Melanie A. Bachman
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
RE: Sprint PCS-Exempt Modification - Crown Site BU: 876328
Sprint PCS Site ID: CT03XC075
Located at: 27-31 South Main Street, West Hartford, CT 06110
Dear Ms. Bachman:

This letter and exhibits are submitted on behalf of Sprint PCS (Sprint). Sprint is making modifications to certain existing sites in its Connecticut system in order to implement their 2.5GHz LTE technology. Please accept this letter and exhibits as notification, pursuant to § 16$50 j-73$ of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Scott Slifka, Mayor for the Town of West Hartford.

Sprint plans to modify the existing wireless communications facility owned by Crown Castle and located at 27-31 South Main Street, West Hartford, CT 06110. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to Sprint's operations at the site (Exhibit-3).

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Sprint's additional antennas will be located at the same elevation on the existing tower.
2. There will be no proposed modifications to the ground and no extension of boundaries.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more.
4. A Structural Modification Report confirming that the tower and foundation can support Sprint's proposed modifications is included as Exhibit-2.
5. The operation of the additional antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for Sprint's modified facility is included as Exhibit-3.

For the foregoing reasons, Sprint respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Donna Neal.

Sincerely,

Jeff Barbadora
Real Estate Specialist

Enclosures

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: The Honorable Scott Slifka, Mayor
Town of West Hartford
50 South Main Street
West Hartford, CT 06107

THESE OUULINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS SECTION 01100 - SCOPE OF WORK
PART 1 - GENERAL

1.2 REATED DOCUMENS:
A. THE ReqQIIRENENS OF THIS SECTION APPLY TO AL SECTIONS IN THIS
B. SPRIN STANDARD CONSTRUCTION DETALS FOR WIRELESS STESS ARE INCLUDED IN
1.3 PRECCDENCE: SHOULD CONFUCTS OCCUR BETWEN THE STANARD CONSTRUCTON

1. 4 natonally recoanize codes and standards:

2. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTON
3. GR-78-CORE GENERC REQUREMENTS FOR THE PHTSICAL DESIGN AND

4. AMERICAN SOCIETY FOR TESTNG OF MATERLLLS (ASTM
5. INSTIUTE OF ELECTRONIC AND ELECTIICAL ENGINEERS (IEEE)
6. American concrete instive (ACl)
B. AMERICAN WRE PRODUCERS ASSOCUTION (AWPA)
7. CONCREETE REINFORCING StEEL instivit (CRSI)
8. AMERICAN ASSOCIATION OF STAIE HIGHWAY AND TRANSPORTATION OFHCIALS
9. PORTLAND CEMENT ASSOCIATION (PCA)
10. NATONAL CONCREIE MASONRY ASSOCIATON (NCMA)
11. BRICK INDUSTRY ASSOCIATON (BA)
12. AMERCAN WEDNG SOCIET (AWS)
13. Natonal roofng contractors association (nica)
14. SHEET METAL AND AR CONOTMONING CONTRACTORS' NATONAL ASSOCIATON
15. DOOR AND HARDWARE INSTIUTE (OHI)
16. OCCUPATIONAL SAEETY AND HEALTH ACT (OSHA)
17. APPLCABE BUIIING CODES INCLUDING UNIFRMM BUIDING CODE, SOUTHERN
1.5 DEFNTIONS:
A. WORK: THE SUM OF TASKS AND RESPONSIBIIIIES IDENIIED IN THE CONTRACT
. COMPANT: SPRINT CORPORATON
C. ENINERR STNOMMOUS WITH ARCHIECT \& ENGIEER AND AEEE. THE DESIGN

F. OFCl: OWNER FURNISHID, CONTRACTOR INSTALED EQUPMENT.
G. CONSIRUCTION MANAGER - AA PRONECTS REAIED COMMUNICATON TO HOW

A. THE JOESTE DRAWINSS, SPECIFCCHONS AND DEALS SHALL EE CLEARY MARKED

 .13 CONRRACTOR SHALL TAKE AL MEASURES AND PROVDE ALL MATERILL NECESSARY
FOR PROTECTNG EXSTING EOUIPMEN AND PROPERT.

 1.15 USE OF ELECTRONIC PROUECT MANGGEMENT SSSteMS:

PART 2 - PRODUCTS (NOT USED)
part 3 - execution

 ARCHIECT/ENGIEER DURING AL PHASES OF THE WORK.

 A WORK AREA FOR COMPAN'S IEST AGENCY.

 or Aiter sivuctral col

SECTION 01200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

 ART 1 - GENERAL
1.2 RELATED DOCUMENTS:
A. THE R RRQUREMENTS OF THIS SECTON APPLY TO AL SECTONS IN THIS
B. SPRIN STANDARD CONSTRUCTON DETALS FOR WRRLESSS STES ARE INCLUDED IN PART 2 - PRODUCTS (NOT USED)
3.1 REGEPT OF MATERAL AND EQUIPMENT:
A. A COMPANY FURNSHED MAIERRL AND EQUIPMENT IS IDENTIED ON THE RF DATA
SHEE IN THE CONSTRUCTON DOCUMENTS.
b. THE CONTRACTOR IS RESPONSIBLE FORR SPRINT PROVDED MAIERAL AND

1 ACCEPT dEIMERES AS SHIPPED and take recelit.
2. VERIF COMPLLIENESS AND CONDTON OF AL DELNERIES
3. TAKE RESPONSIBLIT FOR EGUIPMENT AND PROVDE INSURANCE PROTECTON
4. RECORD ANY DEEECTS OR DAMAGES AND WIHIN TWENY-FOUR HOURS ATIER
5. PROUDE SECURE AND NECESSARY WEATHER PROTECEED WAREHOUSIN

3.2 Delverables:

A COMPPIEIE SHIPPING AND RECEIPT DOCUMENTATON IN ACCORDANCE WTH COMPANY
B. IF APPLCABEE, COMPLEER LOST/STOLEN/DAMAGDD DDCUMENATON REPPRT AS
c. UPLOAD DOCUMENAATON INTO SPRINT STI MANGGMENT STSTEM (SMS) AND/OR SECTION 01300 - CELL SITE CONSTRUCTION CO
 1.2 RELATED DOCUMENS:
A. THE REQUIREMENTS OF THIS SECTON APPLY TO ALL SECTONS IN THIS
B. SPRIN STANDARD CONSTRUCTON DETALS FOR WRRLESSS STESS ARE INCLUDED IN .3 NOICE TO PROCEED
A. NO WORK SHAL COMMENCE PRIOR TO CCMPAN's WRTIEN NOTCE TO PROCEED

 PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 TUNCTONAL REQUIREMENTS:
A. THE ACTMTIES DESCRIBED IN THIS PARGCAPH REPRESENTMNMUMACTONS AND

B. SUEMT SPECIIC DOCUMENATON AS INDICAIED HEREN, AND OBTAN REQUIRED
c. manage and conduct all fel consiructon servce reated activies
D. PROMDE CONSTRUCTON ACITMES TO THE EETENT REQURED BY THE CONTRACT
DOCUMENS, INCLUONG EUT NOT UMITED TO THE FOLOWNIN:

