARGONTS AND SHALL ROULE ADDITIONAL DOCUMENT OF DROVIDED TO THE BROILERE FROM THE ROULE REVICE TO THE BROILERE TO REPORT OF SHALL ROULE ADDITIONAL DOCUMENT OF DROVIDED TO THE BROILERE TO THE BROILERE ARE OUTED TO THE BROILERE TO REPORT ATTIONS ARE DURING TO BROILERE TO REPORT FOR APPROVAL FOR TO FABILIZATION OF THE ROUTED TO THE ROUTE STRUCTURAL STELL FOR DRAWINGS TO BROILERE FOR APPROVAL FOR TO FABILIZATION.			<ol> <li>SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE RAWINGS</li> <li>MITCH EXISTING GAGES WHEN APPLICABLE UNLESS MINIMULA DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICICABLE DEFICI</li></ol>	
a. SUBMIT 5HOP DRAWINGS TO PETRA ALBANO@COLLIBR9KGINERINIG COM b. REOVIDE MASER CONSULTING CONVECTICUT REQIECT # AND MASER CONSULTING CONNECTICUT PROJECT ENGINEER CONTACT IN THE BOOT OF THE ENAL.	TV VIC	ALLOWABLE COPING		
DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STREL MEMBERS DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE BRUINEER OF RECORD. GALVANIZED ASTM 4335 BOLTS SHALL NOT BE REUSED.	BOGE SHACING		GAGE	
The track refer short the hort test press dark which the manual the press dark which the manual the hort test press dark which the manual test manual the manual test ma			- 	
WITH TA-222-H SECTION 4.92 REQUIREMENTS. 10. WHERE CONNECTION 4.92 REQUIREMENTS. 11. MERE CONNECTIONS REVORT PLAN DEVICE TO AND FORCES. PAREATOR HALL DEGINA CONNECTIONS TO REST LOADS AND FORCES. WHERE SHOWN ON DARWINGS AND AS OUTLINED IN SECTIONONS. 11. FOA REMBERS BENG REPLACED. REQUIRE NEW ROLTS AND MATCH EXISTING SIZE AND GRADE MAINTAN AND REQUIREMENTS FOA MINIMUM BOLT SIZE AND GRADE MAINTAN AND REQUIREMENTS FOA MINIMUM BOLT		PROVAL		











# **ATTACHMENT 5**







Search	Street Listin	g Sales Search	Feedback	Back	Home	
POSTF	RD E				C	Sales A Print Field Card O Map It
	Location	POST RD E			Mblu	F09/ / 063/000 /
	Acct#	29409			Owner	CONNECTICUT STATE OF
A	ssessment	\$689,500			Appraisal	\$985,000
	PID	100302		в	uilding Count	1

### **Current Value**

Appraisal											
Valuation Year Improvements Land Total											
2020	\$985,000	\$0	\$985,000								
	Assessment										
Valuation Year Improvements Land Total											
2020	\$689,500	\$0	\$689,500								

### **Owner of Record**

Owner	CONNECTICUT STATE OF	Sale Price	\$0
Co-Owner	CELL TOWER/WALGREENS	Certificate	
Address	30 TRINITY ST	Book & Page	0000/0000
	HARTFORD, CT 06106	Sale Date	10/01/2005

### **Ownership History**

# **ATTACHMENT 6**



## WESTPORT Certificate of Mailing — Firm

Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender 3 Postmaster, per (name of receiving employee)	Affix Stamp Here Postmark with Date of Receipt. neopost ²⁴ 05/17/2022 US POSTAGE	21P 06103 041L12203937
USPS [®] Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage Fee S	Special Handling Parcel Airlift
1.         2.         3.         4.	Jennifer Tooker, First Selectwoman Town of Westport 110 Myrtle Avenue Greenwich, CT 06880 Mary Young, Planning and Zoning Director Town of Westport 110 Myrtle Avenue Greenwich, CT 06880 Department of Public Safety Connecticut State Police c/o Brian Benito P.O. Box 2794 Middletown, CT 06457	MAY 17 2022	
5.		$\left( \frac{1}{3} \right)$	
6.			

PS Form **3665**, January 2017 (Page ____ of ___ ) PSN 7530-17-000-5549