

January 30th, 2018

Melanie Bachman, Executive Director Connecticut Siting Council 10 FranklinSquare New Britain, CT 06051

RE: Notice of Exempt Modification – Antenna Swap for wireless facility located at 20 POST OFFICE LANE, WESTPORT, CT, 06880 – CT03XC336 (lat. 41° 07' 24.27" N, long. -73° 18' 46.93" W)

Dear Ms. Bachman:

Sprint Spectrum, LP ("Sprint") currently maintains wireless telecommunications antennas at the (120-foot level) on an existing (142-foot monopole tower) at the above-referenced address. The property is owned by JAY SHERWOOD, and the tower is owned by American Tower Corporation.

Sprint's proposed work involves antenna replacement and tower work. Sprint intends to replace three (3) antennas and add six (6) new RRHs onto the tower. All the proposed work is contained within the existing fenced area. Please refer to the attached drawings for site plans prepared by Infinigy Engineering.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to JIM MARPE, FIRST SELECTMAN, and MARY YOUNG, PLANNING AND ZONING DIRECTOR of the Town of WESTPORT. A copy of this letter is also being sent to JUSTINE PAUL the manager for AMERICAN TOWER CORPORATION who manages the site and to JAY SHERWOOD who owns the land.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b).

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The antennas work is a one-for-one replacement of facility components.
- 3. The proposed modifications will include the addition of ground base equipment as

depicted on the attached drawings; however, the proposed equipment will not require

an extension of the site boundaries.

- 4. The proposed modifications will not increase noise levels at the facility by six decibels or more.
- 5. The additional ground based equipment will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b).

If you have any questions or require any additional information regarding this request, please do not hesitate to give me a call at (518) 350-4222 or email me to <u>aperkowski@airosmithdevelopment.com</u>

Kind Regards,

Arthur Perkowski Airosmith Development Inc. 32 Clinton Street Saratoga Springs, NY 12866 518-306-1711 desk & fax 518-871-3707 cell aperkowski@airosmithdevelopment.com

Attachment

CC: JIM MARPE (FIRST SELECTMAN, WESTPORT, CT) JUSTINE PAUL (Manager, AMERICAN TOWER CORPORATION) MARY YOUNG (Director of Planning & Development / TOLLAND, CT) JAY SHERWOOD (Land Owner)

Westport	CT Web GIS Map Legen	d
- CAM_line	- Cuivert	Golf Path
- Deleted_Wetland	- Dam	Paved Parking
— Amended_Wetland	Ditch	Unpaved Parking
····· dot_line	Rip Rap	Peved Driveway
- Tidal_Wetland	Elevation Wall	Unpaved Driveway
Waterbody_Watercourse	Fence	Public Sidewalk
	- Guardrai	Treeline
Wetland	Hedge	Wet Area
💯 100 Year Flood Zone	 Retaining Wall 	Sound: Lake, Pond, or River
🌌 500 Year Flood Zone	Stone Wall	Pool
Floodway in Zone AE	Trais	Golf Green
Basins	Abandoned Reilroad Tracks	Golf Bunker
+ Spot Elevation	Railroad Tracks	Tennis Court
 Water Spot Elevation 	Paved Road Centerline	Golf Tee
bulkhead_polylines	Unpaved Road Centerline	🔲 Wharf, Dock, or Pier
landhook_polylines	- Stream	Park
 original_parcel_polylines 	Coast Line	First Athletic Field
Index	722 Easement	Golf Course
- Index Depression	22 Utility Right of Way	index_polygon
Index Obscured	Private Right of Way	HYDRIC SOILS
Index Depression Obscured	Proposed Right of Way	NON-HYDRIC SOILS
- Intermediate	Public Right of Way	WATER
Intermediate Depression	Parcel	- A
Intermediate Obscured	Fuel Tank	AA
Intermediate Depression (Obs)	Water Tank	AAA
© Tree	Quarry or Pit	B
— Pipe	Building	BCD
 Outfall 		BPD
+ Catchbasin	Cement Pad	CPD
O Manhole	Deck	DDD4
Electrical Box	Foundation	GBD
🚸 Hydrant	Greenhouse	GBD/S
 Light Pole 	Mobile Home	HDD HDD
Utility Pale	Ruins	HSD .
▼ Sign	M Silo	MHP
× Unknown	100 Somkestack	OSRD 0
- Billboard	2 Substation	PRD PRD
 Pipeline Above Ground 	Bridge	BBD BBD
— Tower	Paved Road	RORD
 townline_polyline 	Runway	RPOD RPOD
Unknown Lines	Unpaved Road	

MAPLE LN

Location	MAPLE LN	Mblu	H06/ / 017/000 /
Acct#	5452217-C	Owner	SHERWOOD JAY
Assessment	\$919,330	Appraisal	\$1,313,300
PID	7785	Building Count	1

Current Value

Appraisal				
Valuation Year	Improvements	Land	Total	
2015	\$1,253,900 \$59,400		\$1,313,300	
Assessment				
Valuation Year	Improvements	Land	Total	
2015	\$877,730	\$41,600	\$919,330	

Owner of Record

Owner	SHERWOOD JAY	Sale Price	\$0
Co-Owner		Certificate	1
Address	P O BOX 48	Book & Page	469/ 137
	WESTPORT, CT 06881	Sale Date	12/08/1977
		Instrument	29

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
SHERWOOD JAY	\$0	1	469/ 137	29	12/08/1977

Building Information

Building 1 : Section 1		
Year Built:		Ruilding Layout
Living Area: 0		
Replacement Cost: \$0		
Building Percent		(http://images.vgsi.com/photos2/WestportCTPhotos//Sketches/7
Good:		
Replacement Cost		Building Sub-Areas (sq ft) <u>Legend</u>
Less Depreciation: \$0		
Building	Attributes	No Data for Building Sub-Areas
Field	Description	

Style	Outbuildings
Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Kitchens	
Whirlpool Tubs	
Hot Tubs	
Sauna (SF Area)	
Fin Basement	
Fin Bsmt Qual	
Bsmt. Garages	
Interior Cond	
Fireplaces	
Ceiling Height	
Sprinklers	
Acc Apts	

•

Extra Features

 Extra Features
 Legend

 No Data for Extra Features

Land

Land Use		Land Line Valuation	
Use Code	100	Size (Acres)	2.07
Description	Res Vacant Lnd	Frontage	0
Zone	AAA	Depth	0
Neighborhood	140	Assessed Value	\$41,600
Alt Land Appr	No	Appraised Value	\$59,400
Category			

Outbuildings

Outbuildings <u>Le</u>					<u>Legend</u>	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
CELL	Cell on TWR	тw		5 Sites	\$1,253,900	1

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2016	\$1,253,900	\$59,400	\$1,313,300	
2014	\$818,000	\$54,625	\$872,625	
2012	\$818,000	\$54,625	\$872,625	

Assessment				
Valuation Year	Improvements	Land	Total	
2016	\$877,730	\$41,600	\$919,330	
2014	\$572,600	\$38,200	\$610,800	
2012	\$572,600	\$38,200	\$610,800	

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT03XC336

Turkey Hill 20 Post Office Lane Westford, CT 06880

February 2, 2018

EBI Project Number: 6218000594

Site Compliance Summary		
Compliance Status:	COMPLIANT	
Site total MPE% of		
FCC general	20 20 %	
population	20.29 %	
allowable limit:		

February 2, 2018

SPRINT Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Emissions Analysis for Site: CT03XC336 - Turkey Hill

EBI Consulting was directed to analyze the proposed SPRINT facility located at **20 Post Office Lane**, **Westford**, **CT**, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 850 MHz Band is approximately 567 μ W/cm². The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at **20 Post Office Lane, Westford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 3) 5 CDMA channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
- 4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the Commscope DT465B-2XR for transmission in the 850 MHz, 1900 MHz (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are **120 feet** above ground level (AGL) for **Sector A**, **120 feet** above ground level (AGL) for **Sector B** and **120 feet** above ground level (AGL) for Sector C.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

SPRINT Site Inventory and Power Data by Antenna

Sector:	А	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	RFS APXVSPP18-C- A20	Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20
Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd
Height (AGL):	120 feet	Height (AGL):	120 feet	Height (AGL):	120 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts
ERP (W):	7,537.38	ERP (W):	7,537.38	ERP (W):	7,537.38
Antenna A1 MPE%	2.36 %	Antenna B1 MPE%	2.36 %	Antenna C1 MPE%	2.36 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Commscope DT465B-2XR	Make / Model:	Commscope DT465B-2XR	Make / Model:	Commscope DT465B-2XR
Gain:	15.05 dBd	Gain:	15.05 dBd	Gain:	15.05 dBd
Height (AGL):	120 feet	Height (AGL):	120 feet	Height (AGL):	120 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	5,118.23	ERP (W):	5,118.23	ERP (W):	5,118.23
Antenna A2 MPE%	1.42 %	Antenna B2 MPE%	1.42 %	Antenna C2 MPE%	1.42 %

Site Composite MPE%							
Carrier	MPE%						
SPRINT – Max per sector	3.78 %						
AT&T	2.73 %						
Verizon Wireless	6.23 %						
MetroPCS	1.24 %						
T-Mobile	5.70 %						
Clearwire	0.08 %						
Nextel	0.53 %						
Enertrac	0.00 %						
Site Total MPE %:	20.29 %						

SPRINT Sector A Total:	3.78 %
SPRINT Sector B Total:	3.78 %
SPRINT Sector C Total:	3.78 %
Site Total:	20.29 %

SPRINT _ Frequency Band / Technology (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Sprint 850 MHz CDMA	1	437.55	120	1.21	850 MHz	567	0.21%
Sprint 850 MHz LTE	2	437.55	120	2.42	850 MHz	567	0.43%
Sprint 1900 MHz (PCS) CDMA	5	622.47	120	8.61	1900 MHz (PCS)	1000	0.86%
Sprint 1900 MHz (PCS) LTE	2	1,556.18	120	8.61	1900 MHz (PCS)	1000	0.86%
Sprint 2500 MHz (BRS) LTE	8	639.78	120	14.16	2500 MHz (BRS)	1000	1.42%
						Total:	3.78%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (%)
Sector A:	3.78 %
Sector B:	3.78 %
Sector C:	3.78 %
SPRINT Maximum	2 78 0/
Total (per sector):	5.78 %
Site Total:	20.29 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **20.29** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

TOWER ENGINEERING PROFESSIONALS

Structural Analysis Report

Structure	:	142 ft Monopole
ATC Site Name	:	WSPT - South, CT
ATC Site Number	:	302511
Engineering Number	:	OAA713869_C3_01
Proposed Carrier	:	Sprint Nextel
Carrier Site Name	:	Turkey Hill
Carrier Site Number	:	CT03XC336
Site Location	8	20 Post Office Lane Westport, CT 06880-6226 41.123400,-73.313100
County	:	Fairfield
Date	:	November 2, 2017
Max Usage	:	86%
Result	:	Pass
Prepared By: Charles Cages, E.I. TEP		Reviewed By:
Charles Coges		11/02/2017

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	. 2
Equipment to be Removed	2
Proposed Equipment	3
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	. 3
Standard Conditions	4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 142 ft monopole to reflect the change in loading by Sprint Nextel.

Supporting Documents

Tower Drawings	EEI Drawing #GS50841, dated March 2, 1998
Foundation Drawing	Mapping by TEP Project #65218-72422, dated December 28, 2015
Geotechnical Report	MB&A Project #011105, dated July 17, 2001
Modifications	ATC Job #42046633, dated October 16, 2008
	ATC Job #46844332/46993332, dated April 15, 2011

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	93 mph (3-Second Gust, V _{ASD}) / 120 mph (3-Second Gust, V _{ULT})
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 3/4" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	l
Exposure Category:	С
Topographic Category:	1
Spectral Response:	Ss = 0.22, S ₁ = 0.07
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevation ¹ (ft)			A		11	Comion
Mount	RAD		Antenna	iviount Type	Lines	Carrier
	140.0		Kathrein 742-218 / AP20-			
136.0	140.0		1940/045D/ADT/XP	Flush	(0) 1 5/8 COdx	Metro PCS
	136.0		RCU (Remote Control Unit)		(1) 5/8 COax	
		3	Ericsson RRUS A2 Module			
	132.0	3	Ericsson RRUS-11 (50 lbs.)			
		3	Ericsson RRUS 12 w/ Solar Shield		(12) 1 1/4" Coax	
121.0	131.0	12	Powerwave 7020.00 Dual Band RET	Distform w/ Handraik	(2) 0.65" 8 AWG 2C	AT&T Mobility
121.0		12	Powerwave LGP21401		(1) 0.39" Fiber Trunk	Arectiviculity
	120 0	1	Raycap DC6-48-60-18-8F ("Squid")		(1) 0.28" RG-6	
	120.0	6	Powerwave 7770.00			
		3	CCI HPA-65R-BUU-H6			
		2	DragonWave Horizon Compact			Clearwire
		3	NextNet BTS-2500		(6) 5/16" Coax (2) 1/2" Coax (1) 2" Conduit	
		3	Argus LLPX310R	Platform w/ Handrails		
		2	DragonWave A-ANT-18G-2-C			
120.0	120.0	2	Alcatel-Lucent 800MHz 2X50W RRh w/			
12.0.0	120.0	2	Filter			
		3	Alcatel-Lucent 1900MHz 4x45 RRH			
		2	Alcatel-Lucent TD-RRH8x20-25 w/ Solar		Sprint	Sprint Nextel
		Ľ	Shield			
		3	RFS APXVSPP18-C-A20			
111.0	111.0	9	48" x 8" Panel	Platform w/ Handrails	(12) 7/8" Coax (1) 1/2" Coax	
		6	RFS FD9R6004/1C-3L			
		3	Alcatel-Lucent RRH2x40-AWS		(12) 1 5/8" Coax	
		3	Rymsa MGD3-800TX			
100.0	100.0	3	Antel BXA-171063/12CF_2 FP	Platform w/ Handrails		Verizon
		1	RFS DB-T1-6Z-8AB-0Z			
		3	Antel BXA-70080/6CF			
		3	Powerwave P65-16-XL-2			
		4	RFS ATMAA1412D-1A20			
		3	Ericsson RRUS 11 B12		(14) 1 5/8" Coax (1) 1 1/4" Fiber	T-Mobile
90.0 9	90.0	4	Ericsson AIR 21, 1.3 M, B2A B4P	Platform w/ Handrails		
		3	Ericsson AIR 21, 1.3M, B4A B2P			
		3	Andrew LNX-6515DS-VTM			
80.0	80.0	2	Diamond X50A	Stand-Offs	(2) 1/2" Coax	Senet

Equipment to be Removed

Elevatio	on¹ (ft)	0.5	Antonno	Mount Type	Lines	Carrier
Mount	RAD		Anterina			
120.0	120.0	3	RFS RFS APXV9TM14-ALU-I20	-	-	Contint Novtol
70.0	70.0	1	PCTEL GPS-TMG-HR-26N	Stand-Off	(1) 1/2" Coax	Sprint Nexter

Proposed Equipment

Elevation ¹ (ft)			A	Manual Tana		0
Mount	RAD	Quy	Antenna	iviount Type	Lines	Carner
120.0	170.0	3	Alcatel-Lucent RRH2x50-08			
120.0	120.0	3	Commscope DT465B-2XR	Platform W/ Handralis	-	Sprint Nextel
63.0	63.0	1	PCTEL GPS-TMG-HR-26N	Stand-Off	(1) 1/2" Coax	

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	57%	Pass
Shaft	86%	Pass
Base Plate	44%	Pass
Flanges	33%	Pass
Reinforcement	78%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	3,733.2	45%
Axial (Kips)	49.7	14%
Shear (Kips)	42.0	20%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
120.0	Alcatel-Lucent RRH2x50-08	Sprint Nextel		1.257
	DragonWave A-ANT-18G-2-C	Clearwire	1.246	
	Commscope DT465B-2XR	Sprint Nextel		

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:

- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and American Tower Corporation, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

	Job Information				
Pole :	302511	Code: ANSI/TIA-222-G			
Description :	142 ft EEI Monopole				
Client :	SPRINT NEXTEL	Struct Class :			
Location :	WSPT - South, CT				
Shape :	12 Sides	Exposure : C			
Height :	142.00 (ft)	Торо: 1			
Base Elev (ft):	0.00				
Taper:	0.21263§in/ft)				

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Sections Properties								
Shaft Section	Length (ft)	Diame Accro Top	eter (in) ss Flats Bottom	Thick (in)	Joint Type	Overlap Length (in)	Taper (in/ft)	Steel Grade (ksi)
1	45.400	35.34	45.00	0.438		0.000	0.212600) 65
2	44.700	27.68	37.19	0.375	Slip Joint	61.875	0.212600) 65
3	44.800	19.54	29.07	0.250	Slip Joint	49.813	0.212600) 65
4	16.407	10.75	10.75	0.375	Butt Joint	0.000	0.000000) 35

	Discrete Appurtenance			
Attach	Force			
Elev (ft)	Elev (ft)	Qty	Description	
136.000	136.000	3	RCU (Remote Control Unit)	
136.000	140.000	3	Kathrein Scala 742-218 / AP20-	
131.000	132.000	3	Ericsson RRUS A2 Module	
131.000	128.000	3	CCI HPA-65R-BUU-H6	
131.000	132.000	3	Ericsson RRUS 12 w/ Solar Shie	
131.000	128.000	12	Powerwave Aligon LGP21401	
131.000	128.000	1	Raycap DC6-48-60-18-8F	
131.000	132.000	3	Ericsson RRUS-11 (50 lbs.)	
131.000	131.000	12	Powerwave Allgon 7020.00	
131.000	128.000	6	Powerwave Aligon ///0.00	
131.000	131.000	1	Flat Platform W/ Handralls	
120.000	120.000	3	Alestel Lucent DBU2v50 09	
120.000	120.000	3		
120.000	120.000	3	Alcatel-Lucent 1D-KKH0X29-23	
120.000	120.000	3	Alcatel-Lucent 1000 MHz 4x45	
120.000	120.000	2		
120.000	120.000	2		
120.000	120.000	2	DragonWave Horizon Compact	
120.000	120.000	2	DragonWave A-ANT-18G-2-C	
120.000	120.000	3	NextNet BTS-2500	
120.000	120.000	1	Flat Platform w/ Handrails	
111.000	111.000	- i	Flat Platform w/ Handrails	
111.000	111.000	9	48" x 8" Panel	
100.000	100.000	3	Antel BXA-171063/12CF2 FP	
100.000	100.000	3	Antel BXA-70080/6CF	
100.000	100.000	1	RFS DB-T1-6Z-8AB-0Z	
100.000	100.000	3	Alcatel-Lucent RRH2x40-AWS	
100.000	100.000	6	RFS FD9R6004/1C-3L	
100.000	100.000	3	Powerwave Allgon P65-16-XL-	
100.000	100.000	3	Rymsa MGD3-800TX	
100.000	100.000	1	Flat Platform w/ Handrails	
90.000	90.000	3	Andrew LNX-6515DS-VTM	
90.000	90.000	3	Ericsson RRUS 11 B12	
90.000	90.000	3	Ericsson AIR 21, 1.3M, B4A B2P	
90.000	90.000	4	Ericsson AIR 21, 1.3 M, B2A B4	
90.000	90.000	4	RFS ATMAA1412D-1A20	
90.000	90.000	1	Flat Platform w/ Handrails	
90.000	00.000	2		
0U.UUU 62.000	60.000 62.000	2		
63.000	03.000	1		
93.000	03.000	U.		

