Centek Engineering, Inc.

3-2 North Branford Road Branford, Connecticut 06405
Phone: (203) 488-0580
Fax: (203) 488-8587
Steven L. Levine
Real Estate Consultant

HAND DELIVERED

April 22, 2016

Attorney Melanie Bachman

Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, Connecticut 06051

Notice of Exempt Modification: Existing Telecommunications Facility at 27 - $\mathbf{3 1}$ South Main Street, West Hartford

Dear Ms. Bachman:
In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT\&T") plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j73 , of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16$50 \mathrm{j}-72(\mathrm{~b})(2)$. In compliance with R.C.S.A. Section $16-50 \mathrm{j}-73$, copies of this letter are being sent to the chief elected official of the municipality in which the affected cell site is located, the property owner of record, and the tower owner or operator.

UMTS technology offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile ("GSM") communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the Internet as they travel. They have the same capabilities even when they roam, through both terrestrial wireless and satellite transmissions.

LTE is a high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in AT\&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical and environmental characteristics of the site will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

1. The height of the overall structure will not increase.
2. The proposed changes will not extend the site boundaries.
3. The proposed changes will not increase the noise level at the site boundary by six decibels or more, or to levels that exceed state and local criteria.
4. The changes will not add radio frequency sending or receiving capability which increases the total radio frequency electromagnetic radiation power density measured at the site boundary to or above the standards adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996, as amended, and the State Department of Energy and Environmental Protection, pursuant to Section 22a-162 of the Connecticut General Statutes.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The proposed changes will not impair the structural integrity of the facility, as determined in a certification provided by a professional engineer licensed in Connecticut.

For the foregoing reasons, AT\&T respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (860) 830-0380 with questions concerning this matter. Thank you for your consideration.

Sincerely,

Steven L. Levine
Real Estate Consultant
cc: TownCEO - Ronald F. Van Winkle, Town Manager, City of West Hartford Property Owner of Record - Town Center West Associates LLC Tower Owner / Operator - Crown Castle International (by email)

Attachments

NEW CINGULAR WIRELESS PCS, LLC

Equipment Modification

27-31 South Main Street (29 South Main St), West Hartford Geographic Coordinates: N 41-45-36.5 W 72-44-35.4

AT\&T Site CT5843

Prior CSC Approvals: Tower Sharing 1/03
Exempt Mods 6/06 \& 8/12

Tower Owner/Manager: Crown Castle

Land Owner of Record: Town Center West Associates LLC

Original Permitting:

Lease Area:

The 29 South Main Street tower was approved by local P\&Z authorities in 1997. Please see the attached zoning approval letter and corresponding site plan drawings. Subsequently, AT\&T was approved to co-locate at the site in tower sharing application TS-ATT-155-021216. The Council's 2003 decision letter is attached along with site plan excerpts from the tower sharing application. The latter show AT\&T's approved lease and equipment area which expanded the overall site footprint. A Town of West Hartford building/zoning permit was subsequently issued for the AT\&T site plan (attached). There are no conditions in these approvals that would be violated by the present equipment modification proposals.

Comparison of the attached TS-ATT-155-021216 site plan with the attached proposed construction drawings indicates that the proposed modifications will not enlarge either the AT\&T lease area or the overall site boundaries.

Equipment Configuration:

Rooftop Self-Supporting Lattice Tower
on Parking Garage Penthouse: 103ft. a.g.l. Overall Ht. $($ Penthouse Rooftop $=63 \mathrm{ft}$ a.g.l. $/$ Tower $=40 \mathrm{ft}$ tall. $)$

Note: Centerlines in this section are measured a.g.l.

Current and/or approved: T-Arm mounts @ 92 ft a.g.l.
Twelve PowerWave LGP21401 TMA's @ 92 ft
Six Ericsson RRUS-11 remote radio heads @ 92 f
Three PowerWave 7770 antennas @ 89 ft c.l.
One Andrew SBNH-1D6565C antenna @ 89 ft c.l.
One PowerWave P65-15-XLH-RR antenna @ 89ft c. 1
One PowerWave P65E-17-XLH-RR antenna @ 89 ft c.l
One Raycap DC6-48-60-18-8F surge arrestor @ 89 ft
Six runs $15 / 8$ inch coax
One fiber and two DC power cables
Outdoor equipment cabinets in fenced rooftop compound

Planned Modifications: \quad Replace existing T-Arm mounts at 92 ft with three 12 ft V-booms.
Remove six PowerWave LGP21401 TMA's.
Remove three Ericsson RRUS-11 remote radio heads.
Install three CCI TPA-LCUUUU-H8 antennas @ 89 ft c.l.
Install six Ericsson RRUS-32 remote radio heads @ 89 ft .
Install one additional Raycap DC6-48-60-18-8F surge arrestor @ 89 ft .
Replace two existing DC power cables with four new DC cables.

Power Density:

Worst-case calculations with 10 dB reduction for existing wireless operations at the site indicate a radio frequency electromagnetic radiation power density, measured at six feet above ground level beside the tower, of approximately 5.5% of the standard adopted by the FCC. As depicted in the second and third tables below, the total radio frequency electromagnetic radiation power density in publicly accessible areas following proposed modifications would be approximately 9.6% of the standard at 6 feet above ground level and 40.5% of the standard at 6 feet above the upper parking level.

Existing- At Ground Level

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	$\begin{aligned} & \hline \text { Standard } \\ & \text { Limits } \\ & \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{aligned}$	Percent of Limit
Other Users *							0.83
AT\&TLTE *	92	734	1	1616	0.0786	0.4893	1.61
AT\&T UMTS *	92	880	2	565	0.0549	0.5867	0.94
AT\&T UMTS*	92	1900	2	875	0.0851	1.0000	0.85
AT\&TGSM *	92	880	1	283	0.0138	0.5867	0.23
AT\&TGSM *	92	1900	4	525	0.1021	1.0000	1.02
Total							5.48\%

[^0]
Proposed - At Ground Level

Carrier Technology	Centerline Ht (feet)	Antennas (All Sectors)	Frequency (MHz)	Number of Channels	Power Per Channel $($ Watts)	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Standard Limits $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Percent of Limit
Other Users*								0.83
AT\&T LTE	89	PW P65 \#1\&2 Andrew \#1	740	2	1476	0.1541	0.4933	3.12
AT\&T LTE	89	CCI TPE $\# 1,2,3$	1900	2	2921	0.3050	1.0000	3.05
AT\&T LTE	89	CCI TPE $\# 1,2,3$	2300	2	1285	0.1342	1.0000	1.34
AT\&T UMTS	89	PW 7770 $\# 1,2,3$	880	2	293	0.0306	0.5867	0.52
AT\&T UMTS	89	PW 7770 $\# 1,2,3$	1900	2	573	0.0598	1.0000	0.60
AT\&T GSM	89	PW 7770 $\# 1,2,3$	880	1	149	0.0078	0.5867	0.13
Total								9.60%

* Per CSC records.

Proposed - On Upper Parking Level

Carrier $\&$ Technology	Centerline Ht (feet)	Antennas (All Sectors)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Standard Limits $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Percent of Limit
Other Users *								2.77
AT\&T LTE	46	PW P65 \#1\&2 Andrew \#1	740	2	1476	0.6635	0.4933	13.45
AT\&T LTE	46	CCI TPE $\# 1,2,3$	1900	2	2921	1.3131	1.0000	13.13
AT\&T LTE	46	CCI TPE $\# 1,2,3$	2300	2	1285	0.5776	1.0000	5.78
AT\&T UMTS	46	PW 7770 $\# 1,2,3$	880	2	293	0.1317	0.5867	2.24
AT\&T UMTS	46	PW 7770 $\# 1,2,3$	1900	2	573	0.2576	1.0000	2.58
AT\&T GSM	46	PW 7770 $\# 1,2,3$	880	1	149	0.0335	0.5867	0.57
Total								40.52%

* Per CSC records.

Structural information:

The attached structural analysis demonstrates that the tower and foundation have adequate structural capacity to accommodate the proposed equipment modifications. (GPD Engineering, 4-18-16). Please note that structural modifications referenced in the analysis have already been installed and were considered in the analysis.

DEPARTMENT OF COMMUNITY SERVICES

April 10, 1997

Thomas A. Cookingham, AICP SBA, Inc.
300 Research Parkway
Meriden, CT 06450

Subject: 29 South Main St.

Dear Mr. Cookingham:
Approval has been granted for the site plan application for the subject property. The approval is for the construction of a forty (40) foot stub tower with associated equipment on the penthouse of the parking garage.

The "associated equipment" is detailed on the two (2) sheet plan set.
Specifically, one sheet is entitled "Zoning Drawing - rev. date: 11-3-96" sheet 2 entitled, "zoning elevations - rev. date 3-3-87."

Please submit to the Planning Office as soon as possible two (2) blueprint copies and one (1) mylar set of the approved plans, all signed and sealed by the professional responsible for preparing the plans.

If we can be of further assistance, please call me at 523-3123.

Very truly yours,

Mile Limson
Acting Town Planner
c: Ron Van Winklle, Director of Community Services Don Foster, Town Planner

29SMain

Jitwentis 10, 2003

a/k kapho Aventie

STATEOICONNECTICUT
G'ONNECTICUT SITING COUNCIL

TS-ATT-155-021216
CSC Approval
\&
Site Plan Excerpts from TS Application
 to wptrove whor sharing at an existing telecommunications rooftop facility located at 20 Soueh Aüin Strunt, West Harttimd, Connecticut.

Disil Amoricy fialum:
 usa of this exibing tower sio is techaically, legally, environmentally, and exonomically featible and
 hen, wherul tine :harer mie af ilis facility to avoid the unnecessary proliferalion of tower structures. This

 indy aquira am explain request to this agency pursuant to General Statutes \& 16 - 50 an or notice phrsumat to

 mane and of sivil pemalies in an amount not less than one thousand dollars per day for eath day of cumstution on operation in material violation.

Fhim thexision applies only to mis sequest for tower sharing and is not applicable to any other request or - whytucthor.

