JULIE D. KOHLER

PLEASE REPLY TO:
WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com

March 11, 2015

Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 Radio Communications Corporation/T-Mobile equipment upgrade
 T-Mobile Site ID CT11193A
 24 Rockdale Road, West Haven CT

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Radio Communications Corporation owns the existing telecommunications tower and related facility at 24 Rockdale Road, West Haven Connecticut (latitude 41.290701/ longitude -72.967606). T-Mobile intends to replace three (3) antennas and add related equipment at this existing facility in West Haven ("West Haven Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Mayor, Scott D. Jackson. Radio Communications Corporation is also the property owner.

The existing West Haven Facility consists of a 180 foot tower. ${ }^{1}$ T-Mobile plans to replace three (3) antennas and add three (3) RRU's (remote radio units) mounted on the tower at a centerline of 135 feet. (See the plans revised to February 27, 2015 attached hereto as Exhibit A). The existing West Haven Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated February 24, 2015 and attached hereto as Exhibit B.

[^0]March 11, 2015
Site ID CT11193A
Page 2
The planned modifications to the West Haven Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's replacement antennas and additional equipment will be installed at the 135 foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. T-Mobile does not propose to modify the compound area and therefore will not require an extension of the site boundaries.
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement and additional antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated March 4, 2015 T-Mobile's operations would add 7.25% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 93.30% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the West Haven Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

[^1]EXHIBIT A

STRUCTURAL ANALYSIS REPORT

For
T. - Mobile*
I ranscend Wireless
10 Industrial Ave, Suite 3
Mahwah, NJ 07430
West Haven
KM No. 140910.01
180' Self Support Tower
West Haven, CT

Prepared By:

KM CONSULTING ENGINEERS, INC.

32 West Upper Ferry Rd, Ewing, NJ 08628
Ph: (609) 538-0400 www.kmengr.com

February 24, 2015

Prepared to EIA/TIA-222-F June 1996
Structural Standards for Antenna Supporting Structures and Antennas

Transcend Wireless West Haven

TABLE OF CONTENTS

SECTION PAGE
1.0 EXECUTIVE SUMMARY 3
2.0 TOWER INVENTORY 4
3.0 COMMENTARY 5
4.0 ANALYSIS PROCEDURE 6
5.0 TOWER ANALYSIS RESULT 7
6.0 RECOMMENDATION. 8
6.0 APPENDIX 9
Load Case No. 1: Existing tower superstructure with existing inventory and proposed TMobile installation.

1.0 EXECUTIVE SUMMARY

Structure

Tower Manager: Radio Communications, Inc.

Location:	24 Rockdale Road
	West Haven, CT 06516
Manufacturer:	Rohn

Equipment

Existing tower inventory plus the proposed installation are detailed in Section 2.0 "Tower Inventory."

Synopsis

Load Case No. 1: The existing tower superstructure with the current inventory and proposed T-Mobile installation.

The tower superstructure and foundation have sufficient capacity and therefore meet the current EIA/TIA-222-F standards. The tower superstructure is rated at 86.9% and the base foundation is rated at 83.8%.