Sprint

INFINIGY\%

 vos nueser $35-000$

W

WEST HARTFORD
PARKING GARAGE

CT03XC075

27-31 SOUTH MAIN ST
WEST HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-1
2. PRepare ground sits provoc de-grubgli; and rough and anal
3. MANAGE AND CONDUCT AL ACTMTIES FOR INSTALLATON OF UILIES
4. INSTAU UNOERGROUND FACIUTES INCLUDING UNDERGROUND POWER AND
5. Install above ground grounding ststems.
6. PROUDE NEW HVAC Inttallatons and modifications.
7. INSTAL "H-FrAMES". CABINETS AND SHELIERS AS INOICATED.
b. INSTALL ROADS, acCess Wars, cures and drans as inolcated.
9. AcCOMPUSH REQUIRED MODIFCATON OF EXISTNG FACIIIES.
10. PROVIDE ANIENNA SUPPORT STRUCTURE FOUNDATONS.
11. PROVDE SLABS AND EQUIPMENT PLATFORMS.
12. NSTRAL COMPOUND FENCING, SIGHT SHIELING, LANOSCAPING AND ACCESS
13. Perform inspecton and matrral testing as required hirelnafter. 14. CONDUCT SIE resistance to earth testing as reourrd hereinater 15. NSTAL FIXED GENERATOR SETS AND OTHER STANDGY POWER SOLUTIONS.
16. INSTAU TOWERS, ANTENA SUPPORT STRUCTURES AND PLATFORMS ON

19. PERFORM ANTENNL AND COAX SWEEP TESTNG AND MAKE ANY AND ALL

3.2 general reauriement for cil contructon:

e. EOURMENT ROOMS SHALL AT AL TMES BE MANTANED "BROOM CLEAN AND
c. Contractor shal tare al reasonable precautions to discover and

D. CONRACTOR'S ACTMIES SHAL BE RESTRCIED TO THE PROECT LMMTS. SHOUL

e. conduct testing as reguired herein.
3.3 DELVERABLES:
A. Contractor shall renew, Aprove, and subur to grin shop oramnge,
e. PROMDE DOCUMENTATON INCLUDNG, BUT NOT LMITIED TO. THE FOLOWNG.

1. All CORRESPONoENCE AND PREUMINARY CONSTRUCTION REPORTS.
2. PRoJECT PROGRESS REPORTS.
3. CNL CONSTRUCTION START DATE (POPULATE FELD IN SMS AND/OR FORWARD

4. LNES AND ANTENNA INSTAL DATE (POPULATE HEL IN SMS AND/OR
FORHARD NOIFCAAON).
5. POWER ISSTAL DATE (POPULATE FEL IN SMS AND/OR FORWARD
6. TLLLO REAOY DATE (FOPULATE REL IN SMS AND/OR FORMARD
7. PPC (OR SHELTER) INSTALL DATE (POPULATE FEL IN SMS AND/OR FORWARD
8. TOWER CONSTRUCTIN START DATE (POPULLATE REL IN SMS AND/OR
9. TOWER CONSTRUCTON COMPLEE DATE (POPULATE FEL IN SMS AND/OR
FORWARD NOTFCATON).

10. NeTWORK OPERATONS HANDOFF CHECKUST (HOC WAK) COMPLETE (UPLLOAD
FORM IN SMS)
11. COLL CONSTRUCCON COMPLEE DATE (POPULATE FELD IN SMS AND/OR
FORWARD NOTFCATON). 14. STIE CONSTRUCTON PROGRESS PHotos UNLOADED INTO SMS.

SECTION 01 400 - SUBMITTALS \& TESTS

1.2 Reated documents:
A. THE RROLIIEMENTS OF THIS SECTON APPLY TO AL SECTONS IN THIS
B. SPRIN 'STANOARD CONSTRUCTION DERALS FOR WRELLESS STES ARE INCLDDED IN
1.3 SUBMTTALS:
A. THE WORK IN ALL ASPECTS SHAL COMPLY WITH THE CONSTRUCTON DRAWINGS
B. SUBMT THE FOLLOWIN to company represenative for approval

1. CONCREIE MXX-DESGNS FOR TOWER FOUNDATONS, ANCHORS PIERS, AND
2. Concreit break tests as specifed herein.
3. SPECML FNISHES FOR INERIOR SPACES, IF ANY.
4. AL EQUUPMENT AND MATERALS SO IDENIIED ON THE CONSTRUCTION
5. Chemical grounding desion
D. AITERATES: AT THE COMPANTS REQUEST, ANY ALIERNATVES TO THE MATERALS

1.4 TESTS AND INSPECTONS:
A. THE CONTRACTOR SHAL ME RESPONSI日E FOR ALL CONSIRUCTION TESTS.
B. CONTRACTOR SHAL ACCOMPLSH TESTNG INCLUDING BUT NOT UMITD TO THE

- CoAX SWEEPS AND faER TESTS PER TS-0200 REV 4 ANTENNA LINE

2. AGL AZMMTH AND DOWNLL USING ELECTRONC COMMERCILL

A RESULT OF TESTING.
COOLIOWING;
CLOSEOUT DOCUMENATON INCLLDES, aUT IS NOT LIMIED TO THE

3. SCANABE EARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIILE
4. ALL AVALABLE JURISOICTONAL INFORMATION
5. PDF SCAN OF REDUNES PRODUCED IN FIED

6. LEN WAVERS
7. LEN WANERS
8. FINL PATMENT APPLCATION
9. FNNL PAMMENT APPUCATON
B. REQUIRED FNAL CONTRUCTON PHOTOS
10. REQUIRED FNNL CONSTRUCTON PHOTOS
11. CONSTRUCTON AND COMMISIONING CHECKUST COMPLEEE WITH NO DEFCIENT
12. AL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLIED IN SITERRA
1.5 Commissioning: PERFORM all commisioning as required ar applcable
mops

PART 2 - PRODUCTS (NOT USED)
part 3 - execution
3.1 REQUIREMENTS FOR TESTNG:
A. THIRD PARTY TESTNG AgENCY:

13. THE TIRD PARTM TESNNG AGENCY IS TO EE FAMUAR WTH THE APPLCABLE

14. EXPERIENCE IN SOILS, CONCREIE, MASONRY, AGGREGAE, AND ASPHALT
15. 2 Required tests:
A. COITRACTOR SHALL ACCOMPUSH TESTING INCLUDING 日UT NOT LMITED TO THE
16. CONCREE CMUNDER RREAK TESTS FOR THE TOWER AND ANCHOR
17. ASPHALT ROAOWAY COMPACIED THCKNESS, SURFACE SNOOTHESS, AND
18. RED quant connt tesing as specifin in section: portand cement
19. TESTNG REOURED UNDER SECTON: AGGREGATE BASE FOR ACCESS ROADS,
20. STRUCTURAL BACKFLL COMPACTION TESTS FOR THE TOWER FOUNDATON.
21. SIE RESIITANCE TO EARTH TESTNG PER EXHBII: CEL STIE GROUNDING
22. ANIENY AND COAX SWEEP TESTS PER EXHIIT: ANTENNA TRANSMISSION LINE
23. grounding at antenna masts for grs and antennas
24. AL OTHER TESTS REQUIRED EY COMPANY OR JURISOICTON.
3.3 REQUIRED INSPECTONS
A. SCHEDULE INSPECTONS WIH COMPAN Representative.
B. CONDUCT INSPECTONS INCLUDING BUT NOT UMITED TO THE FOLOWING:

25. PRE- AND POST-CONSTRUCTON ROOFTOP AND STRUCTURAL INSPECTIONS ON
26. TOWER ERECTON SECTON STACKING AND PLATORRM ATTACHMENT DOCUMENIED
27. ANIENAL AZIMITH DOWN TITT AND PER SUNLGHT TOOL SUNSIGHT

Wacrayn

WEST HARTFORD PARKING GARAGE

CT03XC075
27-31 SOUTH MAIN ST
WEST HARTFORD, CT 06110
WES HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-2

CONTUE FROM SP-2

7. VERIICCAOON DOCUMENTED WIH THE ANTENNA CHECKUST REPORT, GY AEE,
8. FNAL NSPECTON CHECKLST AND HANDOFF WALK (HOC.). SICNED FORM
9. Coox smeep and fiber testing documents submited va shs for rf
10. SCCN-ABE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIILE
11. AL AVALABLE JURISOICTONAL INFORMATON
12. PDF SCAN OF REDUNES PRODUCED IN FELD

A. THE FOLOOWNG TEST AND INSPECTION RPPORTS SHALL EE PROVIDED AS 1. CONCREE MIX ANO CYINDER BREAK REPORI
13. STRUCTURAL EACKFLL COMPACTON REPORTS.
14. STE RESISTANCE TO EARTH TEST.
15. ANIENNA AZIMUTH AND DOWN TLIT VERIICCATO

16. COAX CABLI SWEEP TESTS PER COMPAN's ANTIENNA LINE ACGEPTANCE
b. required closeout documenaton includes the folowing;
简

 Aheme

TOWER/MONOPOL
17. ROOF TOPS: PREECONSTRUCTTON AND POSS-CCNSTRUCTON VSUAL INSPECTON
 PHOTOGRAPHS OF DOGHOUSE/CABIE EXT RROM ROO
18. SIIE LAYOUT - PHOTOGRARHS OF THE OVERUL COMPOUND. INCLUDING

 9. ANI AND AL SUBMITALS EY THE JURISDICTION OR COMPAN

PECIION O1 400 - SUBMITALS \& CES
PART 1 - GENERAL
1.1 THE WORN: HEESE STANDARD CONSIRUCTON SPEGIICADONS IN CONUUNCDON WTH
1.2 REATED DOCUMENTS:
A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS
B. SPRIN - STANOARD CONSTRUCTON DEGALS FOR WIRELESS STES:ARE INCLUDED IN

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTIO
3.1 WEEKLY REPORTS:

 Rouect conference calls:

3 PROUECT TRACKING IN SMS:

A. COOTRACTOR SHALL RPONDE SCHEDULE UPDATES AND PRONECTIONS IN THE SMS
3.4 ADOTONAL REPORTING:
A. ADDTIONAL OR ALERNATE REPORTNG REOUREMENTS MAY BE ADDED TO THE
REPORT AS DEIERMINED TO EE REASONABEY NECESSARY EY COMPANY. 3.5 PROUECT PHOTOGRAPHS:
 MINEIED WMH SIE NUMBER, NAME AND

1. 1SHELIER AND TOWER OVERNEW.
2. TOWER FOUNDAAON(S) - FORMS AND STEEL BEFORE POUR (EACH ANCHOR
3. TOWER FOUNDATON(S) POUR wTH MBrator in USE (EACH ANCHOR ON
4. TOWER STEEL AS BENG INSTALED INTO HOLE (SHOW ANCHOR STEEL ON
5. PHOTOS OF TOWER SECTION STACKING
6. CONCREEE TESTNG / SAMPIES.
7. PLACING of anchor bolts in tower foundaton.
8. BUILDING/WAIER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
9. SHELTER FOUNDATON--FORMS AND Steel aefore pouring.
10. Shelter foundaton pour wit narator in use.
11. COAX CABLE ENRY INTO SHELITR
12. PLATORM MECHANICAL CONNECTONS TO TOWER/MONOPOLE.
13. ROOFTOP RRE AN POST CONSTRUCTON PHOTOS TO INCLLDE PENEITRATONS
14. Photos of tower top coax line color cooing ano color cooing at
15. Photos of All approprate compant or regulatory signage.
16. PHotos of Equipmen bolt down insid shelitr.
17. POWER AND TILCO ENTRNCE TO COMPANY ENCLOSURE AND POWER AND
TECO SUPPLY LOCATONS INCLUODN METRRDISONNECT.
18. ELECTRCAL TRENCH(s) WTH EIECTRICAL / CONDUT BEFORE BACKFL
19. ELECTRICAL TRENCH(S) WTH FOLL-BACKED TAPE BEFORE FURIHER BACKFL
20. TLLCO TRENCH WTH TLEEPHONE / CONDUT BEOORE BACKFLL
21. TELCO TRENCH WTH FOIL-BACKED TAPE BeFore further backrll
22. SHELIIR GRRUND-RING TRENCH WTH GROUND-WRE beFore backrlu (show

23. FENE GROUND-RNG TRENCH WTH GROUND-WIRE BEFORE EACKFLL (SHOW
24. Al bts ground connections.
25. All ground test wels
26. ANTENNA GROUND BAR AND EQUIPMENT GRound bar.
27. Adomonal grounding points on towers above 200'.
28. HNAC UNITS INCLUDING CONDENSERS ON SPIT STSTEMS.
29. GPS ANIENNAS.
30. Cable tray ano/or waveguid bride.
31. DoGhouse/cable ext from roof.
32. EACH SECTOR OF ANTNNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR ANO 34. MASTER EUS RAR.
33. telco board and nit
34. ELECTRICAL DIITRIBUTION WALL
35. CABE ENTRY wTH SURGE SUPPRESSION.
36. Entrance to equipment room.
37. COAX WEATHERPROOFNG-TOP AND BOTOM OF TOWE
38. CoAX Grounding -top and bottom of tower
39. ANIENNA AND MAST GROUNDING.
40. LaNoSCAPING - WHERE APPLCABIE.

