- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the
  print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to
  print the label.
- Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

# 3. GETTING YOUR SHIPMENT TO UPS

# **Customers with a Daily Pickup**

Your driver will pickup your shipment(s) as usual.

### **Customers without a Daily Pickup**

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point<sup>TM</sup>
CVS STORE # 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access Point™
CVS STORE #7232
689 DEPOT ST
NORTH EASTON .MA 02356

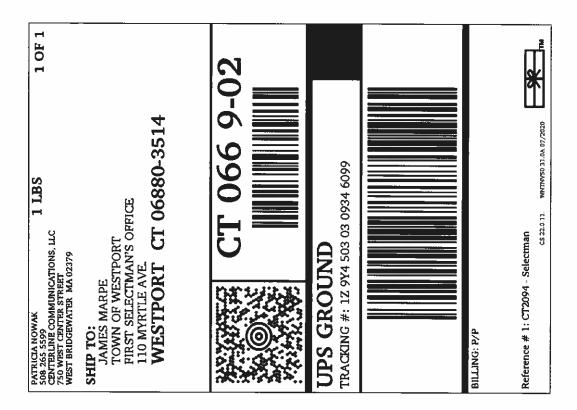
UPS Access Point<sup>TM</sup>
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER .MA 02379



- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the
  print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to
  print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

# 3. GETTING YOUR SHIPMENT TO UPS

**Customers with a Daily Pickup** 


Your driver will pickup your shipment(s) as usual.

# **Customers without a Daily Pickup**

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point™ CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access Point™ CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356 UPS Access Point<sup>TM</sup>
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIOGEWATER ,MA 02379



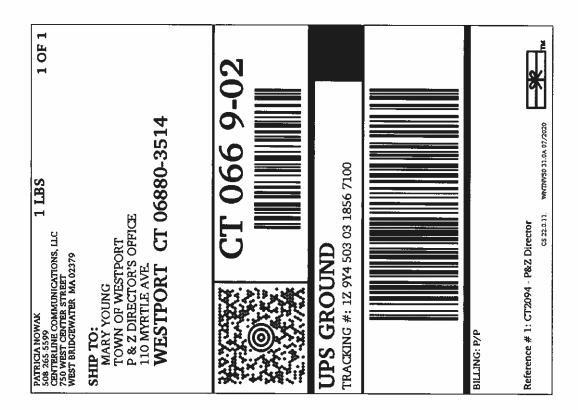
- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

# 3. GETTING YOUR SHIPMENT TO UPS

# **Customers with a Daily Pickup**

Your driver will pickup your shipment(s) as usual.

# **Customers without a Dally Pickup**


Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point™ CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375

UPS Access Point<sup>TM</sup>
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02358

UPS Access Point™
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

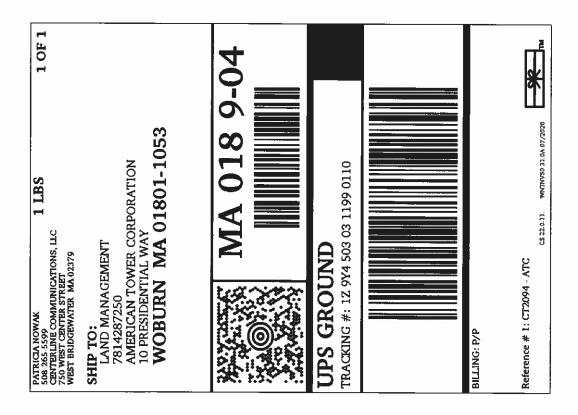


- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the
  print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to
  print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

# 3. GETTING YOUR SHIPMENT TO UPS

**Customers with a Daily Pickup** 

Your driver will pickup your shipment(s) as usual.


# **Customers without a Daily Pickup**

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point™ CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access Point<sup>TM</sup>
CVS STORE #7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access Point™
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379



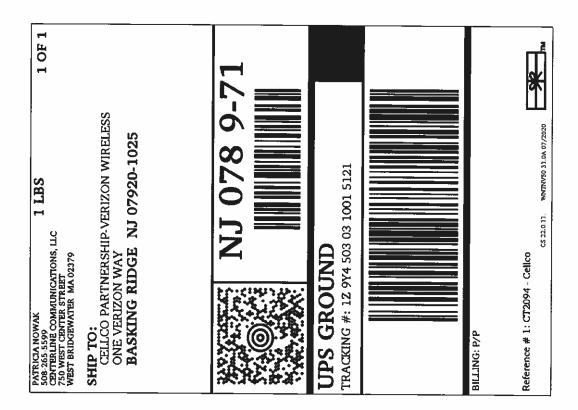
- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

# 3. GETTING YOUR SHIPMENT TO UPS

**Customers with a Daily Pickup** 

Your driver will pickup your shipment(s) as usual.

# **Customers without a Daily Pickup**


Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point<sup>TM</sup>
CVS STORE # 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access Point<sup>TM</sup>
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access Point™
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379







July 23, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding: Notice of Exempt Modification – AT&T Site CT2094
Address: 2 Allen Raymond Lane (a/k/a 2 Sunny Lane), Westport, CT

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC (hereinafter "AT&T") currently maintains a wireless telecommunications facility on an existing 130' monopole tower (the "Tower") at the above-referenced address, latitude 41.162900, longitude -73.373100. Said Tower is managed by American Tower Corporation.

AT&T desires to modify its existing telecommunications facility on the Tower by adding (3) Antennas, (3) Remote Radio Units, and (1) Surge Arrestor, as well as swapping (3) Antennas, and swapping (6) Remote Radio Units and other related modifications, as more particularly detailed and described in the enclosed Construction Drawings prepared by SMW Engineering Group, Inc, dated May 28, 2020. Enclosed please also find a Mount Structural Analysis prepared by MasTec Network Solutions dated April 24, 2020. The centerline height of the antennas will be at 100 feet.

The Tower was originally approved by the Connecticut Siting Council on December 17, 1998 under Docket No. 188. Enclosed please find a copy of the above referenced approval.

Please accept this letter as notification pursuant to R.C.S.A §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the following individuals: The Honorable James Marpe, First Selectman of the Town of Westport; Mary Young, Planning and Zoning Director of the Town of Westport; Cellco Partnership, as the property owner; and American Tower Corporation, as Tower manager. Enclosed please find a property card and a GIS map of the property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Specifically:

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require an extension of the site boundary.





- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. Please see the NIER Study Report for AT&T's modified facility enclosed herewith.
- 5. The proposed modifications will not cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the Structural Analysis Report dated April 28, 2020 and prepared by American Tower Corporation.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely.

Patricia Nowal

Site Acquisition Consultant

Centerline Communications, LLC

750 West Center Street, Suite 301

West Bridgewater, MA 02379

pnowak@clinellc.com

Enclosures:

Exhibit 1 – Construction Drawings

Exhibit 2 - Mount Analysis

Exhibit 3 – CSC Approval

Exhibit 4 - Property Cards and GIS Map

Exhibit 5 - NIER Study

Exhibit 6 - Structural Analysis

cc:


The Honorable James Marpe, First Selectman of the Town of Westport

Mary Young, Planning and Zoning Director of the Town of Westport

Cellco Partnership, as the property owner

American Tower Corporation, as Tower manager

# **EXHIBIT 1**





# **AMERICAN TOWER®**

ATC SITE NAME: CRANBURYSU CT

ATC SITE NUMBER: 411189

AT&T PACE NUMBER: MRCTB045060, MRCTB045017,

MRCTB045016, MRCTB045027, & MRCTB045127

AT&T SITE ID: CTL02094 AT&T FA CODE:10035342

AT&T SITE NAME: CANTON - COLLINSVILLE

PROJECTS: 3C, 4C, 4T4R ANTENNA RETROFIT, 5G NR

SITE ADDRESS: 2 SUNNY LANE

WESTPORT, CT 06880-1906

# ALLEN RAYMOND LN ALLEN RAYMOND LN SITE LOCATION

**LOCATION MAP** 

# AT&T MOBILITY ANTENNA AMENDMENT DRAWINGS

| COMPLIANCE CODE                                                                                                                                                  | PROJECT SU                                                                                                                                                                                                                                                 | JMMARY                                                                                       | PROJECT DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHEET INDEX  |                                      |      |          |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------|------|----------|-----|
| ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE                                                               | SITE ADDRESS:  2 SUNNY LANE  WESTPORT, CT 06880-1906  COUNTY: FAIRFIELD                                                                                                                                                                                    |                                                                                              | THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHEET<br>NO: | DESCRIPTION:                         | REV: | DATE:    | BY: |
| FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS                                                                        |                                                                                                                                                                                                                                                            |                                                                                              | TOWER WORK:<br>REMOVE (3) ANTENNA3, (3) RRU-11 B12, (3) RRU-12, 12 TMA'S,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G-001        | COVER SHEET                          | 0    | 05/28/20 | ZDS |
| TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.                                                                                                    |                                                                                                                                                                                                                                                            |                                                                                              | (6) 1-5/8" UMTS COAX CABLES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G-002        | GENERAL NOTES                        | 0    | 05/28/20 | ZDS |
| INTERNATIONAL BUILDING CODE (IBC)                                                                                                                                | GEOGRAPHIC CO                                                                                                                                                                                                                                              |                                                                                              | INSTALL (6) ANTENNAS, (9) RRH'S, (1) DC9 SQUID, (2) 0.78" DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-101        | DETAILED SITE PLAN                   | 0    | 05/28/20 | ZDS |
| 2. NATIONAL ELECTRIC CODE (NEC)                                                                                                                                  | LATITUDE: 41                                                                                                                                                                                                                                               |                                                                                              | CABLES, AND (1) 0.39" FIBER CABLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-201        | TOWER ELEVATION                      | 0    | 05/28/20 | ZDS |
| COCAL BUILDING CODE     CITY/COUNTY ORDINANCES                                                                                                                   | LONGITUDE: -7                                                                                                                                                                                                                                              |                                                                                              | EXISTING (3) ANTENNAS, (1) DC6 SQUID, (6) 1-5/8" COAX CABLES, (2) 0.78" DC CABLES, (1) 0.39" FIBER CABLE TO REMAIN, (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C-401        | RF SCHEDULE AND ANTENNA INSTALLATION | 0    | 05/28/20 | ZDS |
|                                                                                                                                                                  | GROUND ELEVATION: 51' AMSL  PROJECT TEAM                                                                                                                                                                                                                   |                                                                                              | ANTENNAS, AND (1) HOME RUN RET TO BE RELOCATED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C-501        | CONSTRUCTION DETAILS                 | 0    | 05/28/20 | ZDS |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                                              | GROUND WORK:  REMOVE (12) DIPLEXERS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-502        | EQUIPMENT SPECIFICATIONS             | 0    | 05/28/20 | ZDS |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                                              | INSTALL (1) 5G RBS 6630 AND (1) IDLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E-501        | GROUNDING DETAILS                    | 0    | 05/28/20 | ZDS |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-601        | SUPPLEMENTAL                         | 0    | 05/28/20 | ZDS |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                                              | PROJECT NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R-602        | SUPPLEMENTAL                         | 0    | 05/28/20 | ZDS |
| UTILITY COMPANIES  POWER COMPANY: NOT PROVIDED PHONE: NOT PROVIDED  TELEPHONE COMPANY: NOT PROVIDED PHONE: NOT PROVIDED  Know what's below. Call before you dig. | TOWER OWNER:  AMERICAN TOWER  10 PRESIDENTIAL WAY WOBURN, MA 01801  ENGINEER:  JEREMY SHARIT SMW ENGINEERING GROUP INC. 158 BUSINESS CENTER DR. BIRMINGHAM, AL. 35244 JOB# 20-10209  CONSULTING ENGINEER  JOHN LIU, PE (423) 541-0561 JOHNLIU@TELECOM.TEAM | APPLICANT: AT&T MOBILITY  PROPERTY OWNER: AMERICAN TOWER 116 HUNTINGTON AVE BOSTON, MA 02116 | 1. THE FACILITY IS UNMANNED. 2. A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A MONTH FOR ROUTINE INSPECTION AND MAINTENANCE. 3. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE. 4. NO SANITARY SEWER, POTABLE WATER OR TRASH DISPOSAL IS REQUIRED. 5. HANDICAP ACCESS IS NOT REQUIRED.  PROJECT LOCATION DIRECTIONS  HEAD SOUTHWEST ON I-95 S, TAKE EXIT 16 TOWARD EAST NORWALK 0.1 MI, TURN RIGHT ONTO EAST AVE (SIGNS FOR U.S. 1) 1.2 MI, CONTINUE ONTO NEWTOWN AVE 1.4 MI, TURN RIGHT ONTO PARTRICK AVE 1.7 MI, TURN LEFT ONTO WILTON RD 0.3 MI, TURN RIGHT ONTO SUNNY LN 0.1 MI |              |                                      |      |          |     |





TOGETHER PLANNING A BETTER TOMORROW 158 BUSINESS CENTER DRIVE BIRMINGHAM, AL 35244

TEL: 205-252-6985 FAX: 205-320-1504

| REV.           | DESCRIPTION      | BY  | DATE     |
|----------------|------------------|-----|----------|
| <u> </u>       | FOR CONSTRUCTION | ZDS | 05/28/20 |
| $I \wedge_{-}$ |                  |     |          |
|                |                  |     |          |
|                |                  |     |          |
|                |                  |     |          |
| $\square$      |                  |     |          |

ATC SITE NUMBER:

411189

ATC SITE NAME:

# **CRANBURYSU CT**

SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906





DATE DRAWN: 05/28/20 ATC JOB NO: 411189-REV-1-1587496885727 CUSTOMER ID: 10035342 MRCTB045060, MRCTB045017, MRCTB045000, MRCTB045017, MRCTB045016, MRCTB045027, & MRCTB045127

**COVER SHEET** 

G-001

REVISION: 0

# **GENERAL CONSTRUCTION NOTES:**

- OWNER FURNISHED MATERIALS, AT&T MOBILITY "THE COMPANY" WILL PROVIDE AND THE 22. CONTRACTOR WILL INSTALL
- A. BTS EQUIPMENT FRAME (PLATFORM) AND ICEBRIDGE SHELTER (GROUND
- BUILD/CO-LOCATE ONLY) AC/TELCO INTERFACE BOX (PPC)
- C. ICE BRIDGE (CABLE TRAY WITH COVER) (GROUND BUILD/CO-LOCATE ONLY, GC TO FURNISH AND INSTALL FOR ROOFTOP INSTALLATION)
- D. TOWERS, MONOPOLES
- TOWER LIGHTING
- GENERATORS & LIQUID PROPANE TANK
- ANTENNA STANDARD BRACKETS, FRAMES AND PIPES FOR MOUNTING
- ANTENNAS (INSTALLED BY OTHERS)
- TRANSMISSION LINE
- TRANSMISSION LINE JUMPERS
- TRANSMISSION LINE CONNECTORS WITH WEATHERPROOFING KITS
- TRANSMISSION LINE GROUND KITS
- HANGERS
- HOISTING GRIPS
- O. BTS EQUIPMENT
- THE CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL OTHER MATERIALS FOR THE MATERIALS AS FENCING, STRUCTURAL STEEL SUPPORTING SUB-FRAME FOR PLATFORM ROOFING LABOR AND MATERIALS GROUNDING RINGS GROUNDING WIRES COPPER-CLAD OR XIT CHEMICAL GROUND ROD(S), BUSS BARS, TRANSFORMERS AND DISCONNECT SWITCHES WHERE APPLICABLE, TEMPORARY ELECTRICAL POWER, CONDUIT, LANDSCAPING COMPOUND STONE, CRANES, CORE DRILLING, SLEEPERS AND RUBBER MATTING, REBAR, CONCRETE CAISSONS, PADS AND/OR AUGER MOUNTS,
  MISCELLANEOUS FASTENERS, CABLE TRAYS, NON-STANDARD ANTENNA FRAMES AND ALL OTHER MATERIAL AND LABOR REQUIRED TO COMPLETE THE JOB ACCORDING TO THE DRAWINGS AND SPECIFICATIONS. IT IS THE POSITION OF AT&T MOBILITY TO APP FOR PERMITTING AND CONTRACTOR RESPONSIBLE FOR PICKUP AND PAYMENT OF
- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC CONSTRUCTION
- CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND
- CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS
- DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS 32.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED 33. FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING,
- CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC, BEFORE COMMENCING WORK
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE AT&T MOBILITY REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE AT&T MOBILITY REP PRIOR TO
- EACH CONTRACTOR SHALL COOPERATE WITH THE AT&T MOBILITY REP, AND OORDINATE HIS WORK WITH THE WORK OF OTHERS
- CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE AT&T MOBILITY CONSTRUCTION MANAGER.
- ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR SHALL NOTIFY THE AT&T MOBILITY REP AND ENGINEER OF RECORD
- CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF
- CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH AMERICAN TOWER CORPORATION (ATC) AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- CONTRACTOR SHALL FURNISH AT&T MOBILITY AND AMERICAN TOWER CORPORATION (ATC) WITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH AT&T MOBILITY REP TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL 2. ALL EXTERIOR #6 GREED GROUND WIRE "DAISY CHAIN" CONNECTIONS ARE TO BE

- ALL ITEMS PROVIDED.
- PRIOR TO SUBMISSION OF BID. CONTRACTOR SHALL COORDINATE WITH AT&T MOBILITY REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL
  REQUIRED PERMITS NOT OBTAINED BY AT&T MOBILITY MUST BE OBTAINED, AND PAID
- 23. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH AT&T MOBILITY
- CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO AT&T MOBILITY FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 25. ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO AT&T MOBILITY SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY AT&T MORILITY REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW
- CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.
- THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD. ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES. FITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- 30. ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE AT&T MOBILITY REP. ANY WORK FOUND BY THE AT&T MOBILITY, REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS
- IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OF MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS
- AT&T MOBILITY FURNISHED EQUIPMENT SHALL BE PICKED-UP AT THE AT&T MOBILITY WAREHOUSE, NO LATER THAN 48HR AFTER BEING NOTIFIED INSURED, STORED, UNCRATE, PROTECTED AND INSTALLED BY THE CONTRACTOR WITH ALL APPURTENANCES REQUIRED TO PLACE THE EQUIPMENT IN OPERATION. READY FOR USE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE EQUIPMENT AFTER PICKING IT
- AT&T MOBILITY OR HIS ARCHITECT/ENGINEER RESERVES THE RIGHT TO REJECT ANY FOLIPMENT OR MATERIALS WHICH, IN HIS OWN OPINION ARE NOT IN COMPLIANCE WITH THE CONTRACT DOCUMENTS, EITHER BEFORE OR AFTER INSTALLATION AND THE EQUIPMENT SHALL BE REPLACED WITH EQUIPMENT CONFORMING TO THE REQUIREMENTS OF THE CONTRACT DOCUMENTS BY THE CONTRACTOR AT NO COST TO AT&T MOBILITY OR THEIR ARCHITECT/ENGINEER

# SPECIAL CONSTRUCTION ANTENNA INSTALLATION NOTES:

- WORK INCLUDED
  - ANTENNA AND COAXIAL CABLES ARE FURNISHED BY AT&T MOBILITY UNDER A SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OD COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF
  - B. INSTALL ANTENNA AS INDICATE ON DRAWINGS AND AT&T MOBILITY
  - C. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS
  - D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE AND PROVIDE PRINTOUT OF THAT TEST.
  - E. CONTRACTOR SHALL PROVIDE FOUR (4) SETS OF SWEEP TESTS USING ANRITZU-PACKARD 8713B RF SCALAR NETWORK ANALYZER. SUBMIT FREQUENCY DOMAIN REFLECTOMETER(FDR) TESTS RESULTS TO THE PROJECT MANAGER. SWEEP TESTS SHALL BE AS PER ATTACHED RFS "MINIMUM FIELD TESTING RECOMMENDED FOR ANTENNA AND HELIAX COAXIAL CABLE SYSTEMS" DATED 10/5/93. TESTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING SERVICE AND BE BOUND AND SUBMITTED WITHIN ONE WEEK OF WORK COMPLETION.
  - INSTALL COAXIAL CABLES AND TERMINATING BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTIONS RETWEEN THE ANTENNA AND FOLIPMENT PER MANUFACTURER'S REQUIREMENTS. TERMINATE ALL COAXIAL CABLE THREE (3) FEET IN EXCESS OF ENTRY PORT LOCATION UNLESS OTHERWISE STATED.
  - G. ANTENNA AND COAXIAL CABLE GROUNDING:

WEATHER SEALED WITH RES CONNECTORS/SPLICE WEATHERPROOFING KIT #221213 OR

ALL COAXIAL CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF COAXIAL CABLE (NOT WITHIN BENDS)

> ALL DISCREPANCIES FROM WHAT IS SHOWN ON THESE CONSTRUCTION DRAWINGS SHALL BE COMMUNICATED TO ATC ENGINEERING IMMEDIATELY FOR CORRECTION OR RE-DESIGN. FAILURE TO COMMUNICATE DIRECTLY WITH ATC ENGINEERING OR ANY CHANGES FROM THE DESIGN CONDUCTED WITHOUT PRIOR APPROVAL FROM ATC ENGINEERING SHALL BE THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR





TOGETHER PLANNING A BETTER TOMORROW

158 BUSINESS CENTER DRIVE

BIRMINGHAM AL 35244

TEL: 205-252-6985 FAX: 205-320-1504 DESCRIPTION BY DATE

FOR CONSTRUCTION

ATC SITE NUMBER:

411189

ATC SITE NAME:

# CRANBURYSU CT

SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906





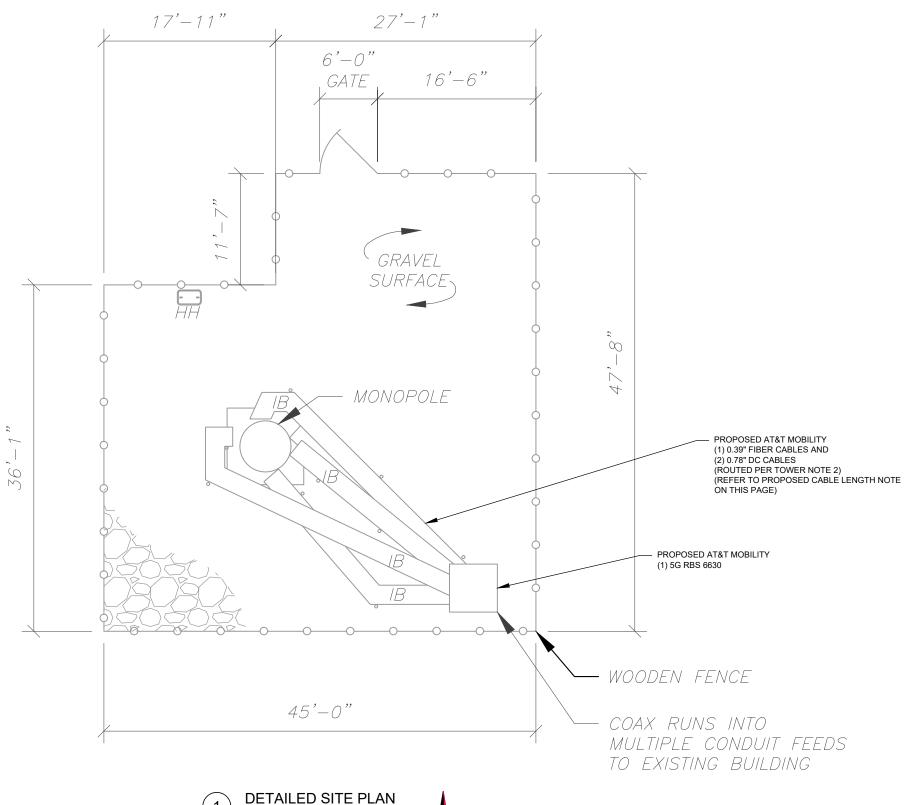
DATE DRAWN: 05/28/20 ATC JOB NO: 411189-REV-1-1587496885727 CUSTOMER ID: 10035342 MRCTB045060, MRCTB045017. CUSTOMER #: MRCTB045016, MRCTB045027, & MRCTB045127

**GENERAL NOTES** 

SHEET NUMBER:

REVISION

G-002


# SITE PLAN NOTES:

- 1. THIS SITE PLAN REPRESENTS THE BEST PRESENT KNOWLEDGE AVAILABLE TO THE ENGINEER AT THE TIME OF THIS DESIGN. THE CONTRACTOR SHALL VISIT THE SITE PRIOR TO CONSTRUCTION AND VERIFY ALL EXISTING CONDITIONS RELATED TO THE SCOPE OF WORK FOR THIS PROJECT.
- 2. ICE BRIDGE, CABLE LADDER, COAX PORT, AND COAX CABLE ARE SHOWN FOR REFERENCE ONLY. CONTRACTOR SHALL CONFIRM THE EXACT LOCATION OF ALL PROPOSED AND EXISTING EQUIPMENT AND STRUCTURES DEPICTED ON THIS PLAN. BEFORE UTILIZING EXISTING CABLE SUPPORTS, COAX PORTS, INSTALLING NEW PORTS OR ANY OTHER EQUIPMENT, CONTRACTOR SHALL VERIFY ALL ASPECTS OF THE COMPONENTS MEET THE ATC SPECIFICATIONS.
- 3. THIS PROJECT INCLUDES NO INSTALL OR MODIFICATION AT GRADE.

#### LEGEND GROUNDING TEST WELL ATS AUTOMATIC TRANSFER SWITCH **BOLLARD** CSC CELL SITE CABINET D DISCONNECT ELECTRICAL **FIBER** GEN GENERATOR GENERATOR RECEPTACAL HH, V HAND HOLE, VAULT ΙB ICE BRIDGE KENTROX BOX LC LIGHTING CONTROL M METER PB PULL BOX POWER POLE TELCO TRN TRANSFORMER CHAINLINK FENCE

# PROPOSED CABLE LENGTH:

- I. ESTIMATED LENGTH OF PROPOSED CABLE IS XXX. ESTIMATED LENGTH OF CABLE WAS PROVIDED BY CUSTOMER OR CALCULATED BY ADDING THE RAD CENTER AND THE DISTANCE FROM THE SHELTER ENTRY PLATE TO THE TOWER (ALONG THE ICE BRIDGE) AND A SAFETY FACTOR MEASUREMENT OF 15% (OF THE TWO PREVIOUS VALUES), CDS DEFER TO GREATEST CABLE LENGTH.
- 2. ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. WHERE POSSIBLE UTILIZE EXISTING CABLE SUPPORT STRUCTURES AS PROVIDED FOR CARRIER TO ADEQUATELY SECURE CABLES, USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE MANUFACTURER. OTHERWISE, ATTACH CABLES TO HORIZONTAL OR DIAGONAL TOWER MEMBERS USING PROPOSED STAINLESS STEEL ADAPTERS (DO NOT ATTACH TO TOWER LEG).







# TOGETHER PLANNING A BETTER TOMORROW 158 BUSINESS CENTER DRIVE BIRMINGHAM. AL 35244

BIRMINGHAM, AL 35244 TEL: 205-252-6985 FAX: 205-320-1504

| REV.                | DESCRIPTION      | BY  | DATE     |
|---------------------|------------------|-----|----------|
| <u> </u>            | FOR CONSTRUCTION | ZDS | 05/28/20 |
| $\triangle$ _       |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
|                     |                  |     |          |
|                     |                  |     |          |

ATC SITE NUMBER:

411189

ATC SITE NAME:

# CRANBURYSU CT

SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906

SEAL:

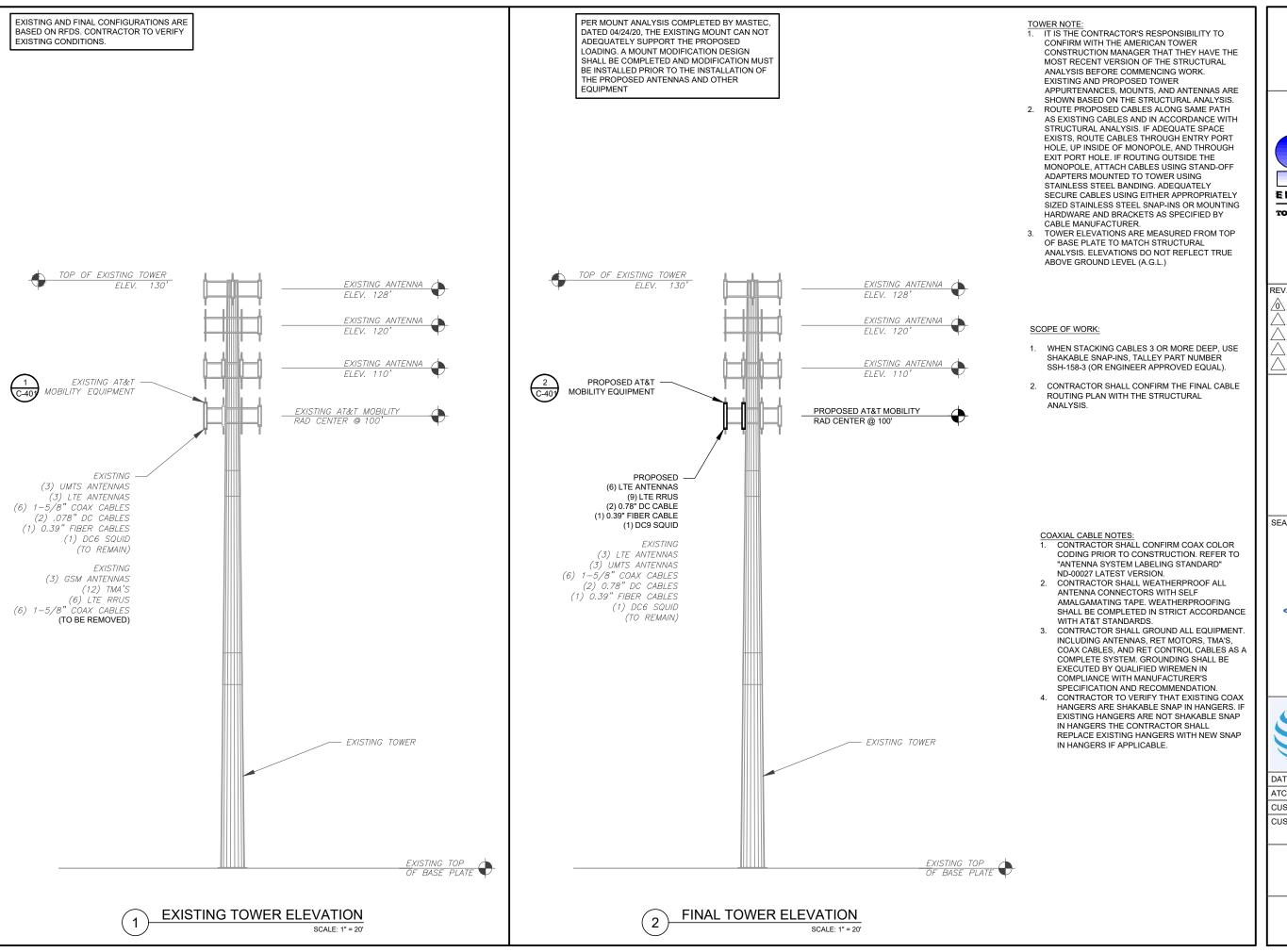




| DATE DRAWN:  | 05/28/20                   |
|--------------|----------------------------|
| ATC JOB NO:  | 411189-REV-1-1587496885727 |
| CUSTOMER ID: | 10035342                   |
| CUSTOMER #:  | MRCTB045060, MRCTB045017,  |
|              | MRCTB045016, MRCTB045027,  |
|              | & MPCTR045127              |

# **DETAILED SITE PLAN**

SHEET NUMBER:


C-101

REVISION:



SCALE: 1"=10' (11X17)

1"=5' (22X34)







TOGETHER PLANNING A BETTER TOMORROW 158 BUSINESS CENTER DRIVE BIRMINGHAM, AL 35244 TEL: 205-252-6985 FAX: 205-320-1504

DESCRIPTION BY DATE FOR CONSTRUCTION

ATC SITE NUMBER:

411189

ATC SITE NAME:

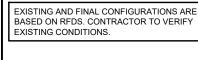
# CRANBURYSU CT

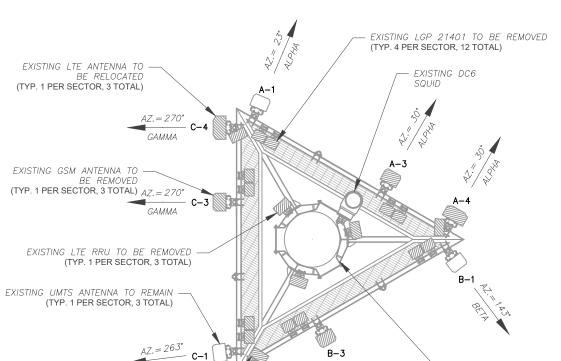
SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906

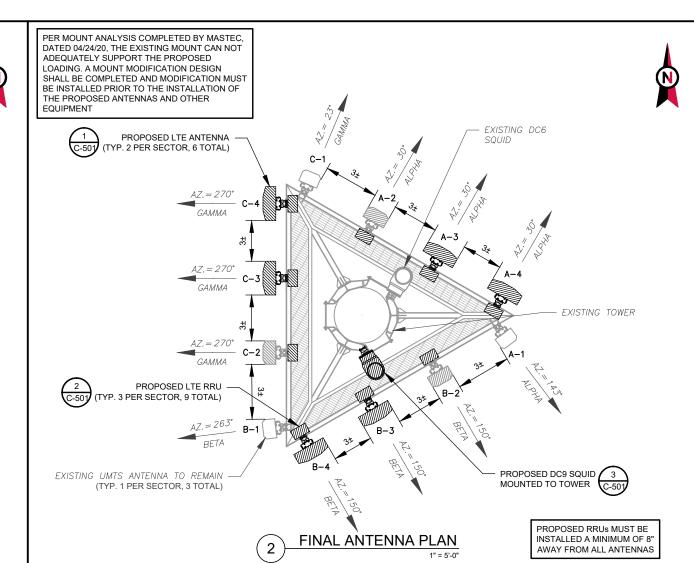




DATE DRAWN: | 05/28/20 ATC JOB NO: 411189-REV-1-1587496885727 CUSTOMER ID: 10035342 MRCTB045060, MRCTB045017, CUSTOMER #: MRCTB045016, MRCTB045027,


& MRCTB045127 **TOWER ELEVATION** 


SHEET NUMBER:


REVISION

C-201

0







|        |        |       |           | EXISTIN              | G ANTENNA SCHEDULE |        |                                    |            | NOTES                                                |
|--------|--------|-------|-----------|----------------------|--------------------|--------|------------------------------------|------------|------------------------------------------------------|
| LO     | CATION |       |           | ANTENNA S            | SUMMARY            |        | NON ANTENNA SUMMARY                |            | BASED ON APPROVED ATC                                |
| SECTOR | RAD    | AZ    | POS       | ANTENNA              | BAND               | STATUS | ADDITIONAL TOWER MOUNTED EQUIPMENT | STAT<br>US | APPLICATION<br>411189-REV-1-1587496885727,           |
|        |        | 23°   | A1        | POWER WAVE 7770      | UMTS               | RMN    | (2) POWERWAVE LGP 12104 TMA        | RMV        | DATED 04/21/20. CONFIRM WIT<br>AT&T MOBILITY REP FOR |
|        |        | _     | A2        | _                    | _                  | -      | _                                  | _          | APPLICABLE UPDATES/REVIS                             |
| FIND   | 100'   | 30°   | A3        | POWERWAVE 7770       | GSM                | RMV    | (2) POWERWAVE LGP 12104 TMA        | RMV        | AND MOST RECENT RFDS FOR NSN CONFIGURATION (CONFI    |
|        |        | 700   |           | 0011104 050 01111110 | 1.75               | DE!    | RRUS-11 B12                        | RMV        | GC TO CAP ALL UNUSED POR                             |
|        |        | 30°   | A4        | CCI HPA-65R-BUU-H6   | LTE                | REL    | RRUS-12 B2                         | RMV        | 2. ATC HAS NOT YET VERIFIED A                        |
|        |        | 143°  | B1        | POWER WAVE 7770      | UMTS               | RMN    | (2) POWERWAVE LGP 12104 TMA        | RMV        | EXISTING ANTENNA CONFIG ( MOUNT CONFIG. CONTRACTO    |
|        |        | _     | B2        | -                    | _                  | _      | _                                  | -          | TO VERIFY MOUNT CONFIG H                             |
| BETA   | 100'   | 150°  | <i>B3</i> | POWERWAVE 7770       | GSM                | RMV    | (2) POWERWAVE LGP 12104 TMA        | RMV        | SUFFICIENT SPACE FOR PROPOSED LESSEE EQUIPME         |
|        |        | 4500  | 0.4       | 0011104 050 01111110 | LTE                | DE!    | RRUS-11 B12                        | RMV        | (EQUIP) (I.E. CLEARANCES,                            |
|        |        | 150°  | B4        | CCI HPA-65R-BUU-H6   | LTE                | REL    | RRUS-12 B2                         | RMV        | MOUNT PIPE, SUFFICIENT<br>LENGTH, ETC.) ATC DID NOT  |
|        |        | 263°  | C1        | POWER WAVE 7770      | UMTS               | RMN    | (2) POWERWAVE LGP 12104 TMA        | RMV        | ANALYZE ANTÉNNA MOUNT T                              |
|        |        | _     | C2        | _                    | _                  | _      | _                                  | _          | DETERMINE ADEQUATE STRUCTURAL CAPACITY FOR           |
| GAMMA  | 100'   | 270°  | C3        | POWERWAVE 7770       | GSM                | RMV    | (2) POWERWAVE LGP 12104 TMA        | RMV        | LESSEE LOADING.                                      |
|        |        | 0.708 | 0.4       | 0011104 050 01111110 |                    | 5      | RRUS-11 B12                        | RMV        | 3. ALL PROPOSED EQUIP INCLU                          |
|        |        | 270°  | C4        | CCI HPA-65R-BUU-H6   | LTE                | REL    | RRUS-12 B2                         | RMV        | ANTENNAS, COAX, ETC. SHAL                            |

**CURRENT ANTENNA PLAN** 

|    | APPLICATION                  |
|----|------------------------------|
|    | 411189-REV-1-1587496885727,  |
|    | DATED 04/21/20. CONFIRM WITH |
|    | AT&T MOBILITY REP FOR        |
|    | APPLICABLE UPDATES/REVISIONS |
|    | AND MOST RECENT RFDS FOR     |
|    | NSN CONFIGURATION (CONFIG).  |
|    | GC TO CAP ALL UNUSED PORTS.  |
| 2. | ATC HAS NOT YET VERIFIED ANY |
|    | EXISTING ANTENNA CONFIG OR   |
|    | MOUNT CONFIG. CONTRACTOR     |
|    | TO VERIFY MOUNT CONFIG HAS   |
|    | SUFFICIENT SPACE FOR         |
|    | PROPOSED LESSEE EQUIPMENT    |
|    | (EQUIP) (I.E. CLEARANCES,    |
|    | MOUNT PIPE, SUFFICIENT       |
|    | LENGTH, ETC.) ATC DID NOT    |
|    | ANALYZE ANTENNA MOUNT TO     |
|    | DETERMINE ADEQUATE           |
|    | STRUCTURAL CAPACITY FOR ANY  |

LESSEE LOADING.
3. ALL PROPOSED EQUIP INCLUDING ANTENNAS, COAX, ETC. SHALL BE MOUNTED IN ACCORDANCE WITH THE TOWER STRUCTURAL

ANALYSIS ON FILE WITH ATC'S CM. CONFIRM SPACING OF PROPOSED **EQUIP DOES NOT CAUSE TOWER** CONFLICTS NOR IMPEDE TOWER CLIMBING PEGS.

POSITIONS START WITH FIRST PIPE ON THE LEFT SIDE (AS VIEWED FROM BEHIND THE MOUNT).

|           | TINAL ANTENNA SCHEDOLE |      |                 |                    |                     |     |                                    |        |  |  |
|-----------|------------------------|------|-----------------|--------------------|---------------------|-----|------------------------------------|--------|--|--|
| LOCATION  |                        |      | ANTENNA SUMMARY |                    |                     |     | NON ANTENNA SUMMARY                |        |  |  |
| SECTOR    | RAD                    | AZ   | POS             | ANTENNA            | ANTENNA BAND STATUS |     | ADDITIONAL TOWER MOUNTED EQUIPMENT | STATUS |  |  |
|           |                        | 23°  | C1              | POWER WAVE 7770    | UMTS                | RMN | -                                  | -      |  |  |
| ALPHA     | 100'                   | 30°  | A2              | CCI HPA-65R-BUU-H6 | LTE                 | REL | RRUS-4415 B30                      | ADD    |  |  |
|           | 100                    | 30°  | A3              | CCI OPA65R-BU6DA   | LTE                 | ADD | RRUS-8843 B2/B66A                  | ADD    |  |  |
|           |                        | 30°  | A4              | CCI DMP65R-BU6DA   | LTE                 | ADD | RRUS-4449 B5/B12                   | ADD    |  |  |
|           | 100'                   | 143° | A1              | POWER WAVE 7770    | UMTS                | RMN | -                                  | -      |  |  |
| BETA      |                        | 150° | B2              | CCI HPA-65R-BUU-H6 | LTE                 | REL | RRUS-4415 B30                      | ADD    |  |  |
| BETA      | 100                    | 150° | В3              | CCI OPA65R-BU6DA   | LTE                 | ADD | RRUS-8843 B2/B66A                  | ADD    |  |  |
|           |                        | 150° | B4              | CCI DMP65R-BU6DA   | LTE                 | ADD | RRUS-4449 B5/B12                   | ADD    |  |  |
|           |                        | 263° | B1              | POWER WAVE 7770    | UMTS                | RMN | -                                  | -      |  |  |
| GAMMA     | 100'                   | 270° | C2              | CCI HPA-65R-BUU-H6 | LTE                 | REL | RRUS-4415 B30                      | ADD    |  |  |
| GAIVIIVIA | 100                    | 270° | C3              | CCI OPA65R-BU6DA   | LTE                 | ADD | RRUS-8843 B2/B66A                  | ADD    |  |  |
|           |                        | 270° | C4              | CCI DMP65R-BU6DA   | LTE                 | ADD | RRUS-4449 B5/B12                   | ADD    |  |  |

FINAL ANTENNA SCHEDULE

| EXISTING FIBER DISTRIBUTIO | EXISTING CABLING SUMMARY |                       |           |           |        |
|----------------------------|--------------------------|-----------------------|-----------|-----------|--------|
| MODEL NUMBER               | STATUS                   | COAX                  | DC        | FIBER     | STATUS |
| DC6-48-60-18-8F            | RMN                      | (6)<br>1-5/8"<br>COAX | (2) 0.78" | (1) 0.40" | RMN    |
| _                          | _                        | (6) 1-5/8"            | _         | _         | RMV    |

GAMMA

EXISTING LTE RRU TO BE REMOVED

(TYP. 1 PER SECTOR, 3 TOTAL)

STATUS ABBREVIATIONS RMV: TO BE REMOVED RMN: TO REMAIN REL: TO BE RELOCATED DSC: TO BE DISCONNECTED & REMAIN ADD: TO BE ADDED

EXISTING TOWER

**EQUIPMENT SCHEDULES** 

CABLE LENGTHS FOR JUMPERS

FIBER DISTRIBUTION/SQUID TO RRU: 15'
RRU TO ANTENNA: 10'

| FINAL FIBER DISTRIBUTION | 'SQUID | FINAL CABLING SUMMARY |           |              |        |  |
|--------------------------|--------|-----------------------|-----------|--------------|--------|--|
| MODEL NUMBER             | STATUS | COAX                  | DC        | FIBER        | STATUS |  |
| DC6-48-60-18-8F          | RMN    | (6)<br>1-5/8"<br>COAX | (2) 0.78" | (1)<br>0.39" | RMN    |  |
| DC9-48-60-24-8C-EV       | ADD    | -                     | (2) 0.78" | (1) 0.39"    | ADD    |  |





TOGETHER PLANNING A BETTER TOMORROW 158 BUSINESS CENTER DRIVE BIRMINGHAM, AL 35244 TEL: 205-252-6985 FAX: 205-320-1504

| REV.                | DESCRIPTION      | BY  | DATE     |
|---------------------|------------------|-----|----------|
| △_                  | FOR CONSTRUCTION | ZDS | 05/28/20 |
| $\triangle_{-}$     |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
| $\overline{\cap}$   |                  |     |          |
|                     |                  |     |          |

ATC SITE NUMBER:

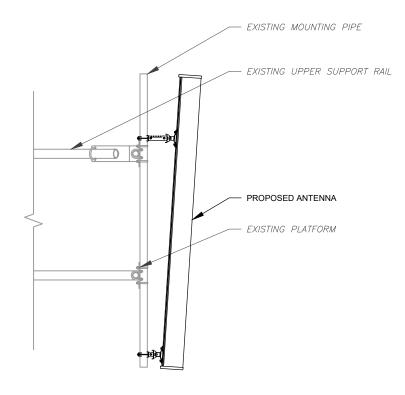
411189

ATC SITE NAME:

# CRANBURYSU CT

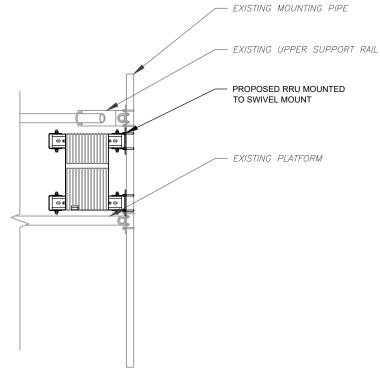
SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906






| DATE DRAWN:  | 05/28/20                   |
|--------------|----------------------------|
| ATC JOB NO:  | 411189-REV-1-1587496885727 |
| CUSTOMER ID: | 10035342                   |
| CUSTOMER #:  | MRCTB045060, MRCTB045017,  |
|              | MRCTB045016, MRCTB045027,  |
|              | & MRCTB045127              |

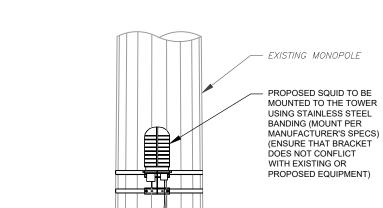
# RF SCHEDULE AND ANTENNA INSTALLATION


SHEET NUMBER: C-401

REVISION:



ANTENNA DETAIL


SCALE: N.T.S.



RRU DETAIL

SCALE: N.T.S.





SCALE: NOT TO SCALE





# ENGINEERING GROUP, INC.

TOGETHER PLANNING A BETTER TOMORROW 158 BUSINESS CENTER DRIVE BIRMINGHAM, AL 35244 TEL: 205-252-6985 FAX: 205-320-1504

| REV.                | DESCRIPTION      | BY  | DATE     |
|---------------------|------------------|-----|----------|
| <u></u>             | FOR CONSTRUCTION | ZDS | 05/28/20 |
| $\triangle$ _       |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
|                     |                  |     |          |

ATC SITE NUMBER:

411189

ATC SITE NAME:

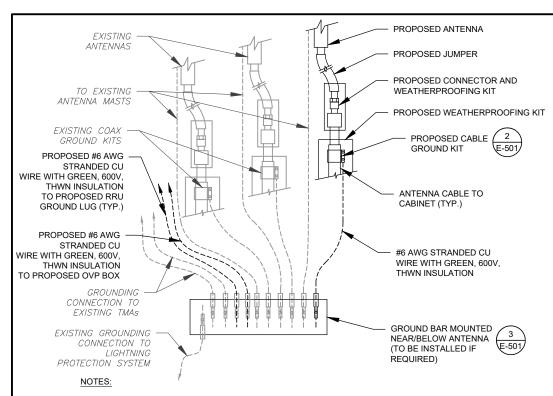
# **CRANBURYSU CT**

SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906





DATE DRAWN: 05/28/20 ATC JOB NO: 411189-REV-1-1587496885727 CUSTOMER ID: 10035342


CUSTOMER #: MRCTB045060, MRCTB045017, MRCTB045016, MRCTB045027, & MRCTB045127

CONSTRUCTION **DETAILS** 

SHEET NUMBER:

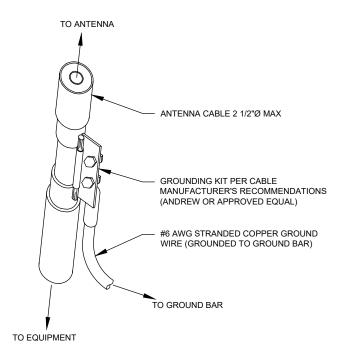
C-501

REVISION: 0



- THIS DETAIL IS INTENDED TO SHOW THE GENERAL GROUNDING REQUIREMENTS. SLIGHT ADJUSTMENTS MAY BE REQUIRED BASED ON EXISTING SITE CONDITIONS. THE CONTRACTOR SHALL MAKE FIELD ADJUSTMENTS AS NEEDED AND INFORM THE CONSTRUCTION MANAGER OF ANY CONFLICTS.
- SITE GROUNDING SHALL COMPLY WITH AT&T MOBILITY GROUNDING STANDARDS, LATEST EDITION, AND COMPLY WITH AT&T MOBILITY GROUNDING CHECKLIST, LATEST VERSION. WHEN NATIONAL AND LOCAL GROUNDING CODES ARE MORE STRINGENT THEY SHALL

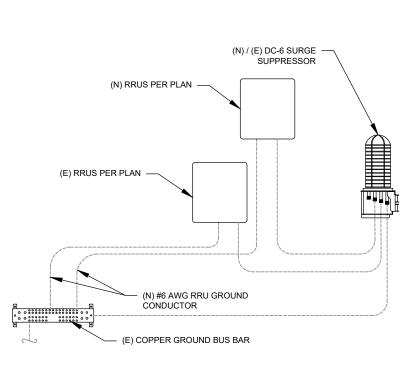



1/4"Ø HILTI KWIK BOLT III 3/8" THREADED INSULATOR 3/8" X 3/4" SS WHERE INDICATED BOLT (TYP.) **GROUND BAR** MOUNTING BRACKET 1/4" X 4" X 12" **GALVANIZED BUSS** 

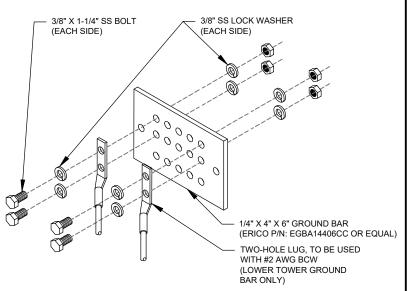
# **GROUND BAR NOTES**

3/8" SS LOCK

WASHER (TYP.)


- GROUND KITS COME WITH ALL HARDWARE, NUTS, BOLTS, WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S).
- 2. GROUND BAR SHALL BE BOLTED TO STRUCTURAL MEMBER OR ANCHORED TO CONCRETE SLAB W/ HILTI KWIK BOLT III.

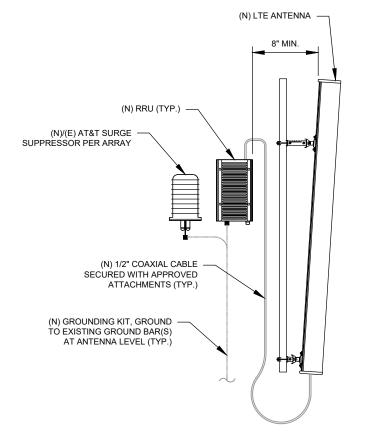



- GROUND KIT NOTES:

  1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. CONTRACTOR SHALL PROVIDE WEATHERPROOFING KIT (ANDREW PART NUMBER 221213) AND INSTALL/TAPE PER MANUFACTURER'S SPECIFICATIONS.

# CABLE GROUND KIT CONNECTION DETAIL




**RRU GROUNDING** SCALE: N.T.S.



# **GROUND BAR NOTES:**

- GROUND BAR KITS COME WITH ALL HARDWARE, NUTS, BOLTS, WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S).
- 2. GROUND BAR TO BE BONDED DIRECTLY TO TOWER.

# **TOWER GROUND BAR DETAIL**



ANTENNA/RRU GROUNDING





TOGETHER PLANNING A BETTER TOMORROW 158 BUSINESS CENTER DRIVE BIRMINGHAM, AL 35244 TEL: 205-252-6985 FAX: 205-320-1504

DESCRIPTION BY DATE FOR CONSTRUCTION

ATC SITE NUMBER:

411189

ATC SITE NAME:

# CRANBURYSU CT

SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906

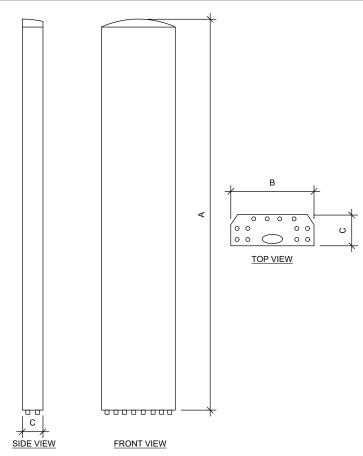




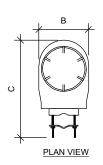
ATC JOB NO: 411189-REV-1-1587496885727 CUSTOMER ID: 10035342 MRCTB045060, MRCTB045017, MRCTB045016, MRCTB045027, & MRCTB045127

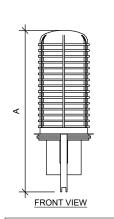
> **GROUNDING DETAILS**

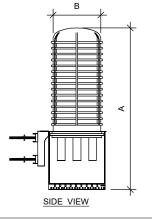
SHEET NUMBER:


E-501

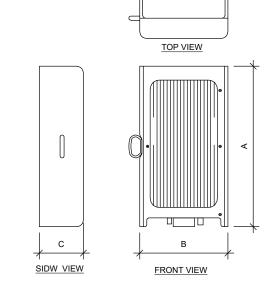
REVISION





MAIN GROUND BAR DETAIL


TWO-HOLE LUG, TO BE USED WITH #2 AWG BCW




| ANTENNA SPECIFICATIONS |       |       |      |                 |  |
|------------------------|-------|-------|------|-----------------|--|
| ANTENNA MODEL          | А     | В     | С    | WEIGHT<br>(LBS) |  |
| CCI OPA65R-BU6DA       | 71.2" | 21.0" | 7.8" | 60.2            |  |
| CCI DMP65R-BU6DA       | 71.2" | 20.7" | 7.7" | 79.4            |  |







| RAYCAP SPECIFICATIONS                 |        |        |        |                 |
|---------------------------------------|--------|--------|--------|-----------------|
| PAVCAD MODEL   A   B   C   ·········· |        |        |        | WEIGHT<br>(LBS) |
| DC9-48-60-24-8C-EV                    | 31.41" | 10.24" | 18.28" | 16.0            |



| RRU SPECIFICATIONS |       |       |       |                 |  |  |
|--------------------|-------|-------|-------|-----------------|--|--|
| RRU MODEL          | А     | В     | С     | WEIGHT<br>(LBS) |  |  |
| 4415 B30           | 16.5" | 13.4" | 5.9"  | 46.0            |  |  |
| RRUS-8843 B2/B66A  | 18.0" | 13.2" | 11.3" | 75.0            |  |  |
| 4449 B5, B12       | 17.9" | 13.2" | 9.4"  | 71.0            |  |  |





TOGETHER PLANNING A BETTER TOMORROW

158 BUSINESS CENTER DRIVE
BIRMINGHAM, AL 35244
TEL: 205-252-6985 FAX: 205-320-1504

| REV.                | DESCRIPTION      | BY  | DATE     |
|---------------------|------------------|-----|----------|
| <u> </u>            | FOR CONSTRUCTION | ZDS | 05/28/20 |
| $\triangle$ _       |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
|                     |                  |     |          |
|                     |                  |     |          |

ATC SITE NUMBER:

411189

ATC SITE NAME:

# **CRANBURYSU CT**

SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906





|  | DATE DRAWN:  | 05/28/20                   |
|--|--------------|----------------------------|
|  | ATC JOB NO:  | 411189-REV-1-1587496885727 |
|  | CUSTOMER ID: | 10035342                   |
|  | CUSTOMER #:  | MRCTB045060, MRCTB045017,  |
|  |              | MRCTB045016, MRCTB045027,  |
|  |              | & MRCTB045127              |
|  |              |                            |

**EQUIPMENT SPECIFICATIONS** 

SHEET NUMBER:

REVISION:

C-502

**EQUIPMENT SPECIFICATIONS** SCALE: NOT TO SCALE





May 18, 2020

**Geoff Middlebrooks** 

American Tower Corporation 3500 Regency Parkway, Suite 100 Cary, NC 27518 MasTec Network Solutions 507 Airport Blvd, Suite 111

Morrisville, NC 27560 Tel (919) 674-5895

MNS.Engineering@mastec.com

Subject: Mount Modification Structural Analysis

ATC Designation: Site Name: Cranburysu CT

Site Number: 411189

Carrier Designation: Carrier: AT&T

 Site Name:
 MRCTB045060

 Site Number:
 CTL02094

 FA Number:
 10035342

**Engineering Firm Designation:** MNS Project Number: 21944-MOD1

Site Data: 2 Sunny Ln, Westport, Fairfield County, CT 06880

Latitude 41.1628°, Longitude -73.3735°

130 ft Monopole

100 ft RAD Center (14.5 ft Platform w/ Handrail)

Dear Geoff,

MasTec Network Solutions is pleased to submit this **Mount Modification Structural Analysis** to determine the structural integrity of the above-mentioned structure.

This analysis has been performed in compliance with the ANSI/TIA-222-H Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures. Based on our analysis we have determined the structural strength to have the following result:

### Antenna Mounting Structure 49% Sufficient\*

\*Structure has sufficient capacity provided the proposed reinforcement is installed as recommended.

We at MasTec Network Solutions appreciate the opportunity of providing continued specialty services. Please do not hesitate to contact our office should you have any questions.

Prepared By:

Noah Noxon, EIT

Structural Engineer I

Reviewed By:

Distance by Raphael Mohamed
Distance United Mohamed
Distance United Mohamed (Oil-Liber, Oil-Mear Tex Nework Solution of Oil-Liber, Oil-Mear Tex Nework Solution Oil-Liber, Deformation Oil-Liber, Deformation

Raphael I. Mohamed, PE, PEng Senior Director of Engineering CT PE License No. 25112

This item has been digitally signed and sealed by Raphael I. Mohamed, PE.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.





TOGETHER PLANNING A BETTER TOMORROW

158 BUSINESS CENTER DRIVE
BIRMINGHAM. AL 35244

TEL: 205-252-6985 FAX: 205-320-1504

| REV.                | DESCRIPTION      | BY  | DATE     |
|---------------------|------------------|-----|----------|
| <u> </u>            | FOR CONSTRUCTION | ZDS | 05/28/20 |
| $\triangle$ _       |                  |     |          |
| $\overline{\wedge}$ |                  |     |          |
|                     |                  |     |          |
| $\square$           |                  |     |          |
| -                   |                  |     |          |

ATC SITE NUMBER:

411189

ATC SITE NAME:

# CRANBURYSU CT

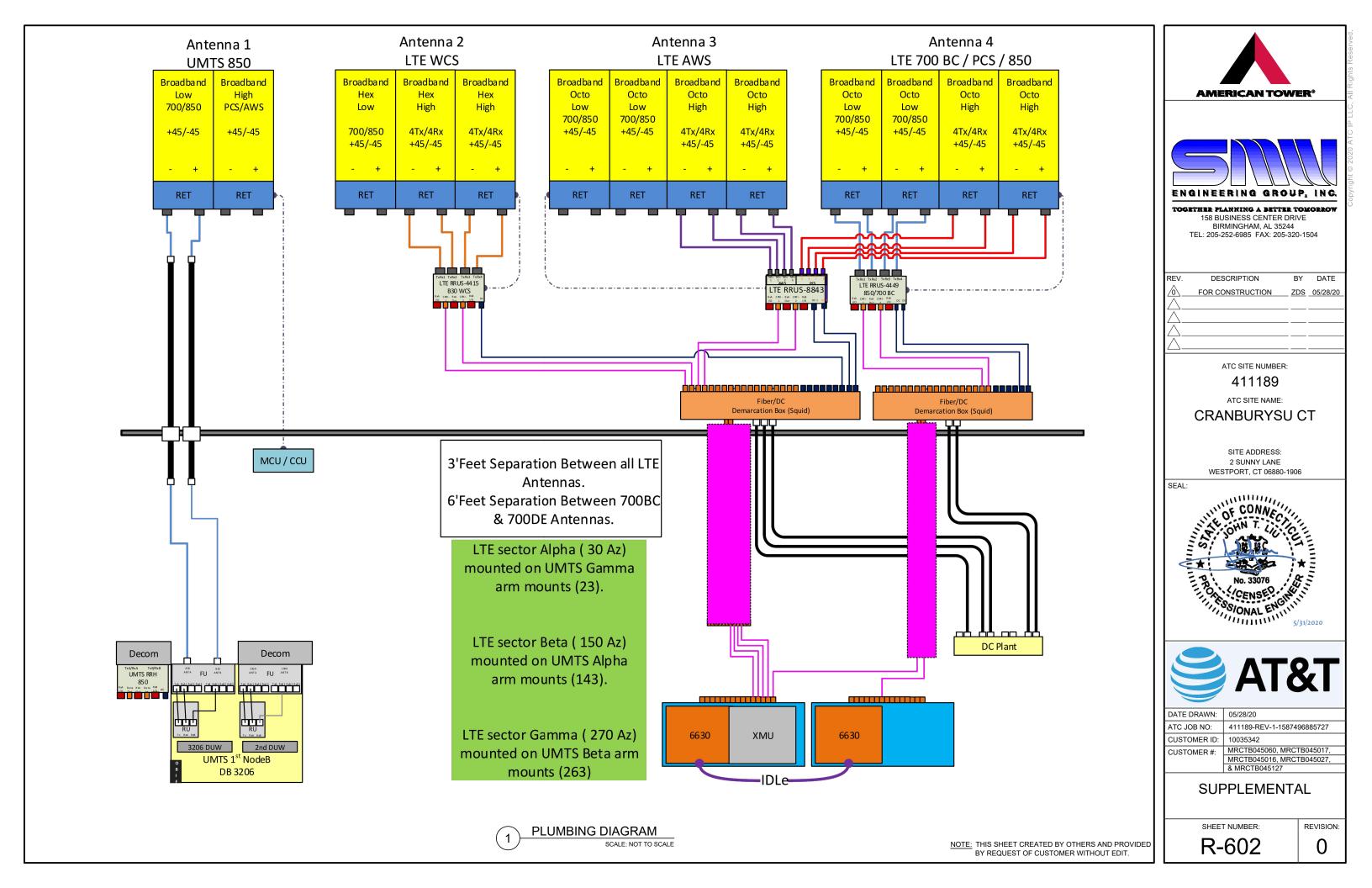
SITE ADDRESS: 2 SUNNY LANE WESTPORT, CT 06880-1906

SEA





| DATE DRAWN:  | 05/28/20                   |
|--------------|----------------------------|
| ATC JOB NO:  | 411189-REV-1-1587496885727 |
| CUSTOMER ID: | 10035342                   |
| CUSTOMER #:  | MRCTB045060, MRCTB045017,  |
|              | MRCTB045016, MRCTB045027,  |
|              | & MRCTB045127              |


**SUPPLEMENTAL** 

SHEET NUMBER:

REVISION:

R-601

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO VERIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONSTRUCTION.



# MOUNT REINFORCEMENT DRAWINGS PREPARED FOR AT&T ATC SITE NO. 411189

SITE NAME: MRCTB045060 SITE NUMBER: CTL02094 FA#: 10035342

SITE ADDRESS: 2 SUNNY LN, WESTPORT FAIRFIELD COUNTY, CT 06880

# PROJECT CONTACTS:

- PROJECT MANAGER GEOFF MIDDLEBROOKS 919-466-5292 GEOFF. MIDDLEBROOKS@AMERICANTOWER.COM
- DESIGN ENGINEER MAIN RFI CONTACT NOAH NOXON
  919-674-5889
  NOAH.NOXON@MASTEC.COM
- 3. ENGINEER OF RECORD
  RAPHAEL I. MOHAMED, PE, PEng
  919-674-5895
  507 AIRPORT BLVD.
  SUITE 111
  MORRISVILLE, NC 27560
  RAPHAEL.MOHAMED@MASTEC.COM
- FOR FABRICATION AND CONSTRUCTION
   RELATED INQUIRIES: CONTACT MASTEC
   DESIGN ENGINEER AND ENGINEER OF RECORD.

DRAWINGS INCLUDED SHEET SHEET DESCRIPTION DESCRIPTION NO. NO. T-1 TITLE SHEET MODIFICATION INSPECTION CHECKLIST GENERAL NOTES N-2 S-1 MODIFICATION SCHEDULE S-2 PLATFORM REINFORCEMENT DETAILS MANUFACTURER SPECIFICATIONS I

TOWER INFORMATION

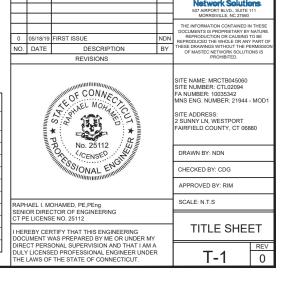
TOWER HEIGHT / TYPE: 130 FT MONOPOLE

MOUNT HEIGHT/TYPE: 100 FT 14.5FT PLATFORM W/ HANDRAILS

TOWER LOCATION: LAT: 41.1628°

LONG: -73.3735°

FAILING ANALYSIS FIRM NAME: MASTEC NETWORK SOLUTIONS


PROJECT NUMBER: 21944-MNT1 STRUCTURAL ANALYSIS DATE: 04/24/2020

PASSING ANALYSIS FIRM NAME: MASTEC NETWORK SOLUTIONS

PROJECT NUMBER: 21944-MOD1

# CODE COMPLIANCE

ANSI/TIA-222-H 2018 INTERNATIONAL BUILDING CODE



QUALIFIED ENGINEERING SERVICES ARE AVAILABLE FROM MASTEC NETWORK SOLUTIONS TO ASSIST CONTRACTORS IN CLASS IV RIGGING PLAN REVIEWS. FOR REQUESTED QUALIFIED ENGINEERING SERVICES, PLEASE CONTACT RAPHAEL MOHAMED AT (919) 244-5207.

| ı                                                                                   | WI CHECKLIST                                           |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| CONSTRUCTION/INSTALLATION<br>INSPECTIONS AND TESTING<br>REQUIRED (COMPLETED BY EOR) | REPORT ITEM                                            |  |  |
| ı                                                                                   | PRE-CONSTRUCTION                                       |  |  |
| Х                                                                                   | MI CHECKLIST DRAWING                                   |  |  |
| N/A                                                                                 | EOR APPROVAL                                           |  |  |
| N/A                                                                                 | FABRICATION INSPECTION                                 |  |  |
| N/A                                                                                 | FABRICATOR CERTIFIED WELD INSPECTION                   |  |  |
| Х                                                                                   | MATERIAL TEST REPORT (MTR)                             |  |  |
| N/A                                                                                 | FABRICATOR NDE INSPECTION                              |  |  |
| N/A                                                                                 | NDE REPORT OF BASE PLATE                               |  |  |
| Х                                                                                   | PACKING SLIPS                                          |  |  |
| ADDITIONAL TESTING AND IN                                                           | NSPECTIONS:                                            |  |  |
|                                                                                     |                                                        |  |  |
|                                                                                     | CONSTRUCTION                                           |  |  |
| Х                                                                                   | CONSTRUCTION INSPECTIONS                               |  |  |
| N/A                                                                                 | CONTINUOUS FOUNDATION INSPECTIONS                      |  |  |
| N/A                                                                                 | CONCRETE COMP. STRENGTH AND SLUMP TESTS                |  |  |
| N/A                                                                                 | GROUT COMP. STRENGTH (ASTM C109)                       |  |  |
| N/A                                                                                 | POST INSTALLED ANCHOR ROD VERIFICATION                 |  |  |
| N/A                                                                                 | BASE PLATE GROUT VERIFICATION                          |  |  |
| N/A                                                                                 | CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS |  |  |
| N/A                                                                                 | EARTHWORK: LIFT AND DENSITY                            |  |  |
| Х                                                                                   | ON SITE COLD GALVANIZING VERIFICATION                  |  |  |
| N/A                                                                                 | GUY WIRE TENSION REPORT                                |  |  |
| Х                                                                                   | GC AS-BUILT DOCUMENTS                                  |  |  |
| ADDITIONAL TESTING AND IN                                                           | NSPECTIONS:                                            |  |  |
| POST-CONSTRUCTION                                                                   |                                                        |  |  |
| Х                                                                                   | MI INSPECTOR REDLINE OR RECORD DRAWING(S)              |  |  |
| N/A                                                                                 | POST INSTALLED ANCHOR ROD PULL-OUT TESTING             |  |  |
| Х                                                                                   | PHOTOGRAPHS                                            |  |  |
|                                                                                     |                                                        |  |  |

NOTE: X DENOTES A DOCUMENT NEEDED FOR THE PMI REPORT
N/A DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE PMI REPORT

#### MODIFICATION INSPECTION NOTES:

#### GENERAL:

- 1. THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF THE TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD (EOR)
- 2. THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.
- 3. TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT YOUR POINT OF CONTACT (POC).

#### MI INSPECTOR:

- 1. THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO, AT A MINIMUM
  - REVIEW THE REQUIREMENTS OF THE MI CHECKLIST WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCL IDING FOLINDATION INSPECTIONS
- 2. THE MI IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTORS (GC) INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS AND SUBMITTING THE MI REPORT

#### GENERAL CONTRACTOR:

- THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMI M
  - REVIEW THE REQUIREMENTS OF THE MI CHECKLIST.
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT.
- ON-SITE MI INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS
- 2. THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST.

#### MI VERIFICATION INSPECTIONS:

VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE OF AN ACCEPTED "PASSING MI" OR "PASS AS NOTED MI" REPORT FOR THE ORIGINAL PROJECT.

#### REQUIRED PHOTOS:

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

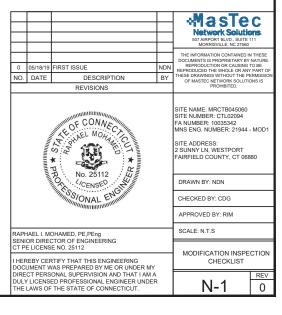
- PRE-CONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTIONS AND INSPECTION:
- RAW MATERIALS
- PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS
- WELD PREPARATION
- BOLT INSTALLATION AND TORQUE
- FINAL INSTALLED CONDITION
- SURFACE COATING REPAIR
- POST CONSTRUCTION PHOTOGRAPHS
- FINAL IN FIELD CONDITIONS

PHOTOS OF ELEVATED MODIFICATION TAKEN FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

#### CORRECTION OF FAILING MI'S:

IF THE MODIFICATION INSTALLATION WOULD FAIL THE MI ("FAILED MI"), THE GC SHALL WORK WITH THE TOWER OWNER TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:

- CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI.
- OR, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE
   MODIFICATION/ENERGEMENT USING THE AS-RUIL T CONDITION.


#### RECOMMENDATIONS:

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING A MI REPORT-

- IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLY 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.
- THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT.
- WHEN POSSIBLE IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.
- IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION AND MI INSPECTIONS) TO COMMENCE WITH ONE SITE VISIT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR
  ON-SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING
  THE INITIAL MI, THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE
  MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACULTIES ARE AT THEIR
  DISPOSAL WHEN THE MI INSPECTOR IS ON SITE.

#### CANCELLATION OR DELAYS IN SCHEDULED MI:

IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED. AND EITHER PARTY CANCELS OR DELAYS, TOWER OWNERS SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON-SITE, ETC.). IF TOWER OWNER CONTRACTS DIRECTLY FOR A THIRD PARTY MI, EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES INVOLVED.



#### GENERAL NOTES:

- ALL WORK PRESENTED IN THESE DRAWINGS MUST BE COMPLETED BY THE CONTRACTOR UNLESS OTHERWISE SPECIFIED.
- THE CONTRACTOR MUST HAVE A MINIMUM OF 5 YEARS OF EXPERIENCE IN TOWER ERECTION AND RETROFIT SIMILAR TO THAT DESCRIBED HEREIN
- 3. ALL CONSTRUCTION IS TO BE COMPLETE IN ACCORDANCE WITH THE ANSIASSE A10 48 AND ANSIVITA-322 STANDARDS. THE CONTRACTOR MUST HAVE CONSIDERABLE WORKING KNOWLEDGE IN THESE STANDARDS TO ACCEPT THIS WORK BY ACCEPTING THIS PROJECT, THE CONTRACTOR IS ATTESTING THAT HE HAS SUFFICIENT EXPERIENCE, ABILITY, AND KNOWLEDGE OF THE WORK TO BE PERFORMED AND IS PROPERLY LICENSED AND REGISTERED TO COMPLETE THIS WORK.
- 4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING ALL DIMENSIONS, ELEVATIONS, AND EXISTING CONDITIONS PRIOR TO BEGINNING ANY MATERIAL ORDERS, FABRICATION OR CONSTRUCTION WORK ON THIS PROJECT. ANY DISCREPANCIES SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF THE EOR. THE DISCREPANCIES MUST BE RESOLVED BEFORE THE CONTRACTOR MAY PROCEED WITH THE PROJECT.
- ANY WORK PERFORMED WITHOUT A PREFABRICATION MAPPING IS DONE AT THE RISK OF THE CONTRACTOR AND/OR FABRICATOR.
- ALL MANUFACTURERS' INSTRUCTIONS FOR INSTALLATION MUST BE FOLLOWED EXACTLY AS SPECIFIED. WHEN CONFLICTING WITH THESE DRAWINGS, THE MANUFACTURER SPECIFICATIONS SHALL GOVERN.
- 7. ALI MATERIALS AND EQUIPMENT USED IN THE INSTALLATION OF THESE DRAWINGS SHALL BE IN NEW OR GOOD WORKING QUALITY, FREE FROM DEFECTS AND FAULTS AND IN CONFORMANCE WITH THE CONTRACT DOCUMENTS. ALL SUBSTITUTIONS MUST BE GIVEN WRITTEN APPROVAL FROM THE EOR PRIOR TO INSTALLATION. ALL MATERIALS SHALL BE WARRANTED FOR ONE YEAR FROM ACCEPTANCE DATE
- 8. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING ALL INTENDED CONSTRUCTION ACTIVITY INCLUDING MATERIALS, ACCESS AND WORK SCHEDULE. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL PERMITS AND WILL BE RESPONSIBLE FOR ABIDING BY ALL REQUIREMENTS AND CONDITIONS OF THE PERMITS. WHEN APPLICABLE, THE CONTRACTOR MUST NOTIFY THE APPLICABLE JURISDICTION PRIOR TO BEGINNING OF ANY CONSTRUCTION.
- 9. THE CONTRACTOR IS RESPONSIBLE FOR ALL CONSTRUCTION MEANS AND METHODS. INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS. CONSTRUCTION OF THE PROPOSED WORK SHALL INEET ANSI/ASSE A10.48, OSHA, AND GENERAL INDUSTRY STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-322 INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV. CONSTRUCTION

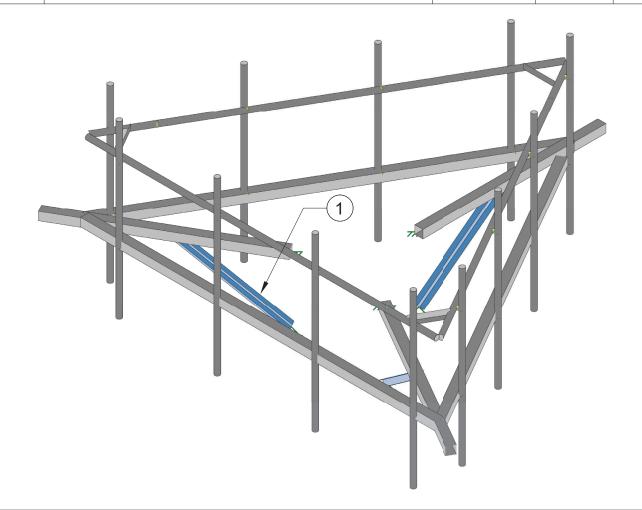
- 10. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE INSTALLATION PROCEDURE AND SEQUENCE TO INSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENTS DURING ERECTION ANDIOR FIELD ALTERATIONS. THIS INCLUDES, BUT IS NOT LIMITED TO, THE ADDITION OF TEMPORARY BRACKING, GUYS OR TIE-DOWNS THAT MAY BE NECESSARY; SUCH MATERIAL SHALL BE REMOVED AFTER THE COMPLETION OF THE PROJECT.
- 11. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THIS PROJECT. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT THIS PROJECT AND RELATED WORK COMPLIES WITH ALL APPLICABLE LOCAL, STATE, AND FEDERAL SAFETY CODES AND REGULATIONS GOVERNING THIS WORK.
- THE CLIMBING FACILITIES, SAFETY CLIMB AND ALL PARTS THEREOF SHALL NOT BE IMPEDED, MODIFIED OR ALTERED WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE EOR.
- 13. INCORRECTLY FABRICATED, DAMAGED, MIS-FITTING, OR NON-CONFORMING MATERIALS AND CONDITIONS SHALL BE REPORTED TO THE EOR PRIOR TO ANY REMEDIAL OR CORRECTING ACTION. ALL ACTIONS SHALL REQUIRE FOR APPROVAL

#### STEEL:

- THE FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE LATEST AISC CODE AND ASTM SPECIFICATIONS.
- HOLES SHALL NOT BE TORCH CUT THROUGH STRUCTURAL STEEL FOR FABRICATION. ALL STEEL FABRICATION MUST FOLLOW AISC SPECIFICATIONS.
- HOT-DIP GALVANIZE ALL ITEMS AFTER FABRICATION IN COMPLIANCE WITH ASTM A-123 UNLESS OTHERWISE SPECIFIED. ALL NEW STEEL IS TO BE PAINTED TO MATCH THE EXISTING STEEL.
- NEW STEEL MEMBERS MUST HAVE SINGLE DRILLED HOLES. SLOTTED AND DOUBLY DRILLED HOLES ARE NOT ACCEPTABLE MEANS OF FABRICATION UNLESS OTHERWISE SPECIFIED.
- 5. ALL CONNECTIONS NOT DETAILED IN THESE DRAWINGS MUST BE DETAILED BY THE STEEL FABRICATOR IN ACCORDANCE WITH THE LATEST AISC SPECIFICATIONS.
- ALL BOLTED CONNECTIONS MUST BE INSTALLED TO A SNUG-TIGHTENED CONDITION PER AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM 325 OR A490 BOLTS" SECTION 8.1 UNLESS OTHERWISE SPECIFIED.
- CONTRACTOR MAY BE REQUIRED TO STACK WASHERS FOR BOLTS
  WHERE THREADS ARE EXCLUDED FROM SHEAR PLANE TO OBTAIN
  SNUG TIGHT INSTALLATION. A NUT LOCKING DEVICE MUST BE
  INSTALLED ON ALL PROPOSED AND/OR REPLACED BOLTS. GALVANIZED
  ASTM 325 OR A998 BOLTS SHALL NOT BE REUSED.

