

QC Development
PO Box 916
Storrs, CT 06268
860-670-9068
Mark.Roberts@QCDevelopment.net

July 21, 2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Notice of Exempt Modification – New Cingular Wireless PCS, LLC (AT&T) 880 Post Road East, Westport, CT 06880 – AT&T Site # CT2147 N 41-08-14.97 W 73-20-03.61

Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 133-foot level of the existing 180-foot Self Support Tower at 880 Post Road East, Westport. The tower is owned by the Connecticut Department of Public Safety and the property is owned by the State of Connecticut. AT&T now intends to remove three (3) Powerwave antennas and install three (3) new CCI HPA-65R-BUU-H6 antennas. These antennas would be installed at the 133-foot level of the tower. AT&T also intends to remove three (3) Ericsson RRUS-11 and install three (3) Ericsson RRUS-32 B2 radio heads, also at the 133-foot level.

This facility was approved by the Connecticut Siting Council, Docket No. 123 on March 29, 1990. There were no conditions that could feasibly be violated by this modification, including total facility height or mounting restrictions. This modification therefore complies with the aforementioned approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mr. James Marpe, First Selectman of the Town of Westport, the Westport Planning and Zoning Director and

the property and tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Please feel free to call me at (860) 670-9068 with any questions regarding this matter. Thank you for your consideration.

Sincerely,

Mark Roberts

QC Development

Consultant for AT&T

Attachments

cc: Mr. James Marpe – First Selectman, Town of Westport Mary Young – Westport Planning and Zoning Director CT State Police - Tower and Property Owner

Power Density

Existing Loading on Tower

Carrier	# of Channels	ERP/Ch (W)	Antenna Centerline Height (ft)	Power Density (mW/cm^2)	Freq. Band (MHz**)	Limit S (mW /cm^2)	%МРЕ
Other Carriers*							5.42%
AT&T UMTS	2	500	133	0.0223	880	0.5867	0.38%
AT&T UMTS	1	500	133	0.0111	1900	1.0000	0.11%
AT&T LTE	1	500	133	0.0111	700	0.4667	0.24%
AT&T LTE	1	500	133	0.0111	1900	1.0000	0.11%
AT&T LTE	1	500	133	0.0111	2300	1.0000	0.11%
Site Total							6.37%

^{*}Per CSC Records (available upon request, includes calculation formulas)

Proposed Loading on Tower

Carrier	# of Channels	ERP/Ch (W)	Antenna Centerline Height (ft)	Power Density (mW/cm^2)	Freq. Band (MHz**)	Limit S (mW /cm^2)	%МРЕ
Other Carriers*							5.42%
AT&T UMTS	2	368	133	0.0164	880	0.5867	0.28%
AT&T UMTS	2	483	133	0.0215	1900	1.0000	0.22%
AT&T LTE	1	1476	133	0.0329	700	0.4667	0.71%
AT&T LTE	1	2421	133	0.0540	1900	1.0000	0.54%
Site Total					A Comment		7.16%

^{*}Per CSC Records (available upon request, includes calculation formulas)

Note: Proposed Loading may also include corrections to certain Existing Loading values

^{**} If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880

 $[\]ensuremath{^{**}}$ If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880

PROJECT INFORMATION

SCOPE OF WORK: TELECOMMUNICATIONS FACILITY UPGRADE (LTE BWE 2017 UPGRADE):

SITE ADDRESS: 880 POST ROAD EAST

WESTPORT, CT 06880

LATITUDE: 41.137463° N, 41° 8′ 14.84" N

LONGITUDE: 73.334360° W, 73° 20' 3.69" W

TYPE OF SITE: LATTICE TOWER / INDOOR EQUIPMENT

TOWER HEIGHT: 180'

RAD CENTER: 133'±

CURRENT USE: TELECOMMUNICATIONS FACILITY

PROPOSED USE: TELECOMMUNICATIONS FACILITY

SITE NUMBER: CT2147

SITE NAME: WESTPORT SP TWR

PROJECT: LTE BWE 2017 UPGRADE

SHEET NO.	DRAWING INDEX DESCRIPTION	REV.
T-1	TITLE SHEET	1
GN-1	GENERAL NOTES	1
A-1	COMPOUND & EQUIPMENT PLANS	1
A-2	ANTENNA LAYOUTS & ELEVATION	1
A-3	DETAILS	1
RF-1	RF PLUMBING DIAGRAM	1
G-1	GROUNDING DETAILS	1

DIRECTIONS TO SITE:

START OUT GOING NORTHEAST ON ENTERPRISE DR TOWARD CAPITOL BLVD. 0.4 MI TURN LEFT ONTO CAPITOL BLVD. 0.3 MI TURN LEFT ONTO WEST ST. 0.3 MI MERGE ONTO I-91 S VIA THE RAMP ON THE LEFT TOWARD NEW HAVEN. 29.1 MI MERGE ONTO I-95 S/GOVERNOR JOHN DAVIS LODGE TURNPIKE VIA THE EXIT ON THE LEFT TOWARD N.Y. CITY. 24.5 MI TAKE EXIT 19 TOWARD US-1/SOUTHPORT. 0.2 MI STAY STRAIGHT TO GO ONTO PEASE AVE. 0.1 MI TURN SLIGHT RIGHT ONTO POST RD E/US-1 S. 2.4 MI TURN LEFT ONTO SHERWOOOD ISLAND CONNECTOR.

VICINITY MAP

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY

AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

GENERAL NOTES

- 2. THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.
- CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T MOBILITY REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

72 HOURS

BEFORE YOU DIG

CALL TOLL FREE 1 - 800 - 922 - 4455

or call 811

F CONNI UNDERGROUND SERVICE ALERT

WAS CONNOUN

SITE NUMBER: CT2147 SITE NAME: WESTPORT SP TWR

> 880 POST ROAD EAST WESTPORT, CT 06880 FAIRFIELD COUNTY

ROCKY HILL, CT 06067

8	2016 Goodle, Map det	82016 Gc		-				
				/ * ±	M/PE STAMPS/ct-model	*=	AT&T	
				//	1.2 S		TITLE SHEET	
-		ISSUED FOR CONSTRUCTION	SG	AT DOC	my Co	15		
	07/12/16	ISSUED FOR REVIEW	EB	AT DUC	ON CENSY		(LTE BWE)	
	DATE	REVISIONS	BY	CHK APP'E	SSIDNIAL ENG!	SITE NUMBER	DRAWING NUMBER	REV
A	LE: AS SH	HOWN DESIGNED BY: AT	RAWN BY:	EB	WAL LINE	CT2147	T-1	1

GROUNDING NOTES

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT
- 5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 11. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWS COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 12. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/2 IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250,50

GENERAL NOTES

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR - SAI SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) OWNER - AT&T MOBILITY

- 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.
- 3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES. ORDINANCES AND APPLICABLE REGULATIONS.
- 4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE
- 5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON
- "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.
- 7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS. THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR
- SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 13. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.

- 14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS. ALL CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
- 15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36~ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 16. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T SITES."
- 17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS
- 19. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.
- 20. APPLICABLE BUILDING CODES: SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL

CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN. BUILDING CODE: IBC 2015 & 2016 BUILDING CODE OF NEW YORK STATE ELECTRICAL CODE: REFER TO ELECTRICAL DRAWINGS LIGHTENING CODE: REFER TO ELECTRICAL DRAWINGS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING

AMERICAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE;

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

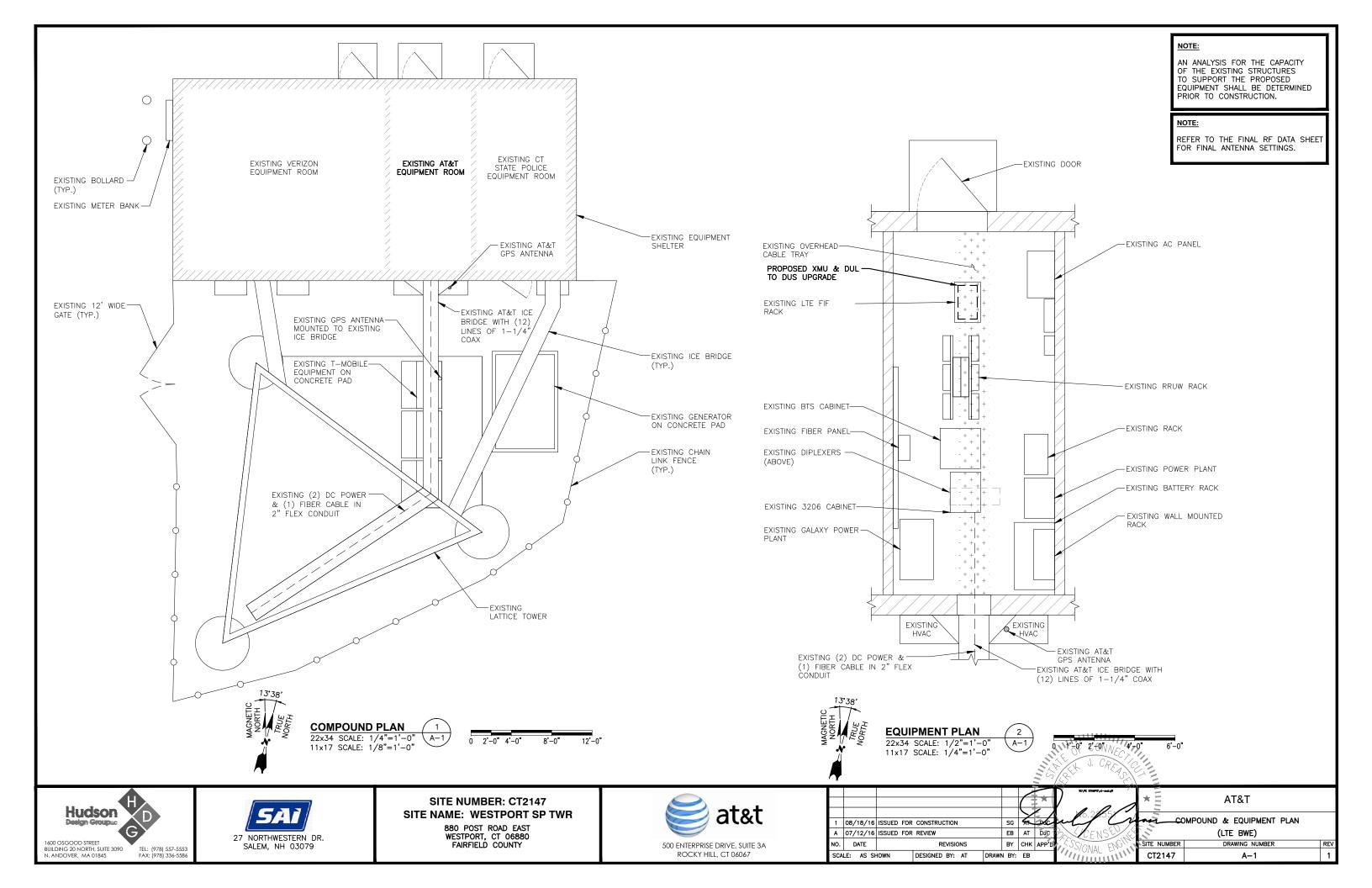
MANUAL OF STEEL CONSTRUCTION, ASD, FOURTEENTH EDITION;

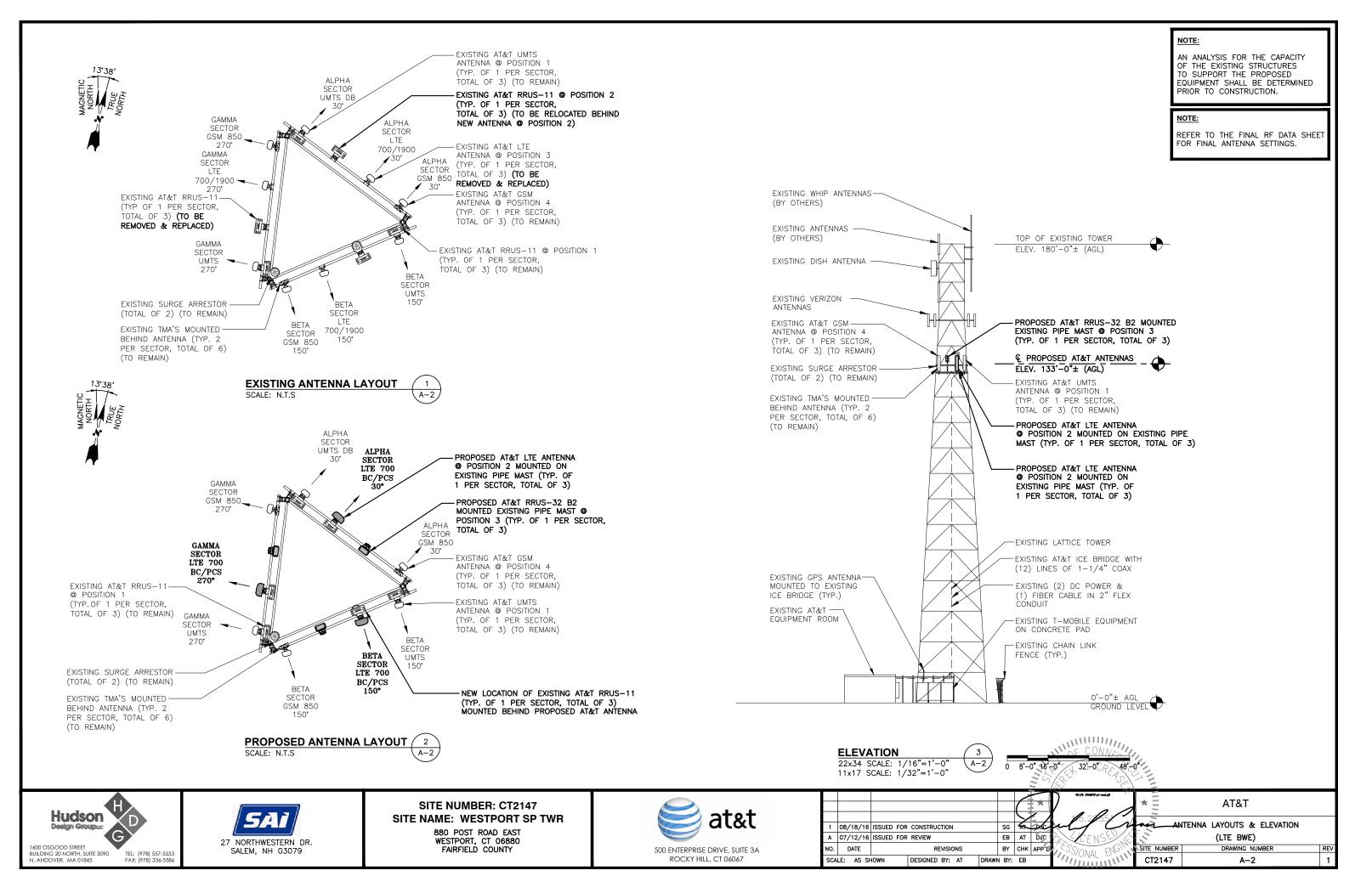
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-G, STRUCTURAL STANDARDS FOR STEEL

EQUIPMENT AND ANTENNA SUPPORTING STRUCTURES: REFER TO ELECTRICAL DRAWINGS FOR SPECIFIC ELECTRICAL STANDARDS.

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

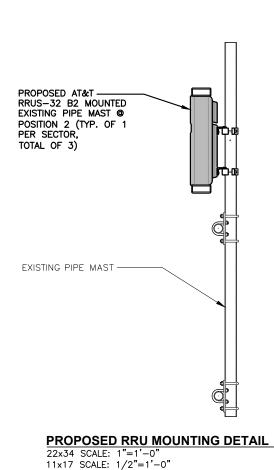
			ABBREVIATIONS		
AGL	ABOVE GRADE LEVEL	EQ	EQUAL	REQ	REQUIRED
AWG	AMERICAN WIRE GAUGE	GC	GENERAL CONTRACTOR	RF	RADIO FREQUENCY
BBU	BATTERY BACKUP UNIT	GRC	GALVANIZED RIGID CONDUIT	TBD	TO BE DETERMINED
втсм	BARE TINNED SOLID COPPER WIRE	MGB	MASTER GROUND BAR	TBR	TO BE REMOVED
BGR	BURIED GROUND RING	MIN	MINIMUM	TBRR	TO BE REMOVED AND REPLACED
BTS	BASE TRANSCEIVER STATION	Р	PROPOSED	TYP	TYPICAL
E	EXISTING	NTS	NOT TO SCALE	UG	UNDER GROUND
EGB	EQUIPMENT GROUND BAR	RAD	RADIATION CENTER LINE (ANTENNA)	VIF	VERIFY IN FIELD J. CR.
EGR	EQUIPMENT GROUND RING	REF	REFERENCE		\$ 5/2 T


SITE NUMBER: CT2147 SITE NAME: WESTPORT SP TWR


> 880 POST ROAD EAST WESTPORT, CT 06880 FAIRFIFI D COUNTY

ROCKY HILL CT 06067

						-	$l \sim 1$	()		
						*	HI-PE STAMPS\ct-woolgt		*	AT&T
			CONSTRUCTION	SG	*		ulfl	N	asi_	GENERAL NOTES
Α	07/12/16	ISSUED FOR	REVIEW	EB	AT	DUC	ON CENSY			(LTE BWE)
NO.	DATE		REVISIONS	BY	снк	APP'0	SSIONINI FNO	3/12	SITE NUMBER	DRAWING NUMBER
SCA	LE: AS SH	IOWN	DESIGNED BY: AT	DRAWN BY:	EB		WALL LA	111,	CT2147	GN-1



<u> </u>	EXISTING AN	TENNA SCHEDULE			PROPOSED	ANTENNA SCHEDU	<u>JLE</u>
SECTOR	MAKE	MODEL#	SIZE (INCHES)	SECTOR	MAKE	MODEL#	SIZE (INCHES)
ALPHA:	POWERWAVE - POWERWAVE POWERWAVE	P65-16-XLH-RR - P65-16-XLH-RR P65-16-XLH-RR	72X12X6 - 72X12X6 72X12X6	ALPHA:	POWERWAVE CCI - POWERWAVE	P65–16–XLH–RR HPA–65R–BUU–H6 – P65–16–XLH–RR	72X12X6 72X14.8X9 - 72X12X6
BETA:	POWERWAVE - POWERWAVE POWERWAVE	P65-16-XLH-RR - P65-16-XLH-RR P65-16-XLH-RR	72X12X6 - 72X12X6 72X12X6	BETA:	POWERWAVE CCI - POWERWAVE	P65-16-XLH-RR HPA-65R-BUU-H6 - P65-16-XLH-RR	72X12X6 72X14.8X9 - 72X12X6
GAMMA:	POWERWAVE POWERWAVE POWERWAVE	P65-16-XLH-RR - P65-16-XLH-RR P65-16-XLH-RR	72X12X6 - 72X12X6 72X12X6	GAMMA:	POWERWAVE CCI - POWERWAVE	P65–16–XLH–RR HPA–65R–BUU–H6 – P65–16–XLH–RR	72X12X6 72X14.8X9 - 72X12X6

NOTE:

ALL ANTENNAS AND LINES TO BE INSTALLED IN ACCORDANCE WITH STRUCTURAL ANALYSIS PROVIDED BY CROWN CASTLE AND FINAL AT&T RF DATA SHEET.

REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS.

RRU CHART QUANTITY MODEL L W D 6 (E) | RRUS-11 | 19.7" | 17.0" | 7.2" RRUS-12 20.4" 18.5" 7.5" 3 (P) RRUS-32 27.2" 12.1" 7.0" RRUS-E2 20.4" 18.5" 7.5" LTE-A2 | 16.4" | 15.2" | 3.4" MOUNT PER MANUFACTURER'S SPECIFICATIONS

NOTE:

SEE RFDS FOR RRH FREQUENCY AND MODEL NUMBER

PROPOSED RRU REFER TO THE ——FINAL RFDS AND CHART FOR QUANTITY, MODEL AND DIMENSIONS

MOUNT PER MANUFACTURER'S SPECIFICATIONS.

Hudson

22x34 SCALE: 1"=1'-0"

11x17 SCALE: 1/2"=1'-0"

EXISTING SURGE ARRESTOR -(TOTAL OF 2) (TO REMAIN)

NEW LOCATION OF ——— EXISTING AT&T RRUS-11

(TYP. OF 1 PER SECTOR,

TOTAL OF 3)
MOUNTED BEHIND
PROPOSED AT&T ANTENNA

EXISTING PIPE MAST

1600 OSGOOD STREET BUILDING 20 NORTH, SUITE 3090 N. ANDOVER, MA 01845

27 NORTHWESTERN DR. SALEM, NH 03079

PROPOSED ANTENNA MOUNTING DETAIL

SITE NUMBER: CT2147 SITE NAME: WESTPORT SP TWR

- PROPOSED AT&T LTE ANTENNA

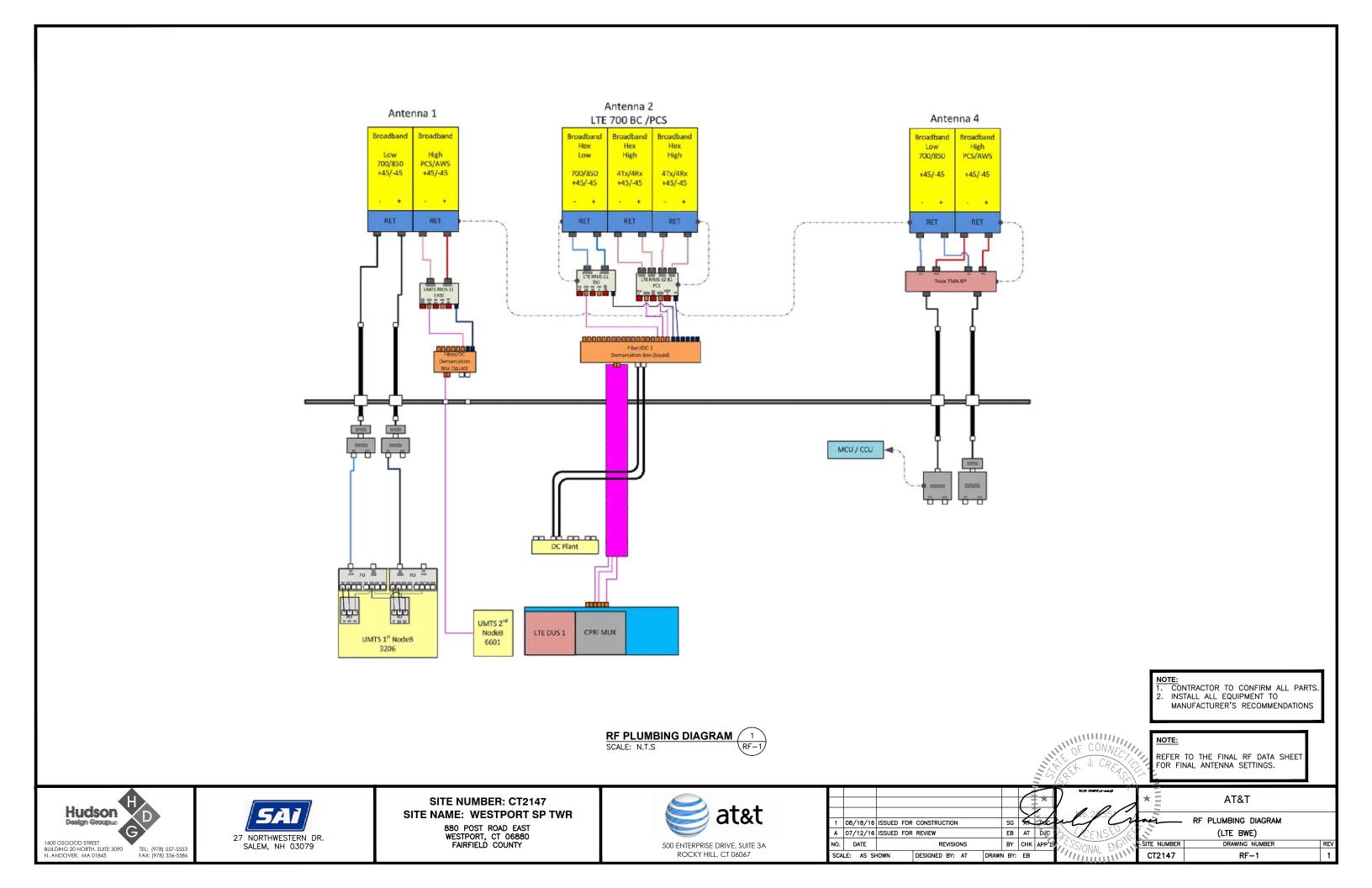
© POSITION 2 MOUNTED ON
EXISTING PIPE MAST (TYP. OF 1 PER SECTOR, TOTAL OF 3)

PROPOSED AT&T ANTENNAS -

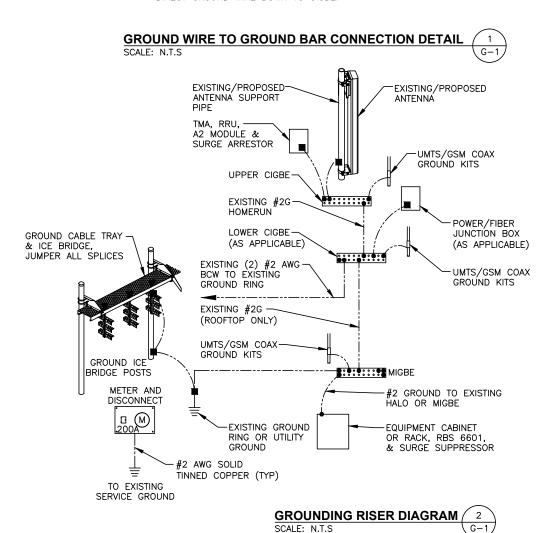
0 0'-6" 1'-0"

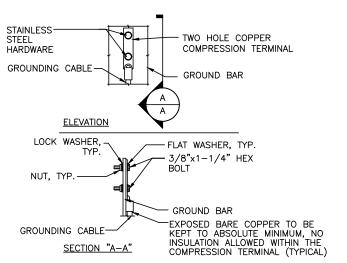
ELEV. 133'-0"± (AGL)

(A-3/


880 POST ROAD EAST WESTPORT, CT 06880 FAIRFIELD COUNTY

A-3/

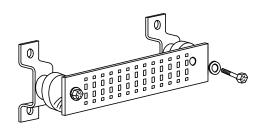

						\Box		$\overline{}$
						- (:	×	/
							Z /	
1	08/18/16	ISSUED FOR	CONSTRUCTION		S	; A T	8	M
A	07/12/16	ISSUED FOR	REVIEW		Ef	B AT	Duc	0.\
0.	DATE		REVISIO	NS	B,	r снк	APP'D	// // ~
CA	LE: AS SH	HOWN	DESIGNED BY:	AT	DRAWN B	Y: EB	•	111


AT&T DETAILS (LTE BWE) DRAWING NUMBE CT2147 A-3

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE.

NOTE:

- 1. "DOUBLING UP" OR "STACKING" OF CONNECTION IS NOT PERMITTED.
 2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATION.
 3. CADWELD DOWNLEADS FROM UPPER EGB, LOWER EGB, AND MGB


EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR SHALL HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.

SECTION "P" - SURGE PRODUCERS

CABLE ENTRY PORTS (HATCH PLATES) (#2)
GENERATOR FRAMEWORK (IF AVAILABLE) (#2) TELCO GROUND BAR COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2) +24V POWER SUPPLY RETURN BAR (#2) -48V POWER SUPPLY RETURN BAR (#2) RECTIFIER FRAMES.

SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2) EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2) METALLIC COLD WATER PIPE (IF AVAILABLE) (#2) BUILDING STEEL (IF AVAILABLE) (#2)

SITE NUMBER: CT2147 SITE NAME: WESTPORT SP TWR

880 POST ROAD EAST WESTPORT, CT 06880 FAIRFIELD COUNTY

					\overline{C}	*	HI/FE STAMPS(v1-wod.gt	*	AT&T	
	<u> </u>	ISSUED FOR	CONSTRUCTION REVIEW	SG EB	AT AT	DUC	LENS V	min	GROUNDING DETAILS (LTE BWE)	
NO.	DATE		REVISIONS	BY	снк	APP'D	SSIONINI ENGLIS	SITE NUMBER	DRAWING NUMBER	REV
SCA	ALE: AS SH	HOWN	DESIGNED BY: AT DF	RAWN BY:	EB		WAL LAND	CT2147	G-1	1

Submitted to J.P Wireless Consulting, LLC 11 Par Circle Albany, NY 12208

Verizon Wireless 99 East River Drive East Hartford, CT 06108

AT&T 500 Enterprise Drive Suite 3A Rocky Hill, CT 06067 Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 June 5, 2017

DETAILED STRUCTURAL ANALYSIS AND MODIFICATION OF AN EXISTING 180' SELF SUPPORTING LATTICE TOWER AND FOUNDATION FOR PROPOSED ANTENNA ARRANGEMENT

Site Name: Site Address: CT25XC355

880 Post Road East

Westport, Connecticut

CSP Tower # 32

60504883 / JPW-001

TABLE OF CONTENTS

- 1. EXECUTIVE SUMMARY
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 6. DRAWINGS AND DATA
 - REINFORCEMENT DRAWINGS SK-1 AND SK-2
 - SEISMIC BASE SHEAR ANALYSIS
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER DEFLECTION, TILT, AND TWIST
 - TNX TOWER DETAILED OUTPUT
 - ANCHOR BOLT EVALUATION
 - FOUNDATION ANALYSIS (PERFORMED BY DR. CLARENCE WELTI, P.E., P.C.)
 - ANTENNA MOUNT REFERENCES

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis with proposed modification of the 180' self-supporting lattice tower. The tower is located at 880 Post Road East in Westport, Connecticut.

The structural analysis was conducted in accordance with the 2016 Connecticut State Building Code which includes the TIA-222-G¹ Standard, 2012 International Building Code, the 2016 Connecticut State Building Code Amendments, the AISC² Load Resistance Factor Design (LRFD), the ASCE 7³ design Code, and the Connecticut State Police Requirements which include the TIA/EIA-222-F⁴.

The proposed tower modification design is included with this report.

The antenna loading considered in the analysis consists of all the existing antennas, transmission lines and ancillary items as outlined in the Introduction Section of this report.

The proposed Sprint/Clearwire, Verizon Wireless and AT&T antenna upgrades are listed below:

Antennas and other Appurtenances	Carrier	Antenna Center Elevation
Remove:		9
(3) SitePro1 2' Ultimate Universal Standoff Frames (Part# USF-2U) w/ Large Leg Adapter Kit (Part # TAM-LL) with (1) 8' 2-3/8" Antenna Pipe Mounted to Standoff Frame (3) RFS APXVSPP18-C-A20 Panel Antennas (3) Alcatel-Lucent 800 MHz RRH Units (3) Alcatel-Lucent 1900 MHz RRH Units (3) 1-1/4" Hybrid Coaxial Cables	Sprint (existing)	@ 75'
(2) P65-15-XL-2 Panels (Alpha & Gamma Sectors – 700 MHz / LTE) (1) LNX-6512DS-T4M Panel Antenna (Beta Sector – 700 MHz / LTE) (3) BXA-171063-12CF-EDIN-2 Panel Antennas (1900 MHz / PCS) (3) BXA-171063-12CF-EDIN-2 Panel	VZW (existing)	@ 160'
Antennas (2100 MHz / AWS) (3) Alcatel Lucent 2x40-AWS RRH Units (6) Diplexer Units (3) P65-16-XLH-RR Panel Antennas (3) RRUS-11 RRH Units	AT&T (existing)	@ 133'

Antennas and other Appurtenances	Carrier	Antenna Center Elevation
Install: (3) RFS APXVSPP18-C-A20 Panel Antennas (3) RFS APXVTM14-C-120 Panel Antennas (3) ALU Model 800 MHz RRH Units (3) ALU Model1900 MHz RRH Units (3) ALU TD-RRH8x20-25 (2500 MHz) RRH Units (3) ALU Model 800 External Notch Filters (9) RFS ACU-A20-N Tower Mount Switches (4) 1-1/4" Hybrid Coaxial Cables (1) NEMA 4X Enclosure Box (3) SitePro1 Antenna Mount Frames Part Number USF12-484-U	Sprint (Proposed)	@ 145'
(1) Andrew VHLP800-11-DW1 Microwave Dish Antenna (1) Andrew VHLP2-11 Microwave Dish Antenna (2) Dragonwave ODU Radio Units (2) 1/2" Coaxial Cables	Clearwire (Proposed)	@ 145'
(3) Commscope SBNHH-1D65B Panel Antennas (700 MHz / LTE shared with 1900 MHz / PCS) (3) Alcatel Lucent 2x60-700MHz RRH Units (1) DB-T1-6Z-8AB-0Z Distribution Box (700 MHz / LTE) (3) Alcatel Lucent 2x60-1900MHz RRH Units (3) Commscope SBNHH-1D65B Panel Antennas (2100 MHz / AWS) (3) Alcatel Lucent 2x60-AWS (2100 MHz) RRH Units (1) 1-5/8 Hybriflex Hybrid Coaxial Cable	VZW (Proposed)	@ 160'
(3) CCI HPA-65R-BUU-6 Panel Antennas (3) RRUS-32 RRH Units	AT&T (Proposed)	@ 133 [']

^{1,} TIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version G)

 $²_*$ AISC = American Institute of Steel Construction (14th Edition)

^{3.} ASCE 7 = American Society of Civil Engineers Standard 7 (2010 Edition)

^{4.} TIA/EIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version F)

1. **EXECUTIVE SUMMARY** (continued)

The results of an initial analysis indicated the existing tower structure did not have enough capacity for the proposed antenna upgrades above. The tower structure requires modifications shown on SK-1 and SK-2. Once the modifications indicated on sheets SK-1 and SK-2 are performed, the modified structure is considered structurally adequate with the wind load specification and with the existing and proposed antenna loading included herein.

The results of the analysis indicate the modified tower's sway (deflection) is 0.5665 degrees and the modified tower's twist (rotation) is 0.0775 degrees. These figures combined are within the Connecticut State Police requirements of 0.75 degrees for combined twist (rotation) and sway (deflection) when applying the TIA/EIA-222-F design conditions.

This analysis is based on:

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- 2) Original tower report prepared by Rohn Industries, Inc., engineering file 26263DL and drawing C910693 dated February 1, 1991.
- 3) Soil investigation and foundation capacity report prepared by Dr. Clarence Welti, P.E., P.C., dated October 10, 2002.
- 4) Tower Mapping and Inventory by D&K Nationwide Communications Inc., performed on March 18, 2016.
- 5) Existing antenna inventory provided by Motorola / Connecticut State Police via e-mail dated June 22, 2016.
- 6) Proposed antenna inventory provided by Verizon Wireless via Radio Frequency Data Sheet (RFDS), dated April 19, 2016.
- 7) Proposed antenna inventory provided by AT&T via RFDS sheet, dated May 13, 2016, obtained via e-mail dated July 1, 2016.
- 8) Previous structural analysis and evaluation provided by AECOM on behalf of Motorola / Connecticut State Police, project PNS-606 / 60509756.06, signed and sealed on September 16, 2016.
- 9) Proposed antenna inventory, provided by Sprint and Clearwire, obtained via e-mail dated March 17, 2017.
- Previous structural analysis and evaluation performed by AECOM on behalf of Sprint, project number 60542807 / JPW-002, signed and sealed on May 12, 2017.
- 11) Antenna and mount configuration as specified on the following page of this report.

1. **EXECUTIVE SUMMARY** (continued)

This report is only valid as per the information and data provided by others for antenna inventory, mounts, tower structure, existing foundation and associated cables. The user of this report shall field verify the antenna, cabling and mount configuration used, as well as the physical condition of the tower members, connections and foundations. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

AECOM,

Richard A. Sambor, P.E. Senior Structural Engineer

RAS/mcd

60540883 JPW-001

2. INTRODUCTION

The subject tower is located at 880 Post Road East in Westport, Connecticut. The structure is a 180' self-supporting lattice tower manufactured by Rohn Industries Incorporated.

The structural analysis was conducted in accordance with the following:

- TIA-222-G Standard for Standard for a wind velocity of range of 95 mph to 110 mph (3-second gust) and 50 mph (3-second gust) concurrent with 0.75" ice thickness, considered to increase in thickness with height
- 2012 International Building Code with 2016 Connecticut State Building Code Amendments for a wind speed of 101 mph (3-second gust) increased to county maximum speed due to location within ASCE "Special Wind Region" → 110 mph
- 2010 AISC Load Resistance Factor Design (LRFD)
- 2010 ASCE 7 Minimum Design Loads for Buildings and Other Structures for the ice thickness referenced in the TIA-222-G Standard
- Connecticut State Police Requirements for a wind velocity of 90 mph (fastest mile) and 90 mph (fastest mile) concurrent with 0.5" ice. Twist (rotation) and sway (deflection) were determined in accordance with Connecticut State Police Requirements for a wind velocity of 90 mph (fastest mile) concurrent with 0.5" ice, analyzed under the TIA/EIA-222-F design Standard.

The inventory together with the proposed Sprint/Clearwire, Verizon Wireless and AT&T antenna arrangement is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Decibel DB-536 Omni Antenna	D&K-53 CSP-45 (existing)	Mount shared with D&K #48	@ 178'	(1) LDF5-50A
(1) Sinclair SE419- SWBPALDF(D00) Panel Antenna (Troop G (RX))	CSP (existing)	4' Side Arm Mount	@ 175'	(1) LDF4-50A Jumper from below TTA (Tr. G)
(1) Celwave PA6-65 Dish with Radome	D&K-52 CSP-42 (existing)	Dish Standoff	@ 177'	(1) EW-63
(1) Scala AP11-850 antenna	D&K-49 CSP-46 (existing)	Shared with above mount	@ 175'	(1) LDF7-50A
(1) Amphenol WPA- 700102-4CF-EDIN-9 Panel Antenna (Troop G (TX))	CSP (existing)	Shared with below Mount	@ 170'	(1) AVA7-50A
(1) Bird 432E-83I-01T TTA Unit (Troop G)	CSP (existing)	Existing Antenna Mount Frame	@ 170'	(1) AVA7-50A (1) LDF4-50A
(1) Sinclair SE419- SWBPALDF(D00) Panel Antenna	CSP (existing)	Shared with above Mount	@ 170'	(1) LDF4-50A Jumper from above TTA (Tr. G)
(1) 4' Yagi Antenna	D&K-51 CSP-1 (existing)	Pipe Mounted to Leg	@ 169'	(1) LDF5-50A
(1) (inverted) Scala OGT9-806 Omni Antenna	D&K-48 CSP-49 (existing)	4' Side Arm Mount	@ 164'	(1) LDF7-50A

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(3) Commscope SBNHH-1D65B Panel Antennas (700 MHz / LTE shared with 1900 MHz / PCS) (3) Alcatel Lucent 2x60-700MHz RRH Units (1) DB-T1-6Z-8AB-0Z Distribution Box (700 MHz / LTE) (3) Alcatel Lucent 2x60-1900MHz RRH Units (3) Commscope SBNHH-1D65B Panel Antennas (2100 MHz / AWS) (3) Alcatel Lucent 2x60-AWS) (2100 MHz) RRH Units	Verizon (Proposed)	See below Mount	@ 160°	(1) 1 5/8" Fiber Optic Cable
(1) Amphenol BXA 70080-4CF Panel Antennas (Alpha Sector) (2) Amphenol 70063- 4CF Panel Antennas (Beta and Gamma Sectors) (1) Raycap DB-T1-6Z- 8AB-0Z Distribution Box	D&K-27 – 46 Verizon (existing)	(3) 15' T-Frames	@ 160'	(12) LDF7-50A (1) 1 5/8" Fiber
(1) (inverted) Scala OGT9-806 Omni Antenna	D&K-47 CSP-48 (existing)	3' Side Arm Mount	@ 159'	(1) LDF7-50A
(3) RFS APXVSPP18-C-A20 Panel Antennas (3) RFS APXVTM14-C-120 Panel Antennas (3) ALU Model 800 MHz RRH Units (3) ALU Model1900 MHz RRH Units (3) ALU TD- RRH8x20-25 (2500 MHz) RRH Units (3) ALU Model 800 External Notch Filters (9) RFS ACU-A20-N Tower Mount Switches (1) NEMA 4X Enclosure Box	Sprint (Proposed)	(3) SitePro1 Antenna Mount Frames Part Number USF12- 484-U	@ 145'	(4) 1-1/4" Hybrid Cables

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Andrew VHLP800-11-DW1 Microwave Dish Antenna (1) Andrew VHLP2- 11 Microwave Dish Antenna (2) Dragonwave ODU Radio Units (2) 1/2" Coaxial Cables	Clearwire (Proposed)	Shared with above Mount Frame	@ 145'	(2) LDF4-50A
(3) CCI HPA-65R-BUU- 6 Panel Antennas (3) RRUS-32 RRH Units	AT&T (Proposed)	See Below Mounts	@ 133'	See Below Cables
(6) P65-16-XLH-H-RR Panel Antennas (6) RRUS-11 Units (2) DC6-48-60-18-8F Distribution Box (3) TT19-08BP111-001 Twin TMA's	D&K-13 – 26 AT&T (existing)	(3) Existing Antenna Mount Frames	@ 133'	(12) LDF6-50A (2) Fiber Optic Cable (4) DC Cables
(9) TMAs (6) Ericsson Air 21 antennas (3) Commscope LNX- 6515DS-VTM Panel Antennas (3) Ericsson RRUS-11 Remote Radio Units	D&K-2 – 12 T-Mobile (existing)	(3) Antenna Frame Mounts (Valmont Site Pro 1 part # LTF12- 372)	@ 125 [,]	(18) LDF7-50A (1) LDF4-50A (1) Huber Suhner Hybrid cable
(1) GPS Antenna	D&K-1 CSP-43 (existing)	Leg Mount	@ 61'	(1) LDF4-50A

NOTES: Antenna ID Numbering and elevations obtained from Tower Mapping and Existing inventory via tower climb performed by D&K Nationwide Communications, Inc. on March 18, 2016.

This structural analysis of the modified communications tower was performed by AECOM for Sprint/Clearwire, Verizon Wireless and AT&T. The purpose of this analysis was to assess the modified tower for its existing and proposed antenna loads. This analysis was conducted to evaluate twist (rotation), sway (deflection), stress on the tower, and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with, the TIA-222-G-Structural Standard for Antenna Towers and Antenna Supporting Structures and Antennas, the 2012 International Building Code with 2016 Connecticut State Building Code Amendments and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Load Resistance Factor Design (LRFD)

The structural analysis was conducted using TNX Tower version 7.0.7.0 and used the following conditions for this tower review (following the TIA/EIA-222-G Standard):

- Structure Class 3 (Essential Communications)
 - NOTE: ASCE 7 and CT State Building Code Applied Risk Category 4 for design wind loads (see below)
- Topographic Category 1 (No Abrupt Changes in General Topography)
- Exposure Class C (Open Terrain with scattered obstructions)
- Load Conditions:
 - Two load conditions were evaluated as shown which were compared to design stresses according to AISC and TIA/EIA-222-G Standard.

Basic Wind Speed:

- TIA-222-G:
 - Fairfield County (Wind Speed Range): V = 90 mph 110 mph (3-second gust)
 [Annex of TIA-222-G 2006]
- IBC 2012 w/ 2016 CT State Building Code Amendment:
 - (2012) IBC Section 1609.1.1 Determination of Wind Loads Exception 5 "Designs using TIA-222" applies for determination of Design Wind Load obtained as "V.ult" are to be converted to "V.asd" when applying the TIA-222-G design Standard (under Section 1609.3) for Basic Wind Speed.
 - (2016) CT State Building Code Amendment to the IBC Section 1609.3 wind loads are obtained from Appendix N of the State Building Code.
 - V.asd = 101 mph (3-Second Gust) Wind Design Parameter for the Town of Southbury, Connecticut for Risk Category four (IV) for essential communications (Connecticut State Police).
 - NOTE: Due to the location of the Tower and Risk Category for the structure, the wind speed shall be increased to the TIA-222-G maximum listed speed (indicated above) to address additional wind effects within the "Special Wind Region" designated by ASCE and indicated within the "Wind-Borne Debris Region" per the CT State Building Code.

Load Condition 1 = 110 MPH (3-SECOND GUST) WIND LOAD (WITHOUT ICE) + TOWER DEAD LOAD Load Condition 2 = 50 mph (3-second gust) Wind Load (with ice) + Ice Load + Tower Dead Load

Ice thickness used for this analysis is **0.75 inch** (assumed to start at the base of the tower) and is considered to increase in thickness with height. The initial ice thickness for design is referenced in the Annex of TIA-222-G and follows the same design criteria as the ASCE 7 Standard.

The load condition below implements the design requirements of the Connecticut State Police for the tower structure's deflection limits with the allowable deflection limit of the combination of the tower's sway (deflection) and twist (rotation) under the TIA/EIA-222-F design Standard. This design limit required the design combined value of sway (deflection) and twist (rotation) to be under 0.75 degrees following the TIA/EIA-222-F design Standard.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS (cont.)

Load Condition 3 = 90 mph (fastest mile) Wind Load (with Ice) + Ice Load + Dead Load

Seismic event consideration factors/values for design:

- S.s = 0.226 (2016 CT State Building Code Location Specific Value)
- S.1 = 0.067 (2016 CT State Building Code Location Specific Value)
- Site Classification = "D"
- Seismic Design Category = "A" (2012 International Building Code)
- F.a = 1.6 (Obtained from TIA-222-G Table 2-12 Considering above conditions)
- F.v = 2.4 (Obtained from TIA-222-G Table 2-13 Considering above conditions)

Strength Limit State Load Combinations (TIA-222-G Section 2.3.2):

The structural analysis herein has considered the following load combinations within the analysis:

- 1. 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.6 Wind load without ice
- 2. 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Dead weight of ice due to factored ice thickness + 1.0 Concurrent wind load with factored ice thickness + 1.0 Load effects due to temperature
- 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Earthquake Load
- NOTE 1: The above **bolded** load combination is considered to create the governing design loads per the results of the analysis.
- NOTE 2: The above "Dead Load Guy Assemblies" are not considered as part of the analysis and are considered as a value of zero.
- NOTE 3: The "Load effects due to temperature" do not apply for structures that are self-supporting (from the TIA-222-G Standard)

4. FINDINGS AND EVALUATION

The combined axial and bending stresses on the tower structure were evaluated to compare with the strength design in accordance with AISC (LRFD). The results of an initial analysis indicated that the existing tower did not have enough capacity to support the proposed loading conditions. The tower structure requires modifications shown on SK-1 and SK-2. Once the modification indicated on sheets SK-1 and SK-2 are performed, the modified structure is considered structurally adequate with the wind load specification and with the existing and proposed antenna loading included herein.

The tower sway (deflection) is 0.5665 degrees and the tower twist (rotation) is 0.0775 degrees. These figures combined ARE within the Connecticut State Police specification of 0.75 degrees for sway (deflection) and twist (rotation).

Tower Base Reactions (TIA-222-G):

Description	Ultimate Reactions (Geotech 10/10/2002) (TIA-222-G)	Current (Factored) TIA-222-G	Stress (% capacity)	Pass/ Fail
Pier Compression (kips)	665	460	69.7	Pass
Pier Uplift (kips)	492	425	86.4	Pass
Overall Overturning (kip-ft)	***	10557		212:
Overall Shear (kips)		109		
Shear per Leg (kips)		63		

Tower Component Stress vs. Capacity Summary:

Component / (Section No.)	Controlling Component/ Elevation	Stress (% capacity)	Pass/ Fail	Comments:
Tower Leg (T12)	ROHN 8 EHS (8.75x0.375) / 20' – 30'	97.2	Pass	
Diagonal (T13)	Pipe 3.5x0.226 / 0' – 20'	90.3	Pass	
Horizontal (T11)	ROHN 2.5 STD / 30'-40'	91.6	Pass	
Top Girt (T12)	ROHN 2.5 STD / 20'-30'	83.8	Pass	14
Redund Horz 1 Bracing (T13)	ROHN 1.5 STD / 0'-20'	36.4	Pass	
Redund Diag 1 Bracing (T13)	Pipe 1.5x0.200 / 0'-20'	78.3	Pass	
Redund Hip 1 Bracing (T13)	ROHN 2.5 STD / 0'-20'	0.3	Pass	
Inner Bracing (T5)	L2x2x1/8 / 120'-126.667'	6.6	Pass	
Tower Bolt	(8) 1" Diameter Leg Flange Bolts (A325N) / 20'	88.8	Pass	See Tower Leg Section Above
Anchor Bolts – Uplift & Shear Capacity (TIA-222-G – 4.9.9)	1" Dia. / Tension	89.1	Pass	ASTM A 354 – Gr BC Bolts

4. FINDINGS AND EVALUATION (cont.)

Maximum Deformations – Proposed Condition

TIA-222-G Section 2.8.2 - Limit State Deformations

- 1. A rotation of 4 degrees about the vertical axis (twist) or any horizontal axis (sway) of the structure
- 2. A horizontal displacement (in feet) of 3% of the height of the structure.

	Cı	ırrent	Allowable					
Load Case Description	Sway (degree)	Displacement (Feet)	Sway (degree)	Displacement (Feet)				
Service Wind Load	0.1152	0.2083	4.0	5.40				

Tower Twist & Sway at Top (Connecticut State Police Requirements - TIA/EIA-222-F):

Description	Current	Total	Allowable				
Tower Twist (degrees)	0.0775	0.6440	0.750				
Tower Sway (degrees)	0.5665	0.6440	0.750				

5. CONCLUSIONS

The results of an initial analysis indicated the existing tower structure did not have enough capacity for the proposed antenna upgrades above. The tower structure requires modifications shown on SK-1 and SK-2. Once the modifications indicated on sheets SK-1 and SK-2 are performed, the modified structure is considered structurally adequate with the wind load specification and with the existing and proposed antenna loading included herein.

The results of the analysis indicate the modified tower's sway (deflection) is 0.5665 degrees and the modified tower's twist (rotation) is 0.0775 degrees. These figures combined are within the Connecticut State Police requirements of 0.75 degrees for combined twist (rotation) and sway (deflection) when applying the TIA/EIA-222-F design conditions.

Limitations/Assumptions:

This report is based on the following:

- 1. Tower inventory as listed in this report.
- 2. Tower is properly installed and maintained.
- 3. All members are as specified in the original design documents and are in good condition.
- 4. All required members are in place.
- 5. All bolts are in place and are properly tightened.
- 6. Tower is in plumb condition.
- 7. All member protective coatings are in good condition.
- 8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9. Foundations are in good condition without defects and were properly constructed to support original design loads as specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA-222-G Section 14.2 for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. It is also recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

6. DRAWINGS AND DATA

REINFORCEMENT DRAWINGS SK-1 AND SK-2

GENERAL CONSTRUCTION NOTES

- ALL WORK SHALL COMPLY WITH THE CONNECTICUT STATE BUILDING AND LIFE SAFETY CODES, SUPPLEMENTS AND AMENDMENTS.
- CONTRACTOR IS TO REVIEW ALL DRAWINGS AND NOTES IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB—CONTRACTORS AND ALL RELATED PARTIES, THE SUB—CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION AND ELECTRICAL SUB-CONTRACTORS SHALL PAY FOR THEIR
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS ON SITE AT ALL TIMES AND ENSURE THE DISTRIBUTION OF NEW DRAWINGS TO SUB-CONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA, CONTRACTOR SHALL FURNISH 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- INSTALLATION OF THIS WIRELESS COMMUNICATIONS EQUIPMENT SITE REQUIRES WORK IN THE IMMEDIATE VICINITY OF EXISTING OPERATING TELECOMMUNICATION SYSTEMS. THE CONTRACTOR SHALL PROVIDE AND COORDINATE THE METHODS OF PROTECTION WITH THE VARIOUS TELECOMMUNICATION CARRIERS AND THE TOWER OWNER. THERE SHALL BE NO INTERRUPTION OF OPERATION WITHOUT TIMELY COORDINATION WITH AND APPROVAL BY THE VARIOUS COMMUNICATIONS OPERATORS INCLUDING THE CONNECTICUT STATE POLICE.
- THE REINFORCEMENT OF PORTIONS OF THIS TOWER STRUCTURE WILL AFFECT CRITICAL CONNECTICUT STATE POLICE ANTENNAS, NO MOVEMENT, ALTERATION, OR DISCONNECTION OF CONNECTICUT STATE POLICE ANTENNAS MAY OCCUR WITHOUT THE NOTHICATION AND APPROVAL OF THE CONNECTICUT STATE POLICE. CONTACT THE NETWORK CONTROL CENTER AT 860-865-8008.
- TOWER REINFORCING WORK AFFECTING CRITICAL CONNECTICUT STATE POLICE ANTENNAS MAY BE REQUIRED TO BE CONDUCTED AT TIMES AS DETERMINED BY THE REQUIREMENTS OF THE CONNECTICUT STATE POLICE,

- 10. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PE MFR'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST CONDITION PER TO OWNER OR ARCHITECT.
- 11. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 12. SHOP DRAWINGS ARE REQUIRED. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS ON THE TOWER AND INCLIDE THE GATHERED INFORMATION ON THE SHOP DRAWINGS. NOTE AN DISCREPANCIES ENCOUNTERED ON THE SHOP DRAWINGS. NO FABRICATION OR INSTALLATION OF STEEL SHALL OCCUR PRIOR TO THE RECEIPT AND APPROVAL OF SHOP DRAWINGS
- 13. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ARCHITECT FOR REVIEW. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTAL TO THE ARCHITECT FOR REVIEW.
- 14. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURE AND ITS COMPONENT PARTS DURING CONSTRUCTION, THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 15. CONTRACTOR TO CONTACT "CALL BEFORE YOU DIG" AT 1-800-922-4455 TO VERIFY AND IDENTIFY THE EXACT LOCATIONS OF ALL UNDERGROUND UTILITIES AND OBSTRUCTIONS IDENTIFIED PRIOR TO COMMENCING WORK IN THE CONTRACT
- 16. CONTRACTOR SHALL COMPLY WITH OWNER ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 17. DIMENSIONS OF EXISTING TOWER ARE BASED ON MANUFACTURER'S DRAWINGS DIMENSIONS OF EXISTING TOWER ARE BASED ON MANUFACTORER'S DRAWINGS PREPARED BY ROHN INDUSTRIES. DATED FEBRUARY 1, 1991, AND ARE NOT GUARANTEED. CONTRACTOR SHALL TAKE FIELD DIMENSIONS AS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK AND SHALL ASSUME FULL RESPONSIBILITY FOR THEIR ACCURACY, WHEN SHOP DRAWINGS BASED ON FIELD MEASUREMENT ARE SUBMITTED FOR REVIEW, DIMENSIONS ARE PROVIDED FOR THE ENGINEER'S REFERENCE ONLY.
- 18. TOWER INVENTORY IS BASED ON INFORMATION OBTAINED FROM MOTOROLA/CONNECTICUT STATE POLICE DATED JUNE 22, 2016. TOWER MAPPING AND EXISTING INVENTORY OBTAINED FROM D&K NATIONWIDE COMMUNICATIONS, INC. DATED MARCH 18, 2016.
- CONTRACTOR TO VERIFY REQUIRED CLEARANCES INCLUDING BUT NOT LIMITED TO EXISTING BUILDINGS, EQUIPMENT PADS AND SHELTERS PRIOR TO COMMENCING WORK.
- 20. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE DURING CONSTRUCTION, NO MEMBER OF THE TOWER SHALL BE LEFT DISCONNECTED FOR THE NEXT WORKING DAY, THE CONTRACTOR SHALL BE AWARE OF WEATHER AND WIND CONDITIONS AND NOT PERFORM MEMBER REPLACEMENT IN A WIND.

STRUCTURAL NOTES

STRUCTURAL STEEL MATERIAL:

ASTM A572-50

STRUCTURAL STEEL SHALL CONFORM TO ALL THE REQUIREMENTS OF THE ASTM SPECIFICATION, AS REFERENCED IN THE CODE.

UNLESS OTHERWISE NOTED, ALL STEEL WILL BE GALVANIZED IN ACCORDANCE WITH ASTM 123 AFTER FABRICATION. TOUCH UP ALL DAMAGED GALVANIZED STEEL WITH APPROVED COLD ZINC, "GALVANOX", "DRY GALV", "ZINC-IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES. TOUCH-UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.

SHOP AND ERECTION DRAWINGS SHALL BE SUBMITTED FOR ALL STRUCTURAL STEEL WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, SUBMIT 2 SETS OF PRINTS FOR THE ENGINEER REVIEW. REFER TO NOTE 12 ABOVE

MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

CONNECTIONS / FIELD ASSEMBLY:

BOLTED CONNECTIONS: UNLESS OTHERWISE NOTED, ALL JOINTS ARE SLIP CRITICAL TYPE, REQUIRING 5/8", 3/4", 7/8" & 1" DIA. A325N BOLTS, A563 NUTS AND F436 WASHERS, ALL GALVANIZED. BEVELED WASHERS SHALL BE USED ON BEAM FLANGES HAVING A SLOPE GREATER THAN 1:20,

STRUCTURE IS DESIGNED TO BE LEVEL AND PLUMB, SELF-SUPPORTING AND STABLE AFTER WORK IS COMPLETED.

COMMENCEMENT OF WORK WITHOUI NUTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.

SPECIAL INSPECTIONS ARE REQUIRED PER THE CODE FOR STRUCTURAL STEEL WORK.

OWNER WILL SUPPLY THE SERVICES OF A SPECIAL INSPECTOR AND TESTING AGENTS AS REQUIRED. CONTRACTOR SHALL COORDINATE INSPECTIONS OF FABRICATOR'S AND ERECTOR'S WORK AND MATERIALS TO MEET THE REQUIREMENTS OF THE STATEMENT OF SPECIAL INSPECTIONS FOR THIS PROJECT.

COPIES OF TESTING AND INSPECTION REPORTS WILL BE PROVIDED TO THE OWNER, BUILDING OFFICIAL, ENGINEER OF RECORD AND CONTRACTOR.

