Robinson+Cole

Kenneth C. BALDWIN

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts and New York

February 2, 2022

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: \quad Notice of Exempt Modification - Facility Modification 1365 (a/k/a 1385) Post Road East, Westport, Connecticut

Dear Attorney Bachman:
Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads inside a faux-chimney structure on the roof of the building and associated equipment inside the building's parking garage. The telecommunications facility was approved by the Siting Council ("Council") in November of 2017 (Petition No. 1326). A copy of the Council's Decision and Staff Report is included in Attachment 1.

Cellco now intends to modify its facility by replacing its six (6) existing antennas with three (3) new MX08FIT265-01 antennas and three (3) NNH4-65A-R6H4 antennas within the same faux-chimney structure. Cellco also intends to install six (6) remote radio heads ("RRHs') within the faux-chimney structure. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antennas and RRHs are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Town's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq.
February 2, 2022
Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas will be installed on its existing antenna mounts.
2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary. Cellco's associated equipment is inside the building's existing parking garage.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A general power density calculations table for Cellco's modified facility is included in Attachment 3. The modified facility will be capable of providing Cellco's 5G wireless service.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. According to the attached Mount and Building Structural Analysis ("SA"), the existing structure, faux-chimney and new mounts can support Cellco's proposed modifications. A copy of the SA is included in Attachment 4.

A copy of the parcel map and Property owner information is included in Attachment 5. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq.
February 2, 2022
Page 3

Enclosures
Copy to:
Jennifer Tooker, Westport First Selectwoman
Mary Young, Planning \& Zoning Director
AP 1365 Post Road E Westport LP
Alex Tyurin, Verizon Wireless

ATTACHMENT 1

CERTIFIED MAIL RETURN RECEIPT REQUESTED

November 9, 2017

Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597

RE: PETITION NO. 1326 - Cellco Partnership d/b/a Verizon Wireless petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed installation of a wireless telecommunications facility on the roof of an existing commercial building located at 1385 Post Road East, Westport, Connecticut.

Dear Attorney Baldwin:
At a public meeting held on November 9, 2017, the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes $\S 16-50 \mathrm{k}$, would not require a Certificate of Environmental Compatibility and Public Need with the following conditions:

1. Approval of any minor project changes be delegated to Council staff;
2. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
3. Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the Town of Westport;
4. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
5. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
6. The facility owner/operator shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §1650v;

Affirmative Action / Equal Opportunity Employer
7. If the facility ceases to provide wireless services for a period of one year the Petitioner shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Petitioner may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period; and
8. This Declaratory Ruling may be transferred or partially transferred, provided both the facility owner/operator/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. $₫ 16-50 \mathrm{v}$. The Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer. Both the facility owner/operator/transferor and the transferee shall provide the Council with a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. $\S 16-50 \mathrm{v}(\mathrm{b})(2)$ that may be associated with this facility.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated September 19, 2017.

Enclosed for your information is a copy of the staff report on this project.
Very truly yours,

Robert Stein
Chairman
RS/MAB/bm
Enclosure: Staff Report dated November 9, 2017.
c: The Honorable Jim Marpe, First Selectman, Town of Westport Mary Young, Director, Planning \& Zoning, Town of Westport Dante R. Gallucci, Estate of Sadie Costa, DeSiena \& Gallucci
Capfor Westport LLC, Property Owner

STATEOF CONNECTICUT
 CONNECTICUT SITING COUNCIL
 Ten Franklin Square, New Britain, CT 06051
 Phone: (860) 827-2935 Fax: (860) 827-2950
 E-Mail: siting.council@ct.gov
 www.ct.gov/csc

Petition No. 1326

Cellco Partnership d/b/a Verizon Wireless
 1385 Post Road East, Westport
 Rooftop Wireless Telecommunications Facility Staff Report
 November 9, 2017

On September 20, 2017, the Connecticut Siting Council (Council) received a petition from Cellco Partnership d/b/a Verizon Wireless (Cellco) for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed installation of a wireless telecommunications facility on the roof of a commercial building at 1385 Post Road East in Westport, Connecticut. Initially, Cellco proposes to use this site to provide service in the 1900 MHz and 2100 MHz frequencies.

Cellco proposes to install a tower on the roof of the building that would be enclosed by a faux chimney extending ten feet above the building's 28 -foot roof. The tower would support six antennas and six remote radio heads. Equipment would be installed in an equipment room inside the existing parking garage on the property. Electrical and telephone service would extend from existing service on the property.

The commercial building is located on a 3.5 -acre parcel in Westport's General Business District zone. Surrounding land uses include commercial uses to the east and west along Post Road East, residential properties to the north and a condominium complex across Post Road East to the south.

Visibility of the proposed facility would be generally occur on the host property and at locations along Post Road East where the top of the building is currently visible. Existing vegetation and buildings would provide screening of the facility from other nearby locations. Additionally, at locations where the proposed facility would be visible, it would appear as an architectural component of the building due to the faux chimney enclosure.

There are no wetland areas on the subject property. No tree removal is required.
The calculated power density would be 57.5 percent of the applicable limit using a -10 dB off-beam adjustment. Notice is not required to the Federal Aviation Administration.

Notice was provided to the Town of Westport, the property owner, and abutting property owners on or about September 19, 2017. On October 10, 2017, the Council received a request for party status from representatives of the Estate of Sadie Costa, owner of the abutting property to the east of the proposed facility. On October 26, 2017, the Council approved the request for party status. The request stated that the party was interested in monitoring the proceedings and wanted to be advised of all proceedings and hearings. No further comment was received by the party.

Cellco contends that this proposed project would not have a substantial adverse environmental impact.
Staff recommends the following conditions:

1. Approval of any minor project changes be delegated to Council staff.

Site Location

Legend

\square Approximate Location of Proposed Antenna Equipment
Approximato Subject Property
Approximate Parcel Boundary (CTDEEP GIS)

Site Schematic
Proposed Wireless
Telecommunications Facility
Westport 9 CT
1385 Post Road E
Westport, Connecticut
verizon
\qquad Ali. POINTS

Photo-simulation as viewed from Post Road East (Route 1)

ATTACHMENT 2

DO NOT SCALE DRAWINGS

SHEET INDEX	
SHEET NUMBER	SHEET DESCRIPTION
T-1	TITLE SHEET
A-1	Roortop plan
A-2	builoing elevation
A-3	antenna plan, detalls \& notes
A-4	antenna sector configurations, detalls \& notes
A-5	RET SYStem wiring schematic

APPLICANT:
CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS

SCOPE OF WORK:
PROPOSED EQUIPMENT \& ANTENNA MODIFICATIONS TO AN EXISTING VERIZON WIRELESS INSTALLATION AT A $28^{\prime}-0^{\prime \prime} \pm$ ROOFTOP

Digitally signed by Jiazhu Hu, Ph.D., P.E.
DN: cn=Jiazhu Hu, Ph.D., P.E., o=Nexius
ou=Engineering, email=Jiazhu.Hu@Nexius.com, c=US Date: 2022.01.26 08:48:23-05'00'

WESTPORT_9_CT
LOCATION CODE
470895
ADDRESS
1385 POST ROAD E WESTPORT, CT 06880

$$
\begin{aligned}
& \text { COORDINATES } \\
& 41^{\circ} 08^{\prime} 20.38^{\prime \prime} \\
& 73^{\circ} \\
& \hline 18^{\prime} \\
& \hline
\end{aligned}
$$

W

CELLCO PARTNERSHIP d/b/a
verizon

efv	Date

0.	10/07/21	FOR Constructon

10/15/21 1 Rensso per rep

	$01 / 03 / 22$	Revisid per MA \& SA

חexivs
300 APOLLE OFFICE:
CHELMSFR8D, MA 018
SITE NAME

SNMSUNG

700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Points of Differentiation

Continuous Migration

Samsung's $700 / 850 \mathrm{MHz}$ macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.
The new 700/850MHz dual-band radio can support up to 2 carriers in the B 13 (700 MHz) band and 3 carriers in the B5 $(850 \mathrm{MHz}$) band, respectively.