Vary ruly purns,

'haliman

MACibal

4: Hantath Runert R. Bemvier, Mayor, Town of Wess IFartford

 "haigh,jhtr IB. Fisher, Bisy. Cuddy \& Feder \& Worby LI.P

UR
PETER MAXWELL 795 BROOK STREET PETER MAXWELL ROCKY HILL

Est Cost........ $\$$
Permit Fee...... $\$ \quad 1245$
State Fee.......\$ 13.12
Work W/O Permit $\$ \quad 0$
Occupancy Fee... \$ $\quad 0$
Additional Fee.. \$ $\quad 0$
LOCATION: 0029 SOUTH MAIN STREET OWNER:LLC TOWN CENTER WEST ASS

APPLICANT PHONE: 529-8882
FAX: 529-5566

WORK DESCRIPTION:
ADDING TELECOMMUNICATIONS ANTENNAS ONTO THE EXISTING LATTICE TOWER ON THE PARKING GARAGE AND PLACING EQUIPMENT CABINETS ON THE EXISTING PARKING GARAGE DECK AND ENCLOSING WITH FENCING PER DRAWINGS SUBMITTED
** BUILDING, STREET, AND EACH SIDE LOT LINE TO BE IN ACCORDANCE WITH CERTIFIED ENGINEER'S PLOT PLAN ON FILE.
NOTE: THE RECIPIENT OF THIS PERMIT ACCEPTS THIS PERMIT ON THE CONDITION THAT HE, THE OWNER OR REPRESENTING THE OWNER, AGREES TO COMPLY WITH ALL BUILDING AND ZONING ORDINANCES OF THE TOWN OF WEST HARTFORD AND THE STATE STATUTES OF CONNECTICUT REGARDING THE USE, OCCUPANCY AND TYPE OF BUILDING TO BE CONSTRUCTED.

CODE : 32

$\frac{3-4-03}{\text { DATE }}$ $\frac{A}{\text { BUILDING OFFICIAL }} \frac{2 / 403}{\text { DATE }}$

Date: April 18, 2016
GPD Engineering and Architecture Professional Corporation
Charles McGuirt
Crown Castle.
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6607

Subject:

Carrier Designation:

Structural Analysis Report

AT\&T Mobility Co-Locate
 Carrier Site Number: CT5843
 Carrier Site Name:
 AWE West Hartford Central
 Crown Castle BU Number: 876328
 Crown Castle Site Name:
 WEST HARTFORD PARKING GARAGE
 Crown Castle JDE Job Number: 372963
 Crown Castle Work Order Number: 1222590
 Crown Castle Application Number: 341859 Rev. 2

520 South Main Street, Ste 2531
Akron, OH 44311
(216) 927-8663
dpalkovic@gpdgroup.com

Crown Castle Designation:

2016777.876328.15

Site Data:

27-31 South Main St., West Hartford, CT 06110, Hartford County Latitude $41^{\circ} 45^{\prime} 36.41$ ", Longitude - $72^{\circ} 44^{\prime} 35.25^{\prime \prime}$
40.25 Foot - Self Support and Modified Parking Garage Structural Analysis

Dear Charles McGuirt,
GPD is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 893292, in accordance with application 341859, revision 2.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.
The analysis has been performed in accordance with the 2013 Connecticut State Building Code and the 2003 IBC based upon a 3 -second gust wind speed of 100 mph as well as the guidelines stated in TIA/EIA-222-F based upon a fastest mile wind speed of 80 mph .

We at GPD appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural Analysis prepared by: Eric Schnaus
Respectfully submitted,
Christopher J. Scheks, P.E.
Connecticut \#: 0030026

1) INTRODUCTION

The tower is supported on three legs and has two major sections. It has a triangular cross section made of bolted connections, with an " X " frame configuration. The tower is fabricated with pipe legs and angle diagonals. The tower is galvanized and has no tower lightning.

This tower is a 40.25 ft Self Support tower designed by ROHN in April of 1997. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-E. The tower base connects to an I-Beam frame that is anchored to the parking garage deck. The base of the tower frame is 65 ' above grade.

Modifications designed by GPD (Project \#: 2015777.876328.08, dated 6/3/2015) consist of installing extension plates to the tower base frame connections and extension plates to the existing stair well walls at varying elevations. These modifications have been installed and were considered in this analysis.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of the 2013 Connecticut State Building Code and the 2003 IBC based upon a 3 -second gust wind speed of 100 mph as well as the guidelines stated in TIA/EIA-222-F based upon a fastest mile wind speed of 80 mph . Additionally a 28 mph fastest-mile with 1.00 inch ice thickness (in accordance with ASCE 7-05) and 50 mph under service loads per the TIA/EIA-222-F.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
92.0	92.0	3	Sabre	C10857011 12' V-Boom	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 3 / 8 \end{aligned}$	1
	89.0	3	CCI Antennas	TPA-65R-LCUUUU-H8			
		3	Ericsson	RRUS 32 B30			
		1	Raycap	DC6-48-60-18-8F			
		3	Ericsson	WCS RRUS-32-B30			

Notes:

1) See Appendix B for the proposed coax layout.

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|\|l} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
102.0	103.0	3	RFS Celwave	APXVTM14-C-120	1	5/8	1
		3	Alcatel Lucent	TD-RRH8x20-25			
		1	RFS Celwave	APXV9ERR18-C-A20	3	1-1/4	
		2	RFS Celwave	APXVSPP18-C-A20			
		2	Alcatel Lucent	1900MHz RRH (65MHz)			
		1	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
	102.0	1	Alcatel Lucent	1900MHz RRH (65MHz)			
		2	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
		1		Sector Mount [SM 502-3]			
92.0	92.0	1		T-Arm Mount [TA 702-3]			2
		3	Ericsson	RRUS-11			
		6	Powerwave Tech	LGP2140X			
		6	Powerwave Tech	LGP2140X			4
		3	Ericsson	RRUS-11			4
	89.0	3	Powerwave Tech	7770.00	$\begin{aligned} & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 1-5 / 8 \\ 3 / 4 \\ 3 / 8 \end{gathered}$	3
		1	Powerwave Tech	P65-15-XLH-RR			
		1	Andrew	SBNH-1D6565C			
		1	Powerwave Tech	P65E-17-XLH-RR			
		3	Powerwave Tech	7020.00			
		1	Raycap	DC6-48-60-18-8F			
75.0	77.0	1	Lucent	KS24019-L112A	1	1/2	
	75.0	1		Side Arm Mount [SO 3021]			

Notes:

1) Reserved Equipment.
2) Equipment to be removed, not considered in this analysis.
3) Equipment to be relocated onto the proposed mount with a centerline of 89'.
4) Equipment to be relocated onto the proposed mount with a centerline of 92'.

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
105	105	12		DB980H90	12	$1-5 / 8$
		3		Leg Mounting Frame		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Tower Drawings	Rohn Eng. File\#: 345895W, Dated: 4/15/1997	1440544	CCIsites
Tower Mapping	GPD Project \#: 2014777.876328.03, Dated: 3/04/2014	1440544	CCIsites
Base Frame Design	Greiner Project \#: F101508.60, Dated: 2/20/1997	5460756	CCIsites
Parking Garage Design	Unistress Project: Towne Center Garage, Rev. 4, Dated: $10 / 31 / 1988$	5460756	CCIsites
Parking Garage Modifications	GPD Project \#: Passing Analysis	2015777.876328.08, Dated: 6/3/2015	5735731
Parking Garage Modifications	GPD Project \#: 2015777.876328.08, Dated: 6/3/2015	5735691	CCIsites
Modification Inspection Report	GPD Project \#: 2015777.876328.10, Dated 1/27/2016	6076906	CCIsites

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
T1	105.25-85.125	Leg	ROHN 2.5 STD	3	-14.60	54.96	26.6	Pass
T2	85.125-65	Leg	ROHN 2.5 STD	38	-37.89	50.20	75.5	Pass
T1	105.25-85.125	Diagonal	L1-1/2x1-1/2x1/8	9	-3.31	3.35	98.7	Pass
T2	85.125-65	Diagonal	L1-3/4x1-3/4x3/16	46	-3.06	4.49	68.2	Pass
T1	105.25-85.125	Top Girt	L2x $2 \times 1 / 8$	5	-0.36	2.83	12.7	Pass
T2	85.125-65	Top Girt	L2x $2 \times 1 / 8$	41	-0.14	2.83	$\begin{gathered} 5.1 \\ 6.0(\mathrm{~b}) \end{gathered}$	Pass
						Summary	ELC:	LC7
						Leg (T2)	75.5	Pass
						Diagonal (T1)	98.7	Pass
						Top Girt (T1)	12.7	Pass
						Bolt Checks	96.6	Pass
						Rating =	98.7	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Base Frame and Parking Garage	Varies	78.2	Pass

Structure Rating (max from all components) =
Notes:

1) The base frame and parking garage capacity was determined based on reaction comparison from the previous modification design passing analysis (GPD Project \#: 2015777.876328.08, dated 6/3/2015). See Appendix C for the reaction comparison and Appendix D for the referenced design and previous calculations.

4.1) Recommendations

The design of the existing tower is sufficient for the proposed loading and will not require modifications.

The design of the modified parking garage is sufficient for the proposed loading and will not require additional modifications.

5) DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

GPD
520 South Main Street Suite 2531
Akron, Ohio 4431
Phone: (330) 572-2100
FAX: (330) 572-2101

BU \#: 876328 / WEST HARTFORD PARKING GARAGE Project: 2016777.876328 .15

Centek Engineering, Inc.
 3-2 North Branford Road
 Branford, Connecticut 06405
 Phone: (203) 488-0580
 Fax: (203) 488-8587

Steven L. Levine
Real Estate Consultant

April 22, 2016
Ronald F. Van Winkle, Town Manager
Town of West Hartford
Town Hall 50 S. Main St., Rm. 313
West Hartford, Connecticut 06107

Re: New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 29 South Main Street, West Hartford (Owners, Crown Castle and Town Center West Associates LLC)

Dear Mr. Van Winkle:
In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT\&T") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review AT\&T's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The enclosed Notice fully sets forth the AT\&T proposal. However, if you have any questions or require any further information on the plans for the site or the Siting Council's procedures, please contact the undersigned at 860-830-0380 or Ms. Melanie Bachman, Acting Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Real Estate Consultant
Enclosure

Centek Engineering, Inc.
 3-2 North Branford Road
 Branford, Connecticut 06405
 Phone: (203) 488-0580
 Fax: (203) 488-8587

Steven L. Levine
Real Estate Consultant

April 22, 2016
Town Center West Associates LLC
433 South Main Street
West Hartford, Connecticut 06110

Re: New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 29 South Main Street, West Hartford (Owners, Crown Castle and Town Center West Associates LLC)

To Whom It May Concern:
In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT\&T") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review AT\&T's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The enclosed Notice fully sets forth the AT\&T proposal. However, if you have any questions or require any further information on the plans for the site or the Siting Council's procedures, please contact either your tenant Crown Castle International; the undersigned at 860-830-0380; or Ms. Melanie Bachman, Acting Executive Director, Connecticut Siting Council at (860) 827-2935..