#### COLD GALVANIZATION:

- ALL DAMAGED SURFACES SHALL BE REPAIRED WITH A COLD-GALVANIZING COATING CONFORMING TO ASTM 780. THIS COATING SHALL BE APPLIED BY BRUSH. THE GALVANIZING COMPOUND SHALL CONTAIN A MINIMUM OF 95% ± PURE ZINC. THE FINISHED COATING SHALL BE A MINIMUM THICKNESS OF 4 MILS.
- CONTRACTOR TO USE ZINGA OR ZRC COLD GALVANIZATION COMPOUNDS OR APPROVED FOULIVALENTS
- CLEAN AREAS TO BE PREPARED AND REMOVE SLAG FROM WELDS FOR TREATMENT ACCORDING TO MANUFACTURER'S RECOMMENDATIONS.
- IF THE TOWER IS PAINTED, ALL TREATED AREAS ARE TO BE BRUSH PAINTED TO MATCH THE TOWER AFTER COLD GALVANIZING COMPOUND IS ALLOWED TO CURE.


#### U-BOLTS:

- . ALL U-BOLTS ARE TO BE ASTM A36/A307, SAE 429 GR. 2 UNLESS OTHERWISE SPECIFIED.
- U-BOLTS SHALL MEET REQUIREMENTS OF ASME B18.31.5-2011 BENT BOLTS
- U-BOLT ASSEMBLY SHALL COME COMPLETE WITH NUTS (ASTM A563), WASHERS (ASTM F436), AND LOCK WASHERS.
- FULL U-BOLT ASSEMBLY TO BE HOT-DIP GALVANIZED PER ASTM A153/A153M OR A123, AS APPLICABLE.

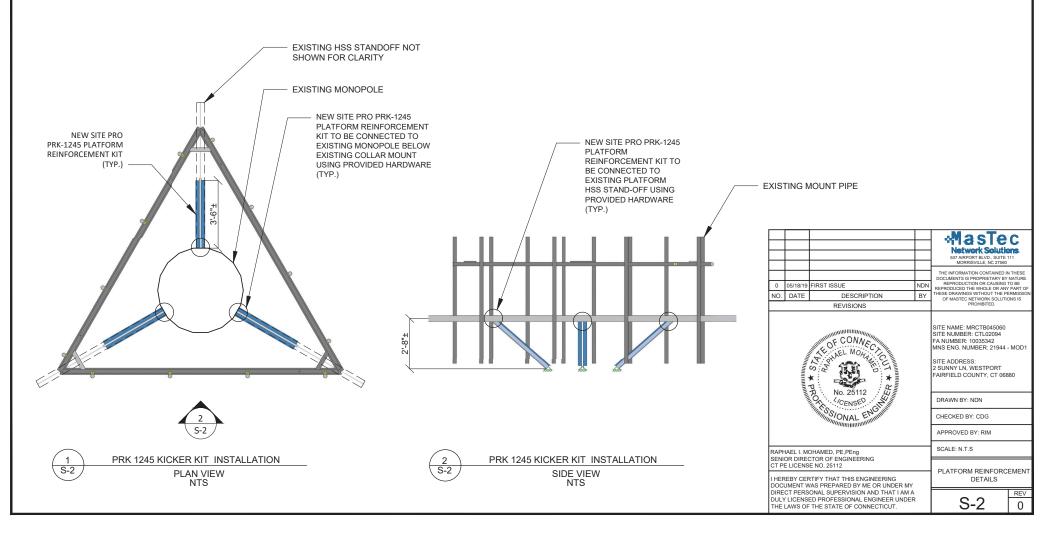
| MODIFICATION MATERIALS |       |           |                     |                        |  |
|------------------------|-------|-----------|---------------------|------------------------|--|
| SCOPE                  | SHAPE | GRADE     | YIELD STRENGTH (Fy) | ULTIMATE STRENGTH (Fu) |  |
| ALL                    | PIPE  | A53 GR. B | 35 KSI              | 60 KSI                 |  |
| ALL                    | ANGLE | A36       | 36 KSI              | 58 KSI                 |  |
|                        |       |           |                     |                        |  |
|                        |       |           |                     |                        |  |
|                        |       |           |                     |                        |  |
|                        |       |           |                     |                        |  |
|                        |       |           |                     |                        |  |
|                        |       |           |                     |                        |  |
|                        |       |           |                     |                        |  |

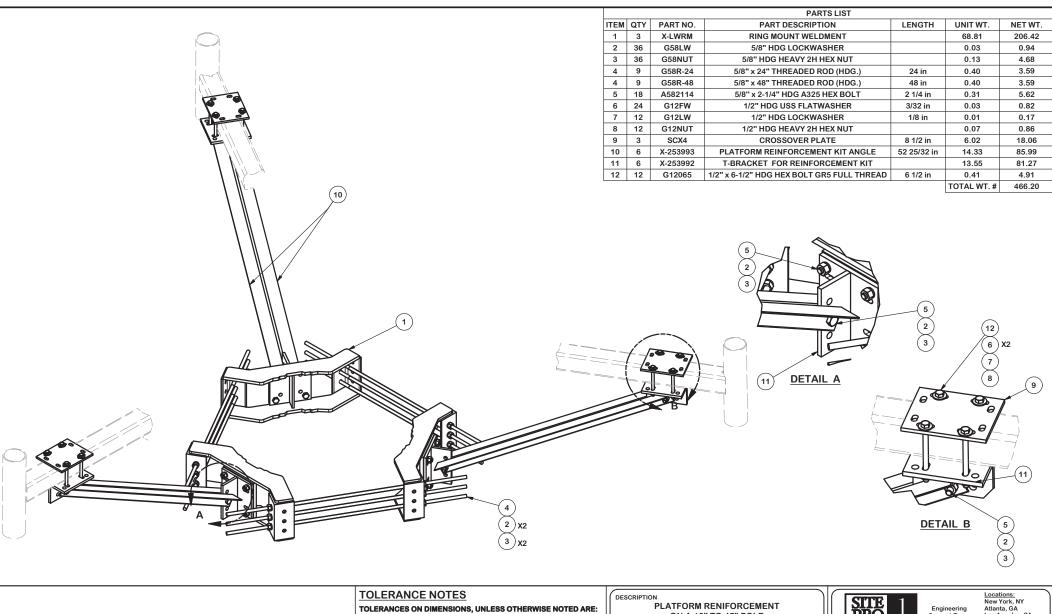
| 0<br>NO. | 05/18/19<br>DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FIRST ISSUE DESCRIPTION            | NDN<br>BY       | *Haste<br>Network Soluth<br>507 AIRPORT BLVD. SUITE<br>MORRISVILE. NO 27560<br>THE INFORMATION CONTAINED IN<br>DOCUMENTS IS PROPRIETED IN<br>REPRODUCTION OR CAUSING<br>REPRODUCED THE WHOLE OR AN<br>THESE DRAWINGS WITHOUT THE PI<br>OF MASTEC NETWORK SOLUTI | N THESE<br>NATURE.<br>TO BE<br>Y PART OF<br>ERMISSION |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REVISIONS                          |                 | PROHIBITED.                                                                                                                                                                                                                                                     |                                                       |  |  |
|          | TOTAL STATE OF THE |                                    |                 | SITE NAME: MRCTB045060 SITE NUMBER: CTL02004 FA NUMBER: 10035342 MNS ENC. NUMBER: 21944 - MC SITE ADDRESS. 2 SUNNY LN, WESTPORT FAIRFIELD COUNTY, CT 06880                                                                                                      |                                                       |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON CICENSED                        | DRAWN BY: NDN   |                                                                                                                                                                                                                                                                 |                                                       |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MINISTONAL ENGINEER                | CHECKED BY: CDG |                                                                                                                                                                                                                                                                 |                                                       |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | APPROVED BY: RIM                                                                                                                                                                                                                                                |                                                       |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OHAMED, PE,PEng                    | SCALE: N.T.S    |                                                                                                                                                                                                                                                                 |                                                       |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CTOR OF ENGINEERING<br>E NO. 25112 |                 |                                                                                                                                                                                                                                                                 |                                                       |  |  |
|          | I HEREBY CERTIFY THAT THIS ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                 | NOTES                                                                                                                                                                                                                                                           |                                                       |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ONAL SUPERVISION AND THAT I A      |                 |                                                                                                                                                                                                                                                                 | REV                                                   |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE STATE OF CONNECTICUT.          | DEK             | N-2                                                                                                                                                                                                                                                             | 0                                                     |  |  |

|           | MODIFICATION SCHEDULE                   |                  |               |           |
|-----------|-----------------------------------------|------------------|---------------|-----------|
| SCOPE NO. | MODIFICATION DESCRIPTION                | BOTTOM ELEVATION | TOP ELEVATION | SHEET NO. |
| 1         | INSTALLATION OF NEW PRK-1245 KICKER KIT | -                | 100-0" ±      | S-2       |
|           |                                         |                  |               |           |
|           |                                         |                  |               |           |
|           |                                         |                  |               |           |
|           |                                         |                  |               |           |
|           |                                         |                  |               |           |



#### NOTES:


- 1. APPURTENANCES MAY INTERFERE WITH PROPOSED MODIFICATIONS.
- ALL MODIFICATIONS TO BE INSTALLED CONTINUOUSLY THROUGH EXISTING EQUIPMENT. ALL EXISTING EQUIPMENT MUST NOT BE DAMAGED OR TAKEN OFF AIR DURING INSTALLATION OF PROPOSED MODIFICATIONS.
- ANTENNA AND COAX NOT SHOWN FOR CLARITY. SEE STRUCTURAL ANALYSIS REPORT FOR EXISTING ANTENNA LOADING AND COAX CONFIGURATION.
- 4. PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTHS AND QUANTITIES GIVEN. INFORMATION PROVIDED IS FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION.
- 5. EXISTING RRU'S AND ANCILLARY EQUIPMENT MAY NEED TO BE TEMPORARILY RELOCATED AS NECESSARY TO COMPLETE THIS MODIFICATION. EQUIPMENT IS NOT TO BE TAKEN OFF AIR AT ANY TIME DURING INSTALLATION. PLEASE CONTACT EOR IF THIS CANNOT BE MFT.
- CONTACT EOR IF PROPOSED MOUNT REINFORCEMENT DIMENSIONS CANNOT BE MET.




### NOTES:

- I. CONTRACTOR TO FIELD VERIFY THE REQUIRED LENGTH OF THE NEW STIFF-ARM PIPES AND MAY CUT ENDS AS REQUIRED TO AVOID UNNECESSARY OVERHANG AND OVERLAP.
- 2. TWO COATS OF COLD GALVANIZING COATING MUST BE APPLIED TO ALL CUT ENDS IN ACCORDANCE TO ASTM A780 PRIOR TO INSTALLATION.

| NEW PLATFORM REINFORCEMENT STABILIZER KIT MATERIAL LIST |      |          |                                   |
|---------------------------------------------------------|------|----------|-----------------------------------|
| PART NO.                                                | QTY. | LENGTH   | DESCRIPTION                       |
| SITE PRO1 PRK-1245                                      | 1    | 4'-4.75" | PLATFORM REINFORCEMENT KICKER KIT |
|                                                         |      |          |                                   |
|                                                         |      |          |                                   |





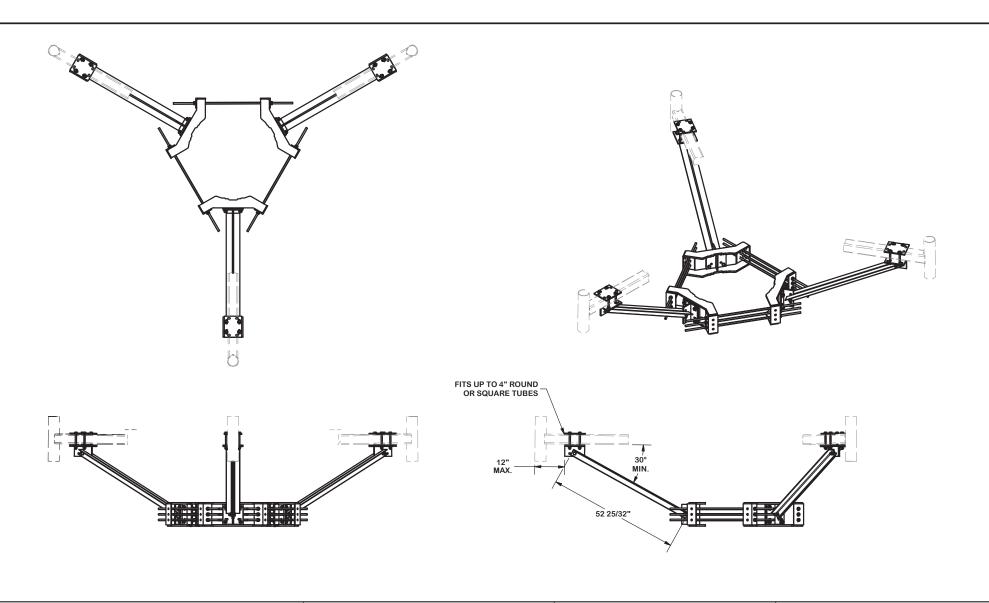
| Α                | CHANGED ALL 5/8" BOLTS TO A582114 | 4488 | CEK | 10/1/2015 | L |  |
|------------------|-----------------------------------|------|-----|-----------|---|--|
| REV              | DESCRIPTION OF REVISIONS          | CPD  | BY  | DATE      | ŀ |  |
| REVISION HISTORY |                                   |      |     |           |   |  |

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (\$ 0.030")
DRILLED AND GAS CUT HOLES (\$ 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (\$ 0.010") - NO CONING OF HOLES

BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

| PROPRIETARY NOTE:                                                                        |  |
|------------------------------------------------------------------------------------------|--|
| THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT |  |
| INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF   |  |
| VALMONT INDUSTRIES IS STRICTLY PROHIBITED.                                               |  |


PLATFORM RENIFORCEMENT ON A 12" TO 45" POLE 4' 6" ANGLE



Engineering Support Team: 1-888-753-7446

Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

|   | CPD NO | `   | DRAWN BY      | ENG. APPROVAL   | PART NO.          |      |
|---|--------|-----|---------------|-----------------|-------------------|------|
|   |        |     |               |                 |                   |      |
|   | 44     | 88  | CEK 4/11/2014 |                 | PRK-1245          | ء ما |
| ł |        |     |               |                 | 1 1 1 1 1 1 1 1 1 | 12 ≥ |
|   | CLASS  | SUB | DRAWING USAGE | CHECKED BY      | DWG. NO.          | '' h |
|   | 81     | 01  | CUSTOMER      | BMC 1/18/2016   | PRK-1245          | 2    |
|   | 01     | 01  | OGGTOWER      | DIVIO 1/10/2010 | 11(1(-12-10       |      |



# **TOLERANCE NOTES**

A CHANGED ALL 5/8" BOLTS TO A582114

DESCRIPTION OF REVISIONS

REVISION HISTORY

REV

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030°) DRILLED AND GAS CUT HOLES (± 0.030°) - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010°) - NO CONING OF HOLES

BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

| ALL OT                   |           |     |      |
|--------------------------|-----------|-----|------|
|                          | 10/1/2015 | CEK | 4488 |
| PROPRIETAL<br>THE DATA A | DATE      | BY  | CPD  |
| INDUSTRIES               |           |     |      |

ARY NOTE:
AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIDORS
BE AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF
INDUSTRIES IS STRICTLY PROVIDITED.

# DESCRIPTION PLATFORM RENIFORCEMENT ON A 12" TO 45" POLE

4' 6" ANGLE



Engineering Support Team: 1-888-753-7446

Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

| _     |     |               |               |          |    |
|-------|-----|---------------|---------------|----------|----|
| CPD N | D.  | DRAWN BY      | ENG. APPROVAL | PART NO. |    |
| 44    | 88  | CEK 4/11/2014 |               | PRK-1245 | 20 |
| CLASS | SUB | DRAWING USAGE | CHECKED BY    | DWG. NO. | тg |
| 81    | 01  | CUSTOMER      | BMC 1/18/2016 | PRK-1245 | 2  |
|       |     |               |               |          |    |

# **EXHIBIT 2**





April 24, 2020

Geoff Middlebrooks

American Tower Corporation 3500 Regency Parkway, Suite 100

Cary, NC 27518

**MasTec Network Solutions** 507 Airport Blvd, Suite 111

Morrisville, NC 27560 Tel (919) 674-5895

MNS.Engineering@mastec.com

Subject:

**Mount Structural Analysis** 

**ATC Designation:** 

Site Name:

Cranburysu CT

Site Number:

411189

**Carrier Designation:** 

**Engineering Firm Designation:** 

Carrier:

T&TA

Site Name:

MRCTB045060 CTL02094

Site Number: FA Number:

10035342

Site Data:

MNS Project Number:

21944-MNT1

Latitude 41.1628°, Longitude -73.3735°

130 ft Monopole

100 ft RAD Center (14.5 ft Platform w/ Handrail)

2 Sunny Ln, Westport, Fairfield County, CT 06880

Dear Geoff,

MasTec Network Solutions is pleased to submit this Mount Structural Analysis to determine the structural integrity of the above-mentioned structure.

This analysis has been performed in compliance with the ANSI/TIA-222-H Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures. Based on our analysis we have determined the structural strength to have the following result:

# **Antenna Mounting Structure**

200%

Insufficient

We at MasTec Network Solutions appreciate the opportunity of providing continued specialty services. Please do not hesitate to contact our office should you have any questions.

Prepared By:

Reviewed By:

Noah Noxon, EIT Structural Engineer I Raphael Mohamed

Raphael I. Mohamed, PE, PEng Senior Director of Engineering CT PE License No. 25112

This item has been digitally signed and sealed by Raphael 1. Mohamed, PE. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.



# **TABLE OF CONTENTS**

| EXECUTIVE SUMMARY                         | 3   |
|-------------------------------------------|-----|
| Table 1: Referenced Documents             | 3   |
| Table 2: Design Basis                     |     |
| CARRIER LOADING                           |     |
| Table 3: Appurtenance Loading             |     |
| ANALYSIS RESULTS                          |     |
| Table 4: Mount Components                 | .5  |
| Table 5: Additional Structural Components | .5  |
| ASSUMPTIONS, LIMITATIONS AND DISCLAIMER   | .6  |
| APPENDIX 1: LOADING PARAMETERS            | ••• |
| APPENDIX 2: LOADING CALCULATIONS          |     |
| APPENDIX 3: RISA 3D OUTPUT                |     |



# **EXECUTIVE SUMMARY**

The purpose of this analysis is to determine the acceptability of AT&T's proposed loading. Documents used for this analysis are stated in Table 1. This analysis has been performed in compliance with the applicable codes and parameters listed in Table 2.

**Table 1: Referenced Documents** 

| Company               | Document Type           | Reference                  | Date      |
|-----------------------|-------------------------|----------------------------|-----------|
| Fullerton Engineering | Previous Mount Analysis | Project No. 2016.0200.0024 | 7/6/2016  |
| MasTec                | Mount Mapping           | ATC# 411189                | 4/17/2020 |
| ATC                   | APP                     | ATC# 411189                | 4/21/2020 |
| AT&T                  | RFDS                    | RFDS Name: CTL05127        | 2/25/2020 |

**Table 2: Design Basis** 

| Codes and Sta                    | ndards         |
|----------------------------------|----------------|
| TIA Standard                     | ANSI/TIA-222-H |
| Wind Param                       | eters          |
| Ultimate Wind Speed              | 117 mph        |
| Nominal Wind Speed with Ice      | 50 mph         |
| Radial Ice Thickness             | 1 in           |
| Operational Wind Speed           | 30 mph         |
| Exposure Category                | В              |
| Risk Category                    |                |
| Topographic Category             | 1              |
| Seismic Parar                    | neters         |
| Ss                               | 0.233          |
| Si                               | 0.0\$6         |
| Man Loa                          | d              |
| Maintenance Load, L <sub>m</sub> | 500 lbs        |
| Maintenance Load, L.             | 250 lbs        |

Seismic effects have been considered in accordance with Section 2.7 of TIA-222-H.

Based on our analysis, we have determined the mounting components to be <u>Inadequate</u> to support the existing and proposed loading as described in **Table 3** of this analysis report.

To ensure the requirements of the applicable standards are met, we have the following recommendations:

# **Recommendations:**

- 1) All bolts and hardware should be checked for tightness and condition prior to installing the proposed equipment.
- 2) Reinforce existing mount with (1) Site Pro PRK-1245 kit and associated hardware for each sector. Modification drawings will be required to show the necessary attachment points and part details.



# **CARRIER LOADING**

The existing and proposed antenna equipment with corresponding mounts are shown below in Table 3. If the equipment listed below differs from actual field conditions, MasTec Network Solutions should be contacted to review the discrepancies.

**Table 3: Appurtenance Loading** 

# **Final Carrier Loading:**

| Mount<br>Elevation<br>(ft) | Antenna<br>Elevation<br>(ft) | Qty                    | Description               | Carrier | Mount Type                             | Notes |
|----------------------------|------------------------------|------------------------|---------------------------|---------|----------------------------------------|-------|
| ·                          | The second second            | 3                      | CCI OPA65R-BU6D           |         |                                        |       |
|                            |                              | 3                      | CCI DMP65R-BU6DA          | 7       | 1                                      |       |
| 19                         |                              | 3                      | CCI HPA-65R-BUU-H6        | 7       | 1                                      |       |
|                            |                              | 3                      | Powerwave Allgon 7770.00  | AT&T    | (1) 14.5'<br>Platform with<br>Handrail |       |
| enaz A                     | 1000                         | 6                      | Kathrein 860-10025        |         |                                        |       |
| 100                        | 100                          | 1                      | Raycap DC6-48-60-18-8F    |         |                                        |       |
|                            | 1                            | 1                      | Raycap DC9-48-60-24-8C-EV |         |                                        |       |
|                            |                              | 3                      | Ericsson RRUS 4449 B5/B12 |         |                                        |       |
|                            | 6 Ericsson ARUS 4415 B30     | Ericsson RRUS 4415 B30 | 7                         |         |                                        |       |
|                            |                              | 3                      | Ericsson RRUS 8843 B2/866 | 7       |                                        |       |
|                            |                              | 1                      | GPS                       | 1       |                                        |       |



# **ANALYSIS RESULTS**

RISA-3D (V17.0.2), a commercially available software package for structural analysis, was used to create a three-dimensional model of the structure and calculate member stresses for various loading cases. Selected output from the analysis is included in **APPENDIX 3**. Please find below a summary of the structure analysis results.

Capacity percentages below 105% are considered acceptable for structure components.

**Table 4: Mount Components** 

| Structural Component | Capacity Percentage | Result | Notes |
|----------------------|---------------------|--------|-------|
| Standoffs            | 50%                 | Pass   | 1     |
| Face Horizontals     | 23%                 | Pass   | 1     |
| Support Rails        | 16%                 | Pass   | 1     |
| Mount Pipes          | 39%                 | Pass   | 1     |
| Corner Angles        | 8%                  | Pass   | + :   |

1. Please see APPENDIX 3 for calculation details

**Table 5: Additional Structural Components** 

| Component        | Percentage | Result | Notes |
|------------------|------------|--------|-------|
| Connection Bolts | 21%        | Pass   | 1     |
| Connection Plate | 200%       | Fail   | 1     |

1. Please see APPENDIX 2 for calculation details.



# **ASSUMPTIONS, LIMITATIONS AND DISCLAIMER**

- 1) The mount was built in accordance with the designer's specifications and the mount has been maintained and is free of damage.
- 2) This Structural Analysis is not a condition assessment of the mount and is an evaluation of the theoretical structural capacity.
- 3) This analysis is based from the information supplied, and therefore, this report's results are as accurate as the supplied data.
- 4) MasTec Network Solutions makes no warranties, expressed and/or implied, in connection with this report, and disclaims any liability associated with material, fabrication, or erection of this tower. MasTec will not be held responsible from any consequential or incidental damages sustained by any person, firm, or organization as a result of the contents of this report. The maximum liability of MasTec pursuant to this report will be limited to the total fee received for compilation of this report.
- 5) It is the tower owner's responsibility to verify that the mount modeled and analyzed is the correct structure modeled.
- 6) The use of this report shall be limited to the purpose for which it was commissioned and may not be used for any other purposes without the written consent of MasTec Network Solutions.
- 7) The mount was properly fabricated and was constructed and has been maintained in accordance with manufacturer's specifications.
- 8) The connection from the tower to the mount is assumed to be adequate and in good condition.
- Member connections are assumed to have been designed to meet for exceed the theoretical capacity of the connected member.
- 10) Steel grades have been assumed as follows:

| Channel, Solid Round, Angle, Plate | ASTM A36 (GR 36)   |
|------------------------------------|--------------------|
| HSS (Rectangular)                  | ASTM 500 (GR B-46) |
| HSS (Round)                        | ASTM 500 (GR 8-42) |
| Pipe                               | ASTM A53 (GR 35)   |
| Connection Bolts                   | ASTM A325          |
| U-Bolts                            | SAE 429 Gr.2       |



**APPENDIX 1: LOADING PARAMETERS** 



# Address:

No Address at This Location

# **ASCE 7 Hazards Report**

Standard: ASCE/SEI 7-16

Risk Category:


Soil Class:

D - Default (see Section 11.4.3) Elevation: 51.13 ft (NAVD 88)

Latitude: 41.162811

Longitude: -73.373516





# Wind

# Results:

Wind Speed:

117 Vmph

10-year MRI

75 Vmph

25-year MRI

85 Vmph

50-year MRI

oo vmpn

100-year MRI

90 Vmph 97 Vmph

Data Source:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4

Date Accessed:

Fri Apr 24 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



# Seismic

| Site Soil Class: D - Default (see Secti |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Section 11.4.3)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S <sub>s</sub> :                        | 0.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S <sub>D1</sub> :        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S <sub>1</sub> :                        | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T <sub>L</sub> :         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F.:                                     | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PGA:                     | 0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| F <sub>v</sub> :                        | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PGA <sub>M</sub> :       | 0.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S <sub>MS</sub> :<br>S <sub>M1</sub> :  | 0.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F <sub>PGA</sub> :       | 1.528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S <sub>OS</sub> :                       | 0.135<br>0.24 <del>9</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l. :<br>C <sub>v</sub> : | 1<br>0.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Seismic Design Categor                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Οψ.                      | 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 40 MCER R                             | Response Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 25                     | Design Response Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 35                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.23                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 30                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 20                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 25                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - III.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 20                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 15                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 15                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 10                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 05                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 05                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S <sub>a</sub> (g) vs                   | 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 0 1                    | 3, 3, 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5 <sub>8</sub> (g) vs                   | 1(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | S <sub>e</sub> (g) vs T(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MCF <sub>p</sub> V                      | ertical Response Spectro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | im                       | Design Marting! Days and Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 024 WICER V                             | orden reoponse opecar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JIII 0 16                | Design Vertical Response Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 020                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 14                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 18                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 12                     | it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 16                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 10                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 12                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 08                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 06                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.06                                    | The same of the sa |                          | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.04                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 04                     | The last of the la |
| 0 02 04 06 0                            | 8, 10 12 14 16 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 20 0 02                | 04 05 08 18 13 14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 02 04 06 0<br>Sa(g) vs 1              | r(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 20 0 02                | 04 Sa(9) vs T(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Data Accessed:

Fri Apr 24 2020

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.



# lce

Results:

Ice Thickness:

1.00 in.

Concurrent Temperature:

15 F

Gust Speed:

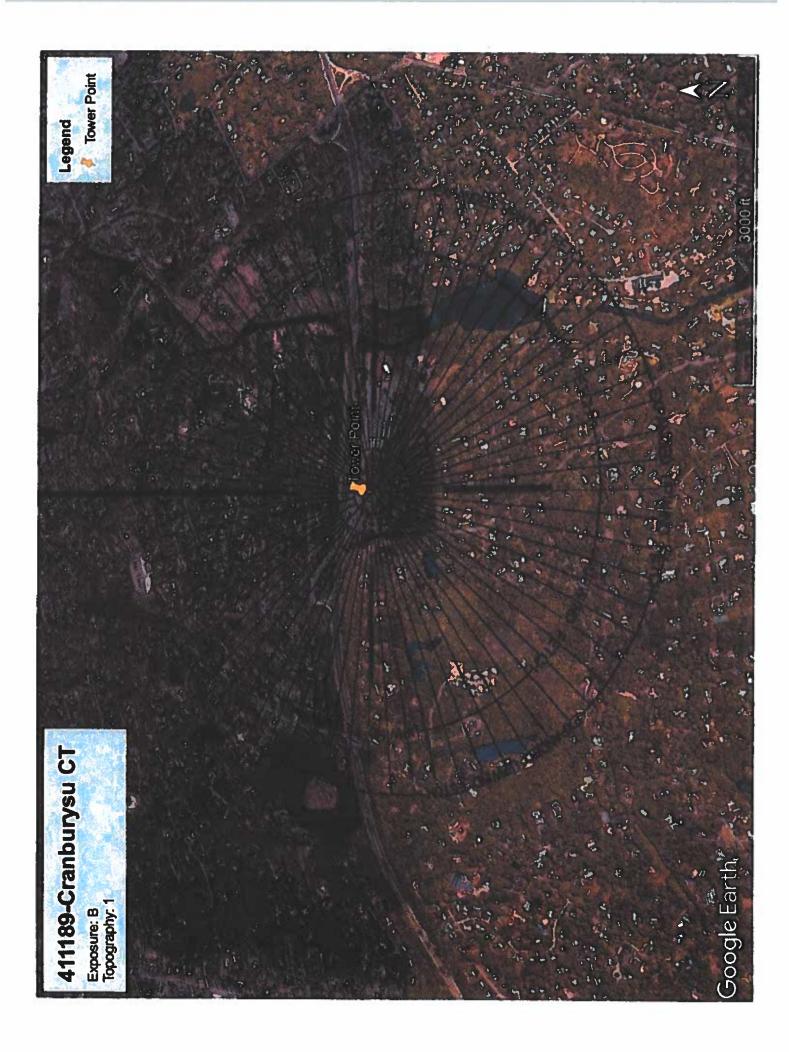
50 mph

**Data Source:** 

Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Fri Apr 24 2020


Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.





**APPENDIX 2: LOADING CALCULATIONS** 



| Site Name  | Cramburysu CT  |               |          |
|------------|----------------|---------------|----------|
| Site ID    | 411189         |               |          |
| lob Number | 21944-MNT1 Mau | Int Existing? | Existing |
| Code       | T              | Categories    | =        |

| Analysis Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 ft       | 6 (B,C, or D)     | 117 mph            | you OS         | 1 1                     | 30 mph                 | Yes                        | 51.13 ft. Google Earth | 0.056 USGS | 0.249 2.7.5 | 0.050 2.7.6                | . 6, 0.125 27.7.1.1             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------------------|----------------|-------------------------|------------------------|----------------------------|------------------------|------------|-------------|----------------------------|---------------------------------|
| Annual Control of the | Mount Height | Exposure Category | Utimate Wind Speed | loe Wind Speed | Design toe Thickness, t | Maintenance Wind Speed | - Rum Earthquake Analysis? | Ground Elevation       | - 8-       | Sm          | Vertical Selsmic Loads, E, | Seismic Response Coefficient, C |

| Fig 30 Label | 1 Elevation (No. 1 Leneral | (m) (m) | Diameter (in) |
|--------------|----------------------------|---------|---------------|
| ¥            | 8                          | 3       | 2375          |
| 7            | 8                          | ä       | 2.375         |
| 2            | 8                          | *       | 2375          |
| W            | 66                         | 28      | 2.375         |
| 19           | 85                         | 18      | 2375          |
| 62           | 88                         | 2       | 2375          |
| 63           | 86                         | 2       | 2375          |
| 3            | 86                         | 22      | 2,375         |
| ฮ            | 8                          | ã       | 2.375         |
| ם            | 86                         | ಷ       | 2.375         |
| ם            | 88                         | 2       | 2.375         |
| 3            | 86                         | 28      | 2.375         |
| KI           | 66                         | 7       | 2.375         |
| ō            | 8                          | 7       | 2375          |
| ភ            | 99                         | 2       | 2.375         |
|              |                            |         |               |
|              |                            |         |               |
|              |                            |         |               |
|              |                            |         |               |
|              |                            |         |               |
|              |                            |         |               |
|              |                            |         |               |
|              |                            |         |               |

| legend                 |            | MA                   | Maelmum Capacity | A.                                    |              |
|------------------------|------------|----------------------|------------------|---------------------------------------|--------------|
| Imput                  |            |                      |                  |                                       |              |
| Calculated             |            | Controlling Capacity | 50.2%            | 0.                                    | PASS         |
| Notes                  |            |                      | S. STANSON       |                                       |              |
|                        |            | Wind Parameters      |                  |                                       |              |
| Gust Effect Factor, G. | 1.000      | 2.6.9                |                  | 1,000                                 | 797          |
| Y.                     | 0.988      | 2.65.2               | 2                | 966'0                                 | 2.6.8        |
| K <sub>28</sub>        | 1.000      | 2.6.6                | 7                | 0.900                                 | 16.6         |
| 2                      | 0.950      | Table 2-2            | *Note for I      | Note for Rooftop Structures greater   | fures greate |
|                        |            |                      | than 50, ur      | than 50', unobstructed for 90 deg and | or 90 deg an |
|                        | 29.647     | psf, 2.6.11.6        | protrudie        | protruding 50' above surrounding      | surrounding  |
| 8                      | 116.309    | Table 2-9            | Braiden          | Duriongs as must be calculated.       | Calculated.  |
| .9                     | 1.117      | in, 2.6.10           |                  |                                       |              |
| ð                      | 5.414      | psf, 2.6.9.6         | I, lor           | 1,000                                 | Table 2-3    |
|                        | 49.705     | Table 2-9            | L.EQ             | 1,000                                 | Table 2-3    |
| Chaptranders           | 1.947      | psf, 2.6.9.6         | - Inne           | 1.000                                 | Table 5-1    |
| CO.                    | 29.823     | Table 2-9            | 1                | 1.000                                 | Table 5-1    |
| loe Dead, Grating      | ACSTCAOM O | 3                    |                  |                                       |              |

| Section of the last of the las | Action Contraction Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | App intensances       |               | A CONTRACTOR       |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|--------------------|--------------|
| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the state of the section of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Height (in)           | Width (m)     | Depth (in)         | Weight (fbs) |
| Powerwave 7770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55                    | 11            | S                  | ×            |
| CCI HPA-65R-BUU-H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 723                   | 14.8          | 6                  | 51           |
| CCI OPA65R-BUGDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Anthena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71.2                  | 17            | 7.8                | 60.2         |
| CCI DAMPESR-BUGDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.2                  | 20.7          | 1,1                | 182          |
| Ericsson RRUS 4415 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RRU, TNAA, Etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.96                 | 13.18         | 5.04               | 42.9         |
| Ericsson 82/866A 8843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RRU, TAA, Etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.96                 | 13.2          | 111                | 2            |
| Ericsson RRUS 4449 BS/B12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATRU, TIMA, Etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.96                 | 13.19         | 10.43              | 2            |
| Raycap DC9-48-60-24-8C-EV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.28                 | 20-20-24 Pg.  | 2.0 31.4 20-       | 26.2         |
| Kathrein 860-10025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RRU, TIMA, Etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.9                   | 24 00         | 2 2                | 1.16         |
| Kathrein 860-10006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RRU, TMA, ELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L7 Ashan              | 3.00 119 and  | 6.58 <b>6</b> .555 | 100          |
| Raycap DC5-48-60-18-8F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.23                 | 11            | Sec. Heter         | 18.9         |
| 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commence of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the second second | S 5-1- 5-1 50 | 1. 不 所 2.          | 0110         |
| 2000 December 1900 Contraction of the Contraction o | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | tachine       | 大学 さる 一年年          | 1000         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 1000000       | 1000               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | 10000              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | Ser Terrenda       | 21.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 May 200 Ma |                       | 30            | CALL STATE         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                     | 100           | - No. 10 April 10  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | A             | 3600000            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                     | A 24 PA       |                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 , 11                |               |                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                    |              |

| CO E       |
|------------|
| - 0        |
| _W 5       |
| - <u> </u> |
| Ten C      |
| 7.2        |
| - 00 }     |
| -          |
| - Z        |
| v          |

| ST ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X X                                       | 25.08<br>57.58                            | 25.08<br>X. 35.08                           | 55 DE 075    | 25 CB                                       | £ 15                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                         | 2                  | 75.00<br>20.00                             | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|--------------|---------------------------------------------|------------------------------------|-------------------------------------------------------------------------------|--------------------|--------------------------------------------|------------------------------------------|
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X 45 2                                    | 12 P. | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8     | ig.          | 200K                                        | 2.58<br>2.58                       | 12.6%                                                                         | 3008               | 12.00                                      | 12.5%                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.162<br>0.018                            | B.041                                     | 0.166                                       | 25.0         | 0.294<br>0.041                              | 0.828                              | 9000                                                                          | 77.0               | 1.134.<br>0.041                            | 0.128<br>0.067                           |
| 6.163<br>0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.280                                     | 2003                                      | 0.000                                       | 6.10         | 0218                                        | 0.0070                             | 0000                                                                          | 6.408              | 0.216                                      | 0.222                                    |
| 2.226 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2073                                      | 1.38A                                     | 1,300                                       | 2808         | 198                                         | 141                                | 1380                                                                          | 887                | 1,422                                      | 1.384                                    |
| 35.000 A.508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.843                                     | 1840                                      | 12.700<br>1.844                             | \$250        | 1,963                                       | 12.571                             | 1,844                                                                         | 1995               | 1,643                                      | 12,671                                   |
| 25.000<br>25.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.800                                    | 78,600                                    | 77.450                                      | 38,000       | 51,000<br>42,800                            | 90.200<br>76.000                   | 73.000                                                                        | 88.88              | 25.29<br>28.29                             | 76.000                                   |
| Supply (In)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900                                       | 7,500                                     | 7.760                                       | 8            | 999                                         | 7,000                              | 7,700<br>10,430                                                               | 8                  | 800                                        | 7,800                                    |
| 11,000<br>11,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.180                                    | 13.200                                    | 20.70<br>0.11.10                            | 88           | 11.10                                       | 11.200                             | 25,700<br>13,100                                                              | 11.00              | 17.50                                      | 21.800<br>13.200                         |
| 98,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.300                                    | 2 Z Z                                     | 7, 72 200<br>14, 1800                       | 8 8          | 72.300                                      | 14,800                             | 1,200<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 98, 296            | 08.17<br>08.02<br>08.02                    | 17.72<br>68<br>17.98<br>17.98            |
| - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amens<br>int, her, ex.                    | Aetons<br>stu, TAN, Cir.                  | Antenna<br>RNI, TAA, DE                     | Arcinos      | Anthens<br>Mil. Then Ex.                    | Antoness<br>Bell, TAM, Ex.         | Avenna<br>nau, ma, Esc.                                                       | Antenna            | Antenna<br>Ant. Tray, Ex.                  | Antenna<br>(Mky, Tran, Etc.              |
| 100.0M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.0%                                    | 190,000                                   | 100.0%                                      | 300.001      | 100.0%<br>100.0%                            | 300,0%<br>300,0%                   | 100.0%<br>100.0%                                                              | X6.000             | 100.0%                                     | 100.6%<br>100.0%                         |
| Front Exposed Ts.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.096                                   | 100.001<br>200.0                          | 100.0%<br>0.0%                              | 100.0%       | 100.0%<br>0.0%                              | 100.0%<br>0.0%                     | 100.0%<br>0.0%                                                                | W 100 W            | 100.0%                                     | 100.0%<br>0.000                          |
| Oremonion (de t) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 9                                       | <b>a a</b>                                | 90                                          | 128          | 136                                         | 22.27                              | 2 2                                                                           | 92                 | 9 9                                        | 22                                       |
| Switchilly C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 1-1-11                                    |                                             | -            |                                             | 11-1-11                            |                                                                               | ++++               |                                            |                                          |
| 150 M 100 M | 101                                       | 901                                       | 92 22                                       | 8            | 100                                         | 101                                | 8 8                                                                           | 8                  | 300                                        | 100                                      |
| Powerware 7770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO HPASSR-GULHS<br>Effecton RRUS 4415 630 | CD OPAGA BUGDA<br>Erteron Bylessa 880     | CC DAFMSR-BUILDA<br>Ericsen MUS 4449 BS/812 | Powerum 7770 | CO HPA-658-BULLHS<br>Effesson RRUS 4415 830 | CO OPASR-BUEN<br>Erican BZ/MEE RES | CT DAMESR-BUSDA<br>Ericson IRMS 4449 IIS/R12                                  | Powercown 7770     | CCI HPASSR BULLHE<br>Erteson RRUS 4415 830 | CO OPASSA BUSA<br>Erceson 02/866A 8843   |
| 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | **************************************    | ***                                       |                                             | * * # # # #  |                                             |                                    | 5 · · · · · · · · · · · · · · · · · · ·                                       | 1 <b>2</b> 0 0 6 0 | ០១០០០៦                                     | 0000000                                  |

| UE |
|----|
| O  |
| St |
| Ωį |
| ŽŽ |

| 72.75<br>20.75                                 | <b>46</b> 00      | 0.0%               |                                         |  |
|------------------------------------------------|-------------------|--------------------|-----------------------------------------|--|
| 12.5%                                          | 3000 N            | X90                |                                         |  |
| 0.324                                          | 0.006             | A.007              | 8.0000                                  |  |
| 0.219                                          | 00073             | 900'0              | 00000                                   |  |
| 1.500                                          | 0.100             | 97.0               | 801.0                                   |  |
| 12,708                                         | 6.516             | 6.318              | 9119                                    |  |
| 73.400                                         | 2320              | 2.230              | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |  |
| 10.430                                         | 2,000             | 2000               | 3700                                    |  |
| 13.160                                         | 2400              | 2.400              | 2700                                    |  |
| 14,980                                         | 9790              | 0063               |                                         |  |
| Authres<br>RRU, TMA, Exc.                      | NEU, TMA, ERC.    | NEU, THAL ER.      | MRU, TIAA, EE,                          |  |
| 100.0%<br>100.0%                               | 100.0%            | 100.0%             | 100.0%                                  |  |
| 0.0%                                           | 900               | 9000               | 0.00%                                   |  |
| 340                                            | 0                 | αı                 | 98                                      |  |
|                                                |                   | ~                  |                                         |  |
| 101                                            | 300               | 300                | 300                                     |  |
| CCI DAPPESA-BUSDA<br>Ericason IRMS 4449 85/812 | Lethven 860-10025 | Kathrein BEO-10025 | Appeter 860 10055                       |  |
|                                                | 2 2 2 5 5 5       | 8 8 8 8 8 8        | 122222                                  |  |

| 00000 000000 0000000 00000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079 00079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.000<br>6.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1000 0000 0000 0000 0000 0000 0000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000 |  |
| 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| P. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1.1.4.000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| A Committee of the Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 本 古 古 古 古 古 古 古 古 正 正 正 正 正 正 正 正 正 正 正                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |



### **Bolt Calcuations:**

| Bolt Size:                     | 3/4     | ln                               |
|--------------------------------|---------|----------------------------------|
| # Bolts:                       | 4 10189 | SU DEN                           |
| Plate Width:                   | 6       | in                               |
| Plate Height:                  | 10      | in                               |
| Bolt H Gap:                    | 3       | in                               |
| Bolt V Gap:                    | 8       | in                               |
| Plate T:                       | 0.5     | in                               |
| Bolt Grade:                    | A325N   | La Belle L                       |
| Fu <sub>bolt</sub>             | 120     | ksi                              |
| r:                             | 4.272   | in                               |
| 13 <b>J:</b> 2 =               | 73.000  | in <sup>4</sup> /in <sup>2</sup> |
| Bolt Area, <sub>Normal</sub> : | 0.442   |                                  |
| Bolt Area, Net Tensile:        | 0.334   | in <sup>2</sup>                  |

| Allowable Shear:   | 17.9 | kip |
|--------------------|------|-----|
| Allowable Tension: | 30.1 | kip |

| Tension Capacity:  | 20.8% |
|--------------------|-------|
| Shear Capacity:    | 4.9%  |
| Combined Capacity: | 4.6%  |



Bolt Capacity: 20.8%

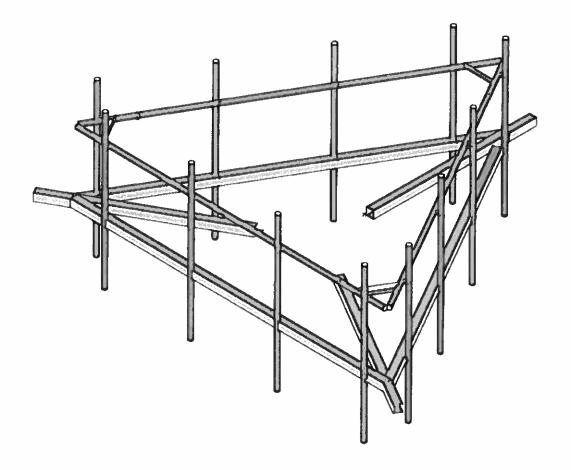
### Plate Calculations:

| Horizontal Member Height: | 4   | in  |
|---------------------------|-----|-----|
| Horizontal Member Width:  | 4   | in  |
| Plate Grade:              | A36 |     |
| Plate Fy:                 | 36  | ksi |

| Mx = | 0.000  | k*in |
|------|--------|------|
| Mz = | 24.272 | k*in |

| Zx = | 0.625 | in <sup>3</sup> |
|------|-------|-----------------|
| Z2 = | 0.375 | in <sup>3</sup> |

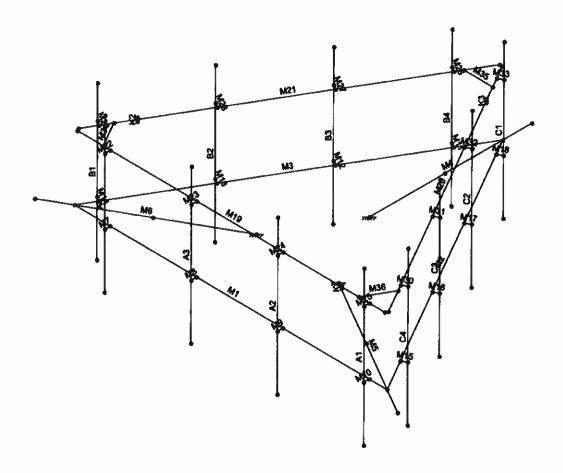
| ØMpy (X) = | 20.250 | k - in |
|------------|--------|--------|
| ØMpx (X) = | 12.150 | k - in |


Plate Capacity:

199.8%



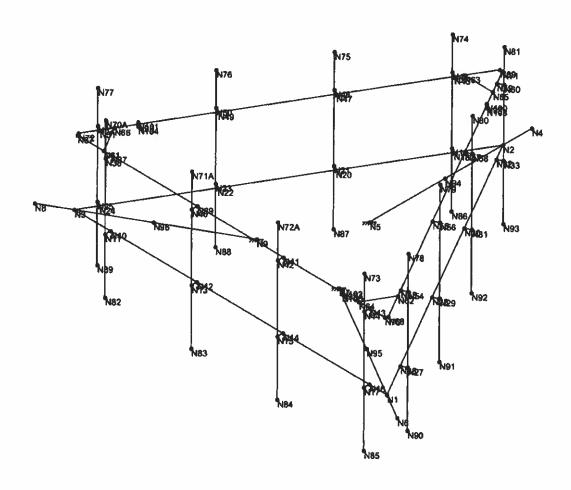
**APPENDIX 3: RISA 3D OUTPUT** 






| Envelope | Only | Solution |
|----------|------|----------|
|----------|------|----------|

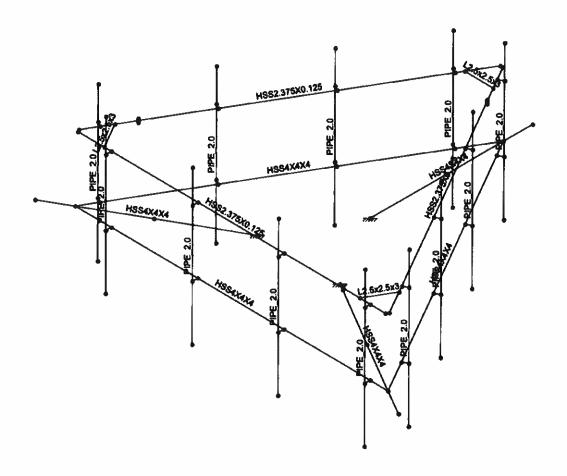
| Mastec     | ATC411189-Cranburysu CT-10035342 | Render                  |
|------------|----------------------------------|-------------------------|
| NDN        |                                  | Apr 24, 2020 at 1:39 PM |
| 21944-MNT1 |                                  | 21944-MNT1.R3D          |






**Envelope Only Solution** 

| Mastec     |                                  | Member Labels           |
|------------|----------------------------------|-------------------------|
| NDN        | ATC411189-Cranburysu CT-10035342 | Apr 24, 2020 at 1:40 PM |
| 21944-MNT1 |                                  | 21944-MNT1.R3D          |

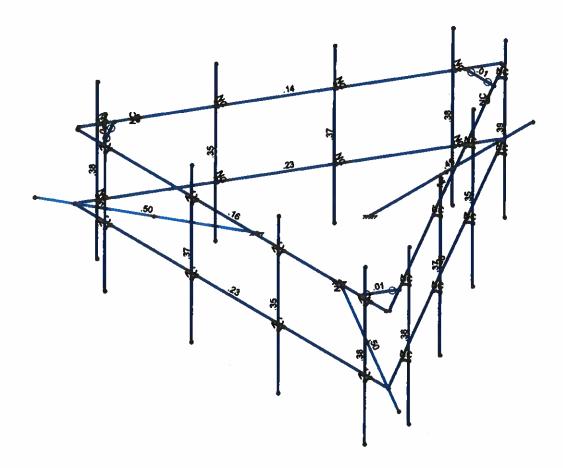





| Envelope Only S | Solution |
|-----------------|----------|
|-----------------|----------|

| Mastec     |                                  | Joint Labels            |
|------------|----------------------------------|-------------------------|
| NDN        | ATC411189-Cranburysu CT-10035342 | Apr 24, 2020 at 1:40 PM |
| 21944-MNT1 |                                  | 21944-MNT1.R3D          |






Envelope Only Solution

| Mastec     |                                  | Shapes                  |
|------------|----------------------------------|-------------------------|
| NDN        | ATC411189-Cranburysu CT-10035342 | Apr 24, 2020 at 1:40 PM |
| 21944-MNT1 |                                  | 21944-MNT1.R3D          |



Code Check (Env) No Calc = 1.0 -.90-1.0 -.75-90 -.50-.75 0-.50



Member Code Checks Displayed (Enveloped) Envelope Only Solution

| Mastec     |  |
|------------|--|
| NDN        |  |
| 21944-MNT1 |  |

ATC411189-Cranburysu CT-10035342

| Unity Bending Check     |
|-------------------------|
| Apr 24, 2020 at 6:03 PM |
| 21944-MNT1.R3D          |







Member Shear Checks Displayed (Enveloped) Envelope Only Solution

| Mastec     |                                  | Shear Check             |
|------------|----------------------------------|-------------------------|
| NDN        | ATC411189-Cranburysu CT-10035342 | Apr 24, 2020 at 6:04 PM |
| 21944-MNT1 |                                  | 21944-MNT1.R3D          |



: Mastec

: NDN : 21944-MNT1

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM

Checked By: BDM

### Hot Rolled Steel Properties

|   | Label       | E (kel) | G [kel] | Nu | Thorn (1E5 F) | Densityfk/ft^31 | Ylektikail | Ry  | Fulkeit | Rt  |
|---|-------------|---------|---------|----|---------------|-----------------|------------|-----|---------|-----|
| 1 | A992        | 29000   | 11154   | .3 | .65           | .49             | 50         | 1.1 | 65      | 1.1 |
| 2 | A36 Gr.36   |         |         | .3 | .65           | .49             | 36         | 1.5 | 58      | 1.2 |
| 3 | A572 Gr.50  | 29000   | 11154   | .3 | .65           | .49             | 50         | 1.1 | 65      | 1.1 |
| 4 | A500 Gr.B R | 29000   | 11154   | .3 | .65           | 527             | 42         | 1.4 | 58      | 1.3 |
| 5 | A500 Gr.B R | 29000   | 11154   | .3 | .65           | .527            | 46         | 1.4 | 58      | 1.3 |
| 6 | A53 Gr.B    | 29000   | 11154   | .3 | .65           | .49             | 35         | 1.6 | 60      | 12  |
| 7 | A1085       | 29000   | 11154   | .3 | .65           | .49             | 50         | 1.4 | 65      | 1.3 |

### Hot Rolled Steel Section Sets

|   | Label            | Shape      | Type | Design List  | Material  | Design R | A.fin2l | tvv (in4) | Izz [In4] | J Im41 |
|---|------------------|------------|------|--------------|-----------|----------|---------|-----------|-----------|--------|
| 1 | Standoffs        | HSS4X4X4   | Beam | SquareTube   | A500 Gr   |          | 3.37    | 7.8       | 7.8       | 12.8   |
| 2 | Face Horizontals | HSS4X4X4   | Beam | SquareTube   | A500 Gr   | Typical  | 3.37    | 7.8       | 7.8       | 12.8   |
| 3 | Support Rails    | HS\$2.375X | Beam | Pipe         | A500 Gr   | Typical  | .823    | .527      | .527      | 1.05   |
| 4 | Mount Pipes      | PIPE 2.0   | Beam | Pipe         | A53 Gr.B  | Typical  | 1.02    | .627      | 627       | 1.25   |
| 5 | Comer Angles     | L2.5x2.5x3 | Beam | Single Angle | A36 Gr.36 |          | .901    | .535      | .535      | .011   |

### Joint Coordinates and Temperatures

|    | Label | X Mil     | YM | ZIM        | Temp (F) | Detach From Diso |
|----|-------|-----------|----|------------|----------|------------------|
| 1  | N1    | 7.25      | Õ  | 4.185789   | 0        |                  |
| 2  | N2    | 0.``      | 0  | -8.371579  | Ô        |                  |
| 3  | N3    | -7.25     | 0  | 4.185789   | 0        |                  |
| 4  | N4    | 0.        | 0  | -9.704912  | Ō        |                  |
| 5  | N5    | 0.        | 0  | -2.204912  | Q        |                  |
| 6  | N6    | 8.404701  | 0  | 4.852456   | 0        |                  |
| 7  | N7    | 1,90951   | 0  | 1.102456   | Ō        |                  |
| 8  | N8    | -8.404701 | 0  | 4.852458   | Q        |                  |
| 9  | N9    | -1,90951  | 0  | 1.102456   | Ō        |                  |
| 10 | N10   | -5.583333 | 0  | 4.185789   | Ô        |                  |
| 11 | N11   | -5.583333 | 0  | 4.435789   | 0        |                  |
| 12 | N12   | -1.583333 | Ō  | 4.185789   | Ō        |                  |
| 13 | N13   | -1.583333 | Ō  | 4.435789   | Ō        |                  |
| 14 | N14   | 2.416667  | 0  | 4.185789   | 0        |                  |
| 15 | N15   | 2.416667  | Ō  | 4.435789   | Ō        |                  |
| 16 | N16   | 6.416667  | Ō  | 4.185789   | Ō        |                  |
| 17 | N17   | 6.416667  | Ō  | 4.435789   | 0        |                  |
| 18 | N18   | -0.833333 | 0  | -6.928203  | Ŏ        |                  |
| 19 | N19   | -1.04984  | Ō  | -7.053203  | Ō        |                  |
| 20 | N20   | -2.833333 | 0  | -3,464102  | Ö        |                  |
| 21 | N21   | -3.04984  | Ō  | -3.589102  | 0        |                  |
| 22 | N22   | -4.833333 | Ō  | -0.        | O.       |                  |
| 23 | N23   | -5.04984  | 0  | 125        | O O      |                  |
| 24 | N24   | -6.833333 | Ô  | 3.464102   | 0        | 599              |
| 25 | N25   | -7.04984  | Ó  | 3.339102   | Ŏ        |                  |
| 26 | N26   | 6.416667  | 0  | 2.742414   | Ö        |                  |
| 27 | N27   | 6.633173  | 0  | 2.617414   | Ö        |                  |
| 28 | N28   | 4.416667  | Ô  | -0.721688  |          | †                |
| 29 | N29   | 4,633173  | Ö  | -0.846688  | Ö        |                  |
| 30 | N30   | 2.416667  | Ō  | -4.185789  | Ŏ        | +                |
| 31 | N31   | 2.633173  | Ó  | -4.310789  | o o      | 1                |
| 32 | N32   | 0.416667  | ŏ  | -7.649891  | 0        |                  |
| 33 | N33   | 0.633173  | 0  | -7.774891  | 0        | -                |
| 34 | N37   | -5.583333 | 3  | 4.185789   | Ö        | -                |
| 35 | N38   | -5.583333 | 3  | 4.435789   | 0        |                  |
| -  | 1455  | - MARKET  |    | 1 7,400100 |          | 1                |



: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Joint Coordinates and Temperatures (Continued)

| rom Die |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |



: Masiec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Joint Coordinates and Temperatures (Continued)

|                | Label | X m)      | YMI      | zmt       | Temp (F) | Detech From Diap. |
|----------------|-------|-----------|----------|-----------|----------|-------------------|
| 93             | N93   | 0.633173  | -2.5     | -7.774891 | 0        |                   |
| 94             | N94   | 0.        | 0        | -5.704912 | n        |                   |
| 95             | N95   | 4.940599  | 0        | 2.852456  | 0        |                   |
| 96             | N96   | -4.940599 | O        | 2.852456  | 0        |                   |
| 97<br>98<br>99 | N98   | 1.0825    | 3        | -6.531275 | 0        |                   |
| 98             | N99   | -6.1875   | 3        | 2.345485  | .0       |                   |
| 99             | N99A  | 5.125     | 3        | 4.185789  | n        |                   |
| 100            | N100  | 1.0625    | 3.083333 | -6.531275 | 0        |                   |
| 101<br>102     | N101  | -6.1875   | 3.083333 | 2.345485  | ň        |                   |
| 102            | N102  | 5.125     | 3.083333 | 4.185789  | Ô        |                   |
| 103            | N103  | 1.0625    | 2.916667 | -6.531275 | <u> </u> |                   |
| 104            | N104  | -6.1875   | 2.916667 | 2.345485  | ň        |                   |
| 105            | N105  | 5.125     | 2.916667 | 4.185789  | <u>v</u> |                   |

Joint Boundary Conditions

|   | Joint Label | X [k/ln] | Y [k/in] | Z R/le1  | X Rotik-fi/radi | Y Rot.[k-ft/red] | Z Rot.[k-fl/rad] |
|---|-------------|----------|----------|----------|-----------------|------------------|------------------|
| 1 | N9          | Reaction | Reaction | Reaction | Reaction        | Reaction         | Reaction         |
| 2 | N5          | Reaction | Reaction | Reaction | Reaction        | Reaction         | Reaction         |
| 3 | N7          | Reaction | Reaction | Reaction | Reaction        | Reaction         | Reaction         |

Member Primary Data

|     | Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Joint | J Joint | K.Joint | Rotate(dag) | Section/Shape | Type | Design List | Material  | Design Rules       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------------|---------------|------|-------------|-----------|--------------------|
| 1   | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N3      | N1      |         |             | Face Horizont | Beam | SquareTube  |           | Typical            |
| 2   | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N1      | N2      |         |             | Face Horizont |      | SquareTube  |           | Typical            |
| 3   | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N2      | N3      |         |             | Face Horizont | Beam |             |           | Typical            |
| 4   | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N4      | N5      |         |             | Standoffs     | Beam | SquareTube  |           | Typical            |
| 5   | M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N6      | N7      |         |             | Standoffs     | Beam | SquareTube  |           | Typical            |
| 6   | M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N8      | N9      |         |             | Standoffs     | Beam | SquareTube  |           | Typical            |
| 7   | M7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N10     | N11     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 8   | M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N12     | N13     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 9   | M9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N14     | N15     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 10  | M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N16     | N17     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 11. | M11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N18     | N19     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 12  | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N20     | N21     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 13  | M13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N22     | N23     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 14  | M14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N24     | N25     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 15  | M15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N26     | N27     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 16  | M16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N28     | N29     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 17  | M17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N30     | N31     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 18  | M18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N32     | N33     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 19  | M19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N87     | N70     |         |             | Support Rails | Beam | Pipe        | A500 Gr.B | Typical            |
| 20  | M20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N71     | N68     |         |             | Support Rails | Beam | Pipe        | A500 Gr.B |                    |
| 21  | M21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N72     | N69     |         |             | Support Rails | Beam |             | A500 Gr.B | Typical<br>Typical |
| 22  | M22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N37     | N38     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 23  | M23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N39     | N40     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 24  | M24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N41     | N42     |         |             | RIGID         | None | None        | RIGID     |                    |
| 25  | M25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N43     | N44     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 26  | M26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N45     | N46     |         |             | RIGID         | None | None        | RIGID     | Typical<br>Typical |
| 27  | M27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N47     | N48     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 28  | M28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N49     | N50     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 29  | M29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N51     | N52     |         |             | RIGID         | None | None        | RIGID     |                    |
| 30  | M30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N53     | N54     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 31  | M31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N55     | N56     |         |             | RIGID         | None | None        | RIGID     | Typical            |
| 32  | M32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N57     | N58     |         |             | RIGID         | None | None        |           | Typical            |
|     | THE STATE OF THE S | 1111    |         |         |             | NIGHT         | HUIN | MOUR        | RIGID     | Typical            |



Model Name

: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

|                                         | Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ligint                                                                                                     | J Joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . K Joint                                                    | Rotate(dea) | Section/Shape                                                                                               | Type                                       | Design List                                                                                        | Material                                                                                              | Design Rule              |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------|
| 3                                       | M33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N59                                                                                                        | N60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | RIGID                                                                                                       | None                                       | None                                                                                               | RIGID                                                                                                 | Typical                  |
| 4                                       | M34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N61                                                                                                        | N66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | 270         | Corner Angles                                                                                               | Beam                                       | Single Angle                                                                                       | A36 Gr.36                                                                                             | Typical                  |
| 5                                       | M35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N63                                                                                                        | N65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | 270         | Corner Angles                                                                                               |                                            | Single Angle                                                                                       | A36 Gr 36                                                                                             | Typical                  |
| 6                                       | M36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N64                                                                                                        | N62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Comer Angles                                                                                                |                                            | Single Angle                                                                                       |                                                                                                       | Typical                  |
| 7                                       | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N77                                                                                                        | N89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 |                                            | Pipe                                                                                               | A53 Gr.B                                                                                              |                          |
| 8                                       | A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N70A                                                                                                       | N82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                            |             | Mount Pipes                                                                                                 |                                            | Pipe                                                                                               | A53 Gr.B                                                                                              | Typical                  |
| 9                                       | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N76                                                                                                        | N88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 |                                            |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 0                                       | B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N75                                                                                                        | N87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 |                                            |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 1                                       | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N71A                                                                                                       | N83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 |                                            |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 2                                       | B4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N74                                                                                                        | N86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 |                                            |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 3                                       | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N81                                                                                                        | N93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 |                                            |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 4                                       | A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N72A                                                                                                       | N84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 |                                            |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 5                                       | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBO                                                                                                        | N92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 | Beam                                       |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 3                                       | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N79                                                                                                        | N91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 | Beam                                       |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 7                                       | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N73                                                                                                        | N85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 | Beam                                       |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 3                                       | C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N78                                                                                                        | N90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | Mount Pipes                                                                                                 | Beam                                       |                                                                                                    | A53 Gr.B                                                                                              | Typical                  |
| 9                                       | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N101                                                                                                       | N104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |             | RIGID                                                                                                       | None                                       | None                                                                                               | RIGID                                                                                                 | Typical                  |
| 0                                       | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N102                                                                                                       | N105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |             | RIGID                                                                                                       | None                                       | None                                                                                               | RIGID                                                                                                 | Typical                  |
|                                         | К3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N100                                                                                                       | N103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |             | RIGID                                                                                                       | None                                       | None                                                                                               | RIGID                                                                                                 | Typical                  |
| nţ                                      | <u>Loads an</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Enforce                                                                                                  | ed Displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acemen                                                       | s (BLC 4    | 3 : Man 2 (5                                                                                                | 00 lbs                                     | ))                                                                                                 |                                                                                                       |                          |
| I                                       | علد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N18                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LD,M                                                         |             | Direction<br>Y                                                                                              | Magni                                      | hude((k.k-ft), (in.r                                                                               |                                                                                                       | k*a^2*f()                |
| int i                                   | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N18<br>MENTORCO                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LD,M                                                         | ts (BLC 4   | Direction<br>Y<br>4: Man 3 (5<br>Direction                                                                  | Magni                                      | tude((k.k-ft), (in.ra<br>f<br>))<br>tude((k.k-ft), (in.ra                                          | id). (k*s^2/R                                                                                         |                          |
| int                                     | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label<br>N18<br>d Enforce<br>int Label<br>N26                                                          | ed Displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LD,M<br>L<br>acement<br>LD,M<br>L                            | ts (BLC 4   | Direction Y 4: Man 3 (5) Direction Y                                                                        | Magni<br>600 Ibs<br>Magni                  | tude((k.k-ft), (in.r<br>-, s<br>))<br>tude((k.k-ft), (in.r                                         | id). (k*s^2/R                                                                                         |                          |
| int                                     | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label<br>N18<br>d Enforce<br>int Label<br>N26<br>d Enforce                                             | ed Displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LD,M<br>L<br>acement<br>LD,M<br>L                            | ts (BLC 4   | Direction Y 4: Man 3 (5) Direction Y 5: Man 4 (2)                                                           | Magni<br>600 Ibs<br>Magni<br>50 Ibs        | tude((k.k-ft), (in.ra<br>\$<br>))<br>tude((k.k-ft), (in.ra                                         | id). (k*s^2/ft.                                                                                       | k*s^2*R)]                |
| int                                     | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label<br>N18<br>d Enforce<br>int Label<br>N26<br>d Enforce<br>int Label                                | ed Displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LD,M<br>L<br>acement<br>LD,M<br>L                            | ts (BLC 4   | Direction Y 4: Man 3 (5) Direction Y                                                                        | Magni<br>600 Ibs<br>Magni<br>50 Ibs        | tude((k.k-ft), (in.ra<br>-, f<br>tude((k.k-ft), (in.ra<br>-, f<br>tude((k.k-ft), (in.ra            | id). (k*a^2/b.                                                                                        | k*s^2*f()]               |
| int                                     | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label<br>N18<br>d Enforce<br>int Label<br>N26<br>d Enforce<br>int Label<br>N4                          | ed Displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LD.M<br>LD.M<br>LD.M<br>L<br>Bcement                         | ts (BLC 4   | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y                                                 | Magni<br>600 [bs]<br>Magni<br>50 [bs]      | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs                | id). (k*a^2/b.                                                                                        | k*s^2*f()]               |
| int int int                             | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label                           | ed Displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LD.M<br>LD.M<br>LD.M<br>L<br>Bcement                         | s (BLC 4    | Direction Y 4: Man 3 (5) Direction Y 5: Man 4 (2)                                                           | Magni 600 Ibs Magni 750 Ibs Magni          | tude((k.k-ft), (in.m<br>-, (<br>))<br>tude((k.k-ft), (in.m<br>-, (<br>))                           | id). (k*s^2/ft.<br>i<br>id). (k*s^2/ft.<br>5                                                          | k*s^2*f()]<br>k*s^2*f()) |
| int int int int                         | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6                        | ed Displant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M | ts (BLC 4   | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y                         | Magni 600 /bs Magni 850 /bs Magni 650 /bs  | hude((k.k-ft), (in.rs<br>,<br>))<br>hude((k.k-ft), (in.rs<br>,<br>))<br>hude((k.k-ft), (in.rs<br>, | id). (k*a^2/t.                                                                                        | k*e^2*f()]<br>k*e^2*f()) |
| int int int i                           | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label    | ed Displant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M         | ts (BLC 4   | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2             | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>-2<br>))<br>hude((k.k-ft), (in.rs<br>-2    | id). (k*a^2/L<br>id). (k*a^2/L<br>id). (k*a^2/L<br>id). (k*a^2/L                                      | k's^2'fi)]<br>k's^2'fi)] |
| int | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label    | ed Displant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M<br>LD,M | ts (BLC 4   | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y                         | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>-2<br>))<br>hude((k.k-ft), (in.rs<br>-2    | id). (k°a^2/L<br>id). (k°a^2/L<br>5                                                                   | k's^2'fi)]<br>k's^2'fi)} |
| int | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label    | ed Displant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M         | ts (BLC 4   | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2             | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>-2<br>))<br>hude((k.k-ft), (in.rs<br>-2    | id). (k°a^2/L<br>id). (k°a^2/L<br>5                                                                   | k's^2'fi)]<br>k's^2'fi)} |
| int                                     | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label N6 | ed Displant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M<br>LD.M | ts (BLC 4   | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2             | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>-2<br>))<br>hude((k.k-ft), (in.rs<br>-2    | id). (k°a^2/L<br>id). (k°a^2/L<br>5                                                                   | k's^2'fi)]<br>k's^2'fi)] |
| int                                     | Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label N8 | ed Displant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LD.M LD.M LD.M LD.M LD.M LD.M LD.M LD.M                      | s (BLC 4    | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2 Direction Y | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>-2<br>))<br>hude((k.k-ft), (in.rs<br>-2    | id). (k*a^2/ft.<br>5<br>6). (k*a^2/ft.<br>5                                                           | k's^2'fi)]<br>k's^2'fi)] |
| int                                     | Loads an  Loads an  Loads an  Loads an  Loads an  Loads an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label N8 | ed Displayed Dis | LD.M LD.M LD.M LD.M LD.M LD.M LD.M LD.M                      | s (BLC 4    | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2 Direction Y | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>-2<br>))<br>hude((k.k-ft), (in.rs<br>-2    | id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.                   | k's^2'fi)]<br>k's^2'fi)] |
| int | Loads and Loads | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label N8 | ed Displant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LD.M LD.M LD.M LD.M LD.M LD.M LD.M LD.M                      | s (BLC 4    | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2 Direction Y | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>                                                                          | id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.                   | k's^2'fi)]<br>k's^2'fi)} |
| int | Loads and Loads | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label N8 | ed Displayed Dis | LD.M LD.M LD.M LD.M LD.M LD.M LD.M LD.M                      | s (BLC 4    | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2 Direction Y | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>))<br>hude((k.k-ft), (in.rs<br>-2<br>))<br>hude((k.k-ft), (in.rs<br>-2    | id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.                   | k's^2'fi)]<br>k's^2'fi)] |
| int                                     | Loads and Loads | int Label N18 d Enforce int Label N26 d Enforce int Label N4 d Enforce int Label N6 d Enforce int Label N8 | ed Displayed Dis | LD.M LD.M LD.M LD.M LD.M LD.M LD.M LD.M                      | s (BLC 4    | Direction Y 4: Man 3 (5 Direction Y 5: Man 4 (2 Direction Y 6: Man 5 (2 Direction Y 7: Man 6 (2 Direction Y | Magni 600 [bs] Magni 50 [bs] Magni 50 [bs] | hude((k.k-ft), (in.rs<br>                                                                          | id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k*a^2/ft.  id). (k.*a^2/ft. | k's^2'fi)]<br>k's^2'fi)] |



Designer Job Number

Mastec NDN

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

## Member Point Loads (BLC 1 : Dead) (Continued)

|     | Member Label | Direction | Magnitude(k.k-ft) | Location[ft.%] |
|-----|--------------|-----------|-------------------|----------------|
| 6   | A4           | Y         | -,079             | %39            |
| 7   | A4           | Y         | 073               | %21.4          |
| 8   | B1           | Y         | 035               | %35.7          |
| 9   | B2           | Y         | 051               | %39.4          |
| 10  | B2           | Y         | 043               | %21.4          |
| 11  | B3           | Υ         | 06                | %39            |
| 12  | <u>B3</u>    | Υ         | 075               | %21.4          |
| 13  | B4           | Υ         | 079               | %39            |
| 14  | B4           | Y         | 073               | %21.4          |
| 15  | C1           | Υ         | 035               | %35.7          |
| 16  | C2           | Y         | 051               | %39.4          |
| 17  | C2           | Υ         | 043               | %21.4          |
| _18 | C3           | Υ         | 06                | %39            |
| 19  | C3           | Y         | 075               | %21.4          |
| 20  | C4           | Υ         | 079               | %39            |
| 21  | C4           | Υ         | 073               | %21.4          |
| 22  | K1           | Υ         | 002               | 0              |
| _23 | K2           | Υ         | 002               | 0              |
| 24  | K3           | Υ         | 002               | 0              |

### Member Point Loads (BLC 2 : Ice Dead)

|    | Member Label | Direction | Magnitudelk.k-ft] | Location (ft. %) |
|----|--------------|-----------|-------------------|------------------|
| 1  | <u>A1</u>    | <u> </u>  | 083               | %35.7            |
| 2  | A2           | Y         | 152               | %39.4            |
| 3  | A2           | Y         | 026               | %21.4            |
| 4  | A3           | Y         | 19                | %39              |
| _5 | A3           | Y         | 031               | %21.4            |
| 6  | A4           | Y         | 188               | %39              |
| 7  | A4           | Y         | 031               | %21.4            |
| 8  | B1           | Y         | 083               | %35.7            |
| 9  | B2           | Υ         | 152               | %39.4            |
| 10 | B2           | Y         | 026               | %21.4            |
| 11 | <b>B</b> 3   | Y         | 19                | %39              |
| 12 | B3           | Y         | 031               | %21,4            |
| 13 | B4           | Y         | 188               | %39              |
| 14 | B4           | Y         | 031               | %21.4            |
| 15 | C1           | Y         | 083               | %35.7            |
| 16 | C2           | Y         | -,152             | %39.4            |
| 17 | C2           | Y         | 026               | %21,4            |
| 18 | C3           | Y         | 19                | %39              |
| 19 | C3           | Y         | 031               | %21.4            |
| 20 | C4           | Y         | -,188             | %39              |
| 21 | C4           | Y         | 031               | %21.4            |
| 22 | K1           | Υ         | 006               | 0                |
| 23 | K2           | Y         | 006               | 0                |
| 24 | K3           | Ý         | 006               | 0                |

## Member Point Loads (BLC 3 : Full Wind Antenna (0 Deg))

|      | Member Label | Direction | Magnitude[k.k-ft] | Locationift,%1 |
|------|--------------|-----------|-------------------|----------------|
| 1_1_ | A1           | Z         | 082               | %3             |
| 2    | A2           | Z         | -,144             | 0              |
| 3    | A3           | Z         | 191               | 0              |
| 4    | A4           | Z         | 188               | Û              |
| 5    | <u>81</u>    | Z         | 053               | %3             |
| 6    | B2           | Z         | 108               | 0              |
| 7    | B3           | Z         | 111               | 0              |