		Linear App	urtenance	
Elev	' (ft)		Exposed	
From	То	Description	To Wind	
0.000	63.000	1/2" Coax	No	
0.000	63.000	DYWIDAG	Yes	
0.000	80.000	1/2" Coax	Yes	
0.000	90.000	1 1/4" Fiber	No	
0.000	90.000	1 5/8" Coax	Yes	
0.000	100.0	1 5/8" Coax	No	
0.000	100.0	1 5/8" Hybriflex	No	
0.000	111.0	1/2" Coax	No	
0.000	111.0	7/8" Coax	No	
0.000	120.0	1 1/4" Hybriflex	No	
0.000	120.0	1/2" Coax	Yes	
0.000	120.0	2" Conduit	Yes	
0.000	120.0	5/16" Coax	Yes	
0.000	131.0	0.28" RG-6	No	
0.000	131.0	0.39" Fiber Trunk	No	
0.000	131.0	0.65" 8 AWG 2C	No	
0.000	131.0	1 1/4" Coax	No	
0.000	136.0	1 5/8" Coax	Yes	
0.000	136.0	3/8" Coax	No	

	Load Cases
1.2D + 1.6W	93 mph with No Ice
0.9D + 1.6W	93 mph with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi	50 mph with 0.75 in Radial Ice
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Lateral Forces Method
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Modal Analysis Method
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Lateral
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Modal
1.0D + 1.0W	Serviceability 60 mph

Reactions					
Moment Shear Axial Load Case (kip-ft) (kip) (kip)					
1.2D + 1.6W	3733.21	42.04	49.67		
0.9D + 1.6W	3612.18	41.27	37.23		
1.2D + 1.0Di + 1.0Wi	958.24	10.31	84.98		
(1.2 + 0.2Sds) * DL + E ELFM	189.11	1.75	49.67		
(1.2 + 0.2Sds) * DL + E EMAM	151.31	1.69	49.67		
(0.9 - 0.2Sds) * DL + E ELFM	186.44	1.75	33.97		
(0.9 - 0.2Sds) * DL + E EMAM	148.97	1.69	33.97		
1.0D + 1.0W	945.26	10.75	41.46		

	Dish Deflection	ons	
Load Case	Attach Elev (ft)	Deflection (in)	Rotation (deg)
1.0D + 1.0W	120.00	19.724	1.642

Site Numbe	or: 302511	<u> </u>	Code: ANSI/TIA-222-G	© 2007 - 2017 by ATC IP LL	C. All rights reserved	
Site Name:	WSPT - Se	outh, CT E	ngineering Number:OAA713869_C3_()1 11/2	2/2017 9:03:28 AM	
Customer:	SPRINT N	EXTEL				
			Anchusia Denematara	<u> </u>		
			Analysis Parameters			
Location:		FAIRFIELD County, CT	Height (ft):	142		
Code:		ANSI/TIA-222-G	Base Diameter (in):	45.00		
Shape:		12 Sides. Sect 4: Round	Top Diameter (in):	10.75		
Pole Type:		Custom	Taper (in/ft) :	0.213		
Pole Manfact	urer:	EEI	Rotation (deg) :	0.00		
			Ice & Wind Parameters			
Structure Class: }		D	Design Wind Speed Without le	ce: 93 mph	93 mph	
Exposure Cat	tegory:	С	Design Wind Speed With Ice:	50 mph		
Topographic	Category:	1	Operational Wind Speed:	60 mph		
Crest Height:		0.0 ft	Design Ice Thickness:	0.75 in		
			Seismic Parameters			
Analysis Method: Equivalent Modal Analysis 8		Equivalent Modal Analysis	& Equivalent Lateral Force Methods			
Site Class:		D - Stiff Soll				
Period Based	on Rayleigh M	lethod (sec): 2.1	7			
T _L (sec):	6	p	1.3	C _s :	0.032	
S _s :	0.221	S	ı: 0.066	C s Max:	0.032	
F _a :	1.600	F,	.: 2.400	C _s Min:	0.030	
S _{ds} :	0.236	S	0.106	-		

Load Cases

1.2D + 1.6W	93 mph with No Ice
0.9D + 1.6W	93 mph with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi	50 mph with 0.75 in Radlal Ice
(1.2 + 0.2Sds) * DL + E ELFM	Seismic Equivalent Lateral Forces Method
(1.2 + 0.2Sds) * DL + E EMAM	Seismic Equivalent Modal Analysis Method
(0.9 - 0.2Sds) * DL + E ELFM	Seismic (Reduced DL) Equivalent Lateral Forces Method
(0.9 - 0.2Sds) * DL + E EMAM	Seismic (Reduced DL) Equivalent Modal Analysis Method
1.0D + 1.0W	Serviceability 60 mph

Site Name: WSPT - South, CT

Customer: SPRINT NEXTEL

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:28 AM

							Bottom												
Slip												Top							
Sect Info	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Joint Len (in)	Weight (Ib)	Dia (In)	Elev (ft)	Area (in ²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (in ²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-12	45.400	0.4375	5 65		0.00	8,648	45.00	0.00	62.78	15912.1	25.42	102.86	35.34	45.40	49.18	7649.3	19.50	80.79	0.212638
2-12	44.700	0.3750	65	Slip	61.88	5,889	37.19	40.24	44.46	7692.0	24.43	99.18	27.68	84.94	32.98	3140.3	17.64	73.83	0.212638
3-12	44.800	0.2500	65	Slip	49.81	2,952	29.07	80.79	23.20	2459.7	29.01	116.28	19.54	125.59	15.53	738.0	18.80	78.18	0.212638
4-R	16.407	0.3750	35	Butt	0.00	682	10.75	125.59	12.22	164.6	0.00	28.67	10.75	142.00	12.22	164.6	0.00	28.67	0.000000
Shaft Weight 18,172																			

Discrete Appurtenance Properties

Attach	1		0	- No Ic	e ————		- Ice		Distance	Vert
Elev			Weight	EPAa	Orientation	Weight	EPAa	Orientation	From Face	Ecc
(ft)	Description	Qty	(lb)	(sf)	Factor	(lb)	(sf)	Factor	(ft)	(ft)
136.00	Kathrain Seale 742 249 /	2	22 50	2 950	0.02	440.54	4 700	0.00	0.000	4 000
136.00	Rell (Romoto Control Unit)	3	22.30	3.030	0.03	110.51	4.704	0.03	0.000	4.000
130.00		3	1.00	0.100	0.50	11.01	0.359	0.50	0.000	0.000
131.00	Friceson PRUS 12 w/ Solor	2	57.00	9.000	0.09	293.12	11.000	0.09	0.000	-3.000
131.00	Ericeson PBUS A2 Module	3	37.90	3.130	0.07	10/.2/	3.003	0.07	0.000	1.000
121.00	Ericsson RRUS A2 Module	3	Z1.20	1.000	0.50	00.47	2.123	0.50	0.000	1.000
131.00	Elet Dietferm w/ Henderile	3	00.00	2.570	0.67	129.98	3.205	0.67	0.000	1.000
131.00	Plat Platform W/ Handralls	1	2000.00	42.400	1.00	3,404.39	63.124	1.00	0.000	0.000
131.00	Powerwave Aligon 7020.00	12	25.00	0.400	0.50	17.61	0.619	0.50	0.000	0.000
121.00	Powerwave Allger LCD24404	40	30.00	3.310	0.00	107.80	0.044	0.05	0.000	-3.000
131.00	Powerwave Aligon LGP21401	12	14.10	1.100	0.50	47.10	1.556	0.50	0.000	-3.000
131.00		1	31.80	1.280	1.00	123.18	2.843	1.00	0.000	-3.000
120.00	Alcatel-Lucent 1900 MHz	3	60.00	2.320	0.67	152.37	2.975	0.67	0.000	0.000
120.00	Alcatel-Lucent 800 MHZ	3	64.00	2.060	0.67	152.13	2.640	0.67	0.000	0.000
120.00	Alcatel-Lucent RRH2x50-08	3	52.90	1.700	0.50	122.29	2.235	0.50	0.000	0.000
120.00	Alcatel-Lucent ID-RRH8x20-	3	70.00	4.050	0.67	159.37	5.675	0.67	0.000	0.000
120.00	Argus LLPX310K	3	28.60	4.290	0.63	133.23	5.166	0.63	0.000	0.000
120.00	Commscope D1465B-2XR	3	58.00	9.100	0.69	281.63	10.403	0.69	0.000	0.000
120.00	Dragonwave A-ANI-18G-2-C	2	27.10	4.690	1.00	122.53	5.936	1.00	0.000	0.000
120.00	DragonWave Horizon	2	10.60	0.430	0.50	39.85	0.653	0.50	0.000	0.000
120.00	Flat Platform w/ Handrails	1	2000.00	42.400	1.00	3,389.73	62.908	1.00	0.000	0.000
120.00	NextNet BTS-2500	3	35.00	1.820	0.50	91.05	2.383	0.50	0.000	0.000
120.00	RFS APXVSPP18-C-A20	3	57.00	8.020	0.69	250.96	9.281	0.69	0.000	0.000
111.00	48" X 8" Panel	9	20.00	3.610	0.73	148.46	6.020	0.73	0.000	0.000
111.00	Flat Platform w/ Handrails	1	2000.00	42.400	1.00	3,381.22	62.783	1.00	0.000	0.000
100.00	Alcatel-Lucent RRH2x40-AWS	53	44.00	2.160	0.67	113.66	2.774	0.67	0.000	0.000
100.00	Antel BXA-171063/12CF_2	3	15.00	4.790	0.72	128.79	5.957	0.72	0.000	0.000
100.00	Antel BXA-70080/6CF	3	18.00	5.840	0.72	161.39	7.030	0.72	0.000	0.000
100.00	Flat Platform w/ Handrails	1	2000.00	42.400	1.00	3,364.04	62.529	1.00	0.000	0.000
100.00	Powerwave Allgon P65-16-	3	33.00	8.130	0.65	205.57	9.371	0.65	0.000	0.000
100.00	RFS DB-T1-6Z-8AB-0Z	1	44.00	4.800	0.67	175.07	5.634	0.67	0.000	0.000
100.00	RFS FD9R6004/1C-3L	6	3.10	0.370	0.50	15.39	0.568	0.50	0.000	0.000
100.00	Rymsa MGD3-800TX	3	15.40	3.340	0.69	97.74	4.235	0.69	0.000	0.000
90.00	Andrew LNX-6515DS-VTM	3	51.30	11.430	0.70	298.51	13.005	0.70	0.000	0.000
90.00	Ericsson AIR 21, 1.3 M, B2A	4	83.00	6.050	0.71	241.54	7.087	0.71	0.000	0.000
90.00	Ericsson AIR 21, 1.3M, B4A	3	81.50	6.090	0.70	240.00	7.132	0.70	0.000	0.000
90.00	Ericsson RRUS 11 B12	3	50.70	2.790	0.67	131.59	3.431	0.67	0.000	0.000
90.00	Flat Platform w/ Handrails	1	2000.00	42.400	1.00	3,349.36	62.312	1.00	0.000	0.000
90.00	RFS ATMAA1412D-1A20	4	13.00	1.000	0.50	45.68	1.407	0.50	0.000	0.000
80.00	Diamond X50A	2	2.30	1.120	1.00	56.95	2.427	1.00	0.000	0.000
80.00	Stand-Offs	2	50.00	3.000	1.00	72.87	4.470	1.00	0.000	0.000
63.00	PCTEL GPS-TMG-HR-26N	1	0.60	0.090	1.00	9.79	0.255	1.00	0.000	0.000
63.00	Stand-Off	1	30.00	1.000	1.00	43.41	1.479	1.00	0.000	0.000
	Totals	136 1	4088.60		32,687	7.30		Number	of Loadings	: 42

Site Name: WSPT - South, CT Customer: SPRINT NEXTEL Code: ANSI/TIA-222-G Engineering Number:OAA713869_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved.

AA713869_C3_01

11/2/2017 9:03:28 AM

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Qty	Description	Coax Dlameter (in)	Coax Weight (Ib/ft)	Flat	Projected Width (in)	Exposed To Wind	Carrier
0.00	136.00	6	1 5/8" Coax	1.98	0.82	N	1.98	Y	Metro PCS
0.00	136.00	1	3/8" Coax	0.44	0.08	Ν	0.44	N	Metro PCS
0.00	131.00	1	0.28" RG-6	0.28	0.03	Ν	0.00	N	AT&T Mobility
0.00	131.00	1	0.39" Fiber Trunk	0.39	0.06	Ν	0.00	N	AT&T Mobility
0.00	131.00	2	0.65" 8 AWG 2C	0.65	0.31	Ν	0.00	N	AT&T Mobility
0.00	131.00	12	1 1/4" Coax	1.55	0.63	Ν	0.00	N	AT&T Mobility
0.00	120.00	4	1 1/4" Hybriflex	1.54	1.00	Ν	0.00	N	Sprint Nextel
0.00	120.00	2	1/2" Coax	0.63	0.15	Ν	0.00	Y	Clearwire
0.00	120.00	1	2" Condult	2.38	3.65	Ν	2.38	Ŷ	Clearwire
0.00	120.00	6	5/16" Coax	0.31	0.05	N	0.00	Y	Clearwire
0.00	111.00	1	1/2" Coax	0.63	0.15	Ν	0.00	N	Sprint Nextel
0.00	111.00	12	7/8" Coax	1.09	0.33	N	0.00	N	Sprint Nextel
0.00	100.00	12	1 5/8" Coax	1.98	0.82	Ν	0.00	N	Verizon
0.00	100.00	1	1 5/8" Hybriflex	1.98	1.30	Ν	0.00	N	Verizon
0.00	90.00	1	1 1/4" Fiber	1.25	1.05	Ν	1.25	N	T-Mobile
0.00	90.00	14	1 5/8" Coax	1.98	0.82	Ν	3.96	Y	T-Mobile
0.00	80.00	2	1/2" Coax	0.63	0.15	Ν	0.63	Ŷ	Senet. Inc.
0.00	63.00	1	1/2" Coax	0.63	0.15	Ν	0.00	N	Sprint Nextel
0.00	63.00	4	DYWIDAG	4.00	0.00	N	4.00	Y	-

Additional Steel

Elev	Elev					- Intermediate				
From	То			Fy	Offset		Spacing	Len		
<u>(ft)</u>	<u>(ft)</u>	Qty	Description	(ksi)	(in)	Description	(in)	(in)	Connectors	Continuation?
0.00	55.68	4	SOL #20 All Thread	80	2.19	6" Angle Bracket	t 30.0	3.31	5/8" A36 U-Bolt	Yes

Site Name: WSPT - South, CT **SPRINT NEXTEL** Customer:

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:28 AM

Seament D. /84-

Segr	nent Properties	(Max	Len : 5	. ft)									
Seg T	ор		Flat								Addit	ional Re	einforcing
Elev		Thic	k Dla	Area	İx	W/t	D/t F'y	S	Ζ	Weight	Area	Ix	Weight
(π)	Description	(in)	(in)	<u>(In²)</u>	<u>(in4)</u>	Ratio	Ratio (ksi) (in³)	(in ³)	(ib)	(in ²)	(in 4)	(lb)
0.00		0.4375	45.000	62.777	15.912.1	25.42	102.86 77.0	683.1	0.0	0.0	19.64	6 615	0.0
5.00		0.4375	43.937	61.280	14,800.2	24.77	100.43 77.7	650.7	0.0	1.055.3	19.64	6.347	334.0
10.00		0.4375	42.874	59.782	13,741.3	24.11	98.00 78.4	619.2	0.0	1,029.9	19.64	6,084	334.0
20.00		0.4375	41.810	58.284	12,734.1	23.46	95.57 79.1	588.4	0.0	1,004.4	19.64	5,827	334.0
25.00		0.4375	20 69/	30./00 55 290	11,///.4	22.81	93.14 79.8	558.4	0.0	978.9	19.64	5,576	334.0
30.00		0 4375	38 621	53 701	10,009.9	22.10	90.71 80.3	529.Z	0.0	953.4	19.64	5,330	334.0
35.00		0.4375	37.558	52.293	9.197.1	20.86	85 85 81 9	473 1	0.0	927.9 002 A	19.04	5,090 4 855	334.0
40.00		0.4375	36.494	50.795	8.429.2	20.21	83.42 81.9	446.2	0.0	877 0	19.64	4 626	334.0
40.24	Bot - Section 2	0.4375	36.443	50.722	8,392.9	20.18	83.30 81.9	444.9	0.0	42.1	19.64	4.615	16.3
45.00		0.4375	35.431	49.297	7,705.4	19.56	80.99 81.9	420.1	0.0	1,519.0	19.64	4,559	317.7
45.40	lop - Section 1	0.3750	36.096	43.133	7,025.1	23.65	96.26 78.9	376.0	0.0	125.8	19.64	4,541	26.7
55.00		0.3750	35.118	41.952	6,463.7	22.95	93.65 79.7	355.6	0.0	665.9	19.64	4,337	307.3
55.00	Paint Too	0.3750	34.055	40.668	5,888.2	22.19	90.81 80.5	334.0	0.0	702.9	19.64	4,121	334.0
60.00	кепп. төр	0.3/30	33.911	40.495	5,813.1	22.09	90.43 80.6	331.2	0.0	93.5	19.64	4,092	45.2
63.00		0.3750	32.882	39.300	5,340.0 5 040 3	21.43	87.98 81.3	313.2	0.0	587.5			
65.00		0.3750	31.929	38.101	4.841.9	20.67	85 14 81 9	203.0	0.0	390.1 281 A			
70.00		0.3750	30,865	36.817	4.368.8	19.91	82.31 81.9	2734	0.0	637.3			
75.00		0.3750	29,802	35.533	3.927.5	19.15	79.47 81.9	254.6	0.0	615.5			
80.00		0.3750	28.739	34.249	3,517.0	18.39	76.64 81.9	236.4	0.0	593.6			
80.79	Bot - Section 3	0.3750	28.570	34.046	3,454.7	18.27	76.19 81.9	233.6	0.0	92.1			
84.94	Top - Section 2	0.2500	28.188	22.490	2,240.5	28.07	112.75 74.1	153.6	0.0	796.1			
00.00		0.2500	28.176	22.480	2,237.7	28.06	112.70 74.1	153.4	0.0	4.3			
90.00		0.2500	27.113	21.624	1,991.7	26.92	108.45 75.4	141.9	0.0	375.2			
100.0		0.2000	20.049	20.700	1,/04.4	25.78	104.20 76.6	130.9	0.0	360.6			
105.0		0 2500	23 923	10.515	1 382 1	24.04	39.94 //.0	120.2	0.0	340.1 394 E			
110.0		0.2500	22.860	18.201	1 187 6	23,30	95.09 79.1	100.4	0.0	331.3			
111.0		0.2500	22.647	18.030	1.154.4	22 13	90 59 80 6	98.5	0.0	B1 6			
115.0		0.2500	21.797	17.345	1,027.8	21.22	87.19 81.6	91.1	0.0	240.7			
120.0		0.2500	20.733	16.489	883.1	20.08	82.93 81.9	82.3	0.0	287.8			
125.0		0.2500	19.670	15.633	752.6	18.94	78.68 81.9	73.9	0.0	273.3			
125.5	Top - Section 3	0.2500	19.544	15.532	738.0	18.80	78.18 81.9	72.9	0.0	31.4			
125.5	Bot - Section 4	0.3750	10.750	12.223	164.6	0.00	28.67 35.0	30.6	40.4				
130.0		0.3750	10.750	12.223	164.6	0.00	28.67 35.0	30.6	40.4	183.3			
135.0		0.3750	10.750	12.223	164.6 164.6	0.00	28.67 35.0	30.6	40.4	41.6			
136.0		0.3750	10.750	12 222	164.0	0.00	20.07 33.0	30.0 30.6	40.4	100.4			
140.0		0.3750	10.750	12,223	164.6	0.00	28.67 35.0	30.0	40.4	41.0			
142.0		0.3750	10.750	12.223	164.6	0.00	28.67 35.0	30.6	40.4	83.2			
										484 8			

18,171.7

3,719.2

Site Number: 302511 Site Name: WSPT - South, CT Customer: SPRINT NEXTEL	Code: ANSI/TIA-222-G Engineering Number:OAA713869_C3_01	© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:29 AM
Load Case: 1.2D + 1.6W Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.60	93 mph with No Ice	25 Iterations Wind Importance Factor 1.00

Applied Segment Forces Summary

		Shaft	Forces	Discrete Forces				Linear Forces		s Sum of Forces			
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		362.2	0.0					0.0	0.0	362.2	0.0	0.0	0.0
5.00		715.7	1,266.4					203.8	699.3	919.4	1,965.7	0.0	0.0
10.00		698.4	1,235.8					203.8	699.3	902.1	1,935.1	0.0	0.0
15.00		691.7	1,205.3					203.8	699.3	895.4	1,904.5	0.0	0.0
20.00		703.1	1,174.7					210.2	699.3	913.3	1,873.9	0.0	0.0
25.00		718.0	1,144.1					221.6	699.3	939.7	1,843.4	0.0	0.0
30.00		726.4	1,113.5					231.2	699.3	957.5	1,812.8	0.0	0.0
35.00		729.8	1,082.9					239.5	699.3	969.3	1,782.2	0.0	0.0
40.00		383.0	1,052.4					246.8	699.3	629.8	1,751.6	0.0	0.0
40.24	Bot - Section 2	371.4	50.5					12.2	34.1	383.6	84.6	0.0	0.0
45.00		383.3	1,822.8					241.2	665.2	624.5	2,488.0	0.0	0.0
45.40	Top - Section 1	369.6	151.0					20.5	55.9	390.1	206.9	0.0	0.0
50.00		706.1	799.1					238.2	643.3	944.4	1,442.4	0.0	0.0
55.00		415.5	843.4					262.8	699.3	678.2	1.542.7	0.0	0.0
55.68	Reinf. Top	361.8	112.2					35.9	94.7	397.7	206.9	0.0	0.0
60.00		527.1	705.0					230.4	258.1	757.6	963.1	0.0	0.0
63.00	Appertunance(s)	356.5	477.7	46.3	0.0	0.0	36.7	161.3	179.1	564.2	693.5	0.0	0.0
65.00		492.4	313.3					75.4	119.0	567.8	432.3	0.0	0.0
70.00		694.3	764.8					190.1	297.6	884.4	1.062.4	0.0	0.0
75.00		680.2	738.6					192.4	297.6	872.5	1.036.1	0.0	0.0
80.00	Appertunance(s)	389.0	712.4	368.4	0.0	0.0	125.5	194.5	207.6	951.9	1 135 5	0.0	0.0
80.79	Bot - Section 3	329.7	110.5			0.0	i aviç	28.8	46.9	358.5	157.4	0.0	0.0
84.94	Top - Section 2	280.8	955.3					151.5	245.6	432.3	1.200.8	0.0	0.0
85.00		329.7	5.2					2.1	3.3	331 7	8.5	0.0	0.0
90.00	Appertunance(s)	636.5	450.2	4 059 6	0.0	0.0	3 521 4	184 1	205.8	4 880 2	A 267 A	0.0	0.0
95.00		617.1	432.8	.jeeele	0.0	0.0	0,0211-	0.0	220.0	617.1	653 /	0.0	0.0
100.00	Appertunance(s)	608.8	415.3	3,898,1	0.0	0.0	2 926 6	0.0	220.0	4 506 0	3 562 4	0.0	0.0
105.00		599.9	397.8	0,000.1	0.0	0.0	2,020.0	0.0	152.0	500.0	551 8	0.0	0.0
110.00		356.6	380.3					0.0	100.0	333.3 256 6	534.4	0.0	0.0
111.00	Appertunance(s)	292.8	74.0	2 882 7	0.0	0.0	2 616 0	0.0	20.9	330.0 2 475 5	2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	0.0	0.0
115.00		521.5	288.9	2,002.1	0.0	0.0	2,010.0	0.0	102.2	5,175.5	2,720.7	0.0	0.0
120.00	Appertunance(s)	500.8	345 4	A 824 2	0.0	0.0	4 022 2	0.0	120.0	5 3 25 0	J02.2	0.0	0.0
125.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	237 7	327 0	7,027.2	0.0	0.0	7,022.3	0.0	70.6	3,323.0	407.5	0.0	0.0
125 50	Top - Section 3	07.9	27.7					0.0	/9.0	237.7	407.3	0.0	0.0
130.00		80.0	220.0					0.0	9.4	97.0	47.1	0.0	0.0
131 00	Appertunance(s)	92.7	40.0	4 527 4		4 0.84 0	2 572 0	0.0	10.2	09.9	290.1	0.0	0.0
135.00	(a) and an an an an an an	03.7 \$3.9	49.9 100 4	4,007.1	0.0	-4,904.0	3,3/3.2	0.0	15.9	4,020.7	3,039.1	0.0	0.0
136.00	Appertunance(s)	70.7	100.0	270 0		4 463 0	04.0	0.0	24.0	03.0	223.0	0.0	0.0
140.00	· · · · · · · · · · · · · · · · · · ·	10.1	49.9	310.V	0.0	1,403.0	04.0	0.0	0.0	448.7	140.5	0.0	0.0
142.00		01.0	199.0					0.0	0.0	81.0	199.6	0.0	0.0
142.00		Z 1.1	33.0					0.0	0.0	27.1	99.8	0.0	0.0
								Tot	tals:	42,297.2	49,756.3	0.00	0.00

Site Name: WSPT - South, CT Customer: SPRINT NEXTEL Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:31 AM