INFINIGY\%

 ${ }^{1033 \text { Wianavies Shaker Rd }}$ Abibny
nos nuear $35-200$

Wrsgut

WEST HARTFORD
PARKING GARAGE

CT03XC075
27-31 SOUTH MAIN ST HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-3

ALU 2.5 ALU SCENARIO 1

ran wiring diagram

RF 2.5 ALU SCENARIO 1

ISSLEP For Colismectiout	3/77/4	м ${ }^{\text {a }}$	

WEST HARTFORD PARKING GARAGE

STIE CASCADE:
CT03XC075

27-31 SOUTH MAIN S WEST HARTFORD, CT 06110

PLUMBING DIAGRAM

Date: March $\mathbf{7}^{\text {th }}, 2014$
Cheryl Schultz
Crown Castle
3530 Toringdon WaySuite 300
Charlotte, NC 28277
(704) 405-6632

Subject:

Carrier Designation:

Crown Castle Designation:

Structural Analysis Report

Sprint PCS Co-Locate
Carrier Site Number: Carrier Site Name:

Crown Castle BU Number: 876328
Crown Castle Site Name:
Crown Castle JDE Job Number: 251934
Crown Castle Work Order Number: 696196
Crown Castle Application Number: 205590 Rev. 2
GPD Group Project Number: 2014777.876328.01
27-31 South Main St., West Hartford, Hartford County, CT 06110 Latitude $41^{\circ} 45^{\prime} 36.41$ ", Longitude -72 ${ }^{\circ} 44^{\prime} 35.25 "$
40.25 Foot - Rohn Self Support Tower

Dear Ms. Cheryl Schultz,
GPD Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 607348, in accordance with application 205590, revision 2.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

```
LC5: Existing + Proposed Equipment
Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.
```

Sufficient Capacity

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 Connecticut State Building Code based upon a wind speed of 80 mph fastest mile.

We at GPD Group appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.
Respectfully submitted by:

John N. Kabak, P.E.
Connecticut \#: PEN. 0028336

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

The tower is supported on three legs and has eight two sections. It has a triangular cross section made of bolted connections, with an " X " frame configuration. The tower is fabricated with pipe round legs, angle diagonals. The tower is galvanized and has no tower lightning.

This tower is a 40 ft Self Support tower designed by ROHN in April of 1997. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-E.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 38 mph with 1 inch ice thickness (in accordance with ASCE 7 Ice conditions) and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line (in)	Note
102.0	103.0	3	Alcatel lucent	TD-RRH8x20-25	1	$5 / 8$	1
	3	RFS Celwave	APXVTM14-C-120	1		1	

Notes:

1) See Appendix B for the proposed coax layout.

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|l} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
102.0	103.0	1	RFS Celwave	APXV9ERR18-C-A20	3	1-1/4	
		2	RFS Celwave	APXVSPP18-C-A20			
		1	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
		2	Alcatel Lucent	1900MHz RRH (65MHz)			
	102.0	1	Alcatel Lucent	$1900 \mathrm{MHz} \mathrm{RRH}(65 \mathrm{MHz})$			
		2	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
		1		Sector Mount [SM 502-3]			
92.0	92.0	1		T-Arm Mount [TA 702-3]	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{gathered} 1-5 / 8 \\ 3 / 4 \end{gathered}$	
		3	Ericsson	RRUS-11			
		12	Powerwave Technologies	LGP2140X			
	89.0	3	Powerwave Technologies	7770.00			
		1	Andrew	SBNH-1D6565C			
		1	Powerwave Technologies	P65-15-XLH-RR			
		1	Powerwave Technologies	P65E-17-XLH-RR			
75.0	77.0	1	Lucent	KS24019-L112A	1	1/2	
	75.0	1		Side Arm Mount [SO 302-1]			

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
105	105	12		DB980H90	12	$1-5 / 8$
75	3		Leg Mounting Frame	12	$1-5 / 8$	

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Tower Manufacturer Drawings	Rohn Eng. File\#: $345895 W$, dated: $4 / 15 / 1997$	Doc ID\#: 1440544	Crown DMZ
Tower Mapping Report	GPD Project \#: 2014777.876328 .03, dated: $03 / 04 / 2014$	D. Palkovic	GPD

3.1) Analysis Method

tnxTower (version 6.1.3.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
5) Mount sizes, weights, and manufacturers are best estimates based on site photos provided and were determined without the benefit of a site visit by GPD.
6) All member connections and foundation steel reinforcing are assumed designed to meet or exceed the load carrying capacity of the connected member and surrounding soils respectively unless otherwise specified in this report.
7) The capacity of the rooftop was not evaluated in this analysis.
8) All equipment model numbers, quantities, and centerline elevations are as provided in the CCl CAD package dated 01/02/2014 with any adjustments as noted below.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF* ${ }_{\text {allow }}(\mathrm{K})$	\% Capacity	Pass / Fail
T1	105.25-85.125	Leg	ROHN 2.5 STD	2	-13.64	54.96	24.8	Pass
T2	85.125-65	Leg	ROHN 2.5 STD	38	-35.90	50.20	71.5	Pass
T1	105.25-85.125	Diagonal	L1 1/2x1 1/2x1/8	8	-2.65	3.35	$\begin{gathered} 79.0 \\ 94.3 \text { (b) } \end{gathered}$	Pass
T2	85.125-65	Diagonal	L1 3/4x1 3/4x3/16	46	-2.76	4.49	61.6	Pass
T1	105.25-85.125	Top Girt	L2x2x1/8	5	-0.30	2.83	10.7	Pass
T2	85.125-65	Top Girt	L2x2x1/8	41	-0.12	3.60	3.4	Pass
							Summary	
						Leg (T2)	71.5	Pass
						Diagonal (T1)	94.3	Pass
						Top Girt (T1)	10.7	Pass
						Bolt Checks	94.3	Pass
						Rating =	94.3	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
-	Anchor Bolts	65	54.3	Pass
1	Base I-Beam Frame	65	67.3	Pass

Structure Rating (max from all components) $=$	94.3%
Notes:	

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The design of the tower and its foundations are sufficient for the proposed loading and does not require modifications.

5) DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

TNXTOWER OUTPUT

Feed Line Distribution Chart
65' - 105'3'
Round \quad Flat \qquad App In Face _App Out Face \qquad Truss Leg

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 105.25 ft above the ground line.
The base of the tower is set at an elevation of 65.00 ft above the ground line.
The face width of the tower is 6.56 ft at the top and 8.56 ft at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Basic wind speed of 80 mph .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^0]Distribute Leg Loads As Uniform
Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas
$\sqrt{ }$ SR Members Have Cut Ends
$\sqrt{ }$ Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Use TIA-222-G Tension Splice Capacity
Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
$\sqrt{ }$ All Leg Panels Have Same Allowable
$\sqrt{ }$ Offset Girt At Foundation
\checkmark Consider Feedline Torque
$\sqrt{ }$ Include Angle Block Shear Check

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Triangular Tower

Tower Section Geometry

Tower Section	Tower	Assembly	Description	Section Database	Number of
				Section Length	
	$f t$		$f t$	Sections	

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing		Type	K Brace	Horizontals	Offset

Tower Section Geometry (cont'd)

Tower Elevation $f t$	$\begin{gathered} \text { Leg } \\ \text { Type } \end{gathered}$	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 105.25-85.13	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x1/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 85.13-65.00	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 3/4x1 3/4x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt
Elevation	Type	Size	Grade	Type	Size

Tower Section Geometry (cont'd)

Tower Elevation ft	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
T1 105.25-85.13	0.00	0.0000	A36	1	1	1	36.0000	36.0000
T2 85.13-65.00	0.00	0.0000	(36 ksi) A36 (36 ksi)	1	1	1	36.0000	36.0000

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{\text {I }}$							
			Legs	X	$\begin{gathered} K \\ \text { Brace } \end{gathered}$	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Brace						
				Diags	Diags					
				X	X	X	X	X	X	X
$f t$				Y						
T1 105.25-85.13	Yes	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1
T2 85.13-65.00	Yes	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