**Model Name** 

: Mastec : NDN : 21944-MNT1

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

#### Member Point Loads (BLC 3 : Full Wind Antenna (0 Deg)) (Continued)

|    | Member Label | Direction | Magnitudelk.k-ftl | Location(ft.%) |
|----|--------------|-----------|-------------------|----------------|
| 8  | B4           | Z         | 11                | 0              |
| 9  | C1           | Z         | 053               | %3             |
| 10 | C2           | Z         | 108               | 0              |
| 11 | C3           | Z         | 111               | 0              |
| 12 | C4           | Z         | 11                | 0              |
| 13 | A1           | Z         | 082               | %68.5          |
| 14 | A2           | Z         | 144               | %78.8          |
| 15 | A3           | Z         | -,191             | %78.1          |
| 16 | A4           | Z         | 188               | %78.1          |
| 17 | B1           | Z         | 053               | %68.5          |
| 18 | B2           | Z         | -,108             | %78.8          |
| 19 | B3           | Z         | 111               | %78.1          |
| 20 | B4           | Z         | 11                | %78.1          |
| 21 | C1           | Z         | 053               | %68,5          |
| 22 | C2           | Z         | 108               | %78.8          |
| 23 | C3           | Z         | 111               | %78.1          |
| 24 | C4           | Z         | 11                | %78.1          |

## Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg))

|      | Member Label | Direction | Magnitude[k.k-ft] | Location(ft.%) |
|------|--------------|-----------|-------------------|----------------|
| 1_1_ | A1           | Z         | 062               | %3             |
| 2    | A2           | Z         | -,114             | 0              |
| 3    | A3           | Z         | 142               | 0              |
| 4    | A4           | Z         | 14                | 0              |
| 5    | B1           | Z         | 038               | %3             |
| 6    | B2           | Z         | 083               | 0              |
| 7    | B3           | Z         | 073               | 0              |
| 8    | B4           | 7         | 072               | 0              |
| 9    | C1           | Z         | 062               | %3             |
| .10  | C2           | Z         | 114               | 0              |
| 11   | C3           | Z         | -,142             | 0              |
| 12   | C4           | Z         | 14                | 0              |
| 13   | A1           | Z         | 062               | %68.5          |
| 14   | A2           | Z         | -,114             | %78.8          |
| 15   | A3           | Z         | 142               | %78,1          |
| 16   | A4           | Z         | 14                | %78.1          |
| 17   | B1           | Z         | -,038             | %68.5          |
| 18   | B2           | Z         | -,083             | <u>%78.8</u>   |
| 19   | B3           | Z         | 073               | %78.1          |
| 20   | B4           | Z         | 072               | %78.1          |
| 21   | C1           | Z         | 062               | %68.5          |
| 22   | C2           | Z         | -,114             | %78.8          |
| 23   | C3           | Z         | 142               | %78.1          |
| 24   | C4           | Z         | 14                | %78.1          |
| 25   | A1           | X         | .036              | %3             |
| 26   | A2           | X         | .066              | 0              |
| 27   | A2           | X         | .002              | %21.4          |
| 28   | A3           | X         | .082              | 0              |
| 29   | A3           | X         | .005              | %21.4          |
| 30   | A4           | X         | .081              | 0              |
| 31   | A4           | X         | .005              | %21.4          |
| 32   | B1           | Х         | .022              | %3             |
| 33   | B2           | X         | .048              | 0              |
| 34   | B2           | X         | .009              | %21.4          |
| 35   | B3           | X         | .042              | 0              |
| 36   | B3           | X         | .021              | %21.4          |



: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

#### Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg)) (Continued)

|    | Member Label | Direction | Magnitudelk.k-ftl | Location[ft,%] |
|----|--------------|-----------|-------------------|----------------|
| 37 | B4           | X         | .042              | 0              |
| 38 | 84           | X         | .019              | %21.4          |
| 39 | C1           | X         | .036              | %3             |
| 40 | C2           | X         | .066              | 0              |
| 41 | C2           | X         | .002              | %21.4          |
| 42 | C3           | X         | .082              | 0              |
| 43 | C3           | X         | .005              | %21.4          |
| 44 | C4           | X         | .081              | Û              |
| 45 | C4           | X         | .005              | %21.4          |
| 46 | K1           | X         | .001              | 0              |
| 47 | K2           | X         | .003              | 0              |
| 48 | K3           | X         | .001              | 0              |
| 49 | A1           | X         | .036              | %68.5          |
| 50 | A2           | X         | .066              | %78.8          |
| 51 | A3           | X         | .082              | %78.1          |
| 52 | A4           | X         | .081              | %78.1          |
| 53 | B1           | X         | .022              | %68.5          |
| 54 | B2           | X         | .048              | %78.8          |
| 55 | B3           | X         | .042              | %78.1          |
| 56 | B4           | X         | .042              | %78.1          |
| 57 | C1           | X         | .036              | %68.5          |
| 58 | C2           | X         | .066              | %78.8          |
| 59 | C3           | X         | .082              | %78.1          |
| 60 | C4           | X         | .081              | %78.1          |

### Member Point Loads (BLC 5 : Full Wind Antenna (60 Deg))

|     | Member Label | Direction | Magnitude(k,k-ft) | Location[ft.%] |
|-----|--------------|-----------|-------------------|----------------|
| 1   | A1           | Z         | 026               | %3             |
| 2   | A2           | Z         | 054               | 0              |
| 3   | A3           | Z         | 055               | 0              |
| 4   | A4           | Z         | 055               | Ö              |
| 5   | B1           | Z         | 026               | %3             |
| 6   | B2           | Z         | 054               | 0              |
| 7   | <b>B</b> 3   | Z         | 055               | 0              |
| 8   | B4           | Z         | 055               | 0              |
| 9   | C1           | Z         | 041               | %3             |
| 10  | C2           | Z         | 072               | 0              |
| 11  | C3           | Z         | 095               | 0              |
| .12 | C4           | Z         | 094               | Ō              |
| 13  | A1           | Z         | 026               | %68.5          |
| 14  | A2           | Z         | 054               | %78.8          |
| 15  | A3           | Z         | 055               | %78.1          |
| 16  | A4           | Z         | 055               | %78.1          |
| 17  | <u>B1</u>    | Z         | 026               | %68.5          |
| 18  | B2           | Z         | 054               | %78.8          |
| 19  | B3           | Z         | 055               | %78.1          |
| 20  | B4           | Z         | 055               | %78.1          |
| 21  | C1           | Z         | 041               | %68.5          |
| 22  | C2           | Z         | 072               | %78.8          |
| 23  | C3           | Z         | 095               | %78.1          |
| 24  | C4           | Z         | 094               | %78.1          |
| 25  | A1           | X         | .046              | %3             |
| 26  | A2           | X         | .094              | 0              |
| 27  | A2           | X         | .012              | %21.4          |
| 28  | A3           | X         | .096              | 0              |
| 29  | A3           | X         | .027              | %21.4          |



: Mastec

: NDN : 21944-MNT1

ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

### Member Point Loads (BLC 5 : Full Wind Antenna (60 Deg)) (Continued)

|    | Member Label | Direction                  | Magnitudefick-ft1 | Location(ft.%) |
|----|--------------|----------------------------|-------------------|----------------|
| 30 | A4           | X                          | .095              | 0 1            |
| 31 | A4           | X<br>X<br>X                | .025              | %21.4          |
| 32 | B1           | X                          | .046              | %3             |
| 33 | 82           | X                          | .094              | 0              |
| 34 | B2           | X                          | .012              | %21.4          |
| 35 | B3           | X                          | .096              | 0              |
| 36 | B3           | X                          | .027              | %21.4          |
| 37 | 84           | X                          | .095              | 0              |
| 38 | <u>B4</u>    | X                          | .025              | %21.4          |
| 39 | C1           | X                          | .071              | %3             |
| 40 | C2           | X                          | ,125              | 0              |
| 41 | C2           |                            | 0                 | %21.4          |
| 42 | C3           | X                          | .186              | 0              |
| 43 | C3           | X                          | 0                 | %21.4          |
| 44 | C4           | X                          | .163              | 0              |
| 45 | C4           | X                          | 0                 | %21.4          |
| 46 | K1           | X                          | .004              | 0              |
| 47 | K2           | X                          | .004              | 0              |
| 48 | K3           | X                          | 0                 | Ö              |
| 49 | A1           | X                          | .046              | %68.5          |
| 50 | A2           | X                          | .094              | %78.8          |
| 51 | A3           | X                          | .096              | %78.1          |
| 52 | A            | T X                        | .095              | %78.1          |
| 53 | B1           | X                          | .046              | %68.5          |
| 54 | B2           | X<br>X<br>X<br>X<br>X<br>X | .094              | %78.8          |
| 55 | B3           | X                          | .096              | %78.1          |
| 56 | B4           | \ \ \ \ \ \ \              | .095              | %78.1          |
| 57 | C1           | X<br>X<br>X<br>X           | .071              | %68.5          |
| 58 | C2           | 2                          | .125              | 4/70 0         |
| 59 | C3           | <del>  Q  </del>           | 165               | %78.8<br>778.4 |
| 60 | C4           | + 0 +                      | 100               | <u>%78.1</u>   |
| UV |              |                            | .163              | <b>%78.1</b>   |

### Member Point Loads (BLC 6 : Full Wind Antenna (90 Deg))

|    | Member Label | Direction | Magnitude(k,k-ft) | Location(R.%) |
|----|--------------|-----------|-------------------|---------------|
| 1  | A1           | Z         | 0                 | %3            |
| 2  | A2           | Z         | 0                 | 0             |
| 3  | A3           | Z         | Ō                 | Ō             |
| 4  | A4           | Z         | ō                 | Ō             |
| 5  | 81           | 7         | O.                | %3            |
| 6  | B2           | 7         | Ö                 | ñ             |
| 7  | B3           | 7         | ñ                 | n             |
| 8  | B4           | 7         | ñ                 | ñ             |
| 9  | Ci           | 7         | Ď                 | %3            |
| 10 | C2           | 7         | 0                 | A 5           |
| 11 | C3           | 7         | *                 |               |
| 12 | C4           | + + +     | <u> </u>          | X             |
| 13 | Al           | 7         | 0                 | . 0           |
| 14 | A2           | + + +     | 0                 | %68.5         |
| 15 |              | + + +     |                   | %78.8         |
|    | A3           | + -       |                   | %78.1         |
| 18 | A4           | -         | 9                 | %78.1         |
| 17 | B1           | <u> </u>  | 0                 | %68.5         |
| 18 | B2           | Z         | 0                 | %78.8         |
| 19 | В3           | Z         | 0                 | %78.1         |
| 20 | B4           | Z         | 0                 | %78.1         |
| 21 | C1           | Z         | 0                 | %68.5         |
| 22 | C2           | Z         | .0                | %78.8         |



: Mastec

: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342 **Model Name** 

Apr 24, 2020 6:04 PM Checked By: BDM

### Member Point Loads (BLC 6 : Full Wind Antenna (90 Deg)) (Continued)

|          | Member Label | Direction                               | Magnitude[k.k-ft] | Location(ft.%) |
|----------|--------------|-----------------------------------------|-------------------|----------------|
| 23       | C3           | Z                                       | 0                 | %78.1          |
| 24       | C4           | Z                                       | 0                 | %78.1          |
| 25       | A1           | X                                       | .043              | %3             |
| 26       | A2           | X                                       | .096              | 0              |
| 27       | A2           |                                         | .019              | %21.4          |
| 28       | A3           | X                                       | .084              | 0              |
| 29       | A3           | X                                       | .041              | %21.4          |
| 30       | A4           | X                                       | .083              |                |
| 31       | A4           | X                                       | .039              | %21.4          |
| 32       | B1           | X                                       | .072              | %3             |
| 33       | B2_          | X                                       | .132              | O O            |
| 34       | B2           | X                                       | .005              | %21.4          |
| 34<br>35 | B3           | X                                       | .164              | 0              |
| 36       | B3           | X                                       | .012              | %21.4          |
| 37       | B4           | X<br>X<br>X                             | .162              | 0              |
| 38       | 84           | X                                       | .01               | %21.4          |
| 39       | C1           | Î X                                     | .072              | %3             |
| 40       | C2           | X                                       | .132              | 0              |
| 41       | C2           | X                                       | .005              | %21.4          |
| 42       | C3           | X                                       | .164              | 0              |
| 43       | C3           | Y                                       | .01               | %21.4          |
| 44       | C4           | X                                       | .162              | 0              |
| 45       | C4           | Y                                       | .01               | %21.4          |
| 46       | K1           | X                                       | .006              | 0              |
| 47       | IC2          | Ÿ                                       | .001              | Ö              |
| 48       | K3           | X                                       | .001              | 0              |
| 49       | A1           | <del>Q</del>                            | .043              |                |
| 50       | A2           | X                                       | .096              | <b>%68.5</b>   |
| 51       | A3           | X                                       | .084              | %78.8<br>%78.4 |
| 52       | A4           | â                                       | .083              | <b>%78.1</b>   |
| 53       | B1           | Ŷ                                       |                   | %78.1          |
| 54       | 82           | + + + + + + + + + + + + + + + + + + + + | .072              | %68.5          |
| 55       | B3           | X                                       |                   | %78.8          |
| 56       | B4           | + •                                     | .164              | %78.1          |
| 57       | C1           | X                                       | .162              | %78.1          |
|          |              | + 3 +                                   | .072              | %68.5          |
| 58       | C2           | X                                       | .132              | %78.8          |
| 59       | C3           | + 3 +-                                  | .164              | %78.1          |
| 60       | C4           | X                                       | .162              | %78.1          |

### Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg))

|    | Member Label | Direction | Magnitude(k.k-ft) | Location[ft.%] |
|----|--------------|-----------|-------------------|----------------|
| 1  | A1           | Z         | .026              | %3             |
| 2  | A2           | Z         | .054              | Ō              |
| 3  | A3           | Z         | .055              | 0              |
| 4  | A4           | Z         | .055              | :0             |
| 5  | B1           | Z         | .041              | %3             |
| 6  | B2           | Z         | .072              | 0              |
| 7  | B3           | Z         | .095              | 0              |
| 8  | B4           | Z         | .094              | 0              |
| 9  | C1           | Z         | .028              | %3             |
| 10 | C2           | 2         | .054              | 0              |
| 11 | C3           | Z         | .055              | 0              |
| 12 | C4           | Z         | .055              | Ō              |
| 13 | A1           | Z         | .026              | %68.5          |
| 14 | A2           | Z         | ,054              | %78.8          |
| 15 | A3           | Z         | .055              | %78.1          |



Mastec

: NDN : 21944-MNT1

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg)) (Continued)

|      | Member Label | Direction                                        | Magnitudelk,k-ft) | Location(ft.%) |
|------|--------------|--------------------------------------------------|-------------------|----------------|
| 16   | A4           | Z                                                | .055              | %78.1          |
| 17   | B1           | Z                                                | .041              | %68.5          |
| 18   | B2           | Z                                                | .072              | %78.8          |
| 19   | B3           | 2                                                | .095              | %78.1          |
| 20   | B4           | 2                                                | .094              | %78.1          |
| 21   | C1           | Z                                                | .026              | %68.5          |
| 22   | C2           | Z                                                | .054              | %68.5<br>%78.8 |
| 23   | C3           | Z                                                | .055              | %78.1          |
| 24   | C4           | Z                                                | .056              | %78.1          |
| 25   | A1           | X                                                | .046              | %3             |
| 26   | A2           |                                                  | .094              | × 0            |
| 27   | A2           | X                                                | .012              | %21.4          |
| 28   | A3           | XXX                                              | .096              | 0              |
| 29   | A3           | X                                                | .027              | %21.4          |
| 30   | A4           | X<br>X                                           | .095              | 0              |
| 31   | A4           | X                                                | .025              | %21.4          |
| 32   | B1           | X                                                | .071              | %3             |
| 33   | B2           | X                                                | .125              | 0              |
| 34   | B3           | X                                                | .165              | 0              |
| 35   | 84           | X                                                | .163              | Ō              |
| 36   | C1           | X                                                | .046              | %3             |
| 37   | C2           | X                                                | .094              | 0              |
| 38   | C2           | X                                                | .012              | %21.4          |
| 39   | C3           | X                                                | .096              | 0              |
| 40   | C3           | X                                                | .027              | %21.4          |
| 41   | C4           | X                                                | .095              | 0              |
| 42   | C4           | X                                                | .025              | %21.4          |
| 43   | K1           | X                                                | .004              | 0              |
| 44   | K3           | X                                                | .004              | 0              |
| 45   | A1           | Ŷ                                                | .046              | %68.5          |
| 46   | A2           | X                                                | .094              | %78.8          |
| 47   | A3           | X                                                | .096              |                |
| 48   | A4           | X                                                | .095              | %78.1<br>%78.1 |
| 49   | B1           | <del>                                     </del> | .071              | 70/.0.1        |
| 50   | B2           | X                                                | .125              | %68.5          |
| 51   | B3           | 1 x                                              | .165              | %78.8          |
| 52   | B4           | + + + + + + + + + + + + + + + + + + + +          | .163              | %78.1          |
| 53   | C1           | X                                                | 103               | %78.1          |
| 54   | C2           | Ŷ                                                | ,046              | %68.5          |
| 55   | C3           | + + + + + + + + + + + + + + + + + + + +          | .094              | %78.8          |
| 56   |              | X                                                | .096              | %78.1          |
| LOD_ | C4           | 1 A                                              | .095              | %78.1          |

Member Point Loads (BLC 8 : Full Wind Antenna (150 Dea))

|      | Member Label | Direction | Magnitude(k.k-ft) | Location[fl.%] |
|------|--------------|-----------|-------------------|----------------|
| 1    | A1           | Z         | .062              | %3             |
| 2    | A2           | Z         | .114              | 0              |
| 3    | A3           | Z         | .142              | 0              |
| 4    | A4           | Z.        | .14               | 0              |
| 5    | B1           | 2         | .062              | %3             |
| 8    | B2           | Z         | .114              | 0              |
| 7    | B3           | Z         | .142              | Ō              |
| 8    | 84           | Z         | .14               | 0              |
| 9    | C1           | Z         | .038              | %3             |
| 10 T | C2           | Z         | .083              | 0              |
| 11 I | C3           | Z         | .073              | 0              |
| 12   | C4           | Z         | .072              | Ō              |



Mastec NDN

Model Name

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Point Loads (BLC 8 : Full Wind Antenna (150 Deg)) (Continued)

|          | Member Label | Direction                                         | Magnitude(k.k-ft) | Location[ft,%] |
|----------|--------------|---------------------------------------------------|-------------------|----------------|
| 13       | A1           | Z                                                 | .062              | %68.5          |
| 14       | A2           | Z                                                 | .114              | %78.8          |
| 15       | A3           | Z                                                 | .142              | %78.1          |
| 16       | A4           | Z                                                 | .14               | %78.1          |
| 17       | <b>B</b> 1   | Z                                                 | .062              | %68.5          |
| 18       | B2           | Z                                                 | .114              | %78.8          |
| 19       | <b>B</b> 3   | Z                                                 | .142              | %78.1          |
| 20       | 84           | Z                                                 | .14               | %78.1          |
| 21       | C1           | Z                                                 | .038              | %68.5          |
| 22       | C2           | Z                                                 | .083              | %78.8          |
| 23       | C3           | Z                                                 | .073              | %78.1          |
| 24       | C4           | Z                                                 | .072              | %78.1          |
| 25       | A1           | X                                                 | .036              | %3             |
| 26       | A2           | X                                                 | .066              | <b>0</b> 54    |
| 27       | A2           | X                                                 | .002              | %21.4          |
| 28       | A3           | X                                                 | .082              | 0              |
| 29       | A3           | X                                                 | .005              | %21.4          |
| 30       | A4           | X                                                 | .081              | 0              |
| 31       | A4           | X                                                 | .005              | 004.4          |
| 32       | B1           | x                                                 | .036              | %21.4          |
| 33       | B2           | X                                                 | .066              | %3             |
| 34       | B2           | <del>•</del> •                                    | .002              | 0              |
| 35       | B3           | X                                                 | 002               | %21.4          |
| 36       | B3           | Ŷ                                                 | .082              | 0              |
| 37       | B4           | x                                                 | .004              | %21.4          |
| 38       | B4           | X                                                 | .081              | 0              |
| 39       | C1           | <del>  0                                   </del> | .005              | %21.4          |
| 40       | C2           | X                                                 | .022              | %3             |
| 41       | C2           | X                                                 | .048              | 0              |
|          |              | X                                                 | .009              | %21.4          |
| 42<br>43 | Ç3           | <del>- 5</del>                                    | .042              | 0              |
|          | C3           | X                                                 | .021              | %21.4          |
| 44       | C4           | <del> </del>                                      | .042              | 0              |
| 45       | C4           | X                                                 | .019              | %21.4          |
| 46       | K1           | - X                                               | .001              | 0              |
| 47       | K2           | X                                                 | .001              | Ö              |
| 48       | K3           | X                                                 | .003              | 0              |
| 49       | A1           | X                                                 | .036              | <b>%68.5</b>   |
| 50       | A2           | X                                                 | .066              | %78.8          |
| 51       | A3           | X                                                 | .082              | %78.1          |
| 52       | A4           | X                                                 | .081              | %78.1          |
| 53       | B1           | X                                                 | .036              | %68.5          |
| 54       | 82           | X                                                 | .066              | %78.8          |
| 55       | 83           | X                                                 | .082              | %78.1          |
| 56       | 84           | X                                                 | .081              | %78.1          |
| 57       | C1           | X                                                 | .022              | %68.5          |
| 58       | C2           | X                                                 | .048              | %78.8          |
| 59       | C3           | X                                                 | .042              | %78.1          |
| 60       | C4           | X                                                 | .042              | %78.1          |

### Member Point Loads (BLC 15 : Ice Wind Antenna (0 Deg))

|   | Member Label | Direction | Megnitude(k,k-ft) | Location(ft.%) |
|---|--------------|-----------|-------------------|----------------|
| 1 | A1           | Z         | 018               | %3             |
| 2 | A2           | Z         | 031               | Ö              |
| 3 | A3           | Z         | 039               | 0              |
| 4 | A4           | . Z       | 039               | 0              |
| 5 | B1           | Z         | 013               | %3             |



: Mastec : NDN

signer : NUN Number : 21944-MNT

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342 Apr 24, 2020 6:04 PM Checked By: 8DM

## Member Point Loads (BLC 15 : Ice Wind Antenna (0 Deg)) (Continued)

|    | Member Label | Direction | Magnitudofk.k-ft1 | Location(ft.%) |
|----|--------------|-----------|-------------------|----------------|
| 6  | B2           | Z         | 024               | 0              |
| 7  | B3           | Z         | 025               | 0              |
| 8  | B4           | Z         | 024               | Ō              |
| 9  | C1           | Z         | 013               | %3             |
| 10 | C2           | Z         | 024               | 0              |
| 11 | C3           | 2         | 025               | Ö              |
| 12 | <u>C4</u>    | Z         | 024               | 0              |
| 13 | A1           | Z         | 018               | %68.5          |
| 14 | A2           | Z         | 031               | %78.8          |
| 15 | A3           | Z         | 039               | %78.1          |
| 16 | A4           | Z         | 039               | %78.1          |
| 17 | B1           | Z         | 013               | %68.5          |
| 18 | B2           | Z         | 024               | %78.8          |
| 19 | B3           | Z         | 025               | %78.1          |
| 20 | B4           | Z         | 024               | %78.1          |
| 21 | C1           | Z         | 013               | %68.5          |
| 22 | C2           | Z         | 024               | %78.8          |
| 23 | C3           | Z         | 025               | %78.1          |
| 24 | C4           | Z         | 024               | %78.1          |

### Member Point Loads (BLC 16 : ice Wind Antenna (30 Deg))

| Member Label | Direction                                                                                                                     | Magnitude(k.k-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location[ft.%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1           | Z                                                                                                                             | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Z                                                                                                                             | 025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Z                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A4           | Z                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B1           | Z                                                                                                                             | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Z                                                                                                                             | 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Z                                                                                                                             | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B4           | Z                                                                                                                             | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                               | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C2           | Z                                                                                                                             | 025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C3           | Z                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C4           | Z                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                               | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Z                                                                                                                             | 025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Z                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Z                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B1           | Z                                                                                                                             | •.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B2           |                                                                                                                               | 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Z                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B4           | Z                                                                                                                             | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C1           | Z                                                                                                                             | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C2           |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                                                               | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Z                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A1           | X                                                                                                                             | .008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | X                                                                                                                             | .014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A2           |                                                                                                                               | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | X                                                                                                                             | .017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A3           |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %21,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A4           | X                                                                                                                             | .017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | X                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | X                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %21,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 C4 C4 C4 C5 C4 C7 | A1       Z         A2       Z         A3       Z         A4       Z         B1       Z         B2       Z         B3       Z         B4       Z         C1       Z         C2       Z         C3       Z         C4       Z         A1       Z         A2       Z         A3       Z         B1       Z         B2       Z         B3       Z         B4       Z         C1       Z         C2       Z         C3       Z         C4       Z         A1       X         A2       X         A3       X         A4       X         A4       X         A4       X         B1       X         B2       X | A1       Z      014         A2       Z      025         A3       Z      03         B1       Z      01         B2       Z      019         B3       Z      017         C1       Z      017         C2       Z      025         C3       Z      03         C4       Z      03         A1       Z      014         A2       Z      03         A3       Z      03         B1       Z      014         A2       Z      03         B1       Z      01         B2       Z      017         C1       Z      017         C2       Z      017         C3       Z      03         C4       Z      03         C3       Z      03         C4       Z      017         C1       Z      017         C1       Z      03         C4       Z      03         C4       Z      03         C4 </td |



pany : Mastec gner : NDN Number : 21944-Mi

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342 Apr 24, 2020 6:04 PM Checked By: BDM

# Member Point Loads (BLC 16 : Ice Wind Antenna (30 Dea)) (Continued)

| A 201 | Member Label | Direction | Magnitudelk.k-ftl | Location(ft.%) |
|-------|--------------|-----------|-------------------|----------------|
| 35    | B3           | X         | .01               | 0              |
| 36    | B3           | X         | .005              | %21.4          |
| 37    | B4           | X         | .01               | 0              |
| 38    | B4           | X         | .005              | %21.4          |
| 39    | C1           | X         | ,008              | %3             |
| 40    | C2           | X         | .014              | Ō              |
| 41    | C2           | X         | .001              | %21.4          |
| 42    | C3           | X         | .017              | 0              |
| 43    | C3           | X         | .001              | %21.4          |
| 44    | Ç4           | X         | .017              | 0              |
| 45    | C4           | X         | .001              | %21.4          |
| 46    | K1           | X         | 0                 | 0              |
| 47    | K2           | X         | .002              | Ó              |
| 48    | K3           | X         | 0                 | Ō              |
| 49    | A1           | X         | .008              | %68.5          |
| 50    | A2           | X         | .014              | %78.8          |
| 51    | A3           | X         | .017              | %78.1          |
| 52    | A4           | X         | .017              | %78.1          |
| 53    | B1           | X         | .006              | %68.5          |
| 64    | B2           | X         | .011              | %78.8          |
| 55    | <b>B</b> 3   | X         | .01               | %78.1          |
| 56    | B4           | X         | .01               | %78.1          |
| 57    | C1           | X         | ,008              | %68.5          |
| 58    | C2           | X         | .014              | %78.8          |
| 59    | C3           | X         | .017              | %78.1          |
| 60    | C4           | X         | .017              | %78.1          |

### Member Point Loads (BLC 17 : Ice Wind Antenna (60 Deg))

|    | Member Label | Direction | Magnitude(k, k-ft) | Location(ft.%) |
|----|--------------|-----------|--------------------|----------------|
| 1  | A1           | Z         | 006                | %3             |
| 2  | A2           | Z         | 012                | 0              |
| 3  | A3           | Z         | 012                | 0              |
| 4  | A4           | Z         | 012                | ΄0             |
| 5  | B1           | Z         | 006                | %3             |
| 6  | B2           | Z         | 012                | <u> </u>       |
| 7  | B3           | 2         | 012                | 0              |
| 8  | B4           | Z         | 012                | 0              |
| 9  | C1           | Z         | -,009              | %3             |
| 10 | C2           | Z         | -,015              | 0              |
| 11 | <b>C</b> 3   | Z         | 02                 | Ō              |
| 12 | C4           | Z         | 019                | .0             |
| 13 | A1           | Z         | 006                | %68.5          |
| 14 | A2           | Z         | -,012              | %78.8          |
| 15 | A3           | Z         | 012                | %78.1          |
| 16 | A4           | Z         | 012                | %78.1          |
| 17 | B1           | Z         | 006                | %68.5          |
| 18 | <b>B2</b>    | Z         | 012                | %78.8          |
| 19 | <b>B3</b>    | 2 2       | 012                | %78.1          |
| 20 | B4           | Z         | 012                | %78.1          |
| 21 | C1           | Z         | 009                | %68.5          |
| 22 | C2           | Z         | 015                | %78.8          |
| 23 | C3           | Z         | 02                 | %78.1          |
| 24 | C4           | Z         | 019                | %78.1          |
| 25 | A1           | I x       | .011               | <u>%3</u>      |
| 26 | A2           | X         | .021               | 0              |
| 27 | A2           | X         | .004               | %21.4          |



: Mastec NDN

: 21944-MNT1

Model Name : ATC411189-Cranburyau CT-10035342 Apr 24, 2020 6:04 PM Checked By: BDM

# Member Point Loads (BLC 17 : Ice Wind Antenna (60 Deg)) (Continued)

|    | Member Label | Direction             | Magnitudelk.k-ftl | Location(ft.%) |
|----|--------------|-----------------------|-------------------|----------------|
| 28 | A3           | X                     | .021              | 0              |
| 29 | A3           | X<br>X<br>X<br>X<br>X | .007              | %21,4          |
| 30 | A4           | X                     | .021              | 0              |
| 31 | A4           | X                     | .006              | %21.4          |
| 32 | <b>B</b> 1   | X                     | .011              | %3             |
| 33 | B2           | X                     | .021              | 0              |
| 34 | B2           | X                     | .004              | %21.4          |
| 35 | B3           | X                     | .021              | 0              |
| 36 | B3           | X                     | .007              | %21.4          |
| 37 | B4           | X                     | .021              | 0              |
| 38 | B4           | X                     | ,006              | %21.4          |
| 39 | C1           | X<br>X<br>X           | .016              | %3             |
| 40 | C2           | X                     | .027              | 0              |
| 41 | C2           | X                     | 0                 | %21.4          |
| 42 | <u>C3</u>    | X                     | .034              | 0              |
| 43 | C3           | X                     | 0                 | %21.4          |
| 44 | C4           | X                     | ,034              | 0              |
| 45 | C4           | X                     | 0                 | %21.4          |
| 46 | K1           | X                     | .002              | 0              |
| 47 | K2           | X                     | .002              | Ō              |
| 48 | K3           | X                     | O                 | Ĉ.             |
| 49 | A1           | X                     | .011              | %68.5          |
| 50 | A2           | X                     | .021              | %78.8          |
| 51 | A3           | X                     | .021              | %78.1          |
| 52 | A4           | X                     | .021              | %78.1          |
| 53 | B1           | X                     | .011              | %68.5          |
| 54 | B2           | X                     | .021              | %78.8          |
| 55 | B3           | X                     | .021              | %78.1          |
| 56 | B4           | X                     | .021              | %78.1          |
| 57 | C1           | Ŷ                     | .016              | %68.5          |
| 58 | C2           | X                     | .027              | 7000.U         |
| 59 | C3           | Y                     | .034              | %78.8<br>%78.1 |
| 60 | C4           | X                     | .034              | %78.1<br>%78.1 |

### Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg))

| 100 | Member Label | Direction  | Magnitude(k,k-ft) | Location[ft.%] |
|-----|--------------|------------|-------------------|----------------|
| 1   | A1           | Z          | 0                 | %3             |
| 2   | A2           | Z          | 0                 | Ô              |
| 3   | _A3          | Z          | 0                 | 0              |
| 4   | A4           | Z          | 0                 | Ô.             |
| 5   | B1           | Z          | 0                 | %3             |
| 6   | B2           | Z          | Ô                 | Ō              |
| 7   | B3           | Z          | 0                 | 0              |
| 8   | B4           | Z          | 0                 | Ō              |
| 9   | C1           | Z          | 0                 | %3             |
| 10  | C2           | Z          | 0                 | 0              |
| 11  | C3           | Z          | Ō                 | 0              |
| 12  | C4           | Z          | 0                 | . 0            |
| 13  | A1           | Z          | 0                 | %68.5          |
| 14  | A2           | Z          | 0                 | %78.8          |
| 15  | A3           | Z          | 0                 | %78.1          |
| 16  | A4           | Z          | 0                 | %78.1          |
| 17  | 81           | Z          | 0                 | %68.5          |
| 18  | 82           | Z          | Ō                 | %78.8          |
| 19  | B3           | Z          | 0                 | %78.1          |
| 20  | B4           | <b>Z</b> , | 0                 | %78.1          |



Mastec

: NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg)) (Continued)

|    | Member Label | Direction | Magnitudelk,k-ft) | Locationift.%1 |
|----|--------------|-----------|-------------------|----------------|
| 21 | C1           | Z         | 0                 | %68.5          |
| 22 | C2           | Z         | 0                 | %78.8          |
| 23 | C3           | Z         | 0                 | %78.1          |
| 24 | C4           | Z         | 0                 | %78.1          |
| 25 | A1           | X         | .011              | %3             |
| 26 | A2           | X         | .022              | 0              |
| 27 | A2           | X         | .006              | %21.4          |
| 28 | A3           | X         | .02               | 0              |
| 29 | A3           | X         | .01               | %21.4          |
| 30 | A4           | X         | .019              | 0              |
| 31 | A4           | X         | .01               | %21.4          |
| 32 | B1           | X         | .016              | 963            |
| 33 | B2           | X         | .028              | 0              |
| 34 | B2           | X         | .001              | %21.4          |
| 35 | B3           | X         | .034              | 0              |
| 36 | B3           | X         | .003              | %21.4          |
| 37 | 84           | X         | .034              | 0              |
| 38 | 84           | X         | .002              | %21.4          |
| 39 | C1           | X         | 016               | %3<br>%3       |
| 40 | C2           | X         | .028              | 0              |
| 41 | C2           | X         | .001              | %21.4          |
| 42 | C3           | X         | .034              |                |
| 43 | C3           | X         | .003              | 0              |
| 44 | C4           | Ŷ.        | .034              | %21.4          |
| 45 | C4           | Î Â       | .034              | 0              |
| 46 | K1           | Î X       | .002              | %21.4          |
| 47 | K2           |           | .003              | 0              |
|    |              | X         | .001              | 0              |
| 48 | К3           | X         | .001              | 0              |
| 49 | A1           | X         | .011              | %68.5          |
| 50 | A2           | X         | .022              | %78.8          |
| 51 | A3           | X         | .02               | %78.1          |
| 52 | A4           | X         | .019              | %78.1          |
| 53 | B1           | X         | .016              | %68.5          |
| 54 | B2           | X         | .028              | %78.8          |
| 55 | B3           | X         | .034              | %78.1          |
| 56 | 84           | X         | .034              | %78.1          |
| 57 | C1           | X         | .016              | %68.5          |
| 58 | C2           | X         | .028              | %78.8          |
| 59 | C3           | X         | .034              | %78.1          |
| 60 | C4           | X         | .034              | %78.1          |

## Member Point Loads (BLC 19 : Ice Wind Antenna (120 Deg))

|      | Member Label | Direction | Magnitude(k.k-ft) | Location(ft.%) |
|------|--------------|-----------|-------------------|----------------|
| 1_1_ | A1           | Z         | .006              | %3             |
| 2    | A2           | Z         | .012              | 0              |
| 3_   | A3           | Z         | .012              | Q              |
| 4    | A4           | Z         | .012              | 0              |
| 5    | B1           | Z         | .009              | %3             |
| 6    | B2           | Z         | .015              | 0              |
| 7    | B3           | Z         | .02               | 0              |
| 8    | B4           | Z         | .019              | 0              |
| 9    | C1           | Z         | .006              | %3             |
| 10   | C2           | Z         | .012              | O              |
| 11   | <u>C3</u>    |           | .012              | 0              |
| 12   | C4           | 2         | .012              | C              |
| 13   | A1           | Z         | .006              | %68.5          |



: Masteç

: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

### Member Point Loads (BLC 19 : ice Wind Antenna (120 Deg)) (Continued)

|      | Member Label | Direction | Magnitude(k,k-ft) | Location(it.%) |
|------|--------------|-----------|-------------------|----------------|
| 14   | A2           | Z         | .012              | %78.8          |
| 15   | A3           | Z         | .012              | %78.1          |
| 16   | A4           | Z         | .012              | %78.1          |
| 17   | <u>B1</u>    | Z         | .009              | %68.5          |
| 18   | B2           | Z         | .015              | %78.8          |
| 19   | B3           | Z         | .02               | %78.1          |
| 20   | B4           | Z         | .019              | %78.1          |
| 21   | <u>C1</u>    | Z         | .006              | %88.5          |
| 22   | C2           | Z         | .012              | %76.8          |
| 23   | C3           | Z         | .012              | %78.1          |
| 24   | C4           | Z         | ,012              | %78.1          |
| 25   | A1           | Z         | .011              | 963            |
| 26   | A2           | X         | .021              | O O            |
| 27   | A2           | X         | .004              | %21.4          |
| 28   | A3           | X         | .021              | 0              |
| 29   | A3           | X         | .007              | %21.4          |
| 30   | A4           | . X       | .021              | 0              |
| 31   | A4:          | X         | .006              | %21.4          |
| 32   | B1           | X         | .016              | %3             |
| 33   | 82           | X         | .027              | 0              |
| 34   | B3           | X         | .034              | Q              |
| 35   | 84           | X         | .034              | Ō              |
| 36   | C1           | X         | .011              | %3             |
| 37   | C2           | X         | .021              | 0              |
| 38   | C2           | X         | .004              | %21.4          |
| 39   | <b>C</b> 3   | X         | .021              | Q              |
| 40   | C3           | X         | .007              | %21.4          |
| 41   | C4           | X         | .021              | 0              |
| 42   | Ç4           | X         | .006              | %21.4          |
| 43   | K1           | X         | .002              | 0              |
| 44   | K3           | X         | .002              |                |
| 45   | <u>A1</u>    | X         | .011              | %68.5          |
| 46   | A2           | X         | .021              | %78.8          |
| 47   | A3           | X         | .021              | %78.1          |
| 48   | A4           | X         | .021              | %78.1          |
| 49   | B1           |           | .016              | %68.5          |
| 50   | B2           | X         | .027              | %78.8          |
| 51   | B3           | X         | .034              | %78.1          |
| 52   | B4           | X         | .034              | %78.1          |
| 53   | C1           | Î Â       | .011              | %68.5          |
| 54   | C2           | X         | .021              | %78.8          |
| 55   | C3           | X         | .021              | %78.1          |
| 56   | C4           | 1 x       | .021              | %78.1          |
| HH ( |              | 1 0       | ".U.L.            | 7h/G. 1        |

Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg))

|     | Member Label | Direction | Magnitudelk.k-ftl | Location[9,%] |
|-----|--------------|-----------|-------------------|---------------|
| 1.1 | A1           | Z         | .014              | %3            |
| 2.  | A2           | Z         | .012              | 0             |
| 3   | A3           | Z         | .012              | 0             |
| 4   | A4           | Z         | .012              | 1.0           |
| 5   | Bj           | Z         | .009              | %3            |
| 6   | B2           | Z         | .015              | <b>40</b> °   |
| 7   | B3           | Z         | .02               | Ō             |
| 8   | B4           | Z         | .019              | 0             |
| 9   | C1           | Z         | .006              | %3            |
| 10  | C2           | Z         | .012              |               |



ny : Mastec ir : NDN nber : 21944-MNT1

Job Number : 3 Model Name : 3

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg)) (Continued)

|    | Member Label | Direction                                         | Magnitudelk,k-ft) | Location[ff.%]  |
|----|--------------|---------------------------------------------------|-------------------|-----------------|
| 11 | C3           | Z                                                 | .012              | 0               |
| 12 | C4           | Z .                                               | .012              |                 |
| 13 | A1           | Z                                                 | .014              | %68.5           |
| 14 | A2           | Z                                                 | .012              | %78.8           |
| 15 | A3           | Z                                                 | .012              | 70/Q.Q          |
| 16 | . A4         | Z                                                 | .012              | %76.1           |
| 17 | B1           |                                                   | .012              | %78.1           |
|    | <u>D1</u>    | Z                                                 | .009              | %68.5           |
| 18 | B2           | Z                                                 | .015              | %78.8           |
| 19 | B3           | Z                                                 | .02               | %78.1           |
| 20 | B4           | Z                                                 | .019              | %78.1           |
| 21 | C1           | Z                                                 | .006              | %68.5           |
| 22 | C2           | 2                                                 | .012              | %78.8           |
| 23 | C3           | Z                                                 | .012              | %78.1           |
| 24 | C4           | Z                                                 | .012              | %78.1           |
| 25 | A1           | X                                                 | .008              | %3              |
| 26 | A2           | X                                                 | .021              | <u> </u>        |
| 27 | A2           | X                                                 | ,004              | 0<br>%21.4      |
| 28 | A3           | Ŷ                                                 | 004               | 7621.4          |
| 29 |              | + + + -                                           | .021              | 0               |
|    | A3           | X                                                 | .007              | %21.4           |
| 30 | A4           | X                                                 | .021              | 0               |
| 31 | A4           | X                                                 | .006              | %21.4           |
| 32 | B1           | X                                                 | .016              | %3              |
| 33 | B2           | X                                                 | ,027              | 0               |
| 34 | B3           | X                                                 | .034              | Q<br>C          |
| 35 | B4           | X                                                 | .034              | Ō               |
| 36 | C1           | X                                                 | .011              | %3              |
| 37 | C2           | X                                                 | .021              | O O             |
| 38 | C2           | Y                                                 | .004              | %21.4           |
| 39 | C3           | X                                                 | .021              | 7021.4          |
| 40 | C3           | Ŷ                                                 | 002               | 0<br>%21.4      |
| 44 | <u> </u>     | <del>  0  </del>                                  | .007              | %21.4           |
| 41 | C4           | X                                                 | .021              | 0               |
| 42 | C4           | <b>→ </b>                                         | .006              | %21.4           |
| 43 | K1           | X                                                 | .002              | 0               |
| 44 | K3           | X                                                 | .002              | 0               |
| 45 | A1           | X                                                 | .008              | %68.5           |
| 46 | A2           | X                                                 | .021              | %78.8           |
| 47 | A3           | X<br>X<br>X<br>X<br>X                             | .021              | %78.1           |
| 48 | A4           | X                                                 | .021              | %78.1           |
| 49 | B1           | X                                                 | .016              | %68.5           |
| 50 | B2           | † <del>•</del> •                                  | .027              | 709.9<br>0 70.0 |
| 51 | B3           | XXXX                                              | .034              | %78.8           |
| 52 |              | <del>  0                                   </del> | .039              | %78.1           |
| 52 | B4           | + 5 +                                             | .034              | %78.1           |
| 53 | C1           | X                                                 | .011              | <b>%68.5</b>    |
| 54 | C2           | X                                                 | .021              | %78.8           |
| 55 | C3           | X                                                 | .021              | %78.1           |
| 56 | C4           | X                                                 | .021              | %78.1           |

### Member Point Loads (BLC 27 : Seismic Antenna (0 Deg))

|     | Member Label | Direction | Magnitude(k.k-ft)          | Location(ft.%) |
|-----|--------------|-----------|----------------------------|----------------|
| 1 [ | A1           | Z         | Magnitude(k.k-ft)<br>-,004 | %35.7          |
| 2   | A2           | Z         | 006                        | %39.4          |
| 3   | A2           | Z         | 005                        | %21.4          |
| 4   | A3           | Z         | 007                        | %39            |
| 5   | A3           | Z         | 009                        | %21.4          |
| 6   | A4°          | Z         | 01                         | %39            |
| 7   | A4           | Z         | 009                        | %21.4          |



: Mastec : NDN : 21944-MNT1

: ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Point Loads (BLC 27 : Seismic Antenna (0 Dea)) (Continued)

|    | Member Lebel | Direction  | Magnitudelk,k-ft1 | Locationfft.%1 |
|----|--------------|------------|-------------------|----------------|
| 8  | <b>B</b> 1   | Z          | -,004             | %35.7          |
| 9  | B2           | Z          | 006               | %39.4          |
| 10 | B2           | <b>Z</b> . | 005               | %21.4          |
| 11 | B3           | Z          | 007               | %39            |
| 12 | B3           | Z          | -,009             | %21.4          |
| 13 | B4           | 2          | 01                | %39            |
| 14 | B4           | Z          | 009               | %21.4          |
| 15 | C1           | Z          | 004               | %35.7          |
| 16 | C2           | Z          | 006               | %39.4          |
| 17 | C2           | Z          | 005               | %21.4          |
| 18 | C3           | Z          | 007               | %39            |
| 19 | C3           | Z          | -,009             | %21,4          |
| 20 | C4           | Z          | 01                | %39            |
| 21 | C4           | Z          | -,009             | %21.4          |
| 22 | K1           | Z          | 0                 | 0              |
| 23 | K2           | Z          | Ō                 | 0              |
| 24 | K3           | Z          | Ō                 | 0              |

Member Point Loads (BLC 28 : Seismic Antenna (90 Deg))

|    | Member Label | Direction        | Magnitude(k,k-ft) | Location(R,%)   |
|----|--------------|------------------|-------------------|-----------------|
| 1  | A1           | X                | .004              | %35.7           |
| 2  | A2           | X                | .006              | %39.4           |
| 3  | A2           | X                | ,005              | %21.4           |
| 4  | A3           | X                | .007              | %39             |
| 5  | A3           | X                | .009              | %21.4           |
| 6  | A4           | X                | .01               | %39             |
| 7  | A4           | X                | .009              | %21.4           |
| 8  | 81           | X                | .004              | %35.7           |
| 9  | B2           | X                | .006              | %39,4           |
| 10 | B2           | X                | .005              | %21.4           |
| 11 | B3           | X                | .007              | %39             |
| 12 | B3           | X                | .009              | %21.4           |
| 13 | B4           | X                | .01               | %39             |
| 14 | B4           | X                | .009              | %21.4           |
| 15 | C1           | X                | .004              | %35.7           |
| 16 | C2           | X                | .006              | %39.4           |
| 17 | C2           | X                | .005              | %21.4           |
| 18 | <u>C3</u>    | X                | .007              | 77-21.4<br>0/20 |
| 19 | C3           | X                | .009              | %39             |
| 20 | C4           | Ŷ                | .01               | %21.4           |
| 21 | C4           | <del>  0  </del> | .009              | %39             |
| 22 | Ki           | X                |                   | %21.4           |
| 23 | KO V         | 1 0              | 9                 | - O "           |
| 23 | K2           | X                | . 0               | <u> </u>        |
| 24 | K3           | X                | · 0               | 0               |

Member Point Loads (BLC 41 : Seismic Vertical Antennas)

|   | Member Lebel | Direction | Magnitudelk.k-f0 | Location(ft %)       |
|---|--------------|-----------|------------------|----------------------|
| 1 | A1           | Y         | Megnitude(k.k-f0 | Location(ft.%) %35.7 |
| 2 | A2           | Y         | 01               | %39.4                |
| 3 | A2           | Y         | 009              | %21.4                |
| 4 | A3           | Y         | 012              | %39                  |
| 5 | A3           | Y         | 015              | %21.4                |
| 6 | A4           | Y         | 016              | %39                  |
| 7 | A4           | Y         | 015              | %21.4                |
| 8 | B1.          | Y         | 007              | %35.7                |
| 8 | B2           | Y         | 01               | %39.4                |



ny : Mastec or : NDN nber : 21944-MNT1

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Point Loads (BLC 41 : Seismic Vertical Antennas) (Continued)

|    | Member Label | Direction | Magnitudelk.k-ftl | Location(ft.%) |
|----|--------------|-----------|-------------------|----------------|
| 10 | B2           | Y         | 009               | %21.4          |
| 11 | B3           | Υ         | 012               | %39            |
| 12 | B3           | Y         | 015               | %21.4          |
| 13 | B4           | Y         | 016               | %39            |
| 14 | B4           | Y         | 015               | %21.4          |
| 15 | C1           | Y         | 007               | %35.7          |
| 16 | C2           | Y         | 01                | %39.4          |
| 17 | C2           | Υ         | 009               | %21.4          |
| 18 | C3           | Y         | 012               | %39            |
| 19 | C3           | Υ         | 015               | %21.4          |
| 20 | <u>C4</u>    | ΥΥ        | 016               | %39            |
| 21 | C4           | Y         | 015               | %21.4          |
| 22 | <u>K1</u>    | Y         | 0                 | 0              |
| 23 | K2           | Υ         | 0                 | 0              |
| 24 | K3           | Υ         | . 0               | 0              |

### Member Distributed Loads (BLC 2 : Ice Dead)

|    | Member Label | Direction | Start Magnitude(k/ft.F.ks/t | End Magnitude/k/h.F.kefl | Start Location(f | End Locationfft |
|----|--------------|-----------|-----------------------------|--------------------------|------------------|-----------------|
|    | M1           | Y         | 009                         | 009                      | 0                | %100            |
| 2  | M2           | Y         | 009                         | - 009                    | 0                | %100            |
| 3  | <u>M3</u>    | Y         | 009                         | -,009                    | 0                | %100            |
| 4  | M4           | Y         | 009                         | 009                      | 0                | %100            |
| 5  | <u>M5</u>    | Y         | 009                         | 009                      | 0                | %100            |
| 6  | M6           | Y         | 009                         | 009                      | Ô                | %100            |
| 7  | M7           | Y         | 002                         | 002                      | 0                | %100            |
| 8  | MB           | Y         | 002                         | 002                      | 0                | %100            |
| 9  | M9           | Y         | 002                         | 002                      | 0                | %100            |
| 10 | M10          | Y         | 002                         | 002                      | 0                | %100            |
| 11 | M11          | Y         | 002                         | 002                      | 0                | %100            |
| 12 | M12          | Y         | 002                         | 002                      | 0                | %100            |
| 13 | M13          | Υ         | 002                         | 002                      | 0                | %100            |
| 14 | M14          | Y         | -,002                       | 002                      | 0                | %100            |
| 15 | M15          | Y         | 002                         | -,002                    | O                | %100            |
| 16 | M16          | Y.        | 002                         | 002                      | 0                | %100            |
| 17 | M17          | Y         | 002                         | 002                      | Q                | %100            |
| 18 | M18          | Y         | 002                         | 002                      | ō                | %100            |
| 19 | M19          | Y         | 005                         | -,005                    | Ö                | %100            |
| 20 | M20          | Y         | -,005                       | 005                      | 0                | %100            |
| 21 | M21          | Υ         | -,005                       | 005                      | 0                | %100            |
| 22 | M22          | Y         | -,002                       | 002                      | 0                | %100            |
| 23 | M23          | Y         | 002                         | 002                      | 0                | %100            |
| 24 | M24          | Y         | 002                         | 002                      | 0                | %100            |
| 25 | M25          | Y         | 002                         | 002                      | 0                | %100            |
| 26 | M26          | Y         | 002                         | 002                      | 0                | %100            |
| 27 | M27          | Y         | 002                         | 002                      | 0                | %100            |
| 28 | M28          | Y         | -,002                       | 002                      | 0                | %100            |
| 29 | M29          | Y         | 002                         | 002                      | 0                | %100            |
| 30 | M30          | Y         | -,002                       | 002                      | 0                | <u>%100</u>     |
| 31 | M31          | Y         | 002                         | 002                      | 0                | %100            |
| 32 | M32          | Y         | -,002                       | 002                      | 0                | %100            |
| 33 | M33          | Y         | 002                         | 002                      | 0                | %100            |
| 34 | M34          | Y         | -,006                       | 006                      | 0                | %100            |
| 35 | M35          | Y         | 006                         | 006                      | Ö                | %100            |
| 36 | M36          | Y         | -,006                       | 006                      | Ö                | %100            |
| 37 | B1           | Y         | 005                         | 005                      | 0                | %100            |



Mastec NDN

signer : NDN Number : 21944-MNT

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342 Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 2 : Ice Dead) (Continued)

|     | Member Label | Direction | Start Magnitude(k/ft.F.ksf) | End Magnitudelk/ft.F.kafl | Start Locationift. | End Locationift |
|-----|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 38  | A4           | Y         | 005                         | 005                       | 0                  | %100            |
| 39  | B2           | Y         | 005                         | 005                       | 0                  | %100            |
| 40  | B3           | Y         | 005                         | 005                       | 0                  | %100            |
| 41  | A3           | Υ         | 005                         | 005                       | ň                  | %100            |
| 42  | B4           | Y         | 005                         | 005                       | ň                  | %100            |
| 43  | C1           | Y         | 005                         | 005                       | 0                  | %100            |
| 44  | A2           | Y         | -,005                       | 005                       | 0                  | %100            |
| 45  | C2           | Y         | 005                         | 005                       | 0                  | %100            |
| 46  | C3           | Y         | 005                         | 005                       | 0                  | %100            |
| 47  | A1.          | Y         | 005                         | 005                       | <u> </u>           | %100            |
| 48  | C4           | Y         | 005                         | 005                       | n n                | %100            |
| 49  | K2           | Y         | 002                         | 002                       | 0                  | %100            |
| .50 | K1           | Y         | 002                         | 002                       | V -                |                 |
| 51  | К3           | Y         | 002                         | 002                       | 1 0                | %100<br>%100    |

### Member Distributed Loads (BLC 9 : Full Wind Members (0 Deg))

|    | Member Label | Direction | Start Magnitude[k/ft.F.ksfi | End Magnitude(k/ft.F.ksf) | Start Location(ft. | End Location(ft                             |
|----|--------------|-----------|-----------------------------|---------------------------|--------------------|---------------------------------------------|
|    | <u> </u>     | Z         | 02                          | 02                        | 0                  | %100                                        |
| 2  | M2           | Z         | 005                         | 005                       | 0                  | %100                                        |
| 3  | M3           | Z         | 005                         | 005                       | 0                  | %100                                        |
| 4  | M4           | Z         | 0                           | 0                         | 0                  | %100                                        |
| _5 | M5           | Z         | -,015                       | 015                       | 0                  | %100                                        |
| 6  | M6           | Z         | 015                         | 015                       | 0                  | %100                                        |
| 7  | M19          | Z         | 007                         | 007                       | 0                  | %100                                        |
| 8  | M20          | Z         | 002                         | 002                       | Ö                  | %100                                        |
| 9  | M21          | Z         | 002                         | 002                       | 0                  | %100                                        |
| 10 | M34          | Z         | 003                         | 003                       | 0                  | %100                                        |
| 11 | M35          | Z         | 012                         | 012                       | 0                  | %100                                        |
| 12 | M36          | Z         | 003                         | 003                       | 0                  | %100                                        |
| 13 | B1           | Z         | 007                         | 007                       | 0                  | %3                                          |
| 14 | C1           | Z         | 007                         | 007                       | -0                 | %3                                          |
| 15 | A1           | Z         | 007                         | 007                       | 0                  | %3                                          |
| 16 | B1           | Z         | 007                         | -,007                     | %68.5              | %100                                        |
| 17 | A4           | Z         | 007                         | 007                       | %78.1              | %100                                        |
| 18 | B2           | 2         | 007                         | 007                       | %78.8              | %100                                        |
| 19 | B3           | Z         | 007                         | 007                       | %78.1              | %100                                        |
| 20 | A3           | Z         | 007                         | -,007                     | %78.1              | %100                                        |
| 21 | B4           | Z         | 007                         | 007                       | %78.1              | %100                                        |
| 22 | C1           | Z         | 007                         | 007                       | %68.5              | %100                                        |
| 23 | A2           | Z         | 007                         | 007                       | %78.8              | %100                                        |
| 24 | C2           | Z         | 007                         | 007                       | %78.8              | %100                                        |
| 25 | C3           | Z         | 007                         | -,007                     | %78.1              | %100                                        |
| 26 | A1           | Z         | 007                         | -,007                     | %68.5              | %100                                        |
| 27 | C4           | Z         | 007                         | 007                       | %78.1              | %100                                        |
| 28 | M1           | Х         | 0                           | 0                         | 0                  | %100                                        |
| 29 | M2           | Х         | 0                           | 0                         | 0                  | %100                                        |
| 30 | M3           | X         | 0                           | 0                         | 0                  | %100                                        |
| 31 | M4           | X         | 0                           | 0                         | 0                  | %100                                        |
| 32 | M5           | X         | 0                           | 0                         | Ö                  | %100<br>——————————————————————————————————— |
| 33 | M6           | X         | 0                           | 0                         | 0                  | %100                                        |
| 34 | M19          | X         | 0                           | 0                         | 0                  | %100                                        |
| 35 | M20          | Х         | 0                           | 0                         | 0                  | %100                                        |
| 36 | M21          | X         | 0                           | 0                         | Ö                  | %100                                        |
| 37 | M34          | Х         | 0                           | 0                         | 0                  | %100                                        |
| 38 | M35          | X         | - 0                         | Ō                         | 0                  | %100                                        |
| 39 | M36          | Х         | 0                           | 0                         | 0                  | %100                                        |



Mastec

NDN 21944-MNT1

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 9 : Full Wind Members (0 Deg)) (Continued)

|    | Member Label | Direction | Start Magnitudelk/R.F.ksfl | End Magnitude(k/ft.F.kefi | Start Locationifi. | End Locationift |
|----|--------------|-----------|----------------------------|---------------------------|--------------------|-----------------|
| 40 | B1           | X         | 0                          | 0                         | 0                  | %3              |
| 41 | A4           | X         | 0                          | 0                         | 0                  | %100            |
| 42 | A3           | X         | 0                          | 0                         | O O                | %100            |
| 43 | C1           | X         | 0                          | 0                         | 0                  | %3              |
| 44 | A2 -         | Х         | 0                          | 0                         | 0                  | %100            |
| 45 | A1           | X         | 0                          | Ö                         | 0                  | %100            |
| 46 | 31           | X         | 0                          | 0                         | %68.5              | %100            |
| 47 | B2           | X         | 0                          | 0                         | %78.8              | %100            |
| 48 | B3           | X         | 0                          | 0                         | %78.1              | %100            |
| 49 | 84           | X         | 0                          | 0                         | %78.1              | %100            |
| 50 | C1           | X         | 0                          | 0                         | %68.5              | %100            |
| 51 | C2           | X         | 0                          | 0                         | %78.8              | %100            |
| 52 | C3           | X         | 0                          | 0                         | %78.1              | %100            |
| 53 | C4           | X         | 0                          | 0                         | %78.1              | %100            |

### Member Distributed Loads (BLC 10 : Full Wind Members (30 Deg))

|    | Member Label | Direction | Start Magnitude(k/R.F.ksfl | End Magnitudefk/ft.F.ksfl | Start Location/9 | End Locationit |
|----|--------------|-----------|----------------------------|---------------------------|------------------|----------------|
| 1  | M1           | Z         | 013                        | 013                       | 0                | %100           |
| 2  | M2           | Z         | 013                        | 013                       | 0                | %100           |
| 3  | M3           | Z         | 0                          | 0                         | 0                | %100           |
| 4  | M4           | Z         | -,004                      | 004                       | 0                | %100           |
| 5  | M5           | 2         | 017                        | 017                       | 0                | %100           |
| 6_ | M6           | Z         | 004                        | 004                       | Ö                | %100           |
| 7  | M19          | Z         | 005                        | 005                       | Ó                | %100           |
| 8  | M20          | Z         | 005                        | 005                       | Ō                | %100           |
| 9  | M21          | Z         | 0                          | 0                         | 0                | %100           |
| 10 | M34          | Z         | 008                        | 008                       | 0                | %100           |
| 11 | M35          | Z         | -,008                      | 008                       | 0                | %100           |
| 12 | M36          | Z         | 0                          | Û                         | 0                | %100           |
| 13 | B1           | Z         | 006                        | 006                       | 0                | %3             |
| 14 | C1           | Z         | 006                        | 006                       | 0                | %3             |
| 15 | A1           | Z         | 006                        | 006                       | 0                | %3             |
| 16 | B1           | Z         | 006                        | 006                       | %68.5            | %100           |
| 17 | A4           | Z         | 006                        | -,008                     | %78.1            | %100           |
| 18 | B2           | Z         | -,006                      | 006                       | %78.8            | %100           |
| 19 | B3           | Z         | 006                        | -,006                     | %78.1            | %100           |
| 20 | A3           | Z         | -,008                      | 006                       | %78.1            | %100           |
| 21 | 84           | Z         | 006                        | 006                       | %78.1            | %100           |
| 22 | C1           | Z         | 006                        | 006                       | %68.5            | %100           |
| 23 | A2           | Z         | 006                        | 006                       | %78.8            | %100           |
| 24 | C2           | Z         | -,006                      | -,006                     | %78.8            | %100           |
| 25 | C3           | Z         | 006                        | 006                       | %78.1            | %100           |
| 26 | A1 =         | Z         | -,006                      | 006                       | %68.5            | %100           |
| 27 | C4           | Z         | 006                        | 006                       | %78.1            | %100           |
| 28 | M1           | Х         | .007                       | .007                      | 0                | %100           |
| 29 | M2           | Х         | .007                       | .007                      | 0                | %100           |
| 30 | M3           | Х         | 0                          | -0                        | 0                | %100           |
| 31 | M4           | X         | .002                       | .002                      | 0                | %100           |
| 32 | M5           | X         | .01                        | .01                       | 0                | %100           |
| 33 | M6           | Х         | .002                       | .002                      | 0                | %100           |
| 34 | M19          | Х         | .003                       | .003                      | 0                | %100           |
| 35 | M20          | X         | .003                       | .003                      | 0                | %100           |
| 36 | M21          | X         | 0                          | 0                         | 0                | %100           |
| 37 | M34          | X         | .005                       | .005                      | 0                | %100           |
| 38 | M35          | X         | .005                       | .005                      | 0                | %100           |
| 39 | M36          | X         | 0                          | 0                         | 0                | %100           |



Mastec

: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

## Member Distributed Loads (BLC 10 : Full Wind Members (30 Deg)) (Continued)

|    | Member Label | Direction | Start Magnitudelk/ft_F_ksfl | End Magnitudelk/ft,F.ksfl | Start Locationift. | .End Location(ft. |
|----|--------------|-----------|-----------------------------|---------------------------|--------------------|-------------------|
| 40 | B1           | X         | .004                        | .004                      | 0                  | %3                |
| 41 | A4           | X         | .004                        | .004                      | 0                  | %100              |
| 42 | A3           | X         | .004                        | .004                      | 0                  | %100              |
| 43 | C1           | X         | .004                        | .004                      | 0                  | %3                |
| 44 | A2           | X         | .004                        | .004                      | 0                  | %100              |
| 45 | A1           | X         | .004                        | .004                      | 0                  | %100              |
| 46 | B1           | X         | .004                        | .004                      | %68.5              | %100              |
| 47 | B2           | X         | .004                        | .004                      | %78.8              | %100              |
| 48 | B3           | X         | .004                        | .004                      | <b>%78.1</b>       | %100              |
| 49 | B4           | X         | .004                        | .004                      | <b>%78.1</b>       | %100              |
| 50 | C1           | X         | .004                        | ,004                      | %68.5              | %100<br>%100      |
| 51 | C2           | X         | .004                        | .004                      | %78.8              | %100<br>%100      |
| 52 | C3           | X         | ,004                        | .004                      | %78.1              | %100<br>%100      |
| 53 | C4           | X         | .004                        | .004                      | %78.1              | %100<br>%100      |

### Member Distributed Loads (BLC 11 : Full Wind Members (60 Deg))

|     | Member Label | Direction | Start Magnitude[k/ft.F.ksf) | End Magnitude[k/ft.F.ksf) | Start Location(ft. | End Location(ft |
|-----|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 11  | M1           | Z         | 002                         | 002                       | 0                  | %100            |
| 2   | M2           | Z         | 01                          | 01                        | 0                  | %100            |
| 3   | M3           | Z         | 002                         | -,002                     | 0                  | %100            |
| 4   | M4           | Z         | 007                         | 007                       | 0                  | %100            |
| 5   | M5           | Z         | 007                         | 007                       | 0                  | %100            |
| 6   | M6           | Z         | 0                           | 0                         | 0                  | %100            |
| . 7 | M19          | Z         | 001                         | 001                       | 0                  | %100            |
| 8   | M20          | Z         | 004                         | 004                       | 0                  | %100            |
| 9   | M21          | Z         | 001                         | 001                       | 0                  | %100            |
| 10  | M34          | Z         | 006                         | 006                       | 0                  | %100            |
| 11  | M35          | Z         | 002                         | 002                       | 0                  | %100            |
| 12  | M36          | Z         | 002                         | 002                       | 0                  | %100            |
| 13  | B1           | Z         | 004                         | 004                       | 0                  | %3              |
| 14  | <u>C1</u>    | Z         | 004                         | 004                       | 0                  | %3              |
| 15  | A1           | Z         | 004                         | 004                       | 0                  | %3              |
| 16  | B1           | Z         | 004                         | 004                       | %68.5              | %100            |
| 17  | A4           | Z         | 004                         | 004                       | %78.1              | %100            |
| 18  | B2           | Z         | 004                         | 004                       | %78.8              | %100            |
| 19  | B3           | Z         | 004_                        | 004                       | %78.1              | %100            |
| 20  | A3           | Z         | 004                         | 004                       | %78.1              | %100            |
| 21  | 84           |           | 004                         | 004                       | %78.1              | %100            |
| 22  | C1           | Z         | 004                         | -,004                     | %68.5              | %100            |
| 23  | A2           | _ Z       | 004                         | 004                       | %78.8              | %100            |
| 24  | C2           | Z         | 004                         | 004                       | %78.8              | %100            |
| 25  | C3           | Z         | 004                         | -,004                     | %78.1              | %100            |
| 26  | A1           | Z         | 004                         | 004                       | %68.5              | %100            |
| 27  | C4           | Z         | 004                         | -,004                     | %78.1              | %100            |
| 28  | M1           | Х         | .004                        | .004                      | 0                  | %100            |
| 29  | M2           | Χ         | .017                        | .017                      | 0                  | %100            |
| 30  | M3           | Х         | .004                        | .004                      | 0                  | %100            |
| 31  | M4           | X         | .013                        | .013                      | 0                  | %100            |
| 32  | M5           | X         | .013                        | .013                      | 0                  | %100            |
| 33  | M6           | Х         | 0                           | 0                         | 0                  | %100            |
| 34  | M19          | Х         | .002                        | .002                      | - 0                | %100            |
| 35  | M20          | X         | .006                        | .006                      | 0                  | %100            |
| 36  | M21          | X         | .002                        | .002                      | 0                  | %100            |
| 37  | M34          | X         | .011                        | .011                      | 0                  | %100            |
| 38  | M35          | X         | .003                        | .003                      | 0                  | %100            |
| 39  | M36          | Х         | .003                        | .003                      | 0                  | %100            |



iny : Mastec er : NDN imber : 21944-l

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342 Apr 24, 2020 6:04 PM Checked By: BDM

Member Distributed Loads (BLC 11 : Full Wind Members (60 Dea)) (Continued)

|    | Member Label | Direction | Start Magnitudelk/ft.F.ksfl | End Magnitudelk/ft.F.ksf) | Start Location ft | End Locationift |
|----|--------------|-----------|-----------------------------|---------------------------|-------------------|-----------------|
| 40 | B1           | X         | .006                        | .006                      | 0                 | %3              |
| 41 | A4           | Х         | .006                        | .006                      | 0                 | %100            |
| 42 | A3           | X         | .006                        | .006                      | 0                 | %100            |
| 43 | C1           | X         | .006                        | .006                      | 0                 | %3              |
| 44 | A2           | X         | .006                        | .006                      | 0                 | %100            |
| 45 | A1           | X         | .006                        | .006                      | 0                 | %100            |
| 46 | B1           | X         | .006                        | .006                      | %68.5             | %100            |
| 47 | B2           | X         | .006                        | .006                      | %78.8             | %100            |
| 48 | B3           | X         | .006                        | .006                      | %78.1             | %100            |
| 49 | B4           | X         | .006                        | .006                      | %78.1             | %100            |
| 50 | C1           | X         | .006                        | .006                      | %68.5             | %100            |
| 51 | C2           | X         | .006                        | .006                      | %78.8             | %100            |
| 52 | C3           | X         | .006                        | .006                      | <b>%78.1</b>      | %100            |
| 53 | C4           | X         | .006                        | .006                      | %78.1             | %100            |

Member Distributed Loads (BLC 12 : Full Wind Members (90 Dea))

|        | Member Label | Direction          | Start Magnitude(k/ft.F.ksf) | End Magnitudelk/it.F.ksfl | Start Location(ft | .End Locationfit. |
|--------|--------------|--------------------|-----------------------------|---------------------------|-------------------|-------------------|
| 1      | M1           | Z                  | 0                           | 0                         | 0                 | %100              |
| 2      | M2           | Z                  | 0                           | 0                         | 0                 | %100              |
| 3_     | M3           | Z                  | 0                           | 0                         | 0                 | %100              |
| 4      | M4           | Z                  | 0                           | 0                         | 0                 | %100              |
| 5      | M5           | Z                  | 0                           | 0                         | 0                 | %100              |
| 6      | M6           | Z                  | 0                           | 0                         | ő                 | %100              |
| 7      | M19          | Z                  | 0                           | 0                         | 0                 | %100              |
| 8_     | M20          | Z                  | 0                           | 0                         | 0                 | %100              |
| 9      | M21          | Z                  | 0                           | 0                         | 0                 | %100              |
| 10     | M34          | Z                  | Ó                           | 0                         | Ö                 | %100              |
| 11     | M35          | Z                  | Û                           | 0                         | 0                 | %100              |
| 12     | M36          | Z                  | 0                           | Ö                         | 0                 | %100              |
| 13     | 81           | Z                  | Ö                           | Ö                         | 0                 |                   |
| 14     | C1           | 2                  | . 0                         | 0                         | 0                 | %3<br>%3          |
| 15     | A1           | Z                  | 0                           | 0                         | 0                 |                   |
| 16     | B1           | 7                  | Ö                           | 0                         | %68.5             | %3                |
| 17     | A4           | Z                  | Ö                           | 0                         |                   | %100              |
| 18     | B2           | Ž                  | Ö                           | Ô                         | <u>%78.1</u>      | %100              |
| 19     | 83           | Z                  | Ö                           | 0                         | %78.8             | %100              |
| 20     | A3           | 2                  | Ö                           | 0                         | %78.1             | %100              |
| 21     | 84           | Z                  | Ö                           | 0                         | %78.1             | %100              |
| 22     | C1           | Z                  | Ö                           | 0                         | %78.1             | %100              |
| 23     | A2           | Ž                  | 0                           | 0                         | %68.5             | %100              |
| 24     | C2           | 2                  | 0                           | 0                         | %78.8             | %100              |
| 25     | C3           | Ž                  | 0                           | . 0                       | %78.8             | %100              |
| 28     | A1           | Z                  | Ö                           |                           | %78.1             | %100              |
| 27     | C4           | 2                  | n n                         | 0                         | %68.5             | %100              |
| 28     | M1           | X                  | Ö                           | 0                         | %78.1             | %100              |
| 29     | M2           | $\hat{\mathbf{x}}$ | .015                        |                           | 0                 | %100              |
| 30     | M3           | x                  | .015                        | .015                      | 0                 | %100              |
| 31     | M4           | X                  | .02                         | .015                      | 0                 | %100              |
| 32     | M5           | <del>- 2 -</del>   |                             | .02                       | 0                 | %100              |
| 33     | M6           | Ŷ                  | .005                        | 005                       | 0                 | %100              |
| 34     | M19          | <u> </u>           | .005                        | .005                      | 0                 | %100              |
| 35     | M20          | - X                | 0                           | 10 %                      | 0                 | %100              |
| 36     | M21          |                    | .005                        | .005                      | 0                 | %100              |
| 37     | M34          | X                  | .005                        | .005                      | 0                 | %100              |
| 38     | M35          |                    | .009                        | .009                      | 0                 | %100              |
| 39     |              | X                  | 0                           | 0                         | 0                 | %100              |
| [ 39 ] | M36          | A                  | .009                        | .009                      | 0                 | %100              |



: Mastec : NDN

Job Number : 21944-MNT1 Model Name : ATC411189-Cranburysu CT-10035342 Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 12 : Full Wind Members (90 Deg)) (Continued)

|    | Member Label | Direction | Start Magnitude(k/ft.F.ksfl | End Magnitudelk/ft.F.ksfl | Start Location(ft. | End Locationfit. |
|----|--------------|-----------|-----------------------------|---------------------------|--------------------|------------------|
| 40 | B1           | X         | .007                        | .007                      | 0                  | %3               |
| 41 | A4           | X         | .007                        | .007                      | 0                  | %100             |
| 42 | A3           | X         | .007                        | .007                      | 0                  | %100             |
| 43 | C1           | X         | .007                        | .007                      | 0                  | %3               |
| 44 | A2           | X         | .007                        | .007                      | ň                  | %100             |
| 45 | A1           | X         | .007                        | .007                      | 0                  | %100             |
| 46 | B1           | X         | .007                        | .007                      | %68.5              | %100             |
| 47 | B2           | X         | .007                        | .007                      | %78.8              | %100             |
| 48 | B3           | X         | .007                        | .007                      | %78.1              | %100             |
| 49 | B4           | X         | .007                        | .007                      | %78.1              | %100             |
| 50 | C1           | X         | .007                        | .007                      | %68.5              | %100             |
| 51 | C2           | X         | .007                        | .007                      | %78.8              | %100             |
| 52 | C3           | X         | .007                        | .007                      | %78.1              | %100<br>%100     |
| 53 | C4           | X         | .007                        | 007                       | %78.1              | %100             |

#### Member Distributed Loads (BLC 13 : Full Wind Members (120 Deg))

|    | Member Label | Direction | Start Magnitude(k/ft.F.ksf) | End Magnitude[k/ft.F.ksff             | Start Location R | End Location® |
|----|--------------|-----------|-----------------------------|---------------------------------------|------------------|---------------|
| 1  | M1           | Z         | ,002                        | .002                                  | 0                | %100          |
| 2  | M2           | Z         | .002                        | .002                                  | 0                | %100          |
| 3  | M3           | Z         | .01                         | .01                                   | 0                | %100          |
| 4  | M4           | Z         | .007                        | .007                                  | Ô                | %100          |
| 5  | M5           | Z         | 0                           | 0                                     | 0                | %100          |
| 6  | M6           | 2         | .007                        | .007                                  | 0                | %100          |
| 7  | M19          | Z         | .001                        | .001                                  | 0                | %100          |
| 8  | M20          | Z         | .001                        | .001                                  | Ó                | %100          |
| 9  | M21          | Z         | .004                        | .004                                  | Ō                | %100          |
| 10 | M34          | Z         | .002                        | .002                                  | 0                | %100          |
| 11 | M35          | Z         | .002                        | .002                                  | 0                | %100          |
| 12 | M36          | Z         | .006                        | ,008                                  | 0                | %100          |
| 13 | B1           | Z         | .004                        | .004                                  | 0                | %3            |
| 14 | C1           | 2         | .004                        | .004                                  | 0                | %3            |
| 15 | A1           | 2 2       | .004                        | .004                                  | 0                | %3            |
| 16 | B1           | Z         | .004                        | .004                                  | %68.5            | %100          |
| 17 | A4           | Z         | .004                        | .004                                  | %78.1            | %100          |
| 18 | B2           | Z         | .004                        | .004                                  | %78.8            | %100          |
| 19 | B3           | Z         | .004                        | .004                                  | %78.1            | %100          |
| 20 | A3           | Z         | .004                        | .004                                  | %78.1            | %100          |
| 21 | B4           | Z         | .004                        | .004                                  | %78.1            | %100          |
| 22 | C1           | Z         | .004                        | .004                                  | %68.5            | %100          |
| 23 | A2           | Z         | .004                        | .004                                  | %78.8            | %100          |
| 24 | C2           | Z         | .004                        | .004                                  | %78.8            | %100          |
| 25 | C3           | Z         | .004                        | .004                                  | %78.1            | %100          |
| 26 | A1           | Z         | .004                        | .004                                  | %68.5            | %100          |
| 27 | C4           | Ž         | .004                        | .004                                  | %78.1            | %100          |
| 28 | M1           | X.        | .004                        | .004                                  | 0                | %100          |
| 29 | M2           | X         | .004                        | .004                                  | 0                | %100          |
| 30 | M3           | X         | .017                        | .017                                  | Ŏ                | %100          |
| 31 | M4           | X         | .013                        | .013                                  | O                | %100          |
| 32 | M5           | X         | 0                           | · · · · · · · · · · · · · · · · · · · | Ö                | %100          |
| 33 | M6           | X         | .013                        | .013                                  | 0                | %100          |
| 34 | M19          | X         | .002                        | .002                                  | Ŏ                | %100          |
| 35 | M20          | X         | .002                        | .002                                  | 0                | %100          |
| 36 | M21          | X         | .006                        | .006                                  | 0                | %100          |
| 37 | M34          | X         | .003                        | .003                                  | Ö                | %100          |
| 38 | M35          | X         | .003                        | .003                                  | 0                | %100          |
| 39 | M36          | X         | .011                        | .011                                  | 0                | %100          |