Designed by: MCD

Drawn by: KAP

Checked by: KAB

Approved by: RAS

A=COM

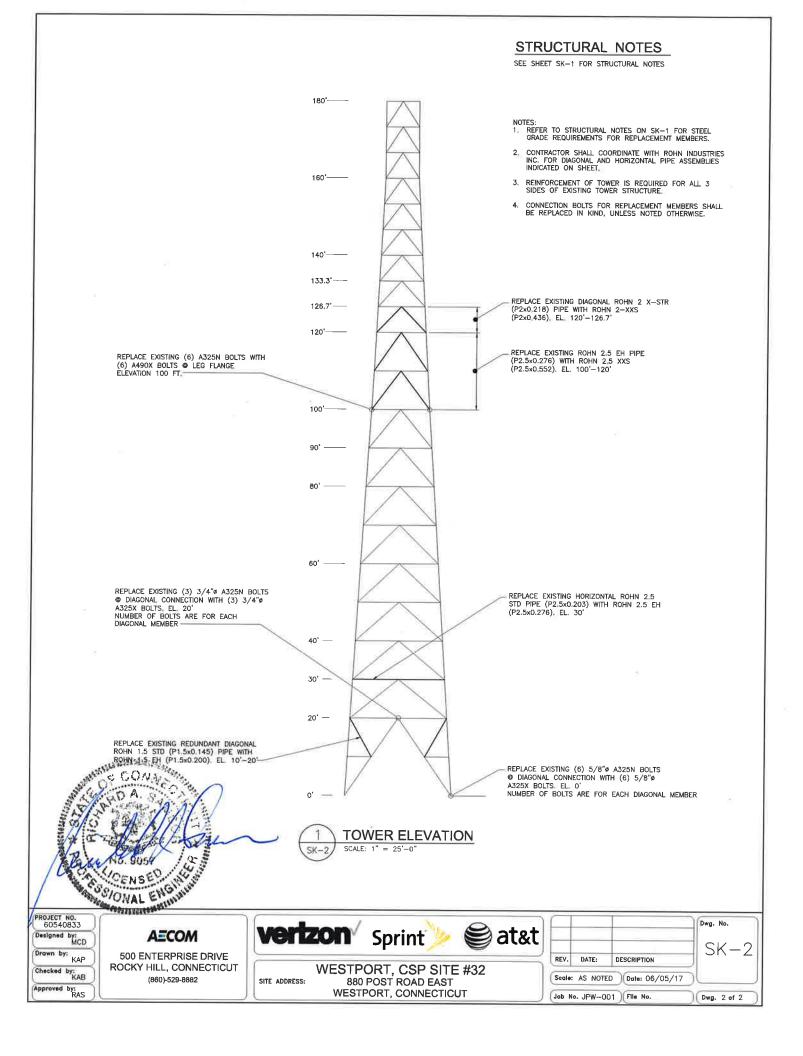
500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT (860)-529-8882

WESTPORT, CSP SITE #32

880 POST ROAD EAST

WESTPORT, CONNECTICUT

REV. DATE: DESCRIPTION


SK-1

Scale: AS NOTED | Date: 06/05/17

SITE ADDRESS:

Job No. JPW-001 File No

Dwg. 1 of 2

SEISMIC BASE SHEAR ANALYSIS

Seismic (Vs) Base Shear Implementing ANSI/TIA-222-G, IBC 2012 & Connecticut State Building Code of 2016

Calculation of Seismic Base Shear Implementing ANSI/TIA-222-G, IBC 2012 & & CT State Building Code 2016.

Location:

Westport, CT -Site Class "D"

$$S_{DS} = \frac{2}{3}F_AS_S$$
, where $S_S = 0.226$ and $F_A = 1.6$ $S_{DS} = \frac{2}{3}F_AS_S = \frac{2}{3}*1.6*0.226 = 0.241$ $S_{D1} = \frac{2}{3}F_VS_1$, where $S_1 = 0.067$ and $F_V = 2.4$ $S_{D1} = \frac{2}{3}F_VS_1 = \frac{2}{3}*2.4*0.067 = 0.107$

$$S_{D1} = \frac{2}{3} F_V S_1$$
, where $S_1 = 0.067$

TIA-222-G SECTION 2.7 EARTHQUATE LOADS (PROCEDURES):

1. Importance Factor "I" (tables 2-3 TIA-222-G) = 1.5 (Structure Class 3)

ANSI/TIA-222-G 2.7.7.1 (TOTAL BASE SEISMIC SHEAR (Vs)

W=DL TOWER

= 32.102 **Kips**

W=Antennas/Mounts = 11.36

W=Cables

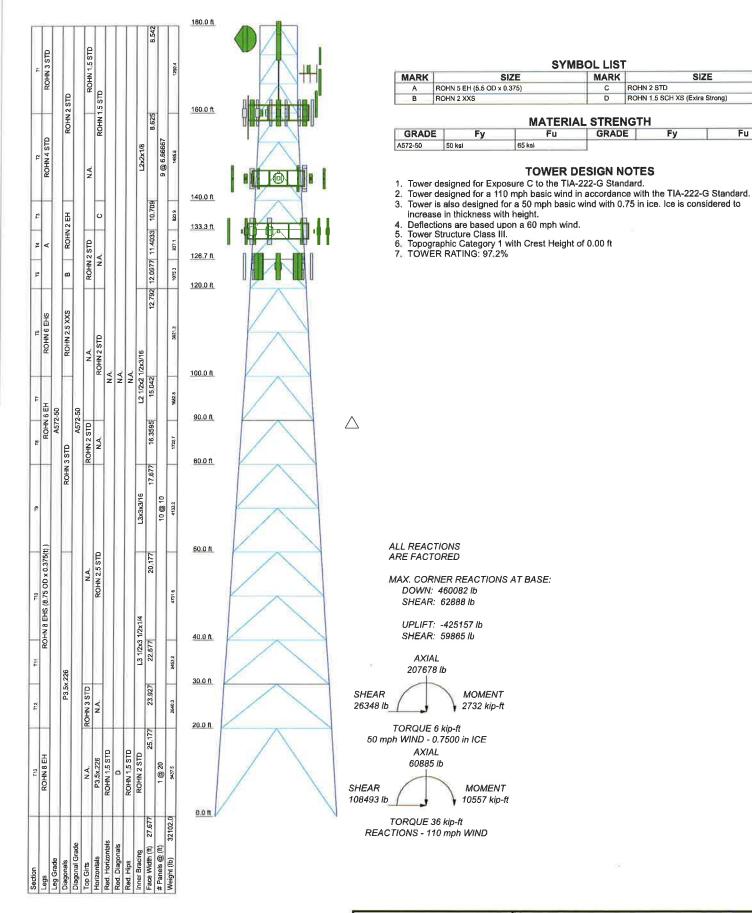
= 7.275 Kips

50.737 Kip = WT Total = "W"

$$V_S = \frac{S_{DS}*W*I}{R} = \frac{0.241*50.737kips*1.5}{3.0} = 6.1138 \ kips,$$
 where R = 3.0 for Lattice Tower

$$V_{S.min} = \frac{0.5 * S_{D1} * W * I}{R} = \frac{0.5 * 0.107 * 50.737 kips * 1.5}{3.0} = 1.3572 \ kips$$

$$1.2*DL + 1.0~E < 1.2~DL + 1.6~W$$
, (63.0 Kips), therefore seismic effect on structure
Does NOT control Design.


^{*}By visual inspection, the above "Base Shear" value when considering the following Load Combination is less that the base shear of wind on structure.

TNX TOWER INPUT / OUTPUT SUMMARY

DESIGNED APPURTENANCE LOADING	ELEVATION TYPE TD-RRHBX20 (Sprint)	177	175 RFS Switch # ACU-A20N (Sprint) 171 APX/SPP18-C-A20 w/ Mount Pipe (Sprint)	APXYTM/4-C-120 Panel Antenna (Sprint) 800 RRH (800 MHz) Unit (Sprint) 77	1500 KACH (1500 MHZ) URIN (500MHZ) 1700 KACH (1500 MHZ) URIN (500MHZ) 1700 KACH (1500 MHZ) URIN (500MHZ) 1700 KACH (1500 MHZ) 1	170 RES Switch # ACU-A20N (Sprint)	169 RFS Switch #ACU-AZON (Sprint) 162 VHLP2-11 Dish Antenna (Clearwire)	162 VHLP800-11 6WH Dish Antenna (Clearwire) RRUS (MT) 162 RRUS (MT) 162 RRUS (MT) 162 RRUS (MT) 162 RRUS (MT) 163	160 HPA-6SK-BUU-H6 Panel (Al I - Proposed) RRUC-32 (AI - Proposed) 160 RPUC-32 (AI - Proposed) 160 RPUC-34 (AT I) RPUC-34 (AT	160 THE OBSTANCES (ATT.) 160 P65-16-XILHRR (ATT.)	160 P65-16-XI-H-RR (ATZ) 160 RRUS-11 (ATZ)	150 HPA-65R-BUU-H6 Panel (ATL - Proposed) 180 RRUS-32 (ATL - Proposed) 160 RRUS-32 (ATL - Proposed)	160 RRUS-11 (ATJ) 119.08BP111-001 TNA'S (ATJ) 179.08BP111-001 TNA'S (ATJ) 17.17-08BP111-001 TNA'S (ATJ) 17.17-08BP11-001 TNA'S (ATJ) 17.17-08BP1	160 Pirod 15' T-Frame Sector Mount (1) (ATI)	160 P65-16-XLH-RR (ATJ.) 160 P65-16-XLH-RR (ATJ.) 160	160 RRUS-11 (ATJ) 160 HPA-6SR-BUU-He Panel (ATL - Proposed) 160 RRUS-32 (ATL - Proposed)	160 RRUS-11 (ATI) 160 DC6-46-60-18-8F (Squid) Suppressor (ATI)	DC6-48-60-18-6F (Squid) Suppressor (ATL) TT19-08BP111-011 TMA's (ATL) 160 TT19-08BP111-011 TMA's (ATL)	159 P85-16-XLH-RR (ATJ) P85-16-XLH-RR	145 TMA (T-Mobile) 145 AIR21 B2AB4P (T-Mobile)	RRUS-11 (T-Mobile) 145 RRUS-11 (T-Mobile)	RRUS-11 (T-Mobile) 145 ThA (T-Mobile) 445 ThA (T-Mobile) 145 ThA (T-Mobile)	145 TMA (T-Mobile) 145 TMX-6FSDS-VTM (T-Mobile) 146 TECA-0272 CAMPARILLE AND ADMINISTRATION (AVECTOR)	145 TF2=372 Sector Mount (1) [-Mobile] 145 TF2=372 Sector Mo	145 AIR21 B2A/B4P (T-Mobile)	145 AIR21 B2A/B4P (T-Mobile) 145 AIR21 B2A/B4P (T-Mobile)	145 145 145	145 GPS (DNK-1 / GPS)	Fy Fu GRADE Fy Fu Fu	TOWER DESIGN NOTES	posure C to the TIA-222-G Standard. 110 mph basic wind in accordance with the TIA-222-G Standard. I for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with heigh	 Deflections are based upon a 60 mph wind. Tower Structure Class III. Topographic Category 1 with Crest Height of 0.00 ft TOWER RATING: 97.2% 				CTIONS AT BASE:		. 41		MOMENT 2732 kip-ft	CE	OMENT	10557 kip-ft ft	QNI	
	TYPE AP11-850/90/ADT w/Mount Pipe (DNK-54 CSP-47)	4'x4" Pipe Mount (DNK-52) PA6-6SAC (DNK-52)	Statis Switch Penel Arter 2' Dia 10' Omni (DNK-48 / CSP	2 Dia 10 Omni (DNK-40;39) Z Dia 10 Omni (DNK-40;39) WPA-701102-40F-EDIN-X w. N.	TX) 432E-831-01T TTA Unit (Troop G	SE419-SWBPALDF(D00) (Troop G RX) 6' Side-Arm (Troop G)	3' Yegi (DNK-61 / CSP-1) APT1-850/090/ADT w/Mount Pipe (DNK-49 / CSP-46)	5 Standoff (DNK-49 / CSP-46) 8%2 1/2" Pipe Mount (DNK-50 /	Pirod 15' T-Frame Sector Mount Pirod 15' T-Frame Sector Mount	Pirod 15' T-Frame Sector Mount SBNHH-1D65B (Verizon - LTE_	RH_Zx60-07-L(700 MHz) (Veri DE_T1-62-848_0Z Dist_Box (Veri RPH > 9x61 DCS_1 March DCS_1	SBNHH-1055B (Vertzon AWS) SRNH-1055B (Vertzon AWS) RRH - 2x60-AWS (Vertzon AWS)	DB-T1-62-8A8-0Z Dist, Box (Ve BXA-70080-4CF-EDIN Panel (V	SBNHH-1D65B (Verizon-LTE, RAP, 266-0-17700 MHz) (veri	SBNH-1D658 (Verzon AWS) RRH Z666-AWS (Verzon AWS)	SAVA-70080-4CF-EDIN Panel (V SBNHH-1DESS (Vertzon - LTE.)	RH, 2x60-07-1, (700 MH2) (Veris RRH 2x60 GCS (Verisor) SRRH-1 7x60 GCS (Verisor) SRNH-1-1 7x60 RV (Verisor)	RRH, 2660-AWS (Verticon AVS) RSH, 2660-AWS (Verticon AVS)	2" Dia 10" Omni (DNK-47 / CSP 3" Side Am (DNK-47 / CSP-48)	USF12448cb 12/, 4 Pipe Anten Assembly (Sprin) [USF12448ct 12// 4 Pine Anten	Assembly (Sprint) USF12-449-U 12/4 Pipe Anten	Assembly (Sprint) Assembly (Sprint) APX/SPPTAL CA20 W Mount P	APX/IM14-C-120 Panel Anten Boo RRH (300 MHz) Unit (Sprin 1900 RRH (1300 MHz) Linit (Sprin	TD-RRHS/12 (Sprint) TD-RRHS/12 (Sprint)	RFS Switch # ACU-A20N (Spring RFS Sw	NEMS EMBORATE (Spring) NEMS EMBORATE (Spring) ADMINISTRATION OF THE PROPERTY O	APX/SPP18-C-A20 w/ Mount Pipe (Sprint) APX/TM14-C-120 Panel Antenne (Sprint) B00 RRH (B00 MHz) Unit (Sprint)	1900 RRH (1900 MHz) Unit (Sp	GRADE GRADE A572-80 50 ksi		Tower designed for E Tower designed for a Tower is also designs Tower is also designs	4. Deflections are base 5. Tower Structure Clas 6. Topographic Categor 7. TOWER RATING: 97			ALL REACTIONS	ARE FACTORED MAX. CORNER RE	DOWN: 460082 lb SHEAR: 62888 lb	UPLIFT: -425157 lb SHEAR: 59865 lb	AXIAL 207678 lb	SHEAR N	TORQUE 6 kip-ft 50 mph WIND - 0.7500 in ICE AXIAI	60885 lb SHEAR	b d	REACTIONS - 110 mph WIND	
180.0 ft				160.0 ft					140.0 ft		133.3 ft		126.7 ft		120.0 ft						100.0 ft		9	1006		80.0 ft					60 O ft				40 0 ft		30 O ft		200#				000		
	1250.4			Ļ			9 9 9 9 6 9 9 9 9 9 9	i		67)))	1.51	19	£ 270				3821 3				8 2891			1.5571				01 @ 01 2001h				91674			S423 S		Se40 3			1 @ 20 s437,5		0.9	(g) 32103) slens9 # Weight (lb
\$42.8				629.8						60Z 01		11,4033	L	780.S1	26	12.7					240.81	ı		9698	91		17.6.1r				221	50.			176.52		726.8	55	1.21	52			1.1	9.YS (#) A1	
						9/	L2x2x1														112×211	77							91/6×6×61					1/1×2	L3 1/2×3 1/3						GTS S NH				oer8 renni
																					A.N					_		_													OTS & I M				Red Hips
																					A.N A.N																					S OHN 1.5 SC	8		Red Diag
			(I) e	S'L NHO	н					ats s	NHOZI		.A.I		1				OTS S V		₩ IN			1	A.N							UI 6 G Z MILO	41					A,N	_		OZZ XC C				Red, Horiz
	JTS & 1 NH	ОЯ	412	, , INHO	<u>.</u>			A.N		0196	MINO		OTS S N		+				.A.I.					-	JTS S NHO	ВС	-					A.N GTS 3.S NHO						OTS & NHO	н		A N A 825 XZ 8	0			ahið qoT HelnozinoH
				-																			-20	SYBA	11110							V-14						CTO 6 MINUS			4 14		-) Isnogsid
			QTS	Z NHOS	1						1 S EH	ВОНИ	1	SXX Z N	ВОН		SXX	2 S'Z NHO	ЭЯ		1					GTS 6	ВОНИ										93.5x,226								slanogaid
																	3,,,,,				1		09-	SYSA	-										_		500								Leg Grade
	OTS & NHO	Я		T		QTS	BOHN ≰	l			(976.0	x do 9'9	N 2 EH (ВОН			SH	3 NHO	Ы					ВОНИ								((1)976.0 × 0	EHS (8.75 O	8 ИНОЯ							H3 8 NHC	ы			геда
	Ц						ST			1	1	ÞΙ		91				9T				Д		T	8T				61				OFT			HI		SIT			E11				Section

 AECOM
 lob: Sprint/Clearwire Upgrades - MODification Analysis

 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3891
 Project: Westport, Connecticut Oleven by: MCD Prown by: MCD Phone: 860-529-3891
 App'd: Date: Date: NTS Pow No. E-1

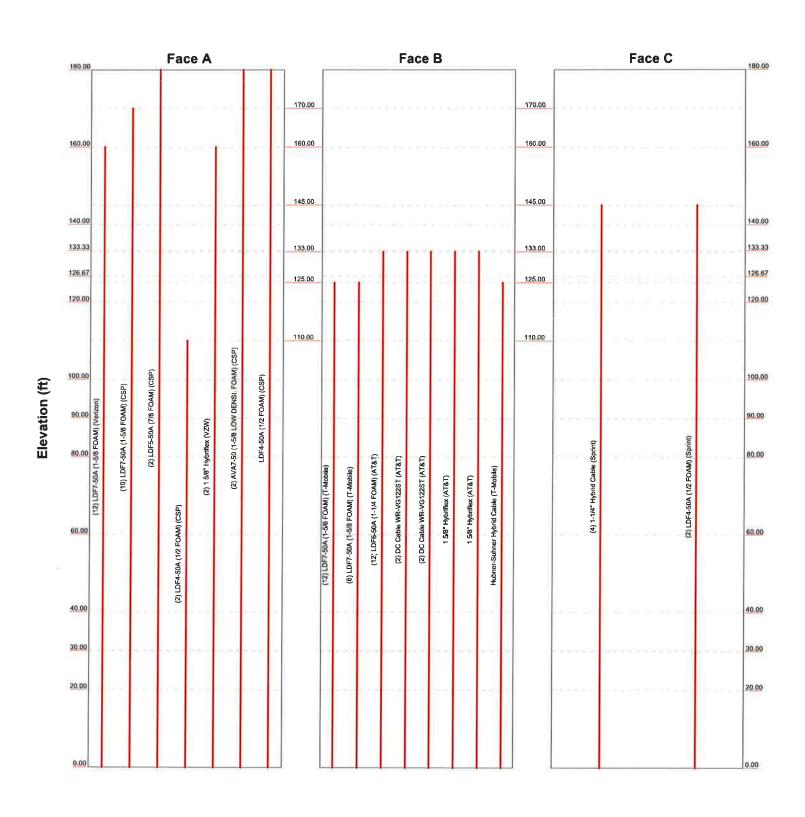
AECOM	ob: Sprint/Clearwire Upgrades - MODification Analysi										
500 Enterprise Drive, Suite 3B	Project: Westport, Connecticut										
Rocky Hill, CT	Client: Sprint - JPW-001	Drawn by: MCD	App'd:								
Phone: 860-529-8882	Code: TIA-222-G	Date: 05/30/17	Scale: NTS								
FAX: 860-529-3991	Path:	Dwg No. E-1									

MARK

GRADE

ROHN 2 STD

ROHN 1.5 SCH XS (Extra Strong)

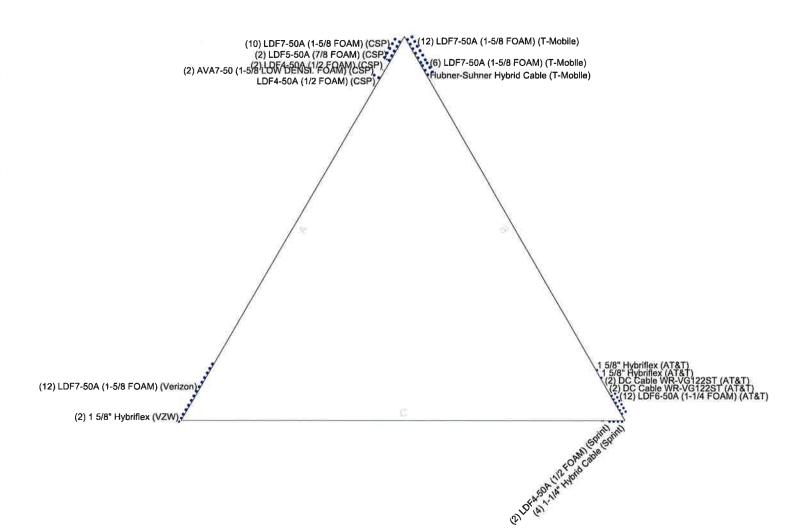

Fy

SIZE

Fu

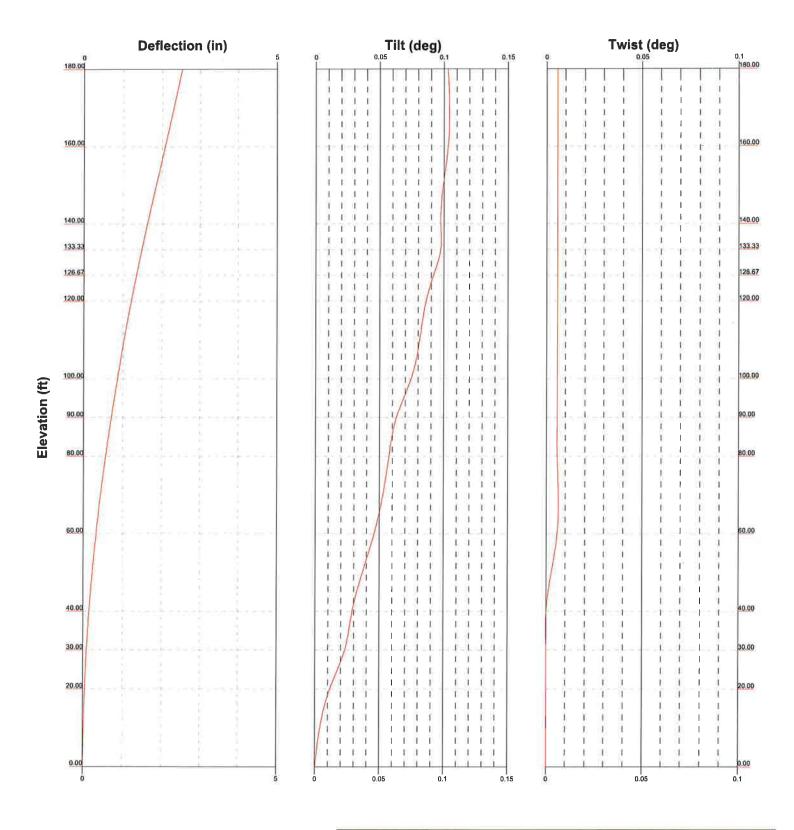
TNX TOWER FEEDLINE DISTRIBUTION

Round ______ Flat _____ App in Face _____ App Out Face _____ Truss Leg



AECOM	lob: Sprint/Clearwire Upgrades - MODification Analysi									
500 Enterprise Drive, Suite 3B	Project Westport, Connecticut									
Rocky Hill, CT	Client: Sprint - JPW-001	App'd;								
	Code: TIA-222-G	Scale: NTS								
FAX: 860-529-3991	Path;	Dwg No. E-7								

TNX TOWER FEEDLINE PLAN


Feed Line Plan

Round Flat App In Face App Out Face

AECOM	Project: Westport, Connecticut				
Rocky Hill, CT	Client: Sprint - JPW-001	Drawn by: MCD	App'd;		
Phone: 860-529-8882	Code: TIA-222-G	Date: 05/30/17			
FAX: 860-529-3991	Path:		Dwg No. E-7		

TNX TOWER DEFLECTION, TILT, AND TWIST

AECOM	Iob: Sprint/Clearwire Upgrades - MODification Analysis Project Westport, Connecticut				
Rocky Hill, CT	Client: Sprint - JPW-001	Drawn by: MCD	App'd:		
Phone: 860-529-8882	Code: TIA-222-G	Date: 05/30/17			
FAX: 860-529-3991	Path:	Dwg No. E-5			

TNX DETAILED OUTPUT

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ï	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	1 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 8.54 ft at the top and 27.68 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 110 mph.

Structure Class III.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

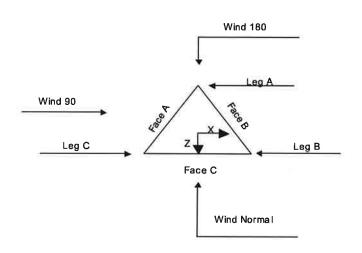
Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section
- Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate

- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component
- Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder


Use ASCE 10 X-Brace Ly Rules

- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- SR Leg Bolts Resist Compression
- All Leg Panels Have Same Allowable Offset Girt At Foundation
- Consider Feed Line Torque
- Include Angle Block Shear Check Use TIA-222-G Bracing Resist, Exemption Use TIA-222-G Tension Splice Exemption Poles
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	2 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Constant IDM 004	Designed by
Sprint - JPW-001	MCD

Tower Section Geometry

Triangular Tower

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	180.00-160.00			8.54	1	20.00
T2	160.00-140.00			8.63	1	20.00
T3	140.00-133.33			10.71	1	6.67
T4	133.33-126.67			11.40	1	6.67
T5	126.67-120.00			12.10	1	6.67
T6	120.00-100.00		· -	12.79	1	20.00
T7	100.00-90.00			15.04	1	10.00
T8	90.00-80.00			16.36	1	10.00
T9	80.00-60.00			17.68	1	20.00
T10	60.00-40.00			20.18	1	20.00
T11	40.00-30.00			22.68	1	10.00
T12	30.00-20.00			23.93	1	10.00
T13	20.00-0.00			25.18	1	20.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	180.00-160.00	6.67	K Brace Down	No	Yes	0.0000	0.0000
T2	160.00-140.00	6.67	K Brace Down	No	Yes	0.0000	0.0000

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	3 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ø	ft		End Panels		in	
T3	140.00-133.33		V D D		77		in
_		6.67	K Brace Down	No	Yes	0.0000	0.0000
T4	133.33-126.67	6.67	K Brace Down	No	Yes	0.0000	0.0000
T5	126.67-120.00	6.67	K Brace Down	No	Yes	0.0000	0.0000
T6	120.00-100.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T7	100.00-90.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T8	90.00-80.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
Т9	80.00-60.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T10	60.00-40.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T11	40.00-30.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T12	30.00-20.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T13	20.00-0.00	20.00	K1 Down	No	Yes	0.0000	0.0000

Tower Section Geometry (cont'd)

Leg Leg Diagonal	Diagonal Diagonal
Size Grade Type	Size Grade
N 3 STD A572-50 Pipe	ROHN 2 STD A572-50
(50 ksi)	(50 ksi)
N 4 STD A572-50 Pipe	ROHN 2 STD A572-50
(50 ksi)	(50 ksi)
(5.5 OD x 0.375) A572-50 Pipe	ROHN 2 EH A572-50
(50 ksi)	(50 ksi)
(5.5 OD x 0.375) A572-50 Pipe	ROHN 2 EH A572-50
(50 ksi)	(50 ksi)
(5.5 OD x 0.375) A572-50 Pipe	ROHN 2 XXS A572-50
(50 ksi)	(50 ksi)
N 6 EHS A572-50 Pipe	ROHN 2.5 XXS A572-50
(50 ksi)	(50 ksi)
N 6 EH À572-50 Pipe	ROHN 3 STD A572-50
(50 ksi)	(50 ksi)
IN 6 EH A572-50 Pipe	ROHN 3 STD A572-50
(50 ksi)	(50 ksi)
HS (8.75 OD x A572-50 Pipe	ROHN 3 STD A572-50
75(t)) (50 ksi)	(50 ksi)
HS (8.75 OD x A572-50 Pipe	P3.5x,226 A572-50
75(t)) (50 ksi)	(50 ksi)
HS (8.75 OD x A572-50 Pipe	P3.5x.226 A572-50
75(t)) (50 ksi)	(50 ksi)
	` ,
	(50 ksi)
()	
- Po	(50 ksi)
75(t) (50 ksi) Pipe 75(t) (50 ksi) Pipe 75(t) A572-50 Pipe (50 ksi) Pipe (50 ksi)	P3.5x.226 P3.5x.226

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T4 133.33-126.67	Pipe	ROHN 2 STD	A572-50	Solid Round		A36
T5 126.67-120.00	Pipe	ROHN 2 STD	(50 ksi) A572-50	Solid Round		(36 ksi) A36

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Jo	b	Page
	Sprint/Clearwire Upgrades - MODification Analysis	4 of 83
Pi	roject	Date
	Westport, Connecticut	15:00:07 05/30/17
CI	lient Sprint - JPW-001	Designed by MCD

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
22			(50 ksi)			(36 ksi)
T8 90.00-80.00	Pipe	ROHN 2 STD	A572-50	Single Angle		A36
			(50 ksi)			(36 ksi)
Γ12 30.00-20.00	Pipe	ROHN 3 STD	A572-50	Single Angle		A36
			(50 ksi)			(36 ksi)

Tower	Section	Geometry	(cont'd)
		OCCITION A	COIL UI

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
	Mid						
ft	Girts						
Γ1 180.00-160.00	None	Flat Bar		A36	Pipe	ROHN 1.5 STD	A572-50
				(36 ksi)	-		(50 ksi)
Т2 160.00-140.00	None	Flat Bar		A36	Pipe	ROHN 1.5 STD	À572-50
				(36 ksi)	-		(50 ksi)
Γ3 140.00-133.33	None	Flat Bar		A36	Pipe	ROHN 2 STD	À572-50
				(36 ksi)			(50 ksi)
Γ4 133.33-126.67	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)	_		(50 ksi)
Γ5 126.67-120.00	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
Γ6 120.00-100.00	None	Single Angle		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
T7 100.00-90.00	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
T8 90.00-80.00	None	Flat Bar		A36	Pipe	ROHN 2 STD	A572-50
				(36 ksi)			(50 ksi)
T9 80.00-60.00	None	Flat Bar		A36	Pipe	ROHN 2.5 STD	A572-50
				(36 ksi)			(50 ksi)
T10 60.00-40.00	None	Single Angle		A36	Pipe	ROHN 2.5 STD	A572-50
				(36 ksi)			(50 ksi)
Т11 40.00-30.00	None	Flat Bar		A36	Pipe	ROHN 2.5 STD	A572-50
	či			(36 ksi)			(50 ksi)
Γ12 30.00-20.00	None	Flat Bar		A36	Pipe	ROHN 2.5 STD	A572-50
				(36 ksi)	_		(50 ksi)
T13 20.00-0.00	None	Flat Bar		A36	Pipe	P3.5x.226	À572-50
				(36 ksi)	•		(50 ksi)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft						
T1 180.00-160.00	Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T2 160.00-140.00	Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T3 140.00-133.33	Solid Round		A36	Single Angle	L2x2x1/8	`A36 ´
			(36 ksi)			(36 ksi)

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Page
5 of 83
Date
15:00:07 05/30/17
Designed by MCD

Tower	Secondary	Secondary Horizontal	Secondary	Inner Bracing	Inner Bracing Size	Inner Bracing
Elevation	Horizontal Type	Size	Horizontal	Туре		Grade
			Grade			
ft						
T4 133.33-126.67	Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T5 126.67-120.00	Solid Round		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T6 120.00-100.00	Single Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T7 100.00-90.00	Solid Round		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T8 90.00-80.00	Solid Round		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T9 80.00-60.00	Solid Round		A36	Single Angle	L3x3x3/16	A36
			(36 ksi)			(36 ksi)
T10 60.00-40.00	Single Angle		A36	Single Angle	L3 1/2x3 1/2x1/4	A572-50
			(36 ksi)			(50 ksi)
T11 40.00-30.00	Single Angle		A572-50	Single Angle	L3 1/2x3 1/2x1/4	A572-50
			(50 ksi)			(50 ksi)
T12 30.00-20.00	Single Angle		A572-50	Single Angle	L3 1/2x3 1/2x1/4	A572-50
			(50 ksi)			(50 ksi)
T13 20.00-0.00	Solid Round		A36	Pipe	ROHN 2 STD	A572-50
			(36 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor	
ft						
T13	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	0.8	
20.00-0.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 1.5 SCH XS (Extra	0.8	
	` ,	Hip (1)	Pipe	Strong)	0.8	
		Hip Diagonal (1)	Pipe	ROHN 1.5 STD	1	
			•	ROHN 2.5 STD		

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-160.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-133.33			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
133.33-126.67			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
126.67-120.00			(36 ksi)						
T6	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ī	Job	Page			
	Sprint/Clearwire Upgrades - MODification Analysis	6 of 83			
Î	Project	Date			
	Westport, Connecticut	15:00:07 05/30/17			
	Client Sprint - JPW-001	Designed by MCD			

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor	(4	Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
	11.002						Diagonals	Horizontals	Redundants
fi	ft²	in					în	in	in
T7	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-90.00			(36 ksi)						
T8 90.00-80.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T9 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T10	0.00	0.0000	`A36 ´	Ĩ	1	1.	36.0000	36.0000	36.0000
60.00-40.00			(36 ksi)						
T11	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
40.00-30.00			(36 ksi)						
T12	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
30.00-20.00			(36 ksi)						
T13 20.00-0.00	0.00	0.0000	`A36 ´	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

						K Fac	ctors			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ſt				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
180.00-160.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	-1	1	1	1	1	1
140.00-133.33				. 1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
133.33-126.67				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
126.67-120.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T7	Yes	Yes	1	1	1	1	1	1	1	1
100.00-90.00				1	1	1	1	1	1	1
Т8	Yes	Yes	1	1	1	î	1	î	1	î
90.00-80.00				1	1	ī	1	Î.	Î.	1
Т9	Yes	Yes	1	1	1	1	1	1	Ĩ.	1
80.00-60.00	- 55			ī	1	1	1	1	1	1
T10	Yes	Yes	1	1	1	í	ī	1	î	1
60.00-40.00	_ 50	_ 20	,21	1	1	1	Î.	1	1	1
T11	Yes	Yes	1	î	1	î	î	î	i	1
40.00-30.00	1 00	2 20	32	î	î	î	î	1	î	1
T12	Yes	Yes	1	î	i	î	î	î	1	1
30.00-20.00	1 00	1 00	-	î	î	1	î	î	1	1
T13	Yes	Yes	1	1	0.5	1	1	1	w 1	1
20.00-0.00	1 60	1 03		1	0.5	1	1	1	1	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	7 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Sprint - JPW-001	Designed by MCD

Tower Section Geometry (cont'd)

Tower Elevation	Leg		Diago	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
ft														
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-160.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.75
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00	0.0000	0.75	0.0000	0172	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
Т3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-133.33										01.75	0.000	51,15	0.0000	0.75
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
133.33-126.67														
T5	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
126.67-120.00														
Т6	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T7	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-90.00														
T8 90.00-80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
60.00-40.00	0.0000	0.55		0.55										
T11	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
40.00-30.00 T12	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.55				
30.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
113 20.00-0.00	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower				Connecti	on Offsets			
Elevation		Diag	gonal			K-Br	acing	
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.
	Top	Top	Bot.	Bot.	Тор	Top	Bot.	Bot.
ft	in	in	in	in	in	in	in	in
T1	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
180.00-160.00								
T2	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
160.00-140.00								
T3	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
140.00-133.33								
T4	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
133.33-126.67								
T5	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
126.67-120.00								
T6	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
120.00-100.00								
T7	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
100.00-90.00								
T8 90.00-80.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T9 80.00-60.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	8 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Tower	Connection Offsets										
Elevation		Diag	gonal			K-Bracing					
P.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.			
	Top	Top	Bot.	Bot.	Тор	Top	Bot.	Bot.			
ft	in	in	in	in	in	in	in	in			
T10	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000			
60.00-40.00											
T11	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000			
40.00-30.00											
T12	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000			
30.00-20.00											
T13 20.00-0.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000			

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izonta
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	0.8750	4	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
180.00-160.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.8750	4	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
160.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	0.7500	6	0.6250	3	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
140.00-133.33		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	0.7500	6	0.6250	3	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
133.33-126.67		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	0.7500	6	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
126.67-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6	Flange	0.7500	6	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7	Flange	0.7500	6	0.6250	3	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
100.00-90.00		A490X		A325N		A325N		A325N		A325N		A325N		A325N	
T8 90.00-80.00	Flange	1.0000	6	0.6250	3	0.6250	2	0.6250	- 0	0.6250	0	0.6250	2	0.6250	0
80		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 80.00-60.00	Flange	1.0000	6	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
60.00-40.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T11	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
40.00-30.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T12	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
30.00-20.00	č	A325N		A325N		A325N		A325N		A325N		A325N		A325N	-
T13 20.00-0.00	Flange	1.0000	8	0.6250	3	0.6250	2	0.6250	0	0.6250	0	0.7500	2	0.6250	0
	2	A325N		A325X		A325N		A325N	-	A325N	-	A325N	-	A325N	Ü

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	Туре		Offset	Offset		Per	Spacing	Diameter		
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
LDF7-50A	A	No	Ar (CaAa)	160.00 - 0.00	0.0000	-0.42	12	12	1.9800	1.9800		0.82

AECOM

Ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	9 of 83
	Project	Date
Ì	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Description		Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg)F -	ft	in	(Frac FW)		Row	in	in	in	plf
(1-5/8 FOAM)												
(Verizon)												
LDF7-50A	В	No	Ar (CaAa)	125.00 - 0.00	0.0000	-0.46	12	6	1.9800	1.9800		0.82
(1-5/8 FOAM)												
(T-Mobile)												
LDF7-50A	В	No	Ar (CaAa)	125.00 - 0.00	0.0000	-0.41	6	3	1.9800	1.9800		0.82
(1-5/8 FOAM)												
(T-Mobile)		NT.	A = (C = A =)	170.00 0.00	0.0000	0.46	10	-	1.0000	1 0000		0.00
LDF7-50A	Α	No	Ar (CaAa)	170.00 - 0.00	0.0000	0.46	10	5	1.9800	1.9800		0.82
(1-5/8 FOAM) (CSP)												
LDF5-50A	Α	No	Ar (CaAa)	180.00 - 0.00	0.0000	0.435	2	1	1.0900	1.0900		0.33
(7/8 FOAM)	А	NO	AI (Caha)	180.00 - 0.00	0.0000	0.433	2	1	1.0900	1.0900		0.33
(CSP)												
LDF4-50A	Α	No	Ar (CaAa)	110.00 - 0.00	0.0000	0.41	2	1	0.6300	0.6300		0.15
(1/2 FOAM)		-10	()		0.0000	01112	_	-	0.0500	0.0500		0.15
(CSP)			(8)									
ì 5/8"	Α	No	Ar (CaAa)	160.00 - 0.00	0.0000	-0.5	2	2	1.6250	1.6250		0.21
Hybriflex												
(VZW)												
LDF6-50A	В	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.46	12	6	1.5500	1.5500		0.66
(1-1/4 FOAM)												
(AT&T)												
DC Cable	В	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.43	2	2	0.4000	0.4000		0.25
WR-VG122S												
T												1
(AT&T)	D	NY-	A = (C = A =)	122.00 0.00	0.0000	0.41	-	•	0.4000	0.4000		0.05
DC Cable WR-VG122S	В	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.41	2	2	0.4000	0.4000		0.25
T												
(AT&T)												
1 5/8"	В	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.39	1	1	1.6250	1.6250		0.21
Hybriflex	_		(02.2)		0.000	0.23	-	•	110250	1.0200		0.21
(AT&T)												
1 5/8"	В	No	Ar (CaAa)	133.00 - 0.00	0.0000	0.37	1	1	1.6250	1.6250		0.21
Hybriflex			. ,									
(AT&T)												
Hubner-Suhne	В	No	Ar (CaAa)	125.00 - 0.00	0.0000	-0.385	1	1	0.7087	0.7087		0.48
r Hybrid Cable												
(T-Mobile)									15			
AVA7-50	A	No	Ar (CaAa)	180.00 - 0.00	0.0000	0.39	2	1	1.9800	1.9800		0.72
(1-5/8 LOW												
DENSI.									9			
FOAM)												
(CSP)	A	Ma	A= (Cc A=)	190.00 0.00	0.0000	0.27	1	1	0.6200	0.6200		0.15
LDF4-50A (1/2 FOAM)	A	No	Ar (CaAa)	180.00 - 0.00	0.0000	0.37	1	1	0.6300	0.6300		0.15
(CSP) 1-1/4" Hybrid	С	No	Ar (CaAa)	145.00 - 0.00	0.0000	-0.48	4	4	1.5400	1.5400		1.05
Cable		INO	vi (Cava)	142.00 - 0.00	0.0000	-0.40	4	4	1.5400	1.3400		1.05
(Sprint)												
LDF4-50A	C	No	Ar (CaAa)	145.00 - 0.00	0.0000	-0.45	2	2	0.6300	0.6300		0.15
	_	. 10	(Om m)	2.5100 0100	0.0000	0.15	~	~	0.0500	5.0500		0.15
(1/2 FOAM)												

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	10 of 83
j	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft²	ft²	ft²	ft²	lb
T1	180.00-160.00	Α	0.000	0.000	33.340	0.000	127.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
T2	160.00-140.00	Α	0.000	0.000	107.160	0.000	414.28
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	3.710	0.000	22.50
T3	140.00-133.33	Α	0.000	0.000	35.720	0.000	138.09
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	4.947	0.000	30.00
T4	133.33-126.67	Α	0.000	0.000	35.720	0.000	138.09
		В	0.000	0.000	14.852	0.000	59.18
		C	0.000	0.000	4.947	0.000	30.00
T5	126.67-120.00	Α	0.000	0.000	35.720	0.000	138.09
		В	0.000	0.000	33.808	0.000	138.50
		C	0.000	0.000	4.947	0.000	30.00
T6	120.00-100.00	Α	0.000	0.000	108.420	0.000	417.28
		В	0.000	0.000	119.597	0.000	491.70
		C	0.000	0.000	14.840	0.000	90.00
T7	100.00-90.00	Α	0.000	0.000	54.840	0.000	210.14
		В	0.000	0.000	59.799	0.000	245.85
		C	0.000	0.000	7.420	0.000	45.00
T8	90.00-80.00	Α	0.000	0.000	54.840	0.000	210.14
		В	0.000	0.000	59.799	0.000	245.85
		C	0.000	0.000	7.420	0.000	45.00
T9	80.00-60.00	A	0.000	0.000	109.680	0.000	420.28
		В	0.000	0.000	119.597	0.000	491.70
		C	0.000	0.000	14.840	0.000	90.00
T10	60.00-40.00	Α	0.000	0.000	109.680	0.000	420.28
		В	0.000	0.000	119.597	0.000	491.70
		C	0.000	0.000	14.840	0.000	90.00
T11	40.00-30.00	Α	0.000	0.000	54.840	0.000	210.14
		В	0.000	0.000	59.799	0.000	245.85
		C	0.000	0.000	7.420	0.000	45.00
T12	30.00-20.00	Α	0.000	0.000	54.840	0.000	210.14
		В	0.000	0.000	59.799	0.000	245.85
		C	0.000	0.000	7.420	0.000	45.00
T13	20.00-0.00	Α	0.000	0.000	109.680	0.000	420.28
		В	0.000	0.000	119.597	0.000	491.70
		C	0.000	0.000	14.840	0.000	90.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	ft^2	ft²	In Face	Out Face	77
	Jı	Leg	in			Jt	Jr	lb
T1	180.00-160.00	A	2.209	0.000	0.000	94.841	0.000	1830.45
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
T2	160.00-140.00	Α	2.182	0.000	0.000	278.117	0.000	5273.12
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	15.159	0.000	216.38
T3	140.00-133.33	Α	2.161	0.000	0.000	92.456	0.000	1742.97
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	20.121	0.000	285.62
T4	133.33-126.67	Α	2.151	0.000	0.000	92.323	0.000	1735.13
		В		0.000	0.000	37.292	0.000	684.46
		C		0.000	0.000	20.073	0.000	284.08
T5	126.67-120.00	Α	2.139	0.000	0.000	92.184	0.000	1726.94

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

ľ	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	11 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft²	ft²	ft²	lb
		В		0.000	0.000	70.057	0.000	1489.26
		C		0.000	0.000	20.022	0.000	282.48
T6	120.00-100.00	Α	2.115	0.000	0.000	285.421	0.000	5272.88
		В		0.000	0.000	239.961	0.000	5192.73
		C		0.000	0.000	59.738	0.000	837.12
T 7	100.00-90.00	Α	2.084	0.000	0.000	146.918	0.000	2672.01
		В		0.000	0.000	119.271	0.000	2566.50
		C		0.000	0.000	29.662	0.000	412.07
T8	90.00-80.00	Α	2.061	0.000	0.000	146.411	0.000	2644.55
		В		0.000	0.000	118.740	0.000	2544.26
		C		0.000	0.000	29.506	0.000	407.24
T9	80.00-60.00	Α	2.021	0.000	0.000	291.080	0.000	5195.33
		В		0.000	0.000	235,654	0.000	5012.52
		C		0.000	0.000	58.479	0.000	798.00
T10	60.00-40.00	Α	1.955	0.000	0.000	288.142	0.000	5038.79
		В		0.000	0.000	232.574	0.000	4885.66
		C		0.000	0.000	57.579	0.000	770.54
T11	40.00-30.00	Α	1.886	0.000	0.000	142,568	0.000	2440.39
		В		0.000	0.000	114.711	0.000	2378.79
		C		0.000	0.000	28.329	0.000	371.43
T12	30.00-20.00	Α	1.824	0.000	0.000	141.200	0.000	2369.40
		В		0.000	0.000	113.275	0.000	2321.23
		C		0.000	0.000	27.911	0.000	359.02
T13	20.00-0.00	Ä	1.664	0.000	0.000	275.410	0.000	4384.15
		В		0.000	0.000	219.210	0.000	4354.84
		Č		0.000	0.000	53.684	0.000	656.29

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	180.00-160.00	-0.7265	-7.1715	-0.7073	-6.0763
T2	160.00-140.00	-5.1638	-3.0701	-4.5696	-1.7793
T3	140.00-133.33	-4.1823	-2.4624	-3.8362	-1.3074
T4	133.33-126.67	0.1510	-0.2898	-1.1618	-0.1247
T5	126.67-120.00	0.6340	-4.2623	-0.7638	-2.1111
Т6	120.00-100.00	0.7527	-5.8330	-0.7807	-3.1914
T7	100.00-90.00	0.8128	-6.5161	-0.8963	-3.7629
T8	90.00-80.00	0.8710	-7.0150	-0.9743	-4.0430
T9	80.00-60.00	0.9221	-7.4685	-1.0741	-4.3717
T10	60.00-40.00	1.0157	-8.2747	-1.2282	-4.8449
T11	40.00-30.00	1.0905	-8.9165	-1.3595	-5.1977
T12	30.00-20.00	1.1290	-9.2513	-1.4519	-5.3973
T13	20.00-0.00	1.2365	-10.1606	-1.6804	-5.8171

Shielding Factor Ka

	Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
ļ	T1	4	LDF7-50A (1-5/8 FOAM)	160.00 -	0.6000	0.6000

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	12 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
ì	Client	Designed by
	Sprint - JPW-001	MCD

K _a Ice	K _a No Ice	Feed Line Segment Elev.	Description	Feed Line Record No.	Tower Section
100	NOTE	170.00		ALLEON II TVO.	Beetton
0.600	0.6000	160.00 - 180.00	LDF5-50A (7/8 FOAM)	5	T 1
0.600	0.6000	160.00 -	AVA7-50 (1-5/8 LOW DENSI. FOAM)	14	T1
0.600	0.6000	180.00 160.00 -	LDF4-50A (1/2 FOAM)	15	T1
0.600	0.6000	180.00 140.00 -	LDF7-50A (1-5/8 FOAM)	1	T2
0.600	0.6000	160.00 140.00 -	LDF7-50A (1-5/8 FOAM)	4	T2
0.600	0.6000	160.00 140.00 -	LDF5-50A (7/8 FOAM)	5	Т2
0.6000	0.6000	160.00 140.00 -	1 5/8" Hybriflex	7	T2
0.6000	0.6000	160.00 140.00 -	AVA7-50 (1-5/8 LOW	14	Т2
0.6000	0.6000	160.00 140.00 -	DENSI. FOAM) LDF4-50A (1/2 FOAM)	15	T2
0.6000	0.6000	160.00 140.00 -	1-1/4" Hybrid Cable	16	Т2
0.6000	0.6000	145.00 140.00 -	LDF4-50A (1/2 FOAM)	17	Т2
0.6000	0.6000	145.00 133.33 -	LDF7-50A (1-5/8 FOAM)	1	Т3
0.6000	0.6000	140.00 133.33 -	LDF7-50A (1-5/8 FOAM)	4	Т3
0.6000	0.6000	140.00 133.33 -	LDF5-50A (7/8 FOAM)	5	Т3
0.6000	0.6000	140.00 133.33 -	1 5/8" Hybriflex	7	Т3
0.6000	0.6000	140.00 133.33 - 140.00	AVA7-50 (1-5/8 LOW DENSI. FOAM)	14	Т3
0.6000	0.6000	133.33 - 140.00	LDF4-50A (1/2 FOAM)	15	Т3
0.6000	0.6000	133.33 - 140.00	1-1/4" Hybrid Cable	16	Т3
0.6000	0.6000	133.33 - 140.00	LDF4-50A (1/2 FOAM)	17	Т3
0.6000	0.6000	126.67 - 133.33	LDF7-50A (1-5/8 FOAM)	1	T4
0.6000	0.6000	126.67 - 133.33	LDF7-50A (1-5/8 FOAM)	4	T4
0.6000	0.6000	126.67 - 133.33	LDF5-50A (7/8 FOAM)	5	T4
0.6000	0.6000	126.67 - 133.33	1 5/8" Hybriflex	7	Т4
0.6000	0.6000	126.67 - 133.00	LDF6-50A (1-1/4 FOAM)	8	Т4
0.6000	0.6000	126.67 - 133.00	DC Cable WR-VG122ST	9	Т4
0.6000	0.6000	126.67 - 133.00	DC Cable WR-VG122ST	10	T4
0.6000	0.6000	126.67 - 133.00	1 5/8" Hybriflex	11	T4
0.6000	0.6000	126.67 - 133.00	1 5/8" Hybriflex	12	Т4
0.6000	0.6000	126.67 - 133.33	AVA7-50 (1-5/8 LOW DENSI, FOAM)	14	Т4
0.6000	0.6000	126.67 - 133.33	LDF4-50A (1/2 FOAM)	15	Т4
0.6000	0.6000	126.67 -	1-1/4" Hybrid Cable	16	T4

AECOM

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	13 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a	K _a
Section	Recora No.			No Ice	Ice
Т4	17	LDF4-50A (1/2 FOAM)	133.33 126.67 - 133.33	0.6000	0.6000
T5	Ī	LDF7-50A (1-5/8 FOAM)	120.00 - 126.67	0.6000	0.6000
T5	2	LDF7-50A (1-5/8 FOAM)	120.00 - 125.00	0.6000	0.6000
T5	3	LDF7-50A (1-5/8 FOAM)	120.00 - 125.00	0.6000	0.6000
T5	4	LDF7-50A (1-5/8 FOAM)	120.00 - 126.67	0.6000	0.6000
Т5	5	LDF5-50A (7/8 FOAM)	120.00 - 126.67	0.6000	0.6000
Т5	7	1 5/8" Hybriflex	120.07 120.00 - 126.67	0.6000	0.6000
Т5	8	LDF6-50A (1-1/4 FOAM)	120.07 120.00 - 126.67	0.6000	0.6000
Т5	9	DC Cable WR-VG122ST	120.00 - 126.67	0.6000	0.6000
Т5	10	DC Cable WR-VG122ST	120.00 - 126.67	0.6000	0.6000
Т5	11	1 5/8" Hybriflex	120.00 - 126.67	0.6000	0.6000
Т5	12	1 5/8" Hybriflex	120.00 - 126.67	0.6000	0.6000
T5	13	Hubner-Suhner Hybrid Cable	120.00 - 125.00	0.6000	0.6000
T5	14	AVA7-50 (1-5/8 LOW DENSI, FOAM)	120.00 - 126.67	0.6000	0.6000
T5	15	LDF4-50A (1/2 FOAM)	120.00 - 126.67	0.6000	0.6000
T5	16	1-1/4" Hybrid Cable	120.00 - 126.67	0.6000	0.6000
T5	17	LDF4-50A (1/2 FOAM)	120.00 - 126.67	0.6000	0.6000
Т6	1	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
Т6	2	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
Т6	3	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
Т6	4	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
Т6	5	LDF5-50A (7/8 FOAM)	100.00 - 120.00	0.6000	0.6000
Т6	6	LDF4-50A (1/2 FOAM)	100.00 - 110.00	0.6000	0.6000
Т6	7	1 5/8" Hybriflex	100.00 - 120.00	0.6000	0.6000
Т6	8	LDF6-50A (1-1/4 FOAM)	100.00 - 120.00	0.6000	0.6000
Т6	9	DC Cable WR-VG122ST	100.00 - 120.00	0.6000	0.6000
Т6	10	DC Cable WR-VG122ST	100.00 - 120.00	0.6000	0.6000
Т6	11	1 5/8" Hybriflex	100.00 - 120.00	0.6000	0.6000
Т6	12	1 5/8" Hybriflex	100.00 - 120.00	0.6000	0.6000
Т6	13	Hubner-Suhner Hybrid Cable	100.00 - 120.00	0.6000	0.6000
Т6	14	AVA7-50 (1-5/8 LOW	100.00 -	0.6000	0.6000

AECOM

I	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	14 of 83
ĺ	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Sprint - JPW-001	Designed by MCD

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
		DENSI, FOAM)	120.00		
T6	15	LDF4-50A (1/2 FOAM)	100.00 -	0.6000	0.6000
- 1		1	120.00		
Т6	16	1-1/4" Hybrid Cable	100.00 -	0.6000	0.6000
	5.5		120.00	0.0000	0.0000
Т6	17	LDF4-50A (1/2 FOAM)		0.6000	0.6000
10	1.4	EDI 4 SOIT (1/2 TO/LLVI)	120.00	0.0000	0.0000
T7	1	LDE7 504 (1 5/8 EO 414)	23.18(1)(600.1)	0.0000	0.0000
T7	1	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
	2	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T7	3	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T7	4	LDF7-50A (1-5/8 FOAM)	90.00 - 100.00	0.6000	0.6000
T7	- 5	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T7	6	LDF4-50A (1/2 FOAM)		0.6000	0.6000
T7	7	1 5/8" Hybriflex	90.00 - 100.00	0.6000	0.6000
T7	8	LDF6-50A (1-1/4 FOAM)	90.00 - 100.00	0.6000	0.6000
T7	9	DC Cable WR-VG122ST	90.00 - 100.00	0.6000	0.6000
T7	10	DC Cable WR-VG122ST	90.00 - 100.00	0.6000	0.6000
T7	11	1 5/8" Hybriflex		0.6000	0.6000
T7	12		90.00 - 100.00	0.6000	0.6000
T7	13	Hubner-Suhner Hybrid Cable		0.6000	0.6000
T7	14	AVA7-50 (1-5/8 LOW		0.6000	\$000 (FEB. 1881) (FEB. 1881)
1/	1.77	DENSI, FOAM)	90.00 - 100.00	0.6000	0.6000
	1.5	,	00.00 100.00	0.5000	0.0000
T7	15	LDF4-50A (1/2 FOAM)		0.6000	0.6000
T7	16	1-1/4" Hybrid Cable		0.6000	0.6000
T7	17	LDF4-50A (1/2 FOAM)	90.00 - 100.00	0.6000	0.6000
T8	1	LDF7-50A (1-5/8 FOAM)	80.00 - 90.00	0.6000	0.6000
T8	2	LDF7-50A (1-5/8 FOAM)	80.00 - 90.00	0.6000	0.6000
T8	3	LDF7-50A (1-5/8 FOAM)	80.00 - 90.00	0.6000	0.6000
Т8	4	LDF7-50A (1-5/8 FOAM)	80.00 - 90.00	0.6000	0.6000
Т8	5	LDF5-50A (7/8 FOAM)	80.00 - 90.00	0.6000	0.6000
Т8	6	LDF4-50A (1/2 FOAM)	80.00 - 90.00	0.6000	0.6000
T8	7	1 5/8" Hybriflex	80.00 - 90.00	0.6000	0.6000
T8	8	LDF6-50A (1-1/4 FOAM)	80.00 - 90.00	0.6000	0.6000
T8	اوّ	DC Cable WR-VG122ST	80.00 - 90.00	0.6000	0.6000
T8	10	DC Cable WR-VG122ST	80.00 - 90.00		1020100010011
T8	11	1 5/8" Hybriflex	250,3505050	0.6000	0.6000
	12		80.00 - 90.00	0.6000	0.6000
T8		1 5/8" Hybriflex	80.00 - 90.00	0.6000	0.6000
T8	13	Hubner-Suhner Hybrid Cable	80.00 - 90.00	0.6000	0.6000
T8	14	AVA7-50 (1-5/8 LOW	80.00 - 90.00	0.6000	0.6000
1		DENSI. FOAM)		SC 11578700	Markeyson
T8	15	LDF4-50A (1/2 FOAM)	80.00 - 90.00	0.6000	0.6000
T8	16	1-1/4" Hybrid Cable	80.00 - 90.00	0.6000	0.6000
T8	17	LDF4-50A (1/2 FOAM)	80.00 - 90.00	0.6000	0.6000
T9	1	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T9	2	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
Т9	3	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
Т9	4	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
Т9	5	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.6000
Т9	6	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	
T9	7	1 5/8" Hybriflex			0.6000
			60.00 - 80.00	0.6000	0.6000
T9	8	LDF6-50A (1-1/4 FOAM)	60.00 - 80.00	0.6000	0.6000
T9	9	DC Cable WR-VG122ST	60.00 - 80.00	0.6000	0.6000
T9	10	DC Cable WR-VG122ST	60.00 - 80.00	0.6000	0.6000
T9	11	1 5/8" Hybriflex	60.00 - 80.00	0.6000	0.6000
T9	12	1 5/8" Hybriflex	60.00 - 80.00	0.6000	0.6000
Т9	13	Hubner-Suhner Hybrid Cable	60.00 - 80.00	0.6000	0.6000
Т9	14	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
Т9	15	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.6000
T9	16	1-1/4" Hybrid Cable	60.00 - 80.00	0.6000	0.6000
T9	17	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.6000
T10	1	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
	-11	PD1: 1-20W (1-2/0 LOWIN)	40.00 - 00.001	O DERUIN	0.0000

AECOM

ĺ	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	15 of 83
	Project	Date
i	Westport, Connecticut	15:00:07 05/30/17
	Sprint - JPW-001	Designed by MCD

