Crown Castle
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065

November 6, 2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: \quad Notice of Exempt Modification for Sprint 2.5 Rework Crown Site BU: 876328 Sprint Site ID: CT03XC075
 27-31 South Main Street, West Hartford, CT 06110
 Latitude: 41° 45' 36.41"/ Longitude: $-72^{\circ} 44{ }^{\prime} 35.25 "$

Dear Ms. Bachman:
Sprint currently maintains three antennas at the 103-foot level of the existing 40 -foot self-support tower at 27-31 South Main Street in West Hartford, CT. The tower is atop the parking garage at this location. The tower is owned by Crown Castle. The property is owned by Town Center West Associates LLC. Sprint intends to install three (3) antennas, three (3) RRH's and one (1) hybrid cable.

This facility was approved by the by the Planning Department in the Town of West Hartford on April 10, 1997. This approval included no conditions according to an e-mail communication from the Planning and Zoning Division.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Shari Cantor, Mayor, Town of West Hartford, as well as the property owner, and Crown Castle is the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.

Melanie A. Bachman
November 6, 2017
Page 2
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely,
Jeffrey Barbadora
Real Estate Specialist
12 Gill Street, Suite 5800, Woburn, MA 01801
781-729-0053
Jeff.Barbadora@crowncastle.com
Attachments:
Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

CC:

The Honorable Shari Cantor, Mayor
Town of West Hartford
50 South Main Street
West Hartford, CT 06107

Town Center West Associates LLC
433 S. Main Street
Suite 328
C/O Figure Eight Properties
West Hartford, CT 06110

Planning \& Zoning Town of West Hartford 50 South Main Street West Hartford, CT 06107

April 10, 1997

Thomas A. Cookingham, AICP
SBA, Inc.
300 Research Parkway
Meriden, CT 06450

Subject: 29 South Main St.

Dear Mr. Cookingham:
Approval has been granted for the site plan application for the subject property. The approval is for the construction of a forty (40) foot stub tower with associated equipment on the penthouse of the parking garage.

The "associated equipment" is detailed on the two (2) sheet plan set. Specifically, one sheet is entitled "Zoning Drawing - rev. date: 11-3-96" sheet 2 entitled, "zoning elevations - rev. date 3-3-87."

Please submit to the Planning Office as soon as possible two (2) blueprint copies and one (1) mylar set of the approved plans, all signed and sealed by the professional responsible for preparing the plans.

If we can be of further assistance, please call me at 523-3123.

Very truly yours,

Mila Limson
Acting Town Planner
c: Ron Van Winklle, Director of Community Services
Don Foster, Town Planner
29SMain

TOWN OF WEST HARTFORD 50 SOUTH MAIN STREET WEST HARTFORD, CONNECTICUT 06107-2431
(860) 523-3123 FAX: (860) 523-3200

From:	Holzschuh, Cymon Cymon.Holzschuh@ct.gov
Sent:	Tuesday, January 12, 2016 1:13 PM
To:	Terry, Dashanna; CSC-DL Siting Council
Cc:	Barbadora, Jeff
Subject:	RE: 29 Main St - Existing Telecommunication Tower located at 29 Main Street, West
	Hartford (Crown Castle 876328 / ATT CT5843-CSC Requirement

I will note in our records that the West Hartford Planning and Zoning Division has no record of conditions of approval for this facility.

Thank you for your submission.
Cymon Holzschuh
Siting Analyst
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
P: 860.827.2941 | F: 860.827.2950

Connecticut Department of
ENERGY \&
ENVIRONMENTAL
PROTECTION
www.ct.gov/deep
Conserving, improving and protecting our natural resources and environment;
Ensuring a clean, affordable, reliable, and sustainable energy supply.

From: Terry, Dashanna [mailto:Dashanna.Terry@crowncastle.com]
Sent: Tuesday, January 12, 2016 12:36 PM
To: CSC-DL Siting Council
Cc: Barbadora, Jeff
Subject: 29 Main St - Existing Telecommunication Tower located at 29 Main Street, West Hartford (Crown Castle 876328 / ATT CT5843 - CSC Requirement

To Whom It May Concern:
Please be advised both the township (see email below) and Crown Castle as the tower owner, do not have the original zoning resolution on file. Although this approval notice was supplied by the township, the docket number was not available. Please use this email as notification to waive this requirement as we will include this and the email from the township within our submission.

Please let me know if you have any questions or need additional information. Thank you in advance.

Dashanna

DASHANNA TERRY
Real Estate Project Coordinator
T: (781) 970-0067| M: (571) 241-0984

12 Gill Street, Suite 5800, Woburn, MA 01801
Crowncastle.com

From: Brittany Bermingham [mailto: Brittany.Bermingham@WestHartfordCT.gov]
Sent: Tuesday, January 12, 2016 11:15 AM
To: Terry, Dashanna
Subject: 29 South Main Street Permit Information

Hi Dashanna,

Attached please find the Site Plan approval letter for 29 South Main Street. On the phone you referenced 27 South Main but that property does not exist so we think this might be what you are looking for instead. Let me know!

Brittany

Brittany A. Bermingham
Planning Technician
Planning and Zoning Division, West Hartford Town Hall
860-561-7555
This email may contain confidential or privileged material. Use or disclosure of it by anyone other than the recipient is unauthorized. If you are not an intended recipient, please delete this email.

Location	29 SOUTH MAIN STREET	Mblu	F9/ 5095/29//
Parcel ID	50951290001		
		Owner	TOWN CENTER WEST
		ASSOCIATES LLC	

Assessment \$28,065,520

Appraisal \$40,093,600
Building Count 2

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2016	\$33,405,900	\$6,687,700	\$40,093,600
Assessment			
Valuation Year	Improvements	Land	Total
2016	\$23,384,130	\$4,681,390	\$28,065,520

Owner of Record

Owner	TOWN CENTER WEST ASSOCIATES LLC	Sale Price	$\$ 0$
Co-Owner		Certificate	1
Address	433 SOUTH MAIN STREET	Book \& Page	$2351 / 10$
	WEST HARTFORD, CT 06110	Sale Date	$09 / 03 / 1998$
		Instrument	U

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
TOWN CENTER WEST ASSOCIATES LLC	\$0	1	2351/ 10	U	09/03/1998
DOA 87 LIMITED PARTNERSHIP	\$17,607,200	1	1753/24	Q	12/23/1992
F P INC	\$1	1	1572/154	U	05/01/1991
SEYBURT ASSOCIATES LIMITED	\$0	1	1122/103	U	10/20/1986
FIRST NATIONAL STORES INC	\$6,000,000	1	1122/97	Q	10/20/1986

Building Information

Building 1 : Section 1

Year Built:	1990
Living Area:	182,816
Replacement Cost:	$\$ 28,208,446$

Building Percent

Good:

Replacement Cost
Less Depreciation: $\$ 22,284,700$
Building Attributes
Field

STYLE	Off
MODEL	Co
Grade	B 0
Stories:	1
Occupancy	

Exterior Wall 1	Pr
Exterior Wall 2	

Roof Structure	Flat
Roof Cover	Built Up

Interior Wall 1	Typ

Interior Wall 2

Floor Type	Concrete Slab
Floor Cover	None

Heating Fuel

Heating Type	N
AC Type	N

As Built Use	O
Bldg Use	Co

\# of Bedrooms
Total Baths

Type	01
Wet Sprinkler	
Dry Sprinkler	
1st Floor Use:	Class B
Class	Steel - Firepr
Frame Type	LIGHT
Plumbing	Not Applicable
Ceiling	OFF
Group	
Wall Height	
Adjustment	

Building 2 : Section 1

Building Photo

(http://images.vgsi.com/photos/WestHartfordCTPhotos//\00\01\t

Building Layout

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
OFA	OFFICE MIXED USE	137,112	137,112
RTA	RETAIL AREA IN MIXED	45,704	45,704
COM	COMMERCIAL - NV	228,750	0
		411,566	182,816

Year Built:	1990
Living Area:	228,890
Replacement Cost:	$\$ 14,630,227$

Building Percent

Good:

Replacement Cost
Less Depreciation: $\quad \$ 10,826,400$

Building Attributes: BIdg 2 of 2	
Field	Description
STYLE	Parking Garage
MODEL	Comm/Ind
Grade	C 0.90
Stories:	5
Occupancy	
Exterior Wall 1	Precast Panel
Exterior Wall 2	
Roof Structure	None
Roof Cover	Asbestos
Interior Wall 1	Typical
Interior Wall 2	
Floor Type	Reinf Concrete
Floor Cover	None
Heating Fuel	Typical
Heating Type	Steam Boiler
AC Type	None
As Built Use	PGAR
Bldg Use	Commercial
\# of Bedrooms	
Total Baths	
Type	01
Wet Sprinkler	
Dry Sprinkler	
1st Floor Use:	
Class	Class C
Frame Type	Conc Reinf
Plumbing	LIGHT
Ceiling	Not Applicable
Group	IND
Wall Height	12
Adjustment	

Building Photo

(http://images.vgsi.com/photos/WestHartfordCTPhotos//default.j

Building Layout

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
PGB	PARKING GARAGE LA	228,890	228,890
		228,890	228,890

Extra Features

Land

\left.| Land Use | | Land Line Valuation | |
| :--- | :--- | :--- | :--- |
| Use Code | 201 | | |
| Description | Commercial | SC | Frontage |$\right]$