: Mastec : NDN

Model Name

21944-MNT1

: ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 13 : Full Wind Members (120 Dea)) (Continued)

|    | Momber Label | Direction | Start Magnitude(k/ft.F.ksf) | End Magnitude(k/ft.F./ksf) | Start Locationfft | End Location(N. |
|----|--------------|-----------|-----------------------------|----------------------------|-------------------|-----------------|
| 40 | B1           | X         | .006                        | .006                       | 0                 | %3              |
| 41 | A4           | X         | .006                        | .006                       | 0                 | %100            |
| 42 | A3           | X.        | .006                        | .006                       | Ō                 | %100            |
| 43 | C1           | X         | .006                        | .008                       | 0                 | %3              |
| 44 | A2           | X         | .006                        | .006                       | Ö                 | %100            |
| 45 | A1           | X         | .006                        | .006                       | 0                 | %100            |
| 46 | B1           | X         | .006                        | .008                       | %68.5             | %100            |
| 47 | B2           | X         | .006                        | ,006                       | %78.8             | %100            |
| 48 | B3           | X         | .006                        | .006                       | %78.1             | %100            |
| 49 | <b>B4</b>    | X         | .006                        | .006                       | %78.1             | %100            |
| 50 | C1           | X         | .006                        | ,006                       | %68.5             | %100            |
| 51 | C2           | I X I     | .006                        | .006                       | %78.8             | %100            |
| 52 | C3           | X         | .006                        | .006                       | %78.1             | %100            |
| 53 | C4           | X         | .006                        | .006                       | %78.1             | %100            |

#### Member Distributed Loads (BLC 14 : Full Wind Members (150 Deg))

|    | Member Label | Direction        | Start Magnitude(k/ft,F,ksf) | End Magnitude(k/ft.F.ksrf) | Start Location[ft. | End Locationift |
|----|--------------|------------------|-----------------------------|----------------------------|--------------------|-----------------|
| 1  | M1           | Z                | .013                        | .013                       | 0                  | %100            |
| 2  | M2           | Z                | O                           | 0                          | 0                  | %100            |
| 3  | M3           | Z                | .013                        | .013                       | 0                  | %100            |
| 4  | M4           | Z                | ,004                        | .004                       | 0                  | %100            |
| 5  | M5           | Z                | .004                        | .004                       | 0                  | %100            |
| 6  | M6           | Z                | .017                        | .017                       | Q                  | %100            |
| 7  | M19          | Z                | .005                        | .005                       | 0                  | %100            |
| 8  | M20          | Z                | 0                           | 0                          | Ö                  | %100            |
| 9  | M21          | Z                | .005                        | .005                       | Ö                  | %100            |
| 10 | M34          | Z                | 0                           | 0                          | 0                  | %100            |
| 11 | M35          | Z                | .008                        | .008                       | 0                  | %100            |
| 12 | M36          | 2                | .008                        | .008                       | Ŏ                  | %100            |
| 13 | B1           | Z                | .006                        | .006                       | Ö                  | %3              |
| 14 | Ci           | Z                | .006                        | .006                       | 0                  |                 |
| 15 | A1           | Ž                | .006                        | .006                       | 0                  | <u>%3</u>       |
| 16 | B1           | † <del>2</del> † | .006                        | .006                       |                    | <u>%3</u>       |
| 17 | A4           | Ž                | .006                        |                            | %68.5              | %100            |
| 18 | B2           | Ž                | .006                        | .006                       | <b>%78.1</b>       | %100            |
| 19 | B3           |                  | .006                        | .006                       | %78.8              | %100            |
| 20 | A3           | 7 2              |                             | .006                       | %78.1              | %100            |
| 21 | B4           |                  | .006                        | .006                       | %78.1              | %100            |
| 22 |              | 7 7              | .006                        | .006                       | %78.1              | %100            |
|    | Ç1           |                  | .006                        | .006                       | %68.5              | %100            |
| 23 | A2           | <u>Z</u>         | .006                        | .006                       | %78.8              | %100            |
| 24 | C2           | Z                | .006                        | .006                       | %78.8              | %100            |
| 25 | C3           | Z                | .006                        | .006                       | %78.1              | %100            |
| 26 | A1           | Z                | .006                        | .006                       | %68.5              | %100            |
| 27 | C4           | Z                | .006                        | .006                       | %78.1              | %100            |
| 28 | M1           | X                | .007                        | .007                       | 0                  | %100            |
| 29 | M2           | X                | 0                           | 0                          | 0                  | %100            |
| 30 | M3           | X                | .007                        | .007                       | 0                  | %100            |
| 31 | M4_          | X                | .002                        | .002                       | Õ                  | %100            |
| 32 | M5           | X                | .002                        | .002                       | Ō                  | %100            |
| 33 | M6           | X                | .01                         | .01                        | Ö                  | %100            |
| 34 | M19          | X                | .003                        | .003                       | Ö                  | %100            |
| 35 | M20          | X                | 0                           | 0                          | Ö                  | %100            |
| 36 | M21          | X                | .003                        | .003                       | Ö                  | %100            |
| 37 | M34          | X                | 0                           | 0                          | Ö                  | %100            |
| 38 | M35          | X                | .005                        | .005                       | Ŏ                  | %100            |
| 39 | M36          | X                | .005                        | .005                       | 0                  | %100            |



Mastec NDN

nber : 21944-MNT1 lame : ATC411189-Cranburysu CT-10035342 Apr 24, 2020 6:04 PM Checked By: 8DM

Member Distributed Loads (BLC 14 : Full Wind Members (150 Deg)) (Continued)

|    | Member Label | Direction | Start Magnitude/k/ft.F.ksfl | End Magnitude(k/ft.F.ksf) | Start Location(ft. | End LocationIft. |
|----|--------------|-----------|-----------------------------|---------------------------|--------------------|------------------|
| 40 | B1           | X         | .004                        | .004                      | 0                  | %3               |
| 41 | A4           | X         | .004                        | .004                      | 0                  | %100             |
| 42 | A3           | X         | .004                        | .004                      | 0                  | %100             |
| 43 | C1           | X         | .004                        | .004                      | 0                  | %3               |
| 44 | A2           | X         | .004                        | .004                      | Ö                  | %100             |
| 45 | A1           | X         | .004                        | .004                      | 0                  | %100             |
| 46 | B1           | X         | .004                        | .004                      | %68.5              | %100             |
| 47 | B2           | X         | .004                        | .004                      | %78.8              | %100             |
| 48 | B3           | X         | .004                        | .004                      | %78.1              | %100             |
| 49 | B4           | X         | .004                        | .004                      | %78.1              | %100             |
| 50 | C1           | X         | .004                        | .004                      | %68.5              | %100             |
| 51 | C2           | Х         | .004                        | .004                      | %78.8              | %100<br>%100     |
| 52 | C3           | X         | .004                        | .004                      | %78.1              | %100<br>%100     |
| 53 | C4           | X         | .004                        | .004                      | %78.1              | %100             |

Member Distributed Loads (BLC 21 : Ice Wind Members (0 Deg))

|      | Member Label | Direction | Start Magnitudefk/ft.F.ksfl | End Magnitude/k/ft_F.ksfl | Start Location(it. | End Location(ft |
|------|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 1_1_ | M1           | Z         | 005                         | 005                       | 0                  | %100            |
| 2    | M2           | Z         | 001                         | 001                       | 0                  | %100            |
| 3    | M3           | Z         | 001                         | 001                       | 0                  | %100            |
| 4    | M4           | Z         | 0                           | 0                         | 0                  | %100            |
| 5    | M5           | Z         | 004                         | 004                       | 0                  | %100            |
| 6    | M6           | Z         | 004                         | 004                       | 0                  | %100            |
| 7    | M7           | Z         | 0                           | 0                         | 0                  | %100            |
| 8    | M8           | Z         | 0                           | 0                         | 0                  | %100            |
| 9    | M9           | Z         | 0                           | 0                         | 0                  | %100            |
| 10   | M10          | Z         | 0                           | 0                         | Ö                  | %100            |
| 11   | M11          | Z         | 002                         | 002                       | 0                  | %100            |
| 12   | M12          | Z         | 002                         | 002                       | 0                  | %100            |
| 13   | M13          | Z         | 002                         | 002                       | 0                  | %100            |
| 14   | M14          | Z         | 002                         | -,002                     | 0                  | %100            |
| 15   | M15          | Z         | 002                         | -,002                     | 0                  | %100            |
| 16   | M16          | Z         | 002                         | 002                       | 0                  | %100            |
| 17   | M17          | Z         | 002                         | -,002                     | 0                  | %100            |
| 18   | M18          | Z         | -,002                       | 002                       | 0                  | %100            |
| 19   | M19          | Z         | 003                         | -,003                     | 0                  | %100            |
| 20   | M20          | Z         | 001                         | 001                       | 0                  | %100            |
| 21   | M21          | Z         | -,001                       | 001                       | 0                  | %100            |
| 22   | M22          | Z         | 0                           | 0                         | 0                  | %100            |
| 23   | M23          | Z         | . 0                         | 0                         | 0                  | %100            |
| 24   | M24          | Z         | 0                           | Ö                         | 0                  | %100            |
| 25   | M25          | Z         | 0                           | 0                         | 0                  | %100            |
| 26   | M26          | Z         | 002                         | 002                       | 0                  | %100            |
| 27   | M27          | Z         | 002                         | 002                       | 0                  | %100            |
| 28   | M28          | Z         | 002                         | 002                       | 0                  | %100            |
| 29   | M29          | Z         | -,002                       | 002                       | 0                  | %100            |
| 30   | M30          | Z         | 002                         | 002                       | 0                  | %100            |
| 31   | M31          | Z         | 002                         | 002                       | 0                  | %100            |
| 32   | M32          | 2         | 002                         | 002                       | 0                  | %100            |
| 33   | M33          | Z         | -,002                       | 002                       | 0                  | %100            |
| 34   | M34          | Z         | 001                         | 001                       | 0                  | %100            |
| 35   | M35          | Z         | 004                         | 004                       | 0                  | %100            |
| 36   | M36          | Z         | 001                         | 001                       | Ö                  | %100            |
| 37   | B1           | Z         | -,003                       | 003                       | 0                  | %3              |
| 38   | C1           | Z         | -,003                       | -,003                     | 0                  | %3              |
| 39   | A1           | Z         | -,003                       | -,003                     | 0                  | %3              |



: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Distributed Loads (BLC 21 : Ice Wind Members (0 Deg)) (Continued)

| 45       | Member Label | Direction          | Start Magnitudelk/ft.F.ksft | End Magnitudefk/ft.F.ksfl | Start Location(ft | .End Locationift. |
|----------|--------------|--------------------|-----------------------------|---------------------------|-------------------|-------------------|
| 40       | <u>B1</u>    | Z                  | 003                         | 003                       | %68.5             | %100              |
| 41       | A4           | Z                  | 003                         | 003                       | %78.1             | %100              |
| 42       | B2           | Z                  | 003                         | -,003                     | %78.8             | %100              |
| 43       | B3           | Z                  | 003                         | 003                       | %78.1             | %100              |
| 44       | A3           | Z                  | 003                         | 003                       | %78.1             | %100              |
| 45       | <u>B4</u>    | Z                  | 003                         | 003                       | %78.1             | %100              |
| 46       | <u>C1</u>    | Z                  | 003                         | 003                       | %68.5             | %100              |
| 47       | A2           | Z                  | 003                         | 003                       | %78.8             | %100              |
| 48       | C2           | Z                  | 003                         | 003                       | %78.8             | %100              |
| 49       | C3           | Z                  | 003                         | 003                       | %78.1             | %100              |
| 50       | A1           | Z                  | 003                         | 003                       | %68.5             | %100              |
| 51       | C4           | Z                  | 003                         | -,003                     | %78.1             | %100              |
| 52       | K2           | Z                  | 004                         | 004                       | 0                 | %100              |
| _53      | <b>K</b> 1   | Z                  | 004                         | 004                       | Ö                 | %100              |
| 54       | K3           | Z                  | 004                         | 004                       | 0                 | %100              |
| 55       | M1           | X                  | 0                           | 0                         | 0                 | %100              |
| 56       | M2           | Х                  | 0                           | Ŏ                         | 0                 | %100              |
| 57       | M3           | X                  | Ō                           | 0                         | Ö                 | %100<br>%100      |
| 58       | M4           | X                  | 0                           | Ŏ                         | 0                 | %100<br>%100      |
| 59       | M5           | X                  | Ö                           | Ö                         | 0                 | %100<br>%100      |
| 60       | M6           | X                  | 0                           | Ŏ                         | 0                 |                   |
| 61       | M7           | X                  | 0                           | Ŏ                         | 0                 | %100              |
| 62       | M8           | Î                  | 0                           | 0                         | 0                 | %100<br>%100      |
| 63       | M9           | X                  | 0                           | Ö                         | 0                 |                   |
| 64       | M10          | Ŷ                  | Ö                           | 0                         | 0                 | %100              |
| 65       | M11          | x                  | 0                           | . 0                       |                   | %100              |
| 66       | M12          | x                  | 0                           | 0                         | 0                 | %100              |
| 67       | M13          | X                  | 0                           |                           | 0                 | %100              |
| 68       | M14          | Î X                | 0                           | 0                         | 0                 | %100              |
| 69       | M15          | x                  | 0                           | 0                         | 0                 | %100              |
| 70       | M16          | X                  | 0                           | 0                         | 0                 | %100              |
| 71       | M17          | x                  | . 0                         | 0                         | 0                 | %100              |
| 72       | M18          | x                  | 0                           | 0                         | 0                 | %100              |
| 73       | M19          | x                  | 0                           | 0                         | 0                 | %100              |
| 74       | M20          | Ŷ                  |                             | 0                         | 0                 | %100              |
| 75       | M21          |                    | 0                           | 0                         | 0                 | %100              |
| 76       | M22          | X                  | 0                           | 0                         | 0                 | %100              |
| 77       | M23          | $\hat{\mathbf{x}}$ | 0                           | 0                         | 0                 | %100              |
| 78       | M24          |                    |                             | 0                         | 0                 | <u>%100</u>       |
|          |              | X                  | 0                           | 0                         | 0                 | %100              |
| 79<br>80 | M25          | X                  | 0                           | 0                         | 0                 | %100              |
| 81       | M26          | X                  | 0                           | 0                         | 0                 | %100              |
| 82       | M27          | X                  | 0                           | 0                         | 0                 | %100              |
|          | M28          | X                  | 0                           | 0                         | 0                 | %100              |
| 83       | M29          | X                  | 0                           | 0                         | 0                 | %100              |
| 84       | M30          | X                  | 0                           | 0                         | 0                 | %100              |
| 85       | M31          | X                  | 0                           | 0                         | 0                 | %100              |
| 86       | M32          | X                  | 0                           | 0                         | 0                 | %100              |
| 87       | M33          | X                  | 0                           | 0                         | 0                 | %100              |
| 88       | M34          | X                  | 0                           | 0                         | 0                 | %100              |
| 89       | M35          | X                  | 0                           | 0                         | 0                 | <b>%100</b>       |
| 90       | M36          | X                  | 0                           | . 0                       | 0                 | %100              |
| 91       | B1           | X                  | 0                           | 0                         | 0                 | %3                |
| 92       | A4           | X                  | 0                           | 0                         | 0                 | %100              |
| 93       | A3           | Х                  | 0                           | 0                         | 0                 | %100              |
| 94       | C1           | X                  | 0                           | Ō                         | Ö                 | %3                |
| 95       | A2           | X                  | 0                           | Ō                         | 0                 | %100              |
| 96       | A1           | X                  | 0                           | 0                         | Ŏ                 | %100              |



Mastec

NDN 21944-MNT1 ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 21 : Ice Wind Members (0 Dea)) (Continued)

|     | Member Label | Direction | Start Magnitude/k/ft.F.ksfl | End Magnitude/k/ft.F.ksfl | Start Location(ft. | End Location(it |
|-----|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 97  | K1           | X         | 0                           | 0                         | 0                  | %100            |
| 98  | B1           | X         | 0                           | 0                         | %68.5              | %100            |
| 99  | B2           | X         | 0                           | 0                         | %78.8              | %100            |
| 100 | B3           | L_X       | 0                           | 0                         | %78.1              | %100            |
| 101 | B4           | X         | 0                           | 0                         | %78.1              | %100            |
| 102 | C1           | X         | 0                           | 0                         | %68.5              | %100            |
| 103 | C2           | X         | 0                           | 0                         | %78.8              | %100            |
| 104 | C3           | X         | 0                           | 0                         | %78.1              | %100            |
| 105 | C4           | X         | 0                           | 0                         | %78.1              | %100            |
| 106 | K2           | X         | 0                           | 0                         | n                  | %100            |
| 107 | K3           | X         | 0                           | 0                         | 0                  | %100            |

#### Member Distributed Loads (BLC 22 ; Ice Wind Members (30 Deg))

|     | Member Labet | Direction | Start Magnitude(k/ft.F.ksf) |                                  |       |                 |
|-----|--------------|-----------|-----------------------------|----------------------------------|-------|-----------------|
| 1   | M1           | 7 7       | 003                         | End Magnitude[k/ft.F.ksf]<br>003 |       | End Location[ft |
| 2   | M2           | Ž         | 003                         | 003                              | 0     | %100            |
| 3   | M3           | Z         | 0                           | 003                              | 0     | %100            |
| 4   | M4           | 7         | 001                         | -,001                            | 0     | %100            |
| 5   | M5           | Z         | 004                         | 004                              | 0     | %100            |
| 6   | M6           | Z         | 002                         | 002                              | 0     | %100            |
| 7   | M7           | Z         | 0                           |                                  | 0     | %100            |
| 8   | MB           | Z         | 0                           | 0                                | 0     | %100            |
| 9   | M9           | Z         | 0                           | 0                                | 0     | %100            |
| 10  | M10          | Z         | Ö                           | 0                                | 0     | %100            |
| 11  | M11          | Ž         | 001                         | 001                              | 0     | <u>%100</u>     |
| 12  | M12          | Z         | 001                         | 001                              | 0     | %100            |
| 13  | M13          | Z         | 001                         | 001                              | 0     | %100<br>%400    |
| 14  | M14          | Z         | 001                         | 001                              | 0     | %100            |
| 15  | M15          | Ž         | 001                         | 001                              | 0     | %100            |
| 16  | M16          | Z         | 001                         | 001                              | 0     | %100<br>%100    |
| 17  | M17          | 2         | 001                         | 001                              | 0     | %100<br>%100    |
| 18  | M18          | Z         | 001                         | 001                              | 1 0   | %100<br>%100    |
| 19  | M19          | Z         | 002                         | 002                              | 0     |                 |
| 20  | M20          | Z         | 001                         | 001                              | 0     | %100<br>%100    |
| 21  | M21          | Z         | 0                           | 0                                | 0     | %100<br>%100    |
| 22  | M22          | Z         | Ō                           |                                  | Ŏ     | %100<br>%100    |
| 23  | M23          | Ž         | Ŏ                           | Ö                                | 0     | %100<br>%100    |
| 24  | M24          | Z         | 0                           | Ö                                | 0     | %100<br>%100    |
| 25  | M25          | Z         | Ō                           | Ŏ                                | 0     | %100<br>%100    |
| 26  | M26          | Z         | 001                         | 001                              | Ŏ     | %100<br>%100    |
| 27  | M27          | Z         | 001                         | -,001                            | Ö     | %100<br>%100    |
| _28 | M28          | Z         | 001                         | 001                              | Ŏ     | %100<br>%100    |
| 29  | M29          | Z         | 001                         | 001                              | .0    | %100            |
| 30  | M30          | Z         | 001                         | 001                              | Ŏ     | %100<br>%100    |
| 31  | M31          | Z         | 001                         | 001                              | Ŏ     | %100<br>%100    |
| 32  | M32          | Z         | 001                         | 001                              | Ö     | %100            |
| 33  | M33          | Z         | 001                         | 001                              | Ŏ     | %100            |
| 34  | M34          | Z         | 002                         | 002                              | 0     | %100<br>%100    |
| 35  | M35          | Z         | 003                         | 003                              | 0     | %100<br>%100    |
| 36  | M36          | Z         | 0                           | 0                                | 0     | %100            |
| 37  | B1           | Z         | 002                         | 002                              | 0     | %3              |
| 38  | C1           | Z         | 002                         | 002                              | 0     | %3              |
| 39  | A1           | Z         | 002                         | 002                              | 0     | %3              |
| 40  | B1           | Z         | 002                         | 002                              | %68.5 | %100            |
| 41  | A4           | Z         | 002                         | 002                              | %78.1 | %100            |
| 42  | B2           | Z         | 002                         | 002                              | %78.8 | %100            |



any : Maste ner : NDN

: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Distributed Loads (BLC 22 : Ice Wind Members (30 Deg)) (Continued)

| 40 | Member Label | Direction | Start Magnitude(k/ft.F.kaf) | End Magnitude(k/ft,F.kef) | Start Location(ft. | End Location |
|----|--------------|-----------|-----------------------------|---------------------------|--------------------|--------------|
| 13 | B3           | Z         | 002                         | 002                       | %78.1              | %100         |
| 44 | A3           | Z         | -2002                       | 002                       | %78.1              | %100         |
| 15 | B4           | Z         | -,002                       | 002                       | %78.1              | %100         |
| 16 | <u>C1</u>    | Z         | 002                         | 002                       | %68.5              | %100         |
| 17 | A2           | Z         | 002                         | 002                       | %78.8              | %100         |
| 18 | C2           | Z         | 002                         | =.002                     | %78.8              | %100         |
| 19 | C3           | Z         | 002                         | 002                       | %78.1              | %100         |
| 50 | A1           | Z         | 002                         | 002                       | %68.5              | %100         |
| 51 | C4           | Z         | -,002                       | 002                       | %78.1              | %100         |
| 2  | K2           | Z         | -,003                       | 003                       | 0                  | %100         |
| 3  | K1           | Z         | 003                         | 003                       | 0                  | %100         |
| 4  | IC3          | Z         | 003                         | 003                       | 0                  | %100         |
| 5  | M1           | X         | .002                        | .002                      | 0                  | %100         |
| 6  | M2           | X         | .002                        | .002                      | 0                  | %100         |
| 7  | M3           | X         | 0                           | 0                         | 0                  | %100         |
| 8  | M4           | X         | 0                           | . 0:                      | Ŏ                  | %100         |
| 9  | M5           | X         | .002                        | .002                      | 0                  | %100         |
| 0  | M6           | X         | .001                        | .001                      | Ö                  | %100         |
| 1  | M7           | X         | 0                           | 0                         | Ō                  | %100         |
| 2  | M8           | X         | 0                           | Ō                         | Ŏ                  | %100         |
| 3  | M9           | X         | 0                           | 0                         | Ö                  | %100         |
| 4  | M10          | X         | 0                           | Ŏ.                        | Ö                  | %100         |
| 5  | M11          | X         | .001                        | .001                      | Ö                  | %100         |
| 6  | M12          | X         | .001                        | .001                      | Ö                  | %100         |
| 7  | M13          | X         | .001                        | .001                      | 0                  | %100         |
| 8  | M14          | X         | .001                        | .001                      | Ŏ                  | %100<br>%100 |
| 9  | M15          | X         | .001                        | .001                      | Ŏ                  | %100         |
| 0  | M16          | X         | .001                        | .001                      | Ö                  | %100         |
| 1  | M17          | X         | .001                        | .001                      | Ō                  | %100         |
| 2  | M18          | X         | .001                        | .001                      | Ŏ                  | %100<br>%100 |
| 3  | M19          | X         | .001                        | .001                      | 0                  | %100         |
| 4  | M20          | X         | .001                        | .001                      | Ŏ                  | %100<br>%100 |
| 5  | M21          | X         | 0                           | 0                         | Ō                  | %100         |
| 6  | M22          | X         | 0                           | Ŏ                         | Ŏ                  | %100         |
| 7  | M23          | X         | Ō                           | 0                         | Ŏ                  | %100         |
| 8  | M24          | X         | Ō                           | Ŏ                         | 0                  | %100         |
| 9  | M25          | X         | 0                           | Ö                         | Ö                  | %100         |
| 0  | M26          | X         | .001                        | .001                      | 0                  | %100         |
| 1  | M27          | X         | .001                        | .001                      | Ö                  | %100         |
| 2  | M28          | X         | .001                        | .001                      | Ŏ                  | %100         |
| 3  | M29          | X         | .001                        | .001                      | Ö                  | %100         |
| 4  | M30          | X         | .001                        | .001                      | 0                  | %100         |
| 5  | M31          | X         | .001                        | .001                      | Ö                  | %100         |
| 6  | M32          | X         | .001                        | .001                      | 0                  |              |
| 7  | M33          | X         | .001                        | .001                      | Ö                  | %100<br>%100 |
| В  | M34          | X         | .001                        | .001                      | 0                  | %100         |
| 9  | M35          | X         | .002                        | .002                      | 0                  | %100         |
| 0  | M36          | X         | 0                           | 0                         | 0                  | %100         |
| 1  | B1           | X         | .001                        | .001                      |                    | %100         |
| 2  | A4           | X         | .001                        | .001                      | 0                  | %3           |
| 3  | A3           | X         | .001                        | .001                      |                    | %100<br>%100 |
|    | C1           | X         | _,001                       | .001                      | 0                  | %100         |
| 5  | A2           | Ŷ         | .001                        |                           | 0                  | %3           |
| 8  | A1           | X         | .001                        | .001                      | 0                  | %100         |
| 7  | K1           | â         | .002                        | .001                      | 0                  | %100         |
|    |              |           |                             | .002                      | 00                 | %100         |
| 8  | B1           | X-        | .001                        | .001                      | %68.5              | %100         |



: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

### Member Distributed Loads (BLC 22 : Ice Wind Members (30 Deg)) (Continued)

|     | Member Label | Direction | Start Magnitude/k/ft.F.ksfl | End Magnitudelk/ft.F.ksfl | Start Locationfit. | End Locationift |
|-----|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 100 | B3           | X         | .001                        | .001                      | %78.1              | %100            |
| 101 | B4           | L X       | .001                        | .001                      | %78.1              | %100            |
| 102 | C1           | X         | .001                        | .001                      | %68.5              | %100            |
| 103 | C2           | X         | .001                        | .001                      | %78.8              | %100            |
| 104 | C3           | X         | .001                        | .001                      | %78.1              | %100            |
| 105 | C4           | X         | .001                        | .001                      | %78.1              | %100            |
| 106 | K2           | x         | .002                        | .002                      | 0                  | %100            |
| 107 | K3           | X         | .002                        | .002                      | Ö                  | %100            |

#### Member Distributed Loads (BLC 23 : Ice Wind Members (60 Deg))

|     | Member Label | Direction | Start Magnitude (k/ft.F.ksf) | End Magnitude(k/ft.F.ksf) | Start Locationift | .End Location(ft |
|-----|--------------|-----------|------------------------------|---------------------------|-------------------|------------------|
| 1   | M1           | Z         | 001                          | 001                       | 0                 | %100             |
| 2   | M2           | Z         | 002                          | -,002                     | 0                 | %100             |
| _3_ | M3           | Z         | 001                          | 001                       | 0                 | %100             |
| 4   | M4           | Z         | 001                          | 001                       | 0                 | %100             |
| 5   | M5           | Z         | 002                          | 002                       | 0                 | %100             |
| 6   | M6           | Z         | 0                            | 0                         | 0                 | %100             |
| 7   | M7           | Z         | 0                            | 0                         | 0                 | %100             |
| 8   | M8           | Z         | 0                            | 0                         | 0                 | %100             |
| 9   | M9           | Z         | Ü                            | 0                         | 0                 | %100             |
| 10  | M10          | Z         | - O                          | Ō                         | 0                 | %100             |
| 11  | M11          | Z         | 001                          | 001                       | 0                 | %100             |
| 12  | M12          | Z         | 001                          | 001                       | 0                 | %100             |
| 13  | M13          | Z         | -,001                        | 001                       | 0                 | %100             |
| 14  | M14          | Z         | 001                          | 001                       | 0                 | %100             |
| 15  | M15          | Z         | 001                          | 001                       | 0                 | %100             |
| 16  | M16          | 2         | 001                          | 001                       | 0                 | %100             |
| 17  | M17          | Z         | 001                          | 001                       | 0                 | %100             |
| 18  | M18          | Z         | 001                          | 001                       | 0                 | %100             |
| 19  | M19          | Z         | 001                          | -,001                     | 0                 | %100             |
| 20  | M20          | Z         | 001                          | 001                       | 0                 | %100             |
| 21  | M21          | Z         | . 0                          | 0                         | 0                 | %100             |
| 22  | M22          | Z         | 0                            | 0                         | 0                 | %100             |
| 23  | M23          | Z         | 0                            | 0                         | 0                 | %100             |
| 24  | M24          | Z         | 0                            | 0                         | 0                 | %100             |
| 25  | M25          | Z         | 0                            | Ō                         | 0                 | %100             |
| 26  | M26          | Z         | 001                          | 001                       | 0                 | %10D             |
| 27  | M27          | Z         | 001                          | 001                       | 0                 | %100             |
| 28  | M28          | Z         | -,001                        | 001                       | 0                 | %100             |
| 29  | M29          | Z         | 001                          | 001                       | Ó                 | %100             |
| 30  | M30          | Z         | 001                          | 001                       | 0                 | %100             |
| 31  | M31          | Z         | 001                          | 001                       | 0                 | %100             |
| 32  | M32          | 2         | -,001                        | 001                       | 0                 | %100             |
| 33  | M33          | Z         | 001                          | 001                       | 0                 | %100             |
| 34  | M34          | 2         | 001                          | -,001                     | 0                 | %100             |
| 35  | M35          | Z         | -,001                        | 001                       | 0                 | %100             |
| 36  | M36          | Z         | 0                            | 0                         | 0                 | %100             |
| 37  | B1           | Z         | 001                          | 001                       | 0                 | %3               |
| 38  | <u>C1</u>    | 2         | 001                          | 001                       | 0                 | %3               |
| 39  | A1           | Z         | 001                          | 001                       | 0                 | %3               |
| 40  | B1           | Z         | 001                          | 001                       | %68.5             | %100             |
| 41  | A4           | Z         | 001                          | 001                       | %78.1             | %100             |
| 42  | B2           | Z         | 001                          | 001                       | %78.8             | %100             |
| 43  | B3           | Z         | -,001                        | 001                       | %78.1             | %100             |
| 44  | A3           | Z         | 001                          | -,001                     | %78.1             | %100             |
| 45  | B4           | Z         | -,001                        | 001                       | %78.1             | %100             |



: Mastec : NDN

: 21944-MNT1 : ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 23 : Ice Wind Members (60 Deg.) (Continued)

|           | Member Label | Direction      | Start Magnitude(k/ft.F.ksf) | End Magnitude(k/ft.F.ksfl | Start Location(A | End Locationift |
|-----------|--------------|----------------|-----------------------------|---------------------------|------------------|-----------------|
| 46        | C1           | Z              | -,001                       | 001                       | %68.5            | %100            |
| 47        | A2           | Z              | 001                         | 001                       | %78.8            | %100            |
| 48        | C2           | Z              | -,001                       | 001                       | %78.8            | %100            |
| 49        | C3           | Z              | 001                         | 001                       | %78.1            | %100            |
| 50        | A1           | Z              | 001                         | 001                       | %68.5            | %100            |
| 51        | C4           | Z              | 001                         | 001                       | %78.1            | %100            |
| 52        | K2           | <u> </u>       | 002                         | -,002                     | 0                | %100            |
| 53        | K1           | Z              | 002                         | -,002                     | 0                | %100            |
| 54        | К3           | Z              | -,002                       | 002                       | 0                | %100            |
| 55        | M1           | X              | .002                        | .002                      | 0                | %100            |
| 56        | M2           | X              | .003                        | .003                      | 0                | %100            |
| 57        | <u>M3</u>    | X              | .001                        | .001                      | 0                | %100            |
| <u>58</u> | M4           | <del>  X</del> | .002                        | .002                      | 0                | %100            |
| 60        | M5           | X              | .003                        | .003                      | 0                | %100            |
| 61        | M6<br>M7     |                | .001                        | .001                      | 0                | %100            |
| 62        | M8           | X              | 0                           | 0                         | 0                | %100            |
| 63        | M9           | x              | 0                           | 0                         | 0                | %100            |
| 64        | M10          | x              | . 0                         | 0                         | 0                | %100            |
| 65        | M11          | x              | .001                        | .001                      | 0                | %100            |
| 66        | M12          | x              | .001                        | .001                      | 0                | %100            |
| 67        | M13          | X              | .001                        | .001                      | 0                | %100            |
| 68        | M14          | X              | .001                        | .001                      | 0                | %100<br>%100    |
| 69        | M15          | X              | .001                        | .001                      | Ö                | %100<br>%100    |
| 70        | M16          | X              | .001                        | .001                      | ŏ                | %100<br>%100    |
| 71        | M17          | X              | .001                        | .001                      | Ö                | %100            |
| 72        | M18          | X              | .001                        | .001                      | Ŏ                | %100<br>%100    |
| 73        | M19          | X              | .001                        | .001                      | 0                | %100            |
| 74        | M20          | Х              | .001                        | .001                      | Ö                | %100            |
| 75        | M21          | Х              | .001                        | .001                      | 0                | %100            |
| 76        | M22          | X              | 0                           | 0                         | 0                | %100            |
| 77        | M23          | X              | .0                          | 0                         | 0                | %100            |
| 78        | M24          | X              | 0                           | 0                         | 0                | %100            |
| 79        | M25          | X              | 0                           | 0                         | 0                | %100            |
| 80        | M26          | X              | .001                        | .001                      | 0                | %100            |
| 81        | M27          | X              | .001                        | .001                      | 0                | %100            |
| 82        | M28          | X              | .001                        | .001                      | 0                | %100            |
| 83        | M29          | X              | .001                        | .001                      | 0                | %100            |
| 84        | M30          | X              | .001                        | .001                      | 0                | %100            |
| 85<br>86  | M31          | <del>  3</del> | .001                        | .001                      | 0                | %100            |
| 87        | M32<br>M33   | X              | .001                        | .001                      | 0                | %100            |
| 88        | M34          | X              | .001                        | .001                      | 0                | %100            |
| _89       | M35          | 7              | .002                        | .002                      | 0                | %100            |
| 90        | M36          | X              | .002                        | .002<br>.001              | Ŏ O              | %100<br>%100    |
| 91        | B1           | Ŷ              | ,002                        | .002                      | 0                | %100<br>%3      |
| 92        | A4           | Ŷ              | .002                        | .002                      | 0                | %3              |
| 93        | A3           | X.             | .002                        | .002                      | 0                | %100            |
| 94        | Č1_          | Ŷ              | .002                        | .002                      | 0                | %100<br>%2      |
| 95        | A2           | Ŷ              | .002                        | .002                      | 0                | %3<br>%100      |
| 96        | A1           | X              | .002                        | .002                      | 0                | %100<br>%100    |
| 97        | K1           | x              | .003                        | .003                      | Ö                | %100<br>%100    |
| 98        | B1           | X              | .002                        | .002                      | <b>%68.5</b>     | %100<br>%100    |
| 99        | B2           | X              | .002                        | .002                      | %78.8            | %100<br>%100    |
| 100       | B3           | X              | .002                        | .002                      | %78.1            | %100<br>%100    |
| 101       | B4           | X              | .002                        | .002                      | %78.1            | %100<br>%100    |
| 102       | C1           | X              | .002                        | .002                      | %68.5            | %100            |



Mastec NDN

b Number : 21944-MNT1

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 23 : Ice Wind Members (60 Deg)) (Continued)

|     | Member Labei | Direction | Start Magnitude(k/ft.F.ksfl | End Magnitude(k/ft.F.ksf) | Start Location(ft. | End Location[ft |
|-----|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 103 | C2           | X         | .002                        | .002                      | %78.8              | %100            |
| 104 | C3           | X         | .002                        | .002                      | %78.1              | %100            |
| 105 | C4           | X         | .002                        | .002                      | %78.1              | %100            |
| 106 | K2           | X         | .003                        | .003                      | 0                  | %100            |
| 107 | K3           | X         | 003                         | .003                      | 0                  | %100            |

### Member Distributed Loads (BLC 24 : Ice Wind Members (90 Deg))

|          | Member Label | Direction | Start Magnitude(k/ft.F.ksf) | End Magnitude(k/ft.F.ksf) | Start Location[ft. | End Locationfft. |
|----------|--------------|-----------|-----------------------------|---------------------------|--------------------|------------------|
| 1        | M1           | Z         | 0                           | 0                         | 0                  | %100             |
| 2        | M2           | Z         | 0                           | 0                         | 0                  | %100             |
| 3        | M3           | Z         | 0                           | 0                         | 0                  | %100             |
| 4        | M4           | Z         | 0                           | 0                         | Ö                  | %100             |
| 5        | M5           | Z         | 0                           | 0                         | 0                  | %100             |
| 6        | M6           | Z         | 0                           | 0                         | 0                  | %100             |
| 7        | MZ           | Z         | 0                           | Ô                         | 0                  | %100             |
| 8        | MB           | Z         | 0                           | 0                         | 0                  | %100             |
| 9        | M9           | 2         | 0                           | Ö                         | Ö                  | %100             |
| 10       | M10          | Z         | 0                           | Q                         | 0                  | %100             |
| 11       | M11          | Z         | Ō                           | 0                         | Ŏ                  | %100             |
| 12       | M12          | Z         | Ō                           | Ö                         | Ö                  | %100             |
| 13       | M13          | Z         | Ō                           | 0                         | Ö                  | %100             |
| 14       | M14          | Z         | Ō                           | O                         | Ö                  | %100             |
| 15       | M15          | Z         | 0                           | Ö                         | 0                  | %100<br>%100     |
| 16       | M16          | Z         | Ŏ                           | Ö                         | Ŏ                  | %100<br>%100     |
| 17       | M17          | Z         | Ö                           | Ö                         |                    |                  |
| 18       | M18          | Z         | O O                         | Ö                         | 0                  | %100             |
| 19       | M19          | Z         | Ö                           | Ö                         | 0                  | %100             |
| 20       | M20          | Z         | Q                           | o o                       | 0                  | %100             |
| 21       | M21          | Z         | Ö                           |                           | 0                  | %100             |
| 22       | M22          | 2         | 0                           | 0                         | 0                  | %100             |
| 23       | M23          |           |                             | 0                         | 0                  | %100             |
| 24       | M24          | Z         | 0                           | 0                         | 0                  | %100             |
|          | M25          |           | 0                           | 0                         | 0                  | %100             |
| 25<br>26 |              | Z         | 0                           | 0                         | 0                  | %100             |
|          | M26          | Z         | Q                           | 0                         | 0                  | %100             |
| 27       | M27          | <u>Z</u>  | 0                           | Q                         | 0                  | %100             |
| 28       | M28          | <u>Z</u>  | <u> </u>                    | 0                         | Q                  | %100             |
| 29       | M29          | 7         | 0                           | Q                         | 0                  | %100             |
| 30       | M30          | Z         | O                           | 0                         | 0                  | %100             |
| 31       | M31          | Z         | 0                           | 6                         | 0                  | %100             |
| 32       | M32          | Z         | 0                           | G                         | 0                  | %100             |
| 33       | M33          | Z         | 0                           | . 0                       | 0                  | %100             |
| 34       | M34          | Z         | 0                           | 0                         | Q                  | %100             |
| 35       | M35          | Z         | 0                           | 0                         | 0                  | %100             |
| 38       | M36          | Z         | 0                           | 0                         | 0                  | %100             |
| 37       | B1           | Z         | 0                           | 0                         | Ō                  | %3               |
| 38       | C1           | 2         | 0                           | 0                         | 0                  | %3               |
| 39       | A1           | Z         | 0                           | 0                         | 0                  | %3               |
| 40       | 81           | Z         | 0                           | 0                         | %68.5              | %100             |
| 41       | A4           | Z         | 0                           | 0                         | %78.1              | %100             |
| 42       | 82           | Z         | 0                           | O O                       | %78.8              | %100             |
| 43       | 83           | Z         | 0                           | 0                         | %78.1              | %100             |
| 44       | - A3         | Z         | 0                           | Ō                         | %78.1              | %100             |
| 45       | 84           | Z         | Ō                           | 0                         | %78.1              | %100             |
| 46       | C1           | Z         | Ō                           | 0                         | %68.5              | %100             |
| 47       | A2           | Z         | Ō                           | Ö                         | %78.8              | %100             |
| 48       | C2           | Z         | Ō                           | 0                         | %78.8              | %100             |



Model Name

: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Distributed Loads (BLC 24 : Ice Wind Members (90 Dea)) (Continued)

| 40       | Member Label | Direction | Start Magnitude(k/l),F./ksf] | End Magnitude(k/ft.F.ksf) |       | End Location( |
|----------|--------------|-----------|------------------------------|---------------------------|-------|---------------|
| 49<br>50 | C3           | Z         | 0                            | 0                         | %78.1 | %100          |
|          | A1           | Z         | Q                            | 0                         | %68.5 | %100          |
| 51       | C4           | +         | <u> </u>                     | 0                         | %78.1 | %100          |
| 52       | K2           | <u> </u>  | <u>0</u>                     | 0                         | 0     | %100          |
| 53       | K1           | Z         | 0                            | Q                         | 0     | %100          |
| 54       | K3           | Z         | <u> </u>                     | 0                         | 0     | %100          |
| 55       | M1           | X         | .001                         | .001                      | 0     | %100          |
| 56       | M2           | X         | .003                         | .003                      | 0     | %100          |
| 57       | M3           | X         | .003                         | .003                      | 0     | %100          |
| 58       | M4           | X         | .004                         | .004                      | 0     | %100          |
| 59       | M5           | X         | .002                         | .002                      | 0     | %100          |
| 60       | M6           | X         | .002                         | .002                      | 0     | %100          |
| 61       | M7           | X         | 0                            | Ö                         | 0     | %100          |
| 62       | M8           | X         | 0                            | Ö                         | 0     | 9/400         |
| 63       | M9           | X         | O O                          | Ŏ                         |       | %100          |
| 64       | M10          | X         | Û                            | Ŏ                         | 0     | %100          |
| 65       | M11          | X         | .002                         |                           | 1 0   | %100          |
| 66       | M12          | + + +     |                              | .002                      | 0     | %100          |
| 67       | M13          | X         | .002                         | .002                      | 0     | %100          |
|          |              | X         | .002                         | .002                      | 0     | %100          |
| 68       | M14          | X         | .002                         | .002                      | 0     | %100          |
| 69       | M15          | X         | .002                         | .002                      | 0     | %100          |
| 70       | M16          | XX        | .002                         | .002                      | 0     | %100          |
| 71       | M17          | X         | .002                         | .002                      | Q     | %100          |
| 72       | M18          | X         | .002                         | .002                      | 0     | %100          |
| 73       | M19          | X         | .001                         | .001                      | 0     | %100          |
| 74       | M20          | X         | .001                         | .001                      | 0     | %100          |
| 75       | M21          | X         | ,001                         | .001                      | 0     | %100          |
| 76       | M22          | X         | 0                            | 0                         | Ö     | %100<br>%100  |
| 77       | M23          | X         | 0                            | Ö                         |       |               |
| 78       | M24          | Ŷ         | 0                            | 0                         | 0     | %100<br>%400  |
| 79       | M25          | X         | Ö                            |                           |       | %100          |
| 80       | M26          | X         | .002                         | 0                         | 0     | %100          |
| 81       | M27          | x         |                              | .002                      | 0     | %100          |
| 82       | M28          |           | .002                         | .002                      | 0     | %100          |
|          |              | X         | .002                         | .002                      | 0     | %100          |
| 63       | M29          | X         | .002                         | .002                      | Q     | %100          |
| 84       | M30          | X         | .002                         | .002                      | Q     | %100          |
| 85       | M31          | X         | .002                         | .002                      | 0     | %100          |
| 86       | M32          | X         | .002                         | .002                      | 0     | %100          |
| 87       | M33          | X         | .002                         | .002                      | 0     | %100          |
| 88       | M34          | X         | .002                         | .002                      | 0     | %100          |
| 89       | M35          | L X       | .002                         | .002                      | 0     | %100          |
| 90       | M36          | X         | .002                         | .002                      | Ō     | %100          |
| 91       | B1           | X         | .003                         | .003                      | n     | %3            |
| 92       | A4           | X         | .003                         | .003                      | 0     |               |
| 93       | A3           | X         | .003                         | .003                      |       | %100<br>% 400 |
| 94       | ČÍ           | Ŷ         | .003                         |                           | 0     | <u>%100</u>   |
| 35       | A2           | Ŷ         |                              | .003                      | 0     | %3            |
| 16       | A1           | X         | .003                         | .003                      | 0     | %100          |
|          |              |           | .003                         | .003                      | 0     | %100          |
| 7        | <u>K1</u>    | X         | .004                         | .004                      | 0     | %100          |
| 98       | B1           | X         | .003                         | .003                      | %68.5 | %100          |
| 99       | B2           | X         | .003                         | .003                      | %78.8 | %100          |
| 00       | B3           | X         | .003                         | .003                      | %78.1 | %100          |
| 01       | B4           | X         | .003                         | .003                      | %78.1 | %100          |
| 02       | C1           | X         | .003                         | .003                      | %68.5 | %100          |
| 03       | C2           | X         | .003                         | .003                      | %78.8 |               |
| 04       | C3           | X         | .003                         | .003                      | %78.1 | %100          |
| 05       | C4           | X         | .003                         | .003                      |       | %100          |
|          | M. A         |           | 1000                         | .003                      | %78.1 | <b>%100</b>   |



Mastec NDN

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 24 : Ice Wind Members (90 Deg)) (Continued)

| Member Label | Direction | Start Magnitude/k/ft.F.ksfl | End Magnitudefk/tt.F.ksft | Start Location Ift | End Locationist |
|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 106 K2       | X         | .004                        | .004                      | 0                  | %100            |
| 107 K3       | X         | .004                        | .004                      | 0                  | %100            |

#### Member Distributed Loads (BLC 25 : Ice Wind Members (120 Deg))

| 4  | Member Label | Direction | Start Magnitude(k/ft.F.ksf) | End Magnitude(k/R.F.ksf) | Start Location(ft. |      |
|----|--------------|-----------|-----------------------------|--------------------------|--------------------|------|
| 1  | M1           | Z         | .001                        | .001                     | 0                  | %100 |
| 2  | M2           | Z         | .001                        | .001                     | 0                  | %100 |
| 3  | <u>M3</u>    | <u>z</u>  | .002                        | .002                     | 0                  | %100 |
| 4  | M4           | Z         | .001                        | .001                     | 0                  | %100 |
| 5  | M5           | Z         | 0                           | 0                        | 0                  | %100 |
| 6  | M6           | Z         | .002                        | .002                     | 0                  | %100 |
| 7  | M7           | 2         | <u>ō</u>                    | 0                        | 0                  | %100 |
| 8  | M8           | Z         | 0                           | 0                        | 0                  | %100 |
| 9  | M9           | Z         | <u> </u>                    | 0                        | 0                  | %100 |
| 10 | M10          | Z         | 0                           | 0                        | 0                  | %100 |
| 11 | M11          | Z         | .001                        | .001                     | Q                  | %100 |
| 12 | M12          | <u>Z</u>  | .001                        | .001                     | 0                  | %100 |
| 13 | M13          | Z         | .001                        | .001                     | 0                  | %100 |
| 14 | M14          | 2         | .001                        | .001                     | Ö                  | %100 |
| 15 | M15          | Z         | .001                        | .001                     | 0                  | %100 |
| 16 | M16          | <u> </u>  | .001                        | .001                     | 0                  | %100 |
| 17 | M17          | Z         | .001                        | .001                     | 0                  | %100 |
| 18 | M18          | Z         | .001                        | .001                     | 0                  | %100 |
| 19 | M19          | Z         | .001                        | .001                     | 0                  | %100 |
| 20 | M20          | Z         | 0                           | <u> </u>                 | 0                  | %100 |
| 21 | M21          | Z         | .001                        | .001                     | C                  | %100 |
| 22 | M22          | Z         | 0                           | 0                        | 0                  | %100 |
| 23 | M23          | Z         | 0                           | Q                        | 0                  | %100 |
| 24 | M24          | Z         | 0                           | 0                        | 0                  | %100 |
| 25 | M25          | Z         | 0                           | 0                        | 0                  | %100 |
| 26 | M26          | Z         | .001                        | .001                     | 0                  | %100 |
| 27 | M27          | Z         | .001                        | .001                     | 0                  | %100 |
| 28 | M28          | Z         | .001                        | .001                     | 0                  | %100 |
| 29 | M29          | Z         | .001                        | .001                     | 0                  | %100 |
| 30 | M30          | Z         | .001                        | .001                     | 0                  | %100 |
| 31 | M31          | Z         | .001                        | .001                     | 0                  | %100 |
| 32 | M32          | Z         | .001                        | .001                     | 0                  | %100 |
| 33 | M33          | Z         | .001                        | .001                     | 0                  | %100 |
| 34 | M34          | Z         | 0                           | 0                        | Ö                  | %100 |
| 35 | M35          | Z         | .001                        | .001                     | Ö                  | %100 |
| 36 | M36          | Z         | .001                        | .001                     | 0                  | %100 |
| 37 | B1           | Z         | .001                        | .001                     | 0                  | %3   |
| 38 | :C1          | Z         | .001                        | .001                     | 0                  | %3   |
| 39 | A1           | Z         | .001                        | .001                     | 0                  | %3   |
| 40 | B1           | Z         | .001                        | .001                     | %68.5              | %100 |
| 11 | A4           | Z         | .001                        | .001                     | %78.1              | %100 |
| 12 | B2           | Z         | .001                        | .001                     | %78.8              | %100 |
| 13 | B3           | Z         | .001                        | .001                     | %78.1              | %100 |
| 14 | A3           | Z         | .001                        | .001                     | %78.1              | %100 |
| 45 | B4           | Z         | .001                        | .001                     | %78.1              | %100 |
| 16 | C1           | Z         | .001                        | .001                     | %68.5              | %100 |
| 47 | A2           | Z         | .001                        | .001                     | %78.8              | %100 |
| 18 | C2           | Z         | .001                        | .001                     | %78.8              | %100 |
| 49 | C3           | Z         | .001                        | .001                     | %78.1              | %100 |
| 50 | A1           | Z         | .001                        | .001                     | %68.5              | %100 |
| 51 | C4           | Z         | .001                        | .001                     | %78.1              | %100 |



: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Distributed Loads (BLC 25 : Ice Wind Members (120 Dea)) (Continued)

| 52       | Member Label<br>K2 | Direction   | Start Magnitude(k/ft.F.kaft | End Magnitude(k/ft.F./ksf) | Start Location II. | End Location R. |
|----------|--------------------|-------------|-----------------------------|----------------------------|--------------------|-----------------|
| 53       |                    | 7           | .002                        | .002                       | 0                  | %100            |
|          | K1                 | Z           | .002                        | .002                       | 0                  | %100            |
| 54       | K3<br>M1           | + 5 +       | .002                        | .002                       | 0                  | %100            |
| 55       |                    | X           | .002                        | .002                       | 0                  | %100            |
| 56<br>57 | M2                 |             | .001                        | .001                       | 1 0                | %100            |
|          | M3                 | X           | .003                        | .003                       | 0                  | %100            |
| 58       | M4                 | X           | .002                        | .002                       | 0                  | %100            |
| 59       | M5                 | X           | .001                        | .001                       | 0                  | %100            |
| 60       | M6                 | X           | .003                        | .003                       | 0                  | %100            |
| 61       | M7                 | X           | <u> </u>                    | 0                          | 0                  | %100            |
| 62       | M8                 | X           | 0                           | 0                          | 0                  | %100            |
| 63       | M9                 | X           | Q                           | 0                          | 0                  | %100            |
| 64       | M10                | X           | 0                           | 0                          | 0                  | %100            |
| 65       | M11                | X           | .001                        | .001                       | 0                  | %100            |
| 66       | M12                | X           | .001                        | .001                       | 0                  | %100            |
| 67       | M13                | X           | .001                        | .001                       | 0                  | %100            |
| 68       | M14                | X           | .001                        | _001                       | 0                  | %100            |
| 69       | M15                | X           | .001                        | .001                       | 0                  | %100            |
| 70       | M16                | X           | .001                        | .001                       | 0                  | %100            |
| 71       | M17                | X           | .001                        | .001                       | 0                  | %100            |
| 72       | M18                | X           | .001                        | .001                       | 0                  | %100            |
| 73       | M19                | X           | .001                        | .001                       | 0                  | %100            |
| 74       | M20                | X           | .001                        | .001                       | 0                  | %100            |
| 75       | M21                | X           | .001                        | .001                       | 0                  | %100            |
| 76       | M22                | X           | O O                         | 0                          | Ö                  | %100            |
| 77       | M23                | X           | Ō                           | Q                          | 0                  | %100            |
| 78       | M24                | X           | Ö                           | 0                          | Ŏ                  | %100            |
| 79       | M25                | X           | Ō                           | 0                          | 0                  | <b>%100</b>     |
| BO       | M26                | X           | .001                        | .001                       | ŏ                  | %100            |
| 31       | M27                | X           | .001                        | .001                       | 0                  | %100<br>%100    |
| 82       | M28                | X           | .001                        | .001                       |                    |                 |
| 83       | M29                | X           | .001                        | .001                       | Š.                 | %100            |
| 84       | M30                | X           | .001                        |                            | 0                  | %100            |
| 85       | M31                | Ŷ           | .001                        |                            | 0                  | %100<br>%400    |
| 36       | M32                | Ŷ           | .001                        | .001                       | 0                  | %100            |
| 37       | M33                |             | .001                        | .001                       | 0                  | %100            |
| 38       | M34                | X           |                             | .001                       | 0                  | %100            |
| 39       | M35                |             | .001                        | .001                       | Ö                  | %100            |
| 90       |                    | X           | .002                        | .002                       | 0                  | %100            |
|          | M36                | X           | .002                        | .002                       | 0                  | %100            |
| 91       | 81                 | X           | .002                        | .002                       | 0                  | %3              |
| 92       | A4                 | X           | .002                        | .002                       | 0                  | %100            |
| 93       | A3                 | X           | .002                        | .002                       | 0                  | %100            |
| 4        | <u>C1</u>          | X           | .002                        | .002                       | 0                  | %3              |
| 95       | A2                 | X           | .002                        | .002                       | 0                  | %100            |
| 76       | A1                 | X           | .002                        | .002                       | 0                  | %100            |
| 97       | <u>K1</u>          | X           | .003                        | .003                       | 0                  | %100            |
| 38       | 81                 | X           | .002                        | .002                       | %68.5              | %100            |
| 39       | B2                 | X           | .002                        | .002                       | %78.8              | %100            |
| 00       | B3                 | X<br>X<br>X | .002                        | .002                       | %78.1              | %100            |
| 01       | 84                 | X           | .002                        | .002                       | %78.1              | %100            |
| 02       | C1                 | X           | .002                        | .002                       | %68.5              | %100            |
| 03       | C2                 | X           | .002                        | ,002                       | %78.8              | %100            |
| 04       | C3                 | X           | .002                        | .002                       | %78.1              | %100            |
| 05       | C4                 | X           | .002                        | .002                       | %78.1              | %100            |
| 08       | K2                 | X           | .003                        | .003                       | 0                  | %100            |
| 07       | K3                 | X           | .003                        | .003                       | Ö                  | %100            |



: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Distributed Loads (BLC 26 : Ice Wind Members (150 Deg))

| 4   | Member Label | Direction     | Start Magnitude(k/R.F.kaf) | End Magnitude(k/fLF,ksf) | Start Location(ft. | End Location |
|-----|--------------|---------------|----------------------------|--------------------------|--------------------|--------------|
| +   | M1<br>M2     | <u> </u>      | .003                       | .003                     | 0                  | %100         |
| 2   |              | Z             | 0                          | 0.3                      | 0                  | %100         |
| 3   | <u>M3</u>    | 7             | .003                       | .003                     | 0                  | %100         |
| 4   | M4           | 7             | .001                       | .001                     | 0                  | %100         |
| 5   | M5           | Z             | .002                       | .002                     | 0                  | %100         |
| 7   | MB           | <u> </u>      | .004                       | .004                     | 0                  | %100         |
| 8   | M7           | Z             | 0                          | <u>o</u>                 | 0                  | %100         |
| 9   | M8           | Z             | Q                          | 0                        | 0                  | %100         |
| 10  | M9           | Z             | 0                          | 0                        | 0                  | %100         |
| 11  | M10<br>M11   | <del>  </del> | 0                          | 0                        | 0                  | %100         |
| 2   | M12          | 2 2           | .001                       | .001                     | 0                  | %100         |
| 13  | M13          |               | .001                       | .001                     | 0                  | %100         |
| 4   | M14          | Z             | .001                       | .001                     | 0                  | %100         |
| 5   | M15          |               |                            | .001                     | 0                  | %100         |
| 16  | M16          | 7             | .001                       | .001                     | 0                  | %100         |
| 7   | M17          | Z             | .001                       | .001                     | 0                  | %100         |
| 18  | M17          | Z             | .001<br>.001               | .001                     | 0                  | %100         |
| 9   | M19          | Z             |                            | .001                     | 0                  | %100         |
| 20  | M20          | Z             | .002                       | .002                     | 0                  | %100         |
| 21  | M21          | Z             | .001                       | 0                        | 0                  | %100         |
| 22  | M22          | Z             |                            | .001                     | 0                  | %100         |
| 3   | M23          | Ž             | 0                          | <u> </u>                 | 0                  | %100         |
| 2   | M24          | 2             | 0                          | 0                        | 0                  | %100         |
| 5   | M25          | Ž             | 0                          | 0                        | 0                  | %100         |
| 6   | M26          | Z             | ,001                       | 0                        | 0                  | %100         |
| 7   | M27          | Z             | .001                       | .001                     | 0                  | %100         |
| 8   | M28          | Z             | .001                       | .001                     | 0                  | %100         |
| 9   | M29          | Z             | .001                       | .001                     | 0                  | %100         |
| 10  | M30          | Ž             | .001                       | ,001                     | 0                  | %100         |
| 11  | M31          | Ž             | .001                       | .001                     | 0                  | %100         |
| 2   | M32          | Ž             | .001                       | .001                     | 0                  | %100         |
| 3   | M33          | Z             | .001                       | .001                     | 0                  | %100         |
| 4   | M34          | Z             | 0                          | .001                     | 0                  | %100         |
| 5   | M35          | Z             | .003                       | 003                      | 0                  | %100         |
| 6   | M36          | Z             | .003                       | .003                     | 0                  | %100         |
| 7   | B1           | Z             | .002                       | .002                     | 0                  | %100         |
| 8   | C1           | Ž             | .002                       | .002                     | 0                  | %3           |
| 9   | A1           | Z             | .002                       | .002                     | 0                  | <b>%3</b>    |
| 0   | B1           | Z             | .002                       | .002                     | 0                  | %3           |
| 1   | A4           | Ž             | .002                       | .002                     | %68.5              | %100         |
| 2   | B2           | 2             | .002                       | .002                     | %78.1<br>%78.0     | %100         |
| 3   | B3           | 7             | .002                       | .002                     | %78.8              | %100         |
| 4   | A3           | Z             | .002                       | .002                     | %78.1              | %100<br>%400 |
| 5   | B4           | Ž             | .002                       | .002                     | %78.1<br>%78.4     | %100         |
| 6   | C1           | Ž             | .002                       | .002                     | %78.1              | %100         |
| 7   | A2           | Ž             | .002                       | .002                     | %68.5<br>%78.8     | %100         |
| 8   | C2           | Ž             | .002                       | .002                     | %78.8              | %100         |
| 9   | C3           | Ž             | .002                       | .002                     |                    | %100         |
| o l | A1           | Z             | .002                       | .002                     | %78.1              | %100         |
| 1   | C4           | Z             | .002                       | .002                     | %68.5<br>%79.4     | %100         |
| 2   | К2           | Z             | .003                       | .003                     | %78.1              | %100         |
| 3   | K1           | Z             | .003                       | .003                     | 0                  | %100         |
| 4   | К3           | Z             | .003                       | .003                     | Ö                  | %100         |
| 5   | M1           | X             | .002                       | .002                     | 0                  | %100         |
| 6   | M2           | Ŷ             | .0                         | .02                      |                    | %100         |
| 7   | M3           | Ŷ             | .002                       | .002                     | 0                  | %100<br>%100 |



: Mastec : NDN - 21944-MNT

: 21944-MNT1 : ATC411189-Cranburysu CT-10035342 Apr 24, 2020 6:04 PM Checked By: BOM

#### Member Distributed Loads (BLC 26 : Ice Wind Members (150 Deg)) (Continued)

| E0 | Member Label | Direction | Start Magnitudelk/R.F.kafl | End Magnitudelle/It.F.ksfl |       | End Locationit |
|----|--------------|-----------|----------------------------|----------------------------|-------|----------------|
| 58 | M4           | X         |                            | 0                          | 0     | %100           |
| 59 | M5           | X         | .001                       | .001                       | 0     | %100           |
| 80 | M6           | X         | .002                       | .002                       | 0     | %100           |
| 61 | M7           | X         | <u> </u>                   | 0                          | 0     | %100           |
| 12 | MB           | X         | 0                          | 0                          | 0     | %100           |
| 63 | M9           | X         | <u> </u>                   | 0                          | 0     | %100           |
| 84 | M10          | X         | 0                          | 0                          | 0     | %100           |
| 85 | M11          | X         | .001                       | .001                       | 0     | %100           |
| 86 | M12          | X         | .001                       | .001                       | 0     | %100           |
| 67 | M13          | X         | .001                       | .001                       | 0     | %100           |
| 88 | M14          | X         | .001                       | .001                       | 0     | %100           |
| 89 | M15          | X         | .001                       | .001                       | 0     | %100           |
| 70 | M1B          |           | .001                       | .001                       | Q     | %100           |
| 71 | M17          | X         | .001                       | .001                       | 0     | %100           |
| 72 | M18          | X         | .001                       | .001                       | Q     | %100           |
| 73 | M19          | X         | .001                       | .001                       | 0     | %100           |
| 74 | M20          | X         | :0                         | 0                          | 0     | %100           |
| 75 | M21          | X         | .001                       | .001                       | 0     | %100           |
| 76 | M22          | X         | 0                          | Q                          | 0     | %100           |
| 77 | M23          | X         | 0                          | 0                          | 0     | %100           |
| 18 | M24          | X         | 0                          | Q                          | 0     | %100           |
| 79 | M25          | X         | 0                          | 0                          | 0     | %100           |
| 30 | M26          | X         | ,001                       | .001                       | O     | %100           |
| 31 | M27          | X         | .001                       | .001                       | 0     | %100           |
| 12 | M28          | X         | .001                       | .001                       | 0     | %100           |
| 33 | M29          | X         | .001                       | .001                       | 0     | %100           |
| 14 | M30          | X         | .001                       | .001                       | 0     | %100           |
| 5  | M31          | X         | .001                       | .001                       | 0     | %100           |
| 8  | M32          | X         | .001                       | ,001                       | 0     | %100           |
| 37 | M33          | X         | .001                       | .001                       | 0     | %100           |
| 38 | M34          | X         | 0                          | Q                          | 0     | %100           |
| 39 | M35          | X         | .002                       | .002                       | 0     | %100           |
| 10 | M36          | X         | .001                       | .001                       | 0     | %100           |
| 11 | B1           | X         | .001                       | .001                       | 0     | %3             |
| 12 | A4           | X         | .001                       | .001                       | 0     | %100           |
| 3  | A3           | X         | .001                       | .001                       | 0     | %100           |
| 14 | C1           | X         | .001                       | .001                       | 0     | %3             |
| 75 | A2           | X         | .001                       | .001                       | 0     | %100           |
| 36 | <u>A1</u>    | X         | .001                       | .001                       | 0     | %100           |
| 7  | K1           | X         | .002                       | .002                       | Q     | %100           |
| 18 | 81           | X         | .001                       | .001                       | %68.5 | %100           |
| 19 | B2           | X         | .001                       | .001                       | %78.8 | %100           |
| 00 | B3           | Χ         | .001                       | .001                       | %78.1 | %100           |
| 01 | 84           | X         | .001                       | .001                       | %78.1 | %100           |
| 02 | C1           | X         | .001                       | .001                       | %68.5 | %100           |
| 03 | C2           | X         | .001                       | .001                       | %78.8 | %100           |
| 04 | C3           | X         | .001                       | .001                       | %78.1 | %100           |
| 05 | C4           | X         | .001                       | .001                       | %78.1 | %100           |
| 06 | K2           | X         | .002                       | .002                       | 0     | %100           |
| 07 | К3           | X         | .002                       | .002                       | Ö     | %100           |

### Member Distributed Loads (BLC 48 : BLC 1 Translent Area Loads)

|      | Member Label | Direction | Start Magnitude[k/fl.F.ksfl | End Magnitudelk/ft.F.ksfl | Start Location(ft | End Location(ft |
|------|--------------|-----------|-----------------------------|---------------------------|-------------------|-----------------|
| 1_1_ | M3           | Y         | 001                         | 008                       | 0                 | 2.071           |
| 2    | M3           | Y         | 008                         | 014                       | 2.071             | 4.143           |
| _3_  | М3           | Y         | 014                         | 014                       | 4.143             | 6.214           |



: Mastec : NDN : 21944-MNT1 : ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

# Member Distributed Loads (BLC 48 : BLC 1 Transient Area Loads) (Continued)

|    | Member Label | Direction | Start Magnitudofk/ft.F.ksfl | End Magnitudefit/ft.F.ksfl | Start Location(R. | End Location(t) |
|----|--------------|-----------|-----------------------------|----------------------------|-------------------|-----------------|
| 4  | M3           | Y         | 014                         | 014                        | 6.214             | 8.286           |
| 5  | M3           | Y         | 014                         | 014                        | 8.286             | 10.357          |
| 6  | M3           | Υ         | 014                         | 008                        | 10.357            | 12,429          |
| 7  | M3           | Y         | 008                         | 001                        | 12.429            | 14.5            |
| 8  | M4           | Y         | 001                         | 011                        | .75               | 2.5             |
| 9  | M4           | Y         | 011                         | -,012                      | 2.5               | 4.25            |
| 10 | M4           | Y         | 012                         | 003                        | 4.25              | 6               |
| 11 | M6           | Υ         | +.001                       | 011                        | .75               | 2.5             |
| 12 | M6           | Y         | 011                         | 012                        | 2.5               | 4.25            |
| 13 | M6           | Y         | 012                         | 003                        | 4.25              | 6               |
| 14 | M1           | Y         | 001                         | 008                        | 0                 | 2.071           |
| 15 | M1           | Y         | -,008                       | 014                        | 2.071             | 4.143           |
| 16 | M1           | Ÿ         | 014                         | 014                        | 4.143             | 6.214           |
| 17 | M1           | Y         | 014                         | 014                        | 6.214             | 8.286           |
| 18 | M1           | Y         | 014                         | 014                        | 8.286             | 10.357          |
| 19 | M1           | Ÿ         | -,014                       | 008                        | 10.357            | 12.429          |
| 20 | M1           | Ÿ         | 008                         | 001                        | 12,429            |                 |
| 21 | M5           | Y         | 001                         | 011                        | .75               | 14.5<br>2.5     |
| 22 | M5           | Ý         | 011                         | 012                        | 2.5               |                 |
| 23 | M5           | <b>V</b>  | 012                         | 003                        |                   | 4.25            |
| 24 | M2           | V T       | 001                         | 008                        | 4.25              | 6               |
| 25 | M2           | Y         | 008                         | 014                        |                   | 2.071           |
| 26 | M2           | † · ·     | 014                         |                            | 2.071             | 4.143           |
| 27 | M2           | <u> </u>  | 014                         | 014                        | 4.143             | 6.214           |
| 28 | M2           | \ \ \ \   | 014                         | 014                        | 6.214             | 8.286           |
| 29 | M2           | 1 - 1     |                             | 014                        | 8.286             | 10.357          |
| 30 | M2           | Y         | 014<br>008                  | 008<br>001                 | 10.357<br>12.429  | 12.429<br>14.5  |

# Member Distributed Loads (BLC 49 : BLC 2 Transient Area Loads)

|    | Member Label | Direction | Start Magnitude(k/ft,F,ksf) | End Magnitude(k/ft.F.ksft | Start Location(ft. | .End Location(ft. |
|----|--------------|-----------|-----------------------------|---------------------------|--------------------|-------------------|
| 1  | M3           | Y         | .0009799                    | .007                      | 0                  | 2.071             |
| 2  | M3           | Y         | .007                        | .012                      | 2.071              | 4.143             |
| 3  | M3           | Y         | .012                        | .012                      | 4.143              | 6.214             |
| 4  | M3           | Y         | .012                        | .012                      | 6.214              | 8.286             |
| 5  | M3           | Y         | .012                        | .012                      | 8,286              | 10.357            |
| 6  | M3           | Y         | .012                        | .007                      | 10.357             | 12.429            |
| 7  | M3           | Y         | ,007                        | .0009799                  | 12,429             | 14.5              |
| 8  | M4           | Y         | .001                        | .009                      | .75                | 2.5               |
| 9  | M4           | Y         | .009                        | .01                       | 2.5                | 4.25              |
| 10 | M4           | Y         | .01                         | .003                      | 4.25               | 7.632             |
| 11 | M6           | Y         | .001                        | .009                      | .75                | 2.5               |
| 12 | M6           | Ÿ         | .009                        | .01                       | 2.5                | 4.25              |
| 13 | M6           | Ý         | .01                         | ,003                      | 4.25               | 6                 |
| 14 | M1           | Ý         | .0009799                    | .007                      | 0                  | 2.071             |
| 15 | M1           | Y         | .007                        | .012                      | 2.071              | 4.143             |
| 16 | M1           | Y         | .012                        | .012                      | 4.143              | 6.214             |
| 17 | M1           | Y         | .012                        | .012                      | 6.214              | 8.286             |
| 18 | M1_          | Ý         | .012                        | .012                      | 8.286              | 10.357            |
| 19 | M1           | Y         | .012                        | .007                      | 10.357             | 12.429            |
| 20 | M1           | Y         | .007                        | .0009799                  | 12.429             | 14.5              |
| 21 | M5           | Y         | .001                        | .009                      | .75                | 2.5               |
| 22 | M5           | Y         | .009                        | .01                       | 2.5                | 4.25              |
| 23 | M5           | Ý         | 01                          | .003                      | 4.25               | 6                 |
| 24 | M2           | Y         | .0009789                    | .007                      | 0                  |                   |
| 25 | M2           | Ý         | .007                        | .012                      | 2.071              | 2.071             |
| 26 | M2           | Y         | .012                        | .012                      | 4.143              | 4.143<br>6.214    |



: Mastec : NDN : 21944-MNT1

: ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Member Distributed Loads (BLC 49 : BLC 2 Transient Area Loads) (Continued)

|    | Member Label | Direction | Start Magnitude/k/ft.F.ksfl | End Magnitudefk/ft.F.ksfl | Start Location(ft. | End Locationift |
|----|--------------|-----------|-----------------------------|---------------------------|--------------------|-----------------|
| 27 | M2           | Y         | .012                        | .012                      | 6.214              | 8.286           |
| 28 | M2           | Υ         | .012                        | .012                      | 8,286              | 10.357          |
| 29 | M2           | Υ         | .012                        | .007                      | 10.357             | 12.429          |
| 30 | M2           | Υ         | .007                        | .0009799                  | 12.429             | 14.5            |

Member Area Loads (BLC 1 : Dead)

| Joint A | Joint B | Joint C | Joint D | Direction | Distribution | Magnitudellesfl |
|---------|---------|---------|---------|-----------|--------------|-----------------|
| 1 N3    | N96     | N94     | N2      | Y         | Two Way      | 012             |
| 2 N3    | N96     | N95     | N1      | Y         | Two Way      | 012             |
| 3 N1    | N95     | N94     | N2      | Υ Υ       | Two Way      | 012             |

Member Area Loads (BLC 2 : Ice Dead)

| Joint A | Joint B | Joint C | Joint D | Direction | Distribution | Magnitudefksfl |
|---------|---------|---------|---------|-----------|--------------|----------------|
| 1 N3    | N96     | N94     | N2      | Y         | Two Way      | .01            |
| 2 N3    | N96     | N95     | N1      | Y         | Two Way      | .01            |
| 3 N1    | N95     | N94     | N2      | Y         | Two Way      | .01            |

Basic Load Cases

|      | BLC Description             | Category | X Gravity | Y Gravity | Z Gravity | Joint    | Point | Dietribut                                        | Aron(Mo  | Sudana/  |
|------|-----------------------------|----------|-----------|-----------|-----------|----------|-------|--------------------------------------------------|----------|----------|
| . 1  | Dead                        | None     | A CHANG   | -1        |           | JOINT.   | 24    | Uisti Dui.                                       | Area(Me. | Sunacei. |
| 2    | Ice Dead                    | None     |           |           |           |          | 24    | 51                                               | 3        |          |
| _3_  | Full Wind Antenna (0 Deg)   | None     |           |           |           |          | 24    | <del>                                     </del> |          |          |
| 4    | Full Wind Antenna (30 Deg)  | None     |           |           |           |          | 60    | <del>                                     </del> |          |          |
| 5    | Full Wind Antenna (60 Deg)  | None     |           |           |           |          | 60    |                                                  |          |          |
| 6    | Full Wind Antenna (90 Deg)  | None     |           |           |           |          | 60    |                                                  |          |          |
| _7_  | Full Wind Antenna (120 Deg) | None     |           |           |           |          | 56    |                                                  |          |          |
| 8    | Full Wind Antenna (150 Deg) | None     |           |           |           |          | 60    |                                                  |          |          |
| . 9  | Full Wind Members (0 Deg)   | None     |           |           |           |          |       | 53                                               |          |          |
| 10   | Full Wind Members (30 Deg)  | None     |           |           |           |          |       | 53                                               |          |          |
| .11  | Full Wind Members (60 Deg)  | None     |           |           |           |          |       | 53                                               |          |          |
| _12_ | Full Wind Members (90 Deg)  | None     |           |           |           |          |       | 53                                               |          |          |
| 13   | Full Wind Members (120 Deg) | None     |           |           |           |          |       | 53                                               |          | <u> </u> |
| 14   | Full Wind Members (150 Deg) | None     |           |           |           |          |       | 53                                               |          |          |
| 15   | Ice Wind Antenna (0 Deg)    | None     |           |           |           |          | 24    |                                                  |          |          |
| 16   | Ice Wind Antenna (30 Deg)   | None     |           |           |           |          | 60    |                                                  |          |          |
| 17   | Ice Wind Antenna (60 Deg)   | None     |           |           |           |          | 60    |                                                  |          |          |
| 18   | Ice Wind Antenna (90 Deg)   | None     |           |           |           |          | 60    |                                                  |          |          |
| 19   | Ice Wind Antenna (120 Deg)  | None     |           |           |           |          | 56    | 1                                                |          |          |
| 20   | Ice Wind Antenna (150 Deg)  | None     |           |           |           |          | 56    |                                                  |          |          |
| 21   | Ice Wind Members (0 Deg)    | None     |           |           |           |          |       | 107                                              |          |          |
| 22   | Ice Wind Members (30 Deg)   | None     |           |           |           |          |       | 107                                              |          |          |
| 23   | Ice Wind Members (60 Deg)   | None     |           |           |           |          |       | 107                                              |          |          |
| 24   | Ice Wind Members (90 Deg)   | None     |           |           |           |          |       | 107                                              |          |          |
| 25   | Ice Wind Members (120 Deg)  | None     |           |           |           |          |       | 107                                              |          |          |
| 26   | ice Wind Members (150 Deg)  | None     |           |           |           |          |       | 107                                              |          |          |
| 27   | Seismic Antenna (0 Deg)     | None     |           |           |           |          | 24    |                                                  |          |          |
| 28   | Seismic Antenna (90 Deg)    | None     |           |           |           |          | 24    |                                                  |          |          |
| 29   | Seismic Members (0 Deg)     | None     |           | 05        | 124       |          |       |                                                  | -        |          |
| 30   | Seismic Members (30 Deg)    | None     | .062      | 05        | 108       |          |       |                                                  |          |          |
| 31   | Selsmic Members (60 Deg)    | None     | .108      | 05        | 062       | <u> </u> |       |                                                  |          |          |
| 32   | Seismic Members (90 Deg)    | None     | .124      |           | -7.627e   |          |       |                                                  |          |          |
| 33   | Seismic Members (120 Deg)   | None     | .108      | 05        | .062      |          |       |                                                  |          |          |
| 34   | Seismic Members (150 Deg)   | None     | .062      | 05        | .108      |          |       |                                                  |          |          |