25 Iterations

Load Case: 1.2D + 1.6W

93 mph with No Ice

Wind Importance Factor 1.00

Gust Response Factor :1.10 Dead Load Factor :1.20

Wind Load Factor : 1.60

Calculated Forces

Seg Flev			Tu	Mu	Mu	Resultant	phi	phi	phl	phi	Total		
(ff)	(kine)	(kine)	(# kine)			Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(11)	(kiba)	(viha)	(it-kips)	(п-кірз)	(m-kips)	(π-kips)	(kips)	(kips)	(ft-kips)) (ft-kips)	(in)	(deg)	Ratio
0.00	-49.67	-42.04	0.00	-3.733.21	0.00	3.733.21	4.350.13	2.175.06	7 987 32	3 944 64	0.00	0.00	0 679
5.00	-47.54	-41.30	0.00	-3.523.03	0.00	3.523.03	4,285 51	2 142 75	7 670 11	3 702 42	0.00	-0.23	0.0/0
10.00	-45.45	-40.57	0.00	-3,316.51	0.00	3.316.51	4.218.97	2,109.49	7.373.27	3 641 38	0.12	-0.25	0.009
15.00	-43.39	-39.83	0.00	-3,113.65	0.00	3,113.65	4.150.52	2.075.26	7.070.06	3.491.64	1.09	-0.69	0.040
20.00	-41.37	-39.06	0.00	-2,914.48	0.00	2,914.48	4.080.16	2.040.08	6,769,73	3.343.32	1 94	-0.92	0.800
25.00	-39.39	-38.25	0.00	-2,719.17	0.00	2,719.17	4.007.88	2.003.94	6.472.54	3.196.54	3 03	-1 15	0.578
30.00	-37.45	-37.40	0.00	-2,527.94	0.00	2,527,94	3,933,69	1.966.85	6,178,73	3.051 44	4.36	-1.38	0.570
35.00	-35.55	-36.53	0.00	-2,340.94	0.00	2,340.94	3,854.52	1.927.26	5.883.88	2.905.83	5.93	-1 61	0.534
40.00	-33.75	-35.91	0.00	-2,158.30	0.00	2,158.30	3,744,12	1.872.06	5.549.75	2.740.81	7.74	-1.84	0.515
40.24	-33.60	-35.60	0.00	-2,149.55	0.00	2,149.55	3,738,74	1.869.37	5.533.71	2,732,89	7 84	-1.85	0 514
45.00	-31.07	-34.95	0.00	-1,980.25	0.00	1,980.25	3,633.72	1.816.86	5.225.39	2.580.62	9.79	-2.07	0.489
45.40	-30.81	-34.61	0.00	-1,966.27	0.00	1,966.27	3,063.79	1,531.89	4.506.32	2.225.50	9.97	-2.08	0.544
50.00	-29.28	-33.72	0.00	-1,807.06	0.00	1,807.06	3,008.67	1,504.34	4,302.82	2,125.00	12.08	-2.29	0.516
55.00	-27.69	-33.04	0.00	-1,638.44	0.00	1,638.44	2,946.93	1,473.46	4,084.17	2,017.02	14.59	-2.51	0.485
55.68	-27.44	-32.69	0.00	-1,616.07	0.00	1,616.07	2,938.42	1,469.21	4,054.78	2,002.51	14.95	-2.54	0.480
55.68	-27.44	-32.69	0.00	-1,616.07	0.00	1,616.07	2,938.42	1,469.21	4,054.78	2,002.51	14.95	-2.54	0.817
60.00	-26.39	-31.99	0.00	-1,474.76	0.00	1,474.76	2,883.27	1,441.64	3,868.42	1,910.47	17.35	-2.74	0.782
63.00	-23.02	-31.47	0.00	-1,378.80	0.00	1,378.80	2,844.16	1,422.08	3,740.46	1,847.27	19.14	-2.96	0.756
00.00	-25.08	-31.00	0.00	-1,315.86	0.00	1,315.86	2,808.42	1,404.21	3,643.77	1,799.52	20.41	-3.12	0.741
70.00	-23.88	-30.20	0.00	-1,160.87	0.00	1,160.87	2,713.79	1,356.89	3,400.96	1,679.61	23.87	-3.48	0.700
70.00	-22.13	-29.40	0.00	-1,009.86	0.00	1,009.86	2,619.16	1,309.58	3,166.52	1,563.83	27.71	-3.83	0.655
80.00	-21.37	-20.40	0.00	-862.84	0.00	862.84	2,524.53	1,262.26	2,940.46	1,452.18	31.90	-4.17	0.603
84.04	-21.33	-20.14	0.00	-840.29	0.00	840.29	2,509.53	1,254.76	2,905.39	1,434.86	32.60	-4.23	0.595
85.00	-20.13	-27.00	0.00	-723.48	0.00	723.48	1,499.90	749.95	1,728.05	853.42	36.39	-4.49	0.863
00.00	-20.04	-27.41	0.00	-/21.92	0.00	721.92	1,499.54	749.77	1,726.89	852.85	36.45	-4.50	0.861
95.00	-15.03	-22.31	0.00	-384.87	0.00	584.87	1,466.64	733.32	1,624.12	802.09	41.38	-4.91	0.741
100.00	-12.00	-18 07	0.00	-4/3.33	0.00	4/3.35	1,431.82	715.91	1,522.23	751.77	46.73	-5.29	0.641
105.00	-11 52	-16 27	0.00	-304.70	0.00	304.70	1,395.09	697.54	1,421.47	702.01	52.45	-5.63	0.529
110.00	-11.00	-15.00	0.00	-2/9.00	0.00	279.85	1,356.44	678.22	1,322.10	652.93	58.50	-5.92	0.438
111.00	-8.61	-12.55	0.00	-197.99	0.00	197.99	1,315.88	657.94	1,224.36	604.67	64.83	-6.17	0.336
115.00	-8.25	-12.01	0.00	-131 78	0.00	131 79	1,307.34	033.77	1,205.03	393.12	00.13	-6.22	0.313
120.00	-4.36	-6.23	0.00	-71 71	0.00	71 71	1,273.40	030.70	1,128.51	007.33	/1.40	-6.37	0.243
125.00	-3.98	-5.95	0.00	-40 58	0.00	40.59	1,210,41	570 40	1,023.37	305.40	/8.14	-6.51	0.146
125.59	-3.94	-5.85	0.00	-37.06	0.00	37.06	1,102.00	570.10	919.28	454.00	85.00	-6.60	0.093
125,59	-3.94	-5.85	0.00	-37.06	0.00	37.06	295.02	102 54	460 54	440.09	00.02	-0.01	0.000
130.00	-3,66	-5.72	0.00	-11 29	0.00	11 20	382 03	102 54	160 24	100.00	00.02	-0.01	0.301
131.00	-0.58	-0.71	0.00	-5.57	0.00	5.57	385 02	192.01	100.04	106.00	91.93	-0.05	0.117
135.00	-0.37	-0.60	0.00	-2.71	0.00	2.71	385.02	102.51	160.54	100.00	83.33 09 04	-0.0/	0.034
136.00	-0.28	-0.14	0.00	-0.65	0.00	0.65	385.02	192.51	160.54	106.00	100.31	-0.70	0.02/
140.00	-0.10	-0.04	0.00	-0.08	0.00	0,08	385.02	192.51	160.54	106.00	105.02	-6 70	0.007
142.00	0.00	-0.03	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	108.72	-6 70	0.000

Site Number: 302511 Site Name: WSPT - South, CT Customer: SPRINT NEXTEL	Code: ANSI/TIA-222-G EngIneering Number:OAA713869_C3_01	© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:31 AM
Load Case: 0.9D + 1.6W Gust Response Factor :1.10 Dead Load Factor :0.90 Wind Load Factor :1.60	93 mph with No Ice (Reduced DL)	25 Iterations Wind Importance Factor 1.00

Applied Segment Forces Summary

-

		Shaft I	Forces		Discrete	screte Forces		Linear Forces		s Sum of Forces			
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(łb)	(lb)	(lb)	(lb)	(Ib-ft)	(lb)
0.00		362.2	0.0			÷		0.0	0.0	362.2	0.0	0.0	0.0
5.00		715.7	949.8					203.8	524.4	919.4	1,474.3	0.0	0.0
10.00		698.4	926.9					203.8	524.4	902.1	1,451.3	0.0	0.0
15.00		691.7	903.9					203.8	524.4	895.4	1,428.4	0.0	0.0
20.00		703.1	881.0					210.2	524.4	913.3	1,405.5	0.0	0.0
25.00		718.0	858.1					221.6	524.4	939.7	1,382.5	0.0	0.0
30.00		726.4	835.1					231.2	524.4	957.5	1,359.6	0.0	0.0
35.00		729.8	812.2					239.5	524.4	969.3	1,336.7	0.0	0.0
40.00		383.0	789.3					246.8	524.4	629.8	1,313.7	0.0	0.0
40.24	Bot - Section 2	371.4	37.9					12.2	25.6	383.6	63.5	0.0	0.0
45.00		383.3	1,367.1					241.2	498.9	624.5	1,866.0	0.0	0.0
45.40	Top - Section 1	369.6	113.2					20.5	42.0	390.1	155.2	0.0	0.0
50.00		706.1	599.3					238.2	482.5	944.4	1,081.8	0.0	0.0
55.00		415.5	632.6					262.8	524.4	678.2	1,157.0	0.0	0.0
55.68	Reinf. Top	361.8	84.1					35.9	71.0	397.7	155.1	0.0	0.0
60.00		527.1	528.8					230.4	193.5	757.6	722.3	0.0	0.0
63.00	Appertunance(s)	356.5	358.3	46.3	0.0	0.0	27.5	161.3	134.3	564.2	520.2	0.0	0.0
65.00		492.4	234.9					75.4	89.3	567.8	324.2	0.0	0.0
70.00		694.3	573.6					190.1	223.2	884.4	796.8	0.0	0.0
75.00		680.2	553.9					192.4	223.2	872.5	777.1	0.0	0.0
80.00	Appertunance(s)	389.0	534.3	368.4	0.0	0.0	94.1	194.5	223.2	951.9	851.6	0.0	0.0
80.79	Bot - Section 3	329.7	82.9					28.8	35.2	358.5	118.1	0.0	0.0
84.94	Top - Section 2	280.8	716.5					151.5	184.2	432.3	900.0	0.0	0.0
85.00		329.7	3.9					2.1	2.5	331.7	6.4	0.0	0.0
90.00	Appertunance(s)	590.2	337.7	4,059.6	0.0	0.0	2,641.0	184.1	221.8	4,833.8	3,200.6	0.0	0.0
95.00		520.7	324.6					0.0	165.4	520.7	490.0	0.0	0.0
100.00	Appertunance(s)	504.9	311.5	3,898.1	0.0	0.0	2,194.9	0.0	165.4	4,403.0	2,071.8	0.0	0.0
105.00		488.4	298.4					0.0	115.3	488.4	413.7	0.0	0.0
110.00		287.0	285.3					0.0	115.3	287.0	400.6	0.0	0.0
111.00	Appertunance(s)	231.3	55.5	2,882.7	0.0	0.0	1,962.0	0.0	23.1	3,114.0	2,040.5	0.0	0.0
115.00		406.6	216.7					0.0	(1.5	406.0	294.1	0.0	0.0
120.00	Appertunance(s)	435.4	259.0	4,824.2	0.0	0.0	3,016.7	0.0	96.8	5,259.6	3,372.0	0.0	0.0
125.00		237.7	245.9					0.0	59.7	237.7	305.6	0.0	0.0
125.59	Top - Section 3	83.1	28.3					0.0	7.1	83.1	35.4	0.0	0.0
130.00		71.8	165.0					0.0	52.6	71.8	217.6	0.0	0.0
131.00	Appertunance(s)	66.8	37.4	4,537.1	0.0	-4,964.0	2,679.9	0.0	11.9	4,603.9	2,729.3	0.0	0.0
135.00		66.9	149.7					0.0	18.0	66.9	167.7	0.0	0.0
136.00	Appertunance(s)	67.3	37.4	378.0	0.0	1,463.8	63.4	0.0	4.5	445.3	105.4	0.0	0.0
140.00		81.0	149.7					0.0	0.0	81.0	149.7	0.0	0.0
142.00		27.1	74.9					0.0	0.0	27.1	74.9	0.0	0.0
								То	tals:	41,557.7	37,317.2	0.00	0.00

Site Name: WSPT - South, CT Customer: SPRINT NEXTEL Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:34 AM

25 Iterations

Load Case: 0.9D + 1.6W

93 mph with No Ice (Reduced DL)

Wind Importance Factor 1.00

Gust Response Factor :1.10 Dead Load Factor :0.90

Wind Load Factor : 1.60

Calculated Forces

Se	g Pu	Vu	Tu	Mu	Mu	Resultant	nbi	nhi	nhi	ohi	Total		
Ele	ev FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.0	0 27.02	44.07	0.00	0.040.40	0.00	0.040.40	1 0 10 10	0.455.00				0.00	0.074
0.0	0 -37.23	-41.27	0.00	-3,012.18	0.00	3,612.18	4,350.13	2,175.06	7,987.32	3,944.64	0.00	0.00	0.654
10.0	0 -33.01	-40.49	0.00	-3,403.03	0.00	3,403.83	4,265.51	2,142.75	7,079.11	3,792.42	0.12	-0.22	0.030
15.0		-39.77	0.00	-3,203.41	0.00	3,203.41	4,210.8/	2,109.49	7,373.27	3,041.30	1 08	-0.44	0.010
20.0	.30.89	-38 11	0.00	-2 810 26	0.00	2 810 28	4,130.32	2,075.20	6 760 72	2 2/2 22	4 99	-0.07	0.591
25.0	0 -29 38	-37 26	0.00	-2,610.20	0.00	2,610.20	4,000.10	2,040.00	6 472 54	2 108 54	2.02	-0.08	0.570
30.0	0 _27.91	-36 38	0.00	-2,013.70	0.00	2 4 2 2 20	3 022 60	1 066 95	6 179 72	2 064 44	4 21	-1.22	0.530
35.0	0 -26.46	-35.48	0.00	-2.251.46	0.00	2,251 46	3 854 52	1 900.05	5 883 88	2 905 83	5 73	-1.55	0.534
40.0	0 -25.09	-34.87	0.00	-2.074 05	0.00	2 074 05	3 744 12	1 872 06	5 549 75	2,303.03	7 48	-1.00	0.012
40.2	4 -24.98	-34 53	0.00	-2 065 55	0.00	2 065 55	3 738 74	1 860 37	5 522 71	2 732 80	7 57	-1.78	0.404
45.0	0 -23.07	-33.89	0.00	-1.901.33	0.00	1.901.33	3,633,72	1,816.86	5 225 39	2 580 62	9.45	-1.99	0 468
45.4	0 -22.86	-33.53	0.00	-1.887.77	0.00	1.887 77	3 063 79	1 531 89	4 506 32	2 225 50	9 62	-2.01	0.521
50.0	0 -21.70	-32.63	0.00	-1.733.51	0.00	1.733.51	3.008.67	1.504.34	4.302.82	2,125.00	11.65	-2.20	0.494
55.0	0 -20.50	-31.95	0.00	-1.570.37	0.00	1.570.37	2,946,93	1.473.46	4.084.17	2.017.02	14.08	-2.42	0.463
55.6	8 -20.30	-31.58	0.00	-1.548.74	0.00	1.548.74	2.938.42	1.469.21	4.054.78	2.002.51	14.42	-2.45	0.459
55.6	8 -20.30	-31.58	0.00	-1.548.74	0.00	1.548.74	2,938 42	1,469,21	4 054 78	2 002 51	14 42	-2 45	0 781
60.0	0 -19.51	-30.86	0.00	-1.412.21	0.00	1,412,21	2,883,27	1.441.64	3.868.42	1.910.47	16.73	-2.63	0.746
63.0	0 -18.92	-30.33	0.00	-1,319.62	0.00	1,319.62	2.844.16	1,422.08	3.740.46	1.847.27	18.45	-2.85	0.721
65.0	0 -18.49	-29.83	0.00	-1,258.95	0.00	1,258.95	2,808.42	1,404.21	3,643.77	1.799.52	19.68	-3.00	0.707
70.0	0 -17.57	-29.01	0.00	-1,109.79	0.00	1,109,79	2,713.79	1.356.89	3.400.96	1.679.61	23.00	-3.35	0.668
75.0	0 -16.69	-28.19	0.00	-964.74	0.00	964.74	2,619.16	1.309.58	3.166.52	1.563.83	26.69	-3.68	0.624
80.0	0 -15.82	-27.23	0.00	-823.80	0.00	823.80	2,524.53	1,262.26	2,940.46	1,452.18	30.72	-4.01	0.574
80.7	9 -15.65	-26.91	0.00	-802.22	0.00	802.22	2,509.53	1,254.76	2,905.39	1,434.86	31.39	-4.06	0.566
84.9	4 -14.73	-26.45	0.00	-690.51	0.00	690.51	1,499.90	749.95	1,728.05	853.42	35.03	-4.31	0.820
85.0	0 -14.65	-26.17	0.00	-689.03	0.00	689.03	1,499.54	749.77	1,726.89	852.85	35.08	-4.32	0.819
90.0	0 -11.70	-21.17	0.00	-558.19	0.00	558.19	1,466.64	733.32	1,624.12	802.09	39.82	-4.71	0.705
95.0	0 -11.13	-20.68	0.00	-452.32	0.00	452.32	1,431.82	715.91	1,522.23	751.77	44.95	-5.08	0.610
100.0	0 -8.79	-16.10	0.00	-348.93	0.00	348.93	1,395.09	697.54	1,421.47	702.01	50.44	-5.40	0.504
105.0	0 -8.36	-15.61	0.00	-268.44	0.00	268.44	1,356.44	678.22	1,322.10	652.93	56.24	-5.68	0.418
110.0	0 -7.95	-15.30	0.00	-190.39	0.00	190.39	1,315.88	657.94	1,224.36	604.67	62.31	-5.92	0.321
111.0	0 -6.22	-12.00	0.00	-175.09	0.00	175.09	1,307.54	653.77	1,205.03	595.12	63.56	-5.96	0.299
115.0	0 -5.94	-11.58	0.00	-127.07	0.00	127.07	1,273.40	636.70	1,128.51	557.33	68.61	-6.11	0.233
120.0	0 -3.15	-6.00	0.00	-69.15	0.00	69.15	1,215.41	607.71	1,023.37	505.40	75.08	-6.25	0.140
125.0	0 -2.86	-5.73	0.00	-39.16	0.00	39.16	1,152.33	576.16	919.28	454.00	81.66	-6.34	0.089
120.0	9 -2.84	-5.05	0.00	-35.77	0.00	35.77	1,144.85	572.43	907.31	448.09	82.45	-6.34	0.082
123.5	9 -2.84	-5.65	0.00	-35.77	0.00	35.77	385.02	192.51	160.54	106.00	82.45	-6.34	0.346
130.0	U -2.63	-5.55	0.00	-10.89	0.00	10.89	385.02	192.51	160.54	106.00	88.31	-6.38	0.110
131.0	v -v.43 A A 37	-0.0/	0.00	-5.34	0.00	0.34	385.02	192.51	160.54	100.00	89.05	-0.40	0.001
130.0	U -U.∠/ Ú _0.24	-0.39	0.00	-2.03	0.00	2.03	300.02	192.51	100.54	100.00	95.01	-0.43	0.026
140.0	0 _0.21	-0.13	0.00	-0.00	0.00	0.00	303.UZ 205 02	192.31	100.34	100.00	30.30	-0.43	0.000
1/2 0	0 0.07	_0.02	0.00	-0.07	0.00	0.07	J0J.UZ	192.31	100.04	100.00	101.73	-0.40	0.001
176.V	v v.vv	-0.03	0.00	0.00	0.00	0.00	JOJ.UZ	182.31	100.34	100.00	104.42	-0.43	0.000

Site Name: WSPT - South, CT **SPRINT NEXTEL** Customer:

Code: ANSI/TIA-222-G

Engineering Number:OAA713869_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:34 AM

Load Case: 1.2D + 1.0Di + 1.0Wi	50 mph with 0.75 in Radial Ice	24 Iterations
Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00	Ice Dead Load Factor 1.00	Wind Importance Factor 1.00 Ice Importance Factor 1.00

Applied Segment Forces Summary

		Shaft	Forces	Discrete Forces				Linear Forces			Sum of Forces		
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(ib-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(ib)
0.00		68.7	0.0					0.0	0.0	68.7	0.0	0.0	0.0
5.00		136.3	1.604.9					69.7	1.100.6	206.0	2.705.4	0.0	0.0
10.00		133.7	1.605.8					73.6	1.147.3	207.3	2,753,1	0.0	0.0
15.00		133.0	1,585.8					75.5	1,171.5	208.5	2,757.2	0.0	0.0
20.00		135.6	1,558.9					79.3	1.188.3	214.9	2,747.2	0.0	0.0
25.00		138.9	1.528.5					84.7	1.201.3	223.6	2,729.8	0.0	0.0
30.00		141.0	1.495.8					89.3	1.212.1	230.2	2,707.9	0.0	0.0
35.00		142.1	1,461.6					93.3	1.221.3	235.4	2,682.9	0.0	0.0
40.00		74.7	1,426.2					96.9	1,229.3	171.6	2,655.5	0.0	0.0
40.24	Bot - Section 2	72.5	68.9					4.8	60.1	77.3	129.0	0.0	0.0
45.00		74.9	2,180.2					95.3	1,176.3	170.2	3,356.5	0.0	0.0
45.40	Top - Section 1	72.4	181.1					8.1	99.2	80.5	280.3	0.0	0.0
50.00		138.6	1,139.0					95.0	1,143.7	233.6	2,282.7	0.0	0.0
55.00		81.7	1,205.7					105.9	1,248.8	187.6	2,454.5	0.0	0.0
55.68	Reinf. Top	71.3	161.3					14.5	169.5	85.9	330.8	0.0	0.0
60.00		104.1	1,012.0					94.0	738.2	198.0	1,750.2	0.0	0.0
63.00	Appertunance(s)	70.5	688.2	13.3	0.0	0.0	39.3	66.3	514.5	150.1	1,242.0	0.0	0.0
65.00		97.7	452.4					33.6	286.7	131.3	739.1	0.0	0.0
70.00		138.1	1,103.4					85.1	719.4	223.2	1,822.8	0.0	0.0
75.00		135.8	1,068.6					86.7	722.9	222.6	1,791.4	0.0	0.0
80.00	Appertunance(s)	77.9	1,033.4	111.4	0.0	0.0	380.6	88.3	726.1	277.6	2,140.1	0.0	0.0
80.79	Bot - Section 3	66.2	161.3					11.6	111.2	77.8	272.5	0.0	0.0
84.94	Top - Section 2	56.4	1,218.8					61.4	583.4	117.8	1,802.2	0.0	0.0
85.00		66.4	8.7					0.8	7.9	67.3	16.7	0.0	0.0
90.00	Appertunance(s)	129.9	758.0	963.7	0.0	0.0	6,645.5	75.1	705.2	1,168.7	8,108.6	0.0	0.0
95.00		126.9	730.8					0.0	413.5	126.9	1,144.3	0.0	0.0
100.00	Appertunance(s)	123.6	703.5	949.2	0.0	0.0	5,790.6	0.0	414.8	1,072.9	6,909.0	0.0	0.0
105.00		120.3	676.0					0.0	349.2	120.3	1,025.2	0.0	0.0
110.00		70.9	648.3					0.0	350.4	70.9	998.7	0.0	0.0
111.00	Appertunance(s)	57.5	127.3	799.9	0.0	0.0	4,703.4	0.0	70.2	857.4	4,900.8	0.0	0.0
115.00	_	101.5	495.1					0.0	261.6	101.5	756.7	0.0	0.0
120.00	Appertunance(s)	109.4	592.4	1,164.5	0.0	0.0	7,829.4	0.0	328.0	1,273.9	8,749.9	0.0	0.0
125.00		60.0	564.3					0.0	186.3	60.0	750.6	0.0	0.0
125.59	Top - Section 3	34.1	65.6					0.0	22.1	34.1	87.7	0.0	0.0
130.00		34.2	335.2					0.0	164.6	34.2	499.9	0.0	0.0
131.00	Appertunance(s)	31.9	76.1	1,111.9	0.0	-1,096.5	7,433.1	0.0	37.4	1,143.8	7,546.6	0.0	0.0
135.00		31.9	304.7					0.0	110.1	31.9	414.8	0.0	0.0
136.00	Appertunance(s)	32.2	76.2	86.6	0.0	327.1	378.7	0.0	27.6	118.8	482.5	0.0	0.0
140.00		38.7	305.1					0.0	0.0	38.7	305.1	0.0	0.0
142.00		12.9	152.7					0.0	0.0	12.9	152.7	0.0	0.0
								То	tais:	10,333.8	84,983.0	0.00	0.00