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
CLP9	Patio - Brick comm			6600 SF	\$30,000	1
C215	Elevator pass 1.5 k lbs			1 UNIT	\$62,600	1
C215	Elevator pass 1.5 k lbs			1 UNIT	\$62,600	1
CLP4	Paving, Asphalt			18680 SF	\$48,600	1
CPL6	Light Pole - Steel			130 SF	\$7,800	1
C215	Elevator pass 1.5 k lbs			1 UNIT	\$81,300	1
COH 1	Overhead Door Commercial			98 SF	\$700	1
COH 1	Overhead Door Commercial			161 SF	\$1,200	1

Valuation History

Appraisal								
Valuation Year	Improvements	Land						
2016		$\$ 33,405,900$	$\$ 6,687,700$					

Assessment				
	Valuation Year	Improvements	Land	
2016		$\$ 23,384,130$	$\$ 4,681,390$	

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

THESE OUULINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS SECTION 01100 - SCOPE OF WORK
PART 1 - GENERAL

1.2 REATED DOCUMENS:
A. THE ReqQIIRENENS OF THIS SECTION APPLY TO AL SECTIONS IN THIS
B. SPRIN STANDARD CONSTRUCTION DETALS FOR WIRELESS STESS ARE INCLUDED IN
1.3 PRECCDENCE: SHOULD CONFUCTS OCCUR BETWEN THE STANARD CONSTRUCTON

1. 4 natonally recoanize codes and standards:

2. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTON
3. GR-78-CORE GENERC REQUREMENTS FOR THE PHTSICAL DESIGN AND

4. AMERICAN SOCIETY FOR TESTNG OF MATERLLLS (ASTM
5. INSTIUTE OF ELECTRONIC AND ELECTIICAL ENGINEERS (IEEE)
6. American concrete instive (ACl)
B. AMERICAN WRE PRODUCERS ASSOCUTION (AWPA)
7. CONCREETE REINFORCING StEEL instivit (CRSI)
8. AMERICAN ASSOCIATION OF STAIE HIGHWAY AND TRANSPORTATION OFHCIALS
9. PORTLAND CEMENT ASSOCIATION (PCA)
10. NATONAL CONCREIE MASONRY ASSOCIATON (NCMA)
11. BRICK INDUSTRY ASSOCIATON (BA)
12. AMERCAN WEDNG SOCIET (AWS)
13. Natonal roofng contractors association (nica)
14. SHEET METAL AND AR CONOTMONING CONTRACTORS' NATONAL ASSOCIATON
15. DOOR AND HARDWARE INSTIUTE (OHI)
16. OCCUPATIONAL SAEETY AND HEALTH ACT (OSHA)
17. APPLCABE BUIIING CODES INCLUDING UNIFRMM BUIDING CODE, SOUTHERN
1.5 DEFNTIONS:
A. WORK: THE SUM OF TASKS AND RESPONSIBIIIIES IDENIIED IN THE CONTRACT
. COMPANT: SPRINT CORPORATON
C. ENINERR STNOMMOUS WITH ARCHIECT \& ENGIEER AND AEEE. THE DESIGN

F. OFCl: OWNER FURNISHID, CONTRACTOR INSTALED EQUPMENT.
G. CONSIRUCTION MANAGER - AA PRONECTS REAIED COMMUNICATON TO HOW

A. THE JOESTE DRAWINSS, SPECIFCCHONS AND DEALS SHALL EE CLEARY MARKED

 .13 CONRRACTOR SHALL TAKE AL MEASURES AND PROVDE ALL MATERILL NECESSARY
FOR PROTECTNG EXSTING EOUIPMEN AND PROPERT.

 1.15 USE OF ELECTRONIC PROUECT MANGGEMENT SSSteMS:

PART 2 - PRODUCTS (NOT USED)
part 3 - execution

 ARCHIECT/ENGIEER DURING AL PHASES OF THE WORK.

 A WORK AREA FOR COMPAN'S IEST AGENCY.

 or Aiter sivuctral col

SECTION 01200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

 ART 1 - GENERAL
1.2 RELATED DOCUMENTS:
A. THE R RRQUREMENTS OF THIS SECTON APPLY TO AL SECTONS IN THIS
B. SPRIN STANDARD CONSTRUCTON DETALS FOR WRRLESSS STES ARE INCLUDED IN PART 2 - PRODUCTS (NOT USED)
3.1 REGEPT OF MATERAL AND EQUIPMENT:
A. A COMPANY FURNSHED MAIERRL AND EQUIPMENT IS IDENTIED ON THE RF DATA
SHEE IN THE CONSTRUCTON DOCUMENTS.
b. THE CONTRACTOR IS RESPONSIBLE FORR SPRINT PROVDED MAIERAL AND

1 ACCEPT dEIMERES AS SHIPPED and take recelit.
2. VERIF COMPLLIENESS AND CONDTON OF AL DELNERIES
3. TAKE RESPONSIBLIT FOR EGUIPMENT AND PROVDE INSURANCE PROTECTON
4. RECORD ANY DEEECTS OR DAMAGES AND WIHIN TWENY-FOUR HOURS ATIER
5. PROUDE SECURE AND NECESSARY WEATHER PROTECEED WAREHOUSIN

3.2 Delverables:

A COMPPIEIE SHIPPING AND RECEIPT DOCUMENTATON IN ACCORDANCE WTH COMPANY
B. IF APPLCABEE, COMPLEER LOST/STOLEN/DAMAGDD DDCUMENATON REPPRT AS
c. UPLOAD DOCUMENAATON INTO SPRINT STI MANGGMENT STSTEM (SMS) AND/OR SECTION 01300 - CELL SITE CONSTRUCTION CO
 1.2 RELATED DOCUMENS:
A. THE REQUIREMENTS OF THIS SECTON APPLY TO ALL SECTONS IN THIS
B. SPRIN STANDARD CONSTRUCTON DETALS FOR WRRLESSS STESS ARE INCLUDED IN .3 NOICE TO PROCEED
A. NO WORK SHAL COMMENCE PRIOR TO CCMPAN's WRTIEN NOTCE TO PROCEED

 PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 TUNCTONAL REQUIREMENTS:
A. THE ACTMTIES DESCRIBED IN THIS PARGCAPH REPRESENTMNMUMACTONS AND

B. SUEMT SPECIIC DOCUMENATON AS INDICAIED HEREN, AND OBTAN REQUIRED
c. manage and conduct all fel consiructon servce reated activies
D. PROMDE CONSTRUCTON ACITMES TO THE EETENT REQURED BY THE CONTRACT
DOCUMENS, INCLUONG EUT NOT UMITED TO THE FOLOWNIN:

Sprint

INFINIGY\%

 vos nueser $35-000$

W

WEST HARTFORD
PARKING GARAGE

CT03XC075

27-31 SOUTH MAIN ST
WEST HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-1
2. PRepare ground sits provoc de-grubgli; and rough and anal
3. MANAGE AND CONDUCT AL ACTMTIES FOR INSTALLATON OF UILIES
4. INSTAU UNOERGROUND FACIUTES INCLUDING UNDERGROUND POWER AND
5. Install above ground grounding ststems.
6. PROUDE NEW HVAC Inttallatons and modifications.
7. INSTAL "H-FrAMES". CABINETS AND SHELIERS AS INOICATED.
b. INSTALL ROADS, acCess Wars, cures and drans as inolcated.
9. AcCOMPUSH REQUIRED MODIFCATON OF EXISTNG FACIIIES.
10. PROVIDE ANIENNA SUPPORT STRUCTURE FOUNDATONS.
11. PROVDE SLABS AND EQUIPMENT PLATFORMS.
12. NSTRAL COMPOUND FENCING, SIGHT SHIELING, LANOSCAPING AND ACCESS
13. Perform inspecton and matrral testing as required hirelnafter. 14. CONDUCT SIE resistance to earth testing as reourrd hereinater 15. NSTAL FIXED GENERATOR SETS AND OTHER STANDGY POWER SOLUTIONS.
16. INSTAU TOWERS, ANTENA SUPPORT STRUCTURES AND PLATFORMS ON

19. PERFORM ANTENNL AND COAX SWEEP TESTNG AND MAKE ANY AND ALL

3.2 general reauriement for cil contructon:

e. EOURMENT ROOMS SHALL AT AL TMES BE MANTANED "BROOM CLEAN AND
c. Contractor shal tare al reasonable precautions to discover and

D. CONRACTOR'S ACTMIES SHAL BE RESTRCIED TO THE PROECT LMMTS. SHOUL

e. conduct testing as reguired herein.
3.3 DELVERABLES:
A. Contractor shall renew, Aprove, and subur to grin shop oramnge,
e. PROMDE DOCUMENTATON INCLUDNG, BUT NOT LMITIED TO. THE FOLOWNG.

1. All CORRESPONoENCE AND PREUMINARY CONSTRUCTION REPORTS.
2. PRoJECT PROGRESS REPORTS.
3. CNL CONSTRUCTION START DATE (POPULATE FELD IN SMS AND/OR FORWARD

4. LNES AND ANTENNA INSTAL DATE (POPULATE HEL IN SMS AND/OR
FORHARD NOIFCAAON).
5. POWER ISSTAL DATE (POPULATE FEL IN SMS AND/OR FORWARD
6. TLLLO REAOY DATE (FOPULATE REL IN SMS AND/OR FORMARD
7. PPC (OR SHELTER) INSTALL DATE (POPULATE FEL IN SMS AND/OR FORWARD
8. TOWER CONSTRUCTIN START DATE (POPULLATE REL IN SMS AND/OR
9. TOWER CONSTRUCTON COMPLEE DATE (POPULATE FEL IN SMS AND/OR
FORWARD NOTFCATON).