${ }^{I}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U	$\begin{gathered} \text { Net Width } \\ \text { Deduct } \\ \text { in } \end{gathered}$	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 105.25-85.13	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 85.13-65.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Bolt Size in		Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	Bolt Size in	No.
T1 105.25-85.13	Flange	0.6250	4	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													
T2 85.13-65.00	Flange	0.6250	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Face
 or | Allow
 Shield | Component
 Type | Placement | Face
 Offset | Lateral
 Offset
 (Frac FW) | \# | \#
 Per
 Row | Clear
 Spacing
 in | Width or
 Diameter
 in | Perimeter | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | | | | | |

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$		$f t^{2}$	$f t^{2}$	${f t^{2}}^{f t^{2}}$		
T 1	$105.25-85.13$	A	0.000	0.000	0.000	0.000	0.00
		B	15.991	11.329	0.000	0.000	0.37
		C	0.621	6.360	0.000	0.000	0.00
T 2	$85.13-65.00$	A	0.000	0.000	0.000	0.000	0.00
		B	30.766	16.471	0.000	0.000	0.63
		C	0.629	6.440	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation $f t$	Face or	Ice Thickness	A_{R}	A_{F}	$C_{A} A_{A}$ In Face 2	$C_{A} A_{A}$ Out Face	Weight
	ft	Leg	in	$f t^{2}$	$f t^{2}$	$f t^{2}$	${f t^{2}}^{2}$	K
T1	$105.25-85.13$	A	1.136	0.000	0.000	0.000	0.000	0.00
		B		21.933	30.892	0.000	0.000	1.13
		C		4.383	8.868	0.000	0.000	0.00
T 2	$85.13-65.00$	A	1.104	0.000	0.000	0.000	0.000	0.00
		B		31.208	55.271	0.000	0.000	1.85
		C		4.331	8.908	0.000	0.000	0.00

Feed Line Shielding

Section	Elevation	Face	A_{R}	A_{R}	A_{F}	A_{F} Ice
	$f t$		$f t^{2}$	$f t^{2}$	$f t^{2}$	$f t^{2}$
	$105.25-85.13$	A	0.000	0.000	0.000	0.000
		B	0.000	4.888	1.650	3.313
		C	0.000	0.000	0.000	0.000
			A	0.000	0.000	0.000
		B	0.000	7.347	3.133	5.000
		C	0.000	0.000	0.000	0.004

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$ Ice
			Ine	in	in

Discrete Tower Loads

Description	Face or Leg	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ ft ft	Azimuth Adjustment 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side	Weight
Sector Mount [SM 502-3]	C	None		0.0000	102.00	No Ice	33.02	33.02	1.67
						1/2" Ice	47.36	47.36	2.22
						$1{ }^{\prime \prime}$ Ice	61.70	61.70	2.77
						2" Ice	90.38	90.38	3.88
						4 " Ice	147.74	147.74	6.08
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	4.00	0.0000	102.00	No Ice	8.26	6.71	0.08
			0.00			1/2" Ice	8.81	7.66	0.14
			1.00			$1{ }^{\prime \prime}$ Ice	9.36	8.49	0.22
						2" Ice	10.50	10.20	0.39
						4" Ice	12.88	13.98	0.87
APXVSPP18-C-A20 w/ Mount Pipe	B	From Leg		0.0000	102.00	No Ice	8.26	6.71	0.08
			0.00			1/2" Ice	8.81	7.66	0.14
			1.00			$1{ }^{\prime \prime}$ Ice	9.36	8.49	0.22
						2 " Ice	10.50	10.20	0.39
						$4{ }^{\prime \prime}$ Ice	12.88	13.98	0.87
APXV9ERR18-C-A20 w/ Mount Pipe	C	From Leg		0.0000	102.00	No Ice	8.73	7.18	0.08
			0.00			$1 / 2^{\prime \prime} \text { Ice }$	9.49	8.46	0.15
			1.00			$1^{\prime \prime}$ Ice	10.21	9.60	0.23
						2" Ice	11.60	11.53	0.41
						4 " Ice	14.51	15.77	0.94
$1900 \mathrm{MHz} \mathrm{RRH}(65 \mathrm{MHz})$	A	From Leg	4.00	0.0000	102.00	No Ice	2.70	2.77	0.06
			0.00			1/2" Ice	2.94	3.01	0.08
			1.00			$1^{\prime \prime}$ Ice	3.18	3.26	0.11
						2 " Ice	3.70	3.78	0.18
						4 " Ice	4.85	4.93	0.35
$1900 \mathrm{MHz} \mathrm{RRH}(65 \mathrm{MHz})$	B	From Leg		0.0000	102.00	No Ice	2.70	2.77	0.06
			0.00			1/2" Ice	2.94	3.01	0.08
			1.00			$1{ }^{\prime \prime}$ Ice	3.18	3.26	0.11
						2 " Ice	3.70	3.78	0.18
						$4{ }^{\prime \prime}$ Ice	4.85	4.93	0.35
1900 MHz RRH (65 MHz)	C	From Leg		0.0000	102.00	No Ice	2.70	2.77	0.06
			0.00			1/2" Ice	2.94	3.01	0.08
			0.00			1" Ice	3.18	3.26	0.11
						2" Ice	3.70	3.78	0.18
						$4{ }^{\prime \prime}$ Ice	4.85	4.93	0.35
800MHz 2X50W RRH W/FILTER	A	From Leg		0.0000	102.00	No Ice	2.40	2.25	0.06
			0.00			1/2" Ice	2.61	2.46	0.09
			0.00			1 " Ice	2.83	2.68	0.11
						2" Ice	3.30	3.13	0.17
						4 " Ice	4.34	4.15	0.34
800MHz 2X50W RRH W/FILTER	B	From Leg	4.00	0.0000	102.00	No Ice	2.40	2.25	0.06
			0.00			1/2" Ice	2.61	2.46	0.09
			0.00			1 " Ice	2.83	2.68	0.11
						2 " Ice	3.30	3.13	0.17
						4 " Ice	4.34	4.15	0.34
800MHz 2X50W RRH W/FILTER	C	From Leg		0.0000	102.00	No Ice	2.40	2.25	0.06
			0.00			1/2" Ice	2.61	2.46	0.09
			1.00			1 " Ice	2.83	2.68	0.11
						2 " Ice	3.30	3.13	0.17
						4" Ice	4.34	4.15	0.34
APXVTM14-C-120 w/ Mount Pipe	A	From Leg	4.00	0.0000	102.00	No Ice	7.13	4.96	0.08
			0.00			1/2" Ice	7.66	5.75	0.13
			1.00			1 " Ice	8.18	6.47	0.19
						2 " Ice	9.26	8.01	0.34
						4 " Ice	11.53	11.41	0.75
APXVTM14-C-120 w/ Mount Pipe	B	From Leg	4.00	0.0000	102.00	No Ice	7.13	4.96	0.08
			0.00			1/2" Ice	7.66	5.75	0.13
			1.00			1" Ice	8.18	6.47	0.19
						2 " Ice	9.26	8.01	0.34
						4" Ice	11.53	11.41	0.75
APXVTM14-C-120 w/ Mount Pipe	C	From Leg	4.00	0.0000	102.00	No Ice	7.13	4.96	0.08