2.0 TOWER INVENTORY

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
20' Dipole	191	BXA-171063-8BF (Verizon)	144.5
10' Whip	183.5	ALU RH_2X40-AWS RRH (verizon)	144.5
10 Dipole	183	ALU RH_2×40-AWS RRH (Verizon)	144.5
10'Whip	182.5	ALU RH_2X40-AWS RRH (Verizon)	144.5
$6{ }^{\text {' Yagi }}$	182	BXA-80063-6BF (Verizon)	144.5
PG1N0F-0090-310	182	BXA-171063-12BF (Verizon)	144.5
16' Whip	182	BXA-80063-6BF (Verizon)	144.5
6' Yagi	182	Stand-Off T-Frame (Verizon)	143.5
21' Whip	182	Stand-Off T-Frame (Verizon)	143.5
21^{1} Whip	181.5	Stand-Off T-Frame (Verizon)	143.5
21^{1} Whip	181.5	(2) Ericsson AIR21 Antenna (T-Mobile)	135.5-135
20' Dipole	181.5	(2) Ericsson AIR21 Antenna (T-Mobile)	135.5-135
14" Inverted Whip	180-166	(2) Ericsson AIR21 Antenna (T-Mobile)	135.5-135
Top Plafform	180	Stand-Off T-Frame (T-Mabile)	135-134
10' Inverted Whip	180-170	LNX-6515DS-VTM (T-Mobile)	135
TMA	180	LNX-6515DS-VTM (T-Mobile)	135
TMA	180	LNX-6515DS-VTM (T-Mobile)	135
(2) Scala Paneis	175.5	Stand-Off T-Frame (T-Mobile)	135-134
Raycap (Verizon)	148.5	Stand-Off T-Frame (T-Mobile)	135-134
BXA-70063-6CF (Verizon)	144.5	RRUS11 (T-Mabile)	135
BXA-70040-6CF (verizon)	144.5	RRUS11 (T-Mobile)	135
BXA-70040-6CF (Verizon)	144.5	RRUS11 (T-Mobile)	135
BXA-80063-6BF (Verizon)	144.5	Empty Mount	103
BXA-171063-8BF (Verizon)	144.5	2 yagi	102.5
BXA-171063-8BF (Verizon)	144.5	GPS	59.5
BXA-171063-8BF (Verizon)	144.5	(2) GPS	18
BXA-171063-8BF (Verizon)	144.5	(2) GPS	17.67

Proposed T-Mobile Loading:

*(3) LNX-6515DS-VTM panel antennas @ 135' AGL
*(3) RRUS11_B12 @ 135' AGL
*Removal of (3) existing APX16PV-16PVL panel antennas @ 135' AGL
*Existing coax lines and remaining antennas to remain

3.0 COMMENTARY

Our scope of work is to determine if the existing structure is capable of withstanding the additional stresses/forces imposed by the installation of the proposed T-Mobile equipment noted in the tower inventory.

Tower structure information and foundation information was obtained from previous structural analyses by KMCE. The tower has been reinforced as per KMCE drawings in November 1997, July 2002, January 2009, August 2012, and December 2014. The existing tower inventory was determined from a tower climb and mapping completed on February 16, 2015. The proposed loading was obtained from a T-Mobile RFDS dated 7/18/14.

The following report will provide analytical calculations and commentary regarding the capacity of the proposed tower and subsequent recommendations.

4.0 ANALYSIS PROCEDURE

KM Consulting Engineers, Inc. carried out their structural analysis by correlating field inspection and tower member data into proprietary software designed specifically for communication tower analysis.

These programs run in conjunction with the guidelines set down in the EIA/TIA-222-F (1996) Standard entitled "Structural Standards for Steel Antenna Towers and Antenna Supporting Structures."

The existing tower is analyzed by placing wind forces on the structure in 30° positional increments around the tower (ie. wind pressure directly onto the tower corners, faces and parallel to the faces). This enables the user to "create" a three-dimensional representation, yielding results for worst case scenarios. In effect, the production of these results allows the user to study the structural integrity of the tower when influenced by wind forces from any direction.

The proceeding report includes analysis for the tower with the addition of antennas in the scenarios stated. For clarity, the analysis shall include worst case loadings and a typical elevation view with maximum foundation loads tabulated.

Should the client require to be furnished with a full copy of our analysis, we will gladly do so (approximately 80 pages).

Codes and Standards

ACI - American Concrete Institute - Building Code Requirements for Structural Concrete (ACl 318-05), 2005

AISC - American Institute of Steel Construction - Manual of Steel Construction, Allowable Stress Design, $14^{\text {th }}$ edition, 2010

TIA - Telecommunications Industry Association - EIA/TIA-222-F Structural Standards Steel Antenna Towers and Antenna Supporting Structures, 1996

IBC 2003- International Building Code

5.0 TOWER ANALYSIS RESULTS

The tower was analyzed for the inventory detailed in Section 2.0 "Tower Inventory".
Structural wind speed is in accordance with EIA/TIA-222-F (1996) listing applicable to New Haven, CT: 85 MPH (fastest mile), no ice and 74 MPH (fastest mile), $1 / 2^{\prime \prime}$ radial ice.