10. NeTWORK OPERATONS HANDOFF CHECKUST (HOC WAK) COMPLETE (UPLLOAD
FORM IN SMS)
11. COLL CONSTRUCCON COMPLEE DATE (POPULATE FELD IN SMS AND/OR
FORWARD NOTFCATON). 14. STIE CONSTRUCTON PROGRESS PHotos UNLOADED INTO SMS.

SECTION 01 400 - SUBMITTALS \& TESTS

1.2 Reated documents:
A. THE RROLIIEMENTS OF THIS SECTON APPLY TO AL SECTONS IN THIS
B. SPRIN 'STANOARD CONSTRUCTION DERALS FOR WRELLESS STES ARE INCLDDED IN
1.3 SUBMTTALS:
A. THE WORK IN ALL ASPECTS SHAL COMPLY WITH THE CONSTRUCTON DRAWINGS
B. SUBMT THE FOLLOWIN to company represenative for approval

1. CONCREIE MXX-DESGNS FOR TOWER FOUNDATONS, ANCHORS PIERS, AND
2. Concreit break tests as specifed herein.
3. SPECML FNISHES FOR INERIOR SPACES, IF ANY.
4. AL EQUUPMENT AND MATERALS SO IDENIIED ON THE CONSTRUCTION
5. Chemical grounding desion
D. AITERATES: AT THE COMPANTS REQUEST, ANY ALIERNATVES TO THE MATERALS

1.4 TESTS AND INSPECTONS:
A. THE CONTRACTOR SHAL ME RESPONSI日E FOR ALL CONSIRUCTION TESTS.
B. CONTRACTOR SHAL ACCOMPLSH TESTNG INCLUDING BUT NOT UMITD TO THE

- CoAX SWEEPS AND faER TESTS PER TS-0200 REV 4 ANTENNA LINE

2. AGL AZMMTH AND DOWNLL USING ELECTRONC COMMERCILL

A RESULT OF TESTING.
COOLIOWING;
CLOSEOUT DOCUMENATON INCLLDES, aUT IS NOT LIMIED TO THE

3. SCANABE EARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIILE
4. ALL AVALABLE JURISOICTONAL INFORMATION
5. PDF SCAN OF REDUNES PRODUCED IN FIED

6. LEN WAVERS
7. LEN WANERS
8. FINL PATMENT APPLCATION
9. FNNL PAMMENT APPUCATON
B. REQUIRED FNAL CONTRUCTON PHOTOS
10. REQUIRED FNNL CONSTRUCTON PHOTOS
11. CONSTRUCTON AND COMMISIONING CHECKUST COMPLEEE WITH NO DEFCIENT
12. AL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLIED IN SITERRA
1.5 Commissioning: PERFORM all commisioning as required ar applcable
mops

PART 2 - PRODUCTS (NOT USED)
part 3 - execution
3.1 REQUIREMENTS FOR TESTNG:
A. THIRD PARTY TESTNG AgENCY:

13. THE TIRD PARTM TESNNG AGENCY IS TO EE FAMUAR WTH THE APPLCABLE

14. EXPERIENCE IN SOILS, CONCREIE, MASONRY, AGGREGAE, AND ASPHALT
15. 2 Required tests:
A. COITRACTOR SHALL ACCOMPUSH TESTING INCLUDING 日UT NOT LMITED TO THE
16. CONCREE CMUNDER RREAK TESTS FOR THE TOWER AND ANCHOR
17. ASPHALT ROAOWAY COMPACIED THCKNESS, SURFACE SNOOTHESS, AND
18. RED quant connt tesing as specifin in section: portand cement
19. TESTNG REOURED UNDER SECTON: AGGREGATE BASE FOR ACCESS ROADS,
20. STRUCTURAL BACKFLL COMPACTION TESTS FOR THE TOWER FOUNDATON.
21. SIE RESIITANCE TO EARTH TESTNG PER EXHBII: CEL STIE GROUNDING
22. ANIENY AND COAX SWEEP TESTS PER EXHIIT: ANTENNA TRANSMISSION LINE
23. grounding at antenna masts for grs and antennas
24. AL OTHER TESTS REQUIRED EY COMPANY OR JURISOICTON.
3.3 REQUIRED INSPECTONS
A. SCHEDULE INSPECTONS WIH COMPAN Representative.
B. CONDUCT INSPECTONS INCLUDING BUT NOT UMITED TO THE FOLOWING:

25. PRE- AND POST-CONSTRUCTON ROOFTOP AND STRUCTURAL INSPECTIONS ON
26. TOWER ERECTON SECTON STACKING AND PLATORRM ATTACHMENT DOCUMENIED
27. ANIENAL AZIMITH DOWN TITT AND PER SUNLGHT TOOL SUNSIGHT

Wacrayn

WEST HARTFORD PARKING GARAGE

CT03XC075
27-31 SOUTH MAIN ST
WEST HARTFORD, CT 06110
WES HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-2

CONTUE FROM SP-2

7. VERIICCAOON DOCUMENTED WIH THE ANTENNA CHECKUST REPORT, GY AEE,
8. FNAL NSPECTON CHECKLST AND HANDOFF WALK (HOC.). SICNED FORM
9. Coox smeep and fiber testing documents submited va shs for rf
10. SCCN-ABE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIILE
11. AL AVALABLE JURISOICTONAL INFORMATON
12. PDF SCAN OF REDUNES PRODUCED IN FELD

A. THE FOLOOWNG TEST AND INSPECTION RPPORTS SHALL EE PROVIDED AS 1. CONCREE MIX ANO CYINDER BREAK REPORI
13. STRUCTURAL EACKFLL COMPACTON REPORTS.
14. STE RESISTANCE TO EARTH TEST.
15. ANIENNA AZIMUTH AND DOWN TLIT VERIICCATO

16. COAX CABLI SWEEP TESTS PER COMPAN's ANTIENNA LINE ACGEPTANCE
b. required closeout documenaton includes the folowing;
简

 Aheme

TOWER/MONOPOL
17. ROOF TOPS: PREECONSTRUCTTON AND POSS-CCNSTRUCTON VSUAL INSPECTON
 PHOTOGRAPHS OF DOGHOUSE/CABIE EXT RROM ROO
18. SIIE LAYOUT - PHOTOGRARHS OF THE OVERUL COMPOUND. INCLUDING

 9. ANI AND AL SUBMITALS EY THE JURISDICTION OR COMPAN

PECIION O1 400 - SUBMITALS \& CES
PART 1 - GENERAL
1.1 THE WORN: HEESE STANDARD CONSIRUCTON SPEGIICADONS IN CONUUNCDON WTH
1.2 REATED DOCUMENTS:
A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS
B. SPRIN - STANOARD CONSTRUCTON DEGALS FOR WIRELESS STES:ARE INCLUDED IN

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTIO
3.1 WEEKLY REPORTS:

 Rouect conference calls:

3 PROUECT TRACKING IN SMS:

A. COOTRACTOR SHALL RPONDE SCHEDULE UPDATES AND PRONECTIONS IN THE SMS
3.4 ADOTONAL REPORTING:
A. ADDTIONAL OR ALERNATE REPORTNG REOUREMENTS MAY BE ADDED TO THE
REPORT AS DEIERMINED TO EE REASONABEY NECESSARY EY COMPANY. 3.5 PROUECT PHOTOGRAPHS:
 MINEIED WMH SIE NUMBER, NAME AND

1. 1SHELIER AND TOWER OVERNEW.
2. TOWER FOUNDAAON(S) - FORMS AND STEEL BEFORE POUR (EACH ANCHOR
3. TOWER FOUNDATON(S) POUR wTH MBrator in USE (EACH ANCHOR ON
4. TOWER STEEL AS BENG INSTALED INTO HOLE (SHOW ANCHOR STEEL ON
5. PHOTOS OF TOWER SECTION STACKING
6. CONCREEE TESTNG / SAMPIES.
7. PLACING of anchor bolts in tower foundaton.
8. BUILDING/WAIER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
9. SHELTER FOUNDATON--FORMS AND Steel aefore pouring.
10. Shelter foundaton pour wit narator in use.
11. COAX CABLE ENRY INTO SHELITR
12. PLATORM MECHANICAL CONNECTONS TO TOWER/MONOPOLE.
13. ROOFTOP RRE AN POST CONSTRUCTON PHOTOS TO INCLLDE PENEITRATONS
14. Photos of tower top coax line color cooing ano color cooing at
15. Photos of All approprate compant or regulatory signage.
16. PHotos of Equipmen bolt down insid shelitr.
17. POWER AND TILCO ENTRNCE TO COMPANY ENCLOSURE AND POWER AND
TECO SUPPLY LOCATONS INCLUODN METRRDISONNECT.
18. ELECTRCAL TRENCH(s) WTH EIECTRICAL / CONDUT BEFORE BACKFL
19. ELECTRICAL TRENCH(S) WTH FOLL-BACKED TAPE BEFORE FURIHER BACKFL
20. TLLCO TRENCH WTH TLEEPHONE / CONDUT BEOORE BACKFLL
21. TELCO TRENCH WTH FOIL-BACKED TAPE BeFore further backrll
22. SHELIIR GRRUND-RING TRENCH WTH GROUND-WRE beFore backrlu (show

23. FENE GROUND-RNG TRENCH WTH GROUND-WIRE BEFORE EACKFLL (SHOW
24. Al bts ground connections.
25. All ground test wels
26. ANTENNA GROUND BAR AND EQUIPMENT GRound bar.
27. Adomonal grounding points on towers above 200'.
28. HNAC UNITS INCLUDING CONDENSERS ON SPIT STSTEMS.
29. GPS ANIENNAS.
30. Cable tray ano/or waveguid bride.
31. DoGhouse/cable ext from roof.
32. EACH SECTOR OF ANTNNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR ANO 34. MASTER EUS RAR.
33. telco board and nit
34. ELECTRICAL DIITRIBUTION WALL
35. CABE ENTRY wTH SURGE SUPPRESSION.
36. Entrance to equipment room.
37. COAX WEATHERPROOFNG-TOP AND BOTOM OF TOWE
38. CoAX Grounding -top and bottom of tower
39. ANIENNA AND MAST GROUNDING.
40. LaNoSCAPING - WHERE APPLCABIE.