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\) \(f t\) ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$
Front

$f t^{2}$ \& $C_{A} A_{A}$
Side

$f t^{2}$ \& Weight

\hline \multirow{9}{*}{TD-RRH8x20-25} \& \multirow{7}{*}{A} \& \multirow{7}{*}{From Leg} \& 0.00 \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{102.00} \& 1/2" Ice \& 7.66 \& 5.75 \& 0.13

\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.18 \& 6.47 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& 9.26 \& 8.01 \& 0.34

\hline \& \& \& \& \& \& 4" Ice \& 11.53 \& 11.41 \& 0.75

\hline \& \& \& 4.00 \& \& \& No Ice \& 4.72 \& 1.70 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.01 \& 1.92 \& 0.10

\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.32 \& 2.15 \& 0.13

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{102.00} \& 2" Ice \& 5.95 \& 2.62 \& 0.20

\hline \& \& \& \& \& \& 4" Ice \& 7.31 \& 3.68 \& 0.40

\hline \multirow[t]{5}{*}{TD-RRH8x20-25} \& \& \& 4.00 \& \& \& No Ice \& 4.72 \& 1.70 \& 0.07

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 5.01 \& 1.92 \& 0.10

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 5.32 \& 2.15 \& 0.13

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{102.00} \& 2" Ice \& 5.95 \& 2.62 \& 0.20

\hline \& \& \& \& \& \& 4" Ice \& 7.31 \& 3.68 \& 0.40

\hline \multirow[t]{5}{*}{TD-RRH8x20-25} \& \& \& 4.00 \& \& \& No Ice \& 4.72 \& 1.70 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.01 \& 1.92 \& 0.10

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 5.32 \& 2.15 \& 0.13

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{102.00} \& 2 " Ice \& 5.95 \& 2.62 \& 0.20

\hline \& \& \& \& \& \& 4" Ice \& 7.31 \& 3.68 \& 0.40

\hline \multirow[t]{5}{*}{7'x2 1/2" Pipe Mount} \& \& \& \& \& \& No Ice \& 2.01 \& 2.01 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.59 \& 2.59 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.02 \& 3.02 \& 0.07

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{102.00} \& 2 " Ice \& 3.90 \& 3.90 \& 0.13

\hline \& \& \& \& \& \& 4" Ice \& 5.78 \& 5.78 \& 0.30

\hline \multirow[t]{5}{*}{7'x2 1/2" Pipe Mount} \& \& \& \& \& \& No Ice \& 2.01 \& 2.01 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.59 \& 2.59 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.02 \& 3.02 \& 0.07

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{102.00} \& 2 " Ice \& 3.90 \& 3.90 \& 0.13

\hline \& \& \& \& \& \& 4 " Ice \& 5.78 \& 5.78 \& 0.30

\hline \multirow[t]{5}{*}{7'x2 1/2" Pipe Mount} \& \& \& \& \& \& No Ice \& 2.01 \& 2.01 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.59 \& 2.59 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.02 \& 3.02 \& 0.07

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{None} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2" Ice \& 3.90 \& 3.90 \& 0.13

\hline \& \& \& \& \& \& 4 " Ice \& 5.78 \& 5.78 \& 0.30

\hline \multirow[t]{5}{*}{T-Arm Mount [TA 702-3]} \& \& \& \& \& \& No Ice \& 5.64 \& 5.64 \& 0.34

\hline \& \& \& \& \& \& 1/2" Ice \& 6.55 \& 6.55 \& 0.43

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 7.46 \& 7.46 \& 0.52

\hline \& \multirow{6}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2 " Ice \& 9.28 \& 9.28 \& 0.70

\hline \& \& \& \& \& \& 4 " Ice \& 12.92 \& 12.92 \& 1.06

\hline \multirow[t]{5}{*}{7770.00 w/ Mount Pipe} \& \& \& \& \& \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& 1" Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2 " Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \multirow{4}{*}{B} \& \& \& \& \& 4 " Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{7770.00 w/ Mount Pipe} \& \& \& \& \& \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& 1" Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \multirow{6}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2 " Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \& \& \& \& \& 4 " Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{7770.00 w/ Mount Pipe} \& \& \& \& \& \& \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& 1 " Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2 " Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \multirow{4}{*}{A} \& \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{P65-15-XLH-RR w/ Mount Pipe} \& \& \& \& \& \& No Ice \& 6.55 \& 4.38 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.36 \& 5.51 \& 0.11

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.10 \& 6.50 \& 0.17

\hline \& \multirow{7}{*}{B} \& \multirow{7}{*}{From Leg} \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{92.00} \& 2" Ice \& 9.42 \& 8.17 \& 0.31

\hline \& \& \& \& \& \& 4 " Ice \& 12.24 \& 11.86 \& 0.72

\hline \multirow[t]{5}{*}{SBNH-1D6565C w/ Mount Pipe} \& \& \& \& \& \& No Ice \& 11.45 \& 9.60 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.06 \& 11.02 \& 0.18

\hline \& \& \& -3.00 \& \& \& 1" Ice \& 12.69 \& 12.29 \& 0.27

\hline \& \& \& \& \& \& 2" Ice \& 14.03 \& 14.51 \& 0.50

\hline \& \& \& \& \& \& 4 " Ice \& 17.05 \& 19.14 \& 1.12

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{5}{*}{P65E-17-XLH-RR w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{92.00} \& No Ice \& 11.47 \& 8.70 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.08 \& 10.11 \& 0.18

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 12.71 \& 11.38 \& 0.27

\hline \& \& \& \& \& \& 2 " Ice \& 14.07 \& 13.58 \& 0.49

\hline \& \& \& \& \& \& 4" Ice \& 17.08 \& 18.18 \& 1.10

\hline \multirow[t]{5}{*}{(4) LGP2140X} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{92.00} \& No Ice \& 1.26 \& 0.38 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 1.42 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.58 \& 0.62 \& 0.03

\hline \& \& \& \& \& \& 2 " Ice \& 1.94 \& 0.89 \& 0.05

\hline \& \& \& \& \& \& 4" Ice \& 2.75 \& 1.54 \& 0.13

\hline \multirow[t]{5}{*}{(4) LGP2140X} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{92.00} \& No Ice \& 1.26 \& 0.38 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 1.42 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.58 \& 0.62 \& 0.03

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 1.94 \& 0.89 \& 0.05

\hline \& \& \& \& \& \& 4" Ice \& 2.75 \& 1.54 \& 0.13

\hline \multirow[t]{5}{*}{(4) LGP2140X} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{92.00} \& No Ice \& 1.26 \& 0.38 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 1.42 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.58 \& 0.62 \& 0.03

\hline \& \& \& \& \& \& 2 " Ice \& 1.94 \& 0.89 \& 0.05

\hline \& \& \& \& \& \& 4 " Ice \& 2.75 \& 1.54 \& 0.13

\hline \multirow[t]{5}{*}{RRUS-11} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{92.00} \& No Ice \& 2.94 \& 1.19 \& 0.06

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2" Ice \& 3.17 \& 1.35 \& 0.07