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	•	Segment Elev.	No Ice	Ice
T10	2	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T10	3	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T10	4	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T10	5	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T10	6	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.6000
T10	7	1 5/8" Hybriflex	40.00 - 60.00	0.6000	0.6000
T10	8	LDF6-50A (1-1/4 FOAM)	40.00 - 60.00	0.6000	0.6000
T10	9	DC Cable WR-VG122ST	40.00 - 60.00	0.6000	0.6000
T10	10	DC Cable WR-VG122ST	40.00 - 60.00	0.6000	0.6000
T10	11	1 5/8" Hybriflex	40.00 - 60.00	0.6000	0.6000
T10	12	1 5/8" Hybriflex	40.00 - 60.00	0.6000	0.6000
T10	13	Hubner-Suhner Hybrid Cable	40.00 - 60.00	0.6000	0.6000
T10	14	AVA7-50 (1-5/8 LOW	40.00 - 60.00	0.6000	0.6000
		DENSI. FOAM)		0.0000	0.0000
T10	15	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.6000
T10	16	1-1/4" Hybrid Cable	40.00 - 60.00	0.6000	0.6000
T10	17	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.6000
T11	1	LDF7-50A (1-5/8 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	2	LDF7-50A (1-5/8 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	3	LDF7-50A (1-5/8 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	4	LDF7-50A (1-5/8 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	5	LDF5-50A (7/8 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	6	LDF4-50A (1/2 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	7	1 5/8" Hybriflex	30.00 - 40.00	0.6000	0.6000
T11	8	LDF6-50A (1-1/4 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	9	DC Cable WR-VG122ST	30.00 - 40.00	0.6000	0.6000
Tii	10	DC Cable WR-VG122ST	30.00 - 40.00	0.6000	0.6000
T11	11	1 5/8" Hybriflex	30.00 - 40.00	0.6000	0.6000
T11	12	1 5/8" Hybriflex	30.00 - 40.00	0.6000	0.6000
Tii	13	Hubner-Suhner Hybrid Cable	30.00 - 40.00	0.6000	0.6000
T11	14	AVA7-50 (1-5/8 LOW	30.00 - 40.00	0.6000	0.6000
		DENSI, FOAM)	30.00 - 40.00	0.0000	0.0000
T11	15	LDF4-50A (1/2 FOAM)	30.00 - 40.00	0.6000	0.6000
T11	16	1-1/4" Hybrid Cable	30.00 - 40.00	0.6000	0.6000
T11	17	LDF4-50A (1/2 FOAM)	30.00 - 40.00	0.6000	0.6000
T12	1	LDF7-50A (1-5/8 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	2	LDF7-50A (1-5/8 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	3	LDF7-50A (1-5/8 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	4	LDF7-50A (1-5/8 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	5	LDF5-50A (7/8 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	6	LDF4-50A (1/2 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	7	1 5/8" Hybriflex	20.00 - 30.00	0.6000	0.6000
T12	8	LDF6-50A (1-1/4 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	9	DC Cable WR-VG122ST	20.00 - 30.00	0.6000	0.6000
T12	10	DC Cable WR-VG122ST	20.00 - 30.00	0.6000	0.6000
T12	11	1 5/8" Hybriflex	20.00 - 30.00	0.6000	0.6000
T12	12	1 5/8" Hybriflex	20.00 - 30.00	0.6000	0.6000
T12	13	Hubner-Suhner Hybrid Cable	20.00 - 30.00	0.6000	0.6000
T12	14	AVA7-50 (1-5/8 LOW	20.00 - 30.00	0.6000	0.6000
- 1	1	DENSI. FOAM)			
T12	15	LDF4-50A (1/2 FOAM)	20.00 - 30.00	0.6000	0.6000
T12	16	1-1/4" Hybrid Cable	20.00 - 30.00	0.6000	0.6000
T12	17	LDF4-50A (1/2 FOAM)	20.00 - 30.00	0.6000	0.6000
T13	1	LDF7-50A (1-5/8 FOAM)	0.00 - 20.00	0.6000	0.6000
T13	2	LDF7-50A (1-5/8 FOAM)	0.00 - 20.00	0.6000	0.6000
T13	3	LDF7-50A (1-5/8 FOAM)	0.00 - 20.00	0.6000	0.6000
T13	4	LDF7-50A (1-5/8 FOAM)	0.00 - 20.00	0.6000	0.6000
T13	5	LDF5-50À (7/8 FOAM)	0.00 - 20.00	0.6000	0.6000
T13	6	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
TI 2	7	1 5/8" Hybriflex	0.00 - 20.00	0.6000	0.6000
T13					
T13	8	LDF6-50A (1-1/4 FOAM)	0.00 - 20.00	0.6000	0.6000

AECOM

j	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	16 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client IDM 004	Designed by
	Sprint - JPW-001	MCD

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T13	10	DC Cable WR-VG122ST	0.00 - 20.00	0.6000	0.6000
T13	11	1 5/8" Hybriflex	0.00 - 20.00	0.6000	0.6000
T13	12	1 5/8" Hybriflex	0.00 - 20.00	0.6000	0.6000
T13	13	Hubner-Suhner Hybrid Cable	0.00 - 20.00	0.6000	0.6000
T13	14	AVA7-50 (1-5/8 LOW	0.00 - 20.00	0.6000	0.6000
		DENSI, FOAM)			
T13	15	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000
T13	16	1-1/4" Hybrid Cable	0.00 - 20.00	0.6000	0.6000
T13	17	LDF4-50A (1/2 FOAM)	0.00 - 20.00	0.6000	0.6000

Discrete		LASAC
DISCIELE	IOMEI	Luaus

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_{\Lambda}A_{\Lambda}$ Side	Weight
			Vert ft ft	•	ft		ft²	ft^2	lb
AIR21 B2A/B4P	A	From Face	3.00	0.0000	125.00	No Ice	6.05	5.54	110.00
(T-Mobile)	Α.	Prom Pace	-4.00	0.0000	123.00	1/2" Ice	6.42	5.54 6.19	110.02 166.56
(1-Mobile)			0.00			1" Ice	6.80	6.85	230.27
AIR21 B2A/B4P	В	From Face	3.00	0.0000	125.00	No Ice	6.05	5.54	110.02
(T-Mobile)		11011111100	-4.00	0.0000	125.00	1/2" Ice	6.42	6.19	166.56
(1 1/100110)			0.00			1" Ice	6.80	6.85	230.27
AIR21 B2A/B4P	С	From Face	3.00	0.0000	125.00	No Ice	6.05	5.54	110.02
(T-Mobile)		11011111000	-4.00	0.0000	125.00	1/2" Ice	6.42	6.19	166.56
(1 11100110)			0.00			1" Ice	6.80	6.85	230.27
TMA	Α	From Face	3.00	0.0000	125.00	No Ice	1.06	0.45	20.00
(T-Mobile)		11011111400	0.00	0.0000	125.00	1/2" Ice	1.21	0.57	26.53
(. ,			0.00			1" Ice	1.37	0.71	34.91
TMA	В	From Face	3.00	0.0000	125.00	No Ice	1.06	0.45	20.00
(T-Mobile)		1101111100	0.00	0.0000	125.00	1/2" Ice	1.21	0.57	26.53
(= =====)			0.00			1" Ice	1.37	0.71	34.91
TMA	C	From Face	3.00	0.0000	125.00	No Ice	1.06	0.71	20.00
(T-Mobile)		110/11/1 400	0.00	0.0000	125.00	1/2" Ice	1.21	0.57	26.53
()			0.00			1" Ice	1.37	0.71	34.91
LNX-6515DS-VTM	Α	From Face	3.00	0.0000	125.00	No Ice	11.39	9.92	90.02
(T-Mobile)		11011111000	0.00	0.0000	125.00	1/2" Ice	12.01	11.38	180.50
(1.1.00110)			0.00			1" Ice	12.63	12.46	281.74
LNX-6515DS-VTM	В	From Face	3.00	0.0000	125.00	No Ice	11.39	9.92	90.02
(T-Mobile)	_		0.00	0.0000	123.00	1/2" Ice	12.01	11.38	180.50
()			0.00			1" Ice	12.63	12.46	281.74
LNX-6515DS-VTM	C	From Face	3.00	0.0000	125.00	No Ice	11.39	9.92	90.02
(T-Mobile)			0.00	0.0000	125.00	1/2" Ice	12.01	11.38	180.50
(=)			0.00			1" Ice	12.63	12.46	281.74
AIR21 B2A/B4P	Α	From Face	3.00	0.0000	125.00	No Ice	6.05	5.54	110.02
(T-Mobile)		11011111	4.00	0.0000	125.00	1/2" Ice	6.42	6.19	166.56
(= =====)			0.00			1" Ice	6.80	6.85	230.27
AIR21 B2A/B4P	В	From Face	3.00	0.0000	125.00	No Ice	6.05	5.54	110.02
(T-Mobile)	_		4.00	0.0000	125.00	1/2" Ice	6.42	6.19	166.56
(* ************************************			0.00			1" Ice	6.80	6.85	230.27
AIR21 B2A/B4P	С	From Face	3.00	0.0000	125.00	No Ice	6.05	5.54	110.02
(T-Mobile)	-		4.00	0.0000	125.00	1/2" Ice	6.42	6.19	166.56
(1 11100110)			0.00			1" Ice	6.80	6.85	230.27

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	17 of 83
	Project	Date
j	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	fŧ		ft²	ft²	lb
LTF12=372 Sector Mount (1) (T-Mobile)	A	None		0.0000	125.00	No Ice 1/2" Ice	13.60 18.40	13.60 18.40	465.00 600.00
LTF12=372 Sector Mount (1) (T-Mobile)	В	None		0.0000	125.00	1" Ice No Ice 1/2" Ice	23.20 13.60 18.40	23.20 13.60 18.40	735.00 465.00 600.00
LTF12=372 Sector Mount (1) (T-Mobile)	С	None		0.0000	125.00	1" Ice No Ice 1/2" Ice	23.20 13.60 18.40	23.20 13.60 18.40	735.00 465.00 600.00
RRUS-11 (T-Mobile)	A	From Face	3.00 0.00	0.0000	125.00	1" Ice No Ice 1/2" Ice	23.20 2.57 2.76	23.20 1.07 1.21	735.00 50.00 69.57
RRUS-11 (T-Mobile)	В	From Face	0.00 3.00 0.00	0.0000	125.00	1" Ice No Ice 1/2" Ice	2.97 2.57 2.76	1.36 1.07 1.21	92.08 50.00 69.57
RRUS-11 (T-Mobile)	С	From Face	0.00 3.00 0.00	0.0000	125.00	1" Ice No Ice 1/2" Ice	2.97 2.57 2.76	1.36 1.07 1.21	92.08 50.00 69.57
GPS (DNK-1 / GPS)	С	From Face	0.00 1.00 0.00	0.0000	60.00	1" Ice No Ice 1/2" Ice	2.97 0.00 0.00	1.36 0.00 0.00	92.08 0.00 0.00
4' Standoff (DNK-1 / GPS)	С	None	0.00	0.0000	60.00	1" Ice No Ice 1/2" Ice	0.00 3.42 3.67	0.00 3.42 3.67	0.00 110.00 147.19
2" Dia 10' Omni (DNK-47 / CSP-48)	C	From Leg	3.00 0.00	0.0000	159.00	1" Ice No Ice 1/2" Ice	3.92 2.00 3.03	3.92 2.00 3.03	187.07 10.00 25.00
3' Side Arm (DNK-47 / CSP-48)	C	None	0.00	0.0000	159.00	1" Ice No Ice 1/2" Ice	4.06 2.72 4.91	4.06 2.72 4.91	40.00 50.00 89.00
2" Dia 10' Omni (DNK-48 / CSP-49)	A	From Leg	4.00 0.00	0.0000	171.00	1" Ice No Ice 1/2" Ice	7.10 2.00 3.03	7.10 2.00 3.03	128.00 10.00 25.00
4' Standoff (DNK-48,53)	A	None	-3.00	0.0000	171.00	1" Ice No Ice 1/2" Ice	4.06 3.42 3.67	4.06 3.42 3.67	40.00 110.00 147.19
2" Dia 10' Omni (DNK-53 / CSP-45)	A	From Leg	4.00 0.00	0.0000	171.00	1" Ice No Ice 1/2" Ice	3.92 2.00 3.03	3.92 2.00 3.03	187.07 10.00 25.00
AP11-850/090/ADT w/Mount Pipe	В	From Leg	3.00 5.00 0.00	0.0000	162.00	1" Ice No Ice 1/2" Ice	4.06 5.31 5.93	4.06 3.92 4.96	40.00 39.15 84.22
(DNK-49 / CSP-46) 5' Standoff (DNK-49 / CSP-46)	В	None	0.00	0.0000	162.00	1" Ice No Ice 1/2" Ice	6.44 3.42 3.67	5.72 3.42 3.67	135.57 110.00 147.19
8'x2 1/2" Pipe Mount (DNK-50 / CSP-60)	C	None		0.0000	162.00	1" Ice No Ice 1/2" Ice	3.92 2.20 3.13	3.92 2.20 3.13	187.07 40.50 57.38
3' Yagi (DNK-51 / CSP-1)	В	From Leg	0.50 0.00	0.0000	169.00	1" Ice No Ice 1/2" Ice	3.62 2.08 3.79	3.62 2.08 3.79	79.58 30.95 52.87
4'x4" Pipe Mount (DNK-52)	С	None	0.00	0.0000	177.00	1" Ice No Ice 1/2" Ice	5.52 1.00 1.58	5.52 1.00 1.58	85.27 44.00 56.99
AP11-850/090/ADT w/Mount Pipe (DNK-54 / CSP-47)	В	None		0.0000	178.00	1" Ice No Ice 1/2" Ice 1" Ice	1.84 5.31 5.93 6.44	1.84 3.92 4.96 5.72	73.03 39.15 84.22 135.57

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	18 of 83
ľ	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Туре	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert	C#11			-2	- 2	
			ft	٥	ft		ft^2	ft²	lb
			ft						
WD 4 700102 4GE EDDI W		T .	ft	0.0000	180.00				
WPA-700102-4CF-EDIN-X	В	From Leg	6.00	0.0000	170.00	No Ice	3.58	3.66	39.60
w/ Mount Kit			0.00			1/2" Ice	3.88	4.21	75.22
(Troop G TX)	ъ.	F 7	3.00	0.0000	150.00	1" Ice	4.20	4.77	116.30
432E-83I-01T TTA Unit	В	From Leg	3.00	0.0000	170.00	No Ice	2.85	0.97	25.00
(Troop G)			0.00			1/2" Ice	3.06	1.11	44.70
SE419-SWBPALDF(D00)	D	Enom I	0.00	0.0000	170.00	1" Ice	3.28	1.26	67.39
	В	From Leg	6.00	0.0000	170.00	No Ice	25.03	9.80	50.00
(Troop G RX)			0.00			1/2" Ice	25.87	10.44	176.52
SE419-SWBPALDF Panel	р	Mana	-3.00	0.0000	175.00	1" Ice	26.71	11.09	312.27
	В	None		0.0000	175.00	No Ice	11.64	7.88	50.00
Antenna						1/2" Ice	12.29	8.51	114.67
(Troop G SZ)	D	NT		0.0000	150.00	1" Ice	12.95	9.14	187.34
6' Side-Arm	В	None		0.0000	170.00	No Ice	10.60	10.60	140.00
(Troop G)						1/2" Ice	15.40	15.40	212.00
*** VZW Antennas						1" Ice	20.20	20.20	284.00
12/20/2016									
Pirod 15' T-Frame Sector	Α	None		0.0000	160.00	NT- T	15.00	15.00	500.00
Mount (1)	A	None		0.0000	160.00	No Ice 1/2" Ice	15.00	15.00	500.00
(Verizon)						1/2 ice 1" Ice	20.60	20.60	650.00
Pirod 15' T-Frame Sector	В	None		0.0000	160.00		26.20	26.20	800.00
Mount (1)	ь	140116		0.0000	100.00	No Ice 1/2" Ice	15.00	15.00	500.00
(Verizon)							20.60	20.60	650.00
Pirod 15' T-Frame Sector	С	None		0.0000	160.00	1" Ice	26.20	26.20	800.00
Mount (1)	C	None		0.0000	160.00	No Ice 1/2" Ice	15.00	15.00	500.00
(Verizon)						1" Ice	20.60 26.20	20.60	650.00
SBNHH-1D65B	Α	From Face	3.00	0.0000	160.00			26.20	800.00
(Verizon - LTE & PCS)	А	Tiom race	0.00	0.0000	100.00	No Ice 1/2" Ice	8.20 8.66	5.42 5.88	40.60
(VOIZON - ETE & TCB)			0.00			1" Ice	9.13	6.35	91.24
RH_2x60-07-L (700 MHz)	Α	From Face	3.00	0.0000	160.00	No Ice	1.82		148.02
(Verizon LTE)	А	riom race	0.00	0.0000	100.00	1/2" Ice	1.82	1.52 1.69	60.00
(venizon ETE)			0.00			1" Ice	2.18	1.86	77.37 97.53
DB-T1-6Z-8AB-0Z Dist. Box	Α	From Face	3.00	0.0000	160.00	No Ice	4.80	2.00	45.00
(Verizon LTE)	11	1101111111111	0.00	0.0000	100.00	1/2" Ice	5.07	2.19	81.13
(/ 51.251. 2.12)			0.00			1" Ice	5.35	2.39	121.22
** SBNHH-1D65B Shared			0.00			1 100	3.33	2.39	121,22
(above)									
RRH 2x60 PCS	Α	From Face	3.00	0.0000	160.00	No Ice	2.84	3.00	74.42
(Verizon PCS)	11	1101111100	4.00	0.0000	100.00	1/2" Ice	3.33	3.59	108.94
(0.00			1" Ice	3.77	4.13	148.57
SBNHH-1D65B	Α	From Face	3.00	0.0000	160.00	No Ice	8.20	5.42	40.60
(Verizon AWS)		21011111100	-6.00	0.0000	100.00	1/2" Ice	8.66	5.88	91.24
(/)			0.00			1" Ice	9.13	6.35	148.02
RRH 2x60-AWS	Α	From Face	3.00	0.0000	160.00	No Ice	1.87	1.23	44.00
(Verizon AWS)		110111111100	-6.00	0.0000	100.00	1/2" Ice	2.04	1.38	59.92
(, , , , , , , , , , , , , , , , , , ,			0.00			1" Ice	2.23	1.53	78.53
DB-T1-6Z-8AB-0Z Dist. Box	Α	From Face	3.00	0.0000	160.00	No Ice	4.80	2.00	45.00
(Verizon AWS)			-6.00	0.0000	100.00	1/2" Ice	5.07	2.19	81.13
(0.00			I" Ice	5.35	2.19	121.22
BXA-70080-4CF-EDIN	Α	From Face	3.00	0.0000	160.00	No Ice	3.62	5.03	40.21
Panel			6.00	0.0000	100.00	1/2" Ice	3.93	5.59	82.86
(Verizon 850 MHz)			0.00			1" Ice	4.25	6.17	131.22
SBNHH-1D65B	В	From Face	3.00	0.0000	160.00	No Ice	8.20	5.42	40.60
(Verizon - LTE & PCS)	-	- 10111 1 000	0.00	0.0000	100.00	1/2" Ice	8.66	5.88	91.24
·			0.00			1" Ice	9.13	6.35	148.02
	-	Erom Eron	3.00	0.0000	160.00				
RH 2x60-07-L (700 MHz)	В	rrom race	3,00	(),()()()()	I DOLLING	INO ICE	1 × /	1 37	PILLINI.
RH_2x60-07-L (700 MHz) (Verizon LTE)	В	From Face	0.00	0.0000	160.00	No Ice 1/2" Ice	1.82 1.99	1.52 1.69	60.00 77.37

AECOM

1	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	19 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
Ì	Client	Designed by
	Sprint - JPW-001	MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral	,					
			Vert ft	•	ft	52	ft²	ft²	lb
			ft		Ji		Ji	Ji	w
			ft 0.00			1" Ice	2.18	1.86	97.53
** SBNHH-1D65B Shared (above)			0.00			1 100	2.10	1,00	91.55
RRH_2x60_PCS	В	From Face	3.00	0.0000	160.00	No Ice	2.84	3.00	74.42
(Verizon PCS)			4.00			1/2" Ice	3.33	3.59	108.94
	_	_	0.00			1" Ice	3.77	4.13	148.5
SBNHH-1D65B	В	From Face	3.00	0.0000	160.00	No Ice	8.20	5.42	40.60
(Verizon AWS)			-6.00			1/2" Ice	8.66	5.88	91.24
DDII 0 (0 AMG	-		0.00	0.0000	1.00.00	1" Ice	9.13	6.35	148.02
RRH 2x60-AWS	В	From Face	3.00	0.0000	160.00	No Ice	1.87	1.23	44.00
(Verizon AWS)			-6.00			1/2" Ice	2.04	1.38	59.92
DVA 70000 ACE EDIN	D	E E	0.00	0.0000	1.00.00	1" Ice	2.23	1.53	78.53
BXA-70080-4CF-EDIN Panel	В	From Face	3.00	0.0000	160.00	No Ice	3.62	5.03	40.21
(Verizon 850 MHz)			6.00 0.00			1/2" Ice	3.93	5.59	82.86
SBNHH-1D65B	С	From Face	3.00	0.0000	160.00	1" Ice	4.25	6.17	131.22
(Verizon - LTE & PCS)	C	FIOIII FACE	0.00	0.0000	160.00	No Ice 1/2" Ice	8.20 8.66	5.42 5.88	40.60 91.24
(Verizon - ETE & Tes)			0.00			1" Ice	9.13	6.35	148.02
RH 2x60-07-L (700 MHz)	C	From Face	3.00	0.0000	160.00	No Ice	1.82	1.52	60.00
(Verizon LTE)	C	11011111 400	0.00	0.0000	100.00	1/2" Ice	1.99	1.69	77.37
(10112011 212)			0.00			1" Ice	2.18	1.86	97.53
** SBNHH-1D65B Shared (above)			0.00			1 100	2,10	1.60	71.55
RRH 2x60 PCS	C	From Face	3.00	0.0000	160.00	No Ice	2.84	3.00	74.42
(Verizon PCS)			4.00			1/2" Ice	3.33	3.59	108.94
,			0.00			1" Ice	3.77	4.13	148.57
SBNHH-1D65B	C	From Face	3.00	0.0000	160.00	No Ice	8.20	5.42	40.60
(Verizon AWS)			-6.00			1/2" Ice	8.66	5.88	91.24
			0.00			1" Ice	9.13	6.35	148.02
RRH_2x60-AWS	C	From Face	3.00	0.0000	160.00	No Ice	1.87	1.23	44.00
(Verizon AWS)			-6.00			1/2" Ice	2.04	1.38	59.92
			0.00			1" Ice	2.23	1.53	78.53
BXA-70080-4CF-EDIN	C	From Face	3.00	0.0000	160.00	No Ice	3.62	5.03	40.21
Panel			6.00			1/2" Ice	3.93	5.59	82.86
(Verizon 850 MHz) *** AT-T Antennas			0.00			1" Ice	4.25	6.17	131.22
12/20/2016 Pirod 15' T-Frame Sector		NT		0.0000	122.00	NT T	15.00	15.00	500.00
	Α	None		0.0000	133.00	No Ice	15.00	15.00	500.00
Mount (1) (AT&T)						1/2" Ice	20.60	20.60	650.00
_, , , , , , , , , , , , , , , , , , ,	D	None		0.0000	122.00	1" Ice	26.20	26.20	800.00 500.00
Pirod 15' T-Frame Sector Mount (1)	В	None		0.0000	133.00	No Ice 1/2" Ice	15.00 20.60	15.00 20.60	650.00
(AT&T)						1" Ice	26.20	26.20	800.00
Pirod 15' T-Frame Sector	C	None		0.0000	133.00	No Ice	15.00	15.00	500.00
Mount (1)	·	140110		0.0000	155.00	1/2" Ice	20.60	20.60	650.00
(AT&T)						1" Ice	26.20	26.20	800.00
P65-16-XLH-RR	Α	From Leg	3.00	0.0000	133.00	No Ice	8.40	4.70	60.00
(AT&T)	**	Trom Leg	-6.00	0.0000	155.00	1/2" Ice	8.95	5.15	111.28
·/			0.00			1" Ice	9.51	5.60	164.59
P65-16-XLH-RR	Α	From Leg	3.00	0.0000	133.00	No Ice	8.40	4.70	60.00
(AT&T)	_		6.00			1/2" Ice	8.95	5.15	111.28
` '			0.00			1" Ice	9.51	5.60	164.59
RRUS-11	Α	From Leg	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)		-	-6.00			1/2" Ice	2.76	1.21	69.57
•			0.00			1" Ice	2.97	1.36	92.08
HPA-65R-BUU-H6 Panel	Α	From Leg	3.00	0.0000	133.00	No Ice	9.49	5.49	48.00
(AT&T - Proposed)		-	-2.00			1/2" Ice	9.96	5.94	105.33

AECOM

7	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	20 of 83
ŀ	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral	,					
			Vert ft	٥	ft		ft²	ft²	lb
			ft ft		<i>J•</i>		<i>J*</i>	<i>J.</i>	••
			0.00			1" Ice	10.43	6.41	168.95
RRUS-32	Α	From Leg	3.00	0.0000	133.00	No Ice	3.33	2.36	80.00
(AT&T - Proposed)		_	-2.00			1/2" Ice	3.55	2.56	112.20
			0.00			1" Ice	3.78	2.76	148.06
RRUS-11	Α	From Leg	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)			-2.00			1/2" Ice	2.76	1.21	69.57
DG(40 (0 10 0D (0 11)			0.00			1" Ice	2.97	1.36	92.08
DC6-48-60-18-8F (Squid)	Α	From Leg	3.00	0.0000	133.00	No Ice	0.79	0.79	20.00
Suppressor			-6.00			1/2" Ice	1.27	1.27	35.12
(AT&T)		F I	0.00	0.0000	122.00	1" Ice	1.45	1.45	52.57
DC6-48-60-18-8F (Squid)	Α	From Leg	3.00	0.0000	133.00	No Ice	0.79	0.79	20.00
Suppressor (AT&T)			-2.00 0.00			1/2" Ice 1" Ice	1.27 1.45	1.27	35.12
TT19-08BP111-001 TMA's	Α	From Leg	3.00	0.0000	133.00	No Ice	0.55	1.45 0.45	52.57 16.00
(AT&T)	А	riom Leg	0.00	0.0000	155.00	1/2" Ice	0.55	0.43	21.80
(11121)			0.00			1" Ice	0.05	0.63	29.22
P65-16-XLH-RR	В	From Leg	3.00	0.0000	133.00	No Ice	8.40	4.70	60.00
(AT&T)	_	riom Dob	-6.00	0.0000	133.00	1/2" Ice	8.95	5.15	111.28
(0.00			1" Ice	9.51	5.60	164.59
P65-16-XLH-RR	В	From Leg	3.00	0.0000	133.00	No Ice	8.40	4.70	60.00
(AT&T)		· ·	6.00			1/2" Ice	8.95	5.15	111.28
,			0.00			1" Ice	9.51	5.60	164.59
RRUS-11	В	From Leg	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)			-6.00			1/2" Ice	2.76	1.21	69.57
			0.00			1" Ice	2.97	1.36	92.08
HPA-65R-BUU-H6 Panel	В	From Leg	3.00	0.0000	133.00	No Ice	9.49	5.49	48.00
(AT&T - Proposed)			-2.00			1/2" Ice	9.96	5.94	105.33
	_	_	0.00			1" Ice	10.43	6.41	168.95
RRUS-32	В	From Leg	3.00	0.0000	133.00	No Ice	3.33	2.36	80.00
(AT&T - Proposed)			-2.00			1/2" Ice	3.55	2.56	112.20
DDF10 11			0.00			1" Ice	3.78	2.76	148.06
RRUS-11	В	From Leg	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)			-2.00			1/2" Ice	2.76	1.21	69.57
TT19-08BP111-001 TMA's	В	F T	0.00	0.0000	133.00	1" Ice	2.97	1.36	92.08
(AT&T)	ь	From Leg	3.00 0.00	0.0000	133.00	No Ice	0.55	0.45	16.00
(A1&1)			0.00			1/2" Ice 1" Ice	0.65 0.75	0.53	21.80
P65-16-XLH-RR	C	From Leg	3.00	0.0000	133.00	No Ice	8.40	0.63 4.70	29.22 60.00
(AT&T)	C	110m Leg	-6.00	0.0000	133.00	1/2" Ice	8.95	5.15	111.28
(111621)			0.00			1" Ice	9.51	5.60	164.59
P65-16-XLH-RR	C	From Leg	3.00	0.0000	133.00	No Ice	8.40	4.70	60.00
(AT&T)		Trom Log	6.00	0.0000	155.00	1/2" Ice	8.95	5.15	111.28
, ,			0.00			1" Ice	9.51	5.60	164.59
RRUS-11	C	From Leg	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)		· ·	-6.00			1/2" Ice	2.76	1.21	69.57
			0.00			1" Ice	2.97	1.36	92.08
HPA-65R-BUU-H6 Panel	C	From Leg	3.00	0.0000	133.00	No Ice	9.49	5.49	48.00
(AT&T - Proposed)			-2.00			1/2" Ice	9.96	5.94	105.33
			0.00			1" Ice	10.43	6.41	168.95
RRUS-32	C	From Leg	3.00	0.0000	133.00	No Ice	3.33	2.36	80.00
(AT&T - Proposed)			-2.00			1/2" Ice	3.55	2.56	112.20
			0.00			1" Ice	3.78	2.76	148.06
RRUS-11	C	From Leg	3.00	0.0000	133.00	No Ice	2.57	1.07	50.00
(AT&T)			-2.00			1/2" Ice	2.76	1.21	69.57
7710 00PP444 004 7::	_	_	0.00			1" Ice	2.97	1.36	92.08
T19-08BP111-001 TMA's	C	From Leg	3.00	0.0000	133.00	No Ice	0.55	0.45	16.00
(AT&T)			0.00			1/2" Ice	0.65	0.53	21.80

AECOM

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	21 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			ft ft	908	ft		ft^2	ft^2	lb
			ft						
*** Sprint Antennas 05/17/2017			0.00			1" Ice	0.75	0.63	29.22
USF12-448-U 12// 4 Pipe Antenna Mount Assembly	Α	None		0.0000	145.00	No Ice 1/2" Ice	17.27 23.67	9.44 12.83	517.08 621.28
(Sprint) USF12-448-U 12'/ 4 Pipe Antenna Mount Assembly	В	None		0.0000	145.00	1" Ice No Ice 1/2" Ice	30.01 17.27 23.67	16.15 9.44 12.83	763.57 517.08 621.28
(Sprint) USF12-448-U 12'/ 4 Pipe Antenna Mount Assembly	С	None		0.0000	145.00	1" Ice No Ice 1/2" Ice	30.01 17.27	16.15 9.44	763.57 517.08
(Sprint) APXVSPP18-C-A20 w/	Α	From Leg	2.75	0.0000	145.00	1" Ice No Ice	23.67 30.01 8.02	12.83 16.15 5.81	621.28 763.57 90.00
Mount Pipe (Sprint) APXVTM14-C-120 Panel	A	From Leg	6.00 0.00 2.75	0.0000	145.00	1/2" Ice 1" Ice No Ice	8.48 8.94 6.34	6.27 6.73 3.61	141,99 200.12
Antenna (Sprint)	A	riom Leg	-6.00 0.00	0.0000		1/2" Ice 1" Ice	6.72 7.10	3.97 4.33	72.00 111.53 156.12
800 RRH (800 MHz) Unit (Sprint)	Α	From Leg	2.75 6.00 0.00	0.0000	145.00	No Ice 1/2" Ice 1" Ice	6.34 6.72 7.10	5.58 5.94 6.31	60.00 109.72 164.80
1900 RRH (1900 MHz) Unit (Sprint)	A	From Leg	2.75 -6.00	0.0000	145.00	No Ice 1/2" Ice	2.58 2.79	2.54 2.75	60.00 86.47
TD-RRH8x20 (Sprint)	Α	From Leg	0.00 2.75 0.00	0.0000	145.00	1" Ice No Ice 1/2" Ice	3.01 4.05 4.30	2.97 1.53 1.71	116.36 66.13 93.27
ALU Model 800 Notch Filter (Sprint)	Α	From Leg	0.00 2.75 0.00	0.0000	145.00	1" Ice No Ice 1/2" Ice	4.56 0.66 0.76	1.90 0.32 0.40	123.93 11.00 16.81
RFS Switch # ACU-A20N (Sprint)	Α	From Leg	0.00 2.75 6.00	0.0000	145.00	1" Ice No Ice 1/2" Ice	0.87 0.07 0.10	0.48 0.11 0.16	24.26 1.04 2.30
RFS Switch # ACU-A20N	Α	From Leg	0.00 2.75	0.0000	145.00	1" Ice No Ice	0.15 0.07	0.21 0.11	4.36 1.04
(Sprint) RFS Switch # ACU-A20N	A	From Leg	-6.00 0.00 2.75	0.0000	145.00	1/2" Ice 1" Ice No Ice	0.10 0.15 0.07	0.16 0.21 0.11	2.30 4.36 1.04
(Sprint)			0.00 0.00			1/2" Ice 1" Ice	0.10 0.15	0.16 0.21	2.30 4.36
NEMA Enclosure (Sprint)	A	From Leg	2.75 0.00 0.00	0.0000	145.00	No Ice 1/2" Ice 1" Ice	0.65 0.75 0.86	0.42 0.51 0.60	2.20 8.42 16.32
APXVSPP18-C-A20 w/ Mount Pipe (Sprint)	В	From Leg	2.75 6.00 0.00	0.0000	145.00	No Ice 1/2" Ice 1" Ice	8.02 8.48 8.94	5.81 6.27 6.73	90.00 141.99 200.12
APXVTM14-C-120 Panel Antenna	В	From Leg	2.75 -6.00	0.0000	145.00	No Ice 1/2" Ice	6.34 6.72	3.61 3.97	72.00 111.53
(Sprint) 800 RRH (800 MHz) Unit (Sprint)	В	From Leg	0.00 2.75 6.00	0.0000	145.00	1" Ice No Ice 1/2" Ice	7.10 6.34 6.72	4.33 5.58 5.94	156.12 60.00 109.72
1900 RRH (1900 MHz) Unit (Sprint)	В	From Leg	0.00 2.75 -6.00	0.0000	145.00	1" Ice No Ice 1/2" Ice	7.10 2.58 2.79	6.31 2.54 2.75	164.80 60.00 86.47
TD-RRH8x20	В	From Leg	0.00 2.75	0.0000	145.00	1" Ice No Ice	3.01 4.05	2.97 1.53	116.36 66.13
(Sprint)			0.00 0.00			1/2" Ice 1" Ice	4.30 4.56	1.71 1.90	93.27 123.93

AECOM

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	22 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
			Vert	0			n.t	0.2	
			ft	Ü	ft		ft^2	ft^2	lb
			ft ft						
ALU Model 800 Notch Filter	В	From Leg	2.75	0.0000	145.00	No Ice	0.66	0.32	11.00
(Sprint)	ь	110m Lcg	0.00	0.0000	145.00	1/2" Ice	0.66	0.32	16.81
(Sprint)			0.00			1" Ice	0.76	0.40	24.26
RFS Switch # ACU-A20N	В	From Leg	2.75	0.0000	145.00	No Ice	0.07	0.48	1.04
(Sprint)	~	Trom Lag	6.00	0.0000	145.00	1/2" Ice	0.10	0.11	2.30
(Sprint)			0.00			1" Ice	0.15	0.10	4.36
RFS Switch # ACU-A20N	В	From Leg	2.75	0.0000	145.00	No Ice	0.13	0.21	1.04
(Sprint)		Tiom 20g	-6.00	0.0000	145.00	1/2" Ice	0.10	0.11	2.30
(2,1111)			0.00			1" Ice	0.15	0.10	4.36
RFS Switch # ACU-A20N	В	From Leg	2.75	0.0000	145.00	No Ice	0.07	0.11	1.04
(Sprint)			0.00	0.000	1 10100	1/2" Ice	0.10	0.16	2.30
(1)			0.00			1" Ice	0.15	0.21	4.36
APXVSPP18-C-A20 w/	C	From Leg	2.75	0.0000	145.00	No Ice	8.02	5.81	90.00
Mount Pipe			6.00		- 12100	1/2" Ice	8.48	6.27	141.99
(Sprint)			0.00			1" Ice	8.94	6.73	200.12
APXVTM14-C-120 Panel	C	From Leg	2.75	0.0000	145.00	No Ice	6.34	3.61	72.00
Antenna		J	-6.00			1/2" Ice	6.72	3.97	111.53
(Sprint)			0.00			1" Ice	7.10	4.33	156.12
800 RRH (800 MHz) Unit	C	From Leg	2.75	0.0000	145.00	No Ice	6.34	5.58	60.00
(Sprint)			6.00			1/2" Ice	6.72	5.94	109.72
			0.00			1" Ice	7.10	6.31	164.80
1900 RRH (1900 MHz) Unit	C	From Leg	2.75	0.0000	145.00	No Ice	2.58	2.54	60.00
(Sprint)			-6.00			1/2" Ice	2.79	2.75	86.47
			0.00			1" Ice	3.01	2.97	116.36
TD-RRH8x20	C	From Leg	2.75	0.0000	145.00	No Ice	4.05	1.53	66.13
(Sprint)			0.00			1/2" Ice	4.30	1.71	93.27
			0.00			1" Ice	4.56	1.90	123.93
ALU Model 800 Notch Filter	C	From Leg	2.75	0.0000	145.00	No Ice	0.66	0.32	11.00
(Sprint)			0.00			1/2" Ice	0.76	0.40	16.81
			0.00			1" Ice	0.87	0.48	24.26
RFS Switch # ACU-A20N	C	From Leg	2.75	0.0000	145.00	No Ice	0.07	0.11	1.04
(Sprint)			6.00			1/2" Ice	0.10	0.16	2.30
	<u></u>	_	0.00			1" Ice	0.15	0.21	4.36
RFS Switch # ACU-A20N	C	From Leg	2.75	0.0000	145.00	No Ice	0.07	0.11	1.04
(Sprint)			-6.00			1/2" Ice	0.10	0.16	2.30
P. P. G			0.00			1" Ice	0.15	0.21	4.36
RFS Switch # ACU-A20N	C	From Leg	2.75	0.0000	145.00	No Ice	0.07	0.11	1.04
(Sprint)			0.00			1/2" Ice	0.10	0.16	2.30
			0.00			1" Ice	0.15	0.21	4.36

					Dis	shes					
Dagarintian	Fano	Diah	Officet	Official	4	מע כ	Flanation	0.4-11-	4 .	TV-:-L+	

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	•	۰	ft	ft		ft ²	lb
PA6-65AC (DNK-52 / CSP-42)	С	Paraboloid w/Radome	From Leg	1.00 0.00 0.00	Worst		177.00	6.00	No Ice 1/2" Ice 1" Ice	28.27 29.05 29.83	90.00 240.00 390.00
VHLP2-11 Dish	C	Paraboloid w/o	From	0.50	Worst		145.00	2.00	No Ice	3.14	17.00

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification A	nalysis 23 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	ō	•	ft	ſŧ		ft²	lb
Antenna		Radome	Leg	0.00					1/2" Ice	3.41	34.50
(Clearwire)				0.00					1" Ice	3.68	52.01
VHLP800-11 6WH	Α	Paraboloid	From	0.50	Worst		145.00	2.60	No Ice	5.31	49.00
Dish Antenna		w/Radome	Leg	0.00					1/2" Ice	5.66	78.05
(Clearwire)				0.00					1" Ice	6.00	107.11

222-G Verification Constants

Constant	Value
Wind Importance Factor Without Ice	1.15
Wind Importance Factor With Ice Factor	1
Ice Importance Factor	1.25
\mathbf{K}_{d}	0.85
Z_g	900
α	9.5
K _{zmin}	0.85
K_e	1
K_{t}	1
f	1

222-G Section Verification ArRr By Element

Section	Elem.	Size	C	C	F	е	e	A_r	A_r	A_rR_r	A_rR_r
Elevation	Num.			w/Ice	a		w/Ice	1	w/Ice		w/Ice
			1		c						
ft					e			ft ²	ft²	ft ²	ft^2
T1	1	ROHN 3 STD	40.93	39.248	C	0.139	0.354	5.833	13.197	3.055	8.1
80.00-160.00			1								
	1	ROHN 3 STD	40.93	39.248	A	0.139	0.354	5.833	13.197	3.055	8.1
	2	ROHN 3 STD	40.93	39.248	C	0.139	0.354	5.833	13.197	3.055	8.1
- 1	2	ROHN 3 STD	40.93	39.248	В	0.139	0.354	5.833	13,197	3.055	8.
	3	ROHN 3 STD	40.93	39.248	В	0.139	0.354	5.833	13.197	3.055	8.
	3	ROHN 3 STD	40.93	39.248	A	0.139	0.354	5.833	13.197	3.055	8.
	4	ROHN 1.5 STD	22.219	31.317	C	0.139	0.354	1.306	4.344	0.740	2.0
	5	ROHN 1.5 STD	22.219	31.317	В	0.139	0.354	1.306	4.344	0.740	2.0
	6	ROHN 1.5 STD	22.219	31.317	Α	0.139	0.354	1.306	4.344	0.740	2.
	7	ROHN 1.5 STD	22.219	31.317	C	0.139	0.354	1.315	4.373	0.745	2.
	8	ROHN 2 STD	27.774	33.671	C	0.139	0.354	1.518	4.343	0.860	2.
	9	ROHN 2 STD	27.774	33.671	C	0.139	0.354	1.518	4.343	0.860	2.
	10	ROHN 1.5 STD	22.219	31.317	В	0.139	0.354	1.315	4.373	0.745	2.
	11	ROHN 2 STD	27.774	33.671	В	0.139	0.354	1.518	4.343	0.860	2.
- 1	12	ROHN 2 STD	27.774	33.671	В	0.139	0.354	1.518	4.343	0.860	2.
	13	ROHN 1.5 STD	22.219	31.317	A	0.139	0.354	1.315	4.373	0.745	2.
	14	ROHN 2 STD	27.774	33.671	A	0.139	0.354	1.518	4.343	0.860	2.
	15	ROHN 2 STD	27.774	33.671	Α	0.139	0.354	1.518	4.343	0.860	2.
I	19	ROHN 1.5 STD	22.219	31.317	С	0.139	0.354	1.311	4.358	0.743	2.
	20	ROHN 2 STD	27.774	33.671	C	0.139	0.354	1.517	4.338	0.859	2.
1	21	ROHN 2 STD	27.774	33.671	C	0.139	0.354	1.517	4.338	0.859	2.
	22	ROHN 1.5 STD	22.219	31.317	В	0.139	0.354	1.311	4.358	0.743	2.
	23	ROHN 2 STD	27.774	33.671	В	0.139	0.354	1.517	4.338	0.859	2.0
	24	ROHN 2 STD	27.774	33.671	В	0.139	0.354	1.517	4.338	0.859	2.0
	25	ROHN 1.5 STD	22.219	31.317	A	0.139	0.354	1.311	4.358	0.743	2.0
1	26	ROHN 2 STD	27.774	33.671	A	0.139	0.354	1.517	4.338	0.859	2.0

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	24 of 83
Ī	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
1	Client	Designed by
-1	Sprint - JPW-001	MCD

Section Elevation	Elem. Num.	Size	C	C w/Ice	F	e	e w/Ice	A_r	A_r	A,R,	A_rR_r
	Ivum.			w/ice	a c		w/ice		w/Ice	.	w/Ice
ft	25	ROHN 2 STD	07.774	22.671	e	0.100		ft ²	ft ²	_ft²	ft²
	27 31	ROHN 2 STD	27.774 27.774	33.671 33.671	A	0.139	0.354	1.517	4.338	0.859	2.
	32	ROHN 2 STD	27.774	33,671	C	0.139	0.354	1.515	4.333	0.858	2.
- 1		ROHN 2 STD	27.774		C	0.139	0.354	1.515	4.333	0.858	2.
- 1	33			33.671	В	0.139	0.354	1.515	4.333	0.858	2.
	34 35	ROHN 2 STD	27.774	33.671	B	0.139	0.354	1.515	4.333	0.858	2.
	36	ROHN 2 STD		33.671	A	0.139	0.354	1.515	4.333	0.858	2
- 1	30	ROHN 2 STD	27.774	33.671	A A	0.139	0.354	1.515	4.333	0.858	2
1					A		Sum:	24.699	65.497	13.494	40
- 1					B			24.699	65.497	13.494	40
T2	40	ROHN 4 STD	51.935	42 257	C	0.144	0.24	24.699	65.497	13.494	40
60.00-140.00	40	KOHN 4 SID	31.933	43.357	С	0.144	0.34	7.514	14.798	3.550	9
00.00-140.00	40	DOUNT 4 CTD	51.935	43.357	ا ۱	0.144	0.24	7.514	14 700	2 550	0
- 1	41	ROHN 4 STD ROHN 4 STD	51.935	43.357	A	0.144	0.34	7.514	14.798	3.550	9
	41	ROHN 4 STD	51.935	43.357	C	0.144	0.34	7.514	14.798	3.550	9
I	42		51.935		В	0.144	0.34	7.514	14.798	3,550	9.
ı	42	ROHN 4 STD	51.935	43.357	В	0.144	0.34	7.514	14.798	3.550	9
	43	ROHN 4 STD	21.928	30.638	A	0.144	0.34	7.514	14.798	3.550	9
- 1	44	ROHN 1.5 STD			C	0.144	0.34	1.526	5.031	0.865	3
	45	ROHN 2 STD	27.41	32.962	C	0.144	0.34	1.634	4.635	0.926	2
	46	ROHN 2 STD	27.41 21.928	32.962	C	0.144	0.34	1.634	4.635	0.926	2
	47	ROHN 1.5 STD ROHN 2 STD		30.638	В	0.144	0.34	1.526	5.031	0.865	3.
	48		27.41 27.41	32.962 32.962	В	0.144	0.34	1.634	4.635	0.926	2
		ROHN 2 STD			В	0.144	0.34	1.634	4.635	0.926	2
	49 50	ROHN 1.5 STD	21.928	30.638	A	0.144	0.34	1.526	5.031	0.865	3
	51	ROHN 2 STD	27.41	32.962	A	0.144	0.34	1.634	4.635	0.926	2.
		ROHN 2 STD	27.41	32.962	A	0.144	0.34	1.634	4.635	0.926	2
	55	ROHN 1.5 STD	21.928	30.638	C	0.144	0.34	1.416	4.668	0.803	2.
	56 57	ROHN 2 STD	27.41	32.962	C	0.144	0.34	1.589	4.508	0.901	2.
		ROHN 2 STD	27.41	32.962	C	0.144	0.34	1.589	4.508	0.901	2.
1	58 59	ROHN 1.5 STD	21.928	30.638	В	0.144	0.34	1.416	4.668	0.803	2.
	60	ROHN 2 STD	27.41	32.962	В	0.144	0.34	1.589	4.508	0.901	2.
	1000000	ROHN 2 STD	27.41	32.962	В	0.144	0.34	1.589	4.508	0.901	2.
1	61	ROHN 1.5 STD	21.928	30.638	A	0.144	0.34	1.416	4.668	0.803	2.
T I	62	ROHN 2 STD	27.41	32.962	A	0.144	0.34	1.589	4.508	0.901	2.
1	63	ROHN 2 STD	27.41	32.962	A	0.144	0.34	1.589	4.508	0.901	2.
	67	ROHN 1.5 STD	21.928	30.638	C	0.144	0.34	1.319	4.349	0.748	2.
	68	ROHN 2 STD	27.41	32.962	C	0.144	0.34	1.546	4.385	0.876	2.
	69	ROHN 2 STD	27.41	32.962	C	0.144	0.34	1.546	4.385	0.876	2.
	70	ROHN 1.5 STD	21.928	30.638	В	0.144	0.34	1.319	4.349	0.748	2.
	71	ROHN 2 STD ROHN 2 STD	27.41	32.962	В	0.144	0.34	1.546	4.385	0.876	2.
	72		27.41	32.962	В	0.144	0.34	1.546	4.385	0.876	2.
- 1	73	ROHN 1.5 STD	21.928	30.638	A	0.144	0.34	1.319	4.349	0.748	2.
	74	ROHN 2 STD	27.41	32.962	A	0.144	0.34	1.546	4.385	0.876	2.
1	75	ROHN 2 STD	27.41	32.962	A	0.144	0.34	1.546	4.385	0.876	2.
1					A		Sum:	28.825	70.700	14.923	43.
				- 1	В			28.825	70.700	14.923	43.
ma	70 5	OUN FRILE FOR	(2.007	47.502	C	0.4	0.00	28.825	70.700	14.923	43.
T3 40.00-133.33	/91	ROHN 5 EH (5.5 OD	04.857	47.583	C	0.15	0.33	3.061	5.467	1.298	3.
+0.00-133.33	70 5	x 0.375)	62.057	47.583	, I	0.15	0.22	2.00			⊈ 0
	191	ROHN 5 EH (5.5 OD	02.83/	47.583	Α	0.15	0.33	3.061	5.467	1.298	3
	90 5	x 0.375)	62.057	47.503		0.434	0.22	2.06	e 1200		2 50
	801	ROHN 5 EH (5.5 OD	02.857	47.583	C	0.15	0.33	3.061	5.467	1.298	3.:
	00	x 0.375)	CO 055	47 503	, I		0.00				900
	801	ROHN 5 EH (5.5 OD	62.857	47.583	В	0.15	0.33	3.061	5.467	1.298	3.1
	0.1	x 0.375)		45 500	_		8 - 4				
	8118	ROHN 5 EH (5.5 OD	62.857	47.583	В	0.15	0.33	3.061	5.467	1.298	3
		x 0.375)					200	S 4234	92000	yraea	
	81 R	ROHN 5 EH (5.5 OD	62.857	47.583	A	0.15	0.33	3.061	5.467	1.298	3.3
	900	x 0.375)					9,500	94.000.00	570m20		
	82	ROHN 2 STD	27.143	32.444	C	0.15	0.33	2.045	5.768	1.161	3.5

AECOM

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	25 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Sprint - JPW-001	Designed by MCD

Section	Elem.	Size	C	C	F	e	е	A,	A_r	A_rR_r	A_rR_r
Elevation	Num.			w/Ice	a		w/Ice		w/Ice	11,1.7	w/Ice
ft					c e			ft²	ft²	ft²	$-ft^2$
	83	ROHN 2 EH	27.2	32.469	C	0.15	0.33	1.670	4.704	0.948	2.86
	84		27.2	32.469	C	0.15	0.33	1.670	4.704	0.948	2.86
1	85		27.143		В	0.15	0.33	2.045	5.768	1.161	3.5
	86		27.2	32.469	В	0.15	0.33	1.670	4.704	0.948	2.86
	87	ROHN 2 EH	27.2	32.469	В	0.15	0.33	1.670	4.704	0.948	2.86
	88	ROHN 2 STD	27.143	32.444	A	0.15	0.33	2.045	5.768	1.161	3.51
	89		27.2	32.469	A	0.15	0.33	1.670	4.704	0.948	2.86
	90	ROHN 2 EH	27.2	32.469	A	0.15	0.33	1.670	4.704	0.948	2.80
					A		Sum:	11.508	26.110	5.652	15.89
- 1					В		1	11.508	26.110	5.652	15.89
Т4	04	ROHN 5 EH (5.5 OD	62 527	47.229	C C	0.144	0.210	11.508	26.110	5.652	15.89
133.33-126.67		x 0.375)		47.229		0.144	0.318	3.061	5.455	1.294	3.29
	94	ROHN 5 EH (5.5 OD x 0.375)	62.527	47.229	A	0.144	0.318	3.061	5.455	1.294	3.29
	95	ROHN 5 EH (5.5 OD x 0.375)	62.527	47.229	C	0.144	0.318	3.061	5.455	1.294	3.29
	95	ROHN 5 EH (5.5 OD	62.527	47.229	В	0.144	0.318	3.061	5.455	1.294	3.29
ľ	96	x 0.375) ROHN 5 EH (5.5 OD	62.527	47.229	В	0.144	0.318	3.061	5.455	1.294	3.29
	96	x 0.375) ROHN 5 EH (5.5 OD	62.527	47.229	A	0.144	0.318	3.061	5.455	1.294	3.29
		x 0.375)								(4.12-3)	2.12
	97	ROHN 2 STD	27	32.17	C	0.144	0.318	2.166	6.089	1.228	3.6
	98	ROHN 2 STD	27	32.17	В	0.144	0.318	2.166	6.089	1.228	3.6
	99	ROHN 2 STD	27	32.17	A	0.144	0.318	2.166	6.089	1.228	3.6
	100	ROHN 2 EH	27.057	32.194	C	0.144	0.318	1.718	4.823	0.974	2.9
	101	ROHN 2 EH	27.057	32.194	C	0.144	0.318	1.718	4.823	0.974	2.9
	102	ROHN 2 EH	27.057	32.194	В	0.144	0.318	1.718	4.823	0.974	2.9
	103	ROHN 2 EH	27.057	32.194	В	0.144	0.318	1.718	4.823	0.974	2.9
	104	ROHN 2 EH ROHN 2 EH	27.057	32.194	A	0.144	0.318	1.718	4.823	0.974	2.9
	105	ROHN 2 EH	27.057	32.194	A	0.144	0.318	1.718	4.823	0.974	2.9
					A B		Sum:	11.725	26.645	5.764	16.1
					č			11.725	26.645 26.645	5.764 5.764	16.11
T5	109	ROHN 5 EH (5.5 OD	62 182	46.86	č	0.139	0.308	3.061	5.442	1.291	16.11 3.2
126.67-120.00	10,500	x 0.375)				200000	200600018				
		ROHN 5 EH (5.5 OD x 0.375)		46.86	A	0.139	0.308	3.061	5.442	1.291	3.27
	110	ROHN 5 EH (5.5 OD x 0.375)	62.182	46.86	C	0.139	0.308	3.061	5.442	1.291	3.27
	110	ROHN 5 EH (5.5 OD x 0.375)	62.182	46.86	В	0.139	0.308	3.061	5.442	1.291	3.27
	111	ROHN 5 EH (5.5 OD	62.182	46.86	В	0.139	0.308	3.061	5.442	1.291	3.27
	111	x 0.375) ROHN 5 EH (5.5 OD	62.182	46.86	A	0.139	0.308	3.061	5.442	1.291	3.27
	112	x 0.375) ROHN 2 STD	26.851	31.884	С	0.139	0.308	2.304	6.453	1.305	3.88
	113		26.851	31.884	В	0.139	0.308	2.304	6.453	1.305	3.88
	114		26.851	31.884	A	0.139	0.308	2.304	6.453	1.305	3.88
	115		26.851	31.884	C	0.139	0.308	1.763	4.940	0.999	2.97
	116			31.884	C	0.139	0.308	1.763	4.940	0.999	2.97
	117			31.884	В	0.139	0.308	1.763	4.940	0.999	2.97
- 1	118 119			31.884	В	0.139	0.308	1.763	4.940	0.999	2.97
	120		26.851 26.851	31.884	A	0.139	0.308	1.763	4.940	0.999	2.97
	120	NOIM 2 AAS	20.031	31.004	A A	0.139	0.308 Sum:	1.763 11.953	4.940	0.999	2.97
					B		ouin:	11.953	27.218	5.886	16.36
					c		- 1	11.953	27.218 27.218	5.886 5.886	16.36 16.36
Т6	124	ROHN 6 EHS	74 004	51.395	č	0.133	0.265	11.065	18.129	4.542	10.67

AECOM

7	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	26 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
ſ	Client	Designed by
	Sprint - JPW-001	MCD

Section	Elem.	Size	C	C	F	e	e	A_r	A_r	A_rR_r	A_rR_r
Elevation	Num.			w/Ice	а		w/Ice	/	w/Ice	11/10/	w/Ice
a					c			n?		?	-1
ft 120.00-100.00					е			ft²	ft²	ft²	ft²
120.00 100.00	124	ROHN 6 EHS	74.004	51.395	A	0.133	0.265	11.065	18.129	4.542	10.67
	125	ROHN 6 EHS	74.004	51.395	С	0.133	0.265	11.065	18.129	4.542	10.67
	125	ROHN 6 EHS	74.004	51.395	В	0.133	0.265	11.065	18.129	4.542	10.67
	126	ROHN 6 EHS	74.004	51.395	В	0.133	0.265	11.065	18.129	4.542	10.67
	126 127	ROHN 6 EHS ROHN 2 STD	74.004 26.53	51.395 31.272	A C	0.133	0.265	11.065	18.129	4.542	10.67
	128	ROHN 2.5 XXS	32.115	33.639	C	0.133	0.265 0.265	2.645 2.889	7.356 7.139	1.497 1.634	4.33 4.20
	129	ROHN 2.5 XXS	32.115	33.639	Č	0.133	0.265	2.889	7.139	1.634	4.20
	130	ROHN 2 STD	26.53	31.272	В	0.133	0.265	2.645	7.356	1.497	4.33
	131	ROHN 2.5 XXS	32.115	33.639	В	0.133	0.265	2.889	7.139	1.634	4.20
	132	ROHN 2.5 XXS	32.115	33.639	В	0.133	0.265	2,889	7.139	1.634	4.204
	133 134	ROHN 2 STD ROHN 2.5 XXS	26.53 32.115	31.272 33.639	A	0.133	0.265	2.645	7.356	1.497	4.33
	135	ROHN 2.5 XXS	32.115	33.639	A A	0.133 0.133	0.265	2.889 2.889	7.139 7.139	1.634 1.634	4.204 4.204
	139	ROHN 2 STD	26.53	31.272	c	0.133	0.265	2.441	6.788	1.382	3.99
	140	ROHN 2.5 XXS	32.115	33.639	C	0.133	0.265	2.804	6.930	1.586	4.080
	141	ROHN 2.5 XXS	32.115	33.639	C	0.133	0.265	2.804	6.930	1.586	4.080
	142	ROHN 2 STD	26.53	31.272	В	0.133	0.265	2.441	6.788	1.382	3.997
	143	ROHN 2.5 XXS ROHN 2.5 XXS	32.115 32.115	33.639 33.639	В	0.133	0.265	2.804	6.930	1.586	4.080
	144 145	ROHN 2.5 AAS	26.53	31.272	B A	0.133 0.133	0.265	2.804 2.441	6.930 6.788	1.586 1.382	4.080 3.997
	146	ROHN 2.5 XXS	32.115	33.639	A	0.133	0.265	2.804	6.930	1.586	4.080
1	147	ROHN 2.5 XXS	32.115	33.639	Α	0.133	0.265	2.804	6.930	1.586	4.080
					Α		Sum:	38.602	78.541	18.401	46,245
					В			38.602	78.541	18.401	46.245
F7 100.00-90.00	151	ROHN 6 EH	72.871	50.321	C C	0.121	0.262	38.602	78.541	18.401	46.245
17 100.00-90.00	151	ROHN 6 EH	72.871	50.321	Ă	0.131	0.252	5.537 5.537	9.020 9.020	2.265 2.265	5.282 5.282
	152	ROHN 6 EH	72.871	50.321	Ĉ	0.131	0.252	5.537	9.020	2.265	5.282
	152	ROHN 6 EH	72.871	50.321	В	0.131	0.252	5.537	9.020	2.265	5.282
	153	ROHN 6 EH	72.871	50.321	В	0.131	0.252	5.537	9.020	2.265	5.282
	153	ROHN 6 EH	72.871	50.321	A	0.131	0.252	5.537	9.020	2.265	5.282
	154 155	ROHN 2 STD ROHN 3 STD	26.123 38.498	30.506 35.751	C	0.131	0.252	2.868	7.901	1.623	4.627
	156	ROHN 3 STD	38.498	35.751	C C	0.131	0.252	3.643 3.643	7.981 7.981	1.945 1.945	4.674 4.674
	157	ROHN 2 STD	26.123	30.506	$\tilde{\mathbf{B}}$	0.131	0.252	2.868	7.901	1.623	4.627
	158	ROHN 3 STD	38.498	35.751	В	0.131	0.252	3.643	7.981	1.945	4.674
	159	ROHN 3 STD	38.498	35.751	В	0.131	0.252	3.643	7.981	1.945	4.674
	160	ROHN 2 STD	26.123	30.506	A	0.131	0.252	2.868	7.901	1.623	4.627
	161	ROHN 3 STD	38.498	35.751	A	0.131	0.252	3.643	7.981	1.945	4.674
	162	ROHN 3 STD	38.498	35.751	A A	0.131	0.252 Sum:	3.643 21.227	7.981 41.903	1.945 10.043	4.674 24.538
					B		Sum.	21.227	41.903	10.043	24.538
	1				c			21.227	41,903	10.043	24.538
T8 90.00-80.00	166	ROHN 6 EH	72.022	49.523	C	0.124	0.24	5.537	8.982	2.247	5.232
	166	ROHN 6 EH	72.022	49.523	A	0.124	0.24	5.537	8.982	2.247	5.232
	167	ROHN 6 EH	72.022	49.523	C	0.124	0.24	5.537	8.982	2.247	5.232
	167 168	ROHN 6 EH ROHN 6 EH	72.022 72.022	49.523 49.523	B B	0.124 0.124	0.24	5.537	8.982	2.247	5.232
	168	ROHN 6 EH	72.022	49.523	A	0.124	0.24	5.537 5.537	8.982 8.982	2.247 2.247	5.232 5.232
	169	ROHN 2 STD	25.819	29.939	c	0.124	0.24	3.129	8.559	1.769	4.986
	170	ROHN 2 STD	25.819	29.939	В	0.124	0.24	3.129	8.559	1.769	4.986
	171	ROHN 2 STD	25.819	29.939	A	0.124	0.24	3.129	8.559	1.769	4.986
	172	ROHN 3 STD	38.05	35.123	C	0.124	0.24	3.773	8.216	2.019	4.786
	173	ROHN 3 STD	38.05	35.123	C	0.124	0.24	3.773	8.216	2.019	4.786
	174 175	ROHN 3 STD ROHN 3 STD	38.05 38.05	35.123 35.123	B B	0.124	0.24	3.773 3.773	8.216	2.019	4.786
	176	ROHN 3 STD	38.05	35.123	A	0.124	0.24	3.773	8.216 8.216	2.019 2.019	4.786 4.786
	177	ROHN 3 STD		35.123	A	0.124	0.24	3.773	8.216	2.019	4.786