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:37 AM

Site Name: WSPT - South, CT **SPRINT NEXTEL** Customer:

Engineering Number:OAA713869_C3_01

24 Iterations

Load Case: 1.2D + 1.0Di + 1.0Wi

50 mph with 0.75 in Radial Ice

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00 Ice Dead Load Factor 1.00

Wind Importance Factor 1.00 Ice Importance Factor :1.00

Calculated Forces

Se	eg Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
	ev Fr(-)	F¥ (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(11	(KIPS)	(KIPS)	(π-κips)	(π-kips)	(m-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.	00 -84.98	-10.31	0.00	-958.24	0.00	958.24	4.350.13	2.175.06	7.987.32	3 944 64	0.00	0.00	0.186
5.	00 -82.26	-10.19	0.00	-906.69	0.00	906.69	4,285.51	2 142 75	7,679,11	3 792 42	0.03	-0.06	0.182
10.	00 -79.50	-10.06	0.00	-855.76	0.00	855.76	4,218,97	2 109 49	7 373 27	3 641 38	0.13	-0.12	0.177
15.	00 -76.73	-9.92	0.00	-805.47	0.00	805.47	4,150,52	2.075.26	7.070.06	3.491.64	0.28	-0.18	0.172
20.	00 -73.97	-9.77	0.00	-755.86	0.00	755.86	4.080.16	2 040 08	6,769,73	3 343 32	0.50	-0.24	0.167
25.	00 -71.24	-9.61	0.00	-706.99	0.00	706.99	4.007.88	2.003.94	6.472.54	3 196 54	0.78	-0.30	0.162
30.	00 -68.52	-9.44	0.00	-658.93	0.00	658.93	3,933,69	1,966,85	6,178,73	3.051.44	1.13	-0.36	0.156
35.	00 -65.83	-9.25	0.00	-611.73	0.00	611.73	3.854.52	1.927.26	5.883.88	2.905.83	1.53	-0.42	0.150
40.	00 -63.17	-9.10	0.00	-565.47	0.00	565.47	3.744.12	1.872.06	5.549.75	2.740.81	2.00	-0.48	0.145
40.:	24 -63.04	-9.05	0.00	-563.25	0.00	563.25	3,738,74	1.869.37	5.533.71	2,732,89	2.03	-0.48	0.145
45.	00 -59.68	-8.88	0.00	-520.21	0.00	520.21	3.633.72	1.816.86	5.225.39	2.580.62	2.53	-0.54	0.138
45.4	40 -59.39	-8.83	0.00	-516.65	0.00	516.65	3.063.79	1.531.89	4.506.32	2.225.50	2.58	-0.54	0.154
50.	00 -57.10	-8.63	0.00	-476.04	0.00	476.04	3.008.67	1.504.34	4.302.82	2.125.00	3.13	-0.59	0.147
55.	00 -54.65	-8.45	0.00	-432.90	0.00	432.90	2,946.93	1.473.46	4.084.17	2.017.02	3.78	-0.65	0.139
55.	68 -54.31	-8.39	0.00	-427.18	0.00	427.18	2,938,42	1.469.21	4.054.78	2.002.51	3.87	-0.66	0.138
55.0	68 -54.31	-8.39	0.00	-427.18	0.00	427.18	2,938,42	1.469.21	4.054.78	2.002.51	3.87	-0.66	0.232
60.0	00 -52.56	-8.22	0.00	-390.93	0.00	390.93	2.883.27	1.441.64	3.868.42	1.910.47	4.50	-0.71	0.223
63.	00 -51.31	-8.10	0.00	-366.27	0.00	366.27	2,844.16	1,422.08	3,740.46	1,847.27	4.97	-0.77	0.216
65.	00 -50.56	-8.02	0.00	-350.08	0.00	350.08	2,808.42	1,404.21	3.643.77	1.799.52	5.30	-0.81	0.213
70.0	00 -48.73	-7.85	0.00	-310.00	0.00	310.00	2.713.79	1.356.89	3.400.96	1.679.61	6.20	-0.91	0.203
75.(00 -46.93	-7.67	0.00	-270.77	0.00	270.77	2.619.16	1.309.58	3.166.52	1.563.83	7.21	-1.01	0.191
80.0	00 -44.79	-7.39	0.00	-232.42	0.00	232.42	2,524.53	1,262.26	2,940.46	1,452.18	8.31	-1.10	0.178
80.7	79 -44.51	-7.35	0.00	-226.56	0.00	226.56	2,509.53	1,254.76	2.905.39	1.434.86	8.50	-1.11	0.176
84.9	94 -42.71	-7.22	0.00	-196.06	0.00	196.06	1,499.90	749.95	1,728.05	853.42	9.50	-1.18	0.258
85.0	00 -42.69	-7.20	0.00	-195.66	0.00	195.66	1,499.54	749.77	1,726.89	852.85	9.51	-1.18	0.258
90.0	00 -34.59	-5.92	0.00	-159.68	0.00	159.68	1,466.64	733.32	1,624.12	802.09	10.81	-1.30	0.223
95.0	00 -33.44	-5.82	0.00	-130.11	0.00	130.11	1,431.82	715.91	1,522.23	751.77	12.23	-1.40	0.196
100.0	00 -26.56	-4.61	0.00	-101.01	0.00	101.01	1,395.09	697.54	1,421.47	702.01	13.75	-1.49	0.163
105.0	00 -25.53	-4.50	0.00	-77.95	0.00	77.95	1,356.44	678.22	1,322.10	652.93	15.36	-1.58	0.138
110.0	00 -24.53	-4.42	0.00	-55.46	0.00	55.46	1,315.88	657.94	1,224.36	604.67	17.05	-1.65	0.110
111.0	00 -19.65	-3.43	0.00	-51.04	0.00	51.04	1,307.54	653.77	1,205.03	595.12	17.39	-1.66	0.101
115.0	00 -18.90	-3.32	0.00	-37.33	0.00	37.33	1,273.40	636.70	1,128.51	557.33	18.80	-1.70	0.082
120.0	00 -10.19	-1.79	0.00	-20.74	0.00	20.74	1,215.41	607.71	1,023.37	505.40	20.61	-1.74	0.049
125.0	00 -9.44	-1.71	0.00	-11.80	0.00	11.80	1,152.33	576.16	919.28	454.00	22.45	-1.77	0.034
125.	59 -9.35	-1.67	0.00	-10.79	0.00	10.79	1,144.85	572.43	907.31	448.09	22.67	-1.77	0.032
125.	59 -9.35	-1.67	0.00	-10.79	0.00	10.79	385.02	192.51	160.54	106.00	22.67	-1.77	0.126
130.0	-8.86	-1.62	0.00	-3.43	0.00	3.43	385.02	192.51	160.54	106.00	24.31	-1.78	0.055
131.0	-1.35	-0.24	0.00	-1.80	0.00	1.80	385.02	192.51	160.54	106.00	24.68	-1.79	0.021
135.0	-0.93	-0.20	0.00	-0.83	0.00	0.83	385.02	192.51	160.54	106.00	26.19	-1.80	0.010
136.0	-0.46	-0.07	0.00	-0.30	0.00	0.30	385.02	192.51	160.54	106.00	26.56	-1.80	0.004
140.0	00 -0.15	-0.02	0.00	-0.04	0.00	0.04	385.02	192.51	160.54	106.00	28.07	-1.80	0.001
142.(0.00 00	-0.01	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	28.82	-1.80	0.000

Site Name: WSPT - South, CT

Customer: SPRINT NEXTEL

Code: ANSI/TIA-222-G Engineering Number:OAA713869_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:37 AM

Load Case: 1.0D + 1.0W

Serviceability 60 mph

24 Iterations

Wind Importance Factor 1.00

Gust Response Factor :1.10 Dead Load Factor :1.00

Wind Load Factor : 1.00

Applied Segment Forces Summary

		Shaft	Forces	B Discrete Forces				Linear Forces		Sum of Forces			
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(Ib)	(lb)	(Ib)	(lb-ft)	(lb-ft)	(Ib)	(lb)	(lb)	(Ib)	(lb)	(lb-ft)	(lb)
0.00		94.2	0.0					0.0	0.0	94.2	0.0	0.0	0.0
5.00		186.2	1.055.3					53.0	582.7	239.2	1.638.1	0.0	0.0
10.00		181.7	1,029.9					53.0	582.7	234.7	1,612.6	0.0	0.0
15.00		179.9	1,004.4					53.0	582.7	232.9	1,587.1	0.0	0.0
20.00		182.9	978.9					54.7	582.7	237.6	1,561.6	0.0	0.0
25.00		186.8	953.4					57.7	582.7	244.4	1,536.1	0.0	0.0
30.00		189.0	927.9					60.1	582.7	249.1	1,510.7	0.0	0.0
35.00		189.9	902.4					62.3	582.7	252.1	1,485.2	0.0	0.0
40.00		99.6	877.0					64.2	582.7	163.8	1,459.7	0.0	0.0
40.24	Bot - Section 2	96.6	42.1					3.2	28.4	99.8	70.5	0.0	0.0
45.00		99.7	1,519.0					62.7	554.3	162.5	2,073.3	0.0	0.0
45.40	Top - Section 1	96.1	125.8					5.3	46.6	101.5	172.4	0.0	0.0
50.00		183.7	665.9					62.1	536.1	245.8	1,202.0	0.0	0.0
55.00		108.1	702.9					68.9	582.7	177.0	1,285.6	0.0	0.0
55.68	Reinf. Top	94.1	93.5					9.4	78.9	103.6	172.4	0.0	0.0
60.00		137.1	587.5					60.8	215.0	197.9	802.6	0.0	0.0
63.00	Appertunance(s)	92.7	398.1	12.1	0.0	0.0	30.6	42.7	149.2	147.5	578.0	0.0	0.0
65.00		128.1	261.0					19.9	99.2	148.0	360.2	0.0	0.0
70.00		180.6	637.3					50.2	248.0	230.8	885.3	0.0	0.0
75.00		176.9	615.5					51.0	248.0	227.9	863.5	0.0	0.0
80.00	Appertunance(s)	101.2	593.6	95.8	0.0	0.0	104.6	51.7	248.0	248.7	946.2	0.0	0.0
80.79	Bot - Section 3	85.8	92.1					7.7	39.1	93.4	131.2	0.0	0.0
84.94	Top - Section 2	73.0	796.1					40.5	204.6	113.5	1,000.7	0.0	0.0
85.00		85.8	4.3					0.6	2.8	86.3	7.1	0.0	0.0
90.00	Appertunance(s)	153.5	375.2	1,056.1	0.0	0.0	2,934.5	49.3	246.5	1,258.9	3,556.2	0.0	0.0
95.00		135.5	360.6					0.0	183.8	135.5	544.5	0.0	0.0
100.00	Appertunance(s)	131.4	346.1	1,014.1	0.0	0.0	2,438.8	0.0	183.8	1,145.4	2,968.7	0.0	0.0
105.00		127.1	331.5					0.0	128.1	127.1	459.6	0.0	0.0
110.00		74.7	316.9					0.0	128.1	74.7	445.1	0.0	0.0
111.00	Appertunance(s)	60.2	61.6	749.9	0.0	0.0	2,180.0	0.0	25.6	810.1	2,267.3	0.0	0.0
115.00		105.8	240.7					0.0	86.1	105.8	326.8	0.0	0.0
120.00	Appertunance(s)	113.3	287.8	1,255.0	0.0	0.0	3,351.9	0.0	107.6	1,368.3	3,747.3	0.0	0.0
125.00		61.8	273.3					0.0	66.3	61.8	339.6	0.0	0.0
125.59	Top - Section 3	22.1	31.4					0.0	7.9	22.1	39.3	0.0	0.0
130.00		19.2	183.3					0.0	58.5	19.2	241.8	0.0	0.0
131.00	Appertunance(s)	17.9	41.6	1,180.3	0.0	-1,291.4	2,977.7	0.0	13.3	1,198.2	3,032.6	0.0	0.0
135.00	A	17.9	166.4					0.0	20.0	17.9	186.4	0.0	0.0
136.00	Appertunance(s)	17.9	41.6	98.3	0.0	380.8	70.5	0.0	5.0	116.2	117.1	0.0	0.0
140.00		21.5	166.4					0.0	0.0	21.5	166.4	0.0	0.0
142.00		7.2	83.2					0.0	0.0	7.2	83.2	0.0	0.0
								To	tals:	10,822.2	41,463.5	0.00	0.00

Site Name: WSPT - South, CT Customer: SPRINT NEXTEL Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:39 AM

Customer: SPRINT NEXTEL

Load Case: 1.0D + 1.0W

Serviceability 60 mph

24 Iterations
Wind Importance Factor 1.00

Gust Response Factor :1.10 Dead Load Factor :1.00

Wind Load Factor :1.00

Calculated Forces

Seg	Pu	Vu	Tu	Mu	Mu	Resultant	nhi	nhi	nhi	nhi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-klps)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(dea)	Ratio
0.00	-41.46	-10 75	0.00	-945 28	0.00	045.26	4 350 43	0 475 00	7 007 00	0.044.04			
5.00	-39.81	-10.55	0.00	-801 51	0.00	94J.20 904 54	4,330.13	2,175.00	7,987.32	3,944.64	0.00	0.00	0.177
10.00	-38.19	-10.35	0.00	-838 76	0.00	091.01	4,200.01	2,142.75	7,679.11	3,792.42	0.03	-0.06	0.172
15.00	-36.59	-10.15	0.00	-787 01	0.00	787 01	4,210.97	2,109.49	7,3/3.2/	3,641.38	0.12	-0.12	0.166
20.00	-35.02	-9.94	0.00	-736 25	0.00	726.25	4,100.02	2,075.20	7,070.00	3,491.04	0.28	-0.17	0.161
25.00	-33 47	-9.73	0.00	-696 52	0.00	130.23	4,000.10	2,040.08	0,709.73	3,343.32	0.49	-0.23	0.158
30.00	-31 96	-0.70	0.00	637.00	0.00	000.00	4,007.88	2,003.94	0,4/2.54	3,196.54	0.77	-0.29	0.150
35.00	-30 46	-9.30	0.00	-500 20	0.00	037.90	3,933.69	1,966.85	6,178.73	3,051.44	1.10	-0.35	0.145
40.00	-29 00	-0.21	0.00	-544.04	0.00	090.39 E44.04	3,834.32	1,927.26	5,883.88	2,905.83	1.50	-0.41	0.139
40.24	-28.02	-0.02	0.00	-344.04	0.00	344.04 544.00	3,744.12	1,8/2.06	5,549.75	2,740.81	1.96	-0.46	0.134
45.00	-26.85	-9.02	0.00	-041.02	0.00	541.82	3,738.74	1,869.37	5,533.71	2,732.89	1.98	-0.47	0.134
45 40	-26 67	-0.00	0.00	405 25	0.00	490.90	3,033.72	1,816.86	5,225.39	2,580.62	2.48	-0.52	0.127
50.00	-25.07	-9.53	0.00	-490.00	0.00	495.35	3,063.79	1,531.89	4,506.32	2,225.50	2.52	-0.53	0.141
55.00	-24 19	-0.00	0.00	410.02	0.00	400.02	3,008.67	1,504.34	4,302.82	2,125.00	3.05	-0.58	0.134
55 69	-24.00	0.30	0.00	-412.33	0.00	412.35	2,946.93	1,473.46	4,084.17	2,017.02	3.69	-0.63	0.126
55.69	-24.00	-0.20	0.00	-400.09	0.00	406.69	2,938.42	1,469.21	4,054.78	2,002.51	3.78	-0.64	0.125
60.00	-23.10	-0.40	0.00	-400.09	0.00	406.69	2,938.42	1,469.21	4,054.78	2,002.51	3.78	-0.64	0.211
63.00	-23.15	-0.00	0.00	-3/0.9/	0.00	370.97	2,883.27	1,441.64	3,868.42	1,910.47	4.38	-0.69	0.202
65.00	-22.24	-7.94	0.00	-340./4	0.00	340.74	2,844.16	1,422.08	3,740.46	1,847.27	4.84	-0.75	0.196
70.00	-24 25	7 60	0.00	-330.03	0.00	330.85	2,808.42	1,404.21	3,643.77	1,799.52	5.16	-0.79	0.192
75.00	-21.33	-7.00	0.00	-291.78	0.00	291.78	2,713.79	1,356.89	3,400.96	1,679.61	6.03	-0.88	0.182
80.00	-20.40	-1.38	0.00	-253.76	0.00	253.76	2,619.16	1,309.58	3,166.52	1,563.83	7.00	-0.97	0.170
80.70	-19.33	7.10	0.00	-210.79	0.00	216.79	2,524.53	1,262.26	2,940.46	1,452.18	8.06	-1.05	0.157
84 94	-18.40	-7.00	0.00	-211.13	0.00	211.13	2,509.53	1,254.76	2,905.39 1	,434.86	8.23	-1.07	0.155
85.00	-19.20	-0.34	0.00	-101.01	0.00	181.81	1,499.90	749.95	1,728.05	853.42	9.19	-1.13	0.225
00.00	-10.30	-0.07	0.00	-181.42	0.00	181.42	1,499.54	749.77	1,726.89	852.85	9.20	-1.13	0.225
90.00	-14.04	-3.37	0.00	-147.06	0.00	147.06	1,466.64	733.32	1,624.12	802.09	10.45	-1.24	0.194
100.00	44.25	-0.44	0.00	-119.23	0.00	119.23	1,431.82	715.91	1,522.23	751.77	11.79	-1.33	0.169
105.00	-11.33	-4.24	0.00	-92.03	0.00	92.03	1,395.09	697.54	1,421.47	702.01	13.24	-1.42	0.139
100.00	-10.89	-4.11	0.00	-70.83	0.00	70.83	1,356.44	678.22	1,322.10	652.93	14.76	-1.49	0.117
111.00	-10.44	-4.03	0.00	-50.26	0.00	50.26	1,315.88	657.94	1,224.36	604.67	16.36	-1.56	0.091
115.00	-7.97	2.00	0.00	-40.22	0.00	40.22	1,307.54	653.77	1,205.03	595.12	16.69	-1.57	0.084
120.00	-1.01	-3.00	0.00	-33.30	0.00	33.56	1,273.40	636.70	1,128.51	557.33	18.02	-1.61	0.066
125.00	-4.10	-1.30	0.00	-10.28	0.00	18.28	1,215.41	607.71	1,023.37	505.40	19.72	-1.64	0.040
125.00	-3.02	-1.51	0.00	-10.35	0.00	10.35	1,152.33	576.16	919.28	454.00	21.46	-1.67	0.026
125.55	-3.78	-1.49	0.00	-9.45	0.00	9.45	1,144.85	572.43	907.31	448.09	21.66	-1.67	0.024
120.00	-9.19 9 EA	-1.48	0.00	-9.45	0.00	9.45	385.02	192.51	160.54	106.00	21.66	-1.67	0.099
130.00	-3.34	-1.4/	0.00	-2.88	0.00	2.88	385.02	192.51	160.54	106.00	23.21	-1.68	0.036
125.00	-0.00	-0.10	0.00	-1.42	0.00	1.42	385.02	192.51	160.54	106.00	23.56	-1.68	0.015
136.00	-0.30	-0.10	0.00	-0.70	0.00	0.70	385.02	192.51	160.54	106.00	24.97	-1.69	800.0
140.00	_0.40	-0.04	0.00	-0.10	0.00	0.10	385.02	192.51	160.54	106.00	25.33	-1.69	0.002
142.00	-0.00	-0.01	0.00	-0.02	0.00	0.02	385.02	192.51	160.54	106.00	26.74	-1.69	0.000
142.00	0.00	-0.01	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	27.45	-1.69	0.000

Site Number: 302511 WSPT - South, CT Site Name:

Code: ANSI/TIA-222-G Engineering Number:OAA713869_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:40 AM

SPRINT NEXTEL Customer:

Equivalent Lateral Forces Method Analysis

(Based on ASCE7-10 Chapters 11, 12, 15)

Spectral Response Acceleration for Short Period (S s):	0.22	
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.07	
Long-Period Transition Period (T L):	6	
Importance Factor (I _E):	1.00	
Site Coefficient F _a :	1.60	
Site Coefficcient F v:	2.40	
Response Modification Coefficient (R):	1.50	
Design Spectral Response Acceleration at Short Period (S ds):	0.24	
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.11	
Selsmic Response Coefficient (C s):	0.03	
Upper Limit C _s	0.03	
Lower Limit C s	0.03	
Period based on Rayleigh Method (sec):	2.17	
Redundancy Factor (p):	1.30	
Seismic Force Distribution Exponent (k):	1.83	
Total Unfactored Dead Load:	41.46	k
Selsmic Base Shear (E):	1.75	k