C Technical Specifications

Item	Specification
Tech	LTE $/ \mathrm{NR}$
Brand	$\mathrm{B} 13(700 \mathrm{MHz}), \mathrm{B} 5(850 \mathrm{MHz})$
Frequency Band	$\mathrm{DL:} 746-756 \mathrm{MHz}, \mathrm{UL}: 777-787 \mathrm{MHz}$
$\mathrm{DL}: 869-894 \mathrm{MHz}, \mathrm{UL}: 824-849 \mathrm{MHz}$	
RF Power	(B13) $4 \times 40 \mathrm{~W}$ or $2 \times 60 \mathrm{~W}$ $(\mathrm{B5}) 4 \times 40 \mathrm{~W}$ or $2 \times 60 \mathrm{~W}$
IBW/OBW	(B13) $10 \mathrm{MHz} / 10 \mathrm{MHz}$ $(\mathrm{B} 5) 25 \mathrm{MHz} / 25 \mathrm{MHz}$
Installation	Pole, Wall
Size/ Weight	$14.96 \times 14.96 \times 9.05 \mathrm{inch}(33.2 \mathrm{~L}) /$ 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.
Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.
The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

l2-port sector antenna, $4 \times 698-896$ and $8 \times 1695-2360 \mathrm{MHz}$, 65° HPBW, 6x RET

- Features broadband Low Band ($698-896 \mathrm{MHz}$) and High Band ($1695-2360 \mathrm{MHz}$) arrays for 4T4R (4X MIMO) capability for Band 14, AWS, PCS and WCS applications
- Non-stacked high band array design provides higher gain and narrower vertical beamwidth than traditional antenna designs.
- Independent tilt for all arrays.
- Array configuration provides capability for 4T4R (4x MIMO) on Low band and Dual 4T4R (4x MIMO) on High band
- Optimized SPR performance across all operating bands
- Excellent wind loading characteristics
- Supports re-configurable antenna sharing capability enabling control of the internal RET system using up to two separate RET compatible OEM radios

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Performance Note	Outdoor usage \| Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	8
RF Connector Quantity, low band	4
RF Connector Quantity, total	12
Remote Electrical Tilt (RET) Information	
RET Hardware	CommRET v2
RET Interface	8-pin DIN Female \| 8-pin DIN Male
RET Interface, quantity	2 female \| 2 male

NNH4-65B-R6H4

Input Voltage
Internal RET
Power Consumption, active state, maximum
Power Consumption, idle state, maximum
Protocol
Dimensions
Width
Depth
Length
Net Weight, without mounting kit
$10-30 \mathrm{Vdc}$
High band (4) | Low band (2)
8 W
1 W
3GPP/AISG 2.0 (Multi-RET)

498 mm | 19.606 in
197 mm | 7.756 in
1828 mm | 71.969 in
$34 \mathrm{~kg} \mid 74.957 \mathrm{lb}$

Array Layout

		Array	Freq (MHz)	Conns	RET (MRET)	AISG RET UID
		R1	698-896	1-2	1	CPxxxxxxxxxxxxxxxxmm. 1
		R2	698-896	3-4	2	CPxxxxxxxxxxxxxxxxmm. 2
		Y1	1695-2360	5-6	3	CPxxxxxxxxxxxxxxxxmm. 3
		Y2	1695-2360	7-8	4	CPxxxxxxxxxxxxxxxxmm. 4
		Y3	1695-2360	9-10	5	CPxxxxxxxxxxxxxxxxmm. 5
R1	R2	Y4	1695-2360	11-12	6	CPxxxxxxxxxxxxxxxxmm. 6
Left	Right	(Sizes of true dep	colored boxes are n ctions of array sizes)			

Port Configuration

NNH4-65B-R6H4

Electrical Specifications

Impedance

Operating Frequency Band
Polarization
Total Input Power, maximum

50 ohm
$1695-2360 \mathrm{MHz}$ | $698-896 \mathrm{MHz}$
$\pm 45^{\circ}$
900 W @ $50^{\circ} \mathrm{C}$

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain, dBi	14.2	14.8	16.7	17.3	17.9	18.4
Beamwidth, Horizontal, degrees	68	64	70	67	61	59
Beamwidth, Vertical, degrees	11.5	10.2	6.9	6.5	6	5.4
Beam Tilt, degrees	2-14	2-14	2-12	2-12	2-12	2-12
USLS (First Lobe), dB	16	18	16	19	19	19
Front-to-Back Ratio at $\mathbf{1 8 0}^{\circ}$, dB	30	30	33	34	34	34
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	25
VSWR \| Return loss, dB	1.5\|14.0	1.5114 .0	1.5114 .0	1.5174.0	1.5114 .0	1.5114 .0

NNH4-65B-R6H4

PIM, 3rd Order, 2×20 W, dBc	-150	-150	-150	-150	-150	-150
Input Power per Port at $50^{\circ} \mathrm{C}$,	300	300	250	250	250	200

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain by all Beam Tilts, average, dBi	13.8	14.5	16.1	16.9	17.5	18
Gain by all Beam Tilts Tolerance, dB	± 0.6	± 0.5	± 0.7	± 0.6	± 0.6	± 0.5
Gain by Beam Tilt, average, dBi	$\begin{aligned} & 2^{\circ} \mid 14.0 \\ & 8^{\circ} \mid 13.9 \\ & 14^{\circ} \mid 13.5 \end{aligned}$	$\begin{aligned} & 2^{\circ} \mid 14.6 \\ & 8^{\circ} \mid 14.6 \\ & 1^{\circ} \mid 14.1 \end{aligned}$	$\begin{aligned} & 2^{\circ} \mid 15.9 \\ & 7^{\circ} \mid 16.2 \\ & 12^{\circ} \mid 16.0 \end{aligned}$	$\begin{aligned} & 2^{\circ} \mid 16.6 \\ & 7^{\circ} \mid 17.0 \\ & 12^{\circ} \mid 16.9 \end{aligned}$	$\begin{aligned} & 2^{\circ} \mid 17.1 \\ & 7^{\circ} \mid 17.6 \\ & 12^{\circ} \mid 17.4 \end{aligned}$	$\begin{aligned} & 2^{\circ} \mid 17.7 \\ & 7^{\circ} \mid 18.0 \\ & 1^{\circ} \mid 17.9 \end{aligned}$
Beamwidth, Horizontal Tolerance, degrees	± 5.7	± 3.2	± 6.4	± 7.5	± 5.9	± 3.6
Beamwidth, Vertical Tolerance, degrees	± 0.9	± 0.7	± 0.5	± 0.3	± 0.4	± 0.2
USLS, beampeak to 20° above beampeak, dB	16	15	12	15	15	16
Front-to-Back Total Power at $180^{\circ} \pm 30^{\circ}, \mathrm{dB}$	20	21	27	26	27	28
CPR at Boresight, dB	24	23	19	19	20	17
CPR at Sector, dB	12	10	7	5	6	8

Mechanical Specifications

Effective Projective Area (EPA), frontal
Effective Projective Area (EPA), lateral
Wind Loading at Velocity, frontal
Wind Loading at Velocity, lateral
Wind Loading at Velocity, maximum
Wind Loading at Velocity, rear
Wind Speed, maximum

Packaging and Weights

Width, packed
Depth, packed
Length, packed
Weight, gross
$0.65 \mathrm{~m}^{2}$ | $6.997 \mathrm{ft}^{2}$
$0.22 \mathrm{~m}^{2} \mid 2.368 \mathrm{ft}^{2}$
156.0 lbf @ 150 km/h | 694.0 N @ 150 km/h
235.0 N @ 150 km/h | 52.8 lbf @ 150 km/h
202.3 lbf @ 150 km/h | 900.0 N @ 150 km/h
128.4 lbf @ 150 km/h | 571.0 N @ 150 km/h
$241.402 \mathrm{~km} / \mathrm{h}$ | 150 mph

NNH4-65B-R6H4

Regulatory Compliance/Certifications

Agency

CHINA-ROHS
ISO 9001:2015
ROHS

ISO
9001:2015

Classification

Above maximum concentration value
Designed, manufactured and/or distributed under this quality management system
Compliant/Exempted

Included Products
BSAMNT-3

- Wide Profile Antenna Downtilt Mounting Kit for 2.4-4.5 in (60-115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

MX08FIT265-01

NWAV ${ }^{\text {™ }}$ Panel Antenna

8-Port 32 in. FIT (Form in Tighter), 3700 - 4200 MHz

- 5G C-Band 8T8R beamforming antenna
- Optimized antenna array design for all C-Band beamforming combinations
- Excellent passive intermodulation (PIM) performance reduces harmful interference
- Integrated (internal RET) for remote electrical tilt control