Mastec NDN

: 21944-MNT1 : ATC411189-Cranburyau CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

### Basic Load Cases (Continued)

|    | BLC Description            | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut                                        | Area(Me.          | Surfacel            |
|----|----------------------------|----------|-----------|-----------|-----------|-------|-------|--------------------------------------------------|-------------------|---------------------|
| 35 | Seismic Members (180 Deg)  | None     | 1.525e-17 |           | .124      | -     |       | -                                                | AL REAL PROPERTY. | THE PERSON NAMED IN |
| 36 | Seismic Members (210 Deg)  | None     | 062       | 05        | .108      |       |       | 1                                                | <b>†</b>          |                     |
| 37 | Selsmic Members (240 Deg)  | None     | -,108     | 05        | .062      |       |       |                                                  | 1                 |                     |
| 38 | Seismic Members (270 Deg)  | None     | 124       |           | 2.288e-17 |       |       | 1                                                | †                 |                     |
| 39 | Seismic Members (300 Deg)  | None     | 108       | 05        | 062       |       |       |                                                  | <del> </del>      |                     |
| 40 | Seismic Members (330 Deg)  | None     | 062       | 05        | 108       |       |       | 1                                                |                   |                     |
| 41 | Seismic Vertical Antennas  | None     |           |           |           |       | 24    |                                                  |                   |                     |
| 42 | Man 1 (500 lbs)            | None     |           |           |           | 1     |       |                                                  | <b>†</b>          |                     |
| 43 | Man 2 (500 lbs)            | None     |           |           |           | 1     |       | 1                                                |                   | -                   |
| 44 | Man 3 (500 lbs)            | None     |           |           |           | 1     |       | <del>                                     </del> |                   |                     |
| 45 | Man 4 (250 lbs)            | None     |           |           |           | 1     |       | <b>†</b>                                         |                   |                     |
| 46 | Man 5 (250 lbs)            | None     |           |           |           | 1     |       |                                                  |                   |                     |
| 47 | Man 6 (250 lbs)            | None     |           |           |           | 1     |       | 1                                                |                   |                     |
| 48 | BLC 1 Transient Area Loads | None     |           |           |           |       |       | 30                                               |                   |                     |
| 49 | BLC 2 Transient Area Loads | None     |           |           |           |       |       | 30                                               |                   |                     |

### Load Combinations

| p 400 40 | Description                 | s   | P | S  | R | Fa  | B  | Fa   | B   | Fo     | R  | Fa.          | B        | Ea     | 0        | En.           | <u> </u> | En.        | _             | <u></u>                                          | -        | F.       | _        | ~             |
|----------|-----------------------------|-----|---|----|---|-----|----|------|-----|--------|----|--------------|----------|--------|----------|---------------|----------|------------|---------------|--------------------------------------------------|----------|----------|----------|---------------|
| 1        | 1.4D                        | Yes | Y |    | 1 | 1.4 | T" | T    | T   | T-38-1 | 1  | T            | T        | , a    | <b></b>  | T-9           | P        | Г <b>а</b> | D             | <u> </u>                                         | D        | <u> </u> | D        | FB            |
| 2        | 1.2D + 1.0W 0°              | Yes | Ŷ | Г  |   | 1.2 |    | 1    | 9   | 1      | T  | <del> </del> | $\vdash$ |        | -        |               |          |            |               | <del>                                     </del> |          |          |          | $\vdash$      |
| 3        | 1.2D + 1.0W 30°             | Yes | Ÿ |    |   | 1.2 |    | 1    | 10  | 1      |    | 1            | $\vdash$ |        |          | -             |          |            | -             | $\vdash$                                         |          |          |          |               |
| 4        | 1.2D + 1.0W 60°             | Yes | Y |    | 1 | 1.2 | 5  | 1    | 11  | 1      |    |              | _        |        |          |               |          | _          | Н             |                                                  |          |          |          |               |
| 5        | 1.2D + 1.0W 90°             | Yes | Y |    | 1 | 1.2 |    | 1    | 12  | 1      |    |              |          |        |          |               | _        |            | _             |                                                  | Н        |          |          |               |
| 6        | 1.2D + 1.0W 120°            | Yes | Y |    | 1 | 1.2 |    | 1    | 13  | 1      |    | $\vdash$     |          |        |          |               | М        |            | _             |                                                  |          |          |          | $\vdash$      |
| 7        | 1.2D + 1.0W 150°            | Yes | Y |    | 1 | 1.2 | 8  | 1    | 14  |        |    |              |          |        |          |               | Н        |            |               |                                                  |          |          | $\neg$   |               |
| 8        | 1.2D + 1.0W 180°            | Yes | Y |    |   | 1.2 |    |      |     | _      |    | 1            |          |        | $\vdash$ |               |          |            | _             | <del>-</del>                                     | М        |          |          |               |
| 9        | 1.2D + 1.0W 210°            | Yes | Y |    | 1 | 1.2 | 4  | -1   | 10  |        | Т  |              |          |        |          |               |          | $\Box$     |               |                                                  |          |          |          |               |
| 10       | 1.2D + 1.0W 240*            | Yes | Y |    | 1 | 1.2 |    |      | 111 | -1     |    |              |          |        |          |               |          |            | $\overline{}$ | _                                                | $\neg$   |          |          |               |
| 11       | 1.2D + 1.0W 270°            | Yes | Y |    | 1 | 1.2 | 6  | -1   | 12  | -1     | Ī  |              |          |        |          | $\overline{}$ | П        |            |               |                                                  |          |          | $\dashv$ |               |
| 12       | 1.2D + 1.0W 300°            | Yes | Y |    | 1 | 1.2 | 7  | -1   | 13  | -1     |    | 1            |          |        |          |               | Н        |            |               |                                                  |          |          |          | $\neg \neg$   |
| 13       | 1.2D + 1.0W 330°            | Yes | Y |    | 1 | 1.2 | 8  | -1   | 14  |        |    |              |          |        |          |               |          |            |               |                                                  |          |          | $\neg$   |               |
| 14       | 1.2D + 1.0Di + 1.0Wi 0°     | Yes | Y |    | 1 |     | 2  | 1    | 15  | 1      | 21 | 1            | П        |        |          |               |          |            |               |                                                  | $\dashv$ |          | $\neg$   | $\neg$        |
| 15       | 1.2D + 1.0Di + 1.0Wi 30°    | Yes | Υ |    | 1 | 1.2 | 2  | 1    | 16  | 1      | 22 | 1            |          |        |          |               |          |            |               |                                                  |          |          | $\neg$   |               |
| 16       | 1,2D + 1,0Di + 1,0Wi 60*    | Yes | Y |    | 1 | 1.2 | 2  | 1    | 17  | 1      | 23 |              |          |        |          |               |          |            |               |                                                  |          | 一        | _        |               |
| 17       | 1.2D + 1.0Di + 1.0Wi 90°    | Yes | Y |    | 1 | 1.2 | 2  | 1    | 18  | 1      | 24 | 1            |          |        |          |               |          |            |               | Ш                                                |          |          | _        | $\dashv$      |
| 18       | 1.2D + 1.0Di + 1.0Wi 120°   | Yes | Y |    | 1 | 1.2 | 2  | 1    | 19  | 1      | 25 | 1            |          | $\Box$ |          |               |          |            |               | $\Box$                                           | -        |          | $\dashv$ | $\dashv$      |
| 19       | 1.2D + 1.0Dl + 1.0Wl 150°   | Yes | Υ |    | 1 | 1.2 | 2  | 1    | 20  |        | 26 | 1            |          |        |          |               |          |            |               | П                                                | $\dashv$ | $\neg$   |          |               |
| 20       | 1.2D + 1.0Dl + 1.0Wl 1801   | Yes | Y |    | 1 | 1.2 | 2  | 1    | 15  |        |    |              |          |        |          |               |          |            |               | П                                                |          |          |          | $\neg$        |
| 21       | 1.2D + 1.0Di + 1.0Wi 210°   | Yes | Y |    | 1 | 1.2 | 2  | 1    | 16  |        | 22 |              |          |        |          |               |          |            |               |                                                  | $\dashv$ |          |          | $\overline{}$ |
| 22       | 1.2D + 1.0Di + 1.0Wi 240    | Yes | Y |    | 1 | 1.2 | 2  | 1    | 17  |        | 23 |              |          |        |          |               |          |            |               |                                                  |          |          |          | $\neg$        |
| 23       | 1.2D + 1.0Di + 1.0Wi 270    | Yes | Y |    | 1 | 1.2 | 2  | 1    | 18  |        | 24 |              |          |        |          |               |          |            |               |                                                  | $\neg$   | $\neg$   | $\neg$   |               |
| 24       | 1,2D + 1,0Di + 1,0Wi 300°   | Yes | Y |    | 1 | 1.2 | 2  | 1    | 19  | -1     | 25 |              |          |        |          |               |          |            |               |                                                  | $\neg$   |          | 7        | $\dashv$      |
| 25       | 1.2D + 1.0Di + 1.0Wi 330°   | Yes | Y |    | 1 | 1.2 | 2  | 1    | 20  |        | 26 |              |          |        |          |               |          |            |               |                                                  | $\neg$   | $\neg$   |          | $\dashv$      |
| 26       | 1.2D + 1.5Lm_1 + 1.0Wm 0°   |     |   |    | 1 | 1.2 | 3  |      |     | .069   | 42 | 1.5          |          |        |          |               |          |            |               |                                                  | $\dashv$ | 1        | _        | $\dashv$      |
| 27       | 1.2D + 1.6Lm_1 + 1.0Wm 30*  |     |   |    | 1 | 1.2 | 4  |      |     |        |    | 1.5          |          |        |          |               |          |            |               |                                                  |          |          | $\dashv$ |               |
| 28       |                             |     |   |    | 1 | 1.2 |    | .069 | 11  | .069   | 42 | 1.5          |          |        |          |               |          |            |               |                                                  | $\dashv$ | $\dashv$ | $\neg$   |               |
|          | 1.2D + 1.5Lm_1 + 1.0Wm 90°  |     |   | ]  | 1 |     |    |      |     |        |    | 1.5          |          |        |          |               |          |            |               |                                                  |          | $\neg$   | $\dashv$ | _             |
|          | 1.2D + 1.5Lm_1 + 1.0Wm 120° |     |   |    | 1 |     | 7  | .069 | 13  | .069   | 42 | 1.5          |          |        |          |               |          |            |               |                                                  |          | $\dashv$ | 寸        | $\neg$        |
|          | 1.2D + 1.5Lm_1 + 1.0Wm 150° |     |   | _] |   | 1.2 | 8  | .069 | 14  | .069   | 42 | 1.5          |          |        |          |               |          |            | $\neg$        |                                                  | $\neg$   |          | $\dashv$ | $\dashv$      |
|          | 1.2D + 1.5Lm_1 + 1.0Wm 180° |     |   |    | 1 | 1.2 | 3  | 0    | . 9 | 0      | 42 | 1.5          |          |        |          |               |          |            |               |                                                  |          | $\dashv$ | 一        | $\dashv$      |
|          | 1.2D + 1.5Lm_1 + 1.0Wm 210* |     |   |    | 1 | 1.2 | 4  | 0    | 10  | 0      | 42 | 1.5          |          |        |          |               | 一        |            |               |                                                  | $\dashv$ |          |          | $\dashv$      |
|          | 1.2D + 1.5Lm_1 + 1.0Wm 240° |     |   |    | 1 | 1.2 |    |      |     |        |    | 1.5          |          |        |          |               |          |            | $\neg$        |                                                  |          | $\neg$   | $\dashv$ | $\dashv$      |
|          | 1.2D + 1.5Lm_1 + 1.0Wm 270° |     |   |    | 1 | 1.2 |    |      |     |        |    | 1.5          |          |        |          |               | $\neg$   |            |               |                                                  |          |          | 寸        | $\neg$        |
|          | 1.2D + 1.6Lm_1 + 1.0Wm 300° |     |   |    | 1 | 1.2 |    |      |     |        |    | 1.5          |          |        | 95       |               | $\neg$   |            |               |                                                  |          | _        | 寸        | $\dashv$      |
| 37       | 1.2D + 1.5Lm_1 + 1.0Wm 330* | Yes | Y |    | 1 | 1.2 | 8  | 0    | 14  | 0      | 42 | 1.5          |          |        |          |               |          | $\neg$     |               | $\neg$                                           |          | _        | 7        | 一             |



Mastec NDN 21944-MNT1 ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

#### Load Combinations (Continued)

| LVa  | <u>d Combinations (Con</u>    | Ш    | ######################################             | _   |            |            |      |       |          |             |             |                                                  | _              |                                                  | _                                                |                                                  |                                                  |                                                  | _            |          |                                                  |              |               |               |
|------|-------------------------------|------|----------------------------------------------------|-----|------------|------------|------|-------|----------|-------------|-------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|----------|--------------------------------------------------|--------------|---------------|---------------|
|      | Description                   | S    | P                                                  | S E |            | Fa.        | . B. | Fa    | a.       | . Fa        | В           | Fa                                               | В.             | Fa.                                              | B                                                | Fe                                               | A                                                | Fa                                               | 8            | Fe       | B                                                | Fo           |               | Fo            |
| 38   | 1.2D + 1.5Lm_2 + 1.0Wm 0°     | Yes  | Y                                                  |     |            |            |      | 1.00  | 9 9      | .06         | 9 43        | 11.5                                             |                |                                                  | T                                                | 7                                                | 1                                                | T                                                | -            | -        |                                                  | T.           | 70            | -             |
|      | 1.2D + 1.5Lm_2 + 1.0Wm 30°    | Yes  | V                                                  |     | 1          | 1 2        | i    | Of    | 9 1      | 3 06        | 943         | 14                                               | -              | +                                                |                                                  | +                                                | 1                                                | 1                                                | 100          | +-       | +                                                | +            | +             | +-            |
| 40   | 1.2D + 1.5Lm_2 + 1.0Wm 60°    | Yes  | l VI                                               |     |            | 1.2        | Ē    | n/    | 0 1      | 1 00        | 9 43        | 4 2                                              | 4              | +                                                | +                                                | +                                                | +-                                               | +                                                | +            | +        | +-                                               | +            | +             | -             |
| 41   |                               | Voc  | 101                                                |     |            |            |      |       |          |             |             |                                                  |                | +                                                | +                                                | +                                                | +                                                | +                                                | +            | +-       | +                                                | +            | +             | —             |
| 42   | 1.2D + 1.5Lm_2 + 1.0Wm 120    |      | 1                                                  | -   | .+         |            | 1    | 1.0   |          | 2 00        | 9 43        | 11.5                                             | 2+-            | +                                                | +                                                | +                                                | -                                                | <u> </u>                                         | +-           | ₩        | <b>.</b>                                         | ↓_           | 1             | <u> </u>      |
| 1.24 | 1.2D + 1.5Lm 2 + 1.0Vm 120    | 1 08 | 1                                                  | -   | 14         | 12         | 44   |       | a T      | 3 .06       | 943         | 11.5                                             | 4_             | +                                                |                                                  | 1                                                | <b>!</b>                                         | _                                                | 1            | <u> </u> | 1                                                | _            |               |               |
| 43   | 1.2D + 1.5Lm_2 + 1.0Wm 150°   | 7 03 | Y                                                  | _   | 1          | 1.2        | Ų.   | 1.00  | 914      | 1 .08       | 9 43        |                                                  |                | $\perp$                                          |                                                  | 1                                                |                                                  | Ĺ                                                | 1_           |          |                                                  |              |               |               |
| 44   | 1.2D + 1.5Lm_2 + 1.0Wm 180°   | Yes  | Y                                                  |     | Ц          | 1.2        | 3    | 0     |          | 0           | 43          | 111.5                                            |                |                                                  |                                                  | _                                                |                                                  |                                                  |              |          |                                                  |              | П             |               |
| 45   | 1.2D + 1.5Lm_2 + 1.0Wm 210    | Yes  | Y                                                  |     | 1          | 1.2        | 14   | ·  0  | 11       | )0.         | 43          | 11.5                                             |                |                                                  |                                                  |                                                  |                                                  |                                                  | Т            | T        |                                                  |              |               |               |
| 46   | 1.2D + 1.5Lm_2 + 1.0Wm 240°   | Yes  | Υ                                                  |     |            | 1.2        | 5    | F.0   | 1        | 10.         | 43          | 1.5                                              |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          | 1                                                |              |               | $\vdash$      |
| 47   | 1.2D + 1.5Lm_2 + 1.0Wm 270°   | Yes  | Y                                                  |     | ŧ T        | 1.2        | 6    | 0     | [1]      | 20.         | <u></u> [48 | 1.5                                              |                |                                                  |                                                  |                                                  |                                                  | _                                                | +            | +        | 1                                                | 1            |               | $\vdash$      |
|      | 1.2D + 1.5Lm_2 + 1.0Wm 300°   |      |                                                    | 1   | i          | 1 2        | 7    | - 0   | 1        | 1-0         | 43          | 1 6                                              |                | +                                                | +                                                |                                                  | <del>                                     </del> | <del>                                     </del> | +            | +        | +                                                | <del> </del> | +             |               |
|      | 1.2D + 1.5Lm_2 + 1.0Wm 330*   |      |                                                    | -   | 1          | 1 9        | 1    | 1.0   | 7        | 1 0         | 43          | 4 5                                              | -              | +                                                | +                                                | +-                                               | -                                                | ┼─                                               | +            | +        | +                                                |              | -             |               |
|      | 1.2D + 1.5Lm_3 + 1.0Wm 0°     |      |                                                    | +   | : +        | 1.6        | 10   | 7.0   |          | 20.0        |             |                                                  | -              | +                                                | +-                                               | -                                                | -                                                | <del> </del> —                                   | +            | -        | ₩                                                | -            | -             |               |
|      |                               |      |                                                    |     | H          | ļĶ         | 13   | .00   |          | 1.00        | 944         | 11.5                                             | 4              | +                                                |                                                  | -                                                | <u> </u>                                         | -                                                | -            | -        | _                                                |              | ļ             |               |
| 51   | 1.20 + 1.5Lm_3 + 1.0Wm 30*    | 1 68 | Y                                                  | 1 1 | 1          | 1.2        | 14   | .Ue   | 9 15     | ) .06       | 9 44        | 1.5                                              | _              |                                                  | _                                                | <u> </u>                                         |                                                  | _                                                | _            | _        |                                                  |              |               |               |
| 52   | 1.2D + 1.5Lm_3 + 1.0Wm 60°    | 768  | Y                                                  |     | Ц          | <u>1.2</u> | ↓5   | .06   | 9 1      | [].06       | 9 44        | 1.5                                              |                |                                                  | _                                                |                                                  |                                                  |                                                  |              |          | 1.                                               |              |               |               |
| 53   | 1.2D + 1.5Lm_3 + 1.0Wm 90°    | Yes  | Y                                                  |     |            | <u>1.2</u> | 6    | .06   | 9 1:     | 2 06        | 9 44        | 1.5                                              |                |                                                  |                                                  | $\perp$                                          |                                                  |                                                  |              |          |                                                  |              |               |               |
| 54   | 1.2D + 1.5Lm_3 + 1.0Wm 120°   | Yes  | Y                                                  | Ĺ   |            | 1.2        | 7    | . 06  | 9 13     | .06         | 9 44        | 1.5                                              |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 55   | 1.2D + 1.5Lm_3 + 1.0Wm 150°   | Yes  | Y                                                  |     | T          | 1.2        | 8    | .06   | 9 14     | 1.06        | 9 44        | 1.5                                              |                | 1                                                |                                                  |                                                  |                                                  |                                                  | 1            | 1        | 1                                                |              |               |               |
| 56   | 1.2D + 1.5Lm_3 + 1.0Wm 180°   | Yes  | Y                                                  |     |            |            |      |       |          |             | 44          |                                                  |                |                                                  | 1                                                |                                                  |                                                  |                                                  | <del>†</del> | +        |                                                  |              |               | $\vdash$      |
| 57   | 1.2D + 1.5Lm_3 + 1.0Wm 210*   | Yes  | Y                                                  | -   | 1          | 17         | A    | - 0   | 17       | 1-0         | 44          | 4 6                                              | 1              |                                                  |                                                  | <del>                                     </del> | -                                                |                                                  | +            | +        | -                                                | -            | $\vdash$      |               |
| 5.0  | 1.2D + 1.5Lm_3 + 1.0Wm 240*   | Yas  |                                                    | 1   | 1          | 1 2        | 12   | 10    | 44       | - 0         | 44          | 4 2                                              | +              | +-                                               | 1-                                               | -                                                | -                                                | -                                                | +            | 1        | +                                                | -            | $\vdash$      | -             |
| 50   | 1.2D + 1.5Lm_3 + 1.0Wm 270°   | Vas  | 3                                                  |     |            |            |      |       |          |             |             |                                                  |                | +                                                | -                                                | +-                                               | -                                                |                                                  | +            | ₩        | ├                                                | -            | -             | -             |
| 99   | 1.2D + 1.5Lm_3 + 1.0Wm 300°   | 1 00 |                                                    |     | 4          | ĻĶ         | 본    | 7.0.  | 14       | 10.         | 44          | 1.0                                              | +              | -                                                | -                                                | -                                                | -                                                |                                                  | ₩            | ₩.       | ↓_                                               |              |               | -             |
| 60   | 1.2D + 1.5Lili 3 + 1.0V/m 300 | 7.08 | Y                                                  |     | Ц.         | 12         | Z    | +.0.  | -13      | U.          | 44          | 1.5                                              | 1_             | -                                                | -                                                | $\vdash$                                         |                                                  |                                                  |              |          |                                                  |              |               |               |
|      | 1.2D + 1.5Lm 3 + 1.0Wm 330°   |      |                                                    |     |            |            |      |       |          | <b> 0</b> . | 44          | 1.5                                              | 1              |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 62   |                               | Yes  |                                                    | 1   |            |            |      | 1.    |          |             |             |                                                  | 1              |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 63   | 1.2D + 1.5Lv 1 30°            | Yes  | Y                                                  | 1   | LL         | 1.2        | 45   | 11.   | <u>5</u> | I           |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 64   | 1.2D + 1.5Lv 1 60°            | Yes  | Y                                                  |     |            | 1.2        | 4    |       | 5        | T           |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 65   |                               | Yes  | Y                                                  | -14 |            |            |      | H.    |          |             |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  | $\vdash$     |          | <del>                                     </del> | _            |               | $\neg$        |
| 66   |                               | Yes  |                                                    |     |            |            |      | ĬĬ.   |          |             |             |                                                  | 1              | 1                                                | _                                                |                                                  |                                                  |                                                  | -            | 1        | -                                                |              | $\vdash$      | -             |
| 67   |                               | Yes  |                                                    |     |            |            |      | Ħi.   |          | +           | +           | <del>                                     </del> | +-             | <del>                                     </del> | <del>                                     </del> | -                                                |                                                  | _                                                | -            | -        | -                                                |              | $\vdash$      |               |
| 68   |                               | Yes  |                                                    | -   |            |            |      |       |          | +           | +           |                                                  | <del> </del> - | +-                                               | -                                                |                                                  |                                                  |                                                  | -            | $\vdash$ |                                                  |              |               | _             |
|      |                               |      | <del>-                                      </del> |     |            |            |      | 11.   |          | +           | +           | -                                                | ├              | -                                                | -                                                | -                                                | -                                                |                                                  | -            | -        | -                                                |              |               |               |
| 69   | 1.2D + 1.5Lv 1 210°           | Yes  |                                                    |     |            |            |      | 1.    |          | -           | +           | <u> </u>                                         | ₩.             | ļ                                                | <del>  </del>                                    |                                                  | -                                                |                                                  |              |          |                                                  |              |               |               |
| 70   |                               | Yes  |                                                    | -41 | Щ          | L2.        | 45   | 1.    | 5        | ļ           | $\bot$      |                                                  | 1              |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 71   | 1.2D + 1.5Ly 1 270°           | Yes  | Y                                                  | 1   |            | 1.2        | 45   | 11.   | <u> </u> | _           |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 72   | 1.2D + 1.5Lv 1 300°           | Yez  | Y                                                  |     | Ш          | 2          | 45   | 11.5  |          | L           |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 73   | 1.20 + 1.5Lv 1 330°           | Yes  | Y                                                  | 11  |            | 1.2        | 45   | 11.   | 5        |             |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 74   |                               | Yes  |                                                    | T   | H          | 2          | 46   | 1.5   |          |             |             |                                                  |                |                                                  |                                                  |                                                  |                                                  | -                                                |              |          |                                                  |              |               | $\neg$        |
| 75   |                               | Yes  |                                                    |     |            |            |      | 1     |          |             |             |                                                  | t-             |                                                  |                                                  |                                                  |                                                  |                                                  |              | -        |                                                  |              |               | $\overline{}$ |
| 76   | 1.2D + 1.5Ly 2 60°            | Yes  | V                                                  |     |            |            |      | 1.    |          | -           | +           | _                                                | $\vdash$       | 1                                                | -                                                | $\vdash$                                         | -                                                |                                                  | -            | -        | $\vdash$                                         |              | $\vdash$      | -             |
| 77   |                               | Yes  |                                                    | -   | -          | 4          | 74   | 14.   | +        | -           | +           | -                                                | -              | -                                                | -                                                |                                                  | -                                                |                                                  | -            |          |                                                  |              | $\vdash$      |               |
| 78   |                               | Yes  |                                                    |     |            |            |      | 1.    |          | -           | -           | -                                                | 1              |                                                  | -                                                |                                                  |                                                  | -                                                | -            | -        |                                                  |              |               | $\rightarrow$ |
|      |                               |      |                                                    |     |            |            |      | 1.5   |          | +           | +           | <u> </u>                                         | -              |                                                  |                                                  |                                                  | _                                                |                                                  |              | <u> </u> |                                                  |              |               |               |
| 79   | 1.2D + 1.5Ly 2 150°           | Yes  | Y                                                  | +1  | Щ          | .2         | 40   | 1.5   | 4        |             | -           |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 80   |                               | Yes  | Y                                                  |     | 41         | .2         | 46   | 1.5   | 4        | 1           | 1           |                                                  | _              |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 81   | 1.2D + 1.5Lv 2 210°           | Yes  |                                                    |     |            |            |      | 1.5   |          |             |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 82   | 1.2D + 1.5Lv 2 240°           | Yes  |                                                    |     |            |            |      |       |          |             |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 83   |                               | Yes  |                                                    | 11  | 1          | .2         | 46   | 1,5   | 1        |             |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  | $\neg$       | -             |               |
| 84   | 1.2D + 1.5Ly 2 300°           | Yes  | Y                                                  |     |            |            |      | 1.5   |          |             | 1           |                                                  |                |                                                  | $\Box$                                           |                                                  |                                                  |                                                  |              | -        | -                                                | -            | -             |               |
| 85   |                               | Yes  |                                                    | 14  | 74         | 3          | 40   | 1.    |          |             | +           | -                                                |                |                                                  | $\vdash$                                         |                                                  | -                                                |                                                  | -            |          |                                                  | -            |               |               |
| 86   |                               | Yes  |                                                    | + 4 | 44         |            | 끍    | 1     | -        | 1           | +           |                                                  | -              | <del>                                     </del> |                                                  |                                                  | $\dashv$                                         |                                                  | -            | -        | -                                                |              |               |               |
| 87   | 120 + 161 + 2 200             | Yes  | <del>\</del>                                       |     |            |            |      |       |          | -           | +-          |                                                  | -              | $\vdash$                                         |                                                  | $\vdash$                                         | -                                                |                                                  | $\square$    |          |                                                  |              |               |               |
|      | 1.2D + 1.5Lv 3 30°            | 100  | J.                                                 | 4!  | 4          | .4         | 4/   | 1.5   | 4        | -           | -           |                                                  | -              | <b>—</b>                                         |                                                  |                                                  | _                                                |                                                  |              |          |                                                  |              | $\dashv$      |               |
| 88   | 1.20 + 1.5Lv 3 60°            | Yes  |                                                    | 41  | 41         | 12         | 47   | 1.5   | 4_       | -           | $\vdash$    |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  | I            |               |               |
| 89   | 1.2D + 1.5Lv 3 90°            | Yes  | Y                                                  |     | _11        | .2         | 47   | 1.5   |          |             |             |                                                  |                |                                                  |                                                  | T                                                |                                                  |                                                  |              |          |                                                  |              |               |               |
| 90   | 1.2D + 1.5Lv 3 120°           | Yes  | Y                                                  | 1   | 1          | .2         | 47   | 1.5   |          |             |             |                                                  |                |                                                  |                                                  |                                                  |                                                  |                                                  |              |          |                                                  |              |               |               |
| 91   | 1.2D + 1.5Lv 3 150°           | Yes  | Y                                                  | _ 1 | 1          | 2          | 47   | 1.5   |          |             |             |                                                  |                |                                                  |                                                  |                                                  | $\dashv$                                         |                                                  |              |          |                                                  |              |               |               |
| 92   |                               | Yes  |                                                    |     |            |            |      | 11.5  |          |             | T           |                                                  |                |                                                  |                                                  |                                                  | +                                                | -                                                |              |          |                                                  |              | +             | -             |
| 93   |                               | Yes  | Y                                                  |     |            |            |      | 1.5   |          |             | 1           |                                                  |                | $\vdash$                                         |                                                  |                                                  | -+                                               |                                                  |              |          | -                                                | -            | $\rightarrow$ |               |
| 94   |                               | Yes  |                                                    | 14  | 1          | 2          | 75   | 1.5   | 24.3     |             | +           | -                                                | -              | $\vdash$                                         |                                                  |                                                  |                                                  |                                                  | $\vdash$     |          |                                                  | -            | $\rightarrow$ |               |
|      | THE T LOS TO SHOW             | . 40 | حلنا                                               |     | $\perp$ 11 | 4          | 9/   | 14 14 | 4 7      |             | L.,         |                                                  |                |                                                  |                                                  | <u>l</u>                                         |                                                  | , .                                              |              |          |                                                  |              |               | _ 1           |



Mastec

: NDN : 21944-MNT1 : ATC411189-Cranburysu CT-10035342

Apr 24, 2020 6:04 PM Checked By: BDM

Load Combinations (Continued)

|     | Description               | S   | P | S      | В | Fa  | . В | Fa   | . B | Fa   | B      | Fa            | В  | Fa.        | B        | Fa       | A        | Fa | R | Es.           | A.       | Ea     | <u> </u> | Fa       |
|-----|---------------------------|-----|---|--------|---|-----|-----|------|-----|------|--------|---------------|----|------------|----------|----------|----------|----|---|---------------|----------|--------|----------|----------|
| 95  | 1.2D + 1.5Lv 3 270°       | Yes | Y | П      | 1 | 1.2 | 47  | 1.5  | T   |      |        | <u> </u>      |    | , <u>.</u> | T        | <u> </u> | 1        |    |   | · · · · · ·   |          | ميراف  | P        | F 0      |
| 96  | 1.2D + 1.5Lv 3 300°       | Yes | Y |        | 1 | 1.2 | 47  | 1.5  | - 1 |      | $\Box$ |               |    |            |          |          |          | _  |   | $\overline{}$ | _        |        | $\vdash$ |          |
| 97  | 1.2D + 1.5Lv 3 330*       | Yes | Y |        | 1 | 1.2 | 47  | 1.5  |     |      |        |               |    | $\Box$     | $\vdash$ |          |          |    |   |               |          |        |          |          |
| 98  | 1.2D + 1.0EV +1.0 EH 0°   | Yes | Y |        | 1 | 1.2 | 27  | 1    | 28  |      | 29     | 1             | 40 | 1          | 1        |          |          |    |   |               |          |        |          |          |
| 99  | 1.2D + 1.0EV +1.0 EH 30*  | Yes | Y |        | 1 | 1.2 | 27  | .866 | 28  | .5   | 30     | 1             | 40 | 1          | T        |          |          |    |   |               |          |        |          | $\vdash$ |
| 100 | 1.2D + 1.0EV +1.0 EH 60°  | Yes | Y |        | 1 | 1.2 | 27  | .5   | 28  | .866 | 31     |               | 40 | 1          | П        |          |          |    |   |               | П        |        |          |          |
| 101 | 1.2D + 1.0EV +1.0 EH 90°  | Yes | Y |        | 1 | 1.2 | 27  |      | 28  | 1    | 32     | $\overline{}$ | 40 | 1          |          |          |          |    |   |               |          |        |          | _        |
| 102 | 1.2D + 1.0EV +1.0 EH 120° | Yes | Υ |        | 1 | 1.2 | 27  | 5    | 28  | .666 | 33     | 1             | 40 | 1          |          |          |          |    |   |               |          |        |          |          |
| 103 | 1.2D + 1.0EV +1.0 EH 150° | Yes | Υ |        | 1 | 1.2 | 27  | 8    | 28  | .5   | 34     | 1             | 40 | 1          |          |          |          | _  |   |               |          |        |          |          |
| 104 | 1.2D + 1.0EV +1.0 EH 180* | Yes | Υ |        | 1 | 1.2 | 27  |      | 28  |      | 35     | 1             | 40 | 1          |          |          | $\vdash$ |    |   |               | -        | $\neg$ | $\Box$   |          |
| 105 | 1.2D + 1.0EV +1.0 EH 210* | Yes | Y |        | 1 | 1.2 | 27  |      |     | 5    |        | 1             | 40 | 1          |          |          |          |    |   | $\neg$        | $\neg$   |        |          |          |
| 106 | 1.2D + 1.0EV +1.0 EH 240* | Yes | Y | $\Box$ | 1 | 1.2 | 27  | 5    | 28  | 8.   | 37     | 1             | 40 | 1          |          |          |          |    | М | $\neg$        |          | $\neg$ |          |          |
| 107 | 1.2D + 1.0EV +1.0 EH 270* | Yes | Y |        | 1 | 1.2 | 27  |      | 28  | -1   | 38     |               | 40 | 1          |          | _        |          |    |   |               |          | $\neg$ |          |          |
| 108 | 1.2D + 1.0EV +1.0 EH 300* | Yes | Y |        | 1 | 1.2 | 27  | .5   | 28  | 8    | _      |               | 40 | 1          |          |          |          |    |   | $\neg$        | $\dashv$ | $\neg$ | $\neg$   |          |
| 109 | 1.2D + 1.0EV +1.0 EH 330* | Yes | Y |        | 1 | 1.2 | 27  | .866 | 28  | 5    | 40     | 1             | 40 | 1          | П        |          |          |    |   |               |          | $\neg$ |          |          |

Envelope Joint Reactions

|     | Joint   |     | X [k]  | _LC | Y     | LC | Z Iki  | LC | MX /k-ftl | LC | MY Dr-81 | 10 | MZ (k-ft) | 10   |
|-----|---------|-----|--------|-----|-------|----|--------|----|-----------|----|----------|----|-----------|------|
| 1   | N9      | max | 1.819  | 10  | 2.313 | 22 | 1.012  | 4  | 908       | 3  | 1.833    | 13 | -1 813    | TAT  |
| 2   |         | min | -1.873 | 4   | .765  | .4 | 979    | 10 | -4.062    | 21 | -1.837   | 7  | -6.911    | 22   |
| _3_ | N5      | max | .629   | 11  | 2.302 | 14 | 1.926  | 2  | 7.951     | 14 | 1.544    | 5  | 71        | 5    |
| 4   |         | min | 63     | 5   | .808  | 8  | -1.989 | 8  | 2.327     | 8  | -1.548   | 11 | 744       | 11   |
| 5   | N7      | max | 1.867  | 12  | 2.314 | 18 | 1.029  | 12 | 968       | 13 | 1.808    | 9  | 6.959     | 18   |
| 6   |         | min | -1.813 | 6   | .753  | 12 | 997    | 6  | -3.963    | 19 | -1.812   | 3  | 1.769     | 12   |
| 7_  | Totals: | max | 4.009  | 11  | 6.601 | 21 | 3.725  | 2  |           |    |          |    |           | +**- |
| 8   |         | mln | -4.009 | 5   | 3.703 | 3  | -3.725 | 8  |           |    |          |    |           |      |

Envelope AISC 15th(360-16): LRFD Steel Code Checks

|     | Mem. | Shape      | Code Check | Locift | LC  | Shear | Loof91 | . Dir | LC  | abl abl -bl -bl -bl -c-              |
|-----|------|------------|------------|--------|-----|-------|--------|-------|-----|--------------------------------------|
| 1   | M1   | HSS4X4X4   | .232       | 0      | 14  | .087  | 14.5   | V     | 3   | ohiohiohi Cb. Eqn<br>571316163.311 H |
| 2   | M2   | HSS4X4X4   | .230       | 0      | 22  | .089  | 14.5   | 7     | 11  | 57 13 16 16 3.307 H                  |
| 3   | M3   | HSS4X4X4   | .229       | Ö      | 18  | .089  | 14.5   | 7     | 7   | 571316163.317.H                      |
| 4   | M4   | HSS4X4X4   | .494       | 7.5    | 14  | .089  | 7.5    | v     | 12  | 11 13 16 16 2.131 H                  |
| _5  | M5   | HSS4X4X4   | .501       | 7.5    | 18  | .088  | 7.5    | v     | 4   | 11 13 16 16 2.135 H                  |
| 6   | M6   | HSS4X4X4   | .502       | 7.5    | 22  | .085  | 7.5    | V     | 8   | 11 13 16 16 2.134 H                  |
| 7_  |      | HSS2.375X  | .156       | 1.633  | 10  |       | 13.063 |       | 7   | 4.0. 311.B. 1.8. 3.284 H             |
| 8_  |      | HSS2.375X  | .143       | 12.617 | 8   | .071  | .742   |       | 13  | 4.0311.81.83.343 H                   |
| 9   |      | HSS2.375X  | .139       | 8.758  | 13  | .076  | .742   |       | 9   | 4.0311.81.83.588 H                   |
| 10  |      | L2.5x2.5x3 | .012       | .681   | 9   | .073  | 1.333  | Z     | 2   | 27 29873 1.9 1.136 H                 |
| 11  | M35  | L2.5x2.5x3 | .012       | .694   | 13  | .075  | 1.333  | Z     | 6   | 2729873 1.91.136 H                   |
| 12  |      | L2.5x2.5x3 | .012       | .653   | 5   | .073  | 0      | V     | _10 | 2729873 1.91.136 H                   |
| _13 | B1   | PIPE 2.0   | .382       | 4.448  | 8   | .054  | 1.531  |       | 12  | 17321.8 1.8 2.214 H                  |
| 14  | A4   | PIPE 2.0   |            | 4.448  | 13  | .083  | 4.448  |       | 11  | 17321.61.82.907 H                    |
| 15  | B2   | PIPE 2.0   | .345       | 4.448  | 7   | .064  | 1.531  |       | 9   | 17 32 1.8 1.8 1.492 H                |
| 16  | B3   | PIPE 2.0   |            | 4.448  | 6   | .053  | 1.531  |       | _3_ | 17321.8 1.8 1.727H                   |
| 17  | A3   | PIPE 2.0   | .370       | 4,448  | _2_ | .058  | 4.448  |       | 10  | 17321.81.82.245 H                    |
| 18  | B4   | PIPE 2.0   | .378       | 4.448  | 5   |       | 1.531  |       | 3   | 17321.8 1.8 1.834 H                  |
| 19  | C1   | PIPE 2.0   | .386       | 4.448  | 12  | .052  | 1.531  |       | 4   | 17321.81.82.382H                     |
| 20  | A2   | PIPE 2.0   | .353       | 4.448  | 3   |       | 4.448  |       | - 5 | 17321.81.82.056 H                    |
| 21  | C2   | PIPE 2.0   |            | 4.448  | 11  |       | 1.531  |       | 3   | 17321.81.82.091 H                    |
| 22  | C3   | PIPE 2.0   |            | 4.448  | 10  |       | 1.531  |       | 6   | 17321.81.843 H                       |
| 23  | A1   | PIPE 2.0   | .384       | 4,448  | 4   |       | 4.448  |       | 7   | 17321.81.82.114 H                    |
| 24  | C4   | PIPE 2.0   | .376       | 4.448  | 9   | .084  | 1.531  |       | 7   | 17321.81.81.84 H                     |

# EXHIBIT 3



# CONNECTICUT SITING COUNCIL

About Us

Pending Matters

Contact Us

Filing Guides

Meetings & Minutes

**Public Participation** 

Audio Link to New Britain **Hearing Rooms** 

**Programs & Services** 

**Telecommunications** Database

**Publications** 

Other Resources

Statutes & Regulations

Frequently Asked **Ouestions** 









Melanie Bachman, Executive Director

#### **NOTICE TO USERS**

NOTICE TO USERS
The Connecticut Siling Council posts filed documents to this site as a public service. The Council disclaims any liability for the content of submissions made by parties, intervenors, public officials, and the general public. Further, while the Council seeks to be complete in its postings, the Council urges users of this site to confirm with the submitter the completeness of the postings made. The posting of any document does not constitute or imply endorsement by the Connecticut Siting Council assumes no responsibility for the use of documents posted on this site.

For further information about the proper use of material posted on this site.

use of material posted on this site, please see the State of Connecticut disclaimer.

DOCKET NO. 188 - An application by Cellco Partnership d/b/a Bell Atlantic Mobile for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a proposed telecommunications tower and associated equipment located at 2 Sunny Lane or on a parcel located Immediately south of the intersection of Clinton Avenue and the Merritt Parkway in Westport, Connecticut.

#### **Connecticut Siting Council**

#### December 17, 1998

#### **Decision and Order**

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications tower and equipment buildings at the proposed prime site in Westport, Connecticut, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Bell Atlantic Mobile (BAM) for the construction, operation, and maintenance of a telecommunications tower, and associated equipment at the proposed prime site, located at 2 Sunny Lane, Westport, Connecticut. We find the effects on scenic resources and adjacent residences of the proposed alternate site to be significant, and therefore deny certification of that site.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of BAM, Springwich Cellular Limited Partnership (SCLP), Sprint PCS (Sprint), Omnipoint Communications, and Nextel Communications of the Mid-Atlantic, Inc. (Nextel); and such tower, excluding appurtenances, shall not exceed a height of 130 feet above ground level (AGL).
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include a final site plan(s) for site development detailing: relocation of the tower to the northwestern corner of the parcel to protect a nearby watercourse and wetlands, and to be closer to the commuter parking area; tower compound reduced in area to the minimum necessary for tower security; construction of the cable tray below grade; placement of a stockade or other architecturally treated fence around the compound; the location and specifications for the tower foundation, antennas, emergency generator and fuel tank, security fence, accessway, and vegetative screening; placement of underground utilities; construction plans for tree trimming, water drainage, and erosion and sedimentation controls consistent with the Connecticut Guidelines for Soil Erosion and Sediment Control, as amended; provisions for the tower finish that may include painting; and provisions for the prevention and containment of spills and/or other discharge into surface water and ground water bodies.
- 3. Upon the establishment of any new State or federal radiofrequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 4. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radiofrequency power density for all transmitting antennas on the proposed tower as ordered in this Decision and Order, and again for any proposed change in the operation of the tower.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall comply with the Town of Westport's recommendations for site development, including: proper abandonment of the existing septic system; removal of a portion of the existing driveway to accommodate for increased lot coverage; planting a dense vegetative buffer north of the Poplar Plains Brook; and relocation of the above-ground fuel tank to a distance at least 60 feet away from the waterway protection
- 7. If the facility does not initially provide, or permanently ceases to provide cellular services following completion of construction, this Decision and Order shall be void, and the Certificate Holder shall dismantle the

tower and remove all associated equipment or re-application for any continued or new use shall be made to the Council before any such use is made.

- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.
- 10. The Certificate Holder shall provide to the Council the Federal Aviation Administration's determination for obstruction or hazard to air navigation.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Hartford Courant, Westport News, and Connecticut Post.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

**APPLICANT** 

ITS REPRESENTATIVE

Bell Atlantic Mobile

Kenneth C. Baldwin, Esq. Brian C. S. Freeman, Esq. Robinson & Cole One Commercial Plaza Hartford, CT 06103-3597

Mr. David S. Malko, P.E. Jennifer Young Gaudet Bell Atlantic Mobile 20 Alexander Drive Wallingford, CT 06492

PARTIES

ITS REPRESENTATIVE Ira W. BloomTown Attorney

Town Hall, 110 Myrtle Avenue Westport, CT 06880

Town of Westport

203) 341-1040

Robert Sullivan, Esq. Law Offices of Robert Sullivan 190 Main StreetWestport, CT 06880

(203) 227-1404

INTERVENORS

ITS REPRESENTATIVE

Sprint Spectrum, L.P. d/b/a Sprint PCS

Residents of Clinton Avenue Westport

Julie M. Cashin, Esq. Hurwitz & Sagarin, PC 147 North Broad Street Milford, CT 06460 (203) 877-8000

Nextel Communications of the Mid-

Atlantic

Christopher B. Fisher, Esq. d/b/a Nextel Communications Cuddy, Feder & Worby, Esq. 90 Maple Avenue
White Plains, NY 10601

Springwich Cellular Limited Partnership Peter J. Tyrrell, Esq.

General Counsel 500 Enterprise Drive Rocky Hill, CT 06067-3900

**INTERVENORS** 

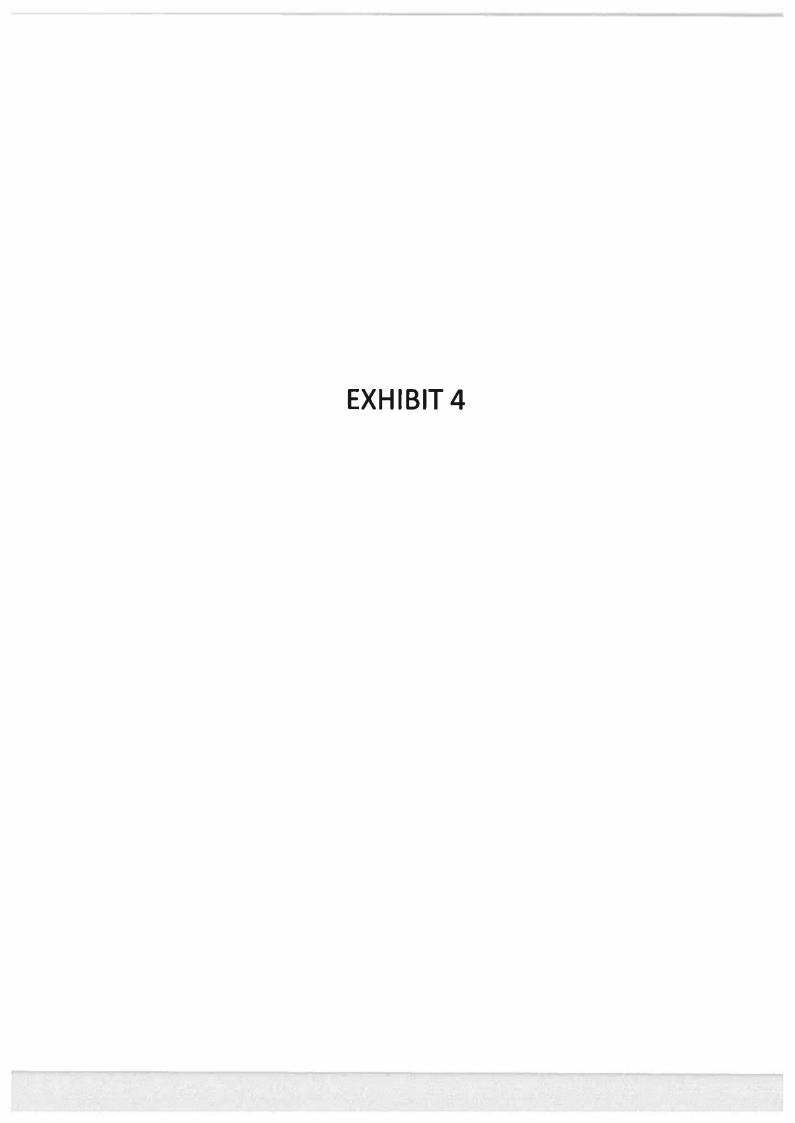
ITS REPRESENTATIVE Lawrence P. Weisman

Residents of Sunny Lane, Westport

Lawrence P. Weisman Weisman & Lubell 5 Sylvan Road South P.O. Box 3184 Westport, CT 06880 (203) 226-8307 Omnipoint Communications, Inc.

Brian Weinstein

Omnipoint Communications, Inc. 25 Van Zant Street, Suite 18E East Norwalk, CT 06855 (203) 855-5450


Content Last Modified on 8/9/2002 2:30:22 PM

Ten Franklin Square New Britain, CT 06051 / 860-827-2935

Home | CTgov Home | Send Feedback | Login | Register

State of Connecticut Disclaimer. Privacy Policy, and Web Site Accessibility Policy. Copyright © 2002-2019 State of Connecticut.





#### 2 ALLEN RAYMOND LN

Location 2 ALLEN RAYMOND LN

Mblu B13/ / 026/000 /

Acct# 8579

Owner CELLCO PARTNERSHIP

**Assessment** \$1,378,920

Appraisal \$1,969,886

**PID** 4500

**Building Count** 1

#### **Current Value**

|                | Appraisal    |           |             |
|----------------|--------------|-----------|-------------|
| Valuation Year | Improvements | Land      | Total       |
| 2015           | \$1,444,286  | \$525,600 | \$1,969,886 |
|                | Assessment   |           |             |
| Valuation Year | Improvements | Land      | Total       |
| 2015           | \$1,011,020  | \$367,900 | \$1,378,920 |

#### **Owner of Record**

Owner

**CELLCO PARTNERSHIP** 

Co-Owner BELL ATLANTIC NYNEX MOBILE DBA

Address

PO BOX 2549

ADDISON, TX 75001

Sale Price \$415,000

Certificate

Book & Page 1488/0099

Sale Date

12/10/1996

Instrument

00

#### **Ownership History**

| Ownership History  |            |             |             |            |            |
|--------------------|------------|-------------|-------------|------------|------------|
| Owner              | Sale Price | Certificate | Book & Page | Instrument | Sale Date  |
| CELLCO PARTNERSHIP | \$415,000  | 1           | 1488/0099   | 00         | 12/10/1996 |

#### **Building Information**

#### **Building 1: Section 1**

Year Built:

1968

Living Area:

3,006

Replacement Cost:

\$508,423

**Building Percent Good:** 

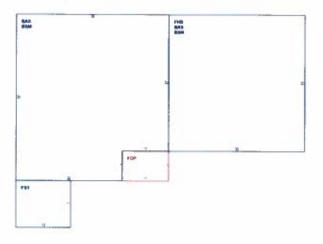
4000,

Replacement Cost

**Less Depreciation:** 

\$406,700

**Building Attributes** 


| Field           | Description    |
|-----------------|----------------|
| TYLE            | Res Typ Comm   |
| MODEL           | Commercial     |
| Grade           | Average +20    |
| Stories:        | 1              |
| Occupancy       | 1.00           |
| Exterior Wall 1 | Board & Batten |
| Exterior Walt 2 |                |
| Roof Structure  | Gable          |
| Roof Cover      | Asphalt/F Glas |
| Interior Wall 1 | Drywall        |
| Interior Wall 2 |                |
| nterior Floor 1 | Vinyl/Asphalt  |
| nterior Floor 2 |                |
| leating Fuel    | Oil            |
| Heating Type    | Forced Air     |
| AC Type         | Central        |
| Struct Class    |                |
| Bldg Use        | Cell Site      |
| ncome Adj       |                |
| Jsrfld 216      |                |
| Jsrfld 217      |                |
| Jsrfld 218      |                |
| Jsrfld 219      |                |
| st Floor Use:   |                |
| Heat/AC         | Heat/AC Pkgs   |
| Frame Type      | Wood Frame     |
| Baths/Plumbing  | Average        |
| Ceiling/Walls   | Ceil & Walls   |
| Rooms/Prtns     | Average        |
| Vall Height     | 8.00           |
| 6 Comn Wall     |                |

#### **Building Photo**



(http://lmages.vgsi.com/photos2/WestportCTPhotos/\00\02\54\59.jpg)

#### **Building Layout**



(ParcelSketch.ashx?pid=4500&bid=4500)

| Building Sub-Areas (sq ft) |                      |               | <u>Legend</u>  |
|----------------------------|----------------------|---------------|----------------|
| Code                       | Description          | Gross<br>Area | Living<br>Area |
| BAS                        | First Floor          | 2,351         | 2,351          |
| FHS                        | Half Story, Finished | 1,024         | 512            |
| FST                        | Utility Storage, Fin | 143           | 143            |
| BSM                        | Basement Area        | 2,351         | 0              |
| FOP                        | Porch, Open          | 77            | 0              |
|                            |                      | 5,946         | 3,006          |

#### **Extra Features**

| Extra Features             | <u>Legend</u> |
|----------------------------|---------------|
| No Data for Extra Features |               |
|                            | 200000        |

#### Land

I and Ilas

#### Lanu use

Land Line valuation

Use Code 434 Description

Cell Site

Zone AAA Neighborhood C

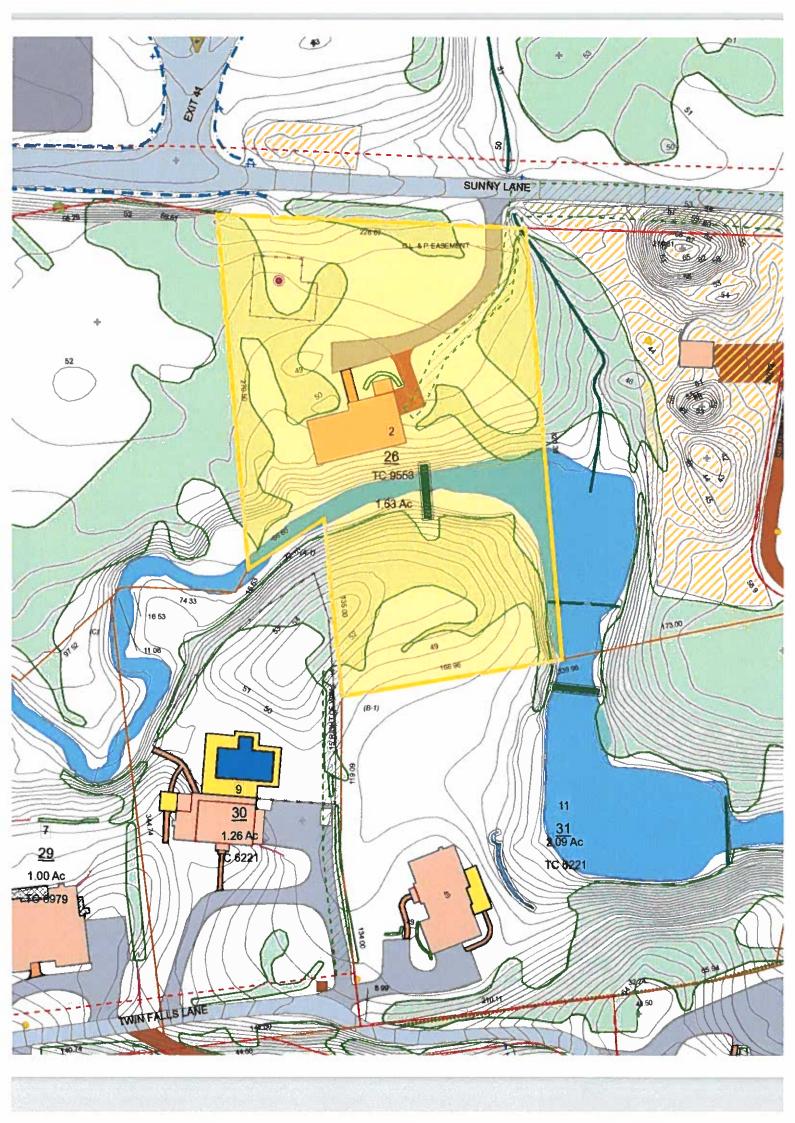
Alt Land Appr No

Category

Size (Acres) 1.63 Frontage 0 Depth 0

Assessed Value \$367,900 Appraised Value \$525,600

#### Outbuildings


| Outbuildings |             |          |                 |            | Legend      |        |
|--------------|-------------|----------|-----------------|------------|-------------|--------|
| Code         | Description | Sub Code | Sub Description | Size       | Value       | Bldg # |
| CELL         | Cell on TWR | TW       |                 | 6.00 Sites | \$1,037,600 | 1      |

#### **Valuation History**

| Appraisal      |              |           |             |  |
|----------------|--------------|-----------|-------------|--|
| Valuation Year | Improvements | Land      | Total       |  |
| 2019           | \$1,444,286  | \$525,600 | \$1,969,886 |  |
| 2018           | \$1,444,300  | \$525,600 | \$1,969,900 |  |
| 2017           | \$1,444,300  | \$525,600 | \$1,969,900 |  |

| Assessment     |              |           |             |  |
|----------------|--------------|-----------|-------------|--|
| Valuation Year | Improvements | Land      | Total       |  |
| 2019           | \$1,011,020  | \$367,900 | \$1,378,920 |  |
| 2018           | \$1,011,020  | \$367,900 | \$1,378,920 |  |
| 2017           | \$1,011,020  | \$367,900 | \$1,378,920 |  |

(c) 2020 Vision Government Solutions, Inc. All rights reserved.



# **EXHIBIT 5**



# NIER Study Report

# SITE NAME:

# 411189 Cranburysu CT

#### **LOCATION:**

Westport, Connecticut

#### COMPANY:

American Tower Corporation Woburn, Massachusetts

July 13<sup>th</sup>, 2020

# **Contents**

| DISCLAIMER N | NOTICE                                | 2  |
|--------------|---------------------------------------|----|
| INTRODUCTIO  | ON                                    | 3  |
| SITE AND FAC | ILITY CONSIDERATIONS                  | 3  |
| POWER DENSI  | ITY CALCULATIONS                      | 3  |
| APPENDIX 1   | TOPOGRAPHIC MAP                       | 4  |
| APPENDIX 2   | SATELLITE PHOTO                       | 5  |
| APPENDIX 3   | LOAD LIST                             | 6  |
| APPENDIX 4   | FCC OET-65 MPE LIMIT STUDY            | 7  |
| APPENDIX 5   | TOWER RADIATION PATTERNS              | 8  |
| APPENDIX 6   | INFORMATION PERTAINING TO MPE STUDIES | 9  |
| APPENDIX 7   | MPE STANDARDS METHODOLOGY             | 11 |



#### **DISCLAIMER NOTICE**

This work is based upon our best interpretation of available information. However, these data and their interpretation are constantly changing. Therefore, we do not warrant that any undertaking based on this report will be successful, or that others will not require further research or actions in support of this proposal or future undertaking. In the event of errors, our liability is strictly limited to replacement of this document with a corrected one. Liability for consequential damages is specifically disclaimed. Any use of this document constitutes an agreement to hold Lawrence Behr Associates, Inc. and its employees harmless and indemnify it for any and all liability, claims, demands, and litigation expenses and attorney's fees arising out of such use.

Work product documents released prior to account settlement remain the sole property of Lawrence Behr Associates, Inc. and must be returned on demand. Underlying work notes and data relating to this document remain the property of Lawrence Behr Associates, Inc. This document shall not be reproduced in whole or part without permission of Lawrence Behr Associates, Inc. Any dispute hereunder shall be adjudicated in North Carolina. Any use or retention of this document constitutes acceptance of these terms, the entire work product, and all charges associated therewith.

COPYRIGHT © 2020 BY LAWRENCE BEHR ASSOCIATES, INC. GREENVILLE, NORTH CAROLINA



# NIER STUDY REPORT 411189 Cranburysu CT

Westport, Connecticut

#### INTRODUCTION

Lawrence Behr Associates, Inc. (LBA) has been retained by American Tower Corporation (ATC) of Woburn, Massachusetts to evaluate the RF emissions of an existing tower at this location.

#### SITE AND FACILITY CONSIDERATIONS

Site 411189 Cranburysu CT is located at 2 Sunny Lane in Westport, Connecticut at coordinates 41.16291, -73.37308. The support structure is a 131' monopole. The installation consists of three antenna levels with radiation centers of 104', 113', and 128' above ground level. All antennae will have a radiation center as described above. All data used in this study was provided by one or more of the following sources:

- 1. ATC furnished data
- 2. Compiled from carrier and manufacturer standard configurations
- 3. Empirical data collected by LBA

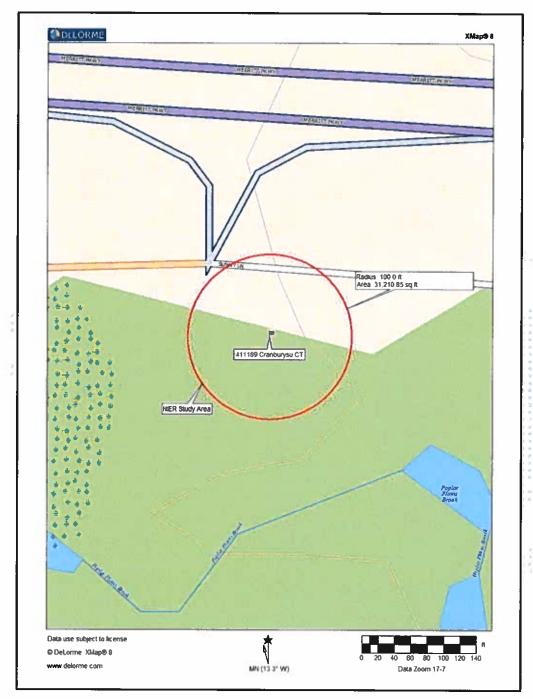
A topographic map of the study area is located in Appendix 1. A satellite view of the study area is located in Appendix 2.

The load list may be seen in Appendix 3.

#### **POWER DENSITY CALCULATIONS**

Graphs of the power density at different distances from the transmitter, compared to FCC MPE general population and occupational limits, may be seen in Appendix 4. These limits are based upon the Information Relating to MPE Standards found in Appendix 6. Study methodology may be seen in Appendix 7, which describes the Non-Ionizing Radiation Prediction Models. Approximate radiation patterns may be found in Appendix 5. This site **IS** in compliance with FCC OET-65 MPE limits.

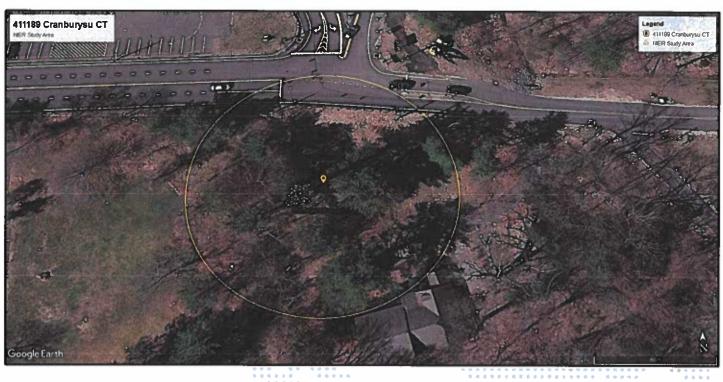
July 13th, 2020


Kathryn G. Tesh

Wireless Services Manager



# **APPENDIX 1**


### Topographic Map





# **APPENDIX 2**

### Satellite Photo



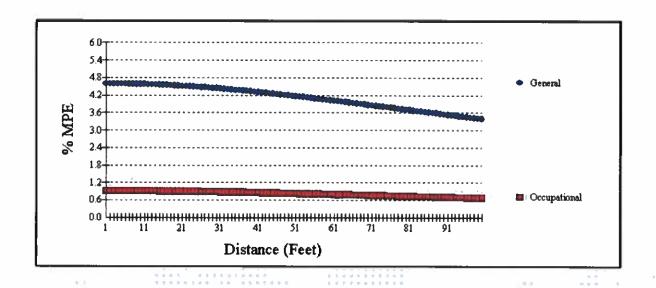




# **APPENDIX 3**

#### Load List

| Proposed | Customer                | RAD<br>Height (ft)            | Equipment<br>Quantity | Equipment<br>Type | Monufacturer         | Model<br>Number              | Quentity :                    | Line size                       | Mount Type                 | Azimuths   | TX Frequency                        | RX Frequency                          |
|----------|-------------------------|-------------------------------|-----------------------|-------------------|----------------------|------------------------------|-------------------------------|---------------------------------|----------------------------|------------|-------------------------------------|---------------------------------------|
| No       | VERIZON<br>WIRELES<br>S | 128                           | 2                     | PANEL             | Astel                | LPA-<br>80080/6C<br>F        | 5                             | 1 S/8"<br>Coax                  | Platform with<br>Handralls |            | 869-890                             | 824-847                               |
| No       | VERIZON<br>WIRELES<br>S | 128                           | 4                     | PANEL             | Decibel              | D8846F65<br>ZAXY             | 4                             | 1 5/8"<br>Coax                  | Platform with<br>Handrails |            | 869-890                             | 824-847                               |
| No       | VERIZON<br>WIRELES<br>S | 128                           | 6                     | PANEL             | Quintel              | Q56656-5                     | ***                           | 1 0 0 0<br>1 2 0 0<br>1 7 0 0 0 | Platform with              |            | 2145-2155, 746-757                  | 1745-1755, 776-<br>787<br>II II       |
| No       | SPRINT<br>NEXTEL        | 126                           | 1                     | DISH-HP           | Andrew<br>Microwaves | VHLP800-<br>11 (49<br>lbs)   | 5 4 1 5 4<br>5 5 5 4 5<br>2   | 1/2" Coax                       | Low Profile Platform       | 50/150/270 |                                     |                                       |
| No       | T-<br>MOBILE            | 113                           | 3                     | PANEL             | RFS                  | APXVAAR<br>RZ4_43-U-<br>NA20 | *                             | 1 4 6 B                         | Low Profile Platform       | 30/150/270 | 627-688, 698-734                    | 627-688, 698-73                       |
| No :     | MOBILE                  | 9 113 h<br>9 2 5 3<br>9 3 6 4 | 1 4 3 4               | PANEL             | Ericason             | AIR-32<br>82A/866A<br>a      | 9 4 4<br>9 4<br>9 6           | 4 # D #<br>4 # B<br>4 # B       | Low Profile Platform       | 30/150/270 | 1940-1950, 2110-2120, 2140-         | 1710-1720, 1710<br>1745, 1860-1870    |
| No       | T-<br>MOBILE            | 113                           | . 3                   | PANEL             | EMS                  | RR90-17-<br>02DP             | 6                             | 1 5/8°<br>Coax                  | Low Profile Platform       | 30/150/270 | 1940-1950, 2110-2120, 2140-<br>2145 | 1710-1720, 1710<br>1745, 1860-1870    |
| No       | MOBILE                  | 113                           | 3 3                   | PANEL 6 1         | a d Ericsson: A      | AIR 21,<br>1.3 M,<br>82A B4P | 9 6 6 6 8<br>9 6 6 6 8<br>9 8 |                                 | Low Profile Platform       | 30/150/270 | 1940-1950, 2110-2120, 2140-         |                                       |
| No       | AT&T<br>MOBILIT<br>Y    | 104                           | 3                     | PANEL             | Powerwave            | P65-16-<br>XLH-RR            | ***                           |                                 | Low Profile Platform       | 143/263/23 | 4444                                | 3 4 3 4 8 4<br>3 4 3 5<br>8 8 8 9 9 4 |
| No       | TATA<br>TUIBOM<br>Y     | 104                           | 6                     | PANEL             | Powerwave<br>Aligon  | 7770.00<br>1 9<br>3          | 12                            | 1 5/8"<br>Coax                  | Low Profile Platform       | 143/263/23 | 6S0-1900 1 7 8 1                    | 7 650-1900 T                          |
| No       | AT&T<br>MOBILIT         | 104                           | 3                     | PANEL 4           | 2 0 0 CCI            | HPA-65R-<br>BUU-H6           |                               |                                 | Low Profile Platform       | 30/150/270 | 1900,700                            | 19002100, 700                         |

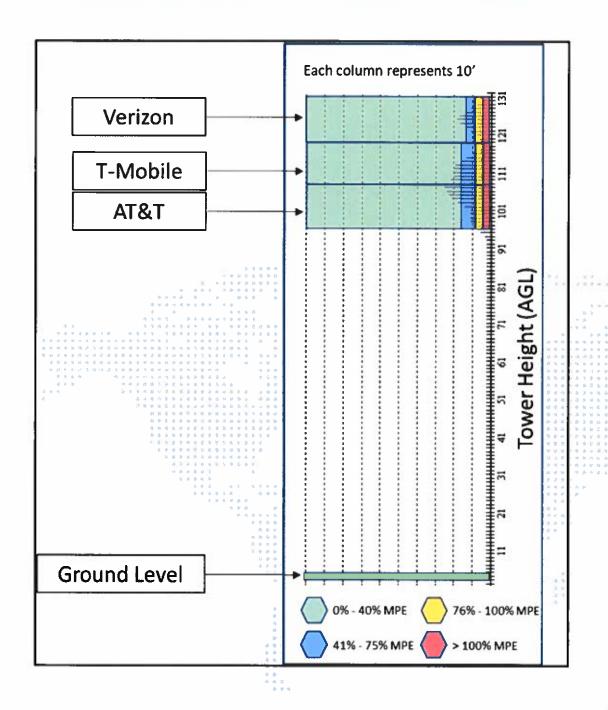







# **APPENDIX 4**

## FCC OET-65 MPE Limit Study




| General Population MPE (@1'): | 4.60%         |
|-------------------------------|---------------|
| Occupational MPE (@1'):       | 0.92%         |
| Maximum Power Density (@1'):  | 0.0296 mW/cm² |



## APPENDIX 5

#### **Tower Radiation Patterns**





In 1985, the FCC first adopted guidelines to be used for evaluating human exposure to RF emissions. The FCC revised and updated these guidelines on August 1, 1996, as a result of a rule-making proceeding initiated in 1993. The new guidelines incorporate limits for Maximum Permissible Exposure (MPE) in terms of electric and magnetic field strength and power density for transmitters operating at frequencies between 300 kHz and 100 GHz.

The FCC's MPE limits are based on exposure limits recommended by the National Council on Radiation Protection and Measurements (NCRP) and, over a wide range of frequencies, the exposure limits were developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI) to replace the 1982 ANSI guidelines. Limits for localized absorption are based on recommendations of both ANSI/IEEE and NCRP.

The FCC's limits, and the NCRP and ANSI/IEEE limits on which they are based, are derived from exposure criteria quantified in terms of specific absorption rate (SAR). The basis for these limits is a whole-body averaged SAR threshold level of 4 watts per kilogram (4 W/kg), as averaged over the entire mass of the body, above which expert organizations have determined that potentially hazardous exposures may occur. The MPE limits are derived by incorporating safety factors that lead, in some cases, to limits that are more conservative than the limits originally adopted by the FCC in 1985. Where more conservative limits exist, they do not arise from a fundamental change in the RF safety criteria for whole-body averaged SAR, but from a precautionary desire to protect subgroups of the general population who, potentially, may be more at risk.

The FCC exposure limits are also based on data showing that the human body absorbs RF energy at some frequencies more efficiently than at others. The most restrictive limits occur in the frequency range of 30-300 MHz where whole-body absorption of RF energy by human beings is most efficient. At other frequencies, whole-body absorption is less efficient, and consequently, the MPE limits are less restrictive.

MPE limits are defined in terms of power density (units of milliwatts per centimeter squared: mW/cm<sup>2</sup>), electric field strength (units of volts per meter: V/m) and magnetic field strength (units of amperes per meter: A/m). The far-field of a transmitting antenna is where the electric field vector (E), the



magnetic field vector (H), and the direction of propagation can be considered to be all mutually orthogonal ("plane-wave" conditions).

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

**General population/uncontrolled exposure** limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment-related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Additional details can be found in FCC OET 65.





This study predicts RF field strength and power density levels that emanate from communications system antennae. It considers all transmitter power levels (less filter and line losses) delivered to each active transmitting antenna at the communications site. Calculations are performed to determine power density and MPE levels for each antenna as well as composite levels from all antennas. The calculated levels are based on where a human (Observer) would be standing at various locations at the site. The point of interest where the MPE level is predicted is based on the height of the Observer.

Compliance with the FCC limits on RF emissions are determined by spatially averaging a person's exposure over the projected area of an adult human body, that is approximately six-feet or two-meters, as defined in the ANSI/IEEE C95.1 standard. The MPE limits are specified as time-averaged exposure limits. This means that exposure is averaged over an identifiable time interval. It is 30 minutes for the general population/uncontrolled RF environment and 6 minutes for the occupational/controlled RF environment. However, in the case of the general public, time averaging should not be applied because the general public is typically not aware of RF exposure and they do not have control of their exposure time. Therefore, it should be assumed that any RF exposure to the general public will be continuous.

The FCC's limits for exposure at different frequencies are shown in the following Tables.

|                             | Limits for Occupational/Controlled Exposure |                                            |                            |                                                   |  |  |  |
|-----------------------------|---------------------------------------------|--------------------------------------------|----------------------------|---------------------------------------------------|--|--|--|
| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength (E)<br>(V/m)     | Magnetic<br>Field<br>Strength (H)<br>(A/m) | Power Density (S) (mW/cm²) | Averaging<br>Time  E ²,<br> H ² or S<br>(minutes) |  |  |  |
| 0.3 - 3.0                   | 614                                         | 1.63                                       | 100*                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           |  |  |  |
| 3.0 - 30                    | 1842/f                                      | 4.89/f                                     | 900/F²                     | 6                                                 |  |  |  |
| 30 - 300                    | 61.4                                        | 0.163                                      | 1.0                        | 6                                                 |  |  |  |
| 300 - 1500                  | ••                                          | 8 4 D                                      | f/300                      | 6                                                 |  |  |  |
| 1500 -<br>100,000           | <u>.</u>                                    | 2 0 U                                      | 5                          | 6                                                 |  |  |  |



#### \* = Plane-wave equivalent power density

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

| Limits for General Population/Uncontrolled Exposure |                                         |                                         |                                  |                                                |  |  |
|-----------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------------|--|--|
| Frequency Range<br>(MHz)                            | Electric Field<br>Strength (E)<br>(V/m) | Magnetic Field<br>Strength (H)<br>(A/m) | Power Density<br>(S)<br>(mW/cm²) | Averaging Time<br> E ²,  H ² or S<br>(minutes) |  |  |
| 0.3 - 1.34                                          | 614                                     | 1.63                                    | 100*                             | 30                                             |  |  |
| 1.34 - 30                                           | 824/f                                   | 2.19/f                                  | 180/F²                           | 30                                             |  |  |
| 30 -300                                             | 27.5                                    | 0.073                                   | 0.2                              | 30                                             |  |  |
| 300 -1500                                           |                                         | F44646=4 4 8 6 N 6 N 8                  | f/1500                           | 30                                             |  |  |
| 1500 -100,000                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | **************************************  | 1.0                              | 30                                             |  |  |

f = frequency

General population/uncontrolled exposures apply in situations in which the general public may be exposed or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

It is important to understand that these limits apply cumulatively to all sources of RF emissions affecting a given area. For example, if several different communications system antennas occupy a shared facility such as a tower or rooftop, then the total exposure from all systems at the facility must be within compliance of the FCC guidelines.

The field strength emanating from an antenna can be estimated based on the characteristics of an antenna radiating in free space. There are basically two field areas associated with a radiating antenna. When close to the antenna, the region is known as the Near Field. Within this region, the characteristics of the RF fields are very complex and the wave front is extremely curved. As you move further from the antenna, the wave front has less curvature and becomes planar. The wave front still has a curvature but it appears to occupy a flat plane in space (plane-wave radiation). This region is known as the Far Field.



<sup>\* =</sup> Plane-wave equivalent power density

Two models are utilized to predict Near and Far field power densities. They are based on the formulae in FCC OET 65. As this study is concerned only with Near Field calculations, we will only describe the model used for this study. For additional details, refer to FCC OET Bulletin 65.

#### **Cylindrical Model (Near Field Predictions)**

Spatially averaged plane-wave equivalent power densities parallel to the antenna may be estimated by dividing the antenna input power by the surface area of an imaginary cylinder surrounding the length of the radiating antenna. While the actual power density will vary along the height of the antenna, the average value along its length will closely follow the relation given by the following equation:

$$S = P \div 2\pi RL$$

Where:

S = Power Density

P = Total Power into antenna

R = Distance from the antenna

L = Antenna aperture length

For directional-type antennas, power densities can be estimated by dividing the input power by that portion of a cylindrical surface area corresponding to the angular beam width of the antenna. For example, for the case of a 120-degree azimuthal beam width, the surface area should correspond to 1/3 that of a full cylinder. This would increase the power density near the antenna by a factor of three over that for a purely omni-directional antenna. Mathematically, this can be represented by the following formula:

$$S = (180 / \theta_{BW}) P \div \pi RL$$

Where:

S = Power Density

 $\theta_{BW}$  = Beam width of antenna in degrees (3 dB half-power point)

P = Total Power into antenna

R = Distance from the antenna

L = Antenna aperture length

If the antenna is a 360-degree omni-directional antenna, this formula would be equivalent to the previous formula.