All allowable capacities have been calculated to comply with the permitted EIA allowable increases (for wind). All bolts loaded in shear assume the threads are included in the shear plane.

Load Case No. 1: Proposed T-Mobile addition of (3) LNX-6515DS-VTM panel antennas, (3) RRUS11_B12s, and removal of (3) existing APX16PV-16PVL panel antennas. Existing coax lines and remaining antennas will remain.

The tower superstructure and foundation have sufficient capacity and therefore meet the current EIA/TIA-222-F standards. The tower superstructure is rated at 86.9% and the base foundation is rated at 83.8%.

Foundation Capacities		
Actual Uplift	Allowable Uplift	$\%$ Use
214.32 kips	255.75 kips	83.8%

6.0 RECOMMENDATIONS

Further to our calculations, we conclude that the tower superstructure and base foundation have adequate capacity and therefore meet the current EIA/TIA-222-F design standards.

Please do not hesitate to contact our office with any questions or concerns regarding this report.

Sincerely,

KM CONSULTING ENGINEERS, INC

Domenic Aversa, EIT
Project Manager

Reviewed and Approved by:

$$
\text { M. } 4 \operatorname{tgh}
$$

Michael L. Bohlinger, PE Principal
CT License No. 20405

7.0 APPENDIX

LOAD CASE 1

TYPE	ELEVATION	TYPE	ELEVATION
20' Dipole	191	BXA-171063-8BF (Verizon)	144.5
10' Whip	183.5	ALURH_2X40-AWS RRH (Verizon)	144.5
10' Dipole	183	ALU RH_2X40-AWS RRH (Verizon)	144.5
10^{\prime} Whip	182.5	ALU RH 2X40-AWS RRH (Verizon)	144.5
6' Yagi	182	BXA-80063-6BF (Verizon)	144.5
PG1N0F-0090-310	182	BXA-171063-12BF (Verizon)	144.5
16' Whip	182	BXA-80063-6BF (Verizon)	144.5
6^{\prime} Yagi	182	Stand-Off T-Frame (Verizon)	143.5
21'Whip	182	Stand-Off T-Frame (Verizon)	143.5
21' Whip	181.5	Stand-Off T-Frame (Verizon)	143.5
21' Whip	181.5	(2) Ericsson AlR21 Antenna (T-Mobile)	135.5-135
20° Dipole	181.5	(2) Ericsson AlR21 Antenna (T-Mobile)	135.5-135
14^{\prime} Inverted Whip	180-166	(2) Ericsson AlR21 Antenna (T-Mobile)	135.5-135
Top Platform	180	Stand-Off T-Frame (T-Mobile)	135-134
10' Inverted Whip	180-170	LNX-65150S-VTM (T-Mobile)	135
TMA	180	LNX-6515DS-VTM (T-Mobile)	135
TMA	180	LNX-6515DS-VTM (T-Mobile)	135
(2) Scala Panels	175.5	Stand-Off T-Frame (T-Mobile)	135-134
Raycap (Verizon)	148.5	Stard-Off T-Frame (T-Mobile)	135-134
BXA-70063-6CF (Verizon)	144.5	RRUS 11 (T-Mobile)	135
BXA-70040-6CF (Verizon)	144.5	RRUS 11 (T-Mobile)	135
BXA-70040-6CF (Verizon)	144.5	RRUS11 (T-Mobile)	135
BXA-80063-6BF (Verizon)	144.5	Empty Mount	103
BXA-171063-8BF (Verizon)	144.5	2' yagi	102.5
BXA-171063-8BF (Verizon)	144.5	GPS	59.5
BXA-171063-8BF (Verizon)	144.5	(2) GPS	18
BXA-171063-8BF (Verizon)	144.5	(2) GPS	17.67