חWMV

Electrical specification (minimum/maximum)	Ports 1, 2, 3, 4, 5, 6, 7, 8
Frequency bands, MHz	3700-4200
Gain, dBi	17.1
Horizontal beamwidth (HBW), degrees	85
Horizontal beamwidth tolerance, degrees	± 5
Front-to-back ratio, co-polar power @ $180^{\circ} \pm \mathbf{3 0}{ }^{\circ}$, dB	27
Vertical beamwidth (VBW), degrees ${ }^{1}$	5.5
Vertical beamwidth tolerance, degrees	± 0.3
Remote electrical downtilt (EDT) range, degrees	2-12
First upper side lobe (USLS) suppression, dB^{1}	15
Coupling level, Amp, Antenna port to Cal port, dB	26
Coupling level, max Amp Δ, Antenna port to Cal port, dB	± 0.6
Coupler, max Amp Δ, Antenna port to Cal port, dB	0.65
Coupler, max Phase Δ, Antenna port to Cal port, degrees	4
Cross-polar isolation, port-to-port, $\mathrm{dB}^{\mathbf{1}}$	25
Max VSWR / return loss, dB	1.5:1 / -14.0
Max passive intermodulation (PIM), 2x20W carrier, dBc	-145
Max input power per port at $50^{\circ} \mathrm{C}$, watts	75

${ }^{1}$ Typical value over frequency and tilt

Ports 1, 2, 3, 4, 5, 6, 7, 8

Frequency bands, MHz	$3700-4200$
Gain over all tilts, $\mathbf{d B i}$	22.5
Horizontal beamwidth (HBW), degrees1	65
Horizontal beamwidth tolerance, degrees	± 6
Vertical beamwidth (VBW), degrees ${ }^{1}$	5.5
Vertical beamwidth tolerance, degrees	± 0.3
First upper side lobe (USLS) suppression, dB 1	<-16

Electrical specification, Service Beam	Ports 1, 2, 3, 4, 5, 6, 7, 8
Frequency bands, MHz	$3700-4200$
Steered 0° gain, dBi	22.5
Steered 0° Gain tolerance, dBi	± 0.6
Steered 0° Beamwidth, Horizontal, degrees	22
Steered 0° CPR at beampeak, dB	18
Steered 0° Horizontal Sidelobe, dB	12
Steered 30° Gain, dBi (max)	21.8
Steered $\mathbf{3 0 ^ { \circ }}$ Gain tolerance, dBi	± 0.6
Steered 30° Gain, dBi	21
Steered 30° Beamwidth, Horizontal, degree	22.2
Steered 30° CPR at beampeak, dB	18
Steered 30° Horizontal Sidelobe, dB	10

Electrical specification, Soft Split	Ports 1, 2, 3, 4, 5, 6, 7, 8
Frequency bands, MHz	$3700-4200$
Gain over all tilts, dBi	21.8
Horizontal beamwidth (HBW), degrees ${ }^{\mathbf{1}}$	32
First upper side lobe (USLS) suppression, dB ${ }^{\mathbf{1}}$	15

Beamforming weighting table available upon request

NWAV ${ }^{\text {TM }}$ Panel Antenna
Mechanical specifications

Dimensions height/width/depth, inches (mm)	32.0/ 11.6/ 4.53 (812.8/ 295/ 115)
Shipping dimensions length/width/height, inches (mm)	37.0/ 16.9/ 11.8 (939.8/ 430/300)
No. of RF input ports, connector type, and location	8×4.3-10 female, bottom
Calibration interface port, connector type, and location	$1 \times 4.3-10$ female, bottom
RF connector torque	$96 \mathrm{lbf} \cdot \mathrm{in}$ (10.85 $\mathrm{N} \cdot \mathrm{m}$ or $8 \mathrm{lbf} \cdot \mathrm{ft}$)
Net antenna weight, lb (kg)	23.2 (10.52)
Weight with supplied pipe mount bracket, lb (kg)	26.5 (12.02)
Shipping weight, lb (kg)	49.1 (22.27)
Rated wind survival speed, mph (km/h)	150 (241)
Frontal wind loading @ 150 km/h, lbf (N)	56.9

Ordering information

Antenna model	Description
MX08FIT265-01	32-inch 8T8R beamforming antenna, 3700-4200 MHz with RET
Mounting kit (included)	91900330 BRACKET KIT, range of mechanical up/down tilt -2° to 12°
Optional accessories	M/F cables for AISG connections
AISG cables	Stand-alone controller for RET control and configurations
PCU-1000 RET controller	

NWAV ${ }^{\text {TM }}$ Panel Antenna
Remote electrical tilt (RET 1000) information

RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port Bias-T
RET connector torque	Min $0.5 \mathrm{~N} \cdot \mathrm{~m}$ to max $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (hand pressure \& finger tight)
RET interface connector quantity	1 pair of AISG male/female connectors and 1 RF port Bias-T
RET interface connector location	Bottom of the antenna
Total no. of internal RETs	1
RET input operating voltage, vdc	$10-30$
RET max power consumption, idle state, \mathbf{W}	≤ 2.0
RET max power consumption, normal operating conditions, \mathbf{W}	≤ 13.0
RET communication protocol	AISG 2.0 / 3GPP

RET and RF connector topology
Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

RET device	Band	RF port
1	$3700-4200$	$1-8$

SNMSUNG

102 RRU Product Specification

for RT8808-77A

Specifies hardware configuration, functions, specifications, components, ports, and LED information for the radio units.

June 2021

Figure 1. Appearance

The RT8808-77A can be mounted on a wall or pole as displayed in the following installation scenario:

Specifications

The following table outlines the main specifications of RT8808-77A.

Table 2. Specifications (RT8808-77A)

Item	RT8808-77A
Radio Technology	5G NR
Operating Frequency	3700 to 3980 MHz
Channel Bandwidth	20/40/60/80/100 MHz
RF Chain	- 8T8R, 4T4R+4T4R Bi-sector - 2T2R+2T2R+2T2R Tri-sector - 4T8R+4T8R split mode
RF Output Power	Max. 320W (8x 40W)
Capacity	Total Max 2C
CPRI interface	15 km , 2 ports (25Gbps x 2), SFP28, single mode, Bi-di (Option: Duplex)
Input Voltage	-48 V DC (-38 V DC to -57 V DC)
Power Consumption (Max.)	1,192 W (100% load, $25^{\circ} \mathrm{C}$) (w/o RET)
Operating Humidity	5% to 100% RH (Condensing, not to exceed $30 \mathrm{~g} / \mathrm{m} 3$ absolute humidity)
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (without solar load)
Dimension (in./mm)	14.96/380 (W) $\times 6.82 / 173.3$ (D) $\times 14.96 / 380(\mathrm{H})$
Weight (kg)	27 or less than
Cooling	Natural convection
Waterproof/Dustproof	IP65
Wind Resistance	Telcordia GR-487-CORE Issue5 - Wind Resistance (Section 3.36)
Earthquake Specification	Telcordia GR-63-CORE, Issue5, \square Earthquake (Section 4.4.1)
Vibration Specification	Telcordia GR-63-CORE, Issue5, - Office Vibration (Section 4.4.4) - Transportation Vibration (Section 4.4.5)
Altitude	Telcordia GR-63-CORE, Issue5, - Altitude (Section 4.1.3)
EMC	FCC Title 47 CFR Part 15
RF	FCC Title 47 CFR Part 27, 24
Safety	UL 62368-1, 2nd Edition
Installation	Pole, Wall, Tower

The power consumption is predicted with a simulation and the measured value is subject to change by $\pm 10 \%$

ATTACHMENT 3

Site Name: WESTPORT 9 CT

Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	$(\mathbf{m W / c m} \mathbf{\wedge})$	$(\%)$
VZW 700	751	4	466	1862	34.5	0.0563	0.5007	11.24%
VZW Cellular	874	4	530	2119	34.5	0.0640	0.5827	10.99%
VZW PCS	1980	4	1237	4947	34.5	0.1495	1.0000	14.95%
VZW AWS	2120	4	1466	5862	34.5	0.1771	1.0000	17.71%
VZW CBAND	3730.08	2	4569	9138	36	0.2536	1.0000	25.36%

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992
${ }^{* *}$ Calculation includes a-10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification filings
$\mathrm{MHz}=$ Megahertz
$\mathrm{mW} / \mathrm{cm}^{\wedge} 2$ = milliwatts per square centimeter
ERP = Effective Radiated Power

Absolute worst case maximum values used.