INFINIGY\%

 ${ }^{1033 \text { Wianavies Shaker Rd }}$ Abibny
nos nuear $35-200$

Wrsgut

WEST HARTFORD
PARKING GARAGE

CT03XC075
27-31 SOUTH MAIN ST HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-3

ALU 2.5 ALU SCENARIO 1

ran wiring diagram

RF 2.5 ALU SCENARIO 1

ISSLEP For Colismectiout	3/77/4	м ${ }^{\text {a }}$	

WEST HARTFORD PARKING GARAGE

STIE CASCADE:
CT03XC075

27-31 SOUTH MAIN S WEST HARTFORD, CT 06110

PLUMBING DIAGRAM

Date: September 7, 2017

Charles McGuirt
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6607

Subject:

Carrier Designation:

Crown Castle Designation:

Structural Analysis Report

Sprint PCS Co-Locate Carrier Site Number: Carrier Site Name:

Crown Castle BU Number: 876328
Crown Castle Site Name: WEST HARTFORD PARKING GARAGE Crown Castle JDE Job Number: 459295
Crown Castle Work Order Number: 1454309
Crown Castle Application Number: 405734 Rev. 0

Engineering Firm Designation: GPD Project Number:
2017777.876328.18

Site Data:
27-31 South Main St., West Hartford, Hartford County, CT 06110
Latitude $41^{\circ} 45^{\prime} 36.411^{\prime \prime}$, Longitude $-72^{\circ} 44^{\prime} 35.25^{\prime \prime}$
40.25 Foot - Self Support and Modified Parking Garage Structural Analysis
Dear Charles McGuirt,
We are pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1078055, in accordance with application 405734, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

> LC7: Existing + Reserved + Proposed Equipment
> Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

Sufficient Capacity

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon a nominal 3 -second gust wind speed of 100 mph per the guidelines within Appendix R. Exposure Category B with a maximum topographic factor, $\mathrm{K}_{2 \mathrm{t}}$, of 1.0 and Risk Category II were used in this analysis.

We appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Benjamin Darkow
Respectfully submitted by:

Christopher J. Scheks, P.E.
Connecticut \#: 0030026

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) DISCLAIMER OF WARRANTIES
6) APPENDIX A
tnxTower Output

7) APPENDIX B

Base Level Drawing
8) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 40.25 ft self support tower designed by ROHN in April of 1997. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-E. The tower base connects to an I-Beam frame that is anchored to the parking garage deck. The base of the tower frame is 65 ' above grade.

The tower is supported on three legs and has two major sections. It has a triangular cross section made of bolted connections, with an " X " frame configuration. The tower is fabricated with pipe legs and angle diagonals. The tower is galvanized and has no aviation lightning.

Modifications designed by GPD (Project \#: 2015777.876328.08, dated $6 / 3 / 2015$) consist of installing extension plates to the tower base frame connections and extension plates to the existing stair well walls at varying elevations. These modifications have been installed and were considered in this analysis.

2) ANALYSIS CRITERIA

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon a nominal 3 -second gust wind speed of 100 mph per the guidelines within Appendix R. Additionally, 50 mph with 1 inch ice thickness and 60 mph under service loads, exposure category B with topographic category 1 and crest height of 0 feet.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
102.0	103.0	3	RFS/Celwave	APXVTM14-C-120	1	$5 / 8$	1

Notes:

1) See Appendix B for the proposed feed line layout

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\begin{array}{\|\|c\|} \text { Feed } \\ \text { Line } \\ \text { Size (in) } \end{array}$	Note
102.0	103.0	2	RFS/Celwave	APXVSPP18-C-A20	3	1-1/4	1
		1	RFS/Celwave	APXV9ERR18-C-A20			
		3	Alcatel Lucent	$1900 \mathrm{MHz} \mathrm{RRH} \mathrm{(} 65 \mathrm{MHz}$)			
		3	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
	102.0	1		Sector Mount [SM 502-3]			
92.0	92.0	3	Sabre	C10857011 12' V-Boom	$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} 3 / 8 \\ 3 / 4 \\ 1-5 / 8 \end{gathered}$	1
	89.0	3	Powerwave Technologies	7770.00			
		3	CCI Antennas	TPA-65R-LCUUUU-H8			
		3	Powerwave Technologies	7020.00			
		3	Ericsson	RRUS-11			
		3	Ericsson	RRUS 32 B30			
		2	Raycap	DC6-48-60-18-8F			
		3	CCI Antennas	OPA-65R-LCUU-H8	2	3/4	2
		3	CCI Antennas	DTMABP7819VG12A			
		3	Ericsson	RRUS 12			
		3	Ericsson	RRUS 32 B2			
		3	Ericsson	RRUS E2 B29			
		3	Ericsson	RRUS 32 B66			
		1	Raycap	DC6-48-60-18-8F			
75.0	77.0	1	Lucent	KS24019-L112A	1	1/2	1
	75.0	1		Side Arm Mount [SO 302-1]			

Notes:

1) Existing equipment; considered in this analysis
2) Reserved equipment; considered in this analysis

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
105.0	105.0	12	Decibel	DB980H90	12	1-5/8
		3		12' Leg Mounting Frame		
75.0	75.0	1		GPS Antenna	1	1-5/8
		1		3' Side Arm		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Tower Manufacturer Drawings	Rohn Eng. File\#: 345895W, Dated: 4/15/1997	1440544	CCISITES
Tower Mapping Report	GPD Project \#: 2014777.876328.03,	1440544	CCISITES
Base Frame Design	Greiner Project \#: F101508.60, Dated: 2/20/1997	5460756	CCISITES
Parking Garage Design	Unistress Project: Towne Center Garage, Rev. 4, Dated: 10/31/1988	5460756	CCISITES
Parking Garage Modifications	GPD Project \#: 2015777.876328.08, Dated: 6/3/2015	5735691	CCISITES
Modifications Passing Analysis	GPD Project \#: 2015777.876328.08, Dated: $6 / 3 / 2015$	5735731	CCISITES
Post Modification Inspection	GPD Project \#: 2015777.876328.10, Dated 1/27/2016	6076906	CCISITES

3.1) Analysis Method

tnxTower (version 7.0.7.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
T1	$105.25-$ 85.125	Leg	ROHN 2.5 STD	3	-15.09	63.41	23.8	Pass
T2	$85.125-65$	Leg	ROHN 2.5 STD	38	-39.13	57.07	68.6	Pass
T1	$105.25-$ 85.125	Diagonal	L1-1/2x1-1/2x1/8	9	-3.40	3.81	89.4	Pass
T2	$85.125-65$	Diagonal	L1-3/4x1-3/4x3/16	46	-3.12	5.09	61.3	Pass
T1	$105.25-$ 85.125	Top Girt	L2x2x1/8	4	-0.35	3.21	11.0	Pass
T2	$85.125-65$	Top Girt	L2x2x1/8	41	-0.15	3.21	4.8	Pass
							Summary	
						Leg (T2)	68.6	Pass
						Top Giagrt (T1)	11.0	Pass
						Bolt Checks	87.9	Pass
						Rating $=$	89.4	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1,2	 Parking Garage	65	59.8	Pass

Structure Rating (max from all components) $=$	89.4%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.
2) The base frame and parking garage capacity was determined based on reaction comparison from the previous modification design passing analysis (GPD Project \#: 2015777.876328.08, dated 6/3/2015). See Appendix C for the reaction comparison.

4.1) Recommendations

The tower has sufficient capacity to carry the proposed loading configuration. Modifications will not be required to bring the tower into compliance with the TIA-222-G standard for the proposed loading configuration.

5) DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in Hartford County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 100 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 89.4%

GPD Group

520 South Main Street, Suite 2531
Akron, Ohio 44311
Phone: (330) 572-2100
FAX: (330) 572-2101

BU \#: 876328, WEST HARTFORD PARKING GARAGE
Project: 2017777.876328 .18
Client: Crown Castle International, Inc. ${ }^{\text {Drawn by: B Darkow }}$ App'd:

Code: TIA-222-G	Date: $09 / 07 / 17$	Scale: NTS
Path:		

ALL REACTIONS
ARE FACTORED
MAX. CORNER REACTIONS AT BASE:
DOWN: 42 K
SHEAR: 6 K
UPLIFT: -35 K
SHEAR: 6 K

TORQUE 0 kip-ft 50 mph WIND - 1.0000 in ICE

TORQUE 1 kip-ft
REACTIONS - 100 mph WIND

GPD Group

Feed Line Distribution Chart
65' - 105'3"
Round \quad Fla \qquad App In Face \qquad App Out Face \qquad Truss Leg

GPD GroupGPD GroupSouth Main Street, Suite Akron, Ohio 4311 Phone: (330$)$ FAX: 530) $572-2100$$572-2101$		Pob: BU \#: 876328, WEST HARTFORD PARKING GARAGEProject: 2017777.876328 .18		
		Project: 2017777.876328.18 Client: Crown Castle International, Inc. Drawn by: B Darkow ${ }^{\text {App'd: }}$		
		Code: TIA-222-G	ate: 09/07/17	Scale: NTS
				Dwg No. E-7

Tower Input Data

The main tower is a $3 x$ free standing tower with an overall height of 105.25 ft above the ground line.
The base of the tower is set at an elevation of 65.00 ft above the ground line.
The face width of the tower is 6.56 ft at the top and 8.56 ft at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:

1) Tower is located in Hartford County, Connecticut.
2) Basic wind speed of 100 mph .
3) Structure Class II.
4) Exposure Category B.
5) Topographic Category 1.
6) Crest Height 0.00 ft .
7) Nominal ice thickness of 1.0000 in.
8) Ice thickness is considered to increase with height.
9) Ice density of 56 pcf .
10) A wind speed of 50 mph is used in combination with ice.
11) Temperature drop of $50{ }^{\circ} \mathrm{F}$.
12) Deflections calculated using a wind speed of 60 mph .
13) A non-linear (P-delta) analysis was used.
14) Pressures are calculated at each section.
15) Stress ratio used in tower member design is 1 .
16) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^0]Distribute Leg Loads As Uniform Assume Legs Pinned
\checkmark Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area
\checkmark Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
\checkmark Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination
\checkmark Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable
\checkmark Offset Girt At Foundation
\checkmark Consider Feed Line Torque
\checkmark Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption
Use TIA-222-G Tension Splice Exemption

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections
				Section	
	$f t$			6.56	1
T1	$105.25-85.13$		6.56	1	20.13
T2	$85.13-65.00$			20.13	

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T1	$105.25-85.13$	4.03	X Brace	No	No	0.0000	0.0000
T2	$85.13-65.00$	5.01	X Brace	No	No	0.0000	1.0000

Tower Section Geometry (cont'd)

Tower Elevation Elevation ft	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Leg } \\ \text { Grade } \end{gathered}$	Diagonal Type	$\begin{gathered} \text { Diagonal } \\ \text { Size } \end{gathered}$	Diagonal Grade
T1 105.25- 85.13	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1-1/2×1-1/2x1/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 85.13-65.00	Pipe	ROHN 2.5 STD	A572-50 (50 ksi)	Equal Angle	L1-3/4×1-3/4x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 105.25-	Equal Angle	$\mathrm{L} 2 \times 2 \times 1 / 8$	A36 85.13	Solid Round		
T2 85.13-65.00	Equal Angle	$\mathrm{L} 2 \times 2 \times 1 / 8$	$(36 \mathrm{ksi})$	A36	Solid Round	A3

tnxTower Report - version 7.0.7.0

| Tower
 Elevation
 $f t$ | Top Girt
 Type | Top Girt
 Size | Top Girt
 Grade | Bottom Girt
 Type | Bottom Girt
 Size |
| :---: | :---: | :---: | :---: | :---: | :---: | | Bottom Girt |
| :---: |
| Grade |

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset GradeAdjust. Factor A_{f}		Adjust. Factor A_{r}	Weight Mult.	Double Angle Double Angle Double Angle			
Elevation ft	Area (per face) $f t^{2}$	Thickness in			Stitch Bolt Spacing Diagonals in		Stitch Bolt Spacing Horizontals in	Stitch Bolt Spacing Redundants in		
$\begin{gathered} \text { T1 105.25- } \\ 85.13 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1		1	1	0.0000	0.0000	0.0000
$\begin{gathered} \text { T2 } 85.13- \\ 65.00 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	0.0000	0.0000	0.0000	

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{1}$							
			Legs	X	K	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Brace	Brace					
				Diags	Diags					
				X						
$f t$				Y						
T1 105.25-	Yes	Yes	1	1	1	1	1	1	1	1
85.13				1	1	1	1	1	1	1
T2 85.13-	Yes	Yes	1	1	1	1	1	1	1	1
65.00				1	1	1		1	1	1

${ }^{7}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \text { T1 105.25- } \\ 85.13 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1
$\begin{gathered} \text { T2 85.13- } \\ 65.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1

Tower Section Geometry (cont'd)

Tower Elevation ft	\qquad Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	Bolt Size in	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	Bolt Size in	No.	Bolt Size in	No.
T1 105.25-	Flange	0.6250	4	0.5000	1	0.5000	1	0.0000	0	0.0000	0	0.0000	0	0.0000	0
85.13		A325N		A325X		A325X		A325N		A325N		A325N		A325N	
T2 85.13-	Flange	0.0000	0	0.5000	1	0.5000	1	0.0000	0	0.0000	0	0.0000	0	0.0000	0
65.00		A325N		A325X		A325X		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#		Clear Spacing in	Width or Diameter in	Perimete r in	Weight plf
Climbing Ladder (Af)	C	No	Af (CaAa)	105.25-65.00	-3.0000	0	1	1	3.8400	3.8400		4.81
Safety Line (3/8")	C	No	$\operatorname{Ar}(\mathrm{CaAa})$	105.25-65.00	-3.0000	0	1	1	0.3750	0.3750		0.22
Feedline Ladder (Af)	B	No	Af (CaAa)	102.00-65.00	0.0000	-0.1	1	1	3.0000	3.0000		8.40
$\begin{gathered} \text { LDF4- } \\ 50 \mathrm{~A}(1 / 2) \end{gathered}$	B	No	$\operatorname{Ar}(\mathrm{CaAa})$	75.00-65.00	0.0000	-0.15	1	1	0.6250	0.6250		0.15
$\begin{gathered} \text { HB114-1- } \\ 08 \mathrm{U} 4-\mathrm{M} 5 \mathrm{~J}(1- \\ 1 / 4) \end{gathered}$	B	No	$\operatorname{Ar}(\mathrm{CaAa})$	102.00-65.00	0.0000	-0.1	3	3	1.0000	1.5400		1.08
$\begin{aligned} & \text { HB058-M12- } \\ & \text { XXXF(5/8) } \end{aligned}$	B	No	$\operatorname{Ar}(\mathrm{CaAa})$	102.00-65.00	0.0000	-0.025	1	1	0.8400	0.8400		0.24
Feedline Ladder (Af)	B	No	Af (CaAa)	92.00-65.00	0.0000	0.35	1	1	3.0000	3.0000		8.40
$\begin{aligned} & \text { FLC 158- } \\ & 50 \mathrm{~J}(1-5 / 8) \end{aligned}$	B	No	$\operatorname{Ar}(\mathrm{CaAa})$	92.00-65.00	0.0000	0.35	6	3	1.0000	2.0150		0.92
$\begin{aligned} & \text { WR- } \\ & \text { VG86ST- } \\ & \text { BRD(3/4) } \end{aligned}$	B	No	$\operatorname{Ar}(\mathrm{CaAa})$	92.00-65.00	0.0000	0.425	4	2	0.7950	0.7950		0.58
$\begin{aligned} & \text { FB-L98B- } \\ & \text { 002- } \end{aligned}$	B	No	$\operatorname{Ar}(\mathrm{CaAa})$	92.00-65.00	3.5000	0.425	2	2	0.3937	0.3937		0.06
$\begin{gathered} 75000(3 / 8) \\ \text { WR- } \\ \text { VG86ST- } \\ \text { BRD(3/4) } \\ \hline \end{gathered}$	B	No	$\operatorname{Ar}(\mathrm{CaAa})$	92.00-65.00	0.0000	0.45	2	1	0.7950	0.7950		0.58

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& Face \& A_{R}
$f t^{2}$ \& A_{F}

$f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\operatorname{In} \mathrm{Face}^{\prime f^{2}}
\end{gathered}
$$ \& $C_{A} A_{A}$

Out Face
ft 2 \& Weight
K

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{105.25-85.13} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 33.221 \& 0.000 \& 0.32

\hline \& \& C \& 0.000 \& 0.000 \& 13.635 \& 0.000 \& 0.10

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{85.13-65.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 67.254 \& 0.000 \& 0.59

\hline \& \& C \& 0.000 \& 0.000 \& 13.635 \& 0.000 \& 0.10

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

$\begin{aligned} & \text { Tower } \\ & \text { Sectio } \\ & n \end{aligned}$	Tower Elevation ft	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{gathered} \text { Ice } \\ \text { Thickness } \\ \text { in } \end{gathered}$	A_{R} $f t^{2}$	A_{F} $f t^{2}$	$\begin{gathered} C_{A} A_{A} \\ \text { In Face } \\ {f t^{2}}^{2} \end{gathered}$	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \end{gathered}$ ft^{2}	Weight K
T1	105.25-85.13	A	2.223	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	93.458	0.000	1.75
		C		0.000	0.000	31.534	0.000	0.66
T2	85.13-65.00	A	2.171	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	186.910	0.000	3.39
		C		0.000	0.000	31.114	0.000	0.64