#### **Spherical Model (Far Field Predictions)**

Spatially averaged plane-wave power densities in the Far Field of an antenna may be estimated by considering the additional factors of antenna gain and reflective waves that would contribute to exposure.

The radiation pattern of an antenna has developed in the Far Field region and the power gain needs to be considered in exposure predictions. Also, if the vertical radiation pattern of the antenna is considered, the exposure predictions would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential four-fold increase in power density.

These additional factors are considered and the Far Field prediction model is determined by the following equation:

$$S = EIRP \times Rc \div 4\pi R^2$$

Where:

S = Power Density

EIRP = Effective Radiated Power from antenna

Rc = Reflection Coefficient (2.56)

R = Distance from the antenna

The EIRP includes the antenna gain. If the antenna pattern is considered, the antenna gain is relative based on the horizontal and vertical pattern gain values at that particular location in space, on a rooftop or on the ground. However, it is recommended that the antenna radiation pattern characteristics not be considered to provide a conservative "worst case" prediction. This is the equation is utilized for the Far Field exposure predictions herein.



# EXHIBIT 6



## **Structural Analysis Report**

Structure

: 130 ft Monopole

**ATC Site Name** 

: CRANBURYSU CT, CT

**ATC Asset Number** 

: 411189

Engineering Number : 13198800\_C3\_03

**Proposed Carrier** 

: AT&T MOBILITY

Carrier Site Name

: MRCTB045060

Carrier Site Number : CTL02094

**Site Location** 

: 2 SUNNY LANE

**WESTPORT, CT 06880-1906** 

41.162900,-73.373100

County

: Fairfield

Date

: April 28, 2020

Max Usage

: 38%

Result

: Pass

Prepared By: Saja Alkhafaji Structural Engineer Reviewed By:

Saiga Alkhafaji,

COA: PEC.0001553



#### **Table of Contents**

| Introduction                    | 1        |
|---------------------------------|----------|
| Supporting Documents            | . 1      |
| Analysis                        | 1        |
| Conclusion                      | 1        |
| Existing and Reserved Equipment | 2        |
| Equipment to be Removed         | . 3      |
| Proposed Equipment              | . 3      |
| Structure Usages                | 4        |
| Foundations                     | 4        |
| Deflection and Sway             | . 4      |
| Standard Conditions             | . 5      |
| Calculations                    | Attached |



Eng. Number 13198800\_C3\_03 April 28, 2020 Page 1

#### **Introduction**

The purpose of this report is to summarize results of a structural analysis performed on the 130 ft monopole to reflect the change in loading by AT&T MOBILITY.

#### **Supporting Documents**

| Tower Drawings      | EEI Job #10847, dated June 7, 2002                                           |
|---------------------|------------------------------------------------------------------------------|
| Foundation Drawing  | EEI Project #10847, dated June 10, 2002                                      |
| Geotechnical Report | Clarence Welti Association Project Name 2 Sunny Lane, dated January 29, 1999 |

#### **Analysis**

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

| Basic Wind Speed:        | 93 mph (3-Second Gust, V <sub>asd</sub> ) / 120 mph (3-Second Gust, V <sub>ult</sub> ) |
|--------------------------|----------------------------------------------------------------------------------------|
| Basic Wind Speed w/ Ice: | 50 mph (3-Second Gust) w/ 3/4" radial ice concurrent                                   |
| Code:                    | ANSI/TIA-222-G / 2015 IBC / 2018 Connecticut State Building Code                       |
| Structure Class:         |                                                                                        |
| Exposure Category:       | В                                                                                      |
| Topographic Category:    | 1                                                                                      |
| Crest Height:            | 0 ft                                                                                   |
| Spectral Response:       | Ss = 0.23, S <sub>1</sub> = 0.07                                                       |
| Site Class:              | D - Stiff Soil                                                                         |

#### **Conclusion**

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.



Eng. Number 13198800\_C3\_03 April 28, 2020 Page 2

#### **Existing and Reserved Equipment**

| Elev.1 (ft) | Qty | Antenna                               | Mount Type                | Lines                                                              | Carrier            |
|-------------|-----|---------------------------------------|---------------------------|--------------------------------------------------------------------|--------------------|
| 400.0       | 2   | Antel LPA-80080/6CF                   |                           |                                                                    |                    |
| 133.0       | 4   | Decibel DB846F65ZAXY                  | 7                         | :                                                                  |                    |
| 129.0       | 1   | VZW Unused Reserve (2594.83 sqin)     | 7                         |                                                                    |                    |
|             | 3   | Samsung B2/B66A RRH-BR049             | 1                         | (6) 4 5 (0) 0                                                      |                    |
|             | 6   | Quintel QS6656-5                      | Laur Dan Cla Diatérana    | (6) 1 5/8" Coax                                                    | V5013041 M0051 555 |
|             | 3   | Samsung B5/B13 RRH-BR04C              | Low Profile Platform      | (2) 1 5/8" (1.63"-                                                 | VERIZON WIRELESS   |
| 128.0       | 3   | Samsung Outdoor CBRS 20W RRH          | 1                         | 41.3mm) Fiber                                                      |                    |
|             | _   | Samsung Outdoor I AA 1W RRH -Clin-on  |                           |                                                                    |                    |
|             | 3   | Antenna                               |                           |                                                                    |                    |
|             | 1   | RFS DB-C1-12C-24AB-0Z                 | 1                         |                                                                    |                    |
| 126.0       | 1   | Andrew Microwaves VHLP800-11 (49 lbs) |                           | (1) 1/2" Coax                                                      |                    |
|             | 3   | Alcatel-Lucent 800MHz RRH             | ]                         | (3) 0.78" (19.7mm)                                                 |                    |
| 125.0       | 3   | Alcatel-Lucent 1900MHz RRH            | 1                         | 8 AWG 6                                                            |                    |
|             | 1   | Generic 24" x 24" Junction Box        | 1                         | (3) 1 1/4" Hybriflex                                               |                    |
|             | 1   | Generic 24" x 24" Junction Box        | Low Profile Platform      | Cable                                                              | SPRINT NEXTEL      |
|             | 3   | Nokia 2.5G MAA - AAHC(64T64R)         |                           | (6) 1 5/8" Coax                                                    |                    |
| 120.0       | 3   | Alcatel-Lucent RRH2x50-08             | 1                         | (1) 1.7" (43.2mm)                                                  |                    |
|             | 3   | Commscope NNVV-65B-R4                 |                           | Hybrid<br>(2) 2" conduit                                           |                    |
|             | 3   | EMS RR90-17-02DP                      |                           |                                                                    |                    |
|             | 3   | Ericsson Radio 4449 B12,B71           | 7                         | (3) 1 1/4" (1.25"-                                                 |                    |
| 4400        | 3   | Ericsson AIR 21, 1.3 M, B2A B4P       |                           | 31.8mm) Fiber                                                      | TAGRUE             |
| 110.0       | 3   | Ericsson AIR-32 B2A/B66Aa             | Low Profile Platform      | (9) 1 5/8" Coax                                                    | T-MOBILE           |
|             | 3   | RFS APXVAARR24_43-U-NA20              | 1                         | (6) 7/8" Coax                                                      |                    |
|             | 3   | Ericsson KRY 112 71                   | 1                         |                                                                    |                    |
| 107.0       | 1   | Generic GPS                           |                           | (1) 7/8" Coax                                                      | <u>.</u>           |
|             | 3   | CCI HPA-65R-BUU-H6                    |                           | (1) 0.39" (10mm)                                                   |                    |
|             | 3   | Powerwave Allgon 7770.00              | 7                         | Fiber Trunk                                                        |                    |
| 100.0       | 1   | Raycap DC6-48-60-18-8F                | Platform with Handrails   | (2) 0.78" (19.7mm)<br>8 AWG 6<br>(6) 1 5/8" Coax<br>(1) 3" conduit | AT&T MOBILITY      |
| 91.0        |     | •                                     | Flat Low Profile Platform | •                                                                  | OTHER              |
| 80.0        | 1   | Generic GPS                           | Flush                     | (1) 1/2" Coax                                                      | T-MOBILE           |
|             | 1   | Generic GPS                           | Stand-Off                 | (1) 1/2" Coax                                                      | SPRINT NEXTEL      |
| 75.0        | 2   | Generic 2" x 8" GPS                   | Stand-Off                 | (2) 0.63" (16mm)<br>LDF4-50A                                       | VERIZON WIRELESS   |
| 60.0        | 1   | Generic GPS                           | Stand-Off                 | (1) 1/2" Coax                                                      | AT&T MOBILITY      |



Eng. Number 13198800\_C3\_03 April 28, 2020 Page 3

#### **Equipment to be Removed**

| Elev.1 (ft) | Qty | Antenna                     | Mount Type | Lines           | Carrier       |
|-------------|-----|-----------------------------|------------|-----------------|---------------|
|             | 12  | Powerwave Allgon LGP21901   |            | <u></u>         |               |
|             | 6   | Powerwave Allgon 7020       | -          | (6) 1 5/8" Coax | AT&T MOBILITY |
| 100.0       | 3   | Powerwave Allgon 7770.00    |            |                 |               |
| 100.0       | 3   | Ericsson RRUS-11 (50 lbs.)  |            |                 |               |
|             | 3   | Ericsson RRUS 12 w/ RRUS A2 |            |                 |               |
|             | 12  | Powerwave Allgon LGP21401   |            |                 |               |

#### **Proposed Equipment**

| Elev.1 (ft) | Qty | Antenna                     | Mount Type              | Lines                                                                         | Carrier       |
|-------------|-----|-----------------------------|-------------------------|-------------------------------------------------------------------------------|---------------|
|             | 6   | Kathrein Scala 860-10025    |                         |                                                                               | ,             |
|             | 1   | Kathrein Scala 860 10006    |                         |                                                                               |               |
|             | 1   | Generic GPS                 |                         | (1) 0.39" (9.8mm)<br>Cable<br>(2) 0.78" (19.7mm)<br>8 AWG 6<br>(1) 3" conduit | AT&T MOBILITY |
|             | 3   | Ericsson RRUS 8843 B2, B66A | Platform with Handrails |                                                                               |               |
| 100.0       | 3   | Ericsson Radio 4415 B30     | with Site Pro PRK-1245  |                                                                               |               |
|             | 3   | Ericsson RRUS 4449 B5, B12  | Kit                     |                                                                               |               |
|             | 1   | Raycap DC9-48-60-24-8C-EV   |                         |                                                                               |               |
|             | 3   | CCI DMP65R-BU6DA            |                         |                                                                               |               |
|             | 3   | CCI OPA65R-BU6D             |                         |                                                                               |               |

<sup>&</sup>lt;sup>1</sup> Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed coax inside the pole shaft.

Page 4



#### **Structure Usages**

| Structural Component | Controlling<br>Usage | Pass/Fail |
|----------------------|----------------------|-----------|
| Anchor Bolts         | 35%                  | Pass      |
| Shaft                | 34%                  | Pass      |
| Base Plate           | 28%                  | Pass      |

#### **Foundations**

| Reaction Component | Analysis Reactions | % of Usage |
|--------------------|--------------------|------------|
| Moment (Kips-Ft)   | 2513.1             | 38%        |
| Axial (Kips)       | 58.6               | 26%        |
| Shear (Kips)       | 26.0               | 18%        |

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

#### **Deflection and Sway\***

| Antenna<br>Elevation (ft) | Antenna                               | Carrier       | Deflection<br>(ft) | Sway (Rotation) |
|---------------------------|---------------------------------------|---------------|--------------------|-----------------|
| 126.0                     | Andrew Microwaves VHLP800-11 (49 lbs) | SPRINT NEXTEL | 0.522              | 0.427           |
|                           | Kathrein Scala 860-10025              | ·             |                    |                 |
|                           | Kathrein Scala 860 10006              |               |                    |                 |
|                           | Generic GPS                           |               |                    |                 |
|                           | Ericsson RRUS 8843 B2, B66A           |               |                    |                 |
| 100.0                     | Ericsson Radio 4415 B30               | AT&T MOBILITY | 0.333              | 0.385           |
|                           | Ericsson RRUS 4449 B5, B12            |               |                    |                 |
|                           | Raycap DC9-48-60-24-8C-EV             |               |                    | +               |
|                           | CCI DMP65R-BU6DA                      |               |                    |                 |
|                           | CCI OPA65R-BU6D                       |               |                    |                 |

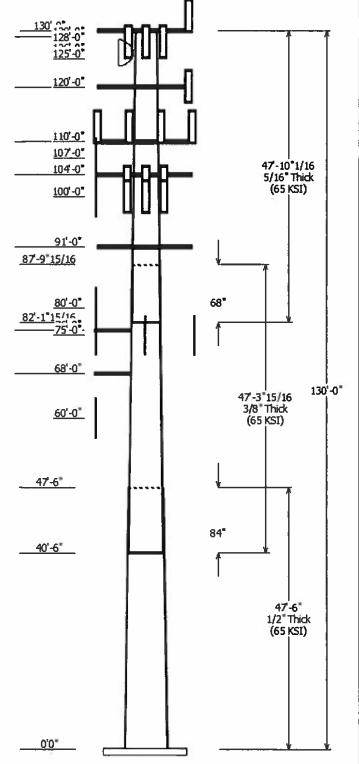
<sup>\*</sup>Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G



#### **Standard Conditions**

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC


It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

© 2007 - 2020 by ATC IP LLC. All rights reserved.



#### Job Information

**Client: AT&T MOBILITY** 

Pole: 411189

Code: ANSI/TIA-222-G

Location: CRANBURYSU CT, CT

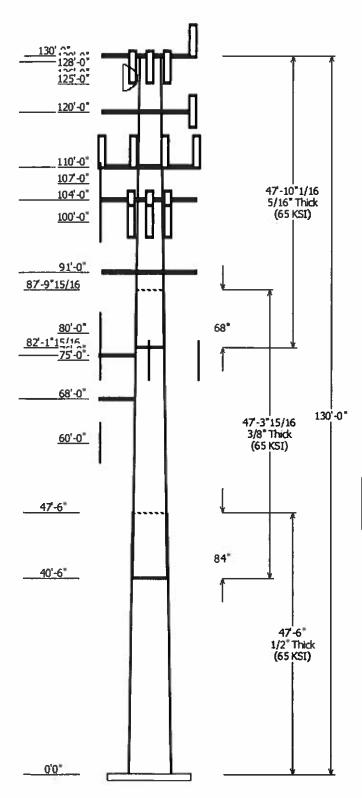
Description: 130 ft EEI Monopole

Struct Class: II

Shape : 18 Sides

Exposure: B

Height: 130.00 (ft)


Topo: 1

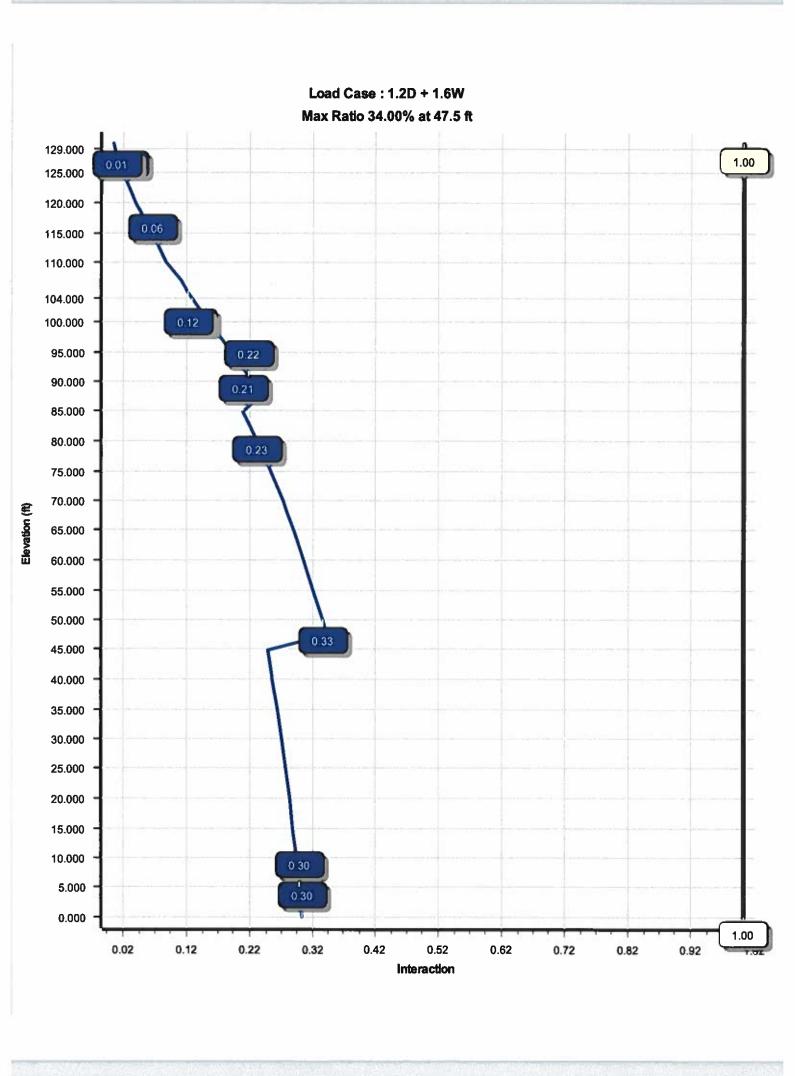
Base Elev (ft): 0.00

Taper: 0.27074\$in/ft)

|                  | Sections Properties |       |                                 |               |               |                           |          |                         |  |  |  |  |  |  |
|------------------|---------------------|-------|---------------------------------|---------------|---------------|---------------------------|----------|-------------------------|--|--|--|--|--|--|
| Shaft<br>Section | Length<br>(ft)      |       | eter (In)<br>ss Flats<br>Bottom | Thick<br>(in) | Joint<br>Type | Overlap<br>Length<br>(In) | Shape    | Steel<br>Grade<br>(ksi) |  |  |  |  |  |  |
| 1                | 47.500              | 49.14 | 62.00                           | 0.500         |               | 0.000                     | 18 Sides | 65                      |  |  |  |  |  |  |
| 2                | 47.330              | 38.97 | 51.78                           | 0.375         | Slip Joint    | 84.000                    | 18 Sides | 65                      |  |  |  |  |  |  |
| 3                | 47.837              | 28.17 | 41.13                           | 0.313         | Slip Joint    | 68.000                    | 18 Sides | 65                      |  |  |  |  |  |  |

|                    |                    | Disc       | rete Appurtenance                                            |
|--------------------|--------------------|------------|--------------------------------------------------------------|
| Attach             | Force              | <b>6</b> 1 | Daniel III.                                                  |
| Elev (ft)          | Elev (ft)          | Qty        | Description                                                  |
| 130.000            | 133.000            | 2          | Antel LPA-80080/6CF                                          |
| 130.000            | 133.000            | 4          | Decibel DB846F65ZAXY                                         |
| 130.000            | 130.000            | 1          | Flat Low Profile Platform                                    |
| 129.000            | 129.000            | 1          | VZW Unused Reserve (2594.83                                  |
| 128.000            | 128.000            | 6          | Quintel QS6656-5                                             |
| 128.000            | 128.000            | 1          | RFS DB-C1-12C-24AB-0Z                                        |
| 128.000            | 128.000            | 3          | Samsung B2/B66A RRH-BR049                                    |
| 128.000            | 128.000            | 3<br>3     | Samsung B5/B13 RRH-BR04C                                     |
| 128.000            | 128.000            | 3          | Samsung Outdoor CBRS 20W                                     |
| 128.000            | 128.000            | -          | Samsung Outdoor LAA 1W                                       |
| 126.000<br>125.000 | 126.000<br>125.000 | 1          | Andrew Microwaves VHLP800-<br>Generic 24" x 24" Junction Box |
| 125.000            | 125.000            | 3          | Alcatel-Lucent 1900MHz RRH                                   |
| 125.000            | 125.000            | 3          | Alcatel-Lucent 800MHz RRH                                    |
| 120.000            | 120.000            | 1          | Flat Low Profile Platform                                    |
| 120.000            | 120.000            | 3          | Commscope NNVV-65B-R4                                        |
| 120.000            | 120.000            | 1          | Generic 24" x 24" Junction Box                               |
| 120.000            | 120.000            | 3          | Nokia 2.5G MAA -                                             |
| 120.000            | 120.000            | 3          | Alcatel-Lucent RRH2x50-08                                    |
| 110.000            | 110.000            | 1          | Flat Low Profile Platform                                    |
| 110.000            | 113.000            | 3          | RFS APXVAARR24_43-U-NA20                                     |
| 110.000            | 113.000            | 3          | Ericsson AIR-32 B2A/B66Aa                                    |
| 110.000            | 113.000            | 3          | Ericsson AIR 21, 1.3 M, B2A B4                               |
| 110.000            | 113.000            | 3          | EMS RR90-17-02DP                                             |
| 110.000            | 113.000            | 3          | Ericsson Radio 4449 B12,B71                                  |
| 110.000            | 110.000            | 3          | Ericsson KRY 112 71                                          |
| 107.000            | 107.000            | 1          | Generic GPS                                                  |
| 104.000            | 104.000            | 1          | Flat Platform w/ Handralls                                   |
| 100.000            | 100.000            | 3          | CCI OPA65R-BU6D                                              |
| 100.000            | 100.000            | 3          | CCI DMP65R-BU6DA                                             |
| 100.000            | 104.000            | 3          | CCI HPA-65R-BUU-H6                                           |
| 100.000            | 104.000            | 3          | Powerwave Aligon 7770.00                                     |
| 100.000            | 100.000            | 1          | Raycap DC9-48-60-24-8C-EV                                    |
| 100.000<br>100.000 | 100.000<br>100.000 | 3<br>3     | Ericsson RRUS 4449 B5, B12<br>Ericsson Radio 4415 B30        |
| 100.000            | 100.000            | 3          | Ericsson RRUS 8843 B2, B66A                                  |
| 100.000            | 104.000            | 1          | Raycap DC6-48-60-18-8F                                       |
| 100.000            | 100.000            | 1          | Generic GPS                                                  |
| 100.000            | 100.000            | i          | Kathrein Scala 860 10006                                     |
| 100.000            | 100.000            | 6          | Kathrein Scala 860-10025                                     |
| 91.000             | 91.000             | 1          | Empty Flat Low Profile Platfor                               |
| 80.000             | 80.000             | 1          | Generic GPS                                                  |
| 76.000             | 76.000             | 1          | Stand-Off                                                    |
| 75.000             | 75.000             | 2          | Generic 2" x 8" GPS                                          |
| 75.000             | 75.000             | 1          | Generic GPS                                                  |
|                    |                    |            |                                                              |




68.000 68.000 1 Side Arm 60.000 60.000 1 Generic GPS

|              |            | Linear App       | urtenance          |  |
|--------------|------------|------------------|--------------------|--|
| Elev<br>From | (ft)<br>To | Description      | Exposed<br>To Wind |  |
| 0.000        | 60.000     | 1/2" Coax        | No                 |  |
| 0.000        | 75.000     | 0.63" (16mm)     | No                 |  |
| 0.000        | 75.000     | 1/2" Coax        | No                 |  |
| 0.000        | 80.000     | 1/2" Coax        | No                 |  |
| 0.000        | 100.0      | 0.39" (10mm)     | No                 |  |
| 0.000        | 100.0      | 0.39" (9.8mm)    | No                 |  |
| 0.000        | 100.0      | 0.78" (19.7mm) 8 | No                 |  |
| 0.000        | 100.0      | 0.78" (19.7mm) 8 | No                 |  |
| 0.000        | 100.0      | 1 5/8" Coax      | No                 |  |
| 0.000        | 100.0      | 3" conduit       | No                 |  |
| 0.000        | 100.0      | 3" conduit       | No                 |  |
| 0.000        | 107.0      | 7/8" Coax        | No                 |  |
| 0.000        | 110.0      | 1 1/4" (1.25"-   | No                 |  |
| 0.000        | 110.0      | 1 5/8" Coax      | No                 |  |
| 0.000        | 110.0      | 7/8" Coax        | No                 |  |
| 0.000        | 120.0      | 1 1/4" Hybriflex | No                 |  |
| 0.000        | 120.0      | 1 5/8" Coax      | No                 |  |
| 0.000        | 120.0      | 1.7" (43.2mm)    | No                 |  |
| 0.000        | 120.0      | 2" conduit       | No                 |  |
| 0.000        | 125.0      | 0.78" (19.7mm) 8 | No                 |  |
| 0.000        | 126.0      | 1/2" Coax        | No                 |  |
| 0.000        | 128.0      | 1 5/8" (1.63"-   | No                 |  |
| 0.000        | 133.0      | 1 5/8" Coax      | Yes                |  |

|                          | Load Cases                               |  |  |  |  |  |  |  |  |
|--------------------------|------------------------------------------|--|--|--|--|--|--|--|--|
| 1.2D + 1.6W              | 93 mph with No Ice                       |  |  |  |  |  |  |  |  |
| 0.9D + 1.6W              | 93 mph with No Ice (Reduced DL)          |  |  |  |  |  |  |  |  |
| 1.2D + 1.0Di + 1.0Wi     | 50 mph with 0.75 in Radial Ice           |  |  |  |  |  |  |  |  |
| (1.2 + 0.2\$ds) * DL + E | Seismic Equivalent Lateral Forces Method |  |  |  |  |  |  |  |  |
| (1.2 + 0.2Sds) * DL + E  | Seismic Equivalent Modal Analysis Method |  |  |  |  |  |  |  |  |
| (0.9 - 0.2Sds) * DL + E  | Seismic (Reduced DL) Equivalent Lateral  |  |  |  |  |  |  |  |  |
| (0.9 - 0.2Sds) * DL + E  | Seismic (Reduced DL) Equivalent Modal    |  |  |  |  |  |  |  |  |
| 1.0D + 1.0W              | Serviceability 60 mph                    |  |  |  |  |  |  |  |  |

| Reactions                                            |         |       |       |  |  |  |  |  |  |  |  |
|------------------------------------------------------|---------|-------|-------|--|--|--|--|--|--|--|--|
| Moment Shear Axial<br>Load Case (kip-ft) (kip) (kip) |         |       |       |  |  |  |  |  |  |  |  |
| 1.2D + 1.6W                                          | 2513.09 | 25.99 | 58.60 |  |  |  |  |  |  |  |  |
| 0.9D + 1.6W                                          | 2499.43 | 25.98 | 43.95 |  |  |  |  |  |  |  |  |
| 1.2D + 1.0Di + 1.0Wi                                 | 761.85  | 8.13  | 98.93 |  |  |  |  |  |  |  |  |
| (1.2 + 0.2\$ds) * DL + E ELFM                        | 231.95  | 2.35  | 58.54 |  |  |  |  |  |  |  |  |
| (1.2 + 0.2\$ds) * DL + E EMAM                        | 275.52  | 2.72  | 58.54 |  |  |  |  |  |  |  |  |
| (0.9 - 0.2Sds) * DL + E ELFM                         | 230.40  | 2.35  | 39.93 |  |  |  |  |  |  |  |  |
| (0.9 - 0.2Sds) * DL + E EMAM                         | 273.52  | 2.72  | 39.93 |  |  |  |  |  |  |  |  |
| 1.0D + 1.0W                                          | 582.84  | 6.05  | 48.85 |  |  |  |  |  |  |  |  |

| Dish Deflections |                     |                    |                   |  |  |  |  |  |  |
|------------------|---------------------|--------------------|-------------------|--|--|--|--|--|--|
| Load Case        | Attach<br>Elev (ft) | Deflection<br>(in) | Rotation<br>(deg) |  |  |  |  |  |  |
| 1.0D + 1.0W      | 126.00              | 6.260              | 0.431             |  |  |  |  |  |  |



**Customer: AT&T MOBILITY** 

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number: 13198800 C3 03

4/30/2020 9:48:17 PM

**Analysis Parameters** 

Location:

Fairfield County, CT

Height (ft):

130

Code:

ANSI/TIA-222-G

Base Diameter (in):

62.00

Shape:

18 Sides

Top Diameter (in):

28.18

Pole Type:

Taper (in/ft):

0.271

Pole Manfacturer :

Taper EEI

Rotation (deg):

0.00

Ice & Wind Parameters

Structure Class:

П

**Design Wind Speed Without Ice:** 

93 mph

**Exposure Category:** 

В 1

**Design Wind Speed With Ice: Operational Wind Speed:** 

50 mph 60 mph

**Topographic Category: Crest Height:** 

0 ft

Design Ice Thickness:

0.75 in

Seismic Parameters

**Analysis Method:** 

Equivalent Modal Analysis & Equivalent Lateral Force Methods

Site Class:

Period Based on Rayleigh Method (sec):

T<sub>L</sub> (sec):

ß

1.49 p:

1

C.:

0.048

S.:

0.227

S<sub>1</sub>:

0.067

C \_ Max:

0.048

F<sub>a</sub>:

1.600

F<sub>v</sub>:

2.400

C Min:

0.030

Sds:

0.242

S<sub>d1</sub>:

0.107

**Load Cases** 

1.2D + 1.6W

0.9D + 1.6W

1.2D + 1.0Di + 1.0Wi

93 mph with No Ice

93 mph with No Ice (Reduced DL)

50 mph with 0.75 in Radial Ice

(1.2 + 0.2Sds) \* DL + E ELFM (1.2 + 0.2Sds) \* DL + E EMAM Selsmic Equivalent Lateral Forces Method

Seismic Equivalent Modal Analysis Method

(0.9 - 0.2Sds) \* DL + E ELFM (0.9 - 0.25ds) \* DL + E EMAM Seismic (Reduced DL) Equivalent Lateral Forces Method Seismic (Reduced DL) Equivalent Modal Analysis Method

1.0D + 1.0W

Serviceability 60 mph

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:17 PM

**Customer: AT&T MOBILITY** 

| Shaft Section Properties |                |        |             |         |                   |                | _           |              | — Во                       | ttom –                   |              |              |             |              | <b>–</b> 1    | op <b>-</b>              | ·            |              |                  |
|--------------------------|----------------|--------|-------------|---------|-------------------|----------------|-------------|--------------|----------------------------|--------------------------|--------------|--------------|-------------|--------------|---------------|--------------------------|--------------|--------------|------------------|
| Sect<br>Info             | Length<br>(ft) |        | Fy<br>(ksi) |         | Joint<br>Len (in) | Weight<br>(lb) | Dia<br>(in) | Elev<br>(ft) | Area<br>(in <sup>2</sup> ) | lx<br>(in <sup>4</sup> ) | W/t<br>Ratio | D/t<br>Ratio | Dia<br>(In) | Elev<br>(ft) | Area<br>(in²) | ix<br>(in <sup>4</sup> ) | W/t<br>Ratio | D/t<br>Ratio | Taper<br>(in/ft) |
| 1-18                     | 47.500         | 0.5000 | 65          |         | 0.00              | 14,125         | 62.00       | 0.00         | 97.60                      | 46638.0                  | 20.45        | 124.00       | 49.14       | 47.50        | 77.19         | 23072.                   | 0 15.92      | 98.28        | 0.270745         |
| 2-18                     | 47.330         | 0.3750 | 65          | Slip    | 84.00             | 8,626          | 51.78       | 40.50        | 61.19                      | 20432.2                  | 22.94        | 138.09       | 38.97       | 87.83        | 45.94         | 8645.4                   | 16.91        | 103.92       | 0.270745         |
| 3-18                     | 47.837         | 0.3125 | 65          | Slip    | 68.00             | 5,544          | 41.13       | 82.16        | 40.48                      | 8521.7                   | 21.80        | 131.62       | 28.17       | 130.00       | 27.64         | 2711.                    | 5 14.49      | 90.17        | 0.270745         |
|                          |                |        | SI          | haft We | eight             | 28,296         |             |              |                            |                          |              |              |             |              |               |                          |              |              |                  |

#### Discrete Appurtenance Properties

| Attach           |                                                       |        |              | Vert           |                | No Ice       |                       |                 | ice —          |                      |
|------------------|-------------------------------------------------------|--------|--------------|----------------|----------------|--------------|-----------------------|-----------------|----------------|----------------------|
| Elev<br>(ft)     | Description                                           | Qty    | Ka           | Ecc<br>(ft)    | Weight<br>(lb) | EPAa (sf)    | Orientation<br>Factor | Weight<br>(lb)  | EPAa C<br>(sf) | rientation<br>Factor |
| 130.00           | Decibel DB846F65ZAXY                                  | 4      | 0.80         | 3.000          | 21.00          | 7.03         | 0 0.75                | 214.96          | 8.262          | 0.75                 |
| 130.00           | Antel LPA-80080/6CF                                   | 2      | 0.80         | 3.000          | 21.00          | 8.62         | 8 0.71                | 212.55          | 5.491          | 0.71                 |
| 130.00           | Flat Low Profile Platform                             | 1      | 1.00         | 0.000          | 1,500.00       | 26.10        | 0 1.00                | 2,139.75        | 44.952         | 1.00                 |
| 129.00           | VZW Unused Reserve (2594.83                           | 1      | 0.80         | 0.000          | 148.90         | 18.02        | 0.90                  | 251.25          | 30.406         | 0.90                 |
| 128.00           | Samsung Outdoor LAA 1W RRH                            | 3      | 0.80         | 0.000          | 4.40           | 0.81         |                       | 20.29           | 1.40€          | 0.50                 |
| 128.00           | Samsung Outdoor CBRS 20W                              | 3      | 0.80         | 0.000          | 18.60          | 0.85         |                       | 42.25           | 1.475          | 0.50                 |
| 128.00           | Samsung B5/B13 RRH-BR04C                              | 3      | 0.80         | 0.000          | 70.30          | 1.87         |                       | 126.67          | 2.765          | 0.50                 |
| 128.00           | Samsung B2/B66A RRH-BR049                             | 3      | 0.80         | 0.000          | 84.40          | 1.87         |                       | 147.27          | 2.765          |                      |
| 128.00           | RFS DB-C1-12C-24AB-0Z                                 | 1      | 0.80         | 0.000          | 32.00          | 4.05         |                       | 157.25          | 5.401          |                      |
| 128.00           | Quintel QS6656-5                                      | 6      | 0.80         | 0.000          | 65.00          | 8.13         |                       | 261.36          | 10.880         |                      |
| 126.00           | Andrew Microwaves VHLP800-                            | 1      | 1.00         | 0.000          | 49.00          | 7.76         |                       | 205.72          | 9.367          |                      |
| 125.00           | Alcatel-Lucent 800MHz RRH                             | 3      | 0.80         | 0.000          | 53.00          | 2.13         |                       | 125.48          | 3.095          |                      |
| 125.00           | Alcatel-Lucent 1900MHz RRH                            | 3      | 0.80         | 0.000          | 44.00          | 3.25         |                       | 150.98          | 4.426          |                      |
| 125.00           | Generic 24" x 24" Junction Box                        | 1      | 0.80         | 0.000          | 20.00          | 4.80         |                       | 132.74          | 6.196          |                      |
| 120.00           | Alcatel-Lucent RRH2x50-08                             | 3      | 0.80         | 0.000          | 52.90          | 1.70         |                       | 110.85          | 2.545          |                      |
| 120.00           | Nokia 2.5G MAA - AAHC(64T64R)                         | 3      | 0.80         | 0.000          | 103.60         | 4.20         |                       | 213.84          | 5.514          |                      |
| 120.00           | Generic 24" x 24" Junction Box                        | 1      | 0.80         | 0.000          | 20.00          | 4.80         |                       | 132.27          | 6.190          |                      |
| 120.00           | Commscope NNVV-65B-R4                                 | 3      | 0.80         | 0.000          | 77.40          | 12.27        |                       | 323.11          | 15.013         |                      |
| 120.00           | Flat Low Profile Platform                             | 1      | 1.00         | 0.000          | 1,500.00       | 26.10        |                       | 2,133.56        | 44.770         |                      |
| 110.00           | Ericsson KRY 112 71                                   | 3      | 0.80         | 0.000          | 13.20          | 0.58         |                       | 30.96           | 1.120          |                      |
| 110.00           | Ericsson Radio 4449 B12,B71                           | 3      | 0.80         | 3.000          | 74.00          | 1.63         |                       | 128.31          | 2.458          |                      |
| 110.00           | EMS RR90-17-02DP                                      | 3      | 0.80         | 3.000          | 13.50          | 4.35         |                       | 108.15          | 5.311          |                      |
| 110.00           | Ericsson AIR 21, 1.3 M, B2A B4P                       | 3      | 0.80         | 3.000          | 83.00          | 6.04         |                       | 224.58          | 8.146          |                      |
| 110.00           | Ericsson AIR-32 B2A/B66Aa                             | 3      | 0.80         | 3.000          | 132.20         | 6.51         |                       | 287.04          | 8.635          |                      |
| 110.00           | RFS APXVAARR24_43-U-NA20                              | 3      | 0.80         | 3.000          | 127.90         | 20.24        |                       | 508.75          | 23.841         |                      |
| 110.00           | Flat Low Profile Platform                             | 1      | 1.00         | 0.000          | 1,500.00       | 26.10        |                       | 2,128.53        | 44.621         |                      |
| 107.00           | Generic GPS                                           | 1      | 1.00         | 0.000          | 10.00          | 0.90         |                       | 38.32           | 1.519          |                      |
| 104.00           | Flat Platform w/ Handrails                            | 1      | 1.00         | 0.000          | 2,270.00       | 48.50        |                       | 3,825.18        | 71.629         |                      |
| 100.00<br>100.00 | Kathrein Scala 860-10025                              | 6<br>1 | 0.75<br>0.75 | 0.000          | 1.10           | 0.14         |                       | 6.24            | 0.431          |                      |
| 100.00           | Kathrein Scala 860 10006<br>Generic GPS               | 1      | 0.75<br>0.75 | 0.000          | 3.00           | 0.26         |                       | 32.07           | 0.868          |                      |
| 100.00           |                                                       | 1      |              | 0.000          | 10.00          | 0.90         |                       | 38.08           | 1.514          |                      |
| 100.00           | Raycap DC6-48-60-18-8F<br>Ericsson RRUS 8843 B2, B66A | 3      | 0.75<br>0.75 | 4.000          | 20.00          | 1.26         |                       | 70.54           | 1.892          |                      |
| 100.00           | Ericsson Radio 4415 B30                               | 3      | 0.75<br>0.75 | 0.000<br>0.000 | 72.00<br>43.00 | 1.63<br>1.65 |                       | 130.83<br>83.45 | 2.450          |                      |
| 100.00           | Ericsson RRUS 4449 B5. B12                            | 3      | 0.75         | 0.000          | 71.00          | 1.95         |                       | 132.86          | 2.465<br>2.864 |                      |
| 100.00           | Raycap DC9-48-60-24-8C-EV                             | 1      | 0.75<br>0.75 | 0.000          | 16.00          | 4.78         |                       | 132.00          | 6.200          |                      |
| 100.00           | Powerwave Aligon 7770.00                              | 3      | 0.75         | 4.000          | 35.00          | 5.50         |                       | 163.23          | 6.517          |                      |
| 100.00           | CCI HPA-65R-BUU-H6                                    | 3      | 0.75         | 4.000          | 51.00          | 9.65         |                       | 261.58          | 12.319         |                      |
| 100.00           | CCI DMP65R-BU6DA                                      | 3      | 0.75         | 0.000          | 79.40          | 12.70        |                       | 326.64          | 15.386         |                      |
| 100.00           | CCI OPA65R-BU6D                                       | 3      | 0.75         | 0.000          | 63.20          | 12.87        |                       | 314.05          | 15.556         |                      |
| 91.00            | Empty Flat Low Profile Platform                       | 1      | 1.00         | 0.000          | 1.500.00       | 26.10        |                       | 2,117.23        | 44.288         |                      |
| 80.00            | Generic GPS                                           | i      | 1.00         | 0.000          | 10.00          | 0.90         |                       | 37.46           | 1.500          |                      |
| 76.00            | Stand-Off                                             | i      | 1.00         | 0.000          | 100.00         | 3.00         |                       | 145.62          | 4.466          |                      |
| 75.00            | Generic 2" x 8" GPS                                   | ż      | 1.00         | 0.000          | 10.00          | 0.14         |                       | 15.15           | 0.456          |                      |
| 75.00            | Generic GPS                                           | 1      | 1.00         | 0.000          | 10.00          | 0.90         |                       | 37.26           | 1.496          |                      |
| 68.00            | Side Arm                                              | i      | 1.00         | 0.000          | 126.00         | 5.00         |                       | 207.09          | 8.218          |                      |
|                  |                                                       | i      | 1.00         | 2.000          | 10.00          | V.VU         | - 1.00                | _U.UJ           | V.4.19         | . 1.00               |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:17 PM

**Customer: AT&T MOBILITY** 

0.00 75.00 1 1/2" Coax

0.00 60.00 1 1/2" Coax

Totals Num Loadings:47

106

0.63

0.63

0.15 N

0.15 N

13,498.50

0.00

0.00

0.00

0.00

0

0

0.00

0.00

N

**SPRINT NEXTEL** 

**AT&T MOBILITY** 

28,810.88

| _inea                | inear Appurtenance Properties |                          | Load                | Case A                    | zir | nuth (d              | leg) :                       |                              |    |      |                       |                  |
|----------------------|-------------------------------|--------------------------|---------------------|---------------------------|-----|----------------------|------------------------------|------------------------------|----|------|-----------------------|------------------|
| Elev<br>From<br>(ft) | Elev<br>To<br>(ft)            | Qty Description          | Coax<br>Dia<br>(in) | Coax<br>Wt<br>(lb/ft) Fla |     | Max<br>Coax /<br>Row | Dist<br>Between<br>Rows (in) | Dist<br>Between<br>Cols (in) |    | From | Expos<br>To<br>) Wind | ed<br>I Carrier  |
| 0.00                 | 133.00                        | 6 1 5/8" Coax            | 1.98                | 0.82                      | N   | 6                    | 1.00                         | 1.00                         | 90 | 1.00 | Υ                     | VERIZON WIRELESS |
| 0.00                 | 128.00                        | 2 1 5/8" (1.63"-41.3mm)  | 1.63                | 1.61                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | VERIZON WIRELES  |
| 0.00                 | 126.00                        | 1 1/2" Coax              | 0.63                | 0.15                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | SPRINT NEXTEL    |
| 0.00                 | 125.00                        | 3 0.78" (19.7mm) 8 AWG   | 0.78                | 0.59                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | SPRINT NEXTEL    |
| 0.00                 | 120.00                        | 3 1 1/4" Hybriflex Cable | 1.54                | 1.00                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | SPRINT NEXTEL    |
| 0.00                 | 120.00                        | 6 1 5/8" Coax            | 1.98                | 0.82                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | SPRINT NEXTEL    |
| 0.00                 | 120.00                        | 1 1.7" (43.2mm) Hybrid   | 1.70                | 1.78                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | SPRINT NEXTEL    |
| 0.00                 | 120.00                        | 2 2" conduit             | 2.38                | 3.65                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | SPRINT NEXTEL    |
| 0.00                 | 110.00                        | 3 1 1/4" (1.25"- 31.8mm) | 1.25                | 1.05                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | T-MOBILE         |
| 0.00                 | 110.00                        | 9 1 5/8" Coax            | 1.98                | 0.82                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | T-MOBILE         |
| 0.00                 | 110.00                        | 6 7/8" Coax              | 1.09                | 0.33                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | T-MOBILE         |
| 0.00                 | 107.00                        | 1 7/8" Coax              | 1.09                | 0.33                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 100.00                        | 1 0.39" (10mm) Fiber     | 0.39                | 0.06                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 100.00                        | 1 0.39" (9.8mm) Cable    | 0.39                | 0.07                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 100.00                        | 2 0.78" (19.7mm) 8 AWG   | 0.78                | 0.59                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 100.00                        | 2 0.78" (19.7mm) 8 AWG   | 0.78                | 0.59                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 100.00                        | 6 1 5/8" Coax            | 1.98                | 0.82                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 100.00                        | 1 3" conduit             | 3.50                | 7.58                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 100.00                        | 1 3" conduit             | 3.50                | 7.58                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | AT&T MOBILITY    |
| 0.00                 | 80.00                         | 1 1/2" Coax              | 0.63                | 0.15                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | T-MOBILE         |
| 0.00                 | 75.00                         | 2 0.63" (16mm) LDF4-     | 0.63                | 0.15                      | N   | 0                    | 0.00                         | 0.00                         | 0  | 0.00 | N                     | VERIZON WIRELES: |

0

0

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:18 PM

**Customer: AT&T MOBILITY** 

| Segment Properties   | (Max Len : 5.                  | ft)                                |                |                                        |                        |  |
|----------------------|--------------------------------|------------------------------------|----------------|----------------------------------------|------------------------|--|
| ieg Top              | Flat                           |                                    |                |                                        |                        |  |
| Elev                 | Thick Dia                      | Area Ix                            | W/t            | D/t F'y S                              | Z Weight               |  |
| (ft) Description     | (in) (in)                      | (in²) (in⁴)                        | Ratio          | Ratio (ksi) (in³)                      | (ln³) (lb)             |  |
| .00                  | 0.5000 62.000                  | 97.597 46,638.0                    | 20.45          | 124.00 77.3 1481.                      | 0.0 0.0                |  |
| .00                  | 0.5000 60.646                  | 95.449 43,625.5                    | 19.98          | 121.29 77.9 1416.                      |                        |  |
| 0.00                 | 0.5000 59.293                  | 93.300 40,745.7                    | 19.50          | 118.59 78.5 1353.                      |                        |  |
| 5.00                 | 0.5000 57.939                  | 91.152 37,995.4                    | 19.02          | 115.88 79.0 1291.                      | 0.0 1,569.1            |  |
| 0.00                 | 0.5000 56.585                  | 89.004 35,371.8                    | 18.54          | 113.17 79.6 1231.                      |                        |  |
| 5.00                 | 0.5000 55.231                  | 86.856 32,871.8                    | 18.07          | 110.46 80.2 1172.                      |                        |  |
| 0.00                 | 0.5000 53.878                  | 84.707 30,492.5                    | 17.59          | 107.76 80.7 1114.                      |                        |  |
| 5.00                 | 0.5000 52.524                  | 82.559 28,230.9                    | 17.11          | 105.05 81.3 1058.                      | •                      |  |
| 0.00                 | 0.5000 51.170                  | 80.411 26,083.9                    | 16.63          | 102.34 81.8 1004.                      |                        |  |
| 0.50 Bot - Section 2 | 0.5000 51.035                  | 80.196 25,875.4                    | 16.59          | 102.07 81.9 998.6                      |                        |  |
| 5.00                 | 0.5000 49.816                  | 78.262 24,048.7                    | 16.16          | 99.63 82.4 950.8                       |                        |  |
| 7.50 Top - Section 1 | 0.3750 49.890                  | 58.933 18,254.8                    | 22.05          | 133.04 75.5 720.7                      | •                      |  |
| 0.00<br>5.00         | 0.3750 49.213                  | 58.127 17,516.3                    | 21.73          | 131.23 75.8 701.0                      |                        |  |
| 5.00                 | 0.3750 47.859                  | 56.516 16,099.7                    | 21.09          | 127.62 76.6 662.6                      |                        |  |
| 0.00                 | 0.3750 46.505<br>0.3750 45.152 | 54.905 14,761.7                    | 20.46          | 124.01 77.3 625.2                      |                        |  |
| 5.00<br>8.00         | 0.3750 45.152<br>0.3750 44.339 | 53.293 13,499.9<br>52.327 12,778.4 | 19.82<br>19.44 | 120.40 78.1 588.9                      | 0.0 920.4              |  |
| 0.00                 | 0.3750 44.339                  | 51.682 12,312.1                    | 19.44          | 118.24 78.5 567.6<br>116.79 78.8 553.7 | 0.0 539.1<br>0.0 353.9 |  |
| 5.00                 | 0.3750 42.444                  | 50.071 11,196.1                    | 18.55          | 113.18 79.6 519.6                      |                        |  |
| 6.00                 | 0.3750 42.173                  | 49.749 10,981.3                    | 18.42          | 112.46 79.7 512.9                      | 0.0 169.8              |  |
| 0.00                 | 0.3750 41.090                  | 48.460 10,149.7                    | 17.91          | 109.57 80.3 486.5                      | 0.0 165.8              |  |
| 2.16 Bot - Section 3 | 0.3750 40.505                  | 47.763 9,717.9                     | 17.63          | 108.01 80.7 472.6                      | 0.0 354.2              |  |
| 5.00                 | 0.3750 39.737                  | 46.849 9,170.6                     | 17.27          | 105.96 81.1 454.6                      | 0.0 843.7              |  |
| 7.83 Top - Section 2 | 0.3125 39.595                  | 38.962 7,596.4                     | 20.93          | 126.71 76.8 377.9                      | 0.0 825.6              |  |
| 0.00                 | 0.3125 39.008                  | 38.380 7,260.6                     | 20.60          | 124.83 77.2 366.6                      | 0.0 285.5              |  |
| 1.00                 | 0.3125 38.737                  | 38.111 7,109.3                     | 20.45          | 123.96 77.4 361.5                      | 0.0 130.1              |  |
| 5.00                 | 0.3125 37.654                  | 37.037 6,525.0                     | 19.84          | 120.49 78.1 341.3                      | 0.0 511.4              |  |
| 00.0                 | 0.3125 36.301                  | 35.694 5,840.8                     | 19.07          | 116.16 79.0 316.9                      | 0.0 618.7              |  |
| 04.0                 | 0.3125 35.218                  | 34.620 5,329.2                     | 18.46          | 112.70 79.7 298.0                      | 0.0 478.5              |  |
| 05.0                 | 0.3125 34.947                  | 34.352 5,206.1                     | 18.31          | 111.83 79.9 293.4                      | 0.0 117.3              |  |
| 07.0                 | 0.3125 34.405                  | 33.815 4,965.7                     | 18.00          | 110.10 80.2 284.3                      | 0.0 232.0              |  |
| 10.0                 | 0.3125 33.593                  | 33.009 4,619.2                     | 17.54          | 107.50 80.8 270.8                      | 0.0 341.1              |  |
| 15.0                 | 0.3125 32.239                  | 31.666 4,078.2                     | 16.78          | 103.17 81.7 249.1                      | 0.0 550.2              |  |
| 20.0                 | 0.3125 30.886                  | 30.324 3,581.1                     | 16.02          | 98.83 82.6 228.4                       | 0.0 527.3              |  |
| 25.0                 | 0.3125 29.532                  | 28.981 3,126.1                     | 15.25          | 94.50 82.6 208.5                       | 0.0 504.5              |  |
| 26.0                 | 0.3125 29.261                  | 28.712 3,040.0                     | 15.10          | 93.64 82.6 204.6                       | 0.0 98.2               |  |
| 28.0                 | 0.3125 28.720                  | 28.175 2,872.6                     | 14.79          | 91.90 82.6 197.0                       | 0.0 193.6              |  |
| 29.0                 | 0.3125 28.449                  | 27.907 2,791.3                     | 14.64          | 91.04 82.6 193.2                       | 0.0 95.4               |  |
| 30.0                 | 0.3125 28.178                  | 27.638 2,711.5                     | 14.49          | 90.17 82.6 189.5                       | 0.0 94.5               |  |
|                      |                                |                                    |                |                                        | 28,296.3               |  |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:18 PM

**Customer: AT&T MOBILITY** 

Load Case: 1.2D + 1.6W

93 mph with No Ice

19 Iterations

**Gust Response Factor :1.10** 

Dead Load Factor: 1.20 Wind Load Factor: 1.60

Wind Importance Factor 1.00

### **Applied Segment Forces Summary**

| Con          |                 |              | Forces  |           | DISCIPL | e Forces                                |         | Linear F | orces |          | Sum o   | T FORÇES | Forces |  |
|--------------|-----------------|--------------|---------|-----------|---------|-----------------------------------------|---------|----------|-------|----------|---------|----------|--------|--|
| Seg          |                 |              | Dead    |           |         | Moment                                  | Dead    |          | Dead  | -        | Dead    | Torsion  | Moment |  |
| Elev         |                 | Wind FX      | Load    | Wind FX   | MY      | MZ                                      | Load    | Wind FX  | Load  | Wind FX  | Load    | MY       | MZ     |  |
| (ft)         | Description     | (lb)         | (lb)    | (lb)      | (lb-ft) | (lb-ft)                                 | (lb)    | (lb)     | (lb)  | (lb)     | (lb)    | (lb-ft)  | (lb)   |  |
| 0.00         | <del>.</del>    | 218.5        | 0.0     |           |         |                                         |         | 0.0      | 0.0   | 218.5    | 0.0     | 0.0      | 0.0    |  |
| 5.00         |                 | 432.2        | 1,970.7 |           |         |                                         |         | 0.0      | 379.3 | 432.2    | 2,350.0 | 0.0      | 0.0    |  |
| 10.00        |                 | 422.6        | 1,926.8 |           |         |                                         |         | 0.0      | 379.3 | 422.6    | 2,306.1 | 0.0      | 0.0    |  |
| 15.00        |                 | 412.9        | 1,883.0 |           |         |                                         |         | 0.0      | 379.3 | 412.9    | 2,262.3 | 0.0      |        |  |
| 20.00        |                 | 403.3        | 1,839.1 |           |         |                                         |         | 0.0      | 379.3 | 403.3    | 2,218.4 | 0.0      | 0.0    |  |
| <b>25.00</b> |                 | <b>393.6</b> | 1,795.2 |           |         |                                         |         | 0.0      | 379.3 | 393.6    | 2,174.6 | 0.0      | 0.0    |  |
| 30.00        |                 | 388.5        | 1,751.4 |           |         |                                         |         | 0.0      | 379.3 | 388.5    | 2,130.7 | 0.0      | 0.0    |  |
| 35.00        |                 | 391.2        | 1,707.5 |           |         |                                         |         | 0.0      | 379.3 | 391.2    | 2,086.8 | 0.0      | 0.0    |  |
| 40.00        |                 | 216.9        | 1,663.6 |           |         |                                         |         | 0.0      | 379.3 | 216.9    | 2,043.0 | 0.0      | 0.0    |  |
| 40.50        | Bot - Section 2 | 201.6        | 164.0   |           |         |                                         |         | 0.0      | 37.9  | 201.6    | 201.9   | 0.0      | 0.0    |  |
| 45.00        |                 | 283.1        | 2,566.8 |           |         |                                         |         | 0.0      | 341.4 | 283.1    | 2,908.2 | 0.0      | 0.0    |  |
| 47.50        | Top - Section 1 | 202.9        | 1,399.2 |           |         |                                         |         | 0.0      | 189.7 | 202.9    | 1,588.8 | 0.0      | 0.0    |  |
| 50.00        |                 | 304.6        | 597.5   |           |         |                                         |         | 0.0      | 189.7 | 304.6    | 787.2   | 0.0      | 0.0    |  |
| 55.00        |                 | 405.8        | 1,170.3 |           |         |                                         |         | 0.0      | 379.3 | 405.8    | 1,549.6 | 0.0      | 0.0    |  |
| 60.00        | Appurtenance(s) | 404.2        | 1,137.4 | 28.5      | 0.0     | 0.0                                     | 12.0    | 0.0      | 379.3 | 432.7    | 1,528.7 | 0.0      | 0.0    |  |
| 65.00        |                 | 321.8        | 1,104.5 |           |         |                                         |         | 0.0      | 378.4 | 321.8    | 1,482.9 | 0.0      | 0.0    |  |
| 68.00        | Appurtenance(s) | 200.0        | 646.9   | 163.8     | 0.0     | 0.0                                     | 151.2   | 0.0      | 227.1 | 363.8    | 1,025.2 | 0.0      | 0.0    |  |
| 70.00        |                 | 277.6        | 424.7   |           |         |                                         |         | 0.0      | 151.4 | 277.6    | 576.1   | 0.0      | 0.0    |  |
| 75.00        | Appurtenance(s) | 237.2        | 1,038.7 | 39.8      | 0.0     | 0.0                                     | 36.0    | 0.0      | 378.4 | 277.0    | 1,453.2 | 0.0      | 0.0    |  |
| 76.00        | Appurtenance(s) | 195.3        | 203.8   | 101.5     | 0.0     | 0.0                                     | 120.0   | 0.0      | 75.1  | 296.8    | 398.9   | 0.0      | 0.0    |  |
| 80.00        | Appurtenance(s) | 239.7        | 802.0   | 30.9      |         |                                         | 12.0    | 0.0      | 300.6 | 270.6    | 1.114.6 | 0.0      |        |  |
|              | Bot - Section 3 | 194.1        | 425.0   |           | •       | • • • • • • • • • • • • • • • • • • • • |         | 0.0      | 162.2 | 194.1    | 587.2   | 0.0      |        |  |
| 85.00        |                 | 219.7        | 1,012.5 |           |         |                                         |         | 0.0      | 212.6 | 219.7    | 1,225.1 | 0.0      |        |  |
| 87.83        | Top - Section 2 | 192.2        | 990.7   |           |         |                                         |         | 0.0      | 212.1 | 192.2    | 1.202.9 | 0.0      | 0.0    |  |
| 90.00        | •               | 121.0        | 342.7   |           |         |                                         |         | 0.0      | 162.7 | 121.0    | 505.3   | 0.0      |        |  |
|              | Appurtenance(s) | 188.6        | 156.2   | 929.5     | 0.6     | 0.0                                     | 1.800.0 | 0.0      | 75.0  | 1,118.1  | 2,031.1 | 0.0      |        |  |
| 95.00        | . ,             | 335.2        | 613.7   |           | -       |                                         | .,      | 0.0      | 299.9 | 335.2    | 913.6   | 0.0      |        |  |
|              | Appurtenance(s) | 329.4        | 742.5   | 2,605.7   | 0.0     | 3,550.9                                 | 1,559.3 | 0.0      | 374.8 | 2,935.1  | 2,676.6 | 0.0      |        |  |
|              | Appurtenance(s) | 180.5        | 574.2   | 1,794.4   |         | •                                       | 2,724.0 | 0.0      | 191.5 | 1,974.8  | 3,489.8 | 0.0      |        |  |
| 105.00       |                 | 106.7        | 140.8   | 1,10-11-1 |         | 0.0                                     | _,,,,   | 0.0      | 47.9  | 106.7    | 188.7   | 0.0      |        |  |
|              | Appurtenance(s) | 176.0        | 278.3   | 33.6      | 0.0     | 0.0                                     | 12.0    | 0.0      | 95.8  | 209.6    | 386.1   | 0.0      |        |  |
|              | Appurtenance(s) | 276.3        | 409.3   | 3,305.8   | 0.0     | 6,894.9                                 | 3,397.7 | 0.0      | 142.5 | 3,582.1  | 3,949.4 | 0.0      |        |  |
| 115.00       |                 | 337.5        | 660.2   | -,        |         | ,                                       | -,      | 0.0      | 162.4 | 337.5    | 822.6   | 0.0      |        |  |
|              | Appurtenance(s) | 327.3        | 632.8   | 2,207.8   | 0.0     | 0.0                                     | 2.666.0 | 0.0      | 162.4 | 2,535.1  | 3,461.2 | 0.0      |        |  |
|              | Appurtenance(s) | 192.6        | 605.4   | 503.1     | 0.0     |                                         | 373.2   | 0.0      | 60.4  | 695.7    | 1,039.0 | 0.0      |        |  |
|              | Appurtenance(s) | 94.0         | 117.8   | 303.3     | 0.0     |                                         | 58.8    | 0.0      | 9.9   | 397.3    | 186.5   | 0.0      |        |  |
|              | Appurtenance(s) | 93.4         | 232.3   | 1,516.7   |         |                                         | 1,146.1 | 0.0      | 19.5  |          | 1,397.9 | 0.0      |        |  |
|              | Appurtenance(s) | 61.7         | 114.5   | 510.5     |         |                                         | 178.7   | 0.0      | 5.9   | 572.2    | 299.1   | 0.0      |        |  |
|              | Appurtenance(s) | 30.8         | 113.4   | 2,087.9   |         |                                         | 1,951.2 | 0.0      | 5.9   | 2,118.7  | 2,070.5 | 0.0      |        |  |
|              |                 |              |         | _,50,10   | 3.0     | ,                                       | .,      |          | tals: | 26,173.0 | •       |          | 0.00   |  |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:29 PM

**Customer: AT&T MOBILITY** 

**Load Case:** 1.2D + 1.6W

93 mph with No ice

19 Iterations

Gust Response Factor :1.10

Dead Load Factor: 1.20 Wind Load Factor: 1.60

Wind Importance Factor 1.00

**Calculated Forces** 

| Calcula             | teu roi                | <del></del>            |                       |                         |                      |                                  |                     |                     |                        |                        |                          |                   |       |
|---------------------|------------------------|------------------------|-----------------------|-------------------------|----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|--------------------------|-------------------|-------|
| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) ( | Mu<br>MX<br>ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect<br>(in) | Rotation<br>(deg) | Ratio |
| 0.00                | -58.60                 | -25.99                 | 0.00                  | -2,513.09               | 0.00                 | 2,513.09                         | 6,793.61            | 3,396.81            | 17,163.1               | 8.594.34               | 0.00                     | 0.00              | 0.301 |
| 5.00                | -56.22                 | -25.63                 | 0.00                  | -2,383.13               | 0.00                 | 2,383.13                         |                     |                     | 16,532.0               |                        | 0.04                     | -0.07             | 0.296 |
| 10.00               | -53.88                 | -25.28                 | 0.00                  | -2,254.96               | 0.00                 | 2,254.96                         |                     | •                   | 15,907.1               | •                      | 0.16                     | -0.15             | 0.291 |
| 15.00               | -51.59                 | -24.93                 | 0.00                  | -2,128.58               | 0.00                 | 2,128.58                         | •                   | -                   | 15,288.6               | •                      | 0.36                     | -0.23             | 0.286 |
| 20.00               | -49.34                 | -24.58                 | 0.00                  | -2.003.95               | 0.00                 | 2,003.95                         |                     | -                   | 14,676.9               | -                      | 0.64                     | -0.30             | 0.280 |
| 25.00               | -47.13                 | -24.24                 | 0.00                  | -1,881.05               | 0.00                 | 1,881.05                         |                     |                     | 14,072.5               |                        | 1.00                     | -0.38             | 0.275 |
| 30.00               | -44.97                 | -23.90                 | 0.00                  | -1,759.86               | 0.00                 | 1,759.86                         |                     | -                   | 13,475.6               | •                      | 1.44                     | -0.46             | 0.268 |
| 35.00               | -42.85                 | -23.55                 | 0.00                  | -1,640.38               | 0.00                 | 1,640.38                         | •                   | •                   | 12,886.7               | •                      | 1.97                     | -0.54             | 0.261 |
| 40.00               | -40.80                 | -23.34                 | 0.00                  | -1,522.66               | 0.00                 | 1,522.66                         | •                   | •                   | 12,306.1               | •                      | 2.58                     | -0.62             | 0.254 |
| 40.50               | -40.58                 | -23.16                 | 0.00                  | -1,510.99               | 0.00                 | 1,510.99                         |                     |                     | 12,248.5               |                        | 2.64                     | -0.63             | 0.253 |
| 45.00               | -37.65                 | -22.88                 | 0.00                  | -1,406.75               | 0.00                 | 1,406.75                         |                     |                     | 11,734.2               |                        | 3.27                     | -0.70             | 0.246 |
| 47.50               | -36.05                 | -22.69                 | 0.00                  | -1,349.54               | 0.00                 | 1,349.54                         |                     |                     | 8,146.29               |                        | 3.65                     | -0.74             | 0.340 |
| 50.00               | -35.24                 | -22.42                 | 0.00                  | -1,292.83               | 0.00                 | 1,292.83                         |                     |                     | 7,963.57               | -                      | 4.05                     | -0.78             | 0.333 |
| 55.00               | -33.66                 | -22.05                 | 0.00                  | -1,180.75               | 0.00                 | 1,180.75                         | •                   | •                   | 7,600.87               | •                      | 4.92                     | -0.88             | 0.319 |
| 60.00               | -32.10                 | -21.64                 | 0.00                  | -1,070.52               | 0.00                 | 1,070.52                         | -                   | -                   | 7,242.12               | •                      | 5.90                     | -0.98             | 0.304 |
| 65.00               | -30.59                 | -21.34                 | 0.00                  | -962.30                 | 0.00                 | 962.30                           |                     |                     | 6,887.67               |                        | 6.98                     | -1.08             | 0.287 |
| 68.00               | -29.56                 | -20.98                 | 0.00                  | -898.29                 | 0.00                 | 898.29                           |                     |                     | 6,677.23               |                        | 7.68                     | -1.14             | 0.277 |
| 70.00               | -28.96                 | -20.72                 | 0.00                  | -856.33                 | 0.00                 | 856.33                           | -                   |                     | 6,537.91               | •                      | 8.17                     | -1.18             | 0.270 |
| 75.00               | -27.50                 | -20.44                 | 0.00                  | -752.71                 | 0.00                 | 752.71                           | •                   | •                   | 6,193.19               | •                      | 9.45                     | -1.27             | 0.251 |
| 76.00               | -27.09                 | -20.16                 | 0.00                  | -732.27                 | 0.00                 | 732.27                           | *                   | •                   | 6,124.88               | •                      | 9.72                     | -1.29             | 0.246 |
| 80.00               | -25.96                 | -19.89                 | 0.00                  | -651.64                 | 0.00                 | 651.64                           |                     |                     | 5,853.88               |                        | 10.83                    | -1.36             | 0.230 |
| 82.16               | -25.36                 | -19.70                 | 0.00                  | -608.62                 | 0.00                 | 608.62                           |                     |                     | 5,708.83               |                        | 11.46                    | -1.40             | 0.220 |
| 85.00               | -24.13                 | -19.47                 | 0.00                  | -552.75                 | 0.00                 | 552.75                           |                     |                     | 5,520.34               |                        | 12.31                    | -1.45             | 0.207 |
| 87.83               | -22.92                 | -19.26                 | 0.00                  | -497.66                 | 0.00                 | 497.66                           |                     |                     | 4,345.60               |                        | 13.18                    | -1.49             | 0.237 |
| 90.00               | -22.41                 | -19.14                 | 0.00                  | -455.86                 | 0.00                 | 455.86                           | -                   | -                   | 4,237.49               | •                      | 13.87                    | -1.53             | 0.223 |
| 91.00               | -20.39                 | -17.98                 | 0.00                  | -436.73                 | 0.00                 | 436.73                           | 2,653.16            | 1,326.58            | 4,187.89               | 2,097.06               | 14.19                    | -1.55             | 0.216 |
| 95.00               | -19.47                 | -17.64                 | 0.00                  | -364.81                 | 0.00                 | 364.81                           | 2,602.34            | 1,301.17            | 3,990.97               | 1,998.45               | 15.51                    | -1.61             | 0.190 |
| 100.00              | -16.86                 | -14.65                 | 0.00                  | -273.06                 | 0.00                 | 273.06                           | 2,536.86            | 1,268.43            | 3,748.34               | 1,876.95               | 17.24                    | -1.68             | 0.152 |
| 104.00              | -13.43                 | -12.58                 | 0.00                  | -214.47                 | 0.00                 | 214.47                           |                     |                     | 3,557.28               |                        | 18.67                    | -1.73             | 0.126 |
| 105.00              | -13.24                 | -12.47                 | 0.00                  | -201.89                 | 0.00                 | 201.89                           | 2,469.21            | 1,234.61            | 3,509.96               | 1,757.59               | 19.03                    | -1.74             | 0.120 |
| 107.00              | -12.85                 | -12.25                 | 0.00                  | -176.95                 | 0.00                 | 176.95                           | 2,441.54            | 1,220.77            | 3,415.88               | 1,710.48               | 19.76                    | -1.76             | 0.109 |
| 110.00              | -9.01                  | -8.55                  | 0.00                  | -133.30                 | 0.00                 | 133.30                           | 2,399.39            | 1,199.69            | 3,276.20               | 1,640.54               | 20.88                    | -1.79             | 0.085 |
| 115.00              | -8.20                  | -8.20                  | 0.00                  | -90.53                  | 0.00                 | 90.53                            | 2,327.39            | 1,163.70            | 3,047.43               | 1.525.98               | 22.77                    | -1.82             | 0.063 |
| 120.00              | -4.82                  | -5.55                  | 0.00                  | -49.55                  | 0.00                 | 49.55                            |                     |                     | 2,823.60               |                        | 24.69                    | -1.84             | 0.037 |
| 125.00              | -3.80                  | -4.82                  | 0.00                  | -21.79                  | 0.00                 | 21.79                            | -                   | -                   | 2,577.88               | •                      | 26.63                    | -1.86             | 0.019 |
| 126.00              | -3.63                  | -4.42                  | 0.00                  | -16.97                  | 0.00                 | 16.97                            | 2,133.19            | 1,066.60            | 2,530.08               | 1,266.92               | 27.02                    | -1.86             | 0.015 |
| 128.00              | -2.28                  | -2.77                  | 0.00                  | -8.13                   | 0.00                 | 8.13                             | -                   | -                   | 2,435.81               | •                      | 27.80                    | -1.86             | 0.008 |
| 129.00              | -2.00                  | -2.18                  | 0.00                  | -5.36                   | 0.00                 | 5.36                             |                     |                     | 2,389.35               |                        | 28.19                    | -1.86             | 0.005 |
| 130.00              | 0.00                   | -2.12                  | 0.00                  | -3.18                   | 0.00                 | 3.18                             |                     |                     | 2,343.34               |                        | 28.58                    | -1.86             | 0.003 |
|                     |                        |                        |                       |                         |                      |                                  | ,                   |                     | •                      |                        |                          |                   |       |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number: 13198800\_C3\_03

4/30/2020 9:48:29 PM

**Customer: AT&T MOBILITY** 

**Load Case:** 0.9D + 1.6W

93 mph with No ice (Reduced DL)

19 Iterations

Gust Response Factor :1.10

Dead Load Factor: 0.90 Wind Load Factor: 1.60

Wind Importance Factor 1.00

#### **Applied Segment Forces Summary**

|        |                   | Shaft          | Forces         |                  | Discret                                 | e Forces |                  | Linear F   | orces         |                  | Sum o            | f Forces   |        |
|--------|-------------------|----------------|----------------|------------------|-----------------------------------------|----------|------------------|------------|---------------|------------------|------------------|------------|--------|
| Seg    |                   |                | Dead           |                  |                                         | Moment   | Dead             | <u> </u>   | Dead          |                  | Dead             | Torsion    | Moment |
| Elev   |                   | Wind FX        | Load           | Wind FX          | MY                                      | MZ       | Load             | Wind FX    | Load          | Wind FX          | Load             | MY         | MZ     |
| (ft)   | Description       | (lp)           | (lb)           | (lb)             | (lb-ft)                                 | (lb-ft)  | (lb)             | (lb)       | (lb)          | (lb)             | (lb)             | (lb-ft)    | (lb)   |
| 0.00   |                   | 218.5          | 0.0            |                  |                                         |          |                  | 0.0        | 0.0           | 218.5            | 0.0              | 0.0        | 0.0    |
| 5.00   |                   | 432.2          | 1,478.0        |                  |                                         |          |                  | 0.0        | 284.5         | 432.2            | 1,762.5          | 0.0        | 0.0    |
| 10.00  |                   | 422.6          | 1,445.1        |                  |                                         |          |                  | 0.0        | 284.5         | 422.6            | 1,729.6          | 0.0        |        |
| 15.00  |                   | 412.9          | 1,412.2        |                  |                                         |          |                  | 0.0        | 284.5         | 412.9            | 1,696.7          | 0.0        |        |
| 20.00  |                   | 403.3          | 1,379.3        |                  |                                         |          |                  | 0.0        | 284.5         | 403.3            | 1,663.8          | 0.0        | 0.0    |
| 25.00  |                   | 393.6          | 1,346.4        |                  |                                         |          |                  | 0.0        | 284.5         | 393.6            | 1,630.9          | 0.0        | 0.0    |
| 30.00  |                   | 388.5          | 1,313.5        |                  |                                         |          |                  | 0.0        | 284.5         | 388.5            | 1,598.0          | 0.0        | 0.0    |
| 35.00  |                   | 391.2          | 1,280.6        |                  |                                         |          |                  | 0.0        | 284.5         | 391.2            | 1,565.1          | 0.0        | 0.0    |
| 40.00  |                   | 216.9          | 1,247.7        |                  |                                         |          |                  | 0.0        | 284.5         | 216.9            | 1,532.2          | 0.0        | 0.0    |
| 40.50  | Bot - Section 2   | 201.6          | 123.0          |                  |                                         |          |                  | 0.0        | 28.4          | 201.6            | 151.4            | 0.0        | 0.0    |
| 45.00  |                   | 283.1          | 1,925.1        |                  |                                         |          |                  | 0.0        | 256.0         | 283.1            | 2,181.2          | 0.0        | 0.0    |
| 47.50  | Top - Section 1   | 202.9          | 1,049.4        |                  |                                         |          |                  | 0.0        | 142.2         | 202.9            | 1,191.6          | 0.0        | 0.0    |
| 50.00  |                   | 304.6          | 448.1          |                  |                                         |          |                  | 0.0        | 142.2         | 304.6            | 590.4            | 0.0        | 0.0    |
| 55.00  |                   | 405.8          | 877.7          |                  |                                         |          |                  | 0.0        | 284.5         | 405.8            | 1,162.2          | 0.0        | 0.0    |
| 60.00  | Appurtenance(s)   | 404.2          | 853.1          | 28.5             | 0.0                                     | 0.0      | 9.0              | 0.0        | 284.5         | 432.7            | 1,146.6          | 0.0        | 0.0    |
| 65.00  |                   | 321.8          | 828.4          |                  |                                         |          |                  | 0.0        | 283.8         | 321.8            | 1,112.2          | 0.0        |        |
| 68.00  | Appurtenance(s)   | 200.0          | 485.2          | 163.8            | 0.6                                     | 0.0      | 113.4            | 0.0        | 170.3         | 363.8            | 768.9            | 0.0        |        |
| 70.00  |                   | 277.6          | 318.5          |                  |                                         |          | -                | 0.0        | 113.5         | 277.6            | 432.1            | 0.0        |        |
| 75.00  | Appurtenance(s)   | 237.2          | 779.0          | 39.8             | 0.6                                     | 0.0      | 27.0             | 0.0        | 283.8         | 277.0            | 1,089.9          | 0.0        |        |
| 76.00  | Appurtenance(s)   | 195.3          | 152.8          | 101.5            |                                         |          | 90.0             | 0.0        | 56.4          | 296.8            | 299.2            | 0.0        |        |
| 80.00  | Appurtenance(s)   | 239.7          | 601.5          | 30.9             |                                         |          | 9.0              | 0.0        | 225.4         | 270.6            | 836.0            | 0.0        |        |
| 82.16  | Bot - Section 3   | 194.1          | 318.7          |                  | •                                       | 0.0      | 0.0              | 0.0        | 121.6         | 194.1            | 440.4            | 0.0        |        |
| 85.00  |                   | 219.7          | 759.3          |                  |                                         |          |                  | 0.0        | 159.5         | 219.7            | 918.8            | 0.0        |        |
| 87.83  | Top - Section 2   | 192.2          | 743.1          |                  |                                         |          |                  | 0.0        | 159.1         | 192.2            | 902.2            | 0.0        |        |
| 90.00  | • -               | 121.0          | 257.0          |                  |                                         |          |                  | 0.0        | 122.0         | 121.0            | 379.0            | 0.0        |        |
| 91.00  | Appurtenance(s)   | 188.6          | 117.1          | 929.5            | 0.0                                     | 0.0      | 1,350.0          | 0.0        | 56.2          | 1,118.1          | 1.523.3          | 0.0        | 0.0    |
| 95.00  |                   | 335.2          | 460.3          | 020.0            | •                                       | 0.0      | 1,000.0          | 0.0        | 224.9         | 335.2            | 685.2            | 0.0        |        |
| 100.00 | Appurtenance(s)   | 329.4          | 556.8          | 2,605.7          | 0.0                                     | 3,550.9  | 1,169.5          | 0.0        | 281.1         | 2,935.1          | 2,007.4          | 0.0        |        |
| 104.00 | Appurtenance(s)   | 180.5          | 430.7          | 1,794.4          |                                         | •        | 2,043.0          | 0.0        | 143.6         | 1,974.8          | 2,617.3          | 0.0        |        |
| 105.00 |                   | 106.7          | 105.6          | •                | · • • • • • • • • • • • • • • • • • • • | 0.0      | 2,045.0          | 0.0        | 35.9          | 106.7            | 141.5            | 0.0        |        |
| 107.00 | Appurtenance(s)   | 176.0          | 208.8          | 33.6             | 0.0                                     | 0.0      | 9.0              | 0.0        | 71.8          | 209.6            | 289.6            | 0.0        | 0.0    |
| 110.00 | Appurtenance(s)   | 276.3          | 307.0          | 3,305.8          |                                         |          | 2,548.3          | 0.0        | 106.8         | 3,582.1          | 2,962.1          | 0.0        |        |
| 115.00 | , (PP 12), E (2)  | 337.5          | 495.2          |                  | 0.0                                     | 0,004.0  | 2,040.0          | 0.0        | 121.8         | 337.5            | 616.9            | 0.0        |        |
| 120.00 | Appurtenance(s)   | 327.3          |                |                  |                                         |          | 4 000 E          |            |               |                  |                  |            |        |
| 125.00 | Appurtenance(s)   | 327.3<br>192.6 | 474.6<br>454.1 | 2,207.8<br>503.1 | 0.0<br>0.0                              |          | 1,999.5<br>279.9 | 0.0<br>0.0 | 121.8<br>45.3 | 2,535.1<br>695.7 | 2,595.9<br>779.2 | 0.0<br>0.0 |        |
| 126.00 | Appurtenance(s)   | 94.0           | 88.3           | 303.1            |                                         |          | 44.1             | 0.0        | 45.3<br>7.5   | 397.3            | 139.9            |            | 0.0    |
| 128.00 | Appurtenance(s)   | 94.0<br>93.4   | 174.2          |                  |                                         |          | 859.6            | 0.0        |               |                  |                  | 0.0        |        |
|        | Appurtenance(s)   |                |                |                  |                                         |          |                  |            | 14.7          | 1,610.1          | 1,048.5          | 0.0        |        |
| 129.00 | Appurtenance(s)   | 61.6           | 85.9           | 510.5            | -                                       |          | 134.0            | 0.0        | 4.4           | 572.1            | 224.3            | 0.0        |        |
| 130.00 | whhat rangings(2) | 30.7           | 85.1           | 2,087.9          | 0.0                                     | 3,176.0  | 1,463.4          | 0.0        | 4.4           | 2,118.5          | 1,552.9          | 0.0        |        |
|        |                   |                |                |                  |                                         |          |                  | To         | tals:         | 26,172.7         | 43,964.8         | 0.00       | 0.00   |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number: 13198800\_C3\_03

