

10 INDUSTRIAL AVENUE, SUITE 3 MAHWAH, NJ 07430

PHONE: 201.684.0055 FAX: 201.684.0066

September 18, 2020

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Notice of Exempt Modification 24 Rockdale Road, West Haven, CT Latitude- 41.2895777 Longitude- -72.9676027 T-Mobile site ID: CT11193A / Anchor

Dear Ms. Bachman,

T-Mobile currently maintains (9) existing antennas at the 135' level of the existing 180' selfsupport lattice at 24 Rockdale Road in West Haven, Connecticut. The tower and property is owned by Radio Communications Corp. T-Mobile intends to add (3) new 2500 MHz antennas, which will be installed at the same 135' level of the tower.

PLANNED MODIFICATIONS

Remove:

(12) 1-5/8" coax (1) 9x18 Hybrid cable (3) TMAs

Remove and Replace: RRUs: (3) Ericsson RRUS-2 B2 (REMOVE) - (3) Ericsson 4424 B25's RRU (REPLACE)

Existing to Remain:

(3) Ericsson Air 32 KRD901145-1_B66_B2A - 1900 MHz / 2100 MHz
(3) RFS APXVAARR24_43-UNA20 - 600 MHz / 700 MHz / 1900 MHz
(6) Coax Cables:
(3) Ericsson 4449 B71+B85 RRUs

Install New:

(3) Air 6449 B41 - (REPLACE) 2500 MHz Antennas (4) 6x12 hybrid

<u>Ground</u>

Install (1) 6160 enclosure, and (1) Battery cabinet

This facility was approved by the Council in Docket No. 56.6 on April 14, 1986. This approval did not include conditions that could feasibly be violated by this modification. This modification complies with the aforementioned approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. 16-50j-72(b)(2). In accordance with R.C.S.A. 16-50j-73, a copy of this letter is being sent to Nancy R. Rossi, Mayor of the City of West Haven, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-72(b)(2).

1. The proposed modification will not result in an increase in the height of the existing structure

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Elizabeth Jamieson Transcend Wireless 10 Industrial Ave., Suite 3 Mahwah, New Jersey 07430 860-605-7808 EJamieson@TranscendWireless.com

cc: Nancy R. Rossi - as elected official RCC Communications Corp/Bob Knapp - as tower and property owner Fred A. Messore - as Planning and Development Commissioner

Exhibit A Original Facility Approval

DOCKET NO. 56

AN APPLICATION OF METRO MOBILE CTS OF	:	CONNECTICUT SITING
NEW HAVEN, INC., FOR A CERTIFICATE OF		
ENVIRONMENTAL COMPATIBILITY AND PUBLIC		
NEED FOR THE CONSTRUCTION, MAINTENANCE,	:	COUNCIL
AND OPERATION OF FACILITIES TO PROVIDE		
CELLULAR SERVICE IN NEW HAVEN COUNTY.	:	April 14, 1986

DECISION AND ORDER

Pursuant to the foregoing opinion, the Council hereby directs that a certificate of environmental compatibility and public need as required by section 16-50k of the General Statutes of Connecticut (CGS) be issued to Metro Mobile CTS of New Haven, Inc., for the construction, maintenance, and operation of cellular mobile phone telecommunication towers and associated equipment in the towns of Wolcott, Naugatuck, West Haven (existing tower), Milford, Hamden (existing tower), Guilford, and North Branford subject to the conditions below.

- The proposed and alternate Beacon Falls sites are rejected without prejudice.
- The Wolcott tower shall be constructed to meet Zone C wind loading with 1" of radial ice and shall not exceed 180' in height excluding antennas.
- 3. The Naugatuck tower shall not exceed 160' in height, excluding antennas. The certificate holder shall offer to remove the existing privately owned, unused tower now on the site.
- 4. Any future actions requiring the removal of the existing West Haven or Hamden towers to be shared by the certificate holder shall also apply to the equipment mounted on those towers by the certificate holder, regardless of that equipment's status under Chapter 277a of the CGS.

- The Milford tower shall be a monopole structure not to exceed 100' in height, excluding antennas.
- The Guilford tower shall be a monopole structure not to exceed 150' in height, excluding antennas.
- 7. The North Branford Route 17 site is rejected. The North Branford East Reeds Gap Road tower shall not exceed 160' in height, excluding antennas.
- 8. The certificate holder shall submit a development and management plan for the Wolcott, Naugatuck, Milford, Hamden, Guilford, and North Branford sites pursuant to sections 16-50j-75 through 16-50j-77 of the RSA, except that irrelevant items in section 16-50j-76 need only be identified as such. In addition to the requirements of section 16-50j-76, the D&M plan shall provide plans for evergreen screening around the fenced perimeter at the Wolcott, Milford, Hamden, Guilford, and North Branford sites. The D&M plan shall include a proposal for painting the approved monopole structures to blend with the sky. Any changes to specifications in the D&M plan must be approved by the Council prior to facility operation.
- 9. All certified facilities shall be constructed, operated, and maintained as specified in the Council's record and in the site development and management plan required by order 8.
- 10. The certificate holder shall permit public or private entities to share space on the towers approved herein, for due consideration received, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. In addition to complying with 16-50j-73, the

-2-

certificate holder shall notify the Council of the addition of any equipment to any approved tower.

- 11. A fence not lower than 8' shall surround each tower and associated equipment.
- 12. Unless necessary to comply with order 13, below, no lights shall be installed on any of these towers.
- 13. The facilities' construction and any future tower sharing shall be in accordance with all applicable federal, state, and municipal laws and regulations. Shared uses by entities not subject to jurisdiction pursuant to sections 16-50i and 16-50k of the CGS shall be subject to all applicable federal, state, and municipal laws and regulations.
- 14. Construction activities shall take place during daylight working hours.
- 15. This decision and order shall be void and the towers and associated equipment shall be dismantled and removed, or reapplication for any new use shall be made to the CSC before any such new use is made, if the towers do not provide or permanently cease to provide cellular service following completion of construction.
- 16. This decision and order shall be void if all construction authorized herein is not completed within three years of the issuance of this decision, or within three years of the completion of any appeal if appeal of this decision is taken, unless otherwise approved by the Council.

Pursuant to CGS section 16-50p, we hereby direct that a copy of the decision and order shall be served on each person listed below. A notice

of the issuance shall be published in The Record-Journal. The New Haven Register, The Branford Review, The Evening Sentinel, The Waterbury American, and The Waterbury Republican. The parties to this proceeding are: Metro Mobile CTS of New Haven, Inc. (Applicant) 5 Eversley Avenue Norwalk, Connecticut 06855 ATTN: Armand Mascioli General Manager Mr. Kevin B. Sullivan, Esq. (its attorneys) Byrne, Slater, Sandler, Shulman & Rouse, P.C. 111 Pearl Street P.O. Box 3216 Hartford, Connecticut 06103 Mr. Richard Rubin, Esg. Fleischman and Walsh, P.C. 1725 N Street, N.W. Washington, D.C. 20036 Guilford Conservation Commission represented by: Mr. David B. Damer Chairman Guilford Conservation Commission 440 Great Hill Road Guilford, Connecticut 06437 Mr. Robert W. Griswold, Jr. 100 Rimmon Hill Road Beacon Falls, Connecticut 06403 Town of Hamden Memorial Town Hall 2372 Whitney Avenue Hamden, Connecticut 06518 ATTN: Shirley Gonzales Town Planner

Guilford Planning and Zoning Commission	represented by:
	Mr. David W. Fisher Chairman Town Hall 31 Park Street Guilford, Connecticut 06437
Town of Hamden	represented by:
	John DeNicola, Jr. Mayor Town of Hamden Memorial Town Hall 2372 Whitney Avenue New Haven, Connecticut 06518
Citizens Park Council of New Haven	represented by:
	Mr. John J. Ciarleglio President Citizens Park Council of New Haven 36 Elmwood Road New Haven, Connecticut 06515
Mr. Thomas V. Keating 343 Rimmon Hill Road Beacon Falls, Connecticut 06403	
Ms. Evelyn M. Sirowich 245 Rimmon Hill Road Beacon Falls, Connecticut 06403	
Mr. Jack B. Levine 11 White Birch Lane Beacon Falls, Connecticut 06403	
Southern New England Telephone Company	represented by:
	Mr. Peter J. Tyrrell, Esq. 227 Church Street New Haven, Connecticut 06506
Mr. Dennis Bialecki 96 West Road Beacon Falls, Connecticut 06403	

Brittany Woods Homeowner's Association represented by: Mr. Stephen P. Del Sole, Esq. Del Sole & Del Sole 152 Temple Street P.O. Box 405 New Haven, Connecticut 06502-0405 Ms. Barbara G. Schlein Box 2993 Westville Station New Haven, Connecticut 06515 Mr. & Mrs. Joseph T. Farrell, Jr. 334 Rimmon Hill Road Beacon Falls, Connecticut 06403 Town of Beacon Falls represented by: The Honorable Leonard F. D'Amico First Selectman 10 Maple Avenue Beacon Falls, Connecticut 06403 West Rock Ridge Park Association represented by: Mr. William L. Doheny Jr., D.D.S. President 220 Mountain Road Hamden, Connecticut 06514 Department of Parks, represented by: **Recreation & Trees** Mr. Robert G. Sheeley Director Parks, Recreation & Trees P.O. Box 1416 New Haven, Connecticut 06506 Town of Wallingford represented by: William W. Dickinson, Jr. Mayor Municipal Building 350 Center Street P.O. Box 427 Wallingford, Connecticut 06492 New Haven Sierra Club represented by: Ms. Laurie Klein 270 Edgewood Avenue New Haven, Connecticut 06511

Peter M. Lerner State Representative 8 Merritt Avenue Woodbridge, Connecticut 06525 Carleton J. Benson State Representative 161 Scott Road Prospect, Connecticut 06712 Dr. Stephen Collins (service waived) Vice Chairman West Rock State Park Advisory Council Bethany, Connecticut Mr. Louis Melillo (service wavied) 985 Wintergreen Avenue Hamden, Connecticut Mr. John McGeever (service waived) 339 Rimmon Hill Beacon Falls, Connecticut 06403 Senator John Consoli (service waived) 51 Luke Hill Road Bethany, Connecticut 06525 (service waived) Representative George P. Bassing 14 Oakwood Drive Seymour, Connecticut 06483 Dr. George D. Whitney (service waived) 858 Oakwood Road Orange, Connecticut Mr. Steve Molnar (service waived) 205 West Road Beacon Falls, Connecticut (service waived) Mr. James W. Grandy President Hamden Land Conservation Trust Hamden, Connecticut Senator Richard S. Eaton (service waived) 269 Mulberry Point Road Guilford, Connecticut 06437 Representative Robert M. Ward 719 Totoket Road Northford, Connecticut 06472

Town of North Branford	represented by:
	John Gesmonde, Esquire 3127 Whitney Avenue Hamden, Connecticut 06518
Regina Smith 1887 Middletown Avenue Northford, Connecticut 06472	(service waived)
Richard A. Nizolek The Restland Farm Corporation Route 17 Northford, Connecticut 06472	
Mary Liska 83 Reeds Gap Road Northford, Connecticut 06472	
Ben Bullard 50 Christmas Hill Road Guilford, Connecticut 06437	(service waived)
Roland Robichaud 31 Berncliff Drive North Branford, Connecticut 06471	(service waived)
Irene Flynn 1926 Middletown Avenue Northford, Connecticut 06472	(service waived)
Charles Pope 199 Donalds Road Guilford, Connecticut 06437	
Richard Abate 131 Manor Road Guilford, Connecticut 06437	(service waived)
City of Milford	represented by:
	Mayor Alberta Jagoe Alderman Maurice Condon Alderman Frederick Lisman City Hall

Thomas Scelfo 81 Berncliff Drive North Branford, Connecticut 06471 Mayor Alberta Jagoe Alderman Maurice Condon Alderman Frederick Lisman City Hall River Street Milford, Connecticut 06460

(service waived)

Senator Thomas Scott 22 Meyers Court Milford, Connecticut 06460

Helen Moore 385 Oronoque Road Milford, Connecticut 06460

William Barberi 298 Oronoque Road Milford, Connecticut 06460 (service waived)

(service waived)

(service waived)

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut, this 14th day of April, 1986.

Council Members

Vote Cast

ond le

Gloria Dibble Pond Chairperson

Absent

Yes

)
Commission	er John	Downey	/		
Designee:	Commiss	sioner	Peter	G.	Boucher

Commissioner Stanley Pad

Designee: Christopher Cooper

Ower Clar

Mortimer A. Gelston

James G. Horsfall an Pamela B. Katz

William Smith J.a

Colin C. Tait

Yes

Yes

Yes

Yes

No

No

No

)
:
) STATE OF CONNECTICUT ss. New Britain, April 14, 1986 COUNTY OF HARTFORD

I hereby certify that the foregoing is a true and correct copy of the decision and order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

Clustor Swood, Executive Director Christopher S. Wood, Executive Director Connecticut Siting Council

Exhibit B Property card

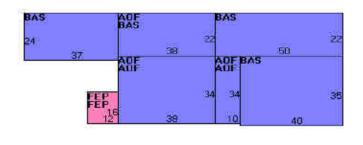
059-0120-0-0000

Parcel ID

Account

00007905

Property Information


Owner	KNAPP ANDREW + LILLIAN R		
Co-Owner	& SV		
Address	24 ROCKDALE RD		
Mailing Address	24 ROCKDALE RD		
5	WEST HAVEN CT 06516		
Land Use	3320 SVC SHOP MDL-94		
Land Class	c		

Vision ID	15185
Census Tract	1541
Neighborhood	C400
Zoning Code	R2
Acreage	0.21
Utilities	Public Water, Public Sewer

Photo

Sketch

Primary Construction Details

Actual Year Built	1959
Effective Year Built	1979
Stories	2
Building Style	Light Industrial
Building Use	Ind/Comm
Building Condition	Average +10
Total Rooms	

Bedrooms	
Full Bathrooms	0
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	Flat
Roof Cover	T&G/Rubber

Exterior Walls	Concr/Cinder
Interior Walls	Minim/Masonry
Heating Type	Forced Air-Duc
Heating Fuel	Gas
АС Туре	None
Gross Bldg Area	8708
Total Living Area	8324

Valuation Summary (Assessed value = 70% of Appraised Value)

ltem	Appraised	Assessed
Buildings	339600	237720
Outbuildings	377 000	263900
Improvements	723200	506240
Extras	6600	4620
Land	88800	62160
Total	812000	568400

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)	
Office	2808	2808	
First Floor	5516	5516	
Porch, Enclosed	384	0	
Total Area 8708			

Outbuilding and Extra Items

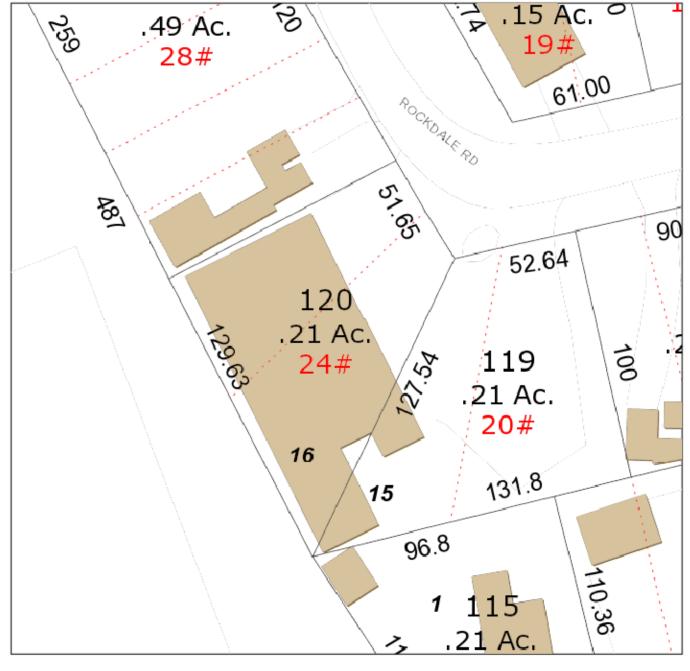
Description	Units
PAVING-ASPHALT	4000 S.F.
AIR COND	4100 S.F.
SITE	2 SITES

Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price	

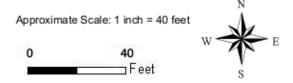
KNAPP ANDREW + LILLIAN R

412/375


0

City of West Haven

Geographic Information System (GIS)

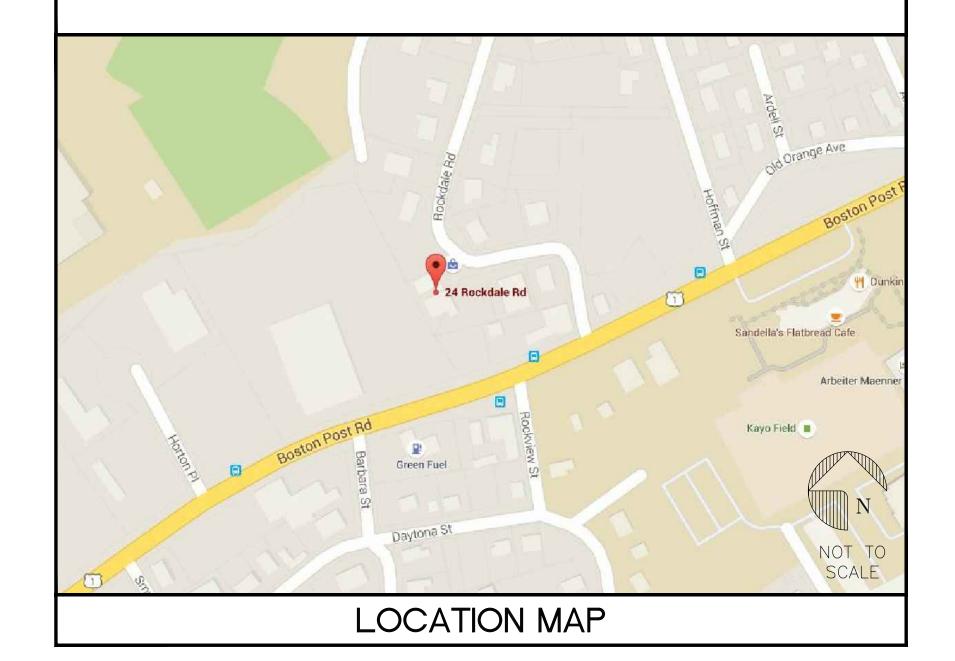

Date Printed: 5/30/2018

Print Map

MAP DISCLAIMER - NOTICE OF LIABILITY

This map is for assessment purposes only. It is not for legal description or conveyances. All information is subject to verification by any user. The City of West Haven and its mapping contractors assume no legal responsibility for the information contained herein.

Exhibit C Construction Drawings

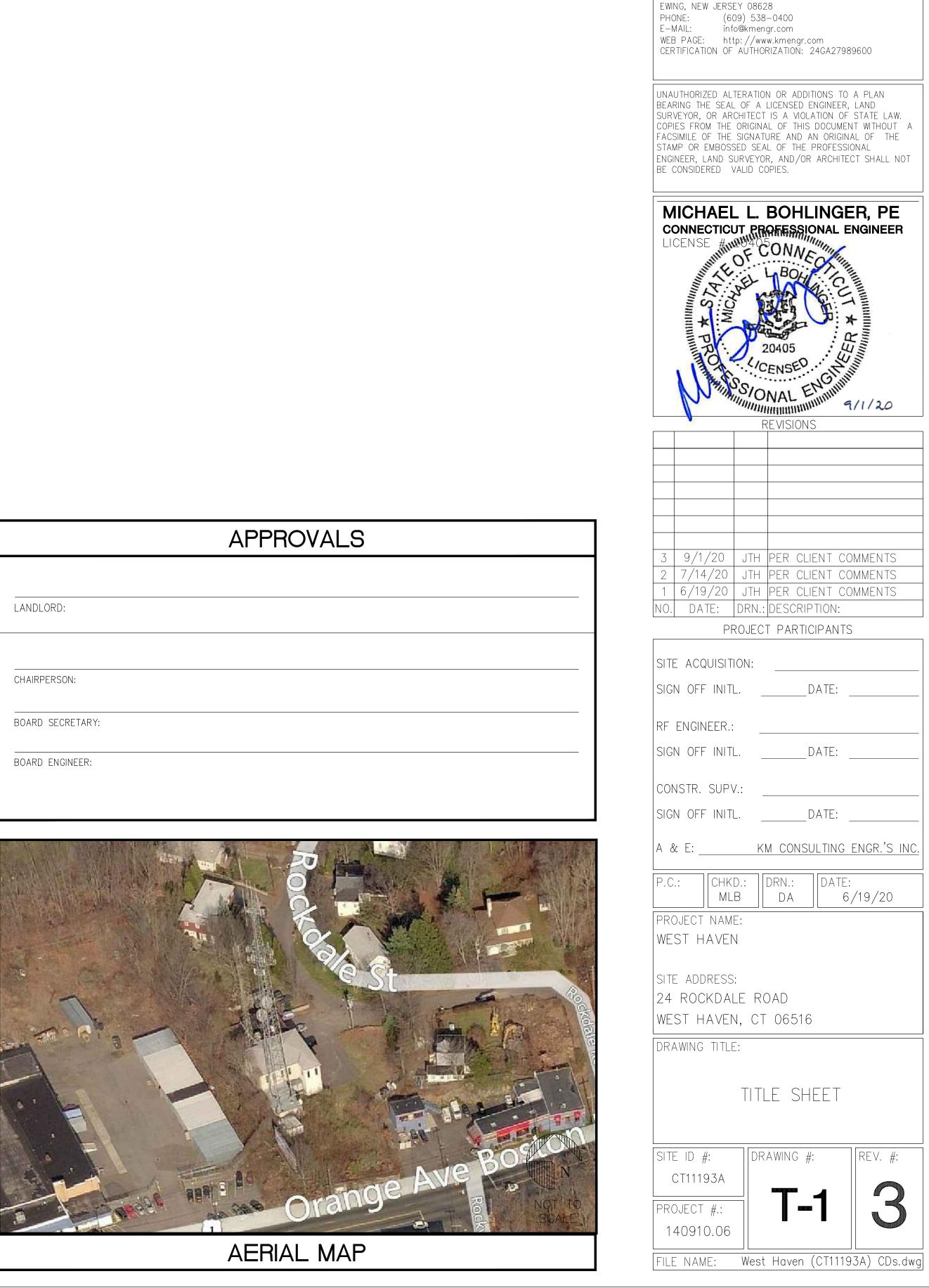

PROJECT DESCRIPTION

T-MOBILE IS PROPOSING TO INSTALL (3) PANEL ANTENNAS (1 PER SECTOR), (3) EXISTING RRUS WILL BE REPLACED WITH (3) NEW RADIOS. (3) EXISTING TMAS WILL BE REMOVED.