ATTACHMENT 4

nexius

Mount and Building Structural Analysis Report

Property Owner	N/A
Structural Type	28.42 ft BUILDING
Site Address	1385 Post Rd E
Site Address	Westport, CT 06880
Latitude	41.138994
Longitude	-73.316069
	Verizon Wireless
Client	118 Flanders Road, 3rd Floor
	Westborough, MA 01581
Site Type	Macro
Site ID	5066758
Site Name	WESTPORT_9_CT
Location Code	470895
	Nexius Solutions, Inc.
Prepared by	2595 North Dallas Parkway Suite 300
	Frisco, TX 75034
Job/Task Numbers	VZW470895A01-NX062
Rev	2
Email	structurals@nexius.com
Phone	972-581-9888
Date	01/25/2022
Result	Adequate (66\%)

nexius

Dear Sir / Madam:

Nexius Solutions is pleased to submit this analysis to determine the structural integrity of the referred structure. Referenced documents used for this analysis are listed in the section DOCUMENTS \& REFERENCES. This analysis has been performed in compliance with

2018 Connecticut State Building Code (IBC 2015 w/ State Amendments)
ANSI/TIA-222-G w/ Addendums, Structural Standard for Antenna Supporting Structures and Antennas.
Detailed design parameters are listed in Table 1. Analysis loading is detailed in Table 2
Based on our analysis we have determined the following result:

Existing Mount and Building Structure

66\% Adequate

Nexius Solutions appreciates the opportunity of providing continued engineering services. Should you have any questions, comments or require additional information, please do not hesitate to contact us.

Sincerely,

Prepared by:
Akshay Doddamani, EIT

Approved by:
Jiazhu Hu, P.E. Engineering Manager License \#: 31530

Digitally signed by Jiazhu Hu, Ph.D., P.E. DN: cn=Jiazhu Hu, Ph.D., P.E., o=Nexius, ou=Engineering, email=Jiazhu.Hu@Nexius.com, c=US
Date: 2022.01.28 09:04:17-05'00'

DOCUMENTS \& REFERENCES
Construction Drawings (FOR CONSTRUCTION), Location Code: 470895, Verizon Site Name:
WESTPORT_9_CT, by Nexius, dated 01/25/2022.
RFDS, Location Code: 470895, Site Name: WESTPORT_9_CT, by Verizon Wireless, dated 01/10/2022.
Structural Analysis, Location Code: 470895, Verizon Site Name: WESTPORT_9_CT, by Nexius, dated 04/27/2017.
Steel Framing Plan, Job Name: VERIZON WESTPORT 9, by Eastern Inc. dated 05/11/2019.
Structural Analysis Report, Location Code: 470895, Verizon Site Name: WESTPORT_9_CT, by Nexius, dated 10/15/2021.

DESIGN STANDARDS \& PARAMETERS
TABLE 1 STANDARDS \& DESIGN PARAMETERS

Codes and Standards	
Building Code	2018 Connecticut State Building Code (IBC 2015 w/
State Amendments)	

* In accordance with Section 2.7.3 of TIA-222-G, seismic effects need not to be considered for site with Ss values less than 1, therefore no further seismic analysis is needed at this time.

RESULTS \& RECOMMENDATIONS

The proposed loading replaces existing loading of similar size and weight and are installed inside existing enclosure. The change in vertical and lateral loading due to proposed installation is minimal compared to the existing structure's overall capacity. Based on our analysis, it is determined that the existing mount and building structure are ADEQUATE for the proposed and existing installations.

Additionally, it is required that all structural components and connections should be checked for tightness and good condition prior to installing the proposed equipment. If the site conditions are different or do not meet requirements, the analysis result would not be valid and Nexius should be notified for re-evaluation.

ח exivs

LOADING

Table 2 LOADING

$\begin{gathered} \hline \begin{array}{c} \text { Mount } \\ \text { Elev. } \end{array} \\ \hline \text { ft } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ant. Ctr. } \\ \text { Elev. } \\ \hline \text { ft } \\ \hline \end{gathered}$	Qty	Description	Mount Type	Status
34.5	36.0	3	JMA Wireless MX08FIT265-01	Proposed Pipe Mounts Enclosed Inside Faux Chimney	Proposed
	34.5	3	CommScope NNH4-65A-R6H4		
		3	Samsung B5/B13 RRH ORAN		
		3	Samsung RT-8808-77A		
		3	B2/B66A RRH BR049		Existing to
		1	Raycap RHSDC-6627-PF-48		remain
		6	CommScope JAHH-65A-R3B		Existing to be removed

nexivs

Standard Conditions for Providing Structural Consulting Services on Existing Structures

1. Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorized by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
2. The structural analysis has been performed assuming that the hardware is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
3. The structural analysis provided is an assessment of the primary load carrying capacity of the hardware. We provided a limited scope of service. In some cases, we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
4. We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturer's instructions.
5. The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, diplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangements that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
6. We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-build field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.
7. Steel grade and strength is unknown and cannot be field tested. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed in the shop under the latest American
8. Welding Society Code. No field welds are permitted or assumed for the existing pre-manufactured equipment. In case no accurate info available, following material assumptions were used:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
HSS (Round)	ASTM 500 (GR B-42)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325
U-Bolts	SAE 429 Gr.2

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10

Risk Category: II
Soil Class: D - Stiff Soil

Elevation: 80.29 ft (NAVD 88)
Latitude: 41.138994
Longitude: -73.316069

Wind

Results:

Wind Speed	121 Vmph
10 -year MRI	76 Vmph
25 -year MRI	86 Vmph
50 -year MRI	92 Vmph
100 -year MRI	99 Vmph

Date Socessed:
 incorporating errata of March 12, 2014
Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{s}}:$	0.221
$\mathrm{~S}_{1}:$	0.066
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.354
$\mathrm{~S}_{\mathrm{M} 1}:$	0.158

$\mathrm{S}_{\mathrm{DS}}:$	0.236
$\mathrm{~S}_{\mathrm{D} 1}:$	0.105
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.123
$\mathrm{PGA}_{\mathrm{M}}:$	0.191
$\mathrm{~F}_{\mathrm{PGA}}:$	1.554
$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category B

Data Accessed:
Tue Jan 252022
Date Source:
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed
Data Source:
Date Accessed:
1.00 in.

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Tue Jan 252022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Appendix \#1: Loading Parameters and Calculations

nexius

X I U S
C

\qquad
\qquad

WIND LOAD BASED ON ASCE 7-10

Wind pressure at roof joist:

Risk Category, II
Exposure Category, B

Ultimate Wind Speed (mph),
Gust Effect Factor,
Velocity Pressure Exp. Co-eff.,
Topographic Factor,
Wind Directionality Factor,
External pressure coefficient
Internal pressure coefficient

II

B
$V:=121 \quad$ (ASCE 7 Hazards Report)
$G_{h}:=0.85 \quad$ (26.9.1, ASCE 7-10)
$K_{z}:=0.76 \quad$ (Table 29.3-1, ASCE 7-10)
$K_{z t}:=1 \quad$ (26.8.1, ASCE 7-10)
$K_{d}:=0.85 \quad$ (Chimney - Table 26.6-1, ASCE 7-10)
Gcp $:=0.2$ Gcpn $:=-0.9 \quad$ (Table 26.11-1, ASCE 7-10)
Gcpi $:=0.18$
$q_{z}:=0.00256 \cdot \frac{\boldsymbol{l b}}{\boldsymbol{f t}^{2}} \cdot K_{z} \cdot K_{z t} \cdot K_{d} \cdot V^{2}=24.213 \frac{\boldsymbol{l b}}{\boldsymbol{f t}^{2}}$