4/30/2020 9:48:39 PM

**Customer: AT&T MOBILITY** 

**Load Case:** 0.9D + 1.6W

93 mph with No Ice (Reduced DL)

19 Iterations

Gust Response Factor :1.10

Dead Load Factor: 0.90 Wind Load Factor: 1.60

Wind Importance Factor 1.00

#### Calculated Forces

|   | Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips)               | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) |              | Rotation<br>(deg) | Ratio          |
|---|---------------------|------------------------|------------------------|-----------------------|-------------------------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|--------------|-------------------|----------------|
| _ | 0.00                | -43.95                 | -25.98                 | 0.00                  | -2,499,43                           | 0.00                  | 2,499.43                         | 6 702 64            | 2 206 94            | 17,163.1               | 0 504 24               | 0.00         | 0.00              | 0.207          |
|   | 5.00                | -43.95<br>-42.15       | -25.90<br>-25.60       |                       | -2,499.43<br>-2,369.51              | 0.00                  | 2,499.43<br>2,369.51             |                     |                     |                        |                        | 0.04         | -0.07             | 0.297          |
|   | 10.00               | -42.15<br>-40.39       | -25.60<br>-25.23       |                       | -2,3 <del>03</del> .51<br>-2,241.49 |                       | 2,369.51                         |                     |                     | 16,532.0<br>15,907.1   |                        | 0.16         | -0.07<br>-0.15    | 0.293<br>0.288 |
|   | 15.00               | -38.66                 | -25.23<br>-24.87       |                       | -2,241.45<br>-2,115.34              |                       | 2,241.49<br>2,115.34             |                     |                     | 15,288.6               |                        | 0.16         | -0.13<br>-0.23    | 0.282          |
|   | 20.00               | -36.97                 | -24.50                 |                       | -1.991.01                           | 0.00                  | 1.991.01                         | •                   |                     | 14,676.9               | -                      | 0.63         | -0.23<br>-0.30    | 0.277          |
|   | 25.00<br>25.00      | -35.30                 | -24.50<br>-24.15       |                       | -1,868.49                           |                       | 1,868.49                         | •                   | •                   | 14,078.5               |                        | 0.99         | -0.30<br>-0.38    | 0.277          |
|   |                     |                        |                        |                       | •                                   |                       | -                                | •                   | -                   | -                      |                        |              |                   |                |
|   | 30.00<br>35.00      | -33.68<br>-32.08       | -23.79<br>-23.43       | 0.00<br>0.00          | -1,747.75<br>-1,628.78              |                       | 1,747.75<br>1,628.78             |                     |                     | 13,475.6<br>12,886.7   |                        | 1.43<br>1.96 | -0.46<br>-0.54    | 0.265<br>0.258 |
|   |                     | -32.06                 | -23.43<br>-23.22       |                       | -1,020.70<br>-1,511.61              | 0.00                  | 1,520.76                         | •                   | •                   | -                      | •                      |              |                   |                |
|   | 40.00               | -30.54                 | -23.22<br>-23.04       |                       | -1,511.61                           |                       | 1,511.61                         | •                   | -                   | 12,306.1               | -                      | 2.56<br>2.63 | -0.62             | 0.251<br>0.250 |
|   | 40.50<br>45.00      | -30.37<br>-28.17       | -23.04<br>-22.76       |                       | -1,300.00                           | 0.00                  | 1,300.00                         | -                   | •                   | 12,248.5<br>11,734.2   |                        | 3.25         | -0.62             | 0.250          |
|   | 45.00<br>47.50      | -26.17<br>-26.97       | -22.76<br>-22.56       |                       | -1,330.31<br>-1,339.41              | 0.00                  | 1,339.41                         | •                   | •                   | -                      | •                      | 3.63         | -0.70             | 0.245          |
|   |                     | -26.35                 | -22.28                 |                       | -1,283.00                           |                       | 1,339.41                         | •                   | •                   | 8,146.29               | •                      | 4.02         | -0.74<br>-0.78    |                |
|   | 50.00<br>55.00      | -26.35<br>-25.16       | -22.28<br>-21.90       | 0.00<br>0.00          | -1,263.00<br>-1,171.58              |                       | 1,203.00                         |                     |                     | 7,963.57<br>7,600.87   |                        | 4.02         | -0.78<br>-0.88    | 0.329<br>0.314 |
|   |                     |                        |                        |                       | •                                   |                       |                                  |                     |                     |                        |                        |              |                   |                |
|   | 60.00               | -23.98                 | -21.49                 | 0.00                  | -1,062.06                           |                       | 1,062.06                         | •                   | •                   | 7,242.12               | •                      | 5.86         | -0.98             | 0.299          |
|   | 65.00               | -22.85                 | -21.18                 |                       | -954.59                             | 0.00                  | 954.59                           | •                   | •                   | 6,887.67               | •                      | 6.94         | -1.07             | 0.283          |
|   | 68.00               | -22.07                 | -20.82                 |                       | -891.04                             |                       | 891.04                           | -                   | -                   | 6,677.23               |                        | 7.63         | -1.13             | 0.273          |
|   | 70.00               | -21.62                 | -20.56                 |                       | -849.39                             | 0.00                  | 849.39                           |                     |                     | 6,537.91               |                        | 8.11         | -1.17             | 0.265          |
|   | 75.00               | -20.51                 | -20.28                 | 0.00                  | -746.58                             | 0.00                  | 746.58                           | •                   | •                   | 6,193.19               |                        | 9.39         | -1.26             | 0.247          |
|   | 76.00               | -20.21                 | -19.99                 | 0.00                  | -726.30                             | 0.00                  | 726.30                           | -                   | -                   | 6,124.88               | -                      | 9.66         | -1.28             | 0.243          |
|   | 80.00               | -19.36                 | -19.72                 |                       | -646.32                             |                       | 646.32                           | •                   |                     | 5,853.88               | -                      | 10.76        | -1.35             | 0.226          |
|   | 82.16               | -18.91                 | -19.53                 |                       | -603.65                             |                       | 603.65                           |                     |                     | 5,708.83               |                        | 11.38        | -1.39             | 0.217          |
|   | 85.00               | -17.98                 | -19.31                 | 0.00                  | -548.24                             |                       | 548.24                           |                     | -                   | 5,520.34               | -                      | 12.22        | -1.44             | 0.204          |
|   | 87.83               | -17.07                 | -19.10                 |                       | -493.61                             | 0.00                  | 493.61                           |                     |                     | 4,345.60               |                        | 13.09        | -1.48             | 0.233          |
|   | 90.00               | -16.68                 | -18.98                 | 0.00                  | -452.16                             |                       | 452.16                           | •                   | •                   | 4,237.49               | -                      | 13.77        | -1.52             | 0.220          |
|   | 91.00               | -15.18                 | -17.83                 |                       | -433.18                             | 0.00                  | 433.18                           | •                   | •                   | 4,187.89               | •                      | 14.09        | -1.53             | 0.212          |
|   | 95.00               | -14.48                 | -17.49                 |                       | -361.86                             | 0.00                  | 361.86                           | -                   |                     | 3,990.97               | -                      | 15.40        | -1.60             | 0.187          |
|   | 100.00              | -12.54                 | -14.52                 |                       | -270.83                             | 0.00                  | 270.83                           |                     |                     | 3,748.34               |                        | 17.12        | -1.67             | 0.149          |
|   | 104.00              | -9.98                  | -12.47                 |                       | -212.77                             |                       | 212.77                           |                     |                     | 3,557.28               | •                      | 18.54        | -1.71             | 0.124          |
|   | 105.00              | -9.84                  | -12.36                 |                       | -200.30                             |                       | 200.30                           | -                   | -                   | 3,509.96               | -                      | 18.90        | -1.73             | 0.118          |
|   | 107.00              | -9.55                  | -12.15                 |                       | -175.58                             | 0.00                  | 175.58                           |                     | -                   | 3,415.88               | -                      | 19.62        | -1.75             | 0.107          |
|   | 110.00              | -6.70                  | -8.48                  | 0.00                  | -132.24                             |                       | 132.24                           | •                   | •                   | 3,276.20               | •                      | 20.73        | -1.77             | 0.083          |
|   | 115.00              | -6.09                  | -8.13                  | 0.00                  | -89.84                              |                       | 89.84                            | •                   | •                   | 3,047.43               | •                      | 22.61        | -1.81             | 0.062          |
|   | 120.00              | -3.57                  | -5.51                  | 0.00                  | -49.21                              | 0.00                  | 49.21                            |                     |                     | 2,823.60               |                        | 24.51        | -1.83             | 0.036          |
|   | 125.00              | -2.81                  | -4.79                  | 0.00                  | -21.66                              |                       | 21.66                            |                     |                     | 2,577.88               |                        | 26.44        | -1.85             | 0.018          |
|   | 126.00              | -2.69                  | -4.39                  | 0.00                  | -16.87                              |                       | 16.87                            | •                   | •                   | 2,530.08               | •                      | 26.83        | -1.85             | 0.015          |
|   | 128.00              | -1.69                  | -2.75                  |                       | -8.09                               |                       | 8.09                             |                     |                     | 2,435.81               |                        | 27.60        | -1.85             | 0.007          |
|   | 129.00              | -1.48                  | -2.17                  |                       | -5.34                               |                       | 5.34                             | •                   | •                   | 2,389.35               | •                      | 27.99        | -1.85             | 0.005          |
|   | 130.00              | 0.00                   | -2.12                  | 0.00                  | -3.18                               | 0.00                  | 3.18                             | 2,053.39            | 1,026.69            | 2,343.34               | 1,173.41               | 28.38        | -1.85             | 0.003          |
|   |                     |                        |                        |                       |                                     |                       |                                  |                     |                     |                        |                        |              |                   |                |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:39 PM

**Customer: AT&T MOBILITY** 

**Load Case:** 1.2D + 1.0Di + 1.0Wi

50 mph with 0.75 in Radial Ice

19 Iterations

**Gust Response Factor :1.10** 

Ice Dead Load Factor 1.00

Wind Importance Factor 1.00

Dead Load Factor: 1.20

Wind Load Factor: 1.00

Ice Importance Factor 1.00

#### **Applied Segment Forces Summary**

|        |                                         | Shaft        | Forces  | _       | Discret     | e Forces                                |                  | Linear F     | orces |          | Sum o    | f Forces |        |
|--------|-----------------------------------------|--------------|---------|---------|-------------|-----------------------------------------|------------------|--------------|-------|----------|----------|----------|--------|
| Seg    |                                         |              | Dead    | •       | Torsion     | Moment                                  | Dead             |              | Dead  |          | Dead     | Torsion  | Moment |
| Elev   |                                         | Wind FX      | Load    | Wind FX | MY          | MZ                                      | Load             | Wind FX      | Load  | Wind FX  | Load     | MY       | MZ     |
| (ft)   | Description                             | (lb)         | (lb)    | (lb)    | (lb-ft)     | (lb-ft)                                 | (lb)             | (lb)         | (lb)  | (lb)     | (lb)     | (lb-ft)  | (lb)   |
| 0.00   |                                         | 75.6         | 0.0     |         |             |                                         |                  | 0.0          | 0.0   | 75.6     | 0.0      | 0.0      | 0.0    |
| 5.00   |                                         | 149.9        | 2,419.4 |         |             |                                         |                  | 12.6         | 460.6 | 162.5    | 2,880.0  | 0.0      |        |
| 10.00  |                                         | 147.1        | 2,417.7 |         |             |                                         |                  | 13.4         | 467.3 | 160.5    | 2,885.0  | 0.0      |        |
| 15.00  |                                         | 144.2        | 2,388.6 |         |             |                                         |                  | 13.8         | 470.8 | 158.0    | 2,859.4  | 0.0      |        |
| 20.00  |                                         | 141.2        | 2,350.5 |         |             |                                         |                  | 14.0         | 473.1 | 155.2    | 2,823.7  | 0.0      | 0.0    |
| 25.00  |                                         | 138.1        | 2,307.8 |         |             |                                         |                  | 14.2         | 475.0 | 152.3    | 2,782.7  | 0.0      | 0.0    |
| 30.00  |                                         | 136.6        | 2,262.1 |         |             |                                         |                  | 14.4         | 476.5 | 151.0    | 2,738.6  | 0.0      | 0.0    |
| 35.00  |                                         | 137.9        | 2,214.3 |         |             |                                         |                  | 14.9         | 477.8 | 152.8    | 2,692.1  | 0.0      | 0.0    |
| 40.00  |                                         | 76.5         | 2,165.1 |         |             |                                         |                  | 15.7         | 478.9 | 92.2     | 2,644.0  | 0.0      | 0.0    |
| 40.50  | Bot - Section 2                         | 71.2         | 214.3   |         |             |                                         |                  | 1.6          | 47.9  | 72.8     | 262.3    | 0.0      | 0.0    |
| 45.00  |                                         | 100.1        | 3,019.0 |         |             |                                         |                  | 14.8         | 432.0 | 114.8    | 3,451.0  | 0.0      | 0.0    |
| 47.50  | Top - Section 1                         | 71.8         | 1,649.1 |         |             |                                         |                  | 8.4          | 240.3 | 80.2     | 1,889.4  | 0.0      | 0.0    |
| 50.00  |                                         | 108.0        | 845.5   |         |             |                                         |                  | 8.6          | 240.5 | 116.6    | 1,086.0  | 0.0      | 0.0    |
| 55.00  |                                         | 144.1        | 1,656.8 |         |             |                                         |                  | 17.6         | 481.7 | 161.7    | 2,138.5  | 0.0      | 0.0    |
| 60.00  | Appurtenance(s)                         | 143.9        | 1,615.0 | 8.5     | 0.0         | 0.0                                     | 48.6             | 18.2         | 482.4 | 170.5    | 2,146.1  | 0.0      | 0.0    |
| 65.00  |                                         | 114.8        | 1,572.7 |         |             |                                         |                  | 18.7         | 482.2 | 133.5    | 2,054.9  | 0.0      |        |
| 68.00  | Appurtenance(s)                         | 71.4         | 924.7   | 48.6    | 0.0         | 0.0                                     | 358.3            | 11.5         | 289.6 | 131.6    | 1,572.7  | 0.0      |        |
| 70.00  |                                         | 99.4         | 608.4   |         |             |                                         |                  | 7.7          | 193.2 | 107.2    | 801.7    | 0.0      | 0.0    |
| 75.00  | Appurtenance(s)                         | 85.0         | 1,486.6 | 14.7    | 0.0         | 0.0                                     | 103.6            | 19.7         | 483.5 | 119.3    | 2,073.7  | 0.0      | 0.0    |
| 76.00  | Appurtenance(s)                         | 70.2         | 293.2   | 27.3    | 0.0         | 0.0                                     | 265.6            | 4.0          | 96.2  | 101.5    | 655.1    | 0.0      | -      |
| 80.00  | Appurtenance(s)                         | 86.2         | 1.152.0 | 9.3     |             |                                         | 49.5             | 16.2         | 385.1 | 111.6    | 1.586.6  | 0.0      |        |
| 82.16  | Bot - Section 3                         | 69.9         | 612.4   |         |             |                                         |                  | 8.9          | 208.1 | 78.7     | 820.5    | 0.0      |        |
| 85.00  |                                         | 79.2         | 1,258.2 |         |             |                                         |                  | 11.7         | 273.0 | 90.9     | 1,531.1  | 0.0      |        |
| 87.83  | Top - Section 2                         | 69.3         | 1,232.2 |         |             |                                         |                  | 11.8         | 272.5 | 81.2     | 1,504.7  | 0.0      |        |
| 90.00  | •                                       | 43.7         | 525.7   |         |             |                                         |                  | 9.2          | 209.0 | 52.9     | 734.8    | 0.0      |        |
| 91.00  | Appurtenance(s)                         | 68.3         | 240.1   | 284.9   | 0.0         | 0.0                                     | 3,917.2          | 4.3          | 96.4  | 357.5    | 4,253.7  | 0.0      |        |
| 95.00  |                                         | 121.6        | 941.4   |         | •           | 0.0                                     | 0,011.2          | 17.2         | 385.7 | 138.8    | 1,327.1  | 0.0      |        |
| 100.00 | Appurtenance(s)                         | 119.8        | 1,140.0 | 597.7   | 0.0         | 804.1                                   | 6,010.3          | 21.8         | 482.5 | 739.3    | 7,632.7  | 0.0      |        |
| 104.00 | Appurtenance(s)                         | 65.8         | 884.6   | 478.8   |             |                                         | 4,099.2          | 17.7         | 278.0 | 562.3    | 5,261.8  | 0.0      |        |
| 105.00 | · · • • • • • • • • • • • • • • • • • • | 39.0         | 218.0   |         | 0.0         | 0.0                                     | 7,033.2          | 4.5          | 69.5  | 43.4     | 287.6    | 0.0      |        |
| 107.00 | Appurtenance(s)                         | 64.4         | 430.7   | 10.2    | 0.0         | 0.0                                     | 50.3             | 9.0          | 139.1 | 83.6     | 620.2    | 0.0      |        |
| 110.00 | Appurtenance(s)                         | 101.4        | 633.3   |         |             |                                         | 9,349.1          | 13.6         | 207.6 |          | 10,190.0 | 0.0      |        |
| 115.00 | 1-1                                     | 124.3        | 1,020.6 |         | <b>V.</b> , | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0,070.1          | 22.9         | 271.3 | 147.2    | 1,291.9  | 0.0      |        |
| 120.00 | Appurtenance(s)                         | 121.0        | 980.4   | 587.0   | 0.0         | 0.0                                     | 6,875.3          | 23.3         | 271.7 | 731.3    | 8,127.4  | 0.0      |        |
| 125.00 | Appurtenance(s)                         | 71.4         | 940.0   |         |             |                                         | 1,335.3          | 23.5<br>23.6 | 170.1 | 218.9    | 2,445.4  | 0.0      |        |
| 126.00 | Appurtenance(s)                         | 35.0         | 184.3   | 66.1    | 0.0         |                                         | 264.5            | 4.8          | 31.9  | 105.9    | 480.7    | 0.0      |        |
| 128.00 | Appurtenance(s)                         | 34.8         | 363.1   | 376.3   |             |                                         | 204.5<br>3,881.0 | 4.6<br>9.6   | 63.6  | 420.7    | 4,307.7  | 0.0      |        |
| 129.00 | Appurtenance(s)                         | 23.0         | 179.4   |         |             |                                         | 429.9            | 4.8          | 27.9  | 183.4    | 637.3    |          |        |
| 130.00 | Appurtenance(s)                         | 23.0<br>11.5 | 179.4   |         |             |                                         |                  |              |       |          |          | 0.0      |        |
| 130.00 | when reneurals)                         | 11.5         | 177.5   | 507.1   | 0.0         | 560.7                                   | 5,249.9          | 4.8          | 28.0  | 523.4    | 5,455.6  | 0.0      |        |
|        |                                         |              |         |         |             |                                         |                  | To           | tals: | 8,186.50 | 98,933.5 | 0.00     | 0.00   |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:47 PM

**Customer: AT&T MOBILITY** 

Load Case: 1.2D + 1.0Di + 1.0Wi

50 mph with 0.75 in Radial Ice

19 Iterations

Gust Response Factor :1.10
Dead Load Factor :1.20

Ice Dead Load Factor 1.00

Wind Importance Factor 1.00

Ice Importance Factor :1.00

Wind Load Factor :1.00

| Cal  | cu | late | d F | or | ces |  |
|------|----|------|-----|----|-----|--|
| <br> |    |      |     |    |     |  |

| Calcula             | teu roi                | <del></del>            |                       |                       |                       |                                  |                     |                     |                        |                        |      |                   |       |  |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|------|-------------------|-------|--|
| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-klps) |      | Rotation<br>(deg) | Ratio |  |
| 0.00                | -98.93                 | -8.13                  | 0.00                  | -761.85               | 0.00                  | 761.85                           | 6.793.61            | 3.396.81            | 17,163.1               | 8.594.34               | 0.00 | 0.00              | 0.103 |  |
| 5.00                | -96.05                 | -8.01                  | 0.00                  | -721.20               | 0.00                  | 721.20                           |                     |                     | 16,532.0               |                        | 0.01 | -0.02             | 0.101 |  |
| 10.00               | -93.16                 | -7.88                  | 0.00                  | -681.17               | 0.00                  | 681.17                           | •                   | -                   | 15,907.1               | -                      | 0.05 | -0.05             | 0.100 |  |
| 15.00               | -90.30                 | -7.76                  | 0.00                  | -641.76               | 0.00                  | 641.76                           |                     |                     | 15,288.6               |                        | 0.11 | -0.07             | 0.098 |  |
| 20.00               | -87.47                 | -7.63                  | 0.00                  | -602.98               | 0.00                  | 602.98                           |                     |                     | 14,676.9               |                        | 0.19 | -0.09             | 0.096 |  |
| 25.00               | -84.69                 | -7.51                  | 0.00                  | -564.82               | 0.00                  | 564.82                           |                     |                     | 14,072.5               |                        | 0.30 | -0.12             | 0.094 |  |
| 30.00               | -81.94                 | -7.39                  | 0.00                  | -527.26               | 0.00                  | 527.26                           |                     |                     | 13,475.6               |                        | 0.44 | -0.14             | 0.091 |  |
| 35.00               | -79.25                 | -7.26                  | 0.00                  | -490.33               | 0.00                  | 490.33                           | •                   | •                   | 12,886.7               | •                      | 0.59 | -0.16             | 0.089 |  |
| 40.00               | -76.60                 | -7.18                  | 0.00                  | -454.02               | 0.00                  | 454.02                           | -                   | -                   | 12,306.1               | •                      | 0.78 | -0.19             | 0.087 |  |
| 40.50               | -76.34                 | -7.12                  | 0.00                  | -450.44               | 0.00                  | 450.44                           | •                   | *                   | 12,248.5               | •                      | 0.80 | -0.19             | 0.086 |  |
| 45.00               | -72.89                 | -7.01                  | 0.00                  | -418.40               | 0.00                  | 418.40                           |                     |                     | 11,734.2               |                        | 0.99 | -0.21             | 0.084 |  |
| 47.50               | -71.00                 | -6.94                  | 0.00                  | -400.86               | 0.00                  | 400.86                           | -                   | -                   | 8,146.29               | •                      | 1.10 | -0.22             | 0.116 |  |
| 50.00               | -69.91                 | -6.85                  | 0.00                  | -383.51               | 0.00                  | 383.51                           | •                   | -                   | 7,963.57               | -                      | 1.22 | -0.23             | 0.114 |  |
| 55.00               | -67.77                 | -6.71                  | 0.00                  | -349.27               | 0.00                  | 349.27                           | -                   | -                   | 7,600.87               | •                      | 1.48 | -0.26             | 0.109 |  |
| 60.00               | -65.62                 | -6.56                  | 0.00                  | -315.72               | 0.00                  | 315.72                           | •                   | •                   | 7,242.12               | •                      | 1.77 | -0.29             | 0.104 |  |
| 65.00               | -63.56                 | -6.44                  | 0.00                  | -282.90               | 0.00                  | 282.90                           |                     |                     | 6,887.67               |                        | 2.10 | -0.32             | 0.099 |  |
| 68.00               | -61.99                 | -6.32                  | 0.00                  | -263.57               | 0.00                  | 263.57                           |                     |                     | 6,677.23               |                        | 2.31 | -0.34             | 0.096 |  |
| 70.00               | -61.19                 | -6.23                  | 0.00                  | -250.93               | 0.00                  | 250.93                           | •                   |                     | 6,537.91               | •                      | 2.45 | -0.35             | 0.093 |  |
| 75.00               | -59.11                 | -6.11                  | 0.00                  | -219.79               | 0.00                  | 219.79                           | •                   | •                   | 6,193.19               | •                      | 2.83 | -0.38             | 0.087 |  |
| 76.00               | -58.46                 | -6.02                  | 0.00                  | -213.68               | 0.00                  | 213.68                           |                     |                     | 6,124.88               |                        | 2.91 | -0.38             | 0.086 |  |
| 80.00               | -56.87                 | -5.91                  | 0.00                  | -189.60               | 0.00                  | 189.60                           |                     |                     | 5,853.88               |                        | 3.25 | -0.40             | 0.081 |  |
| 82.16               | -56.05                 | -5.84                  | 0.00                  | -176.81               | 0.00                  | 176.81                           |                     |                     | 5,708.83               |                        | 3.43 | -0.42             | 0.078 |  |
| 85.00               | -54.52                 | -5.75                  | 0.00                  | -160.25               | 0.00                  | 160.25                           | •                   | -                   | 5,520.34               | •                      | 3.68 | -0.43             | 0.074 |  |
| 87.83               | -53.01                 | -5.67                  | 0.00                  | -143.97               | 0.00                  | 143.97                           | •                   | -                   | 4,345.60               | -                      | 3.94 | -0.44             | 0.086 |  |
| 90.00               | -52.28                 | -5.62                  | 0.00                  | -131.67               | 0.00                  | 131.67                           | •                   | •                   | 4,237.49               | •                      | 4.15 | -0.45             | 0.082 |  |
| 91.00               | -48.02                 | -5.24                  | 0.00                  | -126.05               | 0.00                  | 126.05                           |                     |                     | 4,187.89               |                        | 4.24 | -0.46             | 0.078 |  |
| 95.00               | -46.70                 | -5.10                  | 0.00                  | -105.10               | 0.00                  | 105.10                           |                     |                     | 3,990.97               |                        | 4.63 | -0.48             | 0.071 |  |
| 100.00              | -39.07                 | -4.31                  | 0.00                  | -78.79                | 0.00                  | 78.79                            | 2,536.86            | 1,268.43            | 3,748.34               | 1,876.95               | 5.15 | -0.50             | 0.057 |  |
| 104.00              | -33.81                 | -3.71                  | 0.00                  | -61.55                | 0.00                  | 61.55                            | •                   | •                   | 3,557.28               | •                      | 5.57 | -0.51             | 0.048 |  |
| 105.00              | -33.52                 | -3.66                  | 0.00                  | -57.84                | 0.00                  | 57.84                            | •                   | •                   | 3,509.96               | -                      | 5.68 | -0.51             | 0.046 |  |
| 107.00              | -32.90                 | -3.58                  | 0.00                  | -50.52                | 0.00                  | 50.52                            |                     |                     | 3,415.88               |                        | 5.89 | -0.52             | 0.043 |  |
| 110.00              | -22.72                 | -2.54                  | 0.00                  | -38.23                | 0.00                  | 38.23                            |                     |                     | 3,276.20               |                        | 6.22 | -0.53             | 0.033 |  |
| 115.00              | -21.43                 | -2.39                  | 0.00                  | -25.52                | 0.00                  | 25.52                            | 2,327.39            | 1.163.70            | 3.047.43               | 1.525.98               | 6.78 | -0.54             | 0.026 |  |
| 120.00              | -13.31                 | -1.58                  | 0.00                  | -13.59                | 0.00                  | 13.59                            | •                   | •                   | 2,823.60               | •                      | 7.35 | -0.54             | 0.016 |  |
| 125.00              | -10.87                 | -1.34                  |                       | -5.69                 |                       | 5.69                             | •                   | •                   | 2,577.88               | -                      | 7.92 | -0.55             | 0.009 |  |
| 126.00              | -10.39                 | -1.23                  | 0.00                  | -4.36                 |                       | 4.36                             |                     |                     | 2,530.08               |                        | 8.03 | -0.55             | 0.008 |  |
| 128.00              | -6.09                  | -0.77                  | 0.00                  | -1.90                 |                       | 1.90                             | -                   | -                   | 2,435.81               | -                      | 8.26 | -0.55             | 0.004 |  |
| 129.00              | -5.45                  | -0.58                  | 0.00                  | -1.14                 |                       | 1.14                             | •                   | •                   | 2,389.35               | •                      | 8.38 | -0.55             | 0.004 |  |
| 130.00              | 0.00                   | -0.52                  |                       | -0.56                 |                       | 0.56                             |                     |                     | 2,343.34               |                        | 8.49 | -0.55             | 0.000 |  |
|                     |                        |                        |                       |                       |                       |                                  |                     |                     |                        |                        |      |                   |       |  |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:47 PM

**Customer: AT&T MOBILITY** 

Load Case: 1.0D + 1.0W

Serviceability 60 mph

18 Iterations

**Gust Response Factor :1.10** 

Dead Load Factor:1.00 Wind Load Factor: 1.00 Wind Importance Factor 1.00

#### **Applied Segment Forces Summary**

|        |                 | Shaft I | Forces            |         | Discret    | e Forces  |         | Linear F      | orces |          | Sum o    | f Forces |        |
|--------|-----------------|---------|-------------------|---------|------------|-----------|---------|---------------|-------|----------|----------|----------|--------|
| Seg    |                 |         | Dead              |         | Torsion    | Moment    | Dead    | ^ <del></del> | Dead  |          | Dead     | Torsion  | Moment |
| Elev   |                 | Wind FX | Load              | Wind FX | MY         | MZ        | Load    | Wind FX       | Load  | Wind FX  | Load     | MY       | MZ     |
| (ft)   | Description     | (lb)    | (lb)              | (lb)    | (lb-ft)    | (lb-ft)   | (lb)    | (lb)          | (lb)  | (lb)     | (lb)     | (lb-ft)  | (lb)   |
| 0.00   |                 | 50.9    | 0.0               |         |            |           |         | 0.0           | 0.0   | 50.9     | 0.0      | 0.0      |        |
| 5.00   |                 | 100.6   | 1,642.2           |         |            |           |         | 0.0           | 316.1 | 100.6    | 1,958.3  | 0.0      |        |
| 10.00  |                 | 98.4    | 1,605.7           |         |            |           |         | 0.0           | 316.1 | 98.4     | 1,921.8  | 0.0      |        |
| 15.00  |                 | 96.1    | 1,569.1           |         |            |           |         | 0.0           | 316.1 | 96.1     | 1,885.2  |          |        |
| 20.00  |                 | 93.9    | 1,532.6           |         |            |           |         | 0.0           | 316.1 | 93.9     | 1,848.7  | 0.0      |        |
| 25.00  |                 | 91.6    | 1,496.0           |         |            |           |         | 0.0           | 316.1 | 91.6     | 1,812.1  | 0.0      | _      |
| 30.00  |                 | 90.4    | 1,459.5           |         |            |           |         | 0.0           | 316.1 | 90.4     | 1,775.6  |          | _      |
| 35.00  |                 | 91.1    | 1,422.9           |         |            |           |         | 0.0           | 316.1 | 91.1     | 1,739.0  |          | -      |
| 40.00  |                 | 50.5    | 1,386.4           |         |            |           |         | 0.0           | 316.1 | 50.5     | 1,702.5  |          |        |
| 40.50  | Bot - Section 2 | 46.9    | 136. <del>6</del> |         |            |           |         | 0.0           | 31.6  | 46.9     | 168.2    | 0.0      |        |
| 45.00  |                 | 65.9    | 2,139.0           |         |            |           |         | 0.0           | 284.5 | 65.9     | 2,423.5  | 0.0      | -      |
| 47.50  | Top - Section 1 | 47.2    | 1,166.0           |         |            |           |         | 0.0           | 158.1 | 47.2     | 1,324.0  |          | _      |
| 50.00  |                 | 70.9    | 497.9             |         |            |           |         | 0.0           | 158.1 | 70.9     | 656.0    | 0.0      | _      |
| 55.00  |                 | 94.4    | 975.3             |         |            |           |         | 0.0           | 316.1 | 94.4     | 1,291.4  | 0.0      | 0      |
| 60.00  | Appurtenance(s) | 94.1    | 947.8             | 6.6     | 0.0        | 0.0       | 10.0    | 0.0           | 316.1 | 100.7    | 1,273.9  | 0.0      | 0      |
| 65.00  |                 | 74.9    | 920.4             |         |            |           |         | 0.0           | 315.4 | 74.9     | 1,235.8  | 0.0      | 0      |
| 68.00  | Appurtenance(s) | 46.5    | 539.1             | 38.1    | 0.0        | 0.0       | 126.0   | 0.0           | 189.2 | 84.7     | 854.3    | 0.0      | _      |
| 70.00  |                 | 64.6    | 353.9             |         |            |           |         | 0.0           | 126.1 | 64.6     | 480.1    | 0.0      |        |
| 75.00  | Appurtenance(s) | 55.2    | 865.6             |         |            |           | 30.0    | 0.0           | 315.4 | 64.5     | 1,211.0  | 0.0      | -      |
| 76.00  | Appurtenance(s) | 45.5    | 169.8             | 23.€    | 0.         | 0.0       | 100.0   | 0.0           | 62.6  | 69.1     | 332.5    | 0.0      | 0      |
| 80.00  | Appurtenance(s) | 55.8    | 668.4             | 7.2     | 0.0        | 0.0       | 10.0    | 0.0           | 250.5 | 63.0     | 928.8    | 0.0      | 0      |
| 82.16  | Bot - Section 3 | 45.2    | 354.2             |         |            |           |         | 0.0           | 135.1 | 45.2     | 489.3    | 0.0      | -      |
| 85.00  |                 | 51.1    | 843.7             |         |            |           |         | 0.0           | 177.2 | 51.1     | 1,020.9  | 0.0      | 0      |
| 87.83  | Top - Section 2 | 44.7    | 825.6             |         |            |           |         | 0.0           | 176.8 | 44.7     | 1,002.4  | 0.0      | 0      |
| 90.00  |                 | 28.2    | 285.5             |         |            |           |         | 0.0           | 135.6 | 28.2     | 421.1    | 0.0      | 0      |
| 91.00  | Appurtenance(s) | 43.9    | 130.1             | 216.3   | 0.         | 0.0       | 1,500.0 | 0.0           | 62.5  | 260.2    | 1,692.6  | 0.0      | 0      |
| 95.00  |                 | 78.0    | 511.4             |         |            |           |         | 0.0           | 249.9 | 78.0     | 761.3    | 0.0      | 0      |
| 100.00 | Appurtenance(s) | 76.7    | 618.7             | 606.5   | 0.         | 0 826.5   | 1,299.4 | 0.0           | 312.4 | 683.2    | 2,230.5  | 0.0      | 0      |
| 104.00 | Appurtenance(s) | 42.0    | 478.5             |         | 0.         | 0.0       | 2,270.0 | 0.0           | 159.6 | 459.7    | 2,908.1  | 0.0      | 0      |
| 105.00 |                 | 24.8    | 117.3             |         |            |           |         | 0.0           | 39.9  | 24.8     | 157.2    | 0.0      | 0      |
| 107.00 | Appurtenance(s) | 41.0    | 232.0             | -       |            |           | 10.0    | 0.0           | 79.8  | 48.8     | 321.8    | 0.0      | 0      |
| 110.00 | Appurtenance(s) | 64.3    | 341.1             | 769.5   | j 0.       | 0 1,604.9 | 2,831.4 | 0.0           | 118.7 | 833.8    | 3,291.2  | 0.0      | 0      |
| 115.00 |                 | 78.6    | 550.2             |         |            |           |         | 0.0           | 135.3 | 78.6     | 685.5    | 0.0      | 0      |
| 120.00 | Appurtenance(s) | 76.2    | 527.3             | 513.9   | 0.0        | 0.0       | 2,221.7 | 0.0           | 135.3 | 590.1    | 2,884.3  | 0.0      | 0      |
| 125.00 | Appurtenance(s) | 44.8    | 504.5             |         | 0.         | 0.0       | 311.0   | 0.0           | 50.3  | 161.9    | 865.8    | 0.0      | 0      |
| 126.00 | Appurtenance(s) | 21.9    | 98.2              | 70.€    | <b>0</b> . | 0.0       | 49.0    | 0.0           | 8.3   | 92.5     | 155.4    | 0.0      | 0      |
| 128.00 | Appurtenance(s) | 21.7    | 193.6             | 353.0   | 0.0        | 0.0       | 955.1   | 0.0           | 16.3  | 374.8    | 1,165.0  | 0.0      | 0      |
| 129.00 | Appurtenance(s) | 14.3    | 95.4              | 118.8   | 0.         | 0.0       | 148.9   | 0.0           | 4.9   | 133.2    | 249.2    | 0.0      | 0      |
| 130.00 | Appurtenance(s) | 7.1     | 94.5              | 486.0   | 0.         | 739.3     | 1,626.0 | 0.0           | 4.9   | 493.1    | 1,725.4  | 0.0      | 0      |
|        |                 |         |                   |         |            |           |         | To            | tals: | 6,092.02 | 48,849.8 | 0.00     | 0.0    |
|        |                 |         |                   |         |            |           |         |               |       |          |          |          |        |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:57 PM

**Customer: AT&T MOBILITY** 

**Load Case:** 1.0D + 1.0W

Serviceability 60 mph

18 Iterations

Gust Response Factor :1.10

Dead Load Factor :1.00 Wind Load Factor :1.00 Wind Importance Factor 1.00

| $c_{\sim}$ |     | 200 | .a E | OFO: | 20 |
|------------|-----|-----|------|------|----|
| vai        | Cui | alt | чг   | orce | 53 |

| Calcula             | tea roi                | ces                    |                       |                       |                       |                                  |                     |                     |                        |                        |                          |                   |       |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|--------------------------|-------------------|-------|
| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phl<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect<br>(in) | Rotation<br>(deg) | Ratio |
| 0.00                | -48.85                 | -6.05                  | 0.00                  | -582.84               | 0.00                  | 582.84                           | 6 793 61            | 3 396 81            | 17,163.1               | 8 594 34               | 0.00                     | 0.00              | 0.075 |
| 5.00                | -46.89                 | -5.96                  | 0.00                  | -552.60               | 0.00                  | 552.60                           |                     |                     | 16,532.0               |                        | 0.01                     | -0.02             | 0.074 |
| 10.00               | -44.97                 | -5.88                  | 0.00                  | -522.79               | 0.00                  | 522.79                           | •                   | -                   | 15,907.1               | -                      | 0.04                     | -0.03             | 0.072 |
| 15.00               | -43.08                 | -5.79                  | 0.00                  | -493.42               | 0.00                  | 493.42                           |                     |                     | 15,288.6               |                        | 0.08                     | -0.05             | 0.071 |
| 20.00               | -41.23                 | -5.71                  | 0.00                  | -464.46               | 0.00                  | 464.46                           | -                   | -                   | 14,676.9               |                        | 0.15                     | -0.07             | 0.070 |
| 25.00               | -39.41                 | -5.63                  | 0.00                  | -435.91               | 0.00                  | 435.91                           |                     |                     | 14,072.5               |                        | 0.23                     | -0.09             | 0.068 |
| 30.00               | -37.64                 | -5.55                  | 0.00                  | -407.78               | 0.00                  | 407.78                           |                     |                     | 13,475.6               |                        | 0.33                     | -0.11             | 0.067 |
| 35.00               | -35.90                 | -5.46                  | 0.00                  | -380.05               |                       | 380.05                           | •                   | •                   | 12,886.7               | •                      | 0.46                     | -0.13             | 0.065 |
| 40.00               | -34.19                 | -5.41                  | 0.00                  | -352.74               |                       | 352.74                           | •                   | •                   | 12,306.1               | •                      | 0.60                     | -0.14             | 0.063 |
| 40.50               | -34.02                 | -5.37                  | 0.00                  | -350.03               | 0.00                  | 350.03                           |                     |                     | 12,248.5               |                        | 0.61                     | -0.15             | 0.063 |
| 45.00               | -31.60                 | -5.31                  | 0.00                  | -325.85               |                       | 325.85                           | •                   | -                   | 11,734.2               | •                      | 0.76                     | -0.16             | 0.061 |
| 47.50               | -30.27                 | -5.26                  | 0.00                  | -312.59               | 0.00                  | 312.59                           | 4,002.81            | 2,001.40            | 8,146.29               | 4,079.20               | 0.85                     | -0.17             | 0.084 |
| 50.00               | -29.62                 | -5.20                  | 0.00                  | -299.43               | 0.00                  | 299.43                           | 3,967.67            | 1,983.84            | 7,963.57               | 3,987.71               | 0.94                     | -0.18             | 0.083 |
| 55.00               | -28.32                 | -5.11                  | 0.00                  | -273.45               | 0.00                  | 273.45                           | 3,895.77            | 1,947.89            | 7,600.87               | 3,806.08               | 1.14                     | -0.20             | 0.079 |
| 60.00               | -27.05                 | -5.01                  | 0.00                  | -247.90               | 0.00                  | 247.90                           | 3,821.70            | 1,910.85            | 7,242.12               | 3,626.44               | 1.37                     | -0.23             | 0.075 |
| 65.00               | -25.81                 | -4.94                  | 0.00                  | -222.83               | 0.00                  | 222.83                           | 3,745.46            | 1,872.73            | 6,887.67               | 3,448.96               | 1.62                     | -0.25             | 0.072 |
| 68.00               | -24.96                 | -4.86                  | 0.00                  | -208.00               | 0.00                  | 208.00                           | 3,698.67            | 1,849.34            | 6,677.23               | 3,343.58               | 1.78                     | -0.26             | 0.069 |
| 70.00               | -24.48                 | -4.80                  | 0.00                  | -198.28               | 0.00                  | 198.28                           | 3,667.05            | 1,833.52            | 6,537.91               | 3,273.81               | 1.89                     | -0.27             | 0.067 |
| 75.00               | -23.26                 | -4.73                  | 0.00                  | -174.29               | 0.00                  | 174.29                           | 3,586.46            | 1,793.23            | 6,193.19               | 3,101.20               | 2.19                     | -0.29             | 0.063 |
| 76.00               | -22.93                 | -4.67                  | 0.00                  | -169.55               | 0.00                  | 169.55                           | 3,570.09            | 1,785.04            | 6,124.88               | 3,066.99               | 2.25                     | -0.30             | 0.062 |
| 80.00               | -22.00                 | -4.60                  | 0.00                  | -150.89               | 0.00                  | 150.89                           | 3,503.71            | 1,751.85            | 5,853.88               | 2,931.29               | 2.51                     | -0.32             | 0.058 |
| 82.16               | -21.51                 | -4.56                  | 0.00                  | -140.93               | 0.00                  | 140.93                           | 3,467.23            | 1,733.61            | 5,708.83               | 2,858.66               | 2.66                     | -0.32             | 0.056 |
| 85.00               | -20.49                 | -4.51                  | 0.00                  | -127.99               | 0.00                  | 127.99                           | 3,418.78            | 1,709.39            | 5,520.34               | 2,764.27               | 2.85                     | -0.34             | 0.052 |
| 87.83               | -19.49                 | -4.46                  | 0.00                  | -115.24               | 0.00                  | 115.24                           | 2,692.45            | 1,346.23            | 4,345.60               | 2,176.03               | 3.05                     | -0.35             | 0.060 |
| 90.00               | -19.07                 | -4.43                  | 0.00                  | -105.56               | 0.00                  | 105.56                           | 2,665.65            | 1,332.83            | 4,237.49               | 2,121.90               | 3.21                     | -0.35             | 0.057 |
| 91.00               | -17.37                 | -4.16                  | 0.00                  | -101.13               |                       | 101.13                           | 2,653.16            | 1,326.58            | 4,187.89               | 2,097.06               | 3.29                     | -0.36             | 0.055 |
| 95.00               | -16.61                 | -4.08                  | 0.00                  | -84.48                | 0.00                  | 84.48                            | •                   | •                   | 3,990.97               | •                      | 3.59                     | -0.37             | 0.049 |
| 100.00              | -14.39                 | -3.39                  | 0.00                  | -63.23                | 0.00                  | 63.23                            |                     |                     | 3,748.34               |                        | 3.99                     | -0.39             | 0.039 |
| 104.00              | -11.48                 | -2.91                  | 0.00                  | -49.67                | 0.00                  | 49.67                            |                     |                     | 3,557.28               |                        | 4.33                     | -0.40             | 0.033 |
| 105.00              | -11.32                 | -2.89                  | 0.00                  | -46.76                |                       | 46.76                            |                     |                     | 3,509.96               |                        | 4.41                     | -0.40             | 0.031 |
| 107.00              | -11.00                 | -2.84                  | 0.00                  | -40.99                | 0.00                  | 40.99                            | •                   | -                   | 3,415.88               | -                      | 4.58                     | -0.41             | 0.028 |
| 110.00              | -7.72                  | -1.98                  | 0.00                  | -30.87                |                       | 30.87                            | •                   | -                   | 3,276.20               | -                      | 4.84                     | -0.41             | 0.022 |
| 115.00              | -7.03                  | -1.90                  | 0.00                  | -20.97                |                       | 20.97                            |                     |                     | 3,047.43               |                        | 5.28                     | -0.42             | 0.017 |
| 120.00              | -4.15                  | -1.29                  | 0.00                  | -11.48                | 0.00                  | 11.48                            |                     |                     | 2,823.60               |                        | 5.72                     | -0.43             | 0.010 |
| 125.00              | -3.29                  | -1.12                  |                       | -5.05                 |                       | 5.05                             |                     |                     | 2,577.88               |                        | 6.17                     | -0.43             | 0.005 |
| 126.00              | -3.13                  | -1.02                  |                       | -3.94                 |                       | 3.94                             |                     |                     | 2,530.08               |                        | 6.26                     | -0.43             | 0.005 |
| 128.00              | -1.97                  | -0.64                  |                       | -1.89                 |                       | 1.89                             |                     |                     | 2,435.81               |                        | 6.44                     | -0.43             | 0.002 |
| 129.00              | -1.72                  | -0.51                  | 0.00                  | -1.25                 |                       | 1.25                             |                     |                     | 2,389.35               |                        | 6.53                     | -0.43             | 0.002 |
| 130.00              | 0.00                   | -0.49                  | 0.00                  | -0.74                 | 0.00                  | 0.74                             | 2,053.39            | 1,026.69            | 2,343.34               | 1,173.41               | 6.62                     | -0.43             | 0.001 |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:57 PM

**Customer: AT&T MOBILITY** 

#### **Equivalent Lateral Forces Method Analysis**

(Based on ASCE7-10 Chapters 11, 12, 15)

| Spectral Response Acceleration for Short Period (S                 | 0.23    |
|--------------------------------------------------------------------|---------|
| Spectral Response Acceleration at 1.0 Second Period (S 1):         | 0.07    |
| Long-Period Transition Period (T L):                               | 6       |
| Importance Factor (I E):                                           | 1.00    |
| Site Coefficient F a:                                              | 1.60    |
| Site Coefficient F <sub>v</sub> :                                  | 2.40    |
| Response Modification Coefficient (R):                             | 1.50    |
| Design Spectral Response Acceleration at Short Period (S de):      | 0.24    |
| Design Spectral Response Acceleration at 1.0 Second Period (S d1): | 0.11    |
| Seismic Response Coefficient (C s):                                | 0.05    |
| Upper Limit C <sub>s</sub>                                         | 0.05    |
| Lower Limit C ,                                                    | 0.03    |
| Period based on Rayleigh Method (sec):                             | 1.49    |
| Redundancy Factor (p):                                             | 1.00    |
| Seismic Force Distribution Exponent (k):                           | 1.49    |
| Total Unfactored Dead Load:                                        | 48.85 k |
| Selsmic Base Shear (E):                                            | 2.34 k  |

Load Case (1.2 + 0.2Sds) \* DL + E ELFM Seismic Equivalent Lateral Forces Method

|         | Height<br>Above<br>Base | Weight | Wz      |       | Horizontal<br>Force | Vertical<br>Force |
|---------|-------------------------|--------|---------|-------|---------------------|-------------------|
| Segment | (ft)                    | (lb)   | (lb-ft) | C vx  | (lb)                | (lb)              |
| 38      | 129.50                  | 99     | 143     | 0.005 | 11                  | 124               |
| 37      | 128.50                  | 100    | 142     | 0.005 | 11                  | 125               |
| 36      | 127.00                  | 210    | 292     | 0.010 | 22                  | 262               |
| 35      | 125.50                  | 106    | 146     | 0.005 | 11                  | 133               |
| 34      | 122.50                  | 555    | 732     | 0.024 | 56                  | 693               |
| 33      | 117.50                  | 663    | 822     | 0.027 | 63                  | 827               |
| 32      | 112.50                  | 685    | 797     | 0.026 | 61                  | 856               |
| 31      | 108.50                  | 460    | 506     | 0.017 | 39                  | 574               |
| 30      | 106.00                  | 312    | 331     | 0.011 | 25                  | 389               |
| 29      | 104.50                  | 157    | 164     | 0.005 | 13                  | 196               |
| 28      | 102.00                  | 638    | 641     | 0.021 | 49                  | 797               |
| 27      | 97.50                   | 931    | 874     | 0.029 | 67                  | 1,162             |
| 26      | 93.00                   | 761    | 666     | 0.022 | 51                  | 950               |
| 25      | 90.50                   | 193    | 162     | 0.005 | 12                  | 240               |
| 24      | 88.92                   | 421    | 344     | 0.011 | 26                  | 526               |
| 23      | 86.42                   | 1,002  | 785     | 0.026 | 60                  | 1,251             |
| 22      | 83.58                   | 1,021  | 761     | 0.025 | 58                  | 1,275             |
| 21      | 81.08                   | 489    | 349     | 0.011 | 27                  | 611               |
| 20      | 78.00                   | 919    | 618     | 0.020 | 47                  | 1,147             |
| 19      | 75.50                   | 232    | 149     | 0.005 | 11                  | 290               |
| 18      | 72.50                   | 1,181  | 712     | 0.023 | 55                  | 1,474             |
| 17      | 69.00                   | 480    | 269     | 0.009 | 21                  | 599               |
| 16      | 66.50                   | 728    | 386     | 0.013 | 30                  | 909               |

| e Number: 411189                             |                  | C               | ode: ANSI/TIA-22: | <b>2-G</b> @ 2007 - 2 | 2020 by ATC IP LLC. AI | rngnis reserv                      |
|----------------------------------------------|------------------|-----------------|-------------------|-----------------------|------------------------|------------------------------------|
| Site Name: CRANBURYSU CT                     | r, CT            | Engineering Num | ber:13198800_C    | 3_03                  | 4/30/202               | 0 9:48:57 P                        |
| Customer: AT&T MOBILITY                      |                  |                 |                   |                       | 14870                  |                                    |
| 15                                           | 62.50            | 1,236           | 597               | 0.019                 | 46                     | 1,54                               |
| 14                                           | 57.50            | 1,264           | 539               | 0.018                 | 41                     | 1,57                               |
| 3<br> 2                                      | 52.50<br>48.75   | 1,291<br>656    | 480               | 0.016<br>0.007        | 37<br>17               | 1,6 <sup>,</sup><br>8 <sup>,</sup> |
| 12<br>11                                     | 46.25            | 1,324           | 218<br>408        | 0.013                 | 31                     | 1.6                                |
| <br>10                                       | 42.75            | 2,424           | 663               | 0.022                 | 51                     | 3.0                                |
| )                                            | 40.25            | 168             | 42                | 0.001                 | 3                      | 2.                                 |
| 3                                            | 37.50            | 1,702           | 383               | 0.013                 | 29                     | 2,1                                |
| 7                                            | 32.50            | 1,739           | 316               | 0.010                 | 24                     | 2,1                                |
| 3                                            | 27.50            | 1,776           | 251               | 0.008                 | 19                     | 2,2                                |
| 5                                            | 22.50            | 1,812           | 190               | 0.006                 | 15                     | 2,2                                |
| 4                                            | 17.50            | 1,849           | 133               | 0.004                 | 10                     | 2,3                                |
| 3                                            | 12.50            | 1,885           | 82                | 0.003                 | 6                      | 2,3                                |
| 2                                            | 7.50             | 1,922           | 39                | 0.001                 | 3                      | 2,3                                |
| l<br>Decibel DB846F65ZAXY                    | 2.50<br>130.00   | 1,958<br>84     | 8                 | 0.000<br>0.004        | 1<br>9                 | 2,4                                |
| Antel LPA-80080/6CF                          | 130.00           | 42              | 121<br>61         | 0.004                 |                        | 1                                  |
| Flat Low Profile Pla                         | 130.00           | 1,500           | 2,164             | 0.071                 | 166                    | 1,8                                |
| /ZW Unused Reserve (                         | 129.00           | 149             | 2,104             | 0.007                 | 16                     | 1,0                                |
| Samsung Outdoor LAA                          | 128.00           | 13              | 19                | 0.001                 | 1                      | •                                  |
| Samsung Outdoor CBRS                         | 128.00           | 56              | 79                | 0.003                 | 6                      |                                    |
| Samsung B5/B13 RRH-B                         | 128.00           | 211             | 297               | 0.010                 | 23                     | 2                                  |
| Samsung B2/B66A RRH-                         | 128.00           | 253             | 357               | 0.012                 | 27                     | 3                                  |
| RFS DB-C1-12C-24AB-0                         | 128.00           | 32              | 45                | 0.001                 | 3                      |                                    |
| Quintel QS6656-5                             | 128.00           | 390             | 550               | 0.018                 | 42                     | 4                                  |
| Andrew Microwaves VH                         | 126.00           | 49              | 67                | 0.002                 | 5                      |                                    |
| Alcatel-Lucent 800MH                         | 125.00           | 159             | 216               | 0.007                 | 17                     | 1                                  |
| Alcatel-Lucent 1900M                         | 125.00           | 132             | 180               | 0.006                 | 14                     | 1                                  |
| Seneric 24" x 24" Ju<br>Alcatel-Lucent RRH2x | 125.00<br>120.00 | 20<br>159       | 27<br>203         | 0.001<br>0.007        | 2<br>16                | 1                                  |
| Nokia 2.5G MAA - AAH                         | 120.00           | 311             | 203<br>398        | 0.007                 | 30                     | 3                                  |
| Seneric 24" x 24" Ju                         | 120.00           | 20              | 26                | 0.001                 | 2                      | •                                  |
| Commscope NNVV-65B-R                         | 120.00           | 232             | 297               | 0.010                 | 23                     | 2                                  |
| lat Low Profile Pla                          | 120.00           | 1,500           | 1,920             | 0.063                 | 147                    | 1,8                                |
| Ericsson KRY 112 71                          | 110.00           | 40              | 44                | 0.001                 | 3                      | .,-                                |
| Ericsson Radio 4449                          | 110.00           | 222             | 249               | 0.008                 | 19                     | 2                                  |
| EMS RR90-17-02DP                             | 110.00           | 41              | 46                | 0.001                 | 3                      |                                    |
| Ericsson AIR 21, 1.3                         | 110.00           | 249             | 280               | 0.009                 | 21                     | 3                                  |
| Ericsson AIR-32 B2A/                         | 110.00           | 397             | 446               | 0.015                 | 34                     | 4                                  |
| RFS APXVAARR24_43-U-                         | 110.00           | 384             | 431               | 0.014                 | 33                     | 4                                  |
| Flat Low Profile Pla                         | 110.00           | 1,500           | 1,686             | 0.055                 | 129                    | 1,8                                |
| Generic GPS                                  | 107.00           | 10              | 11                | 0.000                 | 1                      |                                    |
| Flat Platform w/ Han<br>Kathrein Scala 860-1 | 104.00<br>100.00 | 2,270<br>7      | 2,346<br>6        | 0.077<br>0.000        | 180<br>0               | 2,8                                |
| Kathrein Scala 860 1                         | 100.00           | 3               | 3                 | 0.000                 | ŏ                      |                                    |
| Generic GPS                                  | 100.00           | 10              | 10                | 0.000                 | 1                      |                                    |
| Raycap DC6-48-60-18-                         | 100.00           | 20              | 19                | 0.001                 | i                      |                                    |
| ricsson RRUS 8843 B                          | 100.00           | 216             | 211               | 0.007                 | 16                     | 2                                  |
| Ericsson Radio 4415                          | 100.00           | 129             | 126               | 0.004                 | 10                     | 1                                  |
| Ericsson RRUS 4449 B                         | 100.00           | 213             | 208               | 0.007                 | 16                     | 2                                  |
| Raycap DC9-48-60-24-                         | 100.00           | 16              | 16                | 0.001                 | 1                      | _                                  |
| Powerwave Aligon 777                         | 100.00           | 105<br>452      | 102               | 0.003                 | 8                      | 1                                  |
| CCI HPA-65R-BUU-H6                           | 100.00           | 153             | 149               | 0.005                 | 11                     | 1                                  |
| CCI DMP65R-BU6DA<br>CCI OPA65R-BU6D          | 100.00<br>100.00 | 238<br>190      | 232               | 0.008<br>0.006        | 18<br>14               | 2 2                                |
| Empty Flat Low Profi                         | 91.00            | 1,500           | 185<br>1,270      | 0.006                 | 14<br>97               | 1,8                                |
| eneric GPS                                   | 80.00            | 1,500           | 1,270             | 0.000                 | 97<br>1                | 1,0                                |
| Stand-Off                                    | 76.00            | 100             | 65                | 0.002                 | 5                      | 1                                  |
| Generic 2" x 8" GPS                          | 75.00            | 20              | 13                | 0.000                 | 1                      | •                                  |
| Generic GPS                                  | 75.00            | 10              | 6                 | 0.000                 | Ò                      |                                    |
| Side Arm                                     | 68.00            | 126             | 69                | 0.002                 | 5                      | 1                                  |
| Generic GPS                                  | 60.00            | 10              | 5                 | 0.000                 | 0                      |                                    |
|                                              |                  | 48,850          | 30,614            |                       | 2,345                  | 60,98                              |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:57 PM

**Customer: AT&T MOBILITY** 

| · · · · · · · · · · · · · · · · · · ·      | * DL + E ELFM Seismic (Reduced DL) Equivalent Lateral Forces Method |              |              |                |            |          |  |  |
|--------------------------------------------|---------------------------------------------------------------------|--------------|--------------|----------------|------------|----------|--|--|
|                                            | Height<br>Above                                                     |              |              |                | Horizontal | Vertical |  |  |
|                                            | Base                                                                | Weight       | Wz           | _              | Force      | Ford     |  |  |
| Segment                                    | (ft)                                                                | (lb)         | (lb-ft)      | C vx           | (lb)       | (lb      |  |  |
| 3                                          | 129.50                                                              | 99           | 143          | 0.005          | 11         |          |  |  |
| 7<br>3                                     | 128.50<br>127.00                                                    | 100<br>210   | 142<br>292   | 0.005<br>0.010 | 11<br>22   | 1        |  |  |
| ,<br>5                                     | 125.50                                                              | 106          | 146          | 0.005          | 11         | '        |  |  |
| 1                                          | 122.50                                                              | 555          | 732          | 0.024          | 56         | 4        |  |  |
| 3                                          | 117.50                                                              | 663          | 822          | 0.027          | 63         | 5        |  |  |
| 2                                          | 112.50                                                              | 685          | 797          | 0.026          | 61         | 5        |  |  |
|                                            | 108.50                                                              | 460          | 506          | 0.017          | 39         | 3        |  |  |
| )<br>}                                     | 106.00<br>104.50                                                    | 312<br>157   | 331<br>164   | 0.011<br>0.005 | 25<br>13   | 2<br>1   |  |  |
| 3                                          | 102.00                                                              | 638          | 641          | 0.021          | 49         | 5        |  |  |
|                                            | 97.50                                                               | 931          | 874          | 0.029          | 67         | 7        |  |  |
| 3                                          | 93.00                                                               | 761          | 666          | 0.022          | 51         | ė        |  |  |
| 5                                          | 90.50                                                               | 193          | 162          | 0.005          | 12         | 1        |  |  |
| 1                                          | 88.92                                                               | 421          | 344          | 0.011          | 26         |          |  |  |
| 3                                          | 86.42                                                               | 1,002        | 785          | 0.026          | 60         |          |  |  |
| 2                                          | 83.58                                                               | 1,021        | 761          | 0.025          | 58         |          |  |  |
|                                            | 81.08                                                               | 489          | 349          | 0.011          | 27         | 4        |  |  |
| )<br>}                                     | 78.00<br>75.50                                                      | 919<br>232   | 618          | 0.020<br>0.005 | 47<br>11   | 7        |  |  |
|                                            | 72.50                                                               | 1,181        | 149<br>712   | 0.023          | 55         | 1,0      |  |  |
| 7                                          | 69.00                                                               | 480          | 269          | 0.009          | 21         | 34       |  |  |
| 5                                          | 66.50                                                               | 728          | 386          | 0.013          | 30         |          |  |  |
| 5                                          | 62.50                                                               | 1,236        | 597          | 0.019          | 46         | 1,0      |  |  |
| <b>!</b>                                   | 57.50                                                               | 1,264        | 539          | 0.018          | 41         | 1,0      |  |  |
| 3                                          | 52.50                                                               | 1,291        | 480          | 0.016          | 37         | 1,1      |  |  |
| 2                                          | 48.75                                                               | 656          | 218          | 0.007          | 17         |          |  |  |
|                                            | 46.25                                                               | 1,324        | 408          | 0.013          | 31         | 1,       |  |  |
| )                                          | 42.75<br>40.25                                                      | 2,424<br>168 | 663<br>42    | 0.022<br>0.001 | 51<br>3    | 2,0      |  |  |
|                                            | 37.50                                                               | 1,702        | 383          | 0.013          | 29         | 1,4      |  |  |
|                                            | 32.50                                                               | 1,739        | 316          | 0.010          | 24         | 1,       |  |  |
|                                            | 27.50                                                               | 1,776        | 251          | 0.008          | 19         | 1,       |  |  |
|                                            | 22.50                                                               | 1,812        | 190          | 0.006          | 15         | 1,       |  |  |
|                                            | 17.50                                                               | 1,849        | 133          | 0.004          | 10         | 1,       |  |  |
|                                            | 12.50                                                               | 1,885        | 82           | 0.003          | 6          | 1,       |  |  |
|                                            | 7.50                                                                | 1,922        | 39           | 0.001          | 3          | 1,0      |  |  |
| ecibel DB846F65ZAXY                        | 2.50<br>130.00                                                      | 1,958        | 8            | 0.000<br>0.004 | 1          | 1,0      |  |  |
| ntel LPA-80080/6CF                         | 130.00                                                              | 84<br>42     | 121          | 0.004          | 9<br>5     |          |  |  |
| at Low Profile Pla                         | 130.00                                                              | 1,500        | 61<br>2 164  | 0.071          | 444        | 4 9      |  |  |
| ZW Unused Reserve (                        | 129.00                                                              | 149          | 2,164<br>212 | 0.007          | 166<br>16  | 1,3      |  |  |
| amsung Outdoor LAA                         | 128.00                                                              | 13           | 19           | 0.001          | 1          |          |  |  |
| amsung Outdoor CBRS                        | 128.00                                                              | 56           | 79           | 0.003          | 6          |          |  |  |
| amsung B5/B13 RRH-B                        | 128.00                                                              | 211          | 297          | 0.010          | 23         |          |  |  |
| amsung B2/B66A RRH-                        | 128.00                                                              | 253          | 357          | 0.012          | 27         | ;        |  |  |
| FS DB-C1-12C-24AB-0                        | 128.00                                                              | 32           | 45           | 0.001          | 3          |          |  |  |
| uintel QS6656-5                            | 128.00                                                              | 390          | 550          | 0.018          | 42         | ;        |  |  |
| ndrew Microwaves VH<br>Icatel-Lucent 800MH | 126.00<br>125.00                                                    | 49<br>159    | 67<br>216    | 0.002<br>0.007 | 5<br>17    |          |  |  |
| Icatel-Lucent 1900M                        | 125.00                                                              | 132          | 180          | 0.007          | 14         |          |  |  |
| eneric 24" x 24" Ju                        | 125.00                                                              | 20           | 27           | 0.001          | 2          |          |  |  |
| Icatel-Lucent RRH2x                        | 120.00                                                              | 159          | 203          | 0.007          | 16         |          |  |  |
| okla 2.5G MAA - AAH                        | 120.00                                                              | 311          | 398          | 0.013          | 30         |          |  |  |
| eneric 24" x 24" Ju                        | 120.00                                                              | 20           | 26           | 0.001          | 2          |          |  |  |
| ommscope NNVV-65B-R                        |                                                                     | 232          |              |                | 23         |          |  |  |

| ite Number: 411189           | Co     | ode: ANSI/TIA-22                  | 2-G © 2 | 007 - 2020 by ATC IP LLC. AI | l rights reserve     |        |  |  |  |  |  |
|------------------------------|--------|-----------------------------------|---------|------------------------------|----------------------|--------|--|--|--|--|--|
| Site Name: CRANBURYSU CT, CT |        | Engineering Number:13198800_C3_03 |         |                              | 4/30/2020 9:48:57 PM |        |  |  |  |  |  |
| Customer: AT&T MOBILITY      |        |                                   |         |                              |                      |        |  |  |  |  |  |
| Ericsson KRY 112 71          | 110.00 | 40                                | 44      | 0.001                        | 3                    | 34     |  |  |  |  |  |
| Ericsson Radio 4449          | 110.00 | 222                               | 249     | 800.0                        | 19                   | 189    |  |  |  |  |  |
| EMS RR90-17-02DP             | 110.00 | 41                                | 46      | 0.001                        | 3                    | 34     |  |  |  |  |  |
| Ericsson AIR 21, 1.3         | 110.00 | 249                               | 280     | 0.009                        | 21                   | 21:    |  |  |  |  |  |
| Ericsson AIR-32 B2A/         | 110.00 | 397                               | 446     | 0.015                        | 34                   | 33     |  |  |  |  |  |
| RFS APXVAARR24_43-U-         | 110.00 | 384                               | 431     | 0.014                        | 33                   | 327    |  |  |  |  |  |
| Flat Low Profile Pla         | 110.00 | 1,500                             | 1,686   | 0.055                        | 129                  | 1,27   |  |  |  |  |  |
| Generic GPS                  | 107.00 | 10                                | 11      | 0.000                        | 1                    | !      |  |  |  |  |  |
| Flat Platform w/ Han         | 104.00 | 2,270                             | 2,346   | 0.077                        | 180                  | 1,93   |  |  |  |  |  |
| Kathrein Scala 860-1         | 100.00 | 7                                 | 6       | 0.000                        | 0                    |        |  |  |  |  |  |
| Kathrein Scala 860 1         | 100.00 | 3                                 | 3       | 0.000                        | 0                    |        |  |  |  |  |  |
| Generic GPS                  | 100.00 | 10                                | 10      | 0.000                        | 1                    | !      |  |  |  |  |  |
| Raycap DC6-48-60-18-         | 100.00 | 20                                | 19      | 0.001                        | 1                    | 11     |  |  |  |  |  |
| Ericsson RRUS 8843 B         | 100.00 | 216                               | 211     | 0.007                        | 16                   | 18     |  |  |  |  |  |
| Ericsson Radio 4415          | 100.00 | 129                               | 126     | 0.004                        | 10                   | 11     |  |  |  |  |  |
| Ericsson RRUS 4449 B         | 100.00 | 213                               | 208     | 0.007                        | 16                   | 18     |  |  |  |  |  |
| Raycap DC9-48-60-24-         | 100.00 | 16                                | 16      | 0.001                        | 1                    | 10     |  |  |  |  |  |
| Powerwave Allgon 777         | 100.00 | 105                               | 102     | 0.003                        | 8                    | 89     |  |  |  |  |  |
| CCI HPA-65R-BUU-H6           | 100.00 | 153                               | 149     | 0.005                        | 11                   | 13     |  |  |  |  |  |
| CCI DMP65R-BU6DA             | 100.00 | 238                               | 232     | 0.008                        | 18                   | 20:    |  |  |  |  |  |
| CCI OPA65R-BU6D              | 100.00 | 190                               | 185     | 0.006                        | 14                   | 16     |  |  |  |  |  |
| Empty Flat Low Profi         | 91.00  | 1,500                             | 1.270   | 0.041                        | 97                   | 1,27   |  |  |  |  |  |
| Generic GPS                  | 80.00  | 10                                | 7       | 0.000                        | 1                    |        |  |  |  |  |  |
| Stand-Off                    | 76.00  | 100                               | 65      | 0.002                        | 5                    | 8:     |  |  |  |  |  |
| Generic 2" x 8" GPS          | 75.00  | 20                                | 13      | 0.000                        | 1                    | 1      |  |  |  |  |  |
| Generic GPS                  | 75.00  | 10                                | 6       | 0.000                        | 0                    |        |  |  |  |  |  |
| Side Arm                     | 68.00  | 126                               | 69      | 0.002                        | 5                    | 10     |  |  |  |  |  |
| Generic GPS                  | 60.00  | 10                                | 5       | 0.000                        | 0                    | 1      |  |  |  |  |  |
|                              |        | 48,850                            | 30,614  | 1.000                        | 2,345                | 41,599 |  |  |  |  |  |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:57 PM

**Customer: AT&T MOBILITY** 

## Load Case (1.2 + 0.2Sds) \* DL + E ELFM Seismic Equivalent Lateral Forces Method

## **Calculated Forces**

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect<br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|--------------------------|-------------------|-------|
| 0.00                | -58.54                 | -2.35                  | 0.00                  | -231.95               | 0.00                  | 231.95                           | 6,793.61            | 3,396.81            | 17,163.1               | 8,594.34               | 0.00                     | 0.00              | 0.036 |
| 5.00                |                        | -2.35                  | 0.00                  | -220.22               | 0.00                  | 220.22                           |                     |                     | 16,532.0               |                        | 0.00                     | -0.01             | 0.035 |
| 10.00               | -53.79                 | -2.35                  | 0.00                  | -208.47               | 0.00                  | 208.47                           | 6,588.83            | 3,294.42            | 15,907.1               | 7,965.37               | 0.01                     | -0.01             | 0.034 |
|                     | -51.48                 | -2.35                  | 0.00                  | -196.72               | 0.00                  | 196.72                           | •                   |                     | 15,288.6               |                        | 0.03                     | -0.02             | 0.034 |
| 20.00               | -49.22                 | -2.34                  | 0.00                  | -184.99               | 0.00                  | 184.99                           | 6,375.36            | 3,187.68            | 14,676.9               | 7,349.39               | 0.06                     | -0.03             | 0.033 |
| 25.00               | -47.00                 | -2.32                  | 0.00                  | -173.31               | 0.00                  | 173.31                           | 6,265.37            | 3,132.69            | 14,072.5               | 7,046.72               | 0.09                     | -0.04             | 0.032 |
| 30.00               | -44.83                 | -2.30                  | 0.00                  | -161.71               | 0.00                  | 161.71                           | 6,153.21            | 3,076.61            | 13,475.6               | 6,747.85               | 0.13                     | -0.04             | 0.031 |
| 35.00               | <b>-42.70</b>          | -2.28                  | 0.00                  | -150.20               | 0.00                  | 150.20                           | 6,038.88            | 3,019.44            | 12,886.7               | 6,452.96               | 0.18                     | -0.05             | 0.030 |
| 40.00               | -42.49                 | -2.28                  | 0.00                  | -138.82               | 0.00                  | 138.82                           |                     |                     | 12,306.1               |                        | 0.24                     | -0.06             | 0.030 |
| 40.50               | -39.47                 | -2.22                  | 0.00                  | -137.68               | 0.00                  | 137.68                           | 5,910.61            | 2,955.30            | 12,248.5               | 6,133.39               | 0.24                     | -0.06             | 0.029 |
|                     | -37.81                 | -2.19                  | 0.00                  | -127.67               | 0.00                  | 127.67                           | •                   | -                   | 11,734.2               | -                      | 0.30                     | -0.06             | 0.028 |
|                     | -36.99                 | -2.18                  | 0.00                  | -122.18               | 0.00                  | 122.18                           |                     |                     | 8,146.29               |                        | 0.34                     | -0.07             | 0.039 |
|                     | -35.38                 | -2.14                  | 0.00                  | -116.74               | 0.00                  | 116.74                           |                     |                     | 7,963.57               |                        | 0.37                     | -0.07             | 0.038 |
| 55.00               | -33.80                 | -2.11                  | 0.00                  | -106.01               | 0.00                  | 106.01                           | 3,895.77            | 1,947.89            | 7,600.87               | 3,806.08               | 0.45                     | -0.08             | 0.037 |
|                     | -32.25                 | -2.06                  | 0.00                  | -95.48                | 0.00                  | 95.48                            | •                   | -                   | 7,242.12               | •                      | 0.54                     | -0.09             | 0.035 |
|                     | -31.34                 | -2.04                  | 0.00                  | -85.17                | 0.00                  | 85.17                            | 3,745.46            | 1,872.73            | 6,887.67               | 3,448.96               | 0.64                     | -0.10             | 0.033 |
|                     | -30.58                 | -2.01                  | 0.00                  | -79.06                | 0.00                  | 79.06                            | •                   | •                   | 6,677.23               | •                      | 0.71                     | -0.10             | 0.032 |
| 70.00               | -29.11                 | -1.96                  | 0.00                  | -75.04                | 0.00                  | 75.04                            |                     |                     | 6,537.91               |                        | 0.75                     | -0.11             | 0.031 |
|                     | -28.78                 | -1.95                  | 0.00                  | -65.25                | 0.00                  | 65.25                            |                     | •                   | 6,193.19               | •                      | 0.87                     | -0.12             | 0.029 |
|                     | -27.51                 | -1.89                  | 0.00                  | -63.31                | 0.00                  | 63.31                            |                     |                     | 6,124.88               |                        | 0.89                     | -0.12             | 0.028 |
|                     | -26.88                 | -1.87                  | 0.00                  | -55.74                | 0.00                  | 55.74                            | -                   |                     | 5,853.88               |                        | 0.99                     | -0.12             | 0.027 |
|                     | -25.61                 | -1.81                  | 0.00                  | -51.70                | 0.00                  | 51.70                            | -                   | -                   | 5,708.83               | -                      | 1.05                     | -0.13             | 0.025 |
|                     | -24.36                 | -1.75                  | 0.00                  | -46.57                | 0.00                  | 46.57                            | •                   | •                   | 5,520.34               | •                      | 1.12                     | -0.13             | 0.024 |
|                     | -23.83                 | -1.72                  | 0.00                  | -41.63                | 0.00                  | 41.63                            | •                   | •                   | 4,345.60               | •                      | 1.20                     | -0.13             | 0.028 |
|                     | -23.59                 | -1.71                  | 0.00                  | -37.90                | 0.00                  | 37.90                            | 2,665.65            | 1,332.83            | 4,237.49               | 2,121.90               | 1.26                     | -0.14             | 0.027 |
|                     | -20.77                 | -1.55                  | 0.00                  | -36.19                | 0.00                  | 36.19                            | •                   | •                   | 4,187.89               | •                      | 1.29                     | -0.14             | 0.025 |
|                     | -19.61                 | -1.49                  | 0.00                  | -29.98                | 0.00                  | 29.98                            | •                   | •                   | 3,990.97               | •                      | 1.41                     | -0.14             | 0.023 |
| 100.00              |                        | -1.34                  | 0.00                  | -22.55                | 0.00                  | 22.55                            |                     |                     | 3,748.34               |                        | 1.57                     | -0.15             | 0.019 |
| 104.00              |                        | -1.14                  | 0.00                  | -17.21                | 0.00                  | 17.21                            |                     |                     | 3,557.28               |                        | 1.69                     | -0.15             | 0.015 |
| 105.00              |                        | -1.11                  | 0.00                  | -16.07                | 0.00                  | 16.07                            | -                   | -                   | 3,509.96               | -                      | 1.72                     | -0.15             | 0.015 |
| 107.00              |                        | -1.07                  | 0.00                  | -13.85                | 0.00                  | 13.85                            |                     | -                   | 3,415.88               | -                      | 1.79                     | -0.16             | 0.013 |
| 110.00              | -8.79                  | -0.75                  | 0.00                  | -10.64                | 0.00                  | 10.64                            | •                   | •                   | 3,276.20               | •                      | 1.89                     | -0.16             | 0.010 |
| 115.00              | -7.97                  | -0.69                  | 0.00                  | -6.88                 | 0.00                  | 6.88                             | -                   |                     | 3,047.43               | •                      | 2.06                     | -0.16             | 800.0 |
| 120.00              | -4.50                  | -0.40                  | 0.00                  | -3.44                 |                       | 3.44                             | •                   | -                   | 2,823.60               | •                      | 2.23                     | -0.16             | 0.004 |
| 125.00              | -3.98                  | -0.36                  | 0.00                  | -1.42                 |                       | 1.42                             | •                   | •                   | 2,577.88               | •                      | 2.40                     | -0.16             | 0.003 |
| 126.00              | -3.66                  | -0.33                  | 0.00                  | -1.06                 |                       | 1.06                             |                     |                     | 2,530.08               |                        | 2.43                     | -0.16             | 0.003 |
| 128.00              | -2.34                  | -0.21                  | 0.00                  | -0.40                 |                       | 0.40                             | -                   | -                   | 2,435.81               | -                      | 2.50                     | -0.16             | 0.001 |
| 129.00              | -2.03                  | -0.19                  | 0.00                  | -0.19                 |                       | 0.19                             |                     |                     | 2,389.35               |                        | 2.53                     | -0.16             | 0.001 |
| 130.00              | 0.00                   | -0.18                  | 0.00                  | 0.00                  | 0.00                  | 0.00                             | 2,053.39            | 1,026.69            | 2,343.34               | 1,173.41               | 2.57                     | -0.16             | 0.000 |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:57 PM