A TOTAL OF (3) ANTENNAS TO BE INSTALLED, (3) RRU'S REPLACED, AND (3) TMAS REMOVED.

(2) NEW EQUIPMENT CABINETS TO BE INSTALLED.

(12) EXISTING T-MOBILE 1-5/8" COAX LINES TO BE REMOVED, (1) 9X18 HYBRID CABLE TO BE REPLACED, (3) PROPOSED 6X12 HYBRID CABLES TO BE INSTALLED


In Mobile *

WEST HAVEN

24 ROCKDALE ROAD WEST HAVEN, CT 06516 SITE ID: CT11193A

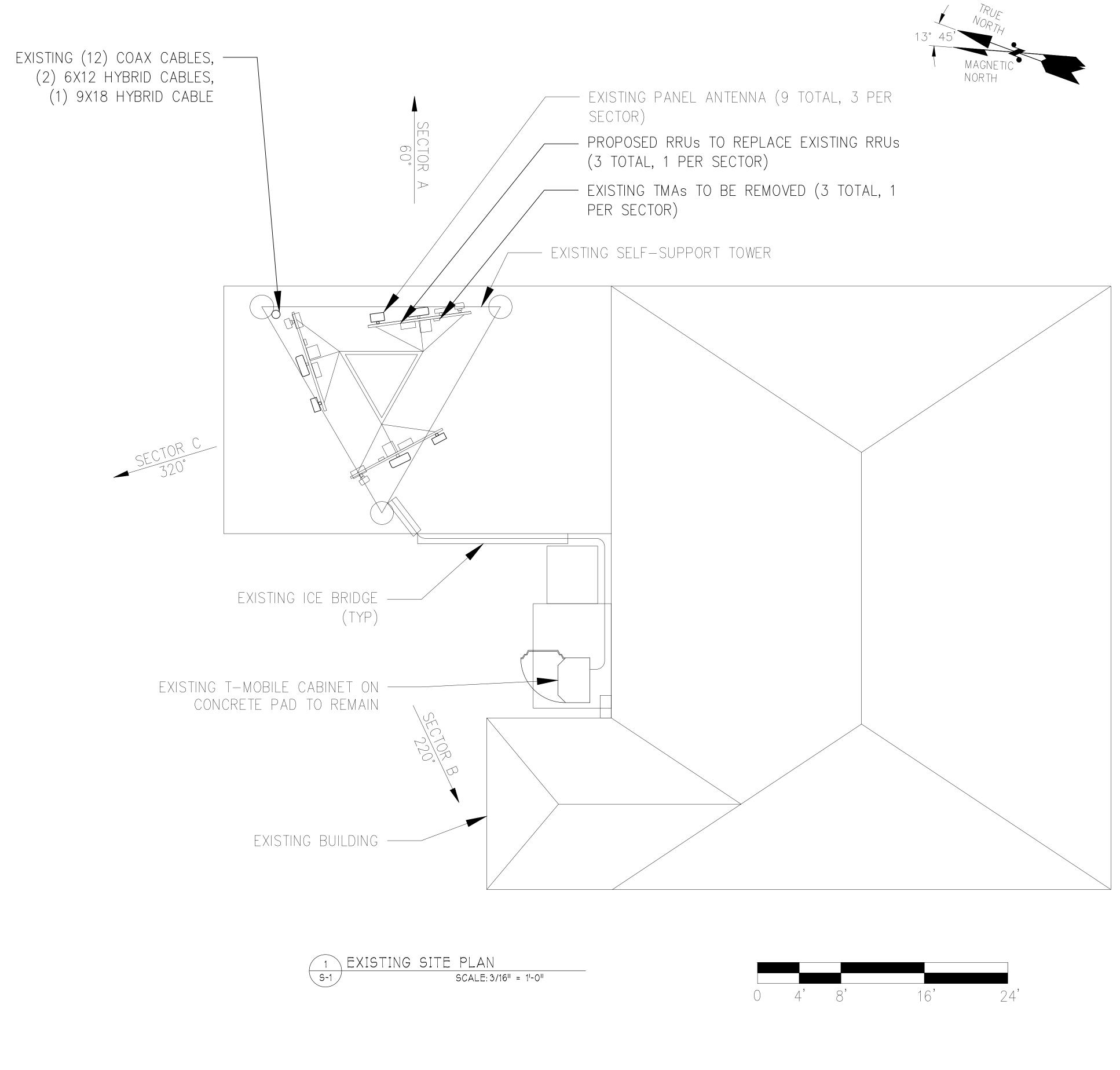
	DRAW	NG INDEX			
SHEET	SHEET TITLE				
T—1	TITLE SHEET				
S-1	EXISTING SITE PLAN				
S-2	PROPOSED SITE PLAN				
S-3	TOWER ELEVATION				
A-1	ANTENNA PLAN AND DETAILS				
A-2	ANTENNA AND EQUIPMENT DETAILS				
G-1	GROUNDING DETAILS				
GN-1	GENERAL NOTES				
SK-1	MODIFICATION DETAILS				
	SITE INF	ORMATION			
PROPERTY O					
	24 ROCKDALE ROAD	LATITUDE:	41°17'26.52"N		
		LATITUDE: LONGITUDE:	41°17'26.52"N 72°58'3.3954"W		
APPLICANT:	24 ROCKDALE ROAD				
	24 ROCKDALE ROAD WEST HAVEN, CT 06516 T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH	LONGITUDE:	72°58'3.3954"W		
APPLICANT:	24 ROCKDALE ROAD WEST HAVEN, CT 06516 T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KM CONSULTING ENGINEERS 262 UPPER FERRY ROAD EWING, NJ 08628	LONGITUDE: POWER COMPANY:	72°58'3.3954"W TBD		
APPLICANT: ARCHITECT/ ENGINEER:	24 ROCKDALE ROAD WEST HAVEN, CT 06516 T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KM CONSULTING ENGINEERS 262 UPPER FERRY ROAD EWING, NJ 08628 S: 24 ROCKDALE ROAD	LONGITUDE: POWER COMPANY: T-MOBILE CONTACT:	72° 58' 3.3954" W TBD (860) 648–1116 UNMANNED TELECOMMUNICATIONS		

	AP
LANDLORD:	
CHAIRPERSON:	
BOARD SECRETARY:	
BOARD ENGINEER:	

CLIENT:

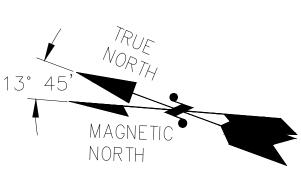
10 INDUSTRIAL AVE

MAHWAH, NJ 07430


262 UPPER FERRY RD.

Transcend Wireless

KM Consulting Engineers, Inc. Wireless Engineering and Project Management


TEL: (201) 684–0055

FAX: (201) 684-0066

NOTE:

- CONSTRUCTION.

GENERAL NOTES:

LIGHTING: EXISTING FACILITY WILL MEET OR EXCEED ALL FAA AND FCC REGULATORY REQUIREMENTS.

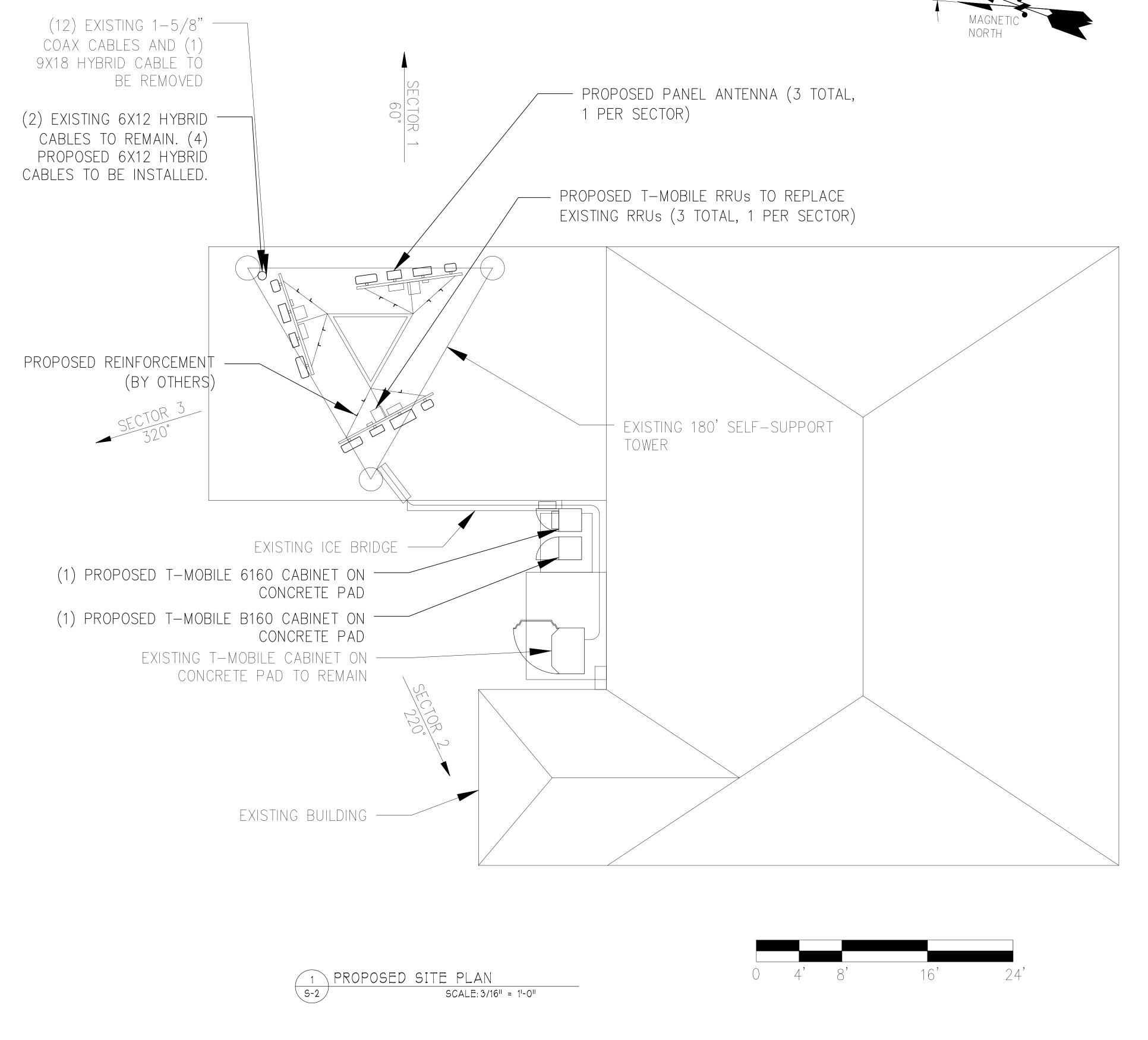
GRADE: EXISTING GRADE WILL BE MAINTAINED FOR PROPOSED CONSTRUCTION.

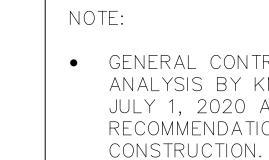
SIGNAGE: EXTERIOR SIGNS ARE NOT PROPOSED EXCEPT AS REQUIRED BY THE FCC.

STORM WATER CONTROL: THE PROPOSED FACILITY WILL RESULT IN AN INSIGNIFICANT INCREASE IN STORM WATER RUNOFF. CONSEQUENTLY, NO WATER QUALITY CONTROL DEVICES ARE PROPOSED.

UTLITIES: SANITARY SEWER SERVICES AND POTABLE WATER ARE NOT APPLICABLE PER THE USE. IF APPLICABLE, SUBCONTRACTOR SHALL LOCATE ALL UTLITIES PRIOR TO EXCAVATING.

PUBLIC USE.


MISC: NO NOISE, SMOKE, DUST, VAPORS OR ODOR WILL RESULT FROM THIS PROJECT.


• GENERAL CONTRACTOR TO REFER TO THE STRUCTURAL ANALYSIS BY KM CONSULTING ENGINEERS, INC. DATED JULY 1, 2020 AND EQUIPMENT INSTALLATION RECOMMENDATIONS PRIOR TO COMMENCING

• MOUNTS TO BE REINFORCED BY OTHERS. *SEE MOUNT REINFORCEMENT DETAILS BY CENTEK DATED 6/10/20 FOR SPECIFICATIONS ON THE REINFORCEMENT

DRIVEWAY: A DRIVEWAY PERMIT IS NOT REQUIRED FOR THIS PROJECT. THE PROJECT WILL NOT REQUIRE RIGHT OF WAY OR PROPERTY TO BE DEDICATED FOR

CLIENT:			
Transe	cend l	Nire	less
10 INDUSTRIAL AVE MAHWAH, NJ 07430) 684-0055 1) 684-0066
	Consulting E	-	-
262 UPPER FERRY R EWING, NEW JERSEY	08628	Project Mana	gement
PHONE: (609) E-MAIL: info@k WEB PAGE: http:/ CERTIFICATION OF AU	//www.kmengr.c		600
UNAUTHORIZED ALTER BEARING THE SEAL OF	F A LICENSED [ENGINEER, I	LAND
SURVEYOR, OR ARCHI COPIES FROM THE OR FACSIMILE OF THE SIG STAMP OR EMBOSSED ENGINEER, LAND SURV BE CONSIDERED VALI	IGINAL OF THIS SNATURE AND A SEAL OF THE /EYOR, AND/OR	DOCUMEN AN ORIGINA PROFESSIO	FWITHOUT A LOF THE NAL
MICHAEL	L. BOHL	INGE	R, PE
CONNECTICUT LICENSE #1120	CONN	ONAL EN	NGINEER
ALL ALL	- HBOH	C.	
MIC	RES		Multi
PRO	20405	EER.	WIIIIIII
Mass	VONAL E	NGININI MININI S	
	REVISION	S 9/	11/20
/ /	TH PER CL		MMENTS
2 7/14/20 J 1 6/19/20 J NO. DATE: DF		IENT COM	MMENTS MMENTS
	JECT PARTIC		
SITE ACQUISITION	1:		
SIGN OFF INITL.	[DATE: _	
RF ENGINEER.:			
SIGN OFF INITL.	[DATE: _	
CONSTR. SUPV.: SIGN OFF INITL.		DATE	
A & E:			
	DRN.:	DATE:	
PROJECT NAME:	DA	6/	′19/20
WEST HAVEN			
SITE ADDRESS:			
24 ROCKDALE WEST HAVEN,		5	
DRAWING TITLE:			
EXIS	ting sit	E PLA	AN
SITE ID #:	DRAWING #	<i>ŧ</i> :	REV. #:
ст11193А			
PROJECT #.: 140910.06	5-	•	
	lest Haven	(CT11193	3A) CDs.dwg

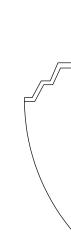
• MOUNTS TO BE REINFORCED BY OTHERS. *SEE MOUNT REINFORCEMENT DETAILS BY CENTEK DATED 6/10/20 FOR SPECIFICATIONS ON THE REINFORCEMENT

GENERAL NOTES:

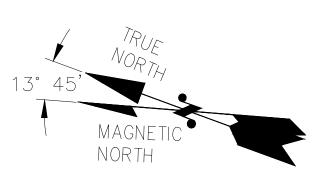
LIGHTING: EXISTING FACILITY WILL MEET OR EXCEED ALL FAA AND FCC REGULATORY REQUIREMENTS.

GRADE: EXISTING GRADE WILL BE MAINTAINED FOR PROPOSED CONSTRUCTION.

SIGNAGE: EXTERIOR SIGNS ARE NOT PROPOSED EXCEPT AS REQUIRED BY THE FCC.

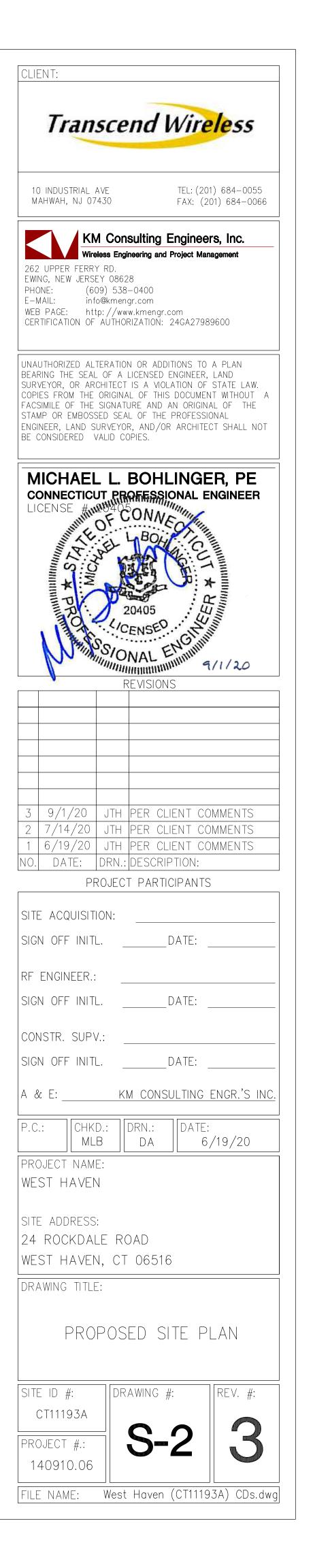

STORM WATER CONTROL: THE PROPOSED FACILITY WILL RESULT IN AN INSIGNIFICANT INCREASE IN STORM WATER RUNOFF. CONSEQUENTLY, NO WATER QUALITY CONTROL DEVICES ARE PROPOSED.

EXCAVATING.


DRIVEWAY: A DRIVEWAY PERMIT IS NOT REQUIRED FOR THIS PROJECT. THE PROJECT WILL NOT REQUIRE RIGHT OF WAY OR PROPERTY TO BE DEDICATED FOR PUBLIC USE.

MISC: NO NOISE, SMOKE, DUST, VAPORS OR ODOR WILL RESULT FROM THIS PROJECT.