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{z}$	$C P_{X}$ $I c e$	$C P_{z}$ $I c e$
	ft	in	in	in	in
T1	$105.25-85.13$	2.8747	0.3671	2.2143	0.4753
T2	$85.13-65.00$	5.1685	1.1013	3.9486	0.8385

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline APXVSPP18-C-A20 w/ Mount Pipe \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 8.02 \\
& 8.48 \\
& 8.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.71 \\
& 7.66 \\
& 8.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.14 \\
& 0.22
\end{aligned}
$$
\]

\hline APXVSPP18-C-A20 w/ Mount Pipe \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 8.02 \\
& 8.48 \\
& 8.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.71 \\
& 7.66 \\
& 8.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.14 \\
& 0.22
\end{aligned}
$$
\]

\hline APXV9ERR18-C-A20 w/ Mount Pipe \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 \text { " Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 8.50 \\
& 9.16 \\
& 9.79
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.18 \\
& 8.46 \\
& 9.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.15 \\
& 0.23
\end{aligned}
$$
\]

\hline APXVTM14-C-120 w/ Mount Pipe \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 6.58 \\
& 7.03 \\
& 7.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.96 \\
& 5.75 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.13 \\
& 0.19
\end{aligned}
$$
\]

\hline APXVTM14-C-120 w/ Mount Pipe \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 \text { 1" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 6.58 \\
& 7.03 \\
& 7.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.96 \\
& 5.75 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.13 \\
& 0.19
\end{aligned}
$$
\]

\hline APXVTM14-C-120 w/ Mount Pipe \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 \text { 1" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 6.58 \\
& 7.03 \\
& 7.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.96 \\
& 5.75 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.13 \\
& 0.19
\end{aligned}
$$
\]

\hline 1900MHz RRH (65MHz) \& A \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.31 \\
& 2.52 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.38 \\
& 2.58 \\
& 2.79
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.11
\end{aligned}
$$
\]

\hline $1900 \mathrm{MHz} \mathrm{RRH}(65 \mathrm{MHz})$ \& B \& From Leg \& \[
$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$

\] \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.31 \\
& 2.52 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.38 \\
& 2.58 \\
& 2.79
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.11
\end{aligned}
$$
\]

\hline 1900MHz RRH (65MHz) \& C \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 2.31 \\
& 2.52 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.38 \\
& 2.58 \\
& 2.79
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.11
\end{aligned}
$$
\]

\hline 800MHz 2X50W RRH W/FILTER \& A \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 \text { 1" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.06 \\
& 2.24 \\
& 2.43
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.93 \\
& 2.11 \\
& 2.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.09 \\
& 0.11
\end{aligned}
$$
\]

\hline 800 MHz 2 X 50 W RRH W/FILTER \& B \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 \text { 1" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.06 \\
& 2.24 \\
& 2.43
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.93 \\
& 2.11 \\
& 2.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.09 \\
& 0.11
\end{aligned}
$$
\]

\hline 800MHz 2X50W RRH W/FILTER \& C \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 2.06 \\
& 2.24 \\
& 2.43
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.93 \\
& 2.11 \\
& 2.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.09 \\
& 0.11
\end{aligned}
$$
\]

\hline TD-RRH8x20-25 \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 1.00
\end{aligned}
$$ \& 0.0000 \& 102.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 4.05 \\
& 4.30 \\
& 4.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.53 \\
& 1.71 \\
& 1.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.07 \\
& 0.10 \\
& 0.13
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
0
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow[t]{2}{*}{TD-RRH8x20-25} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 4.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{102.00} \& No Ice \& 4.05 \& 1.53 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.30 \& 1.71 \& 0.10

\hline \& \& \& 1.00 \& \& \& $$
\begin{gathered}
\text { Ice } \\
1 \text { " Ice }
\end{gathered}
$$ \& 4.56 \& 1.90 \& 0.13

\hline \multirow[t]{3}{*}{TD-RRH8×20-25} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{102.00} \& No Ice \& 4.05 \& 1.53 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.30 \& 1.71 \& 0.10

\hline \& \& \& 1.00 \& \& \& $$
\begin{aligned}
& \text { Ice } \\
& 1 \text { " Ice }
\end{aligned}
$$ \& 4.56 \& 1.90 \& 0.13

\hline \multirow[t]{4}{*}{8' x 2" Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{102.00} \& No Ice \& 1.90 \& 1.90 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.73 \& 2.73 \& 0.05

\hline \& \& \& 0.00 \& \& \& Ice \& 3.40 \& 3.40 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{8' x 2" Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{102.00} \& No Ice \& 1.90 \& 1.90 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.73 \& 2.73 \& 0.05

\hline \& \& \& 0.00 \& \& \& Ice \& 3.40 \& 3.40 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{8' x 2" Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{102.00} \& No Ice \& 1.90 \& 1.90 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.73 \& 2.73 \& 0.05

\hline \& \& \& 0.00 \& \& \& Ice \& 3.40 \& 3.40 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{Sector Mount [SM 502-3]} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{102.00} \& No Ice \& 33.02 \& 33.02 \& 1.67

\hline \& \& \& \& \& \& 1/2" \& 47.36 \& 47.36 \& 2.22

\hline \& \& \& \& \& \& Ice \& 61.70 \& 61.70 \& 2.77

\hline \& \& \& \& \& \& 1 " Ice \& \& \&

\hline \multirow[t]{4}{*}{7770.00 w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 5.84 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.32 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& Ice \& 6.77 \& 5.92 \& 0.16

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{7770.00 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 5.84 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.32 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& Ice \& 6.77 \& 5.92 \& 0.16

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{7770.00 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 5.84 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.32 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& Ice \& 6.77 \& 5.92 \& 0.16

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{TPA-65R-LCUUUU-H8 w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 13.54 \& 10.96 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 14.24 \& 12.49 \& 0.22

\hline \& \& \& -3.00 \& \& \& Ice \& 14.95 \& 14.04 \& 0.33

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{TPA-65R-LCUUUU-H8 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 13.54 \& 10.96 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 14.24 \& 12.49 \& 0.22

\hline \& \& \& -3.00 \& \& \& Ice \& 14.95 \& 14.04 \& 0.33

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{TPA-65R-LCUUUU-H8 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 13.54 \& 10.96 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 14.24 \& 12.49 \& 0.22

\hline \& \& \& -3.00 \& \& \& Ice \& 14.95 \& 14.04 \& 0.33

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{OPA-65R-LCUU-H8 w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 12.98 \& 9.32 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" \& 13.67 \& 10.79 \& 0.21

\hline \& \& \& -3.00 \& \& \& Ice \& 14.36 \& 12.24 \& 0.32

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{OPA-65R-LCUU-H8 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 12.98 \& 9.32 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" \& 13.67 \& 10.79 \& 0.21

\hline \& \& \& -3.00 \& \& \& Ice \& 14.36 \& 12.24 \& 0.32

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{OPA-65R-LCUU-H8 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& \& 12.98 \& 9.32 \&

\hline \& \& \& 0.00 \& \& \& 1/2" \& 13.67 \& 10.79 \& 0.21

\hline \& \& \& -3.00 \& \& \& Ice \& 14.36 \& 12.24 \& 0.32

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{DTMABP7819VG12A} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{92.00} \& No Ice \& 0.98 \& 0.34 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.10 \& 0.42 \& 0.03

\hline \& \& \& -3.00 \& \& \& Ice \& 1.23 \& 0.51 \& 0.04

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{2}{*}{DTMABP7819VG12A} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 4.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{92.00} \& No Ice \& 0.98 \& 0.34 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.10 \& 0.42 \& 0.03

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
0
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow{4}{*}{DTMABP7819VG12A} \& \multirow{3}{*}{C} \& \multirow{4}{*}{From Leg} \& -3.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& $$
\begin{gathered}
\text { Ice } \\
\text { 1" Ice }
\end{gathered}
$$ \& 1.23 \& 0.51 \& 0.04

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.98 \& 0.34 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.10 \& 0.42 \& 0.03

\hline \& \multirow{4}{*}{A} \& \& -3.00 \& \& \& $$
\begin{gathered}
\text { Ice } \\
1 \text { " Ice }
\end{gathered}
$$ \& 1.23 \& 0.51 \& 0.04

\hline \multirow[t]{3}{*}{7020.00} \& \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{92.00} \& No Ice \& 0.10 \& 0.17 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.15 \& 0.24 \& 0.01

\hline \& \& \& -3.00 \& \& \& Ice \& 0.20 \& 0.31 \& 0.01

\hline \multirow{4}{*}{7020.00} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1 " Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.10 \& 0.17 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.15 \& 0.24 \& 0.01

\hline \& \& \& -3.00 \& \& \& Ice \& 0.20 \& 0.31 \& 0.01

\hline \multirow{4}{*}{7020.00} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.10 \& 0.17 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.15 \& 0.24 \& 0.01