**Customer: AT&T MOBILITY** 

## <u>Load Case</u> (0.9 - 0.2Sds) \* DL + E ELFM Seismic (Reduced DL) Equivalent Lateral Forces Method

## **Calculated Forces**

| Seg<br>Elev |                              | Vu<br>FX (-)   | Tu<br>MY     | Mu<br>MZ         | Mu<br>MX     | Resultant<br>Moment | phi<br>Pn | phi<br>Vn | phi<br>Tn            | phi<br>Mn |              | Rotation       | D. C.          |
|-------------|------------------------------|----------------|--------------|------------------|--------------|---------------------|-----------|-----------|----------------------|-----------|--------------|----------------|----------------|
| (ft)        | (kips)                       | (kips)         | (ft-kips)    | (ft-kips)        | (п-кірз)     | (ft-kips)           | (kips)    | (kips)    | (π-κips)             | (ft-kips) | (in)         | (deg)          | Ratio          |
| 0.00        | -39.93                       | -2.35          | 0.00         | -230.40          | 0.00         | 230.40              |           |           | 17,163.1             |           | 0.00         | 0.00           | 0.033          |
| 5.00        | -38.29                       | -2.35          | 0.00         | -218.68          | 0.00         | 218.68              | •         | •         | 16,532.0             | •         | 0.00         | -0.01          | 0.032          |
| 10.00       | -36.69                       | -2.34          | 0.00         | -206.94          | 0.00         | 206.94              | •         | •         | 15,907.1             | •         | 0.01         | -0.01          | 0.032          |
|             | -35.11                       | -2.34          | 0.00         | -195.22          |              | 195.22              | •         |           | 15,288.6             |           | 0.03         | -0.02          | 0.031          |
| 20.00       | -33.57                       | -2.33          | 0.00         | -183.53          | 0.00         | 183.53              | •         | •         | 14,676.9             | •         | 0.06         | -0.03          | 0.030          |
| 25.00       | -32.06                       | -2.31          | 0.00         | -171.89          | 0.00         | 171.89              | 6,265.37  | 3,132.69  | 14,072.5             | 7,046.72  | 0.09         | -0.04          | 0.030          |
|             | -30.58                       | -2.29          | 0.00         | -160.33          | 0.00         | 160.33              | •         | -         | 13,475.6             | •         | 0.13         | -0.04          | 0.029          |
|             | -29.13                       | -2.26          | 0.00         | -148.88          | 0.00         | 148.88              | •         | •         | 12,886.7             | •         | 0.18         | -0.05          | 0.028          |
| 40.00       | -28.98                       | -2.26          | 0.00         | -137.57          | 0.00         | 137.57              |           |           | 12,306.1             |           | 0.24         | -0.06          | 0.027          |
|             | -26.92                       | -2.21          | 0.00         | -136.44          | 0.00         | 136.44              |           |           | 12,248.5             |           | 0.24         | -0.06          | 0.027          |
|             | -25.79                       | -2.18          | 0.00         | -126.49          | 0.00         | 126.49              | •         | •         | 11,734.2             | •         | 0.30         | -0.06          | 0.026          |
|             | -25.23                       | -2.16          | 0.00         | -121.04          | 0.00         | 121.04              | ,         | •         | 8,146.29             | •         | 0.33         | -0.07          | 0.036          |
|             | -24.13                       | -2.13          | 0.00         | -115.63          | 0.00         | 115.63              |           |           | 7,963.57             |           | 0.37         | -0.07          | 0.035          |
|             | -23.06                       | -2.09          | 0.00         | -104.98          | 0.00         | 104.98              | •         | •         | 7,600.87             | •         | 0.45         | -0.08          | 0.034          |
|             | -22.00                       | -2.05          |              | -94.53           | 0.00         | 94.53               |           |           | 7,242.12             |           | 0.54         | -0.09          | 0.032          |
|             | -21.38                       | -2.02          | 0.00         | -84.30           | 0.00         | 84.30               | •         | •         | 6,887.67             | •         | 0.64         | -0.10          | 0.030          |
|             | -20.86                       | -1.99          | 0.00         | -78.24           | 0.00         | 78.24               | •         | -         | 6,677.23             | •         | 0.70         | -0.10          | 0.029          |
|             | -19.85                       | -1.94          | 0.00         | -74.26           | 0.00         | 74.26               |           |           | 6,537.91             |           | 0.74         | -0.11          | 0.028          |
|             | -19.63                       | -1.93          | 0.00         | -64.57           | 0.00         | 64.57               | •         | -         | 6,193.19             | •         | 0.86         | -0.11          | 0.026          |
|             | -18.76                       | -1.87          | 0.00         | -62.64           | 0.00         | 62.64               | •         | •         | 6,124.88             | •         | 0.88         | -0.12<br>-0.12 | 0.026<br>0.024 |
|             | -18.34<br>-17.47             | -1.85<br>-1.79 | 0.00<br>0.00 | -55.14<br>-51.15 | 0.00<br>0.00 | 55.14<br>51.15      |           |           | 5,853.88<br>5,708.83 |           | 0.98<br>1.04 | -0.12<br>-0.13 | 0.024          |
|             |                              | -1.73          | 0.00         | -46.07           | 0.00         | 46.07               | -         | -         | 5,520.34             | -         | 1.11         | -0.13<br>-0.13 | 0.023          |
|             | -16.61<br>-16.26             | -1.73<br>-1.70 |              | -40.07<br>-41.18 | 0.00         | 41.18               | •         | -         | 4,345.60             | -         | 1.11         | -0.13<br>-0.13 | 0.022          |
|             | -16.2 <del>6</del><br>-16.09 | -1.70<br>-1.69 | 0.00         | -41.16<br>-37.49 | 0.00         | 41.16<br>37.49      |           |           | 4,237.49             | -         | 1.19         | -0.13<br>-0.14 | 0.025          |
|             | -14.17                       | -1.54          | 0.00         | -37.49           | 0.00         | 37.49<br>35.80      |           | •         | 4,187.89             | -         | 1.28         | -0.14          | 0.024          |
| -           | -13.37                       | -1.47          | 0.00         | -29.65           | 0.00         | 29.65               | •         |           | 3,990.97             | •         | 1.40         | -0.14          | 0.022          |
| 100.00      |                              | -1.32          |              | -22.30           | 0.00         | 22.30               | •         | •         | 3,748.34             | -         | 1.55         | -0.15          | 0.017          |
| 104.00      | -9.66                        | -1.12          |              | -17.02           | 0.00         | 17.02               |           |           | 3,557.28             |           | 1.68         | -0.15          | 0.013          |
| 105.00      | -9.39                        | -1.10          |              | -15.90           | 0.00         | 15.90               | •         |           | 3,509.96             | -         | 1.71         | -0.15          | 0.013          |
| 107.00      | -8.99                        | -1.06          |              | -13.70           |              | 13.70               | -         | -         | 3,415.88             | -         | 1.77         | -0.15          | 0.012          |
| 110.00      | -6.00                        | -0.74          |              | -10.53           |              | 10.53               |           |           | 3,276.20             |           | 1.87         | -0.16          | 0.009          |
| 115.00      | -5.43                        | -0.68          |              | -6.81            |              | 6.81                | •         | •         | 3,047.43             | -         | 2.04         | -0.16          | 0.007          |
| 120.00      | -3.07                        | -0.40          | 0.00         | -3.41            |              | 3.41                | •         | -         | 2,823.60             | -         | 2.21         | -0.16          | 0.004          |
| 125.00      | -2.71                        | -0.36          |              | -1.41            |              | 1.41                |           |           | 2,577.88             |           | 2.37         | -0.16          | 0.002          |
| 126.00      | -2.49                        | -0.33          |              | -1.05            |              | 1.05                |           |           | 2,530.08             |           | 2.41         | -0.16          | 0.002          |
| 128.00      | -1.60                        | -0.21          | 0.00         | -0.39            | 0.00         | 0.39                |           |           | 2,435.81             |           | 2.48         | -0.16          | 0.001          |
| 129.00      | -1.38                        | -0.18          | 0.00         | -0.18            | 0.00         | 0.18                |           |           | 2,389.35             |           | 2.51         | -0.16          | 0.001          |
| 130.00      | 0.00                         | -0.18          | 0.00         | 0.00             | 0.00         | 0.00                | 2,053.39  | 1,026.69  | 2,343.34             | 1,173.41  | 2.54         | -0.16          | 0.000          |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:57 PM

**Customer: AT&T MOBILITY** 

## **Equivalent Modal Analysis Method**

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

| Spectral Response Acceleration for Short Period (S                             | 0.23 |
|--------------------------------------------------------------------------------|------|
| Spectral Response Acceleration at 1.0 Second Period (S 1):                     | 0.07 |
| Importance Factor (I E):                                                       | 1.00 |
| Site Coefficient F a:                                                          | 1.60 |
| Site Coefficient F v                                                           | 2.40 |
| Response Modification Coefficient (R):                                         | 1.50 |
| Design Spectral Response Acceleration at Short Period (S ds):                  | 0.24 |
| Desing Spectral Response Acceleration at 1.0 Second Period (S <sub>d1</sub> ): | 0.11 |
| Period Based on Rayleigh Method (sec):                                         | 1.49 |
| Redundancy Factor (p):                                                         | 1.00 |

## <u>Load Case (1.2 + 0.2Sds) \* DL + E EMAM</u> Seismic Equivalent Modal Analysis Method

|         | Height<br>Above<br>Base | Weight |       |        |       |        | Horizontal<br>Force | Vertical<br>Force |
|---------|-------------------------|--------|-------|--------|-------|--------|---------------------|-------------------|
| Segment | (ft)                    | (lb)   | a     | b      | С     | Saz    | (lb)                | (lb)              |
| 38      | 129.50                  | 99     | 1.875 | 1.904  | 1.113 | 0.457  | 30                  | 124               |
| 37      | 128.50                  | 100    | 1.847 | 1.759  | 1.060 | 0.434  | 29                  | 125               |
| 36      | 127.00                  | 210    | 1.804 | 1.556  | 0.984 | 0.401  | 56                  | 262               |
| 35      | 125.50                  | 106    | 1.761 | 1.369  | 0.912 | 0.369  | 26                  | 133               |
| 34      | 122.50                  | 555    | 1.678 | 1.041  | 0.782 | 0.309  | 114                 | 693               |
| 33      | 117.50                  | 663    | 1.544 | 0.615  | 0.597 | 0.220  | 97                  | 827               |
| 32      | 112.50                  | 685    | 1.415 | 0.314  | 0.448 | 0.145  | 66                  | 856               |
| 31      | 108.50                  | 460    | 1.317 | 0.144  | 0.351 | 0.095  | 29                  | 574               |
| 30      | 106.00                  | 312    | 1.257 | 0.065  | 0.299 | 0.068  | 14                  | 389               |
| 29      | 104.50                  | 157    | 1.221 | 0.026  | 0.271 | 0.054  | 6                   | 196               |
| 28      | 102.00                  | 638    | 1.164 | -0.027 | 0.229 | 0.033  | 14                  | 797               |
| 27      | 97.50                   | 931    | 1.063 | -0.088 | 0.165 | 0.003  | 2                   | 1,162             |
| 26      | 93.00                   | 761    | 0.967 | -0.117 | 0.116 | -0.017 | -8                  | 950               |
| 25      | 90.50                   | 193    | 0.916 | -0.121 | 0.094 | -0.023 | -3                  | 240               |
| 24      | 88.92                   | 421    | 0.884 | -0.121 | 0.081 | -0.025 | -7                  | 526               |
| 23      | 86.42                   | 1,002  | 0.835 | -0.117 | 0.064 | -0.027 | -18                 | 1,251             |
| 22      | 83.58                   | 1,021  | 0.781 | -0.108 | 0.049 | -0.026 | -17                 | 1,275             |
| 21      | 81.08                   | 489    | 0.735 | -0.097 | 0.037 | -0.022 | -7                  | 611               |
| 20      | 78.00                   | 919    | 0.680 | -0.081 | 0.026 | -0.015 | -9                  | 1,147             |
| 19      | 75.50                   | 232    | 0.637 | -0.066 | 0.019 | -0.007 | -1                  | 290               |
| 18      | 72.50                   | 1,181  | 0.588 | -0.049 | 0.013 | 0.003  | 2                   | 1,474             |
| 17      | 69.00                   | 480    | 0.532 | -0.028 | 0.009 | 0.015  | 5                   | 599               |
| 16      | 66.50                   | 728    | 0.495 | -0.014 | 0.007 | 0.023  | 11                  | 909               |
| 15      | 62.50                   | 1,236  | 0.437 | 0.006  | 0.006 | 0.035  | 29                  | 1,543             |
| 14      | 57.50                   | 1,264  | 0.370 | 0.027  | 0.008 | 0.047  | 39                  | 1,578             |
| 13      | 52.50                   | 1,291  | 0.308 | 0.043  | 0.012 | 0.054  | 47                  | 1,612             |
| 12      | 48.75                   | 656    | 0.266 | 0.052  | 0.015 | 0.057  | 25                  | 819               |
| 11      | 46.25                   | 1,324  | 0.239 | 0.057  | 0.018 | 0.058  | 51                  | 1,653             |
| 10      | 42.75                   | 2,424  | 0.204 | 0.062  | 0.023 | 0.058  | 94                  | 3,026             |
| 9       | 40.25                   | 168    | 0.181 | 0.065  | 0.026 | 0.058  | 7                   | 210               |
| 8       | 37.50                   | 1,702  | 0.157 | 0.067  | 0.029 | 0.057  | 65                  | 2,125             |
| 7       | 32.50                   | 1,739  | 0.118 | 0.070  | 0.035 | 0.056  | 64                  | 2,171             |
| 6       | 27.50                   | 1,776  | 0.085 | 0.071  | 0.039 | 0.054  | 63                  | 2,217             |
| 5       | 22.50                   | 1,812  | 0.057 | 0.071  | 0.042 | 0.051  | 62                  | 2,262             |

| e Number: 411189<br>Site Name: CRANBURY      | SU CT, C1        | ī              | Engineering    | Code: A<br>Number:1 | -                          | C. All rights reso<br>2020 9:48:57 |                 |                |
|----------------------------------------------|------------------|----------------|----------------|---------------------|----------------------------|------------------------------------|-----------------|----------------|
| Customer: AT&T MOBI                          | LITY             |                |                |                     |                            |                                    |                 |                |
| 4<br>3                                       | 17.50<br>12.50   | 1,849<br>1,885 | 0.034<br>0.017 | 0.069<br>0.062      | 0.041<br>0.037             | 0.049<br>0.044                     | 60<br>55        | 2,308<br>2,354 |
| 2                                            | 7.50             | 1,922          | 0.006          | 0.002               | 0.027                      | 0.035                              | 44              | 2,399          |
| <u> </u>                                     | 2.50             | 1,958          | 0.001          | 0.021               | 0.011                      | 0.016                              | 21              | 2,445          |
| Decibel DB846F65ZAXY                         | 130.00           | 84             | 1.890          | 1.980               | 1.140                      | 0.469                              | 26              | 105            |
| Antel LPA-80080/6CF                          | 130.00           | 42             | 1.890          | 1.980               | 1.140                      | 0.469                              | 13              | 52             |
| Flat Low Profile Pla                         | 130.00           | 1,500          | 1.890          | 1.980               | 1.140                      | 0.469                              | 469             | 1,873          |
| VZW Unused Reserve (                         | 129.00           | 149            | 1.861          | 1.831               | 1.08 <del>6</del><br>1.034 | 0.446                              | 44              | 186            |
| Samsung Outdoor LAA<br>Samsung Outdoor       | 128.00<br>128.00 | 13<br>56       | 1.832<br>1.832 | 1.689<br>1.689      | 1.034                      | 0.423<br>0.423                     | 4<br>16         | 16<br>70       |
| Samsung B5/B13 RRH-B                         | 128.00           | 211            | 1.832          | 1.689               | 1.034                      | 0.423                              | 59              | 263            |
| Samsung B2/B66A RRH-                         | 128.00           | 253            | 1.832          | 1.689               | 1.034                      | 0.423                              | 71              | 316            |
| RFS DB-C1-12C-24AB-0                         | 128.00           | 32             | 1.832          | 1.689               | 1.034                      | 0.423                              | 9               | 40             |
| Quintel QS6656-5                             | 128.00           | 390            | 1.832          | 1.689               | 1.034                      | 0.423                              | 110             | 487            |
| Andrew Microwaves                            | 126.00           | 49             | 1.775          | 1.429               | 0.936                      | 0.380                              | 12              | 61             |
| Alcatel-Lucent 800MH                         | 125.00           | 159            | 1.747          | 1.310               | 0.889                      | 0.359                              | 38              | 198            |
| Alcatel-Lucent 1900M<br>Generic 24" x 24" Ju | 125.00<br>125.00 | 132<br>20      | 1.747<br>1.747 | 1.310<br>1.310      | 0.889<br>0.889             | 0.359<br>0.359                     | 32<br>5         | 165<br>25      |
| Alcatel-Lucent RRH2x                         | 120.00           | 159            | 1.610          | 0.811               | 0.684                      | 0.355                              | 28              | 198            |
| Nokia 2.5G MAA - AAH                         | 120.00           | 311            | 1.610          | 0.811               | 0.684                      | 0.263                              | 54              | 388            |
| Generic 24" x 24" Ju                         | 120.00           | 20             | 1.610          | 0.811               | 0.684                      | 0.263                              | 4               | 25             |
| Commscope NNVV-                              | 120.00           | 232            | 1.610          | 0.811               | 0.684                      | 0.263                              | 41              | 290            |
| Flat Low Profile Pla                         | 120.00           | 1,500          | 1.610          | 0.811               | 0.684                      | 0.263                              | 263             | 1,873          |
| Ericsson KRY 112 71                          | 110.00           | 40             | 1.353          | 0.201               | 0.385                      | 0.113                              | 3               | 49             |
| Ericsson Radio 4449                          | 110.00           | 222            | 1.353          | 0.201               | 0.385                      | 0.113                              | 17              | 277            |
| EMS RR90-17-02DP                             | 110.00           | 41             | 1.353          | 0.201               | 0.385                      | 0.113                              | 3               | 51             |
| Ericsson AIR 21, 1.3                         | 110.00           | 249            | 1.353          | 0.201               | 0.385<br>0.385             | 0.113                              | 19              | 311            |
| Ericsson AIR-32 B2A/<br>RFS APXVAARR24 43-U- | 110.00<br>110.00 | 397<br>384     | 1.353<br>1.353 | 0.201<br>0.201      | 0.385                      | 0.113<br>0.113                     | 30<br>29        | 495<br>479     |
| Flat Low Profile Pla                         | 110.00           | 1,500          | 1.353          | 0.201               | 0.385                      | 0.113                              | 113             | 1,873          |
| Generic GPS                                  | 107.00           | 10             | 1.280          | 0.094               | 0.319                      | 0.079                              | 1               | 12             |
| Flat Platform w/ Han                         | 104.00           | 2,270          | 1.210          | 0.014               | 0.262                      | 0.049                              | 75              | 2,834          |
| Kathrein Scala 860-1                         | 100.00           | 7              | 1.118          | -0.059              | 0.198                      | 0.018                              | 0               | 8              |
| Kathrein Scala 860 1                         | 100.00           | 3              | 1.118          | -0.059              | 0.198                      | 0.018                              | 0               | 4              |
| Generic GPS                                  | 100.00           | 10             | 1.118          | -0.059              | 0.198                      | 0.018                              | 0               | 12             |
| Raycap DC6-48-60-18-<br>Ericsson RRUS 8843 B | 100.00<br>100.00 | 20<br>216      | 1.118<br>1.118 | -0.059<br>-0.059    | 0.198<br>0.198             | 0.018<br>0.018                     | 0<br>3          | 25<br>270      |
| Ericsson Radio 4415                          | 100.00           | 129            | 1.118          | -0.059              | 0.198                      | 0.018                              | 2               | 161            |
| Ericsson RRUS 4449 B                         | 100.00           | 213            | 1.118          | -0.059              | 0.198                      | 0.018                              | 3               | 266            |
| Raycap DC9-48-60-24-                         | 100.00           | 16             | 1.118          | -0.059              | 0.198                      | 0.018                              | Ŏ               | 20             |
| Powerwave Allgon 777                         | 100.00           | 105            | 1.118          | -0.059              | 0.198                      | 0.018                              | 1               | 131            |
| CCI HPA-65R-BUU-H6                           | 100.00           | 153            | 1.118          | -0.059              | 0.198                      | 0.018                              | 2               | 191            |
| CCI DMP65R-BU6DA                             | 100.00           | 238            | 1.118          | -0.059              | 0.198                      | 0.018                              | 3               | 297            |
| CCI OPA65R-BU6D<br>Empty Flat Low Profi      | 100.00<br>91.00  | 190<br>1,500   | 1.118<br>0.926 | -0.059<br>-0.121    | 0.198<br>0.098             | 0.018<br>-0.022                    | 2<br>-22        | 237<br>4 973   |
| Empty Flat Low Profi<br>Generic GPS          | 91.00<br>80.00   | 1,500          | 0.926<br>0.716 | -0.121<br>-0.092    | 0.033                      | -0.022<br>-0.020                   | -22<br>0        | 1,873<br>12    |
| Stand-Off                                    | 76.00            | 100            | 0.646          | -0.069              | 0.021                      | -0.020                             | -1              | 125            |
| Generic 2" x 8" GPS                          | 75.00            | 20             | 0.629          | -0.063              | 0.018                      | -0.006                             | 0               | 25             |
| Generic GPS                                  | 75.00            | 10             | 0.629          | -0.063              | 0.018                      | -0.006                             | 0               | 12             |
| Side Arm                                     | 68.00            | 126            | 0.517          | -0.022              | 0.008                      | 0.018                              | 2               | 157            |
| Generic GPS                                  | 60.00            | 10             | 0.403          | 0.017               | 0.006                      | 0.042                              | 0               | 12             |
|                                              |                  | 48,850         | 91.921         | 36.268              | 31.685                     | 11.489                             | 2,739           | 60,985         |
| ad Case (0.9 - 0.2Sds                        | s) * DL + I      | EEMAM          | Seismic (Re    | educed D            | L) Equivale                | ent Modal                          | Analysis Method |                |
|                                              | Height           |                |                |                     |                            |                                    |                 |                |
|                                              | Above<br>Base    | Walek          |                |                     |                            |                                    | Horizontal      | Vertical       |
| 4                                            |                  | Weight         |                |                     |                            | 0                                  | Force           | Force          |
| egment                                       | (ft)             | (lb)           | a              | ь                   | C .                        | Saz                                | (lb)            | (lb)           |
|                                              |                  |                |                |                     |                            |                                    |                 |                |

| ite Number: 411189                           |                  |                |                |                  | NSI/TIA-22     |                            | 7 - 2020 by ATC IP L | LC. All rights reser |
|----------------------------------------------|------------------|----------------|----------------|------------------|----------------|----------------------------|----------------------|----------------------|
| Site Name: CRANBURY                          | SU CT, CT        |                | Engineering I  | Number:13        | 3198800_0      | 3_03                       | 4/3                  | 0/2020 9:48:57 F     |
| Customer: AT&T MOBII                         | LITY             |                |                |                  |                |                            |                      | 24                   |
| 36                                           | 127.00           | 210            | 1.804          | 1.556            | 0.984          | 0.401                      | 56                   | 179                  |
| 35                                           | 125.50           | 106            | 1.761          | 1.369            | 0.912          | 0.369                      | 26                   | 91                   |
| 34<br>33                                     | 122.50<br>117.50 | 555<br>663     | 1.678<br>1.544 | 1.041<br>0.615   | 0.782<br>0.597 | 0.30 <del>9</del><br>0.220 | 114<br>97            | 472<br>564           |
| 32                                           | 117.50           | 685            | 1.415          | 0.314            | 0.448          | 0.145                      | 66                   | 584                  |
| 31                                           | 108.50           | 460            | 1.317          | 0.144            | 0.351          | 0.095                      | 29                   | 392                  |
| 30                                           | 106.00           | 312            | 1.257          | 0.065            | 0.299          | 0.068                      | 14                   | 265                  |
| 29                                           | 104.50           | 157            | 1.221          | 0.026            | 0.271          | 0.054                      | 6                    | 134                  |
| 28                                           | 102.00           | 638            | 1.164          | -0.027           | 0.229          | 0.033                      | 14                   | 543                  |
| 27                                           | 97.50            | 931            | 1.063          | -0.088           | 0.165          | 0.003                      | 2                    | 793                  |
| 26                                           | 93.00            | 761<br>403     | 0.967          | -0.117           | 0.116          | -0.017                     | -8                   | 648                  |
| 25<br>24                                     | 90.50<br>88.92   | 193<br>421     | 0.916<br>0.884 | -0.121<br>-0.121 | 0.094<br>0.081 | -0.023                     | -3<br>-7             | 164                  |
| 23                                           | 86.42            | 1,002          | 0.835          | -0.121<br>-0.117 | 0.064          | -0.025<br>-0.027           | - <i>,</i><br>-18    | 359<br>854           |
| 22                                           | 83.58            | 1,002          | 0.781          | -0.108           | 0.049          | -0.027                     | -16<br>-17           | 869                  |
| 21                                           | 81.08            | 489            | 0.735          | -0.097           | 0.037          | -0.022                     | -17<br>-7            | 417                  |
| 20                                           | 78.00            | 919            | 0.680          | -0.081           | 0.026          | -0.015                     | -9                   | 782                  |
| 19                                           | 75.50            | 232            | 0.637          | -0.066           | 0.019          | -0.007                     | -1                   | 198                  |
| 18                                           | 72.50            | 1,181          | 0.588          | -0.049           | 0.013          | 0.003                      | 2                    | 1,006                |
| 17                                           | 69.00            | 480            | 0.532          | -0.028           | 0.009          | 0.015                      | 5                    | 409                  |
| 16                                           | 66.50            | 728            | 0.495          | -0.014           | 0.007          | 0.023                      | 11                   | 620                  |
| 15                                           | 62.50            | 1,236          | 0.437          | 0.006            | 0.006          | 0.035                      | 29                   | 1,052                |
| 14<br>13                                     | 57.50<br>52.50   | 1,264<br>1,291 | 0.370<br>0.308 | 0.027<br>0.043   | 0.008<br>0.012 | 0.047<br>0.054             | 39<br>47             | 1,076<br>1,100       |
| 12                                           | 48.75            | 656            | 0.266          | 0.052            | 0.015          | 0.057                      | 25                   | 559                  |
| 11                                           | 46.25            | 1,324          | 0.239          | 0.057            | 0.018          | 0.058                      | 51                   | 1,127                |
| 10                                           | 42.75            | 2,424          | 0.204          | 0.062            | 0.023          | 0.058                      | 94                   | 2,064                |
| 9                                            | 40.25            | 168            | 0.181          | 0.065            | 0.026          | 0.058                      | 7                    | 143                  |
| 8                                            | 37.50            | 1,702          | 0.157          | 0.067            | 0.029          | 0.057                      | 65                   | 1,450                |
| 7                                            | 32.50            | 1,739          | 0.118          | 0.070            | 0.035          | 0.056                      | 64                   | 1,481                |
| 6                                            | 27.50            | 1,776          | 0.085          | 0.071            | 0.039<br>0.042 | 0.054                      | 63                   | 1,512                |
| 5<br>4                                       | 22.50            | 1,812          | 0.057          | 0.071            | 0.042          | 0.051                      | 62                   | 1,543                |
| 3                                            | 17.50<br>12.50   | 1,849<br>1,885 | 0.034<br>0.017 | 0.069<br>0.062   | 0.037          | 0.049<br>0.044             | 60<br>55             | 1,574                |
| 2                                            | 7.50             | 1,922          | 0.006          | 0.048            | 0.027          | 0.035                      | 44                   | 1,605<br>1,637       |
| 1                                            | 2.50             | 1,958          | 0.001          | 0.021            | 0.011          | 0.016                      | 21                   | 1,668                |
| Decibel DB846F65ZAXY                         | 130.00           | 84             | 1.890          | 1.980            | 1.140          | 0.469                      | 26                   | 72                   |
| Antel LPA-80080/6CF                          | 130.00           | 42             | 1.890          | 1.980            | 1.140          | 0.469                      | 13                   | 36                   |
| Flat Low Profile Pla                         | 130.00           | 1,500          | 1.890          | 1.980            | 1.140          | 0.469                      | 469                  | 1,277                |
| VZW Unused Reserve (                         | 129.00           | 149            | 1.861          | 1.831            | 1.086          | 0.446                      | 44                   | 127                  |
| Samsung Outdoor LAA                          | 128.00           | 13             | 1.832          | 1.689            | 1.034          | 0.423                      | 4                    | 11                   |
| Samsung Outdoor                              | 128.00<br>128.00 | 56             | 1.832          | 1.689            | 1.034<br>1.034 | 0.423                      | 16                   | 48                   |
| Samsung B5/B13 RRH-B<br>Samsung B2/B66A RRH- | 128.00           | 211<br>253     | 1.832<br>1.832 | 1.689<br>1.689   | 1.034          | 0.423<br>0.423             | 59<br>71             | 180<br>216           |
| RFS DB-C1-12C-24AB-0                         | 128.00           | 32             | 1.832          | 1.689            | 1.034          | 0.423                      | 9                    | 27                   |
| Quintel QS6656-5                             | 128.00           | 390            | 1.832          | 1.689            | 1.034          | 0.423                      | 110                  | 332                  |
| Andrew Microwaves                            | 126.00           | 49             | 1.775          | 1.429            | 0.936          | 0.380                      | 12                   | 42                   |
| Alcatel-Lucent 800MH                         | 125.00           | 159            | 1.747          | 1.310            | 0.889          | 0.359                      | 38                   | 135                  |
| Alcatel-Lucent 1900M                         | 125.00           | 132            | 1.747          | 1.310            | 0.889          | 0.359                      | 32                   | 112                  |
| Generic 24" x 24" Ju                         | 125.00           | 20             | 1.747          | 1.310            | 0.889<br>0.684 | 0.359                      | 5                    | 17                   |
| Alcatel-Lucent RRH2x                         | 120.00           | 159            | 1.610          | 0.811            | 0.684          | 0.263                      | 28                   | 135                  |
| Nokia 2.5G MAA - AAH<br>Generic 24" x 24" Ju | 120.00<br>120.00 | 311<br>20      | 1.610<br>1.610 | 0.811<br>0.811   | 0.684          | 0.263<br>0.263             | 54<br>4              | 265<br>17            |
| Commscope NNVV-                              | 120.00           | 232            | 1.610          | 0.811            | 0.684          | 0.263                      | 41                   | 198                  |
| Flat Low Profile Pla                         | 120.00           | 1,500          | 1.610          | 0.811            | 0.684          | 0.263                      | 263                  | 1,277                |
| Ericsson KRY 112 71                          | 110.00           | 40             | 1.353          | 0.201            | 0.385          | 0.113                      | 3                    | 34                   |
| Ericsson Radio 4449                          | 110.00           | 222            | 1.353          | 0.201            | 0.385          | 0.113                      | 17                   | 189                  |
| EMS RR90-17-02DP                             | 110.00           | 41             | 1.353          | 0.201            | 0.385          | 0.113                      | 3                    | 34                   |
| Ericsson AIR 21, 1.3                         | 110.00           | 249            | 1.353          | 0.201            | 0.385          | 0.113                      | 19                   | 212                  |
| Ericsson AIR-32 B2A/                         | 110.00           | 397            | 1.353          | 0.201            | 0.385          | 0.113                      | 30                   | 338                  |
| RFS APXVAARR24_43-U-                         | 110.00           | 384            | 1.353          | 0.201            | 0.385          | 0.113                      | 29                   | 327                  |
| Fiat Low Profile Pla                         | 110.00           | 1,500          | 1.353          | 0.201            | 0.385          | 0.113                      | 113                  | 1,277                |
| Generic GPS<br>Flat Platform w/ Han          | 107.00<br>104.00 | 10<br>2,270    | 1.280<br>1.210 | 0.094<br>0.014   | 0.319<br>0.262 | 0.079<br>0.049             | 1<br>75              | 9<br>1,933           |

| ite Number: 411189   |            |        |             | Code: ANSI/TIA-222-G @ 2007 - 2020 by ATC |            |        |       |                    |  |  |
|----------------------|------------|--------|-------------|-------------------------------------------|------------|--------|-------|--------------------|--|--|
| Site Name: CRANBUR   | YSU CT, CT |        | Engineering | Number:1                                  | 3198800_C3 | 3_03   | 4/    | 30/2020 9:48:57 PN |  |  |
| Customer: AT&T MOB   | ILITY      |        |             |                                           |            |        |       |                    |  |  |
| Kathrein Scala 860-1 | 100.00     | 7      | 1.118       | -0.059                                    | 0.198      | 0.018  | 0     | 6                  |  |  |
| Kathrein Scala 860 1 | 100.00     | 3      | 1.118       | -0.059                                    | 0.198      | 0.018  | 0     | 3                  |  |  |
| Generic GPS          | 100.00     | 10     | 1.118       | -0.059                                    | 0.198      | 0.018  | 0     | 9                  |  |  |
| Raycap DC6-48-60-18- | 100.00     | 20     | 1.118       | -0.059                                    | 0.198      | 0.018  | 0     | 17                 |  |  |
| Ericsson RRUS 8843 B | 100.00     | 216    | 1.118       | -0.059                                    | 0.198      | 0.018  | 3     | 184                |  |  |
| Ericsson Radio 4415  | 100.00     | 129    | 1.118       | -0.059                                    | 0.198      | 0.018  | 2     | 110                |  |  |
| Ericsson RRUS 4449 B | 100.00     | 213    | 1.118       | -0.059                                    | 0.198      | 0.018  | 3     | 181                |  |  |
| Raycap DC9-48-60-24- | 100.00     | 16     | 1.118       | -0.059                                    | 0.198      | 0.018  | 0     | 14                 |  |  |
| Powerwave Aligon 777 | 100.00     | 105    | 1.118       | -0.059                                    | 0.198      | 0.018  | 1     | 89                 |  |  |
| CCI HPA-65R-BUU-H6   | 100.00     | 153    | 1.118       | -0.059                                    | 0.198      | 0.018  | 2     | 130                |  |  |
| CCI DMP65R-BU6DA     | 100.00     | 238    | 1.118       | -0.059                                    | 0.198      | 0.018  | 3     | 203                |  |  |
| CCI OPA65R-BU6D      | 100.00     | 190    | 1.118       | -0.059                                    | 0.198      | 0.018  | 2     | 161                |  |  |
| Empty Flat Low Profi | 91.00      | 1,500  | 0.926       | -0.121                                    | 0.098      | -0.022 | -22   | 1,277              |  |  |
| Generic GPS          | 80.00      | 10     | 0.716       | -0.092                                    | 0.033      | -0.020 | 0     | 9                  |  |  |
| Stand-Off            | 76.00      | 100    | 0.646       | -0.069                                    | 0.021      | -0.009 | -1    | 85                 |  |  |
| Generic 2" x 8" GPS  | 75.00      | 20     | 0.629       | -0.063                                    | 0.018      | -0.006 | Ó     | 17                 |  |  |
| Generic GPS          | 75.00      | 10     | 0.629       | -0.063                                    | 0.018      | -0.006 | Ŏ     | 9                  |  |  |
| Side Arm             | 68.00      | 126    | 0.517       | -0.022                                    | 0.008      | 0.018  | 2     | 107                |  |  |
| Generic GPS          | 60.00      | 10     | 0.403       | 0.017                                     | 0.006      | 0.042  | 0     | 9                  |  |  |
|                      |            | 48,850 | 91.921      | 36.268                                    | 31.685     | 11.489 | 2,739 | 41,599             |  |  |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:57 PM

**Customer: AT&T MOBILITY** 

## <u>Load Case</u> (1.2 + 0.2Sds) \* DL + E EMAM Seismic Equivalent Modal Analysis Method

## **Calculated Forces**

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips | phi<br>Vn<br>) (kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect<br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|--------------------|-----------------------|------------------------|------------------------|--------------------------|-------------------|-------|
| 0.00                | -58.54                 | -2.72                  | 0.00                  | -275.52               | 0.00                  | 275.52                           | 6,793.6            | 1 3,396.81            | 17,163.17              | 8,594.34               | 0.00                     | 0.00              | 0.041 |
| 5.00                | -56.14                 | -2.69                  | 0.00                  | -261.92               | 0.00                  | 261.92                           |                    | 1 3,346.15            |                        |                        | 0.00                     | -0.01             | 0.040 |
| 10.00               | -53.79                 | -2.64                  | 0.00                  | -248.49               | 0.00                  | 248.49                           | 6,588.8            | 3 3,294.42            | 15,907.10              | 7,965.37               | 0.02                     | -0.02             | 0.039 |
| 15.00               | -51.48                 | -2.58                  | 0.00                  | -235.30               | 0.00                  | 235.30                           | 6,483.1            | 3,241.59              | 15,288.61              | 7,655.67               | 0.04                     | -0.02             | 0.039 |
| 20.00               | -49.22                 | -2.53                  | 0.00                  | -222.38               | 0.00                  | 222.38                           | 6,375.3            | 3,187.68              | 14,676.96              | 7,349.39               | 0.07                     | -0.03             | 0.038 |
| 25.00               | -47.00                 | -2.47                  | 0.00                  | -209.73               | 0.00                  | 209.73                           | 6,265.3            | 7 3,132.69            | 14,072.53              | 7,046.72               | 0.11                     | -0.04             | 0.037 |
| 30.00               | -44.83                 | -2.41                  | 0.00                  | -197.38               | 0.00                  | 197.38                           | 6,153.2            | 1 3,076.61            | 13,475.67              | 6,747.85               | 0.16                     | -0.05             | 0.037 |
| 35.00               | -42.70                 | -2.35                  | 0.00                  | -185.32               |                       | 185.32                           |                    | 3,019.44              |                        |                        | 0.22                     | -0.06             | 0.036 |
| 40.00               | -42.49                 | -2.35                  | 0.00                  | -173.56               | 0.00                  | 173.56                           | 5,922.3            | 3 2,961.19            | 12,306.16              | 6,162.22               | 0.28                     | -0.07             | 0.035 |
| 40.50               | -39.47                 | -2.25                  | 0.00                  | -172.39               | 0.00                  | 172.39                           | 5,910.6            | 1 2,955.30            | 12,248.57              | 6,133.39               | 0.29                     | -0.07             | 0.035 |
| 45.00               | -37.81                 | -2.20                  | 0.00                  | -162.24               |                       | 162.24                           | •                  | 2,901.85              | -                      | *                      | 0.36                     | -0.08             | 0.034 |
| 47.50               | -36.99                 | -2.18                  | 0.00                  | -156.73               | 0.00                  | 156.73                           |                    | I 2,001.40            |                        |                        | 0.40                     | -0.08             | 0.048 |
| 50.00               | -35.38                 | -2.14                  | 0.00                  | -151.28               | 0.00                  | 151.28                           |                    | 7 1,983.84            |                        |                        | 0.45                     | -0.09             | 0.047 |
| 55.00               | -33.80                 | -2.10                  | 0.00                  | -140.59               | 0.00                  | 140.59                           | 3,895.7            | 7 1,947.89            | 7,600.87               | 3,806.08               | 0.55                     | -0.10             | 0.046 |
| 60.00               | -32.25                 | -2.08                  | 0.00                  | -130.08               | 0.00                  | 130.08                           |                    | 1,910.85              |                        |                        | 0.66                     | -0.11             | 0.044 |
| 65.00               | -31.34                 | -2.07                  | 0.00                  | -119.69               | 0.00                  | 119.69                           |                    | 1,872.73              |                        |                        | 0.78                     | -0.12             | 0.043 |
| 68.00               | -30.58                 | -2.06                  | 0.00                  | -113.48               | 0.00                  | 113.48                           |                    | 7 1,849.34            |                        |                        | 0.86                     | -0.13             | 0.042 |
| 70.00               | -29.11                 | -2.06                  | 0.00                  | -109.35               | 0.00                  | 109.35                           |                    | 5 1,833.52            | •                      | -                      | 0.92                     | -0.14             | 0.041 |
| 75.00               | -28.78                 | -2.07                  | 0.00                  | -99.03                | 0.00                  | 99.03                            | •                  | 5 1,793.23            | •                      |                        | 1.07                     | -0.15             | 0.040 |
| 76.00               | -27.51                 | -2.08                  | 0.00                  | -96.96                | 0.00                  | 96.96                            | •                  | 1,785.04              | •                      | •                      | 1.10                     | -0.15             | 0.039 |
| 80.00               | -26.88                 | -2.09                  | 0.00                  | -88.66                | 0.00                  | 88.66                            |                    | l 1,751.85            | •                      | •                      | 1.23                     | -0.16             | 0.038 |
| 82.16               | -25.61                 | -2.10                  | 0.00                  | -84.14                | 0.00                  | 84.14                            |                    | 3 1,733.61            | -                      | -                      | 1.30                     | -0.17             | 0.037 |
| 85.00               | -24.36                 | -2.12                  | 0.00                  | -78.18                | 0.00                  | 78.18                            | •                  | 3 1,709.39            |                        | •                      | 1.40                     | -0.17             | 0.035 |
| 87.83               | -23.83                 | -2.13                  | 0.00                  | -72.18                | 0.00                  | 72.18                            |                    | 5 1,346.23            |                        |                        | 1.51                     | -0.18             | 0.042 |
| 90.00               | -23.59                 | -2.13                  | 0.00                  | -67.56                | 0.00                  | 67.56                            | 2,665.6            | 5 1,332.83            | 4,237.49               | 2,121.90               | 1.59                     | -0.18             | 0.041 |
| 91.00               | -20.77                 | -2.16                  | 0.00                  | -65.43                | 0.00                  | 65.43                            |                    | 3 1,326.58            |                        |                        | 1.63                     | -0.19             | 0.039 |
| 95.00               | -19.60                 | -2.15                  | 0.00                  | -56.81                | 0.00                  | 56.81                            |                    | 1,301.17              |                        |                        | 1.79                     | -0.20             | 0.036 |
| 100.00              | -17.18                 | -2.12                  | 0.00                  | -46.05                | 0.00                  | 46.05                            |                    | 3 1,268.43            |                        |                        | 2.00                     | -0.21             | 0.031 |
| 104.00              | -14.15                 | -2.03                  | 0.00                  | -37.57                | 0.00                  | 37.57                            |                    | 2 1,241.46            | -                      | -                      | 2.18                     | -0.22             | 0.027 |
| 105.00              | -13.76                 | -2.01                  | 0.00                  | -35.55                | 0.00                  | 35.55                            |                    | l 1,234.61            |                        |                        | 2.22                     | -0.22             | 0.026 |
| 107.00              | -13.18                 | -1.98                  | 0.00                  | -31.52                | 0.00                  | 31.52                            |                    | 1,220.77              |                        |                        | 2.31                     | -0.22             | 0.024 |
| 110.00              | -8.79                  | -1.69                  | 0.00                  | -25.58                | 0.00                  | 25.58                            |                    | 1,199.69              |                        |                        | 2.45                     | -0.23             | 0.019 |
| 115.00              | -7.96                  | -1.59                  | 0.00                  | -17.15                | 0.00                  | 17.15                            | 2,327.3            | 1,163.70              | 3,047.43               | 1,525.98               | 2.69                     | -0.23             | 0.015 |
| 120.00              | -4.50                  | -1.07                  | 0.00                  | -9.22                 |                       | 9.22                             | •                  | 1,126.45              | •                      | •                      | 2.94                     | -0.24             | 0.009 |
| 125.00              | -3.98                  | -0.97                  | 0.00                  | -3.87                 |                       | 3.87                             | -                  | 1,076.57              | •                      | -                      | 3.19                     | -0.24             | 0.005 |
| 126.00              | -3.65                  | -0.90                  | 0.00                  | -2.90                 |                       | 2.90                             | •                  | 1,066.60              | -                      | •                      | 3.24                     | -0.24             | 0.004 |
| 128.00              | -2.34                  | -0.59                  | 0.00                  | -1.11                 | 0.00                  | 1.11                             | -                  | 1,046.64              | •                      | •                      | 3.34                     | -0.24             | 0.002 |
| 129.00              | -2.03                  | -0.52                  | 0.00                  | -0.52                 |                       | 0.52                             |                    | 1,036.67              |                        |                        | 3.39                     | -0.24             | 0.001 |
| 130.00              | 0.00                   | -0.51                  | 0.00                  | 0.00                  | 0.00                  | 0.00                             | 2,053.3            | 1,026.69              | 2,343.34               | 1,173.41               | 3.44                     | -0.24             | 0.000 |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:58 PM

**Customer: AT&T MOBILITY** 

# <u>Load Case</u> (0.9 - 0.2Sds) \* DL + E EMAM Seismic (Reduced DL) Equivalent Modal Analysis Method Calculated Forces

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect<br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|--------------------------|-------------------|-------|
| 0.00                | -39.93                 | -2.72                  | 0.00                  | -273.52               | 0.00                  | 273.52                           | 6,793.61            | 3,396.81            | 17,163.17              | 8,594.34               | 0.00                     | 0.00              | 0.038 |
| 5.00                | -38.29                 | -2.68                  | 0.00                  | -259.92               | 0.00                  | 259.92                           | 6,692.31            | 3,346.15            | 16,532.08              | 8,278.33               | 0.00                     | -0.01             | 0.037 |
| 10.00               | -36.69                 | -2.63                  | 0.00                  | -246.51               | 0.00                  | 246.51                           | 6,588.83            | 3,294.42            | 15,907.10              | 7,965.37               | 0.02                     | -0.02             | 0.037 |
| 15.00               | -35.11                 | -2.58                  | 0.00                  | -233.36               | 0.00                  | 233.36                           | 6,483.18            | 3,241.59            | 15,288.61              | 7,655.67               | 0.04                     | -0.02             | 0.036 |
| 20.00               | -33.57                 | -2.52                  | 0.00                  | -220.48               | 0.00                  | 220.48                           | 6,375.36            | 3,187.68            | 14,676.96              | 7,349.39               | 0.07                     | -0.03             | 0.035 |
| 25.00               | -32.06                 | -2.46                  | 0.00                  | -207.88               | 0.00                  | 207.88                           | 6,265.37            | 3,132.69            | 14,072.53              | 7,046.72               | 0.11                     | -0.04             | 0.035 |
| 30.00               | -30.58                 | -2.40                  | 0.00                  | -195.59               | 0.00                  | 195.59                           | 6,153.21            | 3,076.61            | 13,475.67              | 6,747.85               | 0.16                     | -0.05             | 0.034 |
| 35.00               | -29.13                 | -2.34                  | 0.00                  | -183.60               | 0.00                  | 183.60                           | 6,038.88            | 3,019.44            | 12,886.76              | 6,452.96               | 0.22                     | -0.06             | 0.033 |
| 40.00               | -28.98                 | -2.33                  | 0.00                  | -171.92               | 0.00                  | 171.92                           |                     |                     | 12,306.16              |                        | 0.28                     | -0.07             | 0.033 |
| 40.50               | -26.92                 | -2.24                  | 0.00                  | -170.75               | 0.00                  | 170.75                           |                     |                     | 12,248.57              |                        | 0.29                     | -0.07             | 0.032 |
| 45.00               | -25.79                 | -2.19                  | 0.00                  | -160.69               | 0.00                  | 160.69                           | •                   | •                   | 11,734.22              | •                      | 0.36                     | -0.08             | 0.032 |
| 47.50               | -25.23                 | -2.16                  | 0.00                  | -155.22               |                       | 155.22                           | •                   | •                   | 8,146.29               | -                      | 0.40                     | -0.08             | 0.044 |
| 50.00               | -24.13                 | -2.12                  | 0.00                  | -149.81               | 0.00                  | 149.81                           |                     |                     | 7,963.57               | -                      | 0.45                     | -0.09             | 0.044 |
| 55.00               | -23.06                 | -2.08                  | 0.00                  | -139.21               | 0.00                  | 139.21                           | =                   | -                   | 7,600.87               | •                      | 0.54                     | -0.10             | 0.042 |
| 60.00               | -22.00                 | -2.06                  | 0.00                  | -128.80               | 0.00                  | 128.80                           | •                   | •                   | 7,242.12               | •                      | 0.65                     | -0.11             | 0.041 |
| 65.00               | -21.37                 | -2.05                  | 0.00                  | -118.52               |                       | 118.52                           |                     | -                   | 6,887.67               | •                      | 0.77                     | -0.12             | 0.040 |
| 68.00               | -20.86                 | -2.04                  | 0.00                  | -112.38               | 0.00                  | 112.38                           |                     |                     | 6,677.23               |                        | 0.85                     | -0.13             | 0.039 |
| 70.00               | -19.85                 | -2.04                  | 0.00                  | -108.30               | 0.00                  | 108.30                           |                     |                     | 6,537.91               |                        | 0.91                     | -0.13             | 0.038 |
| 75.00               | -19.63                 | -2.04                  | 0.00                  | -98.10                | 0.00                  | 98.10                            | •                   | -                   | 6,193.19               | -                      | 1.06                     | -0.15             | 0.037 |
| 76.00               | -18.76                 | -2.05                  | 0.00                  | -96.05                | 0.00                  | 96.05                            | •                   | -                   | 6,124.88               | •                      | 1.09                     | -0.15             | 0.037 |
| 80.00               | -18.34                 | -2.06                  | 0.00                  | -87.84                | 0.00                  | 87.84                            |                     |                     | 5,853.88               |                        | 1.22                     | -0.16             | 0.035 |
| 82.16               | -17.47                 | -2.08                  | 0.00                  | -83.38                | 0.00                  | 83.38                            |                     |                     | 5,708.83               |                        | 1.29                     | -0.16             | 0.034 |
| 85.00               | -16.61                 | -2.10                  | 0.00                  | -77.49                | 0.00                  | 77.49                            | •                   | •                   | 5,520.34               | -                      | 1.39                     | -0.17             | 0.033 |
| 87.83               | -16.25                 | -2.10                  | 0.00                  | -71.56                | 0.00                  | 71.56                            |                     |                     | 4,345.60               |                        | 1.49                     | -0.18             | 0.039 |
| 90.00               | -16.09                 | -2.11                  | 0.00                  | -66.99                | 0.00                  | 66.99                            |                     |                     | 4,237.49               |                        | 1.57                     | -0.18             | 0.038 |
| 91.00               | -14.16                 | -2.13                  | 0.00                  | -64.89                | 0.00                  | 64.89                            |                     |                     | 4,187.89               |                        | 1.61                     | -0.18             | 0.036 |
| 95.00               | -13.37                 | -2.13                  | 0.00                  | -56.36                | 0.00                  | 56.36                            | -                   | -                   | 3,990.97               | •                      | 1.77                     | -0.19             | 0.033 |
| 100.00              | -11.72                 | -2.10                  | 0.00                  | -45.70                | 0.00                  | 45.70                            |                     |                     | 3,748.34               |                        | 1.98                     | -0.21             | 0.029 |
| 104.00              | -9.65                  | -2.01                  | 0.00                  | -37.31                | 0.00                  | 37.31                            |                     |                     | 3,557.28               |                        | 2.16                     | -0.21             | 0.025 |
| 105.00              | -9.39                  | -2.00                  | 0.00                  | -35.30                | 0.00                  | 35.30                            |                     |                     | 3,509.96               |                        | 2.20                     | -0.22             | 0.024 |
| 107.00              | -8.99                  | -1.96                  | 0.00                  | -31.31                | 0.00                  | 31.31                            |                     |                     | 3,415.88               |                        | 2.29                     | -0.22             | 0.022 |
| 110.00              | -5.99                  | -1.67                  | 0.00                  | -25.42                |                       | 25.42                            |                     |                     | 3,276.20               |                        | 2.43                     | -0.22             | 0.018 |
| 115.00              | -5.43                  | -1.58                  | 0.00                  | -17.04                |                       | 17.04                            | -                   | -                   | 3,047.43               | •                      | 2.67                     | -0.23             | 0.014 |
| 120.00              | -3.07                  | -1.06                  | 0.00                  | -9.16                 |                       | 9.16                             |                     |                     | 2,823.60               |                        | 2.91                     | -0.23             | 0.008 |
| 125.00              | -2.71                  | -0.96                  | 0.00                  | -3.85                 |                       | 3.85                             |                     |                     | 2,577.88               |                        | 3.16                     | -0.24             | 0.004 |
| 126.00              | -2.49<br>1.50          | -0.89                  | 0.00                  | -2.89                 |                       | 2.89                             |                     | •                   | 2,530.08               | •                      | 3.21                     | -0.24             | 0.003 |
| 128.00              | -1.59                  | -0.59                  | 0.00                  | -1.10                 |                       | 1.10                             | -                   | -                   | 2,435.81               |                        | 3.31                     | -0.24             | 0.002 |
| 129.00              | -1.38                  | -0.51                  | 0.00                  | -0.51                 |                       | 0.51                             |                     |                     | 2,389.35               |                        | 3.36                     | -0.24             | 0.001 |
| 130.00              | 0.00                   | -0.51                  | 0.00                  | 0.00                  | 0.00                  | 0.00                             | 2,053.39            | 7,026.69            | 2,343.34               | 7,7/3.41               | 3.41                     | -0.24             | 0.000 |

Code: ANSI/TIA-222-G

© 2007 - 2020 by ATC IP LLC. All rights reserved.

Site Name: CRANBURYSU CT, CT

Engineering Number:13198800\_C3\_03

4/30/2020 9:48:58 PM

**Customer: AT&T MOBILITY** 

## **Analysis Summary**

|                               |                       |                       | Rea                   |                           | Max Usage                 |                           |       |                     |
|-------------------------------|-----------------------|-----------------------|-----------------------|---------------------------|---------------------------|---------------------------|-------|---------------------|
| Load Case                     | Shear<br>FX<br>(kips) | Shear<br>FZ<br>(kips) | Axial<br>FY<br>(kips) | Moment<br>MX<br>(ft-kips) | Moment<br>MY<br>(ft-kips) | Moment<br>MZ<br>(ft-kips) |       | nteraction<br>Ratio |
| 1.2D + 1.6W                   | 25.99                 | 0.00                  | 58.60                 | 0.00                      | 0.00                      | 2513.09                   | 47.50 | 0.34                |
| 0.9D + 1.6W                   | 25.98                 | 0.00                  | 43.95                 | 0.00                      | 0.00                      | 2499.43                   | 47.50 | 0.34                |
| 1.2D + 1.0Di + 1.0Wi          | 8.13                  | 0.00                  | 98.93                 | 0.00                      | 0.00                      | 761.85                    | 47.50 | 0.12                |
| (1.2 + 0.2\$ds) * DL + E ELFM | 2.35                  | 0.00                  | 58.54                 | 0.00                      | 0.00                      | 231.95                    | 47.50 | 0.04                |
| (1.2 + 0.2Sds) * DL + E EMAM  | 2.72                  | 0.00                  | 58.54                 | 0.00                      | 0.00                      | 275.52                    | 47.50 | 0.05                |
| (0.9 - 0.2Sds) * DL + E ELFM  | 2.35                  | 0.00                  | 39.93                 | 0.00                      | 0.00                      | 230.40                    | 47.50 | 0.04                |
| (0.9 - 0.2Sds) * DL + E EMAM  | 2.72                  | 0.00                  | 39.93                 | 0.00                      | 0.00                      | 273.52                    | 47.50 | 0.04                |
| 1.0D + 1.0W                   | 6.05                  | 0.00                  | 48.85                 | 0.00                      | 0.00                      | 582.84                    | 47.50 | 0.08                |

Site Name:

CRANBURYSU CT, CT

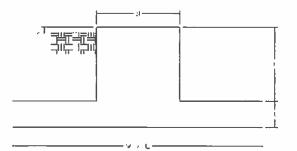
Site Number:

411189 MP

Tower Type:

Design Loads (Factored) - Analysis per TIA-222-G Standards

## Monolithic Mat & Pier Foundation Analysis


| Foundation Analysis Parame                 | ters     |      |
|--------------------------------------------|----------|------|
| Design / Analysis / Mapping:               | Analysis | 9    |
| Compression/Leg:                           | 58.6     | k    |
| Uplift/Leg:                                | 0.0      | k    |
| Total Shear:                               | 26.0     | k    |
| Moment:                                    | 2,513.1  | k-ft |
| Tower + Appurtenance Weight:               | 58.6     | k    |
| Depth to Base of Foundation (I + t - h):   | 4.5      | ft   |
| Diameter of Pier (d):                      | 8        | ft   |
| Length of Pier (I):                        | 2.5      | ft   |
| Height of Pier above Ground (h):           | 1.5      | ft   |
| Width of Pad (W):                          | 29.5     | ft   |
| Length of Pad (L):                         | 29.5     | ft   |
| Thickness of Pad (t):                      | 3        | ft   |
| Tower Leg Center to Center:                | 0        | ft   |
| Number of Tower Legs:                      | 1        |      |
| Tower Center from Mat Center:              | 0        | ft   |
| Depth Below Ground Surface to Water Table: | 6        | ft   |
| Unit Weight of Concrete:                   | 150      | pcf  |
| Unit Weight of Soil Above Water Table:     | 100      | pcf  |
| Unit Weight of Water:                      | 62.4     | pcf  |
| Unit Weight of Soil Below Water Table:     | 37.6     | pcf  |
| Friction Angle of Uplift:                  | 15       |      |
| Coefficient of Shear Friction:             | 0.6      |      |
| Ultimate Compressive Bearing Pressure:     | 6,000    | psf  |
| Ultimate Passive Pressure on Pad Face:     | 0        | psf  |
| Soll and Concrete Weight                   | 0.9      | 1    |
| f <sub>Soil</sub> :                        | 0.75     |      |

| Overturning Moment Usage     |        |      |
|------------------------------|--------|------|
| Design OTM:                  | 2656.0 | k-ft |
| OTM Resistance:              | 7945.3 | k-ft |
| Design OTM / OTM Resistance: | 33%    | Pass |

| Soil Bearing Pressure Usage                        | 77.1     |             |
|----------------------------------------------------|----------|-------------|
| Net Bearing Pressure:                              | 1186     | psf         |
| Factored Nominal Bearing Pressure:                 | 4500     | psf         |
| Factored Nominal (Net) Bearing Pressure:           | 26%      | Pass        |
| Load Direction Controling Design Bearing Pressure: | Diagonal | to Pod Edge |

| Sliding Factor of Safe                | ty    |      |
|---------------------------------------|-------|------|
| Ultimate Friction Resistance:         | 349.4 | k    |
| Ultimate Passive Pressure Resistance: | 0.0   | k    |
| Total Factored Sliding Resistance:    | 262.0 | k    |
| Sliding Design / Sliding Resistance:  | 10%   | Pass |

| Foundation Steel Paramet         | ers    |                 |
|----------------------------------|--------|-----------------|
| Concrete Strength (f'c):         | 4,000  | psi             |
| Pad Tension Steel Depth:         | 32.0   | in              |
| Dead Load Factor:                | 0.9    |                 |
| f <sub>Shear</sub> :             | 0.75   |                 |
| f <sub>Flexure / Tension</sub> : | 0.9    | -               |
| f <sub>Compression:</sub>        | 0.65   | 1               |
| b:                               | 0.85   |                 |
| Bottom Pad Rebar Size #:         | 8      | g-              |
| # of Bottom Pad Rebar:           | 44     | <u>-</u>        |
| Pad Bottom Steel Area:           | 34.76  | in <sup>2</sup> |
| Pad Steel F <sub>y</sub> :       | 60,000 | psi             |
| Top Pad Rebar Size #:            | 8      | §-              |
| # of Top Pad Rebar:              | 28     | k <del>-</del>  |
| Pad Top Steel Area:              | 22.12  | in <sup>2</sup> |
| Pier Rebar Síze #:               | 8      | Q-              |
| Pier Steel Area (Single Bar):    | 0.79   | in <sup>2</sup> |
| # of Pier Rebar:                 | 44     | 6               |
| Pier Steel F <sub>y</sub> :      | 60,000 | psi             |
| Pier Cage Diameter:              | 88.0   | in              |
| Rebar Strain Limit:              | 0.008  | -               |
| Steel Elastic Modulus:           | 29,000 | ksi             |
| Tie Rebar Size #:                | 4      | ¥-              |
| Tie Steel Area (Single Bar):     | 0.20   | in <sup>2</sup> |
| Tie Spacing:                     | 8      | in              |
| Tie Steel F <sub>y</sub> :       | 60,000 | psi             |

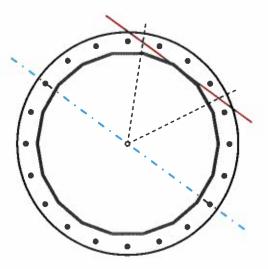


| Pad Strength Capacity                                             |             |          |                                                      |
|-------------------------------------------------------------------|-------------|----------|------------------------------------------------------|
| Factored One Way Shear (V <sub>u</sub> ):                         | 189.2       | k        |                                                      |
| One Way Shear Capacity (fV <sub>c</sub> ):                        | 1074.7      | k        | ACI11.3.1.1                                          |
| V <sub>u</sub> /fV <sub>c</sub> :                                 | 18%         | Pass     |                                                      |
| Load Direction Controling Shear Capacity:                         | Parallel to | Pad Edge |                                                      |
| Lower Steel Pad Factored Moment (Mu):                             | 1385.0      | k-ft     | 7.                                                   |
| Lower Steel Pad Moment Capacity (fM <sub>n</sub> ):               | 4890.2      | k-ft     | ACI10.3                                              |
| M <sub>u</sub> / fM <sub>n</sub> :                                | 28%         | Pass     |                                                      |
| Load Direction Controling Flexural Capacity:                      | Parallel to | Pad Edge |                                                      |
| Upper Steel Pad Factored Moment (Mu):                             | 599.0       | k-ft     |                                                      |
| Upper Steel Pad Moment Capacity (fM <sub>n</sub> ):               | 3138.6      | k-ft     |                                                      |
| M <sub>u</sub> / fM <sub>n</sub> :                                | 19%         | Pass     |                                                      |
| Lower Pad Flexural Reinforcement Ratio:                           | 0.0031      | 1        | OK - Minimum Reinforcement Ratio Met - ACI10.5.1     |
| Upper Pad Flexural Reinforcement Ratio:                           | 0.0020      |          | OK - Minimum Reinforcement Ratio Met - ACI10.5.1     |
| Pad Shrinkage Reinforcement Ratio:                                | 0.0050      |          | OK - Shrinkage Reinforcement Ratio Met - ACI7.12.2.1 |
| Lower Pad Reinforcement Spacing:                                  | 8           | in       | Pad Reinforcing Spacing OK - ACI7.12.2.2 & 10.5.4    |
| Upper Pad Reinforcement Spacing:                                  | 13          | in       | Pad Reinforcing Spacing OK - ACI7.12.2.2 & 10.5.4    |
| Factored Punching Shear (V <sub>u</sub> ):                        | 2.6         | k        |                                                      |
| Nominal Punching Shear Capacity (f <sub>c</sub> V <sub>n</sub> ): | 2441.5      | k        | ACI11.12.2.1                                         |
| V <sub>u</sub> / fV <sub>c</sub> :                                | 0%          | Pass     |                                                      |

| Pier Strength Capacity                           |         |      | · ·                                           |
|--------------------------------------------------|---------|------|-----------------------------------------------|
| Factored Moment in Pier (M <sub>u</sub> ):       | 2578.1  | k-ft | <del>-</del>                                  |
| Pier Moment Capacity (fM <sub>n</sub> ):         | 6730.8  | k-ft |                                               |
| M <sub>u</sub> / fM <sub>n</sub> :               | 38%     | Pass |                                               |
| Factored Shear in Pier (V <sub>u</sub> ):        | 26.0    | k    | _                                             |
| Pier Shear Capacity (fV <sub>n</sub> ):          | 862,3   | k    |                                               |
| V <sub>u</sub> / fV <sub>c</sub> :               | 3%      | Pass |                                               |
| Pier Shear Reinforcement Ratio:                  | 0.0003  |      | OK - No Ties Necessary for Shear - ACI11.5.6. |
| Factored Tension in Pier (T <sub>u</sub> ):      | 0.0     | k    |                                               |
| Pier Tension Capacity (fT <sub>n</sub> ):        | 1877.0  | k    |                                               |
| T <sub>u</sub> / fT <sub>n</sub> :               | 0%      | Pass |                                               |
| Factored Compression in Pier (P <sub>u</sub> ):  | 58.6    | k    | <del>-</del> 5                                |
| Pier Compression Capacity (fP <sub>n</sub> ):    | 12735.7 | k    | ACI10.3.6.2                                   |
| P <sub>u</sub> / fP <sub>n</sub> :               | 0%      | Pass |                                               |
| Minimum Depth to Develop Vertical Rebar:         | 19      | in   | ACI12.2 3                                     |
| Minimum Hook Development Length:                 | 14      | in   | ACI12.5                                       |
| Minimum Mat Thickness / Edge Distance from Pier: | 17.0    | in   |                                               |
| Minimum Foundation Depth:                        | 2.77    | ft   |                                               |
| $M_u/f_8M_n + T_u/f_TT_n$ :                      | 38%     | Pass |                                               |



## Base Plate & Anchor Rod Analysis


| Pole Dimensions    |     |          |  |  |
|--------------------|-----|----------|--|--|
| Number of Sides    | 18  | <u> </u> |  |  |
| Diameter           | 62  | in       |  |  |
| Thickness          | 1/2 | in       |  |  |
| Orientation Offset | 0   | ii .     |  |  |

| Base Reactions |        |          |  |
|----------------|--------|----------|--|
| Moment, Mu     | 2513.1 | k-ft     |  |
| Axial, Pu      | 58.6   | k        |  |
| Shear, Vu      | 26.0   | k        |  |
| Neutral Axis   | 324    | <b>1</b> |  |

| Report      | Report Capacities         |           |  |  |  |  |  |
|-------------|---------------------------|-----------|--|--|--|--|--|
| Component   | Component Capacity Result |           |  |  |  |  |  |
| Base Plate  | 28%                       | Pass      |  |  |  |  |  |
| Anchor Rods | 35%                       | Pass      |  |  |  |  |  |
| Dwyidag     | TO THE SECOND             | 10.00 YES |  |  |  |  |  |

| Base                 | Plate  |          |  |
|----------------------|--------|----------|--|
| Shape                | Round  | 96<br>95 |  |
| Diameter, ø          | 77     | in       |  |
| Thickness            | 2      | in       |  |
| Grade                | A5     | 72-60    |  |
| Yield Strength, Fy   | 60 ksi |          |  |
| Tensile Strength, Fu | 75     | ksi      |  |
| Clip                 | N/A    | in       |  |
| Orientation Offset   | 0      | §•       |  |
| Anchor Rod Detail    | d      | η=0.5    |  |
| Clear Distance       | 3      | in       |  |
| Applied Moment, Mu   | 550.2  | k        |  |
| Bending Stress, &Mn  | 1981.0 | k        |  |

| Original A           | nchor Rods |       |
|----------------------|------------|-------|
| Arrangement          | Radial     | ű-    |
| Quantity             | 20         |       |
| Diameter, ø          | 2 1/4      | in    |
| Bolt Circle          | 71         | in    |
| Grade                | A6         | 15-75 |
| Yield Strength, Fy   | 75         | ksi   |
| Tensile Strength, Fu | 100        | ksi   |
| Spacing              | 11.2       | in    |
| Orlentation Offset   | 0          | •     |
| Applied Force, Pu    | 90.8       | k     |
| Anchor Rods, φPn     | 259.8      | k     |



## <u>Calculations for Monopole Base Plate & Anchor Rod Analysis</u>

## **Reaction Distribution**

| Reaction                      | Shear<br>Vu | Moment<br>Mu | Factor |
|-------------------------------|-------------|--------------|--------|
|                               | k           | k-ft         |        |
| Base Forces                   | 26.0        | 2513.1       | 1.00   |
| Anchor Rod Forces             | 26.0        | 2513.1       | 1.00   |
| Additional Bolt (Grp1) Forces |             | Sec.         |        |
| Additional Bolt (Grp2) Forces |             |              | 2084   |
| Dywidag Forces                |             |              |        |
| Stiffener Forces              |             |              |        |

## Geometric Properties

| Section   | Gross<br>Area   | Net Area        | Individual<br>Inertia | Threads<br>per Inch | Moment<br>of Inertia |
|-----------|-----------------|-----------------|-----------------------|---------------------|----------------------|
| -         | in <sup>2</sup> | in <sup>2</sup> | in <sup>4</sup>       |                     | in <sup>4</sup>      |
| Pole      | 96.1143         | 5.3397          | 0.4468                |                     | 45449.07             |
| Bolt      | 3.9761          | 3.2477          | 0.8393                | 4.5                 | 38253.38             |
| Bolt1     |                 |                 |                       |                     |                      |
| Bolt2     |                 |                 |                       | uks                 |                      |
| Dywidag   |                 |                 |                       |                     |                      |
| Stiffener |                 |                 |                       |                     |                      |

| Base Plate           |        |     |
|----------------------|--------|-----|
| Shape                | Round  | -   |
| Diameter, D          | 77     | in  |
| Thickness, t         | 2      | in  |
| Yield Strength, Fy   | 60     | ksi |
| Tensile Strength, Fu | 75     | ksi |
| Base Plate Chord     | 45.662 | in  |
| Detail Type          | d      | -   |
| Detail Factor        | 0.50   | -   |
| Clear Distance       | 3      |     |

| Anchor Rods                     |       |     |
|---------------------------------|-------|-----|
| Anchor Rod Quantity, N          | 20    | -   |
| Rod Diameter, d                 | 2.25  | in  |
| Bolt Circle, BC                 | 71    | in  |
| Yield Strength, Fy              | 75    | ksi |
| Tensile Strength, Fu            | 100   | ksi |
| Applied Axial, Pu               | 90.8  | k   |
| Applied Shear, Vu               | 0.6   | k   |
| Compressive Capacity, $\phi$ Pn | 259.8 | k   |
| Tensile Capacity, <b>¢</b> Rnt  | 0.349 | OK  |
| Interaction Capacity            | 0.354 | QΚ  |

| External Base Plate           |        |                 |  |  |  |
|-------------------------------|--------|-----------------|--|--|--|
| Chord Length AA               | 39.079 | in              |  |  |  |
| Additional AA                 | 4.000  | in              |  |  |  |
| Section Modulus, Z            | 43.079 | in <sup>3</sup> |  |  |  |
| Applied Moment, Mu            | 550.2  | k-ft            |  |  |  |
| Bending Capacity, <b>\$Mn</b> | 2326.3 | k-ft            |  |  |  |
| Capacity, Mu/фМп              | 0.237  | ОК              |  |  |  |
| Chord Length AB               | 37,506 | in              |  |  |  |
| Additional AB                 | 4.000  | in              |  |  |  |
| Section Modulus, Z            | 41.506 | in <sup>3</sup> |  |  |  |
| Applied Moment, Mu            | 423.6  | k-ft            |  |  |  |
| Bending Capacity, &Mn         | 2241.3 | k-ft            |  |  |  |
| Capacity, Mu/фMn              | 0.189  | ОК              |  |  |  |
| Bend Line Length              | 36.686 | in              |  |  |  |
| Additional Bend Line          | 0.000  | in              |  |  |  |
| Section Modulus, Z            | 36,686 | in <sup>3</sup> |  |  |  |
| Applied Moment, Mu            | 550.2  | k-ft            |  |  |  |

| _                           |        |                 |  |  |  |  |
|-----------------------------|--------|-----------------|--|--|--|--|
| Additional Bend Line        | 0.000  | in              |  |  |  |  |
| Section Modulus, Z          | 36,686 | in <sup>3</sup> |  |  |  |  |
| Applied Moment, Mu          | 550.2  | k-ft            |  |  |  |  |
| Bending Capacity, &Mn       | 1981.0 | k-ft            |  |  |  |  |
| Capacity, Mu/фMn            | 0.278  | OK              |  |  |  |  |
|                             |        |                 |  |  |  |  |
| Internal Base Plate         |        |                 |  |  |  |  |
| Arc Length                  | 0.000  | in              |  |  |  |  |
| Section Modulus, Z          | 0.000  | in <sup>3</sup> |  |  |  |  |
| Moment Arm                  | 0.000  | in              |  |  |  |  |
| Applied Moment, Mu          | 0.0    | k-ft            |  |  |  |  |
| Bending Capacity, $\phi$ Mn | 0.0    | k-fi            |  |  |  |  |
| Capacity, Mu/фMn            |        |                 |  |  |  |  |
|                             |        |                 |  |  |  |  |



#### DEPARTMENT OF ADMINISTRATIVE SERVICES

June 18, 2020

Brendan Smith, P.E. American Tower Corporation 3500 Regency Parkway, Suite 100 Cary, NC 27518

I-20-07

Re: Interpretation of 2018 State Building Code – Communication Tower Structural Design

Mr. Smith,

You requested a formal interpretation regarding the requirements of section 3108 and 1609 of the 2015 International Building Code portion of the 2018 Connecticut State Building Code which states:

3108.1 General. Towers shall be designed and constructed in accordance with the provisions of TIA-222. Towers shall be designed for seismic loads; exceptions related to seismic design listed in Section 2.7.3 of TIA-222 shall not apply. In Section 2.6.6.2 of TIA 222, the horizontal extent of Topographic Category 2, escarpments, shall be 16 times the height of the escarpment.

1609.1.1 Determination of wind loads. Wind loads on every building or structure shall be determined in accordance with chapters 26 to 30 of ASCE 7 or provisions of the alternate all-heights method in Section 1609.6. The type of opening protection required, the ultimate design wind speed, Vult, and the exposure category for a site is permitted to be determined in accordance with Section 1609 or ASCE 7. Wind shall be assumed to come from any horizontal direction and wind pressures shall be assumed to act normal to the surface considered. Exceptions:

5. Designs using TIA-222 for antenna-supporting structures and antennas, provided the horizontal extent of Topographic Category 2 escarpments in Section 2.6.6.2 of TIA-222 shall be 16 times the height of the escarpment.

#### **Question 1:**

Would an installation done to the TIA-222-H standard be compliant under the current State Building Code?

#### Answer 1:

Yes. The 2015 International Building Code references TIA-222-G plus several amendments. TIA-222-H is an updated version of the TIA-222-G standard and is the reference standard in the 2018 International Building Code. Designs complying with the updated standard would be deemed to comply with the current code.

Affirmative Action/Equal Opportunity Employer



#### DEPARTMENT OF ADMINISTRATIVE SERVICES

## **Question 2:**

If TIA-222-H is compliant under the current State Building Code, is the use of ASCE 7-16 Wind Speeds, as referenced by TIA-222-H, compliant? Or does CT have specific wind and ice parameters that must be utilized?

## Answer 2:

Per 1609.1.1 exception 5, telecommunication towers may be designed to TIA-222 with conditions. Since TIA-222-H is a compliant design standard and references ASCE-7-16, the parameters found in that standard may be utilized.

Sincerely,

Joseph V. Cassidy, P.E. State Building Inspector

buch

Cc: Darren Hobbs, Deputy State Building Inspector