Design wind pressure,

$P:=q_{z} \cdot[(G c p)-(G c p i)]$
$P:=q_{z} \cdot(G c p+G c p i)=9.201 \frac{\boldsymbol{l} \boldsymbol{b}}{\boldsymbol{f \boldsymbol { t } ^ { 2 }} \quad \text { (Downward) } \quad \begin{array}{l}\text { (In the analysis, Downward pressure } \\ \text { considered) }\end{array}}$
$P:=q_{z} \cdot(G c p n-G c p i)=-26.15 \frac{\boldsymbol{l b}}{\boldsymbol{f t}^{2}} \quad$ (Upward)
Snow load at roof:

Ground snow load	$P_{g}:=30 \boldsymbol{p s f}$
Exposure factor	$C_{e}:=0.9$
Thermal factor	$C t:=1.2$
Importance factor	$I:=1$
$p_{f}:=0.7 \cdot C_{e} \cdot C t \cdot I \cdot P_{g}=22.68$ psf	

Live Load: $\quad L_{r}:=20 p s f$

Load Combination (ASD):

LC 1 - DL+SL
LC 2 - DL +0.6 WL
LC 3 - DL $+0.75(0.6 \mathrm{~W})+0.75(\mathrm{SL})$
\qquad
\qquad

Roof Joist Check:

Total weight of chimney: $W:=7766 \mathbf{l b}$ (Risa 3D Output)

$$
P_{c}:=\frac{W}{11 \boldsymbol{f t} \cdot 11 \boldsymbol{f t}}=64.182 \frac{\boldsymbol{l b}}{\boldsymbol{f t}^{2}}
$$

Weight of the chimney is assumed to be equally distributed to $11^{\prime}-0^{\prime \prime} \times 11^{\prime}-0^{\prime \prime}$ area.
Section properties of 28KCS4:

Moment capacity (ASD):
Length of joist
Tributary width
Self weight
Uniform distributed load due to faux chimney
Uniform distributed roof live load
Uniform distributed snow load
Uniform distributed wind load

$$
\begin{aligned}
& M_{x}:=1303 \text { kip } \cdot \text { in } \\
& L:=44 \text { ft } \\
& L_{t r}:=5.5 \text { ft } \\
& W_{D}:=16.5 \text { plf } \\
& W_{f c}:=354 \text { plf } \\
& W_{r l}:=110 \text { plf } \\
& W_{s}:=125 \text { plf } \\
& W_{w l}:=50.6 \text { plf }
\end{aligned}
$$

Maximum moment at the mid span:
LC 1: $\quad M_{L C 1}:=860.4$ kip.in (Governs)
LC 2: $\quad M_{L C 2}:=538 \cdot k i p \cdot$ in
LC 3: $\quad M_{L C 3}:=800$ kip \cdot in
Stress Ratio: $\quad S R:=\frac{M_{L C 1}}{M_{x}}=0.66$
Maximum moment due to faux chimney is less than moment capacity of the joist. It is determined that the existing joist is Adequate under proposed loading

APPENDIX 1

SHEET 1 OF 1

STANDARD LOAD TABLE FOR KCS OPEN WEB STEEL JOISTS							
Based on a 50 ksi Maximum Yield Strength							
JOIST dEsignation	DEPTH (in.)	MOMENT CAPACITY (k-in.)	SHEAR CAPACITY* (lbs)	APPROX. WEIGHT** (lbs/ft.)	GROSS MOMENT OF INERTIA lin 4	ERECTION STABILITY BRIDGING REQ'D (ft.)	BRIDGING tABLE SECTION NUMBER
10KCS1	10	172	2000	6.0	29	NA	$\frac{1}{1}$
10KCS2	10	225	2500	7.5	37	NA	1
10KCS3	10	296	3000	10.0	47	NA	1
12KCS1	12	209	2400	6.0	43	NA	3
12KCS2	12	274	3000	8.0	55	NA	5
$12 \mathrm{KCS3}$	12	362	3500	10.0	71	NA	5
14KCS1	14	247	2900	6.5	59	NA	4
14KCS2	14	324	3400	8.0	77	NA	6
$14 \mathrm{KCS3}$	14	428	3900	10.0	99	NA	6
16KCS2	16	349	4000	8.5	99	NA	6
16KCS3	16	470	4800	10.5	128	NA	9
16KCS4	16	720	5300	14.5	192	NA	9
16KCS5	16	934	5800	18.0	245	NA	9
18KCS2	18	395	4700	9.0	127	35-0	6
$18 \mathrm{KCS3}$	18	532	5200	11.0	164	NA	9
18KCS4	18	817	5700	15.0	247	NA	10
18KCS5	18	1062	6200	18.5	316	NA	10
20KCS2	20	442	5200	9.5	159	36-0	6
$20 \mathrm{KCS3}$	20	595	6000	11.5	205	39-0	9
20KCS4	20	914	7900	16.5	308	NA	10
20KCS5	20	1191	8400	20.0	396	NA	10
22KCS2	22	488	5900	10.0	194	36-0	6
$22 \mathrm{KCS3}$	22	658	6600	12.5	251	40-0	9
22KCS4	22	1012	7900	16.5	377	NA	11
$22 \mathrm{KCS5}$	22	1319	8600	20.5	485	NA	11
24KCS2	24	534	6300	10.0	232	39-0	6
24KCS3	24	720	7200	12.5	301	44-0	9
$24 \mathrm{KCS4}$	24	1108	8400	16.5	453	NA	12
24KCS5	24	1448	8900	20.5	584	NA	12
26KCS2	26	580	6600	10.0	274	39-0	6
26KCS3	26	783	7800	12.5	355	44-0	9
26KCS4	26	1206	8500	16.5	536	NA	12
$26 \mathrm{KCS5}$	26	1576	9200	20.5	691	NA	12
28KCS2	28	626	6900	10.5	320	40-0	6
$28 \mathrm{KCS3}$	28	846	8000	12.5	414	45-0	9
\rightarrow 28KCS4	28	1303	8500	16.5	626	53-0	12
28KCS5	28	1704	9200	20.5	808	53-0	12
30KCS3	30	908	8000	13.0	478	45-0	9
30KCS4	30	1400	8500	16.5	722	54-0	12
30KCS5	30	1833	9200	21.0	934	54-0	12

[^0]

Envelope Only Solution

Nexius	Rendered	
Akshay Doddamani		Rend
470895		Jan 25,2022 at 12:07 PM
	470895_WESTPORT_9_CT_16486...	

Envelope Only Solution

Nexius		Nodes
Akshay Doddamani	WESTPORT_9_CT	Jan 25, 2022 at 12:07 PM
470895		470895_WESTPORT_9_CT_16486...

Envelope Only Solution

Nexius		Member Label
Akshay Doddamani	WESTPORT_9_CT	Jan 25,2022 at 12:08 PM
470895		470895_WESTPORT_9_CT_16486...

Envelope Only Solution

Nexius		Shape
Akshay Doddamani	WESTPORT_9_CT	Jan 25, 2022 at 12:08 PM
470895		470895_WESTPORT_9_CT_16486...

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

Nexius		Ratio_Flexural
Akshay Doddamani	WESTPORT_9_CT	Jan 25, 2022 at 12:08 PM
470895		470895 _WESTPORT_9_CT_16486...

Member Shear Checks Displayed (Enveloped)
Envelope Only Solution

Nexius		Ratio_Shear
Akshay Doddamani	WESTPORT_9_CT	Jan 25, 2022 at 12:08 PM
470895		470895 _WESTPORT_9_CT_16486...