Steven L. Levine
Real Estate Consultant

Enclosure

Date: April 18, 2016
GPD Engineering and Architecture Professional Corporation
Charles McGuirt
Crown Castle.
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6607

Subject:

Carrier Designation:

Structural Analysis Report

AT\&T Mobility Co-Locate
 Carrier Site Number: CT5843
 Carrier Site Name:
 AWE West Hartford Central
 Crown Castle BU Number: 876328
 Crown Castle Site Name:
 WEST HARTFORD PARKING GARAGE
 Crown Castle JDE Job Number: 372963
 Crown Castle Work Order Number: 1222590
 Crown Castle Application Number: 341859 Rev. 2

520 South Main Street, Ste 2531
Akron, OH 44311
(216) 927-8663
dpalkovic@gpdgroup.com

Crown Castle Designation:

2016777.876328.15

Site Data:

27-31 South Main St., West Hartford, CT 06110, Hartford County Latitude $41^{\circ} 45^{\prime} 36.41$ ", Longitude - $72^{\circ} 44^{\prime} 35.25^{\prime \prime}$
40.25 Foot - Self Support and Modified Parking Garage Structural Analysis

Dear Charles McGuirt,
GPD is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 893292, in accordance with application 341859, revision 2.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.
The analysis has been performed in accordance with the 2013 Connecticut State Building Code and the 2003 IBC based upon a 3 -second gust wind speed of 100 mph as well as the guidelines stated in TIA/EIA-222-F based upon a fastest mile wind speed of 80 mph .

We at GPD appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural Analysis prepared by: Eric Schnaus
Respectfully submitted,
Christopher J. Scheks, P.E.
Connecticut \#: 0030026

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

8) APPENDIX D

Installed Modification Design Calculations

1) INTRODUCTION

The tower is supported on three legs and has two major sections. It has a triangular cross section made of bolted connections, with an " X " frame configuration. The tower is fabricated with pipe legs and angle diagonals. The tower is galvanized and has no tower lightning.

This tower is a 40.25 ft Self Support tower designed by ROHN in April of 1997. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-E. The tower base connects to an I-Beam frame that is anchored to the parking garage deck. The base of the tower frame is 65 ' above grade.

Modifications designed by GPD (Project \#: 2015777.876328.08, dated 6/3/2015) consist of installing extension plates to the tower base frame connections and extension plates to the existing stair well walls at varying elevations. These modifications have been installed and were considered in this analysis.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of the 2013 Connecticut State Building Code and the 2003 IBC based upon a 3 -second gust wind speed of 100 mph as well as the guidelines stated in TIA/EIA-222-F based upon a fastest mile wind speed of 80 mph . Additionally a 28 mph fastest-mile with 1.00 inch ice thickness (in accordance with ASCE 7-05) and 50 mph under service loads per the TIA/EIA-222-F.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
92.0	92.0	3	Sabre	C10857011 12' V-Boom	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 3 / 8 \end{aligned}$	1
	89.0	3	CCI Antennas	TPA-65R-LCUUUU-H8			
		3	Ericsson	RRUS 32 B30			
		1	Raycap	DC6-48-60-18-8F			
		3	Ericsson	WCS RRUS-32-B30			

Notes:

1) See Appendix B for the proposed coax layout.

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|\|l} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
102.0	103.0	3	RFS Celwave	APXVTM14-C-120	1	5/8	1
		3	Alcatel Lucent	TD-RRH8x20-25			
		1	RFS Celwave	APXV9ERR18-C-A20	3	1-1/4	
		2	RFS Celwave	APXVSPP18-C-A20			
		2	Alcatel Lucent	1900MHz RRH (65MHz)			
		1	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
	102.0	1	Alcatel Lucent	1900MHz RRH (65MHz)			
		2	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
		1		Sector Mount [SM 502-3]			
92.0	92.0	1		T-Arm Mount [TA 702-3]			2
		3	Ericsson	RRUS-11			
		6	Powerwave Tech	LGP2140X			
		6	Powerwave Tech	LGP2140X			4
		3	Ericsson	RRUS-11			4
	89.0	3	Powerwave Tech	7770.00	$\begin{aligned} & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 1-5 / 8 \\ 3 / 4 \\ 3 / 8 \end{gathered}$	3
		1	Powerwave Tech	P65-15-XLH-RR			
		1	Andrew	SBNH-1D6565C			
		1	Powerwave Tech	P65E-17-XLH-RR			
		3	Powerwave Tech	7020.00			
		1	Raycap	DC6-48-60-18-8F			
75.0	77.0	1	Lucent	KS24019-L112A	1	1/2	
	75.0	1		Side Arm Mount [SO 3021]			

Notes:

1) Reserved Equipment.
2) Equipment to be removed, not considered in this analysis.
3) Equipment to be relocated onto the proposed mount with a centerline of 89'.
4) Equipment to be relocated onto the proposed mount with a centerline of 92'.

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
105	105	12		DB980H90	12	$1-5 / 8$
		3		Leg Mounting Frame		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Tower Drawings	Rohn Eng. File\#: 345895W, Dated: 4/15/1997	1440544	CCIsites
Tower Mapping	GPD Project \#: 2014777.876328.03, Dated: 3/04/2014	1440544	CCIsites
Base Frame Design	Greiner Project \#: F101508.60, Dated: 2/20/1997	5460756	CCIsites
Parking Garage Design	Unistress Project: Towne Center Garage, Rev. 4, Dated: $10 / 31 / 1988$	5460756	CCIsites
Parking Garage Modifications	GPD Project \#: Passing Analysis	2015777.876328.08, Dated: 6/3/2015	5735731
Parking Garage Modifications	GPD Project \#: 2015777.876328.08, Dated: 6/3/2015	5735691	CCIsites
Modification Inspection Report	GPD Project \#: 2015777.876328.10, Dated 1/27/2016	6076906	CCIsites

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
T1	105.25-85.125	Leg	ROHN 2.5 STD	3	-14.60	54.96	26.6	Pass
T2	85.125-65	Leg	ROHN 2.5 STD	38	-37.89	50.20	75.5	Pass
T1	105.25-85.125	Diagonal	L1-1/2x1-1/2x1/8	9	-3.31	3.35	98.7	Pass
T2	85.125-65	Diagonal	L1-3/4x1-3/4x3/16	46	-3.06	4.49	68.2	Pass
T1	105.25-85.125	Top Girt	L2x $2 \times 1 / 8$	5	-0.36	2.83	12.7	Pass
T2	85.125-65	Top Girt	L2x $2 \times 1 / 8$	41	-0.14	2.83	$\begin{gathered} 5.1 \\ 6.0(\mathrm{~b}) \end{gathered}$	Pass
						Summary	ELC:	LC7
						Leg (T2)	75.5	Pass
						Diagonal (T1)	98.7	Pass
						Top Girt (T1)	12.7	Pass
						Bolt Checks	96.6	Pass
						Rating =	98.7	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Base Frame and Parking Garage	Varies	78.2	Pass

Structure Rating (max from all components) =
Notes:

1) The base frame and parking garage capacity was determined based on reaction comparison from the previous modification design passing analysis (GPD Project \#: 2015777.876328.08, dated 6/3/2015). See Appendix C for the reaction comparison and Appendix D for the referenced design and previous calculations.

4.1) Recommendations

The design of the existing tower is sufficient for the proposed loading and will not require modifications.

The design of the modified parking garage is sufficient for the proposed loading and will not require additional modifications.

5) DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

TNXTOWER OUTPUT

GPD
520 South Main Street Suite 2531
Akron, Ohio 4431
Phone: (330) 572-2100
FAX: (330) 572-2101

BU \#: 876328 / WEST HARTFORD PARKING GARAGE Project: 2016777.876328 .15

Feed Line Distribution Chart
65' - 105'3"
Round \qquad Flat \qquad App In Face \qquad App Out Face \qquad Truss Leg

tnxTower	Job		$\begin{array}{ll} \hline \text { Page } & \\ & 1 \text { of } 11 \end{array}$
GPD 520 South Main Street Suite 2531	Project	2016777.876328.15	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:09:49 04/18/16 } \end{array}$
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	Crown Castle	Designed by ESchnaus

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 105.25 ft above the ground line.
The base of the tower is set at an elevation of 65.00 ft above the ground line.
The face width of the tower is 6.56 ft at the top and 8.56 ft at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Basic wind speed of 80 mph .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 28 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
$\sqrt{ }$ Escalate Ice Always Use Max Kz Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
$\sqrt{ }$ Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TIA-222-G Bracing Resist. Exemption
Use TIA-222-G Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	$f t$			ft		$f t$
T1	105.25-85.13			6.56	1	20.13
T2	85.13-65.00			6.56	1	20.13

tnxTower	Job		Page 2 of 11
GPD 520 South Main Street Suite 2531	Project	2016777.876328 .15	$\begin{aligned} & \text { Date } \\ & \text { 13:09:49 04/18/16 } \end{aligned}$
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	Crown Castle	Designed by ESchnaus

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation ft	Diagonal Spacing ft	Bracing Type	Has K Brace End Panels	Has Horizontals	Top Girt Offset in	Bottom Girt Offset in
T1	105.25-85.13	4.03	X Brace	No	No	0.0000	0.0000
T2	85.13-65.00	5.01	X Brace	No	No	0.0000	1.0000

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{gathered} \text { Leg } \\ \text { Type } \end{gathered}$	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 105.25-85.13	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1-1/2x1-1/2x1/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 85.13-65.00	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1-3/4x $1-3 / 4 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation	Top Girt Type	Top Girt $f t$		Size	Top Girt	Bottom Girt
Type	Brade	Bottom Girt	Size	Bottom Girt		
Grade						

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
T1	0.00	0.0000	A36	1	1	1	0.0000	0.0000	0.0000
105.25-85.13			(36 ksi)						
T2 85.13-65.00	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	0.0000	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{1}$							
			Legs	X	$\begin{gathered} K \\ \text { Brace } \end{gathered}$	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Brace						
				Diags	Diags					
				X	X	X	X	X	X	X
$f t$				Y						
T1	Yes	No	1	1	1	1	1	1	1	1
105.25-85.13				1	1	1	1	1	1	1
T2	Yes	No	1	1	1	1	1	1	1	1
85.13-65.00				1	1	1	1	1	1	1

[^1]| tnxTower | Job | | $\begin{array}{ll} \hline \text { Page } & \\ & 3 \text { of } 11 \end{array}$ |
| :---: | :---: | :---: | :---: |
| GPD
 520 South Main Street Suite 2531 | Project | 2016777.876328.15 | $\begin{aligned} & \text { Date } \\ & \text { 13:09:49 04/18/16 } \end{aligned}$ |
| Akron, Ohio 44311
 Phone: (330) 572-2100
 FAX: (330) 572-2101 | Client | Crown Castle | Designed by ESchnaus |