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C vx	<u>(lb)</u>	(lb)
39	141.00	83	728	0.006	10	104
38	138.00	166	1.400	0.011	19	207
37	135.50	47	379	0.003	5	58
36	133.00	186	1,466	0.011	20	232
35	130.50	55	417	0.003	6	68
34	127.80	242	1,767	0.014	24	302
33	125.30	39	277	0.002	4	49
32	122.50	340	2,297	0.018	31	424
31	117.50	395	2,478	0.019	34	493
30	113.00	327	1,906	0.015	26	408
29	110.50	87	489	0.004	7	109
28	107.50	445	2,369	0.018	32	555
27	102.50	460	2,242	0.017	30	573
26	97.50	530	2,358	0.018	32	661
25	92.50	544	2,200	0.017	30	679
24	87.50	622	2,268	0.018	31	775
23	84.97	7	24	0.000	0	9
22	82.87	1,001	3,305	0.026	45	1,248
21	80.40	131	410	0.003	6	164
20	77.50	842	2,458	0.019	33	1,050
19	72.50	863	2,231	0.017	30	1,077
18	67.50	885	2,007	0.016	27	1,104
17	64.00	360	741	0.006	10	449

Site Name: WSPT - South, CT

Customer: SPRINT NEXTEL

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:40 AM

				<u></u>		<u> </u>
16	61.50	547	1.046	0.008	14	683
15	57.84	803	1.370	0.011	19	1,001
14	55.34	172	271	0.002	4	215
13	52.50	1,286	1.838	0.014	25	1,603
12	47.70	1,202	1.441	0.011	20	1,499
11	45.20	172	187	0.001	3	215
10	42.62	2,073	2,022	0.016	28	2,586
9	40.12	71	62	0.000	i1	88
8	37.50	1,460	1,126	0.009	15	1,820
7	32.50	1,485	881	0.007	12	1,852
6	27.50	1,511	660	0.005	9	1,884
5	22.50	1,536	464	0.004	6	1,916
4	17.50	1,562	298	0.002	4	1,948
3	12.50	1,587	163	0.001	2	1,979
2	7.50	1,613	65	0.001	1	2,011
1	2.50	1,638	9	0.000	0	2,043
RCU (Remote Control	136.00	3	25	0.000	0	4
Kathrein Scala 742-2	136.00	68	553	0.004	8	84
Powerwave Aligon 702	131.00	26	202	0.002	3	33
Powerwave Aligon LGP	131.00	169	1,294	0.010	18	211
Raycap DC6-48-60-18-	131.00	32	243	0.002	3	40
Ericsson RRUS A2 Mod	131.00	64	486	0.004	7	79
Ericsson RRUS-11 (50	131.00	150	1,147	0.009	16	187
Ericsson RRUS 12 w/	131.00	174	1,329	0.010	18	217
Powerwave Aligon 777	131.00	210	1,606	0.012	22	262
CCI HPA-65R-BUU-H6	131.00	153	1,170	0.009	16	191
Flat Platform w/ Han	131.00	2,000	15,298	0.119	208	2,494
DragonWave Horizon C	120.00	21	138	0.001	2	26
Alcatel-Lucent RRH2x	120.00	159	1,034	0.008	14	198
NextNet BTS-2500	120.00	105	684	0.005	9	131
Alcatel-Lucent 800 M	120.00	192	1,250	0.010	17	208
Alcatel-Lucent 1900	120.00	180	1,172	0.009	10	224
Alcatel-Lucent TD-RR	120.00	210	1,368	0.011	19	202
Argus LLPX310R	120.00	86	559	0.004	8	107
DragonWave A-ANT-18G	120.00	54	353	0.003	J	212
RFS APXVSPP18-C-A20	120.00	1/1	1,114	0.009	15	213
Commscope D1465B-ZXR	120.00	1/4	1,133	0.009	477	2 494
Flat Platform W/ Han	120.00	2,000	13,025	0.101	14	224
48" x 8" Panel	111.00	180	1,010	0.008	14	2 404
	111.00	2,000	11,290	0.000	1	23
RFS FD9R0004/1C-3L	100.00	19	87	0.001		165
Alcatel-Lucent KKH2X	100.00	132	015	0.005	2	58
Rymsa MGD3-8001X	100.00	40 45	210	0.002	3	56
DEQ DD T4 67 94D 07	100.00	44	205	0.002	3	55
	100.00	54	203	0.002	3	67
Antel BAA-70060/0CF_	100.00	00	232 Ari	0.002	6	123
Fowerwave Aligon Fos	100.00	2 000	0 323	0.004	127	2.494
	00.00	52	3,323	0.002	3	65
Ericsson RRUS 11 R12	90.00	152	20J 58A	0.005	8	190
Friesson AIR 21 1 3	00.00	332	1 97R	0.010	17	414
Friesson AIR 21, 1.3	00.00	244	939	0.007	13	305
Andrew LNX-6515DS-VT	90.00	154	591	0.005	8	192
Flat Platform w/ Han	90.00	2.000	7 684	0.060	105	2,494
Diamond X50A	80.00	5	14	0.000	0	6
Stand-Offs	80.00	100	310	0.002	4	125
PCTEL GPS-TMG-HR-26N	63.00	1	1	0.000	0	1
Stand-Off	63.00	30	60	0.000	1	37
			100.005	4 955	4 760	E4 744
		41,464	128,637	1.000	1,/50	51,/11

Site Name: WSPT - South, CT

Customer: SPRINT NEXTEL

Engineering Number:OAA713869_C3_01

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:40 AM

Load Case (0.9 - 0.2Sds) * DL + E ELFM

Seismic (Reduced DL) Equivalent Lateral Forces Method

	Height					Vertical
	Above	Weight	w		Horizontal	Force
Connect	Dase	weight (** Z	<u> </u>		/11-1
Segment	(π)	(a)	(π·αι)	U vx	(ID)	(ai)
39	141.00	83	728	0.006	10	71
30	138.00	47	1,400	0.011	19	40
36	133.00	186	1 466	0.011	20	159
35	130.50	55	417	0.003	6	47
34	127.80	242	1,767	0.014	24	206
33	125.30	39	277	0.002	4	34
32	122.50	340	2,297	0.018	31	290
31 30	117.50 113.00	395 327	2,478	0.019	34 26	337 279
29	110.50	87	489	0.004	7	74
28	107.50	445	2.369	0.018	32	380
27	102.50	460	2,242	0.017	30	392
26	97.50	530	2,358	0.018	32	452
25	92.50	544	2,200	0.017	30	464
24	87.50 84.07	622	2,268	0.018	31	530
23	04.97 82.87	1 001	24	0.000	45	853
21	80.40	131	3,305 410	0.003	6	112
20	77.50	842	2.458	0.019	33	718
19	72.50	863	2,231	0.017	30	736
18	67.50	885	2,007	0.016	27	755
17	64.00	360	741	0.006	10	307
16	61.50 67.94	547	1,046	0.008	14	407
14	55 34	172	1,370	0.002	4	147
13	52.50	1.286	1.838	0.014	25	1,096
12	47.70	1,202	1,441	0.011	20	1,025
11	45.20	172	187	0.001	3	147
10	42.62	2,073	2,022	0.016	28	1,768
9	40.12	/1	62	0.000	1	1 245
7	22 50	1,400	7,120	0.009	13	1 267
6	27.50	1,511	660	0.005	9	1,288
5	22.50	1,536	464	0.004	6	1,310
4	17.50	1,562	298	0.002	4	1,332
3	12.50	1,587	163	0.001	2	1,354
4	7.50	1,013	65	0.001	1	1,375
RCU (Remote Control	136.00	3	3	0.000	0	3
Kathrein Scala 742-2	136.00	68	553	0.004	8	58
Powerwave Allgon 702	131.00	26	202	0.002	3	23
Powerwave Aligon LGP	131.00	169	1,294	0.010	18	144
Raycap DC6-48-60-18-	131.00	32	243	0.002	3	27
Ericsson RRUS AZ Mod	131.00	54	486	0.004	16	34
Ericsson RRUS-11 (50 Fricsson RRUS 12 w/	131.00	150	1,14/	0.009	10	120
Powerwave Allgon 777	131.00	210	1,525	0.012	22	179
CCI HPA-65R-BUU-H6	131.00	153	1.170	0.009	16	130
Flat Platform w/ Han	131.00	2,000	15,298	0.119	208	1,706
DragonWave Horizon C	120.00	21	138	0.001	2	18
AICOTOL-LUCONT RKH2X	120.00	159	1,034	0.008	14	139
Alcatel. ucont 200 M	120.00	100	584 4 350	0.005	9 17	90 164
Alcatel-Lucent 1900	120.00	180	1.172	0.009	16	154
Alcatel-Lucent TD-RR	120.00	210	1,368	0.011	19	179
Argus LLPX310R	120.00	86	559	0.004	8	73

Site Name: WSPT - South, CT

Customer: SPRINT NEXTEL

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number: OAA713869_C3_01

11/2/2017 9:03:40 AM

DragonWave A-ANT-18G	120.00	54	353	0.003	5	46
RFS APXVSPP18-C-A20	120.00	171	1.114	0.009	15	146
Commscope DT465B-2XR	120.00	174	1 133	0.009	15	148
Flat Platform w/ Han	120.00	2,000	13.025	0.101	177	1.706
48" x 8" Panel	111.00	180	1 016	0.008	14	154
Flat Platform w/ Han	111.00	2.000	11,290	0.088	154	1 708
RFS FD9R6004/1C-3L	100.00	19	87	0.001	1	1,700
Alcatel-Lucent RRH2x	100.00	132	R15	0.005		112
Rymsa MGD3-800TX	100.00	46	215	0.000	3	20
Antel BXA-171063/12C	100.00	45	210	0.002	3	
RFS DB-T1-6Z-8AB-0Z	100.00	44	205	0.002	3	39
Antel BXA-70080/6CF_	100.00	54	252	0.002	3	46
Powerwave Allgon P65	100.00	99	461	0.004	6	84
Flat Platform w/ Han	100.00	2.000	0 322	0.072	127	1 708
RFS ATMAA1412D-1A20	90.00	52	5,525	0.012	2	1,700
Ericsson RRUS 11 B12	90.00	152	584	0.002	3	44
Ericsson AIR 21, 1.3	90.00	332	1 276	0.010	17	283
Ericsson AIR 21, 1.3	90.00	244	020	0.007	13	200
Andrew LNX-6515DS-VT	90.00	154	504	8 805	9	424
Flat Platform w/ Han	90.00	2 000	7 684	0.060	105	131
Diamond X50A	80.00	5	1,004	0.000	100	1,700
Stand-Offs	80.00	100	210	0.000	4	
PCTEL GPS-TMG-HR-26N	63.00	1	310	0.002	7	00
Stand-Off	63.00	30	60	0.000	1	26
		41,464	128.637	1.000	1.750	35.362

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:40 AM

Site Name: WSPT - South, CT

Customer: SPRINT NEXTEL

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Engineering Number:OAA713869_C3_01

Seismic Equivalent Lateral Forces Method

Calculated Forces

S	Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
E	Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect R	lotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
	0.00	40.67	1 75	0.00	-180 11	0.00	189 11	4 350 13	2 175 06	7.987.32	3.944.64	0.00	0.00	0.043
	5.00	-43.07	-1.75	0.00	-180 34	0.00	180.34	4,285.51	2.142.75	7.679.11	3.792.42	0.01	-0.01	0.042
- 44	0.00	-45.69	.1 77	0.00	-171 53	0.00	171 53	4,218.97	2,109.49	7.373.27	3.641.38	0.02	-0.02	0.041
- 17	5 00	43 73	-1 77	0.00	-162 68	0.00	162.68	4.150.52	2.075.26	7.070.06	3,491.64	0.06	-0.04	0.040
21	0.00	_41 81	-1 77	0.00	-153 82	0.00	153.82	4.080.16	2.040.08	6.769.73	3.343.32	0.10	-0.05	0.039
2	5 00	-30.03	-1 77	0.00	-144 94	0.00	144 94	4.007.88	2.003.94	6.472.54	3.196.54	0.16	-0.06	0.038
3	0.00	-38.08	-1 77	0.00	-136.08	0.00	136.08	3.933.69	1.966.85	6.178.73	3,051.44	0.23	-0.07	0.037
3	5 00	-36 26	-1 76	0.00	-127 25	0.00	127.25	3.854.52	1.927.26	5.883.88	2.905.83	0.31	-0.08	0.035
40	0.00	-38 17	-1 76	0.00	.118 46	0.00	118.46	3.744.12	1.872.06	5.549.75	2.740.81	0.40	-0.10	0.035
	1.24	-33 58	_1 73	0.00	-118.03	0.00	118.03	3,738,74	1.869.37	5.533.71	2.732.89	0.41	-0.10	0.034
	5 00	-33.37	-1 73	0.00	-109.80	0.00	109.80	3.633.72	1.816.86	5.225.39	2,580.62	0.51	-0.11	0.033
4	5.40	-31.87	-1.71	0.00	-109.11	0.00	109.11	3,063.79	1,531.89	4,506.32	2,225.50	0.52	-0.11	0.037
5	0.00	-30.26	-1.69	0.00	-101.22	0.00	101.22	3,008.67	1,504.34	4,302.82	2,125.00	0.63	-0.12	0.035
5	5.00	-30.05	-1.69	0.00	-92.77	0.00	92.77	2,946.93	1,473,46	4.084.17	2,017.02	0.77	-0.13	0.034
5	5 68	-29.05	-1 67	0.00	-91.62	0.00	91.62	2.938.42	1.469.21	4.054.78	2,002.51	0.79	-0.14	0.034
5	5.68	-29.05	-1.67	0.00	-91.62	0.00	91.62	2,938.42	1,469.21	4,054.78	2,002.51	0.79	-0.14	0.056
6	0.00	-28.36	-1.66	0.00	-84.39	0.00	84.39	2.883.27	1,441.64	3,868.42	1,910.47	0.92	-0.15	0.054
6	3.00	-27.88	-1.66	0.00	-79.40	0.00	79.40	2,844.16	1,422.08	3,740.46	1,847.27	1.01	-0.16	0.053
6	5.00	-26.77	-1.63	0.00	-76.09	0.00	76.09	2,808.42	1,404.21	3,643.77	1,799.52	1.08	-0.17	0.052
Ž	0.00	-25.69	-1.61	0.00	-67.92	0.00	67.92	2,713.79	1,356.89	3,400.96	1,679.61	1.27	-0.19	0.050
7	5.00	-24.64	-1.58	0.00	-59.88	0.00	59.88	2,619.16	1,309.58	3,166.52	1,563.83	1.48	-0.21	0.048
8	0.00	-24.35	-1.57	0.00	-51.98	0.00	51.98	2,524.53	1,262.26	2,940.46	1,452.18	1.71	-0.23	0.045
8	0.79	-23.10	-1.53	0.00	-50.73	0.00	50.73	2,509.53	1,254.76	2,905.39	1,434.86	1.75	-0.23	0.045
8	4.94	-23.09	-1.53	0.00	-44.38	0.00	44.38	1,499.90	749.95	1,728.05	853.42	1.96	-0.25	0.067
8	5.00	-22.32	-1.50	0.00	-44.30	0.00	44.30	1,499.54	749.77	1,726.89	852.85	1.97	-0.25	0.067
9	0.00	-17.98	-1.31	0.00	-36.79	0.00	36.79	1,466.64	733.32	1,624.12	802.09	2.24	-0.28	0.058
9	5.00	-17.32	-1.28	0.00	-30.25	0.00	30.25	1,431.82	715.91	1,522.23	751.77	2.55	-0.30	0.052
10	0.00	-13.70	-1.08	0.00	-23.86	0.00	23.86	1,395.09	697.54	1,421.47	702.01	2.87	-0.32	0.044
10	5.00	-13.15	-1.05	0.00	-18.47	0.00	18.47	1,356.44	678.22	1,322.10	652.93	3.22	-0.34	0.038
11	0.00	-13.04	-1.04	0.00	-13.24	0.00	13.24	1,315.88	657.94	1,224.36	604.67	3.59	-0.36	0.032
11	1.00	-9.91	-0.83	0.00	-12.20	0.00	12.20	1,307.54	653.77	1,205.03	595.12	3.66	-0.36	0.028
11	5.00	-9.42	-0.79	0.00	-8.87	0.00	8.87	1,273.40	636.70	1,128.51	557.33	3.97	-0.37	0.023
12	0.00	-4.82	-0.44	0.00	-4.90	0.00	4.90	1,215.41	607.71	1,023.37	505.40	4.37	-0.38	0.014
12	5.00	-4.77	-0.43	0.00	-2.71	0.00	2.71	1,152.33	576.16	919.28	454.00	4.77	-0.39	0.010
12	5.5 9	-4.47	-0.41	0.00	-2.46	0.00	2.46	1,144.85	572.43	907.31	448.09	4.82	-0.39	0.009
12	5.59	-4.47	-0.41	0.00	-2.46	0.00	2.46	385.02	192.51	160.54	106.00	4.82	-0.39	0.035
13	0.00	-4.40	-0.40	0.00	-0.66	0.00	0.66	385.02	192.51	160.54	106.00	5.18	-0.39	0.018
13	1.00	-0.46	-0.04	0.00	-0.26	0.00	0.26	385.02	192.51	160.54	106.00	5.20	-0.39	0.004
13	5.00	-0.40	-0.04	0.00	-0.08	0.00	0.08	385.02	192.51	100.54	100.00	J.JY	-0.39	0.002
13	6.00	-0.10	-0.01	0.00	-0.04	0.00	0.04	385.02	192.51	160.54	106.00	0.00	-0.39	0.001
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	6.00	-0.39	0.000
14	2.00	0.00	0.00	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	6.17	-0.39	0.000

Site Name:

Code: ANSI/TIA-222-G © 20 Engineering Number:OAA713869_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 11/2/2017 9:03:40 AM

Customer: SPRINT NEXTEL

Load Case (0.9 - 0.2Sds) * DL + E ELFM

WSPT - South, CT

Seismic (Reduced DL) Equivalent Lateral Forces Method

Calculated Forces

Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect Re	otation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in) (deg)	Ratio
0.00	-33.97	-1.75	0.00	-186.44	0.00	186.44	4.350.13	2.175.06	7.987.32	3.944.64	0.00	0.00	0.039
5.00	-32.59	-1.76	0.00	-177.68	0.00	177.68	4.285.51	2.142.75	7.679.11	3.792.42	0.01	-0.01	0.039
10.00	-31.24	-1.76	0.00	-168.89	0.00	168.89	4.218.97	2,109.49	7.373.27	3.641.38	0.02	-0.02	0.038
15.00	-29.90	-1.76	0.00	-160.08	0.00	160.08	4.150.52	2.075.26	7,070.06	3,491.64	0.06	-0.03	0.037
20.00	-28.59	-1.76	0.00	-151.26	0.00	151.26	4.080.16	2,040.08	6,769.73	3,343.32	0.10	-0.05	0.036
25.00	-27.30	-1.76	0.00	-142.45	0.00	142.45	4.007.88	2.003.94	6.472.54	3,196.54	0.15	-0.06	0.035
30.00	-26.04	-1.75	0.00	-133.67	0.00	133.67	3,933.69	1,966.85	6,178.73	3,051.44	0.22	-0.07	0.034
35.00	-24.79	-1.74	0.00	-124.92	0.00	124.92	3,854.52	1,927.26	5,883.88	2,905.83	0.30	-0.08	0.033
40.00	-24.73	-1.74	0.00	-116.23	0.00	116.23	3,744.12	1,872.06	5,549.75	2,740.81	0.40	-0.10	0.032
40.24	-22.96	-1.71	0.00	-115.80	0.00	115.80	3,738.74	1,869.37	5,533.71	2,732.89	0.40	-0.10	0.032
45.00	-22.82	-1.71	0.00	-107.66	0.00	107.66	3,633.72	1,816.86	5,225.39	2,580.62	0.50	-0.11	0.031
45.40	-21.79	-1.69	0.00	-106.98	0.00	106.98	3,063.79	1,531.89	4,506.32	2,225.50	0.51	-0.11	0.034
50.00	-20.69	-1.67	0.00	-99.19	0.00	99.19	3,008.67	1,504.34	4,302.82	2,125.00	0.62	-0.12	0.033
55.00	-20.55	-1.67	0.00	-90.85	0.00	90.85	2,946.93	1,473.46	4,084.17	2,017.02	0.75	-0.13	0.031
55.68	-19.86	-1.65	0.00	-89.72	0.00	89.72	2,938.42	1,469.21	4,054.78	2,002.51	0.77	-0.13	0.031
55.68	-19.86	-1.65	0.00	-89.72	0.00	89.72	2,938.42	1,469.21	4,054.78	2,002.51	0.77	-0.13	0.052
60.00	-19.40	-1.64	0.00	-82.59	0.00	82.59	2,883.27	1,441.64	3,868.42	1,910.47	0.90	-0.14	0.050
63.00	-19.06	-1.63	0.00	-77.67	0.00	77.67	2,844.16	1,422.08	3,740.46	1,847.27	1.00	-0.16	0.049
65.00	-18.31	-1.61	0.00	-74.41	0.00	74.41	2,808.42	1,404.21	3,643.77	1,799.52	1.06	-0.17	0.048
70.00	-17.57	-1.58	0.00	-66.38	0.00	66.38	2,713.79	1,356.89	3,400.96	1,679.61	1.25	-0.19	0.046
75.00	-16.85	-1.55	0.00	-58.49	0.00	58.49	2,619.16	1,309.58	3,166.52	1,503.83	1.45	-0.21	0.044
80.00	-16.65	-1.54	0.00	-50.74	0.00	50.74	2,524.53	1,262.26	2,940.46	1,452.18	1.68	-0.23	0.042
80.79	-15.80	-1.50	0.00	-49.52	0.00	49.52	2,509.53	1,254.76	2,905.39	1,434.80	1.72	-0.25	0.041
04.94	-15.79	-1.50	0.00	-43.31	0.00	43.31	1,499.90	749.93	1,720.00	000.42	1.83	-0.25	0.001
85.00	-15.20	-1.4/	0.00	-43.23	0.00	43.23	1,499.34	722 22	1,720.09	002.00 802.00	7 20	-0.25	0.001
90.00	-12.23	-1.20	0.00	-33.00	0.00	33.00	1 424 92	715 01	1,024.12	754 77	2.20	-0.20	0.000
95.00	-11.04	-1.20	0.00	-29.30	0.00	29.30	1,431.02	607 54	1,322.23	702.01	2.30	0.20	0.040
100.00	-9.37	-1.00	0.00	-23.21	0.00	23.21	1 356 44	670 22	1,921.47	652.03	2.02	0.32	0.040
110.00	-0.88	-1.02	0.00	-12 90	0.00	12 00	1,330.44	857 94	1 224 36	604 67	3.52	-0.35	0.028
111.00	-6.32	-0.81	0.00	-11.80	0.00	11.80	1.307 54	653.77	1,205.03	595.12	3.59	-0.35	0.025
115.00	-6 44	-0 77	0.00	-8 65	0.00	8 65	1.273.40	636.70	1.128.51	557.33	3.90	-0.36	0.021
120.00	-3 29	-0 43	0.00	-4 78	0.00	4.78	1.215.41	607.71	1.023.37	505.40	4.28	-0.37	0.012
125.00	-3 26	-0 42	0.00	-2 65	0.00	2 65	1,152,33	576.16	919.28	454.00	4.68	-0.38	0.009
125.59	-3.06	-0.40	0.00	-2.40	0.00	2.40	1.144.85	572.43	907.31	448.09	4.72	-0.38	0.008
125.59	-3.06	-0.40	0.00	-2.40	0.00	2.40	385.02	192.51	160.54	106.00	4.72	-0.38	0.031
130.00	-3.01	-0.39	0.00	-0.65	0.00	0.65	385.02	192.51	160.54	106.00	5.08	-0.38	0.014
131.00	-0.31	-0.04	0.00	-0.25	0.00	0.25	385.02	192.51	160.54	106.00	5.16	-0.38	0.003
135.00	-0.27	-0.04	0.00	-0.08	0.00	0.08	385.02	192.51	160.54	106.00	5.48	-0.38	0.001
136.00	-0.07	-0.01	0.00	-0.04	0.00	0.04	385.02	192.51	160.54	106.00	5.56	-0.38	0.001
140.00	0.00	0.00	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	5.88	-0.38	0.000
142.00	0.00	0.00	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	6.04	-0.38	0.000