Hot Rolled Steel Properties

	Label	E [k..	G [k.	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	290...	111...	. 3	. 65	. 49	50	1.1	65	1.1
2	A36 Gr....	290...	111...	3	65	. 49	36	1.5	58	1.2
3	A572 Gr.	290...	111...	3	. 65	. 49	50	1.1	65	1.1
4	A500 Gr.	290...	111...	3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr..	290...	111...	3	. 65	. 527	46	1.4	58	1.3
6	A500 Gr..	290...	111...	. 3	. 65	. 527	46	1.4	62	1.3
7	A500 Gr.. 2	290...	111...	3	65	. 527	50	1.4	62	1.3
8	A53 Gr.B	290...	111...	3	. 65	. 49	35	1.6	60	1.2
9	A1085	290...	111...	3	. 65	. 49	50	1.4	65	1.3
10	A913 Gr..	290...	111...	3	. 65	49	65	1.1	80	1.1
11	FRP Co...	2800	450	. 3	. 65	. 107	30	1.5	30	1.2
12	FRP Be...	2800	450	. 3	. 65	. 107	10	1.5	10	1.2

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design	A [in2	lyy [in4] Izz [in4]		$J[\text { in4 }]$
1	Base Frame, HSS 8x8...	HSS8X8X4	Beam	SquareTube	A500 Gr.B	Typical	7.1	70.7	70.7	111
2	Verticals, FRP Tube 4...	HSS4X4X4	Column	SquareTube	FRP Column	Typical	3.37	7.8	7.8	12.8
3	Horizontals, FRP Tube...	HSS4X4X4	Beam	SquareTube	FRP Beam	Typical	3.37	7.8	7.8	12.8
4	Bracing, FRP L3x3x5/16	L3X3X5	Beam	Single Angle	FRP Beam	Typical	1.78	1.5	1.5	. 06
5	Support angle, L3×3x1/4	L3X3X4	Beam	Single Angle	A36 Gr. 36	Typical	1.44	1.23	1.23	031
6	Antenna pipe, STD 2	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From D...
1	N1	0	0	0	0	
2	N2	0	0	4	0	
3	N3	0	0	-4	0	
4	N4	4	0	4	0	
5	N5	4	0	-4	0	
6	N6	-4	0	4	0	
7	N7	-4	0	-4	0	
8	N8	4	0	-2	0	
9	N9	-4	0	-2	0	
10	N10	4	0	0	0	
11	N11	-4	0	0	0	
12	N12	4	0	2	0	
13	N13	-4	0	2	0	
14	N14	-2.5	0	-2	0	
15	N15	-2.5	0	2	0	
16	N16	2.5	0	-2	0	
17	N17	2.5	0	2	0	
18	N18	-2.5	0	-2.5	0	
19	N19	2.5	0	-2.5	0	
20	N20	-2.5	0	2.5	0	
21	N21	2.5	0	2.5	0	
22	N22	-2.5	10	-2.5	0	
23	N23	2.5	10	-2.5	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From D...
24	N24	-2.5	10	2.5	0	
25	N25	2.5	10	2.5	0	
26	N26	-2.5	5.75	-2.5	0	
27	N27	2.5	5.75	-2.5	0	
28	N28	-2.5	5.75	2.5	0	
29	N29	2.5	5.75	2.5	0	
30	N30	-2.5	1.5	-2.5	0	
31	N31	2.5	1.5	-2.5	0	
32	N32	-2.5	1.5	2.5	0	
33	N33	2.5	1.5	2.5	0	
34	N34	-0.833333	1.5	-2.5	0	
35	N35	-0.833333	1.5	2.5	0	
36	N36	. 75	1.5	-2.5	0	
37	N37	. 75	1.5	2.5	0	
38	N38	-0.833333	10	-2.5	0	
39	N39	-0.833333	10	2.5	0	
40	N40	. 75	10	-2.5	0	
41	N41	. 75	10	2.5	0	
42	N42	-0.833333	10	-1	0	
43	N43	. 75	10	-1	0	
44	N44	-0.833333	10	0	0	
45	N45	. 75	10	0	0	
46	N46	-0.833333	10	1.5	0	
47	N47	. 75	10	1.5	0	
48	N48	-1	10	0	0	
49	N49	-1	10	1.5	0	
50	N50	-1	10.166667	0	0	
51	N51	-1	10.166667	1.5	0	
52	N52	-1	1.166667	0	0	
53	N53	-1	1.166667	1.5	0	
54	N54	-0.833333	1.5	0	0	
55	N55	-0.833333	1.5	1.5	0	
56	N56	-1	1.5	0	0	
57	N57	-1	1.5	1.5	0	
58	N60	0.916667	10	0	0	
59	N61	0.916667	10	1.5	0	
60	N62	0.916667	10.166667	0	0	
61	N63	0.916667	10.166667	1.5	0	
62	N64	0.916667	1.166667	0	0	
63	N65	0.916667	1.166667	1.5	0	
64	N66	. 75	1.5	0	0	
65	N67	. 75	1.5	1.5	0	
66	N68	0.916667	1.5	0	0	
67	N69	0.916667	1.5	1.5	0	
68	N70	-0.666667	10	-1	0	
69	N71	0.916667	10	-1	0	
70	N70A	-0.666667	10.166667	-1	0	
71	N71A	0.916667	10.166667	-1	0	
72	N72	-0.666667	1.166667	-1	0	
73	N73	0.916667	1.166667	-1	0	
74	N74	-0.833333	1.5	-1	0	
75	N75	. 75	1.5	-1	0	
76	N76	-0.666667	1.5	-1	0	
77	N77	0.916667	1.5	-1	0	
78	N78	-. 5	1.5	-2.5	0	
79	N79	-. 5	1.5	2.5	0	
80	N80	. 5	1.5	-2.5	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From D..
81	N81	. 5	1.5	2.5	0	
82	N82	-2.5	1.5	. 5	0	
83	N83	2.5	1.5	. 5	0	
84	N84	-2.5	1.5	-. 5	0	
85	N85	2.5	1.5	-. 5	0	

Member Point Loads (BLC 1 : Dead)

Member Point Loads (BLC 2 : Ice Dead)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	M34	Y	-. 14	\%22.7
2	M34	Y	-. 071	\%66.7
3	M35	Y	-. 048	\%18.5
4	M35	Y	-. 066	\%55.6
5	M35	Y	-. 057	\%66.7
6	M48	Y	-. 14	\%22.7
7	M48	Y	-. 057	\%66.7
8	M40	Y	-. 048	\%18.5
9	M40	Y	-. 066	\%55.6
10	M40	Y	-. 071	\%55.6
11	M41	Y	-. 14	\%22.7
12	M41	Y	-. 213	\%66.7
13	M49	Y	-. 048	\%18.5
14	M49	Y	-. 071	\%55.6
15	M49	Y	-. 057	\%66.7
16	M49	Y	-. 066	\%66.7
17	M34	Y	-. 14	\%77.3
18	M35	Y	-. 048	\%48.1
19	M48	Y	-. 14	\%77.3
20	M40	Y	-. 048	\%48.1
21	M41	Y	-. 14	\%77.3
22	M49	Y	-. 048	\%48.1

	Member Label	Direction	Start Magnitude[kflt, F.ksf]	End Magnitude[k/ft,F,.ksf]	Start Location[ft.	End Location [ft,...
1	M1	PY	-. 033	-. 033	0	\%100
2	M2	PY	-. 033	-. 033	0	\%100
3	M3	PY	-. 033	-. 033	0	\%100
4	M4	PY	-. 033	-. 033	0	\%100
5	M5	PY	-. 033	-. 033	0	\%100
6	M6	PY	-. 033	-. 033	0	\%100
7	M7	PY	-. 033	-. 033	0	\%100
8	M8	PY	-. 005	-. 005	0	\%100
9	M9	PY	-. 005	-. 005	0	\%100
10	M10	PY	-. 005	-. 005	0	\%100
11	M11	PY	-. 005	-. 005	0	\%100
12	M12	PY	-. 005	-. 005	0	\%100
13	M13	PY	-. 005	-. 005	0	\%100
14	M14	PY	-. 005	-. 005	0	\%100
15	M15	PY	-. 005	-. 005	0	\%100
16	M16	PY	-. 005	-. 005	0	\%100
17	M17	PY	-. 005	-. 005	0	\%100
18	M18	PY	-. 005	-. 005	0	\%100
19	M19	PY	-. 005	-. 005	0	\%100
20	M20	PY	-. 005	-. 005	0	\%100
21	M21	PY	-. 005	-. 005	0	\%100
22	M22	PY	-. 005	-. 005	0	\%100
23	M23	PY	-. 005	-. 005	0	\%100
24	M24	PY	-. 005	-. 005	0	\%100
25	M25	PY	-. 005	-. 005	0	\%100
26	M26	PY	-. 005	-. 005	0	\%100
27	M27	PY	-. 005	-. 005	0	\%100
28	M28	PY	-. 005	-. 005	0	\%100
29	M29	PY	-. 005	-. 005	0	\%100
30	M30	PY	-. 005	-. 005	0	\%100
31	M31	PY	-. 005	-. 005	0	\%100
32	M32	PY	-. 005	-. 005	0	\%100
33	M33	PY	-. 005	-. 005	0	\%100
34	M34	PY	-. 005	-. 005	0	\%100
35	M35	PY	-. 005	-. 005	0	\%100
36	M36	PY	-. 005	-. 005	0	\%100
37	M37	PY	-. 005	-. 005	0	\%100
38	M38	PY	-. 005	-. 005	0	\%100
39	M39	PY	-. 005	-. 005	0	\%100
40	M40	PY	-. 005	-. 005	0	\%100
41	M41	PY	-. 005	-. 005	0	\%100
42	M42	PY	-. 005	-. 005	0	\%100
43	M43	PY	-. 005	-. 005	0	\%100
44	M44	PY	-. 005	-. 005	0	\%100
45	M45	PY	-. 005	-. 005	0	\%100
46	M46	PY	-. 005	-. 005	0	\%100
47	M47	PY	-. 005	-. 005	0	\%100
48	M48	PY	-. 005	-. 005	0	\%100
49	M49	PY	-. 005	-. 005	0	\%100
50	M50	PY	-. 005	-. 005	0	\%100
51	M51	PY	-. 005	-. 005	0	\%100
52	M52	PY	-. 005	-. 005	0	\%100
53	M53	PY	-. 005	-. 005	0	\%100