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \text { T1 } \\ 105.25-85.13 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T2 85.13-65.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Bolt Size in		Bolt Size in	No.								
T1	Flange	0.6250	4	0.5000	1	0.5000	1	0.0000	0	0.0000	0	0.0000	0	0.0000	0
105.25-85.13		A325N		A325X		A325X		A325N		A325N		A325N		A325N	
T2 85.13-65.00	Flange	0.0000	0	0.5000	1	0.5000	1	0.0000	0	0.0000	0	0.0000	0	0.0000	0
		A325N		A325X		A325X		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement $f t$	Face Offset in	Lateral Offset (Frac FW)	\#	\# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
LDF4-50A (1/2")	B	Yes	Ar (CfAe)	75.00-65.00	0.0000	-0.25	1	1	0.0000	0.6300		0.15
Feedline Ladder (Af)	B	Yes	Af (CfAe)	105.25-65.00	0.0000	-0.2	1	1	0.0000	3.0000	12.0000	8.40
HB114-1-08U4-M5J (1-1/4")	B	Yes	Ar (CfAe)	102.00-65.00	0.0000	-0.2	3	3	$\begin{aligned} & 0.7500 \\ & 0.0000 \end{aligned}$	1.5400		1.08
$\begin{gathered} \text { HB058-M12-XXXF } \\ \left(5 / 8^{\prime \prime}\right) \end{gathered}$	B	Yes	Ar (CfAe)	102.00-65.00	0.0000	-0.15	1	1	0.0000	0.8400		0.24
Feedline Ladder (Af)	B	Yes	Af (CfAe)	86.00-65.00	0.0000	0.38	1	1	0.0000	3.0000	12.0000	8.40
FLC 158-50J (1-5/8")	B	Yes	Ar (CfAe)	92.00-65.00	0.0000	0.38	6	3	$\begin{aligned} & 0.7500 \\ & 0.0000 \end{aligned}$	2.0150		0.92
WR-VG86ST-BRD (3/4")	B	Yes	Ar (CfAe)	92.00-65.00	3.0000	0.4	2	2	0.7500	0.7950		0.60
$\begin{gathered} \text { FB-L98B-002-75000 } \\ \left(3 / 8^{\prime \prime}\right) \end{gathered}$	B	Yes	Ar (CfAe)	92.00-65.00	3.0000	0.4	2	2	0.0000	0.0000		0.06
WR-VG86ST-BRD (3/4")	B	Yes	Ar (CfAe)	92.00-65.00	0.0000	0.4	2	2	0.0000	0.0000		0.60
Climbing Ladder (CCI)	C	Yes	Af (CfAe)	105.25-65.00	-2.0000	0	1	1	0.0000	3.0000	13.0000	4.81
Safety Line (3/8")	C	Yes	Ar (CaAa)	105.25-65.00	-2.0000	0	1	1	0.0000	0.3750		0.22

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job BU \#: 876328 / WEST HARTFORD PARKING GARAGE		Page 4 of 11
	Project	2016777.876328 .15	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Date } \\ \text { 13:09:49 04/18/16 } \end{array} \\ \hline \end{array}$
	Client	Crown Castle	Designed by ESchnaus

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
\(\circ\)
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow[t]{5}{*}{Sector Mount [SM 502-3]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 33.02 \& 33.02 \& 1.67

\hline \& \& \& \& \& \& 1/2" Ice \& 47.36 \& 47.36 \& 2.22

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 61.70 \& 61.70 \& 2.77

\hline \& \& \& \& \& \& 2 " Ice \& 90.38 \& 90.38 \& 3.88

\hline \& \& \& \& \& \& 4 " Ice \& 147.74 \& 147.74 \& 6.08

\hline \multirow[t]{5}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 8.26 \& 6.71 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.81 \& 7.66 \& 0.14

\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.36 \& 8.49 \& 0.22

\hline \& \& \& \& \& \& 2 " Ice \& 10.50 \& 10.20 \& 0.39

\hline \& \& \& \& \& \& 4 " Ice \& 12.88 \& 13.98 \& 0.87

\hline \multirow[t]{5}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 8.26 \& 6.71 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.81 \& 7.66 \& 0.14

\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.36 \& 8.49 \& 0.22

\hline \& \& \& \& \& \& 2 " Ice \& 10.50 \& 10.20 \& 0.39

\hline \& \& \& \& \& \& 4 " Ice \& 12.88 \& 13.98 \& 0.87

\hline \multirow[t]{5}{*}{APXV9ERR18-C-A20 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 8.73 \& 7.18 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.49 \& 8.46 \& 0.15

\hline \& \& \& 1.00 \& \& \& $1^{\prime \prime}$ Ice \& 10.21 \& 9.60 \& 0.23

\hline \& \& \& \& \& \& 2 " Ice \& 11.60 \& 11.53 \& 0.41

\hline \& \& \& \& \& \& 4 " Ice \& 14.51 \& 15.77 \& 0.94

\hline \multirow[t]{5}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 7.13 \& 4.96 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.66 \& 5.75 \& 0.13

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 8.18 \& 6.47 \& 0.19

\hline \& \& \& \& \& \& 2 " Ice \& 9.26 \& 8.01 \& 0.34

\hline \& \& \& \& \& \& 4 " Ice \& 11.53 \& 11.41 \& 0.75

\hline \multirow[t]{5}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 7.13 \& 4.96 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.66 \& 5.75 \& 0.13

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 8.18 \& 6.47 \& 0.19

\hline \& \& \& \& \& \& 2 " Ice \& 9.26 \& 8.01 \& 0.34

\hline \& \& \& \& \& \& 4 " Ice \& 11.53 \& 11.41 \& 0.75

\hline \multirow[t]{5}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 7.13 \& 4.96 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.66 \& 5.75 \& 0.13

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 8.18 \& 6.47 \& 0.19

\hline \& \& \& \& \& \& 2 " Ice \& 9.26 \& 8.01 \& 0.34

\hline \& \& \& \& \& \& 4 " Ice \& 11.53 \& 11.41 \& 0.75

\hline \multirow[t]{5}{*}{1900 MHz RRH (65 MHz)} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 1.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 2.70 \& 2.77 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.94 \& 3.01 \& 0.08

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 3.18 \& 3.26 \& 0.11

\hline \& \& \& \& \& \& 2 " Ice \& 3.70 \& 3.78 \& 0.18

\hline \& \& \& \& \& \& 4 " Ice \& 4.85 \& 4.93 \& 0.35

\hline \multirow[t]{5}{*}{1900 MHz RRH (65 MHz)} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 1.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 2.70 \& 2.77 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.94 \& 3.01 \& 0.08

\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.18 \& 3.26 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& 3.70 \& 3.78 \& 0.18

\hline \& \& \& \& \& \& 4 " Ice \& 4.85 \& 4.93 \& 0.35

\hline \multirow[t]{5}{*}{1900 MHz RRH (65 MHz)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 1.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{102.00} \& No Ice \& 2.70 \& 2.77 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.94 \& 3.01 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.18 \& 3.26 \& 0.11

\hline \& \& \& \& \& \& 2 " Ice \& 3.70 \& 3.78 \& 0.18

\hline \& \& \& \& \& \& 4 " Ice \& 4.85 \& 4.93 \& 0.35

\hline \multirow[t]{4}{*}{800MHz 2X50W RRH W/FILTER} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 1.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{102.00} \& No Ice \& 2.40 \& 2.25 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.61 \& 2.46 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.83 \& 2.68 \& 0.11

\hline \& \& \& \& \& \& 2 " Ice \& 3.30 \& 3.13 \& 0.17

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow{9}{*}{7770.00 w/ Mount Pipe} \& \multirow{7}{*}{A} \& \multirow{7}{*}{From Leg} \& 0.00 \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{92.00} \& 1/2" Ice \& 14.50 \& 12.49 \& 0.22

\hline \& \& \& -3.00 \& \& \& $1{ }^{1 /}$ Ice \& 15.33 \& 14.04 \& 0.33

\hline \& \& \& \& \& \& 2" Ice \& 16.94 \& 16.39 \& 0.59

\hline \& \& \& \& \& \& 4" Ice \& 20.27 \& 21.28 \& 1.30

\hline \& \& \& 4.00 \& \& \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& 1" Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& $2{ }^{\prime \prime}$ Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \& \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{7770.00 w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2" Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \& \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{7770.00 w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2" Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \& \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{P65-15-XLH-RR w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.55 \& 4.38 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.36 \& 5.51 \& 0.11

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.10 \& 6.50 \& 0.17

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2" Ice \& 9.42 \& 8.17 \& 0.31

\hline \& \& \& \& \& \& 4" Ice \& 12.24 \& 11.86 \& 0.72

\hline \multirow[t]{5}{*}{SBNH-1D6565C w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 11.45 \& 9.36 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.06 \& 10.68 \& 0.17

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 12.69 \& 11.71 \& 0.26

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2 " Ice \& 14.03 \& 13.82 \& 0.48

\hline \& \& \& \& \& \& 4 " Ice \& 17.05 \& 18.22 \& 1.09

\hline \multirow[t]{5}{*}{P65E-17-XLH-RR w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 11.47 \& 8.70 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.08 \& 10.11 \& 0.18

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 12.71 \& 11.38 \& 0.27

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2 " Ice \& 14.07 \& 13.58 \& 0.49

\hline \& \& \& \& \& \& 4" Ice \& 17.08 \& 18.18 \& 1.10

\hline \multirow[t]{5}{*}{RRUS 32 B30} \& \& \& 4.00 \& \& \& No Ice \& 1.57 \& 1.74 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.70 \& 1.96 \& 0.08

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.83 \& 2.19 \& 0.10

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2 " Ice \& 2.08 \& 2.67 \& 0.16

\hline \& \& \& \& \& \& 4" Ice \& 2.59 \& 3.75 \& 0.32

\hline \multirow[t]{5}{*}{RRUS 32 B30} \& \& \& 4.00 \& \& \& No Ice \& 1.57 \& 1.74 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.70 \& 1.96 \& 0.08

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.83 \& 2.19 \& 0.10

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2" Ice \& 2.08 \& 2.67 \& 0.16

\hline \& \& \& \& \& \& 4" Ice \& 2.59 \& 3.75 \& 0.32

\hline \multirow[t]{3}{*}{RRUS 32 B30} \& \& \& 4.00 \& \& \& No Ice \& 1.57 \& 1.74 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.70 \& 1.96 \& 0.08

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.83 \& 2.19 \& 0.10

\hline \multirow{6}{*}{WCS RRUS-32-B30} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2" Ice \& 2.08 \& 2.67 \& 0.16