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 3.41 \& 1.52 \& 0.10

\hline \& \& \& \& \& \& 2 " Ice \& 3.91 \& 1.89 \& 0.15

\hline \& \& \& \& \& \& 4" Ice \& 5.02 \& 2.72 \& 0.30

\hline \multirow[t]{5}{*}{RRUS-11} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{92.00} \& No Ice \& 2.94 \& 1.19 \& 0.06

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2' Ice \& 3.17 \& 1.35 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& 3.41 \& 1.52 \& 0.10

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 3.91 \& 1.89 \& 0.15

\hline \& \& \& \& \& \& 4" Ice \& 5.02 \& 2.72 \& 0.30

\hline \multirow[t]{5}{*}{RRUS-11} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{92.00} \& No Ice \& 2.94 \& 1.19 \& 0.06

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2' Ice \& 3.17 \& 1.35 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& 3.41 \& 1.52 \& 0.10

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 3.91 \& 1.89 \& 0.15

\hline \& \& \& \& \& \& 4" Ice \& 5.02 \& 2.72 \& 0.30

\hline \multirow[t]{5}{*}{Side Arm Mount [SO 302-1]} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{75.00} \& No Ice \& 1.67 \& 3.27 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 2.51 \& 4.99 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.35 \& 6.71 \& 0.12

\hline \& \& \& \& \& \& 2 " Ice \& 5.03 \& 10.15 \& 0.19

\hline \& \& \& \& \& \& 4" Ice \& 8.39 \& 17.03 \& 0.32

\hline \multirow[t]{5}{*}{KS24019-L112A} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{75.00} \& No Ice \& 0.16 \& 0.16 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 0.22 \& 0.22 \& 0.01

\hline \& \& \& 2.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.30 \& 0.30 \& 0.01

\hline \& \& \& \& \& \& 2 " Ice \& 0.48 \& 0.48 \& 0.02

\hline \& \& \& \& \& \& 4" Ice \& 0.95 \& 0.95 \& 0.06

\hline
\end{tabular}

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No Ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No Ice
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 180 deg - No Ice
9	Dead+Wind 210 deg - No Ice
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+Ice+Temp
17	Dead+Wind 60 deg+Ice+Temp
18	Dead+Wind 90 deg+Ice+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	\circ	\circ
T1	$105.25-85.125$	0.416	31	0.0617	0.0090
T2	$85.125-65$	0.139	31	0.0487	0.0060

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Load		in	\circ	\circ
102.00		Comb.	in			
92.00	Sector Mount [SM 502-3]	31	0.366	0.0610	0.0086	94538
75.00	T-Arm Mount [TA 702-3]	31	0.221	0.0564	0.0073	35675

	Maximum Tower Deflections a Design Wind			
Section	Elevation	Horz.	Gov.	Tilt
No.	Deflection	Load	Twist	
	$f t$	in	Comb.	\circ
T1	$105.25-85.125$	1.054	6	0.1557
T2	$85.125-65$	0.353	6	0.1230

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	on	
102.00		6	0.928	0.1539	0.0220	37458
92.00	Sector Mount [SM 502-3]	6	0.560	0.1426	0.0186	14135
75.00	T-Arm Mount [TA 702-3]	6	0.143	0.0696	0.0083	18729

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	105.25	Leg	A325N	0.6250	4	2.52	13.50	0.186	1.333	Bolt Tension
		Diagonal	A325N	0.5000	1	2.62	2.08	,	1.333	Member Block Shear
		Top Girt	A325N	0.5000	1	0.30	2.72	0.109	1.333	Member Bearing
T2	85.125	Leg	A325N	0.6250	4	7.57	13.39	0.565	1.333	Bolt Tension
		Diagonal	A325N	0.5000	1	2.75	3.81	0.724	1.333	Member Block Shear

Compression Checks

Leg Design Data (Compression)										
Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	$\begin{aligned} \text { Ratio } \\ P \end{aligned}$
	$f t$		$f t$	$f t$		ksi	in ${ }^{2}$	K	${ }_{K}$	P_{a}
T1	105.25-85.125	ROHN 2.5 STD	20.13	4.02	$\begin{gathered} 51.0 \\ \mathrm{~K}=1.00 \end{gathered}$	24.197	1.7040	-13.64	41.23	0.331
T2	85.125-65	ROHN 2.5 STD	20.16	5.02	$\begin{gathered} 63.6 \\ \mathrm{~K}=1.00 \end{gathered}$	22.099	1.7040	-35.90	37.66	${ }^{0.953}$

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	$\begin{gathered} \text { Actual } \\ P \end{gathered}$	Allow. P_{a}	$\begin{aligned} & \text { Ratio } \\ & P \end{aligned}$
	$f t$		$f t$	$f t$		ksi	$i n^{2}$	K	K	P_{a}
T1	105.25-85.125	L1 1/2x1 1/2x1/8	7.70	3.60	$\begin{gathered} 146.0 \\ \mathrm{~K}=1.00 \end{gathered}$	7.002	0.3594	-2.65	2.52	1.054
T2	85.125-65	L1 3/4x1 3/4x3/16	9.70	4.75	$\begin{gathered} 166.0 \\ K=1.00 \end{gathered}$	5.418	0.6211	-2.76	3.36	0.822

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	$\begin{gathered} \text { Ratio } \\ P \end{gathered}$
	$f t$		$f t$	$f t$		ksi	$i n^{2}$	K	K	P_{a}
T1	105.25-85.125	L2x2x1/8	6.56	6.11	$\begin{gathered} 184.6 \\ K=1.00 \end{gathered}$	4.384	0.4844	-0.30	2.12	$\begin{gathered} 0.143 \\ y \end{gathered}$
T2	85.125-65	L2x $2 \times 1 / 8$	6.56	6.32	$\begin{gathered} 163.6 \\ K=0.86 \end{gathered}$	5.581	0.4844	-0.12	2.70	$\begin{gathered} 0.046 \\ y \end{gathered}$

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	$\begin{gathered} \text { Ratio } \\ P \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		ksi	in ${ }^{2}$	K	K	P_{a}
T1	105.25-85.125	ROHN 2.5 STD	20.13	4.02	51.0	30.000	1.7040	10.07	51.12	0.197
T2	85.125-65	ROHN 2.5 STD	20.16	5.02	63.6	30.000	1.7040	30.29	51.12	0.593

Diagonal Design Data (Tension)

Section No.	Elevation ft	Size	L ft	L_{u} ft	Kl/r	F_{a} ksi	A $i n^{2}$	Actual P K	Allow. P_{a} K	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \end{gathered}$
T1	105.25-85.125	L1 1/2x1 1/2x1/8	7.70	3.60	95.7	29.000	0.2109	2.62	6.12	0.428
T2	85.125-65	L1 3/4x1 3/4x3/16	9.70	4.75	108.5	29.000	0.3779	2.75	10.96	0.251

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	Ratio P
	$f t$		$f t$	$f t$		ksi	$i n^{2}$	K	K	P_{a}
T1	105.25-85.125	L2x2x1/8	6.56	6.11	121.2	29.000	0.3047	0.30	8.84	0.033
T2	85.125-65	L2x $2 \times 1 / 8$	6.56	6.32	121.2	21.600	0.4844	0.23	10.46	0.022^{*}