Member Area Loads

$\begin{array}{|cccccc|}\hline \text { Joint A } & \text { Joint B } & \text { Joint C } & \text { Joint D } & \text { Direction } & \text { Distribution }\end{array} \quad$ Magnitude[ksf] $]$

Basic Load Cases

	BLC Description	Category	X Gravity	Gravity	Z Gravity	Joint	Point	Distribut...	Area(Me...	Surface(...
1	Dead	DL		-1			22			
2	Ice Dead	SL					22	53		
3	Wind PX	None								1
4	Wind NX	None								1
5	Wind PZ	None								1
6	Wind_NZ	None								1
7	Ice Wind PX	None								1
8	Ice Wind NX	None								1
9	Ice Wind PZ	None								1
10	Ice Wind NZ	None								1

Load Combinations

	Description S...	De		a...				Fa..	B..	Fa...	B...	Fa...	B...	Fa...	B...	Fa...	B...	Fa...	B..		B... F	Fa...
1	1.D Yes	Y	1	1																		
2	1.D+0.6W PX Yes	Y	1	1	3	1.6																
3	1.D+0.6W NX Yes	Y	1	1	4	1.6																
4	1.D+0.6W_PZ Yes	Y	1	1	5	1.6																
5	1.D+0.6W NZ Yes	Y	1	1	6	1.6																
6	1.D+0.75Di+0.45Wi PXYes	Y	1	1	2	. 75	7	. 45														
7	1.D+0.75Di+0.45Wi_NX Yes	Y	1	1	2	. 75	8	. 45														
8	1.D+0.75Di+0.45Wi_PZYes	Y	1	1	2	. 75	9	. 45														
9	1.D+1.0Di+0.45Wi NZ Yes	Y	1	1	2	. 75	10	. 45														

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N6	m...	. 306	3	1.976	7	. 307	5	0	9	0	9	0	9
2		m...	-. 306	2	. 711	2	-. 305	4	0	1	0	1	0	1
3	N4	m...	. 306	3	2.002	8	. 307	5	0	9	0	9	0	9
4		m...	-. 306	2	. 725	3	-. 305	4	0	1	0	1	0	1
5	N5	m...	. 306	3	1.954	9	. 305	5	0	9	0	9	0	9
6		m...	-. 306	2	. 7	3	-. 307	4	0	1	0	1	0	1
7	N7	m...	. 306	3	1.928	7	. 305	5	0	9	0	9	0	9
8		m...	-. 306	2	686	2	-. 307	4	0	1	0	1	0	1
9	Totals:	m...	1.224	3	7.766	8	1.224	5						
10		m...	-1.224	2	4.581	5	-1.224	4						

Envelope AISC 14th(360-10): ASD Steel Code Checks

Member		Shape	Code C... Loc[ft] LC Shear				Loc[ft]	Dir L		Pnc/om [k]	Pnt/om	nyy/om	/om	Cb	Eqn
1	M1	HSS8X8X4	. 079	6	8	. 044	8	y	8	183.765	195.569	44.104	44.104	1...	H1-1b
2	M2	HSS8X8X4	. 078	6	8	. 044	8	y	8	183.765	195.569	44.104	44.104	1.	H1-1b
3	M3	HSS8X8X4	. 020	4	8	. 007	0	y	2	183.765	195.569	44.104	44.104	1.	H1-1b
4	M4	HSS8X8X4	. 020	4	9	. 007	0	y	2	183.765	195.569	44.104	44.104	1.	H1-1b
5	M5	HSS8X8X4	. 037	1.5	2	. 047	0	y	5	183.765	195.569	44.104	44.104	1.	H1-1b
6	M6	HSS8X8X4	. 022	4	8	. 004	8	y	6	183.765	195.569	44.104	44.104	1.	H1-1b
7	M7	HSS8X8X4	. 038	1.5	2	. 048	0	V	4	183.765	195.569	44.104	44.104	1...	H1-1b
8	M12	HSS4X4X4	190	10	3	. 019	8.542	z	4	7.861	60.539	5.74	5.74		H1-1b*

Envelope AISC 14th(360-10): ASD Steel Code Checks (Continued)

Member			Code C...Loc[ft] LC Shear				Loc[ft] Dir		Dir	$\frac{\text { Pnc/om [k] }}{7.861}$	$\begin{gathered} \text { Pnt/om [k] } \\ \hline 60.539 \\ \hline \end{gathered}$	$\begin{gathered} \text { Unyy/om } \\ \hline 5.74 \\ \hline \end{gathered}$	Mnzz/om ...Cb Eqn		
9	M13	HSS4X4X4	. 193	10	2	. 019	8.542	z	4				5.74	$4 \ldots$	$\mathrm{H} 1-1 \mathrm{~b}^{*}$
10	M14	HSS4X4X4	. 188	10	2	. 019	8.542	Z	5	7.861	60.539	5.74	5.74		H1-1b*
11	M15	HSS4X4X4	. 185	10	3	. 019	8.542	Z	5	7.861	60.539	5.74	5.74	4	H1-1b*
12	M16	HSS4X4X4	. 294	1.771	8	. 073	5	y	7	15.944	20.18	2.34	2.34	1.	H1-1b
13	M17	HSS4X4X4	. 008	2.5	7	. 003	0	y	9	15.944	20.18	2.34	2.34	1.	H1-1b
14	M18	HSS4X4X4	. 263	3.229	9	. 065	5	y	7	15.944	20.18	2.34	2.34	1.	H1-1b
15	M19	HSS4X4X4	. 008	2.5	6	. 003	0	V	9	15.944	20.18	2.34	2.34	1.	H1-1b
16	M20	HSS4X4X4	. 008	2.5	8	. 003	0	y	9	15.944	20.18	2.34	2.34	1.	H1-1b
17	M21	HSS4X4X4	. 008	2.5	7	. 003	0	y	9	15.944	20.18	2.34	2.34	1.	H1-1b
18	M22	HSS4X4X4	. 008	2.5	9	. 003	0	y	9	15.944	20.18	2.34	2.34	1	H1-1b
19	M23	HSS4X4X4	. 008	2.5	6	. 003	0	y	9	15.944	20.18	2.34	2.34	1.	H1-1b
20	M24	HSS4X4X4	. 292	1.771	6	. 073	5	y	6	15.944	20.18	2.34	2.34	1.	H1-1b
21	M25	HSS4X4X4	. 015	2.24	7	. 004	0	y	9	15.944	20.18	2.34	2.34	1	H1-1b
22	M26	HSS4X4X4	. 261	3.229	6	. 065	5	y	7	15.944	20.18	2.34	2.34	1.	H1-1b
23	M27	HSS4X4X4	. 015	2.865	6	. 004	5	y	9	15.944	20.18	2.34	2.34	$1 .$.	H1-1b
24	M28	L3X3X4	. 401	3.542	7	. 111	0	z	8	17.842	31.042	1.123	2.324	1.	H2-1
25	M29	L3X3X4	. 488	3.542	7	. 108	0	V	8	17.842	31.042	1.123	2.323	1.	H2-1
26	M30	L3X3X4	. 408	3.542	6	. 112	0	z	9	17.842	31.042	1.123	2.311	1.	H2-1
27	M31	L3X3X4	. 492	3.542	6	. 109	0	V	9	17.842	31.042	1.123	2.325	1.	H2-1
28	M34	PIPE 2.0	. 175	8.625	8	. 008	. 188		9	8.08	21.377	1.245	1.245	2.	H1-1b
29	M35	PIPE 2.0	. 034	8.625	9	. 001	. 188		9	8.08	21.377	1.245	1.245	2	H1-1b
30	M40	PIPE_2.0	. 207	8.625	8	. 010	. 188		9	8.08	21.377	1.245	1.245	2.	H1-1b
31	M41	PIPE 2.0	. 050	8.625	9	. 002	. 188		9	8.08	21.377	1.245	1.245	2.	H1-1b
32	M48	PIPE 2.0	. 158	8.625	9	. 007	. 188		9	8.08	21.377	1.245	1.245	2.	H1-1b
33	M49	PIPE 2.0	. 184	8.625	9	. 009	. 188		9	8.08	21.377	1.245	1.245	2.	H1-1b
34	M50	L3X3X5	. 015	1.414	8	. 004	0	y	9	6.06	10.659	. 372	723	1.	H2-1
35	M51	L3X3X5	. 015	1.414	8	. 004	0	z	9	6.06	10.659	. 372	723	1.	H2-1
36	M52	L3X3X5	. 015	1.414	8	. 004	2.828	Z	8	6.06	10.659	. 372	723	1.	H2-1
37	M53	L3X3X5	. 015	1.414	8	. 004	0	z	8	6.06	10.659	. 372	723	1.	H2-1