\hline \& \& \& \& \& \& 4 " Ice \& 2.59 \& 3.75 \& 0.32

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.93 \& 2.76 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.08 \& 3.02 \& 0.10

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.22 \& 3.29 \& 0.14

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{92.00} \& 2" Ice \& 2.50 \& 3.85 \& 0.21

\hline \multirow{4}{*}{WCS RRUS-32-B30} \& \& \& \& \& \& 4 " Ice \& 3.07 \& 5.08 \& 0.41

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.93 \& 2.76 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.08 \& 3.02 \& 0.10

\hline \& \& \& -3.00 \& \& \& 1" Ice \& 2.22 \& 3.29 \& 0.14

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

K

\hline \& \& \& \& \& \& 2" Ice \& 2.50 \& 3.85 \& 0.21

\hline \& \& \& \& \& \& 4" Ice \& 3.07 \& 5.08 \& 0.41

\hline WCS RRUS-32-B30 \& C \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 1.93 \& 2.76 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.08 \& 3.02 \& 0.10

\hline \& \& \& -3.00 \& \& \& 1 " Ice \& 2.22 \& 3.29 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& 2.50 \& 3.85 \& 0.21

\hline \& \& \& \& \& \& 4 " Ice \& 3.07 \& 5.08 \& 0.41

\hline (2) LGP2140X \& A \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 0.00 \& 0.38 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.62 \& 0.03

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.89 \& 0.05

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 1.54 \& 0.13

\hline (2) LGP2140X \& B \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 0.00 \& 0.38 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.62 \& 0.03

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.00 \& 0.89 \& 0.05

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 1.54 \& 0.13

\hline (2) LGP2140X \& C \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 0.00 \& 0.38 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.62 \& 0.03

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.89 \& 0.05

\hline \& \& \& \& \& \& 4 " Ice \& 0.00 \& 1.54 \& 0.13

\hline 7020.00 \& A \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 0.12 \& 0.20 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.17 \& 0.28 \& 0.01

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.23 \& 0.36 \& 0.01

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.38 \& 0.56 \& 0.02

\hline \& \& \& \& \& \& 4" Ice \& 0.78 \& 1.05 \& 0.07

\hline 7020.00 \& B \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 0.12 \& 0.20 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.17 \& 0.28 \& 0.01

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.23 \& 0.36 \& 0.01

\hline \& \& \& \& \& \& 2 " Ice \& 0.38 \& 0.56 \& 0.02

\hline \& \& \& \& \& \& 4" Ice \& 0.78 \& 1.05 \& 0.07

\hline 7020.00 \& C \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 0.12 \& 0.20 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.17 \& 0.28 \& 0.01

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.23 \& 0.36 \& 0.01

\hline \& \& \& \& \& \& 2 " Ice \& 0.38 \& 0.56 \& 0.02

\hline \& \& \& \& \& \& 4" Ice \& 0.78 \& 1.05 \& 0.07

\hline RRUS-11 \& A \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 3.25 \& 1.37 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 3.74 \& 1.74 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& 4.27 \& 2.14 \& 0.15

\hline \& \& \& \& \& \& 4 " Ice \& 5.43 \& 3.04 \& 0.31

\hline RRUS-11 \& B \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 3.25 \& 1.37 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 3.74 \& 1.74 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& 4.27 \& 2.14 \& 0.15

\hline \& \& \& \& \& \& 4" Ice \& 5.43 \& 3.04 \& 0.31

\hline RRUS-11 \& C \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 3.25 \& 1.37 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 3.74 \& 1.74 \& 0.09

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.27 \& 2.14 \& 0.15

\hline \& \& \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 5.43 \& 3.04 \& 0.31

\hline \multirow[t]{5}{*}{(2) DC6-48-60-18-8F Surge Suppression Unit} \& A \& From Leg \& 4.00 \& 0.0000 \& 92.00 \& No Ice \& 1.47 \& 1.47 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.67 \& 1.67 \& 0.04

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.88 \& 1.88 \& 0.06

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 2.33 \& 2.33 \& 0.11

\hline \& \& \& \& \& \& 4 " Ice \& 3.38 \& 3.38 \& 0.24

\hline
\end{tabular}

tnxTower	Job		$\begin{array}{ll} \hline \text { Page } & \\ & 8 \text { of } 11 \end{array}$
GPD 520 South Main Street Suite 2531	Project	2016777.876328.15	$\begin{aligned} & \text { Date } \\ & \text { 13:09:49 04/18/16 } \end{aligned}$
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	Crown Castle	Designed by ESchnaus

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$
Front

$f t^{2}$ \& $C_{A} A_{A}$
Side

$f t^{2}$ \& Weight

K

\hline Side Arm Mount [SO 302-1] \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{75.00} \& No Ice \& 1.67 \& 3.27 \& 0.06

\hline \multirow[t]{9}{*}{KS24019-L112A} \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.51 \& 4.99 \& 0.09

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& 1 " Ice \& 3.35 \& 6.71 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& 5.03 \& 10.15 \& 0.19

\hline \& \& \& \& \& \& 4" Ice \& 8.39 \& 17.03 \& 0.32

\hline \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{75.00} \& No Ice \& 0.16 \& 0.16 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.22 \& 0.22 \& 0.01

\hline \& \& \& \multirow[t]{3}{*}{2.00} \& \& \& $1{ }^{1 \prime}$ Ice \& 0.30 \& 0.30 \& 0.01

\hline \& \& \& \& \& \& 2" Ice \& 0.48 \& 0.48 \& 0.02

\hline \& \& \& \& \& \& 4" Ice \& 0.95 \& 0.95 \& 0.06

\hline
\end{tabular}

Maximum Tower Deflections - Service Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
T1	105.25-85.125	0.460	31	0.0665	0.0044
T2	85.125-65	0.158	31	0.0540	0.0031

	Critical Deflections and Radius of Curvature = Service Wind				
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist
ft		Load			Radius of
102.00		Comb.	in	\circ	Curvature
92.00	Sabe C10857011 12' V-Boom (3)	31	0.405	0.0661	0.0042
75.00	Side Arm Mount [SO 302-1]	31	0.247	0.0621	0.0037

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	in	Ct	1.171	\circ	\circ
T1	$105.25-85.125$	0.401	6	0.1692	0.0112
T2	$85.125-65$		6	0.1373	0.0080

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	ont	。
102.00	Sector Mount [SM 502-3]	6	1.032	0.1682	0.0108	35372
92.00	Sabre C10857011 12' V-Boom (3)	6	0.630	0.1580	0.0095	13348
75.00	Side Arm Mount [SO 302-1]	6	0.165	0.0781	0.0044	17686

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Махітит Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	105.25	Leg	A325N	0.6250	4	2.48	13.50	$\begin{aligned} & \hline 0.184 \\ & 1.287 \end{aligned}$	1.333	Bolt Tension
		Diagonal	A325X	0.5000	1	3.27	2.54		1.333	Member Block Shear
		Top Girt	A325X	0.5000	1	0.36	2.72	0.131	1.333	Member Bearing
T2	85.125	Diagonal	A325X	0.5000	1	3.03	4.08	0.742	1.333	Member Bearing
		Top Girt	A325X	0.5000	1	0.22	2.72	0.079	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation $f t$	Size	L ft	L_{u} $f t$	Kl/r	F_{a} ksi	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ K \end{gathered}$	Allow. P_{a} K	$\begin{gathered} \hline \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$
T1	105.25-85.125	ROHN 2.5 STD	20.13	4.02	$\begin{gathered} 51.0 \\ \mathrm{~K}=1.00 \end{gathered}$	24.197	1.7040	-14.60	41.23	$\begin{gathered} 0.354 \\ y \end{gathered}$
T2	85.125-65	ROHN 2.5 STD	20.16	5.02	$\begin{gathered} 63.6 \\ \mathrm{~K}=1.00 \end{gathered}$	22.099	1.7040	-37.89	37.66	1.006

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	$\begin{gathered} \text { Actual } \\ P \end{gathered}$	Allow. P_{a}	$\begin{gathered} \text { Ratio } \\ P \end{gathered}$
	$f t$		$f t$	$f t$		ksi	$i n^{2}$	K	K	P_{a}
T1	105.25-85.125	L1-1/2x1-1/2x1/8	7.70	3.60	$\begin{gathered} 146.0 \\ K=1.00 \end{gathered}$	7.002	0.3594	-3.31	2.52	1.316
T2	85.125-65	L1-3/4x 1-3/4x3/16	9.70	4.75	$\begin{gathered} 166.0 \\ K=1.00 \end{gathered}$	5.418	0.6211	-3.06	3.36	0.910

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	Ratio P
	$f t$		$f t$	$f t$		ksi	in^{2}	K	K	P_{a}
T1	105.25-85.125	L2x2x1/8	6.56	6.11	$\begin{gathered} 184.6 \\ K=1.00 \end{gathered}$	4.384	0.4844	-0.36	2.12	0.170
T2	85.125-65	L2 $2 \times 1 / 8$	6.56	6.11	$\begin{gathered} 184.6 \\ \mathrm{~K}=1.00 \end{gathered}$	4.384	0.4844	-0.14	2.12	0.068

tnxTower	Job		$\begin{aligned} & \text { Page } \\ & \\ & 10 \text { of } 11 \end{aligned}$
GPD 520 South Main Street Suite 2531	Project	2016777.876328 .15	$\begin{aligned} & \hline \text { Date } \\ & \text { 13:09:49 04/18/16 } \end{aligned}$
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	Crown Castle	Designed by ESchnaus

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	Ratio P
	$f t$		$f t$	$f t$		ksi	in ${ }^{2}$	K	K	P_{a}
T1	105.25-85.125	ROHN 2.5 STD	20.13	4.02	51.0	30.000	1.7040	9.92	51.12	0.194
T2	85.125-65	ROHN 2.5 STD	20.16	0.08	1.1	30.000	1.7040	34.39	51.12	0.673

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	Ratio P
	$f t$		$f t$	$f t$		ksi	in^{2}	K	K	P_{a}
T1	105.25-85.125	L1-1/2x1-1/2x1/8	7.70	3.60	95.7	29.000	0.2109	3.27	6.12	0.534
T2	85.125-65	L1-3/4x 1-3/4x3/16	9.70	4.75	108.5	29.000	0.3779	3.03	10.96	0.276

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	$\begin{gathered} \text { Actual } \\ P \end{gathered}$	Allow. P_{a}	$\begin{aligned} & \text { Ratio } \\ & P \end{aligned}$
	$f t$		$f t$	$f t$		ksi	in ${ }^{2}$	K	K	P_{a}
T1	105.25-85.125	L2x2x1/8	6.56	6.11	121.2	29.000	0.3047	0.36	8.84	0.040
T2	85.125-65	L2x $2 \times 1 / 8$	6.56	6.11	121.2	29.000	0.3047	0.22	8.84	$0.024{ }^{*}$