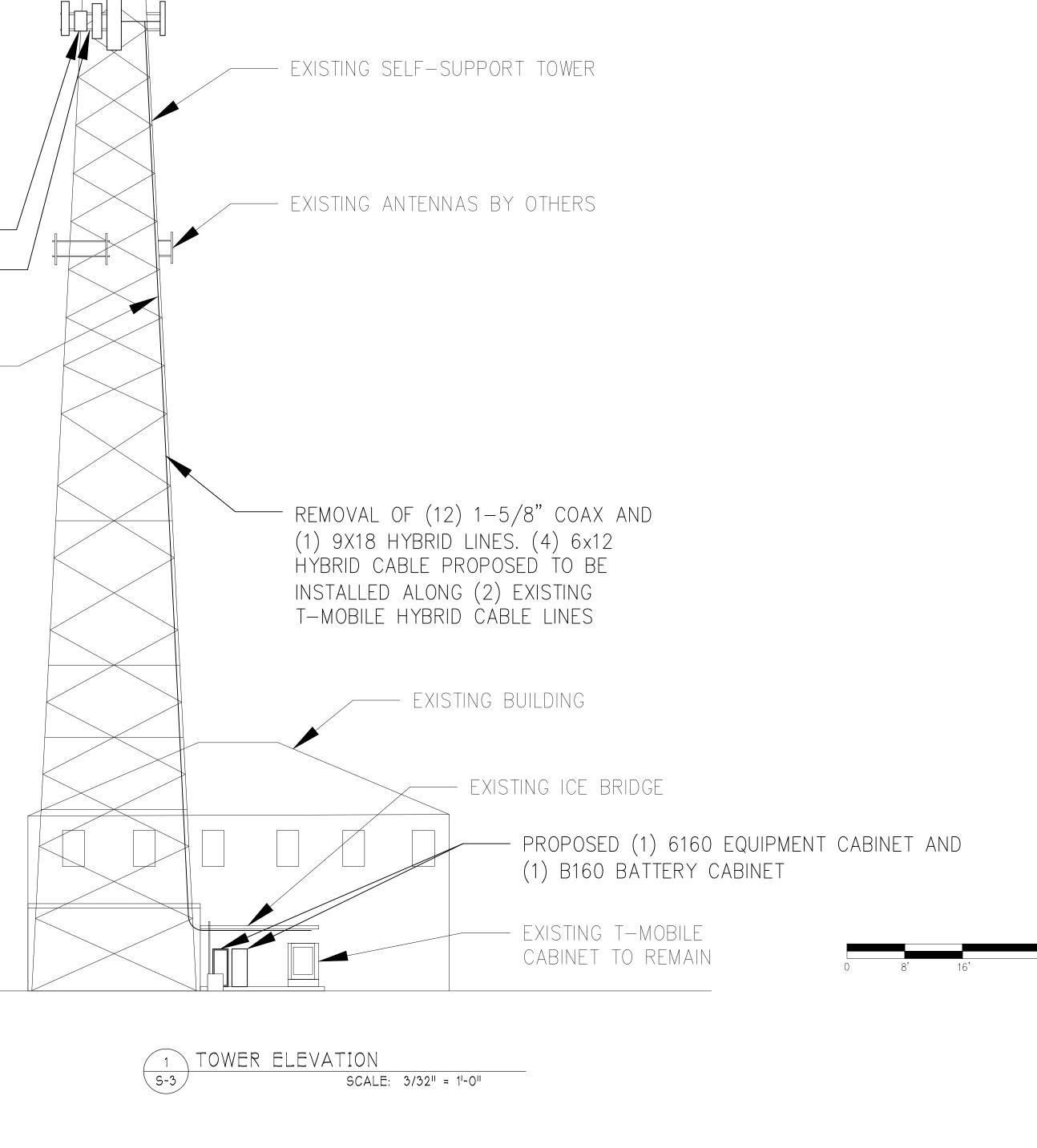
 $1' - 0\frac{3}{4}"$ PROPOSED 6160 CABINET PROPOSED B160 CABINET


S-2

• GENERAL CONTRACTOR TO REFER TO THE STRUCTURAL ANALYSIS BY KM CONSULTING ENGINEERS, INC. DATED JULY 1, 2020 AND EQUIPMENT INSTALLATION RECOMMENDATIONS PRIOR TO COMMENCING

UTLITIES: SANITARY SEWER SERVICES AND POTABLE WATER ARE NOT APPLICABLE PER THE USE. IF APPLICABLE, SUBCONTRACTOR SHALL LOCATE ALL UTLITIES PRIOR TO

> ENLARGED EQUIPMENT PLAN SCALE: 1/2" = 1'-0"



TOP OF EXISTING TOWER ELEV. 180'± (AGL)

T-MOBILE ANTENNA CENTERLINE ELEV. 135'± (AGL)

PROPOSED PANEL ANTENNA (3 TOTAL, 1 PER SECTOR) — PROPOSED RRUS TO REPLACE EXISTING RRUS (3 TOTAL, --1 PER SECTOR)

EXISTING T-MOBILE CABLE -LINES

EXISTING ANTENNAS BY OTHERS

CONSTRUCTION.

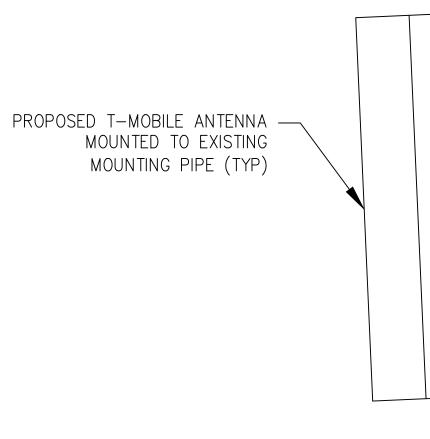

NOTE:

• GENERAL CONTRACTOR TO REFER TO THE STRUCTURAL ANALYSIS BY KM CONSULTING ENGINEERS, INC. DATED JULY 1, 2020 AND EQUIPMENT INSTALLATION RECOMMENDATIONS PRIOR TO COMMENCING

• MOUNTS TO BE REINFORCED BY OTHERS. *SEE MOUNT REINFORCEMENT DETAILS BY CENTEK DATED 6/10/20 FOR SPECIFICATIONS ON THE REINFORCEMENT

CLIENT:
Transcend Wir <mark>ele</mark> ss
10 INDUSTRIAL AVE TEL: (201) 684–0055 MAHWAH, NJ 07430 FAX: (201) 684–0066
KM Consulting Engineers, Inc. Wireless Engineering and Project Management 262 UPPER FERRY RD. EWING, NEW JERSEY 08628 PHONE: (609) 538-0400 E-MAIL: info@kmengr.com WEB PAGE: http://www.kmengr.com CERTIFICATION OF AUTHORIZATION: 24GA27989600
UNAUTHORIZED ALTERATION OR ADDITIONS TO A PLAN BEARING THE SEAL OF A LICENSED ENGINEER, LAND SURVEYOR, OR ARCHITECT IS A VIOLATION OF STATE LAW. COPIES FROM THE ORIGINAL OF THIS DOCUMENT WITHOUT A FACSIMILE OF THE SIGNATURE AND AN ORIGINAL OF THE STAMP OR EMBOSSED SEAL OF THE PROFESSIONAL ENGINEER, LAND SURVEYOR, AND/OR ARCHITECT SHALL NOT BE CONSIDERED VALID COPIES.
MICHAEL L. BOHLINGER, PE CONNECTICUT PROFESSIONAL ENGINEER LICENSE HUMBY CONNECTION HUMBY C
39/1/20JTHPERCLIENTCOMMENTS27/14/20JTHPERCLIENTCOMMENTS16/19/20JTHPERCLIENTCOMMENTSNO.DATE:DRN.:DESCRIPTION:PROJECTPARTICIPANTS
SITE ACQUISITION: DATE:
RF ENGINEER.:
SIGN OFF INITLDATE:
SIGN OFF INITLDATE:
A & E: <u>KM CONSULTING ENGR.'S INC.</u> P.C.: CHKD.: DRN.: DATE:
MLB DA 6/19/20 PROJECT NAME: WEST HAVEN
site address: 24 Rockdale Road West Haven, ct 06516
DRAWING TITLE:
TOWER ELEVATION
SITE ID #: CT11193A PROJECT #.: 140910.06 CTAWING #: REV. #: REV. #: CTURENT OF CONTRACT OF CON

FILE NAME:West Haven (CT11193A) CDs.dwg


	SECTOR	POSITION	MANUFACTURER	STING ANTENNA SCHEDUL MODEL		SIZE (HxWxD)
	JLUTUN	1	ERICSSON	AIR 3246 B66		58.1"X15.75"X9.4"
	1	2	RFS	APXVAARR24_43-U-NA20	RADIO 4449 B71+B85 RADIO 2217 B2 TWIN STYLE 1B AWS TMA	95.9"X24"X8.7"
		3	ERICSSON	AIR 32 B2A/B66A		56.6"X12.9"X8.7"
		1	ERICSSON	AIR 3246 B66		58.1"X15.75"X9.4"
6P Ector, 3	2	2	RFS	APXVAARR24_43-U-NA20	RADIO 4449 B71+B85 RADIO 2217 B2 TWIN STYLE 1B AWS TMA	95.9"X24"X8.7"
		3	ERICSSON	AIR 32 B2A/B66A		56.6"X12.9"X8.7"
		1	ERICSSON	AIR 3246 B66		58.1"X15.75"X9.4"
	3	2	RFS	APXVAARR24_43-U-NA20	RADIO 4449 B71+B85 RADIO 2217 B2 TWIN STYLE 1B AWS TMA	95.9"X24"X8.7"
3		3	ERICSSON	AIR 32 B2A/B66A		56.6"X12.9"X8.7"
		-		POSED ANTENNA SCHEDI	JLE	
	SECTOR	POSITION	MANUFACTURER	MODEL	TMA/RRH	SIZE (HxWxD)
		1	RFS	APXVAARR24_43-U-NA20	RADIO 4449 B71+B85 RADIO 4415 B25	95.9"x24"x8.7"
	1	2	ERICSSON	AIR 3246 B66		58.1"x15.75"x9.4'
		3	ERICSSON	AIR 6449 B41		33.1"X20.6"X8.6"
		4	ERICSSON	AIR 32 B2A/B66A		56.6"x12.9"x8.7"
ME (AL)		1	ERICSSON	AIR 32 B2A/B66A		56.6"x12.9"x8.7"
,		2	ERICSSON	AIR 6449 B41		33.1"X20.6"X8.6"
	2	3	ERICSSON	AIR 3246 B66		58.1"x15.75"x9.4'
		4	RFS	APXVAARR24_43-U-NA20	RADIO 4415 B25 RADIO 4449 B71+B85	95.9"x24"x8.7"
		1	ERICSSON	AIR 3246 B66		58.1"x15.75"x9.4
	3	2	RFS	APXVAARR24_43-U-NA20	RADIO 4415 B25 RADIO 4449 B71+B85	95.9"x24"x8.7"
		3	ERICSSON	AIR 6449 B41		33.1"X20.6"X8.6"
		4	ERICSSON	AIR 32 B2A/B66A		56.6"x12.9"x8.7"

3 ANTENNA SPECIFICATION TABLE ∖ A-1 / SCALE:

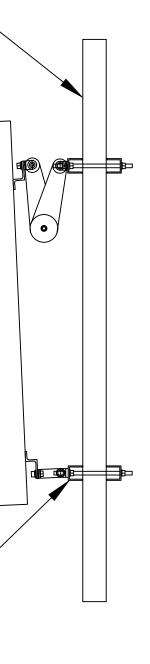
NOTE:

- CONSTRUCTION.

PROPOSED 2" (NOM) — SCHED. 40 PIPE, 5' LONG

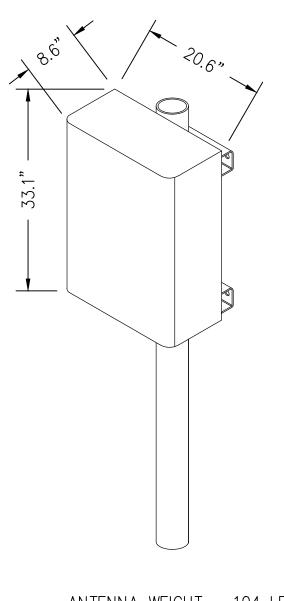
PROPOSED ANTENNA -MOUNTING BRACKET

4 ANTENNA MOUNTING DETAIL A-1


- EXISTING AIR 32 B2A/B66A ANTENNA (TYP 1 PER SECTOR, 3 TOTAL)

- PROPOSED RADIO 4415 B25 (TYP 1 PER SECTOR, 3 TOTAL)

— EXISTING RADIO 4449 B71+B85 TO REMAIN (TYP 1


• GENERAL CONTRACTOR TO REFER TO THE STRUCTURAL ANALYSIS BY KM CONSULTING ENGINEERS, INC. DATED JULY 1, 2020 AND EQUIPMENT INSTALLATION RECOMMENDATIONS PRIOR TO COMMENCING

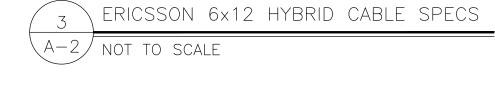
• MOUNTS TO BE REINFORCED BY OTHERS. *SEE MOUNT REINFORCEMENT DETAILS BY CENTEK DATED 6/10/20 FOR SPECIFICATIONS ON THE REINFORCEMENT

	cenu	Wirele	33
10 INDUSTRIAL A Mahwah, nj 074		TEL: (201) 68 FAX: (201) 6	
	ss Engineering an RD. (08628)) 538-0400 @kmengr.com : //www.kmengr		
UNAUTHORIZED ALTE BEARING THE SEAL SURVEYOR, OR ARCH COPIES FROM THE C FACSIMILE OF THE S STAMP OR EMBOSSE ENGINEER, LAND SUI BE CONSIDERED VA	ERATION OR AD OF A LICENSED HITECT IS A VIO DRIGINAL OF TH SIGNATURE AND CD SEAL OF THI RVEYOR, AND/O	DITIONS TO A PL ENGINEER, LANI DLATION OF STAT IS DOCUMENT WI AN ORIGINAL OF E PROFESSIONAL) Te law. Thout a The
MICHAEL CONNECTICU LICENSE HIME S PROTO	L. BOH	LINGER, ONAL ENGI	NEER
	REVISIO	NS	
3 9/1/20 2 7/14/20 1 6/19/20 NO. DATE: [JTH PER C JTH PER C JTH PER C DRN.: DESCR	IPTION:	ENTS
SITE ACQUISITIC			
SIGN OFF INITL.		_DATE:	
RF ENGINEER.:			
SIGN OFF INITL. CONSTR. SUPV.		_DATE:	
SIGN OFF INITL.		_DATE:	
	KM CON	SULTING ENG	<u>r.'s inc.</u>
A & E:		DATE: 6/19	/20
A & E: P.C.: CHKD MLB	, L		
P.C.: CHKD	•		
P.C.: CHKD MLB PROJECT NAME WEST HAVEN SITE ADDRESS: 24 ROCKDALI WEST HAVEN	E ROAD , CT 0651	6	
P.C.: CHKD MLB PROJECT NAME WEST HAVEN SITE ADDRESS: 24 ROCKDALI WEST HAVEN DRAWING TITLE:	E ROAD , CT 0651	⊃lan &	

<u>ERICSSON 4415 B25 RRU</u>

COLOR: LIGHT GREY DIMENSIONS (HxWxD): 16.5" X 13.5" X 6.3" WEIGHT: 46.3 Ibs WITHOUT MOUNTING HARDWARE RF OUTPUT POWER: UP TO 4×40W

2	ERICSSON	4415	B25	RRU	DETAIL
A-2	NOT TO SCA	LE			


<u>ERICSSON RBS6160 EQUIPMENT CABINET</u>

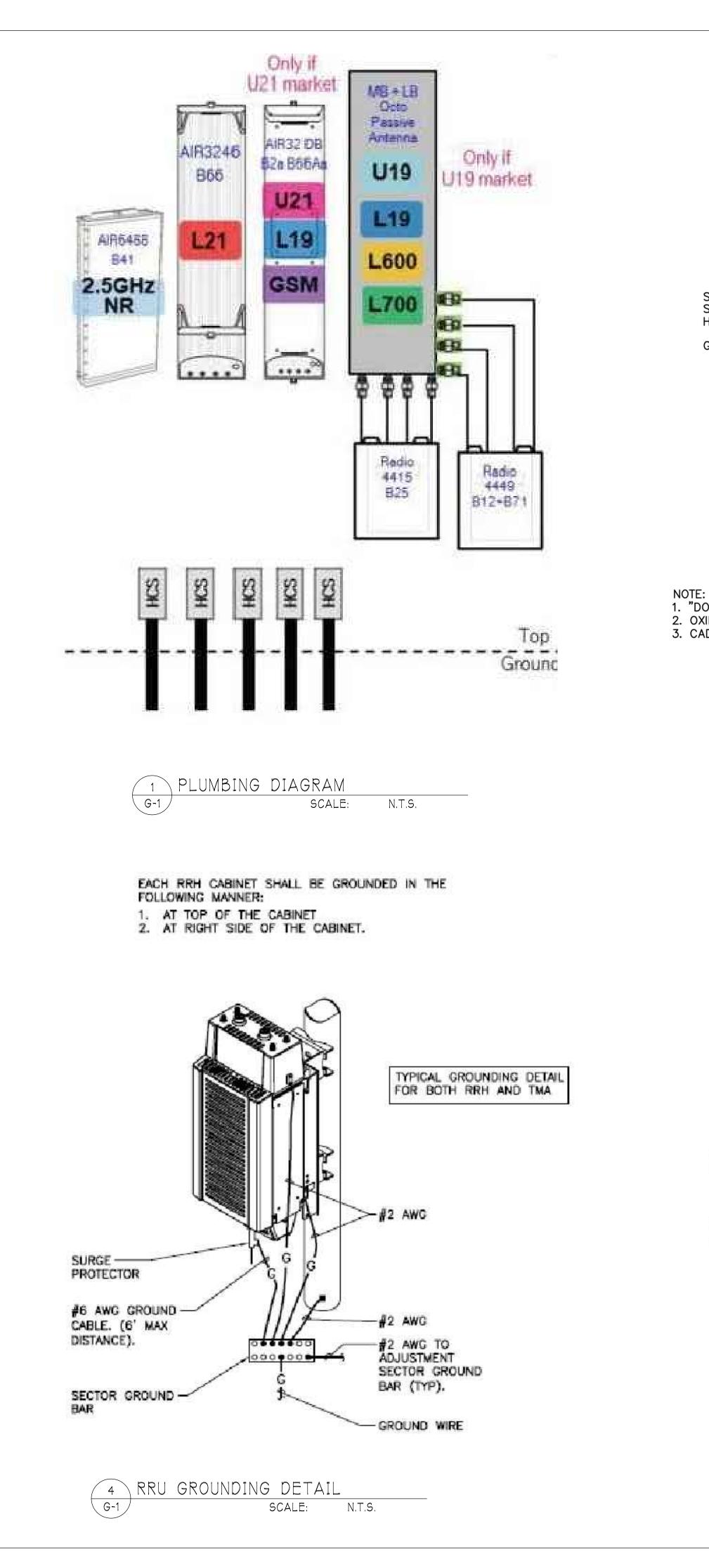
ENCLOSURE: ALUMINUM DIMENSIONS (HxWxD): 63" X 25.6" X 25.6" WEIGHT: 188 Ibs (EXCLUDES EQUIPMENT) WEATHER TIGHTNESS: NEMA TYPE 3R

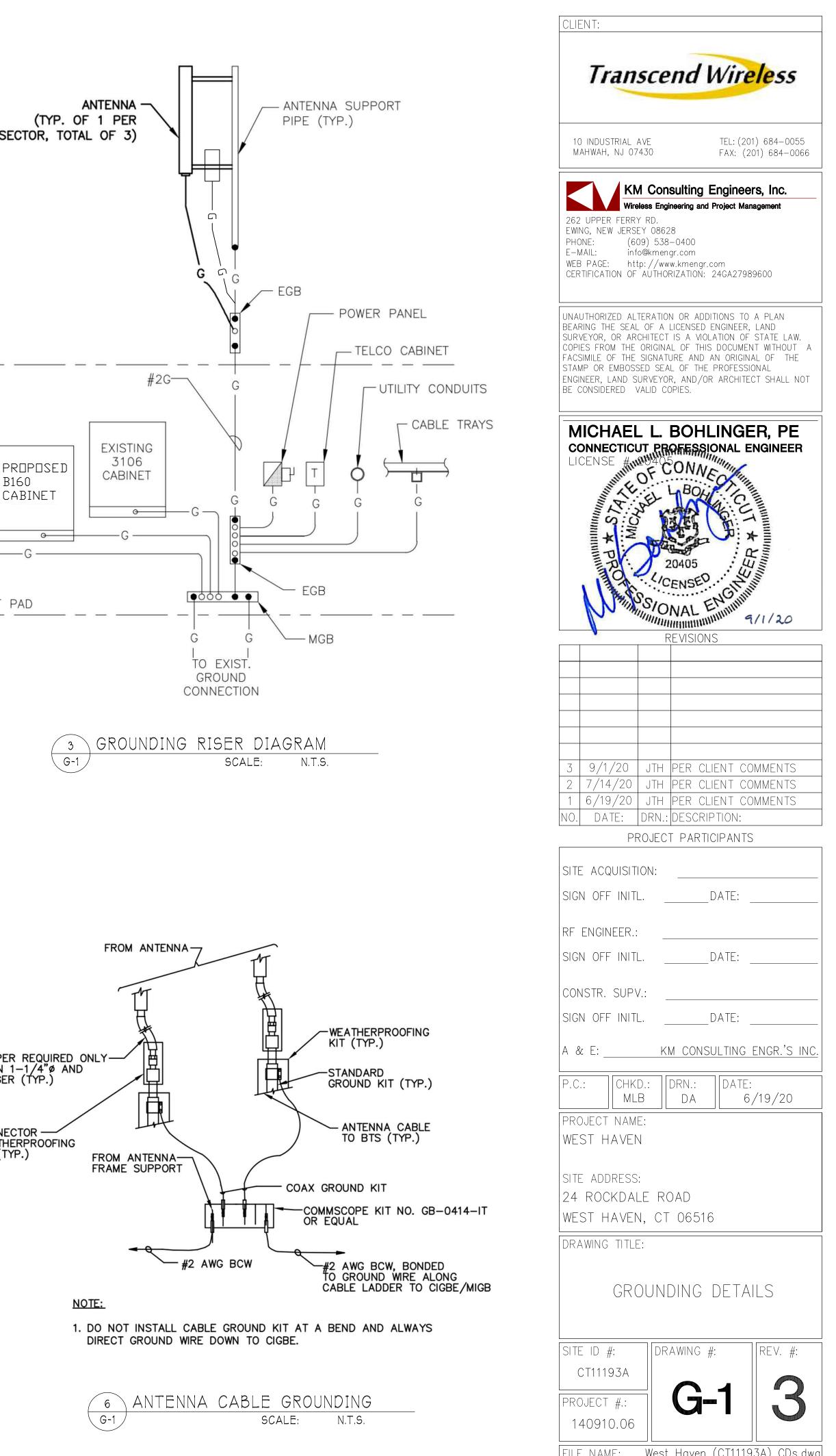
ERICSSON RBS6160 EQUIPMENT CABINET 4 ` A-2 NOT TO SCALE