Site Number:	302511
Site Name:	WSPT - South, C1
Customer:	SPRINT NEXTEL

Code: ANSI/TIA-222-G © 200 Engineering Number:OAA713869_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 1 11/2/2017 9:03:40 AM

Equivalent Modal Forces Analysis

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S s):	0.22
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.07
Importance Factor (I _E):	1.00
Site Coefficient F _a :	1.60
Site Coefficient F v	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.24
Desing Spectral Response Acceleration at 1.0 Second Period (S d1):	0.11
Period Based on Rayleigh Method (sec):	2.17
Redundancy Factor (p):	1.30

Load Case (1.2 + 0.2Sds) * DL + E EMAM

AM Seismic Equivalent Modal Analysis Method

	Height							
	Base	Woight					Horizontal	Vertical
	Ddae	weight		_		_	Force	Force
Segment	(ft)	(Ib)	a	b	c	Saz	(Ib)	(Ib)
30	141.00	82	1 863	1 843	1.090	0 426	31	104
38	138.00	166	1.785	1.471	0.952	0.366	53	207
37	135.50	47	1.721	1.203	0.847	0.319	13	58
36	133.00	186	1.658	0.969	0.752	0.275	44	232
35	130.50	55	1.596	0.767	0.665	0.234	11	68
34	127.80	242	1.531	0.580	0.580	0.193	40	302
33	125.30	39	1.472	0.433	0.510	0.157	5	49
32	122.50	340	1.407	0.296	0.439	0.121	36	424
31	117 50	395	1 294	0.112	0.331	0.065	22	493
30	113.00	327	1.197	0.002	0.252	0.023		408
29	110.50	87	1.144	-0.041	0.215	0.003	0	109
28	107.50	445	1.083	-0.079	0.177	-0.016	-6	555
27	102.50	460	0.985	-0.113	0.124	-0.041	-16	573
26	97.50	530	0.891	-0.122	0.084	-0.055	-25	661
25	92.50	544	0.802	-0.112	0.054	-0.059	-28	679
24	87.50	622	0.718	-0.092	0.033	-0.053	-28	775
23	84.97	7	0.677	-0.080	0.026	-0.046	0	9
22	82.87	1.001	0.644	-0.068	0.020	-0.039	-33	1,248
21	80.40	131	0.606	-0.055	0.015	-0.029	-3	164
20	77.50	842	0.563	-0.039	0.011	-0.016	-11	1,050
19	72.50	863	0.493	-0.013	0.007	0.008	6	1,077
18	67.50	885	0.427	0.009	0.006	0.029	23	1,104
17	64.00	360	0.384	0.023	0.007	0.042	13	449
16	61.50	547	0.355	0.032	0.008	0.049	23	683
15	57.84	803	0.314	0.042	0.011	0.056	39	1,001
14	55.34	172	0.287	0.048	0.013	0.060	9	215
13	52.50	1,286	0.258	0.054	0.016	0.063	70	1,603
12	47.70	1.202	0.213	0.061	0.021	0.065	68	1,499
11	45.20	172	0.191	0.064	0.024	0.066	10	215
10	42.62	2,073	0.170	0.066	0.027	0.065	118	2,586
9	40.12	71	0.151	0.068	0.030	0.065	4	88
8	37.50	1,460	0.132	0.069	0.033	0.064	81	1,820
7	32.50	1,485	0.099	0.071	0.037	0.063	81	1,852
6	27.50	1,511	0.071	0.072	0.041	0.061	80	1,884

Segment

39

38

37

36

35 34

(ft)

141.00

138.00

135.50

133.00

130.50

127.80

(lb)

83

166

47

186

55

242

Site Name: WSPT - South, CT

Customer: SPRINT NEXTEL Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Force

(lb)

31

53 13

44

11

40

Saz

0.426

0.366

0.319

0.275

0.234

0.193

Force

(lb)

71

142

40

159

47

206

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:40 AM

5	22.50	1,536	0.047	0.071	0.042	0.059	79	1,916
4	17.50	1,562	0.029	0.068	0.040	0.056	76	1,948
3	12.50	1,587	0.015	0.060	0.035	0.051	71	1,979
2	7.50	1,613	0.005	0.045	0.026	0.041	57	2,011
1	2.50	1,638	0.001	0.019	0.010	0.020	28	2,043
RCU (Remote Control	136.00	3	1.734	1.254	0.867	0.328	1	4
Kathrein Scala 742-2	136.00	68	1.734	1.254	0.867	0.328	19	84
Powerwave Allgon 702	131.00	26	1.609	0.805	0.682	0.242	6	33
Powerwave Allgon LGP	131.00	169	1.609	0.805	0.682	0.242	35	211
Raycap DC6-48-60-18-	131.00	32	1.609	0.805	0.682	0.242	7	40
Ericsson RRUS A2 Mod	131.00	64	1.609	0.805	0.682	0.242	13	79
Ericsson RRUS-11 (50	131.00	150	1.609	0.805	0.682	0.242	31	187
Ericsson RRUS 12 w/	131.00	174	1.609	0.805	0.682	0.242	36	217
Powerwave Allgon 777	131.00	210	1.609	0.805	0.682	0.242	44	262
CCI HPA-65R-BUU-H6	131.00	153	1.609	0.805	0.682	0.242	32	191
Flat Platform w/ Han	131.00	2,000	1.609	0.805	0.682	0.242	419	2,494
DragonWave Horizon C	120.00	21	1.350	0.195	0.382	0.092	2	26
Alcatel-Lucent RRH2x	120.00	159	1.350	0.195	0.382	0.092	13	198
NaxtNet BTS-2500	120.00	105	1.350	0.195	0.382	0.092	8	131
Alcatel-Lucent 800 M	120.00	192	1.350	0.195	0.382	0.092	15	239
Alcatel-Lucent 1900	120.00	180	1.350	0.195	0.382	0.092	14	224
Alcatel-Lucent TD-RR	120.00	210	1.350	0.195	0.382	0.092	17	262
Argus LLPX310R	120.00	86	1.350	0.195	0.382	0.092	7	107
DragonWave A-ANT-18G	120.00	54	1.350	0.195	0.382	0.092	4	68
RFS APXVSPP18-C-A20	120.00	171	1.350	0.195	0.382	0.092	14	213
Commscope DT465B-	120.00	174	1.350	0.195	0.382	0.092	14	217
Flat Platform w/ Han	120.00	2,000	1.350	0.195	0.382	0.092	159	2,494
48" x 8" Panel	111.00	180	1.155	-0.034	0.223	0.007	1	224
Flat Platform w/ Han	111.00	2,000	1.155	-0.034	0.223	0.007	12	2,494
RFS FD9R6004/1C-3L	100.00	19	0.937	-0.120	0.102	-0.050	-1	23
Alcatel-Lucent RRH2x	100.00	132	0.937	-0.120	0.102	-0.050	-6	165
Rymsa MGD3-800TX	100.00	46	0.937	-0.120	0.102	-0.050	-2	58
Antel BXA-171063/12C	100.00	45	0.937	-0.120	0.102	-0.050	-2	56
RFS DB-T1-6Z-8AB-0Z	100.00	44	0.937	-0.120	0.102	-0.050	-2	55
Ante! BXA-70080/6CF_	100.00	54	0.937	-0.120	0.102	-0.050	-2	67
Powerwave Allgon P65	100.00	99	0.937	-0.120	0.102	-0.050	-4	123
Flat Platform w/ Han	100.00	2,000	0.937	-0.120	0.102	-0.050	-86	2,494
RFS ATMAA1412D-1A20	90.00	52	0.759	-0.103	0.043	-0.057	-3	65
Ericsson RRUS 11 B12	90.00	152	0.759	-0.103	0.043	-0.057	-8	190
Ericsson AIR 21, 1.3	90.00	332	0.759	-0.103	0.043	-0.057	-16	414
Ericsson AIR 21, 1.3	90.00	244	0.759	-0.103	0.043	-0.057	-12	305
Andrew LNX-6515DS-VT	90.00	154	0.759	-0.103	0.043	-0.057	-8	192
Flat Platform w/ Han	90.00	2,000	0.759	-0.103	0.043	-0.057	-99	2,494
Diamond X50A	80.00	5	0.600	-0.053	0.015	-0.027	0	6
Stand-Offs	80.00	100	0.600	-0.053	0.015	-0.027	-2	125
PCTEL GPS-TMG-HR-	63.00	1	0.372	0.027	0.008	0.045	0	1
Stand-Off	63.00	30	0.372	0.027	0.008	0.045	1	37
		41,464	76.376	18.007	21.249	5.965	1,718	51,711
Load Case (0.9 - 0.2Sd	<u>s) * DL +</u> E	EMAM	Seismic (Re	duced D	L) Equival	ent Modal .	Analysis Method	
	Height		•				-	
	Above						Horizontal	Vertical
	Base	Weight					Force	Force

b

1.843 1.471 1.203

0.969

0.767

0.580

C

1.090

0.952

0.847

0.752

0.665

0.580

8

1.863

1.785

1.721

1.658

1.596

1.531

Site Number: 302511				Code: A	NSI/TIA-2	22-G © 2003	7 - 2017 by ATC IP L	LC. All rights reserved.
Site Name: WSPT - So	uth, CT		Engineering I	Number:O	AA713869	9_C3_01	11/	2/2017 9:03:40 AM
Customer: SPRINT NE	XTEL							
33	125.30	39	1.472	0.433	0.510	0.157	5	34
32	122.50	340	1.407	0.296	0.439	0.121	36	290
31	117.50	395	1.294	0.112	0.331	0.065	22	337
30	113.00	327	1.197	0.002	0.252	0.023	6	279
29	110.50	87	1.144	-0.041	0.215	0.003	0	74
28	107.50	445	1.083	-0.079	0.177	-0.016	-6	380
27	102.50	460	0.985	-0.113	0.124	-0.041	-16	392
26	97.50	530	0.891	-0.122	0.084	-0.055	-25	452
25	92.50	544	0.802	-0.112	0.054	-0.059	-28	404
24	87.50	622	0.718	-0.092	0.033	-0.053	-28	530
23	84.97	7	0.677	-0.080	0.020	-0.046	V 22	0 229
22	82.87	1,001	0.044	-0.068	0.020	-0.039	-33	112
21	80.40	131	0.000	-0.055	0.013	-0.029	-3	719
20	77.50	842	0.003	-0.039	0.011	-0.010	-11	736
19	72.50	863	0.493	-0.013	0.007	0.000	23	755
10	64.00	260	0.427	0.009	0.000	0.029	13	307
16	61.50	547	0.355	0.023	0.008	0.042	23	467
48	57 94	902	0.335	0.032	0.011	0.056	39	684
13	57.04	472	0.314	0.042	0.013	0.000	Ğ	147
14	55.34	1 286	0.258	0.040	0.016	0.063	70	1.096
12	47 70	1 202	0.213	0.061	0.021	0.065	68	1.025
14	45 20	172	0.191	0.064	0.024	0.066	10	147
10	42.62	2.073	0.170	0.066	0.027	0.065	118	1,768
9	40.12	71	0.151	0.068	0.030	0.065	4	60
8	37.50	1.460	0.132	0.069	0.033	0.064	81	1,245
7	32.50	1,485	0.099	0.071	0.037	0.063	81	1,267
6	27.50	1,511	0.071	0.072	0.041	0.061	80	1,288
5	22.50	1.536	0.047	0.071	0.042	0.059	79	1,310
4	17.50	1,562	0.029	0.068	0.040	0.056	76	1,332
3	12.50	1,587	0.015	0.060	0.035	0.051	71	1,354
2	7.50	1,613	0.005	0.045	0.026	0.041	57	1,375
1	2.50	1,638	0.001	0.019	0.010	0.020	28	1,397
RCU (Remote Control	136.00	3	1.734	1.254	0.867	0.328	1	3
Kathrein Scala 742-2	136.00	68	1.734	1.254	0.867	0.328	19	58
Powerwave Allgon 702	131.00	26	1.609	0.805	0.682	0.242	6	23
Powerwave Allgon LGP	131.00	169	1.609	0.805	0.682	0.242	35	144
Raycap DC6-48-60-18-	131.00	32	1.609	0.805	0.682	0.242	7	27
Ericsson RRUS A2 Mod	131.00	64	1.609	0.805	0.682	0.242	13	54
Ericsson RRUS-11 (50	131.00	150	1.609	0.805	0.682	0.242	31	128
Ericsson RRUS 12 w/	131.00	174	1.609	0.805	0.082	0.242	30	140
Powerwave Allgon 777	131.00	210	1.609	0.805	0.082	0.242	44	1/9
CCI HPA-65R-BUU-H6	131.00	153	1.609	0.805	0.682	0.242	32	130
Flat Platform W/ Han	131.00	2,000	1.009	0.000	0.002	0.242	-113	18
Dragonwave Horizon C	120.00	21	1.350	0.195	0.302	0.092	42	125
Alcatel-Lucent RRH2X	120.00	159	1.330	0.195	0.302	0.092	13	00
NextNet BIS-2500	120.00	105	1.330	0.195	0.302	0.092	15	164
Alextel Lucent 4000	120.00	192	1.000	0.100	0.382	0.002	14	154
Alcatel-Lucent 1900	120.00	100	1.300	0.195	0.382	0.092	17	179
	120.00	210	1 350	0.105	0.382	0 092	7	73
AIGUS LLEASIVA	120.00	50	1.000	0.100	0.382	0.002		46
RES ADXVSDD18.C.A20	120.00	171	1.350	0.195	0.382	0.092	14	146
Commecone DT/65P	120.00	174	1 350	0.195	0.382	0.092	14	148
Flat Platform w/ Han	120.00	2 000	1.350	0.195	0.382	0.092	159	1,706

- -

-0.034

-0.034 -0.120

-0.120

-0.120

-0.120

-0.120

-0.120

-0.120

0.223

0.223

0.102

0.102

0.102

0.102

0.102

0.102

0.102

0.007

0.007

-0.050

-0.050

-0.050

-0.050

-0.050

-0.050

-0.050

1

12

-1

-6

-2 -2 -2 -2 -2 -4

154

16

113

39

38

38

46

84

1,706

1.155

1.155

0.937

0.937

0.937

0.937

0.937

0.937

0.937

48" x 8" Panel

Flat Platform w/ Han RFS FD9R6004/1C-3L

Alcatel-Lucent RRH2x

Antel BXA-171063/12C

RFS DB-T1-6Z-8AB-0Z

Antel BXA-70080/6CF_

Powerwave Allgon P65

Rymsa MGD3-800TX

111.00

111.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

180

19

132

46

45

44

54

99

2,000

Site Number: 302511 Site Name: WSPT - Sou Customer: SPRINT NE	ith, CT XTEL		Engineering	07 - 2017 by ATC IF	7 IP LLC. All rights reserved 11/2/2017 9:03:40 AM			
Flat Platform w/ Han	100.00	2,000	0.937	-0.120	0.102	-0.050	-86	1,706
RFS ATMAA1412D-1A20	90.00	52	0.759	-0.103	0.043	-0.057	-3	44
Ericsson RRUS 11 B12	90.00	152	0.759	-0.103	0.043	-0.057	-8	130
Ericsson AIR 21, 1.3	90.00	332	0.759	-0.103	0.043	-0.057	-16	283
Ericsson AIR 21, 1.3	90.00	244	0.759	-0.103	0.043	-0.057	-12	209
Andrew LNX-6515DS-VT	90.00	154	0.759	-0.103	0.043	-0.057	-8	131
Flat Platform w/ Han	90.00	2,000	0.759	-0.103	0.043	-0.057	-99	1,706
Diamond X50A	80.00	5	0.600	-0.053	0.015	-0.027	0	4
Stand-Offs	80.00	100	0.600	-0.053	0.015	-0.027	-2	85
PCTEL GPS-TMG-HR-	63.00	1	0.372	0.027	0.008	0.045	ō	1
Stand-Off	63.00	30	0.372	0.027	0.008	0.045	1	26
		41,464	76.376	18.007	21.249	5.965	1,718	35,362

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Site Name: WSPT - South, CT

Engineering Number:OAA713869_C3_01

11/2/2017 9:03:40 AM

-

Customer: SPRINT NEXTEL

Load Case (1.2 + 0.2Sds) * DL + E EMAM Seismic Equivalent Modal Analysis Method

Calculated Forces

Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect F	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-klps)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-klps)	(in)	(deg)	Ratio
0.00	-49.67	-1.69	0.00	-151.31	0.00	151.31	4.350 13	2.175.06	7 987 32 :	3.944 64	0.00	0.00	0.036
5.00	-47.66	-1.64	0.00	-142.85	0.00	142.85	4.285.51	2.142.75	7.679.11	3.792.42	0.01	-0.01	0.035
10.00	-45.68	-1.58	0.00	-134.63	0.00	134.63	4,218,97	2,109.49	7.373.27	3.641.38	0.02	-0.02	0.034
15.00	-43.73	-1.51	0.00	-126.73	0.00	126.73	4.150.52	2.075.26	7.070.06	3.491.64	0.04	-0.03	0.033
20.00	-41.81	-1.44	0.00	-119.19	0.00	119.19	4.080.16	2.040.08	6.769.73	3.343.32	0.08	-0.04	0.032
25.00	-39.93	-1.36	0.00	-112.00	0.00	112.00	4.007.88	2.003.94	6.472.54	3.196.54	0.12	-0.05	0.031
30.00	-38.08	-1.29	0.00	-105.19	0.00	105.19	3,933.69	1,966.85	6,178.73	3,051.44	0.18	-0.06	0.030
35.00	-36.26	-1.21	0.00	-98.77	0.00	98.77	3,854.52	1,927.26	5,883.88	2,905.83	0.24	-0.07	0.029
40.00	-36.17	-1.21	0.00	-92.72	0.00	92.72	3,744.12	1,872.06	5,549.75	2,740.81	0.32	-0.08	0.029
40.24	-33.58	-1.09	0.00	-92.43	0.00	92.43	3,738.74	1,869.37	5,533.71	2,732.89	0.32	-0.08	0.028
45.00	-33.37	-1.08	0.00	-87.24	0.00	87.24	3,633.72	1,816.86	5,225.39 2	2,580.62	0.40	-0.09	0.028
45.40	-31.87	-1.02	0.00	-86.81	0.00	86.81	3,063.79	1,531.89	4,506.32	2,225.50	0.41	-0.09	0.031
50.00	-30.27	-0.95	0.00	-82.14	0.00	82.14	3,008.67	1,504.34	4,302.82	2,125.00	0.50	-0.10	0.030
55.00	-30.05	-0.94	0.00	-77.40	0.00	77.40	2,946.93	1,473.46	4,084.17 2	2,017.02	0.60	-0.11	0.029
55.68	-29.05	-0.90	0.00	-76.77	0.00	76.77	2,938.42	1,469.21	4,054.78 2	2,002.51	0.62	-0.11	0.029
55.68	-29.05	-0.90	0.00	-76.77	0.00	76.77	2,938.42	1,469.21	4,054.78	2,002.51	0.62	-0.11	0.048
60.00	-28.37	-0.88	0.00	-72.86	0.00	72.86	2,883.27	1,441.64	3,868.42	1,910.47	0.72	-0.12	0.048
03.00	-21.00	-0.87	0.00	-70.21	0.00	70.21	2,844.16	1,422.08	3,740.46	1,847.27	0.79	-0.13	0.048
70.00	-20.//	-0.85	0.00	-08.47	0.00	68.47	2,808.42	1,404.21	3,643.77	1,799.52	0.85	-0.14	0.048
70.00	-23.70	-0.00	0.00	-04.19	0.00	64.19	2,/13./9	1,356.89	3,400.96	1,679.61	1.00	-0.16	0.048
20.00	-24.00	-0.07	0.00	-39.92	0.00	09.92 EE EQ	2,019.10	1,308.30	3,100.32	1,003.03	1.10	-0.10	0.040
00.00 90.70	29.30	-0.00	0.00	-33.30	0.00	33.30	2,024.00	1,202.20	2,940.40	1,432.10	1.37	-0.20	0.047
84 94	-23.10	-0.92	0.00	-54.00	0.00	04.00 51.06	2,009.00	740.05	2,900.39	952 42	1.40	-0.20	0.04/
85.00	-23.10	-0.32	0.00	-51.00	0.00	51.00	1,455.50	749.93	1,720.05	957 95	1.59	-0.22	0.075
90.00	-17.98	-1.12	0.00	-46.26	0.00	46 26	1 466 64	733 32	1 624 12	802.00	1.35	-0.22	0.075
95.00	-17.32	-1.15	0.00	-40.68	0.00	40.68	1.431.82	715 91	1 522 23	751 77	2 11	-0.28	0.066
100.00	-13.70	-1.26	0.00	-34.94	0.00	34.94	1.395.09	697 54	1 421 47	702 01	2 42	-0.31	0.060
105.00	-13.15	-1.27	0.00	-28.66	0.00	28.66	1.356.44	678.22	1.322 10	652 93	2.76	-0.34	0.054
110.00	-13.04	-1.27	0.00	-22.32	0.00	22.32	1.315.88	657.94	1.224.36	604.67	3.14	-0.37	0.047
111.00	-9.91	-1.23	0.00	-21.05	0.00	21.05	1,307.54	653.77	1,205.03	595.12	3.21	-0.37	0.043
115.00	-9.42	-1.21	0.00	-16.13	0.00	16.13	1,273.40	636.70	1,128.51	557.33	3.53	-0.39	0.036
120.00	-4.82	-0.88	0.00	-10.08	0.00	10.08	1,215.41	607.71	1,023.37	505.40	3.95	-0.41	0.024
125.00	-4.77	-0.87	0.00	-5.70	0.00	5.70	1,152.33	576.16	919.28	454.00	4.39	-0.42	0.017
125.59	-4.47	-0.83	0.00	-5.18	0.00	5.18	1,144.85	572.43	907.31	448.09	4.44	-0.42	0.015
125.59	-4.47	-0.83	0.00	-5.18	0.00	5.18	385.02	192.51	160.54	106.00	4.44	-0.42	0.061
130.00	-4.40	-0.82	0.00	-1.53	0.00	1.53	385.02	192.51	160.54	106.00	4.83	-0.43	0.026
131.00	-0.46	-0.12	0.00	-0.71	0.00	0.71	385.02	192.51	160.54	106.00	4.92	-0.43	0.008
135.00	-0.40	-0.11	0.00	-0.23	0.00	0.23	385.02	192.51	160.54	106.00	5.28	-0.43	0.003
136.00	-0.10	-0.03	0.00	-0.13	0.00	0.13	385.02	192.51	160.54	106.00	5.37	-0.43	0.001
140.00	0.00	0.00	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	5.74	-0.43	0.000
142.00	0.00	0.00	0.00	0.00	0.00	0.00	385.02	192.51	160.54	106.00	5.92	-0.43	0.000

Code: ANSI/TIA-222-G

© 2007 - 2017 by ATC IP LLC. All rights reserved.