DL controls

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
T1	105.25-85.125	Leg	ROHN 2.5 STD	2	-13.64	54.96	24.8	Pass
T2	85.125-65	Leg	ROHN 2.5 STD	38	-35.90	50.20	71.5	Pass
T1	105.25-85.125	Diagonal	L1 1/2x1 1/2x1/8	8	-2.65	3.35	79.0	Pass
							94.3 (b)	
T2	85.125-65	Diagonal	L1 3/4x1 3/4x3/16	46	-2.76	4.49	61.6	Pass
T1	105.25-85.125	Top Girt	L2x $2 \times 1 / 8$	5	-0.30	2.83	10.7	Pass
T2	85.125-65	Top Girt	L2x $2 \times 1 / 8$	41	-0.12	3.60	3.4	Pass
						Summary	ELC:	Load Case 5
						Leg (T2)	71.5	Pass
						Diagonal (T1)	94.3	Pass
						Top Girt (T1)	10.7	Pass
						Bolt Checks	94.3	Pass
						Rating =	94.3	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Beam Properties: $\quad W_{12} \times 35$

$$
\begin{array}{lll}
b_{f}=6.56^{\prime \prime} & d=12.5^{\prime \prime} & F_{y}=36 \mathrm{ksi} \\
t_{f}=0.520^{\prime \prime} & t_{w}=0.30^{\prime \prime} \quad & I_{x}=285 \mathrm{in}^{4} \\
f_{b}=\frac{M I_{c}}{I}=\frac{36 \mathrm{k} \times \frac{9^{\prime}}{4} \times \frac{12^{\prime \prime}}{1} \times \frac{12-5^{\prime \prime}}{2}}{285 \mathrm{in}^{4}}=21.3 \mathrm{ksi} \\
F_{b}=0.66 \mathrm{Fy} \times 5 . F==31.68 \mathrm{ksi}
\end{array}
$$

Beam rating: $\frac{f_{b}}{F_{b}} \times 100=\frac{21.3}{31.68 \mathrm{ksi}}=6.7 .3 \%$
environmental | engineering | due diligence

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT03XC075
West Hartford Parking Garage
27-31 South Main Street
West Hartford, CT 06110
April 7, 2014

EBI Project Number: 62141886

April 7, 2014

Sprint
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495
Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site:
CT03XC075 - West Hartford Parking Garage
Site Total: $\mathbf{6 7 . 7 8 9 \%}$ - MPE\% in full compliance (At Ground Level)

Site Total: 237.188\% - MPE \% Not in full compliance (At Rooftop Level)

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 27-31 South Main Street, West Hartford, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the cellular band (850 MHz Band) is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz and 2500 MHz
bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 27-31 South Main Street, West Hartford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower. Additionally, calculations were performed for the 6 foot person standing on the roof level of the parking garage.

For all calculations, all emissions were calculated using the following assumptions:

1) 4 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. Additionally, Calculations were performed for the 6 foot person standing on the roof level of the parking garage. The maximum gain of the antenna per the antenna manufactures supplied specifications was used in this direction in both scenarios.
environmental | engineering | due diligence
6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTMM-C-120. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz . The RFS APXVTMM-C-120 has a 15.9 dBd gain value at its main lobe at 2500 MHz . All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.
7) The antenna mounting height centerline for the proposed antennas is $\mathbf{1 0 3}$ feet above ground level (AGL) and 52 feet above the rooftop level (ARL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

	Site ID	CT03XC075 - West Hartford Parking Garage (ground Level)														
	Site Addresss	27-31 South Main Street, West Hartford, CT 06110														
	Site Type	Self Support Tower														
Sector 1																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	$\begin{array}{\|c\|} \hline \text { Power } \\ \text { Density } \\ \text { Percentage } \\ \hline \end{array}$
1a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	15.9	103	97	1/2"	0.5	3	1390.2407	5.31193\%
1a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	103	97	1/2 "	0.5	3	195.44744	1.31707\%
1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	103	97	1/2 "	0.5	3	390.89489	2.63414\%
Sector total Power Density Value: 9.263%																
Sector 2																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	Power Density Percentage
2a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	15.9	103	97	1/2"	0.5	3	1390.2407	5.31193\%
2a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	103	97	1/2 "	0.5	3	195.44744	1.31707\%
2 B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	103	97	1/2"	0.5	3	390.89489	2.63414\%
Sector total Power Density Value: 9.263%																
Sector 3																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	Power Density Percentage
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	15.9	103	97	$1 / 2$ "	0.5	3	1390.2407	5.31193\%
3 a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	103	97	1/2"	0.5		195.44744	1.31707\%
3B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	103	97	1/2 "	0.5		390.89489	2.63414\%
												Sector to	tal Power D	ensity Value:	9.263\%	

Site Composite MPE \%	
Carrier	MPE \%
Sprint	27.789%
AT\&T	40.000%
Total Site MPE \%	67.789%

	Site ID	CT03XC075 - West Hartford Parking Garage (Roof Level)														
	Site Addresss	27 - 31 South Main Street, West Hartford, CT 06110														
	Site Type	Self Support Tower														
Sector 1																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	Power Density Percentage
1a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	15.9	52	46	1/2 "	0.5	3	1390.2407	23.62002\%
1a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	52	46	$1 / 2^{\prime \prime}$	0.5	3	195.44744	5.85649\%
1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	52	46	1/2 "	0.5	3	390.89489	11.71298\%
Sector total Power Density Value: $\quad 41.189 \%$																
Sector 2																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	Power Density Percentage
2a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	15.9	52	46	1/2"	0.5	3	1390.2407	23.62002\%
2a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	52	46	1/2"	0.5	3	195.44744	5.85649\%
2B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	52	46	1/2 "	0.5	3	390.89489	11.71298\%
Sector total Power Density Value: $\quad 41.189 \%$																
Sector 3																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	Power Density Percentage
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	15.9	52	46	1/2"	0.5	3	1390.2407	23.62002\%
3 a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	52	46	$1 / 2{ }^{\prime \prime}$	0.5	3	195.44744	5.85649\%
3B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	52	46	1/2"	0.5	3	390.89489	11.71298\%
												Sector to	tal Power De	ensity Value:	41.189\%	

Site Composite MPE \%	
Carrier	MPE \%
Sprint	123.568%
AT\&T	113.620%
Total Site MPE \%	237.188%

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy at ground level. At the Rooftop level there are areas that may exceed the general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are 27.789\% (9.263\% from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{5 7 . 8 6 2 \%}$ of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

Additionally, Since the Connecticut Siting Council database has values listed for the parking garage rooftop level as well these calculations were performed. The anticipated Maximum Composite contributions from the Sprint facility for a 6 foot person at the parking garage rooftop level is $\mathbf{1 2 3 . 5 6 8 \%}$ $\mathbf{(4 1 . 1 8 9 \%}$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the parking garage rooftop level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 3 7 . 1 8 8 \%}$ of the allowable FCC established general public limit for a 6 foot person at the parking garage rooftop level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals
 Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys
 $\sqrt{ }$ Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 $\sqrt{ }$ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
 $\sqrt{ }$ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 Add IBC .6D+W Combination