AECOM

Ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	27 of 83
	Project	Date
Ì	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Section	Elem.	Size	C	C	F	e	e	A_r	A_r	A,R,	A_rR_r
Elevation	Num.			w/Ice	a		w/Ice		w/Ice		w/Ice
					c			n2	.c2	c2	
ft			 		e	-		ft ² 21.747	ft ²	ft²	ft²
				1	A		Sum:		42.954	10.301	25.02
					В			21.747	42.954	10.301	25.02
TO 90 00 60 00	101	DOING BUG (0.75	02.2	67.767	C	0.136	0.040	21.747	42.954	10.301	25.02
T9 80.00-60.00	181	ROHN 8 EHS (8.75 OD x 0.375(t))	93.2	57.757	C	0.136	0.243	14.621	21.377	6.019	12.46
	101	ROHN 8 EHS (8.75	02.2	57.757		0.126	0.242	14 (2)	21.255	6010	10.4
	101	OD x 0.375(t)	93.2	57.757	A	0.136	0.243	14.621	21.377	6.019	12.46
	100	ROHN 8 EHS (8.75	02.2	57.757	С	0.124	0.042	14 (01	01.000		10074
	102	,	93.2	31.131		0.136	0.243	14.621	21.377	6.019	12.46
	192	OD x 0.375(t)) ROHN 8 EHS (8.75	93.2	57.757	В	0.136	0.243	14.621	21.377	6.019	10.4
	102	OD x 0.375(t)	93.2	31.131	ь	0.130	0.243	14.021	21.377	6.019	12.4
	193	ROHN 8 EHS (8.75	93.2	57.757	В	0.136	0.243	14.621	21.377	6.019	10.4
	103	OD x $0.375(t)$	93.2	31.131	ь	0.130	0.243	14.021	21.377	6.019	12.4
	183	ROHN 8 EHS (8.75	93.2	57.757	Α	0.136	0.243	14.621	21.377	6.019	12.4
	105	OD x 0.375(t))	75.2	37.737	А	0.130	0.243	14.021	21.377	0.019	12.40
	184		30.623	31.233	С	0.136	0.243	4.360	10.491	2.469	6.1
	185	ROHN 3 STD	37.28	34.054	C	0.136	0.243	3.995	8.609	2.160	5.0
	186	ROHN 3 STD	37.28	34.054	C	0.136	0.243	3.995	8.609	2.160	5.0
	187	ROHN 2.5 STD	30.623	31.233	В	0.136	0.243	4.360	10.491	2.469	6.1
	188	ROHN 3 STD	37.28	34.054	В	0.136	0.243	3.995	8.609	2.160	5.0
	189	ROHN 3 STD	37.28	34.054	В	0.136	0.243	3.995	8.609	2.160	5.0
	190	ROHN 2.5 STD	30.623	31.233	A	0.136	0.243	4.360	10.491	2.469	6.1
	191	ROHN 3 STD	37.28	34.054	A	0.136	0.243	3.995	8.609	2.160	5.0
	192	ROHN 3 STD	37.28	34.054	A	0.136	0.243	3.995	8.609	2.160	5.0
- 1	196	ROHN 2.5 STD	30.623	31.233	c	0.136	0.243	4.103	9.872	2.323	5.7
	197	ROHN 3 STD	37.28	34.054	č	0.136	0.243	3.862	8.324	2.089	4.8
- 1	198	ROHN 3 STD	37.28	34.054	Č	0.136	0.243	3.862	8.324	2.089	4.8
- 1	199	ROHN 2.5 STD	30.623	31.233	В	0.136	0.243	4.103	9.872	2.323	5.75
- 1	200	ROHN 3 STD	37.28	34.054	В	0.136	0.243	3.862	8.324	2.089	4.8
I	201	ROHN 3 STD	37.28	34.054	В	0.136	0.243	3.862	8.324	2.089	4.8
	202	ROHN 2.5 STD	30.623	31.233	Ā	0.136	0.243	4.103	9.872	2.323	5.75
- 1	203	ROHN 3 STD	37.28	34.054	A	0.136	0.243	3.862	8.324	2.089	4.85
	204	ROHN 3 STD	37.28	34.054	A	0.136	0.243	3.862	8.324	2.089	4.8
		HOIM DOID	571 2 0	5 1.05 1	Â	0,1200	Sum:	53.420	96.983	25.327	56.50
					В		Juni.	53.420	96.983	25.327	56.56
					č			53.420	96.983	25.327	56.56
10 60.00-40.00	208	ROHN 8 EHS (8.75	89.956	55.164	c l	0.131	0.229	14.621	21.153	5.984	12.27
10 00100 10100		OD x $0.375(t)$	05.550	55.10	Ĭ	0.151	0.22	14.021	21.133	5.764	14,21
	208	ROHN 8 EHS (8.75	89.956	55.164	A	0.131	0.229	14.621	21.153	5.984	12.27
	200	OD x $0.375(t)$	05.550	33.701	٠, ا	0.131	0.225	14.021	21.133	5.564	12.2
	209	ROHN 8 EHS (8.75	89.956	55.164	c	0.131	0.229	14.621	21,153	5.984	12.27
		OD x 0.375(t))		55.10	~	0.10.4	0.22	11.021	21,100	5.564	12,27
	209	ROHN 8 EHS (8.75	89.956	55.164	в	0.131	0.229	14.621	21.153	5.984	12.27
		OD x 0.375(t))	051500	55,10 .	~		.0.227	1	21.155	3.304	14.27
	210	ROHN 8 EHS (8.75	89.956	55.164	в	0.131	0.229	14.621	21.153	5.984	12.27
		OD x 0.375(t))	07.750	55.101	۱ ۲	0.151	0.222	14.021	21.133	3.564	12,2
	210	ROHN 8 EHS (8.75	89.956	55.164	A	0.131	0.229	14.621	21.153	5.984	12.27
	2.0	OD x $0.375(t)$	07.750	55.101	·`	0.13	0.223	13.041	21.133	3.204	12.21
	211	ROHN 2.5 STD	29.557	29.563	$c \mid$	0.131	0.229	4.959	11.701	2.806	6.78
	212	P3.5x.226	41.123	34.465	c	0.131	0.229	4.879	9.647	2.543	5.59
	213	P3.5x.226	41.123	34.465	č	0.131	0.229	4.879	9.647	2.543	5.59
	214	ROHN 2.5 STD	29.557	29.563	B	0.131	0.229	4.959	11.701	2.806	6.78
	215	P3.5x.226	41.123	34.465	В	0.131	0.229	4.879	9.647	2.543	5.59
	216	P3.5x.226	41.123	34.465	В	0.131	0.229	4.879	9.647	2.543	5.59
	217	ROHN 2.5 STD	29.557	29.563	A	0.131	0.229	4.959	11.701	2.806	6.78
	218	P3.5x.226	41.123	34.465		0.131	0.229	4.939	9.647		5.59
	219	P3.5x.226	41.123		A	17.5	0.229	4.879	9.647	2.543	
	223	ROHN 2.5 STD	29.557	34.465 29.563	A C	0.131	0.229	4.659	10.995	2.543	5.59
	224		41.123		c	1.00	0.229			2.637	6.37
	225	P3.5x.226 P3.5x.226	41.123		c	0.131	0.229	4.720	9.334	2.460	5.41
	440	FJ.JX.440	+1,123	J4.403	C I	0.131	0.229	4.720	9.334	2.460	5.41

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	28 of 83
ı	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Elevation ft	Num. 226 227			w/Ice	а		w/Ice		w/Ice		w/Ice
ft	227		1								
Ji	227		1		C			62	0.7	6.2	a 2
	227	ROHN 2.5 STD	29.557	20.562	e	0.121	0.000	ft²	ft²	ft^2	ft²
			41.123	29.563 34.465	B B	0.131	0.229	4.659	10.995	2.637	6.37
	228		41.123	34.465	B	0.131	0.229 0.229	4.720 4.720	9.334	2.460	5.4
	229		29.557	29.563	A	0.131	0.229	4.659	9.334 10.995	2.460 2.637	5.4 6.3
	230		41.123	34.465	A	0.131	0.229	4.720	9.334	2.460	5.4
	231	P3.5x.226	41.123	34.465	A	0.131	0.229	4.720	9.334	2.460	5.4
		1 3.5%.220	111123	3 1.103	A	0.131	Sum:	58.059	102.963	27.419	59.7
			1		B		Guin.	58.059	102.963	27.419	59.7
					C	1 1		58.059	102.963	27.419	59.7.
Γ11 40.00-30.00	235	ROHN 8 EHS (8.75 OD x 0.375(t))	86.642	52.556	č	0.125	0.216	7.311	10.462	2.970	6.0
	235	ROHN 8 EHS (8.75 OD x 0.375(t))	86.642	52.556	A	0.125	0.216	7.311	10.462	2.970	6.0
	236	ROHN 8 EHS (8.75 OD x 0.375(t))	86.642	52.556	С	0.125	0.216	7.311	10.462	2.970	6.0
	236	ROHN 8 EHS (8.75 OD x 0.375(t))	86.642	52.556	В	0.125	0.216	7.311	10.462	2.970	6.0
	237	ROHN 8 EHS (8.75 OD x 0.375(t))	86.642	52.556	В	0.125	0.216	7.311	10.462	2.970	6.0
	237	ROHN 8 EHS (8.75 OD x 0.375(t))	86.642	52.556	A	0.125	0.216	7.311	10.462	2.970	6.04
	238	ROHN 2.5 STD	28.468	27.899	C	0.125	0.216	5.258	12.158	2.973	7.02
	239	P3.5x.226	39.608	32.62	C	0.125	0.216	5.041	9.794	2.659	5.6
	240	P3.5x.226	39.608	32.62	C	0.125	0.216	5.041	9.794	2.659	5.6
1	241	ROHN 2.5 STD	28.468	27.899	В	0.125	0.216	5.258	12.158	2.973	7.0
	242	P3.5x.226	39.608	32.62	В	0.125	0.216	5.041	9.794	2.659	5.6
- 1	243	P3.5x.226	39.608	32.62	В	0.125	0.216	5.041	9.794	2.659	5.6
	244	ROHN 2.5 STD	28.468	27.899	A	0.125	0.216	5.258	12.158	2.973	7.0
- 1	245	P3.5x.226	39.608	32.62	A	0.125	0.216	5.041	9.794	2.659	5.6
- 4	246	P3.5x.226	39.608	32.62	A	0.125	0.216	5.041	9.794	2.659	5.6
					A		Sum:	29.961	52.670	14.232	30.4
					В			29.961	52.670	14.232	30.4
12 30.00-20.00	250	ROHN 8 EHS (8.75	83.627	50.222	C	0.126	0.213	29.961 7.311	52.670 10.358	14.232 2.974	30.4
12 30.00-20.00	250	OD x 0.375(t))	65.027	30.222	ا ا	0.120	0.213	7.311	10.336	2.974	5.97
	250	ROHN 8 EHS (8.75 OD x 0.375(t))	83.627	50.222	A	0.126	0.213	7.311	10.358	2.974	5.97
	251	ROHN 8 EHS (8.75 OD x 0.375(t))	83.627	50.222	С	0.126	0.213	7.311	10.358	2.974	5.97
	251	ROHN 8 EHS (8.75 OD x 0.375(t))	83.627	50.222	В	0.126	0.213	7.311	10.358	2.974	5.97
	252	ROHN 8 EHS (8.75 OD x 0.375(t))	83.627	50.222	В	0.126	0.213	7.311	10.358	2.974	5.97
	252	ROHN 8 EHS (8.75 OD x 0.375(t))	83.627	50.222	A	0.126	0.213	7.311	10.358	2.974	5.97
	253	ROHN 3 STD	33.451	28.954	C	0.126	0.213	6.766	13.817	3.778	7.93
	254	ROHN 3 STD	33.451	28.954	В	0.126	0.213	6.766	13.817	3.778	7.97
	255	ROHN 3 STD	33.451	28.954	A	0.126	0.213	6.766	13.817	3.778	7.9
	256	P3.5x.226	38.229	30.98	C	0.126	0.213	5.205	9.951	2.783	5.74
	257	P3.5x.226	38.229	30.98	C	0.126	0.213	5.205	9.951	2.783	5.74
	258	P3.5x.226	38.229	30.98	В	0.126	0.213	5.205	9.951	2.783	5.74
	259	P3.5x.226	38.229	30.98	В	0.126	0.213	5.205	9.951	2.783	5.74
	260	P3.5x.226	38.229	30.98	A	0.126	0.213	5.205	9.951	2.783	5.74
	261	P3.5x.226	38.229	30.98	A	0.126	0.213	5.205	9.951	2.783	5.74
					A		Sum:	31.798	54.436	15.291	31.40
					B			31.798	54.436	15.291	31.40
T13 20.00-0.00	265	DUDN 6 EU	70 140	45 017	C	0.102	0.170	31.798	54.436	15.291	31.40
113 20.00-0.00	265	ROHN 8 EH ROHN 8 EH		45.917 45.917	C	0.107	0.179	14.412	19.973	5.738	11,40
	266	ROHN 8 EH	78.168		A C	0.107	0.179 0.179	14.412 14.412	19.973 19.973	5.738 5.738	11.40 11.40

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ì	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	29 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Section	Elem.	Size	C	C	F	e	e	A_r	A_r	A_rR_r	A_rR_r
Elevation	Num.			w/Ice	a		w/Ice		w/Ice		w/Ice
_				l	С						
ft					е			ft²	ft²	ft²	ft²_
1	266		78.168	45.917	В	0.107	0.179	14.412	19.973	5.738	11.408
	267	ROHN 8 EH	78.168	45.917	В	0.107	0.179	14.412	19.973	5.738	11.408
	267	ROHN 8 EH	78.168	45.917	A	0.107	0.179	14.412	19.973	5.738	11.408
	268		36.252	28.15	C	0.107	0.179	8.149	14.929	4.421	8.527
	269		36.252	28.15	C	0.107	0.179	7.900	14.473	4.285	8.267
	270	ROHN 1.5 STD	17.22	20.083	C	0.107	0.179	0.940	2.586	0.531	1.477
	271	ROHN 1.5 SCH XS	17.22	20.083	C	0.107	0.179	1.704	4.689	0.962	2.678
		(Extra Strong)				no inverse					J. J. San San J
	272		36.252	28.15	C	0.107	0.179	7.900	14.473	4.285	8.267
	273		17.22	20.083	C	0.107	0.179	0.940	2.586	0.531	1,477
	274	ROHN 1.5 SCH XS	17.22	20.083	C	0.107	0.179	1.704	4.689	0.962	2.678
	22	(Extra Strong)			11						
	275	P3.5x.226	36.252	28.15	В	0.107	0.179	8.149	14.929	4.421	8.527
	276		36.252	28.15	В	0.107	0.179	7.900	14.473	4.285	8.267
	277	ROHN 1.5 STD	17.22	20.083	В	0.107	0.179	0.940	2.586	0.531	1.477
	278		17.22	20.083	В	0.107	0.179	1.704	4.689	0.962	2.678
	-	(Extra Strong)									
	279		36.252	28.15	В	0.107	0.179	7.900	14.473	4.285	8.267
	280	ROHN 1.5 STD	17.22	20.083	В	0.107	0.179	0.940	2.586	0.531	1.477
	281	ROHN 1.5 SCH XS	17.22	20.083	В	0.107	0.179	1.704	4.689	0.962	2.678
	1927210	(Extra Strong)				PS - V100004	2900				occur.
li l	284	P3.5x.226	36.252	28.15	A	0.107	0.179	8.149	14.929	4.421	8.527
	285	P3.5x.226	36.252	28.15	A	0.107	0.179	7.900	14.473	4.285	8.267
	286	ROHN 1.5 STD	17.22	20.083	A	0.107	0.179	0.940	2.586	0.531	1,477
1	287	ROHN 1.5 SCH XS	17.22	20.083	Α	0.107	0.179	1.704	4.689	0.962	2.678
l 1	7272/27	(Extra Strong)				I 0889	2000	33500			
	288	P3.5x.226	36.252	28.15	Α	0.107	0.179	7.900	14.473	4.285	8.267
	289	ROHN 1.5 STD	17.22	20.083	Α	0.107	0.179	0.940	2.586	0.531	1.477
	290	ROHN 1.5 SCH XS	17.22	20.083	Α	0.107	0.179	1.704	4.689	0.962	2.678
		(Extra Strong)									1-1/21/10
				~	A		Sum:	58.062	98.372	27.453	56.187
					В			58.062	98.372	27.453	56.187
1	- 1				C			58.062	98.372	27.453	56.187

222-G Section Verification Tables - No Ice

Sec		Zwind	Z _{ice}	Kz	Kh	Kzt	t_z	q_z	F	e	A_rR_r
Eleve	ation)						а		
1 ,	s.								c		- 1
\perp J	t	Jt	Jt				in	psf	е		ft ²
T1 18	0.00-160.00	170.00		1.415	1	1		43	Α	0.139	13.494
					_				В	0.139	13.494
l									C	0.139	13.494
T2 16	0.00-140.00	150.00		1.378	1	1		42	A	0.144	14.923
100									В	0.144	14.923
			(C	0.144	14.923
T3 14	0.00-133.33	136.67		1.352	1	1		41	Α	0.15	5.652
									В	0.15	5.652
					200				C	0.15	5.652
T4 13	3.33-126.67	130.00		1.337	1	1		40	Α	0.144	5.764
1									В	0.144	5.764
					(94)	- 23			C	0.144	5.764
T5 12	6.67-120.00	123.33		1.323	1	1		40	Α	0.139	5.886

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	30 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Section Elevation	Zwind	z_{ice}	Kz	K _h	Kzt	t_z	q_z	F	e	A_rR_r
Dievation								a		
l ft l	ft	ft		0		in	psf	c e		ft²
				à			Poj	В	0.139	5.886
1 1			1 1					Č	0.139	5.886
T6 120.00-100.00	110.00		1.291	1	1		39	Ā	0.133	18.401
			1	-	•] 37	В	0.133	18.401
1	1							Č	0.133	18.401
T7 100.00-90.00	95,00		1,252	1	1		38	Ā	0.131	10.043
				_	-		55	В	0.131	10.043
l l								Č	0.131	10.043
T8 90.00-80.00	85.00		1.223	1	1		37	Ā	0.124	10.301
								В	0.124	10.301
ľ	ľ		1 1					C	0.124	10.301
T9 80.00-60.00	70.00		1.174	1	1		36	Α	0.136	25.327
			1 1					В	0.136	25.327
								C	0.136	25.327
T10 60.00-40.00	50.00		1.094	1	1		33	Α	0.131	27.419
								В	0.131	27.419
								C	0.131	27.419
T11 40.00-30.00	35.00		1.015	1	1		31	Α	0.125	14.232
			1 1					В	0.125	14.232
1			1 1					C	0.125	14.232
T12 30.00-20.00	25.00		0.945	1	1		29	A	0.126	15.291
1			1 1					В	0.126	15.291
								C	0.126	15.291
T13 20.00-0.00	10.00		0,85	1	1		26	Α	0.107	32.093
1 [-								В	0.107	30.054
								C	0.107	28.015

222-G Section Verification Tables - Ice

Section	Z_{wind}	Z _{ice}	Kz	K _h	Kzt	tz	q_z	F	e	A_rR_r
Elevation								a		
_								с		
ft	ft	ft				in	psf	e		ft²
T1 180.00-160.00	170.00	170.00	1.415	1	1	2.2090	8	Α	0.354	40.456
								В	0.354	40.456
				540	127			C	0.354	40.456
T2 160.00-140.00	150.00	150.00	1.378	1	1	2.1815	7	A	0.34	43.287
1								В	0.34	43.287
1								C	0.34	43.287
T3 140.00-133.33	136.67	136.67	1.352	1	1	2.1613	7	Α	0.33	15.895
10								В	0.33	15.895
								C	0.33	15.895
T4 133.33-126.67	130.00	130.00	1.337	1	1	2.1505	7	Α	0.318	16.113
i i		1						В	0.318	16.113
			- 1		_			C	0.318	16.113
T5 126.67-120.00	123.33	123.33	1.323	1	1	2.1392	7	Α	0.308	16.369
								В	0.308	16.369
				94	50			C	0.308	16.369
T6 120.00-100.00	110.00	110.00	1.291	1	1	2.1149	7	Α	0.265	46.245
	1							В	0.265	46.245
	- 1							C	0.265	46.245
T7 100.00-90.00	95.00	95.00	1.252	1	1	2.0841	7	A	0.252	24.538
	- 1							В	0.252	24.538
	- 1							C	0.252	24.538
T8 90.00-80.00	85.00	85.00	1.223	1	1	2.0611	7	A	0.24	25.023
							- 1	В	0.24	25.023
1	1		1			1	- 1	C	0.24	25.023

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page			
Sprint/Clearwire Upgrades - MODification Analysis	31 of 83			
Project	Date			
Westport, Connecticut	15:00:07 05/30/17			
Sprint - JPW-001	Designed by MCD			

Section Elevation	Z_{wind}	Z _{ice}	K_z	Kh	Kzt	t _z	q_z	F	e	A_rR_r
Elevation								а		
۵						١.		c		62
<u>Ji</u>	Jt	ft				in	psf	е		Ji
T9 80.00-60.00	70.00	70,00	1.174	1	1	2.0214	6	Α	0.243	56.561
								В	0.243	56.561
								C	0.243	56.561
T10 60.00-40.00	50.00	50,00	1.094	1	1	1.9546	6	Α	0.229	59.734
								В	0.229	59.734
								С	0.229	59.734
T11 40.00-30.00	35.00	35.00	1.015	1	1	1,8861	6	Α	0.216	30.418
								В	0.216	30.418
								С	0.216	30.418
T12 30.00-20.00	25.00	25,00	0.945	1	1	1.8237	5	Α	0.213	31.400
								В	0.213	31,400
	1							С	0.213	31.400
T13 20.00-0.00	10.00	10,00	0.85	1	1	1.6640	5	Α	0.179	66.654
								В	0.179	62.204
(С	0.179	57.753

222-G Section Verification Tables - Service

Section	Zwind	Zice	K _z	Kh	Kzt	t _z	q_z	F	e	A_rR_r
Elevation							'	а		
							l 1	с		
ft	ft	ft				in	psf	e		ft²
T1 180.00-160.00	170.00		1.415	1	1		11	A	0.139	13.494
								В	0.139	13.494
1								C	0.139	13.494
T2 160.00-140.00	150.00	l l	1.378	1	1		11	A	0.144	14.923
1								В	0.144	14.923
				-				C	0.144	14.923
T3 140.00-133.33	136.67	1	1.352	1	1		11	Α	0.15	5.652
								В	0.15	5.652
								C	0.15	5.652
T4 133.33-126.67	130.00		1.337	1	1		10	Α	0.144	5.764
1								В	0.144	5.764
								C	0.144	5.764
T5 126.67-120.00	123.33		1.323	1	1		10	Α	0.139	5.886
								В	0.139	5.886
					er.			C	0.139	5.886
T6 120.00-100.00	110.00		1.291	1	1		10	Α	0.133	18.401
1								В	0.133	18.401
				2/	15			С	0.133	18.401
T7 100.00-90.00	95.00		1.252	1.	1		10	Α	0.131	10.043
1					. II			В	0.131	10.043
I								C	0.131	10.043
T8 90.00-80.00	85.00		1.223	1	1		10	Α	0.124	10.301
1				-				В	0.124	10.301
					8			C	0.124	10.301
T9 80.00-60.00	70.00		1.174	1	1		9	A	0.136	25.327
								В	0.136	25.327
				Degit I	150			C	0.136	25.327
T10 60.00-40.00	50.00		1.094	1	1		9	Α	0.131	27.419
								В	0.131	27.419
				90	con t			C	0.131	27.419
T11 40.00-30.00	35.00		1.015	1	1		8	A	0.125	14.232
								В	0.125	14.232
								C	0.125	14.232
T12 30.00-20.00	25.00		0.945	1	1		7	A	0.126	15.291
I I	ļ Į		Į,	ļ	ļ		, I	В	0.126	15.291

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	32 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Sprint - JPW-001	Designed by
3 Spriit - 3F W-00 I	MCD

Section	Z_{wind}	Z _{ice}	K _z	K _h	Kzt	t_z	q_z	F	e	A_rR_r
Elevation				1				а		
						i, i		c		
ft	ft	ft				in	psf	e		ft ²
								C	0.126	15.291
T13 20.00-0.00	10.00		0.85	1	1		7	Α	0.107	32.093
								В	0.107	30.054
								C	0.107	28.015

Tower Pressures - No Ice

 $G_H = 0.850$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					a				%	In	Out
ı					c					Face	Face
ft	ft		psf	ft ²	e	ft ²	ft²	ft ²		ft²	ft²
T1	170.00	1.415	43	177.503	Α	0.000	24.699	11.667	47.24	33.340	0.000
180.00-160.00					В	0.000	24.699		47.24	0.000	0.000
1					С	0.000	24.699		47.24	0.000	0.000
T2	150.00	1.378	42	200.850	Α	0.000	28.825	15.027	52.13	107.160	0.000
160.00-140.00	1				В	0.000	28.825		52.13	0.000	0.000
					C	0.000	28.825		52.13	3.710	0.000
T3	136.67	1.352	41	76.767	Α	0.000	11.508	6.122	53.20	35.720	0.000
140.00-133.33					В	0.000	11.508		53.20	0.000	0.000
	1				C	0.000	11.508		53.20	4.947	0.000
T4	130.00	1.337	40	81.396	Α	0.000	11.725	6.122	52.22	35.720	0.000
133.33-126.67					В	0.000	11.725		52.22	14.852	0.000
					C	0.000	11.725		52.22	4.947	0.000
T5	123.33	1.323	40	86.025	Α	0.000	11.953	6.122	51.22	35.720	0.000
126.67-120.00					В	0.000	11.953		51.22	33.808	0.000
					C	0.000	11.953		51.22	4.947	0.000
T6	110.00	1.291	39	289.399	Α	0.000	38.602	22.130	57.33	108.420	0.000
120.00-100.00					В	0.000	38.602		57.33	119.597	0.000
					C	0.000	38.602		57.33	14.840	0.000
T7	95.00	1.252	38	162.540	A	0.000	21.227	11.074	52.17	54.840	0.000
100.00-90.00					В	0.000	21.227		52.17	59.799	0.000
					C	0.000	21.227		52.17	7.420	0.000
T8 90.00-80.00	85.00	1.223	37	175.715	Α	0.000	21.747	11.074	50.92	54.840	0.000
					В	0.000	21.747		50.92	59.799	0.000
					C	0.000	21.747		50.92	7.420	0.000
T9 80.00-60.00	70.00	1.174	36	393.152	Α	0.000	53.420	29.243	54.74	109.680	0.000
1					В	0.000	53.420		54.74	119.597	0.000
					C	0.000	53.420		54.74	14.840	0.000
T10	50.00	1.094	33	443.152	A	0.000	58.059	29.243	50.37	109.680	0.000
60.00-40.00			- 1		В	0.000	58.059		50.37	119.597	0.000
1			- 1		C	0.000	58.059		50.37	14.840	0.000
T11	35.00	1.015	31	240.326	A	0.000	29.961	14.621	48.80	54.840	0.000
40.00-30.00					В	0.000	29.961		48.80	59.799	0.000
[C	0.000	29.961		48.80	7.420	0.000
T12	25.00	0.945	29	252.826	A	0.000	31.798	14.621	45.98	54.840	0.000
30.00-20.00					В	0.000	31.798		45.98	59.799	0.000
					C	0.000	31.798		45.98	7.420	0.000
T13 20.00-0.00	10.00	0.85	26	542.943	Α	0.000	58.062	28.825	49.64	109.680	0.000
	- 1		- 1		В	0.000	58.062		49.64	119.597	0.000
					C	0.000	58.062		49.64	14.840	0.000

Tower Pressure - With Ice

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	33 of 83
1	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

$G_H = 0.850$

Section	z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			^~		Ü	а			1eg	%	In	Out
						c				, ,	Face	Face
ft	ft		psf	in	ft²	e	ft²	ft²	ft²		ft ²	ft ²
T1	170.00	1.415	8	2.2090	184.867	A	0.000	65.497	26.393	40.30	94.841	0.000
180.00-160.00	- 1					В	0.000	65.497		40.30	0.000	0.000
						C	0.000	65.497		40.30	0.000	0.000
T2	150.00	1.378	7	2.1815	208.132	Α	0.000	70.700	29.597	41.86	278.117	0.000
160.00-140.00	- 1					В	0.000	70.700		41.86	0.000	0.000
	0.000.000.000.00			*******		C	0.000	70.700		41.86	15.159	0.000
T3	136.67	1.352	7	2.1613	79.172	Α	0.000	26.110	10.934	41.88	92.456	0.000
140.00-133.33						В	0.000	26.110		41.88	0.000	0.000
I		0.000				C	0.000	26.110		41.88	20.121	0.000
T4	130.00	1.337	7	2.1505	83.789	Α	0.000	26.645	10.910	40.94	92.323	0.000
133.33-126.67						В	0.000	26.645		40.94	37.292	0.000
1						C	0.000	26.645		40.94	20.073	0.000
T5	123.33	1.323	7	2.1392	88.405	Α	0.000	27.218	10.885	39.99	92.184	0.000
126.67-120.00						В	0.000	27.218		39.99	70.057	0.000
1			- 1			C	0.000	27.218		39.99	20.022	0.000
T6	110.00	1.291	7	2.1149	296.460	Α	0.000	78.541	36.259	46.17	285.421	0.000
120.00-100.00			1			В	0.000	78.541		46.17	239.961	0.000
						C	0.000	78.541		46.17	59.738	0.000
T7 100.00-90.00	95.00	1.252	7	2.0841	166.021	Α	0.000	41.903	18.041	43.05	146.918	0.000
1	1					В	0.000	41.903		43.05	119,271	0.000
l 1						С	0.000	41.903		43.05	29.662	0.000
T8 90.00-80.00	85.00	1.223	7	2.0611	179,158	A	0.000	42.954	17.964	41.82	146.411	0.000
	1				1220	В	0.000	42.954		41.82	118.740	0.000
						C	0.000	42.954		41.82	29.506	0.000
T9 80.00-60.00	70.00	1.174	6	2.0214	399,903	Α	0.000	96.983	42.754	44.08	291.080	0.000
		6.01		= 1 = = - [8]		В	0.000	96.983	12.75	44.08	235.654	0.000
						C	0.000	96.983		44.08	58.479	0.000
T10 60.00-40.00	50.00	1.094	6	1.9546	449.680	Ā	0.000	102.963	42.307	41.09	288.142	0.000
			1			В	0.000	102.963	12.507	41.09	232.574	0.000
			- 1			C	0.000	102.963	- 1	41.09	57.579	0.000
T11 40.00-30.00	35.00	1.015	6	1.8861	243,475	Ă	0.000	52.670	20.924	39.73	142.568	0.000
111 10100 50100	22.00	7,015		1.0001	2451475	В	0.000	52.670	20.924	39.73	114.711	0.000
						c	0.000	52.670	- 1	39.73	28.329	0.000
T12 30.00-20.00	25.00	0.945	5	1.8237	255.871	A	0.000	54.436	20.716	38.06	141.200	
112 30.00-20.00	22.00	3.543	ار	1.0237	233.071	B	0.000	54.436	20.710	38.06		0.000
						Č	0.000	54.436		38.06	113.275	0.000
T13 20.00-0.00	10.00	0.85	5	1.6640	548.500	A	0.000	98.372	39.947		27.911	0.000
113 20.00-0.00	10.00	0.63	3	1.0040	546.500	B	0.000		39.94/	40.61	275.410	0.000
						C	0.000	98.372		40.61	219.210	0.000
						U	0.000	98.372		40.61	53.684	0.000

Tower Pressure - Service

$G_H = \theta.85\theta$

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					c			1		Face	Face
ft	ft		psf	ft ²	e	ft ²	ft²	ft²		ft ²	ft²
T1	170.00	1.415	11	177.503	Α	0.000	24.699	11.667	47.24	33.340	0.000
180.00-160.00					В	0.000	24.699		47.24	0.000	0.000
					С	0.000	24.699		47.24	0.000	0.000
T2	150.00	1.378	11	200.850	Α	0.000	28.825	15.027	52.13	107.160	0.000

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	34 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Sprint - JPW-001	Designed by MCD

Section	z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	C_AA_A	$C_A A_A$
Elevation					a				%	In	Out
	_				C					Face	Face
ft	ft		psf	ft ²	e	ft ²	ft²	ft ²		ft²	ft ²
160.00-140.00					В	0.000	28.825		52.13	0.000	0.000
					C	0.000	28.825		52.13	3.710	0.000
T3	136.67	1.352	11	76.767	Α	0.000	11.508	6.122	53.20	35.720	0.000
140.00-133.33					В	0.000	11.508		53.20	0.000	0.000
					C	0.000	11.508		53.20	4.947	0.000
T4	130.00	1.337	10	81.396	A	0.000	11.725	6.122	52.22	35.720	0.000
133.33-126.67					В	0.000	11.725		52.22	14.852	0.000
					C	0.000	11.725		52.22	4.947	0.000
T5	123.33	1.323	10	86.025	A	0.000	11.953	6.122	51.22	35.720	0.000
126.67-120.00					В	0.000	11.953		51.22	33.808	0.000
					С	0.000	11.953		51.22	4.947	0.000
T6	110.00	1.291	10	289.399	Α	0.000	38.602	22.130	57.33	108.420	0.000
120.00-100.00					В	0.000	38.602		57.33	119.597	0.000
					C	0.000	38.602		57.33	14.840	0.000
T7	95.00	1.252	10	162.540	A	0.000	21.227	11.074	52.17	54.840	0.000
100.00-90.00					В	0.000	21.227	-	52.17	59.799	0.000
1					C	0.000	21.227		52.17	7.420	0.000
T8 90.00-80.00	85.00	1.223	10	175.715	A	0.000	21.747	11.074	50.92	54.840	0.000
					В	0.000	21.747		50.92	59.799	0.000
1					C	0.000	21.747		50.92	7.420	0.000
T9 80.00-60.00	70.00	1.174	9	393.152	A	0.000	53.420	29.243	54.74	109.680	0.000
					В	0.000	53.420		54.74	119.597	0.000
					C	0.000	53.420		54.74	14.840	0.000
T10	50.00	1.094	9	443.152	Α	0.000	58.059	29.243	50.37	109.680	0.000
60.00-40.00					В	0.000	58.059		50.37	119.597	0.000
					C	0.000	58.059		50.37	14.840	0.000
T11	35.00	1.015	8	240.326	A	0.000	29.961	14.621	48.80	54.840	0.000
40.00-30.00		1	- 1		В	0.000	29.961		48.80	59.799	0.000
			ı		C	0.000	29.961		48.80	7.420	0.000
T12	25.00	0.945	7	252.826	A	0.000	31.798	14.621	45.98	54.840	0.000
30.00-20.00		- 1			В	0.000	31.798		45.98	59.799	0.000
					C	0.000	31.798	1	45.98	7.420	0.000
T13 20.00-0.00	10.00	0.85	7	542.943	Α	0.000	58.062	28.825	49.64	109.680	0.000
					В	0.000	58.062	I	49.64	119.597	0.000
					С	0.000	58.062		49.64	14.840	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a						i i			Face
			c			psf						
ft	lb	lb	е						ft ²	lb	plf	
T1	127.00	1250.43	Α	0.139	2.812	43	1	1	13.494	2110.58	105.53	С
180.00-160.00			В	0.139	2.812		1	1	13.494			
			C	0.139	2.812		1	1	13.494			
T2	436.78	1495.62	A	0.144	2.796	42	1	1	14.923	3839.93	192.00	С
160.00-140.00			В	0.144	2.796		1	1	14.923			
			C	0.144	2.796		1	1	14.923			
T3	168.09	820.85	A	0.15	2.772	41	1	1	5.652	1393.85	209.08	С
140.00-133.33			В	0.15	2.772		1	1	5.652			
			C	0.15	2.772		1	1	5.652			
T4	227.27	837.12	Α	0.144	2.794	40	1	1	5.764	1700.96	255.14	C
133.33-126.67			В	0.144	2.794		1	1	5.764			
			C	0.144	2.794		1	1	5.764			
T5	306.59	1075.34	Α	0.139	2.813	40	1	1	5.886	2084.81	312.72	C
126.67-120.00			В	0.139	2.813		1	1	5.886			
Į į			C	0.139	2.813		1	1	5.886			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	35 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	lb	lb	е	L					ft ²	lb	plf -	
Т6	998.98	3821.31	Α	0.133	2.834	39	1	1	18.401	6575.44	328.77	C
120.00-100.00		ľ	В	0.133	2.834		1	1	18.401			
			C	0.133	2.834		1	1	18.401			
T7	500.99	1682.80	Α	0.131	2.844	38	1	1	10.043	3280.38	328.04	С
100.00-90.00			В	0.131	2.844		1	1	10.043			
			C	0.131	2.844		1	1	10.043			
T8	500.99	1722.73	Α	0.124	2.87	37	1	1	10.301	3236.06	323.61	C
90.00-80.00			В	0.124	2.87		1	1	10.301			
			C	0.124	2.87		1	1	10.301			
T9	1001.98	4133.20	Α	0.136	2.824	36	1	1	25.327	6587.29	329.36	C
80.00-60.00			В	0.136	2.824		1	1	25.327			
			C	0.136	2.824		1	1	25.327			
T10	1001.98	4731.59	Α	0.131	2.843	33	1	1	27.419	6317.31	315.87	C
60.00-40.00			В	0.131	2.843		1	1	27.419			
	1		C	0.131	2.843		1	1	27.419			
T11	500.99	2453.18	Α	0.125	2.867	31	1	1	14.232	2978.02	297.80	C
40.00-30.00			В	0.125	2.867		1	1	14.232			
			C	0.125	2.867	- 1	1	_1	14.232			
T12	500.99	2640.30	Α	0.126	2.863	29	1	1	15.291	2846.63	284.66	C
30.00-20.00			В	0.126	2.863	- 1	1	1	15.291			
			C	0.126	2.863		1	1	15.291			
T13	1001.98	5437.54	Α	0.107	2.936	26	1	1	32.093	5265.81	263.29	Α
20.00-0.00			В	0.107	2.936		1	1	30.054			
			C	0.107	2.936		1	1	28.015			
Sum Weight:	7274.62	32102.03						OTM	3918.56	48217.06		
									kip-ft			

Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf					2	l
ft	lb	lb	e						ft ²	lb	plf	
T1	127.00	1250.43	Α	0.139	2.812	43	0.825	1	13.494	2110.58	105.53	С
180.00-160.00			В	0.139	2.812		0.825	1	13.494			
			C	0.139	2.812		0.825	1	13.494			
T2	436.78	1495.62	A	0.144	2.796	42	0.825	1	14.923	3839.93	192.00	C
160.00-140.00			В	0.144	2.796		0.825	1	14.923	l l		
			C	0.144	2.796	G-	0.825	1	14.923			
T3	168.09	820.85	A	0.15	2.772	41	0.825	1	5.652	1393.85	209.08	С
140.00-133.33			В	0.15	2.772		0.825	1	5.652			
			C	0.15	2.772		0.825	1	5.652			
T4	227.27	837.12	Α	0.144	2.794	40	0.825	1	5.764	1700.96	255.14	С
133.33-126.67			В	0.144	2.794		0.825	1	5.764			
			C	0.144	2.794		0.825	1	5.764	:4		
T5	306.59	1075.34	A	0.139	2.813	40	0.825	1	5.886	2084.81	312.72	C
126.67-120.00	- 1		В	0.139	2.813		0.825	1	5.886			
	- 1		C	0.139	2.813		0.825	1	5.886			
T6	998.98	3821.31	Α	0.133	2.834	39	0.825	1	18.401	6575.44	328.77	С
120.00-100.00			В	0.133	2.834		0.825	1	18.401			
	- 1		C	0.133	2.834		0.825	1	18.401			
T7	500.99	1682.80	Α	0.131	2.844	38	0.825	1	10.043	3280.38	328.04	C
100.00-90.00	- 1		В	0.131	2.844		0.825	1	10.043			
1	- 1		C	0.131	2.844		0.825	1	10.043			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	36 of 83
j	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
Ì	Client	Designed by
	Sprint - JPW-001	MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			С			psf						
ft	lb	lb	e						ft²	lb	plf	
Т8	500.99	1722.73	A	0.124	2.87	37	0.825	1	10.301	3236.06	323.61	С
90.00-80.00			В	0.124	2.87		0.825	1	10.301			
			C	0.124	2.87		0.825	1	10.301			
T9	1001.98	4133.20	Α	0.136	2.824	36	0.825	1	25.327	6587.29	329.36	C
80.00-60.00			В	0.136	2.824		0.825	1	25.327			
			C	0.136	2.824		0.825	1	25.327			
T10	1001.98	4731.59	A	0.131	2.843	33	0.825	1	27.419	6317.31	315.87	C
60.00-40.00			В	0.131	2.843		0.825	1	27.419			
			C	0.131	2.843		0.825	1	27.419			
T11	500.99	2453.18	A	0.125	2.867	31	0.825	1	14.232	2978.02	297.80	C
40.00-30.00			В	0.125	2.867		0.825	1	14.232			
	***		C	0.125	2.867		0.825	1	14.232			
T12	500.99	2640.30	A	0.126	2.863	29	0.825	1	15.291	2846.63	284.66	C
30.00-20.00			В	0.126	2.863		0.825	1	15.291			
	1001.00		C	0.126	2.863		0.825	1	15.291			
T13	1001.98	5437.54	A	0.107	2.936	26	0.825	1	32.093	5265.81	263.29	Α
20.00-0.00			В	0.107	2.936		0.825	1	30.054			
G 377-i-1.	7274 (2)	22102.02	С	0.107	2.936		0.825	1	28.015	10015.05		
Sum Weight:	7274.62	32102.03						OTM	3918.56	48217.06		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a					1				Face
			c			psf						
ft	lb	lb	e						ft ²	lb	plf	
T1	127.00	1250.43	A	0.139	2.812	43	0.8	1	13.494	2110.58	105.53	С
180.00-160.00			В	0.139	2.812		0.8	1	13.494			1
			C	0.139	2.812		0.8	1	13.494			
T2	436.78	1495.62	Α	0.144	2.796	42	0.8	1	14.923	3839.93	192.00	C
160.00-140.00			В	0.144	2.796		0.8	1	14.923			
			C	0.144	2.796		0.8	1	14.923			
T3	168.09	820.85	Α	0.15	2.772	41	0.8	1	5.652	1393.85	209.08	C
140.00-133.33			В	0.15	2.772		0.8	1	5.652			
			C	0.15	2.772		0.8	1	5.652			
T4	227.27	837.12	A	0.144	2.794	40	0.8	1	5.764	1700.96	255.14	C
133.33-126.67			В	0.144	2.794		0.8	1	5.764			
			C	0.144	2.794		0.8	1	5.764			
T5	306.59	1075.34	A	0.139	2.813	40	0.8	1	5.886	2084.81	312.72	C
126.67-120.00			В	0.139	2.813		0.8	1	5.886			
			C	0.139	2.813		0.8	1	5.886			
T6	998.98	3821.31	A	0.133	2.834	39	0.8	1	18.401	6575.44	328.77	C
120.00-100.00			В	0.133	2.834		0.8	1	18.401			
			C	0.133	2.834		0.8	1	18.401			
T7	500.99	1682.80	Α	0.131	2.844	38	0.8	1	10.043	3280.38	328.04	C
100.00-90.00			В	0.131	2.844		0.8	1	10.043			
			C	0.131	2.844		0.8	1	10.043			
T8	500.99	1722.73	Α	0.124	2.87	37	0.8	1	10.301	3236.06	323.61	C
90.00-80.00			В	0.124	2.87		0.8	1	10.301			
			C	0.124	2.87		0.8	1	10.301			
T9	1001.98	4133.20	A	0.136	2.824	36	0.8	1	25.327	6587.29	329.36	C
80.00-60.00			В	0.136	2.824		0.8	1	25.327			
1			C	0.136	2.824		0.8	1	25.327			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	37 of 83
Ì	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c		1-6	psf						
ft	lb	lb	е						ft²	lb	plf	
T10	1001.98	4731.59	A	0.131	2.843	33	0.8	1	27.419	6317.31	315.87	С
60.00-40.00			В	0.131	2.843		0.8	1	27.419			
		Ų h	C	0.131	2.843		0.8	1	27.419			
T11	500.99	2453.18	Α	0.125	2.867	31	0.8	1	14.232	2978.02	297.80	С
40.00-30.00			В	0.125	2.867		0.8	1	14.232			
			C	0.125	2.867		0.8	1	14.232			
T12	500.99	2640.30	A	0.126	2.863	29	0.8	1	15.291	2846.63	284.66	C
30.00-20.00			В	0.126	2.863		0.8	1	15.291			
			C	0.126	2.863		0.8	1	15.291			
T13	1001.98	5437.54	A.	0.107	2.936	26	0.8	1	32.093	5265.81	263.29	A
20.00-0.00			В	0.107	2.936		0.8	1	30.054			
			C	0.107	2.936		0.8	1	28.015			
Sum Weight:	7274.62	32102.03						OTM	3918.56	48217.06		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	<u>lb</u>	lb	e						ft²	lb	plf	
T1	127.00	1250.43	A	0.139	2.812	43	0.85	1	13.494	2110.58	105.53	С
180.00-160.00			В	0.139	2.812		0.85	1	13.494			
1			C	0.139	2.812		0.85	1	13.494			
T2	436.78	1495.62	A	0.144	2.796	42	0.85	1	14.923	3839.93	192.00	C
160.00-140.00			В	0.144	2.796		0.85	1	14.923			
l l			C	0.144	2.796		0.85	1	14.923			
T3	168.09	820.85	A	0.15	2.772	41	0.85	1	5.652	1393.85	209.08	С
140.00-133.33			B	0.15	2.772		0.85	1	5.652			
			C	0.15	2.772		0.85	1	5.652			
T4	227.27	837.12	A	0.144	2.794	40	0.85	1	5.764	1700.96	255.14	C
133.33-126.67			В	0.144	2.794		0.85	1	5.764			
			C	0.144	2.794		0.85	1	5.764			
T5	306.59	1075.34	A	0.139	2.813	40	0.85	1	5.886	2084.81	312.72	C
126.67-120.00			В	0.139	2.813		0.85	1	5.886			
1	_		C	0.139	2.813		0.85	1	5.886			
T6	998.98	3821.31	A	0.133	2.834	39	0.85	1	18.401	6575.44	328.77	C
120.00-100.00	- 1		В	0.133	2.834		0.85	1	18.401			
	- 1		C	0.133	2.834		0.85	1	18.401			
T7	500.99	1682.80	Α	0.131	2.844	38	0.85	1	10.043	3280.38	328.04	С
100.00-90.00			В	0.131	2.844		0.85	1	10.043			-
	- 1		C	0.131	2.844		0.85	1	10.043			
T8	500.99	1722.73	A	0.124	2.87	37	0.85	1	10.301	3236.06	323.61	С
90.00-80.00	- 1		В	0.124	2.87		0.85	1	10.301			_
			C	0.124	2.87	1	0.85	1	10.301	- 1		
T9	1001.98	4133.20	A	0.136	2.824	36	0.85	1	25.327	6587.29	329.36	С
80.00-60.00			В	0.136	2.824		0.85	1	25.327		0-5155	
			cl	0.136	2.824		0.85	1	25.327			
T10	1001.98	4731.59	A	0.131	2.843	33	0.85	íl	27,419	6317.31	315.87	С
60.00-40.00			В	0.131	2.843		0.85	il	27.419		212.07	Ĭ
	- 1		c l	0.131	2.843		0.85	î l	27.419			
T11	500.99	2453.18	Ā	0.125	2.867	31	0.85	îl	14.232	2978.02	297.80	С
40.00-30.00			В	0.125	2.867		0.85	il	14.232	25,70.02	277.00	
	1		č	0.125	2.867		0.85	î	14.232			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

H	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	38 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	lb	<u>lb</u>	e						ft²	lb	plf	
T12	500.99	2640.30	Α	0.126	2.863	29	0.85	1	15.291	2846.63	284.66	С
30.00-20.00	1		В	0.126	2.863		0.85	1	15.291			
			C	0.126	2.863		0.85	1	15.291			
T13	1001.98	5437.54	Α	0.107	2.936	26	0.85	1	32.093	5265.81	263.29	Α
20.00-0.00			В	0.107	2.936		0.85	1	30.054			
1			C	0.107	2.936		0.85	1	28.015			
Sum Weight:	7274.62	32102.03						OTM	3918.56	48217.06		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			1 1				-		Face
			c			psf						
ft	lb	lb	e						ft ²	lb	plf	
T1	1830.45	5320.85	Α	0.354	2.162	8	1	1	40.456	944.64	47.23	С
180.00-160.00			В	0.354	2.162		1	1	40.456			
			C	0.354	2.162		1	1	40.456			
T2	5489.50	5862.20	A	0.34	2.196	7	1	1	43.287	1727.38	86.37	С
160.00-140.00			В	0.34	2.196		1	1	43.287			
			C	0.34	2.196		1	1	43.287			
T3	2028.59	2453.98	Α	0.33	2.22	7	1	1	15.895	642.68	96.40	C
140.00-133.33)	В	0.33	2.22		1	1	15.895			
			С	0.33	2.22		1	1	15.895			
T4	2703.68	2513.45	A	0.318	2.249	7	1	1	16.113	779.59	116.94	C
133.33-126.67			В	0.318	2.249		1	1	16.113			
=.1			C	0.318	2.249		1	1	16.113			
T5	3498.68	2793.33	A	0.308	2.275	7	1	1	16.369	896.68	134.50	С
126.67-120.00			В	0.308	2.275		1	1	16.369			
	B		C	0.308	2.275		1	1	16.369			
T6	11302.72	8604.65	A	0.265	2.393	7	1	1	46.245	2757.09	137.85	C
120.00-100.00			В	0.265	2.393		1	1	46.245			
			C	0.265	2.393		1	1	46.245	1		
T7	5650.58	4287.82	A	0.252	2.43	7	1	1	24.538	1372.93	137.29	C
100.00-90.00			В	0.252	2.43	1	1	1	24.538			
TT0			C	0.252	2.43		1	1	24.538			
T8	5596.05	4396.61	A	0.24	2.469	7	1	1	25.023	1349.19	134.92	C
90.00-80.00			В	0.24	2.469		1	1	25.023			
		4000044	C	0.24	2.469		1	1	25.023			- 1
T9	11005.85	10200.14	A	0.243	2.46	6	1	1	56.561	2661.64	133.08	C
80.00-60.00	9		В	0.243	2.46		1	1	56.561	1		
771.0	1000400	11070 46	C	0.243	2.46		1	1	56.561			
T10	10694.99	11278.45	A	0.229	2.502	6	1	1	59.734	2510.79	125.54	С
60.00-40.00			В	0.229	2.502		1	1	59.734			- 1
7711	£100.61	5741 70	C	0.229	2.502		1	1	59.734			- 1
T11 40.00-30.00	5190.61	5741.72	A	0.216	2.542	6	1	1	30.418	1166.84	116.68	С
40.00-30.00	1		В	0.216	2.542		1	1	30.418	1		
T12	5040.65	5002.07	C	0.216	2.542	اہا	1	1	30.418	4.54.5		
	5049.65	5993.87	A	0.213	2.554	5	1	1	31.400	1091.09	109,11	С
30.00-20.00			В	0.213	2.554		1	1	31.400			
T13	9395.28	10004.24	C	0.213	2.554		1	1	31.400			
20.00-0.00	9393.28	10884.34	A	0.179	2.666	5	1	1	66.654	1991.58	99.58	A
20.00-0.00			B C	0.179	2.666		1	1	62.204	1		
	1	1	U	0.179	2.666	1	E	1.	57.753	I	- 1	

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

ì	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	39 of 83
	Project	Date
ı	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf	1					
ft	lb	lb	е						ft^2	lb	plf	
Sum Weight:	79436.62	80331.41						OTM	1667.74	19892.12		
									kip-ft			