DL controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
T1	105.25-85.125	Leg	ROHN 2.5 STD	3	-14.60	54.96	26.6	Pass
T2	85.125-65	Leg	ROHN 2.5 STD	38	-37.89	50.20	75.5	Pass
T1	105.25-85.125	Diagonal	L1-1/2x1-1/2x1/8	9	-3.31	3.35	98.7	Pass
T2	85.125-65	Diagonal	L1-3/4x $1-3 / 4 \times 3 / 16$	46	-3.06	4.49	68.2	Pass
T1	105.25-85.125	Top Girt	L2 $2 \times 2 \times 1 / 8$	5	-0.36	2.83	12.7	Pass
T2	85.125-65	Top Girt	L2x $2 \times 1 / 8$	41	-0.14	2.83	$\begin{gathered} 5.1 \\ 6.0(\mathrm{~b}) \end{gathered}$	Pass
						Summary	ELC:	LC7
						Leg (T2)	75.5	Pass
						Diagonal (T1)	98.7	Pass
						Top Girt (T1)	12.7	Pass
						Bolt Checks	96.6	Pass
						Rating =	98.7	Pass

APPENDIX B

BASE LEVEL DRAWING

buSiness Unit: 876328 TOWER ID: C_BASELEVEL

III!
iliili!
IIIMIM
IIM:

SITE NUMBER SITE NAME:

SITE NAME
WEST HARTFORD PARKNG GARA
BUSINESS UNIT NUMBER
${ }_{876328}$
27.31 South Main s

WEST HARTFORD, CT O6110
WEST HARTFORD,
HARTFORD COUNTY
USA
USA BASE LEVEL SHEET NUMB

APPENDIX C

ADDITIONAL CALCULATIONS

GPD Engineering and Architecture Professional Corporation	Client:	Crown Castle	Job No.:		777.87	
	Site Name:	WEST HARTFORD PARKING GARAGE	Sheet No:	1	Of	1
	Site ID:	876328	Made By:	EWS	Date:	4/18/2016
	Location:	Hartford County	Chk'd By:	IM	Date:	4/18/2016
	Loading Type:	Wind	Code:	G		

Sources
Modified Design: GPD, Project \#: 2015777.876328.08, dated 6/3/2015

Modified tnxTower Design Reactions			tnxTower Output Reactions		
Uplift	44	k-ft	Uplift	34.12	k-ft
Compression	52	k-ft	Compression	40.65	k-ft
		tnxTower Output Original Design	78.2\%		

APPENDIX D

INSTALLED MODIFICATION DESIGN CALCULATIONS

George Finley
Crown Castle USA Inc.
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6611

Subject:
Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:

Structural Modification Report
Sprint Co-Locate
Carrier Site Number:
Carrier Site Name:

Crown Castle BU Number:
Crown Castle Site Name: Crown Castle Work Order Number: Crown Castle Application Number:

GPD Group Project Number:

CT03XC075
 WEST HARTFORD PARKING GARAGE

876328
WEST HARTFORD PARKING GARAGE 1057233 205590
2014777.876328 .08

Site Data:

27-31 South Main St., West Hartford, Hartford County, CT 06110
Latitude $41^{\circ} 45^{\prime} 36.41^{\prime \prime}$, Longitude -72 ${ }^{\circ} 44^{\prime} 35.25{ }^{\prime \prime}$
40.25 Foot - Self Support Tower on Rooftop

Dear Mr. Finley,
GPD Group is pleased to submit this structural modification of the parking garage supporting the self-support tower at the aforementioned address. The modification design was completed to increase the capacity of the parking garage in serving as a foundation structure for the existing tower and its loading as specified in Table 1 of this document. This design is consistent with the guidelines stated in the 2013 Connecticut State Building Code and the 2003 IBC based upon a 3 -second gust wind speed of 100 mph as well as the guidelines stated in TIA/EIA-222-F based upon a fastest mile wind speed of 80 mph .

This design assumes that the parking garage has been well maintained and is in good condition with no structural defects. This is not a condition assessment of the structure. It is only an analysis based on the building drawings by Unistress Corporation (Job \#: 8717, dated 8/30/1988), the previous structural analysis by GPD Group (Job \#: 2014777.786328.04), the base frame design by Greiner (Project \#: F101508.60, dated $1 / 30 / 1997$), and the modification design presented in Appendix B. Due to the limited information presented in the provided building drawings, assumptions had to be made regarding the amount and distribution of the existing concrete reinforcement as well as the structural function of existing building members.

Initial calculations were performed to determine the design load forces resisted by the building's shear wall system for various loading conditions as specified by local code requirements. The additional loading produced by the tower and its existing loading configuration was then evaluated against these original design loads to determine the tower's impact on the global building system. The modified supporting stairwell wall panels were then evaluated for their ability to transfer all lateral loads into the building diaphragm and their ability to resist the uplift resulting from the tower's overturning forces.

Based upon the information provided and the results of the subsequent analysis we have determined that the global building structure is adequate to support the existing tower forces. Based on our evaluation of the modified stairwell and its capacity to resist the tower uplift forces, it was determined that the parking garage structure is sufficient for the existing tower and its loading.

In order for the results of this analysis to be valid, the modifications referenced in the design drawings by GPD (Project \#: 2015777.876328.08, dated 6/3/2015) must be installed.

We at the GPD Group appreciate the opportunity of providing our continuing professional services to you. If you have any questions, or would like to discuss any of this information further, please feel free to contact Dan Palkovic on my behalf at 614-859-1607.

Table 1 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
102.0	103.0	3	Alcalel Lucent	TD-RRH8x20-25	1	5/8	1
		3	RFS Celwave	APXVTM14-C-120			
		1	RFS Celwave	APXV9ERR18-C-A20	3	1-1/4	
		2	RFS Celwave	APXVSPP18-C-A20			
		2	Alcatel Lucent	1900MHz RRH (65MHz)			
		1	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
	102.0	1	Alcatel Lucent	1900MHz RRH (65 MHz)			
		2	Alcatel Lucent	800MHz 2X50W RRH W/FILTER			
		1		Sector Mount [SM 502-3]			
92.0	92.0	3	Communication Components Inc.	DTMABP7819VG12A	$\begin{aligned} & 6 \\ & 6 \\ & 1 \end{aligned}$	$\begin{gathered} 1-5 / 8 \\ 3 / 4 \\ 3 / 8 \end{gathered}$	
		3	Ericsson	RRUS 11-700			
		6	Ericsson	RRUS 12-B2			
		3	Ericsson	RRUS E2 B29			
		3	Ericsson	RRUS-11 800MHz			
		3	Ericsson	WCS RRUS-32-B30			
		2	Raycap	DC6-48-60-18-8F			
		1	Commscope	MTC3615AD Sector Mounts			
	89.0	3	Andrew	SBNHH-1D65A			
		6	CCI Antennas	HPA-65R-BUU-H8			
		6	Ericsson	RRUS A2 MODULE			
		3	Powerwave Technologies	7770.00			
		1	Raycap	DC6-48-60-18-8F			
75.0	77.0	1	Lucent	KS24019-L112A	1	1/2	
	75.0	1		Side Arm Mount [SO 302-1]			

Notes:

1) Reserved Equipment

Table 2 - Tower/Building Anchorage Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
	Wall Bracket Plates	Varies	43.2	Pass
	Wall Bracket Bolts	Varies	56.2	Pass
	Floor Brackets Plates	Varies	76.5	Pass
	Floor Bracket Bolts	Varies	76.5	Pass
	Anchorage Extension Plates	Varies	65.2	Pass
	Anchorage Extension Bolts/Breakout	Varies	78.7	Pass

APPENDIX A

CALCULATIONS

Global Building Analysis Summary

	Center of Mass		Center of Rigidity		Center of Geometry		Total Wind Forces ${ }_{\text {ew }}$			Total Seismic Forces s_{E}			Total Wind Forces ${ }_{\text {NS }}$			Total Seismic Forces ${ }_{\text {NS }}$		
Diaphragm Elevation	$\mathrm{x}(\mathrm{tt})$	$y(\mathrm{tt})$	x (ft)	$y(f t)$	x (ft)	$y(f t)$	Shear (k)	Eccentricty (ft)	Moment in Diaphragm (k-ft)	Shear (k)	Eccentricty (ft)	Moment in Diaphragm (k-ft)	Shear (k)	Eccentricty ('t)	Moment in Diaphragm $(k$ - ft$)$	Shear (k)	Eccentricty (ft)	Moment in Diaphragm (k-ft)
${ }^{186}$ '-2"	235	1.5	235	1.5	235	1.5	2.67	0.00		9.17	0.00	0	1.65	0.00	0	10.71	0.0 C	0
173 '-0"	173.19	56.82	176.50	8.33	176.75	63.5	64.06	0.25	17.00	261.33	3.47	907.83	35.23	4.83	170.28	305.24	12.09	3690.63
163 '-0"	170.85	59.92	176.50	68.33	176.75	63.5	121.54	0.25	30.38	484.74	5.93	2876.11	54.78	4.83	264.76	566.32	8.83	4999.9
153'-0"	170.85	59.92	176.50	68.33	176.75	63.5	171.49	0.25	42.87	652.30	5.93	3870.28	73.03	4.83	352.95	762.12	8.83	6728.72