\hline \& \& \& -3.00 \& \& \& Ice \& 0.20 \& 0.31 \& 0.01

\hline \multirow{4}{*}{RRUS-11} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1 " Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.99 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 3.21 \& 1.49 \& 0.09

\hline \multirow{4}{*}{RRUS-11} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1 " Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.99 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 3.21 \& 1.49 \& 0.09

\hline \multirow{4}{*}{RRUS-11} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1 " Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.99 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 3.21 \& 1.49 \& 0.09

\hline \multirow{4}{*}{RRUS 12} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.15 \& 1.29 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 1.44 \& 0.08

\hline \& \& \& -3.00 \& \& \& Ice \& 3.59 \& 1.60 \& 0.11

\hline \multirow{4}{*}{RRUS 12} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& $$
1^{\prime \prime} \text { Ice }
$$ \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.15 \& 1.29 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 1.44 \& 0.08

\hline \& \& \& -3.00 \& \& \& Ice \& 3.59 \& 1.60 \& 0.11

\hline \multirow{4}{*}{RRUS 12} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.15 \& 1.29 \&

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 1.44 \& 0.08

\hline \& \& \& -3.00 \& \& \& Ice \& 3.59 \& 1.60 \& 0.11

\hline \multirow{4}{*}{RRUS 32 B 2} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& -3.00 \& \& \& Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow{4}{*}{RRUS 32 B2} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& -3.00 \& \& \& Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow{4}{*}{RRUS 32 B2} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& -3.00 \& \& \& Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow{4}{*}{RRUS 32 B30} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.69 \& 1.57 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.91 \& 1.76 \& 0.08

\hline \& \& \& -3.00 \& \& \& Ice \& 3.14 \& 1.95 \& 0.10

\hline \multirow{4}{*}{RRUS 32 B30} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& \& \& \& No Ice \& 2.69 \& 1.57 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.91 \& 1.76 \& 0.08

\hline \& \& \& -3.00 \& \& \& Ice \& 3.14 \& 1.95 \& 0.10

\hline \multirow{5}{*}{RRUS 32 B30} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.69 \& 1.57 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.91 \& 1.76 \& 0.08

\hline \& \& \& -3.00 \& \& \& Ice \& 3.14 \& 1.95 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
0
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

K

\hline (2) RRUS E2 B29 \& A \& From Leg \& $$
\begin{gathered}
4.00 \\
0.00 \\
-3.00
\end{gathered}
$$ \& 0.0000 \& 92.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3.15 \\
& 3.36 \\
& 3.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.29 \\
& 1.44 \\
& 1.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.11
\end{aligned}
$$
\]

\hline RRUS E2 B29 \& B \& From Leg \& $$
\begin{array}{r}
4.00 \\
0.00 \\
-3.00
\end{array}
$$ \& 0.0000 \& 92.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3.15 \\
& 3.36 \\
& 3.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.29 \\
& 1.44 \\
& 1.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.11
\end{aligned}
$$
\]

\hline RRUS 32 B66 \& B \& From Leg \& $$
\begin{array}{r}
4.00 \\
0.00 \\
-3.00
\end{array}
$$ \& 0.0000 \& 92.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.74 \\
& 2.96 \\
& 3.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.67 \\
& 1.86 \\
& 2.05
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.07 \\
& 0.10
\end{aligned}
$$
\]

\hline (2) RRUS 32 B66 \& C \& From Leg \& $$
\begin{gathered}
4.00 \\
0.00 \\
-3.00
\end{gathered}
$$ \& 0.0000 \& 92.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.74 \\
& 2.96 \\
& 3.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.67 \\
& 1.86 \\
& 2.05
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.07 \\
& 0.10
\end{aligned}
$$
\]

\hline (2) DC6-48-60-18-8F Surge Suppression Unit \& A \& From Leg \& $$
\begin{array}{r}
4.00 \\
0.00 \\
-3.00
\end{array}
$$ \& 0.0000 \& 92.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.92 \\
& 1.46 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.92 \\
& 1.46 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.02 \\
& 0.04 \\
& 0.06
\end{aligned}
$$
\]

\hline DC6-48-60-18-8F Surge Suppression Unit \& A \& From Leg \& $$
\begin{array}{r}
4.00 \\
0.00 \\
-3.00
\end{array}
$$ \& 0.0000 \& 92.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.92 \\
& 1.46 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.92 \\
& 1.46 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.02 \\
& 0.04 \\
& 0.06
\end{aligned}
$$
\]

\hline (3) C10857011 12' V-Boom \& B \& None \& \& 0.0000 \& 92.00 \& $$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 33.64 \\
& 48.17 \\
& 62.70
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 33.64 \\
& 48.17 \\
& 62.70
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.50 \\
& 2.00 \\
& 2.51
\end{aligned}
$$
\]

\hline KS24019-L112A \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 2.00
\end{aligned}
$$ \& 0.0000 \& 75.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.20 \\
& 0.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.20 \\
& 0.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.01 \\
& 0.01 \\
& 0.01
\end{aligned}
$$
\]

\hline Side Arm Mount [SO 3021] \& A \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 75.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1.67 \\
& 2.51 \\
& 3.35
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.27 \\
& 4.99 \\
& 6.71
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.09 \\
& 0.12
\end{aligned}
$$
\]

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice

tnxTower Report - version 7.0.7.0

Comb. No.	Description
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower					
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	$f t$	in	Comb.	\bigcirc	-
T1	105.25-85.125	0.268	43	0.0387	0.0015
T2	85.125-65	0.093	43	0.0316	0.0011

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
102.00	APXVSPP18-C-A20 w/ Mount Pipe	43	0.237	0.0385	0.0014	155466
92.00	7770.00 w/ Mount Pipe	43	0.145	0.0363	0.0013	58666
75.00	KS24019-L112A	43	0.038	0.0180	0.0006	77733

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
	ft	Comb.	\circ	\circ	
T1	$105.25-85.125$	1.176	10	0.1690	0.0065
T2	$85.125-65$	0.406	10	0.1380	0.0048

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt 	Twist 。	Radius of Curvature ft
102.00	APXVSPP18-C-A20 w/ Mount Pipe	10	1.038	0.1682	0.0064	35821
92.00	7770.00 w/ Mount Pipe	10	0.636	0.1586	0.0057	13517
75.00	KS24019-L112A	10	0.168	0.0786	0.0027	17910

Bolt Design Data

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	```Maximum Load per Bolt K```	$\begin{gathered} \text { Allowable } \\ \text { Load } \\ K \end{gathered}$	Ratio Load Allowable	Allowable Ratio	Criteria
T1	105.25	Leg	A325N	0.6250	4	2.44	20.71	0.118	,	Bolt Tension
		Diagonal	A325X	0.5000	1	3.35	3.81	0.879	1	Member Block Shear
		Top Girt	A325X	0.5000	1	0.35	4.13	0.084	1	Member Bearing
T2	85.125	Diagonal	A325X	0.5000	1	3.09	6.20	0.498	1	Member Bearing
		Top Girt	A325X	0.5000	1	0.19	4.13	0.047	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		ft	ft		$i n^{2}$	K	K	ϕP_{n}
T1	$\begin{gathered} 105.25- \\ 85.125 \end{gathered}$	ROHN 2.5 STD	20.13	4.02	$\begin{gathered} 51.0 \\ K=1.00 \end{gathered}$	1.7040	-15.09	63.41	$0.238{ }^{1}$
T2	85.125-65	ROHN 2.5 STD	20.16	5.02	$\begin{gathered} 63.6 \\ K=1.00 \end{gathered}$	1.7040	-39.13	57.07	$0.686{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Compression)									
Section No.	Elevation	Size	L	L_{u}	K//r	A	P_{u}	ϕP_{n}	$\begin{aligned} & \text { Ratio } \end{aligned}$
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	$\begin{aligned} & 105.25- \\ & 85.125 \end{aligned}$	L1-1/2x1-1/2x1/8	7.70	3.60	$\begin{gathered} 146.0 \\ K=1.00 \end{gathered}$	0.3594	-3.40	3.81	$0.894{ }^{1}$
T2	85.125-65	L1-3/4×1-3/4x3/16	9.70	4.75	$\begin{gathered} 166.0 \\ \mathrm{~K}=1.00 \end{gathered}$	0.6211	-3.12	5.09	0.613^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Compression)

Section No.	Elevation ft	Size	L $f t$	L_{u}	Kl/r	A	P_{u}	ϕP_{n} K	Ratio P_{u}
	$f t$		ft	ft			K	K	ϕP_{n}
T1	$\begin{gathered} 105.25- \\ 85.125 \end{gathered}$	L2x2x1/8	6.56	6.11	$\begin{gathered} 184.6 \\ K=1.00 \end{gathered}$	0.4844	-0.35	3.21	0.110^{1}
T2	85.125-65	L2x2x1/8	6.56	6.11	$\begin{gathered} 184.6 \\ \mathrm{~K}=1.00 \end{gathered}$	0.4844	-0.15	3.21	$0.048{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)									
Section No.		Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	${ }_{\phi} P_{n}$
T1	$\begin{gathered} 105.25- \\ 85.125 \end{gathered}$	ROHN 2.5 STD	20.13	4.02	51.0	1.7040	9.77	76.68	0.127^{1}
T2	85.125-65	ROHN 2.5 STD	20.16	0.08	1.1	1.7040	35.01	76.68	$0.457{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕ_{n}	Ratio P_{u}
T1	$105.25-$								