Site Name: WSPT - South, CT

Engineering Number: OAA713869_C3_01

11/2/2017 9:03:40 AM

Customer: SPRINT NEXTEL

Load Case (0.9 - 0.2Sds) * DL + E EMAM Seismic (Reduced DL) Equivalent Modal Analysis Method

Calculated Forces

	Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total		
	Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Ťn	Mn	Deflect R	otation	
_	(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
_	0.00	-33.97	-1 69	0.00	-148 97	0.00	148 97	4 350 13	2 175 06	7 087 32	3 944 64	0.00	0.00	0.033
	5.00	-32.59	-1.64	0.00	-140.51	0.00	140.51	4,350.13	2,142 75	7.679 11	3,792 42	0.00	-0.01	0.032
	10.00	-31.24	-1.57	0.00	-132.32	0.00	132.32	4,218.97	2,109.49	7.373.27	3.641 38	0.02	-0.02	0.031
	15.00	-29.90	-1.50	0.00	-124.45	0.00	124.45	4.150.52	2.075.26	7.070.06	3.491.64	0.04	-0.03	0.030
	20.00	-28.59	-1.43	0.00	-116.94	0.00	116.94	4.080.16	2.040.08	6.769.73	3.343.32	0.08	-0.04	0.029
	25.00	-27.30	-1.35	0.00	-109.81	0.00	109.81	4.007.88	2.003.94	6.472.54	3,196.54	0.12	-0.05	0.028
	30.00	-26.04	-1.27	0.00	-103.06	0.00	103.06	3,933.69	1,966.85	6,178.73	3,051.44	0.17	-0.06	0.027
	35.00	-24.79	-1.19	0.00	-96.69	0.00	96.69	3,854.52	1,927.26	5,883.88	2,905.83	0.24	-0.06	0.026
	40.00	-24.73	-1.19	0.00	-90.72	0.00	90.72	3,744.12	1,872.06	5,549.75	2,740.81	0.31	-0.07	0.026
	40.24	-22.96	-1.07	0.00	-90.43	0.00	90.43	3,738.74	1,869.37	5,533.71	2,732.89	0.31	-0.07	0.026
	45.00	-22.82	-1.07	0.00	-85.32	0.00	85.32	3,633.72	1,816.86	5,225.39	2,580.62	0.39	-0.08	0.025
	45.40	-21.79	-1.00	0.00	-84.90	0.00	84.90	3,063.79	1,531.89	4,506.32	2,225.50	0.40	-0.08	0.028
	50.00	-20.70	-0.93	0.00	-80.30	0.00	80.30	3,008.67	1,504.34	4,302.82	2,125.00	0.49	-0.09	0.027
	55.00	-20.55	-0.92	0.00	-75.65	0.00	75.65	2,946.93	1,473.46	4,084.17	2,017.02	0.59	-0.10	0.027
	55.68	-19.86	-0.88	0.00	-75.03	0.00	75.03	2,938.42	1,469.21	4,054.78	2,002.51	0.60	-0.11	0.027
	55.68	-19.86	-0.88	0.00	-75.03	0.00	75.03	2,938.42	1,469.21	4,054.78	2,002.51	0.60	-0.11	0.044
	62.00	-19.40	-0.86	0.00	-71.21	0.00	71.21	2,883.27	1,441.64	3,868.42	1,910.47	0.70	-0.11	0.044
	03.00 85.00	-19.00	-0.03	0.00	-00.02	0.00	00.02	2,044.10	1,422.00	3,740.40	1,04/.Z/	0.78	-0.13	0.044
	70.00	-10.31	-0.03	0.00	-00.91	0.00	00.91	2,808.42	1,404.21	3,043.77	1,799.52	0.83	-0.15	0.044
	75.00	-16.85	-0.03	0.00	-02.73	0.00	02.70	2,713.79	1,300.89	3,400.90	1,0/9.01	0.98	-0.15	0.044
	80.00	-16 65	-0.03	0.00	-54 37	0.00	50.00	2,013.10	1,308.30	3,100.52	1,000.00	1.15	-0.17	0.044
	80.70	-15.80	-0.00	0.00	-53 70	0.00	54.37	2,524.55	1,202.20	2,940.40	1,452.10	1.34	-0.19	0.044
	84.94	-15.79	-0.89	0.00	-50.01	0.00	50.01	1 499 90	749 95	2,905.39	853 42	1.56	-0.20	0.044
	85.00	-15.26	-0.92	0.00	-49.96	0.00	49.96	1 499 54	749 77	1 726 89	852.85	1.56	-0.21	0.069
	90.00	-12.29	-1.09	0.00	-45.36	0.00	45.36	1.466.64	733.32	1.624.12	802.09	1.80	-0.24	0.065
	95.00	-11.84	-1.12	0.00	-39.92	0.00	39.92	1.431.82	715.91	1.522.23	751.77	2.07	-0.27	0.061
	100.00	-9.37	-1.23	0.00	-34.33	0.00	34.33	1.395.09	697.54	1.421.47	702.01	2.37	-0.30	0.056
	105.00	-8.99	-1.24	0.00	-28.17	0.00	28.17	1.356.44	678.22	1.322.10	652.93	2.71	-0.33	0.050
	110.00	-8.91	-1.24	0.00	-21.97	0.00	21.97	1,315.88	657.94	1,224.36	604.67	3.07	-0.36	0.043
	111.00	-6.78	-1.21	0.00	-20.73	0.00	20.73	1,307.54	653.77	1,205.03	595.12	3.15	-0.36	0.040
	115.00	-6.44	-1.19	0.00	-15.89	0.00	15.8 9	1,273.40	636.70	1,128.51	557.33	3.46	-0.38	0.034
	120.00	-3.29	-0.87	0.00	-9.95	0.00	9.95	1,215.41	607.71	1,023.37	505.40	3.87	-0.40	0.022
	125.00	-3.26	-0.86	0.00	-5.63	0.00	5.63	1,152.33	576.16	919.28	454.00	4.30	-0.41	0.015
	125.59	-3.05	-0.82	0.00	-5.12	0.00	5.12	1,144.85	572.43	907.31	448.09	4.35	-0.41	0.014
	125.59	-3.05	-0.82	0.00	-5.12	0.00	5.12	385.02	192.51	160.54	106.00	4.35	-0.41	0.056
	130.00	-3.01	-0.81	0.00	-1.51	0.00	1.51	385.02	192.51	160.54	106.00	4.74	-0.42	0.022
	131.00	-0.31	-0.12	0.00	-0.70	0.00	0.70	385.02	192.51	160.54	105.00	4.82	-0.42	0.007
	135.00	-0.27	-0.02	0.00	-0.23	0.00	U.23	303.02	182.51	100.34	100.00	0.10 5.07	-0.42	0.003
	140.00	-0.07	-0.03	0.00	-0.12	0.00	0.12	303.UZ	192.31	100.34	100.00	J.21 5 69	-0.43	0.001
	142.00	0.00	0.00	0.00	0.00	0.00	0.00	303.UZ	192.31	100.34	100.00	J.UZ E 00	-0.43	0.000
	142.00	0.00	0.00	U.UU	0.00	0.00	0.00	300.UZ	192.31	100.34	100.00	J.0V	-0.43	0.000

Site Number:	302511	Code: ANSI/TIA-222-G	© 2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name:	WSPT - South, CT	Engineering Number:OAA713869_C3_01	11/2/2017 9:03:40 AM
Customer:	SPRINT NEXTEL		

Analysis Summary

			- Re		Max Usage			
Load Case	Shear FX (kips)	Shear FZ (klps)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.6W	42.04	0.00	49.67	0.00	0.00	3733.21	84.94	0.86
0.9D + 1.6W	41.27	0.00	37.23	0.00	0.00	3612.18	84.94	0.82
1.2D + 1.0Di + 1.0Wi	10.31	0.00	84.98	0.00	0.00	958.24	84.94	0.26
(1.2 + 0.2Sds) * DL + E ELFM	1.75	0.00	49.67	0.00	0.00	189.11	84.94	0.07
(1.2 + 0.2Sds) * DL + E EMAM	1.69	0.00	49.67	0.00	0.00	151.31	84.94	0.08
(0.9 - 0.2Sds) * DL + E ELFM	1.75	0.00	33.97	0.00	0.00	186.44	84.94	0.06
(0.9 - 0.2Sds) * DL + E EMAM	1.69	0.00	33.97	0.00	0.00	148.97	84.94	0.07
1.0D + 1.0W	10.75	0.00	41.46	0.00	0.00	945.26	84.94	0.23

Additional Steel Summary

	Intermediate Connectors	Upper Termination	Lower Termination			
Flev Flev	Shear Shear	Connectors	Connectors	Max Member		
From To	VQ/I Applied phlVn	MQ/I phiVn Num Num	MQ/I phlVn Num Num	Pu phiPn		
(ft) (ft) Member	(lb/in) (kips) (kips)	(kips) (kips) ReqdActual	(klps) (kips) Reqd Actual	(kip) (kip) Ratio		
0.00 55.6 (4) SOL-#20 All Thre	331.7 10.0 16.8	196.1 12.0 17 22	0.0 12.0 0 0	256.2 330.5 0.775		

	Plate Turne	Descripto	
L	Polo Diameter	Baseplate	
욽	Pole Diameter	40	
Ē	Pole mickness Plate Diamator	0.4375	in in
Įĝ	Plate Diameter	00	in in
E E	Plate Thickness	2	III kal
20/	Mold Longth	0.2125	KSI
Bä		0.3125	li i k_in
	Applied	414 37	k_in
⊢	#	16	Show
L	Thickness	0.5	in
ES	Length	4	in
j.	Height	10	in
E S	Chamfer	0	in
ľ	Offset Angle	0	٥
L	Fy	36	ksi
_	1		
	Rolt Circle	76	1
	(P)adial / (S)quara		In
- I	(r)aulai / (S)quare	ĸ	
	Diameter	2 25	in
2	Hole Diameter	2.75	in
1	Type	18J	
Γ.	Fy	75	ksi
	Fu	100	ksi
	φ _s Resistance	259.82	k
	Applied	147.33	k
	#	4	
•	DYW. Circle	52	in
E	Offset Angle	11 25	0
Ĕ	Туре	#20	
2	Diameter	2.5	in
웉	Fu	100	ksi
Rei		392.70	k
	Applied	256.65	k
	#	0	
0			
lä.			
Ö			
X			
ш			

Code Rev.	G	Date	11/2/2017
	-	Engineer	Charles.Cages
		Site #	302511
Moment	3733.2 k-ft	Carrier	SPRINT NEXTEL
Axial	49.7 k		

Plate Stress	Ratio:
0.44	(Pass)

\$

Bolt Stress	Ratio:
0.57	(Pass)

Reinforcement Stress Ratio: 0.65 (Pass)

Γ	Plate Type Pole Diameter	Flange @ 125.6 ft 10.75 in	Code Rev. G Date 11/2/2017 Engineer Charles.Cages
late	Pole Thickness	0.375 in	Site # 302511
e P	Plate Diameter	28.5 in	Moment 37.1 k-ft Carrier SPRINT NEXTEL
Bue	Plate Thickness	1 in	Axial 3.9 k
Ē	Plate Fy	36 ksi	
ase	Weld Length	0.3125 in	
m	φ _s Resistance	85.53 k-in	
L	Applied	28.62 k-in	
Г	#	9 Show	
S	Thickness	0.25 in	
Der	Length	4 in	
Ę	Height	6 in	
ず			
	Fv	36 ksi	
.		00 13	
	#	15	
	Bolt Circle	25.75 in	
•	(R)adial / (S)quare	R	1 1
-	Diameter	1 in	
ŝ	Hole Diameter	1.1875 in	
B	Туре	A325	
	Fy	92 ksi	0 0
	Fu	120 ksi	0 0
	φ _s Resistance	54.52 k	
L	Applied	4.34 k	
	#		
12			
Je l			Plata Stroop Patio
			Plate Stress Rallo:
Ę			0.33 (Pass)
ein			Bolt Stress Potio
۳ ۲			
⊢	#	0	0.00 (Pass)
	π		
2			
1 2 2			
g			
١.			

#REF! Program Last Updated: 制造

V L

Site Number: OAA713869 Engineering Number: Charles.Cages Engineer: 11/02/17 Date: MP Tower Type:

Site Name:

Design Loads (Factored) - Analysis per TIA-222-G Standards

Design / Analysis / Mapping:	Mapping
Compression/Leg:	49.7 k
Unlift/Leg:	0.0 k
Total Shear:	42.0 k
Moment:	3733.2 k-ft
Towart + Appurtenance Weight:	49.7 k
Donth to Base of Foundation $(l + t - h)$:	7.00 ft
Diameter of Pier (d):	6.50 ft
Height of Pier above Ground (h):	0.50
Width of Pad (W):	26.50 ft
Width of Pad (W).	26.50 ft
Length of Pad (L). Thiskness of Pad (t):	3.00 ft
Tower Les Center to Center	0.00 ft
Number of Tower Lega	1.0 (1 if MP or GT)
Number of Tower Legs.	0.00 ft
Tower Center from Mat Center.	9.50 ft
Depth Below Ground Surface to Water Table.	150.0 pcf
Unit Weight of Coll Above Weter Table:	120.0 pcf
Unit Weight of Soli Above Water Table.	62.4 pcf
Unit Weight of Water:	60.0 pcf
Unit Weight of Soil Below Water Table.	15.0 Degrees
Friction Angle of Opint.	0.35
Ultimate Coencient of Shear Pressure:	20000.0 psf
Ultimate Passive Pressure on Pad Face:	500.0 psf
	0.9
ΨSoil and Concrete Weight*	0.75
Overturning Moment Usage	
Design OTM:	
OTM Resistance:	0.45 Result: OK
Design OTM / OTM Resistance:	0.45 Result. OK
Soil Bearing Pressure Usage	
List Booking Proscuro	2087 psf
Net Bedring Pressure:	15000 psf
Net Bearing Pressure/Factored Nominal Bearing Pressure:	0.14 Result: OK
Load Direction Controling Design Bearing Pressure:	Diagonal to Pad Edge
Sliding Factor of Safety	
Total Factored Sliding Resistance:	210.8 k
Sliding Design / Sliding Resistance:	0.20 Result: OK

WSPT - South, CT

302511

	PROJECT:	DO MACRO UPGRADE
	SITE NAME:	TURKEY HILL
	SITE CASCADE:	CT03XC336
SDrint	SITE ADDRESS:	20 POST OFFICE LANE WESTPORT, CT 06880
	SITE TYPE:	MONOPOLE TOWER
	MARKET:	SOUTHERN CONNECTICU

SITE INFORMATION	AREA MAP	PROJECT DESCRIPTION		DRAWING
TOWER_OWNER:	Monroe	SPRINT PROPOSES TO MODIFY AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY.	SHEET NO.	SHEE
AMERICAN TOWER CORPORATION 10 PRESIDENTIAL WAY WOBURN, MA 01801	fielding Shelton New Have	• REMOVE (3) EXISTING PANEL ANTENNAS	T-1	TITLE SHEET & PROJECT
LATITUDE (NADR3).	s Katonah (3) (6) (9) (0) West Haven	INSTALL (3) PANEL ANTENNAS INSTALL (3) 2.5 CH- DOU'S DELIND ANTENNAS	SP-1 SP-2	SPRINT SPECIFICATIONS SPRINT SPECIFICATIONS
41 7' 24.27" N	Bedood Hills (B) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	INSTALL (3) 2.3 GTZ ARA S DEFINAD ANTENNAS	SP-3	SPRINT SPECIFICATIONS
41.12340633	Witton (6) Bridgeport	INSTALL (30) JUMPER CABLES	A-1	
LONGITUDE (NAD83): 73' 18' 46.93" W	New Callaan wolver Calified	• INSTALL (1) HYBRID CABLE	A-2 A-3	ANTENNA LAYOUT & MOUN
-73.3131		• INSTALL 2.5 EQUIPMENT INSIDE EXISTING N.V. MMBS CABINET	A-4 A-5	EQUIPMENT & MOUNTING I
	U		A-6	PLUMBING DIAGRAM
	TTP Stamford		E-1	ELECTRICAL & GROUNDING
ZONING JURISDICTION: CONNECTICUT SITING COUNCIL	Port Cliester	THESE PLANS HAVE BEEN DEVELOPED FOR THE MODIFICATION OF AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY OWNED OR LEASED BY		
ZONING DISTRICT:	Harrison	SPRINT IN ACCORDANCE WITH THE SCOPE OF WORK PROVIDED BY SPRINT. INFINIGY HAS INCORPORATED THIS SCOPE OF WORK IN THE PLANS, THESE DIANS DE NOT COP CONTENTION OF MORE DEVIA DASSING		
RESIDENTIAL AAA	synamic lar Post Jefferen V	STRUCTURAL STABILITY ANALYSIS PREPARED BY A LICENSED STRUCTURAL ENGINEER. STRUCTURAL ANALYSIS MUST INCLUDE BOTH TOWER AND MOUNT.		
POWER COMPANY:	LOCATION MAP	APPLICABLE CODES		
CONNECTICUT LIGHT & POWER PHONE: (800) 322-3223 AAV PROVIDER: AT&T PHONE: (210) 821-4105		ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALL IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOFTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES. 1. INTERNATIONAL BUILDING CODE (2015 IBC) 2. TH=222-C. OR LATEST FORTION		
PROJECT_MANAGER: AIROSMITH DEVELOPMENT TERRI BURKHOLDER (315) 719-2928 TBURKHOLDER®AIROSMITHDEVELOPMENT.COM	OBTENS FARMS	 NFPA 780 - LIGHTINING PROTECTION CODE 2011 NATIONAL ELECTRIC CODE OR LATEST EDITION ANY OTHER NATIONAL OR LOCAL APPLICABLE CODES, MOST RECENT EDITIONS CT BUILDING CODE COAL BUILDING CODE 		
	SITE SITE	B. CITY/COUNTY ORDINANCES		
	Proventionalisem	STI.		
	Tamitica Contraction	Call before you dig. www.call811.com		

THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

SECTION 01 100 - SCOPE OF WORK

PART 1 - GENERAL

- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT CONSTRUCTION STANDARDS FOR WIRELESS SITES, CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
 - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 PRECEDENCE: SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES INCLUDING THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.
- 1.4 NATIONALLY RECOGNIZED CODES AND STANDARDS:
 - A. THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
 - 1. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION
 - 5. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.
 - GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT.
 - 4. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE - "NEC") AND NFPA 101 (LIFE SAFETY CODE).
 - 5. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
 - 6. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
 - 7. AMERICAN CONCRETE INSTITUTE (ACI)
 - 8. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
 - 9. CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
 - 10. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
 - 11. PORTLAND CEMENT ASSOCIATION (PCA)
 - 12. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
 - 13. BRICK INDUSTRY ASSOCIATION (BIA)
 - 14. AMERICAN WELDING SOCIETY (AWS)
 - 15. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
 - 16. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
 - 17. DOOR AND HARDWARE INSTITUTE (DHI)
 - 18. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA)
 - 19. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.
- 1.5 DEFINITIONS:
- A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B. COMPANY: SPRINT CORPORATION
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&C". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- D. CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE
- E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- F. OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT.
- G. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT ...

- 1.6 SITE FAMILLARITY: CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILLARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.
- 1.7 POINT OF CONTACT: COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.
- 1.8 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- 1.9 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.
 - A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR RODUCTION OF "AS-BUILT" DRAWINGS.
- B. DETAILS ARE INTENDED TO SHOW DESIGN INTENT. MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK. CONTRACTOR SHALL NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY VARIATIONS PRIOR TO PROCEEDING WITH THE
- C. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK.
- 1.10 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS,
- 1.11 UTILITIES SERVICES: WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN, ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY INVOLVED:
- 1.12 PERMITS / FEES: WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 1.13 CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.
- 1.14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM WORK AS DESCRIBED IN THE FOLLOWING INSTALLATION AND COMMISSIONING
- NOTE: IN SHORT-FORM SPECIFICATIONS ON THE DRAWINGS, A/E TO INSERT LIST OF APPLICABLE MOPS INCLUDING EN-2012-001, EN-2013-002, EL-0568, AND TS-0193
- 1.15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS:
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR LEMPORARY UTILITIES AND FACILITIES THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE CONDITION OF CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.
- 3.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.
- 3.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.
- 3.4 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.

- 3.5 EXISTING CONDITIONS: NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.
- SECTION 01 200 COMPANY FURNISHED MATERIAL AND EQUIPMENT PART 1 - GENERAL
- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
 - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 RECEIPT OF MATERIAL AND EQUIPMENT:
- A. A COMPANY FURNISHED MATERIAL AND EQUIPMENT IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS.
- EQUIPMENT AND UPON RECEIPT SHALL:
- 1 ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.
- 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT.
- 4. RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH.
- 5. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING.
- 6. COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE

3.2 DELIVERABLES:

- A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE.
- B. IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY
- C. UPLOAD DOCUMENTATION INTO SPRINT SITE MANAGEMENT SYSTEM (SMS) AND/OR PROVIDE HARD COPY DOCUMENTATION AS REQUESTED.