Wall Label	Top Elevation	Maximum Forces - With Tower				Maximum Forces - Without Tower			
		Pu (k)	$\mathrm{Vu}(\mathrm{k})$	$\mathrm{Mu}(\mathrm{k}$-ft)	Uplift (k)	$\mathrm{Pu}(\mathrm{k})$	$\mathrm{Vu}(\mathrm{k})$	Mu(k-ft)	Uplift (k)
7-1	$186{ }^{\prime}-2{ }^{\prime \prime}$	7.21	4.37	57.53		7.21	1.53	20.12	
	173'-0"	81.24	48.71	509.18	0	81.24	48.56	505.76	
	163 '-0"	156.71	90.31	1412.32	0	156.71	90.17	1407.47	
	153'-0"	232.19	121.54	2627.73	0	232.19	121.40	2621.45	\bigcirc
7-2	186'-2"	7.21	4.37	57.53	0	7.21	1.53	20.12	
	173'-0"	78.01	48.71	509.18	0	78.01	48.56	505.76	
	$1633^{\prime}-0^{\prime \prime}$	150.25	90.31	1412.32	0	150.25	90.17	1407.47	
	153'-0"	222.50	121.54	2627.73	0	222.50	121.40	2621.45	\bigcirc
Ha	186'-2"	77.27	6.02	79.27	-63.44	6.26	1.15	15.09	
	$173-0^{\prime \prime}$	94.69	0.00	79.27	-50.38	24.47	0.00	15.09	
	$163^{\prime}-0{ }^{\prime \prime}$	109.17	0.00	79.27	-39.52	40.78	0.00	15.09	
	$153{ }^{\prime}-0^{\prime \prime}$	123.66	0.00	79.27	-28.65	57.78	0.00	15.09	
Hb	$186^{-2} 2$	45.92	6.02	79.27	-39.31	2.51	1.15	15.09	
	173-0"	64.36	0.00	79.27	-25.48	29.98	0.00	15.09	
	$163^{\prime}-0{ }^{\prime \prime}$	81.28	0.00	79.27	-12.79	56.92	0.00	15.09	
	153'-0"	98.21	0.00	79.27	-0.09	83.85	0.00	15.09	
la	186'-2"	79.56	6.02	79.27	-62.22	10.00	1.15	15.09	
	173'-0"	92.37	0.00	79.27	-52.61	24.06	0.00	15.09	
	$163^{\prime}-0 \mid$	102.95	0.00	79.27	-44.68	37.55	0.00	15.09	
	153'-0"	113.52	0.00	79.27	-36.75	52.15	0.00	15.09	
Ib	186'-2"	50.51	6.02	79.27	-36.85	10.00	1.15	15.09	
	173-0"	66.00	0.00	79.27	-25.24	26.74	0.00	15.09	
	163'-0"	79.26	0.00	79.27	-15.29	42.92	0.00	15.09	
	153'-0"	92.53	0.00	79.27	-5.34	60.21	0.00	15.09	

\qquad Date \qquad
$W_{\text {ALL }}-W_{\text {ALL }}$ conneterous

$$
P_{\text {uagauipeo }}=21 \mathrm{kips} / 0.65 \mathrm{E}=24.71 \mathrm{klps}
$$

$$
t_{w}=8
$$

USE 1 $1 / 4^{\prime \prime}$ FIS54-5S RON3

$\phi V_{c b g}=0,7 \frac{A_{v}}{A_{v-a}} \psi_{e c} \psi_{e d} \psi_{c} \psi_{h} V_{b}$

$$
\begin{aligned}
& l_{c}=t_{i m} \\
& d_{a}=1 / 4 " \\
& f_{c}^{\prime}=6000 \mathrm{pai} \\
& c a_{1}=30^{\prime \prime} \\
& e=36^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& A_{V C O}=4.5\left(c a_{1}\right)^{2}=4050 \mathrm{in}^{2} \\
& \psi_{e c}=1 /\left(1+2 e / 3 c a_{1}\right)=0.58 \\
& A_{V L}=54^{\prime \prime} \times 8^{\prime \prime}=432 \text { in }^{2} \\
& \psi_{\text {ed }}=0.7+0.3\left(\frac{c_{a \times m}}{1.5 h_{e f}}\right)=0.8 \\
& \psi_{c}=1.0 \\
& \psi_{n}=\sqrt{\frac{1.5 c_{n}}{n_{a}}}=2.37 \\
& V_{b}=\left[7\left(l_{c} / d_{a}\right)^{0.2} \sqrt{d_{a}}\right] \lambda \sqrt{f_{c}^{\prime}}\left(c_{a}\right)^{1.5}=7(8 / 1.25)^{0.2} \sqrt{1.25} \sqrt{5000}(30)^{1.5}=131.81 \mathrm{k} 1 \mathrm{p}^{2} \\
& d v_{c \log }=0.7\left(432 \mathrm{in}^{2} / 4050 \mathrm{~m}^{3}\right)(0.58)(0.8)(1.0)(2.37) 131.8 / \mathrm{kips}=10.9 \mathrm{kies} / \text { comaseiction } \\
& P_{v} / \phi v_{c b g} n \Rightarrow n_{r e q}=3 \text { connections } \\
& P_{u} / \phi V_{c b g}=\frac{21 \mathrm{kas}}{10.4 \times 3}=64.2 \% \\
& \text { Plate/Bult Degign } \\
& d R_{n}=31.1 \mathrm{kims} \\
& M_{u 5} P_{v}(e)=\frac{24.71 k_{103}}{3}\left(36^{i}\right)=296.5 k_{-11} \\
& M_{A X} V=P / n+\frac{M_{V}}{25^{1}}=\frac{8.24 \mathrm{kiPs}}{4 \text { lawing }}+\frac{29 C .5}{2 \times 12 \sqrt{2}} \\
& V_{v}=10.8 \mathrm{~K} \mathrm{KPs} / \text { BoLt } \rightarrow \text { ALPRAOY HAS } 55.5 \mathrm{HS} \\
& V_{u} / \phi R_{n}=\frac{10.8 k \cdot 03 \times .05}{31.1 \mathrm{k} \cdot \mathrm{Ps}}=29.4 \%
\end{aligned}
$$ 6／3／15

\qquad Date \qquad
$t_{\text {rey：}}: M_{\text {upLate }}: P_{v}\left(e+e_{p}\right)=8.24 k_{100}\left(36^{\prime \prime}+14^{\prime \prime}\right)=412 k \cdot i m \rightarrow w / .85 \mathrm{SF}$

CHECK Bouts on ortag whic：Assume（z）1＇4 Fiss4－5s bouts
ONLY CHECK TENSION

$$
t=1 / 4 "
$$

$\phi_{b}=114^{\prime \prime}$ FISS4－55k－i USE $1 / 4$＂Bneker PLATES

$$
\left.\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\right]^{7}
$$

$$
\begin{aligned}
& \phi R_{n}=0.75 \times 56.25 \mathrm{k}: 1 \times 1.23 \mathrm{~m}^{2}=51.9 \mathrm{k} 1 \mathrm{Ps} \\
& 51.9 \mathrm{k} \text { 听 }=\frac{412 \mathrm{kn}}{d_{\mathrm{k}} \mathrm{z}} \Rightarrow d_{\text {icq }}=耳^{\prime \prime} \Rightarrow \text { use } \quad d=12^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{FinD} d_{\text {Pq }} \\
& V_{b}=P_{J} / 2 \text { bocts } \\
& T_{b}=\frac{\mu_{u}}{d} \\
& V_{b}=8.24 / 2=4.12 \text { kips boit } \\
& V_{b} / \phi V_{n}=4.12 / 31.1 k_{109}=13.2 \%<30 \%
\end{aligned}
$$

$$
\begin{aligned}
& Z_{\text {rey }}=\frac{M_{\text {op }}}{0.9 F_{y}}=\frac{412 \mathrm{kin}}{.9 \times 36 \mathrm{kgi}}=12.72 \mathrm{in}^{3} \\
& t_{\text {req }}=\frac{Z_{\text {leg }} \times 4}{d^{z}}=\frac{12.72^{i_{3}^{3}} \times 4}{(20 i 1)^{2}}=.12 \rightarrow \text { USE } 1 / 4^{\prime \prime} \text { VTiche }
\end{aligned}
$$

\qquad
Acourtiney of $\quad 2$
Calculated by
\qquad Date \qquad

Mar Prhout cames ${ }^{i t}\left[\psi_{\text {ec }}=\psi_{\text {ed }}=1.0\right.$ For all labes
$f_{6}^{\prime}=$ Sooupm:
$d_{a}=1^{1 / h^{\prime \prime}}$
$\psi_{c}=1.2$ - Graby sumes rebar
$\ell_{\ell}=8^{\prime \prime}=h_{\alpha}$ d_{b} san bre <

WALL: $H_{m} \phi V_{\text {clagmax }}=63$ kiPs
Hb $d V_{\text {chog max }}=32.4 \mathrm{k} \cdot \mathrm{ps}$
$J_{a} \quad \phi V_{c o g} \max =47,7 \mathrm{k}$ ag
$V_{b} \quad \phi V_{c b g \text { max }}=47.7 \mathrm{kms}$

Sample dvaby:
WALL J_{b} : OSE $C_{a 1}=36^{\prime \prime}$

$$
\begin{aligned}
& \psi_{n v}=\sqrt{\frac{1.5 s_{a}}{n}}=\sqrt{\frac{1.5 \times 36^{\prime \prime}}{8}}=2.6 \\
& V_{b}=7\left(\mu_{6} / d_{6}\right)^{0.2} \sqrt{\alpha_{a}} \sqrt{f_{c}}\left(a_{1}\right)^{1.5}=7(8 / 1.25)^{0.2} \sqrt{1,4} \sqrt{5000}(36)^{1.5} \\
& =173.27 \mathrm{kles} \\
& A_{v e}=(36)^{2} \times 4.5=583 \sin ^{2} \\
& A_{\text {rco }}=92^{\prime \prime} \times \varepsilon^{\prime \prime}=736 \mathrm{~m}^{2} \\
& d_{\text {chg }}=0.7\left(\frac{5832 i n^{2}}{736 i^{2}}\right) 1.0 \times 1.0 \times 1.2 \times 2.6 \times 173.27 \mathrm{kies} \\
& =47.7 \text { kios }
\end{aligned}
$$

1062015777.876328 .08
\qquad
\qquad 2

Checked by \qquad Date \qquad
 Higher Purea/ ϕ vebgmax "
For IA
THis andehor Neeps to go Downto Vuat below the SPLT © 133.O"

So, AncMors vhere NEED TO DEUELOP 36.6 kies
$\phi R_{n v}$ of $1^{1 / 4^{\prime \prime}}$ F15s4-55kai $=31.1$ kips
\rightarrow Nett At lenst (Z) BELOW Floor AND NEED DEPTH TO FNGAGE Fivus wiotri of ewack

$$
d_{\text {req }}=\frac{50^{\circ}}{1.5}=33,33^{\circ}
$$

\rightarrow USE $d=36^{\circ}$ FOR TOP Anschor \& $6^{\prime \prime}$ SPACING BETGOFAN

Fore others
NEED TO DEUELOP GT KIPM MAX iN BOLTI

$$
63 / \Phi R_{n}=3 \text { Bants RqQuipeo }
$$

\qquad of \qquad Calculated by \qquad Date $6 / 3 / 15$
Checked by \qquad Dace \qquad
FLOOR- FLOOR CONNECTION_ OPTION " 2

$$
p=63,4 \mathrm{k}, \mathrm{ps}
$$

$$
\underline{\text { Required Pane } A_{y}}=\frac{P / 0.85 \mathrm{s.F}}{\Phi F_{y}}=\frac{63.4 \mathrm{kese} / 0.85}{0.9 \times 36 \mathrm{ks}:}
$$