Tower Forces - With Ice - Wind 45 To Face

Section Elevation	Add Weight	Self Weight	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
Lievation	weight	weigni	c			psf						race
ſŧ	lb	lb	e			psj			ft ²	lb	plf	
T1	1830.45	5320.85	A	0.354	2.162	8	0.825	1	40,456	944.64	47.23	С
180.00-160.00	1020.12	0520.00	В	0.354	2.162	١	0.825	î	40.456	744.04	77.23	
200100 200100			C	0.354	2.162		0.825	ı	40.456			
T2	5489.50	5862.20	Ā	0.34	2,196	7	0.825	1	43.287	1727.38	86.37	C
160.00-140.00			В	0.34	2.196		0.825	1	43.287	1727.50	00.57	~
	(C	0.34	2.196		0.825	1	43.287			
Т3	2028.59	2453.98	Α	0.33	2.22	7	0.825	1	15.895	642.68	96.40	С
140.00-133.33			В	0.33	2.22		0.825	1	15.895	0	2 01.10	
			C	0.33	2.22		0.825	1	15.895			
T4	2703.68	2513.45	Α	0.318	2.249	7	0.825	1	16.113	779.59	116.94	С
133.33-126.67			В	0.318	2.249		0.825	1	16.113			
			C	0.318	2.249		0.825	1	16.113			
T5	3498.68	2793.33	Α	0.308	2.275	7	0.825	1	16.369	896.68	134.50	С
126.67-120.00			В	0.308	2.275		0.825	1	16.369			
			C	0.308	2.275		0.825	1	16.369			
Т6	11302.72	8604.65	Α	0.265	2.393	7	0.825	1	46.245	2757.09	137.85	С
120.00-100.00			В	0.265	2.393		0.825	1	46.245			
			C	0.265	2.393		0.825	1	46.245			
T7	5650.58	4287.82	Α	0.252	2.43	7	0.825	1	24.538	1372.93	137.29	C
100.00-90.00			В	0.252	2.43		0.825	1	24.538			
			C	0.252	2.43	1	0.825	1	24.538			
T8	5596.05	4396.61	A	0.24	2.469	7	0.825	1	25.023	1349.19	134.92	C
90.00-80.00			В	0.24	2.469		0.825	1	25.023			
			C	0.24	2.469		0.825	1	25.023			
T9	11005.85	10200.14	A	0.243	2.46	6	0.825	1	56.561	2661.64	133.08	C
80.00-60.00			В	0.243	2.46		0.825	1	56.561			
			C	0.243	2.46		0.825	1	56.561			
T10	10694.99	11278.45	A	0.229	2.502	6	0.825	1	59.734	2510.79	125.54	$-\mathbf{C}$
60.00-40.00			В	0.229	2.502		0.825	1	59.734			
			C	0.229	2.502		0.825	1	59.734			
T11	5190.61	5741.72	Α	0.216	2.542	6	0.825	1	30.418	1166.84	116.68	C
40.00-30.00			В	0.216	2.542		0.825	1	30.418			
			C	0.216	2.542		0.825	1	30.418			
T12	5049.65	5993.87	Α	0.213	2.554	5	0.825	1	31.400	1091.09	109.11	C
30.00-20.00			В	0.213	2.554		0.825	1	31.400	1	l l	
	I		C	0.213	2.554		0.825	1	31.400			
T13	9395.28	10884.34	Α	0.179	2.666	5	0.825	1	66.654	1991.58	99.58	Α
20.00-0.00			В	0.179	2.666		0.825	1	62,204			
			C	0.179	2.666		0.825	1	57.753			
Sum Weight:	79436.62	80331.41			- 1		- 1	OTM	1667.74	19892.12		
									kip-ft			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	40 of 83
1	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
A	lb	lЬ	C			psf	l l		0.2	,,	10	
ft	1830.45	5320.85	e	0,354	2,162	-	0.0	-	ft ²	<u>lb</u>	plf	
180.00-160.00	1630.43	3320.83	A B	0.354	2.162	8	0.8 0.8	1	40.456	944.64	47.23	C
180.00-100.00	1		C	0.354	2.162		0.8	1	40.456 40.456			
T2	5489.50	5862.20	A	0.334	2.196	7	0.8	1	43.287	1727.38	86.37	C
160.00-140.00	5465.50	3002.20	В	0.34	2.196	'	0.8	1	43.287	1/2/.56	80.37	١
100100 110100		l l	c	0.34	2.196		0.8	1	43.287			
Т3	2028.59	2453.98	Ā	0.33	2,22	7	0.8	î	15.895	642.68	96.40	C
140.00-133.33			В	0.33	2.22		0.8	î	15.895	0 12.00	30.40	
			С	0.33	2.22		0.8	1	15.895			
T4	2703.68	2513.45	Α	0.318	2.249	7	0.8	1	16.113	779.59	116.94	C
133.33-126.67			В	0.318	2.249		0.8	1	16.113			
			C	0.318	2.249		0.8	1	16.113			
T5	3498.68	2793.33	A	0.308	2.275	7	0.8	1	16.369	896.68	134.50	C
126.67-120.00			В	0.308	2.275		0.8	1	16.369			ll.
			C	0.308	2.275		0.8	1	16.369			
T6	11302.72	8604.65	A	0.265	2.393	7	0.8	1	46.245	2757.09	137.85	C
120.00-100.00			В	0.265	2.393		0.8	1	46.245			
	5.50.50	4000.00	C	0.265	2.393		0.8	1	46.245			
T7	5650.58	4287.82	A	0.252	2.43	7	0.8	1	24.538	1372.93	137.29	С
100.00-90.00			B C	0.252	2.43		0.8	1	24.538			
т8	5596.05	4396.61	A	0.252 0.24	2.43	7	0.8	1	24.538	1240 10	10400	_
90.00-80.00	3390.03	4390.01	B	0.24	2.469 2.469	/	0.8	1	25.023 25.023	1349.19	134.92	C
90.00-60.00			č	0.24	2.469		0.8	1	25.023			
T9	11005.85	10200,14	Ā	0.243	2.46	6	0.8	1	56,561	2661.64	133.08	С
80.00-60.00	11005.05	10200,14	В	0.243	2.46	۰	0.8	1	56.561	2001.04	133.06	
00.00			c l	0.243	2.46		0.8	1	56.561			
T10	10694.99	11278.45	Ā	0.229	2.502	6	0.8	î	59.734	2510.79	125.54	С
60.00-40.00			В	0.229	2.502		0.8	î	59.734	2510.75	125.54	
			c l	0.229	2.502		0.8	1	59.734			
T11	5190.61	5741.72	Α	0.216	2.542	6	0.8	1	30.418	1166.84	116.68	С
40.00-30.00			В	0.216	2.542		0.8	1	30.418			
			C	0.216	2.542		0.8	1	30.418			
T12	5049.65	5993.87	Α	0.213	2.554	5	0.8	1	31.400	1091.09	109.11	C
30.00-20.00		1	В	0.213	2.554		0.8	1	31.400			
_ [C	0.213	2.554		0.8	1	31.400	l		
T13	9395.28	10884.34	A	0.179	2.666	5	0.8	1	66.654	1991.58	99.58	Α
20.00-0.00			В	0.179	2.666		0.8	1	62.204			
			C	0.179	2.666		0.8	1	57.753			
Sum Weight:	79436.62	80331.41			- 1	1		OTM	1667.74	19892.12		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						1
ft	lb	lb	e						ft²	lb	plf	
T1	1830.45	5320.85	Α	0.354	2.162	8	0.85	1	40.456	944.64	47.23	C
180.00-160.00			В	0.354	2.162		0.85	1	40.456			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	41 of 83
ij	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а							1		Face
		,,	c			psf			-1			
ft	lb	lb	e						ft²	lb	plf	
770			C	0.354	2.162	_	0.85	1	40.456			
T2	5489.50	5862.20	A	0.34	2.196	7	0.85	1	43.287	1727.38	86.37	C
160.00-140.00			В	0.34	2.196		0.85	1	43.287			
TT0	2020 40		C	0.34	2.196	_	0.85	1	43.287			
T3	2028.59	2453.98	A	0.33	2.22	7	0.85	1	15.895	642.68	96.40	C
140.00-133.33			В	0.33	2.22		0.85	1	15.895			i i
			C	0.33	2.22	_	0.85	1	15.895			
T4	2703.68	2513.45	A	0.318	2.249	7	0.85	1	16.113	779.59	116.94	С
133.33-126.67			В	0.318	2.249		0.85	1	16.113			
			C	0.318	2.249		0.85	1	16.113			
T5	3498.68	2793.33	A	0.308	2.275	7	0.85	1	16.369	896.68	134.50	C
126.67-120.00			В	0.308	2.275		0.85	1	16.369			
			C	0.308	2.275		0.85	1	16.369			l.
Т6	11302.72	8604.65	Α	0.265	2.393	7	0.85	1	46.245	2757.09	137.85	C
120.00-100.00			В	0.265	2.393		0.85	1	46.245			
			C	0.265	2.393		0.85	1	46.245			
T7	5650.58	4287.82	A	0.252	2.43	7	0.85	1	24.538	1372.93	137.29	C
100.00-90.00			В	0.252	2.43		0.85	1	24.538			
			C	0.252	2.43		0.85	1	24.538			
T8	5596.05	4396.61	A	0.24	2.469	7	0.85	1	25.023	1349.19	134.92	C
90.00-80.00			В	0.24	2.469		0.85	1	25.023			
			C	0.24	2.469		0.85	1	25.023			1
Т9	11005.85	10200.14	A	0.243	2.46	6	0.85	1	56.561	2661.64	133.08	C
80.00-60.00			В	0.243	2.46		0.85	1	56.561			
			C	0.243	2.46		0.85	_1	56.561			
T10	10694.99	11278.45	A	0.229	2.502	6	0.85	1	59.734	2510.79	125.54	C
60.00-40.00			В	0.229	2.502		0.85	1	59.734			
			C	0.229	2.502		0.85	1	59.734			
T11	5190.61	5741.72	A	0.216	2.542	6	0.85	1	30.418	1166.84	116.68	C
40.00-30.00			В	0.216	2.542		0.85	1	30.418			
			C	0.216	2.542		0.85	1	30.418			
T12	5049.65	5993.87	A	0.213	2.554	5	0.85	1	31.400	1091.09	109.11	C
30.00-20.00			В	0.213	2.554		0.85	1	31.400			
		_	C	0.213	2.554		0.85	1	31.400			
T13	9395.28	10884.34	A	0.179	2.666	5	0.85	1	66.654	1991.58	99.58	Α
20.00-0.00			В	0.179	2.666		0.85	1	62.204			
			C	0.179	2.666		0.85	1	57.753			
Sum Weight:	79436.62	80331.41						OTM	1667.74	19892.12		
									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	lb	lb	e	× 1					ft ²	lb	plf	
T1	127.00	1250.43	Α	0.139	2.812	11	1	1	13.494	546.04	27.30	С
180.00-160.00			В	0.139	2.812		1	1	13.494			
			C	0.139	2.812		1	1	13.494			
T2	436.78	1495.62	Α	0.144	2.796	11	1	1	14.923	993.44	49.67	С
160.00-140.00			В	0.144	2.796		1	1	14.923			
			C	0.144	2.796		1	1	14.923	1		
T3	168.09	820.85	Α	0.15	2.772	11	1	1	5.652	360.61	54.09	С
140.00-133.33			В	0.15	2.772		1	1	5.652			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	42 of 83
Ì	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			-						Face
	1		c			psf						
ft	lb	lb	e						ft ²	lb	plf	
			C	0.15	2.772		1	1	5.652			
T4	227.27	837.12	A	0.144	2.794	10	1	1	5.764	440.06	66.01	C
133.33-126.67			В	0.144	2.794		1	1	5.764			l
			C	0.144	2.794		1	1	5.764			
T5	306.59	1075.34	Α	0.139	2.813	10	1	1	5.886	539.37	80.91	С
126.67-120.00			В	0.139	2.813		1	1	5.886			
			C	0.139	2.813		1	1	5.886			
T6	998.98	3821.31	Α	0.133	2.834	10	1	1	18.401	1701.16	85.06	С
120.00-100.00			В	0.133	2.834		1	1	18.401			
			C	0.133	2.834		1	1	18.401			
T7	500.99	1682.80	Α	0.131	2.844	10	1	1	10.043	848.68	84.87	С
100.00-90.00		2	В	0.131	2.844		1	1	10.043			
			C	0.131	2.844		1	1	10.043			
T8	500.99	1722.73	A	0.124	2.87	10	1	1	10.301	837.21	83.72	С
90.00-80.00			В	0.124	2.87		1	1	10.301			
			C	0.124	2.87		1	1	10.301			
T9	1001.98	4133.20	A	0.136	2.824	9	1	1	25.327	1704.22	85.21	С
80.00-60.00			В	0.136	2.824		1	1	25.327			
	1		C	0.136	2.824		1	1	25.327			
T10	1001.98	4731.59	A	0.131	2.843	9	1	1	27.419	1634.37	81.72	С
60.00-40.00			В	0.131	2.843		1	1	27.419			
			C	0.131	2.843		1	1	27.419			
T11	500.99	2453.18	Α	0.125	2.867	8	1	1	14.232	770.45	77.05	C
40.00-30.00			В	0.125	2.867		1	1	14.232			
			C	0.125	2.867		1	1	14.232			
T12	500.99	2640.30	A	0.126	2.863	7	1	1	15.291	736.46	73.65	C
30.00-20.00			В	0.126	2.863		1	1	15.291			_
			c	0.126	2.863		1	1	15.291			
T13	1001.98	5437.54	Α	0.107	2.936	7	1	1	32.093	1362.34	68.12	Α
20.00-0.00			В	0.107	2.936		īl	1	30.054		55,12	
			c	0.107	2.936		ī l	1	28.015			
Sum Weight:	7274.62	32102.03						отм	1013.79	12474.41		
									kip-ft			

Tower Forces - Service - Wind 45 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	lb	lb	е						ft ²	lb	plf	
T1	127.00	1250.43	Α	0.139	2.812	11	0.825	1	13.494	546.04	27.30	С
180.00-160.00			В	0.139	2.812		0.825	1	13.494			
			C	0.139	2.812		0.825	1	13.494			
T2	436.78	1495.62	Α	0.144	2.796	11	0.825	1	14.923	993.44	49.67	C
160.00-140.00			В	0.144	2.796		0.825	1	14.923			
			C	0.144	2.796		0.825	1	14.923			
T3	168.09	820.85	A	0.15	2.772	11	0.825	1	5.652	360.61	54.09	C
140.00-133.33			В	0.15	2.772		0.825	1	5.652			
			C	0.15	2.772		0.825	1	5.652			
T4	227.27	837.12	A	0.144	2.794	10	0.825	1	5.764	440.06	66.01	С
133.33-126.67			В	0.144	2.794		0.825	1	5.764			1
			C	0.144	2.794		0.825	1	5.764			
T5	306.59	1075.34	Α	0.139	2.813	10	0.825	1	5.886	539.37	80.91	C
126.67-120.00			В	0.139	2.813	ļ	0.825	1	5.886		N.	

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	Sprint/Clearwire Upgrades - MODification Analysis	43 of 83
Proj	ect	Date
	Westport, Connecticut	15:00:07 05/30/17
Clie	•••	Designed by
	Sprint - JPW-001	MCD

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	lb	lb	e						ft²	lb	plf	
			C	0.139	2.813		0.825	1	5.886		32.7	
Т6	998.98	3821.31	A	0.133	2.834	10	0.825	1	18.401	1701.16	85.06	C
120.00-100.00			В	0.133	2.834		0.825	1	18.401			l
			C	0.133	2.834		0.825	1	18.401			
T7	500.99	1682.80	Α	0.131	2.844	10	0.825	1	10.043	848.68	84.87	С
100.00-90.00			В	0.131	2.844		0.825	1	10.043			
			C	0.131	2.844		0.825	1	10.043			
T8	500.99	1722.73	Α	0.124	2.87	10	0.825	1	10.301	837.21	83.72	С
90.00-80.00			В	0.124	2.87		0.825	1	10.301			
			C	0.124	2.87		0.825	1	10.301			
T9	1001.98	4133.20	Α	0.136	2.824	9	0.825	1	25.327	1704.22	85.21	С
80.00-60.00			В	0.136	2.824		0.825	1	25.327			
			C	0.136	2.824		0.825	1	25.327			
T10	1001.98	4731.59	Α	0.131	2.843	9	0.825	1	27.419	1634.37	81.72	C
60.00-40.00			В	0.131	2.843		0.825	1	27.419			
			C	0.131	2.843		0.825	1	27.419			
T11	500.99	2453.18	Α	0.125	2.867	8	0.825	1	14.232	770.45	77.05	С
40.00-30.00			В	0.125	2.867		0.825	1	14.232			
			C	0.125	2.867		0.825	1	14.232			
T12	500.99	2640.30	Α	0.126	2.863	7	0.825	1	15.291	736.46	73.65	C
30.00-20.00			В	0.126	2.863		0.825	1	15.291			
			C	0.126	2.863		0.825	1	15.291			
T13	1001.98	5437.54	Α	0.107	2.936	7	0.825	1	32.093	1362.34	68.12	Α
20.00-0.00			В	0.107	2.936		0.825	1	30.054			
			C	0.107	2.936		0.825	1	28.015			
Sum Weight:	7274.62	32102.03						OTM	1013.79	12474.41		
									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			-			- I			Face
			c			psf						
ft	lb	<u>lb</u>	е						ft ²	lb	plf	
T1	127.00	1250.43	Α	0.139	2.812	11	0.8	1	13.494	546.04	27.30	С
180.00-160.00			В	0.139	2.812		0.8	1	13.494		0	
			C	0.139	2.812	1	0.8	1	13.494			
T2	436.78	1495.62	A	0.144	2.796	11	0.8	1	14.923	993.44	49.67	C
160.00-140.00			В	0.144	2.796		0.8	1	14.923			
			C	0.144	2.796		0.8	1	14.923	-		
Т3	168.09	820.85	Α	0.15	2.772	11	0.8	1	5.652	360.61	54.09	C
140.00-133.33			В	0.15	2.772		0.8	1	5.652			
			C	0.15	2.772		0.8	1	5.652			
T4	227.27	837.12	A	0.144	2.794	10	0.8	1	5.764	440.06	66.01	C
133.33-126.67	1		В	0.144	2.794		0.8	1	5.764			
	- 1		C	0.144	2.794		0.8	1	5.764			
T5	306.59	1075.34	A	0.139	2.813	10	0.8	1	5.886	539.37	80.91	C
126.67-120.00	11		В	0.139	2.813		0.8	1	5.886			
			C	0.139	2.813		0.8	1	5.886			
T6	998.98	3821.31	Α	0.133	2.834	10	0.8	1	18.401	1701.16	85.06	C
120.00-100.00			В	0.133	2.834		0.8	1	18.401			
-			C	0.133	2.834		0.8	1	18.401	1		
T7	500.99	1682.80	Α	0.131	2.844	10	0.8	1	10.043	848.68	84.87	C
100.00-90.00	- 1		В	0.131	2.844		0.8	1	10.043			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	44 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
ı	Client	Designed by
	Sprint - JPW-001	MCD

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	lb	lb	e						ft²	lb	plf	
			C	0.131	2.844		0.8	1	10.043			
Т8	500.99	1722.73	A	0.124	2.87	10	0.8	1	10.301	837.21	83.72	С
90.00-80.00			В	0.124	2.87		0.8	1	10.301			
			C	0.124	2.87		0.8	1	10.301			
T9	1001.98	4133.20	A	0.136	2.824	9	0.8	1	25.327	1704.22	85.21	C
80.00-60.00			В	0.136	2.824		0.8	1	25.327			
			C	0.136	2.824		0.8	1	25.327			
T10	1001.98	4731.59	Α	0.131	2.843	9	0.8	1	27.419	1634.37	81.72	С
60.00-40.00			В	0.131	2.843		0.8	1	27.419			
	(1)		C	0.131	2.843		0.8	1	27.419			
T11	500.99	2453.18	A	0.125	2.867	8	0.8	1	14.232	770.45	77.05	C
40.00-30.00			В	0.125	2.867		0.8	1	14.232			
			C	0.125	2.867		0.8	1	14.232		2.	
T12	500.99	2640.30	A	0.126	2.863	7	0.8	1	15.291	736.46	73.65	C
30.00-20.00			В	0.126	2.863		0.8	1	15.291			
1			C	0.126	2.863		0.8	1	15.291			
T13	1001.98	5437.54	A	0.107	2.936	7	0.8	1	32.093	1362.34	68.12	Α
20.00-0.00			В	0.107	2.936		0.8	1	30.054			
			C	0.107	2.936		0.8	1	28.015			
Sum Weight:	7274.62	32102.03						OTM	1013.79	12474.41		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				-					Face
			c			psf						
ft	lb	lb	e						ft²	lb	plf	
T1	127.00	1250.43	Α	0.139	2.812	11	0.85	1	13.494	546.04	27.30	C
180.00-160.00			В	0.139	2.812		0.85	1	13.494			
			C	0.139	2.812		0.85	1	13.494			
T2	436.78	1495.62	A	0.144	2.796	11	0.85	1	14.923	993.44	49.67	C
160.00-140.00		1	В	0.144	2.796		0.85	1	14.923	- 1		
			C	0.144	2.796		0.85	1	14.923	1		
T3	168.09	820.85	A	0.15	2.772	11	0.85	1	5.652	360.61	54.09	C
140.00-133.33			В	0.15	2.772		0.85	1	5.652	1		
			C	0.15	2.772		0.85	1	5.652	1.0		
T4	227.27	837.12	A	0.144	2.794	10	0.85	1	5.764	440.06	66.01	C
133.33-126.67			B	0.144	2.794		0.85	1	5.764	- 1		
			C	0.144	2.794	- 1	0.85	1	5.764	1		
T5	306.59	1075.34	A	0.139	2.813	10	0.85	1	5.886	539.37	80.91	C
126.67-120.00			В	0.139	2.813		0.85	1	5.886			
			C	0.139	2.813		0.85	1	5.886			
T6	998.98	3821.31	A	0.133	2.834	10	0.85	1	18.401	1701.16	85.06	C
120.00-100.00			В	0.133	2.834		0.85	1	18.401			
	1		C	0.133	2.834		0.85	1	18.401			
T7	500.99	1682.80	Α	0.131	2.844	10	0.85	1	10.043	848.68	84.87	C
100.00-90.00	- 1		В	0.131	2.844		0.85	1	10.043			
	- 1		C	0.131	2.844		0.85	1	10.043			
T8	500.99	1722.73	Α	0.124	2.87	10	0.85	1	10.301	837.21	83.72	C
90.00-80.00			В	0.124	2.87		0.85	1	10.301			
			C	0.124	2.87		0.85	1	10.301			
Т9	1001.98	4133.20	A	0.136	2.824	9	0.85	1	25.327	1704.22	85.21	С
80.00-60.00			В	0.136	2.824		0.85	1	25.327			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
Spri	nt/Clearwire Upgrades - MODification Analysis	45 of 83
Project		Date
	Westport, Connecticut	15:00:07 05/30/17
Client	0 : 1	Designed by
	Sprint - JPW-001	MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a		1					1		Face
	**		C			psf						
fi	lb	lb	e						ft²	lь	plf	
			C	0.136	2.824		0.85	1	25.327			
T10	1001.98	4731.59	Α	0.131	2.843	9	0.85	1	27.419	1634.37	81.72	C
60.00-40.00	, i		В	0.131	2.843		0.85	1	27.419			
			C	0.131	2.843		0.85	1	27.419			
5 T11	500.99	2453.18	A	0.125	2.867	8	0.85	1	14.232	770.45	77.05	С
40.00-30.00			В	0.125	2.867		0.85	1	14.232			
			C	0.125	2.867		0.85	1	14.232			
T12	500.99	2640.30	A	0.126	2.863	7	0.85	³⁶⁰ 1	15.291	736.46	73.65	С
30.00-20.00			В	0.126	2.863		0.85	1	15.291			
			C	0.126	2.863		0.85	1	15.291			
T13	1001.98	5437.54	Α	0.107	2.936	7	0.85	1	32.093	1362.34	68.12	Α
20.00-0.00			В	0.107	2.936		0.85	1	30.054	1202.5	00,12	11
			С	0.107	2.936		0.85	î	28.015	The state of the s		
Sum Weight:	7274.62	32102.03					-105	ОТМ	1013.79	12474.41		
		5==0=105						01111	kip-ft	12-17-1-1		

Discrete Appurtenance Pressures - No Ice

 $G_H = 0.850$

Description	Aiming	Weight	$Offset_x$	Offset _z	2	Kz	q_z	C_AA_C	C_AA_C
	Azimuth							Front	Side
	۰	lb	ft	ft	ft		psf	ft²	ft^2
AIR21 B2A/B4P	300.0000	110.02	-7.67	0.19	125.00	1.326	40	6.05	5.54
AIR21 B2A/B4P	60.0000	110.02	3.67	-6.74	125.00	1.326	40	6.05	5.54
AIR21 B2A/B4P	180.0000	110.02	4.00	6.54	125.00	1.326	40	6.05	5.54
TMA	300.0000	20.00	-5.67	-3.27	125.00	1.326	40	1.06	0.45
TMA	60.0000	20.00	5.67	-3.27	125.00	1.326	40	1.06	0.45
TMA	180.0000	20.00	0.00	6.54	125.00	1.326	40	1.06	0.45
LNX-6515DS-VTM	300.0000	90.02	-5.67	-3.27	125.00	1.326	40	11.39	9.92
LNX-6515DS-VTM	60.0000	90.02	5.67	-3.27	125.00	1.326	40	11.39	9.92
LNX-6515DS-VTM	180.0000	90.02	0.00	6.54	125.00	1.326	40	11.39	9.92
AIR21 B2A/B4P	300.0000	110.02	-3.67	-6.74	125.00	1.326	40	6.05	5.54
AIR21 B2A/B4P	60.0000	110.02	7.67	0.19	125.00	1.326	40	6.05	5.54
AIR21 B2A/B4P	180.0000	110.02	-4.00	6.54	125.00	1.326	40	6.05	5.54
LTF12=372 Sector	0.0000	465.00	0.00	0.00	125.00	1.326	40	13.60	13.60
Mount (1)									
LTF12=372 Sector	0.0000	465.00	0.00	0.00	125.00	1.326	40	13.60	13.60
Mount (1)	V								
LTF12=372 Sector	0.0000	465.00	0.00	0.00	125.00	1.326	40	13.60	13.60
Mount (1)	14400000		1,74,441	- 1			- 1	- 1	
RRUS-11	300.0000	50.00	-5.67	-3.27	125.00	1.326	40	2.57	1.07
RRUS-11	60.0000	50.00	5.67	-3.27	125.00	1.326	40	2.57	1.07
RRUS-11	180.0000	50.00	0.00	6.54	125.00	1.326	40	2.57	1.07
GPS	180.0000	0.00	0.00	6.82	60.00	1.137	34	0.00	0.00
4' Standoff	0.0000	110.00	0.00	0.00	60.00	1.137	34	3.42	3.42
2" Dia 10' Omni	240.0000	10.00	-6.96	4.02	159.00	1.395	42	2.00	2.00
3' Side Arm	0.0000	50.00	0.00	0.00	159.00	1.395	42	2.72	2.72
2" Dia 10' Omni	0.0000	10.00	0.00	-8.95	168.00	1,412	43	2.00	2.00
4' Standoff	0.0000	110.00	0.00	0.00	171.00	1.417	43	3.42	3.42
2" Dia 10' Omni	0.0000	10.00	0.00	-8.95	174.00	1.422	43	2.00	2.00
AP11-850/090/ADT	120.0000	39.15	8.64	4.99	162.00	1.401	42	5.31	3.92
w/Mount Pipe					SCHOOLS				0.000
5' Standoff	0.0000	110.00	0.00	0.00	162.00	1.401	42	3.42	3.42
3'x2 1/2" Pipe Mount	0.0000	40.50	0.00	0.00	162.00	1.401	42	2.20	2.20
3' Yagi	120.0000	30.95	4.73	2.73	169.00	1.413	43	2.08	2.08

AECOM

J	ob	Page
	Sprint/Clearwire Upgrades - MODification Analysis	46 of 83
П	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
Г	Client	Designed by
	Sprint - JPW-001	MCD

Description	Aiming Azimuth	Weight	Offset _x	Offsetz	Z	Kz	q_z	C _A A _C Front	C _A A _C Side
	0	lb	ft	ft	ft		psf	$\int_{0}^{\infty} t^{2}$	ft ²
4'x4" Pipe Mount	0.0000	44.00	0.00	0.00	177.00	1.427	43	1.00	1.00
AP11-850/090/ADT	0.0000	39.15	0.00	0.00	178.00	1.429	43	5.31	3.92
w/Mount Pipe									
WPA-700102-4CF-EDIN	120.0000	39.60	9.49	5.48	173.00	1.420	43	3.58	3.66
-X w/ Mount Kit	1							100000	
432E-83I-01T TTA Unit	120.0000	25.00	6.89	3.98	170.00	1.415	43	2.85	0.97
SE419-SWBPALDF(D0	120.0000	50.00	9.49	5.48	167.00	1.410	43	25.03	9.80
0)									
SE419-SWBPALDF	0.0000	50.00	0.00	0.00	175.00	1.424	43	11.64	7.88
Panel Antenna									
6' Side-Arm	0.0000	140.00	0.00	0.00	170.00	1.415	43	10.60	10.60
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	160.00	1.397	42	15.00	15.00
Mount (1)	0.0000	***							17704
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	160.00	1.397	42	15.00	15.00
Mount (1)	0.0000	7 00 00						100000000	Controported
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	160.00	1.397	42	15.00	15.00
Mount (1)	200 0000	40.00			a consecutive cons	1 405			
SBNHH-1D65B	300.0000	40.60	-4.75	-2.74	160.00	1.397	42	8.20	5.42
RH_2x60-07-L (700	300.0000	60.00	-4.75	-2.74	160.00	1.397	42	1.82	1.52
MHz) DB-T1-6Z-8AB-0Z Dist.	200 0000	45.00	4.75	0.74	1.00.00				
Box	300.0000	45.00	-4.75	-2.74	160.00	1.397	42	4.80	2.00
RRH 2x60 PCS	300.0000	74.40	2.75	(21	160.00	1 207	40		
SBNHH-1D65B	300.0000	74.42 40.60	-2.75	-6.21	160.00	1.397	42	2.84	3.00
RRH 2x60-AWS	300.0000	44.00	-7.75 -7.75	2.45 2.45	160.00	1.397	42	8.20	5.42
DB-T1-6Z-8AB-0Z Dist,	300.0000	45.00	-7.75	2.45	160.00 160.00	1.397	42	1.87	1.23
Box	300.0000	45.00	-7.73	2.43	160.00	1.397	42	4.80	2.00
BXA-70080-4CF-EDIN	300.0000	40.21	-1.75	-7.94	160.00	1.397	42	2 62	5.02
Panel	500.0000	70.21	-1.75	-1.54	100.00	1.397	42	3.62	5,03
SBNHH-1D65B	60.0000	40.60	4.75	-2.74	160.00	1.397	42	8.20	5.42
RH 2x60-07-L (700	60.0000	60.00	4.75	-2.74	160.00	1.397	42	1.82	1.52
MHz)	00.0000	00.00	,5	2	100.00	1.557	72	1.02	1.52
RRH 2x60 PCS	60.0000	74,42	6.75	0.72	160.00	1.397	42	2.84	3.00
SBNHH-1D65B	60.0000	40.60	1.75	-7.94	160.00	1.397	42	8.20	5.42
RRH 2x60-AWS	60.0000	44.00	1.75	-7.94	160.00	1.397	42	1.87	1.23
BXA-70080-4CF-EDIN	60.0000	40.21	7.75	2.45	160.00	1.397	42	3.62	5.03
Panel								5.62	5.05
SBNHH-1D65B	180.0000	40.60	0.00	5.49	160.00	1.397	42	8.20	5.42
RH_2x60-07-L (700	180.0000	60.00	0.00	5.49	160.00	1.397	42	1.82	1.52
MHz)									269,6
RRH_2x60_PCS	180.0000	74.42	-4.00	5.49	160.00	1.397	42	2.84	3.00
SBNHH-1D65B	180.0000	40.60	6.00	5.49	160.00	1.397	42	8.20	5.42
RRH_2x60-AWS	180.0000	44.00	6.00	5.49	160.00	1.397	42	1.87	1.23
BXA-70080-4CF-EDIN	180.0000	40.21	-6.00	5.49	160.00	1.397	42	3.62	5,03
Panel									
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	133.00	1.344	41	15.00	15.00
Mount (1)									- 1
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	133.00	1.344	41	15.00	15.00
Mount (1)									
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	133.00	1.344	41	15.00	15.00
Mount (1)									
P65-16-XLH-RR	0.0000	60.00	-6.00	-9.60	133.00	1.344	41	8.40	4.70
P65-16-XLH-RR	0.0000	60.00	6.00	-9.60	133.00	1.344	41	8.40	4.70
RRUS-11	0.0000	50.00	-6.00	-9.60	133.00	1.344	41	2.57	1.07
HPA-65R-BUU-H6	0.0000	48.00	-2.00	-9.60	133.00	1.344	41	9.49	5.49
Panel	0.0000	20.00	0.00						
RRUS-32	0.0000	80.00	-2.00	-9.60	133.00	1.344	41	3.33	2.36
RRUS-11	0.0000	50.00	-2.00	-9.60	133.00	1.344	41	2.57	1.07
DC6-48-60-18-8F	0.0000	20.00	-6.00	-9.60	133.00	1.344	41	0.79	0.79
(Squid) Suppressor DC6-48-60-18-8F	0.0000	20.00	2.00	0.60	122.00	1 244			
18-81-00-18-81	0.00001	20.00	-2.00	-9.60	133.00	1.344	41	0.79	0.79

AECOM

Job		Page
Sprint/	Clearwire Upgrades - MODification Analysis	47 of 83
Project		Date
	Westport, Connecticut	15:00:07 05/30/17
Client	O I I I I I I I I I I I I I I I I I I I	Designed by
	Sprint - JPW-001	MCD

Description	Aiming	Weight	$Offset_x$	Offset _z	Z	K _z	q_z	$C_A A_C$	C_AA_C
	Azimuth	lb	ft	ft	ft		psf	Front ft ²	Side ft²
(Squid) Suppressor					J.		psj	Ji	jı
TT19-08BP111-001	0.0000	16.00	0.00	-9.60	133.00	1.344	41	0.55	0.45
TMA's		AMORES	-014, 16000						
P65-16-XLH-RR	120.0000	60.00	11.32	-0.39	133.00	1.344	41	8.40	4.70
P65-16-XLH-RR RRUS-11	120.0000 120.0000	60.00 50.00	5.32 11.32	10.00 -0.39	133.00 133.00	1.344 1.344	41 41	8.40	4.70
HPA-65R-BUU-H6	120.0000	48.00	9.32	3.07	133.00	1.344	41	2.57 9.49	1.07 5.49
Panel	120.0000	40.00	9.52	3.07	155.00	1.544	71	9.49	3.49
RRUS-32	120.0000	80.00	9.32	3.07	133.00	1.344	41	3.33	2.36
RRUS-11	120.0000	50.00	9.32	3.07	133.00	1.344	41	2.57	1.07
TT19-08BP111-001	120.0000	16.00	8.32	4.80	133.00	1.344	41	0.55	0.45
TMA's	240,0000	60.00	5.00						02.00
P65-16-XLH-RR P65-16-XLH-RR	240.0000 240.0000	60.00	-5.32 -11.32	10.00 -0.39	133.00	1.344	41	8.40	4.70
RRUS-11	240.0000	50.00	-5.32	10.00	133.00 133.00	1.344	41 41	8.40 2.57	4.70 1.07
HPA-65R-BUU-H6	240.0000	48.00	-7.32	6.53	133.00	1.344	41	9.49	5.49
Panel	2 1010000		,,,,,,	0.55	155.00	1.5.77	- 4	2.77	3.49
RRUS-32	240.0000	80.00	-7.32	6.53	133.00	1.344	41	3.33	2.36
RRUS-11	240.0000	50.00	-7.32	6.53	133.00	1.344	41	2.57	1.07
TT19-08BP111-001	240.0000	16.00	-8.32	4.80	133.00	1.344	41	0.55	0.45
TMA's	0.0000	517.00	0.00			1 4 50			
USF12-448-U 12'/ 4 Pipe Antenna Mount	0.0000	517.08	0.00	0.00	145.00	1.369	41	17.27	9.44
Assembly								- 1	
USF12-448-U 12'/ 4 Pipe	0.0000	517.08	0.00	0.00	145.00	1.369	41	17,27	9,44
Antenna Mount	5.0000	511.00	0.00	0.00	145.00	1.505	71	17.27	J.44
Assembly	1								
USF12-448-U 12'/ 4 Pipe	0.0000	517.08	0.00	0.00	145.00	1.369	41	17.27	9.44
Antenna Mount									
Assembly	0.0000	00.00	6.00	0.60					
APXVSPP18-C-A20 w/ Mount Pipe	0.0000	90.00	6.00	-8.63	145.00	1.369	41	8.02	5.81
APXVTM14-C-120	0.0000	72.00	-6.00	-8.63	145.00	1.369	41	6.34	2.61
Panel Antenna	0.0000	72.00	-0.00	-6.05	143.00	1.309	41	0.54	3.61
800 RRH (800 MHz)	0.0000	60.00	6.00	-8.63	145.00	1.369	41	6.34	5.58
Unit		- 1			15-100 100		- 1		5.25
1900 RRH (1900 MHz)	0.0000	60.00	-6.00	-8.63	145.00	1.369	41	2.58	2.54
Unit									
TD-RRH8x20 ALU Model 800 Notch	0.0000	66.13	0.00	-8.63	145.00	1.369	41	4.05	1.53
Filter	0.0000	11.00	0.00	-8.63	145.00	1.369	41	0.66	0.32
RFS Switch #	0.0000	1.04	6.00	-8.63	145.00	1.369	41	0.07	0.11
ACU-A20N	0.0000		0.00	0.05	145.00	1.505	71	0.07	0.11
RFS Switch #	0.0000	1.04	-6.00	-8.63	145.00	1.369	41	0.07	0.11
ACU-A20N	1	2000000	00000000		27/2-2010000				- 1
RFS Switch #	0.0000	1.04	0.00	-8.63	145.00	1.369	41	0.07	0.11
ACU-A20N	0.0000	2 20	0.00	0.60	145.00	1.000			
NEMA Enclosure APXVSPP18-C-A20 w/	0.0000	2.20 90.00	0.00 4.48	-8.63 9.51	145.00 145.00	1.369	41	0.65	0.42
Mount Pipe	120.0000	90.00	4.40	9.31	145.00	1.369	41	8.02	5.81
APXVTM14-C-120	120.0000	72.00	10.48	-0.88	145.00	1.369	41	6.34	3.61
Panel Antenna				5.00	2 12100	*.5.55	'^	0.5 .	5.01
800 RRH (800 MHz)	120.0000	60.00	4.48	9.51	145.00	1.369	41	6.34	5.58
Unit									24/3424
1900 RRH (1900 MHz)	120.0000	60.00	10.48	-0.88	145.00	1.369	41	2.58	2.54
Unit	120 0000	((12	l	,	1.47.00	1.6.5			
TD-RRH8x20 ALU Model 800 Notch	120.0000 120.0000	66.13 11.00	7.48	4.32	145.00	1.369	41	4.05	1.53
Filter	120.0000	11.00	7.48	4.32	145.00	1.369	41	0.66	0.32
RFS Switch #	120.0000	1.04	4.48	9.51	145.00	1.369	41	0.07	0.11
					F 10 10 0	~,	7.1	0.07	

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	48 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD -

Description	Aiming	Weight	Offset _x	Offset ₂	z	K _z	q_z	C_AA_C	C_AA_C
4	Azimuth							Front	Side
	0	lЬ	ft	ft	ft		psf	ft²	ft ²
RFS Switch #	120.0000	1.04	10.48	-0.88	145.00	1.369	41	0.07	0.11
ACU-A20N									
RFS Switch #	120.0000	1.04	7.48	4.32	145.00	1.369	41	0.07	0.11
ACU-A20N									
APXVSPP18-C-A20 w/	240.0000	90.00	-10.48	-0.88	145.00	1.369	41	8.02	5.81
Mount Pipe									
APXVTM14-C-120	240.0000	72.00	-4.48	9.51	145.00	1.369	41	6.34	3.61
Panel Antenna									
800 RRH (800 MHz)	240.0000	60.00	-10.48	-0.88	145.00	1.369	41	6.34	5.58
Unit									
1900 RRH (1900 MHz)	240.0000	60.00	-4.48	9.51	145.00	1.369	41	2.58	2.54
Unit									
TD-RRH8x20	240.0000	66.13	-7.48	4.32	145.00	1.369	41	4.05	1.53
ALU Model 800 Notch	240.0000	11.00	-7.48	4.32	145.00	1.369	41	0.66	0.32
Filter								1	
RFS Switch #	240.0000	1.04	-10.48	-0.88	145.00	1.369	41	0.07	0.11
ACU-A20N									
RFS Switch #	240.0000	1.04	-4.48	9.51	145.00	1.369	41	0.07	0.11
ACU-A20N			- 1						
RFS Switch #	240.0000	1.04	-7.48	4.32	145.00	1.369	41	0.07	0.11
ACU-A20N									
	Sum	11205.21	1						- "
	Weight:								1

Discrete Appurtenance Pressures - With Ice $G_H = 0.850$

Description	Aiming	Weight	Offset _x	Offset _z	Z	Kz	q_z	C_AA_C	$C_A A_C$	t_z
	Azimuth							Front	Side	
	٥	lb	ft	ft	ft		psf	ft²	ft²	in
AIR21 B2A/B4P	300.0000	407.41	-7.67	0.19	125.00	1.326	7	7.68	8.40	2.142
AIR21 B2A/B4P	60.0000	407.41	3.67	-6.74	125.00	1.326	7	7.68	8.40	2.142
AIR21 B2A/B4P	180.0000	407.41	4.00	6.54	125.00	1.326	7	7.68	8.40	2.142
TMA	300.0000	63.49	-5.67	-3.27	125.00	1.326	7	1.77	1.05	2.142
ГМА	60.0000	63.49	5.67	-3.27	125.00	1.326	7	1.77	1.05	2.1421
ГМА	180.0000	63.49	0.00	6.54	125.00	1.326	7	1.77	1.05	2.142
LNX-6515DS-VTM	300.0000	559.14	-5.67	-3.27	125.00	1.326	7	14.05	15.01	2:1421
LNX-6515DS-VTM	60.0000	559.14	5.67	-3.27	125.00	1.326	7	14.05	15.01	2.1421
LNX-6515DS-VTM	180.0000	559.14	0.00	6.54	125.00	1.326	7	14.05	15.01	2.1421
AIR21 B2A/B4P	300.0000	407.41	-3.67	-6.74	125.00	1.326	7	7.68	8.40	2,1421
AIR21 B2A/B4P	60.0000	407.41	7.67	0.19	125.00	1.326	7	7.68	8.40	2.1421
AIR21 B2A/B4P	180.0000	407.41	-4.00	6.54	125.00	1.326	7	7.68	8.40	2.1421
LTF12=372 Sector	0.0000	1043.37	0.00	0.00	125.00	1.326	7	34.16	34.16	2.1421
Mount (1)					54-5/46560	0.07-01		,5,5,7		
LTF12=372 Sector	0.0000	1043.37	0.00	0.00	125.00	1.326	7	34.16	34.16	2.1421
Mount (1)						10-14-100				
LTF12=372 Sector	0.0000	1043.37	0.00	0.00	125.00	1.326	7	34.16	34.16	2.142
Mount (1)										
RRUS-11	300.0000	157.56	-5.67	-3.27	125.00	1.326	7	3.47	1.73	2.1421
RRUS-11	60.0000	157.56	5.67	-3.27	125.00	1.326	7	3.47	1.73	2.1421
RRUS-11	180.0000	157.56	0.00	6.54	125.00	1.326	7	3.47	1.73	2.1421
GPS	180.0000	0.00	0.00	6.82	60.00	1.137	6	0.00	0.00	1.9905
l' Standoff	0.0000	278.25	0.00	0.00	60.00	1.137	6	4.45	4.45	1.9905
!" Dia 10' Omni	240.0000	75.83	-6.96	4.02	159.00	1.395	8	6.52	6.52	2.1943
' Side Arm	0.0000	221.15	0.00	0.00	159.00	1.395	8	12.33	12.33	2.1943
" Dia 10' Omni	0.0000	76.31	0.00	-8.95	168.00	1.412	8	6.55	6.55	2.2103
' Standoff	0.0000	304.22	0.00	0.00	171.00	1.417	8	4.58	4.58	2.2103
2" Dia 10' Omni	0.0000	76.31	0.00	-8.95	174.00	1.422	8	6.55	6.55	2.2103
AP11-850/090/ADT	120.0000	297.91	8.64	4.99	162.00	1.401	8	7.70	7.59	2.1984

AECOM

i	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	49 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Description	Aiming Azimuth	Weight	Offset _x	Offsetz	Z	Kz	q_z	C _A A _C Front	C _A A _C Side	t_z
	0	lb	ft	ft	ft		psf	ft ²	ft ²	in
w/Mount Pipe	0.0000									
5' Standoff	0.0000	302.80	0.00	0.00	162.00	1.401	8	4.58	4.58	2.1984
8'x2 1/2" Pipe Mount	0.0000	159.73	0.00	0.00	162.00	1.401	8	4.83	4.83	2.1984
3' Yagi 4'x4" Pipe Mount	0.0000	219.89	4.73	2.73	169.00	1.413	8	9.71	9.71	2.2077
AP11-850/090/ADT	0.0000	128.73 301.80	0.00	0.00	177.00 178.00	1.427	8	2.53	2.53	2.2179
w/Mount Pipe	0.0000	301.60	0.00	0.00	1 /8.00	1.429	8	7.73	7.63	2.2192
WPA-700102-4CF-EDIN -X w/ Mount Kit	120.0000	248.83	9.49	5.48	173.00	1.420	8	4.99	6.19	2.2090
432E-83I-01T TTA Unit	120.0000	138.63	6.89	3.98	170.00	1 416	۰	204		
SE419-SWBPALDF(D0	120.0000	687.44	9.49	5.48	167.00	1.415 1.410	8	3.84	1.64	2.2090
0)	120.0000	007.44	7,77	3.40	107.00	1.410	°	28.79	12.69	2.2090
SE419-SWBPALDF Panel Antenna	0.0000	405.40	0.00	0.00	175.00	1.424	8	14.58	10.72	2.2154
6' Side-Arm	0.0000	458.10	0.00	0.00	170.00	1.415	8	31.81	31.81	2.2090
Pirod 15' T-Frame Sector	0.0000	1158.69	0.00	0.00	160.00	1.397	8	39.59	39.59	2.1956
Mount (1)				3,55	100.00	1.077	ĭ	37.37	37.37	2.1930
Pirod 15' T-Frame Sector Mount (1)	0.0000	1158.69	0.00	0.00	160.00	1.397	8	39.59	39.59	2.1956
Pirod 15' T-Frame Sector Mount (1)	0.0000	1158.69	0.00	0.00	160.00	1.397	8	39.59	39.59	2.1956
SBNHH-1D65B	300.0000	314.87	-4.75	-2.74	160.00	1.397	8	10.28	7.49	2.1956
RH_2x60-07-L (700	300.0000	160.78	-4.75	-2.74	160.00	1.397	8	2.65	2.31	2.1956
MHz) DB-T1-6Z-8AB-0Z Dist.	300.0000	237.67	-4.75	-2.74	160.00	1.397	8	6.05	2.91	2.1956
Box	200 0000	269.07	0.75	(21	1.60.00					
RRH_2x60_PCS SBNHH-1D65B	300.0000	314.87	-2.75	-6.21	160.00	1.397	8	4.91	5.48	2.1956
RRH 2x60-AWS	300.0000	137.61	-7.75 -7.75	2.45 2.45	160.00	1.397	8	10.28	7.49	2.1956
DB-T1-6Z-8AB-0Z Dist.	300.0000	237.67	-7.75	2.45	160.00 160.00	1.397 1.397	8	2.70	1.96	2.1956
Box	300.0000	237.07	-1.13	2.43	160.00	1.39/	8	6.05	2.91	2.1956
BXA-70080-4CF-EDIN	300.0000	280.61	-1.75	-7.94	160.00	1.397	8	5.06	7.64	2.1956
Panel					5.00			- 1	1	
SBNHH-1D65B	60.0000	314.87	4.75	-2.74	160.00	1.397	8	10.28	7.49	2.1956
RH_2x60-07-L (700	60.0000	160.78	4.75	-2.74	160.00	1.397	8	2.65	2.31	2.1956
MHz)	60.0000	2.00.00						- 1		1
RRH 2x60 PCS	60.0000	269.07	6.75	0.72	160.00	1.397	8	4.91	5.48	2.1956
SBNHH-1D65B	60.0000	314.87	1.75	-7.94	160.00	1.397	8	10.28	7.49	2.1956
RRH 2x60-AWS	60.0000	137.61 280.61	1.75	-7.94	160.00	1.397	8	2.70	1.96	2.1956
BXA-70080-4CF-EDIN Panel	60.0000	280.01	7.75	2.45	160.00	1.397	8	5.06	7.64	2.1956
SBNHH-1D65B	180.0000	314.87	0.00	5,49	160.00	1.397	8	10.20	7.40	2.1055
RH 2x60-07-L (700	180.0000	160.78	0.00	5.49	160.00	1.397	8	10.28 2.65	7.49 2.31	2.1956
MHz)	100.0000	100.70	0.00	3.49	100.00	1.357	0	2.03	2.31	2.1956
RRH 2x60 PCS	180.0000	269.07	-4.00	5.49	160.00	1.397	8	4.91	5.48	2.1956
	180.0000	314.87	6.00	5.49	160.00	1.397	8	10.28	7.49	2.1956
	180.0000	137.61	6.00	5.49	160.00	1.397	8	2.70	1.96	2.1956
	180.0000	280.61	-6.00	5.49	160.00	1.397	8	5.06	7.64	2.1956
Panel				•	500000	*****	1	5.00	7,59,7	2.1950
Pirod 15' T-Frame Sector	0.0000	1146.63	0.00	0.00	133.00	1.344	7	39.14	39.14	2.1554
Mount (1)						i-source/i-				-13.658.3
Pirod 15' T-Frame Sector	0.0000	1146.63	0.00	0.00	133.00	1.344	7	39.14	39.14	2.1554
Mount (1)						- 1				127,03
Pirod 15' T-Frame Sector	0.0000	1146.63	0.00	0.00	133.00	1.344	7	39.14	39.14	2.1554
Mount (1)				2.0	4					
P65-16-XLH-RR	0.0000	315.86	-6.00	-9.60	133.00	1.344	7	10.83	6.69	2.1554
P65-16-XLH-RR	0.0000	315.86	6.00	-9.60	133.00	1.344	7	10.83	6.69	2.1554
RRUS-11	0.0000	158.58	-6.00	-9.60	133.00	1.344	7	3.48	1.74	2.1554
HPA-65R-BUU-H6 Panel	0.0000	345.18	-2.00	-9.60	133.00	1.344	7	11.57	7.50	2.1554
			- 1	- 1		1		110	1	

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	50 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
- 1	Sprint - JPW-001	MCD

Description	Aiming Azimuth	Weight	Offset _x	Offset _z	Z	K _z	q_z	C _A A _C Front	C _A A _C Side	tz
	0	lb	ft	ft	ft		psf	ft ²	ft ²	in
RRUS-11	0.0000	158.58	-2.00	-9.60	133.00	1.344	7	3.48	1.74	2.1554
DC6-48-60-18-8F	0.0000	104.41	-6.00	-9.60	133.00	1.344	7	1,90	1.90	2.1554
(Squid) Suppressor										
DC6-48-60-18-8F	0.0000	104.41	-2.00	-9.60	133.00	1.344	7	1.90	1.90	2.1554
(Squid) Suppressor				1111			- 11			
TT19-08BP111-001	0.0000	55.06	0.00	-9.60	133.00	1.344	7	1.02	0.89	2.1554
TMA's								in Addition		
P65-16-XLH-RR	120.0000	315.86	11.32	-0.39	133.00	1.344	7	10.83	6.69	2.1554
P65-16-XLH-RR	120.0000	315.86	5.32	10.00	133.00	1.344	7	10.83	6.69	2.1554
RRUS-11	120.0000	158.58	11.32	-0.39	133.00	1.344	7	3.48	1.74	2.1554
HPA-65R-BUU-H6	120.0000	345.18	9.32	3.07	133.00	1.344	7	11.57	7.50	2.1554
Panel									1,500	2.120
RRUS-32	120.0000	248.59	9.32	3.07	133.00	1.344	7	4.36	3.26	2.1554
RRUS-11	120.0000	158.58	9.32	3.07	133.00	1.344	7	3.48	1.74	2.1554
TT19-08BP111-001	120.0000	55.06	8.32	4.80	133.00	1.344	7	1.02	0.89	2.1554
TMA's	120.0000	22.00	0.52	1.00	155.00	1.544	1	1.02	0.69	2.1334
P65-16-XLH-RR	240.0000	315.86	-5.32	10.00	133.00	1.344	7	10.83	6.69	2.1554
P65-16-XLH-RR	240.0000	315.86	-11.32	-0.39	133.00	1.344	7	10.83	6.69	
RRUS-11	240.0000	158.58	-5.32	10.00	133.00	1.344	7	3.48	1.74	2.1554
HPA-65R-BUU-H6	240.0000	345.18	-7.32	6.53	133.00	1.344	7			2.1554
Panel	240.0000	343.16	-1.52	0.53	133.00	1.344	- 1	11.57	7.50	2.1554
RRUS-32	240.0000	248.59	-7.32	6.53	133.00	1.344	-	426	2.25	
RRUS-11	240.0000	158.58	-7.32 -7.32	6.53		1.344	7	4.36	3.26	2.1554
					133.00		7	3.48	1.74	2.1554
TT19-08BP111-001	240.0000	55.06	-8.32	4.80	133.00	1.344	7	1.02	0.89	2.1554
TMA's	0.0000	1007.60	0.00	0.00	147.00					
USF12-448-U 12'/ 4 Pipe	0.0000	1097.68	0.00	0.00	145.00	1.369	7	44.89	23.94	2.1741
Antenna Mount			ı			- 1		- 1		
Assembly				12122	1000000			- 1		
USF12-448-U 12/ 4 Pipe	0.0000	1097.68	0.00	0.00	145.00	1.369	7	44.89	23.94	2.1741
Antenna Mount	1	1						1		
Assembly	5 3555		8.03	5			- 1	1		
USF12-448-U 12'/ 4 Pipe	0.0000	1097.68	0.00	0.00	145.00	1.369	7	44.89	23.94	2.1741
Antenna Mount			- 1					1		
Assembly				1		- 1				
APXVSPP18-C-A20 w/	0.0000	366.32	6.00	-8.63	145.00	1.369	7	10.06	7.85	2.1741
Mount Pipe									1	
APXVTM14-C-120	0.0000	285.65	-6.00	-8.63	145.00	1.369	7	8.02	5.20	2.1741
Panel Antenna		1								
800 RRH (800 MHz)	0.0000	320.28	6.00	-8.63	145.00	1.369	7	8.02	7.22	2.1741
Unit							- 1			
1900 RRH (1900 MHz)	0.0000	203.76	-6.00	-8.63	145.00	1.369	7	3.56	3.52	2.1741
Unit			- 1					5.55	5.52	2.17.11
TD-RRH8x20	0.0000	213.69	0.00	-8.63	145.00	1.369	7	5.20	2.37	2.1741
ALU Model 800 Notch	0.0000	50.83	0.00	-8.63	145.00	1.369	7	1.16	0.72	2.1741
Filter	25000000				27-37-117-71	1.5.65			0.72	2.1741
RFS Switch #	0.0000	14.53	6.00	-8.63	145.00	1.369	7	0.29	0.37	2,1741
ACU-A20N		1	0.00	0.05	(2) VEA.1828	1.505		0.25	0.57	2,1/41
RFS Switch #	0.0000	14.53	-6.00	-8.63	145.00	1.369	7	0.29	0.37	2,1741
ACU-A20N	0.0000	14.55	-0.00	-0.05	145.00	1.509		0.29	0.57	2.1741
RFS Switch #	0.0000	14.53	0.00	-8.63	145.00	1.369	7	0.29	0.37	2.1741
ACU-A20N	0.0000	14.55	0.00	-0.03	145.00	1.309	1	0.29	0.57	2.1741
NEMA Enclosure	0.0000	44.16	0.00	-8.63	145.00	1.369	7		0.00	0.1741
APXVSPP18-C-A20 w/	120.0000		110 000 000 000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.15	0.86	2.1741
	120.0000	366.32	4.48	9.51	145.00	1.369	7	10.06	7.85	2.1741
Mount Pipe	120 0000	205.65	10.40		145.00	1.000	_ا			
APXVTM14-C-120	120.0000	285.65	10.48	-0.88	145.00	1.369	7	8.02	5.20	2.1741
Panel Antenna	100 0000	200 20					_			
300 RRH (800 MHz)	120.0000	320.28	4.48	9.51	145.00	1.369	7	8.02	7.22	2.1741
Unit	100 0000	202	46					1		
1900 RRH (1900 MHz)	120.0000	203.76	10.48	-0.88	145.00	1.369	7	3.56	3.52	2.1741
Jnit				2783	200000000000000000000000000000000000000			- 1		
TD-RRH8x20	120.0000	213.69	7.48	4.32	145.00	1.369	7	5.20	2.37	2.1741

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	Sprint/Clearwire Upgrades - MODification Analysis	51 of 83
Project		Date
	Westport, Connecticut	15:00:07 05/30/17
Client	0 14 1004 004	Designed by
	Sprint - JPW-001	MCD

Description	Aiming	Weight	Offset _x	Offset _z	Z	K _z	q_z	C_AA_C	C_AA_C	t _z
· ·	Azimuth							Front	Side	
	0	lb	ft	ft	ft		psf	ft²	ft²	in
ALU Model 800 Notch Filter	120.0000	50.83	7.48	4.32	145.00	1.369	7	1.16	0.72	2.1741
RFS Switch #	120,0000	14.53	4.48	9.51	145.00	1.369	7	0.20	0.27	0.1741
ACU-A20N	120.0000	14.55	4.40	9.51	143.00	1.309	/	0.29	0.37	2.1741
RFS Switch #	120.0000	14.53	10.48	-0.88	145.00	1.369	7	0.29	0.37	2,1741
ACU-A20N	120.0000	14.55	10,40	-0.66	145.00	1.305	(0.29	0.37	2.1/41
RFS Switch #	120.0000	14.53	7.48	4.32	145.00	1.369	7	0.29	0.37	2,1741
ACU-A20N	120.000	1 1.55	,	1.52	145.00	1.507	'	0.29	0.57	2.1741
APXVSPP18-C-A20 w/	240.0000	366.32	-10.48	-0.88	145.00	1.369	7	10.06	7.85	2.1741
Mount Pipe					- 10.00	1,505	i i	10.00	7.05	2.1741
APXVTM14-C-120	240.0000	285.65	-4.48	9.51	145.00	1.369	7	8.02	5.20	2.1741
Panel Antenna								51.5.7	5,20	,
800 RRH (800 MHz)	240.0000	320.28	-10.48	-0.88	145.00	1.369	7	8.02	7.22	2.1741
Unit										
1900 RRH (1900 MHz)	240.0000	203.76	-4.48	9.51	145.00	1.369	7	3.56	3.52	2.1741
Unit	917777788				2000					
TD-RRH8x20	240.0000	213.69	-7.48	4.32	145.00	1.369	7	5.20	2.37	2.1741
ALU Model 800 Notch	240.0000	50.83	-7.48	4.32	145.00	1.369	7	1.16	0.72	2.1741
Filter									1	
RFS Switch #	240.0000	14.53	-10.48	-0.88	145.00	1.369	7	0.29	0.37	2.1741
ACU-A20N						20.00				
RFS Switch #	240.0000	14.53	-4.48	9.51	145.00	1.369	7	0.29	0.37	2.1741
ACU-A20N						24,04924				
RFS Switch #	240.0000	14.53	-7.48	4.32	145.00	1.369	7	0.29	0.37	2.1741
ACU-A20N		2601261							1	
	Sum	36912.61							- 1	
	Weight:									

Discrete Appurtenance Pressures - Service $G_H = 0.850$

Description	Aiming	Weight	Offset _x	Offset _z	Z	K _z	q_z	C_AA_C	C_AA_C
	Azimuth						-	Front	Side
	n	lb	ft	ft	ft		psf	ft²	ft²
AIR21 B2A/B4P	300.0000	110.02	-7.67	0.19	125.00	1.326	10	6.05	5.54
AIR21 B2A/B4P	60.0000	110.02	3.67	-6.74	125.00	1.326	10	6.05	5.54
AIR21 B2A/B4P	180.0000	110.02	4.00	6.54	125.00	1.326	10	6.05	5.54
TMA	300.0000	20.00	-5.67	-3.27	125.00	1.326	10	1.06	0.45
TMA	60.0000	20.00	5.67	-3.27	125.00	1.326	10	1.06	0.45
TMA	180.0000	20.00	0.00	6.54	125.00	1.326	10	1.06	0.45
LNX-6515DS-VTM	300.0000	90.02	-5.67	-3.27	125.00	1.326	10	11.39	9.92
LNX-6515DS-VTM	60.0000	90.02	5.67	-3.27	125.00	1.326	10	11.39	9.92
LNX-6515DS-VTM	180.0000	90.02	0.00	6.54	125.00	1.326	10	11.39	9.92
AIR21 B2A/B4P	300.0000	110.02	-3.67	-6.74	125.00	1.326	10	6.05	5.54
AIR21 B2A/B4P	60.0000	110.02	7.67	0.19	125.00	1.326	10	6.05	5.54
AIR21 B2A/B4P	180.0000	110.02	-4.00	6.54	125.00	1.326	10	6.05	5.54
LTF12=372 Sector	0.0000	465.00	0.00	0.00	125.00	1.326	10	13.60	13.60
Mount (1)							- 1	CHREGGES	
LTF12=372 Sector	0.0000	465.00	0.00	0.00	125.00	1.326	10	13.60	13.60
Mount (1)	1								
LTF12=372 Sector	0.0000	465.00	0.00	0.00	125.00	1.326	10	13.60	13.60
Mount (1)	THE CALL SHOW								
RRUS-11	300.0000	50.00	-5.67	-3.27	125.00	1.326	10	2.57	1.07
RRUS-11	60.0000	50.00	5.67	-3.27	125.00	1.326	10	2.57	1.07
RRUS-11	180.0000	50.00	0.00	6.54	125.00	1.326	10	2.57	1.07
GPS	180.0000	0.00	0.00	6.82	60.00	1.137	9	0.00	0.00
4' Standoff	0.0000	110.00	0.00	0.00	60.00	1.137	9	3.42	3.42
2" Dia 10' Omni	240.0000	10.00	-6.96	4.02	159.00	1.395	11	2.00	2.00
3' Side Arm	0.0000	50.00	0.00	0.00	159.00	1.395	11	2.72	2.72