SYMBOL LIST

MARK	SIZE	MARK	SIZE
A	ROHN 2.5 STD (GR) w/ 5/8" Cable	F	ROHN 6 EH (GR) w/ 5/8 ${ }^{\text {n }}$ Cable (GR)
B	ROHN $2.5 \times$-STR (GR) w/ 5/8" Cable	G	L2×2x1/8 w/1.5" sch 40 pipe
0	ROHN 3 X-STR (GR) w/ 5/8" Cable	H	L2 1/2×2 1/2×3/16
D	ROHN $4 \times$-STR (GR) w/ 5/8" Cable	1	L3.5×3.5×1/4 w/ $2 \times 1 / 4$ plate
E	ROHN 5 STD (GR) w/ 5/8' Cable	J	L3 1/2x3 $1 / 2 \times 1 / 4$

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi			

TOWER DESIGN NOTES

1. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
2. Tower is also designed for a 74 mph basic wind with 0.50 in ice.
3. Deflections are based upon a 60 mph wind.
4. Grouted pipe f'c is 8 ksi
5. Tower legs have $5 / 8^{\prime \prime}$ diameter stainless steel cable(40K tension) in grouted leg.
6. TOWER RATING: 86.9%

TORQUE 17354 lb -ft 74 mph WIND - 0.5000 in ICE

TORQUE $5860 \mathrm{lb-ft}$ REACTIONS - 85 mph WIND

KM Consulting Engineers, Inc.
9 Forest Lane
Ewing, NJ 08628
Phone: (609) 538-0400
Consulting Engineers FAX:

TIA/EIA-222-F - $85 \mathrm{mph} / 74 \mathrm{mph} 0.5000$ in Ice
Leg Capacity \quad Leg Compression (lb)

	ulting Engineers, Inc.	Pob: West Haven LC1		
	9 Forest Lane	Project. 180 ft . Self Support Tower		
	Ewing, NJ 08628	Client. Transcend Wireless	Drawn by: Domenic Aversa	App'd:
Consuliting Engineers	Phone: (609) 538-0400	Code: TIA/EIA-222-F D	Date: 02/24/15	Scale: NTS
	FAX:			Dwo No. E-3

Feed Line Distribution Chart (0' - 180' Rounc \qquad Fat App In Facs \quad App Out Face \qquad Truss Leg

	KM Consulting Engineers, Inc. 9 Forest Lane	Wes: West Haven LC1		
		Project 180 ft. Self Support Tower		
	Ewing, NJ 08628	Client: Transcend Wireless Drawn by: Domenic Aversa ${ }^{\text {App't }}$		
Consulting Engineers	Phone: (609) 538-0400	Code: TIA/EIA-222-F	Date: 02/24/15	Scale: NTS
	FAX:	Path: kitransende Wirdesiwestheva	milerineefonlWesthaven LCzari	Dwg No. E-7

\qquad Round \qquad Ffat \qquad App In Face \qquad App Out Face

KM Consulting Engineers, Inc.
9 Forest Lane
Ewing, NJ 08628
Phone: (609) 538-0400
West Haven LC1

Stress Distribution Chart

$0^{\prime}=180^{\prime}$
$>100 \%\|90 \%-100 \%\| 75 \%-90 \% \| 50 \%-75 \%$ - ${ }^{-10 \%}$ Overstress

tnxTower KM Consulting Engineers, Inc. 9 Forest Lane	Job West Haven LC1		Page
			42 of 43
	Project	180 ft . Self Support Tower	Date $14: 13: 16 \text { 02/24/15 }$
Ewing, NJ 08628 Phone: (609) 538-0400 FAX:	Client	Transcend Wireless	Designed by Domenic Aversa