ATTACHMENT 5

1365 POST RD E

Location	1365 POST RD E	Mblu	G09//104/000 /
Acct\#	8365	Owner	AP 1365 POST RD E
Assessment	$\$ 15,217,500$		WESTPORT LP

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2020	\$16,165,700	\$5,573,600	\$21,739,300
Assessment			
Valuation Year	Improvements	Land	Total
2020	\$11,316,000	\$3,901,500	\$15,217,500

Owner of Record

Owner	AP 1365 POST RD E WESTPORT LP	Sale Price	$\$ 28,000,000$
Co-Owner	C/O ASANA PARTNERS LP	Certificate	
Address	1616 CAMDEN RD SUITE 210	Book \& Page	$3836 / 0152$
	CHARLOTTE, NC 28203	Sale Date	$01 / 16 / 2018$
		Instrument	07

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
AP 1365 POST RD E WESTPORT LP	\$28,000,000		3836/0152	07	01/16/2018
CAPFOR WESTPORT LLC	\$18,250,000		3361/0298	00	10/22/2012
157 EASTON ROAD CORP	\$0	1	1220/0149	29	03/29/1993

Building Information

Building 1 : Section 1

Year Built:	1944
Living Area:	17,117
Replacement Cost:	$\$ 7,999,839$

Building Percent Good: 91
Replacement Cost
Less Depreciation: \$7,279,900

Building Attributes	
Field	Description
Style	National Retail
Model	Commercial
Grade	Excellent ++
Stories:	1
Occupancy	2.00
Exterior Wall 1	Stucco/Masonry
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	T\&G/Rubber
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Hardwood
Interior Floor 2	Carpet
Heating Fuel	Gas
Heating Type	Forced Air
AC Type	Central
Struct Class	
Bldg Use	Retail
Income Adj	
1st Floor Use:	320
Heat/AC	Heat/AC Pkgs
Frame Type	Steel
Baths/Plumbing	Average
Ceiling/Walls	Sus-Ceil \& WL
Rooms/Prtns	Average
Wall Height	16.00
\% Comn Wall	

Building 2 : Section 1

Year Built:	1900
Living Area:	28,639
Replacement Cost:	$\$ 7,106,312$
Building Percent Good:	91
Replacement Cost	
Less Depreciation:	$\$ 6,466,700$

Building Attributes: Bldg 2 of 3

Building Attributes : Bldg 2 of 3	
Field	Description
Style	Neigh Shop Ctr

Building Photo

(http://images.vgsi.com/photos2/WestportCTPhotos//\00\03\52\58.jpg)
Building Layout

(ParcelSketch.ashx?pid=4288\&bid=4288)

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	17,117	17,117
BSM	Basement Area	3,326	0
FOP	Porch, Open	104	0
		20,547	17,117

Model	Commercial
Grade	Good +20
Stories:	2
Occupancy	4.00
Exterior Wall 1	Stucco/Masonry
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	T\&G/Rubber
Interior Wall 1	Drywall
Interior Wall 2	Hardwood
Interior Floor 1	
Interior Floor 2	Gas
Heating Fuel	Forced Air
Heating Type	Central
AC Type	
Struct Class	Office/Ret
Bldg Use	Steel
Income Adj	Average
1st Floor Use:	Ceil \& Walls
Heat/AC	Average
Frame Type	Baths/Plumbing
Ceiling/Walls	Roomit
Wall Height	\% Comn Wall
Rortns	Heat

Building Photo

(http://images.vgsi.com/photos2/WestportCTPhotos//000\02\69\55.jpg)

Building Layout

(ParcelSketch.ashx?pid=4288\&bid=20327)

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	17,317	17,317
FUS	Upper Story, Finished	5,933	5,933
AOF	Office Area	5,389	5,389
BSM	Basement Area	19,373	0
CTH	Cathedral Ceiling	100	0
FOP	Porch, Open	177	0
PTB	Patio - Brick	3,302	0
SLB	Slab	6,414	0
UST	Utility, Storage	272	0
		58,277	28,639

Building 3 : Section 1

Year Built:	1985
Living Area:	0
Replacement Cost:	$\$ 151,025$
Building Percent Good:	87

Replacement Cost
Less Depreciation:
\$131,400
Building Attributes: Bldg 3 of 3

Field	Description				
Style	Prkng Garage				
Model	Commercial				
Grade	Average +10				
Stories:	1				
Occupancy	1.00				
Exterior Wall 1	Minimum				
Exterior Wall 2					
Roof Structure	Flat				

(http://images.vgsi.com/photos2/WestportCTPhotos//000101\10119.jpg)
Building Layout

(ParcelSketch.ashx?pid=4288\&bid=20328)

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
CPT	Covered Parking	5,760	0
PDK	Parking Deck	5,760	0
		11,520	0

Extra Features

Extra Features				Legend
Code	Description	Size	Value	Bldg \#
ELEV	Elevator	2.00 UNITS	\$91,000	2
SPR	Sprinklers	45962.00 S.F.	\$104,600	2
ELEV	Elevator	2.00 UNITS	\$91,000	2
ELV2	Freight Elevator	3.00 UNITS	\$163,800	2
SPR	Sprinklers	5829.00 S.F.	\$14,300	2

Land Use			Land Line Valuation	
Use Code	320		Size (Acres)	3.47
Description Retail GBD Frontage				
Zone Depth Neighborhood I Assessed Value $\$ 3,901,500$ Alt Land Appr No Appraised Value$\$ 5,573,600$ Category				

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
LT1	1Pole - 1 Lt			3.00 UNITS	\$4,500	1
LT4	1Pole - 4 Lts			1.00 UNITS	\$3,600	3
LT1	1Pole - 1 Lt			7.00 UNITS	\$10,400	1
LT2	1Pole - 2 Lts			7.00 UNITS	\$15,400	1
LT4	1Pole-4 Lts			1.00 UNITS	\$3,600	1

Valuation History

Appraisal								
Valuation Year	Improvements	Land						
2020		$\$ 16,165,700$	$\$ 5,573,600$					
2019	$\$ 11,618,100$	$\$ 6,192,900$						
2018	$\$ 11,618,100$	$\$ 6,192,900$						

Assessment			
Valuation Year	Improvements	Land	Total
2020	\$11,316,000	\$3,901,500	\$15,217,500
2019	\$8,132,800	\$4,335,000	\$12,467,800
2018	\$8,132,800	\$4,335,000	\$12,467,800

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

ATTACHMENT 6

[^1]
[^0]: *Maximum uniformly distributed load capacity is 550 plf and single concentrated load cannot exceed shear capacity
 **Does not include accessories

[^1]: PS Form 3665, January 2017 (Page ㄱ_ of _ ${ }^{1}$) PSN 7530-17-000-5549