AECOM

ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	52 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Description	Aiming Azimuth	Weight	Offset _x	Offset _z	z	Kz	q_z	C _A A _C Front	C _A A _C
	o Azimun	lь	ft	ft	ft		psf	front ft ²	Side ft²
2" Dia 10' Omni	0.0000	10.00	0.00	-8.95	168.00	1.412	11	2.00	2.00
4' Standoff	0.0000	110.00	0.00	0.00	171.00	1.417	11	3.42	3.42
2" Dia 10' Omni	0.0000	10.00	0.00	-8.95	174.00	1.422	11	2.00	2.00
AP11-850/090/ADT	120.0000	39.15	8.64	4.99	162.00	1.401	11	5.31	3.92
w/Mount Pipe	1								
5' Standoff	0.0000	110.00	0.00	0.00	162.00	1.401	11	3.42	3.42
8'x2 1/2" Pipe Mount	0.0000	40.50	0.00	0.00	162.00	1.401	11	2.20	2.20
3' Yagi	120.0000	30.95	4.73	2.73	169.00	1.413	11	2.08	2.08
4'x4" Pipe Mount	0.0000	44.00	0.00	0.00	177.00	1.427	11	1.00	1.00
AP11-850/090/ADT	0.0000	39.15	0.00	0.00	178.00	1,429	11	5.31	3.92
w/Mount Pipe		22.12	0.00	0.00	170.00	1,125	^^1	3.31	3.52
WPA-700102-4CF-EDIN	120.0000	39.60	9.49	5.48	173.00	1.420	11	3.58	3.66
-X w/ Mount Kit	1=0.0000	23.00	2.13	5.10	1,5.00	1.420	11	3.50	5.00
432E-83I-01T TTA Unit	120.0000	25.00	6.89	3.98	170.00	1.415	11	2.85	0.97
SE419-SWBPALDF(D0	120.0000	50.00	9.49	5.48	167.00	1.410	11	25.03	9.80
0)	120.0000	50.00	2.42	5.40	107.00	1.410	11	23.03	9.60
SE419-SWBPALDF	0.0000	50.00	0.00	0.00	175.00	1.424	11	11.64	7.00
Panel Antenna	0.0000	50.00	0.00	0.00	173.00	1.424	11	11.64	7.88
6' Side-Arm	0.0000	140.00	0.00	0.00	170.00	1 415		10.60	10.00
Pirod 15' T-Frame Sector	0.0000	500.00	0.00		Control Children College College	1.415	11	10.60	10.60
Mount (1)	0.0000	300.00	0.00	0.00	160.00	1.397	11	15.00	15.00
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	1.00.00	1 207		1.5.00	22.22
	0.0000	500.00	0.00	0.00	160.00	1.397	11	15.00	15.00
Mount (1)	0.0000	500.00			1.50.00			1100 000 000 000	949112004
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	160.00	1.397	11	15.00	15.00
Mount (1)	200 0000	10.50	4 5 5		4.50.00				
SBNHH-1D65B	300.0000	40.60	-4.75	-2.74	160.00	1.397	11	8.20	5.42
RH_2x60-07-L (700	300.0000	60.00	-4.75	-2.74	160.00	1.397	11	1.82	1.52
MHz)			1					- 1	
DB-T1-6Z-8AB-0Z Dist.	300.0000	45.00	-4.75	-2.74	160.00	1.397	11	4.80	2.00
Box			1			1	- 1	1	
RRH_2x60_PCS	300.0000	74.42	-2.75	-6.21	160,00	1.397	11	2.84	3.00
SBNHH-1D65B	300.0000	40.60	-7.75	2.45	160.00	1.397	11	8.20	5.42
RRH_2x60-AWS	300.0000	44.00	-7.75	2.45	160.00	1.397	11	1.87	1.23
DB-T1-6Z-8AB-0Z Dist.	300.0000	45.00	-7.75	2.45	160.00	1.397	11	4.80	2.00
Box		- 1			- 1				
BXA-70080-4CF-EDIN	300.0000	40.21	-1.75	-7.94	160.00	1.397	11	3.62	5.03
Panel			1						
SBNHH-1D65B	60.0000	40.60	4.75	-2.74	160.00	1.397	11	8.20	5.42
RH_2x60-07-L (700	60.0000	60.00	4.75	-2.74	160.00	1.397	11	1.82	1.52
MHz)			1			1			
RRH_2x60_PCS	60.0000	74.42	6.75	0.72	160.00	1.397	11	2.84	3.00
SBNHH-1D65B	60.0000	40.60	1.75	-7.94	160.00	1.397	11	8.20	5.42
RRH 2x60-AWS	60.0000	44.00	1.75	-7.94	160.00	1.397	11	1.87	1.23
BXA-70080-4CF-EDIN	60.0000	40.21	7.75	2.45	160.00	1.397	11	3.62	5.03
Panel						1.057		5.02	5.05
SBNHH-1D65B	180.0000	40.60	0.00	5.49	160.00	1.397	11	8.20	5.42
RH 2x60-07-L (700	180.0000	60.00	0.00	5.49	160.00	1.397	11	1.82	1.52
MHz)		00.00	0.00	28.57	100.00	1.557	**	1.02	1.32
RRH 2x60 PCS	180.0000	74.42	-4.00	5,49	160.00	1.397	11	2.84	2.00
SBNHH-1D65B	180.0000	40.60	6.00	5.49	160.00	1.397	11		3.00
RRH 2x60-AWS	180.0000	44.00	6.00	5.49	160.00	1.397		8.20	5.42
3XA-70080-4CF-EDIN	180.0000	40.21	-6.00	5.49	160.00		11	1.87	1.23
Panel	100.0000	70.21	-0.00	5.49	100.00	1.397	11	3.62	5.03
Pirod 15' T-Frame Sector	0.0000	500.00	ا مم م	0.00	122.00	1.044	,,	16.00	1.000
Mount (1)	0.0000	200.00	0.00	0.00	133.00	1.344	11	15.00	15.00
	0.0000	500.00	000	0.00	122.00				
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	133.00	1.344	11	15.00	15.00
Mount (1)	0.0000	500.00		ا م م	100.00				
Pirod 15' T-Frame Sector	0.0000	500.00	0.00	0.00	133.00	1.344	11	15.00	15.00
Mount (1)	0.0000			2.5					
P65-16-XLH-RR P65-16-XLH-RR	0.0000	60.00 60.00	-6.00 6.00	-9.60 -9.60	133.00 133.00	1.344 1.344	11	8.40 8.40	4.70 4.70
					122 001		11		

AECOM

ľ	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	53 of 83
١	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client IDM 004	Designed by
	Sprint - JPW-001	MCD

Description	Aiming Azimuth	Weight	Offset _x	Offset _z	z	Kz	q_z	C _A A _C Front	C _A A _C Side
	٥	lb	ft	ft	ft		psf	front ft ²	Siae ft²
RRUS-11	0.0000	50.00	-6.00	-9.60	133.00	1.344	11	2.57	1.07
HPA-65R-BUU-H6 Panel	0.0000	48.00	-2.00	-9.60	133.00	1.344	11	9.49	5.49
RRUS-32	0.0000	90.00	2.00	0.60	122.00				
RRUS-11	0.0000	80.00	-2.00	-9.60	133.00	1.344	11	3.33	2.36
DC6-48-60-18-8F	0.0000	50.00 20.00	-2.00 -6.00	-9.60	133.00	1.344	11	2.57	1.07
(Squid) Suppressor	0.0000	20.00	-0.00	-9.60	133.00	1.344	11	0.79	0.79
DC6-48-60-18-8F	0.0000	20.00	-2.00	-9.60	133.00	1,344	11	0.79	0.79
(Squid) Suppressor	0.0000	20.00	-2.00	-9.00	133.00	1.5	11	0.79	0.75
TT19-08BP111-001	0.0000	16.00	0.00	-9.60	133.00	1.344	11	0.55	0.45
TMA's			212.2			1.5	**	0.55	0.12
P65-16-XLH-RR	120.0000	60.00	11.32	-0.39	133.00	1.344	11	8.40	4.70
P65-16-XLH-RR	120.0000	60.00	5.32	10.00	133.00	1.344	11	8.40	4.70
RRUS-11	120.0000	50.00	11.32	-0.39	133.00	1.344	11	2.57	1.07
HPA-65R-BUU-H6	120.0000	48.00	9.32	3.07	133.00	1.344	11	9.49	5.49
Panel									
RRUS-32	120.0000	80.00	9.32	3.07	133.00	1.344	11	3.33	2.36
RRUS-11	120.0000	50.00	9.32	3.07	133.00	1.344	11	2.57	1.07
TT19-08BP111-001	120.0000	16.00	8.32	4.80	133.00	1.344	11	0.55	0.45
TMA's	240,0000	60.00	5.00	10.00	122.00				
P65-16-XLH-RR P65-16-XLH-RR	240.0000	60.00	-5.32	10.00	133.00	1.344	11	8.40	4.70
RRUS-11	240.0000 240.0000	60.00 50.00	-11.32 -5.32	-0.39	133.00	1.344	11	8.40	4.70
HPA-65R-BUU-H6	240.0000	48.00	-7.32	10.00	133.00	1.344	11	2.57	1.07
Panel	240.0000	48.00	-7.32	6.53	133.00	1.344	11	9.49	5.49
RRUS-32	240.0000	80.00	-7.32	6.53	133.00	1.344	11	3.33	2.36
RRUS-11	240.0000	50.00	-7.32	6.53	133.00	1.344	11	2.57	1.07
ГТ19-08ВР111-001	240.0000	16.00	-8.32	4.80	133.00	1.344	11	0.55	0.45
ΓMA's		10.00	0.52	1.00	155.00	1.511	**	0.55	0.43
USF12-448-U 12'/ 4 Pipe	0.0000	517.08	0.00	0.00	145.00	1.369	11	17,27	9.44
Antenna Mount		- 1		1000.00	VII (TB/VeVe			-//	1700000
Assembly					- 1				
USF12-448-U 12'/ 4 Pipe	0.0000	517.08	0.00	0.00	145.00	1.369	11	17.27	9.44
Antenna Mount									
Assembly	0.0000								
USF12-448-U 127/ 4 Pipe	0.0000	517.08	0.00	0.00	145.00	1.369	11	17.27	9.44
Antenna Mount		- 1						1	
Assembly APXVSPP18-C-A20 w/	0.0000	00.00	6.00	0.62	145.00	1.0.00			
Mount Pipe	0.0000	90.00	6.00	-8.63	145.00	1.369	11	8.02	5.81
APXVTM14-C-120	0.0000	72.00	-6.00	-8.63	145.00	1.260	1.1	(24	2.61
Panel Antenna	0.0000	72.00	-0.00	-0.03	143.00	1.369	11	6.34	3.61
300 RRH (800 MHz)	0.0000	60.00	6.00	-8.63	145.00	1.369	11	6.34	5.58
Jnit	0.0000	00.00	0.00	-0.05	145.00	1.509	11	0.34	3.38
900 RRH (1900 MHz)	0.0000	60.00	-6.00	-8.63	145.00	1.369	11	2.58	2.54
Jnit				0.05	1 10 100	1.50)	11	2.50	2.54
TD-RRH8x20	0.0000	66.13	0.00	-8.63	145.00	1.369	11	4.05	1.53
ALU Model 800 Notch	0.0000	11.00	0.00	-8.63	145.00	1.369	11	0.66	0.32
ilter			((243/640)					0.00	0.02
RFS Switch #	0.0000	1.04	6.00	-8.63	145.00	1.369	11	0.07	0.11
ACU-A20N									
UFS Switch #	0.0000	1.04	-6.00	-8.63	145.00	1.369	11	0.07	0.11
ACU-A20N	1				1579547909				
RFS Switch #	0.0000	1.04	0.00	-8.63	145.00	1.369	11	0.07	0.11
CU-A20N									garana sa
NEMA Enclosure	0.0000	2.20	0.00	-8.63	145.00	1.369	11	0.65	0.42
PXVSPP18-C-A20 w/	120.0000	90.00	4.48	9.51	145.00	1.369	11	8.02	5.81
Mount Pipe	120 0000	70.00	10.40	0.00	145.00	, , , ,		200	
APXVTM14-C-120	120.0000	72.00	10.48	-0.88	145.00	1.369	11	6.34	3.61
anel Antenna 00 RRH (800 MHz)	120.0000	60.00	4 40	0.51	145.00	1 260	,,		ا ا ا
OO EXET (GOO MILIS)	120.0000	00.00	4.48	9.51	145.00	1.369	11	6.34	5.58

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	54 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Description	Aiming	Weight	Offset _x	Offsetz	Z	K _z	q_z	C_AA_C	$C_A A_C$
l .	Azimuth				1			Front	Side
	0	lb	ft	ft	ft		psf	ft²	ft²
Unit									1
1900 RRH (1900 MHz)	120.0000	60.00	10.48	-0.88	145.00	1.369	11	2.58	2.54
Unit	1 1						1		
TD-RRH8x20	120.0000	66.13	7.48	4.32	145.00	1.369	11	4.05	1.53
ALU Model 800 Notch	120.0000	11.00	7.48	4.32	145.00	1.369	11	0.66	0.32
Filter	1 1				l l				
RFS Switch #	120.0000	1.04	4.48	9.51	145.00	1.369	11	0.07	0.11
ACU-A20N									
RFS Switch #	120.0000	1.04	10.48	-0.88	145.00	1.369	11	0.07	0.11
ACU-A20N									
RFS Switch #	120.0000	1.04	7.48	4.32	145.00	1.369	11	0.07	0.11
ACU-A20N									
APXVSPP18-C-A20 w/	240.0000	90.00	-10.48	-0.88	145.00	1.369	11	8.02	5,81
Mount Pipe		- 1							
APXVTM14-C-120	240.0000	72.00	-4.48	9.51	145.00	1.369	11	6.34	3.61
Panel Antenna									
800 RRH (800 MHz)	240.0000	60.00	-10.48	-0.88	145.00	1.369	11	6.34	5.58
Unit									
1900 RRH (1900 MHz)	240.0000	60.00	-4.48	9.51	145.00	1.369	11	2.58	2,54
Unit									
TD-RRH8x20	240.0000	66.13	-7.48	4.32	145.00	1.369	11	4.05	1.53
ALU Model 800 Notch	240.0000	11.00	-7.48	4.32	145.00	1.369	11	0.66	0.32
Filter		- 1							
RFS Switch #	240.0000	1.04	-10.48	-0.88	145.00	1.369	11	0.07	0.11
ACU-A20N		- 1							
RFS Switch #	240.0000	1.04	-4.48	9.51	145.00	1.369	11	0.07	0.11
ACU-A20N									
RFS Switch #	240.0000	1.04	-7.48	4.32	145.00	1.369	11	0.07	0.11
ACU-A20N						1975040		-101	
	Sum	11205.21		- 1			- 1		- 1
	Weight:								ı

Dish Pressures - No Ice

Elevation ft	Dish Description	Aiming Azimuth	Weight lb	Offset _x ft	Offsetz ft	K_z	A _A ft²	q _z psf
145.00	PA6-65AC VHLP2-11 Dish Antenna VHLP800-11 6WH Dish Antenna	240.0000 240.0000 0.0000	17.00	-5.14 -5.53 0.00	2.97 3.19 -6.38	1.427 1.369 1.369	28.27 3.14 5.31	
		Sum Weight:	156.00					

Dish Pressures - With Ice

Elevation ft	Dish Description	Aiming Azimuth	Weight lb	Offset _x ft	Offset _z ft	Kz	$\frac{A_A}{ft^2}$	q _z psf	t _z in
145.00	PA6-65AC VHLP2-11 Dish Antenna VHLP800-11 6WH Dish Antenna	240.0000 240.0000 0.0000 Sum Weight:	622.30 77.89 150.07 850.27	-5.53 0.00	2.97 3.19 -6.38	1.427 1.369 1.369	4.07	8 7 7	1.7743 1.7393 1.7393

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ì	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	55 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Dish Pressures - Service

Elevation ft	Dish Description	Aiming Azimuth	Weight lb	Offset _x ft	Offset _z ft	K _z	A _A ft²	q _z psf
177.00	PA6-65AC	240.0000	90.00	-5.14	2.97	1.427	28.27	11
145.00	VHLP2-11 Dish Antenna	240.0000	17.00	-5.53	3.19	1.369	3.14	11
145.00	VHLP800-11 6WH Dish	0.0000	49.00	0.00	-6.38	1.369	5.31	11
	Antenna							
		Sum	156.00	0				
		Weight:						

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	Commission II Caroline
		X	Z	Moments, M _x	Moments, M2	0 160
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Weight	14105.14			7500 100		DEPOSITE OF THE PARTY OF THE PA
cing Weight	17996.89		THE RESERVE			
Il Member Self-Weight	32102.03	ALCOHOLD TO THE REAL PROPERTY.	NEW PARIS	-20.96	-4.30	
l Weight	50737.86	DE RELEASE		-20.96	-4.30	
d 0 deg - No Ice		-359.27	-66928.75	-6714.11	55.18	0.03
d 30 deg - No Ice	A STREET, SQUARE,	33488.47	-58009.23	-5789.93	-3334.56	-11.29
d 45 deg - No Ice	10-13 10-5	47360.58	-47071.74	-4711.67	-4742.93	-15.87
d 60 deg - No Ice	The state of the s	58136.13	-33153.24	-3316.02	-5829.69	-19.44
d 90 deg - No Ice	E X 37 157	67337.24	359.27	38.52	-6765.22	-22.47
d 120 deg - No Ice	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58722.26	33906.49	3378.44	-5891.44	-19.68
d 135 deg - No Ice	Tell results	48053.89	47765.04	4755.73	-4828.90	-16.08
d 150 deg - No Ice	- 10 10 10	34045.24	58255.06	5806.36	-3436.93	-11.33
d 180 deg - No Ice	2 CONT. P. S.	359.27	67190.71	6674.82	-63.78	-0.06
d 210 deg - No Ice	STATE OF THE STATE	-33488.47	58009.23	5748.01	3325.95	11.29
d 225 deg - No Ice	10 100 100 00	-47360.58	47071.74	4669.76	4734.33	15.87
d 240 deg - No Ice	- 1 May - 1	-58249.56	33218.73	3274.76	5822.22	19.53
d 270 deg - No Ice	- AUT : 55%	-67337.24	-359.27	-80.44	6756.62	22,47
d 300 deg - No Ice	The state of the s	-58608.83	-33841.00	-3419.70	5881.70	19.58
d 315 deg - No Ice	- S - S - S - S - S - S - S - S - S - S	-48053.89	-47765.04	-4797.64	4820.30	16.08
d 330 deg - No Ice		-34045.24	-58255.06	-5848.27	3428.32	11.33
nber Ice	48229.38		100	Value of the last	100 TO 100 TO 100	SE SERVI
ll Weight Ice	197530.91	CATED LINE	Sec. 200	-219.59	-11.41	
d 0 deg - Ice	STATE	-62.64	-26147.72	-2814.55	-1.05	-2.25
d 30 deg - Ice	THE STATE OF THE PARTY OF THE P	13101.68	-22694.06	-2462.52	-1306.26	-4.81
d 45 deg - Ice	22 10	18495.03	-18444.94	-2047.18	-1847.31	-5.59
d 60 deg - Ice	27 27 1	22674.63	-13019.61	-1508.10	-2263.71	-6.02
d 90 deg - Ice	4 7 17 18	26218.56	62.64	-209.23	-2618.12	-5.65
d 120 deg - Ice		22818.05	13174.75	1087.33	-2274.88	-3.80
d 135 deg - Ice	TOTAL STREET	18649.58	18599.48	1623.31	-1862.62	-2.43
d 150 deg - Ice		13186.85	22716.30	2033.30	-1323.97	-0.88
d 180 deg - Ice		62.64	26241.00	2376.31	-21.77	2.26
d 210 deg - Ice	RECEIPTED IN	-13101.68	22694.06	2023.35	1283.44	4.81
d 225 deg - Ice	2300月26	-18495.03	18444.94	1608.01	1824.49	5.59
d 240 deg - Ice	Reston . S	-22715.02	13042.94	1069.16	2241.29	6.05
d 270 deg - Ice	W - X 70 00	-26218.56	-62.64	-229,94	2595.30	5.65
d 300 deg - Ice	Sa 1945 6	-22777.66	-13151.42	-1526.27	2251.65	3.79
	Section 1	11/2/201	12.0000			2.43
	MARIE N. TO					0.88
1 Weight	50737.86	-13100,03	-22/10.30			0.00
	30737.00	-02.05	-17315 38			0.01
d 315 deg - Ice d 315 deg - Ice d 330 deg - Ice l Weight d 0 deg - Service	50737.86	-18649.58 -13186.85	-18599.48 -22716.30 -17315.38	-1326.27 -2062.49 -2472.47 -20.96 -1731.29	1839.79 1301.15 -4.30 15.23	

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODif	ication Analysis 56 of 83
Project	Date
Westport, Connectic	ut 15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, Mz	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Wind 30 deg - Service		8663.92	-15007.78	-1492.19	-861.74	-2.92
Wind 45 deg - Service		12252.83	-12178.10	-1213.23	-1226.11	-4.10
Wind 60 deg - Service	Mison N	15040.61	-8577.20	-852.15	-1507.26	-5.03
Wind 90 deg - Service		17421.06	92.95	15.71	-1749.30	-5.81
Wind 120 deg - Service		15192.25	8772.07	879.79	-1523.24	-5.09
Wind 135 deg - Service		12432.20	12357.47	1236.12	-1248.35	-4.16
Wind 150 deg - Service		8807.97	15071.38	1507.93	-888.22	-2.93
Wind 180 deg - Service		92.95	17383.15	1732.61	-15.55	-0.01
Wind 210 deg - Service	SAME OF A	-8663.92	15007.78	1492.83	861.43	2.92
Wind 225 deg - Service		-12252.83	12178.10	1213.88	1225.79	4.10
Wind 240 deg - Service		-15069.95	8594.14	852.97	1507.24	5.05
Wind 270 deg - Service	the state of	-17421.06	-92.95	-15.07	1748.98	5.81
Wind 300 deg - Service		-15162.90	-8755.13	-878.98	1522.63	5.06
Wind 315 deg - Service	Direction of the	-12432.20	-12357.47	-1235.47	1248.03	4.16
Wind 330 deg - Service		-8807.97	-15071.38	-1507.28	887.91	2.93

Load Combinations

Comb.	Description	_
No.	<i>T</i>	
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 45 deg - No Ice	
7	0.9 Dead+1.6 Wind 45 deg - No Ice	
8	1.2 Dead+1.6 Wind 60 deg - No Ice	
9	0.9 Dead+1.6 Wind 60 deg - No Ice	
10	1.2 Dead+1.6 Wind 90 deg - No Ice	
11	0.9 Dead+1.6 Wind 90 deg - No Ice	
12	1.2 Dead+1.6 Wind 120 deg - No Ice	
13	0.9 Dead+1.6 Wind 120 deg - No Ice	
14	1.2 Dead+1.6 Wind 135 deg - No Ice	
15	0.9 Dead+1.6 Wind 135 deg - No Ice	
16	1.2 Dead+1.6 Wind 150 deg - No Ice	
17	0.9 Dead+1.6 Wind 150 deg - No Ice	
18	1.2 Dead+1.6 Wind 180 deg - No Ice	
19	0.9 Dead+1.6 Wind 180 deg - No Ice	
20	1.2 Dead+1.6 Wind 210 deg - No Ice	
21	0.9 Dead+1.6 Wind 210 deg - No Ice	
22	1.2 Dead+1.6 Wind 225 deg - No Ice	
23	0.9 Dead+1.6 Wind 225 deg - No Ice	
24	1.2 Dead+1.6 Wind 240 deg - No Ice	
25	0.9 Dead+1.6 Wind 240 deg - No Ice	
26	1.2 Dead+1.6 Wind 270 deg - No Ice	
27	0.9 Dead+1.6 Wind 270 deg - No Ice	
28	1.2 Dead+1.6 Wind 300 deg - No Ice	
29	0.9 Dead+1.6 Wind 300 deg - No Ice	
30	1.2 Dead+1.6 Wind 315 deg - No Ice	
31	0.9 Dead+1.6 Wind 315 deg - No Ice	
32	1.2 Dead+1.6 Wind 330 deg - No Ice	
33	0.9 Dead+1.6 Wind 330 deg - No Ice	
34	1.2 Dead+1.0 Ice	
35	1.2 Dead+1.0 Wind 0 deg+1.0 Ice	
36	1.2 Dead+1.0 Wind 30 deg+1.0 Ice	

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
Spr	int/Clearwire Upgrades - MODification Analysis	57 of 83
Project		Date
	Westport, Connecticut	15:00:07 05/30/17
Client	0 1 1 1500 001	Designed by
	Sprint - JPW-001	MCD

Comb.		Description	
No.			
37	1.2 Dead+1.0 Wind 45 deg+1.0 Ice		
38	1.2 Dead+1.0 Wind 60 deg+1.0 Ice		
39	1.2 Dead+1.0 Wind 90 deg+1.0 Ice		
40	1.2 Dead+1.0 Wind 120 deg+1.0 Ice		
41	1.2 Dead+1.0 Wind 135 deg+1.0 Ice		
42	1.2 Dead+1.0 Wind 150 deg+1.0 Ice		
43	1.2 Dead+1.0 Wind 180 deg+1.0 Ice		
44	1.2 Dead+1.0 Wind 210 deg+1.0 Ice		
45	1.2 Dead+1.0 Wind 225 deg+1.0 Ice		
46	1.2 Dead+1.0 Wind 240 deg+1.0 Ice		
47	1.2 Dead+1.0 Wind 270 deg+1.0 Ice		
48	1.2 Dead+1.0 Wind 300 deg+1.0 Ice		
49	1.2 Dead+1.0 Wind 315 deg+1.0 Ice		
50	1.2 Dead+1.0 Wind 330 deg+1.0 Ice		
51	Dead+Wind 0 deg - Service		
52	Dead+Wind 30 deg - Service		
53	Dead+Wind 45 deg - Service		
54	Dead+Wind 60 deg - Service		
55	Dead+Wind 90 deg - Service		
56	Dead+Wind 120 deg - Service		
57	Dead+Wind 135 deg - Service		
58	Dead+Wind 150 deg - Service		
59	Dead+Wind 180 deg - Service		
60	Dead+Wind 210 deg - Service		
61	Dead+Wind 225 deg - Service		
62	Dead+Wind 240 deg - Service		
63	Dead+Wind 270 deg - Service	*	
64	Dead+Wind 300 deg - Service		
65	Dead+Wind 315 deg - Service		
66	Dead+Wind 330 deg - Service		

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No_*	ft	Туре		Load		Moment	Moment
				Comb.	16	kip-ft	kip-ft
T1	180 - 160	Leg	Max Tension	9	4867.90	-0.37	-0.35
			Max. Compression	12	-6239.76	0.11	-0.04
			Max. Mx	28	-97.31	-1.03	0.22
			Max. My	32	-233.90	0.07	-1.63
			Max. Vy	28	-652.95	-1.03	0.22
			Max. Vx	16	903.24	-0.07	-1.13
		Diagonal	Max Tension	27	5614.11	0.00	0.00
			Max. Compression	26	-5681.61	0.00	0.00
			Max. Mx	34	-108.10	0.07	0.00
			Max. Vy	34	-36.14	0.00	0.00
		Horizontal	Max Tension	26	3128.72	-0.01	0.00
			Max. Compression	11	-3094.68	0.00	0.00
			Max. Mx	38	-3.55	-0.04	-0.00
			Max. My	28	-772.04	-0.01	-0.01
			Max. Vy	38	39.59	-0.04	-0.00
			Max. Vx	28	1.48	-0.01	-0.01
		Top Girt	Max Tension	19	644.15	0.00	0.00
			Max. Compression	2	-644.40	-0.01	-0.00
			Max. Mx	48	-52.73	-0.03	-0.00
			Max. My	8	-224.57	-0.01	-0.00
			Max. Vy	48	38.35	-0.03	-0.00
			Max. Vx	8	0.24	0.00	0.00
		Inner Bracing	Max Tension	2	11.16	0.00	0.00

AECOM

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	58 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi
No.	ft	Туре		Load	**	Moment	Moment
			Man Camanaia	Comb.	lb	kip-ft	kip-ft
			Max. Compression Max. Mx	2 34	-11.20	0.00	0.00
			Max, Mx Max, Vy	34	-0.17 -33.47	-0.04	0.00
T2	160 - 140	Leg	Max Tension	29	-33.47 35399.67	0.00 -1.14	0.00 -0.00
12	100 - 140	Leg	Max. Compression	12	-40834.78	1.19	-0.00
			Max. Mx	18	31510.00	1.82	-0.01
			Max. My	16	-2389.22	-0.04	1.86
			Max. Vy	28	-2346.02	-0.11	0.04
			Max. Vx	16	-2434.94	0.02	-0.12
		Diagonal	Max Tension	11	12053.59	0.00	0.00
		•	Max. Compression	10	-12135.11	0.00	0.00
			Max. Mx	34	-186.73	0.09	0.00
			Max. Vy	34	-44.29	0.00	0.00
		Horizontal	Max Tension	11	7547.50	0.00	0.00
			Max. Compression	10	-7570.37	0.00	0.00
			Max. Mx	48	-364.64	-0.05	-0.00
			Мах. Му	12	1047.84	-0.00	0.01
			Max. Vy	48	-45.95	-0.05	-0.00
			Max. Vx	12	-3.08	-0.00	0.01
		Inner Bracing	Max Tension	13	6.17	0.00	0.00
			Max. Compression	28	-8.09	0.00	0.00
			Max. Mx	34	-5.36	-0.05	0.00
Т3	140 - 133.333	Ι	Max. Vy	34	-38.38	0.00	0.00
13	140 - 133.333	Leg	Max Tension	29	50398.59	-1.24	0.01
			Max. Compression Max. Mx	12	-56972.32	-0.08	0.00
			Max. My	28 32	49479.34 -5407.73	-1.25	0.01
			Max. Vy	18	-3407.73 -281.70	-0.03 -1.24	1.34
			Max. Vx	16	-306.19	-0.04	-0.07 -1.34
		Diagonal	Max Tension	11	13067.37	0.00	0.00
		214501141	Max. Compression	10	-13181.73	0.00	0.00
			Max. Mx	34	-235.72	0.11	0.00
			Max. Vy	34	-51.45	0.00	0.00
		Horizontal	Max Tension	10	8513.79	0.00	0.00
			Max. Compression	11	-8503.06	0.00	0.00
			Max. Mx	48	-161.75	-0.07	-0.01
			Max. My	28	-1197.90	-0.03	-0.02
			Max. Vy	48	-56.75	-0.07	-0.01
			Max. Vx	28	-4.20	0.00	0.00
		Inner Bracing	Max Tension	13	8.27	0.00	0.00
			Max. Compression	28	-11.11	0.00	0.00
			Max. Mx	34	-6.05	-0.05	0.00
=:			Max. Vy	34	40.57	0.00	0.00
T4	133.333 - 126.667	Leg	Max Tension	29	66968.58	0.08	-0.00
			Max. Compression	12	-75375.96	1.55	-0.01
			Max. Mx	28	64904.38	-1.63	0.01
			Max. My	32	-7308.24	-0.03	1.55
			Max. Vy	18	-1856.80	0.09	0.01
		Diagonal	Max. Vx	26	-1836.83	0.01	0.10
		Diagonal	Max Tension Max. Compression	11 10	15172.10	0.00	0.00
			Max, Mx	10 34	-15294.23 -260.70	0.00 0.12	0.00
			Max, Vy	34	-260.70 -54.32	0.12	0.00
		Top Girt	Max Tension	10	-54.32 10212.05	0.00	0.00 0.00
		rop Gitt	Max. Compression	10	-10212.05	0.00	0.00
			Max. Mx	48	-10212,11	-0.08	-0.01
			Max. My	12	1575.72	-0.00	0.03
			Max. Vy	48	-60.20	-0.08	-0.01
			Max. Vx	12	4.60	0.00	0.00
			ATAMON T AL		176.93	0.00	0.00

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	59 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Sprint - JPW-001	Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
			*	Comb.	lb	kip-ft	kip-ft
			Max. Compression	26	-178.52.	0.00	0.00
			Max. Mx	34	0.51	-0.06	0.00
			Max. Vy	34	42.93	0.00	0.00
T5	126.667 - 120	Leg	Max Tension	29	85218.35	-1.62	0.01
			Max. Compression	12	-96147.74	1.17	0.05
			Max. Mx	28	83840.39	-1.63	0.01
			Max. My	32	-7827.50	-0.03	1.55
			Max. Vy	18	-1558.77	-1.61	-0.00
			Max. Vx	10	1514.91	-0.05	1.53
		Diagonal	Max Tension	11	17706.36	0.00	0.00
			Max. Compression	10	-17894.00	0.00	0.00
			Max. Mx	34	-295.15	0.17	0.00
			Max. Vy	34	72.45	0.00	0.00
		Top Girt	Max Tension	10	12283.00	0.00	0.00
			Max. Compression	10	-12287.42	0.00	0.00
			Max. Mx	48	-348.64	-0.09	-0.01
			Max. My	12	1778.97	-0.00	0.03
			Max. Vy	48	63.47	-0.09	-0.01
			Max. Vx	12	-4.92	-0.00	0.03
		Inner Bracing	Max Tension	10	212.87	0.00	0.00
			Max. Compression	10	-215.27	0.00	0.00
			Max. Mx	34	0.71	-0.07	0.00
			Max. Vy	34	45.25	0.00	0.00
T6	120 - 100	Leg	Max Tension	29	137685.87	-0.77	-0.08
			Max. Compression	12	-151984.28	0.45	0.07
			Max. Mx	28	104466.34	-1.22	-0.05
			Max. My	26	-9764.88	-0.02	-1.27
			Max. Vy	18	-188.84	-1.20	0.02
			Max. Vx	26	-225.57	-0.01	-0.87
		Diagonal	Max Tension	11	22508.15	0.00	0.00
			Max. Compression	10	-22807.37	0.00	0.00
			Max. Mx	34	-411.41	0.35	0.00
			Max. Vy	34	-110.45	0.00	0.00
		Horizontal	Max Tension	20	13592.38	0.00	0.00
			Max. Compression	21	-13490.13	0.00	0.00
			Max. Mx	48	-262.06	-0.12	-0.01
			Max. My	28	-1212.55	-0.05	-0.03
			Max. Vy	48	-72.40	-0.12	-0.01
			Max. Vx	28	-4.46	0.00	0.00
		Inner Bracing	Max Tension	13	6.30	0.00	0.00
			Max. Compression	28	-14.82	0.00	0.00
			Max. Mx	34	-11.89	-0.11	0.00
			Max. Vy	34	63.61	0.00	0.00
T7	100 - 90	Leg	Max Tension	29	168473.95	-0.47	-0.08
			Max. Compression	12	-184537.90	0.85	0.06
			Max. Mx	28	165933.32	-0.90	-0.07
			Max. My	10	-7081.24	-0.04	0.91
			Max. Vy	18	186.51	-0.88	0.02
			Max. Vx	10	-224.83	-0.04	0.91
		Diagonal	Max Tension	21	20970.02	0.00	0.00
		_	Max. Compression	20	-21198.34	0.00	0.00
			Max, Mx	34	-475.69	0.31	0.00
			Max. Vy	34	95.47	0.00	0.00
		Horizontal	Max Tension	20	13313.01	0.00	0.00
			Max. Compression	20	-13301.24	0.00	0.00
			Max. Mx	48	-619.80	-0.13	-0.01
			Max. My	28	-1580.03	-0.06	-0.03
			Max. Vy	48	-76.02	-0.13	-0.03
			Max. Vx	28	3.43	-0.06	-0.01
		Inner Bracing	Max Tension	13	4.52	0.00	0.00

AECOM

Jo	ob	Page
	Sprint/Clearwire Upgrades - MODification Analysis	60 of 83
Р	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
С	Client	Designed by
	Sprint - JPW-001	MCD

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Ax
No.	ft	Туре		Load	n	Moment	Moment
			Max. Mx	<i>Comb.</i> 34	1b	kip-ft	kip-ft
			Max. Vy	34	-12.86 67.66	-0.13 0.00	0.00
T8	90 - 80	Leg	Max Tension	29	196022.36	-0.89	0.00 -0.07
10	70 00	LUB	Max. Compression	12	-213598.10	1.08	0.07
			Max. Mx	28	193265.43	-1.12	-0.07
			Max. My	10	-7866.96	-0.04	1.26
			Max. Vy	18	165.62	-1.11	0.02
			Max. Vx	10	-212.61	-0.04	1.26
		Diagonal	Max Tension	21	21146.36	0.00	0.00
			Max. Compression	20	-21394.13	0.00	0.00
			Max. Mx	34	-531.61	0.34	0.00
			Max. Vy	34	102.19	0.00	0.00
		Top Girt	Max Tension	20	14081.53	0.00	0.00
			Max. Compression	21	-14009.27	0.00	0.00
			Max. Mx	48	-349.24	-0.14	-0.01
			Max. My	28	-799.29	-0.06	-0.02
			Max. Vy	48	-81.28	-0.14	-0.01
			Max. Vx	28	-2.92	-0.06	-0.02
		Inner Bracing	Max Tension	5	239.70	0.00	0.00
			Max. Compression	4	-247.27	0.00	0.00
			Max. Mx	34	-2.58	-0.15	0.00
TTO.	00 60	*	Max. Vy	34	72.70	0.00	0.00
T9	80 - 60	Leg	Max Tension	29	249740.48	-1.58	-0.05
			Max. Compression	12	-270707.61	1.85	0.07
			Max. Mx	28	246451.92	-1.90	-0.07
			Max. My	10	-9724.03	-0.04	1.92
			Max. Vy	18	219.93	-1.55	0.03
		Diagonal	Max. Vx Max Tension	26 21	245.75	-0.01	-1.92
		Diagonai			22455.73	0.00	0.00
			Max. Compression	20	-22790.98	0.00	0.00
			Max. Mx Max. Vy	34 34	-673.25 -114.76	0.41 0.00	0.00
		Horizontal	Max Tension	20	16091.14	0.00	0.00 0.00
		Honzontai	Max. Compression	21	-15956.55	0.00	0.00
			Max. Mx	48	-299.89	-0.24	-0.01
			Max. My	28	-941.29	-0.12	-0.01
			Max. Vy	48	-115.36	-0.24	-0.03
			Max. Vx	28	-3.84	-0.12	-0.03
		Inner Bracing	Max Tension	13	4.60	0.00	0.00
			Max. Compression	43	-17.40	0.00	0.00
			Max. Mx	34	-15.33	-0.22	0.00
			Max. Vy	34	94.26	0.00	0.00
Γ10	60 - 40	Leg	Max Tension	29	302612.18	-1.64	-0.05
			Max. Compression	12	-327423.64	1.29	0.05
			Max. Mx	28	273115.83	-1.90	-0.07
			Max. My	10	-10203.62	-0.05	1.92
			Max. Vy	18	-247.68	-1.87	0.02
			Max. Vx	26	-279.56	-0.01	-1.92
		Diagonal	Max Tension	17	23410.80	0.00	0.00
			Max. Compression	16	-23872.79	0.00	0.00
			Max. Mx	34	-835.24	0.54	0.00
		**	Max. Vy	34	-142.71	0.00	0.00
		Horizontal	Max Tension	16	17793.38	-0.10	-0.00
			Max. Compression	17	-17565.56	-0.08	-0.00
			Max. Mx	48	-218.76	-0.29	-0.01
			Max. My	28	-575.91	-0.14	-0.03
			Max. Vy	48	-126.00	-0.29	-0.01
		Inna D	Max. Vx	28	3.31	-0.14	-0.03
		Inner Bracing	Max Tension	13	2.29	0.00	0.00
			Max. Compression	43	-20.05	0.00	0.00
			Max. Mx	34	-18.27	-0.34	0.00

AECOM

Job		Page
	Sprint/Clearwire Upgrades - MODification Analysis	61 of 83
Pro	ject	Date
	Westport, Connecticut	15:00:07 05/30/17
Clic		Designed by
	Sprint - JPW-001	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	3	71		Comb.	lb	kip-ft	kip-ft
			Max. Vy	34	-125.28	0.00	0.00
T11	40 - 30	Leg	Max Tension	29	328495.29	-1.37	-0.06
	.0 20	208	Max. Compression	12	-355318.80	3.16	0.04
			Max, Mx	12	-355318.80	3.16	0.04
			Max. My	10	-12489.43	-0.07	1.71
			Max. Vy	18	314,44	-2.95	0.02
	24		Max. Vx	10	227.45	-0.07	1.71
		Diagonal	Max Tension	17	23760.66	0.00	0.00
		Diagonai	Max. Compression	16	-24257.26	0.00	0.00
			Max. Mx	34			
			Max. Vy	34	-888.93	0.57	0.00
		Horizontal	-		-146.65	0.00	0.00
		попиона	Max Tension	16	18485.76	-0.12	-0.00
			Max. Compression	17	-18249.09	-0.09	-0.00
			Max. Mx	48	-271.32	-0.31	-0.01
			Max. My	28	-1468.18	-0.16	-0.03
			Max. Vy	48	-129.00	-0.31	-0.01
			Max. Vx	28	2.82	-0.16	-0.03
		Inner Bracing	Max Tension	13	0.75	0.00	0.00
			Max. Compression	43	-20.24	0.00	0.00
			Max. Mx	34	-18.57	-0.36	0.00
			Max. Vy	34	128.42	0.00	0.00
Γ12	30 - 20	Leg	Max Tension	29	353808.57	-3.02	-0.04
			Max. Compression	12	-382708.38	-3.28	0.16
			Max. Mx	12	-382708.38	-3.28	0.16
			Max. My	10	-14187.67	-0.42	5.33
			Max. Vy	12	758.74	3.16	0.04
			Max. Vx	10	-578.68	-0.42	5.33
		Diagonal	Max Tension	17	24303.05	0.00	0.00
		Ü	Max. Compression	16	-24881.35	0.00	0.00
			Max. Mx	34	-969.63	0.61	0.00
			Max. Vy	34	-150.60	0.00	0.00
		Top Girt	Max Tension	16	19385.75	-0.17	-0.00
		Top GIII	Max. Compression	17	-19021.84	-0.13	-0.00
			Max. Mx	48	100.87	-0.42	-0.00
			Max. My	28	-682.66	-0.42	-0.01
			Max. Vy	48	-160.38	-0.42	
			Max. Vx	28	-3.81	0.00	-0.01
		Inner Bracing	Max Tension	33			0.00
		nuici Diacing	Max. Compression	33	325.76	0.00	0.00
					-340.15	0.00	0.00
			Max. Mx	34	-19.97	-0.39	0.00
11.1	20 0	T	Max. Vy	34	131.55	0.00	0.00
13	20 - 0	Leg	Max Tension	29	376559.03	2.52	-0.16
			Max. Compression	12	-408502.27	0.00	0.00
			Max. Mx	12	-408155.04	9.94	-0.20
			Max. My	10	-15171.87	-0.42	5.34
			Max. Vy	12	-1437.04	9.94	-0.20
			Max. Vx	10	1065.86	-0.42	5.34
		Diagonal	Max Tension	17	35535.74	-0.25	-0.07
			Max. Compression	16	-36275.12	0.00	0.00
			Max. Mx	6	22962.14	-0.36	0.15
			Max. My	16	-36165.70	0.09	-0.26
			Max. Vy	37	-97.70	-0.24	0.01
			Max. Vx	16	21.48	0.09	-0.26
		Horizontal	Max Tension	16	20026.07	-0.23	-0.00
			Max. Compression	17	-19924.71	-0.18	-0.00
			Max. Mx	38	-761.89	-0.55	-0.02
			Max. My	28	-974.36	-0.42	-0.06
			Max. Vy	38	184.95	-0.55	-0.02
			Max. Vx	28	-5.07	0.00	0.00
		Redund Horz 1	Max Tension	12	7091.94	0.00	0.00
		Bracing					

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
Sprint/C	learwire Upgrades - MODification Analysis	62 of 83
Project		Date
	Westport, Connecticut	15:00:07 05/30/17
Client	O 1.4 IDW 004	Designed by
	Sprint - JPW-001	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial lb	Major Axis Moment kip-ft	Minor Axi. Moment kip-ft
			Max. Compression	12	-7091.94	0.00	0.00
			Max. Mx	34	1290.19	0.05	0.00
			Max. Vy	34	33.08	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	12	6479.22	0.00	0.00
		_	Max. Compression	12	-6479.22	0.00	0.00
			Max, Mx	34	1178,72	0.09	0.00
			Max. Vy	34	-32.97	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	17	44.94	0.00	0.00
		_	Max. Compression	32	-57.10	0.00	0.00
			Max. Mx	34	-13.58	0.05	0.00
			Max. Vy	34	-33.08	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	24	110.92	0.00	0.00
			Max. Compression	8	-116.67	0.00	0.00
			Max. Mx	34	72.69	0.34	0.00
			Max. Vy	34	91.29	0.00	0.00
		Inner Bracing	Max Tension	9	9.94	0.00	0.00
		-	Max. Compression	24	-24.45	0.00	0.00
			Max. Mx	34	-18.48	0.25	0.00
			Max. Vy	34	-79.30	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	lb	lb	lb
		Comb.			
Leg C	Max. Vert	24	452832.07	53590.85	-31683.43
	Max. H _x	24	452832.07	53590.85	-31683.43
	Max. H _z	7	-402776.70	-47743.71	31475.09
	Min. Vert	9	-418560.03	-50995.11	30154.19
	Min. H _x	9	-418560.03	-50995.11	30154.19
	Min. Hz	22	437048.74	50340.94	-33001.74
Leg B	Max. Vert	12	460082.30	-54122.29	-32025.98
	Max. H _x	29	-425157.48	51520.66	30485.77
	Max. H _z	31	-410167.47	48335.66	31836.08
	Min. Vert	29	-425157.48	51520.66	30485.77
	Min. H _x	12	460082.30	-54122,29	-32025.98
	Min. H _z	14	445092.28	-50939.00	-33373.32
Leg A	Max. Vert	2	454638.54	26.71	62286.73
	Max. H _x	26	25314.93	11912.49	2111.79
	Max. H _z	2	454638.54	26.71	62286.73
	Min. Vert	19	-417285.90	-21.50	-59222.84
	Min. H _x	11	12037.72	-11906.38	952.10
	Min. H _z	19	-417285.90	-21.50	-59222.84

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M.	Torque	
	lb	lb	lb	kip-ft	kip-ft	kip-ft	
Dead Only	50737.86	0.00	-0.00	-20.96	-4.30	0.00	

ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	63 of 83
	Project	Date
1	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

1.2 Dead+1.6 Wind 0 deg - No	11			Moment, M_x	Moment, M_z	
1.2 Dead+1.6 Wind 0 deg - No	lb	lb	lb	kip-ft	kip-ft	kip-ft
Ice	60885.43	-574.83	-107505.13	-10410.77	90.01	0.05
0.9 Dead+1.6 Wind 0 deg - No Ice	45664.07	-574.83	-107505.13	-10404.48	91.30	0.05
1.2 Dead+1.6 Wind 30 deg - No Ice	60885.43	53581.54	-92814.76	-8971.78	-5169.76	-18.07
0.9 Dead+1.6 Wind 30 deg - No Ice	45664.07	53581.54	-92814.76	-8965.49	-5168.47	-18.07
1.2 Dead+1.6 Wind 45 deg - No Ice	60885.43	76073.30	-75611.14	-7301.60	-7358.27	-25.38
0.9 Dead+1.6 Wind 45 deg - No Ice	45664.07	76073.30	-75611.14	-7295.31	-7356.98	-25.38
1.2 Dead+1.6 Wind 60 deg - No Ice	60885.43	93380.78	-53254.75	-5135.54	-9045.68	-31.11
0.9 Dead+1.6 Wind 60 deg - No	45664.07	93380.78	-53254.75	-5129.25	-9044.39	-31.11
1.2 Dead+1.6 Wind 90 deg - No	60885.43	108158.72	574.83	70.02	-10499.20	-35.95
0.9 Dead+1.6 Wind 90 deg - No Ice 1.2 Dead+1.6 Wind 120 deg -	45664.07 60885.43	108158.72 93955.61	574.83	76.31	-10497.91	-35.95
No Ice 0.9 Dead+1.6 Wind 120 deg -	45664.07	93955.61	54250.38 54250.38	5250.08 5256.37	-9140.85 -9139.56	-31.49
No Ice 1.2 Dead+1.6 Wind 135 deg -	60885.43	76886.23	76424.07	7385.89	-7492.86	-31.49 -25.74
No Ice 0.9 Dead+1.6 Wind 135 deg -	45664.07	76886.23	76424.07	7392.18	-7491.57	-25.74
No Ice 1.2 Dead+1.6 Wind 150 deg -	60885.43	54577.17	93389.59	9016.65	-5334.60	-18.13
No Ice 0.9 Dead+1.6 Wind 150 deg -	45664.07	54577.17	93389.59	9022.94	-5333.31	-18.13
No Ice 1.2 Dead+1.6 Wind 180 deg -	60885.43	574.83	107505.13	10360.47	-100.33	-0.09
No Ice).9 Dead+1.6 Wind 180 deg - No Ice	45664.07	574.83	107505.13	10366.76	-99.04	-0.09
1.2 Dead+1.6 Wind 210 deg - No Ice	60885.43	-53581.54	92814.76	8921.48	5159.44	18.07
0.9 Dead+1.6 Wind 210 deg - No Ice	45664.07	-53581.54	92814.76	8927.77	5160.73	18.07
.2 Dead+1.6 Wind 225 deg - No Ice	60885.43	-76073.30	75611.14	7251.30	7347.95	25.38
9.9 Dead+1.6 Wind 225 deg - No Ice	45664.07	-76073.30	75611.14	7257.59	7349.24	25.38
.2 Dead+1.6 Wind 240 deg - No Ice	60885.43	-93380.78	53254.75	5085.24	9035.36	31.25
.9 Dead+1.6 Wind 240 deg - No Ice	45664.07	-93380.78	53254.75	5091.53	9036.65	31.25
.2 Dead+1.6 Wind 270 deg - No Ice	60885.43	-108158.72	-574.83	-120.32	10488,88	35.95
0.9 Dead+1.6 Wind 270 deg -	45664.07	-108158.72	-574.83	-114.03	10490.17	35.95
.2 Dead+1.6 Wind 300 deg - No Ice	60885.43	-93955.61	-54250.38	-5300.38	9130.53	31.32
.9 Dead+1.6 Wind 300 deg - No Ice	45664.07	-93955.61	-54250.38	-5294.09	9131.82	31.32
.2 Dead+1.6 Wind 315 deg - No Ice .9 Dead+1.6 Wind 315 deg -	60885.43 45664.07	-76886.23 -76886.23	-76424.07	-7436.19 7429.90	7482.54	25.74
No Ice .2 Dead+1.6 Wind 330 deg -	60885.43	-76886.23	-76424.07 -93389.59	-7429.90 -9066.95	7483.83 5324.28	25.74 18.13

AECOM

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	64 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Sprint - JPW-001	Designed by MCD

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
No Ice						***
0.9 Dead+1.6 Wind 330 deg -	45664.07	-54577.17	-93389.59	-9060.66	5325.57	18.13
No Ice						
1.2 Dead+1.0 Ice	207678.48	-0.00	-0.00	-223.78	-12.27	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	207678.48	-62.64	-26241.00	-2731.55	-1.92	-2.25
Ice						
1.2 Dead+1.0 Wind 30 deg+1.0	207678.48	13101.68	-22694.06	-2390.39	-1263.06	-4.81
Ice						
1.2 Dead+1.0 Wind 45 deg+1.0	207678.48	18561.00	-18510.90	-1989.71	-1786.52	-5.59
ce						
1.2 Dead+1.0 Wind 60 deg+1.0	207678.48	22755.41	-13066.26	-1468.69	-2189.06	-6.02
ce						
1.2 Dead+1.0 Wind 90 deg+1.0	207678.48	26311.85	62.64	-213.42	-2531.79	-5.66
ce						
.2 Dead+1.0 Wind 120	207678.48	22818.05	13174.75	1039.08	-2199.42	-3.80
leg+1.0 Ice						G.
.2 Dead+1.0 Wind 135	207678.48	18649.58	18599.48	1556.81	-1801.16	-2.43
leg+1.0 Ice						
.2 Dead+1.0 Wind 150	207678.48	13210.17	22756.69	1953.19	-1281.00	-0.88
leg+1.0 Ice						
.2 Dead+1.0 Wind 180	207678.48	62.64	26241.00	2283.99	-22.63	2.26
eg+1.0 Ice				21		
.2 Dead+1.0 Wind 210	207678.48	-13101.68	22694.06	1942,84	1238.51	4.81
eg+1.0 Ice						
.2 Dead+1.0 Wind 225	207678.48	-18561.00	18510.90	1542.16	1761.97	5.59
eg+1.0 Ice					1,01,7	2.23
.2 Dead+1.0 Wind 240	207678.48	-22755.41	13066.26	1021.14	2164.51	6.05
eg+1.0 Ice					2101.51	0.02
.2 Dead+1.0 Wind 270	207678.48	-26311.85	-62,64	-234.14	2507.24	5.66
eg+1.0 Ice					2507.27	5.00
.2 Dead+1.0 Wind 300	207678.48	-22818.05	-13174.75	-1486.63	2174.87	3.79
eg+1.0 Ice			1017 1170	1 100.05	2174.07	3.77
.2 Dead+1.0 Wind 315	207678.48	-18649.58	-18599.48	-2004.36	1776.62	2.43
eg+1.0 Ice	207070.10	100 19.50	10377.40	-2004.50	1770.02	2.43
.2 Dead+1.0 Wind 330	207678.48	-13210.17	-22756.69	-2400.75	1256.45	0.88
eg+1.0 Ice	207070.10	15210.17	22750.07	-2400.73	1250.45	0.60
Dead+Wind 0 deg - Service	50737.86	-92.95	-17383.15	-1700.27	11.09	0.01
Dead+Wind 30 deg - Service	50737.86	8663.92	-15007.78	-1467.59	-839.40	-2.92
ead+Wind 45 deg - Service	50737.86	12300.75	-12226.02	-1197.53	-1193.27	-2.92 -4.10
lead+Wind 60 deg - Service	50737.86	15099.30	-8611.08	-847.29	-1466.12	-5.03
ead+Wind 90 deg - Service	50737.86	17488.83	92.95	-5.57	-1701.15	
ead+Wind 120 deg - Service	50737.86	15192,25	8772.07	832.03	-1481.51	-5.81 -5.09
Dead+Wind 135 deg - Service	50737.86	12432.20				
lead+Wind 150 deg - Service	50737.86	8824.91	12357.47 15100.72	1177.38 1441.07	-1215.03 -866.05	-4.16
ead+Wind 180 deg - Service	50737.86	92.95	15000 15			-2.93
Dead+Wind 210 deg - Service	50737.86	-8663.92	17383.15	1658.36	-19.69	-0.02
ead+Wind 215 deg - Service	50737.86		15007.78	1425.68	830.79	2.92
ead+Wind 240 deg - Service	50737.86	-12300.75 -15099.30	12226.02	1155.62	1184.67	4.10
ead+Wind 270 deg - Service			8611.08	805.37	1457.51	5.05
ead+Wind 300 deg - Service	50737.86	-17488.83	-92.95	-36.35	1692.54	5.81
	50737.86	-15192.25	-8772.07	-873.94	1472.90	5.06
Dead+Wind 315 deg - Service	50737.86	-12432.20	-12357.47	-1219.29	1206.43	4.16
Dead+Wind 330 deg - Service	50737.86	-8824.91	-15100.72	-1482.98	857.45	2.93

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	65 of 83
d	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Sprint - JPW-001	Designed by MCD

		m of Applied Force			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	lb	lb	lb	lb	lb	<u>lb</u>	
1	0.00	-50737.86	0.00	-0.00	50737.86	0.00	0.000%
2	-574.83	-60885.43	-107505.13	574.83	60885.43	107505.13	0.000%
3	-574.83	-45664.07	-107505.13	574.83	45664.07	107505.13	0.000%
4	53581.54	-60885.43	-92814.76	-53581.54	60885.43	92814.76	0.000%
5	53581.54	-45664.07	-92814.76	-53581.54	45664.07	92814.76	0.000%
6	76073.30	-60885.43	-75611.14	-76073.30	60885.43	75611.14	0.000%
7	76073.30	-45664.07	-75611.14	-76073.30	45664.07	75611.14	0.000%
8	93380.78	-60885.43	-53254.75	-93380.78	60885.43	53254.75	0.000%
9	93380.78	-45664.07	-53254.75	-93380.78	45664.07	53254.75	0.000%
10	108158.72	-60885.43	574.83	-108158.72	60885.43	-574.83	0.000%
11	108158.72	-45664.07	574.83	-108158.72	45664.07	-574.83	0.000%
12	93955.61	-60885.43	54250.38	-93955.61	60885.43	-54250.38	0.000%
13	93955.61	-45664.07	54250.38	-93955.61	45664.07	-54250.38	0.000%
14	76886.22	-60885.43	76424.07	-76886.23	60885.43	-76424.07	0.000%
15	76886.22	-45664.07	76424.07	-76886.23	45664.07	-76424.07	0.000%
16	54577.17	-60885.43	93389.59	-54577.17	60885.43	-93389.59	0.000%
17	54577.17	-45664.07	93389.59	-54577.17	45664.07	-93389.59	0.000%
18	574.83	-60885.43	107505.13	-574.83	60885.43	-107505.13	0.000%
19	574.83	-45664.07	107505.13	-574.83	45664.07	-107505.13	0.000%
20	-53581.54	-60885,43	92814.76	53581.54	60885.43	-92814.76	0.000%
21	-53581.54	-45664.07	92814.76	53581.54	45664.07	-92814.76	0.000%
22	-76073.30	-60885.43	75611.14	76073.30	60885.43	-75611.14	0.000%
23	-76073.30	-45664.07	75611.14	76073.30	45664.07	-75611.14	0.000%
24	-93380.78	-60885.43	53254.75	93380.78	60885.43	-53254.75	0.000%
25	-93380.78	-45664.07	53254.75	93380.78	45664.07	-53254.75	0.000%
26	-108158.72	-60885.43	-574.83	108158.72	60885.43	574.83	0.000%
27	-108158.72	-45664.07	-574.83	108158.72	45664.07	574.83	0.000%
28	-93955.61	-60885.43	-54250.38	93955.61	60885.43	54250.38	0.000%
29	-93955.61	-45664.07	-54250.38	93955.61	45664.07	54250.38	0.000%
30	-76886.22	-60885.43	-76424.07	76886.23	60885.43	76424.07	0.000%
31	-76886.22	-45664.07	-76424.07	76886.23	45664.07	76424.07	0.000%
32	-54577.17	-60885.43	-93389.59	54577.17	60885.43	93389.59	0.000%
33	-54577.17	-45664.07	-93389.59	54577.17	45664.07	93389.59	0.000%
34	0.00	-207678.48	0.00	0.00	207678.48	0.00	0.000%
35	-62.64	-207678.48	-26241.00	62.64	207678.48	26241.00	0.000%
36	13101.68	-207678.48	-22694.06	-13101.68	207678.48	22694.06	0.000%
37	18561.00	-207678.48	-18510.90	-18561.00	207678.48	18510.90	0.000%
38	22755.41	-207678.48	-13066.26	-22755.41	207678.48	13066.26	0.000%
39	26311.85	-207678.48	62.64	-26311.85	207678.48	-62.64	0.000%
40	22818.05	-207678.48	13174.75	-22818.05	207678.48	-13174.75	0.000%
41	18649.58	-207678.48	18599.48	-18649.58	207678.48	-18599.48	0.000%
42	13210.17	-207678.48	22756.69	-13210.17	207678.48	-22756.69	0.000%
43	62.64	-207678.48	26241.00	-62.64	207678.48	-26241.00	0.000%
44	-13101.68	-207678.48	22694.06	13101.68	207678.48	-22694.06	0.000%
45	-18561.00	-207678.48	18510.90	18561.00	207678.48	-18510.90	0.000%
46	-22755.41	-207678.48	13066.26	22755.41	207678.48	-13066.26	0.000%
47	-26311.85	-207678.48	-62.64	26311.85	207678.48	62.64	0.000%
48	-22818.05	-207678.48	-13174.75	22818.05	207678.48	13174.75	0.000%
49	-18649.58	-207678.48	-18599.48	18649.58	207678.48	18599.48	0.000%
50	-13210.17	-207678.48	-22756.69	13210.17	207678.48	22756.69	0.000%
51	-92.95	-50737.86	-17383,15	92.95	50737.86	17383.15	0.000%
52	8663.92	-50737.86	-15007.78	-8663.92	50737.86	15007.78	0.000%
53	12300.75	-50737.86	-12226.02	-12300.75	50737.86	12226.02	0.000%
54	15099.30	-50737.86	-8611.08	-15099.30	50737.86	8611.08	0.000%
55	17488.83	-50737.86	92.95	-17488.83	50737.86	-92.95	0.000%
56	15192.25	-50737.86	8772.07	-15192.25	50737.86	-8772.07	0.000%
57	12432.20	-50737.86	12357.47	-12432.20	50737.86	-12357.47	0.000%
58	8824.91	-50737.86	15100.72	-8824.91	50737.86	-15100.72	0.000%
59	92.95	-50737.86	17383.15	-92.95	50737.86	-17383.15	0.000%
	-8663.92	-50737.86	15007.78	8663.92	50737.86	-17383.13	0.000%
60							