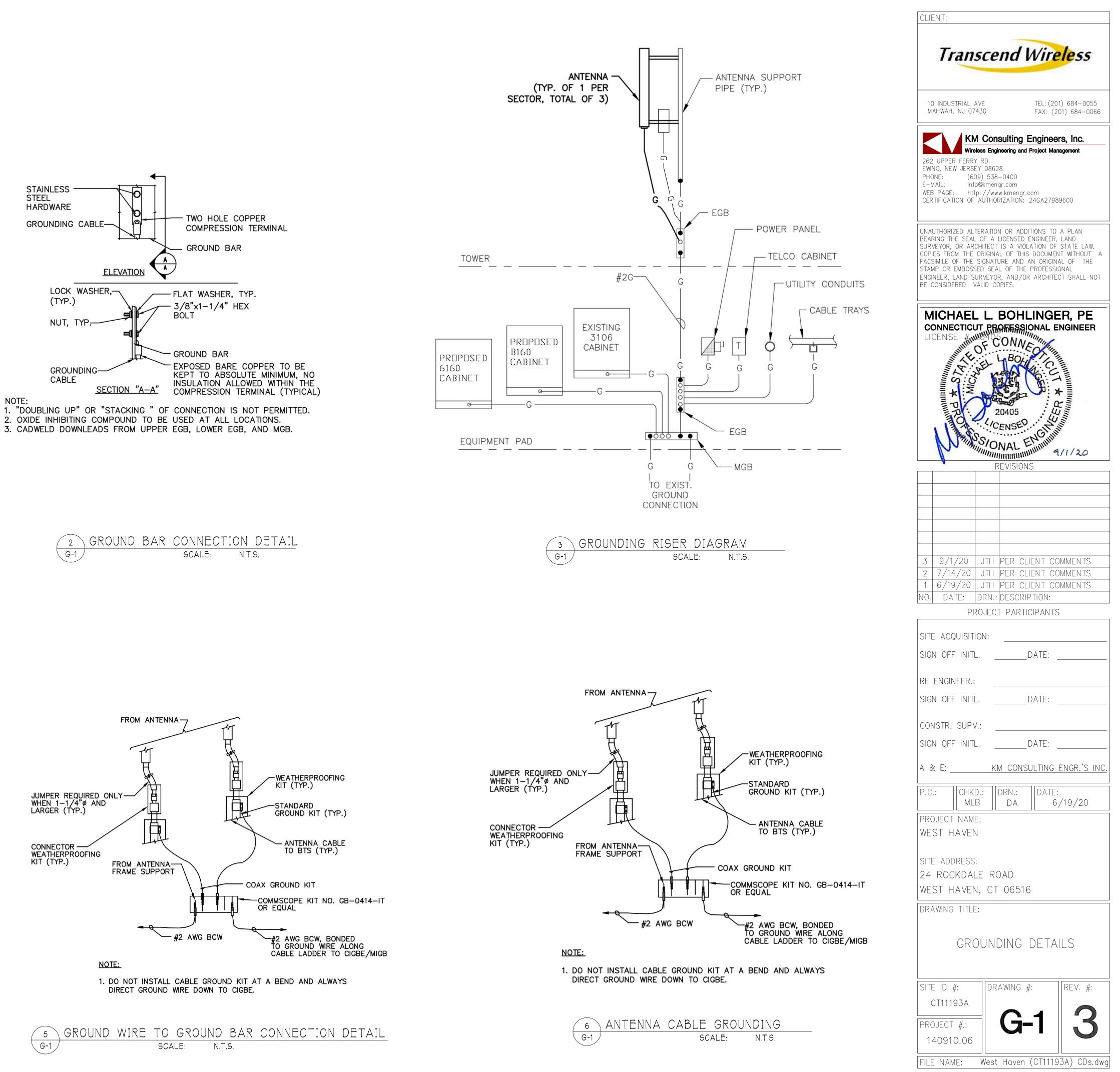
Numbers of power pairs / fiber pairs		6/12
Material		plastic PPE black
Pulling force	radio end	2000 N (short-term during installation)
Temperature range	operation	–40 ℃ to +75 ℃
	installtion	–25 ℃ to +65℃
	fiber break-out cable	500 N
Cable retention force at enclosure	power break-out cable	500 N
enciosure	hybrid cable	2000 N
1	radio end	IP 68
Ingress protection	base station	IP 65 (with protection tube)
IK class		IK 10
Flammability		UL94-V0
UV resistant		ISO 4892-2
Salt mist, IEC 61300-2- 26		96 h
Vibration, IEC 61300-2-1		10 – 500 Hz / 10 g
Shock, IEC 61300-2-9		100 g

Hybrid cable spe	cification
Jacket material	Heat, m
Temperature range	
Operating voltage	
Rated voltage	
Cable shielding	
Fiber optic	4.
Flame retardant	
UV resistant	
UL approved	

ERICSSON B160 EQUIPMENT CABINET


ENCLOSURE: ALUMINUM DIMENSIONS (HxWxD): 63" X 25.6" X 25.6" WEIGHT: 188 Ibs (EXCLUDES EQUIPMENT) WEATHER TIGHTNESS: NEMA TYPE 3R


5 ERICSSON B160 EQUIPMENT CABINET


A-2 NOT TO SCALE

ons (standard cable)
oisture, and sunlight resistant polyvinyl chloride (PVC) jacke
-40°F to + 158°F (-40°C to + 75°C)
48VDC
0,6kV/1kV (1.2kV)
copper foil > 100% coverage
3 mm loose-tube cable with up to 24 fibers single mode
IEC 60332-1-2:2004
Yes, according IEC 68-2-5
Yes

Transcen	d Wir <mark>ele</mark> ss
10 INDUSTRIAL AVE MAHWAH, NJ 07430	TEL: (201) 684–0055 FAX: (201) 684–0066
	om hengr.com
UNAUTHORIZED ALTERATION OF BEARING THE SEAL OF A LICE SURVEYOR, OR ARCHITECT IS COPIES FROM THE ORIGINAL O FACSIMILE OF THE SIGNATURE STAMP OR EMBOSSED SEAL OF ENGINEER, LAND SURVEYOR, A BE CONSIDERED VALID COPIES	NSED ENGINEER, LAND A VIOLATION OF STATE LAW. F THIS DOCUMENT WITHOUT A AND AN ORIGINAL OF THE F THE PROFESSIONAL ND/OR ARCHITECT SHALL NOT
PROTOSSIONA	NNEOCHIMINA
NO. DATE: DRN.: DE	R CLIENT COMMENTS R CLIENT COMMENTS
SITE ACQUISITION:	DATE:
RF ENGINEER.: SIGN OFF INITL	
CONSTR. SUPV.:	
SIGN OFF INITL A & E: KM (DATE: CONSULTING ENGR.'S INC.
	N.: DATE: DA 6/19/20
project name: West haven	
SITE ADDRESS: 24 ROCKDALE ROAD WEST HAVEN, CT O DRAWING TITLE:	
· · · · · <u> </u>	NNA & NT DETAILS
SITE ID #: CT11193A PROJECT #.:	NG #:
140910.06	

GROUNDING NOTES GENERAL NOTES 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING DEFINITIONS SHALL APPLY. FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA OWNER - T-MOBILE GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION. 2. ALL GROUNDING ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATIONS, RADIO, LIGHTNING PROTECTION, AND AC POWER GEC"S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC. 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. REGULATIONS. 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH TO SHOW OUTLINE ONLY. GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT. 5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS, 2 AWG STRANDED COPPER FOR OUTDOOR BTS. SUBCONTRACTOR. 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 7. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS. 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR. 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES. FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RUNG, IN WITH THE CONTRACTOR. ACCORDANCE WITH THE NEC. 11. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTING OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWS COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. SATISFACTION OF OWNER. ELECTRICAL AND GROUNDING NOTES 1. CONNECTIONS TO MGB SHALL BE ARRANGED IN THREE MAIN GROUPS: SURGE PRODUCERS (COAXIAL CABLE GROUND KITS, TELCO AND POWER PANEL GROUNDS); GROUNDING ELECTRODE OR BUILDING STEEL; NON-SURGING OBJECTS (EGB GROUND IN BTS UNIT). 2. CONNECTIONS TO GROUND BARS SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS. 3. APPLY OXIDE INHIBITING COMPOUND TO ALL COMPRESSION TYPE GROUND REQUIREMENTS. CONNECTIONS. 4. BOND ANTENNA MOUNTING BRACKETS, COAXIAL CABLE GROUND KITS, AND ALNA TO EGB PLACED NEAR THE ANTENNA LOCATION. 5. BOND ANTENNA EGB'S AND MGB TO WATER MAIN 6. TEST COMPLETED GROUND SYSTEM AND RECORD RESULTS FOR PROJECT CLOSE-OUT DOCUMENTATION. 7. BOND ANY METAL OBJECTS WITHIN 7 FEET OF PROPOSED EQUIPMENT OR CABINET TO MASTER GROUND BAR. 8. VERIFY PROPOSED SERVICE UPGRADE WITH LOCATION UTILITY COMPANY PRIOR TO CONSTRUCTION.

1. FOR THE PURPOSE OF CONSTRUCTION DRAWINGS, THE FOLLOWING

CONTRACTOR - TRANSCEND WIRELESS SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)

2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.

3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES, AND APPLICABLE

4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED

5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

6. "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY THE CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE

7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSED AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.

9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWINGS. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING

10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE

11. SUBCONTRACTORS SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

12. SUBCONTRACTOR SHALL LEAVE PREMISED IN CLEAN CONDITION.

13. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.

14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000PSI STRENGTH AT 28 DAYS. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH ACI 318 CODE

- USING A COMPATIBLE ZINC RICH PAINT.
- SITES."
- CONSTRUCTION.
- PERIODS AFTER MIDNIGHT.
- DANGEROUS EXPOSURE LEVELS.
- 20. APPLICABLE BUILDING CODES:

BUILDING CODE: 2016 CONNECTICUT STATE BUILDING CODE. ELECTRICAL CODE: REFER TO ELECTRICAL DRAWINGS LIGHTNING CODE: REFER TO ELECTRICAL DRAWINGS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING STANDARDS:

AMERICAN CONCRETE INSTITUTE (ACI) 318: BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE

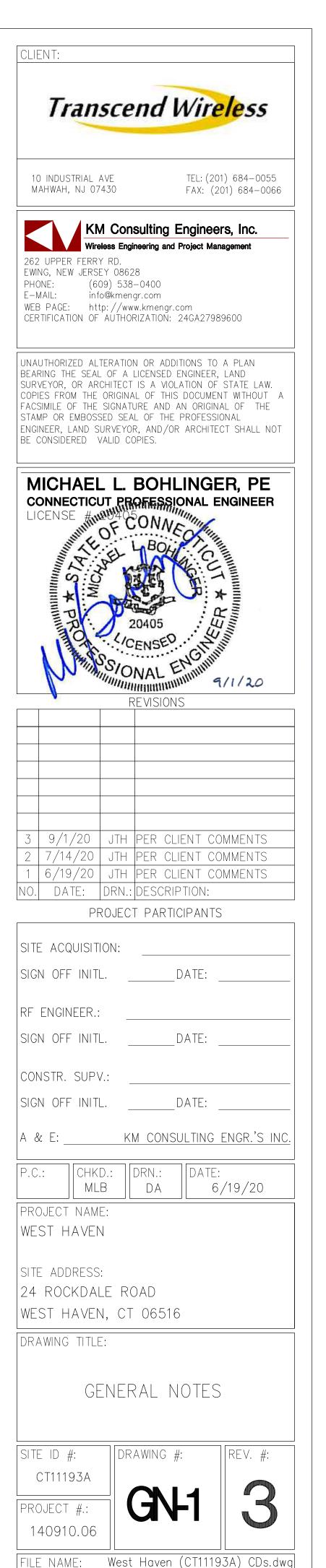
AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

MANUAL OF STEEL CONSTRUCTION, ASD, 9TH EDITION

ANSI/TIA-222-G, STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHOD OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MORE RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED, AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLES OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE 3 (Fy = 36 ksi). All steel exposed TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED


16. CONSTRUCTION SHALL COMPLY WITH UMTS SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF T-MOBILE

17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR WITH ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH

18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATIONS. ANY CONSTRUCTIN WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE WINDOW USUALLY IN LOW TRAFFIC

19. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF THE CONTRACT AWARD SHALL GOVERN THE DESIGN.

Exhibit D Structural Analysis Report

STRUCTURAL ANALYSIS REPORT

For

T • • Mobile •

Transcend Wireless 10 Industrial Ave., Suite 3 Mahwah, NJ 07430

West Haven (CT11193A) KM No. 140910.06

180' Self-Support Tower 24 Rockdale Road West Haven, CT 06516 41.291205, -72.967881

Prepared By:

KM CONSULTING ENGINEERS, INC.

262 Upper Ferry Road, Ewing, NJ 08628 Ph: (609) 538-0400 www.kmengr.com

July 1, 2020

Prepared to ANSI/TIA-222-G-4 December 2014 Structural Standards for Antenna Supporting Structures and Antennas

TABLE OF CONTENTS

SECTION	PAGE
1.0 EXECUTIVE SUMMARY	3
2.0 TOWER INVENTORY	4
3.0 COMMENTARY	6
4.0 ANALYSIS PROCEDURE	7
5.0 TOWER ANALYSIS RESULTS	8
6.0 RECOMMENDATIONS	9
7.0 APPENDIX	10

Load Case No. 1: Existing self-support tower with existing inventory and proposed T-Mobile installation.

1.0 EXECUTIVE SUMMARY

Structure

Owner/Manager: Radio Communications, Inc.

Location: 24 Rockdale Road West Haven, CT 06516 41.291205, -72.967881

Manufacturer: Rohn

Equipment

Existing tower inventory plus the proposed installation are detailed in Section 2.0 "Tower Inventory."

Synopsis

<u>Loading Case:</u> The existing self-support tower with the existing inventory and proposed T-Mobile installation.

The tower superstructure meets the current ANSI/TIA-222-G standards and therefore is structurally adequate for the proposed loading. The tower superstructure is rated at 81.9% and the base foundation is rated at 52.5%.

2.0 TOWER INVENTORY

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
20' Dipole	191	BXA-171063-8BF (Verizon)	144.5
10' Whip	183.5	BXA-171063-8BF (Verizon)	144.5
10' Dipole	183	BXA-171063-8BF (Verizon)	144.5
10' Whip	182.5	BXA-80063-6BF (Verizon)	144.5
6' Yagi	182	BXA-80063-6BF (Verizon)	144.5
PG1N0F-0090-310	182	Stand-Off T-Frame (Verizon)	143.5
16' Whip	182	Stand-Off T-Frame (Verizon)	143.5
6' Yagi	182	Stand-Off T-Frame (Verizon)	143.5
21' Whip	182	APXVAARR24_43-U-NA20 (T-Mobile)	135
21' Whip	181.5	APXVAARR24_43-U-NA20 (T-Mobile)	135
21' Whip	181.5	APXVAARR24_43-U-NA20 (T-Mobile)	135
20' Dipole	181.5	Stand-Off T-Frame (T-Mobile)	135
14' Inverted Whip	180 - 166	Stand-Off T-Frame (T-Mobile)	135
Top Platform	180	AIR 3246 B66 (T-Mobile)	135
10' Inverted Whip	180 - 170	Stand-Off T-Frame (T-Mobile)	135
TMA	180	AIR 32 B2a/B66Aa (T-Mobile)	135
TMA	180	AIR 3246 B66 (T-Mobile)	135
(2) Scala Panels	175.5	AIR 3246 B66 (T-Mobile)	135
Raycap (Verizon)	148.5	AIR 32 B2a/B66Aa (T-Mobile)	135
(2) JAHH-45B-R3B (Verizon)	146	AIR 32 B2a/B66Aa (T-Mobile)	135
(2) JAHH-45B-R3B (Verizon)	146	Radio 4449 B71/B85 (T-Mobile)	135
(2) JAHH-45B-R3B (Verizon)	146	Radio 4449 B71/B85 (T-Mobile)	135
BSAMNT-SBS-2-2 (Verizon)	146	Radio 4449 B71/B85 (T-Mobile)	135
BSAMNT-SBS-2-2 (Verizon)	146	AP259015-52	135
BSAMNT-SBS-2-2 (Verizon)	146	AIR6449 B41 (T-Mobile)	135
B5/B13 Dual Band RRH (Verizon)	146	AIR6449 B41 (T-Mobile)	135
B5/B13 Dual Band RRH (Verizon)	146	AIR6449 B41 (T-Mobile)	135
B5/B13 Dual Band RRH (Verizon)	146	Radio 4415 B25 (T-Mobile)	135
B2/B66a Dual Band RRH (Verizon)	146	Radio 4415 B25 (T-Mobile)	135
B2/B66a Dual Band RRH (Verizon)	146	Radio 4415 B25 (T-Mobile)	135
B2/B66a Dual Band RRH (Verizon)	146	IBR1300	125
FDJ85020Q7-S1 diplexer (Verizon)	146	Empty Mount	103
FDJ85020Q7-S1 diplexer (Verizon)	146	2' yagi	102.5
FDJ85020Q7-S1 diplexer (Verizon)	146	GPS	59.5
BXA-80063-6BF (Verizon)	144.5	(2) GPS	18
HTTA box (Verizon)	144.5	(2) GPS	17.67
HTTA box (Verizon)	144.5		

Proposed T-Mobile installation:

*(3) AIR6449 B41 panel antennas @ 135' AGL

*(3) Radio 4415 B25's @ 135' AGL

*(4) 6x12 hybrid cables up to 135' AGL

*removal of (3) Radio 2217 B2's @ 135' AGL

*removal of (12) 1-5/8" coax lines up to 135' AGL

*removal of (1) 9x18 hybrid cable up to 135' AGL

3.0 COMMENTARY

Our scope of work is to determine if the existing structure is capable of withstanding the additional stresses/forces imposed by the installation of the proposed T-Mobile equipment noted in the tower inventory.

Tower structure information and foundation information was obtained from previous structural analyses by KMCE. The tower has been reinforced as per KMCE drawings in November 1997, July 2002, January 2009, August 2012, and December 2014. The existing tower inventory was determined from a tower climb and mapping completed on February 16, 2015. The proposed loading was obtained from a draft T-Mobile RFDS dated 5/19/20 and from correspondence with the client. Mount modifications as detailed by CENTEK Engineering, Inc. dated 6/10/20 are included in this report.

The following report will provide analytical calculations and commentary regarding the capacity of the proposed tower and subsequent recommendations.

4.0 ANALYSIS PROCEDURE

KM Consulting Engineers, Inc. carried out their structural analysis by correlating field inspection and tower member data into proprietary software designed specifically for communication tower analysis.

These programs run in conjunction with the guidelines set down in the ANSI/TIA-222-G (Addendum 4) Dec 2014 Standard entitled "Structural Standards for Antenna Supporting Structures and Antennas."

The existing tower is analyzed by placing wind forces on the structure in 30° positional increments around the tower (i.e. wind pressure directly onto the tower corners, faces and parallel to the faces). This enables the user to "create" a three-dimensional representation, yielding results for worst case scenarios. In effect, the production of these results allows the user to study the structural integrity of the tower when influenced by wind forces from any direction.

The proceeding report includes analysis for the tower with the addition of antennas in the scenarios stated. For clarity, the analysis shall include worst case loadings and a typical elevation view with maximum foundation loads tabulated.

Should the client require to be furnished with a full copy of our analysis, we will gladly do so.

Codes and Standards

ACI - American Concrete Institute - Building Code Requirements for Structural Concrete (ACI 318-14), 2014

AISC - American Institute of Steel Construction - Manual of Steel Construction, 14th edition, 2011

TIA - Telecommunications Industry Association - ANSI/TIA-222-G-4 Structural Standards for Antenna Supporting Structures and Antennas, 2014

CSBC - Connecticut State Building Code 2018

ASCE - Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-05)

5.0 TOWER ANALYSIS RESULTS

The tower was analyzed for the inventory detailed in Section 2.0 "Tower Inventory".