$\operatorname{Determinat~}_{\text {bolt }}^{\text {of }}$ Sum that $R_{1} / R_{2}<\phi R_{n}$ of BoLT $\phi R_{n}=0.75 F_{n} A_{0}=0.75 \times 0.75 F_{v} A_{b}$ USE FISSU- 105 kgi ANO .85 S.f.

$$
\sum M_{R_{2}}=P(12+5)=R_{1}(s)
$$

$$
12 P+s P=s R .
$$

$$
12 P=s R_{1}-5 P
$$

P@ Plate level $=63.4-0.9(14,31)=50.5 \mathrm{kips}$

$$
12 P=\left(R_{1}-P\right) s
$$

-use (4) $1-1 / 2^{\prime \prime}$ Bolts spaced e 6^{4} of 2" edge distance

- (i) stiffener in center

$$
\begin{aligned}
& L=15^{\prime \prime} \\
& b=10.9375^{\prime \prime} \\
& \begin{aligned}
& M_{u}= P_{e}=50.5 k 1 P S\left(q^{\prime \prime}+5 / 2\right)=555,7 \mathrm{k} \cdot \mathrm{~m} \\
& Z_{\text {ru }}=\frac{M_{u}}{d F_{y}}=20.2 \mathrm{in}^{3}(\text { USing } .85 \mathrm{s.f})=\frac{t b^{2}}{4} \\
& \rightarrow V_{S E} 3 / 4 " P \text { PATE } \\
& \% \text { CAPACITY }=76.5 \%
\end{aligned}
\end{aligned}
$$

GPD GROUP.
\qquad $\frac{2015777 \cdot \frac{876328.65}{2}}{2}$
\qquad ACOURTNEY of \qquad
\qquad Date $6 / 3 / 15$
\qquad Date \qquad

CHECK FORLE IN WELDS

Determine wigth of Rate requored for clfarange of tightending $\begin{aligned}= & 3.75 \times 2+t_{3}= \\ & +2.25^{\circ} \rightarrow \text { SDE DITANLE } \\ & 12^{\prime \prime} \quad \text { PLATE }\end{aligned}$
\qquad

Find N.A

$$
\begin{gathered}
\left(8.5^{-}\right)(16-x)+2(15-x)(15-x) / 2=2(x)(x / 2) \\
136-8.5 x+x^{2}-30 x+225=x^{2} \\
x=9.38 \mathrm{in}
\end{gathered}
$$

$$
\begin{gathered}
\left.I=\Sigma\left(b h^{3} / 12\right)+b h d^{2}\right] \\
I=2\left(\frac{\omega(15)^{7}}{12}+\omega(15)(9.38 / 2)^{2}\right)+\frac{8.5 \omega^{3}}{12}+\omega 8.5(16-9.38)^{2}
\end{gathered}
$$

Foe $1 / y^{\prime \prime}$ mFED

$$
\begin{aligned}
& I=281.9 \mathrm{in}^{4} \\
& A=6.8 \mathrm{in}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{\text {TOTAL }} & =\sigma_{\text {MUMENT }}+\sigma_{A \times I A L}=\frac{M_{y}}{T}+\frac{P}{A}=32.5 \mathrm{kHI} \\
\omega \times \sigma_{A L L O W} & =\frac{d R_{\omega}}{L}=0.75 \times 0.6 \times 70 \mathrm{kT} \cdot(1.5)(.707 \times 1 / 4)=8.35 \mathrm{k} \cdot \mathrm{Ps} / \mathrm{in} \\
& =68.8 \%
\end{aligned}
$$

For Verticar weld, 1.5 factor not applicable to p

$$
\text { CAPAcIT }=78.7 \%
$$

Actial plate size is $1 z^{\prime \prime}$ Long \therefore Capactiy whe be lowfb.

APPENDIX B

MODIFICATION DRAWINGS

WEST HARTFORD PARKING GARAGE

 BU \#: 876328MODIFICATION DESIGN DRAWINGS PREPARED FOR:

CROWN
CASTLE

CROWN PM:

MR. JOHN MCGEE
3530 TORINGDON WAY, SUITE 300
CHARLOTTE, NC 28277
(704) 405-8253

JOHN.MCGEE @CROWNCASTLE.COM

STREET ADDRESS: 27-31 SOUTH MAIN STREET CITY, STATE ZIP: WEST HARTFORD, CT 06110 COUNTY: HARTFORD
STRUCTURAL DESIGN DRAWINGS: CCI/WO \#: 1057233 STRUCTURAL ANALYSIS REPORT: GPDNO \#: 738067 STRUCTURAL ANALYSIS DATE: $\quad 03 / 09 / 15$
APPLICATION ID \#:
205590
5587864

CODE COMPLIANCE:

GOVERNING CODES: TIA/EIA-222-F, 2003IBC,\& 2013
WIND SPEEDS:
(PER TOWER DESIGN) 80 MPH FASTEST MILE (TIAEIA-222-F) 38 MPH FASTEST MILE (W/ ICE)
ICE THICKNESS 1"

(B) ENLARGED FRAMING PLAN AT PENTHOUSE ROOF

(C) SECTION

(E) SECTION

MI CHECKLIST	
CONSTRUCTION/INSTALLATION NSPECTIONS AND TESTING REQUIRED (COMPLETED BY EOR)	REPORT ITEM
PRE-CONSTRUCTION	
X	MI CHECKLIST DRAWING
X	EOR APPROVED SHOP DRAWINGS
X	FABRICATION INSPECTION
NA	FABRICATOR CERTIFED WELD INSPECTION
X	MATERIAL TEST REPORT (MTR)
NA	FABRICATOR NDE ISSPECTION
NA	NDE REPORT OF MONOPOLE BASE PLATE PER ENG-SOW-10033
X	PACKING SLIPS
AdITIIONAL TESTING AND INSPECTIONS:	
CONSTRUCTION	
X	CONSTRUCTION INSPECTIONS
NA	Foundation inspections
NA	CONCRETE COMP. STRENGTH AND SLUMP TESTS
NA	post installed anchor rod verification
NA	BASE PLATE GROUT VERRIICATION
X	CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS
NA	EARTHWORK: LIFT And density
X	ON SITE COLD GALVANIZING VERFIICATION
NA	GUY WIRE TENSION REPORT
X	GC As-bulit documents
ADDITIONAL TESTING AND INSPECTIONS:	
POST-CONSTRUCTION	
X	M II ISPECTOR REDLINE OR RECORD DRAWING(S)
NA	POSt INSTALLED ANCHOR ROD PULL-OUT TESTING
X	PHOTOGRAPHS
ADDITIONAL TESTING AND INSPEC	

[^2]
GENERAL

 STALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY

HE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOTA

ALL MIS SHALL BE CONDUCTED BYA CROWN ENGINEERING VENDOR (AEVV OR ENGINEERING
ERVVIC VENDOR AESV THAT IS APPROVED TOO PERFORMELEVATED WORK FOR CROWN SEE ERRVICE VENDOR-AASV) THATII APPROVED
CROW ENG-BL-10173, "APPROVED M VENDORS"
TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI NSPECTOR BEGIN COMNUNICATING AND COORDINATING AS
SOON AS A PURCHASE ORDER (PO) IS RECEVED. TT IS EXPECTED THAT EACH PRTV WIL BE

REFER TO CROWN ENG-SOW-10007, "MODIFICATION INSPECTION SOW", FOR FURTHER DETALLS MI INSPECTOR
THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI

- review the requirements of the mi checklist
 INCLUUING FOUNDATION INSPECTIONS

GENERAL CONTRACTOR

THE GC IS REQURED TO CONTACT THE MI INSPECTOR AS SOON AS RECEVING A PO FOR THE
MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:
REVEW THE REQUIREMENTS OF THE MI CHECKLIST
WORK WITH THE MI INSPECTOR TO DEVELOP A SCHE
dule to conduct on-site mi

- INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUREMENTS

THE OC SHALL PERFORM AND RECORD THE TEST AND INSPECGTION RESULTS IN ACCORDANCE
WITH THE REQUREMENTS OF THE MI CHECKLIST AND CROWN ENG-SOW-10007.

RECOMMENDATIONS

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS AREO:
EFFICIENCY AND EFFECTVENESS OF DELIVERING AN MI REPORT:

- IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTCE

PREFERABLY YO, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE N - TWE GC AND MI INPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTRE RROJECT. - WHEN POSSIILEE, IT I I PREEERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE
SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING ORRE-TENSIONNG OPERATIONS.
 CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW THE FOUNDATION AND M
 THC MAY CHOOSE TO COORDINATE THE MI CAREFULY TO ENSURE ALL CONSTRUCTION NSTE. CANCELLATION OR DELAYS IN SCHEDULED MI ITHE GC AND MI ISSPECTOR AGREE TOA AATE ON WHICH THE MI WILL BE CONDUCTED AND
ETHER PARTY CANCELS OR DELAYS, CROWN SHALL HOT BE RESPONSIBE FOR ANT COSTS

 WEATHER
NVOLVED.

CORRECTION OF FAILING MI'S
IF THE MODIFICATION INSTALLATION WOULD FALL THE MII FFALLED MII), THE GC SHALL WORK WITH
CROWN TO COORIINATE A REMEDATION PLAN IN ONE OF FWO WAYS:

- CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFIICATIONS CONTAINED IN THE

MI VERIFICATION INSPECTIONS

CROUN RESERVES THE RIGHT TO CONDCVT AN MI VERIFLCATION INSPECTION TO VERIFY THE
ACCUACY
MOD COMPETENESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON STRUCTURE MODIFICATION PROJECTS.
ALL VERIFICATION INSPECTIONS SHALL BE EELD TOTHE SAME SPECIIICATIONS AND
REQUIREMENTS IN THE CONTRACT DOCUMENTS AND IN ACCORDANCE WITH CROWN ENG-SOW-10007.
VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT AEVIAESV FRRM AFTER A

REQUIRED PHOTOS

ETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE
IO BE TAKEN AND INCLUDED IN THE MI REPORT:
PRE-CONSTRU
PRE-CONSTRUCTION GEN ERAL LITE CONDITION
PHOTITICAPHS DURING THE REINFORCEMENT MOIION CONSTRUCTIONERECTION

Photos of elevated modifications taken only from the ground shall be considered THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS, PLEASE REFER TO CROWN
ENG-SOW-1007.

[^0]: * Per CSC records.

[^1]: ${ }^{I}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

[^2]: NOTE: X DENOTES A DOCUMENT REQURED FOR THE MI REPORT
 NA DENOTES ADOCUMENT THAT IS NOT REQURED FOR THE MI REPORT