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	66 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
Ì	Client	Designed by
	Sprint - JPW-001	MCD

	Sur	n of Applied Force	S		Sum of Reaction	S	
Load	PX	PY	PZ	PX	Ρ̈́Υ	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
62	-15099.30	-50737.86	8611.08	15099.30	50737.86	-8611.08	0.000%
63	-17488.83	-50737.86	-92.95	17488.83	50737.86	92.95	0.000%
64	-15192.25	-50737.86	-8772.07	15192.25	50737.86	8772.07	0.000%
65	-12432.20	-50737.86	-12357.47	12432.20	50737.86	12357.47	0.000%
66	-8824.91	-50737.86	-15100.72	8824.91	50737.86	15100.72	0.000%

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	•
T1	180 - 160	2.525	65	0.1056	0.0059
T2	160 - 140	2.075	65	0.1047	0.0031
T3	140 - 133.333	1.621	65	0.0972	0.0041
T4	133.333 - 126.667	1.479	65	0.0946	0.0043
T5	126.667 - 120	1.339	65	0.0913	0.0044
T6	120 - 100	1.207	65	0.0872	0.0044
T 7	100 - 90	0.860	65	0.0724	0.0044
T8	90 - 80	0.704	65	0.0654	0.0041
T9	80 - 60	0.562	65	0.0579	0.0038
T10	60 - 40	0.326	65	0.0440	0.0030
T11	40 - 30	0.152	64	0.0287	0.0021
T12	30 - 20	0.089	56	0.0208	0.0016
T13	20 - 0	0.044	58	0.0126	0.0011

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
178.00	AP11-850/090/ADT w/Mount Pipe	65	2.481	0.1057	0.0056	927005
177.00	PA6-65AC	65	2.458	0.1058	0.0055	927005
175.00	SE419-SWBPALDF Panel Antenna	65	2.413	0.1058	0.0052	927005
171.00	2" Dia 10' Omni	65	2.324	0.1059	0.0046	515001
170.00	WPA-700102-4CF-EDIN-X w/	65	2.301	0.1058	0.0044	463502
	Mount Kit					
169.00	3' Yagi	65	2.279	0.1058	0.0043	421365
162.00	AP11-850/090/ADT w/Mount Pipe	65	2.120	0.1051	0.0032	271671
160.00	Pirod 15' T-Frame Sector Mount (1)	65	2.075	0.1047	0.0031	296102
159.00	2" Dia 10' Omni	65	2.052	0.1044	0.0030	341850
145.00	VHLP2-11 Dish Antenna	65	1.732	0.0992	0.0038	107196
133.00	Pirod 15' T-Frame Sector Mount (1)	65	1.472	0.0944	0.0043	296073
125.00	AIR21 B2A/B4P	65	1.305	0.0904	0.0044	58108
60.00	GPS	65	0.326	0.0440	0.0030	73683

Maximum Tower Deflections - Design Wind

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	67 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Sprint - JPW-001	Designed by MCD

Section	Elevation	Horz.	Gov.	Tilt	Twist
No_*		Deflection	Load		
	ft	in	Comb.	•	0
T1	180 - 160	15.551	28	0.6506	0.0366
T2	160 - 140	12.776	28	0.6439	0.0189
Т3	140 - 133.333	9.987	28	0.5973	0.0255
T4	133.333 - 126.667	9.110	28	0.5815	0.0265
T5	126.667 - 120	8.247	28	0.5616	0.0270
T6	120 - 100	7.433	28	0.5362	0.0271
T 7	100 - 90	5.299	28	0.4452	0.0269
T8	90 - 80	4.338	28	0.4024	0.0253
T9	80 - 60	3.468	28	0.3561	0.0231
T10	60 - 40	2.010	28	0.2705	0.0181
T11	40 - 30	0.941	28	0.1767	0.0126
T12	30 - 20	0.548	12	0.1276	0.0096
T13	20 - 0	0.270	14	0.0772	0.0068

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature	
ft		Comb.	in	0	o	ft	
178.00	AP11-850/090/ADT w/Mount Pipe	28	15.276	0.6511	0.0345	156112	
177.00	PA6-65AC	28	15.138	0.6513	0.0336	156112	
175.00	SE419-SWBPALDF Panel Antenna	28	14.862	0.6516	0.0318	156112	
171.00	2" Dia 10' Omni	28	14.310	0.6516	0.0281	86729	
170.00	WPA-700102-4CF-EDIN-X w/	28	14.171	0.6515	0.0272	78056	
	Mount Kit						
169.00	3' Yagi	28	14.033	0.6512	0.0263	70960	
162.00	AP11-850/090/ADT w/Mount Pipe	28	13.057	0.6465	0.0199	45793	
160.00	Pirod 15' T-Frame Sector Mount (1)	28	12.776	0.6439	0.0189	50099	
159.00	2" Dia 10' Omni	28	12.635	0.6423	0.0186	58105	
145.00	VHLP2-11 Dish Antenna	28	10.667	0.6100	0.0231	17520	
133.00	Pirod 15' T-Frame Sector Mount (1)	28	9.066	0.5807	0.0266	49365	
125.00	AIR21 B2A/B4P	28	8.038	0.5557	0.0270	9439	
60.00	GPS	28	2.010	0.2705	0.0181	11979	

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	71		in	Bolts	Bolt lb	lb	Allowable	80	
T1	180	Leg	A325N	0.8750	4	89.16	40589.10	0.002	1	Bolt Tension
		Diagonal	A325N	0.6250	3	1893.87	12425.20	0.152	.1	Bolt Shear
		Horizontal	A325N	0.6250	2	1564.36	12425.20	0.126	1	Bolt Shear
		Top Girt	A325N	0.6250	2	322.20	12425.20	0.026	1	Bolt Shear
T2	160	Leg	A325N	0.8750	4	2806.23	40589.10	0.069	1	Bolt Tension
		Diagonal	A325N	0.6250	3	4045.04	12425.20	0.326	1	Bolt Shear
		Horizontal	A325N	0.6250	2	3785.19	12425.20	0.305	1	Bolt Shear
T3	140	Leg	A325N	0.7500	6	8399.76	29820.60	0.282	1	Bolt Tension

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	68 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Sprint - JPW-001	Designed by MCD

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	Bolt lb	lb	Allowable	7.0	
		Diagonal	A325N	0.6250	3	4393.91	12425.20	0.354	1	Bolt Shear
		Horizontal	A325N	0.6250	2	4256.90	12425.20	0.343	1	Bolt Shear
T4	133.333	Leg	A325N	0.7500	6	11161.40	29820.60	0.374	1	Bolt Tension
		Diagonal	A325N	0.6250	3	5098.08	12425.20	0.410	1	Bolt Shear
		Top Girt	A325N	0.6250	2	5106.06	12425.20	0.411	1	Bolt Shear
T5	126.667	Leg	A325N	0.7500	6	14203.10	29820.60	0.476	1	Bolt Tension
		Diagonal	A325N	0.6250	3	5964.67	12425.20	0.480	1	Bolt Shear
	2	Top Girt	A325N	0.6250	2	6143.71	12425.20	0.494	1	Bolt Shear
T6	120	Leg	A325N	0.7500	6	17706.00	29820.60	0.594	1	Bolt Tension
		Diagonal	A325N	0.6250	3	7602.46	12425.20	0.612	1	Bolt Shear
		Horizontal	A325N	0.6250	2	6796.19	12425.20	0.547	1	Bolt Shear
T7	100	Leg	A490X	0.7500	6	28079.00	37441.40	0.750	1	Bolt Tension
		Diagonal	A325N	0.6250	3	7066.11	12425.20	0.569	1	Bolt Shear
		Horizontal	A325N	0.6250	2	6656.51	12425.20	0.536	1	Bolt Shear
T8	90	Leg	A325N	1.0000	6	32670.40	53014.40	0.616	1	Bolt Tension
		Diagonal	A325N	0.6250	3	7131.38	12425.20	0.574	1	Bolt Shear
		Top Girt	A325N	0.6250	2	7040.76	12425.20	0.567	1	Bolt Shear
T9	80	Leg	A325N	1.0000	6	37123.60	53014.40	0.700	1	Bolt Tension
		Diagonal	A325N	0.6250	3	7596.99	12425.20	0.611	1	Bolt Shear
		Horizontal	A325N	0.6250	2	8045.57	12425.20	0.648	1	Bolt Shear
T10	60	Leg	A325N	1.0000	8	34539.00	53014.40	0.652	1	Bolt Tension
		Diagonal	A325N	0.6250	3	-7957.60	12425.20	0.640	1	Bolt Shear
		Horizontal	A325N	0.6250	2	8896.69	12425.20	0.716	1	Bolt Shear
T11	40	Leg	A325N	1.0000	8	41061.90	53014.40	0.775	1	Bolt Tension
		Diagonal	A325N	0.6250	3	8085.75	12425.20		1	Bolt Shear
		Horizontal	A325N	0.6250	2	9242.88	12425.20		1	Bolt Shear
T12	30	Leg	A325N	1.0000	8	44226.10	53014.40	0.711	1	Bolt Tension
		Diagonal	A325N	0.6250	3	8293.78	12425.20		1	Bolt Shear
		Top Girt	A325N	0.6250	2	9692.87	12425.20	0.007	1	Bolt Shear
T13	20	Leg	A325N	1.0000	8	47069.90	53014.40	0.780	1.	Bolt Tension
		Diagonal	A325X	0.6250	3	12091.70	15186.40	0.888	1	Bolt Shear
		Horizontal	A325N	0.7500	2	10013.00	17892.40	0.796	i	Bolt Shear

Compression Checks

Leg Design Data (Compression)

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
lks	Sprint/Clearwire Upgrades - MODification Analysis	69 of 83
Projec	t	Date
	Westport, Connecticut	15:00:07 05/30/17
Client		Designed by
	Sprint - JPW-001	MCD

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	lb	lb	ϕP_n
Tl	180 - 160	ROHN 3 STD	20.00	6.67	68.8 K=1.00	2.2285	-6239.76	70976.40	0.088
T2	160 - 140	ROHN 4 STD	20.04	6.68	53.1 K=1.00	3.1741	-40834.80	116229.00	0.351 1
T3	140 - 133.333	ROHN 5 EH (5.5 OD x 0.375)	6.68	6.68	44.1 K=1.00	6.0377	-56972.30	235665.00	0.242 1
T4	133.333 - 126.667	ROHN 5 EH (5.5 OD x 0.375)	6.68	6.68	44.1 K=1.00	6.0377	-75376.00	235665.00	0.320 1
T5	126.667 - 120	ROHN 5 EH (5.5 OD x 0.375)	6.68	6.68	44.1 K=1.00	6.0377	-96147.70	235665.00	0.408 1
Т6	120 - 100	ROHN 6 EHS	20.04	10.02	54.0 K=1.00	6.7133	-151984.00	244017.00	0.623 1
Т7	100 - 90	ROHN 6 EH	10.03	10.03	54.8 K=1.00	8.4049	-184538.00	303585.00	0.608 1
Т8	90 - 80	ROHN 6 EH	10.03	10.03	54.8 K=1.00	8.4049	-213598.00	303585.00	0.704 1
Т9	80 - 60	ROHN 8 EHS (8.75 OD x 0.375(t))	20.05	10.03	40.6 K=1.00	9.8666	-270708.00	393602.00	0.688 1
T10	60 - 40	ROHN 8 EHS (8.75 OD x 0.375(t))	20.05	10.03	40.6 K=1.00	9.8666	-327424.00	393602.00	0.832 1
T11	40 - 30	ROHN 8 EHS (8.75 OD x 0.375(t))	10.03	10.03	40.6 K=1.00	9.8666	-355319.00	393602.00	0.903 1
T12	30 - 20	ROHN 8 EHS (8.75 OD x 0.375(t))	10.03	10.03	40.6 K=1.00	9.8666	-382708.00	393602.00	0.972 1
T13	20 - 0	ROHN 8 EH	20.05	10.03	41.8 K=1.00	12.7627	-408502.00	505434.00	0.808 1

 $^{^{1}} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	lb	lb	ϕP_n
Т1	180 - 160	ROHN 2 STD	7.94	7.67	117.0 K=1.00	1.0745	-5681.61	17747.50	0.320
T2	160 - 140	ROHN 2 STD	8.55	8.25	125.8 K=1.00	1.0745	-12135.10	15331.30	0.792 '
Т3	140 - 133.333	ROHN 2 EH	8.77	8.42	131.6 K=1.00	1.4807	-13181.70	19329.00	0.682
T4	133.333 - 126.667	ROHN 2 EH	9.00	8.66	135.3 K=1.00	1.4807	-15294.20	18268.60	0.837 1
T5	126.667 - 120	ROHN 2 XXS	9.24	8.91	152.2 K=1.00	2.6559	-17894.00	25913.80	0.691 1
T6	120 - 100	ROHN 2.5 XXS	12.52	12.06	171.4 K=1.00	4.0285	-22783.70	30977.00	0.736 1
T7	100 - 90	ROHN 3 STD	12.92	12.49	128.8 K=1.00	2.2285	-21198.30	30346.40	0.699 1
Т8	90 - 80	ROHN 3 STD	13.35	12.93	133.4 K=1.00	2.2285	-21394.10	28290.90	0.756 1

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
Spri	nt/Clearwire Upgrades - MODification Analysis	70 of 83
Project		Date
	Westport, Connecticut	15:00:07 05/30/17
Client	0 14 1004 004	Designed by
	Sprint - JPW-001	MCD

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ф <i>Р</i> "	Ratio P _u
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> _n
Т9	80 - 60	ROHN 3 STD	14.21	13.70	141.3 K=1.00	2.2285	-22791.00	25233.20	0.903 1
T10	60 - 40	P3.5x.226	15.12	14.64	131.4 K=1.00	2.6795	-23872.80	35061.40	0.681 1
T11	40 - 30	P3.5x.226	15.60	15.12	135.8 K=1.00	2.6795	-24257.30	32848.30	0.738 1
T12	30 - 20	P3.5x.226	16.08	15.62	140.2 K=1.00	2.6795	-24881.40	30803.00	0.808 1
T13	20 - 0	P3.5x.226	24.33	12.17	54.6 K=0.50	2.6795	-36275.10	96957.10	0.374

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft	ft	ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	ROHN 1.5 STD	8.60	4.15	80.0 K=1.00	0.7995	-3094.68	22519.90	0.137
T2	160 - 140	ROHN 1.5 STD	10.01	4.82	92.9 K=1.00	0.7995	-7570.37	19142.00	0.395
Т3	140 - 133.333	ROHN 2 STD	10.71	5.17	78.8 K=1.00	1.0745	-8503.06	30717.90	0.277 1
Т6	120 - 100	ROHN 2 STD	13.92	6.68	101.9 K=1.00	1.0745	-13490.10	22639.20	0.596 1
T7	100 - 90	ROHN 2 STD	15.04	7.24	110.5 K=1.00	1.0745	-13301.20	19817.20	0.671 1
Т9	80 - 60	ROHN 2.5 STD	18.93	9.10	115.2 K=1.00	1.7040	-15956.50	28984.30	0.551
T10	60 - 40	ROHN 2.5 STD	21.43	10.35	131.1 K=1.00	1.7040	-17565.60	22405.40	0.784 1
T11	40 - 30	ROHN 2.5 STD	22.68	10.97	139.0 K=1.00	1.7040	-18249.10	19925.90	0.916 ¹
T13	20 - 0	P3.5x.226	25.18	12.22	109.7 K=1.00	2.6795	-19924.70	49988.70	0.399 1

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.,
	fi		ft	ft		in ²	lb	lb	φP,,
T1	180 - 160	ROHN 1.5 STD	8.54	4.13	79.5	0.7995	-644.40	22660.50	0.028
					K=1.00				

FAX: 860-529-3991

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	71 of 83
ì	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	фР"	Ratio P _u
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> _n
T4	133.333 - 126.667	ROHN 2 STD	11.40	5.47	83.4 K=1.00	1.0745	-10212.10	29067.20	0.351
T5	126.667 - 120	ROHN 2 STD	12.10	5.82	88.7 K=1.00	1.0745	-12287.40	27193.80	0.452 1
Т8	90 - 80	ROHN 2 STD	16.36	7.90	120.5 K=1.00	1.0745	-14009.30	16719.60	0.838 1
T12	30 - 20	ROHN 3 STD	23.93	11.60	119.6 K=1.00	2.2285	-19021.80	35183.60	0.541 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Redundant Horizontal	(1)	Design	Data	(Compression)
Medalidalit Hollzolltal		Dealan	Dala	(COUIDI 6221011)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	20 - 0	ROHN 1.5 STD	6.29	5,93	91.5 K=0.80	0.7995	-7091.94	19502.40	0.364

 $^{^{1}} P_{u} / \phi P_{n}$ controls

Redundant Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio P
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	20 - 0	ROHN 1.5 SCH XS (Extra Strong)	11.50	10.76	170.7 K=0.80	1.0681	-6479.22	8278.56	0.783

¹ P_u / ϕP_n controls

Redundant Hip (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	20 - 0	ROHN 1.5 STD	6.29	6.29	97.1 K=0.80	0.7995	-57.10	18067.90	0.003

¹ P_u / ϕP_n controls

AECOM
500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	72 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client IDM 004	Designed by
Sprint - JPW-001	MCD

Redundant Hip Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	фР"	Ratio P
	ft		ft	ft		in ²	lb	lb	$-\phi P_n$
T13	20 - 0	ROHN 2.5 STD	15.07	15.07	190.9 K=1.00	1.7040	-116.67	10559.80	0.011

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Inner Bracing Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	$-\phi P_n$
T1	180 - 160	L2x2x1/8	4.27	4.27	128.9 K=1.00	0.4844	-11.20	6510.70	0.002
T2	160 - 140	L2x2x1/8	5.01	5.01	151.1 K=1.00	0.4844	-7.71	4790.07	0.002 1
Т3	140 - 133.333	L2x2x1/8	5.35	5.35	161.6 K=1.00	0.4844	-11.11	4188.78	0.003 1
T4	133.333 - 126.667	L2x2x1/8	5.70	5.70	172.1 K=1.00	0.4844	-178.52	3694.21	0.048 1
T5	126.667 - 120	L2x2x1/8	6.05	6.05	182.6 K=1.00	0.4844	-215.27	3282.33	0.066 1
Т6	120 - 100	L2 1/2x2 1/2x3/16	6.96	6.96	168.7 K=1.00	0.9020	-14.07	7160.82	0.002 1
T 7	100 - 90	L2 1/2x2 1/2x3/16	7.52	7.52	182.3 K=1.00	0.9020	-14.81	6129.75	0.002 1
Т8	90 - 80	L2 1/2x2 1/2x3/16	8.18	8.18	198.3 K=1.00	0.9020	-247.27	5182.20	0.048 1
Т9	80 - 60	L3x3x3/16	9.46	9.46	190.5 K=1.00	1.0900	-17.40	6782.55	0.003 1
T10	60 - 40	L3 1/2x3 1/2x1/4	10.71	10.71	185.2 K=1.00	1.6900	-20.05	11125.50	0.002
T11	40 - 30	L3 1/2x3 1/2x1/4	11.34	11.34	196.1 K=1.00	1.6900	-20.24	9932.80	0.002
T12	30 - 20	L3 1/2x3 1/2x1/4	11.96	11.96	206.9 K=1.00	1.6900	-340.15	8922.09	0.038 1
T13	20 - 0	ROHN 2 STD	12.59	12.59	191.9 K=1.00	1.0745	-24.45	6590.81	0.004 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Tension Checks

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

٦	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	73 of 83
j	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio
710	ft		ft	ft		in^2	lb	lЬ	$\frac{P_u}{\Phi P_u}$
T1	180 - 160	ROHN 3 STD	20.00	6.67	68.8	2.2285	4867.90	100281.00	0.049
									/
T2	160 - 140	ROHN 4 STD	20.04	6.68	53.1	3.1741	35399.70	142832.00	0.248 1
	140 100 000	DOVEN /							1
T3	140 - 133.333	ROHN 5 EH (5.5 OD x 0.375)	6.68	6.68	44.1	6.0377	50398.60	271699.00	0.185
T4	133.333 - 126.667	ROHN 5 EH (5.5 OD x 0.375)	6.68	6.68	44.1	6.0377	66968.60	271699.00	0.246 1
T5	126.667 - 120	ROHN 5 EH (5.5 OD x 0.375)	6.68	6.68	44.1	6.0377	85218.30	271699.00	0.314 1
Т6	120 - 100	ROHN 6 EHS	20.04	10.02	54.0	6.7133	137686.00	302097.00	0.456 ¹
T 7	100 - 90	ROHN 6 EH	10.03	10.03	54.8	8.4049	168474.00	378222.00	0.445 1
T8	90 - 80	ROHN 6 EH	10.03	10.03	54.8	8.4049	196022.00	378222.00	0.518 1
Т9	80 - 60	ROHN 8 EHS (8.75 OD x 0.375(t))	20.05	10.03	40.6	9.8666	249740.00	443995.00	0.562 1
T10	60 - 40	ROHN 8 EHS (8.75 OD x 0.375(t))	20.05	10.03	40.6	9.8666	302612.00	443995.00	0.682
T11	40 - 30	ROHN 8 EHS (8.75 OD x 0.375(t))	10.03	10.03	40.6	9.8666	328495.00	443995.00	0.740
T12	30 - 20	ROHN 8 EHS (8.75 OD x 0.375(t))	10.03	10.03	40.6	9.8666	353809.00	443995.00	0.797 1
T13	20 - 0	ROHN 8 EH	20.05	10.03	41.8	12.7627	376559.00	574322.00	0.656 1

¹ P_u / ϕP_n controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio
1104	ft		ft	ft		in^2	lb	lb	$\frac{P_u}{\phi P_n}$
T1	180 - 160	ROHN 2 STD	7.94	7.67	117.0	1.0745	5614.11	48353.90	0.116
T2	160 - 140	ROHN 2 STD	8.55	8.25	125.8	1.0745	12053.60	48353.90	0.249 1
T3	140 - 133.333	ROHN 2 EH	8.77	8.42	131.6	1.4807	13067.40	66630.70	0.196 1
T4	133.333 - 126.667	ROHN 2 EH	9.00	8.66	135.3	1.4807	15172.10	66630.70	0.228 1
T5	126.667 - 120	ROHN 2 XXS	9.24	8.91	152.2	2.6559	17706.40	119516.00	0.148 1
T6_	120 - 100	ROHN 2.5 XXS	12.19	11.73	166.7	4.0285	22508.20	181280.00	0.124
T7	100 - 90	ROHN 3 STD	12.92	12.49	128.8	2.2285	20970.00	100281.00	0.209 1

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Jo	b	Page
	Sprint/Clearwire Upgrades - MODification Analysis	74 of 83
Pı	roject	Date
	Westport, Connecticut	15:00:07 05/30/17
CI	lient On the IDNA COA	Designed by
	Sprint - JPW-001	MCD

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
Т8	90 - 80	ROHN 3 STD	13.35	12.93	133.4	2.2285	21146.40	100281.00	0.211
Т9	80 - 60	ROHN 3 STD	14.21	13.70	141.3	2.2285	22455.70	100281.00	0.224 1
T10	60 - 40	P3.5x.226	15.12	14.64	131.4	2.6795	23410.80	120579.00	0.194 1
T11	40 - 30	P3.5x.226	15.60	15.12	135.8	2.6795	23760.70	120579.00	0.197 1
T12	30 - 20	P3.5x.226	16.08	15.62	140.2	2.6795	24303.00	120579.00	0.202 1
T13	20 - 0	P3.5x.226	24.33	12.17	109.2	2.6795	35535.70	120579.00	0.295 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	φP,
T1	180 - 160	ROHN 1.5 STD	8.60	4.15	80.0	0.7995	3128.72	35975.60	0.087
T2	160 - 140	ROHN 1.5 STD	10.01	4.82	92.9	0.7995	7547.50	35975.60	0.210 1
Т3	140 - 133.333	ROHN 2 STD	10.71	5.17	78.8	1.0745	8513.79	48353.90	0.176 1
Т6	120 - 100	ROHN 2 STD	13.92	6.68	101.9	1.0745	13592.40	48353.90	0.281 1
T7	100 - 90	ROHN 2 STD	15.04	7.24	110.5	1.0745	13313.00	48353.90	0.275 1
Т9	80 - 60	ROHN 2.5 STD	18.93	9.10	115.2	1.7040	16091.10	76682.30	0.210 1
T10	60 - 40	ROHN 2.5 STD	21.43	10.35	131.1	1.7040	17793.40	76682.30	0.232 1
T11	40 - 30	ROHN 2.5 STD	22.68	10.97	139.0	1.7040	18485.80	76682.30	0.241 1
T13	20 - 0	P3.5x.226	25.18	12.22	109.7	2.6795	20026.10	120579.00	0.166 1

¹ P_u / ϕP_n controls

Top Girt Design Data (Tension)

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	75 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client	Designed by
Sprint - JPW-001	MCD

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	φP _n
T1	180 - 160	ROHN 1.5 STD	8.54	4.13	79.5	0.7995	644.15	35975.60	0.018
T4	133.333 - 126.667	ROHN 2 STD	11.40	5.47	83.4	1.0745	10212.00	48353.90	0.211 1
T5	126.667 - 120	ROHN 2 STD	12.10	5.82	88.7	1.0745	12283.00	48353.90	0.254 1
Т8	90 - 80	ROHN 2 STD	16.36	7.90	120.5	1.0745	14081.50	48353.90	0.291 1
T12	30 - 20	ROHN 3 STD	23.93	11.60	119.6	2.2285	19385.70	100281.00	0.193 1

 $^{^{1}} P_{u} / \phi P_{n}$ controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
	ft		ft	ft		in^2	lb	lb	φP,
T13	20 - 0	ROHN 1.5 STD	6.29	5.93	114.4	0.7995	7091.94	35975.60	0.197

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Redundant Diagonal (1) Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	фР"	Ratio P.,
	ft		ft	ft		in^2	lb	lb	φ <i>P</i> _π
T13	20 - 0	ROHN 1.5 SCH XS (Extra Strong)	11.50	10.76	213.4	1.0681	6479.22	48066.40	0.135

 $^{^{1}} P_{u} / \phi P_{n}$ controls

Redundant Hip (1) Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	20 - 0	ROHN 1.5 STD	6.29	6.29	121.3	0.7995	44.94	35975.60	0.001

 $^{^{1}}$ P_{u} / ϕP_{n} controls

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
Sprint/Clearwire Upgrades - MODification Analysis	76 of 83
Project	Date
Westport, Connecticut	15:00:07 05/30/17
Client Sprint - JPW-001	Designed by MCD

Redundant Hip Dia	agonal (1) Des	sign Data (Tension)
-------------------	----------------	-------------	----------

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	ft		in²	lb	lb	φΡ,,
T13	20 - 0	ROHN 2.5 STD	15.07	15.07	190.9	1.7040	110.92	76682.30	0.001

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Inner Bracing Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> ,
T1	180 - 160	L2x2x1/8	4.27	4.27	81.8	0.4844	11.16	15693.80	0.001
T2	160 - 140	L2x2x1/8	4.31	4.31	82.6	0.4844	6.17	15693.80	0.000 1
T3	140 - 133.333	L2x2x1/8	5.35	5.35	102.6	0.4844	8.27	15693.80	0.001
T4	133.333 - 126.667	L2x2x1/8	5.70	5.70	109.3	0.4844	176.93	15693.80	0.011
T5	126.667 - 120	L2x2x1/8	6.05	6.05	115.9	0.4844	212.87	15693.80	0.014 1
Т6	120 - 100	L2 1/2x2 1/2x3/16	6.40	6.40	98.7	0.9020	6.30	29224.80	0.000 1
Т7	100 - 90	L2 1/2x2 1/2x3/16	7.52	7.52	116.0	0.9020	4.52	29224.80	0.000 1
Т8	90 - 80	L2 1/2x2 1/2x3/16	8.18	8.18	126.2	0.9020	239.70	29224.80	0.008 1
T9	80 - 60	L3x3x3/16	8.84	8.84	113.0	1.0900	4.60	35316.00	0.000 1
T10	60 - 40	L3 1/2x3 1/2x1/4	10.09	10.09	111.1	1.6900	2.29	76050.00	0.000 1
TI1	40 - 30	L3 1/2x3 1/2x1/4	11.34	11.34	124.8	1.6900	0.75	76050.00	0.000
T12	30 - 20	L3 1/2x3 1/2x1/4	11.96	11.96	131.7	1.6900	325.76	76050.00	0.004 1
T13	20 - 0	ROHN 2 STD	12.59	12.59	191.9	1.0745	9.94	48353.90	0.000 1

¹ P_u / ϕP_n controls

Section Capacity Table

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	77 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
0	Client	Designed by
	Sprint - JPW-001	MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
T1	180 - 160	Leg	ROHN 3 STD	1	-5957.73	70976.40	8.4	Pass
		Leg	ROHN 3 STD	2	-6239.76	70976.40	8.8	Pass
		Leg	ROHN 3 STD	3	-6005.64	70976.40	8.5	Pass
T2	160 - 140	Leg	ROHN 4 STD	40	-38817.10	116229.00	33.4	Pass
12	100 140	Leg	ROHN 4 STD	41	-40834.80	116229.00	35.1	Pass
		Leg	ROHN 4 STD	42	-38836.70	116229.00	33.4	Pass
Т3	140 - 133.333			79				
13	140 - 155.555	Leg	ROHN 5 EH (5.5 OD x 0.375)		-54423.90	235665.00	23.1 26.6 (b)	Pass
		Leg	ROHN 5 EH (5.5 OD x 0.375)	80	-56972.30	235665.00	24.2 28.2 (b)	Pass
		Leg	ROHN 5 EH (5.5 OD x 0.375)	81	-54451.30	235665.00	23.1 26.6 (b)	Pass
T4	133.333 - 126.667	Leg	ROHN 5 EH (5.5 OD x 0.375)	94	-72324.30	235665.00	30.7 35.5 (b)	Pass
		Leg	ROHN 5 EH (5.5 OD x 0.375)	95	-75376.00	235665.00	32.0 37.4 (b)	Pass
		Leg	ROHN 5 EH (5.5 OD x 0.375)	96	-72417.90	235665.00	30.7 35.5 (b)	Pass
T5	126.667 - 120	Leg	ROHN 5 EH (5.5 OD x 0.375)	109	-92606.00	235665.00	39.3 45.5 (b)	Pass
		Leg	ROHN 5 EH (5.5 OD x 0.375)	110	-96147.70	235665.00	40.8 47.6 (b)	Pass
		Leg	ROHN 5 EH (5.5 OD x 0.375)	111	-92798.90	235665.00	39.4 45.5 (b)	Pass
T6	120 - 100	Leg	ROHN 6 EHS	124	-147424.00	244017.00	60.4	Pass
		Leg	ROHN 6 EHS	125	-151984.00	244017.00	62.3	Pass
		Leg	ROHN 6 EHS	126	-147985.00	244017.00	60.6	Pass
T7	100 - 90	Leg	ROHN 6 EH	151	-179494.00	303585.00	59.1 72.7 (b)	Pass
		Leg	ROHN 6 EH	152	-184538.00	303585.00	60.8 75.0 (b)	Pass
		Leg	ROHN 6 EH	153	-180221.00	303585.00	59.4 72.6 (b)	Pass
T8	90 - 80	Leg	ROHN 6 EH	166	-208204.00	303585.00	68.6	Pass
10	JU = 00	Leg	ROHN 6 EH	167	-213598.00	303585.00	70.4	
								Pass
TTO.	00 (0	Leg	ROHN 6 EH	168	-209079.00	303585.00	68.9	Pass
T9	80 - 60	Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	181	-264730.00	393602.00	67.3 68.3 (b)	Pass
		Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	182	-270708.00	393602.00	68.8 70.0 (b)	Pass
T10	(0.40	Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	183	-265882.00	393602.00	67.6 68.1 (b)	Pass
T10	60 - 40	Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	208	-320966.00	393602.00	81.5	Pass
	-	Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	209	-327424.00		83.2	Pass
		Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	210	-322377.00		81.9	Pass
T11	40 - 30	Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	235	-348657.00		88.6	Pass
		Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	236	-355319.00		90.3	Pass
		Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	237	-350191.00		89.0	Pass
T12	30 - 20	Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	250	-375864.00	393602.00	95.5	Pass
		Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	251	-382708.00	393602.00	97.2	Pass
		Leg	ROHN 8 EHS (8.75 OD x 0.375(t))	252	-377518.00	393602.00	95.9	Pass
T13	20 - 0	Leg	ROHN 8 EH	265	-401478.00	505434.00	79.4	Pass

AECOM

7	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	78 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client	Designed by
	Sprint - JPW-001	MCD

Section	Elevation	Component	Size	Critical	P		%	Pas
No.	ft	Туре		Element	lb	lb	Capacity	Fai
		-	B 01B 1 0 B 1				87.3 (b)	
		Leg	ROHN 8 EH	266	-408502.00	505434.00	80.8	Pass
							88.8 (b)	
		Leg	ROHN 8 EH	267	-403441.00	505434.00	79.8	Pas
T1	100 160	D:1	DOIDIA CED		5601.61	15515.40	87.0 (b)	_
11	180 - 160	Diagonal	ROHN 2 STD	8	-5681.61	17747.50	32.0	Pass
		Diagonal	ROHN 2 STD	9	-5680.99	17747.50	32.0	Pass
		Diagonal Diagonal	ROHN 2 STD ROHN 2 STD	11	-4870.70	17747.50	27.4	Pas
		Diagonal	ROHN 2 STD	12 14	-4871.31	17747.50	27.4	Pas
		Diagonal	ROHN 2 STD	15	-3825.60	17747.50	21.6	Pas
		Diagonal	ROHN 2 STD	20	-3825.62	17747.50 17782.20	21.6	Pas
		Diagonal	ROHN 2 STD	20	-3967.76		22.3	Pass
		Diagonal	ROHN 2 STD	23	-3967.61 -2631.15	17782.20	22.3	Pas
		Diagonal	ROHN 2 STD	23 24		17782.20	14.8	Pas
		Diagonal	ROHN 2 STD	26	-2631.35 -3362.30	17782.20	14.8 18.9	Pas
		Diagonal	ROHN 2 STD	27	-3362.30	17782.20 17782.20	18.9	Pas: Pas:
		Diagonal	ROHN 2 STD	31	-955.53	17782.20	5.4	Pas
		Diagonal	ROHN 2 STD	32	-955.55 -956.06	17817.00	5.4	Pas
		Diagonal	ROHN 2 STD	33	-235.38	17817.00	1.3	Pas
		Diagonal	ROHN 2 STD	34	-234.30	17817.00	1.3	Pas
		Diagonal	ROHN 2 STD	35	-1077.12	17817.00	6.0	Pas
		Diagonal	ROHN 2 STD	36	-1076.67	17817.00	6.0	Pas
T2	160 - 140	Diagonal	ROHN 2 STD	44	-12128.90	15331.30	79.1	Pas
	100 110	Diagonal	ROHN 2 STD	45	-12135.10	15331.30	79.2	Pas
		Diagonal	ROHN 2 STD	47	-11180.60	15331.30	72.9	Pas
		Diagonal	ROHN 2 STD	48	-11174.00	15331.30	72.9	Pass
		Diagonal	ROHN 2 STD	50	-11215.20	15331.30	73.2	Pas
		Diagonal	ROHN 2 STD	51	-11215.60	15331.30	73.2	Pas
		Diagonal	ROHN 2 STD	56	-9233.07	16154.50	57.2	Pas
		Diagonal	ROHN 2 STD	57	-9234.51	16154.50	57.2	Pas
		Diagonal	ROHN 2 STD	59	-8152.94	16154.50	50.5	Pass
		Diagonal	ROHN 2 STD	60	-8153.77	16154.50	50.5	Pass
		Diagonal	ROHN 2 STD	62	-7804.32	16154.50	48.3	Pass
		Diagonal	ROHN 2 STD	63	-7802.04	16154.50	48.3	Pass
		Diagonal	ROHN 2 STD	68	-9536.38	17005.60	56.1	Pass
		Diagonal	ROHN 2 STD	69	-9532.35	17005.60	56.1	Pass
		Diagonal	ROHN 2 STD	71	-8320.69	17005.60	48.9	Pass
		Diagonal	ROHN 2 STD	72	-8327.15	17005.60	49.0	Pass
		Diagonal	ROHN 2 STD	74	-7778.91	17005.60	45.7	Pass
		Diagonal	ROHN 2 STD	75	-7776.46	17005.60	45.7	Pass
T3	140 - 133.333	Diagonal	ROHN 2 EH	83	-13171.80	19329.00	68.1	Pass
		Diagonal	ROHN'2 EH	84	-13181.70	19329.00	68.2	Pass
		Diagonal	ROHN 2 EH	86	-12307.80	19329.00	63.7	Pass
		Diagonal	ROHN 2 EH	87	-12296.40	19329.00	63.6	Pass
		Diagonal	ROHN 2 EH	89	-12555.50	19329.00	65.0	Pass
		Diagonal	ROHN 2 EH	90	-12557.00	19329.00	65.0	Pass
T4	133.333 -	Diagonal	ROHN 2 EH	100	-15283.30	18268.60	83.7	Pass
	126.667							
		Diagonal	ROHN 2 EH	101	-15294.20	18268.60	83.7	Pass
		Diagonal	ROHN 2 EH	102	-14573.30	18268.60	79.8	Pass
		Diagonal	ROHN 2 EH	103	-14558.60	18268.60	79.7	Pass
		Diagonal	ROHN 2 EH	104	-14844.20	18268.60	81.3	Pass
		Diagonal	ROHN 2 EH	105	-14848.00	18268.60	81.3	Pass
T5	126.667 - 120	Diagonal	ROHN 2 XXS	115	-17884.90	25913.80	69.0	Pass
		Diagonal	ROHN 2 XXS	116	-17894.00	25913.80	69.1	Pass
		Diagonal	ROHN 2 XXS	117	-17282.00	25913.80	66.7	Pass
		Diagonal	ROHN 2 XXS	118	-17266.90	25913.80	66.6	Pass
		Diagonal	ROHN 2 XXS	119	-17530.50	25913.80	67.6	Pass
		Diagonal	ROHN 2 XXS	120	-17536.60	25913.80	67.7	Pass
T6	120 - 100	Diagonal	ROHN 2.5 XXS	128	-22676.00	30977.00	73.2	Pass

AECOM

-	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	79 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Christ IDW 004	Designed by
	Sprint - JPW-001	MCD

Section	Elevation	Component	Size	Critical	P	$ \rho P_{allow} $	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
		Diagonal	ROHN 2.5 XXS	129	-22679.80	30977.00	73.2	Pass
		Diagonal	ROHN 2.5 XXS	131	-22586.80	30977.00	72.9	Pass
		Diagonal	ROHN 2.5 XXS	132	-22555.20	30977.00	72.8	Pass
		Diagonal Diagonal	ROHN 2.5 XXS	134	-22756.00	30977.00	73.5	Pass
		_	ROHN 2.5 XXS	135	-22783.70	30977.00	73.6	Pass
		Diagonal Diagonal	ROHN 2.5 XXS ROHN 2.5 XXS	140 141	-22799.20	32743.10	69.6	Pass
		Diagonal	ROHN 2.5 XXS	141	-22807.40 -22356.20	32743.10	69.7	Pass
		Diagonal	ROHN 2.5 XXS	143	-22330.20	32743.10 32743.10	68.3 68.2	Pass
		Diagonal	ROHN 2.5 XXS	146	-22607.80	32743.10	69.0	Pass Pass
		Diagonal	ROHN 2.5 XXS	147	-22625.20	32743.10	69.1	Pass
T 7	100 - 90	Diagonal	ROHN 3 STD	155	-22023.20	30346.40	68.6	Pass
.,	100 30	Diagonal	ROHN 3 STD	156	-20823.70	30346.40	68.6	Pass
		Diagonal	ROHN 3 STD	158	-21019.20	30346.40	69.3	Pass
		Diagonal	ROHN 3 STD	159	-20977.20	30346.40	69.1	Pass
		Diagonal	ROHN 3 STD	161	-21156.70	30346.40	69.7	Pass
		Diagonal	ROHN 3 STD	162	-21198.30	30346.40	69.9	Pass
T8	90 - 80	Diagonal	ROHN 3 STD	172	-20843.50	28290.90	73.7	Pass
		Diagonal	ROHN 3 STD	173	-20840.40	28290.90	73.7	Pass
		Diagonal	ROHN 3 STD	174	-21267.80	28290.90	75.2	Pass
		Diagonal	ROHN 3 STD	175	-21221.20	28290.90	75.0	Pass
		Diagonal	ROHN 3 STD	176	-21344.50	28290.90	75.4	Pass
		Diagonal	ROHN 3 STD	177	-21394.10	28290.90	75.6	Pass
T9	80 - 60	Diagonal	ROHN 3 STD	185	-21977.40	25233.20	87.1	Pass
		Diagonal	ROHN 3 STD	186	-21969.40	25233.20	87.1	Pass
		Diagonal	ROHN 3 STD	188	-22760.30	25233.20	90.2	Pass
		Diagonal	ROHN 3 STD	189	-22708.70	25233.20	90.0	Pass
		Diagonal	ROHN 3 STD	191	-22731.50	25233.20	90.1	Pass
		Diagonal	ROHN 3 STD	192	-22791.00	25233.20	90.3	Pass
		Diagonal	ROHN 3 STD	197	-21679.80	26922.60	80.5	Pass
		Diagonal	ROHN 3 STD	198	-21674.20	26922.60	80.5	Pass
		Diagonal	ROHN 3 STD	200	-22303.00	26922.60	82.8	Pass
		Diagonal	ROHN 3 STD	201	-22254.20	26922.60	82.7	Pass
		Diagonal	ROHN 3 STD	203	-22318.90	26922.60	82.9	Pass
	en 10	Diagonal	ROHN 3 STD	204	-22373.30	26922.60	83.1	Pass
T10	60 - 40	Diagonal	P3.5x.226	212	-22813.10	35061.40	65.1	Pass
		Diagonal	P3.5x.226	213	-22801.10	35061.40	65.0	Pass
		Diagonal	P3.5x.226	215	-23872.80	35061.40	68.1	Pass
		Diagonal	P3.5x.226	216	-23814.40	35061.40	67.9	Pass
		Diagonal	P3.5x.226	218	-23778.40	35061.40	67.8	Pass
		Diagonal	P3.5x.226	219	-23849.00	35061.40	68.0	Pass
		Diagonal	P3.5x.226	224	-22518.70	37388.20	60.2	Pass
		Diagonal	P3.5x.226	225	22509 50	27200.00	60.4 (b)	ъ.
		Diagonai	rs.sx.220	225	-22508.50	37388.20	60.2	Pass
		Diagonal	P3.5x.226	227	23457.20	27200 20	60.4 (b)	De
		Diagonai	F3.3X.220	227	-23457.20	37388.20	62.7	Pass
		Diagonal	P3.5x.226	228	-23401.70	27200 20	62.9 (b)	D
		Diagonai	F3.3X.220	220	-23401.70	37388.20	62.6	Pass
		Diagonal	P3.5x.226	230	-23394.40	37388.20	62.8 (b) 62.6	Pass
		Diagonai	13.34.220	230	-23374.40	3/366.20	62.8 (b)	rass
		Diagonal	P3.5x.226	231	-23460.10	37388.20	62.7	Pass
		Diagonai	1 3.5X.220	231	-23400.10	37366.20	62.9 (b)	F488
T11	40 - 30	Diagonal	P3.5x.226	239	-23081.40	32848.30	70.3	Pass
	50	Diagonal	P3.5x.226	240	-23067.20	32848.30	70.3	Pass
		Diagonal	P3.5x.226	242	-24257.30	32848.30	73.8	Pass
		Diagonal	P3.5x.226	243	-24237.30	32848.30	73.6	Pass
		Diagonal	P3.5x.226	245	-24134.80	32848.30	73.7	Pass
		Diagonal	P3.5x.226	246	-242137.00	32848.30	73.7	Pass
T12	30 - 20	Diagonal	P3.5x.226	256	-23643.20	30803.00	76.8	Pass
- ~ -	20 20	Diagonal	P3.5x.226	257	-23629.10	30803.00	76.7	Pass
				,		20002.00	, 0. /	1 1400

Ī	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	80 of 83
	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
110.		Diagonal	P3.5x.226	258	-24881.40	30803.00	80.8	Pass
		Diagonal	P3.5x.226	259	-24819.20	30803.00	80.6	Pass
			P3.5x.226	260	-24734.60	30803.00	80.3	Pass
		Diagonal		261			80.5	Pass
	20.0	Diagonal	P3.5x.226		-24813.30	30803.00		
T13	20 - 0	Diagonal	P3.5x.226	269	-34212.80	96957.10	35.3	Pass
							75.1 (b)	_
		Diagonal	P3.5x.226	272	-34263.50	96957.10	35.3	Pass
							75.2 (b)	
		Diagonal	P3.5x.226	276	-36275.10	96957.10	37.4	Pass
		•					79.6 (b)	
		Diagonal	P3.5x.226	279	-36198.40	96957.10	37.3	Pass
							79.5 (b)	
		Diagonal	P3.5x.226	285	-35980.10	96957.10	37.1	Pass
		Diagonal	13.3X.220	203	-55760.10	70757.10	79.0 (b)	1 450
		D:1	D2 5 226	200	26156 10	0.6057.10	, ,	D
		Diagonal	P3.5x.226	288	-36156.10	96957.10	37.3	Pass
							79.4 (b)	_
T1	180 - 160	Horizontal	ROHN 1.5 STD	7	-3094.68	22519.90	13.7	Pass
		Horizontal	ROHN 1.5 STD	10	-2654.65	22519.90	11.8	Pass
		Horizontal	ROHN 1.5 STD	13	-2155.51	22519.90	9.6	Pass
		Horizontal	ROHN 1.5 STD	19	-2448.84	22590.20	10.8	Pass
		Horizontal	ROHN 1.5 STD	22	-1612.55	22590.20	7.1	Pass
		Horizontal	ROHN 1.5 STD	25	-2190.07	22590.20	9.7	Pass
TO.	160 140						39.5	Pass
T2	160 - 140	Horizontal	ROHN 1.5 STD	43	-7570.37	19142.00		
		Horizontal	ROHN 1.5 STD	46	-7094.74	19142.00	37.1	Pass
		Horizontal	ROHN 1.5 STD	49	-7035.18	19142.00	36.8	Pass
		Horizontal	ROHN 1.5 STD	55	-5498.61	20895.80	26.3	Pass
		Horizontal	ROHN 1.5 STD	58	-4849.44	20895.80	23.2	Pass
		Horizontal	ROHN 1.5 STD	61	-4638.26	20895.80	22.2	Pass
		Horizontal	ROHN 1.5 STD	67	-5698.96	22661.30	25.1	Pass
		Horizontal	ROHN 1.5 STD	70	-5093.66	22661.30	22.5	Pass
					-4944.09		21.8	Pass
	4.40 4.00 0.00	Horizontal	ROHN 1.5 STD	73		22661.30		
T3	140 - 133.333	Horizontal	ROHN 2 STD	82	-8503.06	30717.90	27.7	Pass
							34.3 (b)	
		Horizontal	ROHN 2 STD	85	-7934.99	30717.90	25.8	Pass
							32.0 (b)	
		Horizontal	ROHN 2 STD	88	-8098.58	30717.90	26.4	Pass
							32.6 (b)	
T6	120 - 100	Horizontal	ROHN 2 STD	127	-13427.80	22639.20	59.3	Pass
10	120 - 100	Horizontal	ROHN 2 STD	130	-13372.60	22639.20	59.1	Pass
		Horizontal	ROHN 2 STD	133	-13490.10	22639.20	59.6	Pass
		Horizontal	ROHN 2 STD	139	-12865.70	25586.40	50.3	Pass
							51.9 (b)	
		Horizontal	ROHN 2 STD	142	-12609.10	25586.40	49.3	Pass
							50.9 (b)	
		Horizontal	ROHN 2 STD	145	-12759.80	25586.40	49.9	Pass
		110/100/100/					51.5 (b)	
TT	100 00	TTintal	BOIN 2 CTD	154	-13070.60	19817.20	66.0	Pass
T7	100 - 90	Horizontal	ROHN 2 STD	154				
		Horizontal	ROHN 2 STD	157	-13210.10	19817.20	66.7	Pass
		Horizontal	ROHN 2 STD	160	-13301.20	19817.20	67.1	Pass
T9	80 - 60	Horizontal	ROHN 2.5 STD	184	-15380.90	28984.30	53.1	Pass
							62.4 (b)	
		Horizontal	ROHN 2.5 STD	187	-15936.50	28984.30	55.0	Pass
							64.7 (b)	
		Horizontal	ROHN 2.5 STD	190	-15956.50	28984.30	55.1	Pass
		HOLIZONIAL	KOHN 2.3 STD	190	-13530.30	4070 4 .30		rass
		** 1	BOIDI	400	1460446	22020 15	64.8 (b)	-
		Horizontal	ROHN 2.5 STD	196	-14694.40	33028.40	44.5	Pass
							59.6 (b)	
		Horizontal	ROHN 2.5 STD	199	-15113.10	33028.40	45.8	Pass
							61.4 (b)	
		Horizontal	ROHN 2.5 STD	202	-15164.20	33028.40	45.9	Pass

AECOM

Job		Page
	Sprint/Clearwire Upgrades - MODification Analysis	81 of 83
Pro	oject	Date
	Westport, Connecticut	15:00:07 05/30/17
Cli	ent Sprint - JPW-001	Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
T10	60 - 40	Horizontal	ROHN 2.5 STD	211	-16773.20	22405.40	74.9	Pass
	00 10	Horizontal	ROHN 2.5 STD	214	-17565.60	22405.40	78.4	Pass
		Horizontal	ROHN 2.5 STD	217	-17546.20	22405.40	78.3	Pass
		Horizontal	ROHN 2.5 STD	223	-16176.20	25378.10	63.7	Pass
		Homzomai	KOIII 2.5 51D	223	-101/0.20	23378.10	65.7 (b)	газз
		Horizontal	ROHN 2.5 STD	226	-16860.90	25279 10	` '	D
		Horizontai	KOHN 2.3 STD	220	-10800.90	25378.10	66.4	Pass
		Horizontol	DOING & CTD	220	17071 20	0.6370.10	68.5 (b)	
		Horizontal	ROHN 2.5 STD	229	-16861.30	25378.10	66.4	Pass
TD1.1	40. 20	TT ' . 1	DOIDIA # COD	•••			68.5 (b)	
T 11	40 - 30	Horizontal	ROHN 2.5 STD	238	-17346.40	19925.90	87.1	Pass
		Horizontal	ROHN 2.5 STD	241	-18249.10	19925.90	91.6	Pass
		Horizontal	ROHN 2.5 STD	244	-18212.10	19925.90	91.4	Pass
T13	20 - 0	Horizontal	P3.5x.226	268	-18765.20	49988.70	37.5	Pass
							52.8 (b)	
		Horizontal	P3.5x.226	275	-19924.70	49988.70	39.9	Pass
							56.0 (b)	
		Horizontal	P3.5x.226	284	-19838.40	49988.70	39.7	Pass
				20.	*>050.10	17700.70	55.7 (b)	1 1133
T1	180 - 160	Top Girt	ROHN 1.5 STD	4	-606.30	22660.50	2.7	Dagg
**	100 - 100	Top Girt						Pass
			ROHN 1.5 STD	5	-224.57	22660.50	1.0	Pass
TD 4	133.333 -	Top Girt	ROHN 1.5 STD	6	-644.40	22660.50	2.8	Pass
T4		Top Girt	ROHN 2 STD	97	-10212.10	29067.20	35.1	Pass
	126.667						41.1 (b)	
		Top Girt	ROHN 2 STD	98	-9757.19	29067.20	33.6	Pass
							39.3 (b)	
		Top Girt	ROHN 2 STD	99	-9914.80	29067.20	34.1	Pass
							39.9 (b)	
T5	126.667 - 120	Top Girt	ROHN 2 STD	112	-12287.40	27193.80	45.2	Pass
		•					49.4 (b)	
		Top Girt	ROHN 2 STD	113	-11885.10	27193.80	43.7	Pass
		rop our	11011112 010	115	-11005.10	27175.00	47.8 (b)	1 455
		Top Girt	ROHN 2 STD	114	-12040.30	27193.80	44.3	Dogg
		rop dire	KOIII 2 BID	114	-12040.30	2/193.00		Pass
Т8	90 - 80	T Ci-	DOING CED	1.00	12646.00	1 (710 (0	48.5 (b)	
10	90 - 80	Top Girt	ROHN 2 STD	169	-13646.00	16719.60	81.6	Pass
		Top Girt	ROHN 2 STD	170	-13926.90	16719.60	83.3	Pass
	•••	Top Girt	ROHN 2 STD	171	-14009.30	16719.60	83.8	Pass
T12	30 - 20	Top Girt	ROHN 3 STD	253	-18067.00	35183.60	51.4	Pass
							74.1 (b)	
		Top Girt	ROHN 3 STD	254	-19021.80	35183.60	54.1	Pass
							78.0 (b)	
		Top Girt	ROHN 3 STD	255	-18972.20	35183.60	53.9	Pass
		•					77.8 (b)	
T13	20 - 0	Redund Horz 1	ROHN 1.5 STD	270	-6969.99	19502.40	35.7	Pass
	,	Bracing		2.0	0505.55	17502.10	33.7	2 1200
		Redund Horz 1	ROHN 1.5 STD	273	-7091.94	19502.40	36.4	Pass
		Bracing	KOIM 1.5 BID	213	-7051.54	19302.40	30.4	газз
		Redund Horz 1	DOING CON	277	7001.04	10500 40	264	D
			ROHN 1.5 STD	277	-7091.94	19502.40	36.4	Pass
		Bracing	DOVE 4 4 600					
		Redund Horz 1	ROHN 1.5 STD	280	-7004.06	19502.40	35.9	Pass
		Bracing						
		Redund Horz 1	ROHN 1.5 STD	286	-7004.06	19502.40	35.9	Pass
		Bracing						
		Redund Horz 1	ROHN 1.5 STD	289	-6969.99	19502.40	35.7	Pass
		Bracing				_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.7	~ 455
T13	20 - 0	Redund Diag 1	ROHN 1.5 SCH XS (Extra	271	-6367.80	8278.56	76.9	Pass
113	20 0	Bracing	Strong)	2/1	-0207.00	04/0.30	70.9	F488
		Redund Diag 1		274	6470.00	0070 55	70.3	D
			ROHN 1.5 SCH XS (Extra	274	-6479.22	8278.56	78.3	Pass
		Bracing	Strong)					=
		Redund Diag 1	ROHN 1.5 SCH XS (Extra	278	-6479.22	8278.56	78.3	Pass
		Bracing	Strong)					
		Redund Diag 1	ROHN 1.5 SCH XS (Extra	281	-6398.93	8278.56	77.3	Pass

AECOM

Job		Page
	Sprint/Clearwire Upgrades - MODification Analysis	82 of 83
Pro	pject	Date
	Westport, Connecticut	15:00:07 05/30/17
Clie	ent Sprint - JPW-001	Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
		Bracing Redund Diag 1	Strong) ROHN 1.5 SCH XS (Extra	287	-6398.93	8278.56	77.3	Pass
		Bracing Redund Diag 1	Strong) ROHN 1.5 SCH XS (Extra	290	-6367.80	8278.56	76.9	Pass
T13	20 - 0	Bracing Redund Hip 1 Bracing	Strong) ROHN 1.5 STD	282	-57.10	18067.90	0.3	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	291	-56.34	18067.90	0.3	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	293	-54.00	18067.90	0.3	Pass
T13	20 - 0	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	283	-112.81	10559.80	1.1	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	292	-116.67	10559.80	1.1	Pass
	400 440	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	294	-108.89	10559.80	1.0	Pass
T1	180 - 160	Inner Bracing	L2x2x1/8	16	-3.44	6439.55	0.7	Pass
		Inner Bracing	L2x2x1/8	17	-3.05	6439.55	0.7	Pass
		Inner Bracing	L2x2x1/8	18	-3.05	6439.55	0.7	Pass
		Inner Bracing Inner Bracing	L2x2x1/8 L2x2x1/8	28 29	-2.95 -2.73	6475.08	0.7	Pass
		Inner Bracing	L2x2x1/8 L2x2x1/8	30	-2.73 -2.73	6475.08 6475.08	0.7 0.7	Pass
		Inner Bracing	L2x2x1/8 L2x2x1/8	37	-10.54	6510.70	0.7	Pass Pass
		Inner Bracing	L2x2x1/8	38	-10.34	6510.70	0.7	Pass
		Inner Bracing	L2x2x1/8	39	-11.20	6510.70	0.7	Pass
T2	160 - 140	Inner Bracing	L2x2x1/8	52	-7.71	4790.07	0.7	Pass
	100 110	Inner Bracing	L2x2x1/8	53	-7.52	4790.07	0.8	Pass
		Inner Bracing	L2x2x1/8	54	-7.52	4790.07	0.8	Pass
		Inner Bracing	L2x2x1/8	64	-6.17	5530.76	0.7	Pass
		Inner Bracing	L2x2x1/8	65	-6.15	5530.76	0.7	Pass
		Inner Bracing	L2x2x1/8	66	-6.13	5530.76	0.7	Pass
		Inner Bracing	L2x2x1/8	76	-8.09	6404.10	0.7	Pass
		Inner Bracing	L2x2x1/8	77	-7.75	6404.10	0.7	Pass
		Inner Bracing	L2x2x1/8	78	-7.75	6404.10	0.7	Pass
T3	140 - 133.333	Inner Bracing	L2x2x1/8	91	-11.11	4188.78	0.8	Pass
		Inner Bracing	L2x2x1/8	92	-10.87	4188.78	0.8	Pass
		Inner Bracing	L2x2x1/8	93	-10.86	4188.78	0.8	Pass
T4	133.333 - 126.667	Inner Bracing	L2x2x1/8	106	-178.52	3694,21	4.8	Pass
		Inner Bracing	L2x2x1/8	107	-173.37	3694.21	4.7	Pass
T5	126.667 - 120	Inner Bracing	L2x2x1/8	108	-178.52	3694.21	4.8	Pass
13	120.007 - 120	Inner Bracing Inner Bracing	L2x2x1/8 L2x2x1/8	121	-215.27	3282.33	6.6	Pass
				122	-211.01	3282.33	6.4	Pass
Т6	120 - 100	Inner Bracing Inner Bracing	L2x2x1/8 L2 1/2x2 1/2x3/16	123	-215.27	3282.33	6.6	Pass
10	120 - 100	Inner Bracing	L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16	136 137	-13.99 -14.07	7160.82	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16	137	-14.07	7160.82 7160.82	0.7 0.7	Pass Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	148	-14.82	8475.74	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16	149	-14.70	8475.74	0.6	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	150	-14.69	8475.74	0.6	Pass
T 7	100 - 90	Inner Bracing	L2 1/2x2 1/2x3/16	163	-14.71	6129.75	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	164	-14.81	6129.75	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	165	-14.72	6129.75	0.7	Pass
T8	90 - 80	Inner Bracing	L2 1/2x2 1/2x3/16	178	-245.83	5182,20	4.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	179	-247.27	5182.20	4.8	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	180	-247.26	5182.20	4.8	Pass
T9	80 - 60	Inner Bracing	L3x3x3/16	193	-17.26	6782.55	0.9	Pass
		Inner Bracing	L3x3x3/16	194	-17.40	6782.55	0.9	Pass
		Inner Bracing	L3x3x3/16	195	-17.26	6782.55	0.9	Pass
		Inner Bracing	L3x3x3/16	205	-16.62	7775.70	0.8	Pass

AECOM

	Job	Page
	Sprint/Clearwire Upgrades - MODification Analysis	83 of 83
i	Project	Date
	Westport, Connecticut	15:00:07 05/30/17
	Client Sprint - JPW-001	Designed by MCD

Section	Elevation	Component	Size	Critical	P		%	Pass
No.	ft	Туре		Element	lЬ	lb	Capacity	Fail
		Inner Bracing	L3x3x3/16	206	-16.78	7775.70	0.8	Pass
		Inner Bracing	L3x3x3/16	207	-16.63	7775.70	0.8	Pass
T10	60 - 40	Inner Bracing	L3 1/2x3 1/2x1/4	220	-19.91	11125.50	0.5	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	221	-20.05	11125.50	0.5	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	222	-19.90	11125.50	0.5	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	232	-19.23	12546.70	0.5	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	233	-19.37	12546.70	0.5	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	234	-19.22	12546.70	0.5	Pass
T11	40 - 30	Inner Bracing	L3 1/2x3 1/2x1/4	247	-20.10	9932.80	0.5	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	248	-20.24	9932.80	0.5	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	249	-20.09	9932.80	0.5	Pass
T12	30 - 20	Inner Bracing	L3 1/2x3 1/2x1/4	262	-340.13	8922.09	3.8	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	263	-340.15	8922.09	3.8	Pass
		Inner Bracing	L3 1/2x3 1/2x1/4	264	-338.99	8922.09	3.8	Pass
T13	20 - 0	Inner Bracing	ROHN 2 STD	295	-23.18	6590.81	0.4	Pass
		Inner Bracing	ROHN 2 STD	296	-24.45	6590.81	0.4	Pass
		Inner Bracing	ROHN 2 STD	297	-22.47	6590.81	0.3	Pass
							Summary	
						Leg (T12)	97.2	Pass
						Diagonal (T9)	90.3	Pass
						Horizontal (T11)	91.6	Pass
						Top Girt (T8)	83.8	Pass
						Redund Horz 1 Bracing	36.4	Pass
						(T13) Redund Diag 1 Bracing	78.3	Pass
						(T13) Redund Hip 1 Bracing (T13)	0.3	Pass
						Redund Hip Diagonal 1 Bracing (T13)	1.1	Pass
						Inner Bracing (T5)	6.6	Pass
						Bolt Checks	88.8	Pass
						RATING =	97.2	Pass

 $Program\ Version\ 7.0.7.0-7/18/2016\ File: P:/Projects/Telcom/Structurals_By_Location/Connecticut/WestportCSP\#32/06-60542807-JPW-001/G_ERI/JPW-001\ MODifications\ Analysis.eri$

ANCHOR BOLT EVALUATION

A=CO	M			Page of
Job	180' ROHN Lattice Tower - Westport	Project No.	JPW-001	Sheet 1 of 4
Description	Anchor Bolt Analysis (TIA-222-G)	Computed by	MCD	Date 05/30/17
	MODification Analysis	Checked by		Date

ANCHOR BOLT ANALYSIS

Input Data

Tower Reactions:

Uplift:

Uplift:= 425.157⋅kips

user input

Shear:

Shear := 62.888 kips

user input

Compression:

Compression := 460.082 kips

user input

Anchor Bolt Data:

Use ASTM A354 Gr. BC

Number of Anchor Bolts = N

N = 10

user input

Bolt Ultimate Strength:

 $F_u := 125 \cdot ksi$

user input

Bolt Yield Strength:

Fy:= 109·ksi

user input

Bolt Modulus:

E:= 29000-ksi

user input

Thickness of Anchor Bolts

D := 1.0in

user input

Threads per Inch:

n := 8

user input

Coefficient of Friction:

 $\mu := 0.55$

user input

(for baseplate with grout ASCE 10-15)

Length from top of pier to

bottom of leveling nut:

 $L_{ar} := 0 in$

user input

Bolt Modulus:

 $E_{i} = 29000 \cdot ksi$

user input

-	-	-		
A	L	U	M	

Job

Description

180' ROHN Lattice Tower - Westport

Anchor Bolt Analysis (TiA-222-G)

MODification Analysis

Project No.