The basic wind speed of 97 MPH with no radial ice in accordance with ANSI/TIA-222-G is taken from Appendix N in the 2018 Connecticut State Building Code for the nominal design wind speed for the municipality of West Haven, CT. The basic wind speed of 50 MPH concurrent with ³/₄" design ice thickness is taken from the ANSI/TIA-222-G listing applicable for New Haven County, CT. Additional criteria include Structure Class II, Exposure Category B, and Topographic Category 1.

Loading Case: Proposed loading includes the addition of (3) AIR6449 B41 panel antennas, (3) Radio 4415 B25's, and (4) 6x12 hybrid cables, and the removal of (3) Radio 2217 B2's, (12) 1-5/8" coax lines, and (1) 9x18 hybrid cable.

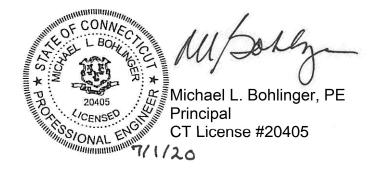
The tower superstructure meets the current ANSI/TIA-222-G standards and therefore can handle the proposed loading. The tower superstructure is rated at 81.9% and the base foundation is rated at 52.5%. The mount modifications as detailed by CENTEK Engineering, Inc. dated 6/10/20 are included in our report.

Table 1. Foundation Capacity

Loading	Actual (kip)	Allowable (kip)	Rating
Uplift force	201.7	384	52.5%

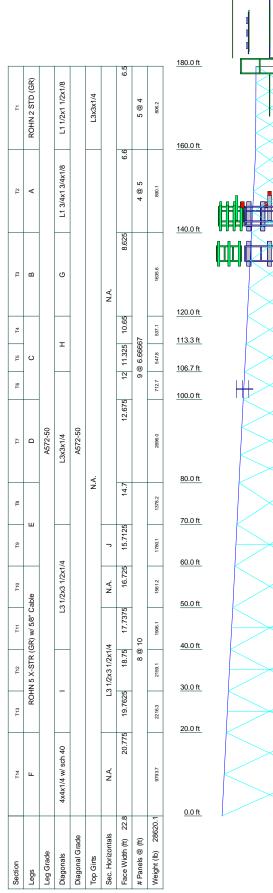
Transcend Wireless West Haven (CT11193A) July 1, 2020

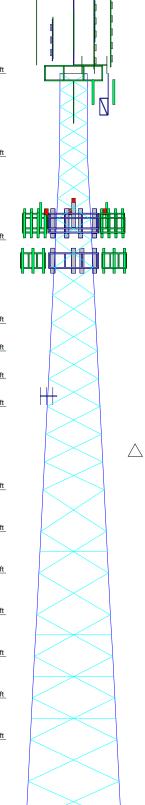
6.0 RECOMMENDATIONS


Further to our calculations, we conclude that the tower superstructure has sufficient capacity to support the proposed T-Mobile installation and therefore meets the current ANSI/TIA-222-G design standards.

Please do not hesitate to contact our office with any questions or concerns regarding this report.

Sincerely, KM CONSULTING ENGINEERS, INC


Reviewed and Approved by:

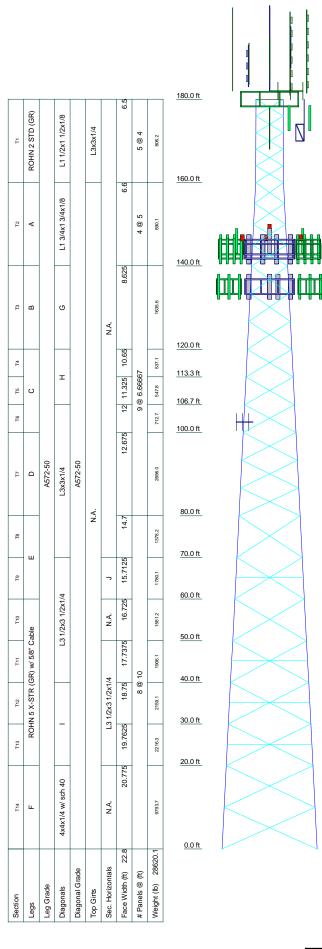

Domenic Aversa, PE Project Manager

7.0 APPENDIX

LOADING CASE

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
20' Dipole	191	BXA-171063-8BF (Verizon)	144.5
10' Whip	183.5	BXA-171063-8BF (Verizon)	144.5
10' Dipole	183	BXA-171063-8BF (Verizon)	144.5
10' Whip	182.5	BXA-80063-6BF (Verizon)	144.5
6' Yagi	182	BXA-80063-6BF (Verizon)	144.5
PG1N0F-0090-310	182	Stand-Off T-Frame (Verizon)	143.5
16' Whip	182	Stand-Off T-Frame (Verizon)	143.5
6' Yagi	182	Stand-Off T-Frame (Verizon)	143.5
21' Whip	182	APXVAARR24_43-U-NA20 (T-Mobile)	135
21' Whip	181.5	APXVAARR24_43-U-NA20 (T-Mobile)	135
21' Whip	181.5	APXVAARR24_43-U-NA20 (T-Mobile)	135
20' Dipole	181.5	Stand-Off T-Frame (T-Mobile)	135
14' Inverted Whip	180 - 166	Stand-Off T-Frame (T-Mobile)	135
Top Platform	180	AIR 3246 B66 (T-Mobile)	135
10' Inverted Whip	180 - 170	Stand-Off T-Frame (T-Mobile)	135
TMA	180	AIR 32 B2a/B66Aa (T-Mobile)	135
ТМА	180	AIR 3246 B66 (T-Mobile)	135
(2) Scala Panels	175.5	AIR 3246 B66 (T-Mobile)	135
Raycap (Verizon)	148.5	AIR 32 B2a/B66Aa (T-Mobile)	135
(2) JAHH-45B-R3B (Verizon)	146	AIR 32 B2a/B66Aa (T-Mobile)	135
(2) JAHH-45B-R3B (Verizon)	146	Radio 4449 B71/B85 (T-Mobile)	135
(2) JAHH-45B-R3B (Verizon)	146	Radio 4449 B71/B85 (T-Mobile)	135
BSAMNT-SBS-2-2 (Verizon)	146	Radio 4449 B71/B85 (T-Mobile)	135
BSAMNT-SBS-2-2 (Verizon)	146	AP259015-52	135
BSAMNT-SBS-2-2 (Verizon)	146	AIR6449 B41 (T-Mobile)	135
B5/B13 Dual Band RRH (Verizon)	146	AIR6449 B41 (T-Mobile)	135
B5/B13 Dual Band RRH (Verizon)	146	AIR6449 B41 (T-Mobile)	135
B5/B13 Dual Band RRH (Verizon)	146	Radio 4415 B25 (T-Mobile)	135
B2/B66a Dual Band RRH (Verizon)	146	Radio 4415 B25 (T-Mobile)	135
B2/B66a Dual Band RRH (Verizon)	146	Radio 4415 B25 (T-Mobile)	135
B2/B66a Dual Band RRH (Verizon)	146	IBR1300	125
FDJ85020Q7-S1 diplexer (Verizon)	146	Empty Mount	103
FDJ85020Q7-S1 diplexer (Verizon)	146	2' yagi	102.5
FDJ85020Q7-S1 diplexer (Verizon)	146	GPS	59.5
BXA-80063-6BF (Verizon)	144.5	(2) GPS	18
HTTA box (Verizon)	144.5	(2) GPS	17.67
HTTA box (Verizon)	144.5		


SYMBOL LIST

MARK	SIZE	MARK	SIZE			
A	ROHN 2.5 STD (GR) w/ 5/8" Cable	F	ROHN 6 EH (GR) w/ 5/8" Cable (GR)			
В	ROHN 2.5 X-STR (GR) w/ 5/8" Cable	G	L2x2x1/8 w/1.5" sch 40 pipe			
С	ROHN 3 X-STR (GR) w/ 5/8" Cable	Н	L2 1/2x2 1/2x3/16			
D	ROHN 4 X-STR (GR) w/ 5/8" Cable	I	L3.5x3.5x1/4 w/ 2x1/4 plate			
E	ROHN 5 STD (GR) w/ 5/8" Cable	J	L3 1/2x3 1/2x1/4			

	MATERIAL STRENGTH				
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi			

^{Job:} West Haven LC1		
Project: 180 ft. Self Support To	wer	
	Drawn by: DCA	App'd:
^{Code:} TIA-222-G	Date: 06/11/20	Scale: NTS
Path: I:Doug\Transcend Wireless\West Haven (CT11193	A)\Engineering\West Haven I C1 eri	Dwg No. E-1

	SYMBO	DL LIST	
MARK	SIZE	MARK	SIZE
А	ROHN 2.5 STD (GR) w/ 5/8" Cable	F	ROHN 6 EH (GR) w/ 5/8" Cable (GR)
В	ROHN 2.5 X-STR (GR) w/ 5/8" Cable	G	L2x2x1/8 w/1.5" sch 40 pipe
С	ROHN 3 X-STR (GR) w/ 5/8" Cable	н	L2 1/2x2 1/2x3/16
D	ROHN 4 X-STR (GR) w/ 5/8" Cable	I	L3.5x3.5x1/4 w/ 2x1/4 plate
E	ROHN 5 STD (GR) w/ 5/8" Cable	J	L3 1/2x3 1/2x1/4

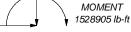
MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi			

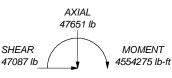
TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut. Tower designed for Exposure B to the TIA-222-G Standard.
- 2.
- Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to 3. 4.
- increase in thickness with height.
- 5
- Deflections are based upon a 60 mph wind. Tower Structure Class II. Topographic Category 1 with Crest Height of 0.00 ft 6. 7.

8. Grouted pipe f'c is 8 ksi


- Tower legs have 5/8" diameter stainless steel cable(40K tension) in grouted leg.
 TOWER RATING: 81.9%

ALL REACTIONS ARE FACTORED MAX. CORNER REACTIONS AT BASE:


DOWN: 246534 lb SHEAR: 29287 lb

UPLIFT: -201745 lb SHEAR: 24151 lb

TORQUE 13593 lb-ft 50 mph WIND - 0.7500 in ICE

TORQUE 29479 lb-ft REACTIONS - 97 mph WIND

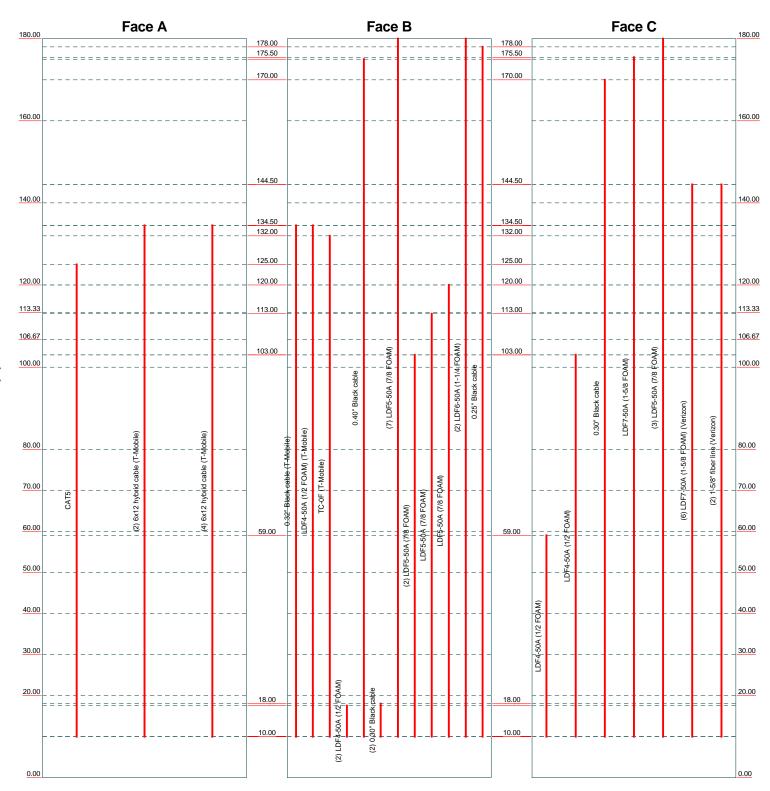
SHEAR

14917 lb

 \triangle

KM Consulting Engineers, Inc. 262 Upper Ferry Road Ewing, NJ 08628 Phone: (609) 538-0400 FAX:

^{Job:} West Haven LC1		
Project: 180 ft. Self Support To	ower	
Client: Transcend Wireless	Drawn by: DCA	App'd:
	00/11/20	Scale: NTS
Path:	(A))Engineering)West Haven I C1 or	Dwg No. E-1


Feed Line Distribution Chart

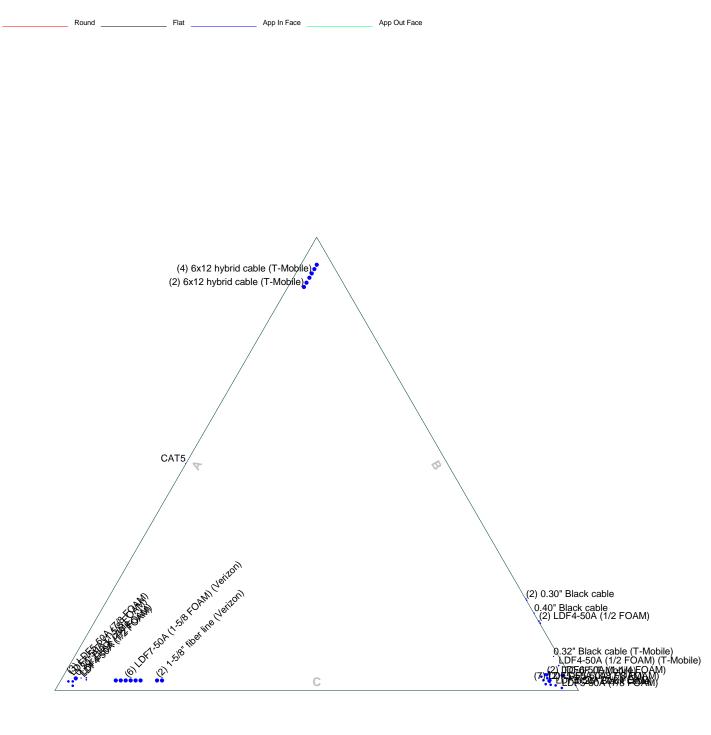
App In Face

0' - 180'

App Out Face

Truss Leg

KM Consulting Engineers, Inc. 262 Upper Ferry Road Ewing, NJ 08628 Phone: (609) 538-0400 FAX:

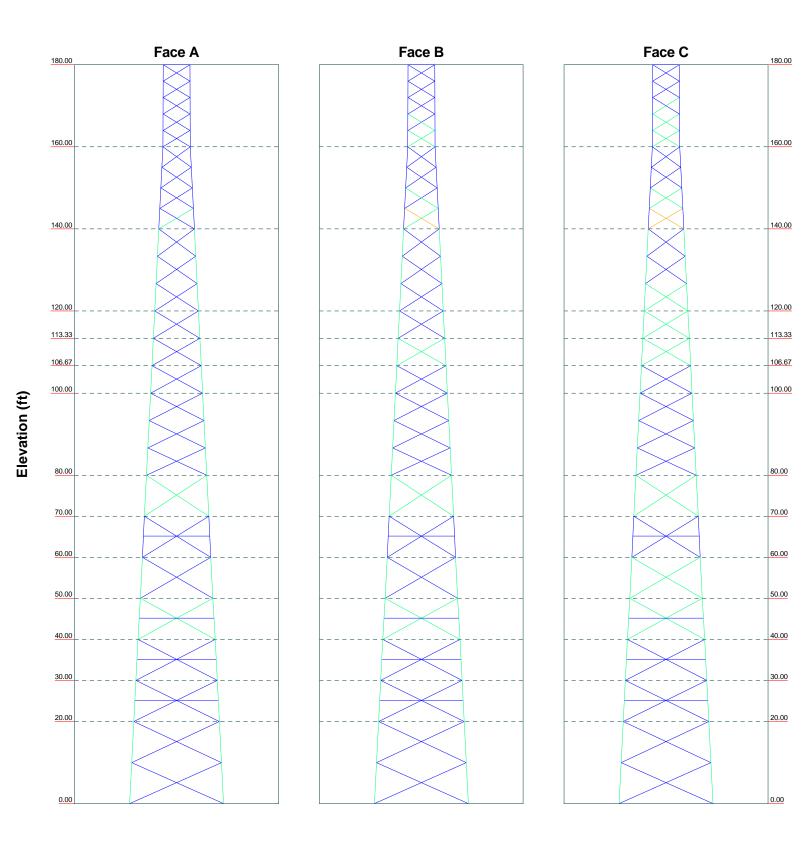

,	^{Job:} West Haven LC1		
	Project: 180 ft. Self Support To	wer	
	^{Client:} Transcend Wireless	Drawn by: DCA	App'd:
			Scale: NTS
	Path:	(A))Engineering)West Haven I C1 or	Dwg No. E-7

Elevation (ft)

Round

Flat

Feed Line Plan



KM Consulting Engineers, Inc. 262 Upper Ferry Road Ewing, NJ 08628 Phone: (609) 538-0400 FAX:

^{Job:} West Haven LC1		
Project: 180 ft. Self Support To	ower	
Client: Transcend Wireless	Drawn by: DCA	App'd:
	Date: 06/11/20	Scale: NTS
Path:		Dwg No. E-7

Stress Distribution Chart 0' - 180' > 100% 90%-100% 75%-90% 50%-75% < 50% Overstress</td>

KM Consulting Engineers, Inc. 262 Upper Ferry Road Ewing, NJ 08628 Phone: (609) 538-0400 FAX:

•	^{Job:} West Haven LC1		
	Project: 180 ft. Self Support To		
		Drawn by: DCA	App'd:
			Scale: NTS
	Path:		Dwg No. E-8

tnxTower

KM Consulting Engineers, Inc. 262 Upper Ferry Road Ewing, NJ 08628 Phone: (609) 538-0400 FAX:

Job		Page
	West Haven LC1	48 of 49
Project		Date
	180 ft. Self Support Tower	15:39:58 06/11/20
Client		Designed by
	Transcend Wireless	DCA

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
T1	180 - 160	Leg	ROHN 2 STD (GR)	2	-16513.60	47357.40	34.9	Pass
		Diagonal	L1 1/2x1 1/2x1/8	7	-2569.65	4237.09	60.6	Pass
		Top Girt	L3x3x1/4	4	-348.67	20560.00	1.7	Pass
T2	160 - 140	Leg	ROHN 2.5 STD (GR) w/ 5/8"	38	-33172.60	85040.70	39.0	Pass
			Cable					
		Diagonal	L1 3/4x1 3/4x1/8	40	-3426.42	4183.54	81.9	Pass
T3	140 - 120	Leg	ROHN 2.5 X-STR (GR) w/ 5/8"	65	-60000.60	89416.30	67.1	Pass
			Cable	_				_
		Diagonal	L2x2x1/8 w/1.5" sch 40 pipe	67	-5546.24	10828.00	51.2	Pass
T4	120 - 113.333	Leg	ROHN 3 X-STR (GR) w/ 5/8"	86	-69292.20	124199.00	55.8	Pass
			Cable					-
	112 222	Diagonal	L2 1/2x2 1/2x3/16	88	-5682.85	10126.70	56.1	Pass
T5	113.333 -	Leg	ROHN 3 X-STR (GR) w/ 5/8"	95	-78986.10	124199.00	63.6	Pass
	106.667	D ¹ 1	Cable		5 00 0 50	0.40 6 50		
	104 447 100	Diagonal	L2 1/2x2 1/2x3/16	97	-5882.69	9436.58	62.3	Pass
T6	106.667 - 100	Leg	ROHN 3 X-STR (GR) w/ 5/8"	104	-88312.20	124199.00	71.1	Pass
		D' 1	Cable	100	(100 (1	10704.20	22.1	P
		Diagonal	L3x3x1/4	106	-6199.61	18704.30	33.1	Pass
T 7	100 00	т	DOIN AN OTD (OD) / 5/01	112	110024.00	225464.00	39.0 (b)	D
T7	100 - 80	Leg	ROHN 4 X-STR (GR) w/ 5/8"	113	-118034.00	225464.00	52.4	Pass
		D' 1	Cable	115	(000 00	15594 40	44.4	D
T 0	90 70	Diagonal	L3x3x1/4	115	-6923.23	15584.40	44.4	Pass
T8	80 - 70	Leg	ROHN 5 STD (GR) w/ 5/8"	134	-130228.00	253652.00	51.3	Pass
		Diagonal	Cable	136	9019 20	12316.40	65.1	Pass
Т9	70 - 60	Diagonal	L3x3x1/4		-8018.30			
19	/0 - 60	Leg	ROHN 5 STD (GR) w/ 5/8" Cable	143	-145254.00	335317.00	43.3	Pass
		Diagonal	L3 1/2x3 1/2x1/4	145	-8540.43	17388.70	49.1	Pass
		Secondary Horizontal		151	-2519.10	16359.70	15.4	Pass
T10	60 - 50	Leg	ROHN 5 X-STR (GR) w/ 5/8"	151	-160770.00	262883.00	61.2	Pass
110	00-50	Ltg	Cable	155	-100770.00	202005.00	01.2	1 455
		Diagonal	L3 1/2x3 1/2x1/4	157	-8689.23	16180.50	53.7	Pass
T11	50 - 40	Leg	ROHN 5 X-STR (GR) w/ 5/8"	164	-175628.00	347755.00	50.5	Pass
111	50 40	Leg	Cable	104	175020.00	547755.00	50.5	1 435
		Diagonal	L3 1/2x3 1/2x1/4	167	-9403.90	15078.40	62.4	Pass
		Secondary Horizontal	L3 $1/2x3$ $1/2x1/4$ L3 $1/2x3$ $1/2x1/4$	172	-3045.86	13774.00	22.1	Pass
T12	40 - 30	Leg	ROHN 5 X-STR (GR) w/ 5/8"	176	-191283.00	347854.00	55.0	Pass
112	40 50	Leg	Cable	170	171205.00	547054.00	55.0	1 435
		Diagonal	L3.5x3.5x1/4 w/ 2x1/4 plate	179	-9631.83	34444.50	28.0	Pass
		Diugonui		172	2021.02	51111.50	38.8 (b)	1 455
		Secondary Horizontal	L3 1/2x3 1/2x1/4	185	-3317.36	12705.40	26.1	Pass
T13	30 - 20	Leg	ROHN 5 X-STR (GR) w/ 5/8"	188	-206493.00	347943.00	59.3	Pass
115	50 20	Leg	Cable	100	200495.00	547745.00	57.5	1 435
		Diagonal	L3.5x3.5x1/4 w/ 2x1/4 plate	191	-10053.80	31753.50	31.7	Pass
		Diagonai	15.5x5.5x1/4 w/ 2x1/4 plate	171	10055.00	51755.50	40.5 (b)	1 435
		Secondary Horizontal	L3 1/2x3 1/2x1/4	196	-3581.14	11756.50	30.5	Pass
T14	20 - 0		ROHN 6 EH (GR) w/ 5/8" Cable	200	-238798.00	397313.00	60.1	Pass
117	20 0	125	(GR)	200	200790.00	577515.00	00.1	1 455
		Diagonal	4x4x1/4 w/ sch 40	203	-10544.50	77127.90	13.7	Pass
		Diagonai	ix ixi/ i w/ sen to	205	10511.50	//12/.90	21.2 (b)	1 455
							Summary	
						Leg (T6)	71.1	Pass
						Diagonal	81.9	Pass
						(T2)	01.7	1 455
						Secondary	30.5	Pass
						Horizontal	50.5	1 455
						(T13)		
						(115)		