SECTION 01 300 - CELL SITE CONSTRUCTION CO. PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. в.
- 1.3 NOTICE TO PROCEED
- A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF THE WORK ORDER.
- B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 FUNCTIONAL REQUIREMENTS:
 - DESCRIBED ARE NOT EXHAUSTIVE, AND CONTRACTOR SHALL TAKE ANY AND ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
 - SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED. В.
 - MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
 - PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING: D.

CONTINUE FROM SP-1

- 1. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION.
- 2. PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND SURFACE TREATMENTS.
- 3. MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND TELCO BACKHAUL.
- 4. INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.
- 5. INSTALL ABOVE GROUND GROUNDING SYSTEMS.
- 6. PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.
- 7. INSTALL "H-FRAMES", CABINETS AND SHELTERS AS INDICATED.
- 8. INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.
- 9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.
- 10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS.
- 11. PROVIDE SLABS AND EQUIPMENT PLATFORMS
- 12. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS
- 13. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER.
- 14. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER
- 15. INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
- 16. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS REQUIRED.
- 17. INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT.
- 18. PERFORM, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND ANDI ORDS
- 19. PERFORM ANTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY CORRECTIONS.
- 20. REMAIN ON SITE MOBILIZED THROUGHOUT HAND-OFF AND INTEGRATION TO ASSIST AS NEEDED UNTIL SITE IS DEEMED SUBSTANTIALLY COMPLETE AND PLACED ON AIR.
- 3.2 GENERAL REQUIREMENTS FOR CML CONSTRUCTION:
 - A. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS,
- B. EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- C. CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
 - 1. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH IN THE EVENT CONTRACTOR ENCLORENCES ANY FRAMEWOULS CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING, THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY.
- 2. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- D. CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION
- E. CONDUCT TESTING AS REQUIRED HEREIN.
- 3.3 DELIVERABLES:
 - A. CONTRACTOR SHALL REVIEW, APPROVE, AND SUBMIT TO SPRINT SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND SIMILAR SUBMITTALS AS REQUIRED HEREINAFTER
- B. PROVIDE DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED
- 1. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.
- 2. PROJECT PROGRESS REPORTS
- 3. CIVIL CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 4. ELECTRICAL SERVICE COMPLETION DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).

- 5. LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 6. POWER INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION)
- 7. TELCO READY DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION)
- 8. PPC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 9. TOWER CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 10. TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION)
- 11. BTS AND RADIO EQUIPMENT DELIVERED AT SITE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 12. NETWORK OPERATIONS HANDOFF CHECKLIST (HOC WALK) COMPLETE (UPLOAD
- 13. CIVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 14. SITE CONSTRUCTION PROGRESS PHOTOS UNLOADED INTO SMS.
- SECTION 01 400 SUBMITTALS & TESTS
- PART 1 GENERAL
- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 SUBMITTALS:
- A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE SPECIFICATIONS.
- B. SUBMIT THE FOLLOWING TO COMPANY REPRESENTATIVE FOR APPROVAL.
- 1. CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING.
- 2. CONCRETE BREAK TESTS AS SPECIFIED HEREIN.
- 3. SPECIAL FINISHES FOR INTERIOR SPACES, IF ANY.
- 4. ALL EQUIPMENT AND MATERIALS SO IDENTIFIED ON THE CONSTRUCTION
- 5. CHEMICAL GROUNDING DESIGN
- D. ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

1.4 TESTS AND INSPECTIONS:

- A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION.
- B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE
 - 1. COAX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANTENNA LINE ACCEPTANCE STANDARDS.
 - 2. AGL, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL.
- 3. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- C. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMITED TO THE FOLLOWING:
- AZIMUTH, DOWNTILT, AGL UPLOAD REPORT FROM ANTENNA ALIGNMENT TOOL TO SITERRA TASK 485. INSTALLED AZIMUTH, DOWNTILT, AND AGL MUST CONFORM TO THE RF DATA SHEETS. SWEEP AND FIBER TESTS
- 2. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 3. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 4. PDF SCAN OF REDLINES PRODUCED IN FIELD

- 5. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS. ANY FIELD CHANGE MUST BE REFLECTED BY MODIFYING THE PLANS, ELEVATIONS, AND DETAILS IN THE DRAWING SETS. GENERAL NOTES INDICATING MODIFICATIONS WILL NOT BE ACCEPTED. CHANGES SHALL BE HIGHLIGHTED AS "CLOUDS" IDENTIFIED AS THE "AS-BUILT" CONDITION.
- 6. LIEN WAIVERS
- 7. FINAL PAYMENT APPLICATION
- 8. REQUIRED FINAL CONSTRUCTION PHOTOS
- 9 . CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS
- 10. ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS DOCUMENT REPOSITORY OF RECORD).
- 1.5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLICABLE
- 1.6 INTEGRATION: PERFORM ALL INTEGRATION ACTIVITIES AS REQUIRED BY APPLICABLE
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 REQUIREMENTS FOR TESTING:
 - A. THIRD PARTY TESTING AGENCY:
 - REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS.
 - 2. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.
 - EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.
 - 4. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.
 - 3.2 REQUIRED TESTS:
 - A. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE
 - 1. CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR FOUNDATIONS AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 - 2. ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY TESTING AS SPECIFIED IN SECTION: HOT MIX ASPHALT PAVING.
 - 3. FIELD QUALITY CONTROL TESTING AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 - 4. TESTING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AND ANCHOR LOCATIONS
 - 5. STRUCTURAL BACKFILL COMPACTION TESTS FOR THE TOWER FOUNDATION.
 - 6. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN
 - 7. ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS.
 - 8. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS
 - 9. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION

OR SPRINT REPRESENTATIVE.

EXISTING FACILITIES.

REPRESENTATIVE.

3.3 REQUIRED INSPECTIONS

1.

WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS

A. SCHEDULE INSPECTIONS WITH COMPANY REPRESENTATIVE.

B. CONDUCT INSPECTIONS INCLUDING BUT NOT LIMITED TO THE FOLLOWING:

GROUNDING SYSTEM INSTALLATION PRIOR TO EARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E

2. FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E

COMPACTION OF BACKFILL MATERIALS; AGGREGATE BASE FOR ROADS, PADS, AND ANCHORS; ASPHALT PAVING; AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY.

4. PRE- AND POST-CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON

5. TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY.

6. ANTENNA AZIMUTH , DOWN TILT AND PER SUNLIGHT TOOL SUNSIGHT INSTRUMENTS - ANTENNALIGN ALIGNMENT TOOL (AAT)

SP-2

SPRINT SPECIFICATIONS

SHEET DESCRIPTION: -

20 POST OFFICE LANE WESTPORT, CT 06880

CT03XC336

SITE NUMBER

SITE ADDRESS:

SHEET NUMBER

DRAWING NOTICE:

TURKEY HILL

DESCRIPTION	DATE	BY	REV.
		-	
ssued for permit	1/25/18	ETC	0
SITE NAME:		_	

THESE DOCUMENTS ARE CONFIDENTIAL AND AR THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT.

PROJECT MANAGER AIR**©SMITH** DEVELOPMENT 32 CLINTON ST

FROM ZERO TO INFINIGY

033 Watervillet Shaker Rd | Albany, NY 12205 Phone: 518-690-0790 | Fax: 518-690-0793

www.infinigy.com

JOB NUMBER 526-104

the solutions are endless

PLANS PREPARED FOR:

PLANS PREPARED BY

Sprint

CONTINUE FROM SP-2

- VERIFICATION DOCUMENTED WITH THE ANTENNA CHECKLIST REPORT, BY A&E, SITE DEVELOPMENT REP, OR RF REP.
- 8. FINAL INSPECTION CHECKLIST AND HANDOFF WALK (HOC.). SIGNED FORM SHOWING ACCEPTANCE BY FIELD OPS IS TO BE UPLOADED INTO SMS.
- 9. COAX SWEEP AND FIBER TESTING DOCUMENTS SUBMITTED VIA SMS FOR RF
- 10. SCAN-ABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 11. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 12. PDF SCAN OF REDLINES PRODUCED IN FIELD
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING
- D. CONSTRUCTION INSPECTIONS AND CORRECTIVE MEASURES SHALL BE DOCUMENTED BY THE CONTRACTOR WITH WRITTEN REPORTS AND PHOTOGRAPHS. PHOTOGRAPHS MUST BE DIGITAL AND OF SUFFICIENT QUALITY TO CLEARLY SHOW THE SITE CONSTRUCTION. PHOTOGRAPHS MUST CLEARLY IDENTIFY THE PHOTOGRAPHED ITEM AND BE LABELED WITH THE SITE CASCADE NUMBER, SITE NAME, DESCRIPTION, AND
- 3.4 DELIVERABLES: TEST AND INSPECTION REPORTS AND CLOSEOUT DOCUMENTATION SHALL BE UPLOADED TO THE SMS AND/OR FORWARDED TO SPRINT FOR INCLUSION INTO THE PERMANENT SITE FILES.
 - A. THE FOLLOWING TEST AND INSPECTION REPORTS SHALL BE PROVIDED AS APPLICABLE,
 - 1. CONCRETE MIX AND CYLINDER BREAK REPORTS.
 - 2. STRUCTURAL BACKFILL COMPACTION REPORTS.
 - 3. SITE RESISTANCE TO EARTH TEST.
 - 4. ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
 - 5. TOWER ERECTION INSPECTIONS AND MEASUREMENTS DOCUMENTING TOWER INSTALLED PER SUPPLIER'S REQUIREMENTS AND THE APPLICABLE SECTIONS HEREIN
 - 6. COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE STANDARDS"
 - B. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES THE FOLLOWING;
 - 1. TEST WELLS AND TRENCHES: PHOTOGRAPHS OF ALL TEST WELLS; PHOTOGRAPHS SHOWING ALL OPEN EXCAVATIONS AND TRENCHING PRIOR TO BACKFILLING SHOWING A TAPE MEASURE VISIBLE IN THE EXCAVATIONS INDICATING DEPTH.
 - 2. CONDUITS, CONDUCTORS AND GROUNDING: PHOTOGRAPHS SHOWING TYPICAL INSTALLATION OF CONDUCTORS AND CONNECTORS; PHOTOGRAPHS SHOWING TYPICAL BEND RADIUS OF INSTALLED GROUND WIRES AND GROUND ROD
 - 3. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING AT TOWER AND EQUIPMENT/SHELTER PAD/FOUNDATIONS PHOTOGRAPHS SHOWING ALL REINFORCING STEEL, UTILITY AND CONDUIT STUB OUTS; PHOTOGRAPHS SHOWING CONCRETE POUR OF SHELTER SLAB/FOUNDATION, TOWER FOUNDATION AND GUY ANCHORS WITH VIBRATOR IN USS; PHOTOGRAPHS SHOWING EACH ANCHOR ON GUYED TOWERS DEED CONVERTE DOUB ANCHOR ON GUYED TOWERS, BEFORE CONCRETE POUR.
 - 4. TOWER, ANTENNAS AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SICN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; ANTEINNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR, PHOTOS OF GPS ANTENNA(S): PHOTOS OF EACH SECTOR OF ANTEINNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING – TOP AND BOTTOM; PHOTOS OF COAX GROUNDING. – TOP AND BOTTOM; PHOTOS OF ANTEINNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
 - 5. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF;
 - 6. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS.
 - 7. FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT ETER BOX AND/OR FACILITY DISTRIBUTION PANEL
 - 8. REQUIRED MATERIALS CERTIFICATIONS: CONCRETE MIX DESIGNS; MILL CERTIFICATION FOR ALL REINFORCING AND STRUCTURAL STEEL; AND ASPHALT PAVING MIX DESIGN
 - 9. ANY AND ALL SUBMITTALS BY THE JURISDICTION OR COMPANY.

SECTION 01 400 - SUBMITTALS & TESTS

- PART 1 GENERAL
 - 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
 - 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION
 - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 WEEKLY REPORTS:
- A. CONTRACTOR SHALL PROVIDE SPRINT WITH WEEKLY REPORTS SHOWING PROJECT STATUS. THIS STATUS REPORT FORMAT WILL BE PROVIDED TO THE CONTRACTOR BY SPRINT. THE REPORT WILL CONTAIN SITE ID NUMBER, THE MILESTONES FOR EACH SITE, INCLUDING THE BASELINE DATE, ESTIMATED COMPLETION DATE AND ACTUAL COMPLETION DATE.
- B. REPORT INFORMATION WILL BE TRANSMITTED TO SPRINT VIA ELECTRONIC MEANS AS REQUIRED. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT.
- 3.2 PROJECT CONFERENCE CALLS:
- A. SPRINT MAY HOLD WEEKLY PROJECT CONFERENCE CALLS, CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY
- 3.3 PROJECT TRACKING IN SMS:
 - A. CONTRACTOR SHALL PROVIDE SCHEDULE UPDATES AND PROJECTIONS IN THE SMS SYSTEM ON A WEEKLY BASIS.
- 3.4 ADDITIONAL REPORTING:
- A. ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS DETERMINED TO BE REASONABLY NECESSARY BY COMPANY.
- 3.5 PROJECT PHOTOGRAPHS:
- A. FILE DIGITAL PHOTOGRAPHS OF COMPLETED SITE IN JPEG FORMAT IN THE SMS PHOTO LIBRARY FOR THE RESPECTIVE SITE, PHOTOGRAPHS SHALL BE CLEARLY LABELED WITH SITE NUMBER, NAME AND DESCRIPTION, AND SHALL INCLUDE AT A NIMUM THE FOLLOWING AS APPLICABLE:
- 1. 1SHELTER AND TOWER OVERVIEW.
- 2. TOWER FOUNDATION(S) FORMS AND STEEL BEFORE POUR (EACH ANCHOR ON GUYED TOWERS).
- 3. TOWER FOUNDATION(S) POUR WITH VIBRATOR IN USE (EACH ANCHOR ON GUYED TOWERS).
- 4. TOWER STEEL AS BEING INSTALLED INTO HOLE (SHOW ANCHOR STEEL ON GUMED TOWERS)
- 5. PHOTOS OF TOWER SECTION STACKING.
- 6. CONCRETE TESTING / SAMPLES.
- 7. PLACING OF ANCHOR BOLTS IN TOWER FOUNDATION.
- 8. BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
- 9. SHELTER FOUNDATION--FORMS AND STEEL BEFORE POURING.
- 10. SHELTER FOUNDATION POUR WITH VIBRATOR IN USE.
- 11. COAX CABLE ENTRY INTO SHELTER.
- 12. PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- 13. ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATIONS AND INTERIOR CEILING.
- 14. PHOTOS OF TOWER TOP COAX LINE COLOR CODING AND COLOR CODING AT GROUND | FVFL
- 15. PHOTOS OF ALL APPROPRIATE COMPANY OR REGULATORY SIGNAGE.
- 16, PHOTOS OF EQUIPMENT BOLT DOWN INSIDE SHELTER
- 17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND TELCO SUPPLY LOCATIONS INCLUDING METER/DISCONNECT.
- 18. ELECTRICAL TRENCH(S) WITH ELECTRICAL / CONDUIT BEFORE BACKFILL.
- 19. ELECTRICAL TRENCH(S) WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL.
- 20. TELCO TRENCH WITH TELEPHONE / CONDUIT BEFORE BACKFILL.
- 21. TELCO TRENCH WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL.
- 22. SHELTER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).
- 23. TOWER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).

- 24. FENCE GROUND-RING TRENCH WITH GROUN ALL CAD WELDS AND BEND RADII).
- 25. ALL BTS GROUND CONNECTIONS.
- 26. ALL GROUND TEST WELLS.
- 27. ANTENNA GROUND BAR AND EQUIPMENT GROUND BAR.
- 28. ADDITIONAL GROUNDING POINTS ON TOWERS ABOVE 200'.
- 29, HVAC UNITS INCLUDING CONDENSERS ON SPLIT SYSTEMS.
- 30. GPS ANTENNAS.
- 31. CABLE TRAY AND/OR WAVEGUIDE BRIDGE.
- 32. DOGHOUSE/CABLE EXIT FROM ROOF.
- 33. EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA.
- 34. MASTER BUS BAR.
- 35, TELCO BOARD AND NIU.
- 36. ELECTRICAL DISTRIBUTION WALL.
 - 37. CABLE ENTRY WITH SURGE SUPPRESSION.
 - 38. ENTRANCE TO EQUIPMENT ROOM.
 - 39. COAX WEATHERPROOFING-TOP AND BOTTOM OF TOWER.
 - 40. COAX GROUNDING -TOP AND BOTTOM OF TOWER.
 - 41. ANTENNA AND MAST GROUNDING.
 - 42. LANDSCAPING WHERE APPLICABLE.
- 3.6 FINAL PROJECT ACCEPTANCE: COMPLETE ALL REQUIRED REPORTING TASKS PER CONTRACT, CONTRACT DOCUMENTS OR THE SPRINT INTEGRATED CONSTRUCTION STANDARDS FOR WIRELESS SITES AND UPLOAD INTO SITERRA.

ID-WIRE	BEFORE	BACKFILL	(SHOW
---------	--------	----------	-------

				SI TE	LOA	DING	CHART	
SECTOR	EXISTING/ PROPOSED	ANTENNA MODEL #	VENDOR	AZIMUTH	QTY.	REMAIN/ REMOVED	RRH (QTY/MODEL)	
	PROPOSED	DT465B-2XR	COMMSCOPE	50°	1	-	(2) 800 MHZ 2X50W RRH W/ FILTER	SEE
ALPHA	EXISTING	APXV9TM14-ALU-I20	RFS	50*	1	REMOVE	(1) TD-RRH8X20-25 W/ SOLAR SHIELD	E
	EXISTING	EXISTING APXVSSP18-C-A20 RFS 50° 1 REMAIN (1) 1900 MHz 4X45 RR	(1) 1900 MHz 4X45 RRH	E				
	PROPOSED	DT465B-2XR	COMMSCOPE	130°	1	-	(2) 800 MHZ 2X50W RRH W/ FILTER	SEE
BETA	EXISTING	APXV9TM14-ALU-120	RFS	130'	1	REMOVE	(1) TD-RRHBX20-25 W/	E
	EXISTING	APXVSPP18C-A20	RFS	130*	1	Image: Remain of the second		
	PROPOSED	DT465B-2XR	COMMSCOPE	270°	1		(2) 800 MHZ 2X50W RRH W/ FILTER	SEE
GAMMA	EXISTING	APXV9TM14-ALU-I20	RFS	270°	1	REMOVE	(1) TD-RRHBX20-25 W/	E
1	EXISTING	APXVSPP18-C-A20	RFS	270*	1	REMAIN	(1) 1900 MHz 4X45 RRH	E

REMOVE: (3) PANEL ANTENNAS; INSTALL: (3) PANEL ANTENNAS AND (6) RRH'S

 PROPOSED CABLE LENGTH WAS DETERMINED USING THE SUM OF THE RAD CENTER OF ANTENNAS, AND DISTANCE FROM EXISTING EQUIPMENT AREA TO TOWER BASE WITH AN ADDITIONAL 20' BUFFER. LENGTH TO BE VERIFIED IN FIELD PRIOR TO ORDERING MATERIALS.

SITE LOADING CHART

DETAIL NOT USED

						_
		S	print			
IOPOLE TOW	ΈR	F R C	PREPARED BY: THE SOLUTION ALE SOLUTION AL	INFIN Albany, I x: 518-69 com -104	1 G ndle NY 1: 0-07	9 Y SS 2205 93
IN B Ri AI CABLES	ISTALL (1) SPRINT DUAL AND ANTENNA TO EPLACE EXISTING NTENNA EACH SECTOR FIBER AND POWER FROM FIBER		IROSAN SARATOGA SPRINGS, N OFFICE#, (S18) 308-	AIT LOPM 12886 3740	EN	
Junction Sprint 800 Junted To I Mount	O' = TRUE NOR	The second second second	JAN 24705	018	Summing	5.
	NO SCALE		all garage ist	<u>.</u>		
		THES THES REPRI WIT	VING NOTICE: E DOCUMENTS ARE CON OLE PROPERTY OF SPRIN DDUCED, DISSEMINATED HOUT THE EXPRESS WRI SPRINT.	FIDENTIAL T AND MA OR REDIST TTEN CONS	AND / Y NOT RIBU ENT (ARE T BE TED DF
			DESCRIPTION	DATE	BY	REV.
		ISSUED F	OR PERMIT	1/25/18	ETC	0
		SITE		HILL		
		SITE		336		
		SITE 20 V	ADDRESS: POST OFFI VESTPORT,	CE LA CT 06	AN 88	E 0
		SHEE &	ANTENNA LA	AYOU DETA	T ILS	5
	NO SCALE		A-3	3		
		1212			-	-

			Sprin	t	
).D. Holes 2.5 hybrif	X (4) FOR LEX CABLES		PLANS PREPARED BY:	0	10
			INFINI	Ġ)	8
	1/2" O.D. HOLES X 2 F QUID TIGHT CONDUIT TO	FOR BTS	FROM ZERO TO	INFIN	IGY
-	5		the solutio	ns are en	
50			Phone: 518+690+0790 F www.infinigy	ax: 518-690	0-0793
	J			20-104	
			1000		
					H ENT
			SARATOGA SPRINGS, OFFICE#. (518) 30	NY 12868 6-3740	
				111.	•
			SIS ST	Nec III	12
			19.0	0.0	en s
				2010	
			ER A	CUION	
			CRACE		
	NO SCALE	2	COMPON SE	Ginn	
			"Innint"	44.	
			THESE DOCUMENTS ARE COL	NFIDENTIAL A	ND ARE
			THE SOLE PROPERTY OF SPRI REPRODUCED, DISSEMINATE	NT AND MAY D OR REDISTR	NOT BE
			WITHOUT THE EXPRESS WR SPRINT.	ITTEN CONSE	INT OF
			REVISIONS:	[py locul
			DESCRIPTION	DATE	BY REV.
			ISSUED FOR PERMIT	1/25/18	ETC 0
			TURKEY	HILL	
			SITE NUMBER:		
			СТОЗХС	2336	
			SITE ADDRESS:		
			20 POST OFF	ICE LA	NE
			WESTPORT,	CT 068	880
			SHEET DESCRIPTION:		
			$\begin{bmatrix} CIVIL DET \\ \end{bmatrix}$	IAILS	
				5	
	NO SCALE	3	A-:)	
				_	

ALU 211 DT465B-2XR & APXVSPP18-C-A20 wo Filters

NO	SCALE