Computed by MCD

Page Sheet

Checked by Date

Anchor Bolt Section Properties:

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} \cdot D^2$$

$$A_g = 0.79 \cdot in^2$$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2$$

$$A_n = 0.61 \cdot in^2$$

Net Diameter:

$$D_n\!:=\,D-\frac{0.9743in}{n}$$

$$D_n = 0.88 \cdot in$$

Radius of Gyration of Bolt:

$$r := \frac{D_n}{4}$$

$$r = 0.22 \cdot in$$

Plastic Section Modulus of Bolt:

$$Z_{\mathbf{x}} := \frac{\mathbf{D_n}^3}{6}$$

$$Z_{x} = 0.11 \cdot in^{3}$$

Forces:

Tension Force:

$$T_u := \frac{Uplift}{N}$$

$$T_u = 42.52 \cdot kip$$

$$T_{ub} := T_u$$

Resistance Factor for Flexure (ANSI/TIA-222-G 4.7):

$$\varphi_f\!:=\,0.9$$

Resistance Factor for Anchor Bolt (ANSI/TIA-222-G 4.5.4.2):

$$\phi_b := 0.80$$

Resistance Factor for Tension (ANSI/TIA-222-G 4.9.6.1):

$$\phi_t := 0.75$$

Shear Force: Resistance Factor for Shear (ANSI/TIA-222-G 4.9.6.3):

$$V_u := \frac{Shear}{N}$$

$$V_u = 6.29 \cdot kip \qquad \qquad V_{ub} := V_u$$

$$\mathbf{v} \cdot - \mathbf{v}$$

 $\phi_{v} := 0.75$

-	_	-	_	
μ		_		

Job 180' ROHN Lattice Tower - Westport

JPW-001 Project No.

Page Sheet 3

Description Anchor Bolt Analysis (TIA-222-G) **MODification Analysis**

Computed by

Checked by

Date

Date

05/30/17

ANSI/TIA-222-G 4.7.1 Flexural Members:

Nominal Flexure Strength, Mn:

$$M_n := Fy Z_x$$

$$M_n = 1.03$$
· ft· kip

$$\phi_f M_n = 0.92 \cdot \text{ft} \cdot \text{kip}$$

Applied Moment due to Shear (worst case lever arm), Mu:

$$M_u := L_{ar} \cdot V_u$$

$$M_{\rm u} = 0$$
 ft kip

Flexure Check:

FlexureCheck :=
$$if(M_u \le \phi_f M_n, "OK", "NO GOOD")$$

$$\frac{M_u}{\Phi_f M_n} = 0.\%$$

ANSI/TIA-222-G 4.9.6.1 Tensile Strength:

Design Tensile Strength, Rnt:

$$R_{nt} := F_{u} \cdot A_n$$

$$R_{nt} = 75.72 \cdot \text{ft-kip}$$

$$\phi_{t}$$
 $R_{nt} = 56.79$ ft kip

Tension Check:

TensionCheck :=
$$if(T_u \le \phi_f R_{nt}, "OK", "NO GOOD")$$

$$\frac{T_{\rm u}}{\Phi_{\rm t} \cdot R_{\rm nt}} = 74.87.\%$$

ANSI/TIA-222-G 4.9.6.3 Design Shear Strength:

Design Shear Strength, Rnv:

$$R_{nv} := 0.45 \cdot F_{u} \cdot A_g$$

$$R_{nv} = 44.18 \cdot \text{ft} \cdot \text{kip}$$

$$\phi_{\mathbf{v}} \cdot \mathbf{R}_{\mathbf{n}\mathbf{v}} = 33.13 \cdot \text{ft} \cdot \text{kip}$$

Shear Check:

ShearCheck :=
$$if(V_u \le \phi_v \cdot R_{nv}, "OK", "NO GOOD")$$

$$\frac{V_{\rm u}}{\phi_{\rm v} \cdot R_{\rm nv}} = 18.98 \cdot \%$$

A=CO	M			Page of
Job	180' ROHN Lattice Tower - Westport	Project No.	JPW-001	Sheet 4 of 4
Description	Anchor Bolt Analysis (TIA-222-G)	Computed by	MCD	Date 05/30/17
	MODification Analysis	Checked by		Date

ANSI/TIA-222-G 4.9.6.4 Combined Shear and Tension:

$$\left[\frac{V_{ub}}{\left(\varphi_{v} R_{nv}\right)}\right]^{2} + \left[\frac{T_{ub}}{\left(\varphi_{t} R_{nt}\right)}\right]^{2} \leq 1$$

$$\left[\frac{V_{ub}}{\left(\phi_{v} R_{nv}\right)}\right]^{2} + \left[\frac{T_{ub}}{\left(\phi_{t} R_{nt}\right)}\right]^{2} = 0.6$$

Combined Shear and Tension Check:

$$Shear And Tension Check := if \left[\left[\frac{V_{ub}}{\left(\varphi_{v'} R_{nv} \right)} \right]^{2} + \left[\frac{T_{ub}}{\left(\varphi_{t'} R_{nt} \right)} \right]^{2} \leq 1, \text{"OK"}, \text{"NO GOOD"} \right]$$

ShearAndTensionCheck = "OK"

ANSI/TIA-222-G 4.9.9 Anchor Rods (Capacity):

$$\frac{\left[T_{u} + \left(\frac{V_{u}}{\eta}\right)\right]}{\phi_{h} \cdot P_{n}} \le 1$$

 $\eta := 0.55$

user input from ANSI/TIA-222-G 4.9.9

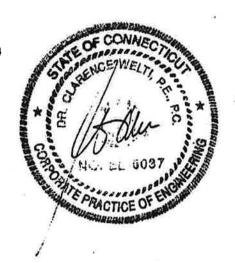
$$\frac{\left[T_u + \left(\frac{V_u}{\eta}\right)\right]}{\varphi_b \cdot F_u \cdot A_n} = 0.891$$

Capacity Check:

$$CapacityCheck := if \left[\frac{\left[T_u + \left(\frac{V_u}{\eta} \right) \right]}{\varphi_b \cdot F_u \cdot A_n} \le 1, \text{"OK"}, \text{"NO GOOD"} \right]$$

CapacityCheck = "OK"

FOUNDATION ANALYSIS (PERFORMED BY DR. CLARENCE WELTI, P.E., P.C.)


DR. CLARENCE WELTI, P.E., P.C.

GEOTECHNICAL ENGINEERING

227 Williams Street • P.O. Box 397 Glastonbury, CT 06033 (860) 633-4623 / FAX (860) 657-2514

October 10, 2002

Mr. Mohsen Sahirad URS Corporation 500 Enterprise Drive; Suite 3B Rocky Hill, CT 06067

Re: Telecommunications Tower; 880 Post Road; Westport, CT; Evaluation of Existing Foundation for Increased Design Loads

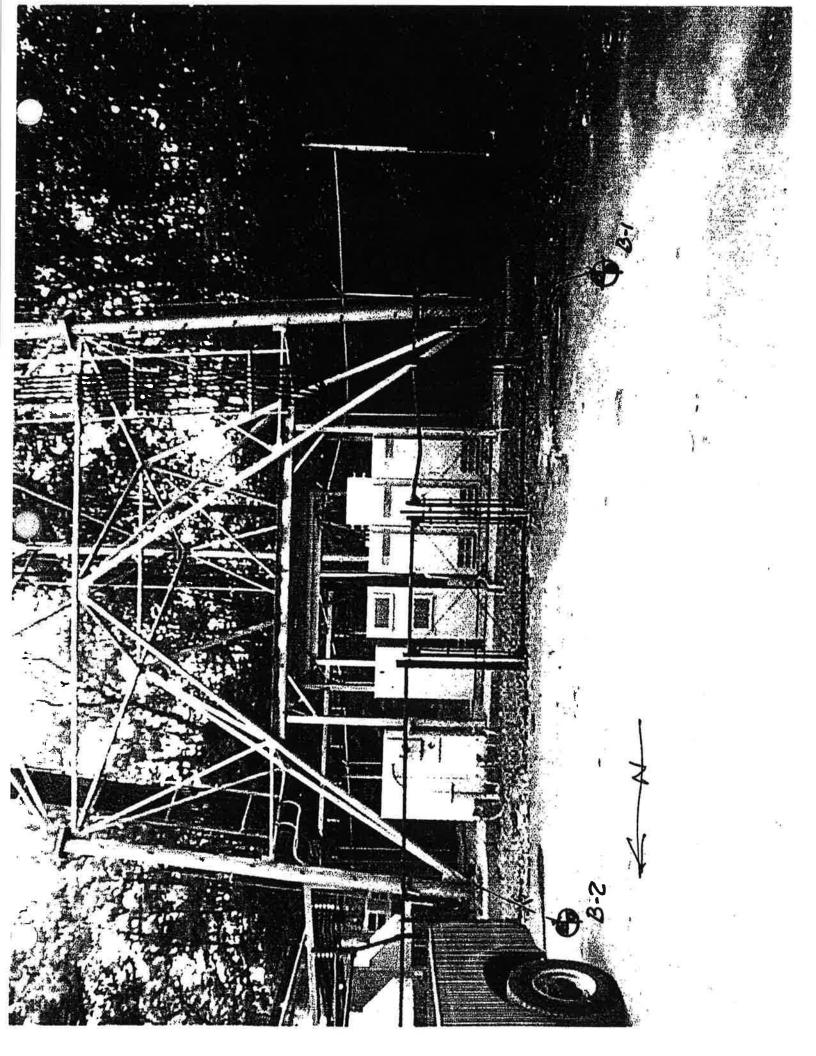
Dear Mohsen:

1.0 Herewith are boring data pertaining to the above. Two borings were drilled to a maximum depth of 12 feet. One boring was drilled 10 feet into bedrock and the second boring was drilled to the top of bedrock. The two borings are shown on the attached photo. Boring B-1 was about 11 feet from the tower leg and boring B-2 was about 15 feet from the tower leg. Considering that the rock outcrops at the third leg, the two borings define rock sufficiently to permit a reasonable interpolation of rock at the actual leg foundations. The former police station site is undergoing environmental remediation. The borings were drilled by Clarence Welti Associates, Inc. and sampling was conducted by this firm solely to obtain indications of subsurface conditions as part of a geotechnical exploration program. No services were performed to evaluate subsurface environmental conditions.

2.0 The purpose of this study is to assess the capability of tower legs to receive the proposed revised loadings. The load summary, including initial and revised design loadings is as follows:

. Loading Type	Original Reaction	Revised Reactions
Uplift	276.7 kips	324 kips
Download	319.9 kips	374 kips
Shear	41.0 kips	48 kips

- 3.0 The initial boring data (1990 data from Test Craig Laboratories) indicated bedrock over the entire site. It is understood that there is information indicating that two of the legs were placed in earth instead of rock. The recent boring tends to belie this. The analyses for uplift (which is the only critical item on the above reaction schedule) have been done for both earth and rock. The reference for both analyses is FHWA-1F-025 Publication "Drilled Shafts: Construction Procedures and Design Methods".
- 3.0.1 The tower legs were each placed on 4.5 feet diameter shafts installed 27 feet deep into either earth or rock. The design uplift was and is based on an effective length of 21 feet.
- 3.1 Regarding the shaft in earth analysis there were no deep blow counts in the borings, since rock was encountered within 2 feet of grade. It is however reasonable to assume the N value (blows per 12" on split spoon) will be about 60 in the till overlying rock. Using the procedure indicated on the attached calculations the ultimate uplift capacity would be 831 kips. Design capacity would be ½ of this value or 415 kips. In reviewing the reference you cited (Foundation Engineering by Das, 4^{th} edition) a similar ultimate load capacity can also be found if one assumes an angle of internal friction of about 40° (which would be typical for N = 60) and a δ/ϕ ratio of 1.0 (relative density of soil $\geq 85+\%$).
- 3.2 Regarding the shaft in rock the friction is defined in the attached calculations. The ultimate uplift of the shaft placed the Straits Schist rock formation would be about 10 kips/sf. With a factor of safety of 3 (using 3 kips/sf) the allowable loading would be 888 kips.
- 4.0 In summary it is believed that the shafts are in rock. The rock is a Schist with steep foliation and may have been drilled with only moderate effort. If the actual shaft are in earth there would have to have been a deep depression between the rock outcrop (which was cut down about 5 feet at the east leg) and the boring locations west of the two west legs, which indicated rock at 2 feet below grade similar to the original borings on the site. If there was a depression in the rock, the soil would be glacial till similar to what is being excavated to the northwest of the site at the old State Police Station. The analyses included herewith indicate that with either rock or till overburden the shafts have adequate capacity for the revised loading.


If you have any questions, please call me.

Very truly yours.

Clarence Welti, PhD, P. E.

Pres. Dr. Clarence Welti, P. E., P.C.

A:\urstoweranalysis9/04/02

	RENC BOX 39	E WELTI A	ASSOC., I	NC.	IENT			PROJECT NAME CEL LOCATION	L TOWE	R SITE	gano :en
		JRY, CONN	06033			URS	CORPORATION	880 POST ROAD WESTPORT, CT			
		AUGER	CASING	SAMPLER	CC	RE BAR.		SURFACE ELEV,	HOLE		B-1
TYPE		HSA		SS		NX	LINE & STA.	OROUND WATER OBSE	VATIONS	START 1	0/7/02
SIZE I.D		3.75"		1.5"		2.0"	N. COORDINATE	AT 2.0 FT, AFTER) HOURS	DATE	OTTOE
HAMM				140lbs	_		E. COORDINATE	AT FT. AFTER	HOURS	FINISH 1	0/7/02
HAMM	R FALL	L		30"	┸-	-				DATE	
DEPTH	NO.	SAMI BLOWS/6"		OTU /	4		STRATU	M DESCRIPTION + REMARKS			ELEV.
0	1	4-13-20-60				T\A	SPHALT	TELLIN BOLLO			0.
		4-10 20-00	0.00	1.50		``` ∖BI	R. FINE-CRS. SAND AND F	INE GRAVEL - FILL	MAID		
	_				-		RAY ROCK FRAGMENTS, I	LITTLE SILT AND FINE	SAND		ŏ:
							ORED ROCK -				
					-	PI PI	JN #1 2.0' - 7.0' RECOVEF	RED 50"			
5-				-+	-#:	11111					
					-	:::: RI	JN #2 7.0' - 12.0' RECOVE	RED 60"			
			_			:::::					
			-		_						
10 -			4		_						
eron					_#	::::					
					_ 🔡	11111				12.0	ام
		- W			_	BC	OTTOM OF BORING @ 12.0	<i>y</i>			
}						l No	OTE: BORING WAS DRILLE	D 11.0' WEST OF TOW	ER LEG		
15 -											
,,,											
	1										1
			8	1				4			1
											ŀ
20						1					
20 -											1
						- 1					
											1
		74					L				1
198790					\dashv						
25 -			1								
			- 								
					\dashv	1					
					-						
						1					
30 -			+		-						1
					\dashv						
_					\dashv						1
											1
35_								·			L
								DRILLER: BROMLEY			

LEGEND: COL. A:

SAMPLE TYPE: D=DRY A=AUGER C=CORE U=UNDISTURBED PISTON S=SPLIT SPOON

PROPORTIONS USED: TRACE=0-10% LITTLE=10-20% SOME=20-35% AND=35-50%

INSPECTOR:

SHEET 1 OF 1

HOLE NO.

B-1

P.O.	CLARENCE WELTI ASSOC., INC. P.O. BOX 397 GLASTONBURY, CONN 06033			INC.	CLIENT URS CORPORATION			LOCATION 880 WE	TOWEI	ROAD				
		AUGER	CASING	SAMPLE	R	CORE BAR.	OFFSET	SURFACE ELEV.	HOLE		E	3-2		
TYPE		HSA		SS	\neg		LINE & STA.	GROUND WATER OBSERV	VATIONS	START	-			
SIZE I.D).	3.75"		1,5"			N. COORDINATE	AT NONE FT. AFTER 0		DATE	10/	7/02		
HAMMI	ER WT.			140lbs	T		7.5	AT FT. AFTER	1		NISH 10/7/02			
HAMMI	ER FALL			30"	1		E. COORDINATE	AT TIME	noong	DATE	10/	7/02		
o Engli		SAMI	PLE	T	_	1	STRATU	JM DESCRIPTION			7	EVEN		
DEPTH	NO.	BLOWS/6"	DE	PTH	Α			+ REMARKS			_	ELEV.		
0	1	1-8-12-60	0.00'-	-1.50'		D/	ARK BR. FINE-CRS. SAND PACE SILT - FILL	, SOME FINE-MED. GRAV	ÆL,		1.0			
						BF	R./GRAY ROCK FRAGMEN	NTS, SILT AND FINE SAND)	ATX	1.5			
							RAY ROCK FRAGMENTS				2.0			
] ^(JGER REFUSAL @ 2.0'				- 1			
2] NO	TE: BORING WAS DRILL	ED 15'WEST OF TOWER	LEG		- 1			
5 -						1 1					- 1			
	-					1 1					- 1			
						1								
			-			1					120			
			_			1					- 1			
10 -						1		5			- 1			
			-			1					- 1			
						1					- 1			
						4					- 1			
						1					- 1			
15 -						1					- 1			
100											- 1			
r - 1											- 1			
											- 1			
							ii .							
. 20 -											- 1			
20 -											- 1			
						1								
						1								
j						1								
						1								
25 -			1			1								
	M-					1								
						1								
			-			1								
			-			1					1			
30 -					-	1 .								
			-			- 1								
						1								
]								
			×] [
35														
								DRILLER: BROMLEY						

LEGEND: COL. A:

SAMPLE TYPE: D=DRY A=AUGER C=CORE U=UNDISTURBED PISTON S=SPLIT SPOON

PROPORTIONS USED: TRACE=0-10% LITTLE=10-20% SOME=20-35% AND=35-50%

INSPECTOR:

SHEET 1 OF 1 HOLE NO. B-2

	1	٨
	$\it L$	Y
8	V	V
	,	_

DR. CLARENCE WELTI, PE, PC P.O. BOX 397 GLASTONBURY, CONNECTICUT 06033 • (860) 633-4823

na Communication Tower heal fort			, , ,
MICT MSCOSMALY Copacity	DHET COMMUNICATE	1 lower	was port
	wer Mescosmal of G	bocita	

Y-1-27						.100-00-00		A			4			
1				1 /4	I		1 1	1	1	1	1			
i	4.4		14 .	1 1 1	1	4			1		1	1		
3	-	2.				L -==:	1	344	1	d	<u>ا</u>			-4m1 -
	rc	terus	ACE	Dril Des	1610	10735	16M	strace	fair p	ruce di	heres .	*	1	
-				100	1	111	10,000	1	-	1		7	i -	
1	11 .7710		1000	1.70.	1- 11	2 4	1		1-10-1	1 4	1-1111		A	X-
			J., i	CO	99/11	in in act	1 / 7	BLICE	47/00	1000	HWA	1-4F	17704	0
				, 1-1			1.75	1.1		3	:			++++
	-		+++-		1	4	1	+	+	+	1		7.7	11111
• ••	**		•			4-1-1-1-1	1 1	1000		1	1.20	1 2 2 2 2 2	! · ; · ; · ; · · ·	
in the same						1717	7 '' '-	1 12	14 X	/ ~ /	Dr no			
	XA	steria	X	Cn Au	m colla	eve G	20-m	attrial	1	/ > 3	05/12	1	1	11:11
<u> </u>	- 11	***	1		1	1,	1 1 1	1	ļ	-			- 1 - 1	
I HADD						(6M)		1						
	(error		1	Pirm -			1 1 1		n	The Till Se		X		
A. 1	-	7	Ŋ		1	1						****	****	
1/		1	ALE.	0	7	an B	1-1-1-1-1-	7.			1			
1			".A	00,1	4	1 . / 6			j	1	1		a tend	4.4.1.1
1	!		1 :		1			1.1.		•	ante .		্যাল বাৰা	777
. -			1	++++		1	1-1-1		3-1-	111 1	at the t	1.00	1117	1 1 1 1
1		PP 1	1	1.10	VICH	PHECH	171	755 0	Y MIN	13	- Carlin	12 ~	10 45	4
	- 4	with tooks		y re				101 1	:	111	/		p. 2 1.4	
\$ 1000														4-1
	- 1		1.4	4 -	PUZ E	1000	1-c/	CLA.	Succe.	100 /10	HICKE	1 04	1554	4
200 1000		a positive general	**** F. 11-4	6000	7.7	17.	1 : 1	144.	1000			* A	", f"" -	11111
				10 10 10 10 10 10 10 10 10 10 10 10 10 1			100 2 miles	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	72.5 11.1				- 1	1.000
1	_ [dit of	de man	1	1	1	1000	ما آنوزونديل	Var. Pin	1 se. 15	- : C :	1.1.
*****			C	Action	194	100	9.41	1007	11.1.	1.00			1 -ii	
2.55	. 1	1	-1	17-11			L'	1 1-1-1-		1.7	1	1		
			1		1.1.	11:11		-	1	1			1.3	
1				7	T-177		1	7	1		11			
			1	K IZ	1/24	100	170134	/		Da. 2	Kska	14.71	21 1	-1-,-,-,-
1/	10	4.		11,00	1	T-17/	V	/ ii_		/	2000 in 12	14		
/	-	2 10	0//	12,		100	1			177	20.00	7	,	
30.00	1.		7/	12,	1/200	YUNT	1	4-12-11-		N601	LAYEZ	6/= 6	0	
			1			1 15	1			1			or ton	
			ر ب				1		1	1		7		
	-				100	1111	1	11.	-					
	-		-1	12.0			74.	+++2	F 1000 c 1	/ :	134	1994 N	7 7 7 7	
		- 70h	- /	1 12.8	1 203	X4.51	1-8-	11/2	1-1-1	1.06	1 - 1	5%	5	
1			11/12		TTT		1	7.00	7	11/	, ,	- //		
									Three-parties	1 /				1111
											4.1		4 · · ·	4-1-1-1
	-:,					4			15 5	-1	2 *			
1	/		11:	1 - 4	V 1	1.0 1/2	11/1/2	Clara.	1010	100		***	-1-1	
1 8		1 =	1-5	12 9	17.7	10/19		4	1					11.
1	٠,٦	· ·		1111	1.1-		bu. 1		/ ·	1			no esta	
,				-1	1-/	1-0	F		;-i	i	2000	W		-H -H -1
ţ				++++	1-1-1-	1	1/1-1-1		home pro-	mar mar	23 11	1000	1.4-7-	· ! - : - : i
			1-1-0	1	1		1-1-1-1-		r general to	UT. / C. 17/				
		-1					LILL			1				11-1-1
	-j-		1	114	1-1	12/10/6	D. W.	7.7	8		* 1 2 ±00			
1	-+		1/-	797	1 -/	1	1 12 90	1-/	· · · · ·	11.72	7 1	·		4-4-4-1-1
			(4-4	1		11:11	-/		1165	G 9091 90		-1-1-1-1	-1
		-1-1	1			11/1	E	/			07 mm 1/m 1	V/	17.77	1
1	-;		1	11.1			تا المالم ا	71		(· ·	16/1	//		4
1			V		J	1+1+		7	*1.0	80.0	1	,		
1			2	The !	11	1-1-13,-17	73-	15	×	0:75		75K	7/	
		/-	7 6	1-1-1-1	7	las rai	1		1					1
	. 1	200		1.1.5.7			1 :			to a second	W 11/2		1 100	
100	i	100	11.00	-1 +		Car Title	1 -1		******		* *	* * **		-
	- 1	* ***	211	4.51	ナンコ	C S	316	175	OLT	Ym173	S'UP	CIFI	17:10	114
		11		1	1	10	1	The Springs of the	constant		1			7
110	. 1	7 4 7		1.1		-		7		/			- 1	
1 3	-	a		INA	-	, Q8	i ale ce lo	e seed	WFS	200 /25	11× 32	3 75	·	1-1-1
	0,0	2 5%	APP.	1 12		*****	of some time.	1					(- M)	1 1
	1	1	C Com				3	1	1. 20	7			Inch is	311
1		*	- 0.	8/41	8/11	70.95	1	15 TE	4 . 61				الم أهود المرا	3.4
		MAN	- "	/ 4	1/=				Wa A	5' 11	0.2		_	
1		25.00		L 12	11/	1 5	20 m in	. 4	141			+	Live Screen	Deplet was
-			 		/-	1 /) .	7	1					7	4-4M
15	1	1					2/2	11×4.1	-296	SF	Temples	2.30		The second second
	1	MAN.	5.4	7 75 -	10.78	ksf		1	4.0	8.1 * 1				1
7	101				16		ASSUM	- 1/2 h	スプロルイ	+ 3Lst	. 6. 1	W L	a 1	•

	AECOM		Page _ l of _ 3
	Job WestPert, C+ (CSP tower)	Project No.	Sheet of
	Description Evaluating Foundation	Computed by McD	Date 12/ /16
3	Capacity from 2002 ossessment	Checked by	Date
	from De. Clarence welt: , P.E. P.C.		Reference
	From original welti Calculat	HAND CALCULATION	· · · · - · · · · · · · · · · · · · · ·
	Givenvalues:	DERIVED FROM PI SAI-097 DATED DE	
	Noc=60 o'v=1.8Ksf Pa = 200PSF (Adamospher, Dp.2r=4.5++ Hrp.ar=21f+	'c prossure)	
•	FHWA-IF=99-025 (Refor		
Eq			GM — compression
(B. 61	$\mathcal{D} = \tan^{-1} \left[\frac{N60}{12.2 + 20.3} \right]^{C}$	34] = tan I [[2.2+20	3 (4)
	$\frac{\phi' = 51.5^{\circ}}{OCR'' = \frac{\sigma'p}{OW} = \frac{(0.2)(N60)(P_0)}{O'N} = \frac{(0.2)(N60)(P_0)}{O'N} = \frac{(0.2)(N60)(P_0)}{O'N} = \frac{(0.2)(N60)(P_0)}{OCR}$		
		5:451.5) (15.3)	
	$K_0 = 1.65$ $S_{\text{max}} = \sigma_{\text{N-X}} K_{\text{Oxtan}} = 1.8 \text{ ks}$	fx1,65x tan 51,5° =	= 3.734 +54
)	3.73 u Ksfx 21 ftx 4.5 ft x TT =	q	CLRED (FHUA)
	Pg 50 table L/B => 4 Factor EQ L=21F4 == 4.5F+ B=55 => 4=0.74 (B, 4	= 665 tr. P (Con LR 6) VPI. Fr= (4) (COMP) =	PP (apacity) 492 K Volte Cap

AECOM		Page 2 of 3
Job Westport, C+(CSP+ower)	Project No.	Sheet of
Description Evaluation Fundation Calacity from 2002 Assessment	Computed byCD	Date
•		Reference
FHWA-NH± -10-016 -Dr.1118	dshafts: constru	cim procedures
#CKrDL	Design Methods (AASHto LRFD 2009
13.3.5.1 - CoheasionLess Soi	1-Side Resistan	(J
EQ (13-5) Rn=+BDZ (OW	ttans) B=	Kitan 6
= HBD+(o'w	<i>[</i> 3]	
[EQ 13-12] (6-ravely 50.115)	G. ven b	y Welt, colculati
01P = 0,15 ×N60	N60=6	n too v
Pa	PG- 2.11	
	ON1= 1,5	7K S+
orp=0.15xN60xPa=(0) =19,044 Ksf	is)(60)(2,116 ksf)	
[EQ 13-13] B \((1-5.1) (0	F. 2	
6=27.5+9.2[Los(Ni)co] -227.	5+9,2 [Log(60)] = !	43,850=8
[EQ3-8] (cns.)		
[12 15] Par (1 51./1259 /10.11)	SIN 43.85°	1 - 1
[EQ 13-13] \$ \(\tau(1-5:n(43.85))\(\frac{19.044}{1.8}\)	xton us. 85	= 11513
rextand= tan (45+ \$) x tan \$	= tan2 (45+ 43.05) k tan 43.85°
= 5.) 9	5.29 On - use/	
8=0=43.85°	,	-

IAAT MA	
ject No nputed by	
cked by	
X 113 13 -	2,7234454
	1f+ x2,7434 tsf
	f+ x Z

TIA-222 6 Reduction Factor 0.75 - UPLIFT ROCK/Sail

FHWAPS. 13-13 "(as.ino reduction factors of 0.6-0.75 are commonly used" (for "Permanent Casing").

Check (0.75=0)

:. $1039.5 \text{ H.:} PS \times Ci75 = 779.625 \text{ PI.:} F+ (VI+, (apac.:+4))$ Check $(0.6c = \phi_{red})$

1039.5 K.1PS X O.6 = 623. 7 K.1P UPLIF+ (U+, Capacity)

"Based off of given Soil/GenOtechnical Parameters Provided in "Evaluation of Existing Foundation for Increased Design Leads" Provided by Dr. Clarence welt; P.E.P. C., thefollowing shall be used for uplitty compression capacities.

* UPI. F+ (LRFD) = 492 HiPS (6(4,94 HiP) *

(CMPression/(LRFD) = 665 HiPS

Bearing ON

ROCK

*DR welt.'s 2002 Assessment (Attached)

ANTENNA MOUNT REFERENCES

CT State Police Tower - 880 Post Road E, Westport, CT (Sprint RF approved permanent loading)

Equipment List

Sprint NV + 2.5 Equipment-

- three (3) panel antenna (RFS Model APXVSPP18-C-A20; each is 72" x 11.8" x 7"; 57 lbs)
- three (3) panel antenna (RFS Model APXVTM14-C-120; each is 56.3" x 12.6" 6.3"; 56.2 lbs)
- three (3) 800 MHz Remote Radio Units (ALU Model 800MHZ RRH; each is 19.7" x 13" x 10.8"; 53 lbs)
- three (3) 1900 MHz Remote Radio Units (ALU Model PCS 1900MHz 4x45W-65MHz; each is 25" x 12.4" x 12.2"; 60 lbs)
- three (3) 2500 MHz Remote Radio Units (ALU Model TD-RRH8x20-25, each is 26.1" x 18.6" x 6.71"; 70 lbs)
- three (3) 800 MHz Notch Filters (ALU Model 800 External Notch Filter; each is 8.9" x 8.9" x 4.33"; 11 lbs)
- nine (9) Tower Mount Switch (RFS/Celwave Model ACU-A20-N; each 4" x 2" x 3.5"; 1.04 lbs)
- four (4) lines of 1-1/4" hybrid cabling (with 1.54" outer diameter)
- one (1) NEMA 4X Enclosure Box [10"x7"x5"; 1 lbs]

Clearwire Microwave Equipment -

- Two (2) Microwave Dish Antenna (Andrew Model VHLP800-11-DW1 VHLP2-11) (each 31.2" diameter; 66.1 lbs)
- Two (2) ODU Radio Units (Dragonwave Model Horizon Duo) (each 4.7 in x 7.5 in (diameter); 7 lbs)
- Two (2) lines of 1/2" cable.

Dalickas, Michael

From: Artaiz, Naish

Sent: Wednesday, May 17, 2017 1:11 PM

To: Dalickas, Michael

FW: Sprint CT25XC355 Westport - CT State Police Tower at 880 Post Road E, Westport -**Subject:**

Sprint Permanent Loading

Attachments: CT25XC355_Westport - Sprint Permanent Loading_for SA_050417.doc; ALU 800MHz

Remote Radio Head Specifications.pdf; ALU 1900MHz _65MHz_ Cut Sheet.pdf; ALU TD-

RRH8X20 RRHs -equipment.pdf; APXVSPP18-C-A20.pdf; APXVTM14-ALU-I20

_datasheet_revA2.pdf; VHLP800-11-DW1 (MW Dish).pdf; DragonWave-Horizon Duo

(ODU).pdf; NemaEnclosure.pdf

Follow Up Flag:

Follow up

Flag Status: Flagged

Sprint Westport Permanent Installation at 145'. We are selecting the mounts.

, PO has been entered. Job number should be chargeable soon.

Ignacio C. Artaiz

Architect D 1-860-990-6767 C 1-203-772-5940 naish.artaiz@aecom.com

AECOM

500 Enterprise Drive, Suite 3B, Rocky Hill, Connecticut 06067 T 1-860-529-8882 F 1-860-529-3991

www.aecom.com

From: Joseph Papa [mailto:joseph.a.papa@gmail.com]

Sent: Wednesday, May 17, 2017 11:41 AM

To: Artaiz, Naish

Cc: Bisceglia, Colleen M [NTK]; Castagnaro, Heather [NTK]; Camara, Steve [NTK]

Subject: Sprint CT25XC355 Westport - CT State Police Tower at 880 Post Road E, Westport - Sprint Permanent Loading

Hi Naish,

For the proposed permanent Sprint loading at 145 ft. on the CT State Police Tower at 880 Post Road E, Westport, I am attaching the loading list along with manufacturer specification sheets. Also attached is the PO to AECOM for the structural + modification design.

Please let us know any questions or additional information needed. We have not yet picked out a sector mount for the permanent install and ask that you please do so.

Thanks!

Joe

Joseph A. Papa, Jr. Site Acquisition Consultant for Sprint 518-365-9711 joseph.a.papa@gmail.com

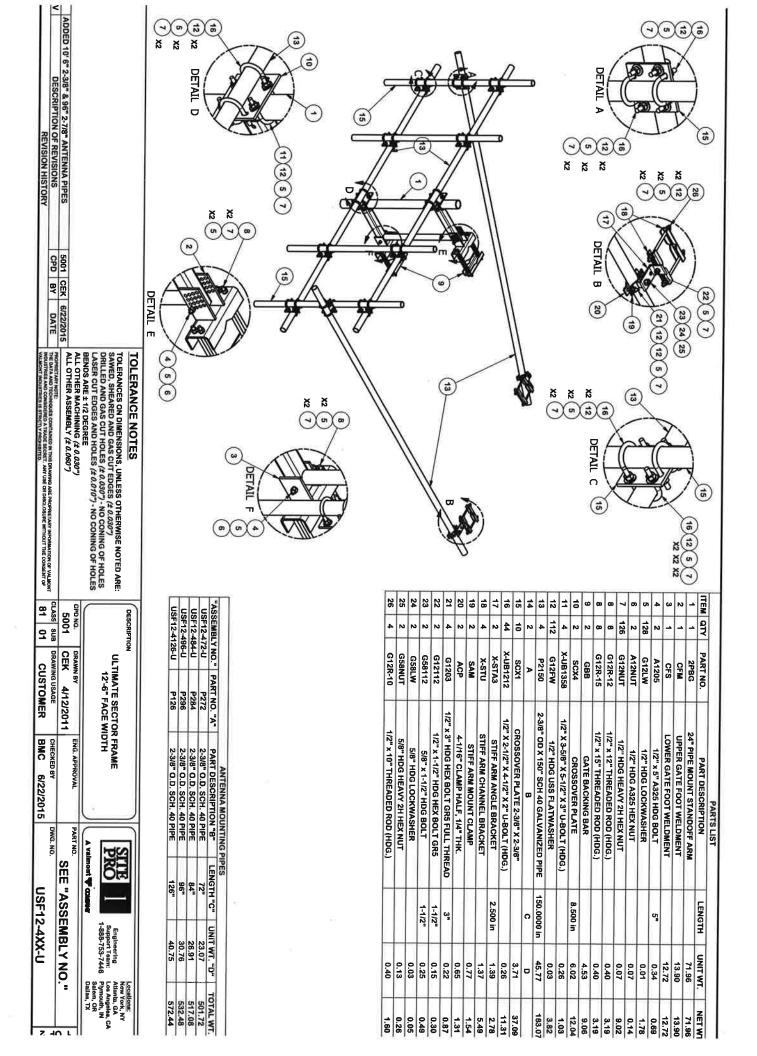
Ultimate Sector Frames

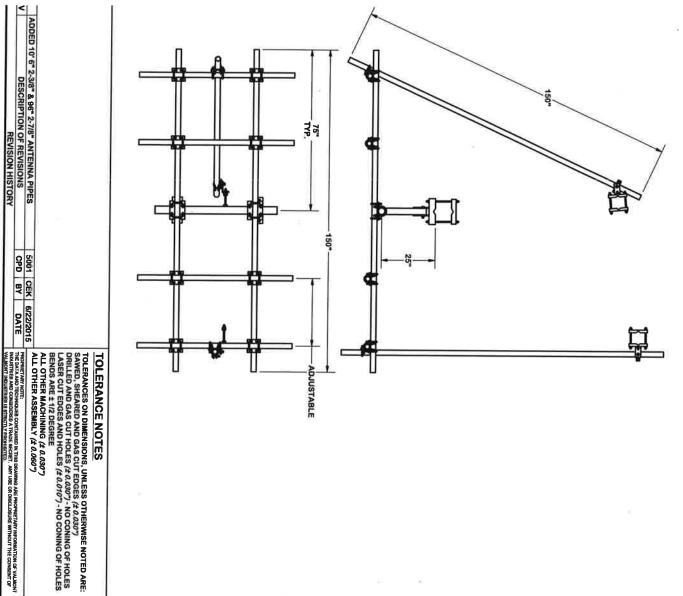
- · COMPLETE KITS include: attachment hardware, two stiff arms, and antenna mounting pipes
- 2' gate is easily adjusted for taper up to 6 degrees in 3/4 degree increments
- Frames are manufactured from 2-3/8" pipe and rotate for easy azimuth adjustment
- Universal mounting, round legs from 1" to 8" and 60° angle legs from 1-1/2" to 8", 90° angles 1-1/2" to 6"
- Large-Leg Adapter Kit available for round legs up to 12-3/4", 60° angle legs up to 12", and 90° angles up to 8-1/2"

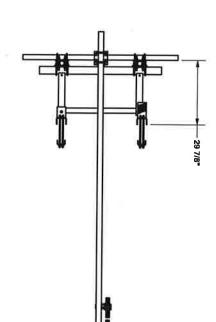
10'-6" Frames (2-3/8" OD Face Pipes)

Part #	Face Width	Mounting Pipes	Price
USF10-296-U	10'-6"	(2) 2-3/8" x 96"	\$810.00
USF10-372-U	10'-6"	(3) 2-3/8" x 72"	\$865.00
USF10-384-U	10'-6"	(3) 2-3/8" x 84"	\$875.00
USF10-396-U	10'-6"	(3) 2-3/8" x 96"	\$885.00
USF10-3126-U	10'-6"	(3) 2-3/8" x 126"	\$915.00
USF10-3096-U	10'-6"	(3) 2-7/8" x 96"	\$999.00

12'-6" Frames (2-3/8" OD Face Pipes)


USF12-372-U	12'-6"	(3) 2-3/8" x 72"	\$895.00
USF12-384-U	12'-6"	(3) 2-3/8" x 84"	\$905.00
USF12-396-U	12'-6"	(3) 2-3/8" x 96"	\$915.00
USF12-472-U	12'-6"	(4) 2-3/8" x 72"	\$975.00
USF12-484-U	12'-6"	(4) 2-3/8" x 84"	\$989.00
USF12-496-U	12'-6"	(4) 2-3/8" x 96"	\$999.00
USF12-4126-U	12'-6"	(4) 2-3/8" x 126"	\$1,030.00
USF12-4096-U	12'-6"	(4) 2-7/8" x 96"	\$1,155.00


Large-Leg Adapter Kit


Part #	Description	Price
TAM-LL	Large-Leg Adapter Kit	\$117.00

14'-6" Frames (2-7/8" OD Face Pipes)

USF14-472-U	14'-6"	(4) 2-3/8" x 72"	\$1,009.00
USF14-484-U	14'-6"	(4) 2-3/8" x 84"	\$1,020.00
USF14-496-U	14'-6"	(4) 2-3/8" x 96"	\$1,035.00
USF14-4126-U	14'-6"	(4) 2-3/8" x 126"	\$1,076.00
USF14-4096-U	14'-6"	(4) 2-7/8" x 96"	\$1,199.00

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.030")

DRILLED AND GAS CUT HOLES (# 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (# 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (# 0.030")

ALL OTHER ASSEMBLY (# 0.030")

CPD NO. 5001 DESCRIPTION 9 SE DRAWN BY CEK 4/12/2011 DRAWING USAGE ULTIMATE SECTOR FRAME 12'-6" FACE WIDTH CUSTOMER СНЕСКЕВ ВУ ВМС 6/22/2015

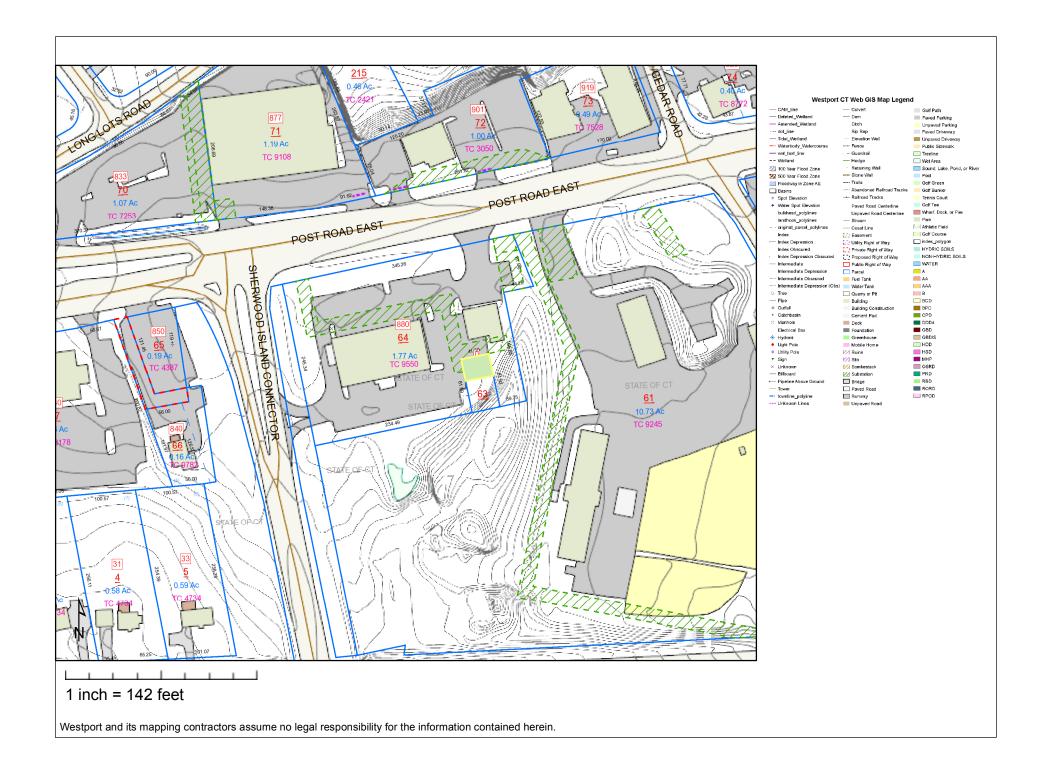
> DWG. NO. PART NO.

SEE "ASSEMBLY NO." USF12-4XX-U

2 40 2

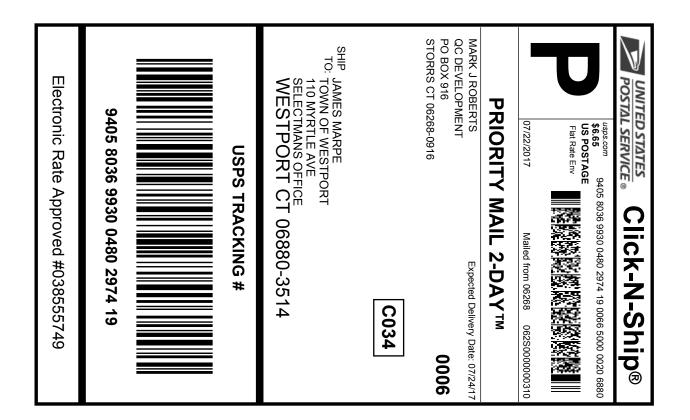
A valment T course SHE

Engineering Support Team: 1-888-753-7446


Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Selem, OR Dallas, TX

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 45,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.


More information on AECOM and its services can be found at www.aecom.com.

500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 860-529-8882 Fax: 860-529-3991

Property	/ Locati	on: POST	RD E	MAP ID: F09//063/000/							Bldg Name: State Use: 435														
Vision I	D: 100	302		Ac	count #1	4621				Bldg #	#: 1 of	1	Sec #	1 0	of	1 Caro	d 1	l of	1		Print 1	Date: 0	5/28/201	7 14:51	
		NT OWNI		TOPO		<u>UTILIT</u>	IES	STRT./R	OAD	LO	OCATION	T				CURRENT									
CONNEC	CTICUT	STATE OF VALGREE	? NC											Descriptio	on	Code	Ap	praised Va		Assessed			(15	o	
30 TRINI		VALGREE	110										UTL B	LDG UTBL		4-2 4-3			,000 ,000		70 688,80	0 0 v	615 ESTPO		
		0.404				~~			-					CIBE		1-3		204	,000		000,00	ا	ESITO	K1, C1	
HARTFO Additiona				Other ID:	53184		PPLEM	ENTAL DA	<i>TA</i>																
2 Iddition	ii O Wilei			Historic ID	53184			LIII HSe																	
				Census																		I	-~-		
			WestportCode																			$\perp \mathbf{V}$	ISI	ON	
	Survey Map																			•		O ₁ \			
	Survey Map <i>GIS ID:</i> F09063000				ASSOC PID#								Tota	al	985	,000		689,50	89 500						
	REC	ORD OF C	OWNERSE			OL/PAC	GE SA	LE DATE		/i SALI	E PRICE	v C						S ASSES	/	NTS (H)					
CONNEC		STATE OF		111		0/ 0	JL DIL	10/01/2005			TRICE	7.C		Code 1	Assesse					ed Value		Code	Assess	ed Value	
													2016	4-2		700	2015	4-3			00 201			343,600	
													2016	4-3		688,800									
													1	otal:		689,500		Total:		343,6		Total:		343,600	
			<u>XEMPTIO</u>								ESSMEN			1		This sign	ıatur	e acknow	vledge	s a visit i	by a D	ata Col	lector or	Assessor	
Year	Туре		Description	ı	Amou	ınt	Code	Descri	otion	Nı	ımber	Aı	nount	Comn	n. Int.										
																		A DDD	AICE	D VALU	E CI	IMAD	V		
																					E SUI	IMAN	ı		
				Total:												Appraised								0	
								RHOOD								Appraised								0	
	HD/ SUB	!	NBHI) Name	S	treet Ind	ex Name		Tracing Batch					ı		Appraised	OB	(L) Value	e (Bldg	g)				984,000	
0	001/A															Appraised	Land	d Value (1	Bldg)			0			
						NO:	TES									Special Land Value								0	
		BEHIND TH	IE WALGI	REENS AT												Total Appr	raica	d Darcal V	Valua					985,000	
880 POST																Total Appraised Parcel Value 985,000 Valuation Method:						705,000			
3 CELL S	SITES															vaiuation	Men	iou.						1	
							TOWER	VALUE=	2000 X	12=2400	0 X .75=18	000										0			
							18000/.1	1=163,600 X	3=490	,800					Adjustment:						U				
								,		,					Ī	Net Total A	Appı	raised Pa	rcel V	alue				985,000	
					DIIII	INC D	EDMIT	RECORD										1/	TCIT/	CHANC	T III	TODV			
Permit	ID I	ssue Date	Туре	Description	DUILL		iount	Insp. Dat	e %	Comp.	Date Con	nn	Comme	nts		Date	e	Type		IS I			Purpose	Result	
1 Cimit	1.	ssic Buic	1 ypc	Bescription		1111	iouni	Trisp. Dai	70	comp.	Duic Con	φ.	Comme	115		05/13/20		Type		1.5			Check/F	ield Review	
D ===										INE VA	LUATIO		ECTIO	N					1.0		G 4 1:				
B Use # Code	١,	Use Description	7	. D E		T.T			I. ctor _{S.A}		C. Factor	ST.	A 1:		M - 4	A 1:	-	Specia			S Adj Fact	A 1: 11	, D		
		e Vac Lnd	GBD	D Front L	ертп	Units 0 S		0.00 1.0			1.00	шл	<i>Adj.</i> 0.00		Notes-	- Aaj		Spec Use	Spe	c Calc	.00	Adj. Uni	t Price 1	and Value	
1 433	CCH SI	e vue Bhu	GDL	1				0.00	,,,,,		1.00		0.00								.00			· ·	
																							•		
				116 17	1 T 1 1			D 1	<u> </u>	A la .					_						(F) (17 -	57.1		
Total Card Land Units: 0.00 AC Parcel Total Land Area: 0 AC										Total Land Value:															

Property Location: POST RD E MAP ID: F09/ / 063/000 / Bldg Name: State Use: 435 Vision ID: 100302 Account #14621 Bldg #: 1 of 1 Sec #: 1 of 1 Card 1 of 1 Print Date: 06/28/2017 14:51 **CONSTRUCTION DETAIL** CONSTRUCTION DETAIL (CONTINUED) Element Cd. Ch. Description Element Cd. Ch. Description Model Vacant MIXED USE CodeDescription Percentage Cell Site Vac Lnd 100 435 COST/MARKET VALUATION Adj. Base Rate: 0.00 Net Other Adj: 0.00 Replace Cost AYB Dep Code Remodel Rating Year Remodeled Dep % Functional Obslnc External Obslnc Cost Trend Factor Special Condition Code % Complete Overall % Cond Apprais Val Dep % Ovr Dep Ovr Comment Misc Imp Ovr Misc Imp Ovr Comment Cost to Cure Ovr Cost to Cure Ovr Comment OB-OUTBUILDING & YARD ITEMS(L) / XF-BUILDING EXTRA FEATURES(B) Description | Sub | Sub Descript | L/B | Units | Unit Price | Yr | Gde | Dp Rt | Cnd | %Cnd | Code Apr Value CELL Cell on TWR TW 328,000.002010 984,000 No Photo On Record BUILDING SUB-AREA SUMMARY SECTION Living Area Gross Area Eff. Area Unit Cost Undeprec. Value CodeDescription Ttl. Gross Liv/Lease Area:

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

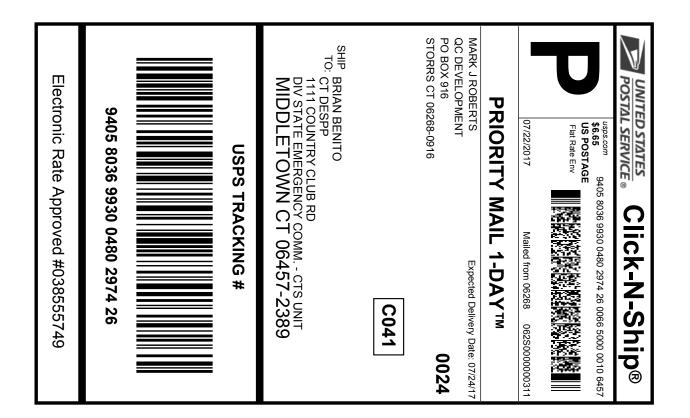
Click-N-Ship® Label Record

USPS TRACKING # / Insurance Number: 9405 8036 9930 0480 2974 19

410685389 07/21/2017 Trans. #: Print Date: Ship Date: Expected Delivery Date: Insured Value: 07/24/2017 \$50.00

Priority Mail® Postage: \$6.65 Insurance Fee \$0.00 Total \$6.65

From: MARK J ROBERTS


> QC DEVELOPMENT PO BOX 916

STORRS CT 06268-0916

JAMES MARPE

TOWN OF WESTPORT 110 MYRTLE AVE SELECTMANS OFFICE WESTPORT CT 06880-3514

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING # / Insurance Number: 9405 8036 9930 0480 2974 26

410685389 07/21/2017 Trans. #: Print Date: Ship Date: Expected Delivery Date: Insured Value: 07/24/2017 \$50.00

Priority Mail® Postage: \$6.65 Insurance Fee \$0.00 Total \$6.65

From: MARK J ROBERTS

QC DEVELOPMENT PO BOX 916

STORRS CT 06268-0916

BRIAN BENITO

CT DESPP

1111 COUNTRY CLUB RD

DIV STATE EMERGENCY COMM. - CTS UNIT

MIDDLETOWN CT 06457-2389

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.