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Tension)

Section No.	Elevation ft	Size	L $f t$	L_{u} ft	Kl/r	A	P_{u} K	ϕP_{n} K	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
T1	$\begin{aligned} & 105.25- \\ & 85.125 \end{aligned}$	L2x2x1/8	6.56	6.11	121.2	0.3047	0.35	13.25	$0.026{ }^{1}$
T2	85.125-65	L2x2x1/8	6.56	6.11	121.2	0.3047	0.19	13.25	0.015^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \varnothing P_{\text {allow }} \\ K \end{gathered}$	$\%$ Capacity	$\begin{gathered} \text { Pass } \\ \text { Fail } \end{gathered}$
T1	105.25-85.125	Leg	ROHN 2.5 STD	3	-15.09	63.41	23.8	Pass
T2	85.125-65	Leg	ROHN 2.5 STD	38	-39.13	57.07	68.6	Pass
T1	105.25-85.125	Diagonal	L1-1/2x1-1/2x1/8	9	-3.40	3.81	89.4	Pass
T2	85.125-65	Diagonal	L1-3/4x1-3/4x3/16	46	-3.12	5.09	61.3	Pass
T1	105.25-85.125	Top Girt	L2x2x1/8	4	-0.35	3.21	11.0	Pass
T2	85.125-65	Top Girt	L2x2x1/8	41	-0.15	3.21	4.8	Pass
						Summary	ELC:	Load Case 7
						Leg (T2)	68.6	Pass
						Diagonal (T1)	89.4	Pass
						Top Girt (T1)	11.0	Pass
						Bolt	87.9	Pass
						Checks		
						Rating =	89.4	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

	FOUNDATION ANALYSIS WORKSHEET					
	Client: Site Name:	Crown Castle International, Inc. WEST HARTFORD PARKING GARAGE 876328	Job No.: Sheet No: Made By:	2017777.876328.18		
				1	Of	1
				BD2	Date:	9/7/2017
	Location:	Hartford County, Connecticut				
	Loading Type:	Wind	Code:	G		

Sources
The modified tnxTower design reactions were obtained from the design by GPD (Project \#: 2015777.876328.08, dated 6/3/2015)

Modified tnxTower Design Reactions (F-Code)			
Uplift:	44.01	K	
Compression:	52.04	K	
Shear	7.94	K	

G-Code Conversion Factor: 1.35

Modified tnxTower Design Reactions (Converted to G-Code)		
Uplift:		
Som.41	K	
Compression:	70.26	K
Shear	10.72	K

TNX Output Reactions (G-Code)			
Uplift:	34.73	K	
Compression:	41.98	K	
Shear	6.35	K	

FOUNDATION CAPACITY

Uplift Capacity $=$	TNX Output Modified Design Reactions		58.5\%
Compression Capacity $=$	TNX Output Modified Design Reactions		59.8\%
Shear Capacity =	TNX Output Modified Design Reactions	=	59.2\%

EBI Consulting
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT03XC075

West Hartford Parking Garage

27-31 South Main Street
West Hartford, CT 06110
October 2, 2017
EBI Project Number: 6217004290

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit (Ground Level):	$\mathbf{1 4 . 4 1 \%}$
Site total MPE\% of FCC general population allowable limit (Rooftop Level):	62.83%

EBI Consulting
environmental | engineering | due diligence

October 2, 2017
SPRINT
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495

Emissions Analysis for Site: CT03XC075 - West Hartford Parking Garage

EBI Consulting was directed to analyze the proposed SPRINT facility located at 27-31 South Main Street, West Hartford, CT, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 850 MHz Band is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

EBI Consulting

environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at 27-31 South Main Street, West Hartford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower as well as the garage rooftop walking surface. For this report the sample point is the top of a 6 -foot person standing at the base of the tower and on the top of the parking garage walking surface.

For all calculations, all equipment was calculated using the following assumptions:

1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
2) 2 LTE channels $(850 \mathrm{MHz})$ were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
3) 5 CDMA channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

EBI Consulting

environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower and on the rooftop walking surface. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the RFS APXVSPP18-C-A20, RFS APXV9ERR18-C-A20 and the RFS APXVTM14-C-120 for transmission in the $850 \mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerlines of the proposed antennas are $\mathbf{1 0 3}$ feet above ground level (AGL) and $\mathbf{5 2}$ feet above the garage rooftop walking surface for Sector A, $\mathbf{1 0 3}$ feet above ground level (AGL) and $\mathbf{5 2}$ feet above the garage rooftop walking surface for Sector B and $\mathbf{1 0 3}$ feet above ground level (AGL) and $\mathbf{5 2}$ feet above the garage rooftop walking surface for Sector C.
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

SPRINT Site Inventory and Power Data by Antenna (Ground Level)

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXV9ERR18-C-A20
Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd	Gain:	11.9 / 14.9 dBd
Height (AGL):	103 feet	Height (AGL):	103 feet	Height (AGL):	103 feet
Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$850 \mathrm{MHz} / \mathrm{MHz}(\mathrm{PCS})$ MH
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts
ERP (W):	7,537.38	ERP (W):	7,537.38	ERP (W):	5,873.76
Antenna A1 MPE\%	3.26 \%	Antenna B1 MPE\%	3.26 \%	Antenna C1 MPE\%	$\mathbf{2 . 5 2 \%}$
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { RFS APXVTM14- } \\ \text { C-120 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS APXVTM14- } \\ \text { C-120 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS APXVTM14- } \\ \text { C-120 } \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	103 feet	Height (AGL):	103 feet	Height (AGL):	103 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE\%	2.38 \%	Antenna B2 MPE\%	2.38 \%	Antenna C2 MPE\%	2.38 \%

Site Composite MPE\% (Ground Level)	
Carrier	MPE \%
SPRINT - Max per sector	$\mathbf{5 . 6 4 \%}$
AT\&T	8.77%
Site Total MPE \%:	$\mathbf{1 4 . 4 1 \%}$

SPRINT Sector A Total:	5.64%
SPRINT Sector B Total:	5.64%
SPRINT Sector C Total:	4.89%
Site Total:	

SPRINT Max Values Per Sector (Ground Level):

SPRINT _ Max Values per Frequency Band / Technology Per Sector	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
Sprint 850 MHz CDMA	1	437.55	103	1.67	850 MHz	567	0.29 \%
Sprint 850 MHz LTE	2	437.55	103	3.34	850 MHz	567	0.59 \%
Sprint 1900 MHz (PCS) CDMA	5	622.47	103	11.89	1900 MHz (PCS)	1000	1.19%
Sprint 1900 MHz (PCS) LTE	2	1,556.18	103	11.89	1900 MHz (PCS)	1000	1.19 \%
Sprint 2500 MHz (BRS) LTE	8	778.09	103	23.78	2500 MHz (BRS)	1000	2.38 \%
						Total:	5.64 \%

EBI Consulting

environmental | engineering | due diligence

SPRINT Site Inventory and Power Data by Antenna (Rooftop Walking Surface Level)

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20
Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd	Gain:	11.9 / 14.9 dBd
Height (AGL):	52 feet	Height (AGL):	52 feet	Height (AGL):	52 feet
Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts
ERP (W):	7,537.38	ERP (W):	7,537.38	ERP (W):	5,873.76
Antenna A1 MPE\%	14.50\%	Antenna B1 MPE\%	14.50\%	Antenna C1 MPE\%	11.19 \%
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	RFS APXVTM14-C-120	Make / Model:	RFS APXVTM14-C-120	Make / Model:	RFS APXVTM14-C-120
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	52 feet	Height (AGL):	52 feet	Height (AGL):	52 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	$\begin{array}{r} \text { Total TX } \\ \text { Power(W): } \end{array}$	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE\%	10.58 \%	Antenna B2 MPE\%	$\mathbf{1 0 . 5 8} \%$	Antenna C2 MPE\%	10.58 \%

Site Composite MPE \% (Rooftop Level)	
Carrier	MPE \%
SPRINT - Max per sector	$\mathbf{2 5 . 0 8} \%$
AT\&T	37.75%
Site Total MPE \%:	$\mathbf{6 2 . 8 3 \%}$

SPRINT Sector A Total:	25.08%
SPRINT Sector B Total:	25.08%
SPRINT Sector C Total:	21.76%
Site Total:	

SPRINT Max Values Per Sector (Rooftop Walking Surface Level):

EBI Consulting
environmental | engineering | due diligence

Summary

All calculations performed for this analysis for both the ground level walking surface as well as the rooftop walking surface yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector (Ground Level)	Power Density Value (\%)
Sector A:	5.64%
Sector B:	5.64%
Sector C:	4.89%
SPRINT Maximum	5.64%
Total (per sector):	
Site Total:	14.41%
Site Compliance Status:	COMPLIANT

SPRINT Sector (Rooftop Level)	Power Density Value (\%)
Sector A:	25.08%
Sector B:	25.08%
Sector C:	21.76%
SPRINT Maximum	25.08%
Total (per sector):	
Site Total:	62.83%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 4 . 4 1 \%}$ of the allowable FCC established general population limit sampled at the ground level. The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 2 . 8 3 \%}$ of the allowable FCC established general population limit sampled at the rooftop walking level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
 \checkmark Use Code Stress Ratios
 \checkmark Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 \checkmark Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 \checkmark Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