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	$\begin{gathered} \text { Pass } \\ \text { Fail } \end{gathered}$
T1	180-160	Leg	ROHN 2 STD (GR)	2	-16957.70	44248.53	38.3	Pass
		Diagonal	L1 $1 / 2 \times 11 / 2 \times 1 / 8$	7	-2383.90	3699.43	64.4	Pass
		Top Girt	L3x3x1/4	4	-353,85	18407.26	1.9	Pass
T2	160-140	Leg	$\begin{aligned} & \text { ROHN } 2.5 \text { STD (GR) w/ 5/8" } \\ & \text { Cable } \end{aligned}$	38	-31802.10	75875.29	41.9	Pass
		Diagonal	L1 3/4x1 3/4x1/8	40	-2740.35	3588.40	76.4	Pass
T3	140-120	Leg	ROHN 2.5 X-STR (GR) w/ 5/8" Cable	65	-55039.00	80983.88	68.0	Pass
		Diagonal	L2x $2 \times 1 / 8 \mathrm{w} / 1.5$ " sch 40 pipe	67	-4627.95	9168.83	50.5	Pass
T4	120-113.333	Leg	ROHN 3 X-STR (GR) w/ 5/8" Cable	86	-64119.90	111684.20	57.4	Pass
		Diagonal	L2 1/2×2 1/2x3/16	88	-5054.15	8571.20	59.0	Pass
T5	$\begin{gathered} 113.333 \\ 106.667 \end{gathered}$	Leg	$\begin{aligned} & \text { ROHN } 3 \text { X-STR (GR) w/5/8" } \\ & \text { Cable } \end{aligned}$	95	-74085.50	111684.20	66.3	Pass
		Diagonal	L2 1/2x2 1/2x $3 / 16$	100	-5430.92	7969.54	68.1	Pass
T6	106.667-100	Leg	ROHN 3 X-STR (GR) w/ 5/8" Cable	104	-84131.50	111684.34	75.3	Pass
		Diagonal	L3x $3 \times 1 / 4$	109	-6100.25	15788.45	$\begin{gathered} 38.6 \\ 55.5(\mathrm{~b}) \end{gathered}$	Pass
T7	100-80	Leg	$\begin{aligned} & \text { ROHN } 4 \text { X-STR }(\mathrm{GR}) \text { w/ } 5 / 8^{\prime \prime} \\ & \text { Cable } \end{aligned}$	113	-118245.00	197826.52	59.8	Pass
		Diagonal	L3x $3 \times 1 / 4$	118	-7119.90	13085.70	$\begin{gathered} 54.4 \\ 69.1 \text { (b) } \end{gathered}$	Pass
T8	80-70	Leg	$\begin{gathered} \text { ROHN } 5 \text { STD (GR) w/ 5/8" } \\ \text { Cable } \end{gathered}$	134	-132238.00	225763.54	58.6	Pass
		Diagonal	L3x3x1/4	139	-8987,45	10338.35	86.9	Pass
T9	70-60	Leg	ROHN 5 STD (GR) w/ 5/8" Cable	143	-151144.00	288153.27	52.5	Pass
		Diagonal	L3 $1 / 2 \times 31 / 2 \times 1 / 4$	148	-8983.61	14587.02	61.6	Pass
		Secondary Horizontal	L3 1/2x3 1/2x1/4	151	-2625.36	6964.79	37.7	Pass
T10	60-50	Leg	ROHN 5 X-STR (GR) w/ 5/8" Cable	155	-168997.00	233978.81	72.2	Pass
		Diagonal	L3 1/2x3 1/2x1/4	160	-10374.00	13547.55	76.6	Pass
T11	50-40	Leg	ROHN 5 X-STR (GR) w/ $5 / 8^{\prime \prime}$ Cable	164	-188694.00	298831.93	63.1	Pass
		Diagonal	L3 $1 / 2 \times 31 / 2 \times 1 / 4$	169	-9789.75	12601.98	77.7	Pass
		Secondary Horizontal	L3 $1 / 2 \times 31 / 2 \times 1 / 4$	172	-3277.88	5687.71	57.6	Pass
T12	40-30	Leg	ROHN 5 X-STR (GR) w/ $5 / 8^{\prime \prime}$ Cable	176	-206470.00	298913.24	69.1	Pass
		Diagonal	L3.5×3.5×1/4 w/ $2 \times 1 / 4$ plate	181	-11834.10	27391.02	$\begin{gathered} 43.2 \\ 68.9 \text { (b) } \end{gathered}$	Pass
		Secondary Horizontal	L3 $1 / 2 \times 31 / 2 \times 1 / 4$	184	-3666.34	5181.64	70.8	Pass
T13	30-20	Leg	ROHN 5 X-STR (GR) w/ 5/8" Cable	188	-227255.00	298986.56	76.0	Pass
		Diagonal	L3.5×3.5×1/4 w/ $2 \times 1 / 4$ plate	193	-10279.80	25251.15	40.7	Pass
							72.1 (b)	
		Secondary Horizontal	L3 1/2x3 1/2x1/4	196	-3948.01	4742.48	83.2	Pass
T14	20-0	Leg	ROHN 6 EH (GR) w/ 5/8" Cable (GR)	200	-267570.00	367955.97	72.7	Pass
		Diagonal	$4 \mathrm{x} 4 \times 1 / 4 \mathrm{w} / \mathrm{sch} 40$	211	-14092.10	68391.03	$\begin{gathered} 20.6 \\ 42.8(\mathrm{~b}) \\ \text { Summary } \end{gathered}$	Pass
						Leg (T13)	76.0	Pass
						Diagonal (T8)	86.9	Pass
						Secondary Horizontal (T13)	83.2	Pass