A	Job	Page
tnxTower	West Haven LC1	49 of 49
KM Consulting Engineers, Inc.	Project	Date
262 Upper Ferry Road	180 ft. Self Support Tower	15:39:58 06/11/20
Ewing, NJ 08628	Client	Designed by
Phone: (609) 538-0400 FAX:	Transcend Wireless	DCA

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{\phi P_{allow}}_{lb}$	% Capacity	Pass Fail
						Top Girt (T1)	1.7	Pass
						Bolt Checks RATING =		Pass Pass

Program Version 8.0.7.4 - 5/11/2020 File:I:/Doug/Transcend Wireless/West Haven (CT11193A)/Engineering/West Haven LC1.eri

Exhibit E Mount Analysis

Centered on Solutions[™]

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site #: CT11193A

24 Rockdale Road West Haven, CT 06516

Centek Project No. 20074.33

Date: June 10, 2020

Max Stress Ratio = 75.7%

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

CENTEK Engineering, Inc. Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CT11193A West Haven, CT June 10, 2020

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 – CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

• RF DATA SHEET, DATED 05/20/2020

June 10, 2020

Mr. Dan Reid Transcend Wireless 10 Industrial Ave Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount T-Mobile – Site Ref: CT11193A 24 Rockdale Road West Haven, CT 06516

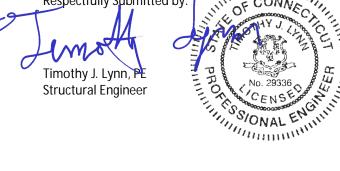
Centek Project No. 20074.33

Dear Mr. Reid,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting of three (3) 10-ft sector frames to support the equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G *Structural Standards for Steel Antenna Towers and Supporting Structures*.

The loads considered in this analysis consist of the following:

T-Mobile:


<u>Sector Frames:</u> Three (3) Ericsson AIR32 B66A panel antennas, three (3) Ericsson AIR3246 B66 panel antennas, three (3) RFS APXVAARR24-43-NA20 panel antennas, three (3) Ericsson Al6449 B41 panel antennas, three (3) Ericsson 4449 B71+B85 remote radio units and three (3) Ericsson 4415 B25 remote radio units mounted on three (3) sector frames with a RAD center elevation of 135-ft +/-AGL.

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 97 mph for West Haven as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the <u>subject antenna mounts with the</u> <u>modifications per the details on sheet SK-1 included within this report have sufficient capacity</u> to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Fernando J. Palacios Engineer

CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CT11193A West Haven, CT June 10, 2020

Section 2 - Calculations

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Rev. 0: 06/10/2020

West Haven, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 20074.33

Development of Design Heights, Exposure Coefficients,
and Velocity Pressures Per TIA-222-G

Wind Speeds			
Basic Wind Speed	V := 97	mph	(User Input - 2018 CSBC Appendix N)
Basic Wind Speed with Ice	V _i := 50	mph	(User Input per Annex B of TIA-222-G)
Input	·	·	· · · /
Structure Type =	Structure_Ty	ype := Lattice	(User Input)
Structure Category =	SC := 11		(User Input)
Exposure Category =	Exp := C		(User Input)
Structure Height =	h ≔ 180	ft	(User Input)
Height to Center of Antennas =	z := 135	ft	(User Input)
Radial Ice Thickness =	$t_i := 0.75$	in	(User Input per Annex B of TIA-222-G)
Radial Ice Density =	Id := 56.00	pcf	(User Input)
Topograpic Factor =	K _{zt} := 1.0		(User Input)
	$K_a \coloneqq 1.0$		(User Input)
Gust Response Factor =	G _H = 1.12		(User Input)
Output			
Wind Direction Probability Factor =	$K_{d} \coloneqq \left\ \begin{array}{c} if Struc \\ \ \\ \ \\ 0.95 \end{array} \right\ $	cture_Type = Pole = 0.85	(Per Table 2-2 of TIA-222-G)
	if Struc 0.85	cture_Type = Lattice	(Per Table 2-3 of TIA-222-G)
Importance Factors =	I _{Wind} := if SC 0.8 if SC 1.0 if SC 1.7	$ \begin{bmatrix} x = 1 \\ 87 \\ x = 2 \\ 00 \\ x = 3 \\ 15 $	
$K_{iz} := \left(\frac{z}{33}\right)^{0.1} = 1.151$	I _{ice} := if SC = 0 if SC = 1.00 if SC = 1.25	1 = 1 2 - 3 -	
Velocity Pressure Coefficient Antennas =		$\left(\frac{z}{zg}\right)^{\alpha} = 1.348$	
Velocity Pressure w/o Ice Antennas =	qz ≔ 0.00256	• $K_d \cdot Kz \cdot V^2 \cdot I_{Wind} = 28$	psf
Velocity Pressure with Ice Antennas =		$56 \cdot K_d \cdot Kz \cdot V_i^2 \cdot I_{Wind} = 7$	psf

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 06/10/2020

Loads on Equipment

West Haven, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 20074.33

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	RFS APXVAARR24_	43-U-NA	A20
Antenna Shape =	Flat		(User Input)
Antenna Height =	L _{ant} := 95.9	in	(User Input)
Antenna Width =	W _{ant} := 24	in	(User Input)
Antenna Thickness =	T _{ant} := 8.7	in	(User Input)
Antenna Weight =	WT _{ant} := 153.3	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.0$		
Antenna Force Coefficient =	Ca _{ant} = 1.27		

Wind Load (without ice)

Surface Area for One Antenna =

Total Antenna Wind Force Front =

Surface Area for One Antenna =

Total Antenna Wind Force Side =

$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 16$	sf
$F_{ant} \coloneqq qz \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{antF} = 626$	lbs

$$SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 5.8$$

$$F_{ant} := qz \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{antS} = 227$$
Ibs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 18.9$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 197$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 8.4$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 87$	<mark>lbs</mark>
Gravity Load (without ice)		
Weight of All Antennas =	WT _{ant} • N _{ant} = 153	lbs
Gravity Loads (ice only)		
Volume of Each Antenna =	$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \cdot 10^4$	cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(W_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(T_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) - \left(L_{ant} + 2 \boldsymbol{\cdot}$	V _{ant} = 1

lbs

lbs

1 • 10⁴

cu in

 $W_{ICEant} := \frac{V_{ice}}{1728} \bullet Id = 425$

Weight of Ice on All Antennas = $W_{ICEant} \cdot N_{ant} = 425$

Weight of Ice on Each Antenna =

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

West Haven, CT

sf

lbs

sf

lbs

lbs

lbs

Prepared by: F.J.P Checked by: T.J.L. Job No. 20074.33

Development	of	Wind	&	lce	Load	on	<u>Antennas</u>

Antenna Data:			
Antenna Model =	Ericsson - AIR 3246	B66	
Antenna Shape =	Flat		(User Input)
Antenna Height =	$L_{ant} \coloneqq 58.1$	in	(User Input)
Antenna Width =	W _{ant} := 15.7	in	(User Input)
Antenna Thickness =	T _{ant} := 9.4	in	(User Input)
Antenna Weight =	WT _{ant} := 194	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 3.7$		
Antenna Force Coefficient =	Ca _{ant} = 1.25		

 $SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 6.3$

 $\mathsf{SA}_{\mathsf{antS}} \coloneqq \frac{\mathsf{L}_{\mathsf{ant}} \cdot \mathsf{T}_{\mathsf{ant}}}{144} = 3.8$

 $\mathsf{F}_{\mathsf{ant}} \coloneqq \mathsf{qz} \cdot \mathsf{G}_{\mathsf{H}} \cdot \mathsf{Ca}_{\mathsf{ant}} \cdot \mathsf{K}_{\mathsf{a}} \cdot \mathsf{SA}_{\mathsf{antF}} = 245$

 $F_{ant} := qz \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{antS} = 147$

Wind Load (without ice)

Surface Area for One Antenr	1a =
-----------------------------	------

Total Antenna Wind Force Front =

Surface Area for One Antenna =

Total Antenna Wind Force Side =

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 8.2$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 84$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 5.5$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 57$	<mark>lbs</mark>
Gravity Load (without ice)		
Weight of All Antennas =	WT _{ant} • N _{ant} = 194	lbs
Gravity Loads (ice only)		
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \cdot W_{ant} \cdot T_{ant} = 8574$	cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right) -$	$V_{ant} = 6580$
		cu in

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot 1d = 213$ Weight of Ice on Each Antenna = Weight of Ice on All Antennas = $W_{ICEant} \cdot N_{ant} = 213$

CT11193A_TIA RevG Load Calculations.mcdx

63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 06/10/2020

sf

<mark>lbs</mark>

sf

lbs

West Haven, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 20074.33

|--|

Antenna Data:			
Antenna Model =	Ericsson - AIR32 B6	6A	
Antenna Shape =	Flat		(User Input)
Antenna Height =	L _{ant} := 56.6	in	(User Input)
Antenna Width =	W _{ant} := 12.9	in	(User Input)
Antenna Thickness =	T _{ant} := 8.7	in	(User Input)
Antenna Weight =	WT _{ant} := 133	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.4$		
Antenna Force Coefficient =	Ca _{ant} = 1.28		
Wind Load (without ice)			
Surface Area for One Antenna =	$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} =$	5.1	
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{ant} \boldsymbol{\cdot}$	K _a • SA _{ant}	_F = 201
Surface Area for One Antenna =	$SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 1$	3.4	

 $\mathbf{F}_{ant} \coloneqq \mathbf{qz} \cdot \mathbf{G}_{\mathsf{H}} \cdot \mathbf{Ca}_{ant} \cdot \mathbf{K}_{\mathsf{a}} \cdot \mathbf{SA}_{ant\mathsf{S}} = 136$

Total Antenna Wind Force Side =

Wind	Load	(with	ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 6.8$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 72$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 5.1$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \bullet G_{H} \bullet Ca_{ant} \bullet K_{a} \bullet SA_{ICEantS} = 53$	<mark>lbs</mark>
Gravity Load (without ice)		
Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 133$	lba

	Whant Want = 133	lbs
Gravity Loads (ice only)		
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \bullet W_{ant} \bullet T_{ant} = 6352$	cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(W_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(T_{ant} + \right.$	$2 \cdot t_{iz}$) - $V_{ant} = 5584$
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 181$	cu in Ibs
Weight of Ice on All Antennas =	W _{ICEant} • N _{ant} = 181	<mark>lbs</mark>

Centered on Solutions⁵⁰ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Antenna Data:

Rev. 0: 06/10/2020

Loads on Equipment

<mark>lbs</mark>

West Haven, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 20074.33

Antenna Model = Antenna Shape = Antenna Height = Antenna Width = Antenna Thickness = Antenna Weight = Number of Antennas = Antenna Aspect Ratio =	Ericsson - AIR6449 Flat $L_{ant} := 33.1$ $W_{ant} := 20.5$ $T_{ant} := 8.3$ $WT_{ant} := 103$ $N_{ant} := 1$ $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 1.6$	B41 in in Ibs	(User Input) (User Input) (User Input) (User Input) (User Input)	
Antenna Force Coefficient =	$Ca_{ant} = 1.2$			
Wind Load (without ice)				
Surface Area for One Antenna =	$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} =$	4.7		sf
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qZ \cdot G_{H} \cdot Ca_{ant} \cdot$	K _a •SA _{an}	_{tF} = 175	<mark>lbs</mark>
Surface Area for One Antenna =	$SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} =$	1.9		sf
Total Antenna Wind Force Side =	$F_{ant} \coloneqq qz \cdot G_{H} \cdot Ca_{ant} \cdot$	K _a •SA _{an}	_{ts} = 71	<mark>lbs</mark>
Wind Load (with ice)				
Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} := \frac{(L_{ant} + 2)}{(L_{ant} + 2)}$	t _{iz}) • (W 144	$\frac{1}{1} + 2 \cdot t_{iz}$ = 6.1	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ar}$	nt ∙K _a ∙S/	A _{ICEantF} = 60	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{(L_{ant} + 2)}{2}$	$\frac{t_{iz} \cdot (T_{ai})}{144}$	$\frac{1}{1} + 2 \cdot t_{iz} = 3$	sf
Total Antenna Wind Force w/ Ice Side =	Fi _{ant} ≔ qz _{ice} • G _H • Ca _{ar}	nt ∙ Ka • S/	A _{ICEantS} = 29	<mark>lbs</mark>
Gravity Load (without ice)				
Weight of All Antennas =	WT _{ant} • N _{ant} = 103			lbs
Gravity Loads (ice only)				105
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \bullet W_{ant} \bullet T_{ant}$	_t = 5632		cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{iz} \right) \cdot \left(e^{i t_{iz}} \right) + e^{i t_{iz}} \left(e^{i t_{iz}} \right) \cdot \left(e^{i t_{iz}} \right) + e^{i t_{iz}} \left(e^{i t_{iz}} \right$	W _{ant} + 2	$\cdot t_{iz} $ $\cdot (T_{ant} + 2 \cdot t_{iz}) -$	$V_{ant} = 4660$
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id =$	151		cu in Ibs

 $W_{ICEant} \cdot N_{ant} = 151$

Weight of Ice on All Antennas =

Subject:

Loads on Equipment

West Haven, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 20074.33

Centered on Solutions⁵⁴ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Rev. 0: 06/10/2020

Location:

Development of Wind & Ice Load on RRUS's

RRUS Data:

RRUS Model =	Ericsson 4449 B71+B85		
RRUS Shape =	Flat		(User Input)
RRUS Height =	L _{RRUS} := 17.9	in	(User Input)
RRUS Width =	W _{RRUS} ≔ 13.2	in	(User Input)
RRUS Thickness =	T _{RRUS} := 9.5	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 75$	lbs	(User Input)
Number of RRUS's =	N _{RRUS} := 1		
RRUS Aspect Ratio =	$Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 7$	1.4	
RRUS Force Coefficient =	Ca _{RRUS} = 1.2		

Wind Load (without ice)

Surface Area for One RRUS =	$SA_{RRUSF} \coloneqq \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.6$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSF} = 61$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.2$	sf

 $\mathsf{F}_{\mathsf{RRUS}} \coloneqq \mathsf{qz} \cdot \mathsf{G}_{\mathsf{H}} \cdot \mathsf{Ca}_{\mathsf{RRUS}} \cdot \mathsf{K}_{\mathsf{a}} \cdot \mathsf{SA}_{\mathsf{RRUSS}} = 44$

Total RRUS Wind Force =

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} =$	2.5 sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{RRUS} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{ICERRUSF} = 24$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 1$.9 sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \bullet G_{H} \bullet Ca_{RRUS} \bullet K_{a} \bullet SA_{ICERRUSS} = 19$	lbs
Gravity Load (without ice) Weight of All RRUSs =	WT _{RRUS} • N _{RRUS} = 75	lbs
Gravity Loads (ice only)		
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 2245$	cu in
Volume of Ice on Each RRUS =	$V_{ice} \coloneqq \left(L_{RRUS} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(W_{RRUS} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(T_{RRUS} + \right)$	$2 \cdot t_{iz}$ - $V_{RRUS} = 2362$
Weight of Ice on Each RRUS =	$W_{ICERRUS} := \frac{V_{ice}}{1729} \cdot Id = 77$	cu in Ibs

Weight of Ice on All RRUSs =

 $W_{ICERRUS} \coloneqq \frac{\bullet_{ICe}}{1728} \bullet Id = 77$ $W_{ICERRUS} \cdot N_{RRUS} = 77$

lbs

lbs

Subject:

Location:

Rev. 0: 06/10/2020

Loads on Equipment

West Haven, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 20074.33

Centered on Solutions⁵⁴ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

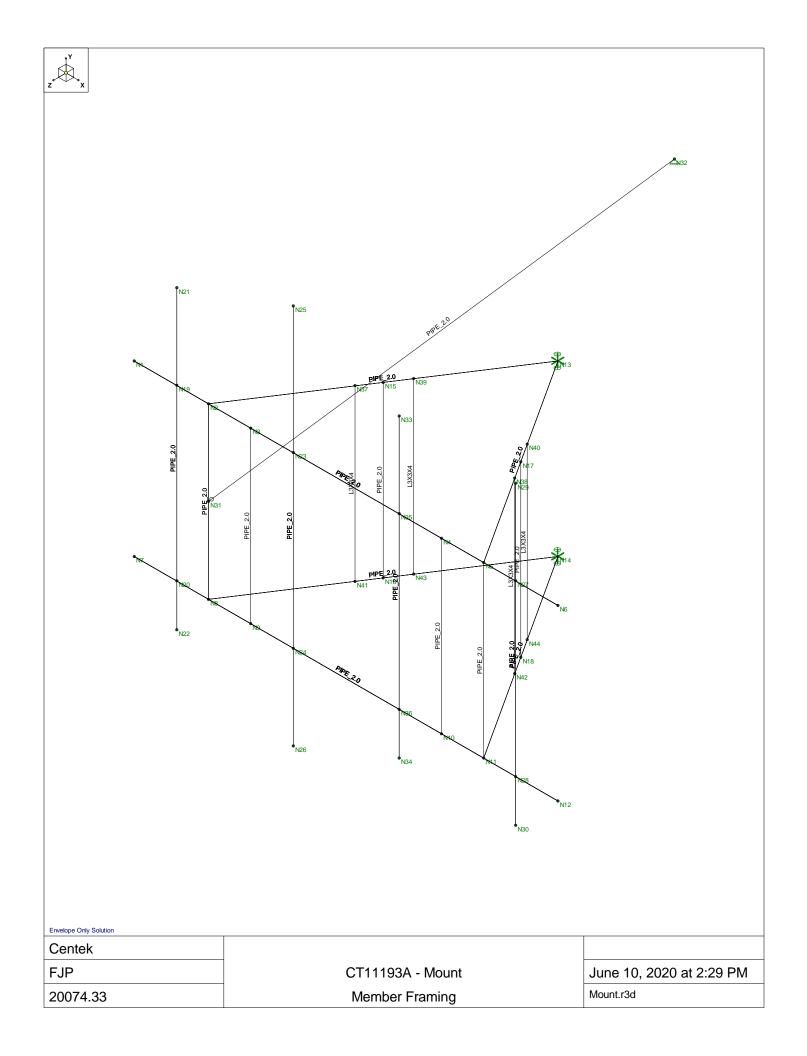
F: (203) 488-8587

Development of Wind & Ice Load on RRUS's

RRUS Data:

RRUS Model =	Ericsson 4415 25		
RRUS Shape =	Flat		(User Input)
RRUS Height =	L _{RRUS} ≔ 14.9	in	(User Input)
RRUS Width =	W _{RRUS} ≔ 13.2	in	(User Input)
RRUS Thickness =	$T_{RRUS} = 5.4$	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 46.3$	lbs	(User Input)
Number of RRUS's =	$N_{RRUS} \coloneqq 1$		
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = 7$	1.1	
RRUS Force Coefficient =	Ca _{RRUS} = 1.2		

Wind Load (without ice)


Surface Area for One RRUS =	$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.4$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSF} = 51$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 0.6$	sf

144	
$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSS} = 21$	lbs

Wind Load (with ice)

Total RRUS Wind Force =

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.$	1 sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{ICERRUSF} = 21$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 1.1$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSS} = 11$	lbs
Gravity Load (without ice)		
Weight of All RRUSs =	WT _{RRUS} • N _{RRUS} = 46	lbs
Gravity Loads (ice only)		
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 1062$	cu in
Volume of Ice on Each RRUS =	$V_{ice} \coloneqq \left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)$	t_{iz}) - $V_{RRUS} = 1644$
Weight of Ice on Each RRUS =	$W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot 1d = 53$	cu in Ibs
Weight of Ice on All RRUSs =	W _{ICERRUS} • N _{RRUS} = 53	lbs

June 10, 2020 2:28 PM Checked By: TJL

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
List Dallad Ota al Os da	

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3
	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1	. Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul.	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Pipe	PIPE_2.0	Beam	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
2	New Brace	L3X3X4	Column	Wide Flange	A36 Gr.36	Typical	1.44	1.23	1.23	.031

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.Lcomp bot[.L-torq	Куу	Kzz	Cb	Functi
1	M1	Pipe	10			Lbyy						Lateral
2	M2	Pipe	10			Lbyy						Lateral
3	M3	Pipe	5.963	Segment	Segment	Lbyy						Lateral
4	M4	Pipe	5.963	Segment	Segment							Lateral
5	M5	Pipe	5.963	Segment	Segment	Lbyy						Lateral
6	M6	Pipe	5.963	Segment	Segment	Lbyy						Lateral
7	M7	Pipe	4	_	_	Lbyy						Lateral
8	M8	Pipe	4			Lbyy						Lateral
9	M9	Pipe	4			Lbyy						Lateral
10	M10	Pipe	4			Lbyy						Lateral
11	M11	Pipe	4			Lbyy						Lateral
12	M12	Pipe	4			Lbyy						Lateral
13	M13	Pipe	12.59			Lbyy						Lateral
14	M14	Pipe	7			Lbyy						Lateral
15	M15	Pipe	9			Lbyy						Lateral
16	M16	Pipe	7			Lbyy						Lateral
17	M17	Pipe	7			Lbyy						Lateral
18	M18	New Brace	4			Lbyy						Lateral
19	M19	New Brace	4			Lbyy						Lateral
20	M20	New Brace	4			Lbyy						Lateral
21	M21	New Brace	4			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Rul
1	M1	N1	N6		,	Pipe	Beam	Pipe	A53 Gra	Typical
2	M2	N7	N12			Pipe	Beam	Pipe	A53 Gra	Typical
3	M3	N2	N13			Pipe	Beam	Pipe	A53 Gra	Typical
4	M4	N8	N14			Pipe	Beam	Pipe	A53 Gra	Typical
5	M5	N5	N13			Pipe	Beam	Pipe	A53 Gra	Typical
6	M6	N11	N14			Pipe	Beam	Pipe	A53 Gra	Typical
7	M7	N3	N9			Pipe	Beam	Pipe	A53 Gra	Typical
8	M8	N4	N10			Pipe	Beam	Pipe	A53 Gra	
9	M9	N15	N16			Pipe	Beam	Pipe	A53 Gra	Typical
10	M10	N17	N18			Pipe	Beam	Pipe	A53 Gra	Typical
11	M11	N2	N8			Pipe	Beam	Pipe	A53 Gra	Typical
12	M12	N5	N11			Pipe	Beam	Pipe	A53 Gra	Typical
13	M13	N31	N32			Pipe	Beam	Pipe	A53 Gra	Typical
14	M14	N22	N21			Pipe	Beam	Pipe	A53 Gra	Typical
15	M15	N26	N25			Pipe	Beam	Pipe	A53 Gra	Typical
16	M16	N34	N33			Pipe	Beam	Pipe	A53 Gra	Typical
17	M17	N30	N29			Pipe	Beam	Pipe	A53 Gra	Typical
18	M18	N37	N41			New Brace	Column	Wide Flange	A36 Gr.36	Typical
19	M19	N39	N43			New Brace	Column	Wide Flange	A36 Gr.36	Typical

Member Primary Data (Continued)

		Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Rul
2	0	M20	N40	N44			New Brace	Column	Wide Flange	A36 Gr.36	Typical
2	1	M21	N38	N42			New Brace	Column	Wide Flange	A36 Gr.36	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
1	N1	0	0	0	0	
2	N2	1.75	0	0	0	
3	N3	2.75	0	0	0	
4	N4	7.25	0	0	0	
5	N5	8.25	0	0	0	
6	N6	10	0	0	0	
7	N7	0	-4	0	0	
8	N8	1.75	-4	0	0	
9	N9	2.75	-4	0	0	
10	N10	7.25	-4	0	0	
11	N11	8.25	-4	0	0	
12	N12	10	-4	0	0	
13	N13	5	0	-5	0	
14	N14	5	-4	-5	0	
15	N15	3.375	0	-2.5	0	
16	N16	3.375	-4	-2.5	0	
17	N17	6.625	0	-2.5	0	
18	N18	6.625	-4	-2.5	0	
19	N19	1	0	0	0	
20	N20	1	-4	0	0	
21	N21	1	2	0	0	
22	N22	1	-5	0	0	
23	N23	3.75	0	0	0	
24	N24	3.75	-4	0	0	
25	N25	3.75	3	0	0	
26	N26	3.75	-6	0	0	
27	N27	9	0	0	0	
28	N28	9	-4	0	0	
29	N29	9	2	0	0	
30	N30	9	-5	0	0	
31	N31	1.75	-2	0	0	
32	N32	.25	-2	-12.5	0	
33	N33	6.25	2	0	0	
34	N34	6.25	-5	0	0	
35	N35	6.25	0	0	0	
36	N36	6.25	-4	0	0	
37	N37	3.112471	0	-2.096109	0	
38	N38	6.887529	0	-2.096109	0	
39	N39	3.657459	0	-2.934553	0	
40	N40	6.342541	0	-2.934553	0	
41	N41	3.112471	-4	-2.096109	0	
42	N42	6.887529	-4	-2.096109	0	
43	N43	3.657459	-4	-2.934553	0	
44	N44	6.342541	-4	-2.934553	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N13	Reaction	Reaction	Reaction		Reaction	
2	N14	Reaction	Reaction	Reaction		Reaction	
3	N32	Reaction	Reaction	Reaction			

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M14	Y	067	2
2	M14	Y	067	6
3	M15	Y	077	1.667
4	M15	Y	077	8
5	M15	Y	075	%50
6	M16	Y	052	2
7	M16	Y	052	4.75
8	M17	Y	097	2
9	M17	Y	097	6
10	M15	Y	046	3

Member Point Loads (BLC 3 : Ice Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M14	Y	091	2
2	M14	Y	091	6
3	M15	Y	213	1.667
4	M15	Y	213	8
5	M15	Y	077	%50
6	M16	Y	076	2
7	M16	Y	076	4.75
8	M17	Y	107	2
9	M17	Ŷ	107	6
10	M15	Y	053	3

Member Point Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M14	Х	.027	2
2	M14	Х	.027	6
3	M15	Х	.044	1.667
4	M15	Х	.044	8
5	M15	Х	.019	%50
6	M16	Х	.015	2
7	M16	Х	.015	4.75
8	M17	Х	.029	2
9	M17	Х	.029	6
10	M15	Х	.011	3

Member Point Loads (BLC 5 : Wind X)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M14	Х	.068	2
2	M14	Х	.068	6
3	M15	Х	.114	1.667

Member Point Loads (BLC 5 : Wind X) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
4	M15	Х	.114	8
5	M15	Х	.044	%50
6	M16	Х	.036	2
7	M16	Х	.036	4.75
8	M17	Х	.074	2
9	M17	Х	.074	6
10	M15	Х	.021	3

Member Point Loads (BLC 6 : Wind with Ice Z)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M14	Z	.036	2
2	M14	Z	.036	6
3	M15	Z	.099	1.667
4	M15	Z	.099	8
5	M16	Z	.03	2
6	M16	Z	.03	4.75
7	M17	Z	.042	6
8	M17	Z	.042	2

Member Point Loads (BLC 7 : Wind Z)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M14	Z	.101	2
2	M14	Z	.101	6
3	M15	Z	.313	1.667
4	M15	Z	.313	8
5	M16	Z	.088	2
6	M16	Z	.088	4.75
7	M17	Z	.123	2
8	M17	Z	.123	6

Member Distributed Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M3	Х	.002	.002	0	0
2	M9	Х	.002	.002	0	0
3	M4	Х	.002	.002	0	0
4	M11	Х	.002	.002	0	0
5	M14	Х	.002	.002	0	0
6	M15	Х	.002	.002	0	0
7	M17	Х	.002	.002	0	0
8	M5	Х	.002	.002	0	0
9	M6	Х	.002	.002	0	0
10	M10	Х	.002	.002	0	0
11	M12	Х	.002	.002	0	0
12	M8	Х	.002	.002	0	0
13	M7	Х	.002	.002	0	0

Member Distributed Loads (BLC 5 : Wind X)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M3	Х	.007	.007	0	0

Member Distributed Loads (BLC 5 : Wind X) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
2	M9	Х	.007	.007	0	0
3	M4	Х	.007	.007	0	0
4	M11	Х	.007	.007	0	0
5	M14	Х	.007	.007	0	0
6	M15	Х	.007	.007	0	0
7	M17	Х	.007	.007	0	0
8	M5	Х	.007	.007	0	0
9	M6	Х	.007	.007	0	0
10	M10	Х	.007	.007	0	0
11	M12	Х	.007	.007	0	0
12	M8	Х	.007	.007	0	0
13	M7	Х	.007	.007	0	0

Member Distributed Loads (BLC 6 : Wind with Ice Z)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	.002	.002	0	0
2	M2	Z	.002	.002	0	0
3	M11	Z	.002	.002	0	0
4	M7	Z	.002	.002	0	0
5	M8	Z	.002	.002	0	0
6	M12	Z	.002	.002	0	0
7	M3	Z	.002	.002	0	0
8	M5	Z	.002	.002	0	0
9	M9	Z	.002	.002	0	0
10	M4	Z	.002	.002	0	0
11	M6	Z	.002	.002	0	0
12	M10	Z	.002	.002	0	0

Member Distributed Loads (BLC 7 : Wind Z)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	.007	.007	0	0
2	M2	Z	.007	.007	0	0
3	M11	Z	.007	.007	0	0
4	M7	Z	.007	.007	0	0
5	M8	Z	.007	.007	0	0
6	M12	Z	.007	.007	0	0
7	M3	Z	.007	.007	0	0
8	M5	Z	.007	.007	0	0
9	M9	Z	.007	.007	0	0
10	M4	Z	.007	.007	0	0
11	M6	Z	.007	.007	0	0
12	M10	Z	.007	.007	0	0

Basic Load Cases

	BLC Description	Category	X Gra	Y Gra	Z Gra	Joint	Point	Distrib.	.Area(Surfa
1	Self Weight	DL		-1						
2	Dead Load	None					10			
3	Ice Load	None					10			
4	Wind with Ice X	None					10	13		

Basic Load Cases (Continued)

	BLC Description	Category	X GraY	Gra	Z Gra	Joint	Point	Distrib	Area(Surfa
5	Wind X	None					10	13		
6	Wind with Ice Z	None					8	12		
7	Wind Z	None					8	12		

Load Combinations

	Description	Solve	P	S I	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac.	.BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac	BLC	Fac
1	1.2D + 1.6W (X-direc	Yes	Υ		1	1.2	2	1.2	5	1.6														
2	0.9D + 1.6W (X-direc	Yes	Υ		1	.9	2	.9	5	1.6														
3	1.2D + 1.0Di + 1.0Wi	Yes	Υ		1	1.2	2	1.2	3	1	4	1												
4	1.2D + 1.6W (Z-direc	Yes	Υ		1	1.2	2	1.2	7	1.6														
5	0.9D + 1.6W (Z-direc	Yes	Υ		1	.9	2	.9	7	1.6														
6	1.2D + 1.0Di + 1.0Wi	Yes	Υ		1	1.2	2	1.2	3	1	6	1												

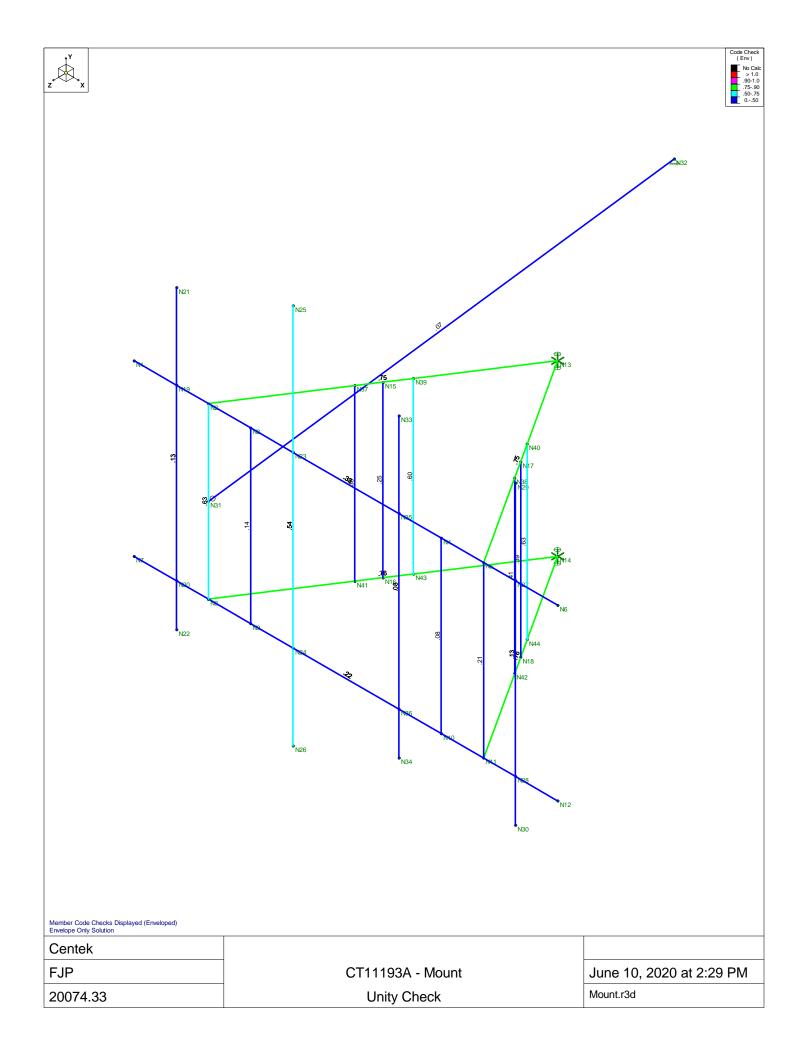
Envelope Joint Reactions

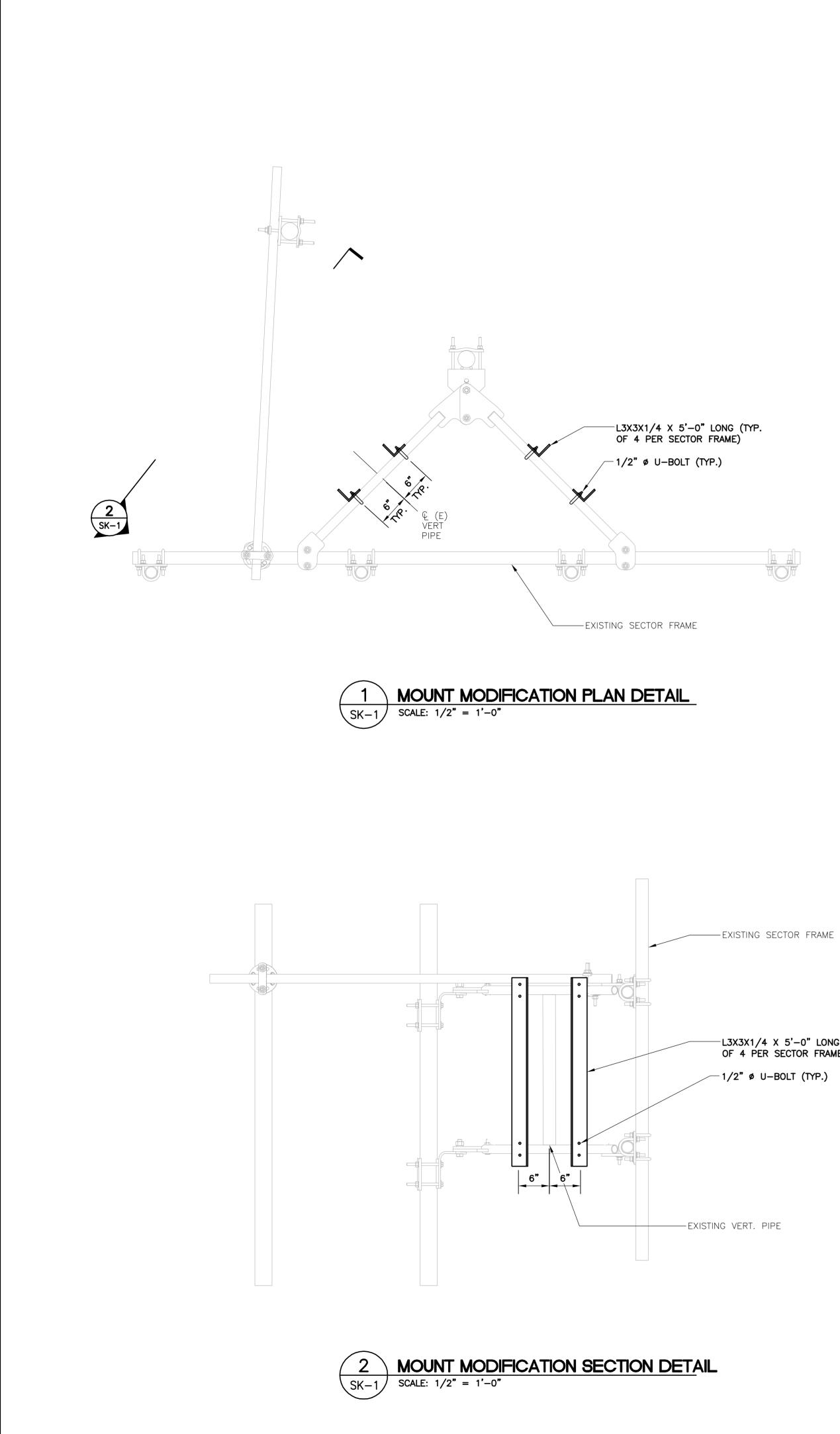
	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N13	max	.111	6	1.291	6	238	2	0	6	09	6	0	6
2		min	-1.016	2	.519	2	-3.302	6	0	1	658	1	0	1
3	N14	max	004	5	1.19	3	3.174	3	0	6	.062	6	0	6
4		min	591	1	.505	5	.264	5	0	1	31	2	0	1
5	N32	max	003	6	.03	1	022	6	0	6	0	6	0	6
6		min	23	2	.02	5	-1.902	2	0	1	0	1	0	1
7	Totals:	max	0	6	2.506	6	0	3						
8		min	-1.832	1	1.052	2	-2.76	4						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotatio	LC
1	N1	max	.24	1	174	2	.234	1	4.821e-03	1	3.805e-03	1	-6.488e-04	5
2		min	.037	6	609	6	049	5	2.359e-03	5	-3.644e-03	5	-2.143e-03	1
3	N2	max	.24	1	215	2	.153	1	6.352e-03	1	3.845e-03	1	-6.927e-04	5
4		min	.037	6	626	6	.029	6	2.762e-03	5	-4.475e-03	5	-2.288e-03	1
5	N3	max	.24	1	24	2	.109	1	4.012e-03	4	3.643e-03	1	-1.222e-03	5
6		min	.037	6	651	6	.044	6	2.347e-03	3	-6.755e-03	5	-2.769e-03	3
7	N4	max	.241	1	304	5	.049	5	7.392e-04	4	6.611e-03	4	-6.666e-04	5
8		min	.036	6	724	3	101	1	-2.203e-04	2	1.753e-03	3	-1.745e-03	1
9	N5	max	.241	1	315	5	019	5	1.646e-03	6	4.479e-03	1	-1.293e-03	5
10		min	.036	6	743	3	154	1	7.037e-05	2	1.688e-03	6	-2.786e-03	1
11	N6	max	.241	1	341	5	044	6	7.14e-04	5	4.095e-03	1	-1.223e-03	5
12		min	.036	6	798	3	241	1	-7.182e-04	2	1.062e-03	6	-3.025e-03	1
13	N7	max	.141	2	173	2	.152	2	2.177e-03	6	3.167e-03	2	-6.742e-04	5
14		min	031	6	609	6	084	4	-1.143e-03	2	-3.624e-03	4	-2.227e-03	1
15	N8	max	.141	2	214	2	.086	2	3.36e-03	6	3.104e-03	1	-5.577e-04	5
16		min	031	6	626	6	024	6	-1.979e-03	2	-3.871e-03	4	-1.468e-03	1
17	N9	max	.141	2	24	2	.056	5	1.588e-03	6	2.676e-03	2	-1.257e-03	5
18		min	031	6	651	6	013	6	-7.299e-04	2	-5.463e-03	4	-2.856e-03	3
19	N10	max	.142	2	304	5	.05	4	5.103e-04	6	4.415e-03	5	-6.653e-04	5
20		min	03	6	724	3	065	2	-5.017e-04	2	-3.385e-04	3	-1.74e-03	1
21	N11	max	.142	2	315	5	.016	6	1.61e-03	6	2.808e-03	5	-1.3e-03	5

Envelope Joint Displacements (Continued)


	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio LC Z Rotatio L
22		min	03	6	743	3	094	2	-3.315e-05	2	-3.842e-04 6 -2.834e-03
23	N12	max	.142	2	341	5	.018	6	3.2e-04	5	3.017e-03 2 -1.217e-03
24		min	03	6	798	3	156	2	-7.923e-04	2	-2.823e-05 6 -2.935e-03
25	N13	max	0	6	0	6	0	6	2.155e-02	3	0 6 -1.122e-03
26		min	0	1	0	1	0	1	8.835e-03	5	0 1 -2.694e-03
27	N14	max	0	6	0	6	0	6	2.155e-02	3	0 6 -1.102e-03
28	1117	min	0	1	0	1	0	1	8.838e-03	5	0 1 -2.588e-03
	N15		.108	1	156	2	.07	1		3	4.746e-03 1 -7.766e-04
29	GTM	max							4.232e-03		
30	NIAO	min	.043	6	432	6	.031	6	1.828e-03	5	-
31	N16	max	.042	2	156	2	.025	2	<u>4.15e-03</u>	3	2.894e-03 2 -7.083e-04
32		min	027	6	432	6	02	6	1.809e-03	2	-4.273e-04 6 -1.182e-03
33	N17	max	.085	2	216	5	.018	4	4.169e-03	6	4.761e-03 1 -1.233e-03
34		min	023	4	512	3	054	2	1.622e-03	2	-1.506e-04 5 -2.717e-03
35	N18	max	.062	1	216	5	.013	5	4.177e-03	6	2.989e-03 2 -1.197e-03
36		min	02	5	512	3	042	1	1.577e-03	2	-9.391e-04 4 -2.733e-03
37	N19	max	.24	1	198	2	.188	1	4.821e-03	1	3.805e-03 1 -6.539e-04
38	-	min	.037	6	619	6	005	5	2.359e-03	5	-3.662e-03 5 -2.149e-03
39	N20	max	.141	2	198	2	.114	2	2.177e-03	6	3.167e-03 2 -6.794e-04
40		min	031	6	619	6	041	4	-1.143e-03	2	-3.642e-03 4 -2.234e-03
41	N21	max	.305	1	198	2	.304	1	4.825e-03	1	3.805e-03 1 -6.543e-04
42	11/2 1	min	.054	5		6	.068	5		6	-3.662e-03 5 -2.838e-03
	Noo				619				2.658e-03		3.167e-03 2 -6.794e-04
43	N22	max	.116	2	198	2	.128	2	2.177e-03	6	
44		min	042	6	619	6	057	6	-1.143e-03	2	-3.642e-03 4 -2.215e-03
45	N23	max	.24	1	27	2	.177	4	7.325e-03	4	3.664e-03 1 -1.102e-03
46		min	.037	6	684	3	.035	3	1.527e-03	3	-3.835e-03 5 -3.172e-03
47	N24	max	.141	2	27	2	.114	5	1.027e-03	3	2.305e-03 2 -1.097e-03
48		min	031	6	684	3	017	3	-1.475e-03	5	-3.57e-03 4 -2.353e-03
49	N25	max	.471	1	27	2	.722	4	1.728e-02	4	3.664e-03 1 -1.104e-03
50		min	.077	5	684	3	.091	3	1.538e-03	3	-3.835e-03 5 -7.298e-03
51	N26	max	.097	2	27	2	.156	5	1.024e-03	3	2.305e-03 2 -1.096e-03
52		min	08	6	684	3	042	3	-1.749e-03	5	-3.57e-03 4 -2.225e-03
53	N27	max	.241	1	327	5	031	6	7.14e-04	5	4.095e-03 1 -1.218e-03
54	1121	min	.036	6	767	3	192	1	-7.182e-04	2	1.066e-03 6 -3.018e-03
	N28		.142	2	327	5	.018	6	3.2e-04	5	3.017e-03 2 -1.211e-03
55	INZ0	max			767			2	-7.923e-04		-2.493e-05 6 -2.929e-03
56	Noo	min	03	6		3	12			2	
57	N29	max	.328	1	327	5	012	5	1.69e-03	5	
58	Noc	min	.066	5	768	3	209	1	-7.189e-04	2	1.066e-03 6 -3.757e-03
59	N30	max	.111	2	327	5	.015	6	3.2e-04	5	3.017e-03 2 -1.211e-03
60		min	057	6	767	3	111	2	-7.923e-04	2	-2.493e-05 6 -2.91e-03
61	N31	max	.174	2	215	2	0	6	1.034e-03	1	3.475e-03 1 -1.036e-03
62		min	.003	6	626	6	009	2	-7.551e-05	6	-4.172e-03 5 -2.327e-03
63	N32	max	0	6	0	6	0	6	7.312e-03	6	1.151e-03 2 -1.511e-03
64		min	0	1	0	1	0	1	3.735e-03	2	1.935e-05 6 -2.816e-03
65	N33	max	.276	1	298	5	.164	4	1.561e-03	4	5.733e-03 4 -5.343e-04
66		min	.049	6	717	3	049	2	1.414e-04	2	1.534e-03 3 -1.465e-03
67	N34	max	.123	2	298	5	.098	5	4.793e-04	6	3.734e-03 5 -5.373e-04
68	тот	min	037	6	717	3	034	1	-4.646e-04	2	-2.187e-04 3 -1.697e-03
	NI25					_					
<u>69</u>	N35	max	.241	1	298	5	.126	4	<u>1.56e-03</u>	4	
70	Noc	min	.037	6	717	3	053	2	<u>1.414e-04</u>	2	1.534e-03 3 -1.465e-03
71	N36	max	.142	2	298	5	.1	5	4.793e-04	6	3.734e-03 5 -5.373e-04
72		min	031	6	717	3	039	1	-4.647e-04	2	-2.187e-04 3 -1.697e-03
73	N37		.131		161	2	.084	1	3.906e-03	3	4.672e-03 1 -9.269e-04


Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	IС	Z Rotatio L	С
74	00111	min	.046	6	449	6	.034	6	1.703e-03	5	5.186e-04	6	-2.193e-03	1
75	N38	max	.109	2	229	5	.018	4	4.095e-03	6	5.182e-03	1	-1.439e-03	5
76		min	022	4	542	3	069	2	1.52e-03	2	4.798e-04	5	-3.254e-03	3
77	N39	max	.083	1	148	2	.053	1	5.527e-03	3	4.9e-03	1	-9.592e-04	5
78		min	.036	6	41	6	.026	6	2.359e-03	5	1.595e-03	6	-1.875e-03	1
79	N40	max	.062	2	199	5	.017	4	6.062e-03	3	4.298e-03	1	-1.651e-03	5
80		min	022	4	473	3	039	2	2.509e-03	5	-6.784e-04	5	-3.698e-03	3
81	N41	max	.057	2	162	2	.034	2	3.896e-03	3	3.141e-03	2	-7.011e-04	5
82		min	028	6	449	6	021	6	1.729e-03	5	-1.409e-04	6	-1.218e-03	3
83	N42	max	.076	1	229	5	.015	5	4.099e-03	6	2.857e-03	2	-1.43e-03	5
84		min	024	5	542	3	051	1	1.492e-03	2	-1.139e-03	6	-3.264e-03	3
85	N43	max	.028	2	148	2	.016	2	5.457e-03	3	2.333e-03	2	-9.277e-04	5
86		min	023	6	41	6	018	6	2.321e-03	5	-9.29e-04	6	-1.72e-03	3
87	N44	max	.047	1	199	5	.01	5	6.058e-03	3	2.898e-03	2	-1.622e-03	5
88		min	016	5	473	3	032	1	2.522e-03	5	-9.648e-04	4	-3.704e-03	3

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	SheLo	phi*P	.phi*P	phi*			
1	M6	PIPE_2.0	.757	3	3	.297 5	3 29.875	32.13	1.872	1.872	1.8	H3-6
2	M4	PIPE_2.0	.755	3	3	.280 5	3 29.875	32.13	1.872	1.872	1.88	H1
3	M3	PIPE_2.0	.755	3	6	.279 5	3 29.875	32.13	1.872	1.872	1.8	H1
4	M5	PIPE_2.0	.753	3	3	.296 5	<mark>6</mark> 29.875	32.13	1.872	1.872	1.8	H3-6
5	M20	L3X3X4	.627	0	3	.034 0	z <mark>3</mark> 32.733	46.656	1.688	3.756	2.2	H2-1
6	M11	PIPE_2.0	.625	2	2	.117 2	1 26.521	32.13	1.872	1.872	1.6	H1
7	M19	L3X3X4	.601	0	3	.049 0	z <mark>3</mark> 32.733	46.656	1.688	3.756	2.2	H2-1
8	M15	PIPE_2.0	.541	6	4	.057 6	5 12.144	32.13	1.872	1.872	2.04	H1
9	M21	L3X3X4	.409	0	3	.025 0	z <mark>3</mark> 32.733	46.656	1.688	3.756	2.2	H2-1
10	M10	PIPE_2.0	.392	0	3	.059 0	3 26.521					
11	M18	L3X3X4	.381	4	6	.031 0	z <mark>3</mark> 32.733	46.656	1.688	3.756	2.2	H2-1
12	M1	PIPE_2.0	.330	3.75	4	.253 2	5 9.837	32.13	1.872	1.872	2.4	H1
13	M9	PIPE_2.0	.249	0	6	.047 4	3 26.521	32.13	1.872	1.872	2.27	H1
14	M2	PIPE_2.0	.215	1	3	.146 1	6 9.837	32.13	1.872	1.872	2.7	H1
15	M12	PIPE_2.0	.208	0	6	.052 0	3 26.521	32.13	1.872	1.872	2.2	H1
16	M7	PIPE_2.0	.136	0	4	.028 0	4 26.521	32.13	1.872	1.872	2.2	H1
17	M17	PIPE_2.0	.131	4	4	.030 4	3 17.855	32.13	1.872	1.872	2.3	H1
18	M14	PIPE_2.0	.125	4	4	.022 1	1 17.855	32.13	1.872	1.872	2.31	H1
19	M16	PIPE_2.0	.082	1	3	.051 4	4 17.855	32.13	1.872	1.872	2.3	H1
20	M8	PIPE_2.0	.080	0	6	.041 0	4 26.521	32.13	1.872	1.872	2.2	H1
21	M13	PIPE_2.0	.074	6	1	.003 0	6 6.206	32.13	1.872	1.872	1.1	H1

-1/2" Ø U-BOLT (TYP.)

-L3X3X1/4 X 5'-0" LONG (TYP. OF 4 PER SECTOR FRAME)

iof

Sh	sc	TUNDELE		PROFESSIONAL ENGINEER SEAL	
	BI				
	NO. P		Centered on Solutions*		
}	0 2 IPE PLA DE	V 11102 V			
	s 1 001 E M		(203) 488-0580 (203) 488-8587 Fax		
•	NO1 74. 1A EN		63-2 North Branford Road		
	red 33 ST 1E		Branford, CT 06405		
1	, Г	24 ROCKDAL E ROAD			
	T			0 06/10/20 TJL	CFC MOUNT MODIFICATION SKETCH - ISSUED FOR CONSTRUCTION
			www.centekeng.com	REV. DATE DRAWN	DRAWN BY CHK'D BY DESCRIPTION

Exhibit F Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTIII93A

Orange/ Rt-1 24 Rockdale Road West Haven, Connecticut 06516

July 29, 2020

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	22.04%			

July 29, 2020

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTIII93A - Orange/ Rt-I

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **24 Rockdale Road** in **West Haven, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over the potential for exposure and can exercise control over the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 24 Rockdale Road in West Haven, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 6) 4 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 7) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 8) 4 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 9) 2 LTE channels (BRS Band 2500 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 10) 2 NR channels (BRS Band 2500 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 11) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 12) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 13) The antennas used in this modeling are the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 3246 for the 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s), the Ericsson AIR 32 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector A, the Ericsson AIR 32 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s), the Ericsson AIR 3246 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s) in Sector B, the Ericsson AIR 3246 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 3246 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s), the Ericsson AIR 32 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector C. This is based on feedback

from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 14) The antenna mounting height centerline of the proposed antennas is 135 feet above ground level (AGL).
- 15) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 16) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С	
Antenna #:	I	Antenna #: I		Antenna #:	I	
Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	Ericsson AIR 32	Make / Model:	Ericsson AIR 3246	
Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	2100 MHz	
Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd / 15.65 dBd / 15.65 dBd	Gain:	5.35 dBd / 15.35 dBd / 5.85 dBd	Gain:	15.85 dBd	
Height (AGL):	135 feet	Height (AGL):	135 feet	Height (AGL):	135 feet	
Channel Count:	9	Channel Count:	8	Channel Count:	4	
Total TX Power (W):	380 Watts	Total TX Power (W):	300 Watts	Total TX Power (W):	160 Watts	
ERP (VV):	10,670.10	ERP (VV):	10,533.98	ERP (VV):	6,153.47	
Antenna AI MPE %:	3.21%	Antenna BI MPE %:	2.08%	Antenna CI MPE %:	1.21%	
Antenna #:	2	Antenna #:	2	Antenna #:	2	
Make / Model:	Ericsson AIR 3246	Make / Model:	Ericsson AIR 6449	Make / Model:	RFS APXVAARR24_43-U- NA20	
Frequency Bands:	2100 MHz	Frequency Bands:	2500 MHz / 2500 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz	
Gain:	15.85 dBd	Gain:	22.05 dBd / 22.05 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd / 15.65 dBd / 15.65 dBd	
Height (AGL):	135 feet	Height (AGL):	135 feet	Height (AGL):	135 feet	
Channel Count:	4	Channel Count:	4	Channel Count:	9	
Total TX Power (W):	160 Watts	Total TX Power (W):	160 Watts	Total TX Power (W):	380 Watts	
ERP (VV):	6,153.47	ERP (VV):	25,651.93	ERP (VV):	10,670.10	
Antenna A2 MPE %:	1.21%	Antenna B2 MPE %:	5.06%	Antenna C2 MPE %:	3.21%	
Antenna #:	3	Antenna #:	3	Antenna #:	3	
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 3246	Make / Model:	Ericsson AIR 6449	
Frequency Bands:	2500 MHz / 2500 MHz	Frequency Bands:	2100 MHz	Frequency Bands:	2500 MHz / 2500 MHz	
Gain:	22.05 dBd / 22.05 dBd	Gain:	15.85 dBd	Gain:	22.05 dBd / 22.05 dBd	
Height (AGL):	135 feet	Height (AGL):	135 feet	Height (AGL):	135 feet	
Channel Count:	4	Channel Count:	4	Channel Count:	4	
Total TX Power (W):	160 Watts	Total TX Power (W):	160 Watts	Total TX Power (W):	160 Watts	
ERP (VV):	25,651.93	ERP (VV):	6,153.47	ERP (VV):	25,651.93	
Antenna A3 MPE %:	5.06%	Antenna B3 MPE %:	1.21%	Antenna C3 MPE %:	5.06%	
Antenna #:	4	Antenna #:	4	Antenna #:	4	
Make / Model:	Ericsson AIR 32	Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	Ericsson AIR 32	
Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	

environmental | engineering | due diligence

Gain:	15.35 dBd / 15.35 dBd / 15.85 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd / 15.65 dBd / 15.65 dBd	Gain:	15.35 dBd / 15.35 dBd / 15.85 dBd
Height (AGL):	135 feet	Height (AGL):	135 feet	Height (AGL):	135 feet
Channel Count:	8	Channel Count:	9	Channel Count:	8
Total TX Power (W):	300 Watts	Total TX Power (W):	380 Watts	Total TX Power (W):	300 Watts
ERP (VV):	10,533.98	ERP (W):	10,670.10	ERP (VV):	10,533.98
Antenna A4 MPE %:	2.08%	Antenna B4 MPE %:	3.21%	Antenna C4 MPE %:	2.08%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
T-Mobile (Max at Sector A):	11.57%				
Antennas I-30 & TV Ch. 28	6.9 1%				
Verizon	3.56%				
Site Total MPE % :	22.04%				

T-Mobile MPE % Per Sector						
T-Mobile Sector A Total:	11.57%					
T-Mobile Sector B Total:	11.57%					
T-Mobile Sector C Total:	11.57%					
Site Total MPE % :	22.04%					

Т	T-Mobile Maximum MPE Power Values (Sector A)						
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
T-Mobile 600 MHz LTE	2	591.73	135.0	2.33	600 MHz LTE	400	0.58%
T-Mobile 600 MHz NR	I	1577.94	135.0	3.11	600 MHz NR	400	0.78%
T-Mobile 700 MHz LTE	2	648.82	135.0	2.56	700 MHz LTE	467	0.55%
T-Mobile 1900 MHz UMTS	2	1101.85	135.0	4.35	1900 MHz UMTS	1000	0.43%
T-Mobile 1900 MHz LTE	2	2203.69	135.0	8.69	1900 MHz LTE	1000	0.87%
T-Mobile 2100 MHz LTE	4	1538.37	135.0	12.14	2100 MHz LTE	1000	1.21%
T-Mobile 2500 MHz LTE	2	6412.98	135.0	25.30	2500 MHz LTE	1000	2.53%
T-Mobile 2500 MHz NR	2	6412.98	135.0	25.30	2500 MHz NR	1000	2.53%
T-Mobile 1900 MHz GSM	4	1028.30	135.0	8.11	1900 MHz GSM	1000	0.81%
T-Mobile 1900 MHz LTE	2	2056.61	135.0	8.11	1900 MHz LTE	1000	0.81%
T-Mobile 2100 MHz UMTS	2	1153.78	135.0	4.55	2100 MHz UMTS	1000	0.46%
	•					Total:	11.57%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	11.57%
Sector B:	11.57%
Sector C:	11.57%
T-Mobile Maximum MPE % (Sector A):	11.57%
Site Total:	22.04%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **22.04%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G Mailing Receipts/Proof of Notice

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

• Your driver will pickup your shipment(s) as usual.

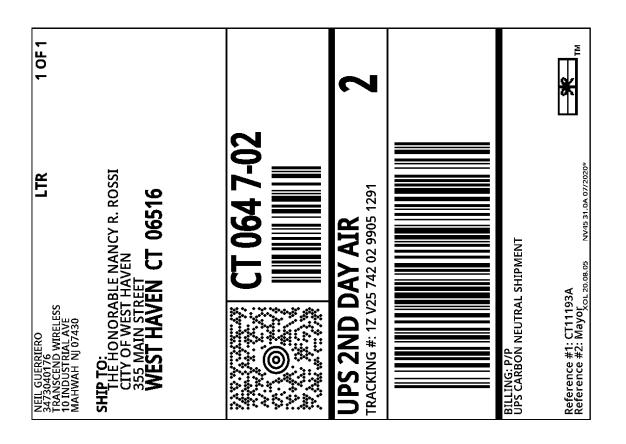
Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access PointTM MICHAELS STORE # 7773 75 INTERSTATE SHOP CTR RAMSEY NJ UPS Access Point[™] THE UPS STORE 115 FRANKLIN TPKE MAHWAH NJ UPS Access Point[™] THE UPS STORE 120 E MAIN ST RAMSEY NJ

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS


Customers with a scheduled Pickup

• Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access PointTM MICHAELS STORE # 7773 75 INTERSTATE SHOP CTR RAMSEY NJ UPS Access Point[™] THE UPS STORE 115 FRANKLIN TPKE MAHWAH NJ UPS Access Point[™] THE UPS STORE 120 E MAIN ST RAMSEY NJ

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

• Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access PointTM MICHAELS STORE # 7773 75 INTERSTATE SHOP CTR RAMSEY NJ UPS Access Point[™] THE UPS STORE 115 FRANKLIN TPKE MAHWAH NJ UPS Access Point[™] THE UPS STORE 120 E MAIN ST RAMSEY NJ

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

• Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access PointTM MICHAELS STORE # 7773 75 INTERSTATE SHOP CTR RAMSEY NJ UPS Access Point[™] THE UPS STORE 115 FRANKLIN TPKE MAHWAH NJ UPS Access Point[™] THE UPS STORE 120 E MAIN ST RAMSEY NJ