tnxTower KM Consulting Engineers, Inc. 9 Forest Lane	Job West Haven LC1		Page
			43 of 43
	180 ft . Self Support Tower		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:13:16 02/24/15 } \end{array}$
Ewing, NJ 08628 Phone: (609) 538-0400 FAX:	Client	Transcend Wireless	Designed by Domenic Aversa

Program Version 6.1.3.1-7/25/2013 File:K:/Transcend Wireless/West Haven/Engineering/West Haven LC2,eri

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CT11193A

Orange / Rt 1
24 Rockdale Road
West Haven, CT 06516
March 4, 2015
EBI Project Number: 6215001322

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{9 3 . 3 0 \%}$

March 4, 2015

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11193A - Orange / Rt 1

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 24 Rockdale Road, West Haven, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{2 4}$ Rockdale Road, West Haven, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of $\mathbf{1 5 . 9} \mathbf{d B d}$ at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 3 5}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

MEBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile	7.25
Antenna 1	1.51%
Antenna 2	1.51%
Antenna 3	1.51%
Antenna 4	1.50%
Antenna 5	1.48%
Antenna 6	1.47%
Antenna 7	1.47%
Antenna 8	1.47%
Antenna 9	1.47%
Antenna 10	1.50%
Antenna 11	1.47%
Antenna 12	1.48%
Antenna 13	4.20%
Antenna 14	5.13%
Antenna 15	5.13%
Antenna 16	5.13%
Antenna 17	5.07%
Antenna 18	8.27%
Antenna 19	2.27%
Antenna 20	0.59%
TV Ch 28	10.75%
Verizon Wreless	2%
Site Total MPE \%:	93.30%

T-Mobile Sector 1 Total:	2.42%
T-Mobile Sector 2 Total:	2.42%
T-Mobile Sector 3 Total:	2.42%
Site Total:	

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	2.42%
Sector $2:$	2.42%
Sector 3:	2.42%
T-Mobile Total:	7.25%
Site Total:	93.30%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{9 3 . 3 0 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ While the online docket for the Connecticut Siting Council does not provide a docket or petition number for approval of this structure, it does reference this structure in connection with notices of intent captioned EM-VER-156-140714, EM-METROPCS-156-121231A-MA, EM-VER-156-121123, and EM-T-MOBILE-156-120904.

[^1]: cc: Mayor Scott D. Jackson, City of West Haven
 Radio Communications Corporation
 Elizabeth Jamieson, Transcend Wireless

